Programmer to Programmer™

Beginning
SQL Server 2005
Programming

Robert Vieira

Updates, source code, and Wrox technical support at www.wrox.com

Beginning
SQL Server™ 2005 Programming

Robert Vieira

WILEY

Wiley Publishing, Inc.

Beginning
SQL Server™ 2005 Programming

Beginning
SQL Server™ 2005 Programming

Robert Vieira

WILEY

Wiley Publishing, Inc.

Beginning SQL Server™ 2005 Programming

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN-13: 978-0-7645-8433-6
ISBN-10: 0-7645-8433-2

Manufactured in the United States of America

10987654321

1IMA/QT/QS/QW/IN

Library of Congress Cataloging-in-Publication Data: Available from publisher

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis-
sion should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis,
IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http: / /www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States
and other countries, and may not be used without written permission. SQL Server is a trademark of Microsoft
Corporation in the United States and/or other countries. All other trademarks are the property of their respec-
tive owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.wiley.com

Executive Editor
Robert Elliott

Development Editor
Adaobi Obi Tulton

Technical Editor
John Mueller

Production Editor
Pamela Hanley

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Joseph B. Wikert

Credits

Project Coordinator
Kristie Rees

Quality Control Technician
Laura Albert
Jessica Kramer

Graphics and Production Specialists
Carrie A. Foster

Lauren Goddard

Denny Hager

Stephanie D. Jumper

Barbara Moore

Alicia South

Proofreading and Indexing
TECHBOOKS Production Services

This book is dedicated with all my heart to my children Ashley and Addy, who put up with me
“disappearing” into my home office during the several months that I worked on this book.
They provide the energy that powers my writing, and I love them to no end. I only wish Wiley
would let me print a picture of the two women in my life on the cover of this book rather than

my ugly mug.

About the Author

Experiencing his first infection with computing fever in 1978, Robert Vieira knew right away that this
was something “really cool.” In 1980 he began immersing himself into the computing world more fully —
splitting time between building and repairing computer kits, and programming in Basic as well as Z80
and 6502 assembly. In 1983, he began studies for a degree in Computer Information Systems, but found
the professional mainframe environment too rigid for his tastes, and dropped out in 1985 to pursue
other interests. Later that year, he caught the “PC bug” and began the long road of programming in
database languages from dBase to SQL Server. Rob completed a degree in Business Administration in
1990, and, since has typically worked in roles that allow him to combine his knowledge of business and
computing. Beyond his Bachelor’s degree, he has been certified as a Certified Management Accountant
as well as Microsoft Certified as a Solutions Developer (MCSD), Trainer (MCT), and Database
Administrator (MCDBA).

Rob is currently a Software Architect for WebTrends Corporation in Portland, Oregon.

He resides with his daughters Ashley and Adrianna in Vancouver, WA.

Acknowledgments

Five years have gone by, and my how life has changed since the last time I wrote a title on SQL Server. So
many people have affected my life in so many ways, and, as always, there are a ton of people to thank.

I'll start with my kids, who somehow continue to be just wonderful even in the face of dad stressing out
over this and that. Even as my youngest has asked me several times when I'm “going to be done with
that book” (she is not pleased with how it takes up some of my play time), she has been tremendously
patient with me all during the development of this book. My eldest just continues to amaze me in her
maturity and her sensitivity to what doing a book like this requires (and, of course, what it means to her
college education!). The thank yous definitely need to begin with those two.

You — the readers. You've written me mail and told me how I helped you out in some way. That was
and continues to be the number one reason I find to strength to write another book. The continued sup-
port of my Professional series titles has been amazing. We struck a chord — I'm glad. Here’s to hoping
we help make your SQL Server experience a little less frustrating and a lot more successful.

I also want to pay special thanks to several people past and present. Some of these are at the old Wrox
Press and have long since fallen out of contact, but they remain so much of who I am as I writer that I
need to continue to remember them. Others are new players for me, but have added their own stamp to
the mix — sometimes just by showing a little patience:

Kate Hall — Who, although she was probably ready to kill me by the end of each of my first two books,
somehow guided me through the edit process to build a better book each time. I have long since fallen
out of touch with Kate, but she will always be the most special to me as someone who really helped
shape my writing career. I will likely always hold this first “professional” dedication spot for you —
wherever you are Kate, I hope you are doing splendidly.

Adaobi Obi Tulton — Who has had to put up with yet another trialing year in my life and what that has
sometimes meant to delivery schedules. If I ever make it rich, I may hire Adaobi as my spiritual guide.
While she can be high stress about deadlines, she has a way of displaying a kind of “peace” in just about
everything else I've seen her do — I need to learn that.

Dominic Shakeshaft — Who got me writing in the first place (then again, given some nights filled with
writing instead of sleep lately, maybe it’s not thanks I owe him...).

Catherine Alexander — who played Kate’s more than able-bodied sidekick for my first title, and was
central to round two. Catherine was much like Kate in the sense she had a significant influence on the
shape and success of my first two titles.

John Mueller — Who had the dubious job of finding my mistakes. I've done tech editing myself, and it’s
not the easiest job to notice the little details that were missed or are, in some fashion, wrong. It’s even
harder to read someone else’s writing style and pick the right times to say “You might want to approach
this differently...” and know when to let it be — John did a terrific job on both counts.

Acknowledgments

There are not quite as many other players in this title as there have been in my previous titles, but this
book has been in development for so long and touched enough people that I'm sure I'll miss one or two —
if you're among those missed, please accept my humblest apologies and my assurance that your help was
appreciated. That said, people who deserve some additional thanks (some of these go to influences from
WAY back) include Paul Turley, Greg Beamer, Itzik Ben-Gan, Kalen Delaney, Fernando Guerrero, Gert
Drapers and Richard Waymire.

Contents

Acknowledgments ix
Introduction XXi
Chapter 1: RDBMS Basics: What Makes Up a SQL Server Database? 1
An Overview of Database Objects 2
The Database Object 2
The Transaction Log 6
The Most Basic Database Object: Table 6
Filegroups 8
Diagrams 8
Views 9
Stored Procedures 10
User-Defined Functions 10
Users and Roles 11
Rules 11
Defaults 11
User-Defined Data Types 11
Full-Text Catalogs 12
SQL Server Data Types 12
NULL Data 17
SQL Server Identifiers for Objects 17
What Gets Named? 17
Rules for Naming 18
Summary 18
Chapter 2: Tools of the Trade 19
Books Online 20
The SQL Server Configuration Manager 21
Service Management 22
Network Configuration 22
The Protocols 23

On to the Client 26

Contents

The SQL Server Management Studio 28
Getting Started 28
Query Window 33

SQL Server Integration Services (SSIS) 38

Bulk Copy Program (bcp) 39

SQL Server Profiler 40

sqlcmd 40

Summary 40

Chapter 3: The Foundation Statements of T-SQL 41

Getting Started with a Basic SELECT Statement 42
The SELECT Statement and FROM Clause 42
The WHERE Clause 45
ORDER BY 49
Aggregating Data Using the GROUP BY Clause 52
Placing Conditions on Groups with the HAVING Clause 61
Outputting XML Using the FOR XML Clause 63
Making Use of Hints Using the OPTION Clause 63
The DISTINCT and ALL Predicates 64

Adding Data with the INSERT Statement 66
The INSERT INTO . . . SELECT Statement 70

Changing What You’ve Got with the UPDATE Statement 72

The DELETE Statement 75

Summary 77

Exercises 77

Chapter 4: JOINs 79

JOINs 79

INNER JOINs 81
How an INNER JOIN Is Like a WHERE Clause 85

OUTER JOINs 89
The Simple OUTER JOIN 90
Dealing with More Complex OUTER JOINs 95

Seeing Both Sides with FULL JOINs 929

CROSS JOINs 100

Exploring Alternative Syntax for Joins 102
An Alternative INNER JOIN 102
An Alternative OUTER JOIN 103
An Alternative CROSS JOIN 104

Xii

Contents

The UNION 104
Summary 109
Exercises 110
Chapter 5: Creating and Altering Tables 111
Object Names in SQL Server 111
Schema Name (aka Ownership) 112
The Database Name 114
Naming by Server 114
Reviewing the Defaults 114
The CREATE Statement 115
CREATE DATABASE 115
CREATE TABLE 121
The ALTER Statement 133
ALTER DATABASE 133
ALTER TABLE 137
The DROP Statement 140
Using the GUI Tool 142
Creating a Database Using the Management Studio 142
Backing into the Code: The Basics of Creating Scripts with the Management Studio 148
Summary 149
Exercises 149
Chapter 6: Constraints 151
Types of Constraints 152
Domain Constraints 152
Entity Constraints 153
Referential Integrity Constraints 154
Constraint Naming 154
Key Constraints 155
PRIMARY KEY Constraints 155
FOREIGN KEY Constraints 158
UNIQUE Constraints 169
CHECK Constraints 170
DEFAULT Constraints 171
Defining a DEFAULT Constraint in Your CREATE TABLE Statement 172
Adding a DEFAULT Constraint to an Existing Table 173
Disabling Constraints 173
Ignoring Bad Data When You Create the Constraint 174
Temporarily Disabling an Existing Constraint 176

Xiii

Contents

Rules and Defaults — Cousins of Constraints 178
Rules 178
Defaults 180
Determining Which Tables and Datatypes Use a Given Rule or Default 181

Triggers for Data Integrity 181

Choosing What to Use 181

Summary 183

Chapter 7: Adding More to Our Queries 185

What Is a Subquery? 186
Building a Nested Subquery 186

Correlated Subqueries 190
How Correlated Subqueries Work 190
Correlated Subqueries in the WHERE Clause 190
Dealing with NULL Data — the ISNULL Function 194

Derived Tables 195

The EXISTS Operator 197
Using EXISTS in Other Ways 199

Mixing Datatypes: CAST and CONVERT 201

Performance Considerations 204
JOINs vs. Subqueries vs. ? 204

Summary 205

Exercises 206

Chapter 8: Being Normal: Normalization and Other Basic Design Issues 207

Tables 208
Keeping Your Data “Normal” 208
Before the Beginning 209
The First Normal Form 211
The Second Normal Form 214
The Third Normal Form 216
Other Normal Forms 218
Relationships 219
One-to-One 219
One-to-One or Many 221
Many-to-Many 223
Diagramming 227
Tables 230
Adding and Deleting Tables 230
Relationships 237

Xiv

Contents

De-Normalization 241
Beyond Normalization 241
Keep It Simple 242
Choosing Datatypes 242
Err on the Side of Storing Things 242
Drawing Up a Quick Example 243
Creating the Database 243
Adding the Diagram and Our Initial Tables 244
Adding the Relationships 248
Adding Some Constraints 251
Summary 252
Exercises 252
Chapter 9: SQL Server Storage and Index Structures 255
SQL Server Storage 255
The Database 255
The Extent 256
The Page 256
Rows 257
Understanding Indexes 257
B-Trees 258
How Data Is Accessed in SQL Server 262
Creating, Altering, and Dropping Indexes 270
The CREATE INDEX Statement 270
Creating XML Indexes 276
Implied Indexes Created with Constraints 277
Choosing Wisely: Deciding What Index Goes Where and When 277
Selectivity 277
Watching Costs: When Less Is More 278
Choosing That Clustered Index 278
Column Order Matters 281
Dropping Indexes 281
Use the Database Engine Tuning Wizard 282
Maintaining Your Indexes 282
Fragmentation 282
Identifying Fragmentation vs. Likelihood of Page Splits 283
Summary 286
Exercises 288

XV

Contents

Chapter 10: Views 289
Simple Views 289
Views as Filters 293
More Complex Views 295
Using a View to Change Data — Before INSTEAD OF Triggers 298
Editing Views with T-SQL 301
Dropping Views 302
Creating and Editing Views in the Management Studio 302
Editing Views in the Management Studio 306
Auditing: Displaying Existing Code 306
Protecting Code: Encrypting Views 308
About Schema Binding 309
Making Your View Look Like a Table with VIEW_METADATA 310
Indexed (Materialized) Views 310
Summary 313
Exercises 314
Chapter 11: Writing Scripts and Batches 315
Script Basics 315
The USE Statement 316
Declaring Variables 317
Using @@IDENTITY 320
Using @@ROWCOUNT 324
Batches 325
Errors in Batches 327
When to Use Batches 327
sSQLCMD 330
Dynamic SQL: Generating Your Code On-the-Fly with the EXEC Command 334
The Gotchas of EXEC 335
Summary 339
Exercises 340
Chapter 12: Stored Procedures 341
Creating the Sproc: Basic Syntax 342
An Example of a Basic Sproc 342
Changing Stored Procedures with ALTER 343
Dropping Sprocs 344

Xvi

Contents

Parameterization 344
Declaring Parameters 344
Control-of-Flow Statements 349
The IF . . . ELSE Statement 349
The CASE Statement 360
Looping with the WHILE Statement 366
The WAITFOR Statement 367
TRY/CATCH Blocks 368
Confirming Success or Failure with Return Values 369
How to Use RETURN 369
Dealing with Errors 371
The Way We Were . . . 372
Handling Errors Before They Happen 378
Manually Raising Errors 381
Adding Your Own Custom Error Messages 385
What a Sproc Offers 388
Creating Callable Processes 389
Using Sprocs for Security 390
Sprocs and Performance 391
Extended Stored Procedures (XPs) 393
A Brief Look at Recursion 393
Debugging 396
Setting Up SQL Server for Debugging 396
Starting the Debugger 397
Parts of the Debugger 400
Using the Debugger Once It's Started 402
.NET Assemblies 406
Summary 407
Exercises 407
Chapter 13: User Defined Functions 409
What a UDF Is 409
UDFs Returning a Scalar Value 410
UDFs That Return a Table 414
Understanding Determinism 421
Debugging User-Defined Functions 423
.NET in a Database World 423
Summary 424
Exercise 424

Xvii

Contents

Chapter 14: Transactions and Locks 425
Transactions 425
BEGIN TRAN 426
COMMIT TRAN 427
ROLLBACK TRAN 427
SAVE TRAN 427
How the SQL Server Log Works 428
Failure and Recovery 429
Implicit Transactions 431
Locks and Concurrency 431
What Problems Can Be Prevented by Locks 432
Lockable Resources 435
Lock Escalation and Lock Effects on Performance 435
Lock Modes 436
Lock Compatibility 438
Specifying a Specific Lock Type — Optimizer Hints 439
Setting the Isolation Level 440
Dealing with Deadlocks (aka “A 1205”) 442
How SQL Server Figures Out There’s a Deadlock 443
How Deadlock Victims Are Chosen 443
Avoiding Deadlocks 443
Summary 445
Chapter 15: Triggers 447
What Is a Trigger? 448
ON 449
WITH ENCRYPTION 450
The FORJAFTER vs. the INSTEAD OF Clause 450
WITH APPEND 452
NOT FOR REPLICATION 453
AS 453
Using Triggers for Data Integrity Rules 453
Dealing with Requirements Sourced from Other Tables 454
Using Triggers to Check the Delta of an Update 455
Using Triggers for Custom Error Messages 457
Other Common Uses for Triggers 457
Other Trigger Issues 458
Triggers Can Be Nested 458
Triggers Can Be Recursive 458

xviii

Contents

Triggers Don’t Prevent Architecture Changes 458
Triggers Can Be Turned Off Without Being Removed 459
Trigger Firing Order 459
INSTEAD OF Triggers 461
Performance Considerations 462
Triggers Are Reactive Rather Than Proactive 462
Triggers Don’t Have Concurrency Issues with the Process That Fires Them 462
Using IF UPDATE() and COLUMNS_UPDATED 463
Keep It Short and Sweet 465
Don’t Forget Triggers When Choosing Indexes 465
Try Not to Roll Back Within Triggers 465
Dropping Triggers 466
Debugging Triggers 466
Summary 468
Chapter 16: A Brief XML Primer 469
XML Basics 470
Parts of an XML Document 471
Namespaces 479
Element Content 481
Being Valid vs. Being Well Formed — Schemas and DTDs 481
What SQL Server Brings to the Party 482
Retrieving Relational Data in XML Format 483
RAW 484
AUTO 486
EXPLICIT 487
PATH 503
OPENXML 508

A Brief Word on XSLT 514
Summary 516
Chapter 17: Reporting for Duty, Sir!: A Look At Reporting Services 517
Reporting Services 101 518
Building Simple Report Models 518
Data Source Views 523
Report Creation 529
Report Server Projects 532
Deploying the Report 537
Summary 538

Xix

Contents

Chapter 18: Getting Integrated With Integration Services 539
Understanding the Problem 539
Using the Import/Export Wizard to Generate Basic Packages 540
Executing Packages 547

Using the Execute Package Utility 547
Executing Within the Business Intelligence Development Studio 549
Executing Within the Management Studio 549
Editing the Package 550
Summary 553

Chapter 19: Playing Administrator 555

Scheduling Jobs 556
Creating an Operator 557
Creating Jobs and Tasks 558

Backup and Recovery 567
Creating a Backup: a.k.a. “A Dump” 567
Recovery Models 570
Recovery 571

Index Maintenance 572
ALTER INDEX 573

Archiving Data 575

Summary 576

Exercises 576

Appendix A: Exercise Solutions 577

Appendix B: System Functions 587

Appendix C: Finding the Right Tool 639

Appendix D: Very Simple Connectivity Examples 647

Appendix E: Installing and Using the Samples 651
Index 655

XX

Introduction

What a long strange trip it’s been. When I first wrote Professional SQL Server 7.0 Programming in early
1999, the landscape of both books and the development world was much different than it is today. At the
time, NET was as yet unheard of, and while Visual Studio 98 ruled the day as the most popular devel-
opment environment, Java was coming on strong and alternative development tools such as Delphi
were still more competitive than they typically are today. The so-called “dot com” era was booming, and
the use of database management systems (DBMS) such as SQL Server was growing.

There was, however a problem. While one could find quite a few books on SQL Server, they were all ori-
ented towards the administrator. They spent tremendous amounts of time and energy on things that the
average developer did not give a proverbial hoot about. Something had to give, and as my development
editor and I pondered the needs of the world, we realized that we could not solve world hunger or arms
proliferation ourselves, but we could solve the unrealized need for a new kind of SQL book — one
aimed specifically at developers.

At the time, we wrote Professional SQL Server 7.0 Programming to be everything to everyone. It was a
compendium. It started at the beginning, and progressed to a logical end. The result was a very, very
large book that filled a void for a lot of people (hooray!).

SQL Server 2005 represents the 2"¢ major revision to SQL Server since that time, and, as we did the plan-
ning for this cycle of books, we realized that we once again had a problem — it was too big. The new
features of SQL Server 2005 created a situation where there was simply too much content to squeeze into
one book, and so we made the choice to split the old Professional series title into a Beginning and a more
targeted Professional pair of titles. You are now holding the first half of that effort.

My hope is that you find something that covers all of the core elements of SQL Server with the same suc-
cess that we had in the previous Professional SQL Server Programming titles. When we’re done, you
should be set to be a highly functional SQL Server 2005 programmer, and, when you need it, be ready to
move on to the more advanced Professional title.

Who This Book Is For

It is almost sad that the word “Beginner” is in the title of this book. Don’t get me wrong; if you are a
beginner, then this title is for you. But it is designed to last you well beyond your beginning days. What
is covered in this book is necessary for the beginner, but there is simply too much information for you to
remember all of it all the time, and so it is laid out in a fashion that should make a solid review and ref-
erence item even for the more intermediate, and, yes, even advanced user.

The beginning user will want to start right at the beginning. Things are designed such that just about
everything in this book is a genuine “need to know” sort of thing. With the possible exception of the
chapters on XML, Reporting Services and Integration Services, every item in this book is a fundamental
item to you having the breadth of understanding you need to make well-informed choices on how you
approach your SQL Server problems.

Introduction

For the intermediate user, you can probably skip perhaps as far as chapter 7 or 8 for starting. While I would
still recommend scanning the prior chapters for holes in your skills or general review, you can probably
skip ahead with little harm done and get to something that might be a bit more challenging for you.

Advanced users, in addition to utilizing this as an excellent reference resource, will probably want to
focus on Chapter 12 and beyond. Virtually everything from that point forward should be of some inter-
est (the new debugging, transactions, XML, Reporting Services and more!).

What This Book Covers

Well, if you're read the title, you're probably not shocked to hear that this book covers SQL Server 2005
with a definite bent towards the developer perspective.

SQL Server 2005 is the latest incarnation of a database management system that has now been around
for what is slowly approaching two decades. It builds on the base redesign that was done to the product
in version 7.0, and significantly enhances the compatibility and featureset surrounding XML, .NET, user
defined datatypes as well as a number of extra services. This book focuses on core development needs
of every developer regardless of skill level. The focus is highly orienting to just the 2005 version of the
product, but there is regular mention of backward compatibility issues as they may affect your design
and coding choices.

How This Book Is Structured

The book is designed to become progressively more advanced as you progress through it, but, from
the very beginning, I'm assuming that you are already an experienced developer — just not necessarily
with databases. In order to make it through this book you do need to already have understanding of
programming basics such as variables, data types, and procedural programming. You do not have to
have ever seen a query before in your life (though I suspect you have).

The focus of the book is highly developer-oriented. This means that we will, for the sake of both brevity
and sanity, sometimes gloss over or totally ignore items that are more the purview of the database
administrator than the developer. We will, however, remember administration issues as they either affect
the developer or as they need to be thought of during the development process — we’ll also take a brief
look at several administration related issues in Chapter 19.

The book makes a very concerted effort to be language independent in terms of your client side develop-
ment. VB, C#, C++, Java and other languages are generally ignored (we focus on the server side of the
equation) and treated equally where addressed.

In terms of learning order, we start by learning the foundation objects of SQL, and then move onto basic
queries and joins. From there, we begin adding objects to our database and discuss items that are impor-
tant to the physical design — then it is on to the more robust code aspects of SQL Server scripting, stored
procedures, user defined functions, and triggers. We then look at a few of the relative peripheral features
of SQL server. Last but not least, we wrap things up with a discussion of administration meant to help
you keep the databases you develop nice and healthy.

xXii

Introduction

What You Need to Use This Book

In order to make any real viable use of this book, you will need an installation of SQL Server. The book
makes extensive use of the actual SQL Server 2005 management tools, so I highly recommend that you
have a version that contains the full product rather than just using SQL Server Express. That said, the
book is focused on the kind of scripting required for developers, so even SQL Server Express users
should be able to get the lion’s share of learning out of most of the chapters.

A copy of Visual Studio is handy for working with this book, but most of the Visual Studio features
needed are included in the Business Intelligence Studio that comes along with the SQL Server product.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Try It Out
The Try It Out is an exercise you should work through, following the text in the book.

1. They usually consist of a set of steps.
2. Each step has a number.
3. Follow the steps through with your copy of the database.

How It Works
After each Try It Out, the code you've typed will be explained in detail.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q We highlight new terms and important words when we introduce them.
QO We show keyboard strokes like this: Ctrl+A.
Q We show file names, URLs, and code within the text like so: persistence.properties.
QO We present code in two different ways:
In code examples we highlight new and important code with a gray background.
The gray highlighting is not used for code that's less important in the present

context, or has been shown before.

xxiii

Introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-7645-8433-2 (changing to 978-0-7645-8433-6 as the new industry-wide 13-digit ISBN numbering
system is phased in by January 2007).

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http: //www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail your topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

XXiv

Introduction

Athttp://p2p.wrox.comyou will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p . wrox. com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you

must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXV

Beginning
SQL Server™ 2005 Programming

RDBMS Basics: What Makes
Up a SQL Server Database?

What makes up a database? Data for sure. (What use is a database that doesn’t store anything?)
But a Relational Database Management System (RDBMS) is actually much more than data. Today’s
advanced RDBMSs not only store your data; they also manage that data for you, restricting what
kind of data can go into the system, and also facilitating getting data out of the system. If all you
want is to tuck the data away somewhere safe, you could use just about any data storage system.
RDBMSs allow you to go beyond the storage of the data into the realm of defining what that data
should look like, or the business rules of the data.

Don’t confuse what I'm calling the “business rules of data” with the more generalized business
rules that drive your entire system (for example, someone can’t see anything until they’ve logged
on, or automatically adjusting the current period in an accounting system on the first of the
month). Those types of rules can be enforced at virtually any level of the system. (These days, it’s
usually in the middle or client tier of an n-tier system). Instead, what we’re talking about here are
the business rules that specifically relate to the data. For example, you can’t have a sales order
with a negative amount. With an RDBMS, we can incorporate these rules right into the integrity of
the database itself.

This chapter provides an overview to the rest of the book. Everything discussed in this chapter
will be covered again in later chapters, but this chapter is intended to provide you with a roadmap
or plan to bear in mind as we progress through the book. Therefore, in this chapter, we will take a
high-level look into:

Q Database objects
Q Data types

Q Other database concepts that ensure data integrity

Chapter 1

An Overview of Database Objects

An RDBMS such as SQL Server contains many objects. Object purists out there may quibble with
whether Microsoft’s choice of what to call an object (and what not to) actually meets the normal defini-
tion of an object, but, for SQL Server’s purposes, the list of some of the more important database objects
can be said to contain such things as:

The database itself Indexes

The transaction log Assemblies

Tables Reports

Filegroups Full-text catalogs
Diagrams User-defined data types
Views Roles

Stored procedures Users

User Defined Functions

The Database Object

The database is effectively the highest-level object that you can refer to within a given SQL Server.
(Technically speaking, the server itself can be considered to be an object, but not from any real “pro-
gramming” perspective, so we're not going there). Most, but not all, other objects in a SQL Server are
children of the database object.

If you are familiar with old versions of SQL Server you may now be saying, “What? What happened to
logins? What happened to Remote Servers and SQL Agent tasks?” SQL Server has several other objects
(as listed previously) that exist in support of the database. With the exception of linked servers, and per-
haps Integration Services packages, these are primarily the domain of the database administrator and as
such, we generally don’t give them significant thought during the design and programming processes.
(They are programmable via something called the SQL Management Objects (SMO), but that is far too
special a case to concern ourselves with here.)

A database is typically a group that includes at least a set of table objects and, more often than not, other
objects, such as stored procedures and views that pertain to the particular grouping of data stored in the
database’s tables.

What types of tables do we store in just one database and what goes in a separate database? We’ll dis-
cuss that in some detail later in the book, but for now we’ll take the simple approach of saying that any
data that is generally thought of as belonging to just one system, or is significantly related will be stored
in a single database. An RDBMS, such as SQL Server, may have multiple user databases on just one
server, or it may have only one. How many can reside on one SQL Server depends on such factors as
capacity (CPU power, disk I/O limitations, memory, etc.), autonomy (you want one person to have man-
agement rights to the server this system is running on, and someone else to have admin rights to a dif-
ferent server), or just how many databases your company or client has. Many servers have only one
production database; others may have many. Also keep in mind that with any version of SQL Server
you're likely to find in production these days (SQL Server 2000 was already five years old by the time it

RDBMS Basics: What Makes Up a SQL Server Database?

was replaced, so we'll assume most shops have that or higher), we have the ability to have multiple
instances of SQL Server — complete with separate logins and management rights —all on the same
physical server.

I'm sure many of you are now asking: Can I have different versions of SQL Server on the same box —
say, SQL Server 2000 and SQI Server 20052 The answer is, yes. You can mix SQL Server 2000 and
2005 on the same box. Personally, I am not at all trusting of this configuration, even for migration sce-
narios, but, if you have the need, yes, it can be done.

When you first load SQL Server, you will start with four system databases:

O master
O model
Q msdb

Q tempdb

All of these need to be installed for your server to run properly. (Indeed, for some of them, it won’t run
at all without them.) From there, things vary depending on which installation choices you made.
Examples of some of the databases you may see include the following;:

Q AdventureWorks (the sample database)

Q AdventureWorksDW (sample for use with Analysis Services)

In addition to the system installed examples, this book makes extensive use of the older samples. (See
Appendix F—online for more info on how to get these installed.)

Q pubs
Q Northwind

During the design of this book, much debate was had over whether to use the newer examples or stick
with the tried and true older examples. I'm going to be very up front that Microsoft was not very happy
about my choice to retain the older examples, but I'm not making any apologies about it.

The newer AdventureWorks database is certainly a much more robust example, and does a great job of
providing examples of just about every little twist and turn you can make use of in SQL Server 2005.
There is, however, a problem with that — complexity. The AdventureWorks database is excessively com-
plex for a training database. It takes features that are likely to be used only in exception cases and uses
them as a dominant feature. I polled several friends who teach and/or write books on SQL Server, and all
of them shared my opinion on this: Northwind and pubs, while overly simplistic in many ways, make it
relatively easy to understand the basic concepts at work in SQL Server. I'd much rather get you to
understand the basics and move forward than overwhelm you in the unnecessary complexity that is
AdventureWorks.

The master Database

Every SQL Server, regardless of version or custom modifications, has the master database. This database
holds a special set of tables (system tables) that keeps track of the system as a whole. For example, when
you create a new database on the server, an entry is placed in the sysdatabases table in the master

Chapter 1

database. All extended and system stored procedures, regardless of which database they are intended
for use with, are stored in this database. Obviously, since almost everything that describes your server is
stored in here, this database is critical to your system and cannot be deleted.

The system tables, including those found in the master database, can, in a pinch, be extremely useful.
They can enable you to determine whether certain objects exist before you perform operations on them.
For example, if you try to create an object that already exists in any particular database, you will get an
error. If you want to force the issue, you could test to see whether the table already has an entry in the
sysobjects table for that database. If it does, you would delete that object before re-creating it.

If you're quite cavalier, you may be saying to yourself, “Cool, I can’t wait to mess
around in there!” Don’t go there! Using the system tables in any form is fraught with
peril. Microsoft has recommended against using the system tables for at least the
last three versions of SQL Server. They make absolutely no guarantees about com-
patibility in the master database between versions —indeed, they virtually guaran-
tee that they will change. The worst offense comes when performing updates on
objects in the master database. Trust me when I tell you that altering these tables in
any way is asking for a SQL Server that no longer functions. Fortunately, several
alternatives (for example, system functions, system stored procedures, and informa-
tion_schema views) are available for retrieving much of the meta data that is stored
in the system tables.

All that said, there are still times when nothing else will do. We will discuss a few
situations where you can’t avoid using the system tables, but in general, you should
consider them to be evil cannibals from another tribe and best left alone.

The model Database

The model database is aptly named, in the sense that it’s the model on which a copy can be based. The
model database forms a template for any new database that you create. This means that you can, if you
wish, alter the model database if you want to change what standard, newly created databases look like.
For example, you could add a set of audit tables that you include in every database you build. You could
also include a few user groups that would be cloned into every new database that was created on the
system. Note that since this database serves as the template for any other database, it’s a required
database and must be left on the system; you cannot delete it.

There are several things to keep in mind when altering the model database. First, any database you cre-
ate has to be at least as large as the model database. That means that if you alter the model database to
be 100MB in size, you can’t create a database smaller than 100MB. There are several other similar pitfalls.
As such, for 90% of installations, I strongly recommend leaving this one alone.

The msdb Database

msdb is where the SQL Agent process stores any system tasks. If you schedule backups to run on a
database nightly, there is an entry in msdb. Schedule a stored procedure for one time execution, and yes,
it has an entry in msdb.

RDBMS Basics: What Makes Up a SQL Server Database?

The tempdb Database

tempdb is one of the key working areas for your server. Whenever you issue a complex or large query
that SQL Server needs to build interim tables to solve, it does so in tempdb. Whenever you create a tem-
porary table of your own, it is created in tempdb, even though you think you're creating it in the current
database. Whenever there is a need for data to be stored temporarily, it’s probably stored in tempdb.

tempdb is very different from any other database. Not only are the objects within it temporary; the
database itself is temporary. It has the distinction of being the only database in your system that is com-
pletely rebuilt from scratch every time you start your SQL Server.

Technically speaking, you can actually create objects yourself in tempdb — I strongly
recommend against this practice. You can create temporary objects from within any
database you have access to in your system — it will be stored in tempdb. Creating
objects directly in tempdb gains you nothing, but adds the confusion of referring to
things across databases. This is another of those, “Don’t go there!” kind of things.

AdventureWorks

SQL Server included samples long before this one came along. The old samples had their shortcomings
though. For example, they contained a few poor design practices. (I'll hold off the argument of whether
AdventureWorks has the same issue or not. Let’s just say that AdventureWorks was, among other
things, an attempt to address this problem.) In addition, they were simplistic and focused on demon-
strating certain database concepts rather than on SQL Server as a product or even databases as a whole.

From the earliest stages of development of Yukon (the internal code name for what we know today as
SQL Server 2005) Microsoft knew they wanted a far more robust sample database that would act as a
sample for as much of the product as possible. AdventureWorks is the outcome of that effort. As much
as you will hear me complain about its overly complex nature for the beginning user, it is a masterpiece
in that it shows it all off. Okay, so it’s not really everything, but it is a fairly complete sample, with more
realistic volumes of data, complex structures, and sections that show samples for the vast majority of
product features. In this sense, it’s truly terrific.

I use it here and there —more as you get to some of the more advanced features of the product.

AdventureWorksDW

This is the Analysis Services sample. (The DW stands for Data Warehouse, which is the type of database
over which most Analysis Services projects will be built.) Perhaps the greatest thing about it is that
Microsoft had the foresight to tie the transaction database sample with the analysis sample, providing a
whole set of samples that show the two of them working together.

Decision support databases are well outside the scope of this book, and you won't be using this
database, but keep it in mind as you fire up Analysis Services and play around. Take a look at the differ-
ences between the two databases. They are meant to serve the same fictional company, but they have dif-
ferent purposes; learn from it.

Chapter 1

The pubs Database

Ahhhh pubs! It’s almost like an old friend. pubs is now installed only as a separately downloaded sam-
ple from the Microsoft website and is available primarily to support training articles and books like this
one. pubs has absolutely nothing to do with the operation of SQL Server. It's merely there to provide a

consistent place for your training and experimentation. You make use of pubs occasionally in this book.

pubs can be installed, although it is a separate install, and deleted with no significant consequences.

The Northwind Database

If your past programming experience has involved Access or Visual Basic, = you are probably already
somewhat familiar with the Northwind database. Northwind was new to SQL Server beginning in ver-
sion 7.0, but is being removed from the basic installation as of SQL Server 2005. Much like pubs, it must
be installed separately from the base SQL Server install. (Fortunately, it’s part of the same sample down-
load and install). The Northwind database serves as one of the major testing grounds for this book.

pubs and Northwind are only installed as part of a separate installation that can be
downloaded from Microsoft. See Appendix F (online) for more information on how
to get them installed on your practice system.

The Transaction Log

Believe it or not, the database file itself isn’t where most things happen. Although the data is certainly
read in from there, any changes you make don’t initially go to the database itself. Instead, they are writ-
ten serially to the transaction log. At some later point in time, the database is issued a checkpoint — it is at
that point in time that all the changes in the log are propagated to the actual database file.

The database is in a random access arrangement, but the log is serial in nature. While the random nature
of the database file allows for speedy access, the serial nature of the log allows things to be tracked in the
proper order. The log accumulates changes that are deemed as having been committed, and then writes
several of them to the physical database file(s) at a time.

We'll take a much closer look at how things are logged in Chapter 14, “Transactions and Locks,” but for
now, remember that the log is the first place on disk that the data goes, and it’s propagated to the actual
database at a later time. You need both the database file and the transaction log to have a functional
database.

The Most Basic Database Object: Table

Databases are made up of many things, but none are more central to the make-up of a database than
tables. A table can be thought of as equating to an accountant’s ledger or an Excel spreadsheet. It is made
up of what is called domain data (columns) and entity data (rows). The actual data for the database is
stored in the tables.

Each table definition also contains the metadata (descriptive information about data) that describes the
nature of the data it is to contain. Each column has its own set of rules about what can be stored in that
column. A violation of the rules of any one column can cause the system to reject an inserted row or an
update to an existing row, or prevent the deletion of a row.

RDBMS Basics: What Makes Up a SQL Server Database?

Let’s take a look at the publishers table in the pubs database. (The view presented in Figure 1-1 is
from the SQL Server Management Studio. This is a fundamental tool and we will look at how to make
use of it in the next chapter.)

pub_id pub_name ciby state country
0736 Mew Moon Books Boston M8 usa
0377 Binnet & Hardley Washington DC Usa
1389 Algodata Infosy... Berkeley ch Usa
1622 Five Lakes Publis... Chicago L Usa
1756 Ramona Publishers Dallas % usa
9901 Gaiaiia MOnchen ALEL GErmany
Q952 Scookney Books Tew York Y Usa
9999 Lucerne Publishing Paris ALEL France
Figure 1-1

The table in Figure 1-1 is made up of five columns of data. The number of columns remains constant
regardless of how much data (even zero) is in the table. Currently, the table has eight records. The num-
ber of records will go up and down as we add or delete data, but the nature of the data in each record (or
row) is described and restricted by the data type of the column.

I'm going to take this as my first opportunity to launch into a diatribe on the naming
of objects. SQL Server has the ability to embed spaces in names and, in some cases, to
use keywords as names. Resist the temptation to do this! Columns with embedded
spaces in their name have nice headers when you make a SELECT statement, but there
are other ways to achieve the same result. Using embedded spaces and keywords for
column names is literally begging for bugs, confusion, and other disasters. I'll dis-
cuss later why Microsoft has elected to allow this, but for now, just remember to asso-
ciate embedded spaces or keywords in names with evil empires, torture, and certain
death. (This won't be the last time you hear from me on this one.)

Indexes

An index is an object that exists only within the framework of a particular table or view. An index works
much like the index does in the back of an encyclopedia; there is some sort of lookup (or “key”) value
that is sorted in a particular way, and, once you have that, you are provided another key with which you
can look up the actual information you were after.

An index provides us ways of speeding the lookup of our information. Indexes fall into two categories:

Q Clustered — You can have only one of these per table. If an index is clustered, it means that the
table on which the clustered index is based is physically sorted according to that index. If you
were indexing an encyclopedia, the clustered index would be the page numbers; the informa-
tion in the encyclopedia is stored in the order of the page numbers.

0 Non-clustered — You can have many of these for every table. This is more along the lines of
what you probably think of when you hear the word “index.” This kind of index points to some
other value that will let you find the data. For our encyclopedia, this would be the keyword
index at the back of the book.

Chapter 1

Note that views that have indexes — or indexed views — must have at least one clustered index before it
can have any non-clustered indexes.

Triggers

A trigger is an object that exists only within the framework of a table. Triggers are pieces of logical code
that are automatically executed when certain things, such as inserts, updates, or deletes, happen to your
table.

Triggers can be used for a great variety of things, but are mainly used for either copying data as it is
entered or checking the update to make sure that it meets some criteria.

Constraints

A constraint is yet another object that exists only within the confines of a table. Constraints are much like
they sound; they confine the data in your table to meet certain conditions. Constraints, in a way, com-
pete with triggers as possible solutions to data integrity issues. They are not, however, the same thing;
each has its own distinct advantages.

Filegroups

By default, all your tables and everything else about your database (except the log) are stored in a single
file. That file is a member of what’s called the primary filegroup. However, you are not stuck with this
arrangement.

SQL Server allows you to define a little over 32,000 secondary files. (If you need more than that, perhaps it
isn’t SQL Server that has the problem.) These secondary files can be added to the primary filegroup or
created as part of one or more secondary filegroups. While there is only one primary filegroup (and it is
actually called “Primary”), you can have up to 255 secondary filegroups. A secondary filegroup is cre-
ated as an option to a CREATE DATABASE or ALTER DATABASE command.

Diagrams

We will discuss database diagramming in some detail when we discuss normalization and database
design, but for now, suffice it to say that a database diagram is a visual representation of the database
design, including the various tables, the column names in each table, and the relationships between
tables. In your travels as a developer, you may have heard of an entity-relationship diagram — or ERD. In
an ERD the database is divided into two parts: entities (such as “supplier” and “product”) and relations
(such as “supplies” and “purchases”).

Although they have been entirely redesigned with SQL Server 2005, the included database design tools
remain a bit sparse. Indeed, the diagramming methodology the tools use doesn’t adhere to any of the
accepted standards in ER diagramming.

Still, these diagramming tools really do provide all the “necessary” things; they are at least something
of a start. See Appendix C for more on ERD and other tools.

Figure 1-2 is a diagram that shows some of the various tables in the AdventureWorks database. The dia-
gram also (though it may be a bit subtle since this is new to you) describes many other properties about the
database. Notice the tiny icons for keys and the infinity sign. These depict the nature of the relationship

RDBMS Basics: What Makes Up a SQL Server Database?

between two tables. We'll talk about relationships extensively in Chapters 7 and 8 and we’ll look further
into diagrams later in the book.

Customer (Sales) Contact (Person)
9] customerto 7] contactip
| enitaryio | mamestyie
) | Accountiimber _| Tee
J CustomerTyps - Firsthizme
| rawguid | tiddletiame
| modfiecDate | Lastiiame
Suffix
é _ Emaladdress

EmalPromation

Phone

PasswordHash
CustomerAddress (Sales) | Passwordsal
8| Customenn | addtionsiCantactinfo
j AddressID | rowguid
| addressTypem | Modfiecate
| rowgui o
J ModifiedDabe

&
&

Address (Person)

ﬂ AddressID 4
| addresstinet i
]

| addresstinez Employee (HumanResources)
o | Employeeln
J StatefrovincelD | NationallDNumber
| PostaCode | contacti
| rowguid | Legnm
J MaodfiedDiate | ManagerID
it
1 BirthiDate
il MaritalSkatus

Gender

o HireDrate
Employeefiddress (HumanResources) | salariedFla
j Employeell " !
WacationHours
j AddressID T
SickLeavaHours
J rovguid —
CurrentFlag
| Madifiednate =)
| roaguid
ModifiedDate
Figure 1-2

Views

A view is something of a virtual table. A view, for the most part, is used just like a table, except that it
doesn’t contain any data of its own. Instead, a view is merely a preplanned mapping and representation
of the data stored in tables. The plan is stored in the database in the form of a query. This query calls for
data from some, but not necessarily all, columns to be retrieved from one or more tables. The data
retrieved may or may not (depending on the view definition) have to meet special criteria in order to be
shown as data in that view.

Chapter 1

Until SQL Server 2000, the primary purpose of views was to control what the user of the view saw. This
has two major impacts: security and ease of use. With views you can control what the users see, so if
there is a section of a table that should be accessed by only a few users (for example, salary details), you
can create a view that includes only those columns to which everyone is allowed access. In addition, the
view can be tailored so that the user doesn’t have to search through any unneeded information.

In addition to these most basic uses for view, we also have the ability to create what is called an indexed
view. This is the same as any other view, except that we can now create an index against the view. This
results in a couple of performance impacts (some positive, one negative):

O Views that reference multiple tables generally perform much faster with an indexed view
because the join between the tables is preconstructed.

Q Aggregations performed in the view are precalculated and stored as part of the index; again,
this means that the aggregation is performed one time (when the row is inserted or updated),
and then can be read directly from the index information.

Q Inserts and deletes have higher overhead because the index on the view has to be updated
immediately; updates also have higher overhead if the key column of the index is affected by
the update.

We will look into these performance issues more deeply in Chapter 10.

Stored Procedures

Stored procedures (or sprocs) are historically and, even in the .NET era, likely to continue to be the bread
and butter of programmatic functionality in SQL Server. Stored procedures are generally an ordered series
of Transact-SQL (the language used to query Microsoft SQL Server) statements bundled up into a single
logical unit. They allow for variables and parameters as well as selection and looping constructs. Sprocs
offer several advantages over just sending individual statements to the server in the sense that they:

Q Arereferred to using short names, rather than a long string of text, therefore less network traffic
is required in order to run the code within the sproc.

Q Are pre-optimized and precompiled, saving a small amount of time each time the sproc is run.

Q Encapsulate a process, usually for security reasons or just to hide the complexity of the
database.

Q Can be called from other sprocs, making them reusable in a somewhat limited sense.

In addition, you can utilize any .NET language to add program constructs, beyond those native to
T-SQL, to your stored procedures.

User-Defined Functions

10

User Defined Functions (or UDFs) have a tremendous number of similarities to sprocs, except that they:

Q Can return a value of most SQL Server data types. Excluded return types include text, ntext,
image, cursor, and timestamp.

Q Can’t have “side effects.” Basically, they can’t do anything that reaches outside the scope of the
function, such as changing tables, sending e-mails, or making system or database parameter
changes.

RDBMS Basics: What Makes Up a SQL Server Database?

UDFs are similar to the functions that you would use in a standard programming language such as
VB.NET or C++. You can pass more than one variable in, and get a value out. SQL Server’s UDFs vary
from the functions found in many procedural languages; however, in that all variables passed into the
function are passed in by value. If you're familiar with passing in variables By Ref in VB, or passing in
pointers in C++, sorry, there is no equivalent here. There is, however, some good news in that you can
return a special data type called a table. We’ll examine the impact of this in Chapter 13.

Users and Roles

These two go hand in hand. Users are pretty much the equivalent of logins. In short, this object repre-
sents an identifier for someone to login into the SQL Server. Anyone logging into SQL Server has to map
(directly or indirectly depending on the security model in use) to a user. Users, in turn, belong to one or
more roles. Rights to perform certain actions in SQL Server can then be granted directly to a user or to a
role to which one or more users belong.

Rules

Rules and constraints provide restriction information about what can go into a table. If an updated or
inserted record violates a rule, then that insertion or update will be rejected. In addition, a rule can be
used to define a restriction on a user-defined data type. Unlike rules, constraints aren’t really objects unto
themselves, but rather pieces of metadata describing a particular table.

Rules should be considered there for backward compatibility only and should be avoided in new
development.

Defaults

There are two types of defaults. There is the default that is an object unto itself, and the default that is
not really an object, but rather metadata describing a particular column in a table (in much the same way
as we have constraints, which are objects, and rules, which are not objects but metadata). They both
serve the same purpose. If, when inserting a record, you don’t provide the value of a column and that
column has a default defined, a value will be inserted automatically as defined in the default. We will
examine both types of defaults in Chapter 6.

User-Defined Data Types

User-defined data types are extensions to the system-defined data types. Beginning with this version of
SQL Server, the possibilities here are almost endless. Although SQL Server 2000 and earlier had the idea
of user-defined data types, they were really limited to different filtering of existing data types. With SQL
Server 2005, you have the ability to bind .NET assemblies to your own data types, meaning you can
have a data type that stores (within reason) about anything you can store in a .NET object.

Careful with this! The data type that you’re working with is pretty fundamental to your data and its
storage. Although being able to define your own thing is very cool, recognize that it will almost cer-
tainly come with a large performance cost. Consider it carefully, be sure it’s something you need, and
then, as with everything like this, TEST, TEST, TEST!!!

11

Chapter 1

Full-Text Catalogs

Full-text catalogs are mappings of data that speed the search for specific blocks of text within columns
that have full-text searching enabled. Although these objects are tied at the hip to the tables and columns
that they map, they are separate objects, and are therefore not automatically updated when changes hap-
pen in the database.

SQL Server Data Types

Now that you're familiar with the base objects of a SQL Server database, let’s take a look at the options
that SQL Server has for one of the fundamental items of any environment that handles data: data types.
Note that, since this book is intended for developers, and that no developer could survive for 60 seconds
without an understanding of data types, I'm going to assume that you already know how data types
work, and just need to know the particulars of SQL Server data types.

SQL Server 2005 has the intrinsic data types shown in the following table:

Data Type Name Class Size in Bytes Nature of the Data

Bit Integer 1 The size is somewhat misleading.
The first bit data type in a table
takes up one byte; the next seven
make use of the same byte. Allow-
ing nulls causes an additional byte
to be used.

Bigint Integer 8 This just deals with the fact that we
use larger and larger numbers on a
more frequent basis. This one
allows you to use whole numbers
from -2 to 263-1. That’s plus or
minus about 92 quintrillion.

Int Integer 4 Whole numbers from —2,147,483,648
to 2,147,483,647.

SmallInt Integer 2 Whole numbers from -32,768 to
32,767.

TinyInt Integer 1 Whole numbers from 0 to 255.

Decimal or Numeric Decimal/ Varies Fixed precision and scale from

Numeric —10%-1 to 10%-1. The two names are

synonymous.

Money Money 8 Monetary units from —2% to 2% plus

precision to four decimal places.
Note that this could be any mone-
tary unit, not just dollars.

12

RDBMS Basics: What Makes Up a SQL Server Database?

Data Type Name

SmallMoney

Float (also a
synonym for
ANSI Real)

DateTime

SmallDateTime

Cursor

Timestamp/
rowversion

UniqueIdentifier

Char

Class Size in Bytes

Money 4

Approximate Varies
Numerics

Date/Time 8

Date/Time 4

Special 1
Numeric

Special 8
Numeric
(binary)

Special 16
Numeric

(binary)

Character Varies

Nature of the Data

Monetary units from —214,748.3648
to +214,748.3647.

Accepts an argument (for example,
Float (20)) that determines size
and precision. Note that the
argument is in bits, not bytes.
Ranges from -1.79E + 308 to

1.79E + 308.

Date and time data from January 1,
1753, to December 31, 9999, with an
accuracy of three-hundredths of a
second.

Date and time data from January 1,
1900, to June 6, 2079, with an accu-
racy of one minute.

Pointer to a cursor. While the
pointer only takes up a byte, keep
in mind that the result set that
makes up the actual cursor also
takes up memory — exactly how
much will vary depending on the
result set.

Special value that is unique within a
given database. Value is set by the
database itself automatically every
time the record is inserted or
updated, even though the times-
tamp column wasn’t referred to by
the UPDATE statement. (You're
actually not allowed to update the
timestamp field directly.)

Special Globally Unique Identifier
(GUID). Is guaranteed to be unique
across space and time.

Fixed-length character data. Values
shorter than the set length are
padded with spaces to the set
length. Data is non-Unicode.
Maximum specified length is 8,000
characters.

Tnble continued on following page

13

Chapter 1

Data Type Name

VarChar

Text

NChar

NVarChar

Ntext

Binary

VarBinary

Image

Table

14

Class

Character

Character

Unicode

Unicode

Unicode

Binary

Binary

Binary

Other

Size in Bytes

Varies

Varies

Varies

Varies

Varies

Varies

Varies

Varies

Special

Nature of the Data

Variable-length character data. Val-
ues are not padded with spaces.
Data is non-Unicode. Maximum
specified length is 8,000 characters,
but you can use the max keyword to
indicate it as essentially a very large
character field (up to 2”31 bytes of
data).

Legacy support as of SQL Server
2005. Use varchar (max) instead.

Fixed-length Unicode character
data. Values shorter than the set
length are padded with spaces.
Maximum specified length is 4,000
characters.

Variable-length Unicode character
data. Values aren’t padded. Maxi-
mum specified length is 4,000 char-
acters, but you can use the max
keyword to indicate it as essentially
a very large character field (up to
2131 bytes of data).

Like the Text data type, this is
legacy support only. In this case,
use nvarchar (max) . Variable-
length Unicode character data

Fixed-length binary data with a
maximum length of 8,000 bytes.

Variable-length binary data with a
maximum specified length of 8,000
bytes, but you can use the max key-
word to indicate it as essentially a
LOB field (up to 2/\31 bytes of data).

Legacy support only as of SQL
Server 2005. Use varbinary (max)
instead.

This is primarily for use in working
with result sets, typically passing
one out of a User Defined Function.
Not usable as a data type within a
table definition.

RDBMS Basics: What Makes Up a SQL Server Database?

Data Type Name Class Size in Bytes Nature of the Data

Sqgl_variant Other Special This is loosely related to the vari-
ant in VB and C++. Essentially it’s
a container that enables you to hold
most other SQL Server data types in
it. That means you can use this
when one column or function needs
to be able to deal with multiple data
types. Unlike VB, using this data
type forces you to cast it explicitly to
convert it to a more specific data
type.

XML Character Varies Defines a character field as being
for XML data. Provides for the vali-
dation of data against an XML

Schema and the use of special XML-
oriented functions.

Most of these have equivalent data types in other programming languages. For example, an int in SQL
Server is equivalent to a Long in Visual Basic, and for most systems and compiler combinations in C++,
is equivalent to an int.

SQL Server has no concept of unsigned numeric data types.

In general, SQL Server data types work much as you would expect given experience in most other mod-
ern programming languages. Adding numbers yields a sum, but adding strings concatenates them.
When you mix the usage or assignment of variables or fields of different data types, a number of types
convert implicitly (or automatically). Most other types can be converted explicitly. (You specifically say
what type you want to convert to.) A few can’t be converted between at all. Figure 1-3 contains a chart
that shows the various possible conversions:

15

Chapter 1

To:

binary

From:

binary
varbinary
char

varchar

nchar

nvarchar

datetime

® 80 00 000 real
® 80 © 0 00 d]bigint
FOUEEEEEE)
90000 .|.Imoney
®®o 00 .|.Isma|lmoney
O @0 0000 ©000000000e 800000

smalldatetime

|08 800 0 0 8 0fsmallint{INT2)
¢ @0 ¢ o ooe]tinyint(inT)

decimal

numeric

float

real

bigint
int{INT4)
smallint{INT2}
tinyint{INT1)
money
smallmoney
bit

timestamp
uniqueide ntifier
image

ntext

text
sql_wariant

O @00 C0ooooco ©o oo
o @00 oo ¢oo o
O 8o 0 C000e ooooco

O @000 |J00000/000/0/00 00/0@ @ & @] uiueidentfier
0000l [0l@0o/00/o/00/00/0 00000 0 8o e]image
O/0@ 0000000000000 0008886 00 ntext

000000 00000800000 eeeseddtinestamp
OO @ 0|0|000I00/00000 00000088 6 00 text

oleololocloloecoolo o0 odteecosooco]numer
O 800 0000oocoooo o o0oeeod oo oC]at

ol ololclecoo oo oo oo oo oo oo ool _varant
e oleecloccoooololdoldo oo clee e e @fm

o/eooooCcoooo oo |

OO0 0000000000000 0000 00)smalldatetime
O @0 0000000000

*e® 0000000000022 9eC

O D000 0000 e e e ® Cfvarbinary
@D 0000000 000000000000 |OCofchar
®® 000000000 00000000000 |00o]varchar
® 00000000000 0000000 00 O0000]nhar
® @2 00000000 000000000 ©00gnvarchar
O/ @O000000 000000000 d 0000 00]dtetime
C/ @0 00000000000 0% e 8000 dd]dcimal

O @0 000000000
O e 000000 o00ooo

wml

@ Explicit conversion
@ Implicit conversion
O Conversion not allowed

Requires explicit CAST to prevent the loss of precision or scale that
might occur in an implicit conversion

@ Implicit conversions between XML datatypes are supported only if the
source or target is untyped #ml. Otherwise, it has to be explicit.

Figure 1-3

Why would we have to convert a data type? Well, let’s try a simple example. If I wanted to output the
phrase, “Today’s date is ##/##/###H”, where ##/## /#### is the current date, I could write it like this:

SELECT 'Today''s date is ' + GETDATE ()

We will discuss Transact-SQL statements such as this in much greater detail later in the book, but the
expected results of the previous example should be fairly obvious to you.

The problem is that this statement would yield the following result:

Msg 241, Level 16, State 1, Line 1
Syntax error converting datetime from character string.

Not exactly what we were after, is it? Now let’s try it with the CONVERT () function:

SELECT "Today's date is " + CONVERT (varchar(12), GETDATE(),101)

16

RDBMS Basics: What Makes Up a SQL Server Database?

This yields something like:

Today's date is 01/01/2000

(1 row(s) affected)

Date and time data types, such as the output of the GETDATE () function, aren’t implicitly convertible to
a string data type, such as “Today's date is “, yet we run into these conversions on a regular basis.
Fortunately, the CAST and CONVERT () functions enable us to convert between many SQL Server data
types. We will discuss the CAST and CONVERT () functions more in a later chapter.

In short, data types in SQL Server perform much the same function that they do in other programming
environments. They help prevent programming bugs by ensuring that the data supplied is of the same
nature that the data is supposed to be (remember 1/1/1980 means something different as a date than as
a number) and ensures that the kind of operation performed is what you expect.

NULL Data

What if you have a row that doesn’t have any data for a particular column — that is, what if you simply
don’t know the value? For example, let’s say that we have a record that is trying to store the company
performance information for a given year. Now, imagine that one of the fields is a percentage growth
over the prior year, but you don’t have records for the year before the first record in your database. You
might be tempted to just enter a zero in the PercentGrowth column. Would that provide the right infor-
mation though? People who didn’t know better might think that meant you had zero percent growth,
when the fact is that you simply don’t know the value for that year.

Values that are indeterminate are said to be NULL. It seems that every time I teach a class in program-
ming, at least one student asks me to define the value of NULL. Well, that’s a tough one, because, by defi-
nition, a NULL value means that you don’t know what the value is. It could be 1; it could be 347; it could
be —294 for all we know. In short, it means undefined or perhaps not applicable.

SQL Server ldentifiers for Objects

Now you’ve heard all sorts of things about objects in SQL Server. You've even heard my first soapbox
diatribe on column names. But let’s take a closer look at naming objects in SQL Server.

What Gets Named?

Basically, everything has a name in SQL Server. Here’s a partial list:

Stored procedures Tables Columns

Views Rules Constraints
Defaults Indexes Filegroups

Triggers Databases Servers

User Defined Functions Logins Roles

Full-text catalogs Files User Defined Types

17

Chapter 1

And the list goes on. Most things I can think of except rows (which aren’t really objects) have a name.
The trick is to make every name both useful and practical.

Rules for Naming

As I mentioned earlier in the chapter, the rules for naming in SQL Server are fairly relaxed; allowing
things like embedded spaces and even keywords in names. Like most freedoms, however, it’s easy to
make some bad choices and get yourself into trouble.

Here are the main rules:

Q The name of your object must start with any letter as defined by the specification for Unicode
2.0. This includes the letters most westerners are used to— A-Z and a-z. Whether “A” is differ-
ent than “a” depends on the way your server is configured, but either makes for a valid begin-
ning to an object name. After that first letter, you're pretty much free to run wild; almost any
character will do.

Q The name can be up to 128 characters for normal objects and 116 for temporary objects.

QO Any names that are the same as SQL Server keywords or contain embedded spaces must be
enclosed in double quotes (“”) or square brackets ([]). Which words are considered keywords
varies depending on the compatibility level to which you have set your database.

Note that double quotes are only acceptable as a delimiter for column names if you have SET
QUOTED_IDENTIFIER ON. Using square brackets ([and 1) avoids the chance that your users will
have the wrong setting.

These rules are generally referred to as the rules for identifiers and are in force for any objects you name
in SQL Server. Additional rules may exist for specific object types.

Again, I can’t stress enough the importance of avoiding the use of SQL Server key-
words or embedded spaces in names. Although both are technically legal as long as
you qualify them, naming things this way will cause you no end of grief.

Summary

Like most things in life, the little things do matter when thinking about an RDBMS. Sure, almost anyone
who knows enough to even think about picking up this book has an idea of the concept of storing data in
columns and rows, even if they don’t know that these groupings of columns and rows should be called
tables, but a few tables seldom make a real database. The things that make today’s RDBMSs great are the
extra things — the objects that enable you to place functionality and business rules that are associated
with the data right into the database with the data.

Database data has type, just as most other programming environments do. Most things that you do in
SQL Server are going to have at least some consideration of type. Review the types that are available,

and think about how these types map to the data types in any programming environment with which
you are familiar.

18

Tools of the Trade

Now that we know something about the many types of objects that exist on SQL Server, we proba-
bly should get to know something about how to find these objects, and how to monitor your sys-
tem in general.

In this chapter, we will look into the tools that SQL Server has to offer. Some of them offer only a
small number of highly specialized tasks; others do many different things. Most of them have been
around in SQL Server for a long time. One thing is certain: Virtually everything to do with the SQL
Server toolset has seen a complete overhaul for SQL Server 2005. Simplifying the “where do I find
things?” question was a major design goal for the tools team in this release, and, for people just
starting out, I would say they have largely succeeded. (Of course, stodgy old SQL Server users like
me find ourselves saying, “where is everything?”)

The tools we will look at in this chapter will be:

O

SQL Server Books Online

The SQL Server Computer Manager

SQL Server Management Workbench

SQL Server Integration Services (SSIS), including the Import/Export Wizard
The Database Engine Tuning Advisor

The Report Manager

The Bulk Copy Program (bcp)

Profiler

000000 oo

sqlemd

Chapter 2

20

Be careful if you're getting help from friends that may be experienced, but are using SQL Server 2000 or
an older version rather than SQL Server 2005. The toolset received a very major rework for this release,
and many of the things that the “old timers” of SQL Server are used to and have names for have been
moved, had their names changed, or were eliminated in favor of integration with another tool.

Most all of the concepts are still in there somewhere, but may have moved around.

ooks Online

Is Books Online a tool? I think so. Let’s face it. It doesn’t matter how many times you read this or any
other book on SQL Server; you're not going to remember everything you'll ever need to know about
SQL Server. SQL Server is one of my mainstay products, and I still can’t remember it all. Books Online is
simply one of the most important tools you're going to find in SQL Server.

My general philosophy about books or any other reference material related to programming is that I
can’t have enough of it. I first began programming in 1980 or so, and back then it was possible to
remember most things (but not everything). Today, it’s simply impossible. If you have any diversifica-
tion at all (something that is, in itself, rather difficult these days), there are just too many things to
remember, and the things you don’t use everyday get lost in dying brain cells.

Here’s a simple piece of advice: Don't even try to remember it all. Remember what you ve seen is possi-
ble. Remember what is an integral foundation to what you're doing. Remember what you work with
everyday. Then remember to build a good reference library (starting with this book) for the rest.

Books Online in SQL Server uses the updated .NET online help interface, which is replacing the older
standard online help interface used among the Microsoft technical product line (Back Office, MSDN, and
Visual Studio):

Everything works pretty much as one would expect here, so I'm not going to go into the details of how
to operate a help system. Suffice it to say that SQL Server Books Online is a great quick reference that fol-
lows you to whatever machine you're working on at the time. Books Online also has the added benefit
of often having information that is more up to date than the printed documentation.

Technically speaking, it’s quite possible that not every system you move to will have
the Books Online (BOL) installed. This is because you can manually deselect BOL at
the time of installation. Even in tight space situations, however, I strongly recom-
mend that you always install the BOL. It really doesn’t take up all that much space
when you consider cost per megabyte these days, and having that quick reference
available wherever you are running SQL Server can save you a fortune in time. (On
my machine, Books Online takes up 100MB of space.)

Tools of the Trade

S Ui Twk Wiwhe Hi
i] @y A EHowDol - O geerch | inces % Contencs [T Help Fanoekes | [O) askacuestion ¥ A _
= B 5 | Uooks oalne | K
FL Ogkoms; (cwoss) = UBL el (V. SCLOC, Sb-279Te2:2333. bk -
¥ Wicrosaft
ik For: SQL Server 2005 ook online & Sand Fanthack
e chaecat i) | Elecmoell
‘walcams to Microzoft ver 2005 2onks Gnline, Tais cst of decumertetion helps you undarstand SGL Seresr 2008, sad qow b3 implemers: dats maragement anc business
intsligance arojects, SOL Servar 2005 includes seversl dets managsmant ard snalysis tecbaologies, To lessn mors sbout thess wchnalogies, cick the fallasing links
= Categories
“General Information
_1 # Installing SEL Sarver 2005
Analysis Serces defivers online answtical pracessing (CUAF] and e3ts mning functianclity for Susiness intzllaznce N
appicatians. Analysis Serices supdorts OLAP 3y allaking wau w0 design, cre. 4 manage mutticimensicnal stuctures shat
cantain data zagreosted from ccher came sources, sush 25 relaticnal datasases. For cate mning applicatons, Analysis
Services enakles vou o cesicn, oreate, anc visualize data mining models. These mining models can be canstruzted from other
data scarces by uzing @ wide variesy of incustry-standard cate mining algarithms. .
: .
TSR] Intearction Seruices
= + Eamples cod Sampl: Datahases
ntsgrasion Services is & platform for buldng high oerfarmance dats irtegrstion solutions, nouding packeges that provide R
FHET ot P o e el rtract, bransform, and ‘aac (ETL) arocessing for data warshousing, Tutorials
ok HET ot Fansk
et proiders
gty
Srelan Dk 4,5 e s
HET Mk oo Prisili Farene [0 Wit
HET Ficainanes | Ay ¢ Serioes] oy for o
HET Frafin e nbacrabion Serdces Jal.al t
ET Fratre sceh ieporting Serices|
HET Fraic o, SM2
HET Frafieonh, S0 Serees Express]
(HET Frameaces, 50, Seree]
aedngta Backs nine + S0L Screr Dovslaper Center
<aniwan largazgs nntine.
detehase ewine progrenming Repocing Services delivers euterarise, Web-enabled reporting functionality 3 vou can creans reparts thet deaw content feom & Do Ancess and Starags Develaper
N a variety of data scurces, publish reaorts o warious formats, £d certraly manage se2LAty ane subscepior: Center
net
Trarsat-SL « XML Devsloner Canter
LT Frame o LT] Hobr
scoeezrg SOUAHL unchinaky Lo
Cfframs -
Menaged Casses
A B Losed
HET Fraans v b by [504 Sver Mik] e Hemiks -1 x
HET Fraaimoes o chipal s (50 S Fubd
HET Ficainacs: = 1 Vzziizn
sqsua fies
ssmrsaszend Fles -

Figure 2-1

The SQL Server Configuration Manager

Administrators who configure computers for database access are the main users of this tool, but it’s still
important to understand what this tool is about.

The SQL Server Computer Manager is a new tool with SQL Server 2005, but is really an effort to combine
some settings that were spread across multiple tools into one spot. The items managed in the Computer

Manager fall into two areas:

0 Service Management

Q Network Configuration

21

Chapter 2

Service Management

SQL Server is a large product, and the various pieces of it utilize a host of services that run in the back-
ground on your server. A full installation will encompass seven services, and these can all be managed
from this part of the SQL Server Computer Manager.

The services available for management here include:

Qa

a
a
a

Analysis Services — This powers the Analysis Services engine.
Full Text — Again, just what it sounds like. it powers the Full Text Search Engine
Report Server —The underlying engine that supports Report Services.

SQL Server Agent— The main engine behind anything in SQL Server that is scheduled.
Utilizing this service, you can schedule jobs to run on a variety of different schedules. These jobs
can have multiple tasks to them and can even branch into different tasks depending on the out-
come of some previous task. Examples of things run by the SQL Server Agent include backups
as well as routine import and export tasks.

SQL Server — The core database engine that works on data storage, queries, and system config-
uration for SQL Server.

SQL Server Browser — Supports advertising your server so those browsing your local network
can identify your system has SQL Server installed.

Network Configuration

A fair percentage of the time, any of the connectivity issues discovered are the result of client network
configuration or how that configuration matches with that of the server.

22

SQL Server provides several of what are referred to as Net-Libraries (network libraries), or NetLibs.
These are dynamic-link libraries (DLLs) that SQL Server uses to communicate with certain network pro-
tocols. NetLibs serve as something of an insulator between your client application and the network pro-
tocol, which is essentially the language that one network card uses to talk to another, that is to be used.
They serve the same function at the server end too. The NetLibs supplied with SQL Server 2005 include:

Qa

a
a
a

Named Pipes
TCP/1P (the default)
Shared Memory
VIA

VIA is a special net library that is made for use with some very special (and expensive) hardware. If
you’re running in a VIA environment, you'll know about the special requirements associated with it.
For those of you that aren’t running in that environment, it suffices to say that VIA offers a very fast
but expensive solution to high-speed communication between servers. It would not usually be used for a
normal client.

Tools of the Trade

The same NetLib must be available on both the client and server computers so that they can communi-
cate with each other via the network protocol. Choosing a client NetLib that is not also supported on the

server will result in your connection attempt failing with a Specified SQL Server Not Found error.

Regardless of the data access method and kind of driver used (SQL Native Client, ODBC, OLE DB, or

DB-Lib), it will always be the driver that talks to the NetLib. The process works as shown in Figure 2-2.
The steps in order are:

1.

2.
3.
4

The client app talks to the driver (SQL Native Client, ODBC, OLE DB or DB-Lib).
The driver calls the client NetLib.
This NetLib calls the appropriate network protocol and transmits the data to a server NetLib.

The server NetLib then passes the requests from the client to the SQL Server.

Client Application

NetLib

Network Driver

:

SQL Server

NetLib

Network Driver

-

Network Protocol

Figure 2-2

Replies from SQL Server to the client follow the same sequence, only in reverse.

In case you're familiar with TCP/IP, the default port that the IP NetLib will listen on
is 1433. A port can be thought of as being like a channel on the radio —signals are
bouncing around on all sorts of different frequencies, but they only do you any

good if you're “listening” on the right channel.

The Protocols

Let’s start off with that “What are the available choices?” question. If you run the Computer
Management Utility and open the Server Network Configuration tree, you'll see something like

Figure 2-3:

23

Chapter 2

24

‘Ta SQL Server Configuration Manager E]@E]

Eie Acton Wiew Help

« B @
_ﬁ S0 Server Configuration Manager (Local) Ttems
W SOL Server 2005 Services [=Pretacols for M3SCLSERVER
+- 4 50U Server 2005 Mebwaork Configuration
=1 5b SOL Mabive Chent Configuration

Clent Protocols
Aliases

Figure 2-3

By default, only Shared Memory is enabled. Older versions of the product had dif-
ferent NetLibs enabled by default depending on version of SQL Server and the O/S.

You need to enable at least one other NetLib if you want to be able to contact your

SOL Server remotely (say, from a Web server or from different clients on your net-
work).

Now let’s see what our server could be listening for by expanding the Protocols for MSSQLSERVER tree
under Server Network Configuration, as shown in Figure 2-4:

Keep in mind that, in order for your client to gain a connection to the server, the server has to be listen-
ing for the protocol with which the client is trying to communicate and on the same port. Therefore, if
we were in a named pipes environment, we might need to add a new library. To do that, we would go
back to the Protocols tree, right-click on the named pipes protocol, and chose enable.

At this point, you might be tempted to say, “Hey, why don’t I just enable every NetLib? Then I won't
have to worry about it.” This situation is like anything you add onto your server — more overhead. In
this case, it would both slow down your server (not terribly, but every little bit counts) and expose you

to unnecessary openings in your security. (Why leave an extra door open if nobody is supposed to be
using that door?).

OK, now let’s take a look at what we can support and why we would want to choose a particular
protocol.

Tools of the Trade

% sQL Server Configuration Manager

Eie Action Wew Help
« = =?
E 5L Server Configurakion Manager {Local) Pratocol Mame | Fabus
o S0L Server 2005 Services 3 shared Memary Enabled
= 4 SQL Server 2005 Metwork Configuration “§ Named Fipes Disabled
e protocals For MeSOLSERVER, w=1cpre Eisabied
B 5GL Nakive Cherk Configuration A Disabled
Figure 2-4

Named Pipes

Named Pipes can be very useful when TCP/IP is not available, or there is no Domain Name Service
(DNS) server to allow the naming of servers under TCP/IP.

Technically speaking, you can connect to a SQL Server running TCP/IP by using its
IP address in the place of the name. This works all the time, even if there is no DNS
service, as long as you have a route from the client to the server. (If it has the IP
address, then it doesn’t need the name.)

TCP/IP

TCP/IP has become something of the de facto standard networking protocol, and has been a default with
SQL Server since SQL Server 2000. It is also the only option if you want to connect directly to your SQL
Server via the Internet, which, of course, uses only IP.

Don’t confuse the need to have your database server available to a Web server with the need to have
your database server directly accessible to the Internet. You can have a Web server that is exposed to the
Internet, but also has access to a database server that is not directly exposed to the Internet. (The only
way for an Internet connection to see the data server is through the Web server).

Connecting your data server directly to the Internet is a security hazard in a big way. If you insist on
doing it (and there can be valid reasons for doing so), then pay particular attention to security precautions.

25

Chapter 2

Shared Memory

Shared memory removes the need for interprocess marshaling —a way of packaging information before
transferring it across process boundaries —between the client and the server if they are running on the
same box. The client has direct access to the same memory-mapped file where the server is storing data.
This removes a substantial amount of overhead and is very fast. It’s only useful when accessing the
server locally (say, from a Web server installed on the same server as the database), but it can be quite a
boon performance wise.

On to the Client

Now, we’ve seen all the possible protocols and we know how to choose which ones to offer. Once we
know what our server is offering, we can go and configure the client. Most of the time, the defaults are
going to work just fine, but let’s take a look at what we’ve got. Expand the Client Network
Configuration tree and select the Client Protocols node, as shown in Figure 2-5:

T SQL Server Configuration Manager

Eie Acton Yiew Help
+ [y =
HB 50L Server Configuration Manager (Local) Hame | order | Enabled | Fie hame Wersion
SO Server 2005 Services % shared Memary 1 Enabled
4 50L Server 2005 Metwork Canfiguration HTCRIP = Enabled
=1 5b SOL Mabive Chent Configuration = Hlamed Fipes 3 Enabled
Clent: Protocols
Via Disabled
3 Aliases Al
< >
Figure 2-5

Beginning with SQL Server 2000, Microsoft added the ability for the client to start with one protocol,
then, if that didn’t work, move on to another. In the dialog above, we are first using Shared Memory,
then trying TCP/IP, and finally going to Named Pipes if TCP/IP doesn’t work as defined by the “Order”
column. Unless you change the default (changing the priority by using the up and down arrows),
Shared Memory is the NetLib that is used first for connections to any server not listed in the aliases list
(the next node under Client Network Configuration), followed by TCP/IP and so on.

26

Tools of the Trade

If you have TCP/IP support on your network, leave your server configured to use it.
IP has less overhead and just plain runs faster; there is no reason not to use it unless
your network doesn’t support it. It's worth noting, however, that for local servers
(where the server is on the same physical system as the client), the Shared Memory
NetLib will be quicker, as you do not need to go across the network to view your
local SQL server.

The Aliases list is a listing of all the servers on which you have defined a specific NetLib to be used
when contacting that particular server. This means that you can contact one server using IP and another
using Named Pipes —whatever you need to get to that particular server. Figure 2-6 shows a client con-
figured to use the Named Pipes NetLib for requests from the server named ARISTOTLE, and to use
whatever is set up as the default for contact with any other SQL Server:

T SQL Server Configuration Manager
Eie Acton Wew Help

%« = BE 2

3 50L Server Configuration Manager (Local) alias Name | Server | Praotecel | Pararnerers |

o] SQL Server 2005 Services s Aristotle Aristatle fip Naristotielpipeisalia.. .
4 50L Server 2005 Metwark Configuration

- 5 SOL Mabive Chent Configuration

Clent Protocols
fliases

Figure 2-6

Again, remember that the Client Network Configuration setting on the network machine must have a
default protocol that matches one supported by the server, or it must have an entry in the Aliases list to
specifically choose a NetLib supported by that server.

If you are connecting to your SQL Server over the Internet (which is a very bad idea from a security
standpoint, but people do it), you'll probably want to use the Server’s actual IP address rather than the
name of the server. This gets around some name resolution issues that may occur when dealing with
SQL Server and the Internet. Keep in mind, however, that you'll need to change the IP address manu-
ally if the server gets a new IP; you won't be able to count on DNS to take care of it for you.

27

Chapter 2

The SQL Server Management Studio

The SQL Server Management Studio is pretty much home base when administering a SQL Server. It pro-
vides a variety of functionality for managing your server using a relatively easy-to-use graphical user
interface.

The Management Studio is completely new with SQL Server 2005. Patterned loosely after the DevStudio
IDE environment, it combines a myriad of functionality that used to be in separate tools.

For the purposes of this book, we’re not going to cover everything that the Management Studio has to
offer, but let’s take a quick run down of the things you can do:

a
a
a

0O 00U oo

Create, edit, and delete databases and database objects
Manage scheduled tasks such as backups and the execution of SSIS package runs

Display current activity, such as who is logged on, what objects are locked, and from which
client they are running

Manage security, including such items as roles, logins, and remote and linked servers
Initiate and manage the Database Mail Service

Create and manage full-text search catalogs

Manage configuration settings for the server

Create and manage publishing and subscribing databases for replication

We will be seeing a great deal of the Management Studio throughout this book, so let’s take a closer look
at some of the more key functions Management Studio serves.

Getting Started

When you first start the Management Studio, you are presented with a Connection dialog box similar to
the one in Figure 2-7:

28

£ Connect to Server, E]
gc[QmIf: S A8 indows server System
Community Technology Preview

Server lype: Database Engine R
Server name: SCHWEITZER w
Authentication: S0L Server Authentication -
Loagin: MyLogin W
Pazsword:
[LConnect l [Cancel] [Help] [Options =3
Figure 2-7

Tools of the Trade

Your login screen may look a little bit different from this, depending on whether you've logged in
before, which machine you logged into, and what login name you used. Most of the options on the login
screen are pretty self-descriptive, but let’s look at a couple in more depth.

Server Type

This relates to which of the various subsystems of SQL Server you are logging into (the normal database
server, Analysis Services, Report Server, or Integration Services). Since these different types of “servers”
can share the same name, pay attention to this to make sure you're logging into what you think you're
logging into.

SQL Server

As you might guess, this is the SQL Server into which you're asking to be logged. In our illustration, we
have chosen (local). This doesn’t mean that there is a server named (local), but rather that we want to log
into the default instance of SQL Server that is on this same machine, regardless of what this machine is
named. Selecting (local) not only automatically identifies which server (and instance) you want to use,
but also how you're going to get there. You can also use a simple period (.) as a shortcut for (local).

SQL Server allows multiple “instances” of SQL Server to run at one time. These are
just separate loads into memory of the SQL Server engine running independently
from each other.

Note that the default instance of your server will have the same name as your machine on the network.
There are ways to change the server name after the time of installation, but they are problematic at best,
and deadly to your server at worst. Additional instances of SQL Server will be named the same as the
default (SCHWEITZER or ARISTOTLE in many of the examples in this book) followed by a dollar sign,
and the instance name, for example, ARISTOTLE$POMPEII.

If you select (local), your system uses the shared memory NetLib regardless of which NetLib you
selected for contacting other servers. This is a bad news/good news story. The bad news is that you give
up a little bit of control. (SQL Server will always use Shared Memory to connect, you can’t choose any-
thing else.) The good news is that you don’t have to remember which server you're on, and you get a
high-performance option for work on the same machine. If you use your local PC’s actual server name,
your communications will still go through the network stack and incur the overhead associated with
that just as if you were communicating with another system, regardless of the fact that it is on the same
machine.

Now, what if you can’t remember what the server’s name is? Just click the down arrow to the right of
the server box to get a list of recently connected servers. If you scroll down, you'll see a <Browse for
more...> option. If you choose this option, SQL Server will poll the network for any servers that are
“advertising” to the network; essentially, this is a way for a server to let itself be known to other systems
on the network. You can see from Figure 2-8 that you get two tabs: one that displays local servers (all of
the instances of SQL Server on the same system you're running on), and another that shows other SQL
Servers on the network:

29

Chapter 2

e @

Local Servers | Network Servers

Select the server ko connect ta:

/i Analy
E_-J SOL Server Mobile Edition D atabases

[0k][Cancel l [Help

Figure 2-8

You can select one of these servers and click OK.

Watch out when using the Server selection dialog box. Although it’s usually pretty
reliable, there are ways of configuring a SQL Server so that it doesn’t broadcast.
When a server has been configured this way, it won’t show up in the list. Also,
servers that are only listening on the TCP/IP NetLib and don’t have a DNS entry
will not show up. You must, in this case, already know your IP address and refer to
the server using it.

Authentication Type

You can choose between Windows authentication (formerly NT Authentication) and SQL Server authen-
tication. No matter how you configure your server, Windows Authentication will always be available
even if you configured it as SQL Server Authentication. Logins using usernames and passwords that are
local to SQL Server (not part of a larger Windows network) are only acceptable to the system if you have
specifically turned SQL Server Authentication on.

Windows Authentication

Windows authentication is just as it sounds. You have Windows 2000+ users and groups. Those
Windows users are mapped into SQL Server Logins in their Windows user profile. When they attempt to
log into SQL Server, they are validated through the Windows domain and mapped to roles according to
the Login. These roles identify what the user is allowed to do.

30

Tools of the Trade

The best part of this model is that you have only one password. (If you change it in the Windows
domain, then it’s changed for your SQL Server logins too.) You don’t have to fill in anything to log in; it
just takes the login information from the way you're currently logged into the Windows network.
Additionally, the administrator has to administer users in only one place. The downside is that mapping
this process can get complex and, to administer the Windows user side of things, you must be a domain

administrator.

SQL Server Authentication
The security does not care at all about what the user’s rights to the network are, but rather what you
explicitly set up in SQL Server. The authentication process doesn’t take into account the current network
login at all; instead, the user provides a SQL Server-specific login and password.

This can be nice because the administrator for a given SQL Server doesn’t need to be a domain adminis-
trator (or even have a username on your network for that matter) to give rights to users on the SQL
Server. The process also tends to be somewhat simpler than under Windows authentication. Finally, it
means that one user can have multiple logins that give different rights to different things.

Try It Out Making the Connection

Let’s get logged on. If you are starting up your SQL Server for the first time, set everything just as it is in
our example screen.

1. Choose the (local) option for the SQL Server.
2. Select SQL Server authentication.

3. Select a Login name of sa, which stands for System Administrator and remember it.
Alternatively, you may log in as a different user as long as that user has system administrator
privileges.

4. Enter the sa password that was set to when you installed SQL Server. On case-sensitive servers,
the login is also case-sensitive, so make sure you enter it in lowercase.

If you're connecting to a server that has been installed by someone else, or where you have changed the
default information, you need to provide login information that matches those changes. After you click
OK, you should see the main Query window screen shown in Figure 2-9:

Be careful with the password for the sa user. This and any other user who is a sysad-
min is a super-user with full access to everything.

31

Chapter 2

. Microsoft S| Server Management Studin

Ok it Gsv Duew Ik Gndow L
Rlwswcure [|0 oia (G U 5 bd o | & B F) B

Al

2 {13 | reehord s Mmoo B N3 A 27NN TG SRR S 2 e
Regktered Servees w B X 5OLQueryLsql ... TZER Northwind | oy B = &
@ A EY Al
= | DssbasrEngne
_d-nlnw-!m
it Eendoves B

Gt | W w3
E [STHYETTZR (S04 Sere 0.0.1187 - Miaginy

= [Daszaeses

g Sy

[Sereer Dty

= 4 Bebzston

@ (3 Haragenen:

=i 1 ot ratin Sarices

[S0 Serawr Acert dgen: s daiel)

»
2 Cornecied SCHWEITZEA A0 CTPS) Mjlegini5Y Hothend CRORCD Oroms
Ln1 =18 i s

Reacy

Figure 2-9

How It Works

32

The Login dialog gathers all the information needed to create the connection. Once it has that, it assem-
bles the connection information into a single connection string, and sends that to the server. The connec-
tion is then either accepted or rejected, and, if it is accepted, a connection handle is given to the Query
window so that the connection can be used over and over again for many queries as long as you do not
disconnect.

You see more about how connection strings are created and formatted in Appendix X.

Again, many of the items here (New, Open, Save, Cut, Paste, and so on) are things that you have seen
plenty of times in other Windows applications, and should be familiar with, but there’s also a fair
amount that’s specific to SQL Server. The main thing to notice for now is that the menus in the manage-
ment studio are context sensitive — that is, you’ll see a change in what menus are available and what
they contain based on what window is active in the studio. Be sure to explore the different context
menus you get as you explore different parts of the Management Studio.

Tools of the Trade

Query Window

This part of the Management Studio takes the place of a separate tool in previous versions that was
called Query Analyzer. It's your tool for interactive sessions with a given SQL Server. It’s where you can
execute statements using Transact-SQL (T-SQL.) I lovingly pronounce it “Tee-Squeal”, but it’s supposed
to be “Tee-Sequel”. T-SQL is the native language of SQL Server. It’s a dialect of Structured Query
Language (SQL), and is entry-level ANSI SQL 92 compliant. Entry-level compliant means that SQL
Server meets a first tier of requirements needed to classify a product as ANSI compliant. You'll find that
most RDBMS products only support ANSI to entry-level.

Personally, I'm not all that thrilled with this new version of the tool; I find that, due to the number of
things this one tool does, the user interface is cluttered and it can be hard to find what you're looking for.
That said, Microsoft is hoping that new users will actually find it more intuitive to use within the larger
Management Studio.

Because the Query window is where we will spend a fair amount of time in this book, let’s take a more
in-depth look at this tool and get familiar with how to use it.

Getting Started

Well, I've been doing plenty of talking about things in this book, and it’s high time we started doing
something. To that end, open a new Query window by clicking the New Query button towards the top-
left of the Management Studio, or choosing FileNew=New Query With Current Connection from

the File menu. When the Query window opens, you'll get menus that largely match those in Query
Analyzer back when that was a separate tool. We’ll look at the specifics, but let’s get our very first query
out of the way.

Type the following code into the main window of the Query window:

SELECT * FROM INFORMATION_SCHEMA.TABLES

Notice the coloring of words and phrases as you type them into the code window. Statement keywords
should appear in blue; unidentifiable items, such as column and table names (these vary with every
table in every database on every server), are in black; and statement arguments and connectors are in
red. Pay attention to how these work and learn them. They can help you catch many bugs before you've
even run the statement (and seen the resulting error). The check mark icon on the toolbar represents
another simple debugging item, which quickly parses the query for you without actually attempting to
run the statement. If there are any syntax errors, this should catch them before you see error messages. A
debugger is available as another way to find errors. We’ll look at that in depth in Chapter 12, “Stored
Procedures.”

Now click the execute button — with the red exclamation point next to it— on the toolbar. The Query
window changes a bit, as shown in Figure 2-10:

33

Chapter 2

34

anagamant Studio

Fle Edt Wmw Quew Fropstt Tock Wndow Conmonty Hel
Hsewcuer [|1 oy 1500 |5 0l o | o (D B2 B0 ¥

2 | mase - Mmoo m B 8 M E D SEN S 2 s
2kiact Exchorar = B % llcalmaster - SOLDucryLsalt Sunmay x X
Cormct | 4 AT SFLECT - FROW TXFORAATIEN SCHFKL.TAELEE =
E [. (50 Server 5.0.1324 - 55

= [Dataseris

@ [Seouky

i [Sarver Ui
@ 23 Pesfcaton
[Haragemen:
3 [Bl e S
[P 5L Server Agerk (0gen: s deskled)

< >

0 Fwsnts | Jy Macoages

_TABLE_CATALOG TAHLE_SCHEWA | TAELE_HAWE TABLE_TVFE
st fekack_ch ERSE TAELE
S ey E&SE TAFLE
sl_fakeack_ueg EASETALLD
sl o EasE TAELE
e EASE TAFLE
*Grechzator_opiors [ASC TALLD

(0 Dumy mascbed suzemssiv by, ool AOLTRIE) | eaf54 mster | ORORC] Groms
Pancy Lr 1 izl 4D che M

Figure 2-10

Notice that the main window has been automatically divided into two panes. The top is your original
query text; the bottom is called the results pane. In addition, notice that the results pane has a tab at the
top of it. Later on, after we’ve run queries that return multiple sets of data, you'll see that we can get
each of these results on separate tabs; this can be rather handy because you often don’t know how long
each set of data, or result set, is.

The terms result set and recordset are frequently used to refer to a set of data that is
returned as a result of some command being run. You can think of these words as
interchangeable.

Now, change a setting or two and see how what we get varies. Take a look at the toolbar above the
Query window, and check out a set of three icons, highlighted in Figure 2-11:

Tools of the Trade

E: Wicrosoft $01 Server Managemeant Studin

Ok Gt Wsw Duew Ereiset Inck findes Cemmnty Uso
L ooy Uy |00 o % Oy | b | B0 (O R B8 R o
&3 152 | masoer AT T AN - | T B
k=t Expborer * B % lecalmaster - SQLDucrylsalt Sunay | 2
connect » | AT, SFLECT ~ FROW TXFORAATION _SCAFKA. TARLZY
E [. (50 Server 5.0.1324- 52
EI -
@ [Seauky
=i |4 terewr Uzmcis
@[3 Peszaton
= 3 Haragenen:
3 [i e
[P 5 Smrver Agerk {ugen: iP5 dsakled)

>||%

=S
[y Fesudes
TARVE_CATALAE

TAFLE_SCARMA

<

*
Jocsll AOCTRIEL | en 3] msster OROROD Groms
Ln 1 iz 40 0 e

1 Ousry memcibed suzcessfuly,

Fescy

Figure 2-11

These control the way you receive output. In order, they are Results to Text, Results to Grid, and Results
to File. The same choices can also be made from the Query menu under the Results To submenu.

Results in Text

The Results in Text option takes all the output from your query and puts it into one page of text results.
The page can be of virtually infinite length (limited only by the available memory in your system).

Before discussing this further, rerun that last query using this option and see what you get. Choose the
Results in Text option and rerun the previous query by clicking the green arrow, as shown in Figure 2-12:

35

Chapter 2

. Microsoft S| Server Management Studin

Ok Gt Usw Duew Ereistt Inck findew

A3 12 ez
1Dbjeck Exslorer LA

= 3 Haragenen:
1 B i
[P 5 Smrver Agerk {ugen: iFs deskled)

<

© 1 ocaaie o

enmnty L

Hlaewcuere [|1t oy (500 |5 0 o | B0 (B2 B0 ¥
HEL AT A ERC R WA TR

ocalhmaster - SOLQuEryLsalt Suimrasy

SELEAT ¢ FROW

TEFCRANTION_SCAFKA. TAFLES

iy Aecuiss| & Feavaduelor

x| %

Ga=ry 1: uecy cost selabive oo
SELECT

the batohl: 1ULE

7 FROE IXFORHATICH_SCOESL, TADLIS

4

Reacy

Cowprra Sealne
Cosni 0k

1 Ousry memcibed suzcessfuly,

31

Jocall NOCTRIEL sa 5] mssber COOROE Grows

Ln1 =10 14 s

Figure 2-12

The data that you get back is exactly the same as before. It’s just given to you in a different format. I use
this output method in several scenarios:

QO When I'm only getting one result set and the results have only fairly narrow columns

QO When I want to be able to save my results in a single text file

QO When I'm going to have multiple result sets, but the results are expected to be small, and I want
to be able to see more than one result set on the same page without dealing with multiple scroll-

bars

Results in Grid

This option divides the columns and rows into a grid arrangement. Following is a list of specific things

36

that this option gives you that the Results in Text doesn't:

O You can resize the column by hovering your mouse pointer on the right border of the column
header, and then clicking and dragging the column border to its new size. Double-clicking the
right border results in the autofit for the column.

Q If you select several cells, and then cut and paste them into another grid (say, Microsoft Excel),
they will be treated as individual cells. (Under the Results in Text option, the cut data is pasted
all into one cell.)

Tools of the Trade

Q You can select just one or two columns of multiple rows. (Under Results in Text, if you select

several rows, all the inner rows have every column selected; you can select only in the middle of
the row for the first and last row selected).

I use this option for almost everything because I find that I usually want one of the benefits I just listed.

Show Execution Plan

Every time you run a query, SQL Server parses your query into its component parts and then sends it to
the query optimizer. The query optimizer is the part of SQL Server that figures out the best way to run your
query to balance fast results with minimum impact to other users. When you use the Show Estimated
Execution Plan option, you receive a graphical representation and additional information about how SQL
Server plans to run your query. Similarly, you can turn on the Include Actual Execution Plan option. Most
of the time, this will be the same as the estimated execution plan, but you will occasionally see differences
here due to changes that the optimizer decided to make while it was running the query as well as changes
in the actual cost of running the query versus what the optimizer thought was going to happen.

Let’s see what a query plan looked like in our simple query, click the Include Actual Execution Plan
option, and execute the query again, as shown in Figure 2-13:

osoft S| Server Managemant Studin

Ok gt b ey Bt Ik fiedes Cemmonte sk
Hlaeacuer (|15 oy (500 |5 b 6 B0 (G B2 B8 29 o
33 15 adeerhoreieois - Prom o om SR 4 M ER D SN S 2 s e
12biect Enclorer = B X Ylecal).Advent... S0 QuerylsalY| S.mnay -
Cormct | 4 AT SELECT ~ FROW TXFORMATION _SCAFKL.TARLZS =
E [. (50 Zevver 5.0.1304 - 58]
= [Dataess
@ [sty
i [Sarver Ui
@ 23 Pesicaton
=i 3 Haragemen:
3 [Bl e S
[520 server Agerk {agen: 7z dsskied)
< >
TAELE_HAME TABLE_TVFE =
1 PrtuetFiocuzPhots E5E TAELE
2 Skl FASE TAFLF
1 A kims Ce3E TALLE
4 ey ladeicig Preducaw FraductFoye EAsE TAELE
i ke lantios Prodazion TranractwHedoy FASF TAFLF
§ Adiwlmevions Peson AdkisnTye Ce3E TACLE
P ooy laewici: Fre oo S uclSune e gl EAsE [RELE
§ et P < fora Cortactioin B
9 Aduwlmewons abo E-tET E&5E TAELE
10 Ehr lawiois HuneaFesa ez Fug g MEL
N adeerimvicie Prdosian Transsciortltogiechive EASETALLE
12 ecueriacwicng Hunznmcsoaes: «Emgiogelopatnort WEWY
13 Ak lanWioes Prarkasng Fraju wm FASE TAFLE
18 Adierimevioi: Predocian DMk aterich Ce3E TAELE
15 Eckorlacwicns Hunan@csoaes Engipeelopaineri-inog VEW
15 fcbvertamvioss Sek AnchrituskCactome: B
17 adirlndviors Geks dndituDencgepiies WEW
12 Dumry mozcuted zcanivly lozal [BDCTFIE, ralff] | Advsrbadors 020200 Dwows
Rexcy Lr 1 ol 40 ch <0 =
Figure 2-13

Note that you have to actually click the Execution Plan tab for it to come up, and that your query results
are still displayed in the way you selected. The Show Estimated Execution plan option gives you the
same output as an Include Actual Execution Plan does with two exceptions:

37

Chapter 2

QO You get the plan immediately rather than after your query executes.

Q Although what you see is the actual “plan” for the query, all the cost information is estimated,
and the query is not actually run. Under Show Query Plan, the query is physically executed and
the cost information you get is actual rather than estimated.

The DB Combo Box

Finally, take a look at the DB combo box. In short, this is where you select the default database that you
want your queries to run against for the current window. Initially, the query window will start with
whatever the default database is for the user that’s logged in (for sa, that is the master database unless
someone has changed it on your system). You can then change it to any other database that the current
login has permission to access. Since we're using the sa user ID, every database on the current server
should have an entry in the DB combo box.

Let’s change our current database to AdventureWorks and re-run the query, as shown in Figure 2-14:

Object Explorer

Connect > 44 Ei|

= [y . (SOL Server 9.0.1314 - sa) A
= [Databases
[System Databases
4 [Database Snapshots
= | Adventuretworks
+ [Database Diagrams
= [Tables
+ [Swstem Tables
= dbo.AwEBLildversian
= dbo.Databaselog
=1 dhba.Errorlog
= HumanResources.Department
= HumanResources.Employes

=1 HumanResources.Employesdd
= 1 = L [,

F F F OE E

Figure 2-14

As you can see, the data has changed to represent the data from the newly queried database.

The Object Explorer

This useful little tool enables you to navigate your database, look up object names, and even perform
actions like scripting and looking at the underlying data.

The database node can be extended all the way down to the listing of tables in the AdventureWorks
Database. You can drill down even farther to see individual columns, including datatype and similar
properties, of the tables—a very handy tool for browsing your database.

SQL Server Integration Services (SSIS)

Your friend and mine — that’s what SSIS (formerly known as Data Transformation Services or DTS) is. I
simply sit back in amazement every time I look at this feature of SQL Server. To give you a touch of per-
spective here, I've done a couple of Decision Support Systems (DSS) projects over the years. (These are

38

Tools of the Trade

usually systems that don’t have online data going in and out, but instead pull data together to help man-
agement make decisions.) A DSS project gathers data from a variety of sources and pumps it into one
centralized database to be used for centralized reporting.

These projects can get very expensive very quickly, as they attempt to deal with the fact that not every
system calls what is essentially the same data by the same name. There can be an infinite number of
issues to be dealt with. These can include data integrity (what if the field has a NULL and we don’t allow
NULLs?) or differences in business rules (one system deals with credits by allowing a negative order
quantity, another doesn’t allow this and has a separate set of tables to deal with credits). The list can go
on and on, so can the expense.

With SSIS, a tremendous amount of the coding, usually in some client-side language, that had to be done
to handle these situations can be eliminated or, at least, simplified. SSIS enables you to take data from
any data source that has an OLE DB or .NET data provider, and pump it into a SQL Server table.

Be aware that there is a special OLE DB provider for ODBC. This provider allows
you to map your OLE DB access directly to an ODBC driver. That means anything
that ODBC can access can also be accessed by OLE DB (and, therefore, SSIS).

While we’re at it, it’s also worth pointing out that SSIS, although part of SQL Server,
can work against any OLE DB source and any OLE DB destination. That means that
SQL Server doesn’t need to be involved in the process at all other than to provide
the data pump. You could, for example, push data from Oracle to Excel, or even DB/2
to MySQL.

While transferring our data, we can also apply what are referred to as transformations to that data.
Transformations essentially alter the data according to some logical rule(s). The alteration can be as simple
as changing a column name, or as complex as an analysis of the integrity of the data and application of
rules to change it if necessary. To think about how this is applied, consider the example I gave earlier of
taking data from a field that allows nulls and moving it to a table that doesn’t allow nulls. With SSIS,
you can automatically change any null values to some other value you choose during the transfer pro-
cess. (For a number, that might be zero, or for a character, it might be something like unknown.)

Bulk Copy Program (bcp)

If SSIS is your friend and mine, then The Bulk Copy Program, or bcp, would be that old friend that we
may not see that much any more, but really appreciate when we do.

bcp is a command-line program that’s sole purpose in life is to move formatted data in and out of SQL
Server en masse. It was around long before what has now become SSIS was thought of, and while SSIS
is replacing bep for most import/export activity, bep still has a certain appeal for people who like
command-line utilities. In addition, you'll find an awful lot of SQL Server installations out there that
still depend on bep to move data around fast.

39

Chapter 2

SQL Server Profiler

I can’t tell you how many times this one has saved my bacon by telling me what was going on with my
server when nothing else would. It’s not something a developer (or even a DBA for that matter) tends to use
everyday, but it’s extremely powerful and can be your salvation when you're sure nothing can save you.

SQL Server Profiler is, in short, a real-time tracing tool. Whereas Performance Monitor is all about track-
ing what’s happening at the macro level —system configuration stuff — the Profiler is concerned with
tracking specifics. This is both a blessing and a curse. The Profiler can, depending on how you configure
your trace, give you the specific syntax of every statement executed on your server. Now, imagine that
you are doing performance tuning on a system with 1000 users. I'm sure you can imagine the reams of
paper that would be used to print out the statements executed by so many people in just a minute or
two. Fortunately, the Profiler has a vast array of filters to help you narrow things down and track more
specific problems, for example, long running queries, or the exact syntax of a query being run within a
stored procedure, which is nice when your procedure has conditional statements that cause it to run dif-
ferent things under different circumstances.

sqlemd

You won't see sqlemd in your SQL Server program group. Indeed, it’s amazing how many people don’t
even know that this utility or its older brothers — osql and isql —is around; that’s because it’s a console
rather than a Windows program.

This is the tool to use when you want to include SQL commands and management tasks in command-
line batch files. Prior to version 7.0 and the advent of what was then called DTS (now SSIS), sqlemd was
often used in conjunction with the Bulk Copy Program (bcp), to manage the import of data from external
systems. This type of use is decreasing as administrators and developers everywhere learn the power
and simplicity of SSIS. Even so, there are occasionally items that you want to script into a larger com-
mand line process. sqlemd gives you that capability.

sqlemd can be very handy, particularly if you use files that contain the scripts you want to run under sql-
cmd. Keep in mind, however, that there are usually tools that can accomplish what sqlemd can much
more effectively and with a user interface that is more consistent with the other things you're doing with
your SQL Server.

Once again, just for history and being able to understand if people you talk SQL Server with use a dif-
ferent lingo, sqlcmd is yet another new name for this tool of many names. Originally, it was referred to
as ISQL. In SQL Server 2000, and 7.0, it was known as osql.

Summary

40

Most of the tools that you've been exposed to here aren’t ones you'll use every day. Indeed, for the aver-
age developer, only SQL Server Management Studio will get daily use. Nevertheless it’s important to
have some idea of the role that each one can play. Each has something significant to offer you. We will
see each of these tools again in our journey through this book.

Note that there are some other utilities available that don’t have shortcuts on your Start menu (connec-
tivity tools, server diagnostics and maintenance utilities), which are mostly admin related.

The Foundation Statements
of T-SQL

At last! We've finally disposed of the most boring stuff. It doesn’t get any worse than basic objects
and tools, does it? Unfortunately, we have to lay down a foundation before we can build the
house. The nice thing is that the foundation is now down. Having used the clichéd example of
building a house, I'm going to turn it all upside down by talking about the things that let you
enjoy living in it before we’ve even talked about the plumbing. You see, when working with
databases, you have to get to know how data is going to be accessed before you can learn all that
much about the best ways to store it.

In this chapter, we will discuss the most fundamental Transact-SQL (or T-SQL) statements. T-SQL is
SQL Server’s own dialect of Structured Query Language (or SQL). T-SQL received a bit of an over-
haul for this release, with many new programming constructs added. Among other things, it was
converted to be a Common Language Runtime (CLR)-compliant language —in short, it is a .NET
language now. While, for SQL Server 2005 we can use any .NET language to access the database,
in the end we're going to be using T-SQL, and T-SQL remains our core language for doing things
in SQL Server.

The T-SQL statements that we will learn in this chapter are:

Q SELECT
Q INSERT
0 UPDATE
QO DELETE

These four statements are the bread and butter of T-SQL. We'll learn plenty of other statements as
we go along, but these statements make up the basis of T-SQL's Data Manipulation Language — or
DML. Because you'll generally issue far more commands meant to manipulate (that is, read and
modify) data than other types of commands (such as those to grant user rights or create a table),
you'll find that these will become like old friends in no time at all.

Chapter 3

In addition, SQL provides for many operators and keywords that help refine your queries. We'll learn
some of the most common of these in this chapter.

While T-SQL is unique to SQL Server, the statements you use most of the time are not. T-SQL is entry-
level ANSI SQL-92—compliant, which means that it complies up to a certain level of a very wide open
standard. What this means to you as a developer is that much of the SQL you’re going to learn in this
book is directly transferable to other SQL-based database servers such as Sybase (which, long ago, used
to share the same code base as SQL Server), Oracle, DB2, and MySQL. Be aware, however, that every
RDBMS has different extensions and performance enhancements that it uses above and beyond the
ANSI standard. I will try to point out the ANSI vs. non-ANSI ways of doing things where applicable.
In some cases, you'll have a choice to make — performance vs. portability to other RDBMS systems.
Most of the time, however, the ANSI way is as fast as any other option. In such a case, the choice should
be clear — stay ANSI-compliant.

Getting Started with a Basic SELECT
Statement

If you haven’t used SQL before, or don't really feel like you've really understood it yet— pay attention
here! The SELECT statement and the structures used within it form the basis for the lion’s share of all the
commands we will perform with SQL Server. Let’s look at the basic syntax rules for a SELECT statement:

SELECT <column list>

[FROM <source table(s)>]

[WHERE <restrictive condition>]

[GROUP BY <column name or expression using a column in the SELECT list>]

[HAVING <restrictive condition based on the GROUP BY results>]

[ORDER BY <column list>]

[[FOR XML {RAW|AUTO|EXPLICIT‘PATH [(<element>)]}[, XMLDATA][, ELEMENTS][, BINARY
base 641]]

[OPTION (<query hint>, [, ...nl)]

Wow — that’s a lot to decipher, so let’s look at the parts.

The SELECT Statement and FROM Clause

42

The “verb” —in this case a SELECT —is the part of the overall statement that tells SQL Server what we are
doing. A SELECT indicates that we are merely reading information, as opposed to modifying it. What we
are selecting is identified by an expression or column list immediately following the SELECT —you’ll see
what I mean by this in a moment.

Next, we add in more specifics, such as from where we are getting this data. The FROM statement speci-
fies the name of the table or tables from which we are getting our data. With these, we have enough to
create a basic SELECT statement. Fire up the SQL Server Management Studio and let’s take another look
at the SELECT statement we ran during the last chapter:

SELECT * FROM INFORMATION_SCHEMA.TABLES

The Foundation Statements of T-SQL

Let’s look at what we’ve asked for here. We’'ve asked to SELECT information —you can also think of this
as requesting to display information. The * may seem odd, but it actually works pretty much as * does
everywhere —it’s a wildcard. When we say SELECT *, we're saying we want to select every column
from the table. Next, the FROM indicates that we’ve finished saying what items to output, and that we're
about to say what the source of the information is supposed to be —in this case,
INFORMATION_SCHEMA.TABLES.

INFORMATION_SCHEMA is a special access path that is used for displaying meta
data about your system’s databases and their contents. INFORMATION_SCHEMA
has several parts that can be specified after a period, such as INFORMATION_
SCHEMA.SCHEMATA or INFORMATION_SCHEMA.VIEWS. These special access
paths to the meta data of your system have been put there so you won’t have to use
what are called “system tables.”

Trylt Out The SELECT Statement

Let’s play around with this some more. Change the current database to be the AdventureWorks
database. Recall that, to do this, you need only select the AdventureWorks entry from the combo box in
the toolbar at the top of the Query window in the Management Studio, as shown in Figure 3-1.

» Microsoft SQOL Server Management Studio
File Edt Wiew Query Tools ‘Window Heb
Quenowy |3 BBH G SHS @ B EABESI,
123 7 [pdventureiiorks 2] 1 e v m TS g2 | AL [TEs E EETHDE 2
Registered Senve fecountin -3 X S0LQueryl.sql..ventureWorks* | -

(1 @ Gl HadventurewarksDw SELECT * FROM Sales.Cuscomer
= L Databasrg

[schvffisdb
o thwaind
pubs
Reportserver
ReportServerTempDB
tempdb

Chiject Explorer - 0 X
Connect> & m
= L_ﬁ SCHWEITZER (SGL Server 9.0,1187 - BARNICLEjroby) -~
= (1 Databases

[® [System Dakabases

i# [Database Snapshots

[® [Accounting

I= |) Adveriuretiorks

2| %

W
[® 3 Detabase Diagrams ¢ 5
= [Tabies
[# [System Tables Results | 'y Messages| 2~ Execution plan
L; 3 ‘z';"\:&"d“':m" TABLE_CATALOG | TABLE_SCHEMA | TABLE_NAME TABLE_TYFE ~
& Datsbaselog . ! >
® O do.Emorlog 1 Producticn ProductProductPhoto BASE TAELE
® 5 dho.sysdagrams 2 Sales StoreContact BASE TABLE
[# I HumanResources, Departrent 3 Adventurehyforks Perzon Address BASE TABLE
® [HumanResources, Engloyes 4 Adventugbfolks Froduction ProductReview BASE TABLE
[3 FumanResources Enpioyeeiddress 5 | Adventwewolks Praduction TrarsactionHistory BASE TABLE
& HumanResources, EnployesDepartmentrist 6 | Adventwewoks Person AddressType BASE TABLE
[#] HumanResources, EmployesPayHstory —_—
® T HumanResowces, JobCandidate 7 Adventursidorks Froduction ProductSubcategon BASE TABLE
®] HumanResources, Shift g Adventurehyiorks Perzon whddilionalContactlréo WIEWS
[[Person,address 3 | Adventwewioks dbo AwBuikhersion BASE TABLE
® 3 Person.AddressType 10 | Adventuewanl HumanR vErmployes VIENS
@ (5 PersonContact 11 | Adventuwioks Froduction TrarsaclionHistoryérchive BASE TABLE
@ 3 Persan.ContactType 19| aduentisaion Himnankt F nniensalisnst WIF M
i 1 Person.CountryRegion 2 . h wF rrirneallanated ;
F3 : > v Query exscuted successiuly. SCHWEITZER [90CTP1S] | BARMICLENobw (53] Adventurdwiorks 000000 B8 rows
Ready Int Col 29 chzs s
Figure 3-1

43

Chapter 3

If you're having difficulty finding the combo box that lists the various databases, try clicking once in the
Query window. The SQL Server Management Studio toolbars are context sensitive— that is, they will
change by whatever it thinks is the current thing you are doing. If you don’t have a Query window as
the currently active window, you may have a different set of toolbars up (one that is more suitable to
some other task). As soon as a Query window is active, it should switch to a set of toolbars that are suit-
able to query needs.

Now that we have the AdventureWorks database selected, let’s start looking at some real data from our
database. Try this query:

SELECT * FROM Sales.Customer

After you have that in the Query window, just click on Execute on the toolbar and watch SQL Server
give you your results. This query will list every row of data in every column of the Sales.Customer table
in the current database (in our case, AdventureWorks). If you haven’t altered any of the settings on your
system or the data in the AdventureWorks database before you ran this query, then you should see the
following information if you click on the messages tab:

(19185 row(s) affected)

For a SELECT statement, the number shown here is the number of rows that your query returned.

How It Works

44

Let’s look at a few specifics of our SELECT statement. Notice that I capitalized the SELECT and FROM.
This is not a requirement of SQL Server — we could run them as SeLeCt and frOM and they would work
just fine. I capitalized them purely for purposes of convention and readability. You'll find that many SQL
coders will use the convention of capitalizing all commands and keywords, while using mixed case for
table, column, and non-constant variable names. The standards you choose or have forced upon you
may vary, but live by at least one rule —be consistent.

OK, time for my next soapbox diatribe. Nothing is more frustrating for the person that has to read your
code or remember your table names than lack of consistency. When someone looks at your code or, more
important, uses your column and table names, it shouldn’t take him or her long to guess most of the
way you do things just by experience with the parts that he or she has already worked with. Being con-
sistent is one of those incredibly simple things that have been missed to at least some degree in almost
every database I've ever worked with. Break the trend — be consistent.

The SELECT is telling the Query Window what we are doing and the * is saying what we want (remem-
ber that * = every column). Then comes the FROM.

A FROM clause does just what it says — that is, it defines the place from which our data should come.
Immediately following the FROM will be the names of one or more tables. In our query, all of the data
came from the table called Customer.

Now let’s try taking a little bit more specific information. Let’s say all we want is a list of all our cus-
tomers by last name:

SELECT LastName FROM Person.Contact

The Foundation Statements of T-SQL

Your results should look something like:

Achong
Abel
Abercrombie
He

Zheng

Hu

Note that I've snipped the rows out of the middle for brevity — you should have 19,972 rows there. Since
the name of each customer is all that we want, that’s all that we’ve selected.

Many SQL writers have the habit of cutting their queries short and always selecting every column by
using a * in their selection criteria. This is another one of those habits to resist. While typing in a * saves
you a few moments of typing out the column names that you want, it also means that more data has to
be retrieved than is really necessary. In addition, SQL Server must go and figure out just how many
columns “*” amounts to and what specifically they are. You would be surprised at just how much this
can drag down your application’s performance and that of your network. In short, a good rule to live by
is to select what you need — that is, exactly what you need. No more, no less.

Let’s try another simple query. How about:

SELECT Name FROM Production.Product

Again, assuming that you haven’t modified the data that came with the sample database, SQL Server

should respond by returning a list of 504 different products that are available in the AdventureWorks
database:

Adjustable Race
Bearing Ball
BB Ball Bearing

Road-750 Black, 44
Road-750 Black, 48
Road-750 Black, 52

The columns that you have chosen right after your SELECT clause are known as the SELECT list. In
short, the SELECT list is made up of the columns that you have requested to be output from your query.

The WHERE Clause

Well, things are starting to get boring again, aren’t they? So let’s add in the WHERE clause. The WHERE
clause allows you to place conditions on what is returned to you. What we have seen thus far is unre-
stricted information in the sense that every row in the table specified has been included in our results.
Unrestricted queries such as these are very useful for populating things like list boxes and combo boxes,
and in other scenarios where you are trying to provide a domain listing.

45

Chapter 3

46

For our purposes, don’t confuse a domain with that of a Windows domain. A domain
listing is an exclusive list of choices. For example, if you want someone to provide
you with information about a state in the US, you might provide them with a list
that limits the domain of choices to just the fifty states. That way, you can be sure
that the option selected will be a valid one. We will see this concept of domains fur-
ther when we begin talking about database design.

Now we want to try looking for more specific information. We don’t want a listing of product names —
we want information on a specific product. Try this —see if you can come up with a query that returns
the name, product number, and reorder point for a product with the ProductID 356.

Let’s break it down and build a query one piece at a time. First, we’re asking for information to be
returned, so we know that we’re looking at a SELECT statement. Our statement of what we want indi-
cates that we would like the product name, product number, and reorder point, so we're going to have
to know what the column names are for these pieces of information. We're also going to need to know
out of which table or tables we can retrieve these columns.

Now, we'll take a look at the tables that are available. Since we’ve already used the Production.Product
table once before, we know that it’s there (later on in the chapter, we’ll take a look at how we could find
out what tables are available if we didn’t already know). The Production.Product table has several
columns. To give us a quick listing of our column options we can study the Object Explorer tree of the
Production.Product table from Management Studio. To open this screen in the Management Studio, click
on the Tables member underneath the AdventureWorks database. Then expand the Production.Product
and Columns nodes. As in Figure 3-2, you will see each of the columns along with its datatype and nulla-
bility options. Again, we’ll see some other methods of finding this information a little later in the chapter.

We don’t have a column called product name, but we do have one that’s probably what we’re looking
for: Name. (Original eh?) The other two columns are, save for the missing space in between the two
words, just as easy to identify.

Therefore, our Products table is going to be the place we get our information FROM, and the Name,
ProductNumber, and ReorderPoint columns will be the specific columns from which we’ll get our
information:

SELECT Name, ProductNumber, ReorderPoint
FROM Production.Product

This query, however, still won’t give us the results that we're after —it will still return too much infor-
mation. Run it— you'll see that it still returns every record in the table rather than just the one we want.

If the table has only a few records and all we want to do is take a quick look at it, this might be fine.
After all, we can look through a small list ourselves —right? But that’s a pretty big “if” there. In any
significant system, very few of your tables will have small record counts. You don’t want to have to go
scrolling through 10,000 records. What if you had 100,000 or 1,000,000? Even if you felt like scrolling
through them all, the time before the results were back would be increasing dramatically. Finally, what
do you do when you're designing this into your application and you need a quick result that gets
straight to the point?

The Foundation Statements of T-SQL

Conneck ~ 34

= | AdventureiwWarks
|1l Database Diagrams
= [Tables

EEEEEEBEEEE

IEEEREEBEEE

4

[Swstem Tables

= dbo. AwBuildversian

= dbo.Databasslog

=1 dbo.Errorlog

= dbo.sysdiagrams

= HumanResources.Department

= HumarResources.Employes

= HumanResources.Employesaddrass
= HumanResources.EmployesDepartmentHistory
=] HumarResources.EmployesPayHistory
= HumarResources. JobCandidate

= HumanResources. Shift

=] Person.Address

= Person.AddressType

= Person.Cankact

=1 Person.ContackType

=1 Person.CountryRegion

= Person.StateProvince

= Production Bill JFaterials

= Production.Culture

= Praduction. Document

= Production Dlustration

= Production.Location

= 3 Columns
¥ ProductIr (PK, int, not null)
=] Mame (Mame(nvarchar(500), nat null)
=] ProductMumber (nvarchar(25), not null)
=] MakeFlag (Flagihit), nok nully
=] FinishedGoodsFlag (Flagbit}, not nully
=] Color (nvarchar(15, null)
=] safetyStockLevel (smallink, not ool
=] ReorderPaint {smallint, not null)
=] standardCost (money, not null)
=] ListPrice (money, not ool
=] Size {rvarchar(S), null)
? SizeUnitMeasureCode (FK, nchar(3), null)
? WwheightUnitMeasure Code (FK, nchar(3), null)
=] weight {decimalig, 23, null)
=] DaysToManufacture (ink, nat null)
=] ProductLine {nchar(2), null)
=] class (nchar(z), null)
=] style {nchariz), nully
? ProductSubcategoryID (FE, int, null)
? ProductModelID {FE, int, null}
=] SellStartDate {(datetime, nok null)
=] selEndDate (datetime, ol
=] Discontinuedbate {datetime, null)
=] rowequid {uniqueidentifier, nok nully
=] ModifiedDate (datetime, nok nul)
[Keys
[Constraints
[Triggers
1 Indexes

Figure 3-2

47

Chapter 3

What we're after is a conditional statement that will limit the results of our query to just one product
identifier —356. That’s where the WHERE clause comes in. The WHERE clause immediately follows the
FROM clause and defines what conditions a record has to meet before it will be shown. For our query,
we would want the ProductID to be equal to 356, so let’s finish our query:

SELECT Name, ProductNumber, ReorderPoint

FROM Production.Product
WHERE ProductID = 356

Run this query against the AdventureWorks database and you should come up with:
Name ProductNumber ReorderPoint

LL Grip Tape GT-0820 600

(1 row(s) affected)

This time we’ve gotten back precisely what we wanted — nothing more, nothing less. In addition, this
query runs much faster than the first query.

Let’s take a look at all the operators we can use with the WHERE clause:

Operator Example Usage Effect

=, >,<,>=, <Column Name> = Standard Comparison Operators — these
<=, <>, 1=, <Other Column Name> work as they do in pretty much any

>, I< <Column Name> = ‘Bob’ programming language with a couple of

notable points:

1. What constitutes “greater than,” “less
than,” and “equal to” can change depending
on the collation order you have selected. For
example, “ROMEY” = “romey” in places
where case-insensitive sort order has been
selected, but “ROMEY” < > “romey” in a
case-sensitive situation.

2. !=and <> both mean “not equal.” !< and
!> mean “not less than” and “not greater
than” respectively.

AND,OR, <Column1> = <Column2> AND Standard Boolean logic. You can use these to
NOT <Column3> >= <Column 4> combine multiple conditions into one
<Column1> != “MyLiteral” OR WHERE clause. NOT is evaluated first, then
<Column2> = “MyOtherLiteral” AND, then OR. If you need to change the
evaluation order, you can use parentheses.
Note that XOR is not supported.

BETWEEN <Columnl1> BETWEEN 1 AND 5 Comparison is TRUE if the first value is
between the second and third values inclu-
sive. It is the functional equivalent of A>=B
AND A<=C. Any of the specified values can
be column names, variables, or literals.

48

The Foundation Statements of T-SQL

Operator Example Usage Effect

LIKE <Columnl1> LIKE “ROM%"” Uses the % and _ characters for wildcarding.
% indicates a value of any length can replace
the % character. _ indicates any one character
can replace the _ character.

Enclosing characters in [] symbols indicates
any single character within the [] is OK ([a-
c] means a, b, and ¢ are OK. [ab] indicates a
or b are OK).

A operates as a NOT operator —indicating
that the next character is to be excluded.

IN <Column1> IN (List of Numbers) Returns TRUE if the value to the left of the
<Column1> IN (“A”, “b”, “345") IN keyword matches any of the values in the
list provided after the IN keyword. This is fre-
quently used in subqueries, which we will

look at in Chapter 16.
ALL, ANY, <column | expression> These return TRUE if any or all (depending
SOME (comparision operator) on which you choose) values in a subquery
<ANY | SOME> (subquery) meet the comparison operator (e.g. <, >, =,

>=) condition. ALL indicates that the value
must match all the values in the set. ANY
and SOME are functional equivalents and
will evaluate to TRUE if the expression
matches any value in the set.

EXISTS EXISTS (subquery) Returns TRUE if at least one row is returned
by the subquery. Again, we’ll look into this
one further in Chapter 16.

ORDER BY

In the queries that we’ve run thus far, most of them have come out in something resembling alphabetical
order. Is this by accident? It will probably come as somewhat of a surprise to you, but the answer to that
is yes. If you don’t say you want a specific sorting on the results of a query, then you get the data in the
order that SQL Server decides to give it to you. This will always be based on how SQL Server decided
was the lowest cost way to gather the data. It will usually be based either on the physical order of a
table, or on one of the indexes SQL Server used to find your data.

Think of an ORDER BY clause as being a “sort by.” It gives you the opportunity to define the order in
which you want your data to come back. You can use any combination of columns in your ORDER BY
clause as long as they are columns (or derivations of columns) found in the tables within your FROM
clause.
Let’s look at this query:

SELECT Name, ProductNumber, ReorderPoint

FROM Production.Product

49

Chapter 3

50

This will produce the following results:

Name ProductNumber ReorderPoint
Adjustable Race AR-5381 750
Bearing Ball BA-8327 750
Road-750 Black, 48 BK-R19B-48 75
Road-750 Black, 52 BK-R19B-52 75

(504 row(s) affected)

As it happened, our query result set was sorted in ProductID order. Why? Because SQL Server decided
that the best way to look at this data was by using an index that sorts the data by ProductID. That just
happened to be what created the lowest cost (in terms of CPU and I/0) query. Were we to run this exact
query when the table had grown to a much larger size, SQL Server might have chosen an entirely differ-
ent execution plan, and therefore might sort the data differently. We could force this sort order by chang-
ing our query to this:

SELECT Name, ProductNumber, ReorderPoint
FROM Production.Product
ORDER BY Name

Note that the WHERE clause isn’t required. It can either be there or not depending on what you're try-
ing to accomplish —just remember that, if you do have a WHERE clause, it goes before the ORDER BY
clause.

Unfortunately, that last query doesn’t really give us anything different, so we don’t see what'’s actually
happening. Let’s change the query to sort the data differently —by the ProductNumber:

SELECT Name, ProductNumber, ReorderPoint
FROM Production.Product
ORDER BY ProductNumber

Now our results are quite different. It’s the same data, but it’s been substantially rearranged:

Name ProductNumber ReorderPoint
Adjustable Race AR-5381 750

Bearing Ball BA-8327 750

LL Bottom Bracket BB-7421 375

ML Bottom Bracket BB-8107 375

Classic Vest, L VE-C304-L 3

Classic Vest, M VE-C304-M 3

Classic Vest, S VE-C304-S 3

Water Bottle - 30 oz. WB-H098 3

(504 row(s) affected)

The Foundation Statements of T-SQL

SQL Server still chose the least cost method of giving us our desired results, but the particular set of
tasks it actually needed to perform changed somewhat because the nature of the query changed.

We can also do our sorting using numeric fields. Let’s try our first query against the Northwind
database.

This will be the first time that we’ve utilized any of the databases that are not “built-in” to the installa-
tion routine. In order to run these next queries and many others scattered throughout the book, you will
need to make sure that you have installed the Northwind and Pubs database samples from the SQL
Server 2000 Samples Install, which is downloadable from Microsoft. How to install these samples is
described in Appendix E.

We will be going between samples fairly interchangeably as the book progresses, and will eventually
even experiment with utilizing data from more than one database at the same time.

We utilize this mix of databases for a variety of reasons, not the least of which is to expose you to
databases that are designed with somewhat different approaches. This issue of difference in design
approach will be addressed more fully in our design chapter.

This next query is still on a table containing products, but with a slight difference in name (notice the

“u o

s,” and a different schema and database:

SELECT ProductID, ProductName, UnitsInStock, UnitsOnOrder
FROM Products

WHERE UnitsOnOrder > 0

AND UnitsInStock < 10

ORDER BY UnitsOnOrder DESC

This one results in:

ProductID ProductName UnitsInStock UnitsOnOrder
66 Louisiana Hot Spiced Okra 4 100
31 Gorgonzola Telino 0 70
45 Rogede sild 5 70
21 Sir Rodney's Scones 3 40
32 Mascarpone Fabioli 9 40
74 Longlife Tofu 4 20
68 Scottish Longbreads 6 10

(7 row(s) affected)

Notice several things in this query. First, we’ve made use of many of the things that we’ve talked about
up to this point. We’ve combined multiple WHERE clause conditions and we also have an ORDER BY
clause in place. Second, we’ve added something new in our ORDER BY clause — the DESC keyword.
This tells SQL Server that our ORDER BY should work in descending order, rather than the default of
ascending. (If you want to explicitly state that you want it to be ascending, use ASC.)

OK, let’s do one more, but this time, let’s sort based on multiple columns. To do this, all we have to do is
add a comma followed by the next column by which we want to sort.

51

Chapter 3

Suppose, for example, that we want to get a listing of every order that was placed between December 10
and 20 in 1996. To add a little bit to this though, let’s further say that we want the orders sorted by date,
and we want a secondary sort based on the CustomerID. Just for grins, we’ll toss in yet another little
twist: we want the CustomerIDs sorted in descending order.

Our query would look like this:
SELECT OrderDate, CustomerID
FROM Orders
WHERE OrderDate BETWEEN '12-10-1996' AND '12-20-1996'

ORDER BY OrderDate, CustomerID DESC

This time, we get data that is sorted two ways:

OrderDate CustomerID
1996-12-10 00:00:00.000 FOLKO
1996-12-11 00:00:00.000 QUEDE
1996-12-12 00:00:00.000 LILAS
1996-12-12 00:00:00.000 HUNGO
1996-12-13 00:00:00.000 ERNSH
1996-12-16 00:00:00.000 BERGS
1996-12-16 00:00:00.000 AROUT
1996-12-17 00:00:00.000 SPLIR
1996-12-18 00:00:00.000 SANTG
1996-12-18 00:00:00.000 FAMIA
1996-12-19 00:00:00.000 SEVES
1996-12-20 00:00:00.000 BOTTM

(12 row(s) affected)

Our dates, since we didn’t say anything to the contrary, were still sorted in ascending order (the default),
but, if you look at the 16" as an example, you can see that our CustomerIDs were indeed sorted last to
first— descending order.

While we usually sort the results based on one of the columns that we are returning,
it’s worth noting that the ORDER BY clause can be based on any column in any table
used in the query regardless of whether it is included in the SELECT list.

Aggregating Data Using the GROUP BY Clause

52

With ORDER BY, we have kind of taken things out of order compared with how the SELECT statement
reads at the top of the chapter. Let’s review the overall statement structure:

SELECT <column list>

[FROM <source table(s)>]

[WHERE <restrictive condition>]

[GROUP BY <column name or expression using a column in the SELECT list>]

The Foundation Statements of T-SQL

[HAVING <restrictive condition based on the GROUP BY results>]

[ORDER BY <column list>]

[[FOR XML] [RAW, AUTO, EXPLICIT][, XMLDATA][, ELEMENTS][, BINARY base 64]]
[OPTION (<query hint>, [, ...nl)]

Why, if ORDER BY comes last, did we look at it before the GROUP BY? There are two reasons:

0 ORDER BY is used far more often than GROUP BY, so I want you to have more practice with it.

Q Iwant to make sure that you understand that you can mix and match all of the clauses after the
FROM clause as long as you keep them in the order that SQL Server expects them (as defined in
the syntax definition).

The GROUP BY clause is used to aggregate information. Let’s look at a simple query without a GROUP
BY. Let’s say that we want to know how many parts were ordered on a given set of orders:

SELECT OrderID, Quantity
FROM [Order Details]
WHERE OrderID BETWEEN 11000 AND 11002

Note the use of the square brackets in this query. Remember back from Chapter 2
that if an object name (a table in this case) has embedded spaces in it, we must
delimit the name by using either square brackets or single quotes — this lets SQL
Server know where the start and the end of the name is. Again, I highly recommend
against the use of embedded spaces in your names in real practice.

This yields a result set of:

OrderID Quantity
11000 25
11000 30
11000 30
11001 60
11001 25
11001 25
11001 6
11002 56
11002 15
11002 24
11002 40

(11 row(s) affected)
Even though we’ve asked only for three orders, we're seeing each individual line of detail from the

order. We can either get out our adding machine, or we can make use of the GROUP BY clause with an
aggregator —in this case we'll use suM ().

53

Chapter 3

54

SELECT OrderID, SUM(Quantity)

FROM [Order Details]

WHERE OrderID BETWEEN 11000 AND 11002
GROUP BY OrderID

This gets us what we were looking for:

OrderID

11000 85
11001 116
11002 135

(3 row(s) affected)

As you would expect, the SUM function returns totals —but totals of what? If we didn’t supply the
GROUP BY clause, the SUM would have been of all the values in all of the rows for the named column.
In this case, however, we did supply a GROUP BY, and so the total provided by the SUM function is the
total in each group.

We can also group based on multiple columns. To do this, we just add a comma and the next column
name.

Let’s say, for example, that we're looking for the number of orders each employee has taken for cus-
tomers with CustomerIDs between A and AO. We can use both the EmployeelD and CustomerID
columns in our GROUP BY (I'll explain how to use the COUNT () function shortly):

SELECT CustomerID, EmployeeID, COUNT (*)
FROM Orders

WHERE CustomerID BETWEEN 'A' AND 'AO'
GROUP BY CustomerID, EmployeeID

This gets us counts, but the counts are pulled together based on how many orders a given employee
took from a given customer:

CustomerID EmployeeID

ALFKI 1 2
ANTON 1 1
ALFKI 3 1
ANATR 3 2
ANTON 3 3
ALFKI 4 2
ANATR 4 1
ANTON 4 1
ALFKI 6 1
ANATR 7 1
ANTON 7 2

(11 row(s) affected)

The Foundation Statements of T-SQL

Note that, once we use a GROUP BY, every column in the SELECT list has to either be part of the
GROUP BY or it must be an aggregate. What does this mean? Let’s find out.

Aggregates

When you consider that they usually get used with a GROUP BY clause, it’s probably not surprising that
aggregates are functions that work on groups of data. For example, in one of the queries above, we got
the sum of the Quantity column. The sum is calculated and returned on the selected column for each
group defined in the GROUP BY clause —in this case, just OrderID. A wide range of aggregates is avail-
able, but let’s play with the most common.

While aggregates show their power when used with a GROUP BY clause, they are not
limited to grouped queries —if you include an aggregate without a GROUP BY, then
the aggregate will work against the entire result set (all the rows that match the
WHERE clause). The catch here is that, when not working with a GROUP BY, some
aggregates can only be in the SELECT list with other aggregates — that is, they can’t
be paired with a column name in the SELECT list unless you have a GROUP BY. For
example, unless there is a GROUP BY, AVG can be paired with SuM, but not a specific
column.

AVG

This one is for computing averages. Let’s try running that same query we ran before, but now we’ll
modify it to return the average quantity per order rather than the total for each order:

SELECT OrderID, AVG (Quantity)

FROM [Order Details]

WHERE OrderID BETWEEN 11000 AND 11002
GROUP BY OrderID

Notice that our results changed substantially:

OrderID

11000 28
11001 29
11002 33

(3 row(s) affected)

You can check the math — on order number 11,000 there were three line items totaling 85 altogether. 85 x
3 =28.33. I can just hear some of you out there squealing right now. You're probably saying something
like, “Hey, if it’s 28.33, then why did it round the value to 28?” Good question. The answer lies in the
rules of casting.

Casting is covered in more detail later, but suffice to say that it is a process where the system automati-

cally converts between different datatypes. In this case, the numbers the system started with were inte-
gers, so it made sure to give you an integer back (thus losing the decimal data).

55

Chapter 3

MIN/MAX

Bet you can guess these two. Yes, these grab the minimum and maximum amounts for each grouping for
a selected column. Again, let’s use that same query modified for the MIN function:

SELECT OrderID, MIN (Quantity)

FROM [Order Details]

WHERE OrderID BETWEEN 11000 AND 11002
GROUP BY OrderID

Which gives us the following results:

OrderID

11000 25
11001 6
11002 15

(3 row(s) affected)
Modify it one more time for the MAX function:

SELECT OrderID, MAX(Quantity)

FROM [Order Details]

WHERE OrderID BETWEEN 11000 AND 11002
GROUP BY OrderID

And you come up with this:
OrderID
11000 30
11001 60
11002 56

(3 row(s) affected)
What if, however, we wanted both the MIN and the MAX? Simple! Just use both in your query:
SELECT OrderID, MIN (Quantity),MAX (Quantity)
FROM [Order Details]
WHERE OrderID BETWEEN 11000 AND 11002
GROUP BY OrderID

Now, this will yield you an additional column and a bit of a problem:

OrderID

11000 25 30
11001 6 60
11002 15 56

(3 row(s) affected)

56

The Foundation Statements of T-SQL

Can you spot the issue here? We've gotten back everything that we’ve asked for, but now that we have
more than one aggregate column, we have a problem identifying which column is which. Sure, in this
particular example, we can be sure that the columns with the largest numbers are the columns generated
by the MAX and the smallest by the MIN, but the answer to which column is which is not always so
apparent. So let’s make use of an aligs. An alias allows you to change the name of a column in the result
set, and you can create it by using the As keyword:

SELECT OrderID, MIN(Quantity) AS Minimum, MAX(Quantity) AS Maximum
FROM [Order Details]

WHERE OrderID BETWEEN 11000 AND 11002

GROUP BY OrderID

Now our results are somewhat easier to make sense of:

OrderID Minimum Maximum
11000 25 30
11001 6 60
11002 15 56

(3 row(s) affected)

It’s worth noting that the AS keyword is actually optional. Indeed, there was a day (prior to version 6.5
of SQL Server) when it wasn’t even a valid keyword. If you like, you can execute the same query as
before, except remove the two AS keywords from the query — you'll see that you wind up with exactly
the same results. It’s also worth noting that you can alias any column (and even, as we'll see in the next
chapter, table names) —not just aggregates.

Let’s re-run this last query, but this time we’ll not use the As keyword in some places, and we'll alias
every column:

SELECT OrderID AS "Order Number", MIN(Quantity) Minimum, MAX(Quantity) Maximum
FROM [Order Details]

WHERE OrderID BETWEEN 11000 AND 11002

GROUP BY OrderID

Despite the AS keyword being missing in some places, we’ve still changed the name output for every
column:

Order Number Minimum Maximum
11000 25 30
11001 6 60
11002 15 56

(3 row(s) affected)

I must admit that I usually don’t include the AS keyword in my aliasing, but I would also admit that
it’s a bad habit on my part. I've been working with SQL Server since before the AS keyword was avail-
able and have unfortunately got set in my ways about it (I simply forget to use it). I would, however,
strongly encourage you to go ahead and make use of this “extra” word. Why? Well, first, because it
reads somewhat more clearly, and second because it’s the ANSI standard way of doing things.

57

Chapter 3

So then, why did I even tell you about it? Well, I got you started doing it the right way — with the AS
keyword — but I want you to be aware of alternate ways of doing things so that you aren’t confused
when you see something that looks a little different.

COUNT(Expression | *)

58

The COUNT(*) function is about counting the rows in a query. To begin with, let’s go with one of the
most common varieties of queries:

SELECT COUNT (*)
FROM Employees
WHERE EmployeeID = 5

The recordset you get back looks a little different from what you're used to from earlier queries:

(1 row(s) affected)

Let’s look at the differences. First, as with all columns that are returned as a result of a function call,
there is no default column name — if you want there to be a column name, then you need to supply an
alias. Next, you'll notice that we haven't really returned much of anything. So what does this recordset
represent? It is the number of rows that matched the WHERE condition in the query for the table(s) in the
FROM clause.

Keep this query in mind. This is a basic query that you can use to verify that the
exact number of rows that you expect to be in a table and match your wHERE condi-
tion are indeed in there.

Just for fun, try running the query without the WHERE clause:

SELECT COUNT (*)
FROM Employees

If you haven’t done any deletions or insertions into the Employees table, then you should get a recordset
that looks something like this:

(1 row(s) affected)

What is that number? It’s the total number of rows in the Employees table. This is another one to keep in
mind for future use.

Now, we're just getting started! If you look back at the header for this section (the COUNT section), you'll
see that there are two different ways of using COUNT. We’ve already discussed using COUNT with the *
option. Now it’s time to look at it with an expression —usually a column name.

The Foundation Statements of T-SQL

First, try running the COUNT the old way, but against a new table:

SELECT COUNT (*)
FROM Customers

This is a slightly larger table, so you get a higher count:

(1 row(s) affected)
Now alter your query to select the count for a specific column:

SELECT COUNT (Fax)
FROM Customers

You'll get a result that is a bit different to the one before:

(1 row(s) affected)

Warning: Null value is eliminated by an aggregate or other SET operation.

This new result brings with it a question: why, since the Fax column exists for every row, is there a differ-
ent count for Fax than there is for the row count in general? The answer is fairly obvious when you stop

to think about it— there isn’t a value, as such, for the Fax column in every row. In short, the counT,

when used in any form other than COUNT (*), ignores NULL values. Let’s verify that NULL values are

the cause of the discrepancy:

SELECT COUNT (*)
FROM Customers
WHERE Fax IS NULL

This should yield you the following recordset:

(1 row(s) affected)
Now, let’s do the math:

69 +22 =91

59

Chapter 3

60

That’s 69 records with a defined value in the Fax field and 22 rows where the value in the Fax field is
NULL, making a total of 91 rows.

Actually, all aggregate functions ignore NULLs except for COUNT (*). Think about this
for a minute —it can have a very significant impact on your results. Many users
expect NULL values in numeric fields to be treated as zero when performing aver-
ages, but a NULL does not equal zero, and as such, shouldn’t be used as one. If you
perform an AVG or other aggregate function on a column with NULLs, the NULL values
will not be part of the aggregation unless you manipulate them into a non-NULL
value inside the function (using COALESCE () or ISNULL () for example). We'll
explore this further in Chapter 7, but beware of this when coding in T-SQL and
when designing your database.

Why does it matter in your database design? Well, it can have a bearing on whether
you decide to allow NULL values in a field or not by thinking about the way that
queries are likely to be run against the database and how you want your aggregates
to work.

Before we leave the COUNT function, we had better see it in action with the GROUP BY clause.

Let’s say our boss has asked us to find out the number of employees that report to each manager. The
statements that we’ve done this far would either count up all the rows in the table (COUNT (*)) or all the
rows in the table that didn’t have null values (COUNT (ColumnName)). When we add a GROUP BY clause,
these aggregators perform exactly as they did before, except that they return a count for each grouping
rather than the full table —we can use this to get our number of reports:

SELECT ReportsTo, COUNT (*)
FROM Employees
GROUP BY ReportsTo

Notice that we are grouping only by the ReportsTo— the COUNT () function is an aggregator, and there-
fore does not have to be included in the GROUP BY clause.

ReportsTo

(3 row(s) affected)

Our results tell us that the manager with 2 as his/her ManagerID has five people reporting to him or her,
and that three people report to the manager with ManagerID 5. We are also able to tell that one
Employees record had a NULL value in the ReportsTo field — this employee apparently doesn’t report
to anyone (hmmm, president of the company I suspect?).

It’s probably worth noting that we, technically speaking, could use a GROUP BY clause without any kind
of aggregator, but this wouldn’t make sense. Why not? Well, SQL Server is going to wind up doing work
on all the rows in order to group them up, but, functionally speaking, you would get the same result
with a DISTINCT option (which we’ll look at shortly), and it would operate much faster.

The Foundation Statements of T-SQL

Now that we’ve seen how to operate with groups, let’s move on to one of the concepts that a lot of peo-
ple have problems with. Of course, after reading the next section, you’'ll think it’s a snap.

Placing Conditions on Groups with the HAVING Clause

Up to now, all of our conditions have been against specific rows. If a given column in a row doesn’t have
a specific value or isn’t within a range of values, then the entire row is left out. All of this happens before
the groupings are really even thought about.

What if we want to place conditions on what the groups themselves look like? In other words, what if
we want every row to be added to a group, but then we want to say that only after the groups are fully
accumulated are we ready to apply the condition. Well, that’s where the HAVING clause comes in.

The HAVING clause is used only if there is also a GROUP BY in your query. Whereas the WHERE clause is
applied to each row before they even have a chance to become part of a group, the HAVING clause is
applied to the aggregated value for that group.

Let’s start off with a slight modification to the GROUP BY query we used at the end of the last section —
the one that tells us the number of employees assigned to each manager’s EmployeelD:

SELECT ReportsTo AS Manager, COUNT(*) AS Reports
FROM Employees
GROUP BY ReportsTo

Now let’s look at the results again:

Manager Reports
NULL 1
2 5
5 3

(3 row(s) affected)

In the next chapter, we’ll learn how to put names on the EmployeelDs that are in the Manager column.
For now though, we'll just note that there appear to be two different managers in the company.
Apparently, everyone reports to these two people except for one person who doesn’t have a manager
assigned — that is probably our company’s president (we could write a query to verify that, but we’ll
just trust in our assumptions for the time being).

We didn’t put a WHERE clause in this query, so the GROUP BY was operating on every row in the table and
every row is included in a grouping. To test out what would happen to our counts, let’s add a WHERE
clause:

SELECT ReportsTo AS Manager, COUNT(*) AS Reports
FROM Employees

WHERE EmployeeID != 5

GROUP BY ReportsTo

This yields us one slight change that we probably expected:

61

Chapter 3

62

Manager Reports
NULL 1
2 4
5 3

(3 row(s) affected)

The groupings were relatively untouched, but one row was eliminated before the GROUP BY clause was
even considered. You see, the WHERE clause filtered out the one row where the EmployeelD was 5. As it
happens, EmployeelD 5 reports to ManagerID 2. When EmployeelD 5 was no longer part of the query,
the number of rows that were eligible to be in ManagerID 2’s group was reduced by one.

I want to look at things a bit differently though. See if you can work out how to answer the following
question. Which managers have more than four people reporting to them? You can look at the query
without the WHERE clause and tell by the count, but how do you tell programmatically? That is, what if
we need this query to return only the managers with more than four people reporting to them? If you
try to work this out with a WHERE clause, you'll find that there isn’t a way to return rows based on the
aggregation — the WHERE clause is already completed by the system before the aggregation is executed.
That’s where our HAVING clause comes in:

SELECT ReportsTo AS Manager, COUNT (*) AS Reports
FROM Employees

GROUP BY ReportsTo

HAVING COUNT (*) > 4

Try it out and you’ll come up with something a little bit more like what we were after:

Manager Reports

(1 row(s) affected)
There is only one manager that has more than four employees reporting to him or her.

As I mentioned before —we could have gone and picked this out of the original listing fairly quickly, but
the list is not always so short, and when dealing with things programmatically, you often need an exact
answer that requires no further analysis.

Let’s try a somewhat larger recordset, and then we’ll leave this topic until we look at multi-table queries
in the next chapter. If we want a query that will look at the total quantity of items ordered on each order
in the system, it’s a reasonably easy query:

SELECT OrderID, SUM(Quantity) AS Total
FROM [Order Details]
GROUP BY OrderID

OrderID Total
10248 27
11075 42

The Foundation Statements of T-SQL

11076 50
11077 72

(830 row(s) affected)

Unfortunately, it’s somewhat difficult to do analysis on such a large list. So, let’s have SQL Server do
some paring down of this list to help us do our analysis. Assume that we’re only interested in larger
order quantities. Can you modify the query to return the same information, but limit it to orders where
the total quantity of product ordered was over 300? It’s as easy as adding the HAVING clause:

SELECT OrderID, SUM(Quantity) AS Total
FROM [Order Details]

GROUP BY OrderID

HAVING SUM(Quantity) > 300

Now we get a substantially shorter list:

OrderID Total
10895 346
11030 330

(2 row(s) affected)

As you can see, we can very quickly pare the list down to just the few in which we are most interested.
We could perform additional queries now, specifically searching for OrderIDs 10895 and 11030, or as
you'll learn in later chapters, we can JOIN the information from this query with additional information
to yield information that is even more precise.

Outputting XML Using the FOR XML Clause

Back in 2000, when the previous edition of SQL Server came out, XML was new on the scene, but quickly
proving itself as a key way of making data available. As part of that version of SQL Server —SQL Server
2000 —Microsoft added the ability to have your results sent back in an XML format rather than the tra-
ditional result set. This was pretty powerful — particularly in Web or cross-platform environments.

Microsoft has since reworked the way they deliver XML output a bit, but the foundations and impor-
tance are still the same. I'm going to shy away from the details of this clause for now since XML is a dis-
cussion unto itself —but we’ll spend extra time with XML in Chapter 16. So for now just trust me that
it’s better to learn the basics first.

Making Use of Hints Using the OPTION Clause

The OPTION clause is a way of overriding some of SQL Server’s ideas of how to best run your query.
Since SQL Server really does usually know what’s best for your query, using the OPTION clause will
more often hurt you rather than help you. Still, it’s nice to know that it’s there just in case.

This is another one of those “I'll get there later” subjects. We talk about query hints extensively when we

talk about locking later in the book, but, until you understand what you're affecting with your hints,
there is little basis for understanding the OPTION clause —as such, we'll defer discussion of it for now.

63

Chapter 3

The DISTINCT and ALL Predicates

64

There’s just one more major concept to get through and we’ll be ready to move from the SELECT state-
ment on to action statements. It has to do with repeated data.

Let’s say, for example, that we wanted a list of the IDs of the suppliers of all of the products that we have
in stock currently. We can easily get that information from the Products table with the following query:

SELECT SupplierID
FROM Products
WHERE UnitsInStock > 0

What we get back is one row matching the SupplierID for every row in the Products table:

SupplierID

12
23
12

(72 row(s) affected)

While this meets our needs from a technical standpoint, it doesn’t really meet our needs from a reality
standpoint. Look at all those duplicate rows! As we’ve seen in other queries in this chapter, this particu-
lar table is small, but the number of rows returned and the number of duplicates can quickly become
overwhelming. Like the problems we’ve discussed before —we have an answer. It comes in the form of
the DISTINCT predicate on your SELECT statement.

Try re-running the query with a slight change:

SELECT DISTINCT SupplierID
FROM Products
WHERE UnitsInStock > 0

Now you come up with a true list of the SupplierIDs from which we currently have stock:

SupplierID

27

The Foundation Statements of T-SQL

28
29

(29 row(s) affected)

As you can see, this cut down the size of our list substantially and made the contents of the list more rel-
evant. Another side benefit of this query is that it will actually perform better than the first one. Why?
Well, we’ll go into that later in the book when we discuss performance issues further, but for now, suffice
it to say that not having to return every single row means that SQL Server doesn’t have to do quite as
much work in order to meet the needs of this query.

As the old commercials on television go, “But wait! There’s more!” We’re not done with DISTINCT yet.
Indeed, the next example is one that you might be able to use as a party trick to impress your program-
mer friends. You see, this is one that an amazing number of SQL programmers don’t even realize you
can do—DISTINCT can be used as more than just a predicate for a SELECT statement. It can also be used
in the expression for an aggregate. What do I mean? Let’s compare three queries.

First, grab a row count for the Order Details table in Northwind:

SELECT COUNT (*)
FROM [Order Details]

If you haven’t modified the Order Details table, this should yield you 2,155 rows.
Now run the same query using a specific column to count:

SELECT COUNT (OrderID)
FROM [Order Details]

Since the OrderID column is part of the key for this table, it can’t contain any NULLs (more on this in the
chapter in indexing). Therefore, the net count for this query is always going to be the same as the
COUNT (*) —in this case, it’s 2,155.

Key is a term used to describe a column or combination of columns that can be used
to identify a row within a table. There are actually several different kinds of keys
(we’ll see much more on these in Chapters 7 through 9), but when the word “key” is
used by itself, it is usually referring to the table’s primary key. A primary key is a
column or group of columns that is effectively the unique name for that row —when
you refer to a row using its primary key, you can be certain that you will get back
only one row because no two rows are allowed to have the same primary key within
the same table.

Now for the fun part. Modify the query again:

SELECT COUNT (DISTINCT OrderID)
FROM [Order Details]

65

Chapter 3

Now we get a substantially different result:

(1 row(s) affected)

All duplicate rows were eliminated before the aggregation occurred, so you have substantially fewer
TOWS.

Note that you can use DISTINCT with any aggregate function, although I question whether many of
the functions have any practical use for it. For example, I can’t imagine why you would want an aver-
age of just the DISTINCT rows.

That takes us to the ALL predicate. With one exception, it is a very rare thing indeed to see someone actu-
ally including an ALL in a statement. ALL is perhaps best understood as being the opposite of DISTINCT.
Where DISTINCT is used to filter out duplicate rows, ALL says to include every row. ALL is the default
for any SELECT statement except for situations where there is a UNION. We will discuss the impact of ALL
in a UNION situation in the next chapter, but for now, realize that ALL is happening any time you don’t
ask for a DISTINCT.

Adding Data with the INSERT Statement

66

By now, you should have pretty much got the hang of basic SELECT statements. We would be doing well
to stop here save for a pretty major problem —we wouldn’t have very much data to look at if we didn’t
have some way of getting it into the database in the first place. That’s where the INSERT statement
comes in.

The basic syntax for an INSERT statement looks like this:
INSERT [INTO] <table> [(column_list)] VALUES (data_values)
Let’s look at the parts:

INSERT is the action statement. It tells SQL Server what it is that we’re going to be doing with this state-
ment and everything that comes after this keyword is merely spelling out the details of that action.

The INTO keyword is pretty much just fluff. Its sole purpose in life is to make the overall statement more
readable. It is completely optional, but I highly recommend its use for the very reason that they added it
to the statement — it makes things much easier to read. As we go through this section, try a few of the
statements both with and without the INTO keyword. It’s a little less typing if you leave it out, but it’s
also quite a bit stranger to read —it’s up to you.

Next comes the table into which you are inserting.
Until this point, things have been pretty straightforward —now comes the part that’s a little more diffi-

cult: the column list. An explicit column list (Where you specifically state the columns to receive values)
is optional, but not supplying one means that you have to be extremely careful. If you don’t provide an

The Foundation Statements of T-SQL

explicit column list, then each value in your INSERT statement will be assumed to match up with a col-
umn in the same ordinal position of the table in order (1st value to 1st column, 2nd value to 2nd column,
etc.). Additionally, a value must be supplied for every column, in order, until you reach the last column
that both does not accept nulls and has no default (you'll see more about what I mean shortly). In sum-
mary, this will be a list of one or more columns that you are going to be providing data for in the next
part of the statement.

Finally, you'll supply the values to be inserted. There are two ways of doing this, but for now, we’ll focus
on single line inserts that use data that you explicitly provide. To supply the values, we'll start with the
VALUES keyword, and then follow that with a list of values, separated by commas and enclosed in
parentheses. The number of items in the value list must exactly match the number of columns in the col-
umn list. The datatype of each value must match or be implicitly convertible to the type of the column
with which it corresponds (they are taken in order).

On the issue of, “Should I specifically state a value for all columns or not?” I really recommend naming
every column every time — even if you just use the DEFAULT keyword or explicitly state NULL.
DEFAULT will tell SQL Server to use whatever the default value is for that column (if there isn’t one,
you’ll get an error).

What's nice about this is the readability of code— this way it’s really clear what you are doing. In addi-
tion, I find that explicitly addressing every column leads to fewer bugs.

Whew! That’s confusing, so let’s practice with this some. Let’s make use of the pubs database. This is a
yet another database we’ll be using throughout the book, and it should have been added to your system
when you installed the Microsoft samples that included Northwind. Don’t forget to make the change in
your Query window or perform the USE Pubs command.

OK, most of the inserts we’re going to do in this chapter will be to the stores table (it’s a very nice, sim-
ple table to get started with), so let’s take a look at the properties for that table, shown in Figure 3-3. To
do this, expand the Tables node of the pubs database in the Object Explorer within the Management
Studio. Then, also expand the columns node as showed in Figure 3-3.

= [Tables

+ [System Tables
= dbo.authars
= dba.discounts
=1 dbo.employes
= dbo.jobs
= dbo.pub_info
= dbo.publishers
=1 dbo.rovsched
= dbo.sales
= dbo.stares
= [Columns

¥ stor_id (PK, char{4}, not nuily

=| skor_name {varchar({$0), null)
star_address (wvarchar{4d), null}
city (varchar{20), null)
=| skate (char(z), null)
=| zip {char(5), null)
+ [Kews

ol e W

Figure 3-3

1 EEEEE

[]]

67

Chapter 3

68

In this table, every column happens to be a char or varchar.

For our first insert, we’ll eliminate the optional column list and allow SQL Server to assume we’re pro-
viding something for every column:

INSERT INTO stores
VALUES
('TEST', 'Test Store', '1234 Anywhere Street', 'Here', 'NY', '00319')

As stated earlier, unless we provide a different column list (we’ll cover how to provide a column list
shortly), all the values have to be supplied in the same order as the columns are defined in the table.
After executing this query, you should see a statement that tells you that one row was affected by your
query. Now, just for fun, try running the exact same query a second time. You'll get the following error:

Msg 2627, Level 14, State 1, Line 1

Violation of PRIMARY KEY constraint 'UPK_storeid'. Cannot insert duplicate key in
object 'dbo.stores'.

The statement has been terminated.

Why did it work the first time and not the second? Because this table has a primary key that does not

allow duplicate values for the stor_id field. As long as we changed that one field, we could have left
the rest of the columns alone and it would have taken the new row. We’ll see more of primary keys in

the chapters on design and constraints.

So let’s see what we inserted:

SELECT *
FROM stores
WHERE stor_id = 'TEST'

This query yields us exactly what we inserted:

stor_id stor_name stor_address city state zip

TEST Test Store 1234 Anywhere Street Here NY 00319

(1 row(s) affected)

Note that I've trimmed a few spaces off the end of each column to help it fit on a page neatly, but the
true data is just as we expected it to be.

Now let’s try it again with modifications for inserting into specific columns:

INSERT INTO stores

(stor_id, stor_name, city, state, zip)
VALUES

('TST2', 'Test Store', 'Here', 'NY', '00319')

Note that, on the line with the data values, we’ve changed just two things. First, we’ve changed the
value we are inserting into the primary key column so it won’t generate an error. Second, we eliminated
the value that was associated with the stor_address column since we have omitted that column in our

The Foundation Statements of T-SQL

column list. There are a few different instances where we can skip a column in a column list and not pro-
vide any data for it in the INSERT statement. For now, we're just taking advantage of the fact that the
stor_address column is not a required column — that is, it accepts NULLs. Since we’re not providing a
value for this column and since it has no default (we’ll see more on defaults later on), this column will be
set to NULL when we perform our insert. Let’s verify that by re-running our test SELECT statement with
one slight modification:

SELECT *
FROM stores
WHERE stor_id = 'TST2'

Now we see something a little different:

stor_id stor_name stor_address city state zip

TST2 Test Store NULL Here NY 00319

(1 row(s) affected)
Notice that a NULL was inserted for the column that we skipped.

Note that the columns have to be nullable in order to do this. What does that mean? Pretty much what it
sounds like — it means that you are allowed to have NULL values for that column. Believe me, we will
be discussing the nullability of columns at great length in this book, but for now, just realize that some
columns allow NULLSs and some don’t. We can always skip providing information for columns that
allow NULLs.

If, however, the column is not nullable, then one of three conditions must exist, or we will receive an
error and the INSERT will be rejected:

Q The column has been defined with a default value. A default is a constant value that is inserted if
no other value is provided. We will learn how to define defaults in Chapter 7.

Q The column is defined to receive some form of system-generated value. The most common of
these is an IDENTITY value (covered more in the design chapter) —where the system typically
starts counting at one first row, increments to 2 for the second, and so on. These aren’t really
“row numbers”, as rows may be deleted later on and numbers can, under some conditions, get
skipped, but they serve to make sure each row has its own identifier.

Q We supply a value for the column.
Just for completeness, let’s perform one more INSERT statement. This time, we'll insert a new sale into
the sales table. To view the properties of the sales table, we can either open its Properties dialog as we
did with the stores table, or we can run a system stored procedure called sp_help. sp_help will report
information about any database object, user-defined datatype, or SQL Server datatype. The syntax for
using sp_help is as follows:

EXEC sp_help <name>

To view the properties of the sales table, we just have to type the following into the Query Analyzer:

69

Chapter 3

EXEC sp_help sales

Which returns (among other things):

Column_name Type Length Nullable
stor_id char 4 no
ord_num varchar 20 no
ord_date datetime 8 no
aty smallint 2 no
payterms varchar 12 no
title_id tid 6 no

The sales table has six columns in it, but pay particular attention to the qty and ord_date columns — they
are of types that we haven’t done inserts with up to this point (the title_id column is of type tid, but that
is actually just a user-defined type that is still a character type with a length of 6).

What you need to pay attention to in this query is how to format the types as you're inserting them.
We do not use quotes for numeric values as we have with our character data. However, the datetime
datatype does require quotes (essentially, it goes in as a string and it then gets converted to a datetime).

INSERT INTO sales

(stor_id, ord_num, ord_date, gty, payterms, title_id)
VALUES

('TEST', 'TESTORDER', '01/01/1999', 10, 'NET 30', 'BU1032')

This gets us back the now familiar (1 row(s) affected) message.

Note that, while I've used the MM/DD/YYYY format that is popular in the US, you
can use a wide variety of other formats (such as the internationally more popular
YYYY-MM-DD) with equal success. The default for your server will vary depending
on if you purchase a localized copy of SQL Server or if the setting has been changed
on the server.

The INSERT INTO . .. SELECT Statement

70

Well, this “one row at a time” business is all fine and dandy, but what if we have a block of data that we
want inserted? Over the course of the book, we’ll look at lots of different scenarios where that can hap-
pen, but for now, we’re going to focus on the case where what we want to insert into our table can be
obtained by selecting it from another source such as:

O Another table in our database

Q A totally different database on the same server

0 Aheterogeneous query from another SQL Server or other data
Q

From the same table (usually, you're doing some sort of math or other adjustment in your
SELECT statement in this case)

The Foundation Statements of T-SQL

The INSERT INTO . . . SELECT statement can do all of these. The syntax for this statement comes from a
combination of the two statements we’ve seen thus far — the INSERT statement and the SELECT state-
ment. It looks something like this:

INSERT INTO <table name>
[<column 1ist>]
<SELECT statement>

The result set created from the SELECT statement becomes the data that is added in your INSERT
statement.

Let’s check this out by doing something that, if you get into advanced coding, you'll find yourself doing
all too often —selecting some data into some form of temporary table. In this case, we're going to
declare a variable of type table and fill it with rows of data from our Orders table:

This next block of code is what is called a script. This particular script is made up of
one batch. We will be examining batches at length in Chapter 11.

/* This next statement is going to use code to change the "current" database
** to Northwind. This makes certain, right in the code that we are going

** to the correct database.

*/

USE Northwind

/* This next statement declares our working table.
** This particular table is actually a variable we are declaring on the fly.
*/

DECLARE @MyTable Table
(
OrderID int,
CustomerID char (5)
)

/* Now that we have our table variable, we're ready to populate it with data
** from our SELECT statement. Note that we could just as easily insert the
** data into a permanent table (instead of a table variable).
*/
INSERT INTO @MyTable

SELECT OrderID, CustomerID

FROM Northwind.dbo.Orders

WHERE OrderID BETWEEN 10240 AND 10250

-- Finally, let's make sure that the data was inserted like we think

SELECT *
FROM @MyTable

71

Chapter 3

This should yield you results that look like this:

(3 row(s) affected)

OrderID CustomerID
10248 VINET
10249 TOMSP
10250 HANAR

(3 row(s) affected)

The first (3 row(s) affected) we see is the effect of the INSERT. . . SELECT statement at work —our
SELECT statement returns three rows, so that’s what got inserted into our table. We then use a straight
SELECT statement to verify the insert.

Note that if you try running a SELECT against @MyTable by itself (that is, outside
this script), you're going to get an error. @MyTable is a variable that we have
declared, and it exists only as long as our batch is running. After that, it is automati-
cally destroyed.

It’s also worth noting that we could have used what'’s called a “temporary table” —
this is similar in nature, but doesn’t work in quite the same way. We will revisit
temp tables and table variables in Chapters 11 through 13.

Changing What You’ve Got with the UPDATE
Statement

The UPDATE statement, like most SQL statements, does pretty much what it sounds like it does —it
updates existing data. The structure is a little bit different from a SELECT, although you’ll notice definite
similarities. Let’s look at the syntax:

UPDATE <table name>

SET <column> = <value> [,<column> = <value>]
[FROM <source table(s)>]

[WHERE <restrictive condition>]

An UPDATE can be created from multiple tables, but can affect only one table. What do I mean by that?
Well, we can build a condition, or retrieve values from any number of different tables, but only one table
at a time can be the subject of the update action. Don’t sweat this one too much —we haven’t looked at
joining multiple tables yet (next chapter folks!), so we won’t get into complex UPDATE statements here.
For now, we’ll look at simple updates.

72

The Foundation Statements of T-SQL

Let’s start off by doing some updates to the data that we inserted in the INSERT statement section. Let’s
re-run that query to look at one row of inserted data (don’t forget to switch back to the pubs database):

SELECT *
FROM stores
WHERE stor_id = 'TEST'

Which returns the following to us:

stor_id stor_name stor_address city state zip

TEST Test Store 1234 Anywhere Street Here NY 00319
Let’s update the value in the city column:

UPDATE stores
SET city = 'There'
WHERE stor_id = 'TEST'

Much like when we ran the INSERT statement, we don’t get much back from SQL Server:
(1 row(s) affected)
Yet, when we again run our SELECT statement, we see that the value has indeed changed:

stor_id stor_name stor_address city state zip

TEST Test Store 1234 Anywhere Street There NY 00319

Note that we could have changed more than one column just by adding a comma and the additional col-
umn expression. For example, the following statement would have updated both columns:

UPDATE stores
SET city = 'There', state = 'CA'
WHERE stor_id = 'TEST'

If we choose, we can use an expression for the SET clause instead of the explicit values we’ve used thus
far. For example, take a look at a few records from the titles table of the pubs database:

SELECT title_id, price
FROM titles
WHERE title_id LIKE 'BU%'

Our LIKE operator used here is going to provide us with the rows that start with BU, but which have any
value after that (since we've used a %). Assuming you haven’t been playing around with the data in the
pubs database, you should end up with results similar to these:

title_id price

BU1032 19.9900
BU1111 11.9500
BU2075 2.9900

73

Chapter 3

BU7832 19.9900

(4 row(s) affected)

Now that we’ve seen what the data looks like, let’s try a somewhat different update by using an expres-
sion in our UPDATE statement:

UPDATE titles
SET price = price * 1.1
WHERE title_id LIKE 'BU%'
After executing that update, run the SELECT statement again:
SELECT title_id, price
FROM titles

WHERE title_id LIKE 'BU%'

You should see the price increased by 10 percent for every title ID that starts with BU:

title_id price

BU1032 21.9890
BU1111 13.1450
BU2075 3.2890
BU7832 21.9890

(4 row(s) affected)

Let’s take this a little further to show you how much we can manipulate our results. For example, let’s
say that we have a business rule that says our prices need to be evenly payable with US currency. The
prices we came up with don’t meet our criteria, so we need to do something to get our prices rounded to
the nearest whole cent (0.01 dollars). From the point that we're at, we could round to the nearest cent by
running another update that does the rounding, but let’s go back to the beginning. First, let’s undo our
last update:

UPDATE titles
SET price = price / 1.1
WHERE title_id LIKE 'BU%'

Notice that we only had to change just the one line of code. After you execute this, the SELECT state-
ment should yield you the results with which we started:

title_id price

BU1032 19.9900
BU1111 11.9500
BU2075 2.9900
BU7832 19.9900

(4 row(s) affected)

74

The Foundation Statements of T-SQL

Now we’re ready to start from the beginning with a more advanced query. This time, we’re going to per-
form pretty much the same update, but we’ll round the updated data:

UPDATE titles
SET price = ROUND (price * 1.1, 2)
WHERE title_id LIKE 'BU%'

We've actually performed two mathematical operations before the UPDATE is actually written to each
record. First, we perform the equivalent of our first query (increasing the price by 10 percent). Then we
round it to match our business rule (must be to the cent) by indicating that our ROUND () function should
round data off to two decimal places (hence the number 2 right after our 1.1,). The great thing is that
we’ve been able to do this in just one operation rather than two.

Let’s verify that result:

title_id price
BU1032 21.9900
BU1111 13.1500
BU2075 3.2900
BU7832 21.9900

(4 row(s) affected)

As you can see, a single UPDATE statement can be fairly powerful. Even so, this is really just the begin-
ning. We'll see even more advanced updates in later chapters.

While SQL Server is nice enough to let us update pretty much any column (there are
a few that we can’t, such as timestamps), be very careful about updating primary
keys. Doing so puts you at very high risk of “orphaning” other data (data that has a
reference to the data you're changing).

For example, the stor_id field in the stores table of the pubs database is a primary
key. If we decide to change stor_id 10 to 35 in stores, then any data in the sales
table that relates to that store may be orphaned and lost to us if the stor_id value in
all of the records relating to stor_id 10 is not also updated to 35. As it happens,
there is a constraint that references the stores table, so SQL Server would prevent
such an orphaning situation in this case (we’ll investigate constraints in Chapter 7),
but updating primary keys is risky at best.

The DELETE Statement

The version of the DELETE statement that we’ll cover in this chapter may be one of the easiest statements
of them all. There’s no column list—just a table name and, usually, a WHERE clause. The syntax couldn’t
be much easier:

DELETE <table name>
[WHERE <search condition>]

75

Chapter 3

76

The WHERE clause works just like all of the WHERE clauses we’ve seen thus far. We don’t need to provide a
column list because we are deleting the entire row (you can’t delete half a row for example).

Because this is so easy, we'll perform only a couple of quick deletes that are focused on cleaning up the
inserts that we performed earlier in the chapter. First, let’s run a SELECT to make sure the first of those
rows is still there:

SELECT *
FROM stores
WHERE stor_id = 'TEST'

If you haven’t already deleted it, you should come up with a single row that matches what we added
with our original INSERT statement. Now let’s get rid of it:

DELETE stores
WHERE stor_id = 'TEST'

Note that we’ve run into a situation where SQL Server is refusing to delete this row because of referen-
tial integrity violations:

Msg 547, Level 16, State 1, Line 1

DELETE statement conflicted with COLUMN REFERENCE constraint

'FK__sales_ stor_id__ 1BFD2CO07'. The conflict occurred in database 'pubs', table
'sales', column 'stor_id'.

The statement has been terminated.

SQL Server won't let us delete a row if it is referenced as part of a foreign key constraint. We’ll see much
more on foreign keys in Chapter 7, but for now, just keep in mind that, if one row references another row
(either in the same or a different table —it doesn’t matter) using a foreign key, then the referencing row
must be deleted before the referenced row can be deleted. Our last INSERT statement inserted a record
into the sales table that had a stor_id of TEST — this record is referencing the record we have just
attempted to delete.

Before we can delete the record from our stores table, we must delete the record it is referencing in the
sales table:

DELETE sales
WHERE stor_id = 'TEST'

Now we can successfully re-run the first DELETE statement:

DELETE stores
WHERE stor_id = 'TEST'

You can do two quick checks to verify that the data was indeed deleted. The first happens automatically
when the DELETE statement is executed — you should get a message telling you that one row was

affected. The other quick check is to re-run the SELECT statement — you should get zero rows back.

For one more easy practice DELETE, we'll also kill off that second row by making just a slight change:

The Foundation Statements of T-SQL

DELETE stores
WHERE stor_id = 'TST2'

That'’s it for simple deletes! Like the other statements in this chapter, we’ll come back to the DELETE
statement when we're ready for more complex search conditions.

Summary

T-SQL is SQL Server’s own brand of ANSI SQL or Structured Query Language. T-SQL is entry-level
ANSI 92-compliant, but it also has a number of its own extensions to the language — we’ll see more of
those in later chapters.

Even though, for backward compatibility, SQL Server has a number of different syntax choices that are
effectively the same, wherever possible, you ought to use the ANSI form. Where there are different choices
available, I will usually show you all of the choices, but again, stick with the ANSI version wherever possi-
ble. This is particularly important for situations where you think your back-end — or database server —
might change at some point. Your ANSI code will, more than likely, run on the new database server —
however, code that is only T-SQL definitely will not.

In this chapter, you have gained a solid taste of making use of single table statements in T-SQL, but the
reality is that you often need information from more than one table. In the next chapter, we will learn
how to make use of JOINSs to allow us to use multiple tables.

Exercises

1. Writea query that outputs all of the columns and all of the rows from the authors table of the
pubs database.

2. Modify the query in Exercise 1 so it filters down the result to just the authors from the state of
Utah. (HINT: There are 2.)

3. Add anew row into the authors table in the pubs database.

4. Remove the row you just added.

77

JOINs

Feel like a seasoned professional yet? Let me dash that feeling right away (just kidding)! While
we’ve now got the basic statements under our belt, they are only a small part of the bigger picture
of the statements we will run. To put it simply, there is often not that much you can do with just
one table —especially in a highly normalized database.

A normalized database is one where the data has been broken out from larger tables into many
smaller tables for the purpose of eliminating repeating data, saving space, improving perfor-
mance, and increasing data integrity. It’s great stuff and vital to relational databases; however, it
also means that you wind up getting your data from here, there, and everywhere.

We will be looking into the concepts of normalization extensively in Chapter 8. For now, though,
just keep in mind that the more normalized your database is, the more likely that you're going to
have to join multiple tables together in order to get all the data you want.

In this chapter, we're going to introduce you to the process of combining tables into one result set
by using the various forms of the JOIN clause. These will include:

0 INNER JOIN

Qd OUTER JOIN (both LEFT and RIGHT)

U FULL JOIN

] CROSS JOIN

We'll also learn that there is more than one syntax available to use for joins, and that one particular
syntax is the right choice. In addition, we’ll take a look at the UNION operator, which allows us to
combine the results of two queries into one.

JOINs

When we are operating in a normalized environment, we frequently run into situations in which
not all of the information that we want is in one table. In other cases, all the information we want

Chapter 4

80

returned is in one table, but the information we want to place conditions on is in another table. In these
situations, this is where the JOIN clause comes in.

A JOIN does just what it sounds like —it puts the information from two tables together into one result
set. We can think of a result set as being a “virtual” table. It has both columns and rows, and the columns
have datatypes. Indeed, in Chapter 7, we’ll see how to treat a result set as if it were a table and use it for
other queries.

How exactly does a JOIN put the information from two tables into a single result set? Well, that depends
on how you tell it to put the data together — that’s why there are four different kinds of J0INs. The thing
that all JO0INs have in common is that they match one record up with one or more other records to make

a record that is a superset created by the combined columns of both records.

For example, let’s take a record from a table we’ll call Films:

FilmID FilmName YearMade

1 My Fair Lady 1964

Now let’s follow that up with a record from a table called Actors:

FilmID FirstName LastName

1 Rex Harrison

With a JOIN, we could create one record from two records found in totally separate tables:

FilmID FilmName YearMade FirstName LastName

1 My Fair Lady 1964 Rex Harrison

This JOIN (at least apparently) joins records in a one-to-one relationship. We have one Films record join-
ing to one Actors record.

Let’s expand things just a bit and see if you can see what’s happening. I've added another record to the
Actors table:

FilmID FirstName LastName
1 Rex Harrison
1 Audrey Hepburn

Now let’s see what happens when we join that to the very same (only one record) Films table:

JOINs

FilmID FilmName YearMade FirstName LastName
1 My Fair Lady 1964 Rex Harrison
1 My Fair Lady 1964 Audrey Hepburn

As you can see, the result has changed a bit— we are no longer seeing things as being one-to-one, but
rather one-to-two, or more appropriately, what we would call one-to-many. We can use that single
record in the Films table as many times as necessary in order to have complete (joined) information
about the matching records in the Actors table.

Have you noticed how they are matching up? It is, of course, by matching up the FilmID field from the
two tables to create one record out of two.

The examples we have used here with such a limited data set, would actually yield the same results no
matter what kind of J0IN we have. Let’s move on now and look at the specifics of the different JOIN

types.

INNER JOINs

INNER JOINs are far and away the most common kind of JOIN. They match records together based on
one or more common fields, as do most JOINs, but an INNER JOIN returns only the records where there
are matches for whatever field(s) you have said are to be used for the JOIN. In our previous examples,
every record has been included in the result set at least once, but this situation is rarely the case in the
real world.

Let’s modify our tables and see what we would get with an INNER JOIN. Here’s our Films table:

FilmID FilmName YearMade
1 My Fair Lady 1964
2 Unforgiven 1992

And our Actors table:

FilmID FirstName LastName
1 Rex Harrison
1 Audrey Hepburn
2 Clint Eastwood
5 Humphrey Bogart

81

Chapter 4

82

Using an INNER JOIN, our result set would look like this:

FilmID FilmName YearMade FirstName LastName
1 My Fair Lady 1964 Rex Harrison
1 My Fair Lady 1964 Audrey Hepburn
2 Unforgiven 1992 Clint Eastwood

Notice that Bogey was left out of this result set. That’s because he didn’t have a matching record in the
Films table. If there isn’t a match in both tables, then the record isn’t returned. Enough theory —let’s try
this out in code.

The preferred code for an INNER JOIN looks something like this:

SELECT <select list>

FROM <first_table>

<join_type> <second_table>
[ON <join_condition>]

This is the ANSI syntax, and you’'ll have much better luck with it on non-SQL Server database systems
than you will if you use the proprietary syntax required up to and prior to version 6.0 (and still used by
many developers today). We'll take a look at the other syntax later in the chapter.

Fire up the Management Studio and take a test drive of INNER JOINs using the following code against
Northwind:

SELECT *
FROM Products
INNER JOIN Suppliers
ON Products.SupplierID = Suppliers.SupplierID

The results of this query are too wide to print in this book, but if you run this, you should get something
in the order of 77 rows back. There are several things worth noting about the results:

Q The SupplierID column appears twice, but there’s nothing to say which one is from which table.
Q All columns were returned from both tables.

O The first columns listed were from the first table listed.

We can figure out which SupplierID is which just by looking at what table we selected first and match-
ing it with the first SupplierID column that shows up, but this is tedious at best, and at worst, prone to
errors. That’s one of many reasons why using the plain * operator in JOINs is ill advised. In the case of
an INNER JOIN, however, it’s not really that much of a problem because we know that both SupplierID
columns, even though they came from different tables, will be exact duplicates of each other. How do we
know that? Think about it— since we’re doing an INNER JOIN on those two columns, they have to
match or the record wouldn’t have been returned! Don’t get in the habit of counting on this, however.
When we look at other JOIN types, we’ll find that we can’t depend on the JOIN values being equal.

JOINs

As for all columns being returned from both tables, that is as expected. We used the * operator, which as
we’ve learned before is going to return all columns to us. As I mentioned earlier, the use of the * opera-
tor in joins is a bad habit. It's quick and easy, but it’s also dirty —it is error-prone and can result in poor
performance.

One good principle to adopt early on is this to select what you need, and need what you select. What I'm
getting at here is that every additional record or column that you return takes up additional network
bandwidth, and often, additional query processing on your SQL Server. The upshot is that selecting
unnecessary information hurts performance not only for the current user, but also for every other user
of the system and for users of the network on which the SQL Server resides.

Select only the columns that you are going to be using and make your WHERE clause as restrictive as
possible.

If you must insist on using the * operator, you should use it only for the tables from which you need all
the columns. That’s right —the * operator can be used on a per-table basis. For example, if we want all
of our product information, but only the name of the supplier, we could have changed our query to read:

SELECT Products.*, CompanyName
FROM Products
INNER JOIN Suppliers
ON Products.SupplierID = Suppliers.SupplierID

If you scroll over to the right in the results of this query, you'll see that most of the supplier information
is now gone. Indeed, we also only have one instance of the SupplierID column. What we got in our
result set was all the columns from the Products table (since we used the * qualified for just that table —
our one instance of SupplierID came from this part of the SELECT list) and the only column that had the
name CompanyName (which happened to be from the Suppliers table). Now let’s try it again, with only
one slight change:

SELECT Products.*, SupplierID
FROM Products
INNER JOIN Suppliers
ON Products.SupplierID = Suppliers.SupplierID

Uh, oh— this is a problem. We get an error back:

Msg 209, Level 16, State 1, Line 1
Ambiguous column name 'SupplierID'.

Why did CompanyName work and SupplierID not work? For just the reason SQL Server has indicated —
our column name is ambiguous. While CompanyName exists only in the Suppliers table, Supplier]D
appears in both tables. SQL Server has no way of knowing which one we want. All the instances where
we have returned SupplierID up to this point have been resolvable: that is, SQL Server could figure out
which table was which. In the first query (where we used a plain * operator), we asked SQL Server to
return everything — that would include both SupplierID columns, so no name resolution was necessary.
In our second example (where we qualified the * to be only for Products), we again said nothing specif-
ically about which SupplierID column to use —instead, we said pull everything from the Products table
and SupplierID just happened to be in that list. CompanyName was resolvable because there was only
one CompanyName column, so that was the one we wanted.

83

Chapter 4

84

When we want to refer to a column where the column name exists more than once in our JOIN result,
we must fully qualify the column name. We can do this in one of two ways:

Q Provide the name of the table that the desired column is from, followed by a period and the col-
umn name (Table.ColumnName)

Q Alias the tables, and provide that alias, followed by a period and the column name
(Alias.ColumnName)

The task of providing the names is straightforward enough —we’ve already seen how that works with
the qualified * operator, but let’s try our SupplierID query again with a qualified column name:

SELECT Products.*, Suppliers.SupplierID
FROM Products
INNER JOIN Suppliers
ON Products.SupplierID = Suppliers.SupplierID

Now things are working again and we have the SupplierID from the Suppliers table added back to the
far right-hand side of the result set.

Aliasing the table is only slightly trickier but can cut down on the wordiness and help the readability of
your query. It works almost exactly the same as aliasing a column in the simple SELECTs that we did in
the last chapter —right after the name of the table, we simply state the alias we want to use to refer to
that table. Note that, just as with column aliasing, we can use the AS keyword (but for some strange rea-
son, this hasn’t caught on as much in practice):

SELECT p.*, s.SupplierID
FROM Products p
INNER JOIN Suppliers s
ON p.SupplierID = s.SupplierID

Run this code and you’ll see that we receive the exact same results as we did in the last query.

Be aware that using an alias is an all-or-nothing proposition. Once you decide to alias a table, you must
use that alias in every part of the query. This is on a table-by-table basis, but try running some mixed
code and you'll see what I mean:

SELECT p.*, Suppliers.SupplierID
FROM Products p
INNER JOIN Suppliers s
ON p.SupplierID = s.SupplierID

This seems like it should run fine, but it will give you an error:

Msg 4104, Level 16, State 1, Line 1
The multi-part identifier "Suppliers.SupplierID" could not be bound.

Again, you can mix and match which tables you choose to use aliasing on and which you don’t, but once
you make a decision, you have to be consistent.

Think back to those bullet points we saw a few pages earlier; we noticed that the columns from the first
table listed in the JOIN were the first columns returned. Take a break for a moment and think about why
that is, and what you might be able to do to control it.

JOINs

SQL Server always uses a column order that is the best guess it can make at how you want the columns
returned. In our first query, we used one global * operator, so SQL Server didn’t have much to go on. In
that case, it goes on the small amount that it does have — the order of the columns as they exist physi-
cally in the table, and the order of tables that you specified in your query. The nice thing is that it is
extremely easy to reorder the columns — we just have to be explicit about it. The simplest way to reorder
the columns would be to change which table is mentioned first, but we can actually mix and match our
column order by simply explicitly stating the columns that we want (even if it is every column), and the
order in which we want them.

Try It Out A Simple JOIN

Let’s try a small query to demonstrate the point:

SELECT p.ProductID, s.SupplierID, p.ProductName, s.CompanyName
FROM Products p
INNER JOIN Suppliers s
ON p.SupplierID = s.SupplierID
WHERE p.ProductID < 4

This yields a pretty simple result set:

ProductID SupplierID ProductName CompanyName

1 1 Chai Exotic Liquids
2 1 Chang Exotic Liquids
3 1 Aniseed Syrup Exotic Liquids

(3 row(s) affected)

How It Works

Unlike when we were non-specific about what columns we wanted (when we just used the *), this time
we were specific about what we wanted, and thus SQL Server knew exactly what to give us— the columns
have come out in exactly the order that we’ve specified in our SELECT list.

How an INNER JOIN Is Like a WHERE Clause

In the INNER JOINs that we’'ve done so far, we've really been looking at the concepts that will work for any
JOIN type — the column ordering and aliasing is exactly the same for any JOIN. The part that makes an
INNER JOIN different from other JOINSs is that it is an exclusive join —that is, it excludes all records that
don’t have a value in both tables (the first named, or left table, and the second named, or right table).

Our first example of this was seen with our imaginary Films and Actors tables. Bogey was left out
because he didn’t have a matching movie in the Films table. Let’s look at a real example or two to show
how this works.

We have a Customers table, and it is full of customer names and addresses. This does not mean, how-
ever, that the customers have actually ordered anything. Indeed, I'll give you a hint up front and tell
you that there are some customers that have not ordered anything, so let’s take a question and turn it
into a query — the question I've picked calls for an INNER JOIN, but we’ll see how slight changes to the
question will change our choice of JOINs later on.

85

Chapter 4

86

Here’s a question you might get from a sales manager: “Can you show me all the customers who have
placed orders with us?”

You can waste no time in saying, “Absolutely!” and starting to dissect the parts of the query. What are
the things we need? Well, the sales manager asked about both customers and orders, so we can take a
guess that we will need information from both of those tables. The sales manager asked only for a list of
customers, so the CompanyName and perhaps the CustomerID are the only columns we need. Note that
while we need to include the Orders table to figure out whether a customer has ordered anything or not,
we do not need to return anything from it to make use of it (that’s why it’s not in the SELECT list that
follows). The sales manager has asked for a list of customers where there has been an order, so the ques-
tion calls for a solution where there is both a Customers record and an Orders record — that’s our INNER
JOIN scenario, so we should now be ready to write the query:

SELECT DISTINCT c.CustomerID, c.CompanyName
FROM Customers c
INNER JOIN Orders o

ON c.CustomerID = o.CustomerID

If you haven't altered any data in the Northwind database, this should give you 89 rows. Note that we
used the DISTINCT keyword because we only need to know that the customers have made orders (once
was sufficient), not how many orders. Without the DISTINCT, a customer who ordered multiple times
would have had a separate record returned for each orders record to which it joined.

Now let’s see if we got all the customers back. Try running a simple COUNT query:
SELECT COUNT (*) AS "No. Of Records" FROM Customers
And you'll get back a different count on the number of rows:

No. Of Records

(1 row(s) affected)

Where did the other two rows go? As expected, they were excluded from the result set because there
were no corresponding records in the Orders table. It is for this reason that an INNER JOIN is compara-
ble to a WHERE clause. Just as an INNER JOIN will exclude rows because they had no corresponding
match in the other table, the WHERE clause also limits the rows returned to those that match the criteria
specified.

Just for a little more proof and practice, consider the following tables from the pubs database:

authors Titles title’author
au_id title_id au_id
au_lname Title title_id
au_fname Type au_ord
Phone pub_id royaltyper

JOINs

authors Titles title*author
address Price
City Advance
State Royalty
Zip vtd_sales
contract notes
pubdate

What we're looking for this time is a query that returns all the authors that have written books and the
titles of the books that they have written. Try coming up with this query on your own for a few minutes;
then we'll dissect it a piece at a time.

The first thing to do is to figure out what data we need to return. Our question calls for two different
pieces of information to be returned: the author’s name and the book’s title. The author’s name is avail-
able (in two parts) from the authors table. The book’s title is available in the titles table, so we can write
the first part of our SELECT statement:

SELECT au_lname + ', ' + au_fname AS "Author", title

Like many languages, the “+” operator can be used for concatenation of strings as well as the addition
of numbers. In this case, we are just connecting the last name to the first name with a comma separator
in between.

What we need now is something to join the two tables on, and that’s where we run into our first
problem — there doesn’t appear to be one. The tables don’t seem to have anything in common on
which we can base our JOIN.

This brings us to the third table listed. Depending on which database architect you're talking to, a table
such as titleauthor will be called a number of different things. The most common names that I've come
across for this type of table are linking table or associate table.

A linking table (also sometimes called an associate or merge table) is any table for
which the primary purpose is not to store its own data, but rather to relate the data
stored in other tables. You can consider it to be “linking” or “associating” the two or
more tables. These tables are used to get around the common situation where you
have what is called a “many-to-many” relationship between the tables. This is
where two tables relate, but either table can have many records that potentially
match many records in the other table. SQL Server can’t implement such relation-
ships directly, so the linking table breaks down the many-to-many relationship into
two “one-to-many” relationships —which SQL Server can handle. We will see much
more on this subject in Chapter 8.

87

Chapter 4

This particular table doesn’t meet the criteria for a linking table in the strictest sense of the term, but it
still serves that general purpose, and I, not being a purist, consider it such a table. By using this third
table, we are able to indirectly join the authors and titles tables by joining each to the linking table,
titleauthor. authors can join to titleauthor based on au_id, and titles can join to titleauthor based on
title_id.

Try It Out

Adding this third table into our JOIN is no problem —we just keep on going with our FROM clause and
JOIN keywords (don’t forget to switch the database to pubs):

More Complex JOINs

SELECT a.au_lname + ', t.title
FROM authors a
JOIN titleauthor ta
ON a.au_id = ta.au_id
JOIN titles t
ON t.title_id = ta.title_id

' + a.au_fname AS "Author",

Notice that, because we’ve used aliases on the tables, we had to go back and change our SELECT clause
to use the aliases, but our SELECT statement with a three-table join is now complete! If we execute this
(I'm using the grid mode here), we get:

88

Author

Bennet, Abraham

Blotchet-Halls, Reginald

Carson, Cheryl
DeFrance, Michel
del Castillo, Innes
Dull, Ann

Green, Marjorie
Green, Marjorie
Gringlesby, Burt
Hunter, Sheryl

Karsen, Livia

Locksley, Charlene
Locksley, Charlene
MacFeather, Stearns

MacFeather, Stearns

Title

The Busy Executive’s Database Guide
Fifty Years in Buckingham Palace Kitchens
But Is It User Friendly?

The Gourmet Microwave

Silicon Valley Gastronomic Treats

Secrets of Silicon Valley

The Busy Executive’s Database Guide

You Can Combat Computer Stress!

Sushi, Anyone?

Secrets of Silicon Valley

Computer Phobic AND Non-Phobic Individuals: Behavior
Variations

Net Etiquette
Emotional Security: A New Algorithm
Cooking with Computers: Surreptitious Balance Sheets

Computer Phobic AND Non-Phobic Individuals: Behavior
Variations

JOINs

Author Title

O’Leary, Michael Cooking with Computers: Surreptitious Balance Sheets

O’Leary, Michael Sushi, Anyone?

Panteley, Sylvia Onions, Leeks, and Garlic: Cooking Secrets of the
Mediterranean

Ringer, Albert Is Anger the Enemy?

Ringer, Albert Life Without Fear

Ringer, Anne

Ringer, Anne

The Gourmet Microwave

Is Anger the Enemy?

Straight, Dean Straight Talk About Computers
White, Johnson Prolonged Data Deprivation: Four Case Studies
Yokomoto, Akiko Sushi, Anyone?

Note that your sort order may differ from what you see here— remember, SQL Server makes no
promises about the order your results will arrive in unless you use an ORDER BY clause — since we
didn’t use ORDER BY, the old adage “Actual results may vary” comes into play.

How It Works

If we were to do a simple SELECT * against the authors table, we would find that several authors were
left out because, although they have been entered into the authors table, they apparently haven’t written
any matching books (at least not that we have in our database). Indeed, we’ve even left out one title

(The Psychology of Computer Cooking) because we can’t match it up with an author! Once again, the key

to INNER JOINS is that they are exclusive.

Other than that, our third table worked with the first two just like the second did with the first. We could
keep adding tables, and each new table would work exactly the same way:.

Notice that we did not use the INNER keyword in this last query. That is because an
INNER JOIN is the default JOIN type. Schools of thought vary on this, but I believe
that because leaving the INNER keyword out has dominated the way code has been
written for so long, that it is almost more confusing to put it in — that’s why you
won’t see me use it again in this book.

OUTER JOINs

This type of JOIN is something of the exception rather than the rule. This is definitely not because they
don’t have their uses, but rather because:

89

Chapter 4

QO We, more often than not, want the kind of exclusiveness that an INNER JOIN provides.

QO Many SQL writers learn INNER JOINs and never go any further — they simply don’t under-
stand the OUTER variety.

Q There are often other ways to accomplish the same thing.

Q They are often simply forgotten about as an option.

Whereas INNER JOINs are exclusive in nature, OUTER and, as we'll see later in this chapter, FULL JOINs
are inclusive. It’s a tragedy that people don’t get to know how to make use of OUTER JOINs because
they make seemingly difficult questions simple. They can also often speed performance when used
instead of nested subqueries (which we will look into in Chapter 7).

Earlier in this chapter, we introduced the concept of a JOIN having sides —a left and a right. The first
named table is considered as being on the left, and the second named table is considered to be on the
right. With INNER JOINs these are a passing thought at most because both sides are always treated
equally. With OUTER JOINs, however, understanding your left from your right is absolutely critical.
When you look at it, it seems very simple because it is very simple, yet many query mistakes involving
OUTER JOINSs stem from not thinking through your left from your right.

To learn how to construct OUTER JOINSs correctly, we're going to use two syntax illustrations. The first
deals with the simple scenario of a two-table OUTER JOIN. The second will deal with the more complex
scenario of mixing OUTER JOINs with any other JOIN.

The Simple OUTER JOIN

20

The first syntax situation is the easy part—most people get this part just fine.

SELECT <SELECT list>

FROM <the table you want to be the "LEFT" table>

<LEFT|RIGHT> [OUTER] JOIN <table you want to be the "RIGHT" table>
ON <join condition>

In the examples, you’ll find that I tend to use the full syntax — that is, I include the OUTER keyword
(for example LEFT OUTER JOIN). Note that the OUTER keyword is optional — you need only include
the LEFT or RIGHT (for example LEFT JOIN).

What I'm trying to get across here is that the table that comes before the JOIN keyword is considered to
be the LEFT table, and the table that comes after the JOIN keyword is considered to be the RIGHT table.

OUTER JOINS are, as we've said, inclusive in nature. What specifically gets included depends on which
side of the join you have emphasized. A LEFT OUTER JOIN includes all the information from the table
on the left, and a RIGHT OUTER JOIN includes all the information from the table on the right. Let’s put
this into practice with a small query so that you can see what I mean.

Let’s say we want to know what all our discounts are, the amount of each discount, and which stores
use them. Looking over our pubs database, we have tables called discounts and stores as follows:

JOINs

discounts stores
discounttype stor_id
stor_id stor_name
Lowgty stor_address
Highagty city
Discount state

zip

We can directly join these tables based on the stor_id. If we did this using a common INNER JOIN, it
would look something like:

SELECT discounttype, discount, s.stor_name
FROM discounts d
JOIN stores s

ON d.stor_id = s.stor_id

This yields us just one record:
discounttype discount stor_name

Customer Discount 5.00 Bookbeat

(1 row(s) affected)

Think about this though. We wanted results based on the discounts we have —not which ones were
actually in use. This query only gives us discounts that we have matching stores for — it doesn’t answer
the question!

What we need is something that’s going to return every discount and the stores where applicable.

Try It Out Outer JOINs

In order to return every discount, and the stores where applicable, we need to change only the JOIN type
in the query:

SELECT discounttype, discount, s.stor_name
FROM discounts d
LEFT OUTER JOIN stores s

ON d.stor_id = s.stor_id

This yields us somewhat different results:

discounttype discount stor_name

Initial Customer 10.50 NULL

91

Chapter 4

Volume Discount 6.70 NULL
Customer Discount 5.00 Bookbeat

(3 row(s) affected)

If you were to perform a SELECT * against the discounts table, you’d quickly find that we have
included every row from that table.

How It Works

We are doing a LEFT JOIN, and the discounts table is on the left side of the JOIN. But what about the
stores table? If we are joining, and we don’t have a matching record for the stores table, then what hap-
pens? Since it is not on the inclusive side of the join (in this case, the LEFT side), SQL Server will fill in a
NULL for any value that comes from the opposite side of the join if there is no match with the inclusive
side of the join. In this case, all but one of our rows has a stor_name that is NULL. What we can discern
from that is that two of our discounts records (the two with NULLs in the column from the stores table)
do not have matching store records — that is, no stores are using that discount type.

We've answered the question then; of the three discount types, only one is being used (Customer
Discount) and it is being used only by one store (Bookbeat).

Try It Out RIGHT OUTER JOINs

Now, let’s see what happens if we change the join to a RIGHT OUTER JOIN:

SELECT discounttype, discount, s.stor_name
FROM discounts d
RIGHT OUTER JOIN stores s

ON d.stor_id = s.stor_id

Even though this seems like a very small change, it actually changes our results rather dramatically:

discounttype discount stor_name

NULL NULL Eric the Read Books

NULL NULL Barnum's

NULL NULL News & Brews

NULL NULL Doc-U-Mat: Quality Laundry and Books
NULL NULL Fricative Bookshop

Customer Discount 5.00 Bookbeat

(6 row(s) affected)

How It Works

92

If you were to perform a SELECT * on the stores table now, you would find that all of the records from
stores have been included in the query. Where there is a matching record in discounts, the appropriate
discount record is displayed. Everywhere else, the columns that are from the discounts table are filled in
with NULLs. Assuming that we always name the discounts table first, and the stores table second, then
we would use a LEFT JOIN if we want all the discounts, and a RIGHT JOIN if we want all the stores.

JOINs

Finding Orphan or Non-Matching Records

We can actually use the inclusive nature of OUTER JOINSs to find non-matching records in the exclusive
table. What do I mean by that? Let’s look at an example.

Let’s change our discount question. We want to know the store name for all the stores that do not have
any kind of discount record. Can you come up with a query to perform this based on what we know this
far? Actually, the very last query we ran has us 90 percent of the way there. Think about it for a minute;
an OUTER JOIN returns a NULL value in the discounts-based columns wherever there is no match. What
we are looking for is pretty much the same result set as we received in the last query, except that we
want to filter out any records that do have a discount, and we want only the store name. To do this, we
simply change our SELECT list and add a WHERE clause. To make it a touch prettier to give to our man-
ager, we also alias the stor_name field to be the more expected "Store Name":

SELECT s.stor_name AS "Store Name"
FROM discounts d
RIGHT OUTER JOIN stores s

ON d.stor_id = s.stor_id
WHERE d.stor_id IS NULL

As expected, we have exactly the same stores that had NULL values before:

Store Name

Eric the Read Books

Barnum's

News & Brews

Doc-U-Mat: Quality Laundry and Books
Fricative Bookshop

(5 row(s) affected)

There is one question you might be thinking at the moment that I want to answer in anticipation, so that
you're sure you understand why this will always work. The question is: “What if the discount record
really has a NULL value?” Well, that’s why we built a WHERE clause on the same field that was part of our
join. If we are joining based on the stor_id columns in both tables, then only three conditions can exist:

Q If the stores.stor_id column has a non-NULL value, then, according to the ON operator of the
JOIN clause, if a discounts record exists, then discounts.stor_id must also have the same value
as stores.stor_id (look at the ON d.stor_id = s.stor_id).

Q If the stores.stor_id column has a non-NULL value, then, according to the ON operator of the JOIN
clause, if a discounts record does not exist, then discounts.stor_id will be returned as NULL.

Q If the stores.stor_id happens to have a NULL value, and discounts.stor_id also has a NULL value,
there will be no join, and discounts.stor_id will return NULL because there is no matching record.

A value of NULL does not join to a value of NULL. Why? Think about what we’ve already said about com-
paring NULLs — a NULL does not equal NULL. Be extra careful of this when coding. One of the more com-
mon questions I am asked is, “Why isn’t this working?” in a situation where people are using an “equal
to” operation on a NULL — it simply doesn’t work because they are not equal. If you want to test this, try
executing some simple code:

93

Chapter 4

IF (NULL=NULL)

PRINT 'It Does'
ELSE

PRINT 'It Doesn''t'

If you execute this, you'll get the answer to whether your SQL Server thinks a NULL equals a NULL — that
is “It Doesn’t.”

This was actually a change of behavior that began in SQL Server 7.0. Be aware that if you are running
in SQL Server 6.5 compatibility mode (should be rare given it’s vintage at this point, but you never know),
or if you have ANSI_NULLS sef to off (through server options or a SET statement), then you will get a
different answer (your server will think that a NULL equals a NULL). This is considered non-standard at
this point. It is a violation of the ANSI standard, and it is no longer compatible with the default config-
uration for SQL Server. (Even the Books Online will tell you a NULL is not equal to a NULL.)

Let’s use this notion of being able to identify non-matching records to locate some of the missing records
from one of our earlier INNER JOINs. Remember these two queries, which we ran against Nor thwind?

SELECT DISTINCT c.CustomerID, c.CompanyName
FROM Customers c
INNER JOIN Orders o

ON c.CustomerID = o.CustomerID

And ...
SELECT COUNT(*) AS "No. Of Records" FROM Customers

The first was one of our queries where we explored the INNER JOIN. We discovered by running the sec-
ond query that the first had excluded (by design) some rows. Now let’s identify the excluded rows by
using an OUTER JOIN.

We know from our SELECT COUNT (*) query that our first query is missing some records from the
Customers table. (It may also be missing records from the Orders table, but we’re not interested in that
at the moment.) The implication is that there are records in the Customers table that do not have corre-
sponding Orders records. While our manager’s first question was about all the customers that had placed
orders, it would be very common to ask just the opposite: “What customers haven’t placed an order?”
That question is answered with the same result as asking, “What records exist in Customers that don’t
have corresponding records in the Orders table?” The solution has the same structure as our query to
find stores without discounts:

USE Northwind

SELECT c.CustomerID, CompanyName
FROM Customers c
LEFT OUTER JOIN Orders o
ON c.CustomerID = o.CustomerID
WHERE o.CustomerID IS NULL

Just that quick we are able to not only find out how many customers haven’t placed orders, but now we
know which customers they are (I suspect the sales department will contact them shortly . . .):

94

JOINs

CustomerID CompanyName
PARIS Paris spécialités
FISSA FISSA Fabrica Inter. Salchichas S.A.

(2 row(s) affected)

Note that whether you use a LEFT or a RIGHT JOIN doesn’t matter as long as the cor-
rect table or group of tables is on the corresponding side of the JOIN. For example,
we could have run the preceding query using a RIGHT JOIN as long as we also
switched which sides of the JOIN the Customers and Orders tables were on. For
example this would have yielded exactly the same results:

SELECT c.CustomerID, CompanyName
FROM Orders o
RIGHT OUTER JOIN Customers c
ON c.CustomerID = o.CustomerID
WHERE o.CustomerID IS NULL

When we take a look at even more advanced queries, we'll run into a slightly more popular way of find-
ing records that exist in one table without there being corresponding records in another table. Allow

me to preface that by saying that using JOINs is usually our best bet in terms of performance. There are
exceptions to the rule that we will cover as we come across them, but in general, the use of JOINs will be
the best when faced with multiple options.

Dealing with More Complex OUTER JOINs

Now we’re on to our second illustration and how to make use of it. This scenario is all about dealing
with an OUTER JOIN mixed with some other JOIN (no matter what the variety).

It is when combining an OUTER JOIN with other JOINs that the concept of sides becomes even more
critical. What’s important to understand here is that everything to the “left” — or before — the JOIN in
question will be treated just as if it was a single table for the purposes of inclusion or exclusion from the
query. The same is true for everything to the “right” — or after —the JOIN. The frequent mistake here is
to perform a LEFT OUTER JOIN early in the query and then use an INNER JOIN late in the query. The
OUTER JOIN includes everything up to that point in the query, but the INNER JOIN may still create a
situation where something is excluded! My guess is that you will, like most people (including me for a
while), find this exceptionally confusing at first, so let’s see what we mean with some examples. Because
none of the databases that come along with SQL Server has any good scenarios for demonstrating this,
we're going to have to create a database and sample data of our own.

If you want to follow along with the examples, the example database called Chapter4DB can be created
by running Chapter4DB.sql from the downloaded source code.

What we are going to do is to build up a query step-by-step and watch what happens. The query we are
looking for will return a vendor name and the address of that vendor. The example database only has

a few records in it; so let’s start out by selecting all the choices from the central item of the query — the
vendor. We're going to go ahead and start aliasing from the beginning, since we will want to do this

in the end:

95

Chapter 4

96

SELECT v.VendorName
FROM Vendors v

This yields us a scant three records:

VendorName

Don's Database Design Shop
Dave's Data
The SQL Sequel

(3 row(s) affected)

These are the names of every vendor that we have at this time. Now let’s add in the address information —
there are two issues here. First, we want the query to return every vendor no matter what, so we’ll make
use of an OUTER JOIN. Next, a vendor can have more than one address and vice versa, so the database
design has made use of a linking table. This means that we don’t have anything to directly join the
Vendors and Address table —we must instead join both of these tables to our linking table, which is
called VendorAddress. Let’s start out with the logical first piece of this join:

SELECT v.VendorName
FROM Vendors v
LEFT OUTER JOIN VendorAddress va
ON v.VendorID = va.VendorID

Because VendorAddress doesn’t itself have the address information, we’re not including any columns
from that table in our SELECT list. VendorAddress’s sole purpose in life is to be the connection point

of a many-to-many relationship (one vendor can have many addresses, and, as we’ve set it up here, an
address can be the home of more than one vendor). Running this, as we expect, gives us the same results
as before:

VendorName

Don's Database Design Shop
Dave's Data
The SQL Sequel

(3 row(s) affected)

Let’s take a brief time-out from this particular query to check on the table against which we just joined.
Try selecting out all the data from the VendorAddress table:

SELECT *
FROM VendorAddress

Just two records are returned:

VendorID AddressID
1 1
2 3

(2 row(s) affected)

JOINs

We know, therefore, that our OUTER JOIN is working for us. Since there are only two records in the
VendorAddress table, and three vendors are returned, we must be returning at least one row from the
Vendors table that didn’t have a matching record in the VendorAddress table. While we’re here, we’ll
just verify that by briefly adding one more column back to our vendors query:

SELECT v.VendorName, va.VendorID
FROM Vendors v
LEFT OUTER JOIN VendorAddress va
ON v.VendorID = va.VendorID

Sure enough, we wind up with a NULL in the VendorID column from the VendorAddress table:

VendorName VendorID

Don's Database Design Shop 1
Dave's Data 2
The SQL Sequel NULL

(3 row(s) affected)

The vendor named “The SQL Sequel” would not have been returned if we were using an INNER or
RIGHT JOIN. Our use of a LEFT JOIN has ensured that we get all vendors in our query result.

Now that we’ve tested things out a bit, let’s return to our original query and then add in the second
JOIN to get the actual address information. Because we don’t care if we get all addresses, no special
JOIN is required —at least, it doesn’t appear that way at first . . .

SELECT v.VendorName, a.Address
FROM Vendors v
LEFT OUTER JOIN VendorAddress va
ON v.VendorID = va.VendorID
JOIN Address a
ON va.AddressID = a.AddressID

We get back the address information as expected, but there’s a problem:

VendorName Address
Don's Database Design Shop 1234 Anywhere
Dave's Data 567 Main St.

(2 row(s) affected)

Somehow, we’ve lost one of our vendors. That’s because SQL Server is applying the rules in the order
that we’ve stated them. We have started with an OUTER JOIN between Vendors and VendorAddress.
SQL Server does just what we want for that part of the query — it returns all vendors. The issue comes
when it applies the next set of instructions. We have a result set that includes all the vendors, but we
now apply that result set as part of an INNER JOIN. Because an INNER JOIN is exclusive to both sides
of the JOIN, only records where the result of the first JOIN has a match with the second Jo1IN will be
included. Because only two records match up with a record in the Address table, only two records are
returned in the final result set. We have two ways of addressing this:

97

Chapter 4

98

QO Add yet another OUTER JOIN

Q Change the ordering of the JOINs
Let’s try it both ways. We'll add another OUTER JOIN first:

SELECT v.VendorName, a.Address
FROM Vendors v
LEFT OUTER JOIN VendorAddress va
ON v.VendorID = va.VendorID
LEFT OUTER JOIN Address a
ON va.AddressID = a.AddressID

And now we get to our expected results:

VendorName Address
Don's Database Design Shop 1234 Anywhere
Dave's Data 567 Main St.
The SQL Sequel NULL

(3 row(s) affected)

Now let’s do something slightly more dramatic and reorder our original query:

SELECT v.VendorName, a.Address
FROM VendorAddress va
JOIN Address a
ON va.AddressID = a.AddressID
RIGHT OUTER JOIN Vendors v
ON v.VendorID = va.VendorID

And we still get our desired result:

VendorName Address

Don's Database Design Shop 1234 Anywhere
Dave's Data 567 Main St.
The SQL Sequel NULL

(3 row(s) affected)

The question you should be asking now is, “Which way is best?” Quite often in SQL, there are several

ways of executing the query without one having any significant advantage over the other — this is not
one of those times.

I'would most definitely steer you to the second of the two solutions.

The rule of thumb is to get all of the INNER JOINSs you can out of the way first, you
will then find yourself using the minimum number of OUTER JOINs, and decreasing
the number of errors in your data.

JOINs

The reason has to do with navigating as quickly as possible to your data. If you keep adding OUTER JOINs
not because of what’s happening with the current table you're trying to add in, but because you're try-
ing to carry through an earlier JOIN result, you are much more likely to include something you don’t
intend, or make some sort of mistake in your overall logic. The second solution addresses this by using
only the OUTER JOIN where necessary —just once. You can’t always create a situation where the JOINs
can be moved around to this extent, but you often can.

I can’t stress enough how often I see errors with JOIN order. It is one of those areas that just seem to
give developers fits. Time after time I get called in to look over a query that someone has spent hours
verifying each section of, and it seems that at least half the time I get asked whether I know about this
SQL Server “bug.” The bug isn’t in SQL Server in this case—it’s with the developer. If you take any-
thing away from this section, I hope it is that JOIN order is one of the first places to look for errors when
the results aren’t coming up as you expect.

Seeing Both Sides with FULL JOINs

Like many things in SQL, a FULL JOIN (also known as a FULL OUTER JOIN) is basically what it sounds
like — it is a matching up of data on both sides of the J0IN with everything included no matter what
side of the JOIN it is on.

FULL JOINSs are one of those things that seem really cool at the time you learn them and then almost
never get used. You'll find an honest politician more often than you'll find a FULL JOIN in use. Their
main purpose in life is to look at the complete relationship between data without giving preference to
one side or the other. You want to know about every record on both sides of the equation — with nothing
left out.

A FULL JOIN is perhaps best as what you would get if you could do a LEFT JOINand a RIGHT JOIN in
the same JOIN. You get all the records that match, based on the JOIN field(s). You also get any records
that exist only in the left side, with NULLs being returned for columns from the right side. Finally, you
get any records that exist only in the right side, with NULLs being returned for columns from the left
side. Note that, when I say “finally,” I don’t mean to imply that they’ll be last in the query. The result
order you get will (unless you use an ORDER BY clause) depend entirely on what SQL Server thinks is
the least costly way to retrieve your records.

Try It Out FULL JOINs

Let’s just get right to it by looking back at our last query from our section on OUTER JOINS:

SELECT v.VendorName, a.Address
FROM VendorAddress va
JOIN Address a
ON va.AddressID = a.AddressID
RIGHT OUTER JOIN Vendors v
ON v.VendorID = va.VendorID

What we want to do here is take it a piece at a time again, and add some fields to the SELECT list that
will let us see what’s happening. First, we’ll take the first two tables using a FULL JOIN:

99

Chapter 4

SELECT a.Address, va.AddressID
FROM VendorAddress va
FULL JOIN Address a
ON va.AddressID = a.AddressID

As it happens, a FULL JOIN on this section doesn’t yield us any more than a RIGHT JOIN would have:

Address AddressID
1234 Anywhere 1

567 Main St. 3

999 1st St. NULL

1212 Smith Ave NULL

364 Westin NULL

(5 row(s) affected)
But wait— there’s more! Now let’s add in the second JOIN:

SELECT a.Address, va.AddressID, v.VendorID, v.VendorName
FROM VendorAddress va
FULL JOIN Address a
ON va.AddressID = a.AddressID
FULL JOIN Vendors v
ON va.VendorID = v.VendorID

Now we have everything:

Address AddressID VendorID VendorName

1234 Anywhere 1 1 Don's Database Design Shop
567 Main St. 3 2 Dave's Data

999 1st St. NULL NULL NULL

1212 Smith Ave NULL NULL NULL

364 Westin NULL NULL NULL

NULL NULL 3 The SQL Sequel

(6 row(s) affected)

How It Works

As you can see, we have the same two rows that we would have had with an INNER JOIN clause. Those
are then followed by the three Address records that aren’t matched with anything in either table. Last,
but not least, we have the one record from the Vendors table that wasn’t matched with anything.

Again, use a FULL JOIN when you want all records from both sides of the J0IN— matched where possi-
ble, but included even if there is no match.

CROSS JOINs

CROSS JOINSs are very strange critters indeed. A CROSS JOIN differs from other JOINs in that there is no
ON operator, and that it joins every record on one side of the JOIN with every record on the other side of

100

JOINs

the JOIN. In short, you wind up with a Cartesian product of all the records on both sides of the JOIN.
The syntax is the same as any other JOIN except that it uses the keyword CROSS (instead of INNER, OUTER,
or FULL), and that it has no ON operator. Here’s a quick example:

SELECT v.VendorName, a.Address
FROM Vendors v
CROSS JOIN Address a

Think back now — we had three records in the Vendors table, and five records in the Address table. If
we're going to match every record in the Vendors table with every record in the Address table, then we
should end up with 3 x 5 = 15 records in our CROSS JOIN:

VendorName Address

Don's Database Design Shop 1234 Anywhere
Don's Database Design Shop 567 Main St.
Don's Database Design Shop 999 1st St.
Don's Database Design Shop 1212 Smith Ave
Don's Database Design Shop 364 Westin
Dave's Data 1234 Anywhere
Dave's Data 567 Main St.
Dave's Data 999 1st St.
Dave's Data 1212 Smith Ave
Dave's Data 364 Westin

The SQL Sequel 1234 Anywhere
The SQL Sequel 567 Main St.
The SQL Sequel 999 1st St.
The SQL Sequel 1212 Smith Ave
The SQL Sequel 364 Westin

(15 row(s) affected)
Indeed, that’s exactly what we get.

Every time I teach a SQL class, I get asked the same question about CROSS JOINs, “Why in the world
would you use something like this?” I'm told there are scientific uses for it— this makes sense to me
since I know there are a number of high-level mathematical functions that make use of Cartesian prod-
ucts. I presume that you could read a large number of samples into table structures, and then perform
your CROSS JOIN to create a Cartesian product of your sample. There is, however, a much more fre-
quently occurring use for CROSS JOINs— the creation of test data.

When you are building up a database, that database is quite often part of a larger scale system that will
need substantial testing. A reoccurring problem in testing of large-scale systems is the creation of large
amounts of test data. By using a CROSS JOIN, you can do smaller amounts of data entry to create your
test data in two or more tables, and then perform a CROSS JOIN against the tables to produce a much
larger set of test data. You have a great example in our last query —if you needed to match a group of
addresses up with a group of vendors, then that simple query yields 15 records from 8. Of course, the
numbers can become far more dramatic. For example, if we created a table with 50 first names, and then
created a table with 250 last names, we could CROSS JOIN them together to create a table with 12,500
unique name combinations. By investing in keying in 300 names, we suddenly get a set of test data with
12,500 names.

101

Chapter 4

Exploring Alternative Syntax for Joins

What we’re going to look at in this section is what many people still consider to be the “normal” way of
coding joins. Until SQL Server 6.5, the alternative syntax we’ll look at here was the only join syntax in
SQL Server, and what is today called the “standard” way of coding joins wasn’t even an option.

Until now, we have been using the ANSI syntax for all of our SQL statements. I highly recommend that
you use the ANSI method since it has much better portability between systems and is also much more
readable. It is worth noting that the old syntax is actually reasonably well supported across platforms at
the current time.

The primary reason I am covering the old syntax at all is that there is absolutely no doubt that, sooner
or later, you will run into it in legacy code. I don’t want you staring at that code saying, “What the heck
is this?”

That being said, I want to reiterate my strong recommendation that you use the ANSI syntax wherever
possible. Again, it is substantially more readable and Microsoft has indicated that they may not con-
tinue to support the old syntax indefinitely. I find it very hard to believe, given the amount of legacy
code out there, that Microsoft will dump the old syntax any time soon, but you never know.

Perhaps the biggest reason is that the ANSI syntax is actually more functional. Under old syntax, it
was actually possible to create ambiguous query logic — where there was more than one way to inter-
pret the query. The new syntax eliminates this problem.

Remember when I compared a JOIN to a WHERE clause earlier in this chapter? Well, there was a reason.
The old syntax expresses all of the J0INs within the WHERE clause.

The old syntax supports all of the joins that we’ve done using ANSI with the exception of a FULL JOIN.
If you need to perform a full join, I'm afraid you'll have to stick with the ANSI version.

An Alternative INNER JOIN

Let’s do a déja vu thing and look back at the first INNER JOIN we did in this chapter:

SELECT *
FROM Products
INNER JOIN Suppliers
ON Products.SupplierID = Suppliers.SupplierID

This got us 77 rows back (again, assuming that Northwind is still as it was when it was shipped with
SQL Server). Instead of using the ANSI JOIN, however, let’s rewrite it using a WHERE clause-based join
syntax. It’s actually quite easy —just eliminate the words INNER JOIN and add a comma, and replace
the ON operator with a WHERE clause:

SELECT *
FROM Products, Suppliers
WHERE Products.SupplierID = Suppliers.SupplierID

It’s a piece of cake, and it yields us the same 77 rows we got with the other syntax.

102

JOINs

This syntax is supported by virtually all major SQL systems (Oracle, DB2, MySQL, etc.) in the world
today.

An Alternative OUTER JOIN

The alternative syntax for OUTER JOINs works pretty much the same as the INNER JOIN, except that,
because we don’t have the LEFT or RIGHT keywords (and no OUTER or JOIN for that matter), we need
some special operators especially built for the task. These look like this:

Alternative ANSI
* = LEFT JOIN
=% RIGHT JOIN

Let’s pull up the first OUTER JOIN we did this chapter. It made use of the pubs database and looked
something like this:

SELECT discounttype, discount, s.stor_name
FROM discounts d
LEFT OUTER JOIN stores s

ON d.stor_id = s.stor_id

Again, we just lose the words LEFT OUTER JOIN, and replace the ON operator with a WHERE clause:

SELECT discounttype, discount, s.stor_name
FROM discounts d, stores s
WHERE d.stor_id *= s.stor_id

Sure enough, we wind up with the same results as before:

discounttype discount stor_name
Initial Customer 10.50 NULL
Volume Discount 6.70 NULL
Customer Discount 5.00 Bookbeat

(3 row(s) affected)
ARIGHT JOIN looks pretty much the same:

SELECT discounttype, discount, s.stor_name
FROM discounts d, stores s
WHERE d.stor_id =* s.stor_id

Again, we come up with the same six rows we would have under the ANSI syntax.
This is where we start to see some breakdown, as outer join support was really chaotic prior to the ANSI

syntax definition. The preceding “mostly” works, but it varies from system to system and version to
version.

103

Chapter 4

An Alternative CROSS JOIN

This is far and away the easiest of the bunch. To create a CROSS JOIN using the old syntax, you just do
nothing. That is, you don’t put anything in the WHERE clause of the form: TableA.Columna =
TableB.ColumnA.

So, for an ultra quick example, let’s take our first example from the CROSS JOIN section earlier in the
chapter. The ANSI syntax looked like this:

SELECT v.VendorName, a.Address
FROM Vendors v
CROSS JOIN Address a

To convert it to the old syntax, we just strip out the CROSS JOIN keywords and add a comma:

SELECT v.VendorName, a.Address
FROM Vendors v, Address a

As with the other examples in this section, we get back the same results that we got with the ANSI syntax:

VendorName Address

Don's Database Design Shop 1234 Anywhere
Don's Database Design Shop 567 Main St.
Don's Database Design Shop 999 1st St.
Don's Database Design Shop 1212 Smith Ave
Don's Database Design Shop 364 Westin
Dave's Data 1234 Anywhere
Dave's Data 567 Main St.
Dave's Data 999 1st St.
Dave's Data 1212 Smith Ave
Dave's Data 364 Westin

The SQL Sequel 1234 Anywhere
The SQL Sequel 567 Main St.
The SQL Sequel 999 1st St.
The SQL Sequel 1212 Smith Ave
The SQL Sequel 364 Westin

(15 row(s) affected)

Now we’re back to being supported across most of the database management systems.

The UNION

OK, enough with all the “old syntax” vs. “new syntax” stuff —now we’re into something that’s the same
regardless of what other join syntax you prefer — the UNION operator. UNION is a special operator we can
use to cause two or more queries to generate one result set.

A UNION isn’t really a JOIN, like the previous options we’ve been looking at— instead it’s more of an
appending of the data from one query right onto the end of another query (functionally, it works a little

104

JOINs

differently than this, but this is the easiest way to look at the concept). Where a JOIN combined informa-
tion horizontally (adding more columns), a UNION combines data vertically (adding more rows), as illus-
trated in Figure 4-1.

When dealing with queries that use a UNION, there are just a few key points:

Q All the unIONed queries must have the same number of columns in the SELECT list. If your first
query has three columns in the SELECT list, then the second (and any subsequent queries being
UNIONed) must also have three columns. If the first has five, then the second must have five, too.
Regardless of how many columns are in the first query, there must be the same number in the
subsequent query(s).

Q The headings returned for the combined result set will be taken only from the first of the
queries. If your first query has a SELECT list that looks like SELECT Coll, Col2 AS Second,
Col3 FROM. .., then regardless of how your columns are named or aliased in the subsequent
queries, the headings on the columns returned from the UNION will be Col1, Second and Co13

respectively.
Select Coll FROM
Tablel Select Coll FROM
Tablel
Row1 UNION
Select Col5 FROM
Row2 Table2
Row3
ow Rowl
Row4
ow Row2
Row5b
ow Row3
R
owé Row4
Rowb5
Row6
RowA
Select Col5 FROM RowB
Table2
RowC
RowA RowD
RowB RowE
RowC RowF
RowD
RowE
RowF

Figure 4-1

105

Chapter 4

a

The datatypes of each column in a query must be implicitly compatible with the datatype in

the same relative column in the other queries. Note that I'm not saying they have to be the same
datatype — they just have to be implicitly convertible (a conversion table that shows implicit vs.
explicit conversions can be found in Chapter 2). If the second column in the first query is of type
char (20), then it would be fine that the second column in the second query is varchar (50).
However, because things are based on the first query, any rows longer than 20 would be trun-
cated for data from the second result set.

Unlike non-UNION queries, the default return option for UNIONSs is DISTINCT rather than ALL.
This can really be confusing to people. In our other queries, all rows were returned regardless
of whether they were duplicated with another row or not, but the results of a UNION do not
work that way. Unless you use the ALL keyword in your query, only one of any repeating rows
will be returned.

As always, let’s take a look at this with an example or two.

Try It Out UNION

First, let’s look at a UNION that has some practical use to it. (It's something I could see happening in the
real world —albeit not all that often.) For this example, we’re going to assume that it’s time for the holi-
days, and we want to send out a New Year’s card to everyone that’s involved with Northwind. We want
to return a list of full addresses to send our cards to including our employees, customers, and suppliers.
We can do this in just one query with something like this:

106

USE Northwind

SELECT CompanyName AS Name,

Address,
City,
Region,
PostalCode,
Country

FROM Customers

UNION

SELECT CompanyName,

Address,
City,
Region,
PostalCode,
Country

FROM Suppliers
UNION

SELECT FirstName + ' ' + LastName,

Address,
City,
Region,
PostalCode,
Country

FROM Employees

JOINs

This gets us back just one result set, but it has data from all three queries:

Name Address City Region PostalCode Country

Alfreds Obere Str. 57 Berlin NULL 12209 Germany

Futterkiste

Ana Trujillo Avda. de la México NULL 5021 Mexico

Emparedados Constitucion D.E

y helados 2222

Andrew Fuller 908 W. Tacoma WA 98401 USA
Capital
Way

Wilman Kala Keskuskatu Helsinki NULL 21240 Finland
45

Wolski Zajazd ul. Filtrowa Warszawa NULL 01-012 Poland
68

Zaanse Verkoop Zaandam NULL 9999 7Z Netherlands

Snoepfabriek Rijnweg 22

We’ve got something for everyone here. Alfreds is a customer, Andrew Fuller is an employee, and
Zaanse is a supplier.

As I played with this, I got some rather inconsistent results on the sorting of the query, so don’t be sur-
prised if the order of your query looks a lot different from mine. The big thing is that you should have
approximately 129 rows depending on what modifications you ve made to the Nor thwind database
previously. If you want the results to be returned in a specific order, then don’t forget the ORDER BY
clause— for UNION statements, the ORDER BY clause needs to be part of the last query being UNIONed.

How It Works

We have our one result set from what would have been three.

SQL Server has run all three queries and essentially stacked the results one on top of the other to create
one combined result set. Again, notice that the headings for the returned columns all came from the
SELECT list of the first of the queries.

Moving on to a second example, I want to show you how a UNION deals with duplicate rows —it’s actually
just the inverse of a normal query in that it assumes you want to throw out duplicates. (In our previous
queries, the assumption was that you wanted to keep everything unless you used the DISTINCT keyword.)
This demo has no real-world potential, but it’s quick and easy to run and see how things work.

107

Chapter 4

In this case, we are creating two tables from which we will select. We'll then insert three rows into each
table, with one row being identical between the two tables. If our query is performing an ALL, then every
row (six of them) will show up. If the query is performing a DISTINCT, then it will only return five rows
(tossing out one duplicate):

CREATE TABLE UnionTestl

(
idcol int IDENTITY,
col2 char(3),

CREATE TABLE UnionTest2

(
idcol int IDENTITY,
col4d char(3),

INSERT INTO UnionTestl
VALUES
("AAA")

INSERT INTO UnionTestl
VALUES

("BBB')
INSERT INTO UnionTestl
VALUES

(receen)
INSERT INTO UnionTest2
VALUES

(reeen)
INSERT INTO UnionTest2
VALUES

('DDD")
INSERT INTO UnionTest2
VALUES

("EEE")

SELECT col2
FROM UnionTestl

UNION

SELECT col4
FROM UnionTest2

PRINT 'Divider Line--------—-—-—-——————————————

SELECT col2

108

JOINs

FROM UnionTestl
UNION ALL

SELECT col4d
FROM UnionTest2

DROP TABLE UnionTestl
DROP TABLE UnionTest2

Now, let’s look at the heart of what’s returned (you’ll see some “one row(s) affected” in there —just
ignore them until you get to where the results of your query are visible):

(5 row(s) affected)
Divider Line---------=-—----————o——

col2

(6 row(s) affected)

The first result set returned was a simple UNION statement with no additional parameters. You can see
that one row was eliminated —even though we inserted “CCC” into both tables, only one makes an
appearance since the duplicate record is eliminated by default.

The second return changed things a bit. This time we used a UNION ALL and the ALL keyword ensured
that we get every row back. As such, our eliminated row from the last query suddenly reappears.

Summary

In an RDBMS, the data we want is quite frequently spread across more than one table. J01INs allow us to
combine the data from multiple tables in a variety of ways:

Q Usean INNER JOIN when you want to exclude non-matching fields.

Q Usean OUTER JOIN when you want to retrieve matches wherever possible, but also want a
fully inclusive data set on one side of the JOIN.

109

Chapter 4

Q UseaFULL JOIN when you want to retrieve matches wherever possible, but also want a fully
inclusive data set of both sides of the JOIN.

QO Usea CROSS JOIN when you want a Cartesian product based on the records in two tables. This
is typically used in scientific environments and when you want to create test data.

0 Use a UNION when you want the combination of the result of a second query appended to the

first query.

There are two different forms of JOIN syntax available for INNER and OUTER JOINs. We provided the
legacy syntax here to help you deal with legacy code, but the newer ANSI format presented through
most of this chapter is highly preferable, as it is more readable, is not prone to the ambiguities of the
older syntax, and will be supported in SQL Server for the indefinite future.

Over the course of the next few chapters, we will be learning how to build our own tables and “relate”
them to each other. As we do this, the concepts of what columns to join on will become even clearer.

Exercises

1. Write a query against the Northwind database that returns one column called “SupplierName”
and contains the name of the supplier of the product called Chai.

2. UsingaJOIN, write a query that will list the name of every territory in the Northwind database
that does not have an employee assigned to it. (HINT: Use an outer join!)

110

Creating and Altering Tables

Every time I teach the T-SQL code for creating databases, tables, keys, and constraints, I am asked
the same question, “Can’t you just do this in the GUI tool?” The answer is an unequivocal Yes!
Therefore, the next question usually follows quite shortly behind, “Then why are we spending all
this time learning stuff I'll never use?” The answer is just as unequivocal —you will use the regu-
lar syntax on a quasi-regular basis. The reality is you probably won't actually write the code from
scratch that often, but you'll verify and edit it on the majority of all larger database projects you
work on — that means that you had better know how it works.

In this chapter, we will be studying the syntax to create our own tables. We will also take a look at
how to make use of the SQL Management Console to help us with this (after we know how to do it
for ourselves).

However, before we get too deep in the actual statements that create tables and other objects, we
need to digress far enough to deal with the convention for a fully qualified object name, and, to a
lesser extent, object ownership.

Object Names in SQL Server

In all the queries that we’ve been performing so far in this book, you’ve seen simple naming at
work. I've had you switch the active database in the Query Analyzer before running any queries
and that has helped your queries to work. How? Well, SQL Server looks at only a very narrow
scope when trying to identify and locate the objects you name in your queries and other state-
ments. For example, we’ve only been providing the names of tables without any additional infor-
mation, but there are actually four levels in the naming convention for any SQL Server table (and
any other SQL Server object for that matter A fully qualified name is as follows:

[ServerName. [DatabaseName. [SchemaName.]]]ObjectName

You must provide an object name whenever you are performing an operation on that object, but
all parts of the name to the left of the object name are optional. Indeed, most of the time, they are
not needed, and are therefore left off. Still, before we start creating objects, it’s a good idea for us to
get a solid handle on each part of the name. So let’s move from the object name left.

Chapter 5

Schema Name (aka Ownership)

If you're utilizing schemas (most older database do not, but it appears that it will become more impor-
tant in the future), you may need to indicate what schema your object is in. It is entirely possible to have
two objects with the same name, but residing in different schemas. If you want to access an object that
is not in your default schema (set on a login-by-login basis), then you'll need to specifically state the
schema name of your object. For example, let’s look at what has to be one of the worst uses of schemas
I've ever seen — the AdventureWorks database —and take a look at a query get a list of employees and
what city they live in:

SELECT e.EmployeeID, c.FirstName, c.LastName, City
FROM HumanResources.Employee AS e

JOIN Person.Contact c

ON e.ContactID = c.ContactID

JOIN HumanResources.EmployeeAddress AS ea

ON e.EmployeeID = ea.EmployeeID

JOIN Person.Address AS a

ON ea.AddressID = a.AddressID

In this example, we’re making use of four tables spread across two schemas. If one of the two schemas
involved —HumanResources and Person —happened to be our default schema, then we could have left
that schema name off when naming tables in that schema. In this case, we named all schemas to be on
the safe side.

This is another time where I have to get on the consistency soap box. If you're going to use the schema
features at all, then I highly recommend using two-part naming (schema and table name) in all of your
queries. It is far too easy for a change to be made to a user’s default schema or to some other alias such
that your assumptions about the default are no longer valid. If you're not utilizing different schemas
at all in your database design, then it’s fine to leave them off (and make your code a fair amount more
readable in the process, but keep in mind there may be a price to pay if later you start using schemas.

A Little More About Schemas

The ANSI Standard for SQL has had the notion of what has been called a schema for quite some time
now. SQL Server has had that same concept in place all along, but used to refer to it differently (and,
indeed, had a different intent for it even if it could be used the same way). So, what you see referred to
in SQL Server 2005 and other databases such as Oracle as “schema” was usually referred to as “Owner”
in previous versions of SQL Server.

The notion of the schema used to be a sticky one. While it is still non-trivial, Microsoft has added some
new twists in SQL Server 2005 to make the problems of schema much easier to deal with. If however,
you need to deal with backward compatibility to prior versions of SQL Server, you're going to need to
either avoid the new features or use pretty much every trick they have to offer —and that means owner-
ship (as it was known in prior versions) remains a significant hassle.

There were always some people who liked using ownership in their pre-SQL Server 2005 designs, but I
was definitely not one of them. For now, the main thing to know is that ownership has gone through a
name change in SQL Server 2005 and is now referred to by the more ANSI-compliant term schema. This
is somewhat important as Microsoft appears to not only be making a paradigm shift in its support of
schemas, but heading in a direction where they will become rather important to your design. New func-
tions exist to support the use of schemas in your naming, and even the new sample that ships with SQL

112

Creating and Altering Tables

Server 2005 (the AdventureWorks database that we have occasionally used and will use more often in
coming chapters) makes extensive use of schema. (Way, WAY too much if you ask me.) Schema also
becomes important in dealing with some other facets of SQL Server such as Notification Services.

Let’s focus, for now, on what schema is and how it works.

For prior releases, ownership (as it was known then) was actually a great deal like what it sounds —it was
recognition, right within the fully qualified name, of who “owned” the object. Usually, this was either the
person who created the object or the database owner (more commonly referred to as the dbo —1I'll get to
describing the dbo shortly). For SQL Server 2005, things work in a similar fashion, but the object is assigned
to a schema rather than an owner. Whereas an owner related to one particular login, a schema can now be
shared across multiple logins, and one login can have rights to multiple schemas.

By default, only users who are members of the sysadmin system role, or the db_owner or db_ddladmin
database roles can create objects in a database.

The roles mentioned here are just a few of many system and database roles that are available in SQL
Server 2005. Roles have a logical set of permissions granted to them according to how that role might be
used. When you assign a particular role to someone, you are giving that person the ability to have all
the permissions that the role has

Individual users can also be given the right to create certain types of both database and system objects. If
such individuals do indeed create an object, then, by default, that object will be assigned to whatever
schema is listed as default for that login.

Just because a feature is there doesn’t mean it should be used! Giving CREATE
authority to individual users is nothing short of nightmarish. Trying to keep track
of who created what, when, and for what reason becomes near impossible. In short,
keep CREATE access limited to the sa account or members of the sysadmins or
db_owner security roles.

The Default Schema: dbo

Whoever creates the database is considered to be the “database owner,” or dbo. Any objects that they
create within that database shall be listed with a schema of dbo rather than their individual username.

For example, let’s say that I am an everyday user of a database, my login name is MySchema, and I have
been granted CREATE TABLE authority to a given database. If I create a table called MyTable, the owner-
qualified object name would be MySchema . MyTable. Note that, because the table has a specific owner,
any user other than me (remember, I'm MySchema here) of MySchema . MyTable would need to provide
the owner-qualified name in order for SQL Server to resolve the table name.

Now, let’s say that there is also a user with a login name of Fred. Fred is the database owner (as
opposed to just any member of db_owner). If Fred creates a table called MyTable using an identical
CREATE statement to that used by MySchema, the owner-qualified table name will be dbo .MyTable. In
addition, as dbo also happens to be the default owner, any user could just refer to the table as MyTable.

It’s worth pointing out that sa (or members of the sysadmin role) always aliases to the dbo. That is, no
matter who actually owns the database, sa will always have full access as if it were the dbo, and any

113

Chapter 5

objects created by the sa login will show ownership belonging to the dbo. In contrast, objects created
by members of the db_owner database role do not default to dbo as the default schema — they will be
assigned to whatever that particular user has set as the default schema (it could be anything). Weird
but true!

In chats I had with a few old friends at Microsoft, they seemed to be somewhat on the schema band-
wagon and happy for the changes. I too am happy for the changes, but mostly because they make what
you can do easier, not because they offer a feature that I think everyone should rush to use.

The addition of schemas adds complexity to your database no matter what you do. While they can address
organizational problems in your design, those problems can usually be dealt with in other ways that pro-
duce a much more user-friendly database. In addition, schemas, while an ANSI-compliant notion, are not
supported in the same way across every major RDBMS product. This means using schemas is going to
have an impact on you if you're trying to write code that can support multiple platforms.

The Database Name

The next item in the fully qualified naming convention is the database name. Sometimes you want to
retrieve data from a database other than the default, or current, database. Indeed, you may actually want to
JOIN data from across databases. A database-qualified name gives you that ability. For example, if you
were logged in with AdventureWorks as your current database, and you wanted to refer to the Orders
table in the Northwind database, then you could refer to it by Northwind.dbo.Orders. Since dbo is the
default schema, you could also use Northwind. . Orders. If a schema named MySchema owns a table
named MyTable in MyDatabase, then you could refer to that table as MyDatabase .MySchema.MyTable.
Remember that the current database (as determined by the USE command or in the drop-down box if
you're using the SQL Server Management Console) is always the default, so, if you only want data from
the current database, then you do not need to include the database name in your fully qualified name.

Naming by Server

In addition to naming other databases on the server you're connected to, you can also “link” to another
server. Linked servers give you the capability to perform a JOIN across multiple servers —even different
types of servers (SQL Server, Oracle, DB2, Access —just about anything with an OLE DB provider). We’ll
see a bit more about linked servers later in the book, but for now, just realize that there is one more level
in our naming hierarchy, that it lets you access different servers, and that it works pretty much like the
database and ownership levels work.

Now, let’s just add to our previous example. If we want to retrieve information from a server we have
created a link with called MyServer, a database called MyDatabase, and a table called MyTable owned
by MySchema, then the fully qualified name would be MyServer .MyDatabase .MySchema .MyTable.

Reviewing the Defaults

So let’s look one last time at how the defaults work at each level of the naming hierarchy from right to left:

QO Object Name: There isn’t a default— you must supply an object name.

QO Ownership: You can leave this off, in which case it will resolve first using the current user’s
name, and then, if the object name in question doesn’t exist with the current user as owner, then
it will try the dbo as the owner.

114

Creating and Altering Tables

Q Database Name: This can also be left off unless you are providing a Server Name — in which
case you must provide the Database Name for SQL Servers (other server types vary depending
on the specific kind of server).

Q Server Name: You can provide the name of a linked server here, but most of the time you'll just
leave this off, which will cause SQL Server to default to the server you are logged into.

If you want to skip the object owner, but still provide information regarding the database or server, then
you must still provide the extra “.” for the position where the owner would be. For example, if we are
logged in using the Northwind database on our local server, but want to refer to the Orders table in
the Northwind database on a linked server called MyOtherServer, then we could refer to that table by
using MyOtherServer.Northwind. .Orders. Since we didn’t provide a specific owner name, it will
assume that either the user ID that is used to log on to the linked server or the dbo (in that order) is the
owner of the object you want (in this case, Orders).

The CREATE Statement

In the Bible, God said, “Let there be light!” And there was light! Unfortunately, creating things isn’t quite
as simple for us mere mortals. We need to provide a well-defined syntax in order to create the objects in
our database. To do that, we make use of the CREATE statement.

Let’s look at the full structure of a CREATE statement, starting with the utmost in generality. You'll find
that all the CREATE statements start out the same, and then get into the specifics. The first part of the
CREATE will always look like:

CREATE <object type> <object name>

This will be followed by the details that will vary by the nature of the object that you're creating.

CREATE DATABASE

For this part of things, we’ll need to create a database called Accounting that we will also use when we
start to create tables. The most basic syntax for the CREATE DATABASE statement looks like the example
above.

CREATE DATABASE <database name>

It's worth pointing out that, when you create a new object, no one can access it
except for the person that created it, the system administrator, and the database
owner (which, if the object created was a database, is the same as the person that cre-
ated it). This allows you to create things and make whatever adjustments you need
to make before you explicitly allow access to your object.

It’s also worth noting that you can use the CREATE statement only to create objects on
the local server (adding in a specific server name doesn’t work).

115

Chapter 5

This will yield a database that looks exactly like your model database (we discussed the model database
in Chapter 1). The reality of what you want is almost always different, so let’s look at a more full syntax
listing:

CREATE DATABASE <database name>
[ON [PRIMARY]
([NAME = <'logical file name'>,]
FILENAME = <'file name'>
[, SIZE = <size in kilobytes, megabytes, gigabytes, or terabytes>]
[, MAXSIZE = size in kilobytes, megabytes, gigabytes, or terabytes>]
[, FILEGROWTH = <kilobytes, megabytes, gigabytes, or terabytes|percentage>])]
[LOG ON
([NAME = <'logical file name'>,]
FILENAME = <'file name'>
[, SIZE = <size in kilobytes, megabytes, gigabytes, or terabytes>]
[, MAXSIZE = size in kilobytes, megabytes, gigabytes, or terabytes>]
[, FILEGROWTH = <kilobytes, megabytes, gigabytes, or terabytes|percentage>])]
[COLLATE <collation name>]
[FOR ATTACH [WITH <service broker>] | FOR ATTACH_REBUILD_LOG| WITH DB _CHAINING
ON[OFF | TRUSTWORTHY ON|OFF]
[AS SNAPSHOT OF <source database name>]
[;]

Keep in mind that some of the preceding options are mutually exclusive (for example, if you're creating
for attaching, most of the options other than file locations are invalid). There’s a lot there, so let’s break
down the parts.

ON

ON is used in two places: to define the location of the file where the data is stored, and to define the same
information for where the log is stored. You'll notice the PRIMARY keyword there — this means that what
follows is the primary (or main) filegroup in which to physically store the data. You can also store data
in what are called secondary filegroups — the use of which is outside the scope of this title. For now,
stick with the default notion that you want everything in one file.

SQL Server allows you to store your database in multiple files; furthermore, it
allows you to collect those files into logical groupings called filegroups. The use of
filegroups is a fairly advanced concept and is outside the scope of this book.

NAME

This one isn’t quite what it sounds like. It is a name for the file you are defining, but only a logical name —
that is, the name that SQL Server will use internally to refer to that file. You will use this name when you
want to resize (expand or shrink) the database and/or file.

FILENAME

This one is what it sounds like — the physical name on the disk of the actual operating system file in
which the data and log (depending on what section you're defining) will be stored. The default here
(assuming you used the simple syntax we looked at first) depends on whether you are dealing with the

116

Creating and Altering Tables

database itself or the log. By default, your file will be located in the \Data subdirectory under your main
Program Files\MSSQL.1\MSSQL directory (or whatever you called your main SQL Server directory if
you changed it at install). If we’re dealing with the physical database file, it will be named the same as
your database with an .mdf extension. If we're dealing with the log, it will be named the same as the
database file but with a suffix of _Log and an . 14f extension. You are allowed to specify other exten-
sions if you explicitly name the files, but I strongly encourage you to stick with the defaults of mdf
(database) and 1df (log file). As a side note, secondary files have a default extension of .ndf.

Keep in mind that, while FILENAME is an optional parameter, it is optional only as long as you go with
the extremely simple syntax (the one that creates a new database based on the model database) that I
introduced first. If you provide any of the additional information, then you must include an explicit file
name —be sure to provide a full path.

SIZE

No mystery here. It is what it says — the size of the database. By default, the size is in megabytes, but
you can make it kilobytes by using a KB instead of MB after the numeric value for the size, or go bigger
by using GB (gigabytes) or even TB (terabyerabytes). Keep in mind that this value must be at least as
large as the model database is and must be a whole number (no decimals) or you will receive an error.
If you do not supply a value for SIZE, then the database will initially be the same size as the model
database.

MAXSIZE

This one is still pretty much what it sounds like, with only a slight twist vs. the SIZE parameter. SQL
Server has a mechanism to allow your database to automatically allocate additional disk space (to grow)
when necessary. MAXSIZE is the maximum size to which the database can grow. Again, the number is, by
default, in megabytes, but like SIZE, you can use KB, GB, or TB to use different increment amounts. The
slight twist is that there is no firm default. If you don’t supply a value for this parameter, then there is
considered to be no maximum — the practical maximum becomes when your disk drive is full.

If your database reaches the value set in the MAXSIZE parameter, your users will start getting errors back
saying that their inserts can’t be performed. If your log reaches its maximum size, you will not be able to
perform any logged activity (which is most activities) in the database. Personally, I recommend setting
up what is called an alert. You can use alerts to tell you when certain conditions exist (such as a database
or log that’s almost full). We'll see how to create alerts in Chapter 19.

I recommend that you always include a value for MAXSIZE, and that you make it at
least several megabytes smaller than would fill up the disk. I suggest this because a
completely full disk can cause situations where you can’t commit any information to
permanent storage. If the log was trying to expand, the results could potentially be
disastrous. In addition, even the operating system can occasionally have problems if
it runs completely out of disk space.

One more thing —if you decide to follow my advice on this issue, be sure to keep in
mind that you may have multiple databases on the same system. If you size each of
them to be able to take up the full size of the disk less a few megabytes, then you
will still have the possibility of a full disk (if they all expand).

117

Chapter 5

FILEGROWTH

Where SIZE set the initial size of the database, and MAXSIZE determined just how large the database

file could get, FILEGROWTH essentially determines just how fast it gets to that maximum. You provide a
value that indicates by how many bytes (in KB, MB, GB, or TB) at a time you want the file to be enlarged.
Alternatively, you can provide a percentage value by which you want the database file to increase. With
this option, the size will go up by the stated percentage of the current database file size. Therefore, if you
set a database file to start out at 1GB with a FILEGROWTH of 20 percent, then the first time it expands it
will grow to 1.2GB, the second time to 1.44, and so on.

LOG ON

The LOG ON option allows you to establish that you want your log to go to a specific set of files and where
exactly those files are to be located. If this option is not provided, then SQL Server will create the log in a
single file and default it to a size equal to 25 percent of the data file size. In most other respects, it has the
same file specification parameters as the main database file does.

It is highly recommended that you store your log files on a different drive than your main data files.
Doing so avoids the log and main data files competing for I/O off the disk as well as providing addi-
tional safety should one hard drive fail.

COLLATE

This one has to do with the issue of sort order, case sensitivity, and sensitivity to accents. When you
installed your SQL Server, you decided on a default collation, but you can override this at the database
level (and, as we’ll see later, also at the column level).

FOR ATTACH

You can use this option to attach an existing set of database files to the current server. The files in question
must be part of a database that was, at some point, properly detached using sp_detach_db. Normally, you
would use sp_attach_db for this functionality, but the CREATE DATABASE command with FOR ATTACH
has the advantage of being able to access as many as 32,000+ files— sp_attach_db is limited to just 16.

If you use FOR ATTACH, you must complete the ON PRIMARY portion of the file location information.
Other parts of the CREATE DATABASE parameter list can be left off as long as you are attaching the
database to the same file path they were in when they were originally detached.

WITH DB CHAINING ON|OFF

Hmmm. How to address this one in a beginning kinda way . . . Well, suffice to say this is a toughie, and
is in no way a “beginning” kind of concept. With that in mind, here’s the abridged version of what this
relates to . . .

As previously mentioned, the concept of “schemas” didn’t really exist in prior versions of SQL Server.
Instead, we had the notion of “ownership.” One of the bad things that could happen with ownership
was what are called “ownership chains.” This was a situation where person A was the owner of an
object, and then person B became the owner of an object that depended on person A’s object. You could
have person after person create objects depending on other people’s objects, and there became a complex
weave of permission issues based on this.

118

Creating and Altering Tables

This switch is about respecting such ownership chains when they cross databases (person A’s object is
in DB1, and person B’s object is in DB2). Turn it on, and cross database ownership chains work —turn
it off, and they don’t. Avoid such ownership chains as if they were the plague —they are a database
equivalent to a plague, believe me!

TRUSTWORTHY

This switch is new to add an extra layer of security around access to system resources and files out-
side of the SQL Server context. For example, you may run a .NET assembly that touches files on your
network —if so, you must identify the database that the assembly is part of as being Trustworthy.

By default this is turned off for security reasons —be certain you understand exactly what you're doing
and why before you set this to on.

Building a Database

At this point, we’re ready to begin building our database. Below is the statement to create it, but keep in
mind that the database itself is only one of many objects that we will create on our way to a fully func-
tional database:

CREATE DATABASE Accounting
ON

(NAME = 'Accounting',

FILENAME = 'c:\Program Files\Microsoft SQL Server\
MSSQL.1\mssgl\data\AccountingData.mdf"',

SIZE = 10,

MAXSIZE = 50,

FILEGROWTH = 5)
LOG ON

(NAME = 'AccountingLog',

FILENAME = 'c:\Program Files\Microsoft SQL Server\
MSSQL.1\mssqgl\data\AccountingLog.1ldf"',

SIZE = 5MB,

MAXSIZE = 25MB,

FILEGROWTH = 5MB)

GO

Now is a good time to start learning about some of the informational utilities that are available with SQL
Server. We saw sp_help in Chapter 4, but in this case, let’s try running a command called sp_helpdb. This
one is especially tailored for database structure information, and often provides better information if we’re
more interested in the database itself than the objects it contains. sp_helpdb takes one parameter — the
database name:

EXEC sp_helpdb 'Accounting'

This actually yields you two separate result sets. The first is based on the combined (data and log) infor-
mation about your database:

119

Chapter 5

name

Accounting

db_ owner dbid created
size

15.00 sa 9 May 28
MB 2005

status compatibility_
level

Status=ONLINE, 90

Updateability

=READ_WRITE,

UserAccess=

MULTI_USER,
Recovery=FULL,
Version=598,
Collation=
SQL_Latinl_
General_CP1_
CI_AS, SQLSort-
Order=52,
IsAutoCreate-
Statistics,
IsAutoUpdate-
Statistics,
IsFullText-
Enabled

The actual values you receive for each of these fields may vary somewhat from mine. For example, the
DBID wvalue will vary depending on how many databases you've created and in what order you've cre-
ated them. The various status messages will vary depending on what server options were in place at the
time you created the database as well as any options you changed for the database along the way.

Note that the db_size property is the fotal of the size of the database and the size of the log.

The second provides specifics about the various files that make up your database —including their cur-
rent size and growth settings:

120

name

Accounting

AccountingLog

fileid

2

Filename filegroup

C:\Program PRIMARY
Files\

Microsoft SQL
Server\mssqgl\

data\

AccountingData

.mdf

C:\Program
Files\
Microsoft SQL
Server\mssqgl\
data\
AccountingLog
.1df

NULL

size

10240

5120

maxsize growth usage
51200 5120 data
KB KB only
25600 5120 log

KB KB only

Creating and Altering Tables

After you create tables and insert data, the database will begin to automatically grow on an as-needed
basis.

CREATE TABLE

The first part of creating a table is pretty much the same as creating any object—remember that line I
showed you? Well, here it is again:

CREATE <object type> <object name>
Since a table is what we want, we can be more specific:
CREATE TABLE Customers

With CREATE DATABASE, we could have stopped with just these first three keywords, and it would have
built the database based on the guidelines established in the model database. With tables however, there
is no model, so we need to provide some more specifics in the form of columns, datatypes, and special
operators.

Let’s look at more extended syntax:

CREATE TABLE [database_name. [owner].]table name

(<column name> <data type>

[[DEFAULT <constant expression>]
| [IDENTITY [(seed, increment) [NOT FOR REPLICATION]]]]
[ROWGUIDCOL]

COLLATE <collation name>]

NULL |NOT NULL]

<column constraints>]

[column_name AS computed_column_expression]

[<table_constraint>]

[
[
[
|
|
[,...n]

)
[ON {<filegroup>|DEFAULT}]
[TEXTIMAGE_ON {<filegroup>\DEFAULT}]

Now that’s a handful —and it still has sections taken out of it for simplicity’s sake! As usual, let’s look at
the parts, starting with the second line (we’ve already seen the top line).

Table and Column Names

What's in a name? Frankly —a lot. You may recall that one of my first soapbox diatribes was back in
Chapter 2 and was about names. I promised then that it wouldn’t be the last you heard from me on the
subject, and this won’t be either.

The rules for naming tables and columns are, in general, the same rules that apply to all database objects.
The SQL Server documentation will refer to these as the rules for identifiers, and they are the same rules we

121

Chapter 5

observed at the end of Chapter 1. The rules are actually pretty simple; what we want to touch on here
though, are some notions about how exactly to name your objects —not specific rules of what SQL Server
will and won't accept for names, but how you want to go about naming your tables and columns so that
they are useful and make sense.

There are a ton of different “standards” out there for naming database objects — particularly tables and
columns. My rules are pretty simple:

a
a

For each word in the name, capitalize the first letter and use lowercase for the remaining letters.
Keep the name short, but make it long enough to be descriptive.

Limit the use of abbreviations. The only acceptable use of abbreviations is when the chosen
abbreviation will be recognized by everyone. Examples of abbreviations I use include “ID” to
take the place of identification, “No” to take the place of number, and “Org” to take the place

of organization. Keeping your names of reasonable length will require you to be more cavalier
about your abbreviations sometimes, but keep in mind that, first and foremost, you want clarity
in your names.

When building tables based on other tables (usually called linking or associate tables), you
should include the names of all of the parent tables in your new table name. For example, say
you have a movie database where many stars can appear in many movies. If you have a Movies
table and a Stars table, you may want to tie them together using a table called MoviesStars.

When you have two words in the name, do not use any separators (run the words together) —
use the fact that you capitalize the first letter of each new word to figure out how to separate
words.

I can’t begin to tell you the battles I've had with other database people about naming issues. For exam-
ple, you will find that a good many people believe that you should separate the words in your names
with an underscore (_).Why don’t I do it that way? Well, it’s an ease of use issue. Underscores present a
couple of different problems:

a

Qa

a

First, many people have a difficult time typing an underscore without taking their hand away
from the proper keyboard position — this leads to lots of typos.

Second, in documentation it is not uncommon to run into situations where the table or column
name is underlined. Underscores are, depending on the font, impossible to see when the text is
underlined — this leads to confusion and more errors.

Finally (and this is a nit pick), it’s just more typing.

Beginning with SQL Server 7.0, it also became an option to separate the words in the name using a reg-
ular space. If you recall my very first soapbox diatribe back in Chapter 1, you'll know that isn’t really
much of an option — it is extremely bad practice and creates an unbelievable number of errors. It was
added to facilitate Access upsizing, and I continue to curse the person(s) who decided to put it in—I'm
sure they were well-meaning, but they are now part of the cause of much grief in the database world.

This list is certainly not set in stone; rather it is just a Reader’s Digest version of the rules I use when
naming tables. I find that they save me a great deal of grief. I hope they’ll do the same for you.

122

Creating and Altering Tables

Consistency, consistency, consistency. Every time I teach, I always warn my class that
it’s a word I'm going to repeat over and over, and in no place is it more important
than in naming. If you have to pick one rule to follow, then pick a rule that says

that, whatever your standards are —make them just that: standard. If you decide to
abbreviate for some reason, then abbreviate that word every time (the same way).
Regardless of what you're doing in your naming, make it apply to the entire
database consistently — consider having a standards document or style guide to
make sure other developers utilize the same rules you do. This will save a ton of
mistakes, and it will save your users time in terms of how long it takes for them to
get to know the database.

Data types

There isn’t much to this — the datatypes are as I described them in Chapter 2. You just need to provide a
datatype immediately following the column name — there is no default datatype.

DEFAULT

We'll cover this in much more detail in our chapter on constraints, but for now, suffice to say that this is
the value you want to be used for any rows that are inserted without a user-supplied value for this par-
ticular column. The default, if you use one, should immediately follow the datatype.

IDENTITY

The concept of an identity value is very important in database design. We will cover how to use identity
columns in some detail in our chapters on design. What is an identity column? Well, when you make a
column an identity column, SQL Server automatically assigns a sequenced number to this column with
every row you insert. The number that SQL Server starts counting from is called the seed value, and the
amount that the value increases or decreases by with each row is called the increment. The default is for
a seed of 1 and an increment of 1, and most designs call for it to be left that way. As an example, how-
ever, you could have a seed of 3 and an increment of 5. In this case, you would start counting from 3,
and then add 5 each time for 8, 13, 18, 23, and so on.

An identity column must be numeric, and, in practice, it is almost always implemented with an integer
or bigint datatype.

The usage is pretty simple; you simply include the IDENTITY keyword right after the datatype for the
column. An identity option cannot be used in conjunction with a default constraint. This makes sense if
you think about it—how can there be a constant default if you're counting up or down every time?

It’s worth noting that an identity column works sequentially. That is, once you've set a seed (the start-
ing point) and the increment, your values only go up (or down if you set the increment to a negative
number). There is no automatic mechanism to go back and fill in the numbers for any rows you may
have deleted. If you want to fill in blank spaces like that, you need to use SET IDENTITY_INSERT

ON, which allows you to turn off (yes, turning it “on” turns it off — that is, you are turning on the abil-
ity to insert your own values, which has the effect of turning off the automatic value) the identity pro-
cess for inserts from the current connection. This can, however, create havoc if you're not careful or if
people are still trying to use the system as you do this, so tread carefully.

123

Chapter 5

The most common use for an identity column is to generate a new value to be used as an identifier for
each row —that is, identity columns are commonly used to create a primary key for a table. Keep in
mind, however, that an IDENTITY column and a PRIMARY KEY are completely separate notions — that
is, just because you have an IDENTITY column doesn’t mean that the value is unique (for example, you
can reset the seed value and count back up through values you’ve used before). IDENTITY values are
usually used as the PRIMARY KEY column, but they don’t have to be used that way.

If you’ve come from the Access world, you’ll notice that an IDENTITY column is
much like an AutoNumber column. The major difference is that you have a bit more
control over it in SQL Server.

NOT FOR REPLICATION

This one is very tough to deal with at this point, so I am, at least in part, going to skip it until we come to
the chapter on replication.

Briefly, replication is the process of automatically doing what, in a very loose sense,
amounts to copying some or all of the information in your database to some other
database. The other database may be on the same physical machine as the original,
or it may be located remotely.

The NOT FOR REPLICATION parameter determines whether a new identity value for the new database
is assigned when the column is published to another database (via replication), or whether it keeps its
existing value. There will be much more on this at a later time.

ROWGUIDCOL

This is also replication related and, in many ways, is the same in purpose to an identity column. We’ve
already seen how using an identity column can provide you with an easy way to make sure that you have
a value that is unique to each row and can, therefore, be used to identify that row. However, this can be a
very error-prone solution when you are dealing with replicated or other distributed environments.

Think about it for a minute — while an identity column will keep counting upward from a set value,
what’s to keep the values from overlapping on different databases? Now, think about when you try to
replicate the values such that all the rows that were previously in separate databases now reside in one
database —uh oh! You now will have duplicate values in the column that is supposed to uniquely iden-
tify each row!

Over the years, the common solution for this was to use separate seed values for each database you
were replicating to and from. For example, you may have database A that starts counting at 1, database
B starts at 10,000, and database C starts at 20,000. You can now publish them all into the same database
safely — for a while. As soon as database A has more than 9,999 records inserted into it, you're in big
trouble.

“Sure,” you say, “why not just separate the values by 100,000 or 500,000?” If you have tables with a large
amount of activity, you're still just delaying the inevitable — that’s where a ROWGUIDCOL comes into play.

124

Creating and Altering Tables

What is a ROWGUIDCOL? Well, it’s quite a bit like an identity column in that it is usually used to uniquely
identify each row in a table. The difference is to what lengths the system goes to make sure that the value
used is truly unique. Instead of using a numerical count, SQL Server instead uses what is known as a
GUID, or a Globally Unique Identifier. While an identity value is usually (unless you alter something)
unique across time, it is not unique across space. Therefore, we can have two copies of our table running,
and have them both assigned an identical identity value. While this is just fine to start with, it causes big
problems when we try to bring the rows from both tables together as one replicated table. A GUID is
unique across both space and time.

GUIDs are actually in increasingly widespread use in computing today. For example, if you check the
registry, you'll find tons of them. A GUID is a 128-bit value — for you math types, that’s 38 zeros in
decimal form. If I generated a GUID every second, it would, theoretically speaking, take me millions of
years to generate a duplicate given a number of that size.

GUID:s are generated using a combination of information — each of which is designed to be unique in
either space or time. When you combine them, you come up with a value that is guaranteed, statistically
speaking, to be unique across space and time.

There is a Windows API call to generate a GUID in normal programming, but, in addition to the
ROWGUIDCOL option on a column, SQL has a special function to return a GUID — it is called the NEWID ()
function, and can be called at any time.

COLLATE

This works pretty much just as it did for the CREATE DATABASE command, with the primary difference
being in terms of scope (here, we define at the column level rather than the database level).

NULL/NOT NULL

This one is pretty simple —it states whether the column in question accepts NULL values or not. The
default, when you first install SQL Server, is to set a column to NOT NULL if you don’t specify nullability.
There are, however, a very large number of different settings that can affect this default, and change its
behavior. For example, setting a value by using the sp_dbcmptlevel stored procedure or setting ANSI-
compliance options can change this value.

I highly recommend explicitly stating the NULL option for every column in every
table you ever build. Why? As I mentioned before, there are a large number of dif-
ferent settings that can affect what the system uses for a default for the nullability
of a column. If you rely on these defaults, then you may find later that your scripts
don’t seem to work right (because you or someone else has changed a relevant set-
ting without realizing its full effect).

Column Constraints

We have a whole chapter coming up on constraints, so we won’t spend that much time on it here. Still, it
seems like a good time to review the question of what column constraints are —in short, they are restric-
tions and rules that you place on individual columns about the data that can be inserted into that column.

For example, if you have a column that’s supposed to store the month of the year, you might define that
column as being of type tinyint —but that wouldn’t prevent someone from inserting the number 54 in

125

Chapter 5

that column. Since 54 would give us bad data (it doesn’t refer to a month), we might provide a constraint
that says that data in that column must be between 1 and 12. We'll see how to do this in our next chapter.

Computed Columns

You can also have a column that doesn’t have any data of its own, but whose value is derived on the fly
from other columns in the table. If you think about it, this may seem odd since you could just figure it
out at query time, but really, this is something of a boon for many applications.

For example, let’s say that we're working on an invoicing system. We want to store information on the
quantity of an item we have sold, and at what price. It used to be fairly commonplace to go ahead and
add columns to store this information, along with another column that stored the extended value (price
times quantity). However, that leads to unnecessary wasting of disk space and maintenance hassles
associated with when the totals and the base values get out of synch with each other. With a computed
column, we can get around that by defining the value of our computed column to be whatever multiply-
ing price by quantity creates.

Let’s look at the specific syntax:
<column name> AS <computed column expression>

The first item is a little different—we’re providing a column name to go with our value. This is simply
the alias that we're going to use to refer to the value that is computed, based on the expression that fol-
lows the As keyword.

Next comes the computed column expression. The expression can be any normal expression that uses
either literals or column values from the same tables. Therefore, in our example of price and quantity, we
might define this column as:

ExtendedPrice AS Price * Quantity

For an example using a literal, let’s say that we always charge a fixed markup on our goods that is 20
percent over our cost. We could simply keep track of cost in one column, and then use a computed col-
umn for the ListPrice column:

ListPrice AS Cost * 1.2
Pretty easy, eh? There are a few caveats and provisos though:

0 You cannot use a subquery, and the values cannot come from a different table.

Q Prior to SQL Server 2000, you could not use a computed column as any part of any key (primary,
foreign, or unique) or with a default constraint. For SQL Server 2005, you can now use a com-
puted column in constraints (you must flag the computed column as persisted if you do this
however).

Q Another problem for previous versions (but added back in SQL Server 2000) is the ability to cre-
ate indexes on computed columns. You can create indexes on computed columns, but there are
special steps you must take to do so. We will discuss each of these changes to computed columns
further when we explore constraints in Chapter 6 and indexing in Chapter 9.

126

Creating and Altering Tables

We'll look at specific examples of how to use computed columns a little later in this chapter.

I'm actually surprised that I haven't heard much debate about the use of computed columns. Rules for
normalization of data say that we should not have a column in our table for information that can be
derived from other columns — that’s exactly what a computed column is!

I'm glad the religious zealots of normalization haven't weighed into this one much, as I like computed
columns as something of a compromise. By default, you aren’t storing the data twice, and you don’t
have issues with the derived values not agreeing with the base values because they are calculated on the
fly directly from the base values. However, you still get the end result you wanted. Note that, if you
index the computed column, you are indeed actually storing the data (you have to for the index). This,
however, has its own benefits when it comes to read performance.

This isn't the way to do everything related to derived data, but it sure is an excellent helper for many
situations.

Table Constraints

Table constraints are quite similar to column constraints, in that they place restrictions on the data that
can be inserted into the table. What makes them a little different is that they may be based on more than
one column.

Again, we will be covering these in the constraints chapter, but examples of table-level constraints
include PRIMARY and FOREIGN KEY constraints, as well as CHECK constraints.

OK, so why is a CHECK constraint a table constraint? Isn’t it a column constraint since
it affects what you can place in a given column? The answer is that it's both. If it is
based on solely one column, then it meets the rules for a column constraint. If, how-
ever (as CHECK constraints can), it is dependent on multiple columns, then you have
what would be referred to as a table constraint.

ON

Remember when we were dealing with database creation, and we said we could create different file-
groups? Well, the ON clause in a table definition is a way of specifically stating on which filegroup (and,
therefore, physical device) you want the table located. You can place a given table on a specific physical
device, or, as you will want to do in most cases, just leave the ON clause out, and it will be placed on
whatever the default filegroup is (which will be the PRIMARY unless you've set it to something else). We
will be looking at this usage extensively in our chapter on performance tuning.

TEXTIMAGE_ON

This one is basically the same as the ON clause we just looked at, except that it lets you move a very spe-
cific part of the table to yet a different filegroup. This clause is only valid if your table definition has
text, ntext, or image column(s) in it. When you use the TEXTIMAGE_ON clause, you move only the
BLOB information into the separate filegroup — the rest of the table stays either on the default filegroup
or with the filegroup chosen in the ON clause.

127

Chapter 5

There can be some serious performance increases to be had by splitting your database
up into multiple files, and then storing those files on separate physical disks. When
you do this, it means you get the I/O from both drives. Major discussion of this is out-
side the scope of this book, but keep this in mind as something to gather more infor-
mation on should you run into I/O performance issues.

Creating a Table

All right, we’ve seen plenty; we’re ready for some action, so let’s build a few tables.
When we started this section, we looked at our standard CREATE syntax of:
CREATE <object type> <object name>

And then we moved on to a more specific start (indeed, it’s the first line of our statement that will create
the table) on creating a table called Customers:

CREATE TABLE Customers

Our Customers table is going to be the first table in a database we will be putting together to track our
company’s accounting. We’ll be looking at designing a database in a couple of chapters, but we’ll go
ahead and get started on our database by building a couple of tables to learn our CREATE TABLE state-
ment. We'll look at most of the concepts of table construction in this section, but we’ll save a few for later
on in the book. That being said, let’s get started building the first of several tables.

I'm going to add in a USE <database name> line prior to my CREATE code so that I'm sure that, when I
run the script, the table is created in the proper database. We'll then follow up that first line that we’ve
already seen with a few columns.

Any script you create for reqular use with a particular database should include a USE command with
the name of that database. This ensures that you really are creating, altering, and dropping the objects
in the database you intend. More than once have I been the victim of my own stupidity when I blindly
opened up a script and executed it only to find that the wrong database was current, and any tables
with the same name had been dropped (thus losing all data) and replaced by a new layout. You can also
tell when other people have done this by taking a look around the master database— you’ll often find
several extraneous tables in that database from people running CREATE scripts that were meant to go
somewhere else.

USE Accounting
CREATE TABLE Customers
(

CustomerNo int IDENTITY NOT NULL,

CustomerName varchar (30) NOT NULL,
Addressl varchar (30) NOT NULL,
Address2 varchar (30) NOT NULL,
City varchar (20) NOT NULL,
State char (2) NOT NULL,
Zip varchar (10) NOT NULL,
Contact varchar (25) NOT NULL,
Phone char (15) NOT NULL,

128

Creating and Altering Tables

FedIDNo varchar (9) NOT NULL,
DateInSystem smalldatetime NOT NULL
)

This is a somewhat simplified table vs. what we would probably use in real life, but there’s plenty of
time to change it later (and we will).

Once we've built the table, we want to verify that it was indeed created, and that it has all the columns
and types that we expect. To do this, we can make use of several commands, but perhaps the best is one
that will seem like an old friend before you're done with this book: sp_help. The syntax is simple:

EXEC sp_help <object name>
To specify the table object that we just created, try executing the following code:

EXEC sp_help Customers
The EXEC command is used in two different ways. This rendition is used to execute a stored procedure —in

this case, a system stored procedure. We’ll see the second version later when we are dealing with advanced
query topics and stored procedures.

Technically speaking, you can execute a stored procedure by simply calling it (with-
out using the EXEC keyword). The problem is that this only works consistently if the
sproc being called is the first statement of any kind in the batch. Just having sp_help
Customers would have worked in the place of the code above, but if you tried to
run a SELECT statement before it — it would blow up on you. Not using EXEC leads
to very unpredictable behavior and should be avoided.

Try executing the command, and you’ll find that you get back several result sets one after another. The
information retrieved includes separate result sets for:

(]

Table name, schema, type of table (system vs. user), and creation date

Column names, datatypes, nullability, size, and collation

The identity column (if one exists) including the initial seed and increment values
The RowGUIDCol (if one exists)

Filegroup information

Index names (if any exist), types, and included columns

Constraint names (if any), types, and included columns

Foreign key (if any) names and columns

U 000U ouU 00U

The names of any schema-bound views (more on this in Chapter 10) that depend on the table
Now that we're certain that we have our table created, let’s take a look at creating yet another table —

the Employees table. This time, let’s talk about what we want in the table first, and then see how you do
trying to code the CREATE script for yourself.

129

Chapter 5

The Employees table is another fairly simple table. It should include information on:

(]

The employee’s ID — this should be automatically generated by the system
First name

Optionally, middle initial

Last name

Title

Social Security Number

Salary

The previous salary

The amount of the last raise
Date of hire

Date terminated (if there is one)

The employee’s manager

O 000U 0000 00DOC

Department
Start off by trying to figure out a layout for yourself.

Before we start looking at this together, let me tell you not to worry too much if your layout isn’t exactly
like mine. There are as many database designs as there are database designers —and that all begins with
table design. We all can have different solutions to the same problem. What you want to look for is
whether you have all the concepts that needed to be addressed. That being said, let’s take a look at one
way to build this table.

We have a special column here. The EmployeeID is to be generated by the system and therefore is an
excellent candidate for either an identity column or a RowGUIDCol. There are several reasons you
might want to go one way or the other between these two, but we’ll go with an identity column for a
couple of reasons:

Q It’s going to be used by an average person. (Would you want to have to remember a GUID?)

Q Itincurs lower overhead.
We're now ready to start constructing our script:

CREATE TABLE Employees
(
EmployeeID int IDENTITY NOT NULL,

For this column, the NOT NULL option has essentially been chosen for us by virtue of our use of an
IDENTITY column. You cannot allow NULL values in an IDENTITY column. Note that, depending on
our server settings, we will, most likely, still need to include our NOT NULL option (if we leave it to the
default we may get an error depending on whether the default allows NULLs).

130

Creating and Altering Tables

Next up, we want to add in our name columns. I usually allow approximately 25 characters for names.
Most names are far shorter than that, but I've bumped into enough that were rather lengthy (especially
since hyphenated names have become so popular) that I allow for the extra room. In addition, I make
use of a variable-length datatype for two reasons:

Q To recapture the space of a column that is defined somewhat longer than the actual data usually
is (retrieve blank space)

Q To simplify searches in the WHERE clause — fixed-length columns are padded with spaces, which
requires extra planning when performing comparisons against fields of this type

For the code that you write directly in T-SQL, SQL Server will automatically adjust to
the padded spaces issue —that is, an “xx’ placed in a char(5) will be treated as being
equal (if compared) to an ‘xx’ placed in a varchar(5) — this is not, however, true in your
client APIs such as ADO and ADO.NET. If you connect to a char(5) in ADO, then an
“xx” will evaluate to xx with three spaces after it—if you compare it to “xx’, it will eval-
uate to False. An “xx’ placed in a varchar(5), however, will automatically have any trail-
ing spaces trimmed, and comparing it to ‘xx’ in ADO will evaluate to True.

The exception in this case is the middle initial. Since we really only need to allow for one character here,
recapture of space is not an issue. Indeed, a variable-length datatype would actually use more space in
this case, since a varchar needs not only the space to store the data, but also a small amount of over-
head space to keep track of how long the data is. In addition, ease of search is also not an issue since, if
we have any value in the field at all, there isn’t enough room left for padded spaces.

Since a name for an employee is a critical item, we will not allow any NULL values in the first and last
name columns. Middle initial is not nearly so critical (indeed, some people in the U.S. don’t have a mid-
dle name at all, while my editor tells me that it’s not uncommon for Brits to have several), so we will
allow a NULL for that field only:

FirstName varchar (25) NOT NULL,
MiddleInitial char (1) NULL,
LastName varchar (25) NOT NULL,

Next up is the employee’s title. We must know what they are doing if we’re going to be cutting them a
paycheck, so we will also make this a required field:

Title varchar (25) NOT NULL,

In that same paycheck vein, we must know their Social Security Number (or similar identification num-
ber outside the U.S.) in order to report for taxes. In this case, we'll use a varchar and allow up to 11
characters, as these identification numbers are different lengths in different countries. If you know your
application is only going to require SSNs from the U.S., then you'll probably want to make it char (11)
instead:

SSN varchar (11) NOT NULL,

We must know how much to pay the employees — that seems simple enough —but what comes next is
a little different. When we add in the prior salary and the amount of the last raise, we get into a situation

131

Chapter 5

where we could use a computed column. The new salary is the sum of the previous salary and the
amount of the last raise. The salary amount is something that we might use quite regularly —indeed
we might want an index on it to help with ranged queries., but for various reasons I don’t want to do
that here (we’ll talk about the ramifications of indexes on computed columns in Chapter 9), so I'm going
to use LastRaise as my computed column:

Salary money NOT NULL,
PriorSalary money NOT NULL,
LastRaise AS Salary - PriorSalary,

If we hired them, then we must know the date of hire —so that will also be required:
HireDate smalldatetime NOT NULL,

Note that I've chosen to use a smalldatetime datatype rather than the standard datetime to save
space. The datetime datatype will store information down to additional fractions of seconds, plus it
will save a wider range of dates. Since we're primarily interested in the date of hire, not the time, and
since we are dealing with a limited range of calendar dates (say, back 50 years and ahead a century or
s0), the smalldatetime will meet our needs and take up half the space.

Date and time fields are somewhat of a double-edged sword. On one hand, it’s very
nice to save storage space and network bandwidth by using the smaller datatype.
On the other hand, you'll find that smalldatetime is incompatible with some other
language datatypes (including Visual Basic). Even going with the normal datetime
is no guarantee of safety from this last problem though —some data access models
pretty much require you to pass a date in as a varchar and allow for implicit con-
version to a datetime field.

The date of termination is something we may not know (we’d like to think that some employees are still
working for us), so we’ll need to leave it nullable:

TerminationDate smalldatetime NULL,

We absolutely want to know who the employee is reporting to (somebody must have hired them!) and
what department they are working in:

ManagerEmpID int NOT NULL,

Department varchar (25) NOT NULL
)

So, just for clarity, let’s look at the entire script to create this table:
USE Accounting
CREATE TABLE Employees
(

EmployeeID int IDENTITY NOT NULL,
FirstName varchar (25) NOT NULL,

132

Creating and Altering Tables

MiddleInitial char (1) NULL,
LastName varchar (25) NOT NULL,
Title varchar (25) NOT NULL,
SSN varchar (11) NOT NULL,
Salary money NOT NULL,
PriorSalary money NOT NULL,
LastRaise AS Salary - PriorSalary,

HireDate smalldatetime NOT NULL,
TerminationDate smalldatetime NULL,
ManagerEmpID int NOT NULL,
Department varchar (25) NOT NULL

)

Again, I would recommend executing sp_help on this table to verify that the table was created as you
expected.

The ALTER Statement

OK, so now we have a database and a couple of nice tables —isn’t life grand? If only things always
stayed the same, but they don’t. Sometimes (actually, far more often than we would like), we get requests
to change a table rather than recreate it. Likewise, we may need to change the size, file locations, or some
other feature of our database. That’s where our ALTER statement comes in.

Much like the CREATE statement, our ALTER statement pretty much always starts out the same:
ALTER <object type> <object name>
This is totally boring so far, but it won't stay that way. We'll see the beginnings of issues with this state-

ment right away, and things will get really interesting (read: convoluted and confusing!) when we deal
with this even further in our next chapter (when we deal with constraints).

ALTER DATABASE

Let’s get right into it by taking a look at changing our database. We’ll actually make a couple of changes
just so we can see the effects of different things and how their syntax can vary.

Perhaps the biggest trick with the ALTER statement is to remember what you already have. With that in
mind, let’s take a look again at what we already have:

EXEC sp_helpdb Accounting
Notice that I didn’t put the quotation marks in this time as I did when we used this stored proc earlier.
That’s because this system procedure, like many of them, accepts a special datatype called sysname. As
long as what you pass in is a name of a valid object in the system, the quotes are optional for this

datatype.

So, the results should be just like they were when we created the database:

133

Chapter 5

Name db_ owner dbid created status compatibility_
size level
Accounting 15.00 sa 9 May 28 Status=ONLINE, 90
MB 2000 Updateability=
READ_WRITE,
UserAccess=

MULTI_USER,
Recovery=FULL,
Version=598,
Collation=SQL_
Latinl_General_

CP1_CI_AS,
SQLSortOrder=52,
IsAutoCreate-
Statistics,
IsAutoUpdate-
Statistics,
IsFullTextEnabled
And...
Name fileid filename filegroup size maxsize growth usage
Accounting 1 c:\Program PRIMARY 10240 51200 5120 data
Files\ KB KB KB only
Microsoft SQL
Server\
MSSQL. 1\mssqgl\
data\
AccountingData
.mdf
AccountingLog 2 c:\Program NULL 5120 25600 5120 log
Files\ KB KB KB only
Microsoft SQL
Server\
MSSQL. 1\
mssqgl\data\
AccountingLog
.1df

Let’s say we want to change things a bit. For example, let’s say that we know that we are going to be
doing a large import into our database. Currently, our database is only 15MB in size — that doesn’t hold
much these days. Since we have Autogrow turned on, we could just start our import, and SQL Server
would automatically enlarge the database 5MB at a time. Keep in mind, however, that it’s actually a fair
amount of work to reallocate the size of the database. If we were inserting 100MB worth of data, then the

134

Creating and Altering Tables

server would have to deal with that reallocation at least 16 times (at 20MB, 25MB, 30MB, etc.). Since we
know that we’re going to be getting up to 100MB of data, why not just do it in one shot? To do this, we
would use the ALTER DATABASE command.

The general syntax looks like this:

ALTER DATABASE <database name>
ADD FILE
([NAME = <'logical file name'>,]
FILENAME = <'file name'>
[, SIZE = <size in KB, MB, GB or TB>]
[, MAXSIZE = < size 1in KB, MB, GB or TB >]
[, FILEGROWTH = <No of KB, MB, GB or TB /percentage>]) [,...n]
[TO FILEGROUP filegroup_name]
[,OFFLINE]

|ADD LOG FILE
([NAME = <'logical file name'>,]
FILENAME = <'file name'>
[, SIZE = < size in KB, MB, GB or TB >]
[, MAXSIZE = < size 1in KB, MB, GB or TB >]
[, FILEGROWTH = <No KB, MB, GB or TB /percentage>])
|REMOVE FILE <logical file name> [WITH DELETE]
|ADD FILEGROUP <filegroup name>
|REMOVE FILEGROUP <filegroup name>
|MODIFY FILE <filespec>
|MODIFY NAME = <new dbname>
|MODIFY FILEGROUP <filegroup name> {<filegroup property>|NAME =
<new filegroup name>}
| SET <optionspec> [,...n][WITH <termination>]
| COLLATE <collation name>

The reality is that you will very rarely use all that stuff —sometimes I think Microsoft just puts it there
for the sole purpose of confusing the heck out of us (just kidding!).

So, after looking at all that gobbledygook, let’s just worry about what we need to expand our database
out to 100MB:

ALTER DATABASE Accounting
MODIFY FILE
(NAME = Accounting,
SIZE = 100MB)

Note that, unlike when we created our database, we don’t get any information about the allocation of
space —instead, we get the rather non-verbose:

The command(s) completed successfully.

Gee —how informative . . . So, we’d better check on things for ourselves:

EXEC sp_helpdb Accounting

135

Chapter 5

name

Accounting

name

Accounting

AccountingLog

db_ Owner dbid
size

105.00 Sa 9
MB

fileid Filename

1 c:\Program
Files\
Microsoft SQL
Server\
MSSQL.1\mssqgl\
data\
AccountingData
.mdf

2 c:\Program
Files\
Microsoft SQL
Server\

MSSQL. 1\mssqgl\
data\
AccountingLog
.1df

created

May 28
2005

filegroup

PRIMARY

NULL

status compatibility_

level
Status=0ONLINE, 90
Updateability=

READ_WRITE,
UserAccess=MULTI_
USER, Recovery=
FULL, Version=598,
Collation=SQL_
Latinl_General_
CP1_CI_AS,
SQLSortOrder=52,
IsAutoCreate-
Statistics,
IsAutoUpdate-
Statistics,
IsFullTextEnabled

size maxsize growth usage

102400 102400 5120 data
KB KB KB only

5120 25600 5120 log
KB KB KB only

As you can see, we've succeeded in increasing our size up to 100MB. One thing worth noticing is that,
even though we exceeded the previous maximum size of 51,200KB, we didn’t get an error. This is because
we explicitly increased the size. It was, therefore, implied that we must have wanted to increase the maxi-
mum, too. If we had done things our original way of just letting SQL Server expand things as necessary,
our import would have blown up in the middle because of the size restriction. One other item worth
noting here is that the MAXSIZE was only increased to our new explicit value —there now isn’t any room
for growth left.

Things pretty much work the same for any of the more common database-level modifications you’ll
make. The permutations are, however, endless. The more complex filegroup modifications and the like

136

Creating and Altering Tables

are outside the scope of this book, but, if you need more information on them, I would recommend one
of the more administrator-oriented books out there (and there are a ton of them).

Option and Termination Specs

SQL Server has a few options that can be set with an ALTER DATABASE statement. Among these are
database-specific defaults for most of the SET options that are available (such as ANSI_PADDING,
ARITHABORT — handy if you're dealing with indexed or partitioned views), state options (for example,
single user mode or read-only), and recovery options. The effects of the various SET options are dis-
cussed where they are relevant throughout the book. This new ALTER functionality simply gives you
an additional way to change the defaults for any particular database.

SQL Server also has the ability to control the implementation of some of the changes you are trying to
make on your database. Many changes require that you have exclusive control over the database —
something that can be hard to deal with if other users are already in the system. SQL Server gives us the
ability to gracefully force other users out of the database so that we may complete our database changes.
The strength of these actions ranges from waiting a number of seconds (you decide how long) before
kicking other users out, all the way up to immediate termination of any option transactions (automati-
cally rolling them back). Relatively uncontrolled (from the client’s perspective) termination of transac-
tions is not something to be taken lightly. Such an action is usually in the realm of the database
administrator. As such, we will consider further discussion out of the scope of this book.

ALTER TABLE

A far, far more common need is the situation where we need to change the makeup of our table. This can
range from simple things like adding a new column to more complex issues such as changing a datatype.

Let’s start out by taking a look at the basic syntax for changing a table:

ALTER TABLE table name
{[ALTER COLUMN <column_name>
{ [<schema of new data type>].<new_data_type> [(precision [, scale])] max
<xml schema collection>
[COLLATE <collation_name>]
[NULL |NOT NULL]
| [{ADD|DROP} ROWGUIDCOL] | PERSISTED}]
| ADD
<column name> <data_type>
[[DEFAULT <constant_expression>]
|[IDENTITY [(<seed>, <increment>) [NOT FOR REPLICATION]]]]
[ROWGUIDCOL]
[COLLATE <collation_name>]
[NULL |NOT NULL]
[<column_constraints>]
| [<column_name> AS <computed_column_expression>]
| ADD
[CONSTRAINT <constraint_name>]
{ [{PRIMARY KEY|UNIQUE}
[CLUSTERED | NONCLUSTERED]
{(<column_name>[,...n 1)}
[WITH FILLFACTOR = <fillfactor>]
[ON {<filegroup> | DEFAULT}]
1

137

Chapter 5

| FOREIGN

[(<column_name> [
REFERENCES <referenced table>

KEY

;e

.n])]

[ON DELETE {CASCADE|NO ACTION}]
[ON UPDATE {CASCADE|NO ACTION}]

[NOT FOR REPLICATION]

| DEFAULT <constant_expression>

[FOR <column_name>]

|CHECK [NOT FOR REPLICATION]

(<search_conditions>)

[,...n1[,..

.n]

| [WITH CHECK|WITH NOCHECK]
| { ENABLE | DISABLE } TRIGGER

{ ALL | <trigger name> [,..

| DrROP
{ [CONSTRAINT]

|COLUMN <column_name>}[, ..
| {CHECK | NOCHECK} CONSTRAINT
{ALL|<constraint_name>[, ..
| {ENABLE | DISABLE} TRIGGER
{ALL|<trigger_name>[, ..
| SWITCH [PARTITION <source partition number expression>]

.n]}

<constraint_name>

TO [schema_name.

}

As with the CREATE TABLE command, there’s quite a handful there to deal with.

]

.n]

.n]}

.nl}

target_table
[PARTITION <target partition number expression>]

[(<referenced_column>[

e .

.n])]

So let’s start an example of using this by looking back at our Employees table in the Accounting

database:

EXEC sp_help Employees

For the sake of saving a few trees, I'm going to edit the results that I show here to just the part we care
about — you’ll actually see much more than this:

Column_name

EmployeeID
FirstName
MiddleInitial
LastName
Title

SSN

Salary
PriorSalary

LastRaise

138

Type
int
varchar
char
varchar
varchar
varchar
money
money

money

Computed

no
no
no
no
no
no
no
no

yves

Length

4
25
1
25
25

11

Prec

10

19

19

19

Scale

Nullable

no
no
yes
no
no
no
no
no

yves

Creating and Altering Tables

Column_name Type Computed Length Prec Scale Nullable
HireDate smalldatetime no 4 no
TerminationDate smalldatetime no 4 ves
ManagerEmpID int no 4 10 0 no
Department varchar no 25 no

Let’s say that we’ve decided we’d like to keep previous employer information on our employees (proba-
bly so we know who will be trying to recruit the good ones back!). That just involves adding another col-
umn, and really isn’t all that tough. The syntax looks much like it did with our CREATE TABLE statement
except that it has obvious alterations to it:

ALTER TABLE Employees
ADD
PreviousEmployer varchar (30) NULL

Not exactly rocket science —is it? Indeed, we could have added several additional columns at one time
if we had wanted to. It would look something like this:

ALTER TABLE Employees
ADD
DateOfBirth datetime NULL,
LastRaiseDate datetime NOT NULL
DEFAULT '2005-01-01"

Notice the DEFAULT I slid in here. We haven'’t really looked at these yet (they are in our next chapter),
but I wanted to use one here to point out a special case.

If you want to add a NOT NULL column after the fact, you have the issue of what to do with rows that
already have NULL values. We have shown the solution to that here by providing a default value. The
default is then used to populate the new column for any row that is already in our table.

Before we go away from this topic for now, let’s take a look at what we’ve added:

EXEC sp_help Employees

Column_name Type Computed Length Prec Scale Nullable
EmployeeID int no 4 10 0 no
FirstName varchar no 25 no
MiddleInitial char no 1 yes
LastName varchar no 25 no
Title varchar no 25 no
SSN varchar no 11 no

Table continued on following page

139

Chapter 5

Column_name Type Computed Length Prec Scale Nullable
Salary money no 8 19 4 no
PriorSalary money no 8 19 4 no
LastRaise money ves 8 19 4 ves
HireDate smalldatetime no 4 no
TerminationDate smalldatetime no 4 ves
ManagerEmpID int no 4 10 0 no
Department varchar no 25 no
PreviousEmployer varchar no 30 ves
DateOfBirth datetime no 8 ves
LastRaiseDate datetime no 8 no

As you can see, all of our columns have been added. The thing to note, however, is that they all went to
the end of the column list. There is no way to add a column to a specific location in SQL Server. If you
want to move a column to the middle, you need to create a completely new table (with a different
name), copy the data over to the new table, DROP the existing table, and then rename the new one.

This issue of moving columns around can get very sticky indeed. Even some of the tools that are sup-
posed to automate this often have problems with it. Why? Well, any foreign key constraints you have
that reference this table must first be dropped before you are allowed to delete the current version of the
table. That means that you have to drop all your foreign keys, make the changes, and then add all your
foreign keys back. It doesn’t end there, however, any indexes you have defined on the old table are auto-
matically dropped when you drop the existing table— that means that you must remember to re-create
your indexes as part of the build script to create your new version of the table—yuck!

But wait! There’s more! While we haven't really looked at views yet, I feel compelled to make a reference
here to what happens to your views when you add a column. You should be aware that, even if your
view is built using a SELECT * as its base statement, your new column will not appear in your view
until you rebuild the view. Column names in views are resolved at the time the view is created for per-
formance reasons. That means any views that have already been created when you add your columns
have already resolved using the previous column list— you must either DROP and re-create the view or
use an ALTER VIEW statement to rebuild it.

The DROP Statement

Performing a DROP is the same as deleting whatever object(s) you reference in your DROP statement. It’s
very quick and easy, and the syntax is exactly the same for all of the major SQL Server objects (tables,
views, sprocs, triggers, etc.). It goes like this:

140

Creating and Altering Tables

DROP <object type> <object name> [, ...n]

Actually, this is about as simple as SQL statements get. We could drop both of our tables at the same
time if we wanted:

USE Accounting

DROP TABLE Customers, Employees

And this deletes them both.

Be very careful with this command. There is no, “Are you sure?” kind of question
that goes with this —it just assumes you know what you’re doing and deletes the
object(s) in question.

Remember my comment at the beginning of this chapter about putting a USE statement at the top of
your scripts? Well, here’s an example of why it’s so important — the Nor thwind database also has tables
called customers and Employees. You wouldn’t want those gone, now, would you? As it happens,
some issues of drop order would prevent you from accidentally dropping those tables with the above
command, but it wouldn’t prevent you from dropping the [Order Details] table, or, say, Shipments.

The syntax is very much the same for dropping the entire database. Now let’s drop the Accounting
database:

USE master

DROP DATABASE Accounting
You should see the following in the Results pane:

Deleting database file 'c:\Program Files\Microsoft SQL Server\mssgl\data\
AccountingLog.ldf'.
Deleting database file 'c:\Program Files\Microsoft SQL Server\mssgl\data\
AccountingData.mdf'.

You may run into a situation where you get an error that says that the database cannot be deleted
because it is in use. If this happens, check a couple of things:

O Make sure that the database that you have as current in the Management Studio is something
other than the database you're trying to drop (that is, make sure you're not using the database
as you're trying to drop it).

Q Ensure you don’t have any other connections open (using the Management Studio or sp_who)
that are showing the database you're trying to drop as the current database.

I'usually solve the first one just as we did in the code example —I switch to using the master database.
The second you have to check manually —I usually close other sessions down entirely just to be sure.

141

Chapter 5

Using the GUI Tool

We've just spent a lot of time pounding in perfect syntax for creating a database and a couple of tables —
that’s enough of that for a while. Let’s take a look at the graphical tool in the Management Studio that
allows us to build and relate tables. From this point on, we’ll not only be dealing with code, but with the
tool that can generate much of that code for us.

Creating a Database Using the Management Studio

If you run the SQL Server Management Studio and expand the Databases node, you should see some-
thing like Figure 5-1.

Connect = 44 €]

EREY 5CHWEITZER (SGL Server 9.0,1137 - BARMICLE|robv)
= [Databases
1 System Databases
|1 Database Snapshots
|) Accounting
| AdventureWworks
|) AdventuretiorksDiw
| Morthwind
| pubs
| ReportServer
| J ReportServerTempDE
Security
Server Objects
Replication
Management
Motification Services
l_fb S0L Server Agent (Agent xPs disabled)

N NEEEEEEE

O E

Figure 5-1

If you look closely at this screenshot, you'll see that my Accounting database is still showing even
though we just dropped it in the previous example. You may or may not wind up seeing this, depending
on whether you already had the Management Studio open when you dropped the database or you
opened it after you dropped the database in QA.

Why the difference? Well, in earlier versions of SQL Server, the tools that are now the Management
Studio refreshed information such as the available databases regularly. Now it updates only when it
knows it has a reason to (for example, you deleted something by using the Management Studio Object
Explorer instead of a Query window, or perhaps you explicitly chose to refresh). The reason for the
change was performance. The old 6.5 Enterprise Manager used to be a slug performance-wise because it

142

Creating and Altering Tables

was constantly making round trips to “poll” the server. The newer approach performs much better, but
doesn’t necessarily have the most up-to-date information.

The bottom line on this is that, if you see something in the Management Studio that you don’t expect to,
try pressing F5 (refresh), and it should update things for you.
Now try right-clicking on the Databases node, and choose the New Database . .. option.

This will pull up the Database Properties dialog box, and allow you to fill in the information on how you
want your database created. We’ll use the same choices that we did when we created the Accounting
database at the beginning of the chapter. First comes the basic name and size info, as shown in Figure 5-2.

F Mew Database

b Soiigt = |4 Help

7 General
P Oplioas

7 Filegougs Database name: | ccauriting
Dt |<:=‘aul> 0 D
[Us= fulttest indesing
Database fles:
Lageal Hame Fie Type Filegoup Iritizd Size (MB] | Autogrowith Fath Fie: Hame
| Acs Data PRIMARY 10 By 5 ME, umestricted giouth (] FProgram Fles\Miciosoit SOL ServerMSS0L1N..]
I Leg Mol Applicable 5 By § paicenl, testicled qiowthto .. [F\Piogiam FlesiMicosoll SOL ServerMSSOLTL. []

Cancel

Figure 5-2

This entire tab on the dialog is new, so let’s take a look at things.

First, the name — this is pretty basic. We called it Accounting before, and, because we deleted the first
one we created, there’s no reason not to call it that again.

Next comes our file name, size, and growth information.
I've expanded the dialog out manually to make sure you could see everything. You may see less than
what’s pictured here as the default size of the dialog is not nearly enough to show it all— just grab a

corner of the dialog and expand it to see the additional information

Next let’s move on to the Options tab, which contains a host of additional settings, as shown in Figure 5-3.

143

Chapter 5

Select apa CF Serict + [Hel
P General 3 art - g Help
bl Opbicris |
7 Filegroups Lollstion: | <server defauks v
Recovery model: [Fun v
Compaibity fevel: [s0L Server 2005 (30) v
Other cgtionz:
e | A
s |2
E Automatic -
Ao Close: False
#uio Create Statishcs Tiue
Ak Shrink False
Auto Update Stalistics Tiue
Auko Updste Statistics Asynchionoush Falze
E Cursor
Close Curzor on Commik Enabled Falze
Drefaull Cursor Globel
El Mizcellaneous
ANS| NULL D efault False
AMSI NULLS Enabled Fake
AMNS| Padding Ensbled False
AMS| Warning: Enabled Falze
Avithmetic Aboit Enabled False
F— Concatenate MullVields Mul Falze
Senver: [rate Correlation Oplimzation Enabled Falze
. Murmeric Round-&bort False
Connection Parameterization Simple
Quoted Identfiers Enabled Fale
4 View connection propeities Recursive Triggers Enabled Falze
— E Recovery ¥
— Auto Close
Ready
Figure 5-3

Perhaps the most interesting thing here though is the collation name. Beginning with SQL Server 2000,
we gained the choice of having each database (and, indeed, individual columns if we wish) have its own
collation. For the vast majority of installs, you'll want to stick with whatever the server default was set to
when the server was installed (presumably, someone had already thought this out fairly well). However,
you can change it for just the current database by setting it here.

“Why,” you may ask, “would I want a different collation?” Well, in the English-speaking world, a com-
mon need for specific collations would be that some applications are written expecting an “a” to be the
same as an “A” —while others are expecting case sensitivity (“a” is not the same as “A”). In the old
days, we would have to have separate servers set up in order to handle this. Another, non-English exam-
ple would be dialect differences that are found within many countries of the world — even where they
speak the same general language.

Next comes the compatibility level. This will control whether certain SQL Server 2005 syntax and key-
words are supported or not. As you might expect from the name of this setting, the goal is to allow you
to rollback to keywords and functional behavior that more closely matches older versions if your partic-
ular application happens to need that.

The remaining properties will vary from install to install, but work as I described them earlier in the
chapter.

144

Creating and Altering Tables

OK, given that the other settings are pretty much standard fare to what we’ve seen earlier in the chapter,
let’s go ahead and try it out. Click OK and, after a brief pause to actually create the database, you'll see it
added to the tree.

Now expand the tree to show the various items underneath the Accounting node, and select the Database
Diagrams node. Right-click it, and you’'ll get a dialog indicating that the database is missing some objects it
needs to support database diagramming, as shown in Figure 5-4. Click Yes.

Note that you should only see this the first time a diagram is being created for that database. SQL
Server keeps track of diagrams inside special tables that it only creates in your database if you are going
to actually create a diagram that will use them.

Microsoft SQL Server Management Studio

9 This database does not have one of more of the support objects required ko use database diagramming.
_f‘j Do you wish to create them?

EE ~':i\'=i es l [Mo

Figure 5-4

With that, you'll get an Add Table dialog, as shown in Figure 5-5. This lets us decide what tables we want
to include in our diagram — we can created multiple diagrams if we wish, potentially each covering
some subsection — or submodel — of the overall database schema. In this case, we have only one table
showing (recall that we dropped the Customers and Orders tables a while back —leaving us just an
empty database in terms of what tables we created for ourselves).

Add Table Px

Figure 5-5

For now, just click Cancel —you should get an empty diagram screen. The nice part is that you can add a
table by either right-clicking and choosing the appropriate option, or by clicking on the New table icon in
the toolbar. When you choose new table, SQL Server will ask you for the name you want to give your new
table. You will then get a mildly helpful dialog box that lets you fill in your table one piece at a time —
complete with labels for what you need to fill out, as shown in Figure 5-6.

145

Chapter 5

Customers *

Colurmn Mame | Data Twpe | Allow Bulls |

Customerlio int O
| CustomerMame warbinary{30) O
T Address1 wvarchar(50) O
| Addressz varchar(50) O
| City wvarchar{50) O
| state char(2) O
| Zip wvarchar{50) O
| Contack wvarchar(50) O
| Phane char(15) O
| FedIDho wvarchar(9) O
TMI smalldatetime O
_ O

Figure 5-6

I've gone ahead and filled in the columns as they were in our original Customers table, but we also need
to define our first column as being an identity column. Unfortunately, we don’t appear to have any way
of doing that with the default grid here. To change what items we can define for our table, we need to
right-click in the editing dialog, and select Table View = Modify Custom.

We then get a list of items from which we can choose, shown in Figure 5-7. For now, we'll just select the
extra item we need —Identity and it’s associated elements Seed and Increment.

Available columns: Selected columns:
Data Type -~ Colurmn Mame
Length Condensed Type
Precision Mullable

P .
==
Allow Mulls

Def ault Value

Identity Seed
Identity Increment
Is RowGuid
Mot For Replication hd
[5ave as default
K] [Cancel]
Figure 5-7

Now go back to our editing dialog and select Table View = Custom to view the identity column (see
Figure 5-8), and we're ready to fill in our table definition.

OK, so SQL Server can be a bit temperamental on this. If you do not check the box to make this the

default, then SQL Server will change what your “custom” view looks like, but it will not make the cus-
tom view the active one— the result is that you won’t see the changes you made as you exit the dialog.

146

Creating and Altering Tables

So, again, make sure that after changing the view, you right-click and select Table View => Custom again.
It should then look like Figure 5-8.

Colurn Mame Condensed Type Mull=bl= | Idervicy Identiky Seed | Identity Incremert
P | Customertio int Mo 1
| Customerhlame wvarkinary (300 Na |
| Addresst wvarchar(30) o O
| addvessz warchar(50) o O
| ity warchar(S0) Mo O
I State char(2) Na O
| Zip wvarchar(S0) Mo]
[contact wvarchar(30) Mo (]
| Phere char(15) o 0
| Fediono warchar(3) o O
: DatelnSystem smalidatetime Mo O
| O
Figure 5-8

Once you have the table filled out, you can save the changes, and that will create your table for you.

This is really a point of personal preference, but I prefer to set the view down to just column names at
this point. You can do this by clicking on the Show icon on the toolbar or, as I prefer, by right-clicking
the table and choosing Table View => Column Names. I find that this saves a lot of screen real estate and
makes more room for me to work on additional tables.

Now try to add in the Employees table as we had it defined earlier in the chapter. The steps should be
pretty much as they were for the Customers table, with just one little hitch— we have a computed col-
umn. To deal with the computed column, just select Modify Custom again (from the right-click menu),
and add the “formula” column. Then, simply add the proper formula (in this case, Salary-PriorSalary).
When you have all the columns entered, save your new table (accepting the confirmation dialog) and
your diagram should have two tables in it (see Figure 5-9).

Customers Employees
Customertio | EmployeelD
| customerhiame | Firsthame
| addresst | iddetrical
N Address2 | Lasthame
| iy | it
] State 1 35N
] Zip | Salary
N Cantack | PriorSalary
| Phone | LastR aise
N FedIDMo | HireDate
N Datelngystem | TerminationDate
o ManagerEmpID
| Departrnent
Figure 5-9

147

Chapter 5

It’s very important to understand that the diagramming tool that is included with SQL Server is not
designed to be everything to everyone.

Presumably, since you are reading this part of this book, you are just starting out on your database
journey — this tool will probably be adequate for you for a while. Eventually, you may want to take a
look at some more advanced (and far more expensive) tools to help you with your database design.

Backing into the Code: The Basics of Creating Scripts
with the Management Studio

One last quick introduction before we exit this chapter —we want to see the basics of having the
Management Studio write our scripts for us. For now, we are going to do this as something of a quick
and dirty introduction. Later on, after we’ve learned about the many objects that the scripting tool refer-
ences, we will take a more advanced look.

To generate scripts, we go into the Management Studio and right-click on the database for which we
want to generate scripts. (In this case, we're going to generate scripts on our Accounting database.) On
the pop-up menu, choose Script Database Ass>CREATE To=>New Query Editor Window, shown in
Figure 5-10.

Object Explorer
Connect~ 4 Fil

=) [} STHWEITZER (SGL Server 9.0, 1187 - BARNICLE robv)
= [Databases

[System Databases

|1 Database Snapshots

u

l_J Advert Mew Database, .. |
| J Advent Mew Query
l_J Morthv Script Database as ¢ CREATETo » hew Query Editor Window
| Morthmy :
Tasks 4 File...
|J pubs bl DROFTa ¥ cll'eb)
ipboar
|J Reporty pename p

[Reportt pejete
Security

Server Objy Refresh

Replication Properties

| Managerment

[Motification Services

L& a0L Server Agent (Agent XPs disabled)

MINEEEEEEEEEE

BB

Figure 5-10

Whoa! SQL Server generates a heck of a lot more code than we saw when we created our database to
begin with. Don’t panic, however —all it is doing is being very explicit in scripting major database set-
tings rather than relying on defaults as we did when we scripted it ourselves.

Note that we are not limited to scripting the database — if you want to script other objects in the data-

base, just navigate and right click on them much the way that you right-clicked on the Accounting
database and, boom!, you've got yourself a SQL Script.

148

Creating and Altering Tables

As you can see, scripting couldn’t be much easier. Once you get a complex database put together, it still
isn’t quite as easy as it seems in this particular demonstration, but it is a lot easier than writing it all out
by hand. The reality is that it really is pretty simple once you learn what the scripting options are, and
we’ll learn much more about those later in the book.

Summary

In this chapter, we’ve covered the basics of the CREATE, ALTER, and DROP statements as they relate to cre-
ating a database and tables. There are, of course, many other renditions of these that we will cover as we
continue through the book. We have also taken a look at the wide variety of options that we can use in
databases and tables to have full control over our data. Finally, we have begun to see the many things
that we can use the Management Studio for in order to simplify our lives, and make design and scripting
simpler.

At this point, you're ready to start getting into some hardcore details about how to lay out your tables,
and a discussion on the concepts of normalization and more general database design. I am, however,
actually going to make you wait another chapter before we get there, so that we can talk about con-
straints and keys somewhat before hitting the design issues.

Exercises

1. Using the Management Studio’s script generator, generate SQL for both the Customers and the
Employees tables.

2. Without using the Management Studio, script a database called “MyDB” with a starting
database size of 17MB and a starting log size of 5MB — set both the log and the database to
grow in 5MB increments.

3. Create a Table called Foo with a single variable length character field called “Col1” — limit the
size of Coll to 50 characters.

149

Constraints

You've heard me talk about them, but now it’s time to look at them seriously —it’s time to deal
with constraints. SQL Server has had many changes in this area over the last few versions, and
that trend has continued with SQL Server 2005.

We've talked a couple of times already about what constraints are, but let’s review in case you
decided to skip straight to this chapter.

A constraint is a restriction. Placed at either column or table level, a constraint
ensures that your data meets certain data integrity rules.

This gets back to the notion that I talked about back in Chapters 1 and 2, where ensuring data
integrity is not the responsibility of the programs that use your database, but rather the responsi-
bility of the database itself. If you think about it, this is really cool. Data is inserted, updated, and
deleted from the database by many sources. Even in stand-alone applications (situations where
only one program accesses the database) the same table may be accessed from many different
places in the program. It doesn’t stop there though. Your database administrator (that might mean
you if you're a dual role kind of person) may be altering data occasionally to deal with problems
that arise. In more complex scenarios, you can actually run into situations where literally hundreds
of different access paths exist for altering just one piece of data, let alone your entire database.

Moving the responsibility for data integrity into the database itself has been revolutionary to
database management. There are still many different things that can go wrong when you are
attempting to insert data into your database, but your database is now proactive rather than reactive
to problems. Many problems with what programs allow into the database are now caught much
earlier in the development process because, although the client program allowed the data through,
the database knows to reject it. How does it do it? Primarily with constraints (datatypes and trig-
gers are among the other worker bees of data integrity). Well let’s take a look.

Chapter 6

In this chapter, we'll be looking at the three different types of constraints at a high level:

O Entity constraints
U Domain constraints
0 Referential integrity constraints
At a more specific level, we'll be looking at the specific methods of implementing each of these types of
constraints, including;:
0 PRIMARY KEY constraints
FOREIGN KEY constraints
UNIQUE constraints (also known as alternate keys)
CHECK constraints
DEFAULT constraints

Rules

U 000 U0 0o

Defaults (similar to, yet different from, DEFAULT constraints)

SQL Server 2000 was the first version to support two of the most commonly
requested forms of referential integrity actions — cascade updates and cascade
deletes. These were common complaint areas, but Microsoft left some other areas of
ANSI referential integrity support out— these have been added with SQL Server
2005. We’ll look at cascading and other ANSI referential integrity actions in detail
when we look at FOREIGN KEY constraints.

We'll also take a very cursory look at triggers and stored procedures (there will be much more on these
later) as a method of implementing data integrity rules.

Types of Constraints

There are a number of different ways to implement constraints, but each of them falls into one of three
categories —entity, domain, or referential integrity constraints, as illustrated in Figure 6-1.

Domain Constraints

Domain constraints deal with one or more columns. What we're talking about here is ensuring that a partic-
ular column or set of columns meets particular criteria. When you insert or update a row, the constraint is
applied without respect to any other row in the table —it’s the column’s data you're interested in.

152

Constraints

Referential
Orders Table Integrity Domain
(Order ID Column)) Constraint Constraint .
Entity
Constraint
Order ID Line Iltem [Part Number| Unit Price

1 1 0R2400 45.00
2 1 318764 75.36
3 1 2P9500 98.50
3 2 3X5436 12.00
4 1 1R5564 .98

4 2 8H0805 457.00
4 3 3H6665 65.00
5 1 7Y0024 26.75

Figure 6-1

For example, if we want to confine the UnitPrice column only to values that are greater than or equal
to zero, that would be a domain constraint. While any row that had a unitPrice that didn’t meet the
constraint would be rejected, we're actually enforcing integrity to make sure that entire column (no
matter how many rows) meets the constraint. The domain is the column, and our constraint is a domain
constraint.

We'll see this kind of constraint in dealing with CHECK constraints, rules, defaults, and DEFAULT con-
straints.

Entity Constraints

Entity constraints are all about individual rows. This form of constraint doesn’t really care about a col-
umn as a whole; it’s interested in a particular row, and would best be exemplified by a constraint that
requires every row to have a unique value for a column or combination of problems.

“What,” you say, “a unique column? Doesn’t that mean it’s a domain constraint?” No, it doesn’t. We're
not saying that a column has to meet any particular format, or that the value has to be greater or less than

anything. What we're saying is that for this row, the same value can’t already exist in some other row.

We'll see this kind of constraint in dealing with PRIMARY KEY and UNIQUE constraints.

153

Chapter 6

Referential Integrity Constraints

Referential integrity constraints are created when a value in one column must match the value in another
column —in either the same table or, far more typically, a different table.

Let’s say that we are taking orders for a product, and that we accept credit cards. In order to be paid by
the credit card company, we need to have some form of merchant agreement with that company. We
don’t want our employees to take credit cards from companies from which we’re not going to be paid
back. That’s where referential integrity comes in — it allows us to build what we would call a domain or
lookup table. A domain table is a table whose sole purpose in life is to provide a limited list of acceptable
values. In our case, we might build a table that looks something like this:

CreditCardID CreditCard

1 VISA

2 MasterCard

3 Discover Card

4 American Express

We can then build one or more tables that reference the CreditCardID column of our domain table. With
referential integrity, any table (such as our Orders table) that is defined as referencing our CreditcCard
table will have to have a column that matches up to the CreditCardibD column of our CreditCard
table. For each row that we insert into the referencing table, it will have to have a value that is in our
domain list (it will have to have a corresponding row in the CreditcCard table).

We'll see more of this as we learn about FOREIGN KEY constraints later in this chapter.

Constraint Naming

Before we get down to the nitty-gritty constraints, we’ll digress for a moment and address the issue of
naming constraints.

For each of the different types of constraints that we will be dealing with in this
chapter, you can elect not to supply a name — that is, you can have SQL Server pro-
vide a name for you. Resist the temptation to do this. You'll quickly find that when
SQL Server creates its own name it isn’t particularly useful.

An example of a system-generated name might be something like PK__Employees__145C0A3F. This is
a SQL Server—generated name for a primary key on the Employees table of the Accounting database, which
we will create later in the chapter —the PK is for primary key (which is the major thing that makes it
useful), the Employees is for the Employees table that it is on, and the rest is a randomly generated value
to ensure uniqueness. You only get this type of naming if you create the primary key through script. If
you created this table through Management Studio, it would have a name of Px_Employees.

154

Constraints

That one isn’t too bad, but you get less help on other constraints; for example, a CHECK constraint used
later in the chapter might generate something like CK__Customers__22AA2996. From this, we know
that it’s a CHECK constraint, but we know nothing of what the nature of the CHECK is.

Since we can have multiple CHECK constraints on a table, you could wind up with all these as names of
constraints on the same table:

CK__Customers__ 22AA2996
CK__Customers__ 25869641
CK__Customers__ 267ABATA

Needless to say, if you needed to edit one of these constraints, it would be a pain to figure out which was
which.

Personally, I either use a combination of type of constraint together with a phrase to indicate what it
does or the name(s) of the column(s) it affects. For example, I might use CKPriceExceedsCost if I have
a constraint to ensure that my users can’t sell a product at a loss, or perhaps something as simple as
CKCustomerPhoneNo on a column that ensures that phone numbers are formatted properly.

As with the naming of anything that we’ll use in this book, how exactly you name things is really not all
that important. What is important is that you:

QO Be consistent.

Q Make it something that everyone can understand.

Q Keep it as short as you can while still meeting the above rules.

Q

Did I mention to be consistent?

Key Constraints

There are four different types of common keys that you may hear about in your database endeavors.
These are primary keys, foreign keys, alternate keys, and inversion keys. For this chapter, we’ll only
take a look at the first three of these, as they provide constraints on the database.

An inversion key is basically just any index (we cover indexes in Chapter 9) that does not apply some
form of constraint to the table (primary key, foreign key, unique). Inversion keys, rather than enforcing
data integrity, are merely an alternative way of sorting the data.

Keys are one of the cornerstone concepts of database design and management, so fasten your seatbelt

and hold on tight — this will be one of the most important concepts you'll read about in this book, and
will become absolutely critical as we move on to normalization in our design chapter.

PRIMARY KEY Constraints

Before we define what a primary key actually is, let’s digress slightly into a brief discussion of relational
databases. Relational databases are constructed on the idea of being able to “relate” data. Therefore, it

155

Chapter 6

becomes critical in relational databases for most tables (there are exceptions, but they are very rare) to
have a unique identifier for each row. A unique identifier allows you to accurately reference a record
from another table in the database —so forming a relation between those two tables.

This is a wildly different concept from what we had with our old mainframe environment or the ISAM
databases (dBase, FoxPro, Clipper, etc.) of the 80s and early 90s. In those environments, we dealt with
one record at a time — we would generally open the entire table, and go one record at a time until we
found what we were looking for If we needed data from a second table, we would then open that table
separately and fetch that tables data, then mix the data programmatically ourselves.

Primary keys are the unique identifiers for each row. They must contain unique values (and hence cannot
be NULL). Because of their importance in relational databases, primary keys are the most fundamental of
all keys and constraints.

Don’t confuse the primary key, which uniquely identifies each row in a table, with a
GUID, which is a more generic tool typically used to identify something (more than
just rows) across all space and time. While a GUID can certainly be used as a pri-
mary key, they incur some overhead, and are usually not called for when we’re only
dealing with the contents of a table. Indeed, the only common place that a GUID
becomes particularly useful in a database environment is as a primary key when
dealing with replicated or other distributed data.

A table can have a maximum of one primary key. As I mentioned earlier, it is rare to have a table on
which you don’t want a primary key.

When I say “rare” here, I mean very rare. A table that doesn’t have a primary key severely violates the
concept of relational data — it means that you can’t guarantee that you can relate to a specific record.
The data in your table no longer has anything that gives it distinction.

Situations where you can have multiple rows that are logically identical are actually not that uncom-
mon, but that doesn’t mean that you don’t want a primary key. In these instances, you'll want to take a
look at fabricating some sort of key — this approach has most often been implemented using an identity
column, though using a GUID now makes more sense in some situations.

A primary key ensures uniqueness within the columns declared as being part of that primary key, and
that unique value serves as an identifier for each row in that table. How do we create a primary key?
Actually, there are two ways. You can create the primary key either in your CREATE TABLE command or
with an ALTER TABLE command.

Creating the Primary Key at Table Creation

Let’s review one of our CREATE TABLE statements from the last chapter:

CREATE TABLE Customers
(

CustomerNo int IDENTITY NOT NULL,
CustomerName varchar (30) NOT NULL,
Addressl varchar (30) NOT NULL,
Address2 varchar (30) NOT NULL,

156

Constraints

City varchar (20) NOT NULL,
State char (2) NOT NULL,
Zip varchar (10) NOT NULL,
Contact varchar (25) NOT NULL,
Phone char (15) NOT NULL,
FedIDNo varchar (9) NOT NULL,
DateInSystem smalldatetime NOT NULL

This CREATE statement should seem old hat by now, but it’s missing a very important piece—our PRIMARY
KEY constraint. We want to identify CustomerNo as our primary key. Why CustomerNo? Well, we’ll look
into what makes a good primary key in the next chapter, but for now, just think about it a bit—do we want
two customers to have the same CustomerNo? Definitely not—it makes perfect sense for a CustomerNo to
be used as an identifier for a customer. Indeed, such a system has been used for years, so there’s really no
sense in re-inventing the wheel here.

To alter our CREATE TABLE statement to include a PRIMARY KEY constraint, we just add in the con-
straint information right after the column(s) that we want to be part of our primary key. In this case, we

would use:

CREATE TABLE Customers

(

CustomerNo int IDENTITY NOT NULL
PRIMARY KEY,
CustomerName varchar (30) NOT NULL,
Addressl varchar (30) NOT NULL,
Address?2 varchar (30) NOT NULL,
City varchar (20) NOT NULL,
State char (2) NOT NULL,
Zip varchar (10) NOT NULL,
Contact varchar (25) NOT NULL,
Phone char (15) NOT NULL,
FedIDNo varchar (9) NOT NULL,
DateInSystem smalldatetime NOT NULL

Note that, if you want to try out this code, you may need to first DROP the existing table by issuing a DROP
TABLE Customers command. Notice that we altered one line (all we did was remove the comma) and
added some code on a second line for that column. In a word, it was easy! Again, we just added one sim-
ple keyword (OK, so it’s two words, but they operate as one) and we now have ourselves a primary key.

Creating a Primary Key on an Existing Table

Now, what if we already have a table and we want to set the primary key? That’s also easy —we'll do
that for our Employees table:

USE Accounting
ALTER TABLE Employees

ADD CONSTRAINT PK_EmployeeID
PRIMARY KEY (EmployeeID)

157

Chapter 6

Our ALTER command tells SQL Server:

QO That we are adding something to the table (we could also be dropping something from the table
if we so chose)

What it is that we’re adding (a constraint)
What we want to name the constraint (to allow us to address the constraint directly later)

The type of constraint (PRIMARY KEY)

0O 0 0O O

The column(s) that the constraint applies to

FOREIGN KEY Constraints

Foreign keys are both a method of ensuring data integrity and a manifestation of the relationships
between tables. When you add a foreign key to a table, you are creating a dependency between the table
for which you define the foreign key (the referencing table) and the table your foreign key references

(the referenced table). After adding a foreign key, any record you insert into the referencing table must
either have a matching record in the referenced column(s) of the referenced table, or the value of the
foreign key column(s) must be set to NULL. This can be a little confusing, so let’s do it by example.

When I say that a value must be “set to NULL,” I'm referring to how the actual INSERT statement
looks. As we’ll learn in a moment, the data may actually look slightly different once it gets in the table
depending on what options you ve set in your FOREIGN KEY declaration.

Let’s create another table in our Accounting database called Orders. One thing you'll notice in this
CREATE script is that we’re going to use both a primary key and a foreign key. A primary key, as we will
see as we continue through the design, is a critical part of a table. Our foreign key is added to the script
in almost exactly the same way as our primary key was, except that we must say what we are referenc-
ing. The syntax goes on the column or columns that we are placing our FOREIGN KEY constraint on, and
looks something like this:

<column name> <data type> <nullability>

FOREIGN KEY REFERENCES <table name> (<column name>)
[ON DELETE {CASCADE|NO ACTION|SET NULL|SET DEFAULT}]
[ON UPDATE {CASCADE|NO ACTION|SET NULL|SET DEFAULT}]

Try It Out Creating a Table with a Foreign Key

For the moment, we’re going to ignore the ON clause. That leaves us, for our Orders table, with a script
that looks something like this:

USE Accounting

CREATE TABLE Orders
(

OrderID int IDENTITY NOT NULL
PRIMARY KEY,
CustomerNo int NOT NULL

FOREIGN KEY REFERENCES Customers (CustomerNo),

158

Constraints

OrderDate smalldatetime NOT NULL,
EmployeeID int NOT NULL
)

Note that the actual column being referenced must have either a PRIMARY KEY or a UNIQUE constraint
defined on it (we'll discuss UNIQUE constraints later in the chapter).

It's also worth noting that primary and foreign keys can exist on the same column. You can see an
example of this in the Nor thwind database with the Order Details table. The primary key is com-
posed of both the OrderID and ProductID columns — both of these are also foreign keys, and refer-
ence the Orders and Products tables respectively. We'll actually create a table later in the chapter
that has a column that is both a primary key and a foreign key.

How It Works

Once you have successfully run the preceding code, run sp_help and you should see your new con-
straint reported under the constraints section of the sp_help information. If you want to get even more
to the point, you can run sp_helpconstraint — the syntax is easy:

EXEC sp_helpconstraint <table name>
Run sp_helpconstraint on our new Orders table, and you'll get information back giving you the

names, criteria, and status for all the constraints on the table. At this point, our Orders table has one
FOREIGN KEY constraint and one PRIMARY KEY constraint.

When you run sp_helpconstraint on this table, the word (clustered) will appear
right after the reporting of the PRIMARY KEY — this just means it has a clustered
index. We will explore the meaning of this further in Chapter 9.

Our new foreign key has been referenced in the physical definition of our table, and is now an integral
part of our table. As we discussed back in Chapter 1, the database is in charge of its own integrity —our
foreign key enforces one constraint on our data and makes sure our database integrity remains intact.

Unlike primary keys, we are not limited to just one foreign key on a table. We can have between 0 and
253 foreign keys in each table. The only limitation is that a given column can reference only one foreign
key. However, you can have more than one column participate in a single foreign key. A given column
that is the target of a reference by a foreign key can also be referenced by many tables.

Adding a Foreign Key to an Existing Table

Just like with primary keys, or any constraint for that matter, we have situations where we want to add
our foreign key to a table that already exists. This process is similar to creating a primary key.

Try It Out Adding a Foreign Key to an Existing Table

Let’s add another foreign key to our Orders table to restrict the EmployeeID field (which is intended
to have the ID of the employee who entered the order) to valid employees as defined in the Employees
table. To do this, we need to be able to uniquely identify a target record in the referenced table. As I've

159

Chapter 6

already mentioned, you can do this by referencing either a primary key or a column with a UNIQUE con-
straint. In this case, we’ll make use of the existing primary key that we placed on the Employees table
earlier in the chapter:

ALTER TABLE Orders
ADD CONSTRAINT FK_EmployeeCreatesOrder
FOREIGN KEY (EmployeeID) REFERENCES Employees (EmployeeID)

Now execute sp_helpconstraint again against the Orders table and you'll see that our new con-
straint has been added.

How It Works

Our latest constraint works just as the last one did — the physical table definition is aware of the rules
placed on the data it is to contain. Just as it would not allow string data to be inserted into a numeric col-
umn, it will now also not allow a row to be inserted into the Orders table where the referenced Employee
in charge of that order is not a valid EmployeelD. If someone attempts to add a row that doesn’t match
with an employee record, the insertion into Orders will be rejected in order to maintain the integrity of
the database.

Note that while we've added two foreign keys, there is still a line down at the bottom of our sp_
helpconstraint results (or under the Messages tab if you have Results in Grid selected) that says
No foreign keys reference this table—this is telling us that, while we do have foreign
keys in this table that reference other tables, there are no other tables out there that reference this table.
If you want to see the difference, just run sp_helpconstraint on the Customers or Employees
tables at this point and you’ll see that each of these tables is now referenced by our new Orders table.

Making a Table Self-Referencing

What if the column you want to refer to isn’t in another table, but is actually right within the table in
which you are building the reference? Can a table be both the referencing and the referenced table?
You bet! Indeed, while this is far from the most common of situations, it is actually used with
regularity.

Before we actually create this self-referencing constraint that references a required (non-nullable) field
that’s based on an identity column, it's rather critical that we get at least one row in the table prior to
the foreign key being added. Why? Well, the problem stems from the fact that the identity value is cho-
sen and filled in after the foreign key has already been checked and enforced — that means that you don’t
have a value yet for that first row to reference when the check happens. The only other option here is to
go ahead and create the foreign key, but then disable it when adding the first row. We'll learn about dis-
abling constraints a little later in this chapter.

OK —because this is a table that’s referencing a column based on an identity column, we need to get a
primer row into the table before we add our constraint:

INSERT INTO Employees
(

FirstName,
LastName,

160

Constraints

Title,
SSN,
Salary,
PriorSalary,
HireDate,
ManagerEmpID,
Department
)
VALUES
(
'Billy Bob',
'Boson',
'Head Cook & Bottle Washer',
'123-45-6789",
100000,
80000,
'1990-01-01",
i,
'Cooking and Bottling'
)

Now that we have a primer row in, we can add in our foreign key. In an ALTER situation, this works just
the same as any other foreign key definition. We can now try this out:

ALTER TABLE Employees
ADD CONSTRAINT FK_EmployeeHasManager
FOREIGN KEY (ManagerEmpID) REFERENCES Employees (EmployeeID)

There is one difference with a CREATE statement. The only trick to it is that you can (but you don’t
have to) leave out the FOREIGN KEY phrasing and just use the REFERENCES clause. We already have our
Employees table set up at this point, but if we were creating it from scratch, here would be the script
(pay particular attention to the foreign key on the ManagerEmpID column):

CREATE TABLE Employees (

EmployeelID int IDENTITY NOT NULL
PRIMARY KEY,
FirstName varchar (25) NOT NULL,
MiddleInitial char (1) NULL,
LastName varchar (25) NOT NULL,
Title varchar (25) NOT NULL,
SSN varchar (11) NOT NULL,
Salary money NOT NULL,
PriorSalary money NOT NULL,
LastRaise AS Salary—PriorSalary,
HireDate smalldatetime NOT NULL,
TerminationDate smalldatetime NULL,
ManagerEmpID int NOT NULL
REFERENCES Employees (EmployeeID),
Department varchar (25) NOT NULL

161

Chapter 6

It's worth noting that, if you try to DROP the Employees table at this point (to run the
second example), you're going to get an error. Why? Well, when we established the
reference in our Orders table to the Employees table, the two tables became “schema-
bound” — that is, the Employees table now knows that it has what is called a depen-
dency on it. SQL Server will not let you drop a table that is referenced by another
table. You have to drop the foreign key in the Orders table before SQL Server will
allow you to delete the Employees table (or the Customers table for that matter).

In addition, doing the self-referencing foreign key in the constraint doesn’t allow us
to get our primer row in, so it’s important that you do it this way only when the col-
umn the foreign key constraint is placed on allows NULLs — that way you can have
the first row have a NULL in that column and avoid the need for a primer row.

Cascading Actions

One important difference between foreign keys and other kinds of keys is that foreign keys are
bi-directional; that is, they have effects not only in restricting the child table to values that exist in the
parent, but they also check for child rows whenever we do something to the parent (by doing so, they
avoid orphans). The default behavior is for SQL Server to “restrict” the parent row from being deleted if
any child rows exist. Sometimes, however, we would rather automatically delete any dependent records
than prevent the deletion of the referenced record. The same notion applies to updates to records where
we would like the dependent record to automatically reference to the newly updated record. Somewhat
rarer is the instance where you want to alter the referencing row to some sort of known state. For this,
you have the option to set the value in the dependent row to either NULL or whatever the default value
is for that column.

The process of making such automatic deletions and updates is known as cascading. This process, especially
for deletes, can actually run through several layers of dependencies (where one record depends on another,
which depends on another, and so on). So, how do we implement cascading actions in SQL Server? All we
need is a modification to the syntax we use when declaring our foreign key —we just add the ON clause
that we skipped at the beginning of this section.

Let’s check this out by adding a new table to our Accounting database. We’ll make this a table to store
the individual line items in an order, and we’ll call it OrderDetails:

CREATE TABLE OrderDetails
(

OrderID int NOT NULL,
PartNo varchar (10) NOT NULL,
Description varchar (25) NOT NULL,
UnitPrice money NOT NULL,
Qty int NOT NULL,
CONSTRAINT PKOrderDetails
PRIMARY KEY (OrderID, PartNo),

CONSTRAINT FKOrderContainsDetails

FOREIGN KEY (OrderID)
REFERENCES Orders (OrderID)
ON UPDATE NO ACTION
ON DELETE CASCADE

162

Constraints

This time we have a whole lot going on, so let’s take it apart piece by piece.

Before we get too far into looking at the foreign key aspects of this —notice some-
thing about how the primary key was done here. Instead of placing the declaration
immediately after the key, I decided to declare it as a separate constraint item. This
helps facilitate both the multi-column primary key (which therefore could not be
declared as a column constraint) and the clarity of the overall CREATE TABLE state-
ment. Likewise, I could have declared the foreign key either immediately following
the column or, as I did here, as a separate constraint item. I'll touch on this a little bit
later in the chapter.

First, notice that our foreign key is also part of our primary key — this is not at all uncommon in child
tables, and is actually almost always the case for associate tables (more on this next chapter). Just
remember that each constraint stands alone — you add, change, or delete each of them independently.

Next, look at our foreign key declaration:

FOREIGN KEY (OrderID)
REFERENCES Orders (OrderID)

We’ve declared our OrderID as being dependent on a “foreign” column. In this case, it’s for a column
(also called order1D) in a separate table (Orders), but, as we saw earlier in the chapter, it could just as
easily have been in the same table if that’s what our need was.

There is something of a gotcha when creating foreign keys that reference the same
table the foreign key is being defined on. Foreign keys of this nature are not allowed
to have declarative CASCADE actions. The reason for this restriction is to avoid cyclical
updates or deletes —that is, situations where the first update causes another, which
in turn tries to update the first. The result could be a never-ending loop.

Now, to get to the heart of our cascading issue, however, we need to look at our ON clauses:

ON UPDATE NO ACTION
ON DELETE CASCADE

We've defined two different referential integrity actions. As you might guess, a referential integrity action
is what you want to have happen whenever the referential integrity rule you’ve defined is invoked. For
situations where the parent record (in the Orders table) is updated, we’ve said that we would not like
that update to be cascaded to our child table (OrderDetails). For illustration purposes, however, I've
chosen a CASCADE for deletes.

Note that NO ACTION is the default, and so specifying this in our code is optional. The fact that this
keyword was not supported until SQL Server 2000 has caused the “typical” way of coding this to be to
leave out the NO ACTION keywords. If you don’t need backward support, I would encourage you to
include the NO ACTION explicitly to make your intent clear.

163

Chapter 6

Let’s try an insert into our OrderDetails table:

INSERT INTO OrderDetails
VALUES
(1, '4xX4525', 'This is a part',6 25.00, 2)

Unless you've been playing around with your data some, this generates an error:

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the FOREIGN KEY constraint
"FKOrderContainsDetails". The conflict occurred in database "Accounting", table
"Orders", column 'OrderID'.

The statement has been terminated.

Why? Well, we haven't inserted anything into our Orders table yet, so how can we refer to a record in
the orders table if there isn’t anything there?

This is going to expose you to one of the hassles of relational database work — dependency chains. A
dependency chain exists in situations where you have something that is, in turn, dependent on some-
thing else, which may yet be dependent on something else, and so on. There’s really nothing you can do
about this—it’s just something that comes along with database work. You have to start at the top of the
chain and work your way down to what you need inserted. Fortunately, the records you need are often
already there, save one or two dependency levels.

OK, so, in order to get our row into our OrderDetails table, we must also have a record already in
the orders table. Unfortunately, getting a row into the Orders table requires that we have one in the
Customers table (remember that foreign key we built on 0rders?). So, let’s take care of it a step at a
time:

INSERT INTO Customers -- Our Customer.
-- Remember that CustomerNo is
-- an Identity column
VALUES
('Billy Bob''s Shoes',
'123 Main St.',

o
’

'Vancouver',
'"WA',

'98685",

'Billy Bob',
'(360) 555-1234"',
'931234567",
GETDATE ()

)

Now we have a customer, so let’s select the record back out just to be sure:

Customer No 1
Customer Name Billy Bob’s Shoes
Address 1 123 Main Street

164

Constraints

Address 2

City Vancouver

State WA

Zip 98685

Contact Billy Bob

Phone (360) 555-1234
FedIDNo 931234567
DateInSystem 2000-07-1021:17:00

So—we have a CustomerID of 1 (your number may be different depending on what experimentation
you've done). We'll take that number and use it in our next INSERT (into Orders finally). Let’s insert an
order for CustomerID 1:

INSERT INTO Orders

(CustomerNo, OrderDate, EmployeeID)
VALUES

(1, GETDATE(), 1)

This time, things should work fine.

It's worth noting that the reason that we don’t still get one more error here is that we
already inserted that primer row in the Employees table; otherwise, we would have
needed to get a row into that table before SQL Server would have allowed the insert
into Orders (remember that Employees foreign key?).

At this point, we're ready for our insert into the OrderDetails table. Just to help with a CASCADE exam-
ple we're going to be doing in the moment, we’re actually going to insert not one, but two rows:

INSERT INTO OrderDetails
VALUES
(1, '4X4525', 'This is a part', 25.00, 2)
INSERT INTO OrderDetails
VALUES
(1, 'OR2400', 'This is another part', 50.00, 2)
So, let’s verify things by running a SELECT:

SELECT OrderID, PartNo FROM OrderDetails

This gets us back our expected two rows:

165

Chapter 6

Now that we have our data in all the way, let’s look at the effect a CASCADE has on the data. We'll delete

OrderID PartNo
1 0R2400
1 4X4525
(2 row(s) affected)

a row from the Orders table, and then see what happens in OrderDetails:

USE Accounting

-- First,
SELECT *
FROM Orders

let's look at the rows in both tables

SELECT *
FROM OrderDetails

-- Now, let's delete the Order record
DELETE Orders
WHERE OrderID = 1

-- Finally, look at both sets of data again
-- and see the CASCADE effect

SELECT *

FROM Orders

SELECT *
FROM OrderDetails

This yields us some interesting results:

166

OrderID CustomerNo OrderDate

L o 2000-07-13 22:18:00
(1 row(s) affected)

OrderID PartNo Description

o 0R2400 This is another part

1 4X4525 This is a part

(2 row(s) affected)

(1 row(s) affected)

OrderID CustomerNo OrderDate

(0 row(s) affected)

EmployeeID

1
UnitPrice oty
50.0000 2
25.0000 2
EmployeeID

Constraints

OrderID PartNo Description UnitPrice oty

(0 row(s) affected)

Notice that, even though we issued a DELETE against the Orders table only, the DELETE also CASCADEd
to our matching records in the 0OrderDetails table. Records in both tables were deleted. If we had
defined our table with a CASCADE update and updated a relevant record, then that too would have been
propagated to the child table.

It’s worth noting that there is no limit to the depth that a CASCADE action can affect. For example, if we
had a ShipmentDetails table that referenced rows in OrderDetails with a CASCADE action, then
those too would have been deleted just by our one DELETE in the Orders table.

This is actually one of the danger areas of cascading actions —it’s very, very easy to not realize all the
different things that one DELETE or UPDATE statement may do in your database. For this and other
reasons, I'm not a huge fan of cascading actions — they allow people to get lazy, and that’s something
that’s not usually a good thing when doing something like deleting data!

Those Other CASCADE Actions . ..

So, those were examples of cascading updates and deletes, but what about the other two types of cas-
cade actions I mentioned? What of SET NULL and SET DEFAULT?

These are new with SQL Server 2005, so avoid them if you want backward compatibility with SQL
Server 2000, but their operation is very simple: If you perform an update that changes the parent values
for a row, then the child row will be set to either NULL or whatever the default value for that column is
(whichever you chose— SET NULL or SET DEFAULT). It’s just that simple.

Other Things to Think About with Foreign Keys

There are some other things to think about before we’re done with foreign keys. We will be coming back
to this subject over and over again throughout the book, but for now, I just want to get in a couple of
finer points:

Q What makes values in foreign keys required versus optional

Q How foreign keys are bi-directional

What Makes Values in Foreign Keys Required vs. Optional

By the nature of a foreign key itself, you have two possible choices on what to fill into a column or
columns that have a foreign key defined for them:

Q Fill the column in with a value that matches the corresponding column in the referenced table.

Q Do not fill in a value at all and leave the value NULL.

You can make the foreign key completely required (limit your users to just the first option in the preced-
ing list) by simply defining the referencing column as NOT NULL. Since a NULL value won't be valid in the

167

Chapter 6

column and the foreign key requires any non-NULL value to have a match in the referenced table, you
know that every row will have a match in your referenced table. In other words, the reference is required.

Allowing the referencing column to have NULLs will create the same requirement, except that the user
will also have the option of supplying no value —even if there is not a match for NULL in the referenced
table, the insert will still be allowed.

How Foreign Keys Are Bi-Directional

We touched on this some when we discussed CASCADE actions, but when defining foreign keys, I can’t
stress enough that they effectively place restrictions on both tables. Up to this point, we’ve been talking
about things in terms of the referencing table; however, once the foreign key is defined, the referenced

table must also live by a rule:

By default, you cannot delete a record or update the referenced column in a refer-
enced table if that record is referenced from the dependent table. If you want to be
able to delete or update such a record, then you need to set up a CASCADE action for
the delete and/or update.

Let’s illustrate this “You can’t delete or update a referenced record” idea.

We just defined a couple of foreign keys for the 0Orders table. One of those references the EmployeeID
columns of the Employees table. Let’s say, for instance, that we have an employee with an EmployeeID
of 10 who takes many orders for us for a year or two, and then decides to quit and move on to another
job. Our tendency would probably be to delete the record in the Employees table for that employee, but
that would create a rather large problem —we would get what are called orphaned records in the Orders
table. Our Orders table would have a large number of records that still have an EmployeeID of 10. If we
are allowed to delete EmployeeID 10 from the Employees table, then we will no longer be able to tell
which employee entered in all those orders — the value for the EmployeeID column of the Orders table
will become worthless!

Now let’s take this example one step further. Let’s say now, that the employee did not quit. Instead, for
some unknown reason, we wanted to change that employee’s ID number. If we made the change (via an
UPDATE statement) to the Employees table, but did not make the corresponding update to the Orders
table, then we would again have orphaned records —we would have records with a value of 10 in the
EmployeeID column of the Orders table with no matching employee.

Now, let’s take it one more step further! Imagine that someone comes along and inserts a new record
with an EmployeeID of 10 —we now have a number of records in our Orders table that will be related
to an employee who didn’t take those orders. We would have bad data (yuck!).

Instead of allowing orphaned records, SQL Server, by default, restricts us from deleting or updating

records from the referenced table (in this case, the Employees table) unless any dependent records have
already been deleted from or updated in the referencing (in this case, Orders) table.

168

Constraints

This is actually not a bad segue into a brief further discussion of when a CASCADE
action makes sense and when it doesn’t. Data-integrity-wise, we probably wouldn’t
want to allow the deletion of an employee if there are dependent rows in the O0rders
table. Not being able to trace back to the employee would degrade the value of our
data. On the other hand, it may be perfectly valid (for some very strange reason) to
change an employee’s ID. We could CASCADE that update to the Orders table with
little ill effects. Another moral to the story here is not to think that you need the
same CASCADE decision for both UPDATE and DELETE — think about each separately
(and carefully).

As you can see, although the foreign key is defined on one table, it actually placed restrictions on both
tables (if the foreign key is self-referenced, then both sets of restrictions are on the one table).

UNIQUE Constraints

These are relatively easy. UNIQUE constraints are essentially the younger sibling of primary keys in that
they require a unique value throughout the named column (or combination of columns) in the table. You
will often hear UNIQUE constraints referred to as alternate keys. The major differences are that they are not
considered to be the unique identifier of a record in that table (even though you could effectively use it
that way) and that you can have more than one UNIQUE constraint (remember that you can only have
one primary key per table).

Once you establish a UNIQUE constraint, every value in the named columns must be unique. If you go to
update or insert a row with a value that already exists in a column with a unique constraint, SQL Server
will raise an error and reject the record.

Unlike a primary key, a UNIQUE constraint does not automatically prevent you from
having a NULL value. Whether NULLs are allowed or not depends on how you set the
NULL option for that column in the table. Keep in mind, however, that, if you do
allow NULLs, you will be able to insert only one of them (although a NULL doesn’t
equal another NULL, they are still considered to be duplicate from the perspective of
a UNIQUE constraint).

Since there is nothing novel about this (we’'ve pretty much already seen it with primary keys), let’s get
right to the code. Let’s create yet another table in our Accounting database — this time, it will be our
Shippers table:

CREATE TABLE Shippers
(

ShipperID int IDENTITY NOT NULL
PRIMARY KEY,

ShipperName varchar (30) NOT NULL,

Address varchar (30) NOT NULL,

City varchar (25) NOT NULL,

169

Chapter 6

State char(2) NOT NULL,

Zip varchar (10) NOT NULL,

PhoneNo varchar (14) NOT NULL
UNIQUE

Now run sp_helpconstraint against the Shippers table, and verify that your shippers table has
been created with the proper constraints.

Creating UNIQUE Constraints on Existing Tables

Again, this works pretty much the same as with primary and foreign keys. We will go ahead and create a
UNIQUE constraint on our Employees table:

ALTER TABLE Employees
ADD CONSTRAINT AK_EmployeeSSN
UNIQUE (SSN)

A quick run of sp_helpconstraint verifies that our constraint was created as planned, and on what
columns the constraint is active.

In case you're wondering, the AK I used in the constraint name here is for Alternate Key — much like
we used PK and FK for Primary and Foreign Keys. You will also often see a UQ or just U prefix used for
UNIQUE constraint names.

CHECK Constraints

The nice thing about CHECK constraints is that they are not restricted to a particular column. They can be
related to a column, but they can also be essentially table-related in that they can check one column
against another as long as all the columns are within a single table, and the values are for the same row
being updated or inserted. They may also check that any combination of column values meets a crite-
rion.

The constraint is defined using the same rules that you would use in a WHERE clause. Examples of the
criteria for a CHECK constraint include:

Goal SQL

Limit Month column to appropriate numbers BETWEEN 1 AND 12

Proper SSN formatting LIKE '[0-9][0-9][0-9]1-[0-9]
[0-9]-[0-9]1[0-9][0-9][0-9]"

Limit to a specific list of Shippers IN ('UPS', 'Fed Ex', 'USPS')

Price must be positive UnitPrice >= 0

Referencing another column in the same row ShipDate >= OrderDate

170

Constraints

This really only scratches the surface and the possibilities are virtually endless. Almost anything you
could put in a WHERE clause you can also put in your constraint. What’s more, CHECK constraints are very
fast performance-wise as compared to the alternatives (rules and triggers).

Still building on our Accounting database, let’s add a modification to our Customers table to check for
a valid date in our DateInSystem field (you can’t have a date in the system that’s in the future):

ALTER TABLE Customers
ADD CONSTRAINT CN_CustomerDateInSystem
CHECK
(DateInSystem <= GETDATE ())

Now try to insert a record that violates the CHECK constraint; you'll get an error:

INSERT INTO Customers
(CustomerName, Addressl, Address2, City, State, Zip, Contact,
Phone, FedIDNo, DateInSystem)

VALUES
('Customerl', 'Addressl', 'Add2', 'MyCity', 'NY', '55555',
'No Contact', '553-1212', '930984954', '12-31-2049')

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint "CN_CustomerDateInSystem".
The conflict occurred in database "Accounting", table "dbo.Customers", column
'DateInSystem' .

The statement has been terminated.

Now if we change things to use a DateInSystem that meets the criterion used in the CHECK (anything
with today’s date or earlier), the INSERT works fine.

DEFAULT Constraints

This will be the first of two different types of data integrity tools that will be called something to do with
“default”. This is, unfortunately very confusing, but I'll do my best to make it clear (and I think it will
become so0).

We'll see the other type of default when we look at rules and defaults later in the chapter.

A DEFAULT constraint, like all constraints, becomes an integral part of the table definition. It defines
what to do when a new row is inserted that doesn’t include data for the column on which you have
defined the default constraint. You can either define it as a literal value (say, setting a default salary to
zero or “UNKNOWN” for a string column) or as one of several system values such as GETDATE ().

The main things to understand about a DEFAULT constraint are that:

Q Defaults are only used in INSERT statements — they are ignored for UPDATE and DELETE
statements.

Q If any value is supplied in the INSERT, then the default is not used.

Q If no value is supplied, the default will always be used.

171

Chapter 6

Defaults are only made use of in INSERT statements. I cannot express enough how much this is a confu-
sion point for many SQL Server beginners. Think about it this way — when you are first inserting the
record, SQL Server doesn’t have any kind of value for your column except what you supplied (if any-
thing) or the default. If neither of these is supplied, then SQL Server will either insert a NULL (essentially
amounting to “I don’t know”), or, if your column definition says NOT NULL, then SQL Server will reject
the record. After that first insert, however, SQL Server already has some value for that column. If you are
updating that column, then it has your new value. If the column in question isn’t part of an UPDATE
statement, then SQL Server just leaves what is already in the column.

If a value was provided for the column, then there is no reason to use the default— the supplied value
is used.

If no value is supplied, then the default will always be used. Now this seems simple enough until you
think about the circumstance where a NULL value is what you actually wanted to go into that column for a
record. If you don’t supply a value on a column that has a default defined, then the default will be used.
What do you do if you really wanted it to be NULL? Say so—insert NULL as part of your INSERT statement.

Under the heading of “One more thing,” it's worth noting that there is an exception
to the rule about an UPDATE command not using a default. The exception happens if
you explicitly say that you want a default to be used. You do this by using the key-
word DEFAULT as the value you want the column updated to.

Defining a DEFAULT Constraint in Your CREATE TABLE
Statement

At the risk of sounding repetitious this works pretty much like all the other column constraints we’ve
dealt with thus far. You just add it to the end of the column definition.

To work an example, start by dropping the existing Shippers table that we created earlier in the chap-
ter. This time, we’ll create a simpler version of that table, including a default:

CREATE TABLE Shippers
(

ShipperID int IDENTITY NOT NULL
PRIMARY KEY,
ShipperName varchar (30) NOT NULL,

DateInSystem smalldatetime NOT NULL
DEFAULT GETDATE ()
)

After you have run your CREATE script, you can again make use of sp_helpconstraint to show you
what you have done. You can then test out how your default works by inserting a new record:

INSERT INTO Shippers
(ShipperName)

VALUES
('United Parcel Service')

172

Constraints

Then run a SELECT statement on your Shippers table:

SELECT * FROM Shippers

The default value has been generated for the DateInSystem column since we didn’t supply a value our-

selves:
ShipperID ShipperName DateInSystem
1 United Parcel Service 2000-07-13 23:26:00

(1 row(s) affected)

Adding a DEFAULT Constraint to an Existing Table

While this one is still pretty much more of the same, there is a slight twist. We make use of our ALTER
statement and ADD the constraint as before, but we add a FOR operator to tell SQL Server what column is
the target for the DEFAULT:

ALTER TABLE Customers
ADD CONSTRAINT CN_CustomerDefaultDateInSystem
DEFAULT GETDATE() FOR DateInSystem
And an extra example:
ALTER TABLE Customers

ADD CONSTRAINT CN_CustomerAddress
DEFAULT 'UNKNOWN' FOR Addressl

As with all constraints except for a PRIMARY KEY, we are able to add more than one per table.

You can mix and match any and all of these constraints as you choose —just be care-
ful not to create constraints that have mutually exclusive conditions. For example,
don’t have one constraint that says that coll > col2 and another one that says that
col2 > coll. SQL Server will let you do this, and you wouldn’t see the issues with it
until run time.

Disabling Constraints

Sometimes we want to eliminate the constraint checking, either just for a time or permanently. It proba-
bly doesn’t take much thought to realize that SQL Server must give us some way of deleting constraints,
but SQL Server also allows us to just deactivate a FOREIGN KEY or CHECK constraint while otherwise
leaving it intact.

The concept of turning off a data integrity rule might seem rather ludicrous at first. I mean, why would

you want to turn off the thing that makes sure you don’t have bad data? The usual reason is the situa-
tion where you already have bad data. This data usually falls into two categories:

173

Chapter 6

Q Data that’s already in your database when you create the constraint

Q Data that you want to add after the constraint is already built

You cannot disable PRIMARY KEY or UNIQUE constraints.

Ignoring Bad Data When You Create the Constraint

All this syntax has been just fine for the circumstances in which you create the constraint at the same
time as you create the table. Quite often, however, data rules are established after the fact. Let’s say, for
instance, that you missed something when you were designing your database, and you now have some
records in an Invoicing table that show a negative invoice amount. You might want to add a rule that
won’t let any more negative invoice amounts into the database, but at the same time, you want to pre-
serve the existing records in their original state.

To add a constraint, but have it not apply to existing data, you make use of the WITH NOCHECK option
when you perform the ALTER TABLE statement that adds your constraint. As always, let’s look at an
example.

The customers table we created in the Accounting database has a field called Phone. The Phone field
was created with a datatype of char because we expected all of the phone numbers to be of the same
length. We also set it with a length of 15 in order to ensure that we have enough room for all the format-
ting characters. However, we have not done anything to make sure that the records inserted into the
database do indeed match the formatting criteria that we expect. To test this out, we’ll insert a record in
a format that is not what we’re expecting, but might be a very honest mistake in terms of how someone
might enter a number:

INSERT INTO Customers
(CustomerName,
Addressl,
Address?2,

City,

State,

Zip,

Contact,
Phone,
FedIDNo,
DateInSystem)

VALUES
('MyCust',

'123 Anywhere',

[
’

'Reno' o

NV

80808,

'Joe Bob',
'555-1212",
1931234567,
GETDATE ())

174

Constraints

Now let’s add a constraint to control the formatting of the Phone field:

ALTER TABLE Customers
ADD CONSTRAINT CN_CustomerPhoneNo
CHECK
(Phone LIKE '([0-9]1[0-9]1[0-9]) [0-9]1[0-9]1[0-9]-[0-9]1[0-9]1[0-9]1[0-9]")

When we run this, we have a problem:

Msg 547, Level 16, State 1, Line 1
ALTER TABLE statement conflicted with COLUMN CHECK constraint 'CN_CustomerPhoneNo'.
The conflict occurred in database 'Accounting', table 'Customers', column 'Phone'.

SQL Server will not create the constraint unless the existing data meets the constraint criteria. To get
around this long enough to install the constraint, either we need to correct the existing data or we must
make use of the WITH NOCHECK option in our ALTER statement. To do this, we just add WITH NOCHECK to
the statement as follows:

ALTER TABLE Customers
WITH NOCHECK
ADD CONSTRAINT CN_CustomerPhoneNo
CHECK
(Phone LIKE ' ([0-9]1[0-91([0-9]) [0-9]1[0-9]1[0-9]1-[0-9]1[0-91[0-9]1[0-9]")

Now if we run our same INSERT statement again (remember it inserted without a problem last time), the
constraint works and the data is rejected:

Msg 547, Level 16, State 0, Line 1

The ALTER TABLE statement conflicted with the CHECK constraint "CN_CustomerPhoneNo".
The conflict occurred in database "Accounting", table "dbo.Customers", column
'Phone' .

However, if we modify our INSERT statement to adhere to our constraint and then re-execute it, the row
will be inserted normally:

INSERT INTO Customers
(CustomerName,
Addressl,
Address?2,

City,

State,

Zip,

Contact,
Phone,
FedIDNo,
DateInSystem)

VALUES
('MyCust',

'123 Anywhere',

[
’

'Reno’,
NV,
80808,

175

Chapter 6

'Joe Bob',

' (800)555-1212",
1931234567,
GETDATE ())

Try running a SELECT on the Customers table at this point. You'll see data that both does and does not
adhere to our CHECK constraint criterion:

SELECT CustomerNo, CustomerName, Phone FROM Customers

CustomerNo CustomerName Phone

1 Billy Bob's Shoes (360) 555-1234
2 Customerl 553-1212

3 MyCust 555-1212

5 MyCust (800) 555-1212

(2 row(s) affected)

The old data is retained for backward reference, but any new data is restricted to meeting the new criteria.

Temporarily Disabling an Existing Constraint

All right—so you understand why we need to be able to add new constraints that do not check old
data, but why would we want to temporarily disable an existing constraint? Why would we want to let
data that we know is bad be added to the database? Actually, the most common reason is basically the
same reason for which we make use of the WITH NOCHECK option —old data.

Old data doesn’t just come in the form of data that has already been added to your database. It may also
be data that you are importing from a legacy database or some other system. Whatever the reason, the
same issue still holds — you have some existing data that doesn’t match up with the rules, and you need
to get it into the table.

Certainly one way to do this would be to drop the constraint, add the desired data, and then add the
constraint back using a WITH NOCHECK. But what a pain! Fortunately, we don’t need to do that. Instead,
we can run an ALTER statement with an option called NOCHECK that turns off the constraint in question.
Here’s the code that disables the CHECK constraint that we just added in the last section:

ALTER TABLE Customers
NOCHECK
CONSTRAINT CN_CustomerPhoneNo

Now we can run that INSERT statement again — the one we proved wouldn’t work if the constraint was
active:

INSERT INTO Customers
(CustomerName,
Addressl,
Address?2,

City,

176

Constraints

State,

Zip,

Contact,

Phone,

FedIDNo,

DateInSystem)
VALUES

('MyCust',

'123 Anywhere',

[
’

'Reno’,
NV,

80808,

'Joe Bob',
'555-1212",
1931234567,
GETDATE ())

Once again, we are able to INSERT non-conforming data to the table.

By now, the question may have entered your mind asking how do you know whether you have the con-
straint turned on or not. It would be pretty tedious if you had to create a bogus record to try to insert in
order to test whether your constraint is active or not. Like most (but not all) of these kinds of dilemmas,
SQL Server provided a procedure to indicate the status of a constraint, and it’s a procedure we’ve already
seen, sp_helpconstraint. To execute it against our Customers table is easy:

EXEC sp_helpconstraint Customers

The results are a little too verbose to fit into the pages of this book, but the second result set this proce-
dure generates includes a column called status_enabled. Whatever this column says the status is can
be believed —in this case, it should currently be Disabled.

When we are ready for the constraint to be active again, we simply turn it back on by issuing the same
command with a CHECK in the place of the NOCHECK:

ALTER TABLE Customers
CHECK
CONSTRAINT CN_CustomerPhoneNo

If you run the INSERT statement to verify that the constraint is again functional, you will see a familiar
error message:

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint
"CN_CustomerDateInSystem". The conflict occurred in database "Accounting", table
"dbo.Customers", column 'DateInSystem'.

The statement has been terminated.

Our other option, of course, is to run sp_helpconstraint again, and check out the status_enabled
column. If it shows as Enabled, then our constraint must be functional again.

177

Chapter 6

Rules and Defaults — Cousins of
Constraints

Rules and defaults have been around much longer than CHECK and DEFAULT constraints have been. They
are something of an old SQL Server stand-by, and are definitely not without their advantages.

That being said, I'm going to digress from explaining them long enough to recommend that you look
them over for backward compatibility and legacy code familiarity only. Rules and defaults are not ANSI-
compliant (which creates portability issues), and they do not perform as well as constraints do. Microsoft
has listed Rules and Defaults as there only for backward compatibility since version 7.0 — that’s three ver-
sions and 6 years—not an encouraging thing if you're asking yourself whether this feature is going to
continue to be supported in the future. I wouldn’t go so far as to suggest that you start sifting through and
replacing any old code that you may come across, but you should use constraints for any new code you
generate.

The primary thing that sets rules and defaults apart from constraints is in their very nature; constraints
are features of a table — they have no existence on their own —while rules and defaults are actual
objects in and of themselves. Whereas a constraint is defined in the table definition, rules and defaults
are defined independently and are then “bound” to the table after the fact.

The independent object nature of rules and defaults gives them the ability to be reused without being
redefined. Indeed, rules and defaults are not limited to being bound to just tables; they can also be
bound to datatypes — vastly improving your ability to make highly functional user-defined datatypes.

Rules

A rule is incredibly similar to a CHECK constraint. The only difference beyond those I've already described
is that rules are limited to working with just one column at a time. You can bind the same rule separately
to multiple columns in a table, but the rule will work independently with each column, and will not be
aware of the other columns at all. A constraint defined as (QtyShipped <= QtyOrdered) would not
work for a rule (it refers to more than one column), whereas LIKE ([0-9] [0-9] [0-9]) would (it applies
only to whatever column the rule is bound to).

Let’s define a rule so that you can see the differences first hand:

CREATE RULE SalaryRule
AS @Salary > 0

Notice that what we are comparing is shown as a variable —whatever the value is of the column being
checked, that is the value that will be used in the place of @salary. Thus, in this example, we're saying
that any column our rule is bound to would have to have a value greater than zero.

If you want to go back and see what your rule looks like, you can make use of sp_helptext:

EXEC sp_helptext SalaryRule

178

Constraints

And it will show you your exact rule definition:

CREATE RULE SalaryRule
AS @Salary > 0

Now we’ve got a rule, but it isn’t doing anything. If we tried to insert a record in our Employees table,
we could still insert any value right now without any restrictions beyond datatype.

In order to activate the rule, we need to make use of a special stored procedure called sp_bindrule. We
want to bind our SalaryRule to the Salary column of our Employees table. The syntax looks like this:

sp_bindrule <'rule'>, <'object_name'>, [<'futureonly flag'>]

The rule part is simple enough — that’s the rule we want to bind. The object_name is also simple
enough —it’s the object (column or user-defined datatype) to which we want to bind the rule. The only
odd parameter is the futureonly_flag and it applies only when the rule is bound to a user-defined
datatype. The default is for this to be off. However, if you set it to True or pass in a 1, then the binding
of the rule will only apply to new columns to which you bind the user-defined datatype. Any columns
that already have the datatype in its old form will continue to use that form.

Since we're just binding this rule to a column, our syntax requires only the first two parameters:
sp_bindrule 'SalaryRule', 'Employees.Salary'

Take a close look at the object_name parameter —we have both Employees and Salary separated
by a “.” —why is that? Since the rule isn’t associated with any particular table until you bind it, you
need to state the table and column to which the rule will be bound. If you do not use the tablename

. column naming structure, then SQL Server will assume that what you're naming must be a user-
defined datatype —if it doesn’t find one, you'll get back an error message that can be a bit confusing if

you hadn’t intended to bind the rule to a datatype:
Msg 15148, Level 16, State 1, Procedure sp_bindrule, Line 190
The data type or table column 'Salary' does not exist or you do not have

permission.

In our case, trying to insert or update an Employees record with a negative value violates the rule and
generates an error.

If we want to remove our rule from use with this column, we make use of sp_unbindrule:

EXEC sp_unbindrule 'Employees.Salary'
The futureonly_flag parameter is again an option, but doesn’t apply to this particular example. If
you use sp_unbindrule with the futureonly_flag turned on, and it is used against a user-defined

datatype (rather than a specific column), then the unbinding will only apply to future uses of that
datatype — existing columns using that datatype will still make use of the rule.

179

Chapter 6

Dropping Rules

If you want to completely eliminate a rule from your database, you use the same DROP syntax that we’ve
already become familiar with for tables

DROP RULE <rule name>

Defaults

Defaults are even more similar to their cousin —a default constraint— than a rule is to a CHECK con-
straint. Indeed, they work identically, with the only real differences being in the way that they are
attached to a table and the default’s (the object, not the constraint) support for a user-defined datatype.

The concept of defaults vs. DEFAULT constraints is wildly difficult for a lot of people
to grasp. After all, they have almost the same name. If we refer to “default”, then we
are referring to either the object-based default (what we’re talking about in this sec-
tion), or as shorthand to the actual default value (that will be supplied if we don’t
provide an explicit value). If we refer to a “DEFAULT constraint,” then we are talking
about the non—object-based solution —the solution that is an integral part of the
table definition.

The syntax for defining a default works much as it did for a rule:

CREATE DEFAULT <default name>
AS <default value>

Therefore, to define a default of zero for our Salary:

CREATE DEFAULT SalaryDefault
AS 0

Again, a default is worthless without being bound to something. To bind it we make use of sp_
bindefault, which is, other than the procedure name, identical syntax to the sp_bindrule procedure:

EXEC sp_bindefault 'SalaryDefault', 'Employees.Salary'
To unbind the default from the table, we use sp_unbindefault:
EXEC sp_unbindefault 'Employees.Salary'

Keep in mind that the futureonly_flag also applies to this stored procedure; it is just not used here.

Dropping Defaults

If you want to completely eliminate a default from your database, you use the same DROP syntax that
we’ve already become familiar with for tables and rules:

DROP DEFAULT <default name>

180

Constraints

Determining Which Tables and Datatypes Use a Given
Rule or Default

If you ever go to delete or alter your rules or defaults, you may first want to take a look at which tables
and datatypes are making use of them. Again, SQL Server comes to the rescue with a system stored pro-
cedure. This one is called sp_depends. Its syntax looks like this:

EXEC sp_depends <object name>

sp_depends provides a listing of all the objects that depend on the object you've requested information
about.

Unfortunately, sp_depends is not a sure bet to tell you about every object that
depends on a parent object. SQL Server supports something called “deferred name
resolution.” Basically, deferred name resolution means that you can create objects
(primary stored procedures) that depend on another object— even before the second
(target of the dependency) object is created. For example, SQL Server will now allow
you to create a stored procedure that refers to a table even before the said table is
created. In this instance, SQL Server isn’t able to list the table as having a depen-
dency on it. Even after you add the table, it will not have any dependency listing if
you use sp_depends.

Triggers for Data Integrity

We've got a whole chapter coming up on triggers, but any discussion of constraints, rules, and defaults
would not be complete without at least a mention of triggers.

One of the most common uses of triggers is to implement data integrity rules. Since we have that chapter
coming up, I'm not going to get into it very deeply here other than to say that triggers have a very large
number of things they can do data integrity—wise that a constraint or rule could never hope to do. The
downside (and you knew there had to be one) is that they incur substantial additional overhead and are,
therefore, much (very much) slower in almost any circumstance. They are procedural in nature (which is
where they get their power), but they also happen after everything else is done, and should be used only
as a relatively last resort.

Choosing What to Use

Wow. Here you are with all these choices, and now how do you figure out which is the right one to use?
Some of the constraints are fairly independent (PRIMARY and FOREIGN KEYs, UNIQUE constraints) — you
are using either them or nothing. The rest have some level of overlap with each other and it can be rather
confusing when making a decision on what to use. You've got some hints from me as we’ve been going
through this chapter about what some of the strengths and weaknesses are of each of the options, but it
will probably make a lot more sense if we look at them all together for a bit.

181

Chapter 6

Restriction

Constraints

Rules, Defaults

Triggers

Pros

Fast.
Can reference other columns.

Happens before the command occurs.

ANSI-compliant.

Independent objects.
Reusable.
Can be bound to datatypes.

Happens before the command occurs.

Ultimate flexibility.

Can reference other columns and
other tables. Can even use .NET to
reference information that is external
to your SQL Server.

Cons

Must be redefined for each table.
Can’t reference other tables.
Can’t be bound to datatypes.

Slightly slower.

Can’t reference across columns.
Can’t reference other tables.
Really meant for backward
compatibility only!!!

Happens after the command
occurs.
High overhead.

The main time to use rules and defaults is if you are implementing a rather robust logical model, and
are making extensive use of user-defined datatypes. In this instance, rules and defaults can provide a lot
of functionality and ease of management without much programmatic overhead —you just need to be
aware that they may go away in a future release someday. Probably not soon, but someday.

Triggers should only be used when a constraint is not an option. Like constraints, they are attached to
the table and must be redefined with every table you create. On the bright side, they can do most things
that you are likely to want to do data integrity—wise. Indeed, they used to be the common method of
enforcing foreign keys (before Foreign Key constraints were added). We will cover these in some detail

later in the book.

That leaves us with constraints, which should become your data integrity solution of choice. They are
fast and not that difficult to create. Their downfall is that they can be limiting (not being able to reference
other tables except for a FOREIGN KEY), and they can be tedious to redefine over and over again if you
have a common constraint logic.

Regardless of what kind of integrity mechanism you’re putting in place (keys, trig-
gers, constraints, rules, defaults), the thing to remember can best be summed up in
just one word — balance.

Every new thing that you add to your database adds additional overhead, so you
need to make sure that whatever you're adding honestly has value to it before you
stick it in your database. Avoid things like redundant integrity implementations (for
example, I can’t tell you how often I've come across a database that has both foreign
keys defined for referential integrity and triggers to do the same thing). Make sure
you know what constraints you have before you put the next one on, and make sure
you know exactly what you hope to accomplish with it.

182

Constraints

Summary

The different types of data integrity mechanisms described in this chapter are part of the backbone of a
sound database. Perhaps the biggest power of RDBMSs is that the database can now take responsibility
for data integrity rather than depending on the application. This means that even ad hoc queries are sub-
ject to the data rules, and that multiple applications are all treated equally with regard to data integrity
issues.

In the chapters to come, we will look at the tie between some forms of constraints and indexes, along

with taking a look at the advanced data integrity rules than can be implemented using triggers. We’ll
also begin looking at how the choices between these different mechanisms affect our design decisions.

183

Adding More to Our Queries

When I first started writing about SQL Server a number of years ago, I was faced with a question
of when exactly to introduce more complex queries into the knowledge mix — this book faces that
question all over again. At issue is something of a “chicken or egg” thing — talk about scripting,
variables, and the like first, or get to some things that a relatively beginning user might make use
of long before they do server side scripting. This time around, the notion of “more queries early”
won out.

Some of the concepts in the chapter are going to challenge you to a new way of thinking. You
already had a taste of this just dealing with joins, but you haven’t had to deal with the kind of
depth that I want to challenge you with in this chapter. Even if you don’t have that much procedu-
ral programming experience, the fact is that your brain has a natural tendency to break complex
problems down into their smaller subparts (sub-procedures —logical steps) as opposed to as a
whole (the “set,” or SQL way).

While SQL Server 2005 supports procedural language concepts now more than ever, my challenge
to you is to try and see the question as its whole first. Be certain that you can’t get it in a single
query. Even if you can’t think of a way, quite often you can break it up into several small queries
and then combine them one at a time back into a larger query that does it all in one task. Try to see
it as a whole, and, if you can’t, then go ahead and break it down, but then combine it into the
whole again to the largest extent that makes sense.

This is really what's at the heart of my challenge of a “new way of thinking” — conceptualizing the
question as a whole rather than in steps. When we program in most languages, we usually work
in a linear fashion. With SQL however, you need to think more in terms of set theory. You can liken
this to math class, and the notion of A union B or A intersect B. We need to think less in terms of
steps to resolve the data, and more about how the data “fits” together.

In this chapter, we're going to be using this concept of data fit to ask what amounts to multiple
questions in just one query. Essentially, we're going to look at ways of taking what seems like mul-
tiple queries and place them into something that will execute as a complete unit. In addition, we’ll
also be taking a look at query performance, and what you can do to get the most out of queries.

Among the topics we'll be covering in this chapter are:

Chapter 7

Nested subqueries
“Correlated” subqueries

Derived Tables

U 0O 0 O

Making use of the EXISTS operator
Q Optimizing query performance

We'll see how using subqueries, we can make the seemingly impossible completely possible, and how
an odd tweak here and there can make a big difference in your query performance.

What Is a Subquery?

A subquery is a normal T-SQL query that is nested inside another query. They are created using parenthe-
ses when you have a SELECT statement that serves as the basis for either part of the data or the condition
in another query.

Subqueries are generally used to fill one of a couple of needs:

Q Break a query up into a series of logical steps
Q Provide a listing to be the target of a WHERE clause together with [IN|EXISTS|ANY |ALL]
Q To provide a lookup driven by each individual record in a parent query

Some subqueries are very easy to think of and build, but some are extremely complex —it usually
depends on the complexity of the relationship between the inner (the sub) and outer (the top) query.

It’s also worth noting that most subqueries (but definitely not all) can also be written using a join. In
places where you can use a join instead, the join is usually the preferable choice.

I once got into a rather lengthy debate (perhaps 20 or 30 e-mails flying back and forth with examples,
reasons, etc. over a few days) with a coworker over the joins vs. subqueries issuie.

Traditional logic says to always use the join, and that was what I was pushing (due to experience rather
than traditional logic — you've already seen several places in this book where I've pointed out how tra-
ditional thinking can be bogus). My coworker was pushing the notion that a subquery would actually
cause less overhead — I decided to try it out.

What I found was essentially (as you might expect) that we were both right in certain circumstances. We
will explore these circumstances fully toward the end of the chapter after you have a bit more background.

Now that we know what a subquery theoretically is, let’s look at some specific types and examples of
subqueries.

Building a Nested Subquery

A nested subquery is one that goes in only one direction — returning either a single value for use in the
outer query, or perhaps a full list of values to be used with the IN operator. In the event you want to use

186

Adding More to Our Queries

“_n

an explicit operator, then you're going to be using a query that returns a single value — that means
one column from one row. If you are expecting a list back, then you'll need to use the IN operator with
your outer query.

In the loosest sense, your query syntax is going to look something like one of these two syntax templates:

SELECT <SELECT list>
FROM <SomeTable>
WHERE <SomeColumn> = (
SELECT <single column>
FROM <SomeTable>
WHERE <condition that results in only one row returned>)

SELECT <SELECT list>

FROM <SomeTable>

WHERE <SomeColumn> IN (
SELECT <single column>
FROM <SomeTable>
[WHERE <condition>)]

Obviously, the exact syntax will vary. Not for just substituting the select list and exact table names, but
also because you may have a multi-table join in either the inner or outer queries — or both.

Nested Queries Using Single-Value SELECT Statements

Let’s get down to the nitty-gritty with an explicit example. Let’s say, for example, that we wanted to
know the ProductIDs of every item sold on the first day any product was purchased from the system.

If you already know the first day that an order was placed in the system, then it’s no problem; the query
would look something like this:

SELECT DISTINCT o.OrderDate, od.ProductID
FROM Orders o
JOIN [Order Details] od
ON o0.0rderID = od.OrderID
WHERE OrderDate = '7/4/1996' --This is first OrderDate in the system

This yields us the correct results:

OrderDate ProductID
1996-07-04 00:00:00.000 11
1996-07-04 00:00:00.000 42
1996-07-04 00:00:00.000 72

(3 row(s) affected)

But let’s say, just for instance, that we are regularly purging data from the system, and we still want to
ask this same question as part of an automated report.

187

Chapter 7

Since it’s going to be automated, we can’t run a query to find out what the first date in the system is and
manually plug that into our query — or can we? Actually, the answer is “Yes, we can.” By putting it all
into just one statement:

SELECT DISTINCT o.OrderDate, od.ProductID
FROM Orders o
JOIN [Order Details] od
ON o0.0rderID = od.OrderID
WHERE o.OrderDate = (SELECT MIN (OrderDate) FROM Orders)

It’s just that quick and easy. The inner query (SELECT MIN...) retrieves a single value for use in the
outer query. Since we're using an equals sign, the inner query absolutely must return only one column
from one single row, or you will get a runtime error.

Nested Queries Using Subqueries That Return Multiple Values

Perhaps the most common of all subqueries that are implemented in the world are those that retrieve
some form of domain list and use it as criteria for a query.

For this one, let’s switch over to using the Pubs database as we did in Chapter 5. What we want is a list
of all the stores that have discount records. The stores are, not surprisingly, in a table called Stores. The
discounts are in a table called, appropriately enough, discounts.

We might write something like this:
USE PUBS

SELECT stor_id AS "Store ID", stor_name AS "Store Name"
FROM Stores
WHERE stor_id IN (SELECT stor_id FROM Discounts)

As it happens, this gets us back only one row —but what’s interesting is that it is exactly the same row
we saw doing an inner join in a query in Chapter 5:

Store ID Store Name

8042 Bookbeat

(1 row(s) affected)

Queries of this type almost always fall into the category of one that can be done using an inner join
rather than a nested SELECT. For example, we could get the same results as the preceding subquery by
running this simple join:

SELECT s.stor_id AS "Store ID", stor_name AS "Store Name"
FROM Stores s
JOIN Discounts d

ON s.stor_id = d.stor_id

188

Adding More to Our Queries

For performance reasons you want to use the join method as your default solution if you don’t have a
specific reason for using the nested SELECT —we’ll discuss this more before the chapter’s done.

SQL Server is actually pretty smart about this kind of thing. In the lion’s share of situations, SQL
Server will actually resolve the nested subquery solution to the same query plan it would use on the
join. So, with that in mind, the truth is that most of the time, there really isn’t that much difference. The
problem, of course, is that I just said most of the time. When the query plans vary, the join is usually
the better choice, and thus the recommendation to use that syntax by default.

Using a Nested SELECT to Find Orphaned Records

This type of nested SELECT is nearly identical to our previous example, except that we add the NOT oper-
ator. The difference this makes when you are converting to join syntax is that you are equating to an
outer join rather than an inner join.

Before we do the nested SELECT syntax, let’s review one of our examples of an outer join from Chapter 5.
In this query, we were trying to identify all the stores in the pubs database that didn’t have matching dis-
count records:

USE Pubs

SELECT s.Stor_Name AS "Store Name"
FROM Discounts d
RIGHT OUTER JOIN Stores s

ON d.Stor_ID = s.Stor_ID
WHERE d.Stor_ID IS NULL

This got us five rows back:

Store Name

Eric the Read Books

Barnum's

News & Brews

Doc-U-Mat: Quality Laundry and Books
Fricative Bookshop

(5 row(s) affected)

This is the way that, typically speaking, things should be done. I can’t say, however, that it’s the way that
things are usually done. The join usually takes a bit more thought, so we usually wind up with the
nested SELECT instead.

See if you can write this nested SELECT on your own—but I'll warn you: this one has something of a
gotcha in it. Once you're done, come back and take a look below.

It should wind up looking like this:
SELECT stor_id AS "Store ID", stor_name AS "Store Name"
FROM Stores

WHERE stor_id NOT IN
(SELECT stor_id FROM Discounts WHERE stor_id IS NOT NULL)

189

Chapter 7

This yields us exactly the same five records. I'm guessing, however, that you probably didn’t use the NOT
NULL comparison in the inner query the first time you tried it.

Whether you need to include the NOT NULL qualification or not depends on whether your table accepts
NULLs and what exactly you want for results. In our case, if we leave the comparison off, we will, in error,
wind up thinking that there aren’t any stores that don’t have discounts (when there really are). The rea-
son has to do with how NULLs compare —you need to be extremely careful when dealing with the possi-
bility of NULL values in your IN list.

Correlated Subqueries

Two words for you on this section: Pay Attention! This is another one of those little areas that, if you
truly “get it,” can really set you apart from the crowd. By “get it” I don’t just mean that you understand
how it works, but also that you understand how important it can be.

Correlated subqueries are one of those things that make the impossible possible. What’s more, they often
turn several lines of code into one, and often create a corresponding increase in performance. The prob-
lem with them is that they require a substantially different style of thought than you're probably used
to. Correlated subqueries are probably the single easiest concept in SQL to learn, understand, and then
promptly forget because it simply goes against the grain of how you think. If you're one of the few who
choose to remember it as an option, then you will be one of the few who figure out that hard-to-figure-
out problem. You'll also be someone with a far more complete toolset when it comes to squeezing every
ounce of performance out of your queries.

How Correlated Subqueries Work

What makes correlated subqueries different from the nested subqueries we’ve been looking at is that the
information travels in fwo directions rather than one. In a nested subquery, the inner query is processed
only once, and that information is passed out for the outer query, which will also execute just once —
essentially providing the same value or list that you would have provided if you had typed it in yourself.

With correlated subqueries, however, the inner query runs on information provided by the outer query,
and vice versa. That may seem a bit confusing (that chicken or the egg thing again), but it works in a
three-step process:

Q The outer query obtains a record, and passes it into the inner query.
Q The inner query executes based on the passed in value(s).

Q The inner query then passes the values from its results back out to the outer query, which uses
them to finish its processing.

Correlated Subqueries in the WHERE Clause

I realize that this is probably a bit confusing, so let’s look at it in an example.

We'll go back to the Northwind database and look again at the query where we wanted to know the
orders that happened on the first date that an order was placed in the system. However, this time we

190

Adding More to Our Queries

want to add a new twist: We want to know the 0rderID(s) and OrderDate of the first order in the sys-
tem for each customer. That is, we want to know the first day that a customer placed an order and the
IDs of those orders. Let’s look at it piece by piece.

First, we want the OrderDate, OrderID, and CustomerID for each of our results. All of that information
can be found in the orders table, so we know that our query is going to be based, at least in part, on
that table.

Next, we need to know what the first date in the system was for each customer. That’s where the tricky
part comes in. When we did this with a nested subquery, we were only looking for the first date in the
entire file—now we need a value that’s by individual customer.

This wouldn’t be that big a deal if we were to do it in two separate queries—we could just create a tem-
porary table, and then join back to it.

A temporary table is pretty much just what it sounds like—a table that is created for temporary use
and will go away after our processing is complete— exactly how long it will stay around is variable and
is outside the scope of this chapter. We will, however, visit temporary tables a bit more as we continue
through the book.

The temporary table solution might look something like this:
USE Northwind

-- Get a list of customers and the date of their first order
SELECT CustomerID, MIN((OrderDate)) AS OrderDate

INTO #MinOrderDates

FROM Orders

GROUP BY CustomerID

ORDER BY CustomerID

-- Do something additional with that information
SELECT o.CustomerID, o.0rderID, o.OrderDate
FROM Orders o
JOIN #MinOrderDates t
ON o.CustomerID = t.CustomerID
AND o.OrderDate = t.OrderDate
ORDER BY o.CustomerID

DROP TABLE #MinOrderDates
We get back 89 rows:

(89 row(s) affected)

CustomerID OrderID OrderDate

ALFKI 10643 1997-08-25 00:00:00.000
ANATR 10308 1996-09-18 00:00:00.000
ANTON 10365 1996-11-27 00:00:00.000
AROUT 10355 1996-11-15 00:00:00.000

191

Chapter 7

BERGS 10278 1996-08-12 00:00:00.000
WHITC 10269 1996-07-31 00:00:00.000
WILMK 10615 1997-07-30 00:00:00.000
WOLZA 10374 1996-12-05 00:00:00.000

(89 row(s) affected)

As previously stated, don’t worry if your results are slightly different from those shown here — it just
means you've been playing around with the Northwind data a little more or a little less than I have.

The fact that we are building two completely separate result sets here is emphasized by the fact that you
see two different row (s) affected in the results. That, more often than not, has a negative impact on
performance. We'll explore this further after we explore our options some more.

Sometimes using this two-query approach is simply the only way to get things done without using a
cursor — this is not one of those times.

OK, so if we want this to run in a single query, we need to find a way to look up each individual. We can
do this by making use of an inner query that performs a lookup based on the current CustomerID in the
outer query. We will then need to return a value back out to the outer query so it can match things up
based on the earliest order date.

It looks like this:

SELECT ol.CustomerID, ol.0rderID, ol.OrderDate
FROM Orders ol
WHERE ol.OrderDate = (SELECT Min(02.OrderDate)
FROM Orders o2
WHERE o02.CustomerID = ol.CustomerID)
ORDER BY CustomerID

With this, we get back the same 89 rows:

CustomerID OrderID OrderDate

ALFKI 10643 1997-08-25 00:00:00.000
ANATR 10308 1996-09-18 00:00:00.000
ANTON 10365 1996-11-27 00:00:00.000
AROUT 10355 1996-11-15 00:00:00.000
BERGS 10278 1996-08-12 00:00:00.000
WHITC 10269 1996-07-31 00:00:00.000
WILMK 10615 1997-07-30 00:00:00.000
WOLZA 10374 1996-12-05 00:00:00.000

(89 row(s) affected)

192

Adding More to Our Queries

There are a few key things to notice in this query:

QO Wesee only one row(s) affected line—giving us a good clue that only one query plan had
to be executed.

Q The outer query (in this example) looks pretty much just like a nested subquery. The inner
query, however, has an explicit reference to the outer query (notice the use of the “o1” alias).

Q Aliases are used in both queries —even though it looks like the outer query shouldn’t need
one —because they are required whenever you explicitly refer to a column from the other
query (inside refers to a column on the outside or vice versa).

The latter point concerning needing aliases is a big area of confusion. The fact is
that sometimes you need them, and sometimes you don’t. While I don’t tend to use
them at all in the types of nested subqueries that we looked at in the early part of
this chapter, I alias everything when dealing with correlated subqueries.

The hard and fast “rule” is that you must alias any table (and its related columns)
that’s going to be referred to by the other query. The problem is that this can quickly
become very confusing. The way to be on the safe side is to alias everything — that
way you're positive of which table in which query you’re getting your information
from.

We see that 89 row(s) affected only once. That’s because it affected 89 rows only one time. Just by
observation, we can guess that this version probably runs faster than the two-query version, and, in real-
ity, it does. Again, we’ll look into this a bit more shortly.

In this particular query, the outer query only references the inner query in the WHERE clause — it could
also have requested data from the inner query to include in the select list.

Normally, it’s up to us whether we want to make use of an alias or not, but with correlated subqueries,
they are often required. This particular query is a really great one for showing why because the inner and
outer queries are based on the same table. Since both queries are getting information from each other,
without aliasing, how would they know which instance of the table data that you were interested it?

Correlated Subqueries in the SELECT List

Subqueries can also used to provide a different kind of answer in your selection results. This kind of sit-
uation is often found where the information you're after is fundamentally different from the rest of the
data in your query (for example, you want an aggregation on one field, but you don’t want all the bag-
gage from that to affect the other fields returned).

To test this out, let’s just run a somewhat modified version of the query we used in the last section. What
we're going to say we're after here is just the name of the customer and the first date on which they

ordered something.

This one creates a somewhat more significant change than is probably apparent at first. We’re now
asking for the customer’s name, which means that we have to bring the Customers table into play. In

193

Chapter 7

addition, we no longer need to build any kind of condition in —we’re asking for all customers (no restric-
tions), and we just want to know when their first order date was.

The query actually winds up being a bit simpler than the last one, and it looks like this:

SELECT cu.CompanyName,
(SELECT Min (OrderDate)
FROM Orders o
WHERE o.CustomerID = cu.CustomerID)
AS "Order Date"
FROM Customers cu

This gets us data that looks something like this:

CompanyName Order Date

Alfreds Futterkiste 1997-08-25 00:00:00.000
Ana Trujillo Emparedados y helados 1996-09-18 00:00:00.000
Antonio Moreno Taqueria 1996-11-27 00:00:00.000
Around the Horn 1996-11-15 00:00:00.000
Berglunds snabbkép 1996-08-12 00:00:00.000
Blauer See Delikatessen 1997-04-09 00:00:00.000
White Clover Markets 1996-07-31 00:00:00.000
Wilman Kala 1997-07-30 00:00:00.000
Wolski Zajazd 1996-12-05 00:00:00.000

(91 row(s) affected)

Note that, if you look down through all the data, there are a couple of rows that have a NULL in the
Order Date column. Why do you suppose that is? The cause is, of course, because there is no record in
the orders table that matches the then current record in the Customers table (the outer query).

This brings us to a small digression to take a look at a particularly useful function for this situation —
ISNULL ().

Dealing with NULL Data— the ISNULL Function

There are actually a few functions that are specifically meant to deal with NULL data, but the one of
particular use to us at this point is ISNULL (). ISNULL () accepts a variable (which we'll talk about in
Chapter 11) or expression and tests it for a null value. If the value is indeed NULL, then the function
returns some other pre-specified value. If the original value is not NULL, then the original value is
returned. This syntax is pretty straightforward:

ISNULL (<expression to test>, <replacement value if null>)

So, for example:

194

Adding More to Our Queries

ISNULL Expression Value Returned
ISNULL (NULL, 5) 5

ISNULL (5, 15) 5

ISNULL (MyColumnName, 0) where MyColumnName IS NULL 0

ISNULL (MyColumnName, 0) where MyColumnName = 3 3

ISNULL (MyColumnName, 0) where MyColumnName ='Fred Farmer' Fred Farmer

Now let’s see this at work in our query:

SELECT cu.CompanyName,
ISNULL (CAST ((SELECT MIN (o.OrderDate)
FROM Orders o
WHERE o.CustomerID = cu.CustomerID)AS varchar), ' NEVER ORDERED')
AS "Order Date"
FROM Customers cu

Now, in our two lines that we had problems with, we go from:

FISSA Fabrica Inter. Salchichas S.A. NULL

Paris spécialités NULL
to something substantially more useful:

FISSA Fabrica Inter. Salchichas S.A. NEVER ORDERED

Paris spécialités NEVER ORDERED

Notice that I also had to put the CAST () function into play to get this to work. The reason has to do
with casting and implicit conversion. Because the first row starts off returning a valid date, the column
Order Date is assumed to be of type DateTime. However, when we get to our first ISNULL, there

is an error generated since NEVER ORDERED can't be converted to the DateTime datatype. Keep
CAST () in mind —it can help you out of little troubles like this one. This is covered further later in
the chapter.

So, at this point, we’ve seen correlated subqueries that provide information for both the WHERE clause,
and for the select list. You can mix and match these two in the same query if you wish.

Derived Tables

Sometimes you get into situations where you need to work with the results of a query, but you need to
work with the results of that query in a way that doesn’t really lend itself to the kinds of subqueries that

195

Chapter 7

we’ve discussed up to this point. An example would be where, for each row in a given table, you may
have multiple results in the subquery, but you're looking for an action more complex than our IN opera-
tor provides. Essentially, what I'm talking about here are situations where you wish you could use a
JOIN operator on your subquery.

It’s at times like these that we turn to a somewhat lesser known construct in SQL — a derived table.
A derived table is made up of the columns and rows of a result set from a query. (Heck, they have
columns, rows, datatypes, and so on just like normal tables, so why not use them as such?)

Imagine for a moment that you want to get a list of customers that ordered a particular product—say,
Chocolade. No problem! Your query might look something like this:

SELECT c.CompanyName
FROM Customers AS c
JOIN Orders AS o

ON c.CustomerID = o.CustomerID
JOIN [Order Details] AS od

ON 0.0rderID = od.OrderID
JOIN Products AS p

ON od.ProductID = p.ProductID
WHERE p.ProductName = 'Chocolade'

OK, so that was easy. Now I'm going to throw you a twist—let’s now say I want to know all the cus-
tomers that ordered not only Chocolade, but also Vegie-spread. Notice that I said they have to have
ordered both—now you have a problem. You're first inclination might be to write something like:

WHERE p.ProductName = 'Chocolade' AND p.ProductName = 'Vegie-spread'
But that’s not going to work at all—each row is for a single product, so how can it have both Chocolade
and Vegie-spread as the name at the same time? Nope — that’s not going to get it at all (indeed, while it
will run, you’'ll never get any rows back at all).
What we really need here is to join the results of a query to find buyers of Chocolade with the results of
a query to find buyers of Vegie-spread. How do we join results, however? Well, as you might expect
given the title of this section, through the use of derived tables.

To create our derived table, we need two things:

0 Toenclose our query that generates the result set in parentheses
Q To alias the results of the query
So, the syntax looks something like this:
SELECT <select list>
FROM (<query that returns a regular resultset>) AS <alias name>
JOIN <some other base or derived table>
So let’s take this now and apply it to our requirements. Again, what we want is the names of all the

companies that have ordered both Chocolade and Vegie-spread. So our query should look something
like this:

196

Adding More to Our Queries

SELECT DISTINCT c.CompanyName
FROM Customers AS c
JOIN
(SELECT CustomerID
FROM Orders o
JOIN [Order Details] od
ON 0.0rderID = od.OrderID
JOIN Products p
ON od.ProductID = p.ProductID

WHERE p.ProductName = 'Chocolade') AS spen
ON c.CustomerID = spen.CustomerID
JOIN

(SELECT CustomerID
FROM Orders o
JOIN [Order Details] od
ON 0.0rderID = od.OrderID
JOIN Products p
ON od.ProductID = p.ProductID
WHERE ProductName = 'Vegie-spread') AS spap
ON c.CustomerID = spap.CustomerID

As it happens, we get only one customer:

CompanyName

Ernst Handel

(1 row(s) affected)

If you want to check things out on this, just run the queries for the two derived tables separately and
compare the results.

For this particular query, I needed to use the DISTINCT keyword. If I didn’t, then I would have poten-
tially received multiple rows for each customer — for example, Ernst Handel has ordered Vegie-spread
twice, so I would have gotten one record for each. I only asked which customers had ordered both, not
how many had they ordered.

As you can see, we were able to take a seemingly impossible query and make it both possible and even
reasonably well performing.

Keep in mind that derived tables aren’t the solutions for everything. For example, if the result set is
going to be fairly large and you're going to have lots of joined records, then you may want to look at
using a temporary table and building an index on it (derived tables have no indexes). Every situation
is different, but now you have one more tool in your arsenal.

The EXISTS Operator

I call EXISTS an operator, but all you'll hear the Books Online call it is a keyword. That’s probably
because it defies description in some senses. It's an operator much like the IN keyword is, but it also
looks at things just a bit differently.

197

Chapter 7

When you use EXISTS, you don’t really return data—instead, you return a simple TRUE/FALSE regard-
ing the existence of data that meets the criteria established in the query that the EXISTS statement is
operating against.

Let’s go right to an example, so you can see how this gets applied. What we’re going to query here is a
list of customers that have placed at least one order (we don’t care how many):

SELECT CustomerID, CompanyName
FROM Customers cu
WHERE EXISTS
(SELECT OrderID
FROM Orders o
WHERE o.CustomerID = cu.CustomerID)

This gets us what amounts to the same 89 records that we’ve been dealing with throughout this chapter:

CustomerID CompanyName

ALFKI Alfreds Futterkiste

ANATR Ana Trujillo Emparedados y helados
ANTON Antonio Moreno Taqgueria

AROUT Around the Horn

BERGS Berglunds snabbkoép

BLAUS Blauer See Delikatessen

WHITC White Clover Markets

WILMK Wilman Kala

WOLZA Wolski Zajazd

(89 row(s) affected)
We could have easily done this same thing with a join:

SELECT DISTINCT cu.CustomerID, cu.CompanyName
FROM Customers cu
JOIN Orders o

ON cu.CustomerID = o.CustomerID

This join-based syntax, for example, would have yielded us exactly the same results (subject to possible
sort differences). So why, then, would we need this new syntax? Performance — plain and simple.

When you use the EXISTS keyword, SQL Server doesn’t have to perform a full row-by-row join.
Instead, it can look through the records until it finds the first match and stop right there. As soon as
there is a single match, the EXISTS is true, so there is no need to go further.

Let’s take a brief look at things the other way around — that is, what if our query wanted the customers

who had not ordered anything? Under the join method that we looked at back in Chapter 5, we would
have had to make some significant changes in the way we went about getting our answers. First, we

198

Adding More to Our Queries

would have to use an outer join. Then we would perform a comparison to see whether any of the order
records were NULL.

It looked like this:
USE Northwind

SELECT c.CustomerID, CompanyName
FROM Customers c
LEFT OUTER JOIN Orders o
ON c.CustomerID = o.CustomerID
WHERE o.CustomerID IS NULL

And it returned two rows.

To do the same change over when we’re using EXISTS we add only one word —NOT:

SELECT CustomerID, CompanyName
FROM Customers cu
WHERE NOT EXISTS
(SELECT OrderID
FROM Orders o
WHERE o.CustomerID = cu.CustomerID)

And we get back those exact same two rows:

CustomerID CompanyName
FISSA FISSA Fabrica Inter. Salchichas S.A.
PARIS Paris spécialités

(2 row(s) affected)

The performance difference here is even more marked than with the inner join. SQL Server just applies a
little reverse logic versus the straight EXISTS statement. In the case of the NOT we’re now using, SQL can
still stop looking as soon as it finds one matching record — the only difference is that it knows to return
FALSE for that lookup rather than TRUE. Performance-wise, everything else about the query is the same.

Using EXISTS in Other Ways

One common use of EXISTS is to check for the existence of a table before running a create statement. You
may want to drop an existing table, or you just may way to change to an ALTER statement or some other
statement that adjusts the existing table if there is one. One of the most common ways you’ll see this
done will look something like this:

IF EXISTS (SELECT * FROM sysobjects WHERE id = object_id(N'[dbo]. [Shippers]')

AND OBJECTPROPERTY (id, N'IsUserTable') = 1)
DROP TABLE [dbo]. [Shippers]
GO

CREATE TABLE [dbo].[Shippers] (

199

Chapter 7

[ShipperID] [int] IDENTITY (1, 1) NOT NULL ,
[CompanyName] [nvarchar] (40) NOT NULL ,
[Phone] [nvarchar] (24) NULL

)

GO

Since the EXISTS returns nothing but TRUE or FALSE, that means it works as an excellent conditional
expression. The preceding example will run the DROP TABLE code only if the table exists; otherwise, it
skips over that part and moves right into the CREATE statement. This avoids one of two errors showing
up when you run the script. First, that it can’t run the CREATE statement (which would probably create
other problems if you were running this in a script where other tables were depending on this being
done first) because the object already exists. Second, that it couldn’t DROP the table (this pretty much just
creates a message that might be confusing to a customer who installs your product) because it didn’t
exist. You're covered for both.

As for an instance of this, let’s write our own CREATE script for something that’s often skipped in the
automation effort —the database. But creation of the database is often left as part of some cryptic direc-
tions that say something like “create a database called ‘xxxx’”. The fun part is when the people who are
actually installing it (who often don’t know what they’re doing) start including the quotes, or create the
database too small, or a host of other possible and very simple errors to make. This is the point where I
hope you have a good tech support department.

Instead, we'll just build a little script to create the database object that could go with Northwind. For
safety’s sake, we'll call it NorthwindCreate. We'll also keep the statement to a minimum because we're
interested in the EXISTS rather than the CREATE command:

USE master
GO

IF NOT EXISTS (SELECT 'True' FROM sys.databases WHERE name = 'NorthwindCreate')
BEGIN
CREATE DATABASE NorthwindCreate
END
ELSE
BEGIN
PRINT 'Database already exists. Skipping CREATE DATABASE Statement'
END
GO

The first time you run this, there won’t be any database called NorthwindCreate (unless by sheer coin-
cidence that you created something called that before we got to this point), so you'll get a response back
that looks like this:

Command (s) completed successfully.

This was high unhelpful in terms of telling you what exactly was done, but at least you know it thinks it
did what you asked.

200

Adding More to Our Queries

Now run the script a second time, and you'll see a change:

Database already exists. Skipping CREATE DATABASE Statement

So, without much fanfare or fuss, we’ve added a rather small script that will make things much more
usable for the installers of your product. That may be an end user who bought your off-the-shelf prod-
uct, or it may be you—in which case it’s even better that it’s fully scripted.

The long and the short of it is that EXISTS is a very handy keyword indeed. It can make some queries
run much faster, and it can also simplify some queries and scripts.

A word of caution here— this is another one of those places where it's easy to get trapped in “traditional
thinking.” While EXISTS blows other options away in a large percentage of queries where EXISTS is a
valid construct, that’s not always the case. For example, the query we used as a derived table example
can also be written with a couple of EXISTS operators (one for each product), but the derived table hap-
pens to run more than twice as fast. That’s definitely the exception not the rule— EXISTS will normally
smoke a derived table for performance — just remember that rules are sometimes made to be broken.

Mixing Datatypes: CAST and CONVERT

You'll see both CAST and CONVERT used frequently. Indeed, we’ve touched briefly on both of these already
in this chapter. Considering how often we’ll use these two functions, this seems like a good time to look
a little closer at what they can do for you.

Both CAST and CONVERT perform datatype conversions for you. In most respects, they both do the same
thing, with the exception that CONVERT also does some date formatting conversions that CAST doesn’t offer.

So, the question probably quickly rises to your mind — hey, if CONVERT does everything that CAST does,
and CONVERT also does date conversions, why would I ever use CAST? I have a simple answer for
that— ANSI compliance. CAST is ANSI-compliant, and CONVERT isn't —it’s that simple.

Let’s take a look for the syntax for each.
CAST (expression AS data_type)

CONVERT (data_type, expression[, stylel)

With a little flip-flop on which goes first, and the addition of the formatting option on CONVERT (with
the style argument), they have basically the same syntax.

CAST and CONVERT can deal with a wide variety of datatype conversions that you'll need to do when
SQL Server won’t do it implicitly for you. For example, converting a number to a string is a very com-
mon need. To illustrate:

SELECT 'The Customer has an Order numbered ' + OrderID
FROM Orders
WHERE CustomerID = 'ALFKI'

201

Chapter 7

will yield an error:

Msg 245, Level 16, State 1, Line 1
Conversion failed when converting the varchar value 'The Customer has an Order
numbered ' to data type int.

But change the code to convert the number first:

SELECT 'The Customer has an Order numbered ' + CAST(OrderID AS varchar)
FROM Orders
WHERE CustomerID = 'ALFKI'

And you get a much different result:

The Customer has an Order numbered 10643
The Customer has an Order numbered 10692
The Customer has an Order numbered 10702
The Customer has an Order numbered 10835
The Customer has an Order numbered 10952
The Customer has an Order numbered 11011

(6 row(s) affected)

The conversions can actually get a little less intuitive also. Take for example, that you wanted to convert
a timestamp column into a regular number. A timestamp is just a binary number, so the conversion
isn’t any really big deal:

CREATE TABLE ConvertTest
(

ColID int IDENTITY,
ColTs timestamp

INSERT INTO ConvertTest
DEFAULT VALUES

SELECT ColTS AS "Uncoverted", CAST(ColTS AS int) AS "Converted" FROM ConvertTest
Yields us something like (your exact numbers will vary):
(1 row(s) affected)

Uncoverted Converted

0x00000000000000C9 201

(1 row(s) affected)

We can also convert dates:

202

Adding More to Our Queries

SELECT OrderDate, CAST(OrderDate AS varchar) AS "Converted"
FROM Orders
WHERE OrderID = 11050

This yields us something similar to (your exact format may change depending on system date
configuration):

OrderDate Converted

1998-04-27 00:00:00.000 Apr 27 1998 12:00AM

(1 row(s) affected)

Notice that CAST can still do date conversion; you just don’t have any control over the formatting as you
do with CONVERT. For example:

SELECT OrderDate, CONVERT (varchar (12), OrderDate, 111) AS "Converted"
FROM Orders
WHERE OrderID = 11050

This yields us:
OrderDate Converted
1998-04-27 00:00:00.000 1998/04/27

(1 row(s) affected)

Which is quite a bit different from what casT did. Indeed, we could have converted to any one of 34
two-digit or four-digit year formats.

SELECT OrderDate, CONVERT (varchar(12), OrderDate, 5) AS "Converted"
FROM Orders
WHERE OrderID = 11050

This gives us:

OrderDate Converted

1998-04-27 00:00:00.000 27-04-98

(1 row(s) affected)

All you need is to supply a code at the end of the CONVERT function (111 in the preceding example gave
us the Japan standard, with a four-digit year; and 5 the Italian standard, with a two-digit year) that tells
what format you want. Anything in the 100s is a four-digit year; anything less than 100, with a few
exceptions, is a two-digit year. The available formats can be found in Books Online under the topic of
CONVERT or CASE.

203

Chapter 7

Keep in mind that some changes have been made to things to deal with the infamous Y2K issue. One of
the changes is that you can set a split point that SQL Server will use to determine whether a two-
digit year should have a 20 added on the front or a 19. The default breaking point is 49/50 — a two-digit
year of 49 or less will be converted using a 20 on the front. Anything higher will use a 19. These can be
changed in the database server configuration.

Performance Considerations

We’ve already touched on some of the macro-level “what’s the best thing to do” stuff as we’ve gone
through the chapter, but, like most things in life, it’s not as easy as all that. What I want to do here is pro-
vide something of a quick reference for performance issues for your queries. I'll try and steer you toward
the right kind of query for the right kind of situation.

Yes, it’s time again folks for one of my now famous soapbox diatribes. At issue this
time, is the concept of blanket use of blanket rules.

What we’re going to be talking about in this section is about the way that things
usually work. The word “usually” is extremely operative here. There are very few
rules in SQL that will be true 100 percent of the time. In a world full of exceptions,
SOQOL has to be at the pinnacle of that— exceptions are a dime a dozen when you try
and describe the performance world in SQL Server.

In short, you need to gauge just how important the performance of a given query is.
If performance is critical, then don’t take these rules too seriously —instead, use
them as a starting point, and then TEST, TEST, TEST!!!

JOINs vs. Subqueries vs. ?

This is that area I mentioned earlier in the chapter that I had a heated debate with a coworker over. And,
as you might expect when two people have such conviction in their point of view, both of us were cor-
rect up to a point (and it follows, wrong up to a point).

The long-standing, traditional viewpoint about subqueries has always been that you are much better off
using joins instead if you can. This is absolutely correct—sometimes. In reality, it depends on a large
number of factors. The following is a table that discusses some of the issues that the performance bal-
ance will depend on, and which side of the equation they favor.

Situation Favors

The value returned from a Pre-query. Declaring a variable, and then selecting the
subquery is going to be the needed value into that variable will allow the would-be

same for every row in the subquery to be executed just once rather than once for every
outer query. record in the outer table.

Both tables are relatively Subqueries. I don’t know the exact reasons, but I've run several
small (say 10,000 records tests on this, and it held up pretty much every time. I suspect
or less). that the issue is the lower overhead of a lookup vs. a join.

204

Adding More to Our Queries

Situation

The match, after considering
all criteria, is going to return
only one value.

The match, after considering
all criteria, is going to return
relatively few values and
there is no index on the
lookup column.

The lookup table is relatively
small, but the base table is
large.

Correlated subquery vs. join.

Derived tables vs. whatever.

EXISTS vs. whatever

Favors

Subqueries. Again, there is much less overhead in going and
finding just one record and substituting it, than having to join
the entire table.

Subqueries. A single lookup or even a few lookups will usually
take less overhead than a hash join.

Nested subqueries if applicable; joins if vs. a correlated
subquery. With subqueries the lookup will happen only once,
and is relatively low overhead. With correlated subqueries,
however, you will be cycling the lookup many times —in this
case, the join would be a better choice in most cases.

Join. Internally, a correlated subquery is going to create a nested
loop situation. This can create quite a bit of overhead. It is
substantially faster than cursors in most instances, but slower
than other options that might be available.

Derived tables typically carry a fair amount of overhead to
them, so proceed with caution. The thing to remember is that
they are run (derived if you will) once, and then they are in
memory, so, most of the overhead is in the initial creation and
the lack of indexes in larger result sets. They can be fast or
slow —it just depends. Think before coding on these.

EXISTS. It does not have to deal with multiple lookups for the
same match — once it finds one match for that particular row, it
is free to move onto the next lookup — this can seriously cut
down on overhead.

These are just the highlights. The possibilities of different mixes and additional situations are positively

endless.

choice.

I can’t stress enough how important it is that, when in doubt—heck, even when
you're not in doubt but performance is everything — to make reasonable tests of
competing solutions to the problem. Most of the time the blanket rules will be fine,
but not always. By performing reason tests, you can be certain you’ve made the right

Summary

The query options you learned back in Chapters 3 and 4 cover perhaps 80 percent or more of the query
situations that you run into, but it’s that other 20 percent that can kill you. Sometimes the issue is

205

Chapter 7

whether you can even find a query that will give you the answers you need. Sometimes it’s that you
have a particular query or sproc that has unacceptable performance. Whatever the case, you'll run across
plenty of situations where simple queries and joins just won't fit the bit. You need something more, and,
hopefully the options covered in this chapter have given you a little extra arsenal to deal with those
tough situations.

Exercises

1. Write a query that returns the start date of all Northwind employees in MM/DD/YY format.

2. Write separate queries using a JOIN, a subquery, and then an EXISTS to list all Northwind cus-
tomers who have not placed an order.

3. Show the most recent five orders that were purchased from a customer who has spent more
than $25,000 with Northwind.

206

Being Normal:
Normalization and Other
Basic Design Issues

I can imagine you as being somewhat perplexed about the how and why of some of the tables
we’ve constructed thus far. With the exception of a chapter or two, this book has tended to have an
online transaction-processing, or OLTP, flare to the examples. Don’t get me wrong; I will point out,
from time to time, some of the differences between OLTP and its more analysis-oriented cousin
Online Analytical Processing (OLAP). My point is that you will, in most of the examples, be seeing a
table design that is optimized for the most common kind of database — OLTP. As such, the table
examples will typically have a database layout that is, for the most part, normalized to what is
called the third normal form.

So what is “normal form”? We'll be taking a very solid look at that in this chapter, but, for the
moment, let’s just say that it means your data has been broken out into a logical, non-repetitive
format that can easily be reassembled into the whole. In addition to normalization (which is the
process of putting your database into normal form), we'll also be examining the characteristics of
OLTP and OLAP databases. And, as if we didn’t have enough between those two topics, we’ll also
be looking at many examples of how the constraints we’ve already seen are implemented in the
overall solution.

This is probably going to be one of the toughest chapters in the book to grasp because of a paradox
in what to learn first. Some of the concepts used in this chapter refer to things we’ll be covering
later — such as triggers and stored procedures. On the other hand, it is difficult to relate those
topics without understanding their role in database design.

I strongly recommend reading this chapter through, and then coming back to it again after you ve
read several of the subsequent chapters.

Chapter 8

Tables

This is going to seem beyond basic, but let’s make a brief review of what exactly a table is. We’re obvi-
ously not talking about the kind that sits in your kitchen, but, rather, the central object of any database.

A table is a collection of instances of data that have the same general attributes. These instances of data
are organized into rows and columns of data. A table should represent a “real-world” collection of data
(often referred to as an entity), and will have relationships with information in other tables. A drawing of
the various entities (tables) and relationships (how they work together) is usually referred to as an
Entity-Relationship diagram — or ER Diagram. Sometimes the term “ER Diagram” will even be shortened
further down to ERD.

By connecting two or more tables through their various relationships, you are able to temporarily create
other tables as needed from the combination of the data in both tables (we’ve already seen this to some
degree in Chapters 4 and 5). A collection of related entities are then grouped together into a database.

Keeping Your Data “Normal”

Normalization is something of the cornerstone model of modern OLTP database design. Normalization
first originated along with the concept of relational databases. Both came from the work of E. F. Codd
(IBM) in 1969. Codd put forth the notion that a database “consists of a series of unordered tables that can
be manipulated using non-procedural operations that return tables.”

Several things are key about this:

0 Order must be unimportant.

Q The tables would be able to “relate” to each other in a non-procedural way (indeed, Codd called
tables, “relations”).

Q That, by relating these base tables, you would be able to create a virtual table to meet a new need.
Normalization was a natural offshoot of the design of a database of “relations.”

The concept of normalization has to be one of most over-referenced and yet misunderstood concepts in
programming. Everyone thinks they understand it, and many do in at least its academic form.
Unfortunately, it also tends to be one of those things that many database designers wear like a cross — it
is somehow their symbol that they are “real” database architects. What it really is, however, is a symbol
that they know what the normal forms are— and that’s all. Normalization is really just one piece of a
larger database design picture. Sometimes you need to normalize your data— then again, sometimes
you need to deliberately de-normalize your data. Even within the normalization process, there are often
many ways to achieve what is technically a normalized database.

My point in this latest soapbox diatribe is that normalization is a theory, and that’s all it is. Once you
choose to either implement a normalized strategy or not, what you have is a database— hopefully the
best one you could possibly design. Don't get stuck on what the books (including this one) say you're
supposed to do— do what’s right for the situation that you're in. As the author of this book, all I can do
is relate concepts to you—1I can’t implement them for you, and neither can any other author (at least
not with the written word). You need to pick and choose between these concepts in order to achieve the
best fit and the best solution. Now, excuse me while I put that soapbox away, and we’ll get on to talking
about the normal forms and what they purportedly do for us.

208

Being Normal: Normalization and Other Basic Design Issues

Let’s start off by saying that there are six normal forms. For those of you who have dealt with databases
and normalization some before, that number may come as a surprise. You are very likely to hear that a
fully normalized database is one that is normalized to the third normal form —doesn’t it then follow
that there must be only three normal forms? Perhaps it will make those same people who thought there
were only three normal forms feel better that in this book we’re only going to be looking to any extent at
the three forms you’ve heard about, as they are the only three that are put to any regular use in the real
world. I will, however, take a brief (very brief) skim over the other three forms just for posterity.

We've already looked at how to create a primary key and some of the reasons for using one in our tables—
if we want to be able to act on just one row, then we need to be able to uniquely identify that row. The con-
cepts of normalization are highly dependent on issues surrounding the definition of the primary key and
what columns are dependent on it. One phrase you might hear frequently in normalization is:

The key, the whole key, and nothing but the key.
The somewhat fun addition to this is:
The key, the whole key, and nothing but the key, so help me Codd!

This is a super-brief summarization of what normalization is about out to the third normal form. When
you can say that all your columns are dependent only on the whole key and nothing more or less, then
you are at third normal form.

Let’s take a look at the various normal forms and what each does for us.

Before the Beginning

You actually need to begin by getting a few things in place even before you try to get your data into first
normal form. You have to have a thing or two in place before you can even consider the table to be a true
entity in the relational database sense of the word:

Q The table should describe one and only one entity. (No trying to shortcut and combine things!)
Q All rows must be unique, and there must be a primary key.
Q The column and row order must not matter.

The place to start, then, is by identifying the right entities to have. Some of these will be fairly obvious,

others will not. Many of them will be exposed and refined as you go through the normalization process.
At the very least, go through and identify all the obvious entities.

If you’re familiar with object-oriented programming, then you can liken the most logical top-level enti-
ties to objects in an object model.

Let’s think about a hyper simple model — our sales model again. To begin with, we’re not going to
worry about the different variations possible, or even what columns we’re going to have —instead,
we're just going to worry about identifying the basic entities of our system.

First, think about the most basic process. What we want to do is create an entity for each atomic unit that

we want to be able to maintain data on in the process. Our process then, looks like this: a customer calls
or comes in and talks to an employee who takes an order.

209

Chapter 8

A first pass on this might have one entity: Orders.

As you become more experienced at normalization, your first pass at something like this is probably
going to yield you quite a few more entities right from the beginning. For now though, we’ll just take
this one and see how the normalization process shows us the others that we need.

Assuming you've got your concepts down of what you want your entities to be, the next place to go is to
figure out your beginning columns and, from there, a primary key. Remember that a primary key pro-
vides a unique identifier for each row.

We can peruse our list of columns and come up with key candidates. Your list of key candidates should
include any column that can potentially be used to uniquely identify each row in your entity. There is,
otherwise, no hard and fast rule on what column has to be the primary key (this is one of many reasons
you'll see such wide variation in how people design databases that are meant to contain the same basic
information). In some cases, you will not be able to find even one candidate key, and you will need to
make one up (remember Identity and rowguid() columns?).

We've already created an Orders table in the last chapter, but for example purposes let’s take a look at a
very common implementation of an Orders table in the old flat file design:

Orders

OrderNo
CustomerNo
CustomerName
CustomerAddress
CustomerCity
CustomerState
CustomerZip
OrderDate
ItemsOrdered
Total

Since this is an Orders table, and logically, an order number is meant to be one to an order, I'm going go
with orderNo as my primary key.

OK, so now we have a basic entity. Nothing about this entity cares about the ordering of columns (tables
are, by convention, usually organized as having the primary key as the first column(s), but, technically
speaking, it doesn’t have to be that way). Nothing in the basic makeup of this table cares about the
ordering of the rows. The table, at least superficially, describes just one entity. In short, we're ready to
begin our normalization process (actually, we sort of already have).

210

Being Normal: Normalization and Other Basic Design Issues

The First Normal Form

The first normal form (INF) is all about eliminating repeating groups of data and guaranteeing atomicity
(the data is self-contained and independent). At a high level, it works by creating a primary key (which
we already have), then moving any repeating data groups into new tables, creating new keys for those
tables, and so on. In addition, we break out any columns that combine data into separate rows for each
piece of data.

In the more traditional flat file designs, repeating data was commonplace —as was multiple pieces of
information in a column — this was rather problematic in a number of ways:

Q At that time, disk storage was extremely expensive. Storing data multiple times means wasted
space. Data storage has become substantially less expensive, so this isn’t as big an issue as it
once was.

Q Repetitive data means more data to be moved, and larger I/O counts. This means that perfor-
mance is hindered as large blocks of data must be moved through the data bus and or network.
This, even with today’s much faster technology, can have a substantial negative impact on per-
formance.

Q The data between rows of what should have been repeating data often did not agree, creating
something of a data paradox and a general lack of data integrity.

Q If you wanted to query information out of a column that has combined data, then you had to
first come up with a way to parse the data in that column (this was extremely slow).

Now, there are a lot of columns in our table, and I probably could have easily tossed in a few more. Still,
the nice thing about it is that I could query everything out of one place when I wanted to know about
orders.

Just to explore what this means, however, let’s take a look at what some data in this table might look
like. Note that I'm going to cut out a few columns here just to help things fit on a page, but I think you'll
still be able to see the point:

Order Order Customer Customer CustomerF Items
No Date No Name Address Ordered
100 1/1/99 54545 ACME Co 1234 1st St. 1A4536, Flange, 71bs, $75;

4-OR2400, Injector, .5Ibs, $108;
4-OR2403, Injector, .5Ibs, $116;
1-415436, Head, 631bs, $750

101 1/1/99 12000 Sneed Corp. 555 Main Ave. 1-3X9567, Pump, 5lbs, $62.50

102 1/1/99 66651 277 & Co. 4242 SW 2nd 7-8G9200; Fan, 3lbs, $84;
1-8G5437, Fan, 3lbs, $15;
1-3H6250, Control, 5lbs, $32

103 1/2/99 54545 ACME Co 1234 1st St. 40-8G9200, Fan, 3lbs, $480;
1-2P5523, Housing, 1lbs, $165;
1-3X9567, Pump, 5lbs, $42

211

Chapter 8

We have a number of issues to deal with in this table if we’re going to normalize it. While we have a
functional primary key (yes, these existed long before relational systems), we have problems with both
of the main areas of the first normal form.

Q Thave repeating groups of data (customer information). I need to break that out into a different
table.

O The ItemsOrdered column does not contain data that is atomic in nature.

We can start by moving several columns out of the table:

OrderNo

(PK) OrderDate CustomerNo ItemsOrdered

100 1/1/1999 54545 1A4536, Flange, 71bs, $75;
4-OR2400, Injector, .51bs, $108;
4-OR2403, Injector, .5lbs, $116;
1-415436, Head, 631bs, $750

101 1/1/1999 12000 1-3X9567, Pump, 5lbs, $62.50

102 1/1/1999 66651 7-8G9200; Fan, 3lbs, $84;

1-8G5437, Fan, 3lbs, $15;
1-3H6250, Control, 5lbs, $32

103 1/2/1999 54545 40-8G9200, Fan, 3lbs, $480;
1-2P5523, Housing, 11bs, $165;
1-3X9567, Pump, 5lbs, $42

And putting them into their own table:

CustomerNo

(PK) CustomerName CustomerAddress
54545 ACME Co 1234 1st St.

12000 Sneed Corp. 555 Main Ave.
66651 777 & Co. 4242 SW 2nd

There are several things to notice about both the old and new tables:

QO We must have a primary key for our new table to ensure that each row is unique. For our
Customers table, there are two candidate keys —CustomerNo and CustomerName. CustomerNo
was actually created just to serve this purpose and seems the logical choice—after all, it’s entirely
conceivable that you could have more than one customer with the same name. (For example, there
have to be hundreds of AA Auto Glass companies in the U.S.)

Q Although we’ve moved the data out of the Orders table, we still need to maintain a reference to
the data in the new Customers table. This is why you still see the CustomerNo (the primary
key) column in the Orders table. Later on, when we build our references, we'll create a foreign
key constraint to force all orders to have valid customer numbers.

212

Being Normal: Normalization and Other Basic Design Issues

Q We were able to eliminate an instance of the information for ACME Co. That’s part of the pur-
pose of moving data that appears in repetitive groups — to just store it once. This both saves us
space and prevents conflicting values.

0 We only moved repeating groups of data. We still see the same order date several times, but it
doesn’t really fit into a group —it’s just a relatively random piece of data that has no relevance
outside of this table.

So, we’ve dealt with our repeating data; next, we're ready to move onto the second violation of first nor-
mal form —atomicity. If you take a look at the ItemsOrdered column, you’ll see that there are actually
several different pieces of data there:

Q Anywhere from one to many individual part numbers

Q Quantity weight information on each of those parts

Part number, weight, and price are each atomic pieces of data if kept to themselves, but combined into
one lump grouping you no longer have atomicity.

Believe it or not, things were sometimes really done this way. At first glance, it seemed the easy thing to
do— paper invoices often had just one big block area for writing up what the customer wanted, and
computer based systems were often just as close to a clone of paper as someone could make it.

We'll go ahead and break things up —and, while we're at it, we’ll add in a new piece of information in
the form of a unit price, as shown in Figure 8-1. The problem is that, once we break up this information,
our primary key no longer uniquely identifies our rows — our rows are still unique, but the primary key
is now inadequate.

Order No Order Date Customer No Part No Description Qty Unit Price Total Price Wt.
(PK)
100 1/1/1999 54545 1A4536 Flange 5 15 75 6
100 1/1/1999 54545 0OR2400 Injector 4 27 108 .5
100 1/1/1999 54545 0OR2403 Injector 4 29 116 5
100 1/1/1999 54545 415436 Head 1 750 750 3
101 1/1/1999 12000 3X9567 Pump 1 62.50 62.50 5
102 1/1/1999 66651 8G9200 Fan 7 12 84 3
102 1/1/1999 66651 8G5437 Fan 1 15 15 3
102 1/1/1999 66651 3H6250 Control 1 32 32 5
103 1/2/1999 54545 8G9200 Fan 40 12 480 3
103 1/2/1999 54545 2P5523 Housing 1 165 165 1
103 1/2/1999 54545 3X9567 Pump 1 42 42 5
Figure 8-1

For now, we’ll address this by adding a line item number to our table, as shown in Figure 8-2, so we can,
again, uniquely identify our rows.

213

Chapter 8

Order No Line Item Order Date Customer No Part No Description Qty Unit Price Total Price Wt.
(PK) (PK)
100 1 1/1/1999 54545 1A4536 Flange 5 15 75 6
100 2 1/1/1999 54545 OR2400 Injector 4 27 108 5
100 3 1/1/1999 54545 OR2403 Injector 4 29 116 5
100 4 1/1/1999 54545 415436 Head 1 750 750 3
101 1 1/1/1999 12000 3X9567 Pump 1 62.50 62.50 5
102 1 1/1/1999 66651 8G9200 Fan 7 12 84 3
102 2 1/1/1999 66651 8G5437 Fan 1 15 15 3
102 3 1/1/1999 66651 3H6250 Control 1 32 32 5
103 1 1/2/1999 54545 8G9200 Fan 40 12 480 3
103 2 1/2/1999 54545 2P5523 Housing 1 165 165 1
103 3 1/2/1999 54545 3X9567 Pump 1 42 42 5

Figure 8-2

Rather than create another column as we did here, we also could have taken the
approach of making PartNo part of our primary key. The fallout from this would
have been that we could not have had the same part number appear twice in the
same order. We'll briefly discuss keys based on more than one column — or compos-
ite keys —in our next chapter.

At this point, we meet our criteria for first normal form. We have no repeating groups of data, and all
columns are atomic. We do have issues with data having to be repeated within a column (because it’s the
same for all rows for that primary key), but we’ll deal with that shortly.

The Second Normal Form

The next phase in normalization is to go to the second normal form (2NF). Second normal form further
reduces the incidence of repeated data (not necessarily groups).

Second normal form has two rules to it:

Q The table must meet the rules for first normal form. (Normalization is a building block kind of
process — you can’t stack the third block on if you don’t have the first two there already.)

Q Each column must depend on the whole key.

Our example has a problem —actually, it has a couple of them —in this area. Let’s look at the first nor-
mal form version of our Orders table again (Figure 8-2 —is every column dependent on the whole key?
Are there any that need only part of the key?

The answers are no and yes respectively. There are two columns that only depend on the orderNo
column —not the Lineltem column. The columns in question are OrderDate and CustomerNo; both

are the same for the entire order regardless of how many line items there are. Dealing with these requires
that we introduce yet another table. At this point, we run across the concept of a header vs. a detail table
for the first time.

214

Being Normal: Normalization and Other Basic Design Issues

Sometimes what is, in practice, one entity still needs to be broken out into two tables and, thus, two
entities. The header is something of the parent table of the two tables in the relationship. It contains
information that only needs to be stored once while the detail table stores the information that may exist
in multiple instances. The header usually keeps the name of the original table, and the detail table usually
has a name that starts with the header table name and adds on something to indicate that it is a detail
table (for example, OrderDetails). For every one header record, you usually have at least one detail
record and may have many, many more. This is one example of a kind of relationship (a one-to-many
relationship) that we will look at in the next major section.

So let’s take care of this by splitting our table again. We’ll actually start with the detail table since it’s
keeping the bulk of the columns. From this point forward, we'll call this table OrderDetails:

OrderNo Lineltem Unit Total

(PK) (PK) PartNo Description Qty Price Price Wt
100 1 1A4536 Flange 5 15 75 6
100 2 OR2400 Injector 4 27 108 5
100 3 OR2403 Injector 4 29 116 5
100 4 415436 Head 1 750 750 3
101 1 3X9567 Pump 1 62.50 62.50 5
102 1 8G9200 Fan 7 12 84 3
102 2 8G5437 Fan 1 15 15 3
102 3 3H6250 Control 1 32 32 5
103 1 8G9200 Fan 40 12 480 3
103 2 2P5523 Housing 1 165 165 1
103 3 3X9567 Pump 1 42 42 5

Then we move on to what, although you could consider it to be the new table of the two, will serve as
the header table and thus keep the Orders name:

OrderNo

(PK) OrderDate CustomerNo
100 1/1/1999 54545

101 1/1/1999 12000

102 1/1/1999 66651

103 1/2/1999 54545

So, now we have second normal form. All of our columns depend on the entire key. I'm sure you won't
be surprised to hear that we still have a problem or two though —we’ll deal with them next.

215

Chapter 8

The Third Normal Form

This is the relative end of the line. There are technically levels of normalization beyond this, but none
that get much attention outside of academic circles. We'll look at those extremely briefly next, but first
we need to finish the business at hand.

I mentioned at the end of our discussion of second normal form that we still had problems — we still
haven’t reached third normal form (3NF). Third normal form deals with the issue of having all the
columns in our table not just be dependent on something —but the right thing. Third normal form has
just three rules to it:

Q The table must be in 2NF (I told you this was a building block thing).
Q No column can have any dependency on any other non-key column.

Q You cannot have derived data.
We already know that we're in second normal form, so let’s look at the other two rules.

First, do we have any columns that have dependencies other than the primary key? Yes! Actually, there
are a couple of columns that are dependent on the PartNo as much as, if not more than, the primary key
of this table. Weight and Description are both entirely dependent on the PartNo column —we again
need to split into another table.

Your first tendency here might be to also lump UnitPrice into this category, and you would be partially
right. The Products table that we will create here can and should have a UnitPrice column in it —but it
will be of a slightly different nature. Indeed, perhaps it would be better named ListPrice, as it is the cost we
have set in general for that product. The difference for the UunitPrice in the OrderDetails table is
twofold. First, we may offer discounts that would change the price at time of sale. This means that the price
in the OrderDetails record may be different than the planned price that we will keep in the Products
table. Second, the price we plan to charge will change over time with factors such as inflation, but changes
in future prices will not change what we have charged on our actual orders of the past. In other words,
price is one of those odd circumstances where there are really two flavors of it— one dependent on the
PartNo, and one dependent on the primary key for the OrderDetails table (in other words OrderID
and Lineltem).

First, we need to create a new table (we’ll call it Products) to hold our part information. This new table
will hold the information that we had in OrderDetails that was more dependent on PartNo than on
OrderID or Lineltem:

PartNo

(PK) Description Wit
1A4536 Flange 6
OR2400 Injector 5
OR2403 Injector 5
415436 Head 3

216

Being Normal: Normalization and Other Basic Design Issues

PartNo
(PK) Description Wit
3X9567 Pump 5
8G9200 Fan 3
8G5437 Fan 3
3H6250 Control 5
8G9200 Fan 3
2P5523 Housing 1
3X9567 Pump 5

We can then chop all but the foreign key out of the OrderDetails table:
OrderNo Lineltem Unit Total
(PK) (PK) PartNo Oty Price Price
100 1 1A4536 5 15 75
100 2 OR2400 4 27 108
100 3 OR2403 4 29 116
100 4 415436 1 750 750
101 1 3X9567 1 62.50 62.50
102 1 8G9200 7 12 84
102 2 8G5437 1 15 15
102 3 3H6250 1 32 32
103 1 8G9200 40 12 480
103 2 2P5523 1 165 165
103 3 3X9567 1 42 42

That takes care of problem number 1 (cross-column dependency), but doesn’t deal with derived data.
We have a column called TotalPrice that contains data that can actually be derived from multiplying Qty
by UnitPrice. This is a no-no in normalization.

217

Chapter 8

Derived data is one of the places that you’ll see me “de-normalize” data most often.
Why? Speed! A query that reads WHERE TotalPrice > $100 runs faster than one
that reads WHERE Qty * UnitPrice > 50—particularly if we are able to
index our computed TotalPrice.

On the other side of this, however, I do sometimes take more of a hybrid approach by
utilizing a computed column and letting SQL Server keep a sum of the other two
columns for us (you may recall us using this idea for our PreviousSalary example in
the Employees table of the Accounting database in Chapter 5). If this is a very impor-
tant column from a performance perspective (you're running lots of columns that fil-
ter based on the values in this column), then you may want to add an index to your
new computed column. The significance of this is that the index “materializes” the
computed data. What does that mean? Well, it means that even SQL Server doesn’t
have to calculate the computed column on-the-fly —instead, it calculates it once
when the row is stored in the index, and, thereafter, uses the precalculated column.

It can be very fast indeed, and we’ll examine it further in Chapter 9.

So, to reach third normal form, we just need to drop off the TotalPrice column and compute it when
needed.

Other Normal Forms

There are a few other forms out there that are considered, at least by academics, to be part of the normal-
ization model. These include:

Q

218

Boyce-Codd (considered to really just be a variation on third normal form): This one tries to
address situations where you have multiple overlapping candidate keys. This can only happen if:

a. All the candidate keys are composite keys (that is, it takes more than one column to
make up the key).

b. There is more than one candidate key.

c¢. The candidate keys each have at least one column that is in common with another can-
didate key.

This is typically a situation where any number of solutions works, and almost never gets logi-
cally thought of outside the academic community.

Fourth Normal Form: This one tries to deal with issues surrounding multi-valued dependence.
This is the situation where, for an individual row, no column depends on a column other than
the primary key and depends on the whole primary key (meeting third normal form). However,
there can be rather odd situations where one column in the primary key can depend separately
on other columns in the primary key. These are rare, and don’t usually cause any real problem.
As such, they are largely ignored in the database world, and we will not address them here.

Fifth Normal Form: Deals with non-loss and loss decompositions. Essentially, there are certain
situations where you can decompose a relationship such that you cannot logically recompose it
into its original form. Again, these are rare, largely academic, and we won’t deal with them any
further here.

Being Normal: Normalization and Other Basic Design Issues

This is, of course, just a really quick look at these—and that’s deliberate on my part. The main reason
you need to know these in the real world is either to impress your friends (or prove to them you're a
“know it all”) and to not sound like an idiot when some database guru comes to town and starts talking
about them. However you choose to use it, I do recommend against attempting to use it to get dates

Relationships

Well, I've always heard from women that men immediately leave the room if you even mention the
word “relationship.” With that in mind, I hope that I didn’t just lose about half my readers.

I 'am, of course, kidding —but not by as much as you might think. Experts say the key to successful rela-
tionships is that you know the role of both parties and that everyone understands the boundaries and
rules of the relationship that they are in. I can be talking about database relationships with that state-
ment every bit as much as people relationships.

There are three different kinds of major relationships:

QO One-to-one
QO One-to-many

0 Many-to-many

Each of these has some variations depending on whether one side of the relationship is nullable or not.
For example, instead of a one-to-one relationship, you might have a zero or one-to-one relationship.

One-to-One

This is exactly what it says it is. A one-to-one relationship is one where the fact that you have a record in
one table means that you have exactly one matching record in another table.

To illustrate a one-to-one relationship, let’s look at a slight variation of a piece of our earlier example.
Imagine that you have customers —just as we did in our earlier example. This time, however, we're
going to imagine that we are a subsidiary of a much larger company. Our parent company wants to be
able to track all of its customers, and to be able to tell the collective total of each customer’s purchases —
regardless of which subsidiary(s) the customer made purchases with.

Even if all the subsidiaries run out of one server at the main headquarters, there’s a very good chance that
the various subsidiaries would be running with their own databases. One way to track all customer infor-
mation, which would facilitate combining it later, would be to create a master customer database owned by
the parent company. The subsidiaries would then maintain their own customer table, but do so with a one-
to-one relationship to the parent company’s customer table. Any customer record created in the parent
company would imply that you needed to have one in the subsidiaries also. Any creation of a customer
record in a subsidiary would require that one was also created in the parent company’s copy.

A second example —one that used to apply frequently to SQL Server prior to version 7.0 —is the situa-

tion where you have too much information to fit in one row. Remember that the maximum row size for
SQL Server is 8060 bytes of non-BLOB data. That’s a lot harder to fill than version 6.5’s 1962 bytes, but

219

Chapter 8

you can still have situations where you need to store a very large number of columns or even fewer very
wide columns. One way to get around this problem was to actually create two different tables and split
our rows between the tables. We could then impose a one-to-one relationship. The combination of the
matching rows in the two tables then meets our larger rowsize requirement.

SQL Server has no inherent method of enforcing a true one-to-one relationship. You
can say that table A requires a matching record in table B, but when you then add
that table B must have a matching record in table A, you create a paradox — which
table gets the record first? If you need to enforce this kind of relationship in SQL
Server, the best you can do is force all inserts to be done via a stored procedure. The
stored procedure can have the logic to insert into both tables or neither table.
Neither foreign key constraints nor triggers can handle this circular relationship.

Zero or One-to-One

SQL Server can handle the instance of zero or one-to-one relationships. This is essentially the same as a
one-to-one, with the difference that one side of the relationship has the option of either having a record
or not.

Going back to our parent company vs. subsidiary example, you might prefer to create a relationship
where the parent company needs to have a matching record for each subsidiary’s records, but the sub-
sidiary doesn’t need the information from the parent. You could, for example, have subsidiaries that
have very different customers (such as a railroad and a construction company). The parent company
wants to know about all the customers regardless of what business they came from, but your construc-
tion company probably doesn’t care about your railroad customers. In such a case, you would have zero
or one construction customers to one parent company customer record.

Zero or one-to-one relationships can be enforced in SQL Server through:

QO A combination of a unique or primary key with a foreign key constraint. A foreign key con-
straint can enforce that at least one record must exist in the “one” (or parent company in our
example) table, but it can’t ensure that only one exists (there could be more than one). Using a
primary key or unique constraint would ensure that one was indeed the limit.

Q Triggers. Note that triggers would be required in both tables.

The reason SQL Server can handle a zero or one-to-one, but not a one-to-one relation-
ship is due to the “which goes first” problem. In a true one-to-one relationship, you
can’t insert into either table because the record in the other table isn’t there yet—it’s
a paradox. However, with a zero or one-to-one, you can insert into the required table
first (the “one”), and the optional table (the zero or one), if desired, second. This same
problem will hold true for the “one-to-one or many” and the “one to zero, one, or
many” relationships also.

220

Being Normal: Normalization and Other Basic Design Issues

One-to-One or Many

This is one form of your run-of-the-mill, average, every-day foreign key kind of relationship. Usually,
this is found in some form of header/detail relationship. A great example of this would be our Orders
situation, as shown in Figure 8-3. OrderDetails (the one or many side of the relationship) doesn’t make
much sense without an Orders header to belong to (does it do you much good to have an order for a
part if you don’t know who the order is for?). Likewise, it doesn’t make much sense to have an order if
there wasn’t anything actually ordered (for example, “Gee, look, ACME company ordered absolutely

nothing yesterday.”).

Order No(PK) Order Date Customer No
100 1/1/1999 54545
101 1/1/1999 12000
102 1/1/1999 66651
103 1/1/1999 54545
Order No(PK) Line Item(PK) Part No Qty Unit Price Total Price
> 100 1 1A4536 5 15 75
—> 100 2 OR2400 4 27 108
—> 100 3 OR2403 4 29 116
L 100 4 415436 1 750 750
101 1 3X9567 1 62.50 62.50
102 1 8G9200 7 12 84
102 2 8G5437 1 15 15
102 3 3H6250 1 32 32
103 1 8G9200 40 12 480
103 2 2P5523 1 165 165
103 3 3X9567 1 42 42
Figure 8-3

This one, however, gives us the same basic problem that we had with one-to-one relationships. It’s still
that chicken or egg thing — which came first? Again, in SQL Server, the only way to fully implement this
is by restricting all data to be inserted or deleted via stored procedures.

221

Chapter 8

One-to-Zero, One, or Many

This is the other, and perhaps even more common, form of the run-of-the-mill, average, everyday, for-
eign key relationship. The only real difference in implementation here is that the referencing field (the
one in the table that has the foreign key constraint) is allowed to be null; that is, the fact that you have a
record in the “one” table, doesn’t necessarily mean that you have any instances of matching records in
the referencing table.

An example of this can be found in the Northwind database in the relationship between Suppliers and
Orders. The Orders table tracks which shipper was used to ship the order —but what if the order was
picked up by the customer? If there is a shipper, then we want to limit it to our approved list of shippers,
but it’s still quite possible that there won’t be any shipper at all, as illustrated in Figure 8-4.

Shipper ID Company Name Phone

1 Speedy Express (503) 5559831

2 United Package (503)5553199

3 Federal Shipping | (503) 5559931
Order ID Order Date Customer ID Shipper ID Ship To Address
10500 1997-04-09 LAMAI 1 1 rue Alsace-Lorraine [<—

—> 10501 1997-04-09 BLAUS 3 Forsterstr 57

10502 1997-04-10 PERIC 1 Calle Dr. Jorge... «—

Figure 8-4

A virtually identical example can be found in the AdventureWorks database in the relationship between
Purchasing.PurchaseOrderHeader and Purchasing. ShipMethod, with the only real difference
being that this is a list of companies shipping to us rather than from us.

This kind of relationship usually sets up what is called a domain relationship. A
domain is a limited list of values that the dependent table must choose from —
nothing outside the domain list is considered a valid option. The table that holds the
rows that make up the domain list is commonly referred to as a domain or lookup
table. Nearly all databases you create are going to have at least one, and probably
many, domain tables in them. Our Shippers table is a domain table—the purpose

of having it isn’t just to store the information on the name and phone number of the
shipper, but also to limit the list of possible shippers in the Orders table.

222

Being Normal: Normalization and Other Basic Design Issues

In SQL Server, we can enforce this kind of relationship through two methods:

0 FOREIGN KEY constraint: You simply declare a FOREIGN KEY constraint on the table that serves
as the “many” side of the relationship, and reference the table and column that is to be the
“one” side of the relationship (you'll be guaranteed of only one in the referenced table since you
must have a PRIMARY KEY or UNIQUE constraint on the column(s) referenced by a foreign key).

Q Triggers: Actually, for all the early versions of SQL Server, this was the only option for true ref-
erential integrity. You actually need to add two triggers — one for each side of the relationship.
Add a trigger to the table that is the “many” side of the relationship and check that any row
inserted or changed in that table has a match in the table it depends on (the “one” side of the
relationship). Then, you add a delete and update triggers to the other table — this trigger checks
records that are being deleted (or changed) from the referenced table to make sure that it isn’t
going to orphan (make it so it doesn’t have a reference).

We’ve previously discussed the performance ramifications of the choices between the two in our chapter
on constraints. Using a FOREIGN KEY constraint is generally faster — particularly when there is a viola-
tion. That being said, triggers may still be the better option in situations where you're going to have a
trigger executing anyway (or some other special constraint need).

Many-to-Many

In this type of relationship, both sides of the relationship may have several records —not just one — that
match. An example of this would be the relationship of products to orders. A given order may have
many different products in the order. Likewise, any given product may be ordered many times. We still
may, however, want to relate the tables in question — for example, to ensure that an order is for a prod-
uct that we know about (it’s in our Products table).

SQL Server has no way of physically establishing a direct many-to-many relationship, so we cheat by
having an intermediate table to organize the relationship. Some tables create our many-to-many relation-
ships almost by accident as a normal part of the normalization process — others are created entirely from
scratch for the sole purpose of establishing this kind of relationship. This latter “middleman” kind of
table is often called either a linking table, an associate table, or sometimes a merge table.

First, let’s look at a many-to-many relationship that is created in the normal course of normalization. An

example of this can be found in the Northwind database’s 0OrderDetails table, which creates a many-
to-many relationship between our Orders and Products tables, shown in Figure 8-5.

223

Chapter 8

Order No (PK) Order Date Customer No
100 1/1/1999 54545
101 1/1/1999 12000
102 1/1/1999 66651
103 1/1/1999 54545
Order No (PK) | Line Item (PK) Part No Qty Unit Price Total Price
100 1 1A4536 5 15 75
100 2 OR2400 4 27 108
100 3 OR2403 4 29 116
100 4 415436 1 750 750
101 1 3X9567 1 62.50 62.50
—> 102 1 8G9200 7 12 84
102 2 8Gb437 1 15 15
102 3 3H6250 1 32 32
> 103 1 8G9200 40 12 480
103 2 2P5523 1 165 165
103 3 3X9567 1 42 42
Part No (PK) Description wt
1A4536 Flange 6
0OR2400 Injector .5
0R2403 Injector .5
415436 Head 3
3X9567 Pump 5
8G9200 Fan 3
8Gb5437 Fan 3
3H6250 Control 5
2P5523 Housing 1
Figure 8-5

224

Being Normal: Normalization and Other Basic Design Issues

By using the join syntax that we learned back in Chapter 4, we can relate one product to the many orders
that it’s been part of, or we can go the other way and relate an order to all the products on that order.

Let’s move on now to our second example —one where we create an associate table from scratch just so
we can have a many-to-many relationship. We'll take the example of a user and a group of rights that a

user can have on the system.

We might start with a Permissions table that looks something like this:

PermissionID Description
1 Read

2 Insert

3 Update

4 Delete

Then we add a Users table:

UserID Full Name Password Active
JohnD John Doe Jfz9.nm3 1
SamS Sam Spade klk93)md 1

Now comes the problem —how do we define what users have which permissions? Our first inclination
might be to just add a column called Permissions to our Users table:

UserID Full Name Password Permissions Active
JohnD John Doe Jfz9..nm3 1 1
SamS Sam Spade k1k93)md 3 1

This seems fine for only a split second, and then a question begs to be answered —what about when our
users have permission to do more than one thing?

In the older, flat file days, you might have just combined all the permissions into the one cell, like:

UserID Full Name Password Permissions Active
JohnD John Doe Jfz9..nm3 1,2,3 1
Sam$S Sam Spade k1k93)md 1,2,3,43 1

225

Chapter 8

This violates our first normal form, which said that the values in any column must be atomic. In addi-
tion, this would be very slow because you would have to procedurally parse out each individual value
within the cell.

What we really have between these two tables, Users and Permissions, is a many-to-many relationship —
we just need a way to establish that relationship within the database. We do this by adding an associate
table, as shown in Figure 8-6. Again, this is a table that, in most cases, doesn’t add any new data to our
database other than establishing the association between rows in two other tables.

User ID Full Name Password | Active
JohnD John Doe Jz9..nm3 1
SamS Sam Spade kIk93) md 1
User ID Permission ID
JohnD 1 <
> JohnD 2 <«---- :
> JohnD 3 €
SamS 1 10
Sams 2 ' '
Sam$S 3 -
SamS 4 Lo
I
Lo
Vo
Permission ID Description E E
1 Read —
2 Insert ---E--‘I
3 Update F==
4 Delete

Figure 8-6
With the addition of our new table (we’ll call it UserPermissions), we can now mix and match our per-
missions to our users.
Note that, for either example, the implementation of referential integrity is the same —each of the base

tables (the tables that hold the underlying data and have the many-to-many relationship) has a one-to-many
relationship with the associate table. This can be done via either a trigger or a FOREIGN KEY constraint.

226

Being Normal: Normalization and Other Basic Design Issues

Diagramming

Entity Relationship Diagrams (ERDs) are an important tool in good database design. Small databases
can usually be easily created from a few scripts and implemented directly without drawing things out at
all. The larger your database gets, however, the faster it becomes very problematic to just do things “in
your head.” ERDs solve a ton of problems because they allow you to quickly visualize and understand
both the entities and their relationships.

Fortunately, SQL Server includes a very basic diagramming tool that you can use as a starting point for
building rudimentary ERDs.

Before the first time I wrote this topic, I debated for a long while about how I wanted to handle this. On
one hand, serious ER diagramming is usually done with an application that is specifically designed to
be an ER diagramming tool (we talk about a few of these in Appendix C). These tools almost always
support at least one of a couple of industry standard diagramming methods. Even some of the more
mass-market diagramming tools — such as Visio— support a couple of ERD methodologies. SQL
Server has an ERD tool built in, and therein lies the problem. The tools that are included with SQL
Server 2005 are a variation on a toolset and diagramming methodology that Microsoft has used in a
number of tools for many years now. The problem is that they do not complete with any ERD standard
that I've seen anywhere else. As I've done every time I"ve written on this topic, I've decided to stick with
what I know you have — the built-in tools. I do, however, encourage you to examine the commercially
available ERD tools out there to see the rich things that they offer to simplify your database design
efforts.

You can open up SQL Server’s build in tools by navigating to the Diagrams node of the database you
want to build a diagram for (expand your server first, then the database). Some of what we are going to
see you'll find familiar —some of the dialogs are the same as we saw in Chapter 5 when we were creat-
ing tables.

The SQL Server diagramming tools don’t give you all that many options, so you'll find that you'll get to
know them fairly quickly. Indeed, if you're familiar with the relationship editor in Access, then much of
the SQL Server tools will seem very familiar.

Try It Out Diagramming
Let’s start by creating our first diagram. You can create your new diagram by right-clicking the

Diagrams node underneath the Northwind database and choosing the New Database Diagram option.

As we saw back in Chapter 5, you may (if it’s the first time you've tried to create a dingram) see a dialog
come up warning you that some of the objects needed to support diagramming aren’t in the database
and asking if you want to create them — choose yes.

SQL Server starts us out with the same Add Table dialog (see Figure 8-7) we saw back in Chapter 5 — the
only thing different is the tables listed.

227

Chapter 8

Add Table

Tables

Cateqories
CuskamerCustomerDerna
CustomerDemographics
Custamers
Employees
EmployeeTerritories
Crder Details

Orders

Products

Region

Shippers

Suppliers
sysdiagrams
Territories

[Refresh] [Add l [Close

Figure 8-7

Select all of the tables (remember to hold down the control key to select more than one table) except for
the sysdiagrams table (you may remember this is actually a system table that exists only to support dia-
gramming) as show in Figure 8-8.

Add Table

Tables

Cater

[Refresh] [Add l [Close

Figure 8-8

And then click Add and, after a brief pause while SQL Server draws all the tables you selected, the Close
button. SQL Server has added our tables to the diagram, but, depending on your screen resolution, they
are probably very difficult to see due to the zoom on the diagram. To pull more of the tables into view,
change the zoom setting in the toolbar. Finding the right balance between being able to see many tables
at once versus making them so small you can’t read them is a bit of a hassle, but you should be able to
adjust to something that meets your particular taste —for now, I've set mine at 70 percent so I can
squeeze in all the tables at once (usually not that realistic on a database of any real size table count wise)
as shown in Figure 8-9.

228

Being Normal: Normalization and Other Basic Design Issues

|~ DHagram - SCH..Ind Dagram_0* -~ Summany - ®
Order Datails
e ne < T
e g
e =
= -
Suppliers
| ot
S
T cortr
] e
EmployeeTermtories J
(o
ki
Orders -
[owm .
| comometo - P
B =
| oo
| Fanrams
S .
o oo ~ 1 ereeme
_! e = | s
. 3 Jl Snphden CustemerCustomerDenes
e j ik 4
| o - pra—
WS < ¥
| sy
ki
Region
§] peworm
T 5 4 CustemerDemgraphics e
shippers o P .
o sopeores ~ < b3
O | comoorirs 3
o 5
K] L F#

Figure 89

How It Works

You'll notice right away that there is a lot more than what we saw with our first look at the diagram
tools back in Chapter 5. SQL Server enumerates through each table we have said we want added and
analyzed what other objects are associated with those tables The various other items you see beyond the
table itself are some of the many other objects that tie into tables — primary keys, foreign keys.

So, having gotten a start, let’s use this diagram as a launching point for explaining how the diagram-
ming tool works and building a few tables here and there.

229

Chapter 8

Tables

Each table has its own window you can move around. The primary key is shown with the little symbol
of a key in the column to the left of the name like the one next to the CustomerID in Figure 8-10.

Customers
| CustomerlD
Comparyhanne
Contactiarne
ContactTitle
Address

City

Region
PostalCode
Counkry
Phaone

Fax

Figure 8-10

Just like in Chapter 5, this is just the default view for the table —you can select from several others that
allow you to edit the very makeup of the table. To check out your options for views of a table, just right-
click on the table that you're interested in. The default is column names only, but you should also take
an interest in the choice of Custom as we did in Chapter 5; this or “standard” is what you would use
when you want to edit the table from right within the diagram (very nice!).

Adding and Deleting Tables

You can add a new diagram to the table in one of two ways:

If you have a table that already exists in the database (but not in the diagram), but now you want to add
it to your diagram, you simply click the “add table” button on the diagramming window’s toolbar.
You'll be presented with a list of all the tables in the database —just choose the one that you want to
add, and it will appear along with any relationships it has to other tables in the diagram.

If you want to add a completely new table, click on the “new table” on the diagramming window’s tool-
bar or right-click in the diagram and choose “New Table . .. ” — you’'ll be asked for a name for the new
table, and the table will be added to the diagram in “Column Properties” view. Simply edit the proper-
ties to have the column names, datatypes, etc. that you want, and you have a new table in the database.

Let me take a moment to point out a couple of gotchas in this process.

First, don’t forget to add a Primary Key to your table. SQL Server does not automati-
cally do this, nor does it even prompt you (as Access does). This is a somewhat less
than intuitive process. To add a Primary Key, you must select the columns that you
want to have in the key. Then right-click and choose “Set Primary Key.”

Next, be aware that your new table is not actually added to the database until you
choose to save —this is also true of any edits that you make along the way.

230

Being Normal: Normalization and Other Basic Design Issues

Try It Out Adding Tables From Within The Diagram

Let’s go ahead and add a table to our database just to show how it works.

Start by clicking on the New Table button in the diagramming window’s toolbar. When prompted for a
name, choose a name of CustomerNotes (see Figure 8-11). You should then get a new window table up
using the Standard view:

CustomerNotes *
| Coluran Mame | Data Type | Alloa Mulls |

ﬂ CuskomerID nichar{5) O
J HateDate datetime O
J EmployesID int O
J Mote revarchar{Max) O
| O
Figure 8-11

Notice that I've added several columns to my table along with a Primary Key (remember, select the
columns you want to be the primary key, and then right-click and choose Set Primary Key). Before you
click to save this, let’s try something out— open up the Management Studio, and try and run a query
against your new table:

SELECT * FROM CustomerNotes
Back comes an error message:

Msg 208, Level 16, State 1, Line 1
Invalid object name 'CustomerNotes'.

That’s because our table exists only as an edited item on the diagram — it won’t be added until we actu-
ally save our changes.

If you look at the CustomerNotes table in the diagram window at this point, you
should see a * to the right of the name —that’s there to tell you that there are
unsaved changes in that table.

Now, switch back to the Management Studio. There are two save options:

231

Chapter 8

Q Save: This saves the changes to both the diagram and to the database (this is the little disk icon
on the toolbar).

0 Save Change Script: This saves the changes to a script so it can be run at a later time (This is
found in the Table Designer menu or as a “Save To Text” if you use the disk save button from
the previous bullet).

Go ahead and just choose Save, and you'll be prompted for confirmation (after all, you're about to alter
your database — there’s no “undo” for this):

Confirm the changes, and try running that query again against your CustomerNotes table. You should
not receive an error this time because the table has now been created (you won’t get any rows back, but
the query should still run).

How It Works

When we create a diagram, SQL Server creates script behind the scenes that looks basically just as our
scripts did back in Chapter 6 when we were scripting our own changes. However, these scripts are not
actually generated and run until we choose to save the diagram.

OK, we've got our CustomerNotes table into the database, but now we notice a problem — the way our
Primary Key is declared, we can only have one note per customer. More than likely, we are going to keep
taking more and more notes on the customer over time. That means that we need to change our Primary
Key, and leaves us with a couple of options depending on our requirements:

QO Make the date part of our Primary Key: This is problematic from two standpoints. First, we're
tracking what employee took the note— what if two different employees wanted to add notes at
the same time? We could, of course, potentially address this by also adding EmployeelD to the
Primary Key. Second, what’s to say that even the same employee wouldn’t want to enter to
completely separate notes on the same day (OK, so, since this is a datetime field, they could do
it as long as they didn’t get two rows inserted at the same millisecond —but just play along
with me here)? Oops, now even our EmployeelD being in the key doesn’t help us.

QO Add another column to help with the key structure. We could either do this by adding a counter
column for each note per customer. As yet another alternative, we could just add an identity col-
umn to ensure uniqueness — it means that our Primary Key doesn’t really relate to anything,
but that isn’t always a big deal (though it does mean that we have one more index that has to be
maintained) and it does allow us to have a relatively unlimited number of notes per customer.

I'm going to take the approach of adding a column I'll call “Sequence” to the table. By convention (it’s
not a requirement and not everyone does it this way), Primary Keys are normally the first columns in
your table. If we were going to be doing this by script ourselves, we’d probably just issue an ALTER
TABLE statement and ADD the column — this would stick our new column down at the end of our col-
umn list. If we wanted to fix that, we’d have to copy all the data out to a holding table, drop any rela-
tionships to or from the old table, drop the old table, CREATE a new table that has the columns and
column order we want, then re-establish the relationships and copy the data back in (a long and tedious
process). With the diagramming tools, however, SQL Server takes care of all that for us.

232

Being Normal: Normalization and Other Basic Design Issues

To insert a new row in the middle of everything, I just right-click on the row that is to immediately fol-
low the row I want to insert. The tool is nice enough to bump everything down for me to create space
just like Figure 8-12.

CustomerNotes *
| Column Mame | Data Type | Allowa Mulls |

ﬂ CustomerID nchar(S) O

| O

J MoteDate datetime O

J EmnployeslD ink O

J Moke rvarchar{Max) O

| O
Figure 8-12

I can then add in my new column, and reset the Primary Key as shown in Figure 8-13 (select both rows,
right-click and choose Set Primary Key).

CustomerNotes *
| Column Mame | Data Type | Allowa Mulls |

j CustomerID nchariS) O

J Sequence int O

J NoteDate datetime O

J EmployeelD ink O

J Moke rivarchar{Max) O

| O
Figure 8-13

Now just save, and you have a table with the desired column order. Just to verify this, try using sp_help:

EXEC sp_help CustomerNotes

233

Chapter 8

You'll see that we have the column order we expect:

CustomerID
Sequence
NoteDate
EmployeeID
Note

Making things like column order changes happens to be one area where the daVinci
tools positively excel. I've used a couple of other ERD tools, and they all offered the
promise of synchronizing a change in column order between the database and the
diagram — the success has been pretty hit and miss. (In other words, be very careful
about doing it around live data.) The tools are getting better, but this is an area
where the daVinci tools show some of the genius of their namesake.

Also, under the heading of one more thing — use the scripting option rather than the
live connection to the database to make changes like this if you're operating against
live data. That way you can fully test the script against test databases before risking
your real data. Be sure to also fully back up your database before making this kind
of change.

Editing Table Properties and Objects That Belong to the Table

Beyond the basic attributes that we’ve looked at thus far, we can also edit many other facets of our table.
How to get at these to edit or add to them happens in two different ways:

Properties: These are edited in a window that pops up and docks, by default, on the right-hand side of
the Management Studio inside the diagramming window. To bring up the properties window, click the
“Properties Window” icon on the toolbar in the Management Studio.

Objects that belong to the table, such as Indexes, Constraints, and Relationships: These are edited in their
own dialog which you can access by right-clicking on the table in the diagram and choosing the item

that you want to set.

These are important facets of our diagram-based editing, so let’s look at some of the major players.

Properties Window

Figure 8-14 shows the Properties Window for our CustomerNotes table:

234

Being Normal: Normalization and Other Basic Design Issues

Properties - 1 X

[Tbi] dbo.CustomerNotes -
|24 | [H]

E {Identity)
(Mame) Customerhotes
Diescripkion

Schema dbo

You can use this properties window to set several key table properties —most notably what schema the

E Dpatabase Designer
Identity Column

Regular Data Spz PRIMARY

Text/Image Fileg) PRIMARY

Figure 8-14

table belongs to as well as whether the table has an Identity column.

Relationships
Much like it sounds, this dialog allows us to edit the nature of the relationships between tables. As you
can see from Figure 8-15, the relationships for the CustomerNotes table doesn’t yet have anything in it.

Foreign Key Relationships

Selected Relationship:

Use the add button ko create a new relationship,

Figure 8-15

235

Chapter 8

For now, just realize that we can edit just about anything to do with relationships here. We could, for
example, create a relationship to another table just by clicking Add and filling out the various boxes.
Again, we’ll look into this farther in a page or two.

Indexes/Keys

Alot of this one may be something of a mystery to you at this point— we haven’t gotten to our chapter
on indexing yet, so some of the terms may seem a bit strange. Still, let’s take a look at what we get in
Figure 8-16.

Indexes/Keys @E|

Selected Primary/Unique Key or Index:

PK_CustometMotes Editing propetties for existing primaryfunique key or index.

= ~
Columns CustomerID (ASC)

=

Create As Clustered Yes
Data Space Specification PRIMARY
Fill Specification

[ot][oo

Figure 8-16

From here, you can, as I'm sure you can imagine, create, edit, and delete indexes. You can also establish
what filegroup you want the index to be stored on (in most instances, you'll just want to leave this
alone). We’ll look further into indexes in our next chapter.

Check Constraints

Notice that we're only doing Check constraints on this tab as shown in Figure 8-17. (Keys and Defaults
have been dealt with in the other tabs.)

Again, this one is pretty much grayed out. Why? Well, there aren’t any constraints of any kind other
than a Primary Key defined for our CustomerNotes table, and that Primary Key is dealt with on the
Index/Keys tab. This one is CHECK Constraints only —if you want to see this tab in full action, then
you need to click Add and add a constraint.

236

Being Normal: Normalization and Other Basic Design Issues

Check Constraints

Selected Check Constraint:

Use the add button ko create a new check constraint,

Figure 8-17

Relationships

Well, we’ve seen what the diagramming tool offers us relative to tables, so, as promised, next up on our
list to review is the relationship line (and the underlying details of that relationship).

Looking at a relationship line, the side with the key is the side that is the “one” side of a relationship.
The side that has the infinity symbol represents your “Many” side. The tools have no relationship line
available to specifically represent relationships where zero is possible (it still uses the same line). In addi-
tion, the only relationships that actually show in the diagram are ones that are declared using Foreign
Key constraints. Any relationship that is enforced via triggers —regardless of the type of relationship —
will not cause a relationship line to appear.

Looking at our Northwind diagram again, and try right-clicking either the Customers or Orders table

and selecting Relationships. This brings up a more populated version of the Relationship dialog we
looked at in the last section — the Relationships dialog for the Orders table is shown in Figure 8-18.

237

Chapter 8

Foreign Key Relationships @EJ

Selected Relationship:

FK_Order_Details_Orders Editing properties for existing relationship.
FK_Crders_Customers

FK_Crders_Employvees

FK_Crders_Shippers

=
Check Existing Data On Crea Mo
Tables and Columns Specifice
=]
Enforce For Replication Yes
Enforce Foreign Key Constra Yes
INSERT And UPDATE Specific

{Mame) FK_Crder_Details_Orders
Drescription

(ot][ol]

Figure 8-18

From here, we can edit the nature of our relationship, including such things as cascading actions,
whether the foreign key is enabled or disabled (for example, if we want to deliberately add data in that
violates the relationship), and even the name of the relationship.

Database designers seem to vary widely in their opinion regarding names for relationships. Some don’t
care what they are named, but I prefer to use a verb phrase to describe my relationships — for example,
in our Customers/Orders relationship, I would probably name it CustomerHasOrders or something of
that ilk. It’s nothing critical —most of the time you won’t even use it—but I find that it can be really
helpful when I'm looking at a long object list or a particularly complex ER Diagram where the lines may
run across the page past several unrelated entities.

Adding Relationships in the Diagramming Tool

Just drag and drop —it’s that easy. The only trick is making sure that you start and end your drag in the
places you meant to. If in doubt, select the column(s) you're interested in before starting your drag.

Try It Out

Let’s add a relationship between our new CustomerNotes table (we created it in the last section) and the
Customers table — after all, if it’s a customer note we probably want to make sure that we are taking
notes on a valid customer. To do this, click and hold in the gray area to the left of the CustomerID col-
umn in the Customers table, then drag your mouse until it is pointing at the CustomerID column in the
CustomerNotes table. A dialog box should pop up to confirm the column mapping between the related
tables (see Figure 8-19).

238

Being Normal: Normalization and Other Basic Design Issues

Tables and Columns El fg|

Relationship pname:
| FK_CustomerMotes_Customers |
Primary kev table: Foreign key table:
|Customers b | | CuskomerMotes |
CustomerID CustomerID
OK l [Cancel
Figure 8-19

If you did your drag and drop right, the names of the columns on both sides of the relationship should
come up right to start with, but if they came up with something other than you expected, don’t worry
too much about—just click the combo box for the table you want to change columns for and select the
new column. Changing the name of the relationship from the default of FK_CustomerNotes_Customers
to CustomerHasNotes. As soon as you click OK, you will be taken to the more standard relationship dia-
log so you can set any other settings you may want to adjust before you save the new relationship to the
table. Go ahead and change the DELETE and UPDATE CASCADE actions to CASCADE — ensuring that

if the related customer record ever gets updated or deleted, the notes for that customer will also get

updated or deleted as necessary. You can see what this looks like in Figure 8-20.

M Foreign Key Relationship

Selected Relationship:

CustomerHashotes*

Editing properties for new relationship. The 'Tables And Calumns
Specification’ property needs to be filled in before the new relationship

will be accepked.

=
Check Existing Data On Crea Yes
Tables And Columns Specific:
=
Enfarce For Replication Yes
Enforce Foreign Key Constra Yes
= IMNSERT And UPDATE Specific
Delete Rule Cascade
Update Rule Cascade|

=
(Mame) CustomerHashotes
Description

QK

l [Cancel

Figure 8-20

239

Chapter 8

With this done, you can click OK and see the new relationship line in your diagram.

How It Works

Much like when we added the table in the previous section, SQL Server is constructing SQL behind the
scenes to make the changes you need. So far, it has added the relationship to the diagram only —if you
hover over that relationship, you even see a tooltip with the relationship’s name and nature, as shown in
Figure 8-21.

Customers * EE—

| CustomerlD
B Companyfdame [Relatinnship ‘CustomerHasNotes’ between "Customers' and 'Customeriobes
: Corkackiame

CorkackTite

| nddess CustomerNotes *
T ity | Column Mame [Data Type | Allowe Huls
— Regan ﬂ Customer D nchar{5) O
| Bostaicode | sequence s O
| Courtry | motenate datetime O
[Fhane | Employesio e |
[Fax | mote rvarcha{MAY) O
- _| O
Figure 8-21

Notice the asterisk on both tables!!! The changes we have made have only been added to the change list
that you've made to the diagram — they will not be added to the physical database until you choose to
Save the diagram!

There is an instance where the way the line is displayed will change —when we “disable” the Foreign
Key. We saw how to disable constraints in our last chapter, and we can do it in the Relationship dialog
by changing the “Enforce Foreign Key Constraint” drop-down to be set to no. When you do that, you're
line will change to let you know that the constraint has been disabled. It will now look something like
Figure 8-22.

o= ___

Figure 8-22

If you see one of these, you're first question should be “Why is that disabled?” Maybe it was intentional,
but you’ll want to be sure.

240

Being Normal: Normalization and Other Basic Design Issues

De-Normalization

I'm going to keep this relatively short since this tends to get into fairly advanced concepts, but remem-
ber not to get carried away with the normalization of your data.

As I stated early in this chapter, normalization is one of those things that database designers sometimes
wear like a cross. It’s somehow turned into a religion for them, and they begin normalizing data for the
sake of normalization rather than for good things it does to their database. Here are a couple of things to
think about in this regard:

Qa

If declaring a computed column or storing some derived data is going to allow you to run a
report more effectively, then by all means put it in. Just remember to take into account the bene-
fit vs. the risk. (For example, what if your “summary” data gets out of synch with the data it can
be derived from? How will you determine that it happened, and how will you fix it if it does
happen?)

Sometimes, by including just one (or more) de-normalized column in a table, you can eliminate
or significantly cut down the number of joins necessary to retrieve information. Watch for these
scenarios — they actually come up reasonably frequently. I've dealt with situations where
adding one column to one commonly used base table cut a nine-table join down to just three,
and cut the query time by about 90 percent in the process.

If you are keeping historical data— data that will largely go unchanged and is just used for
reporting — then the integrity issue becomes a much smaller consideration. Once the data is
written to a read-only area and verified, you can be reasonably certain that you won’t have the
kind of “out of sync” problems that is one of the major things that data normalization
addresses. At that point, it may be much nicer (and faster) to just “flatten” (de-normalize) the
data out into a few tables, and speed things up.

The fewer tables that have to be joined, the happier your users who do their own reports are
going to be. The user base out there continues to get more and more savvy with the tools they
are using. Increasingly, users are coming to their DBA and asking for direct access to the
database to be able to do their own custom reporting. For these users, a highly normalized
database can look like a maze and become virtually useless. De-normalizing your data can
make life much easier for these users.

All that said, if in doubt, normalize things. There is a reason why that is the way relational systems are
typically designed. When you err on the side of normalizing, you are erring on the side of better data
integrity, and on the side of better performance in a transactional environment.

Beyond Normalization

In this section, we’re going to look into a basic set of “beyond normalization” rules of the road in design.
Very few of these are hard and fast kind of rules — they are just things to think about. The most impor-
tant thing to understand here is that, while normalization is a big thing in database design, it is not the
only thing.

241

Chapter 8

Keep It Simple

I run into people on a regular basis that have some really slick ways to do things differently than it’s
ever been done before. Some of the time, I wind up seeing some ideas that are incredibly cool and
incredibly useful. Other times I see ideas that are incredibly cool, but not very useful. As often as not
though, I see ideas that are neither —they may be new, but that doesn’t make them good.

Before I step too hard on your creative juices here, let me clarify what I'm trying to get across —don’t
accept the “because we’ve always done it that way” approach to things, but also recognize that the tried
and true probably continues to be tried for a reason —it usually works.

SQL Server 2005 brings all new ways to overdo it in terms of making things too complex. Complex data
rules and even complex datatypes are available now through powerful and flexible new additions to the
product (code driven functions and datatypes). Try to avoid instilling more complexity in your database
than you really need to. A minimalist approach usually (but not always) yields something that is not
only easier to edit, but also runs a lot faster.

Choosing Datatypes

In keeping with the minimalist idea, choose what you need, but only what you need.

For example, if you're trying to store months (as the number, 1-12) —those can be done in a single byte
by using a tinyint. Why then, do I regularly come across databases where a field that’s only going to
store a month is declared as an int (which is 4 bytes)? Don’t use an nchar or nvarchar if you're never
going to do anything that requires Unicode — these datatypes take up two bytes for every one as com-
pared to their non-Unicode cousins.

There is a tendency to think about this as being a space issue. When I bring this up
in person, I sometimes hear the argument, “Ah, disk space is cheap these days!”
Well, beyond the notion that a name-brand SCSI hard drive still costs more than I
care to throw away on laziness, there’s also a network bandwidth issue. If you're
passing an extra 100 bytes down the wire for every row, and you pass a 100 record
result, then that’s about 10K worth of extra data you just clogged your network with.
Still not convinced? Now, say that you have just 100 users performing 50 transac-
tions per hour —that’s over 50MB of wasted network bandwidth per hour.

The bottom line is, most things that happen with your database will happen
repetitively — that means that small mistakes snowball and can become rather large.

Err on the Side of Storing Things

There was an old movie called The Man Who Knew Too Much — Hitchcock I believe — that man wasn’t
keeping data.

Every time that you're building a database, you're going to come across the question of, “Are we going

to need that information later?” Here’s my two-bit advice on that—if in doubt, keep it. You see, most of
the time you can’t get back the data that has already come and gone.

242

Being Normal: Normalization and Other Basic Design Issues

I guarantee that at least once (and probably many, many more times than that), there will be a time
where a customer (remember, customers are basically anyone who needs something from you— there is
such a thing as an internal customer, not just the ones in Accounts Receivable) will come to you and say
something like, “Can you give me a report on how much we paid each non-incorporated company last
year?”

OK, so are you storing information on whether your vendor is a corporation or not? You had better be if
you are subject to U.S. tax law (1099 reporting). So you turn around and say that you can handle that,
and the customer replies, “Great! Can you print that out along with their address as of the end of the
year?”

Ooops —I'm betting that you don’t have past addresses, or at the very least, aren’t storing the date that
the address changed. In short, you never know what a user of your system is going to ask for —try and
make sure you have it. Just keep in mind that you don’t want to be moving unnecessary amounts of data
up and down your network wire (see my comments on choosing a datatype). If you're storing the data
just for posterity, then make sure you don’t put it in any of your application’s SELECT statements if it
isn’t needed (actually, this should be your policy regardless of why you're storing the data).

If you think that there may be legal ramifications either way (both in keeping it and
in getting rid of it), consult your attorney. Sometimes you’re legally obligated to
keep data a certain amount of time; other times it’s best to get rid of information as
soon as legally possible.

Drawing Up a Quick Example

Let’s walk quickly through a process of designing the invoicing database that we’ve already started with
during our section on normalization. For the most part, we're going to just be applying the diagramming
tools to what we’ve already designed, but we’ll also toss in a few new issues to show how they affect our
design.

Creating the Database

Unlike a lot of the third-party diagramming tools out there, the SQL Server diagramming tools will not
create the database for you— you have to already have it created in order to get as far as having the dia-
gram available to work with.

We're not going to be playing with any data to speak of, so just create a small database called Invoice.
I'll go ahead and use the dialog in the Management Studio for the sake of this example.

After right-clicking on the Databases node of my server and selecting New Database, I enter informa-
tion in for a database called Invoice that is set up as 3MB in size.

243

Chapter 8

Selactii 2] Refresh (L) Schedule =5 Seript = |3 Hel
o E] &) 5 Scipt = |7 Help
4% Dpbiane | _
7 Filegroups Database name: Invoice
ad i f ~
% Extended Pioperties (e [<dsaul C]
[Use iul4est indesing
Databaze files:
Logical Name | File Type | Fiegroup [Initial Size (ME] | Autagrowth
Invaice Data PRIMARY ‘3 By 1 ME, uniesticted orawth
Invaice_log Log Mat Applicable 1 By 10 percent, urvesticted growth
Server
SCHWEITZER
Connection
BARMICLE ok
3¢ View conneclion pioperties
Ready £ -

Figure 8-23

Since we’ve already had a chapter on creating databases (and for the sake of brevity), I'm just going to
accept the defaults on all the other options, as shown in Figure 8-23.

Adding the Diagram and Our Initial Tables

As we did when creating our Northwind diagram, expand the node for our database (it should have
been added underneath the Databases node) and accept the dialog asking if you want to add the
objects needed to support diagramming. Then right-click on the Diagrams node and select New
Database Diagram The Add Table dialog pops up, but since there are no user tables in our database,
we’ll just want to click Cancel so we wind up with a clean sheet.

Now we’re ready to start adding new tables. You can either click the New table icon on the toolbar, or

right-click anywhere in the diagram and select New Table. Let’s start off by adding in the Orders table,
as shown in Figure 8-24.

Orders *

| Column Name Condensed Type Mullable | Default Value | Identity |
7| ordero int Mo
J OrderDate datetime Mo GETDATEL) O
J Customerla int Mo O
| O

Figure 8-24

244

Being Normal: Normalization and Other Basic Design Issues

Note that I've changed from the default view — which doesn’t have Default Value
and Identity as part of it—over to the “custom” view. I also had to choose to
Modify Custom and select the Default value and Identity columns to be added
to my custom view.

Let’s stop long enough to look at a couple of the decisions that we made here. While we had addressed
the issue of normalization, we hadn’t addressed any of the other basics yet. First up of those was the
question of datatypes.

Because OrderID is the primary key for the table, we need to be sure that we allow enough room for our
values to be unique as we insert more and more data. If this was a table we weren’t going to be making
very many inserts into, we might choose a smaller datatype, but since it is our Orders table (and we
hope to be entering lots of orders), we’ll push the size up a bit. In addition, numeric order numbers seem
suitable (make sure you ask your customers about issues like this) and facilitate the use of an automatic
numbering mechanism in the form of an identity column. If you need more than 2 billion or so order
numbers (in which case, I may want some stock in your company), you can take a look at the larger
BigInt datatype. (Suffice to say that I'm certain you won’t have too many orders for that datatype to
hold —just keep in mind the extra space used, although that’s often trivial in the larger schema of how
much space the database as a whole is using.)

With orderDate, the first thing to come to mind was a smalldatetime field. After all, we don’t need
the kind of precision that a datetime field offers, and we also don’t need to go back all that far in his-
tory (maybe a few years at most). Why, then, did we go for datetime rather than smalldatetime? To
show mercy on Visual Basic programmers! Visual Basic prior to .NET throws fits when you start playing
around with smalldatetime fields. You can get around the problems, but it’s a pain. We used a
datetime column for nothing more than making the client coding easy.

Our customer has told us (and we’ve seen in the earlier sample data), that CustomerNo is five digits, all
numeric. This is one of those areas where you start saying to your customer, “Are you sure you're never
going to be using alpha characters in there?” Assuming the answer is yes, we can go with an integer
since it is:

Q Faster on lookups.
Q Smaller in size—4 bytes will cover a 5-digit number easily, but it takes 5 bytes minimum (6 if

you're using variable-length fields) to handle 5 characters.

Note that we’re kind of cheating on this one — realistically, the customer number for this table is really
being defined by the relationship we’re going to be building with the Customers table. Since that’s the
last table we’ll see in this example, we’re going ahead and filling in the blanks for this field now.

After datatypes, we also had to decide on the size of the column — this was a no-brainer for this particu-
lar table since all the datatypes have fixed sizes.

Next on the hit list is whether the rows can be null or not. In this case, we're sure that we want all this
information and that it should be available at the time we enter the order, so we won’t allow nulls.

245

Chapter 8

I've touched on this before, but you just about have to drag me kicking and screaming in order to get me
to allow nulls in my databases. There are situations where you just can’t avoid it — “undefined” values
are legitimate. I'll still often fill text fields with actual text saying “Value Unknown” or something like

that.

The reason I do this is because nullable fields promote errors in much the same way that undeclared
variables do. Whenever you run across null values in the table you wind up asking yourself, “Gee, did I
mean for that to be there, or did I forget to write a value into the table for that row” — that is, do I have
a bug in my program?

The next issue we faced was default values. We couldn’t have a default for OrderID because we’re mak-
ing it an identity column (the two are mutually exclusive). For orderDate, however, a default made
some level of sense. If an OrderDate isn’t provided, then we're going to assume that the order date is
today. Last, but not least, is the CustomerNo — which customer would we default to? Nope —can’t do
that here.

Next up was the issue of an identity column. OrderID is an ideal candidate for an identity column —the
value has no meaning other than keeping the rows unique. Using a counter such as an identity field gives
us a nice, presentable, and orderly way to maintain that unique value. We don’t have any reason to change
the identity seed and increment, so we won’t. We'll leave it starting at one and incrementing by one.

Now we’re ready to move on to our next table —the OrderDetails table as defined in Figure 8-25.

OrderDetails *
| Colurmn Mame | Data Tvpe | Allow Mulls |

%] ordero int

% Linettem int

J Partho char(g)

|y int

J UnitPrice money

|

Figure 8-25

oooooo

For this table, the 0rderID column is going to have a foreign key to it, so our datatype is decided for us —
it must be of the same type and size as the field it’s referencing, so it’s going to be an int.

The Lineltem is going to start over again with each row, so we probably could have gotten as little as a
tinyint here. We're going to go with an int on this one just for safety’s sake. (I've had people exceed
limits that have been set on this sort of thing before.)

PartNo is, for this table, actually going to be defined by the fact that it needs to match up with the
PartNo in the Products table. It’s going to be using a char (6) in that table (we’ll come to it shortly), so
that’s what we’ll make it here.

oty is guesswork. The question is, what’s the largest order you can take as far as quantity for one line-
item oes? Since we don’t know what we’re selling, we can’t really make a guess on a maximum quantity
(for example, if we were selling barrels of oil, it might be bought literally millions of barrels at a time).
We're also using an int here, but we would have needed a datatype that accepted decimals if we were
selling things like gallons of fuel or things by weight.

246

Being Normal: Normalization and Other Basic Design Issues

UnitPrice is easy: As this field is going to hold a monetary value, its datatype must be money.

Moving along, we're again (no surprise here) considering all data fields to be required. No, we’re not
allowing nulls anywhere.

No defaults seem to make sense for this table, so we’re skipping that part also.

Identity? The temptation might be to mark OrderID as an identity column again. Don’t do that!
Remember that OrderID is a value that we’re going to match to a column in another table. That table
will already have a value (as it happens, set by identity, but it didn’t necessarily have to be that way), so
setting our column to identity would cause a collision. We would be told that we can’t do our insert
because we're trying to set an identity value. All the other columns either get their data from another
table or require user input of the data. IsRowGuid does not apply again.

That takes us to our Products and Customers tables, as shown in figures 8-26 and 8-27 respectively.

Products *
| Column Mame | Data Type | Allowa Mulls |
ﬂ Parthio char(f) O
J Description varchar(15) O
J Weight tirwyink |
| O
Figure 8-26
Customers *
| Coluran Mame | Data Type | Alloa Mulls |
ﬂ Customerlao int O
J Custamerame varchar{S0) O
J CustamerAddress varchar{50) O
_| O
Figure 8-27

Let’s hit the highlights on the choices here and move on.

PartNo has been defined by the data that we saw when we were looking at normalization. It’s a
numeric, followed by an alpha, followed by four numerics. That’s six characters, and it seems to be
fixed. We would want to hold the customer to the cross about the notion that the size of the part number
can’t get any larger but, assuming that’s OK, we'll go with a char (6) here. That’s because a char takes
up slightly less overhead than a varchar, and we know that the length is going to always remain the
same (this means that there’s no benefit from the variable size).

Description is one of those guessing games. Sometimes a field like this is going to be driven by your
user interface requirements (don’t make it wider than can be displayed on the screen), other times you're
just going to be truly guessing at what is “enough” space. We're using a variable-length char over a reg-
ular char for two reasons:

247

Chapter 8

Q To save a little space
QO Sowe don’t have to deal with trailing spaces (look at the char vs. varchar datatypes back in
Chapter 2 if you have questions on this)

We haven’t used an nchar or nvarchar because this is a simple invoicing system for a U.S. business,
and we're not concerned about localization issues.

Weight is similar to Description in that it is going to be somewhat of a guess. We’ve chosen a
tinyint here because our products will not be over 255 pounds. Note that we are also preventing our-
selves from keeping decimal places in my weight (integers only).

We described the CustomerNo field back when we were doing the Orders table.

CustomerName and CustomerAddress are pretty much the same situation as Description—the ques-
tion is, how much is enough? But we need to be sure that we don’t give too much

As before, all fields are required (there will be no nulls in either table) and no defaults are called for.
Identity columns also do not seem to fit the bill here as both the customer number and part number have
special formats that do not lend themselves to the automatic numbering system that an identity provides.

Adding the Relationships

OK, to make the diagram less complicated, I've gone through all four of my tables and changed the view
on them down to just Column Names. You can do this, too, by simply right-clicking on the table and
selecting the Column Names menu choice.

You should get a diagram that looks close to Figure 8-28.

Customers * Products *

ﬂ CustamerNo ﬂ Partho
J CuskomerMame J Diescription
J CustomerAddress J ieight

Orders * OrderDetails *

| ordero 9| ordero
J OrderDate ﬂ Lineltem
J Customerio J Partho
ey
| unitrice

Figure 8-28

248

Being Normal: Normalization and Other Basic Design Issues

You may not have the exact same positions for your table, but the contents should be the same. We're
now ready to start adding relationships, but we probably ought to stop and think about what kind of
relationships we need.

All the relationships that we’ll draw with the relationship lines in our SQL Server diagram tool are going
to be one-to-zero, one, or many relationships. SQL Server doesn’t really know how to do any other kind
of relationship implicitly. As we discussed earlier in the chapter, you can add things such as unique con-
straints and triggers to augment what SQL Server will do naturally with relations, but, assuming you
don’t do any of that, you're going to wind up with a one-to-zero, one, or many relationship.

The bright side is that this is by far the most common kind of relationship out there. In short, don’t
sweat it that SQL Server doesn’t cover every base here. The standard foreign key constraint (which is
essentially what our reference line represents) fits the bill for most things that you need to do, and the
rest can usually be simulated via some other means.

We're going to start with the central table in our system — the Orders table. First, we’ll look at any rela-
tionships that it may need. In this case, we have one — it needs to reference the Customers table. This is
going to be a one-to-many relationship with Customers as the parent (the one) and Orders as the child
(the many) table.

To build the relationship (and a foreign key constraint to serve as the foundation for that relationship),
we're going to simply click and hold in the leftmost column of the Customers table (in the gray area)
right where the CustomerNo column is. We'll then drag to the same position (the gray area) next to the
CustomerNo column in the Orders table and let go of the mouse button. SQL Server promptly pops up
with the first of two dialogs to confirm the configuration of this relationship. The first, shown in Figure
8-29, confirms which columns actually relate.

Relationship name:
FK_Orders_Customers
Brimary key table: Foreign key table:
Customers v Orders
Customerio Customerho
OK l [Cancel
Figure 8-29

249

Chapter 8

As I pointed out earlier in the chapter, don’t sweat it if the names that come up don’t match with what
you intended — just use the combo boxes to change them back so both sides have CustomerNo in them.
Note also that the names don’t have to be the same — keeping them the same just helps ease confusion in
situations where they really are the same.

Click OK, for this dialog, and then also click OK to accept the defaults of the Foreign Key Relationship
dialog. As soon as we click OK on the second dialog, we have our first relationship in our new database,
as in Figure 8-30.

Customers *
ﬂ CuskomerNo
J CustomerName
J CustomerAddress

Orders *

- g| order
J COrderDate
J Custornerta

Figure 8-30

Products *

ﬂ Partho
J Descripkion
| weiaht

OrderDetails *

ﬂ OrderID
ﬂ Lineltem
J Partho
oy
| uiterice

Now we’ll just do the same thing for our other two relationships. We need to establish a one-to-many
relationship from Orders to OrderDetails (there will be one order header for one or more order
details) based on 0rderID. Also, we need a similar relationship going from Products to OrderDetails
(there will be one Products record for many OrderDetails records) based on ProductID as shown in

Figure 8-31.

250

Customers *
j CustomerNo
J CustomerMame
J Customerdddress

Products *

ﬂ PartMo
J Description
| weiatt

Orders *

9| ordern
J OrderDate
J Custamerto

Figure 8-31

OrderDetails *

ﬂ OrderID
ﬂ Linelterm
J PartMo
oy
| ritrics

Being Normal: Normalization and Other Basic Design Issues

Adding Some Constraints

As we were going through the building of our tables and relationships, I mentioned a requirement that
we still haven’t addressed. This requirement needs a constraint to enforce it: the part number is formatted
as 9A9999 where “9” indicates a numeric digit 0-9 and “A” indicates an alpha (non-numeric) character.

Let’s add that requirement now by right-clicking on the Products table and selecting Check Constraints
to bring up the dialog shown in Figure 8-32.

Check Constraints @@

Selected Check Constraint:

Use the add button to create a new check constraint,

Figure 8-32

It is at this point that we are ready to click Add and define our constraint. In order to restrict part num-
bers entered to the format we’ve established, we're going to need to make use of the LIKE operator:

(PartNo LIKE '[0-9][A-Z][0-9]1[0-9][0-9][0-9]")
This will essentially evaluate each character that the user is trying to enter in the PartNo column of our
table. The first character will have to be 0 through 9, the second A through Z (an alpha), and the next
four will again have to be numeric digits (the 0 through 9 thing again). We just enter this into the text
box labeled Expression. In addition, we're going to change the default name for our constraint from
CK_Products to CK_PartNo, as shown in Figure 8-33.

That didn’t take us too long—and we now have our first database that we designed!!!

This was, of course, a relatively simple model —but we’ve now done the things that make up perhaps
90 percent or more of the actual data architecture.

251

Chapter 8

Check Constraints

Px

Editing properties for new check constraint, The 'Expression’ property
needs to be filled in before the new check constraint will be accepted.

=
Expression {Partho LIKE T0-9][A-Z][0-9][0-9][0-9][0-<
=
Check Existing Data On Crea Yes
Enforce For INSERTs And P Yes
Enfaorce For Replication Yes
=
K _Partio

Drescription

Close

Selectked Check Constraint:
CK_Partho*
[Add] [Delete
Figure 8-33

Summary

Database design is a huge concept, and one that has many excellent books dedicated to it as their sole
subject. It is essentially impossible to get across every database design notion in just a chapter or two.

In this chapter, we have, however, gotten you off to a solid start. We’ve seen that data is considered nor-
malized when we take it out to the third normal form. At that level, repetitive information has been
eliminated and our data in entirely dependent on our key —in short, the data is dependent on: “The key,
the whole key, and nothing but the key.” We’ve seen that normalization is, however, not always the right
answer — strategic de-normalization of our data can simplify the database for users and speed reporting
performance. Finally, we’ve looked at some non-normalization related concepts in our database design,

plus how to make use of the daVinci tools to design our database.

In our next chapter, we will be taking a very close look at how SQL Server stores information and how to

make the best use of indexes.

Exercises

1. Normalize the following data into 34 normal form:

252

Being Normal: Normalization and Other Basic Design Issues

Patient

Sam Spade

Sally Nally

Peter Piper

Nicki
Doohickey

SSN

555-55-5555

333-33-3333

222-22-2222

123-45-6789

Physician
Albert
Schweitzer

Albert
Schweitzer

Mo Betta

Sheeze
Sheila

Hospital
Mayo

Clinic

NULL
Mustard
Clinic

Mustard
Clinic

Treatment

Lobotomy

Cortizone
Injection

Pickle
Extraction

Cortizone
Injection

AdmitDate

10/01/2005

10/10/2005

11/07/2005

11/07/2005

ReleaseDate

11/07/2005

10/10/2005

11/07/2005

11/07/2005

253

SQL Server Storage
and Index Structures

Indexes are a critical part of your database planning and system maintenance. They provide SQL
Server (and any other database system for that matter) with additional ways to look up data and
take shortcuts to that data’s physical location. Adding the right index can cut huge percentages of
time off your query executions. Unfortunately, too many poorly planned indexes can actually
increase the time it takes for your query to run. Indeed, indexes tend to be one of the most misun-
derstood objects that SQL Server offers and, therefore, also tend to be one of the most mismanaged.

We will be studying indexes rather closely in this chapter from both a developer’s and an adminis-
trator’s point of view, but in order to understand indexes, you also need to understand how data
is stored in SQL Server. For that reason, we will also take a look at SQL Server’s data storage
mechanism.

SQL Server Storage

Data in SQL Server can be thought of as existing in something of a hierarchy of structures. The
hierarchy is pretty simple. Some of the objects within the hierarchy are things that you will deal
with directly, and will therefore know easily. A few others exist under the cover, and while they
can be directly addressed in some cases, they usually are not. Let’s take a look at them one by one.

The Database

OK — this one is easy. I can just hear people out there saying, “Duh! I knew that.” Yes, you proba-
bly did, but I point it out as a unique entity here because it is the highest level of the definition of

storage (for a given server). This is the highest level that a lock can be established at, although you
cannot explicitly create a database level lock.

A lock is something of both a hold and a place marker that is used by the system. As you do devel-
opment using SQL Server — or any other database for that matter — you will find that under-
standing and managing locks is absolutely critical to your system.

Chapter 9

We will be looking into locking extensively in Chapter 14, but we will see the lockability of objects
within SQL Server discussed in passing as we look at storage.

The Extent

An extent is the basic unit of storage used to allocate space for tables and indexes. It is made up of eight
contiguous 64K data pages.

The concept of allocating space based on extents, rather than actual space used, can be somewhat diffi-
cult to understand for people used to operating system storage principles. The important points about
an extent include:

0O Once an extent is full, the next record will take up not just the size of the record, but the size of a
whole new extent. Many people who are new to SQL Server get tripped up in their space esti-
mations in part due to the allocation of an extent at a time rather than a record at a time.

Q By pre-allocating this space, SQL Server saves the time of allocating new space with each record.

It may seem like a waste that a whole extent is taken up just because one too many rows were added to
fit on the currently allocated extent(s), but the amount of space wasted this way is typically not that
much. Still, it can add up — particularly in a highly fragmented environment —so it’s definitely some-
thing you should keep in mind.

The good news in taking up all this space is that SQL Server skips some of the allocation time overhead.
Instead of worrying about allocation issues every time it writes a row, SQL Server deals with additional
space allocation only when a new extent is needed.

Don’t confuse the space that an extent is taking up with the space that a database takes up. Whatever
space is allocated to the database is what you'll see disappear from your disk drive’s available space
number. An extent is merely how things are, in turn, allocated within the total space reserved by the
database.

The Page

Much like an extent is a unit of allocation within the database, a page is the unit of allocation within a
specific extent. There are eight pages to every extent.

A page is the last level you reach before you are at the actual data row. Whereas the number of pages per
extent is fixed, the number of rows per page is not—that depends entirely on the size of the row, which

can vary. You can think of a page as being something of a container for both table and index row data. A
row is not allowed to be split between pages.

There are a number of different page types. For purposes of this book, the types we care about are:

Q Data: Data pages are pretty self-explanatory — they are the actual data in your table, with the
exception of any BLOB data that is not defined with the text in row option or varchar(max).

Q Index: Index pages are also pretty straightforward: they hold both the non-leaf and leaf level
pages (we’ll examine what these are later in the chapter) of a non-clustered index, as well as the
non-leaf level pages of a clustered index. These index types will become much clearer as we
continue through this chapter.

256

SQL Server Storage and Index Structures

Page Splits

When a page becomes full, it splits. This means more than just a new page being allocated —it also
means that approximately half the data from the existing page is moved to the new page.

The exception to this process is when a clustered index is in use. If there is a clustered index, and the
next inserted row would be physically located as the last record in the table, then a new page is created
and the new row is added to the new page without relocating any of the existing data. We will see much
more on page splits as we investigate indexes.

Rows

You will hear much about “Row Level Locking,” so it shouldn’t be a surprise to hear this term. Rows can
be up to 8KB.

In addition to the limit of 8,060 characters, there is also a maximum of 1,024 columns. In practice, you'll
find it very unusual to run into a situation where you run out of columns before you run into the 8060
character limit. 1,024 gives you an average column width of 8 bytes. For most uses, you'll easily exceed
that. The exception to this tends to be in measurement and statistical information — where you have a
large number of different things that you are storing numeric samples of. Still, even those applications
will find it a rare day when they bump into the 1,024 column count limit.

Understanding Indexes

Webster’s dictionary defines an index as:

A list (as of bibliographical information or citations to a body of literature) arranged usually in alpha-
betical order of some specified datum (as author, subject, or keyword).

I'll take a simpler approach in the context of databases, and say it’s a way of potentially getting to data a
heck of a lot quicker. Still, the Webster’s definition isn’t too bad —even for our specific purposes.

Perhaps the key thing to point out in the Webster’s definition is the word “usually” that’s in there. The
definition of “alphabetical order” changes depending on a number of rules. For example, in SQL Server,
we have a number of different collation options available to us. Among these options are:

Q Binary: Sorts by the numeric representation of the character (for example, in ASCII, a space is
represented by the number 32, the letter “D” is 68, but the letter “d” is 100). Because everything
is numeric, this is the fastest option — unfortunately, it’s also not at all the way in which people
think, and can also really wreak havoc with comparisons in your WHERE clause.

Q Dictionary order: This sorts things just as you would expect to see in a dictionary, with a twist—
you can set a number of different additional options to determine sensitivity to case, accent, and
character set.

It’s fairly easy to understand that, if we tell SQL Server to pay attention to case, then “A” is not going to

be equal to “a”. Likewise, if we tell it to be case insensitive, then “A” will be equal to “a”. Things get a
bit more confusing when you add accent sensitivity — that is, SQL Server pays attention to diacritical

257

Chapter 9

marks, and therefore “a” is different from “4”, which is different from “a”. Where many people get even
more confused is in how collation order affects not only the equality of data, but also the sort order (and,
therefore, the way it is stored in indexes).

By way of example, let’s look at the equality of a couple of collation options in the following table, and
what they do to our sort order and equality information:

Collation Order Comparison Values Index Storage Order

Dictionary order, A=a=a=4=a=A=a=A=34a a,A a,4,4A,4,A, a4
case-insensitive,
accent-insensitive

(the default)
Dictionary order, A=a=a=a=4a=A=d=A=a A a,3,44A,34 A, 4
case-insensitive,
accent-insensitive,
uppercase preference
Dictionary order, A_a,A_4&A_3, A ,a,3,4,4 A, 34 A, 4
case-sensitive a_a_4a_a_a_a,
A_A_A

The point here is that what happens in your indexes depends on the collation information you have
established for your data. Collation can be set at the database and column level, so you have a fairly fine
granularity in your level of control. If you're going to assume that your server is case insensitive, then
you need to be sure that the documentation for your system deals with this or you had better plan on a
lot of tech support calls — particularly if you're selling outside of the United States. Imagine you're an
independent software vendor (ISV) and you sell your product to a customer who installs it on an exist-
ing server (which is going to seem like an entirely reasonable thing to the customer), but that existing
server happens to be an older server that’s set up as case sensitive. You're going to get a support call
from one very unhappy customer.

Once the collation order has been set, changing it is very non-trivial (but possible),
so be certain of the collation order you want before you set it.

B-Trees

The concept of a Balanced Tree, or B-Tree, is certainly not one that was created with SQL Server. Indeed,
B-Trees are used in a very large number of indexing systems both in and out of the database world.

A B-Tree simply attempts to provide a consistent and relatively low-cost method of finding your way to

a particular piece of information. The Balanced in the name is pretty much self-descriptive —a B-Tree is,
with the odd exception, self-balancing, meaning that every time the tree branches, approximately half

258

SQL Server Storage and Index Structures

the data is on one side, and half on the other side. The Tree in the name is also probably pretty obvious at
this point (hint: tree, branch — see a trend here?) —it’s there because, when you draw the structure, then
turn it upside down, it has the general form of a tree.

A B-Tree starts at the root node (another stab at the tree analogy there, but not the last). This root node
can, if there is a small amount of data, point directly to the actual location of the data. In such a case, you
would end up with a structure that looked something like Figure 9-1.

1
Root 6
11
16
1 6 11 16
2 7 12 17
Actual
Data 3 8 13 18
4 9 14
5 10 15
Figure 9-1

So, we start at the root and look through the records until we find the last page that starts with a value
less than what we’re looking for. We then obtain a pointer to that node, and look through it until we find
the row that we want.

In most situations though, there is too much data to reference from the root node, so the root node points at
intermediate nodes — or what are called non-leaf level nodes. Non-leaf level nodes are nodes that are some-
where in between the root and the node that tells you where the data is physically stored. Non-leaf level
nodes can then point to other non-leaf level nodes, or to leaf level nodes (last tree analogy reference —1I
promise). Leaf level nodes are the nodes where you obtain the real reference to the actual physical data.
Much like the leaf is the end of the line for navigating the tree, the node we get to at the leaf level is the end
of the line for our index —from here, we can go straight to the actual data node that has our data on it.

As you can see in Figure 9-2, we start with the root node just as before, then move to the node that starts
with the highest value that is equal to or less than what we’re looking for and is also in the next level
down. We then repeat the process —look for the node that has the highest starting value at or below the
value for which we're looking. We keep doing this, level by level down the tree, until we get to the leaf
level —from there we know the physical location of the data, and can quickly navigate to it.

259

Chapter 9

1
157
Root 534
Y ¥ N
1 157 534
53 270 600
Non-Leaf 104 410 755
Level
A Y v v) \ v N ~
1 53 104 157 270 410 534 600 755
10 65 110 190 310 430 545 621 780
20 78 121 210 335 450 557 641 795
Leaf 30 90 130 230 360 475 570 680 825
Level 41 98 140 250 380 510 588 720 847
261 521 860
Figure 9-2

Page Splits — A First Look

All of this works quite nicely on the read side of the equation —it’s the insert that gets a little tricky.
Recall that the B in B-Tree stands for balanced. You may also recall that I mentioned that a B-Tree is bal-
anced because about half the data is on either side every time you run into a branch in the tree. B-Trees
are sometimes referred to as self-balancing because the way new data is added to the tree generally pre-
vents them from becoming lopsided.

When data is added to the tree, a node will eventually become full, and will need to split. Because, in
SQL Server, a node equates to a page — this is called a page split, illustrated in Figure 9-3.

When a page split occurs, data is automatically moved around to keep things balanced. The first half of
the data is left on the old page, and the rest of the data is added to a new page — thus you have about a
50-50 split, and your tree remains balanced.

260

SQL Server Storage and Index Structures

Ordered insert as middle record
in a Cluster Key

2
4 New record to be inserted
6 | X but the page is full.
8
2
4 Since the new record needs to go in the
5 middle, the page must be split.
6
8

Figure 9-3

If you think about this splitting process a bit, you'll realize that it adds a substantial amount of overhead
at the time of the split. Instead of inserting just one page, you are:

QO Creating a new page

Q Migrating rows from the existing page to the new page
Q Adding your new row to one of the pages
Q

Adding another entry in the parent node

But the overhead doesn’t stop there. Since we're in a tree arrangement, you have the possibility for
something of a cascading action. When you create the new page (because of the split), you need to make
another entry in the parent node. This entry in the parent node also has the potential to cause a page-
split at that level, and the process starts all over again. Indeed, this possibility extends all the way up to
and can even affect the root node.

If the root node splits, then you actually end up creating two additional pages. Because there can be only
one root node, the page that was formerly the root node is split into two pages, and becomes a new
intermediate level of the tree. An entirely new root node is then created, and will have two entries (one
to the old root-node, one to the split page).

Needless to say, page splits can have a very negative impact on system performance, and are character-

ized by behavior where your process on the server seems to just pause for a few seconds (while the
pages are being split and re-written).

261

Chapter 9

We will talk about page-split prevention before we're done with this chapter.

While page splits at the leaf level are a common fact of life, page splits at intermediate nodes happen far
less frequently. As your table grows, every layer of the index will experience page splits, but, because the
intermediate nodes have only one entry for several entries on the next lower node, the number of page
splits gets less and less frequent as you move further up the tree. Still, for a split to occur above the leaf
level, there must have already been a split at the next lowest level — this means that page splits up the
tree are cumulative (and expensive performance-wise) in nature.

SQL Server has a number of different types of index (which we will discuss shortly), but they all make
use of this B-Tree approach in some way or another. Indeed, they are all very similar in structure thanks
to the flexible nature of a B-Tree. Still, we shall see that there are indeed some significant differences, and
these can have an impact on the performance of our system.

For a SQL Server index, the nodes of the tree come in the form of pages, but you can actually apply this
concept of a root node, the non-leaf level, the leaf level, and the tree structure to more than just SQL
Server or even just databases.

How Data Is Accessed in SQL Server

In the broadest sense, there are only two ways in which SQL Server retrieves the data you request:

Q Using a table scan

Q Usinganindex

Which method SQL Server will use to run your particular query will depend on what indexes are avail-
able, what columns you are asking about, what kind of joins you are doing, and the size of your tables.

Use of Table Scans

A table scan is a pretty straightforward process. When a table scan is performed, SQL Server starts at the
physical beginning of the table looking through every row in the table. As it finds rows that match the
criteria of your query, it includes them in the result set.

You may hear lots of bad things about table scans, and in general, they will be true. However, table scans
can actually be the fastest method of access in some instances. Typically, this is the case when retrieving
data from rather small tables. The exact size where this becomes the case will vary widely according to
the width of your table and what the specific nature of the query is.

See if you can spot why the use of EXISTS in the WHERE clause of your queries has so much to offer
performance-wise where it fits the problem. When you use the EXISTS operator, SQL Server stops as
soon as it finds one record that matches the criteria. If you had a million record table, and it found a
matching record on the third record, then use of the EXISTS option would have saved you the reading
of 999,997 records! NOT EXISTS works in much the same way.

Use of Indexes

When SQL Server decides to use an index, the process actually works somewhat similarly to a table scan,
but with a few shortcuts.

262

SQL Server Storage and Index Structures

During the query optimization process, the optimizer takes a look at all the available indexes and
chooses the best one (this is primarily based on the information you specify in your joins and WHERE
clause, combined with statistical information SQL Server keeps on index makeup). Once that index is
chosen, SQL Server navigates the tree structure to the point of data that matches your criteria and again
extracts only the records it needs. The difference is that, since the data is sorted, the query engine knows
when it has reached the end of the current range it is looking for. It can then end the query, or move on
to the next range of data as necessary.

If you ponder the query topics we’ve studied thus far (Chapter 7 specifically), you may notice some
striking resemblances to how the EXISTS option worked. The EXISTS keyword allowed a query to quit
running the instant that it found a match. The performance gains using an index are similar or even bet-
ter since the process of searching for data can work in a similar fashion — that is, the server is able to
know when there is nothing left that’s relevant, and can stop things right there. Even better, however, is
that by using an index, we don’t have to limit ourselves to Boolean situations (does the piece of data I
was after exist— yes or no?). We can apply this same notion to both the beginning and end of a range —
we are able to gather ranges of data with essentially the same benefits that using an index gives to find-
ing data. What’s more, we can do a very fast lookup (called a SEEK) of our data rather than hunting
through the entire table.

Don'’t get the impression from my comparing what indexes do for us to the EXISTS operator that indexes
replace the EXISTS operator altogether (or vice versa). The two are not mutually exclusive; they can be
used together, and often are. I mention them here together only because they have the similarity of being
able to tell when their work is done, and quit before getting to the physical end of the table.

Index Types and Index Navigation

Although there are nominally two types of indexes in SQL Server (clustered and non-clustered), there are
actually, internally speaking, three different types:
Q Clustered indexes
Q Non-clustered indexes — which comprise:
QO Non-clustered indexes on a heap
QO Non-clustered indexes on a clustered index

The way the physical data is stored varies between clustered and non-clustered indexes. The way SQL
Server traverses the B-Tree to get to the end data varies between all three index types.

All SQL Server indexes have leaf level and non-leaf level pages. As we mentioned when we discussed
B-Trees, the leaf level is the level that holds the “key” to identifying the record, and the non-leaf level
pages are guides to the leaf level.

The indexes are built over either a clustered table (if the table has a clustered index) or what is called a
heap (what's used for a table without a clustered index).

Clustered Tables

A clustered table is any table that has a clustered index on it. Clustered indexes are discussed in detail
shortly, but what they mean to the table is that the data is physically stored in a designated order.
Individual rows are uniquely identified through the use of the cluster-key — the columns that define the
clustered index.

263

Chapter 9

This should bring to mind the question of, “What if the clustered index is not unique?” That is, how
can a clustered index be used to uniquely identify a row if the index is not a unique index? The answer
lies under the covers — SQL Server forces any clustered indexes to be unique — even if you don’t define
it that way. Fortunately, it does this in a way that doesn’t change how you use the index. You can still
insert duplicate rows if you wish, but SQL Server will add a suffix to the key internally to ensure that
the row has a unique identifier.

Heaps

A heap is any table that does not have a clustered index on it. In this case, a unique identifier, or row ID
(RID) is created based on a combination of the extent, pages, and row offset (places from the top of the
page) for that row. A RID is only necessary if there is no cluster key available (no clustered index).

Clustered Indexes

A clustered index is unique for any given table—you can only have one per table. You don’t have to have
a clustered index, but you'll find it to be one of the most commonly chosen types as the first index, for a
variety of reasons that will become apparent as we look at our index types.

What makes a clustered index special is that the leaf level of a clustered index is the actual data—that is,
the data is re-sorted to be stored in the same physical order that the index sort criteria state. This means
that, once you get to the leaf level of the index, you're done —you're at the data. Any new record is
inserted according to its correct physical order in the clustered index. How new pages are created
changes depending on where the record needs to be inserted.

In the case of a new record that needs to be inserted into the middle of the index structure, a normal
page split occurs. The last half of the records from the old page are moved to the new page and the new
record is inserted into the new or old page as appropriate.

In the case of a new record that is logically at the end of the index structure, a new page is created, but
only the new record is added to the new page, as shown in Figure 9-4.

Ordered insert as last record
in a Cluster Key

New record to be inserted
but the page is full. Since it
X is last, it is added to an
entirely new page without
5 distrurbing the existing data.

AIWIN |-

Figure 9-4
264

SQL Server Storage and Index Structures

Navigating the Tree

As I've indicated previously, even the indexes in SQL Server are stored in a B-Tree. Theoretically, a B-
Tree always has half of the remaining information in each possible direction as the tree branches. Let’s

take a look at a visualization of what a B-Tree looks like for a clustered index (Figure 9-5).

1 Looking for Records
157 158 through to 400
Root —
P4 AW
1 157
Non-Leaf 53 270
Level L104 Qlo
pd v ~~ pd ¥ ~~
1 Fred 53 Bob 104| Bruce 157| Tom 270 Bill 411| Mike
2 Sally 54 Sam 105 Sue 158| Ashley 271 s 412| Nancy
Leaf Level
is Data Page . 400| Margot
52 Steve 103| George 156 269| Ralph 401 Tom
Figure 9-5

As you can see, it looks essentially identical to the more generic B-Trees we discussed earlier in the chap-
ter. In this case, we're doing a range search (something clustered indexes are particularly good at) for
numbers 158—-400. All we have to do is navigate to the first record, and include all remaining records on
that page. — We know we need the rest of that page because the information from the node one level up
lets us know that we’ll also need data from a few other pages. Because this is an ordered list, we can be
sure it’s continuous — that means if the next page has records that should be included, then the rest of
this page must be included. We can just start spewing out data from those pages without having to do
the verification side of things.

We start off by navigating to the root node. SQL Server is able to locate the root node based on an entry
that is kept in the system table called sysindexes.

based.

Every index in your database has an entry in sysindexes. This system table is part
of your database (as opposed to being in the master database), and stores the loca-
tion information for all the indexes in your database and on which columns they are

By looking through the page that serves as the root node, we can figure out what the next page we need
to examine is (the second page on the second level as we have it drawn here). We then continue the pro-
cess. With each step we take down the tree, we are getting to smaller and smaller subsets of data.

265

Chapter 9

Eventually, we will get to the leaf level of the index. In the case of our clustered index, getting to the leaf
level of the index means that we are also at our desired row(s) and our desired data.

I can’t stress enough the importance of the distinction that, with a clustered index,
when you’ve fully navigated the index, you’ve fully navigated to your data. How
much of a performance difference this can make will really show its head as we look
at non-clustered indexes — particularly when the non-clustered index is built over a
clustered index.

Non-Clustered Indexes on a Heap

Non-clustered indexes on a heap work very similarly to clustered indexes in most ways. They do, however,
have a few notable differences:

The leaf level is not the data—instead, it is the level at which you are able to obtain a pointer to that data.
This pointer comes in the form of the RID, which, as we described earlier in the chapter, is made up of the
extent, page, and row offset for the particular row being pointed to by the index. Even though the leaf level
is not the actual data (instead, it has the RID), we only have one more step than with a clustered index—
because the RID has the full information on the location of the row, we can go directly to the data.

Don’t, however, misunderstand this “one more step” to mean that there’s only a small amount of over-
head difference, and that non-clustered indexes on a heap will run close to as fast as a clustered index.
With a clustered index, the data is physically in the order of the index. That means, for a range of data,
when you find the row that has the beginning of your data on it, there’s a good chance that the other
rows are on that page with it (that is, you're already physically almost to the next record since they are
stored together). With a heap, the data is not linked together in any way other than through the index.
From a physical standpoint, there is absolutely no sorting of any kind. This means that, from a physical
read standpoint, your system may have to retrieve records from all over the file. Indeed, it’s quite possi-
ble (possibly even probable) that you will wind up fetching data from the same page several separate
times — SQL Server has no way of knowing it will have to come back to that physical location because
there was no link between the data. With the clustered index, it knows that’s the physical sort, and can
therefore grab it all in just one visit to the page.

Just to be fair to the non-clustered index on a heap here vs. the clustered index, the odds are extremely
high that any page that was already read once will still be in the memory cache, and, as such, will be
retrieved extremely quickly. Still, it does add some additional logical operations to retrieve the data.

Figure 9-6 shows the same search we did with the clustered index, only with a non-clustered index on a
heap this time.

Through most of the index navigation, things work exactly as they did before. We start out at the same
root node, and we traverse the tree dealing with more and more focused pages until we get to the leaf
level of our index. This is where we run into the difference. With a clustered index, we could have
stopped right here, but, with a non-clustered index, we have more work to do. If the non-clustered index
is on a heap, then we have just one more level to go. We take the Row ID from the leaf level page, and
navigate to it—it is not until that point that we are at our actual data.

266

SQL Server Storage and Index Structures

1 Looking for Records
157 158 through to 400
Root -
pd ~
1 157
Non-Leaf 53 270
Level Q o Q 10
pd v ~ / v ~
1 | 476405 53| 100403 104| 334205 157| 141602 270| 220703 411| 151501
2 | 236205 54 | 236201 105| 141604 |1158| 220702 271| 236204 412| 102404
LeafLeveI DTS DTS DTS DTS DTS
“ e oo oo oo 400 127504
52| 111903 103| 241905 156| 020001 |—269 220701 401| 126003
—> 220701 Ralph 241901 Bob 236201 Nick
—> 220702 | Ashley 241902 Sue 236202 Don
Data Pages 220703 Bill [« | 241903 | Tony 236203 Kate
220704 s 241904 o — 236204 Tony
220701 R 241905 | George 236205 | Francis
Figure 9-6

Non-Clustered Indexes on a Clustered Table

With non-clustered indexes on a clustered table, the similarities continue —but so do the differences. Just as
with non-clustered indexes on a heap, the non-leaf level of the index looks pretty much as it did for a
clustered index. The difference does not come until we get to the leaf level.

At the leaf level, we have a rather sharp difference from what we’ve seen with the other two index structures—
we have yet another index to look over. With clustered indexes, when we got to the leaf level, we found the
actual data. With non-clustered indexes on a heap, we didn’t find the actual data, but did find an identifier
that let us go right to the data (we were just one step away). With non-clustered indexes on a clustered table,
we find the cluster-key. That is, we find enough information to go and make use of the clustered index.

We end up with something that looks like Figure 9-7.
What we end up with is two entirely different kinds of lookups.

In the example from our diagram, we start off with a ranged search—we do one single lookup in our index
and are able to look through the non-clustered index to find a continuous range of data that meets our crite-
rion (LIKE 'T%'). This kind of lookup, where we can go right to a particular spot in the index, is called a seek.

The second kind of lookup then starts — the lookup using the clustered index. This second lookup is
very fast; the problem lies in the fact that it must happen multiple times. You see, SQL Server retrieved a
list from the first index lookup (a list of all the names that start with “T”), but that list doesn’t logically
match up with the cluster key in any continuous fashion — each record needs to be looked up individu-
ally as shown in Figure 9-8.

267

Chapter 9

Select EmployeelD
who is FName like “T%"
Allison 115
Fred 1
Root Mike 56
Ralph 74
Steve 52
. Y
Allison 115 Steve 52
Bill 270 Tom 157
N‘I’_’;';af Charlie | 23 Zach 99
Diane 361
Ernest 211
v v Y v
Allison 115 Bill 270 Steve 52 Tom 157
Leaf Level Amy 27 Bruce 104 Sue 105 Tony 209
Barbara 367 Frank 171 Tim 102 Yolanda
To Clustered l
Index Point Y *
1
157
Y
1 157
53 270
104 410
Y Y Y Y
1 Fred 53 Bob 157 Tom 270 Bill
2 Sally 54 Sam 158 Ashley 276 Russ
209 Tony
52 Steve 102 Tim s 401 Tom
103 George 269 Ralph
Figure 9-7

268

SQL Server Storage and Index Structures

epue|oA [wiL TLT 19€ | eieqieg
602 Auor SOT ang 0T 1T Awy
15T wo| 25 RS 0.2 16T woy
Tz | 1seug
T9E
66 yoez €C
/ST woy, 0.2 epUE.|OA Z0T [1.7 19E | eseqieg
23 EES 15T
602 Auor SOT ang 0T 1T Ay
cs) 1ST [Auop 0.Z [wiL
A ydiey
95 SN
T pai4 1TC 1seul3
1GT woy 602 Auoy T9¢ auelq
66 yoez €z | eleud
5}09S p I 1ST woy
Law rees ° /ST woy, 0.2
\ ST L 602 AuoL Z0T wiL
Xapu| paiaisn|d-uoN
wouy 1S
602 Auor
22 ydiey
epUE|OA Z0T [T/T | oved 79€ | eieqieg 98 N
T pai
z0T [
60C Auop SOT ang 0T T Ay 602 99S pasaisn|y
16T woL 25 EES 0.2 Z0T [T
h)
Tz | 1seu3
T9e | euei
66 yoez €z | eleud
ST woy 0.2
[BB 20T
[anals
[ydiey
95 MW
T paij
z0T wip

COT }93S palvisn|y

Figure 9-8

269

Chapter 9

Needless to say, this multiple lookup situation introduces more overhead than if we had just been able to
use the clustered index from the beginning. The first index search — the one through our non-clustered
index —is going to require very few logical reads.

For example, if I have a table with 1,000 bytes per row, and I did a lookup similar to the one in our draw-
ing (say, something that would return 5 or 6 rows); it would only take something to the order of 8-10 log-
ical reads to get the information from the non-clustered index. However, that only gets me as far as
being ready to look up the rows in the clustered index. Those lookups would cost approximately 3-4 log-
ical reads each, or 15-24 additional reads. That probably doesn’t seem like that big a deal at first, but look
at it this way:

Logical reads went from 3 minimum to 24 maximum — that’s an 800 percent increase in the amount of
work that had to be done.

Now expand this thought out to something where the range of values from the non-clustered index
wasn’t just five or six rows, but five or six thousand, or five or six hundred thousand rows — that’s going
to be a huge impact.

Don'’t let the extra overhead vs. a clustered index scare you — the point isn't meant to scare you away
from using indexes, but rather to recognize that a non-clustered index is not going to be as efficient as a
clustered index from a read perspective (it can, in some instances, actually be a better choice at insertion

time). An index of any kind is usually (there are exceptions) the fastest way to do a lookup. We'll
explain what index to use and why later in the chapter.

Creating, Altering, and Dropping Indexes

These work much as they do on other objects such as tables. Let’s take a look at each, starting with the
CREATE.

Indexes can be created in two ways:

Q Through an explicit CREATE INDEX command

0 Asanimplied object when a constraint is created

Each of these has its own quirks about what it can and can’t do, so let’s look at each of them individually.

The CREATE INDEX Statement

The CREATE INDEX statement does exactly what it sounds like —it creates an index on the specified
table or view based on the stated columns.

The syntax to create an index is somewhat drawn out, and introduces several items that we haven’t
really talked about up to this point:

CREATE [UNIQUE] [CLUSTERED|NONCLUSTERED]

INDEX <index name> ON <table or view name>(<column name> [ASC|DESC] [,...n])
INCLUDE (<column name> [, ...n])
[WITH

270

SQL Server Storage and Index Structures

AD_INDEX = { ON | OFF }]

,]1 FILLFACTOR = <fillfactor>]

] IGNORE_DUP_KEY = { ON | OFF }]

] DROP_EXISTING = { ON | OFF }]

] STATISTICS_NORECOMPUTE = { ON | OFF }]
] SORT_IN_TEMPDB = { ON | OFF }]

,] ONLINE = { ON | OFF }
]
]
]

P

[

L
[
[
L
[
[ALLOW_ROW_LOCKS = { ON | OFF }
[
[

ALLOW_PAGE_LOCKS = { ON | OFF }
MAXDOP = <maximum degree of parallelism>

r
’

’

[
[
[
[
[
[
[
[
[
[
]
[ON {<filegroup> | <partition scheme name> \ DEFAULT }]

There is legacy syntax available for many of these options, and so you may see that syntax put into use

to support prior versions of SQL Server. That syntax is, however, considered deprecated and will be
removed at some point — I highly recommend that you stay with the newer syntax where possible.

There is a similar but sufficiently different syntax for creating XML indexes. That
will be handled separately at the end of this section.

Loosely speaking, this statement follows the same CREATE <object type> <object name> syntax
that we’ve seen plenty of already (and will see even more of). The primary hitch in things is that we
have a few intervening parameters that we haven’t seen elsewhere.

Just as we'll see with views in our next chapter, we do have to add an extra clause onto our CREATE
statement to deal with the fact that an index isn’t really a stand-alone kind of object. It has to go together
with a table or view, and we need to state the table that our column(s) are “ON".

After the ON <table or view name>(<column name>) clause, everything is optional. You can mix
and match these options. Many of them are seldom used, but some (such as FILLFACTOR) can have a
significant impact on system performance and behavior, so let’s look at them one by one.

ASC/DESC

These two allow you to choose between an ascending and a descending sort order for your index. The
default is asc, which is, as you might guess, ascending order.

A question that might come to mind is why ascending vs. descending matters —you see, SQL Server can
just look at an index backwards if it needs the reverse sort order. Life is not, however, always quite so
simple. Looking at the index in reverse order works just fine if you're dealing with only one column, or
if your sort is always the same for all columns —but what if you needed to mix sort orders within an
index? That is, what if you need one column to be sorted ascending, but the other descending? Since the
indexed columns are stored together, reversing the way you look at the index for one column would also
reverse the order for the additional columns. If you explicitly state that one column is ascending, and the
other is descending, then you invert the second column right within the physical data— there is sud-
denly no reason to change the way that you access your data.

As a quick example, imagine a reporting scenario where you want to order your employee list by the
hire date, beginning with the most recent (a descending order), but you also want to order by their last

271

Chapter 9

name (an ascending order). In previous versions, SQL Server would have to do two operations — one for
the first column and one for the second. By allowing us to control the physical sort order of our data, we
gain flexibility in the way we combine columns.

Generally speaking, you’ll want to leave this one alone (again, remember backward compatibility). Some
likely exceptions are:

O You need to mix ascending and descending order across multiple columns.

Q Backward compatibility is not an issue.

INCLUDE

This one is a very sweet new addition with SQL Server 2005. Its purpose is to provide better support for
what are called covered queries.

When you INCLUDE columns as opposed to placing them in the ON list, SQL Server only adds them at
the leaf level of the index. Because each row at the leaf level of an index corresponds to a data row, what
you're doing is essentially including more of just the raw data in the leaf level of your index. If you think
about this, you can probably make the guess that INCLUDE really only applies to non-clustered indexes
(clustered indexes already are the data at the leaf level, so there would be no point).

Why does this matter? Well, as we’ll discuss further as the book goes on, SQL Server stops working as
soon as it has what it actually needs. So, if while traversing the index, it can find all the data that it needs
without continuing on to the actual data row, then it won’t bother going to the data row (what would be
the point?). By including a particular column in the index, you may “cover” a query that utilizes that
particular index at the leaf level and save the I/O associated with using that index pointer to go to the
data page.

Careful not to abuse this one! When you INCLUDE columns, you are enlarging the size of the leaf level
of your index pages. That means fewer rows will fit per page, and, therefore, more I/O may be required
to see the same number of rows. The result may be that you effort to speed up one query may slow down
others. To quote an old film from the eighties, “Balance, Danielson — balance!” Think about the effects
on all parts of your system, not just the particular query you're working on that moment.

WITH

WITH is an easy one —it just tells SQL Server that you will indeed be supplying one or more of the
options that follow.

PAD_INDEX

In the syntax list, this one comes first—but that will seem odd when you understand what PAD_INDEX
does. In short, it determines just how full the non-leaf level pages of your index are going to be (as a per-
centage), when the index is first created. You don’t state a percentage on PAD_INDEX because it will use
whatever percentage is specified in the FILLFACTOR option that follows. Setting PAD_INDEX = ON
would be meaningless without a FILLFACTOR (which is why it seems odd that it comes first).

FILLFACTOR

When SQL Server first creates an index, the pages are, by default, filled as full as they can be, minus two
records. You can set the FILLFACTOR to be any value between 1 and 100. This number will be how full
your pages are as a percentage, once index construction is completed. Keep in mind, however, that as

272

SQL Server Storage and Index Structures

your pages split, your data will still be distributed 50-50 between the two pages — you cannot control
the fill percentage on an ongoing basis other than regularly rebuilding the indexes (something you
should do — setting up a maintenance schedule for this is covered in Chapter 20).

We use a FILLFACTOR when we need to adjust the page densities. Think about things this way:

Q Ifit’s an OLTP system, you want the FILLFACTOR to be low.

Q Ifit’'s an OLAP or other very stable (in terms of changes — very few additions and deletions)
system, you want the FILLFACTOR to be as high as possible.

Q If you have something that has a medium transaction rate and a lot of report type queries
against it, then you probably want something in the middle (not too low, not too high).

If you don’t provide a value, then SQL Server will fill your pages to two rows short of full, with a mini-
mum of one row per page (for example, if your row is 8000 characters wide, you can fit only one row per
page —so leaving things two rows short wouldn’t work).

IGNORE_DUP_KEY

The IGNORE_DUP_KEY option is a way of doing little more than circumventing the system. In short, it
causes a UNIQUE constraint to have a slightly different action from that which it would otherwise have.

Normally, a unique constraint, or unique index, does not allow any duplicates of any kind —if a transac-
tion tried to create a duplicate based on a column that is defined as unique, then that transaction would
be rolled back and rejected. Once you set the IGNORE_DUP_KEY option, however, you'll get something of
a mixed behavior. You will still receive an error message, but the error will only be of a warning level —
the record is still not inserted.

This last line— "the record is still not inserted” —is a critical concept from an IGNORE_DUP_KEY stand-
point. A rollback isn’t issued for the transaction (the error is a warning error rather than a critical error),
but the duplicate row will have been rejected.

Why would you do this? Well, it’s a way of storing unique values, but not disturbing a transaction that
tries to insert a duplicate. For whatever process is inserting the would-be duplicate, it may not matter at
all that it’s a duplicate row (no logical error from it). Instead, that process may have an attitude that’s
more along the lines of, “Well, as long as I know there’s one row like that in there, I'm happy —I don’t
care whether it’s the specific row that I tried to insert or not.”

DROP_EXISTING

If you specify the DROP_EXISTING option, any existing index with the name in question will be dropped
prior to construction of the new index. This option is much more efficient than simply dropping and re-
creating an existing index when you use it with a clustered index. If you rebuild an exact match of the
existing index, SQL Server knows that it need not touch the non-clustered indexes, while an explicit drop
and create would involve rebuilding all of the non-clustered indexes twice in order to accommodate the
different row locations. If you change the structure of the index using DROP_EXISTING, the NClIs are
rebuilt only once instead of twice. Furthermore, you cannot simply drop and re-create an index created by
a constraint, for example, to implement a certain fill factor. DROP_EXISTING is a workaround to this.

273

Chapter 9

STATISTICS_NORECOMPUTE

By default, SQL Server attempts to automate the process of updating the statistics on your tables and
indexes. By selecting the STATISTICS_NORECOMPUTE option, you are saying that you will take responsi-
bility for the updating of the statistics. In order to turn this option off, you need to run the UPDATE
STATISTICS command, but not use the NORECOMPUTE option.

I strongly recommend against using this option. Why? Well, the statistics on your index are what the
query optimizer uses to figure out just how helpful your index is going to be for a given query. The
statistics on an index are changing constantly as the data in your table goes up and down in volume and
as the specific values in a column change. When you combine these two facts, you should be able to see
that not updating your statistics means that the query optimizer is going to be running your queries
based on out of date information. Leaving the automatic statistics feature on means that the statistics
will be updated regularly (just how often depends on the nature and frequency of your updates to the
table). Conversely, turning automatic statistics off means that you will either be out of date, or you will
need to set up a schedule to manually run the UPDATE STATISTICS command.

SORT_IN_TEMPDB

This option makes sense only when your tempdb is stored on a physically separate drive from the
database that is to contain the new index. This is largely an administrative function, so I'm not going to
linger on this topic for more than a brief overview of what it is and why it only makes sense when tem-
pdb is on a separate physical device.

When SQL Server builds an index, it has to perform multiple reads to take care of the various index con-
struction steps:

1. Read through all the data, constructing a leaf row corresponding to each row of actual data. Just
like the actual data and final index, these go into pages for interim storage. These intermediate
pages are not the final index pages, but rather a holding place to temporarily store things every
time the sort buffers fill up.

2. Aseparate run is made through these intermediate pages to merge them into the final leaf pages
of the index.

3. Non-leaf pages are built as the leaf pages are being populated.

If the SORT_IN_TEMPDB option is not used, then the intermediate pages are written out to the same
physical files that the database is stored in. This means that the reads of the actual data have to compete
with the writes of the build process. The two cause the disk heads to move to different places from those
the other (read vs. write) needs. The result is that the disk heads are constantly moving back and forth—
this takes time.

If, on the other hand, SORT_IN_TEMPDB is used, then the intermediate pages will be written to tempdb
rather than the database’s own file. If they are on separate physical drives, this means that there is no
competition between the read and write operations of the index build. Keep in mind, however, that this
works only if tempdb is on a separate physical drive from your database file; otherwise, the change is
only in name, and the competition for I/O is still a factor.

If you're going to use SORT_IN_TEMPDB, make sure that there is enough space in tempdb for large files.

274

SQL Server Storage and Index Structures

ONLINE

If you set this to ON, it forces the table to remain available for general access, and does not create any
locks that block users from the index and/or table. By default, full index operations will grab the locks
(eventually a table lock) it needs to have full and efficient access to the table. The side effect, however, is
that your users are blocked out. (Yeah, it's a paradox; you're likely building an index to make the
database more usable, but you essentially make the table unusable while you do it.)

Now, you're probably thinking something like: “Oh, that sounds like a good idea —I'll do that every
time so my users are unaffected.” Poor thinking. Keep in mind that any index construction like that is
probably a very highly I/O-intensive operation, so it is affecting your users one way or the other. Now,
add that there is a lot of additional overhead required in the index build for it to make sure that it doesn’t
step on the toes of any of your users. If you let SQL Server have free reign over the table while it’s build-
ing the index, then the index will be built much faster, and the overall time that the build is affecting your
system will be much smaller.

ONLINE index operations are supported only in the Enterprise Edition of SQL
Server. You can execute the index command with the ONLINE directive in other edi-
tions, but it will be ignored, so don’t be surprised if you use ONLINE and find your
users still being blocked out by the index operation if you're using a lesser edition
of SQL Server.

ALLOW ROW/PAGE LOCKS

This is a longer term directive than ONLINE is, and is a very, very advanced topic. For purposes of this
book and how much we’ve introduced so far on locking, let’s stick with a pretty simple explanation.

Through much of the book thus far we have repeatedly used the term “lock.” As explained early on, this
is something of a placeholder to avoid conflicts in data integrity. The ALLOW settings we’re looking at
here are setting directives regarding whether this index will allow those styles of locks or not. This falls
under the headed of extreme performance tweak.

MAXDOP

This is overriding the system setting for the maximum degree of parallelism for purposes of building
this index. Parallelism is not something I talk about in this book, so we’ll give you a mini-dose of it here.

In short, the degree of parallelism is how many processes are put to use for one database operation (in
this case, the construction of an index). There is a system setting called the max degree of parallelism
that allows you to set a limit on how many processors per operation. The MAXDOP option in the index
creation options allows you to set the degree of parallelism to be either higher or lower than the base
system setting as you deem appropriate.

ON

SQL Server gives you the option of storing your indexes separately from the data by using the on
option. This can be nice from a couple of perspectives:

275

Chapter 9

Q The space that is required for the indexes can be spread across other drives.

QO The I/O for index operations does not burden the physical data retrieval.

There’s more to this, but this is hitting the area of highly advanced stuff. It is very data and use depen-
dent, and so we’ll consider it out of the scope of this book.

Creating XML Indexes

XML indexes are new with SQL Server 2005, and I have to admit that I'm mildly amazed that Microsoft
pulled it off. I've known a lot of that team for a very long time now, and I have a lot of confidence in
them, but the indexing of something as unstructured as XML has been a problem that many have tried
to accomplish, but few have done with any real success. Kudos to the SQL Server team for pulling this
one off. Enough gushing though —let’s get down to the business of what XML indexes are all about.

This is another of those “chicken or egg?” things, in that we haven’t really looked at XML at all in this
book thus far. Still, I consider this more of an index topic than an XML topic. Indeed, the XML create
syntax supports all the same options we saw in the previous look at the CREATE statement with the
exception of IGNORE_DUP_KEY and ONLINE. So, for a bit of hyper fast background:

Unlike the relational data that we’ve been looking at thus far, XML tends to be very unstructured data. It
utilizes tags to identify data, and can be associated with what'’s called a schema to provide type and vali-
dation information to that XML-based data. The unstructured nature of XML requires the notion of “navi-
gating” or “path” information to find a data “node” in a XML document. Now indexes, on the other hand,
try and provide very specific structure and order to data— this poses something of a conflict.

You can create indexes on columns in SQL Server that are of type XML. The primary requirements of
doing this are:

Q The table containing the XML you want to index must have a clustered index on it.

’

Q A “primary” xml index must exist on the XML data column before you can create “secondary”
indexes (more on this in a moment).

0O XML indexes can only be created on columns of XML type (and an XML index is the only kind
of index you can create on columns of that type).

Q The XML column must be part of a base table — you cannot create the index on a view.

The Primary XML Index

The first index you create on an XML index must be declared as a “primary” index. When you create a
primary index, SQL Server creates a new clustered index that combines the clustered index of the base
table together with data from whatever XML node you specify.

Secondary XML Indexes

Nothing special here —much like non-clustered indexes point to the cluster key of the clustered index,
secondary XML indexes point at primary XML indexes in much the same way. Once you create a pri-
mary XML indeX, you can create up to 248 more XML indexes on that XML column.

276

SQL Server Storage and Index Structures

Implied Indexes Created with Constraints

I guess I call this one “index by accident.” It’s not that the index shouldn’t be there —it has to be there if
you want the constraint that created the index. It’s just that I've seen an awful lot of situations where the
only indexes on the system were those created in this fashion. Usually, this implies that the administra-
tors and/or designers of the system are virtually oblivious to the concept of indexes.

However, you'll also find yet another bizarre twist on this one — the situation where the administrator
or designer knows how to create indexes, but doesn’t really know how to tell what indexes are already
on the system and what they are doing. This kind of situation is typified by duplicate indexes. As long as
they have different names, SQL Server will be more than happy to create them for you.

Implied indexes are created when one of two constraints is added to a table:

] A PRIMARY KEY

QO AUNIQUE constraint (aka, an alternate key)

We’ve seen plenty of the CREATE syntax up to this point, so I won’t belabor it—however, it should be
noted that all the options except for { CLUSTERED | NONCLUSTERED} and FILLFACTOR are not allowed
when creating an index as an implied index to a constraint.

Choosing Wisely: Deciding What Index Goes
Where and When

By now, you're probably thinking to yourself, “Gee, I'm always going to create clustered indexes!” There
are plenty of good reasons to think that way. Just keep in mind that there are also some reasons not to.

Choosing what indexes to include and what not to can be a tough process, and, in case that wasn’t
enough, you have to make some decisions about what type you want them to be. The latter decision is
made simultaneously easier and harder in the fact that you can only have one clustered index. It means
that you have to choose wisely to get the most out of it.

Selectivity

Indexes, particularly non-clustered indexes, are primarily beneficial in situations where there is a reason-
ably high level of selectivity within the index. By selectivity, I'm referring to the percentage of values in
the column that are unique. The higher the percentage of unique values within a column, the higher the
selectivity is said to be, and the greater the benefit of indexing.

If you think back to our sections on non-clustered indexes — particularly the section on non-clustered
indexes over a clustered index —you will recall that the lookup in the non-clustered index is really only
the beginning. You still need to make another loop through the clustered index in order to find the real
data. Even with the non-clustered index on a heap, you still end up with multiple physically separate
reads to perform.

277

Chapter 9

If one lookup in your non-clustered index is going to generate multiple additional lookups in a clustered
index, then you are probably better off with the table scan. The exponential effect that’s possible here is
actually quite amazing. Consider that the looping process created by the non-clustered index is not
worth it if you don’t have somewhere in the area of 90-95 percent uniqueness in the indexed column.

Clustered indexes are substantially less affected by this because, once you're at the start of your range of
data — unique or not— you’re there. There are no additional index pages to read. Still, more than likely,
your clustered index has other things that it could be put to greater use on.

One other exception to the rule of selectivity has to do with foreign keys. If your table has a column that
is a foreign key, then, in all likelihood, you're going to benefit from having an index on that column.
Why foreign keys and not other columns? Well, foreign keys are frequently the target of joins with the
table they reference. Indexes, regardless of selectivity, can be very instrumental in join performance
because they allow what is called a merge join. A merge join obtains a row from each table and com-
pares them to see if they match the join criteria (what you're joining on). Since there are indexes on the
related columns in both tables, the seek for both rows is very fast.

The point here is that selectivity is not everything, but it is a big issue to consider. If the column in
question is not in a foreign key situation, then it is almost certainly the second only to the, “How often
will this be used?” question in terms of issues you need to consider.

Watching Costs: When Less Is More

Remember that, while indexes speed up performance when reading data, they are actually very costly
when modifying data. Indexes are not maintained by magic. Every time that you make a modification to
your data, any indexes related to that data also need to be updated.

When you insert a new row, a new entry must be made into every index on your table. Remember, too,
that when you update a row, this is handled as a delete and insert—again, your indexes have to be
updated. But wait! There’s more! (Feeling like a late night infomercial here.) When you delete records —
again, you must update all the indexes too —not just the data. For every index that you create, you are
creating one more block of entries that have to be updated.

Notice, by the way, that I said entries plural —not just one. Remember that a B-Tree has multiple levels
to it. Every time that you make a modification to the leaf level, there is a chance that a page split will
occur, and that one or more non-leaf level pages must also be modified to have the reference to the
proper leaf page.

Sometimes — quite often actually —not creating that extra index is the thing to do. Sometimes, the best
thing to do is choose your indexes based on the transactions that are critical to your system and use the

table in question. Does the code for the transaction have a WHERE clause in it? What column(s) does it
use? Is there a sorting required?

Choosing That Clustered Index

Remember that you can have only one, so you need to choose it wisely.

278

SQL Server Storage and Index Structures

By default, your primary key is created with a clustered index. This is often the best place to have it, but
not always (indeed, it can seriously hurt you in some situations), and if you leave things this way, you
won’t be able to use a clustered index anywhere else. The point here is don’t just accept the default.
Think about it when you are defining your primary key — do you really want it to be a clustered index?

If you decide that you indeed want to change things — that is, you don’t want to declare things as being
clustered, just add the NONCLUSTERED keyword when you create your table. For example:

CREATE TABLE MyTableKeyExample
(
Columnl intIDENTITY
PRIMARY KEY NONCLUSTERED,
Column2 int

)

Once the index is created, the only way to change it is to drop and rebuild it, so you want to get it set
correctly up front.

Keep in mind that, if you change which column(s) your clustered index is on, SQL Server will need to do
a complete resorting of your entire table (remember, for a clustered index, the table sort order and the
index order are the same). Now, consider a table you have that is 5,000 characters wide and has a million
rows in it—that is an awful lot of data that has to be reordered. Several questions should come to mind
from this:

Q How long will it take? It could be a long time, and there really isn’t a good way to estimate that
time.

Q Do Ihave enough space? Figure that, in order to do a resort on a clustered index, you will, on
average, need an additional 1.2 times (the working space plus the new index) the amount of
space your table is already taking up. This can turn out to be a very significant amount of space
if you're dealing with a large table — make sure you have the room to do it in. All this activity
will, by the way, happen in the database itself —so this will also be affected by how you have
your maximum size and growth options set for your database.

Q Should I use the SORT_IN_TEMPDB option? If tempdb is on a separate physical array from your
main database and it has enough room, then the answer is probably yes.

The Pros

Clustered indexes are best for queries when the column(s) in question will frequently be the subject of a
ranged query. This kind of query is typified by use of the BETWEEN statement or the < or > symbols.
Queries that use a GROUP BY and make use of the MAX, MIN, and COUNT aggregators are also great exam-
ples of queries that use ranges and love clustered indexes. Clustering works well here, because the
search can go straight to a particular point in the physical data, keep reading until it gets to the end of
the range, and then stop. It is extremely efficient.

Clusters can also be excellent when you want your data sorted (using ORDER BY) based on the cluster key.

279

Chapter 9

The Cons

There are two situations where you don’t want to create that clustered index. The first is fairly obvious—
when there’s a better place to use it. I know I'm sounding repetitive here, but don’t use a clustered index
on a column just because it seems like the thing to do (primary keys are the common culprit here) —be
sure that you don’t have another column that it’s better suited to first.

Perhaps the much bigger no-no use for clustered indexes, however, is when you are going to be doing a
lot of inserts in a non-sequential order. Remember that concept of page splits? Well, here’s where it can
come back and haunt you big time.

Imagine this scenario: you are creating an accounting system. You would like to make use of the concept
of a transaction number for your primary key in your transaction files, but you would also like those
transaction numbers to be somewhat indicative of what kind of transaction it is (it really helps trouble-
shooting for your accountants). So you come up with something of a scheme —you'll place a prefix on
all the transactions indicating what sub-system they come out of. They will look something like this:

ARXXXXXX Accounts Receivable Transactions
GLXXXXXX General Ledger Transactions
APXXXXXX Accounts Payable Transactions

where xxxxxx will be a sequential numeric value

This seems like a great idea, so you implement it, leaving the default of the clustered index going on the
primary key.

At first look, everything about this setup looks fine. You're going to have unique values, and the accoun-
tants will love the fact that they can infer where something came from based on the transaction number.
The clustered index seems to make sense since they will often be querying for ranges of transaction IDs.

Ah, if only it were that simple. Think about your inserts for a bit. With a clustered index, we originally
had a nice mechanism to avoid much of the overhead of page splits. When a new record was inserted
that was to go after the last record in the table, then, even if there was a page split, only that record
would go to the new page —SQL Server wouldn’t try and move around any of the old data. Now we’ve
messed things up though.

New records inserted from the General Ledger will wind up going on the end of the file just fine (GL is
last alphabetically, and the numbers will be sequential). The AR and AP transactions have a major prob-
lem though — they are going to be doing non-sequential inserts. When AP000025 gets inserted and there
isn’t room on the page, SQL Server is going to see AR000001 in the table, and know that it’s not a
sequential insert. Half the records from the old page will be copied to a new page before AP000025 is
inserted.

The overhead of this can be staggering. Remember that we’re dealing with a clustered index, and that
the clustered index is the data. The data is in index order. This means that, when you move the index to
a new page, you are also moving the data. Now imagine that you're running this accounting system in a
typical OLTP environment (you don’t get much more OLTP-like than an accounting system) with a
bunch of data-entry people keying in vendor invoices or customer orders as fast as they can. You're
going to have page splits occurring constantly, and every time you do, you're going to see a brief hesita-
tion for users of that table while the system moves data around.

280

SQL Server Storage and Index Structures

Fortunately, there are a couple of ways to avoid this scenario:

0 Choose a cluster key that is going to be sequential in its inserting. You can either create an iden-
tity column for this, or you may have another column that logically is sequential to any transac-
tion entered regardless of system.

Q Choose not to use a clustered index on this table. This is often the best option in a situation like
in this example, since an insert into a non-clustered index on a heap is usually faster than one on
a cluster key.

Even as I've told you to lean toward sequential cluster keys to avoid page splits, you also have to realize
that there’s a cost there. Among the downsides of sequential cluster keys are concurrency (two or more
people trying to get to the same object at the same time). It's all about balancing out what you want,
what you're doing, and what it’s going to cost you elsewhere.

This is perhaps one of the best examples of why I have gone into so much depth as to how things work.
You need to think through how things are actually going to get done before you have a good feel for
what the right index to use (or not to use) is.

Column Order Matters

Just because an index has two columns in, it doesn’t mean that the index is useful for any query that
refers to either column.

An index is only considered for use if the first column listed in the index is used in the query. The bright
side is that there doesn’t have to be an exact one-for-one match to every column —just the first.
Naturally, the more columns that match (in order), the better, but only the first creates a definite do-not-
use situation.

Think about things this way. Imagine that you are using a phone book. Everything is indexed by last
name, and then first name — does this sorting do you any real good if all you know is that the person
you want to call is named Fred? On the other hand, if all you know is that his last name is Blake, the
index will still serve to narrow the field for you.

One of the more common mistakes that I see in index construction is to think that one index that
includes all the columns is going to be helpful for all situations. Indeed, what you're really doing is stor-
ing all the data a second time. The index will totally be ignored if the first column of the index isn’t men-
tioned in the JOIN, ORDER BY, or WHERE clauses of the query.

Dropping Indexes

If you're constantly re-analyzing the situation and adding indexes, don’t forget to drop indexes, too.
Remember the overhead on inserts —it doesn’t make much sense to look at the indexes that you need and
not also think about which indexes you do not need. Always ask yourself: “Can I get rid of any of these?”

The syntax to drop an index is pretty much the same as dropping a table. The only hitch is that you need
to qualify the index name with the table or view it is attached to:

DROP INDEX <table or view name> . <index name>

And it’s gone.

281

Chapter 9

Use the Database Engine Tuning Wizard

It would be my hope that you'll learn enough about indexes not to need the Index Tuning Wizard, but it
still can be quite handy. It works by taking a workload file, which you generate using the SQL Server
Profiler (discussed in Chapter 19), and looking over that information for what indexes will work best on
your system.

The Index Tuning Wizard is found as part of the Tools menu of the SQL Server Management Studio. It
can also be reached as a separate program item in the Start Menu of Windows. Like most any tuning
tool, I don’t recommend using this tool as the sole way you decide what indexes to build, but it can be
quite handy in terms of making some suggestions that you may not have thought of.

Maintaining Your Indexes

As developers, we often tend to forget about our product after it goes out the door. For many kinds of
software, that’s something you can get away with just fine—you ship it, then you move on to the next
product or next release. However, with database-driven projects, it’s virtually impossible to get away
with. You need to take responsibility for the product well beyond the delivery date.

Please don’t take me to be meaning that you have to go serve a stint in the tech support department —
I'm actually talking about something even more important: maintenance planning.

There are really two issues to be dealt with in terms of the maintenance of indexes:

Q Page splits

4 Fragmentation

Both are related to page density and, while the symptoms are substantially different, the trouble-shoot-
ing tool is the same, as is the cure.

Fragmentation

We've already talked about page splits quite a bit, but we haven’t really touched on fragmentation. I'm
not talking about the fragmentation that you may have heard of with your O/S files and the defrag tool
you use, because that won't help with database fragmentation.

Fragmentation happens when your database grows, pages split, and then data is eventually deleted.
While the B-Tree mechanism is really not that bad at keeping things balanced from a growth point of
view, it doesn’t really have a whole lot to offer as you delete data. Eventually, you may get down to a sit-
uation where you have one record on this page, a few records on that page —a situation where many of
your data pages are holding only a small fraction of the amount of data that they could hold.

The first problem with this is probably the first you would think about — wasted space. Remember that

SQL Server allocates an extent of space at a time. If only one page has one record on it, then that extent is
still allocated.

282

SQL Server Storage and Index Structures

The second problem is the one that is more likely to cause you grief —records that are spread out all
over the place cause additional overhead in data retrieval. Instead of just loading up one page and grab-
bing the ten rows it requires, SQL Server may have to load ten separate pages in order to get that same
information. It isn’t just reading the row that causes effort—SQL Server has to read that page in first.
More pages = more work on reads.

That being said, database fragmentation does have its good side— OLTP systems positively love frag-
mentation. Any guesses as to why? Page splits. Pages that don’t have much data in them can have data
inserted with little or no fear of page splits.

So, high fragmentation equates to poor read performance, but it also equates to excellent insert perfor-
mance. As you might expect, this means that OLAP systems really don’t like fragmentation, but OLTP
systems do.

Identifying Fragmentation vs. Likelihood of Page Splits

SQL Server gives us a command to help us identify just how full the pages and extents in our database
are. We can then use that information to make some decisions about what we want to do to maintain our
database. The command is actually an option for the Database Consistency Checker —or DBCC.

The syntax is pretty simple:

DBCC SHOWCONTIG
[({<table name>|<table id>|<view name>|<view id>}
[, <index name>|<index id>])]
[WITH {ALL_INDEXES|FAST [, ALL_INDEXES]‘TABLERESULTS [, ALL_INDEXES]}]
[., { FAST | ALL_LEVELS }]
DBCC SHOWCONTIG ([<table object id>], [<index id>])

As an example, to get the information from the PK_Order_Details index in the Order Details table,
we could run:

USE Northwind
GO

DBCC SHOWCONTIG (@id, @IdxID)
GO

The output is not really all that self-describing:
DBCC SHOWCONTIG scanning 'Order Details' table...

Table: 'Order Details' (325576198); index ID: 1, database ID: 6
TABLE level scan performed.

- Pages SCaANNEd. .. c ittt ittt e e e e e e e 9

- Extents Scanned.ttt e e e e 6

- Extent Switches........ ...ttt 5

- Avg. Pages per Extent....... ..ottt 1.5

- Scan Density [Best Count:Actual Count]........: 33.33% [2:6]
- Logical Scan Fragmentationceveeenenn.s 0.00%

- Extent Scan Fragmentationcuieeenn..: 16.67%
- AVg. Bytes Free per Page. iiineneeeenennnnnaat 673.2

283

Chapter 9

- Avg. Page Density (full)
DBCC execution completed.

administrator.

e e e e e e e e e 91.68%
If DBCC printed error messages, contact your system

Some of this is probably pretty straightforward, but the following table will walk us through what

everything means:

Stat

Pages Scanned

Extents Scanned

Extent Switches

Avg. Pages per Extent

Scan Density
[Best Count: Actual Count]

Logical Scan Fragmentation

Extent Scan Fragmentation

Avg. Bytes free per page

284

What It Means

The number of pages in the table (for a clustered index) or
index.

The number of extents in the table or index. This will be a
minimum of the number of pages divided by 8 and then
rounded up. The more extents for the same number of
pages, the higher the fragmentation.

The number of times DBCC moved from one extent to
another as it traversed the pages of the table or index. This
is another one for fragmentation — the more switches it has
to make to see the same amount of pages, the more frag-
mented we are.

The average number of pages per extent. A fully populated
extent would have 8.

The best count is the ideal number of extent changes if
everything is perfectly linked. Actual count is the actual
number of extent changes. Scan density is the percentage
found by dividing the best count by the actual count.

The percentage of pages that are out-of-order as checked
by scanning the leaf pages of an index. Only relevant to
scans related to a clustered table. An out-of-order page is
one for which the next page indicated in the index alloca-
tion map (IAM) is different from that pointed to by the
next page pointer in the leaf page.

This one is telling us whether an extent is not physically
located next to the extent that it is logically located next to.
This just means that the leaf pages of your index are not
physically in order (though they still can be logically), and
just what percentage of the extents this problem pertains
to.

Average number of free bytes on the pages scanned. This
number can get artificially high if you have large row sizes.
For example, if your row size was 4,040 bytes, then every
page could only hold one row, and you would always have
an average number of free bytes of about 4,020 bytes. That
would seem like a lot, but, given your row size, it can’t be
any less than that.

SQL Server Storage and Index Structures

Stat What It Means

Avg. Page density (full) Average page density (as a percentage). This value takes
into account row size and is, therefore, a more accurate
indication of how full your pages are. The higher the per-
centage, the better.

Now, the question is how do we use this information once we have it? The answer is, of course, that it
depends.

Using the output from our SHOWCONTIG, we have a decent idea of whether our database is full, frag-
mented, or somewhere in between (the latter is, most likely, what we want to see). If we’re running an
OLAP system, then seeing our pages full would be great— fragmentation would bring on depression.
For an OLTP system, we would want much the opposite (although only to a point).

So, how do we take care of the problem? To answer that, we need to look into the concept of index
rebuilding and fillfactors.

DBREINDEX and FILLFACTOR

As we saw earlier in the chapter, SQL Server gives us an option for controlling just how full our leaf
level pages are, and, if we choose, another option to deal with non-leaf level pages. Unfortunately, these
are proactive options — they are applied once, and then you need to re-apply them as necessary by
rebuilding your indexes and reapplying the options.

To rebuild indexes, we can either drop them and create them again (if you do, using the DROP_EXISTING
option usually is a good ideal), or make use of DBREINDEX. DBREINDEX is another DBCC command, and
the syntax looks like this:

DBCC DBREINDEX (<'database.owner.table_name'>[, <index name>
[, <fillfactor>]]) [WITH NO_INFOMSGS]

Executing this command completely rebuilds the requested index. If you supply a table name with no
index name, then it rebuilds all the indexes for the requested table. There is no single command to
rebuild all the indexes in a database.

Rebuilding your indexes restructures all the information in those indexes, and re-establishes a base per-
centage that your pages are full. If the index in question is a clustered index, then the physical data is
also reorganized.

By default, the pages will be reconstituted to be full minus two records. Just as with the CREATE TABLE
syntax, you can set the FILLFACTOR to be any value between 0 and 100. This number will be the percent
full that your pages are once the database reorganization is complete. Remember though that, as your
pages split, your data will still be distributed 50-50 between the two pages — you cannot control the fill
percentage on an on-going basis other than regularly rebuilding the indexes.

285

Chapter 9

There is something of an exception on the number matching the percent full that
occurs if you use zero as your percentage. It will go to full minus two rows (it’s a lit-
tle deceiving—don’t you think?).

We use a FILLFACTOR when we need to adjust the page densities. As we’ve already discussed, lower
page densities (and therefore lower FILLFACTORS) are ideal for OLTP systems where there are a lot of
insertions — this helps avoid page splits. Higher page densities are desirable with OLAP systems (fewer
pages to read, but no real risk of page splitting due to few to no inserts).

If we wanted to rebuild the index that serves as the primary key for the Order Details table we were
looking at earlier with a fill factor of 65, we would issue a DBCC command as follows:

DBCC DBREINDEX ([Order Details], PK_Order_Details, 65)
We can then re-run the DBCC SHOWCONTIG to see the effect:

DBCC SHOWCONTIG scanning 'Order Details' table...
Table: 'Order Details' (325576198); index ID: 1, database ID: 6
TABLE level scan performed.

- Pages Scanned.ttt e e ey 13

- Extents Scanned.iiiiiiii i e e e 2

- Extent Switches.........c.iiiiiiiii ittt 1

- Avg. Pages per Extent.......... it 6.5

- Scan Density [Best Count:Actual Count]........: 100.00% [2:2]
- Logical Scan Fragmentationeeeueenennen.s 0.00%
- Extent Scan Fragmentationceiieuieunon.s 50.00%
- AVvg. Bytes Free per Page. iiennennenennnnns 2957.2
- Avg. Page Density (full)iiiiiiiiin it 63.46%
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

The big one to notice here is the change in Avg. Page Density. The number didn’t quite reach 65 per-
cent because SQL Server has to deal with page and row sizing, but it gets as close as it can.

Several things to note about DBREINDEX and FILLFACTOR:

Q Ifa FILLFACTORisn’t provided, then the DBREINDEX will use whatever setting was used to
build the index previously. If one has never been specified, then the fillfactor will make the page
full less two records (which is too full for most situations).

U If a FILLFACTOR is provided, then that value becomes the default FILLFACTOR for that index.

QO While DBREINDEX can be done live, I strongly recommend against it— it locks resources and can
cause a host of problems. At the very least, look at doing it at non-peak hours.

Summary

Indexes are sort of a cornerstone topic in SQL Server or any other database environment, and are not
something to be taken lightly. They can drive your performance successes, but they can also drive your
performance failures.

286

SQL Server Storage and Index Structures

Top-level things to think about with indexes:

Q

Q

(]

Q

Clustered indexes are usually faster than non-clustered indexes (one could come very close to
saying always, but there are exceptions).

Only place non-clustered indexes on columns where you are going to get a high level of selec-
tivity (that is, 95 percent or more of the rows are unique).

All Data Manipulation Language (DML: INSERT, UPDATE, DELETE, SELECT) statements can ben-
efit from indexes, but inserts, deletes, and updates (remember, they use a delete and insert
approach) are slowed by indexes. The lookup part of a query is helped by the index, but any-
thing that modifies data will have extra work to do (to maintain the index in addition to the
actual data).

Indexes take up space.
Indexes are used only if the first column in the index is relevant to your query.

Indexes can hurt as much as they help —know why you're building the index, and don’t build
indexes you don’t need.

Indexes can provide structured data performance to your unstructured XML data, but keep in
mind that, like other indexes, there is overhead involved.

When you're thinking about indexes, ask yourself these questions:

Question Response
Are there a lot of inserts or If yes, keep indexes to a minimum. This kind of
modifications to this table? table usually has modifications done through

single record lookups of the primary key —
usually, this is the only index you want on the
table. If the inserts are non-sequential, think about
not having a clustered index.

Is this a reporting table? That is, More indexes are fine. Target the clustered index to
not many inserts, but reports frequently used information that is likely to be
run lots of different ways? extracted in ranges. OLAP installations will often

have many times the number of indexes seen in an
OLTP environment.

Is there a high level of If yes, and it is frequently the target of a WHERE
selectivity on the data? clause, then add that index.

Have I dropped the indexes If not, why not?

I'no longer need?

Do I have a maintenance If not, why not?

strategy established?

287

Chapter 9

Exercises

1. Name at least two ways of determining what indexes can be found on the
HumanResources.Employee table in the AdventureWorks database.

2. Create a non-clustered index on the ModifiedDate column of the Production.ProductModel
table in the AdventureWorks database

3. Delete the index you created in Exercise 2.

288

10

Views

Up to this point, we’ve been dealing with base objects — objects that have some level of substance of
their own. In this chapter, we're going to go virtual (well, mostly anyway), and take a look at views.

Views have a tendency to be used either too much, or not enough —rarely just right. When we’re
done with this chapter, you should be able to use views to:

Q Reduce apparent database complexity for end users

O Prevent sensitive columns from being selected, while still affording access to other impor-
tant data

0 Add additional indexing to your database to speed query performance —even when
you're not using the view the index is based on

A view is, at its core, really nothing more than a stored query. What’s great is that you can mix and
match your data from base tables (or other views) to create what will, in most respects, function
just like another base table. You can create a simple query that selects from only one table and
leaves some columns out, or you can create a complex query that joins several tables and makes
them appear as one

Simple Views

The syntax for a view, in its most basic form, is a combination of a couple of things we’ve already
seen in the book — the basic CREATE statement that we saw back in Chapter 5, plus a SELECT state-
ment like we’ve used over and over again:

CREATE VIEW <view name>
AS
<SELECT statement>

The preceding syntax just represents the minimum, of course, but it’s still all we need in a large
percentage of the situations. The more extended syntax looks like this:

Chapter 10

CREATE VIEW [schema_name].<view name> [(<column name list>)]
[WITH [ENCRYPTION] [, SCHEMABINDING] [, VIEW_METADATA]]

AS

<SELECT statement>

WITH CHECK OPTION

We'll be looking at each piece of this individually, but, for now, let’s go ahead and dive right in with an
extremely simple view.

Try It Out Creating a Simple View

We'll call this one our customer phone list, and create it as CustomerPhoneList_vw in our Accounting
database:

USE Accounting
GO

CREATE VIEW CustomerPhoneList_vw
AS

SELECT CustomerName, Contact, Phone
FROM Customers

Notice that when you execute the CREATE statement in the Management Studio, it works just like all the
other CREATE statements we’ve done — it doesn’t return any rows. It just lets us know that the view has
been created:

Command (s) completed successfully.
Now switch to using the grid view (if you're not already there) to make it easy to see more than one
result set. Then run a SELECT statement against your view — using it just as you would for a table—and
another against the Customers table directly:

SELECT * FROM CustomerPhoneList_vw

SELECT * FROM Customers

How It Works

What you get back looks almost identical —indeed, in the columns that they have in common, the two
result sets are identical. To clarify how SQL Server is looking at your query on the view, let’s break it
down logically a bit.

The SELECT statement in your view is defined as:

SELECT CustomerName, Contact, Phone
FROM Customers

So when you run:

SELECT * FROM CustomerPhonelList_vw

290

Views

you are essentially saying to SQL Server: “Give me all of the rows and columns you get when you run
the statement SELECT CustomerName, Contact, Phone FROM Customers.”

We’ve created something of a pass-through situation — that is, our view hasn’t really changed anything,
but rather just “passed through” a filtered version of the data it was accessing. What's nice about that is

that we have reduced the complexity for the end user. In this day and age, where we have so many tools
to make life easier for the user, this may not seem like all that big of deal —but to the user, it is.

Be aware that, by default, there is nothing special done for a view. The view runs just
as if it were a query run from the command line —there is no pre-optimization of any
kind. This means that you are adding one more layer of overhead between the request
for data and the data being delivered. That means that a view is never going to run as
fast as if you had just run the underlying SELECT statement directly. That said, views
existing for a reason —be it security or simplification for the user—balance your need
against the overhead as would seem to fit your particular situation.

Let’s go with another view that illustrates what we can do in terms of hiding sensitive data. For this exam-
ple, let’s go back to our Employees table in our Accounting database. Take a look at the table layout:

Employees

EmployeeID
FirstName
MiddleInitial
LastName

Title

SSN

Salary
HireDate
TerminationDate
ManagerEmpID

Department

Federal law in the U.S. protects some of this information —we must limit access to a “need to know”
basis. Other columns, however, are free for anyone to see. What if we want to expose the unrestricted
columns to a group of people, but don’t want them to be able to see the general table structure or data?
One solution would be to keep a separate table that includes only the columns that we need:

291

Chapter 10

Employees

EmployeeID
FirstName
MiddleInitial
LastName

Title

HireDate
TerminationDate
ManagerEmpID

Department

While on the surface this would meet our needs, it is extremely problematic:

O We use disk space twice.

O

We have a synchronization problem if one table gets updated and the other doesn’t.

Q We have double I/O operations (you have to read and write the data in two places instead of
one) whenever we need to insert, update, or delete rows.

Views provide an easy and relatively elegant solution to this problem. By using a view, the data is stored
only once (in the underlying table or tables) —eliminating all of the problems just described. Instead of
building our completely separate table, we can just build a view that will function in a nearly identical
fashion.

Our Employees table is currently empty. To add some rows to it, load the Chapter10.sql file (supplied
with the source code) into the Management Studio and run it. Then add the following view to the
Accounting database:

USE Accounting
GO

CREATE VIEW Employees_vw

AS

SELECT EmployeelID,
FirstName,
MiddleInitial,
LastName,
Title,
HireDate,
TerminationDate,
ManagerEmpID,
Department

FROM Employees

292

Views

We are now ready to let everyone have access — directly or indirectly —to the data in the Employees
table. Users who have the “need to know” can now be directed to the Employees table, but we continue
to deny access to other users. Instead, the users who do not have that “need to know” can have access to
our Employees_vw view. If they want to make use of it, they do it just the same as they would against a
table:

SELECT *
FROM Employees_vw

This actually gets into one of the sticky areas of naming conventions. Because I've
been using the _vw suffix, it’s pretty easy to see that this is a view and not a table.
Sometimes, you’d like to make things a little more hidden than that, so you might
want to deliberately leave the _vw off. Doing so means that you have to use a differ-
ent name (Employees is already the name of the base table), but you'd be surprised
how many users won’t know that there’s a difference between a view and a table if
you do it this way.

Views as Filters

This will probably be one of the shortest sections in the book. Why? Well, it doesn’t get much simpler
than this.

You've already seen how to create a simple view —you just use an easy SELECT statement. How do we
filter the results of our queries? With a WHERE clause. Views are no different.

Let’s take our Employees_vw view from the last section, and beef it up a bit by making it a list of only
current employees. To do this, there are really only two changes that need to be made.

First, we have to filter out employees who no longer work for the company. Would a current employee
have a termination date? Probably not, so, if we limit our results to rows with a NULL TerminationDate,
then we’ve got what we're after.

The second change illustrates another simple point about views working just like queries —the column(s)
contained in the WHERE clause do not need to be included in the SELECT list. In this case, it doesn’t make
any sense to include the termination date in the result set as we're talking about current employees.

Try It Out Using a View to Filter Data

With these two things in mind, let’s create a new view by changing our old view around just a little bit:

CREATE VIEW CurrentEmployees_vw
AS
SELECT EmployeelD,
FirstName,
MiddleInitial,
LastName,
Title,
HireDate,

293

Chapter 10

ManagerEmpID,
Department

FROM Employees

WHERE TerminationDate IS NULL

In addition to the name change and the WHERE clause we’ve added, note that we’ve also eliminated the
TerminationDate column from the SELECT list.

Let’s test out how this works a little bit by running a straight SELECT statement against our Employees
table and limiting our SELECT list to the things that we care about:

SELECT EmployeelID,
FirstName,
LastName,
TerminationDate

FROM Employees

This gets us back a few columns from all the rows in the entire table:

EmployeelID FirstName LastName TerminationDate

1 Joe Dokey NULL

2 Peter Principle NULL

3 Steve Smith 1997-01-31 00:00:00
4 Howard Kilroy NULL

5 Mary Contrary 1998-06-15 00:00:00
6 Billy Bob NULL

(6 row(s) affected)
Now let’s check out our view:
SELECT EmployeelID,
FirstName,
LastName

FROM CurrentEmployees_vw

Our result set has become a bit smaller:

EmployeeID FirstName LastName
1 Joe Dokey

2 Peter Principle
4 Howard Kilroy

6 Billy Bob

(4 row(s) affected)

A few people are missing versus our first select —just the way we wanted it.

294

Views

How It Works

As we've discussed before, the view really is just a SELECT statement that’s been hidden from the user
so that they can ignore what the SELECT statement says, and instead just consider the results it pro-
duces just as if it were a table— you can liken this to the derived tables we discussed back in Chapter 7.
Because our data was filtered down before we referenced the view by name, our query doesn’t even
need to consider that data (the view has done that for us).

More Complex Views

Even though I use the term “complex” here —don’t let that scare you. The toughest thing in views is
still, for the most part, simpler than most other things in SQL.

What we’re doing with more complex views is really just adding joins, summarization, and perhaps
some column renaming.

Perhaps one of the most common uses of views is to flatten data— that is, the removal of complexity that
we outlined at the beginning of the chapter. Imagine that we are providing a view for management to
make it easier to check on sales information. No offense to managers who are reading this book, but man-
agers who write their own complex queries are still a rather rare breed —even in the information age.

For an example, let’s briefly go back to using the Northwind database. Our manager would like to be
able to do simple queries that will tell him or her what orders have been placed for what parts and who
placed them. So, we create a view that they can perform very simple queries on —remember that we are
creating this one in Northwind:

USE Northwind
GO

CREATE VIEW CustomerOrders_vw
AS
SELECT cu.CompanyName,
0.0rderID,
o.0OrderDate,
od.ProductlID,
p.ProductName,
od.Quantity,
od.UnitPrice,
od.Quantity * od.UnitPrice AS ExtendedPrice
FROM Customers AS cu
INNER JOIN Orders AS o
ON cu.CustomerID = o.CustomerID
INNER JOIN [Order Details] AS od
ON 0.0rderID = od.OrderID
INNER JOIN Products AS p
ON od.ProductID = p.ProductID

295

Chapter 10

Now do a SELECT:

SELECT *
FROM CustomerOrders_vw

You wind up with a bunch of rows — over 2,000 —but you also wind up with information that is far
simpler for the average manager to comprehend and sort out. What’s more, with not that much training,
the manager (or whoever the user might be) can get right to the heart of what they are looking for:

SELECT CompanyName, ExtendedPrice
FROM CustomerOrders_vw
WHERE OrderDate = '9/3/1996'

The user didn’t need to know how to do a four-table join —that was hidden in the view. Instead, they
only need limited skill (and limited imagination for that matter) in order to get the job done.

CompanyName ExtendedPrice
LILA-Supermercado 201.6000
LILA-Supermercado 417.0000
LILA-Supermercado 432.0000

(3 row(s) affected)

However, we could make our query even more targeted. Let’s say that we only want our view to return
yesterday’s sales. We’ll make only slight changes to our query:

USE Northwind
GO

CREATE VIEW YesterdaysOrders_vw
AS
SELECT cu.CompanyName,
0.0rderID,
o.0OrderDate,
od.ProductID,
p.ProductName,
od.Quantity,
od.UnitPrice,
od.Quantity * od.UnitPrice AS ExtendedPrice
FROM Customers AS cu
INNER JOIN Orders AS o
ON cu.CustomerID = o.CustomerID
INNER JOIN [Order Details] AS od
ON 0.0rderID = od.OrderID
INNER JOIN Products AS p
ON od.ProductID = p.ProductID
WHERE CONVERT (varchar (12),o0.0rderDate,101) =
CONVERT (varchar (12) ,DATEADD (day, -1, GETDATE ()), 101)

All the dates in the Northwind database are old enough that this view wouldn’t return any data, so let’s
add a row to test it. Execute the following script all at one time:

296

Views

USE Northwind

DECLARE @Ident int

INSERT INTO Orders

(CustomerID, OrderDate)

VALUES

('ALFKI', DATEADD (day,-1,GETDATE()))
SELECT @Ident = @Q@IDENTITY

INSERT INTO [Order Details]
(OrderID, ProductID, UnitPrice, Quantity)
VALUES

(@Ident, 1, 50, 25)

SELECT 'The OrderID of the INSERTed row is ' + CONVERT (varchar(8),@Ident)

I'll be explaining all of what is going on here in our chapter on scripts and batches. For now, just trust
me that you'll need to run all of this in order for us to have a value in Northwind that will come up for
our view. You should see a result from the Management Studio that looks something like this:

(1 row(s) affected)

(1 row(s) affected)

The OrderID of the INSERTed row is 11087

(1 row(s) affected)

Be aware that some of the messages shown above will only appear on the Messages tab if you are using
the Management Studio’s Results In Grid mode.

The order1D might vary, but the rest should hold pretty true.
Now let’s run a query against our view and see what we get:

SELECT CompanyName, OrderID, OrderDate FROM YesterdaysOrders_vw
You can see that the 11087 does indeed show up:

CompanyName OrderID OrderDate

Alfreds Futterkiste 11087 2000-08-05 17:37:52.520

(1 row(s) affected)

297

Chapter 10

Don’t get stuck on the notion that your OrderID numbers are going to be the same
as mine — these are set by the system (since OrderID is an identity column), and are
dependent on just how many rows have already been inserted into the table. As
such, your numbers will vary.

The DATEADD and CONVERT Functions

The join, while larger than most of the ones we’ve done this far, is still pretty straightforward. We keep
adding tables, joining a column in each new table to a matching column in the tables that we’ve already
named. As always, note that the columns do not have to have the same name — they just have to have
data that relates to one another.

Since this was a relatively complex join, let’s take a look at what we are doing in the query that supports
this view.

The WHERE clause is where things get interesting:

WHERE CONVERT (varchar(12),o0.0rderDate,101l) =
CONVERT (varchar (12) ,DATEADD (day, -1, GETDATE ()), 101)

It’s a single comparison, but we have several functions that are used to come up with our result.

It would be very tempting to just compare the OrderDate in the Orders table to GETDATE () (today’s
date) minus one day — the subtraction operation is what the DATEADD function is all about. DATEADD can
add (you subtract by using negative numbers) any amount of time you want to deal with. You just tell it
what date you want to operate on, what unit of time you want to add to it (days, weeks, years, minutes,
and so on). On the surface, you should just be able to grab today’s date with GETDATE () and then use
DATEADD to subtract one day. The problem is that GETDATE () includes the current time of day, so we
would only get back rows from the previous day that happened at the same time of day down to 3.3333
milliseconds —not a likely match. So we took things one more step and used the CONVERT function to
equalize the dates on both sides of the equation to the same time-of-day-less format before comparison.
Therefore, the view will show any sale that happened any time on the previous date.

Using a View to Change Data — Before INSTEAD OF
Triggers

As we've said before, a view works mostly like a table does from an in-use perspective (obviously, creat-
ing them works quite a bit differently). Now we’re going to come across some differences, however.

It’s surprising to many, but you can run INSERT, UPDATE, and DELETE statements against a view success-
fully. There are several things, however, that you need to keep in mind when changing data through a
view:

O If the view contains a join, you won't, in most cases, be able to INSERT or DELETE data unless
you make use of an INSTEAD OF trigger. An UPDATE can, in some cases (as long as you are only
updating columns that are sourced from a single table), work without INSTEAD OF triggers, but
it requires some planning, or you’ll bump into problems very quickly.

298

Views

Q If your view references only a single table, then you can INSERT data using a view without the
use of an INSTEAD OF trigger provided all the required fields in the table are exposed in the
view or have defaults. Even for single table views, if there is a column not represented in the
view that does not have a default value, then you must use an INSTEAD OF trigger if you want
to allow an INSERT.

Q Youcan, to a limited extent, restrict what is and isn’t inserted or updated in a view.

Now —I've already mentioned INSTEAD OF triggers several times. The problem here is the complexity
of INSTEAD OF triggers and that we haven’t discussed triggers to any significant extent yet. As is often
the case in SQL Server items, we have something of the old chicken vs. egg thing going (“Which came
first?”). I need to discuss INSTEAD OF triggers because of their relevance to views, but we're also not
ready to talk about INSTEAD OF triggers unless we understand both of the objects (tables and views) that
they can be created against.

The way we are going to handle things for this chapter is to address views the way they used to be —
before there was such a thing as INSTEAD OF triggers. While we won't deal with the specifics of INSTEAD
OF triggers in this chapter, we'll make sure we understand when they must be used. We'll then come
back and address these issues more fully when we look briefly at INSTEAD OF triggers in Chapter 15.

Having said that, I will provide this bit of context — An Instead Of trigger is a special kind of trigger
that essentially runs “instead” of whatever statement caused the trigger to fire. The result is that it can
see what you're statement would have done, and then make decisions right in the trigger about how to
resolve any conflicts or other issues that might have come up. It’s very powerful, but also fairly complex
stuff, which is why we defer it for now.

Dealing with Changes in Views with Joined Data

If the view has more than one table, then using a view to modify data is, in many cases, out—sort of
anyway — unless you use an INSTEAD OF trigger (more on this in a moment). Since it creates some ambi-
guities in the key arrangements, Microsoft locks you out by default when there are multiple tables. To
resolve this, you can use an INSTEAD OF trigger to examine the altered data and explicitly tell SQL
Server what you want to do with it.

Required Fields Must Appear in the View or Have Default Value

By default, if you are using a view to insert data (there must be a single table SELECT in the underlying
query or at least you must limit the insert to affecting just one table and have all required columns
represented), then you must be able to supply some value for all required fields (fields that don’t allow
NULLs). Note that by “supply some value” I don’t mean that it has to be in the SELECT list—a Default
covers the bill rather nicely. Just be aware that any columns that do not have Defaults and do not accept
NULL values will need to appear in the view in order to perform INSERTs through the view. The only
way to get around this is— you guessed it—with an INSTEAD OF trigger.

Limit What’s Inserted into Views — WITH CHECK OPTION

The WITH CHECK OPTION is one of those lesser known to almost completely unknown features in SQL
Server. The rules are simple —in order to update or insert data using the view, the resulting row must
qualify to appear in the view results. Restated, the inserted or updated row must meet any WHERE crite-
rion that’s used in the SELECT statement that underlies your view.

299

Chapter 10

Try It Out WITH CHECK OPTION

To illustrate WITH CHECK OPTION, let’s continue working with the Northwind database, and create a
view to show only Oregon shippers. We have only limited fields to work with in our Shippers table, so
we're going to have to make use of the Area Code in order to figure out where the shipper is from (make
sure that you use Northwind):

CREATE VIEW OregonShippers_vw

AS

SELECT ShipperID,
CompanyName,
Phone

FROM Shippers

oo

WHERE Phone LIKE ' (503)
OR Phone LIKE ' (541)
OR Phone LIKE '(971)%"'

WITH CHECK OPTION

o

Run a SELECT * against this view, and, as it happens, you return all the rows in the table (because all
the rows in the table meet the criteria):

ShipperID CompanyName Phone

1 Speedy Express (503) 555-9831
2 United Package (503) 555-3199
3 Federal Shipping (503) 555-9931
4 Speedy Shippers, Inc. (503) 555-5566

(4 row(s) affected)

Now try to update one of the rows using the view —set the phone value to have anything other than a
value starting with (503), (541) or (971):

UPDATE OregonShippers_vw
SET Phone = '(333) 555 9831'
WHERE ShipperID = 1

SQL Server promptly tells you that you are a scoundrel and that you should be burned at the stake for
your actions — well, not really, but it does make its point.

Msg 550, Level 16, State 1, Line 1

The attempted insert or update failed because the target view either specifies WITH
CHECK OPTION or spans a view that specifies WITH CHECK OPTION and one or more rows
resulting from the operation did not qualify under the CHECK OPTION constraint.

The statement has been terminated.

How It Works

Our WHERE clause filters things in the view to just (503), (541) or (971) area codes, and the WITH CHECK
OPTION says any INSERT or UPDATE statements must meet that where clause criteria (which a (333) area
code doesn’t).

300

Views

Since our update wouldn’t meet the WHERE clause criteria, it is thrown out; however, if we insert the row
right into the base table:

UPDATE Shippers
SET Phone = '(333) 555 9831
WHERE ShipperID = 1

SQL Server is a lot friendlier:
(1 row(s) affected)

The restriction applies only to the view —not to the underlying table. This can actually be quite handy
in a rare circumstance or two. Imagine a situation where you want to allow some users to insert or
update data in a table, but only when the updated or inserted data meets certain criteria. We could easily
deal with this restriction by adding a CHECK constraint to our underlying table —but this might not
always be an ideal solution.

Imagine now that we’ve added a second requirement — we still want other users to be able to INSERT
data into the table without meeting these criteria. Uh oh, the CHECK constraint will not discriminate
between users. By using a view together with a WITH CHECK OPTION, we can point the restricted users to
the view, and let the unrestricted users make use of the base table or a view that has no such restriction.

Just for confirmation — this works on an INSERT, too. Run an INSERT that violates the WHERE clause:

INSERT INTO OregonShippers_vw
VALUES
('My Freight Inc.', '(555) 555-5555")

And you see your old friend, the “terminator” error, exactly as before:

Msg 550, Level 16, State 1, Line 1

The attempted insert or update failed because the target view either specifies WITH
CHECK OPTION or spans a view that specifies WITH CHECK OPTION and one or more rows
resulting from the operation did not qualify under the CHECK OPTION constraint.

The statement has been terminated.

Editing Views with T-SQL

The main thing to remember when you edit views with T-SQL is that you are completely replacing the
existing view. The only differences between using the ALTER VIEW statement and the CREATE VIEW
statement are:

QO ALTER VIEW expects to find an existing view, whereas CREATE doesn't.
O ALTER VIEW retains any permissions that have been established for the view.

QO ALTER VIEW retains any dependency information.

301

Chapter 10

The second of these is the biggie. If you perform a DROP, and then use a CREATE, you have almost the
same effect as using an ALTER VIEW statement. The problem is that you will need to entirely re-establish
your permissions on who can and can’t use the view.

Dropping Views
It doesn’t get much easier than this:

DROP VIEW <view name>, [<view name>, [...n]]

And it’s gone.

Creating and Editing Views in the
Management Studio

For people who really don’t know what they are doing, this has to be a rather cool feature in the
Management Studio. Building views is a snap, and you really don’t have to know all that much about
queries in order to get it done.

To take a look at this, fire up the Management Studio, open up the Northwind database sub-node of the
Databases node and right-click on Views. You should see the window shown in Figure 10-1.

= [Databases

% [Swstem Databases

+ [Database Snapshots
|}l Accounting
| Adventuretwaorks
| AdventuretwarksDi
| Morthwind
[Database Diagrams

T F B E

T

Mew Yiew, ..

Filker 3

H O EEEE
b=l
o
I

3 st pefresh
[Securmey
| pubs
+ | | ReportServer
| J| ReportServerTempDE
[Security
[Server Cbjects
1 Replication
| Management
[Motification Services
._i) S0L Server Agent (Agent XPs disabled)

| F OFEOE

Figure 10-1

Now select New View, and up comes a new dialog.

302

Views

This dialog makes it easy for us to choose what tables we’re going to be including data from. Categories
is selected in Figure 10-2, but we're going to be working with not only a different table—but four other
tables.

Add Table ?x

Tables | views | Functions | Synonyms

Categories
CuskarmerCustamerDemo
CustomerDemographics
Customers

Emplovees
EmplovesTerritories
Crder Details

Orders

Producks

Region

shippers

Suppliers

Territaries

[Refresh] I Add l [Close

Figure 10-2

This should beg the question: “How do I select more than one table?” Easy —just hold down your con-
trol key while selecting all the tables you want. For now, start by clicking on the Customers table, and
then press and hold your Control key while you also select Orders, Order Details, and Products. You
should wind up with all of them highlighted, as in Figure 10-3.

Add Table Px

Tables |\u'iews Functions | Synonyms
Categories

CustormerCustomerDemno
CustomerDemographics

Region
Shippers
Suppliers
Territaries

[Refresh] I Add l [Clase

Figure 10-3

Now click Add, and SQL Server will add several tables to our view (indeed, on most systems, you
should be able to see them being added to the view editor that we’re about to take a look at).

303

Chapter 10

Before we close the Add Table dialog, take a moment to notice the Views, Functions, and Synonym tabs
along the top of this dialog. Because views can reference these objects directly, the dialog gives you a
way of adding them directly.

For now, however, just click Add and check out the view editor that is brought up, as in Figure 10-4.

'+ Microsaft S0 Servar Managemant Studio
[k Gdt s JuevDssiner Iock Windew Lk
Hacure [|5 oy (5| (0|5 bl o |08 2 () BB 0)

=] TR N
Reghtzred Senees = 0% Wiew dbodiew 1Y) Sonnay | =
(R NTR=N
= [Datsbase e
 erhomitoer

Order D

Productl
LrnitFroe o
|srker =

St Expleris -uw
Conat- | ® w3 F
E [STHYETTZE (S04 Serve 00187 - Mioging
= [Denaases
& e Dol
e E—
| fecounkng
T | Adiertuctioes <
* 'j N"“*"T""}"f“""l‘w" Lo [bes [7abis |Gt [t Time | 5ar: der [riter e Gra E -
E
[Tatanase Disgaams r 3 =
ol [Tehiom

B3 Wews |

el L pnonyme
[Facrnnot ke
[Service Droke
[EIFEEET
F [Sty

) pi=

& [Reporssereer

. RO cho Cutommess INZR X0
* | Feporztsevert s Ly b Drders Gr doo, Custoners, Custment = cha, Drders, Cusomerd INWZE J0M
@ (7 Sy b [Tt Dok] D% s Db, el = o, [k Do k]l THAFR oy
=1 [Sereer Ozecis b Prcad ks o | i Dt @i Prid b1l = o Ay s, Fridotll
= Bk
[Marasenen:
=4 4 Motk ot ertces
[S Sorver Acerk (Bgen: i7's diaakied)

Reacy

Figure 10-4

There are four panes to the View Builder — each of which can be independently turned on or off:

Q The Diagram pane

Q The Criteria pane

U The SQL pane

Q The Results pane
For those of you who have worked with Access at all, the Diagram pane works much as it does in Access
queries. You can add and remove tables, and even define relationships. Each of those added tables,
checked columns, and defined relationships will automatically be reflected in the SQL pane in the form
of the SQL required to match the diagram. To identify each of the icons on the toolbar, just hover your

mouse pointer over them for a moment or two, and you will get a tooltip that indicates the purpose of
each button.

304

Views

You can add tables either by right-clicking in the Diagram pane (the top one in
Figure 10-4) and choosing Add Table or by clicking on the Add table toolbar but-
ton (the one with an arrow pointing right in the very top left of the icon).

Now let’s select some columns, as shown in Figure 10-5.

B Cuslomer _| & Order De _| B Orde _| H Product: _|

| * (Al Columns) - _” (&l Calumns) L_I* [AI Columns) - L_I* {all Columns) -

¥ CompanyName i L Cusbolmr[D | |Producthame £

| Cantacthame & UnitPrice L EmployeslD |__|SuppleriD

| conkactTitle = v Quantity =l v OrderDate 4| |_|categanan -
Figure 10-5

Note that I am just showing the diagram pane here to save space. If have the Grid pane up while you
check the above, then you would see each column appear in the Grid pane as you select it. With the SQL
pane up, you will also see it appear in the SQL code.

In case you haven’t recognized it yet, we're building the same view that we built as our first complex view
(Customerorders_vw). The only thing that’s tricky at all is the computed column (ExtendedpPrice). To do
that one, either we have to manually type the equation into the SQL pane, or we can type it into the
Column column in the Grid pane along with its alias (see Figure 10-6).

| Carnn | alias | Table | output | Sort Type | Sort Order | Filter | Cr...
OrderDate Orders
CompanyMame Customers
Froductiame Froducts
FroductID [Crder Deta.. [v]
UnitFrice [Crder Deta.. [#]
Quankiy [Crder Ceta..
| b, [Order Detals]. Quantity * dbo.[Order Detalks].UnitFrice ExtendedPrice

BELECT dbo,Orders, CrderDate, dbo.Customess Companyiizme, dbo. Products Productidame, dbo.[Order Detals]. ProductlD, dbo,[Order Detals] UnkPrice,
dbo.[Order Detaiks].Quanbky, dbo.[Order Details]. Quantky * dbo [Crder Details]. UnitPrice A5 ExtendedPrice
FROM dbo, Customers INMER JOIN
dbo.Orders OM dbo.Customers.CustomerID = doo, Orders. Customner 1D INNER. J0TN
dbo.[Order Details] OM dbo.Orders, Order]D = dbo.[Grder Details], CrderID INNER JOIN
dbo.Products ON cba, [Order Dekals]. ProductID = dbo, Product s ProduckID

Figure 10-6

When all is said and done, the View Builder gives us the following SQL code:

SELECT dbo.Orders.OrderDate,

dbo.Customers.CompanyName,

dbo.Products.ProductName,

dbo. [Order Details].ProductID,

dbo. [Order Details].UnitPrice,

dbo. [Order Details].Quantity,

dbo. [Order Details].Quantity * dbo.[Order Details].UnitPrice AS
ExtendedPrice
FROM dbo.Customers INNER JOIN

dbo.Orders ON dbo.Customers.CustomerID = dbo.Orders.CustomerID INNER JOIN

305

Chapter 10

dbo. [Order Details] ON dbo.Orders.OrderID = dbo.[Order Details].OrderID
INNER JOIN
dbo.Products ON dbo. [Order Details].ProductID = dbo.Products.ProductID

While it’s not formatted the same, if you look it over, you'll find that it’s basically the same code we
wrote by hand!

If you’ve been struggling with learning your T-SQL query syntax, you can use this
tool to play around with the syntax of a query. Just drag and drop some tables into
the Diagram pane, select the column you want from each table, and, for the most
part, SOL Server will build you a query — you can then use the syntax from the view
builder to learn how to build it yourself next time.

Now go ahead and save it (the disk icon in the toolbar is how I do it) as CustomerOrders2_vw and close
the View Builder.

Editing Views in the Management Studio

Modifying our view in the Management Studio is as easy as creating it was. The only real difference is
that you need to navigate to your specific view and right-click it— then choose Modify, and you'll be
greeted with the same friendly query designer that we used with our query when it was created.

Auditing: Displaying Existing Code

What do you do when you have a view, but you're not sure what it does? The first option should be easy
at this point—just go into the Management Studio like you're going to edit the view. Go to the Views
sub-node, select the view you want to edit, right-click, and choose Modify View. You'll see the code
behind the view complete with color-coding.

Unfortunately, we don’t always have the option of having the Management Studio around to hold our
hand through this stuff (we may be using a lighter weight tool of some sort. The bright side is that we

have two ways of getting at the actual view definition:

a sp_helptext

QO The syscomments system table

Using sp_helptext is highly preferable, as when new releases come out, it will automatically be
updated for changes to the system tables.

Let’s run sp_helptext against one of the supplied views in the Northwind database —Alphabetical
List of Products:

EXEC sp_helptext [Alphabetical list of products]

306

Views

SQL Server obliges us with the code for the view:

create view "Alphabetical list of products" AS
SELECT Products.*, Categories.CategoryName

FROM Categories INNER JOIN Products ON Categories.CategoryID = Products.CategoryID

WHERE (((Products.Discontinued)=0))

I must admit to finding this one of the more peculiar examples that Microsoft ever provided (probably
part of why Northwind is not their default sample any more — too bad since it is, for most of it, a better
teaching database than AdventureWorks is) —I attribute it to this database being migrated from Access.
Why? Well, the one seemingly simple thing that we cannot do in views is use an ORDER BY clause. The
exception to the rule on the ORDER BY clause is that you can use ORDER BY as long as you also use the
TOP predicate. Microsoft says this view is in alphabetical order, but there is no guarantee of that. Indeed,

if you run the query, odds are it won’t come out in alphabetical order!

Note that the restriction on using the ORDER BY clause applies only to the code
within the view. Once the view is created, you can still use an ORDER BY clause
when you reference the view in a query.

Now let’s try it the other way — using syscomments. Beyond the compatibility issues with using system
tables, using syscomments (and most other system tables for that matter) comes with the extra added

hassle of everything being coded in object IDs.

Object IDs are SQL Server’s internal way of keeping track of things. They are inte-
ger values rather than the names that you're used to for your objects. In general, they
our outside the scope of this book, but it is good to realize they are there, as you will
find them used by scripts you may copy from other people or just bump into them
later in your SQL endeavors.

Fortunately, you can get around this by joining to the sysobjects table:

SELECT sc.text
FROM syscomments sc
JOIN sysobjects so
ON sc.id = so.id
WHERE so.name = 'Alphabetical list of products'

Again, you get the same block of code (indeed, all sp_helptext does is run what amounts to this same

query):

create view "Alphabetical list of products" AS
SELECT Products.*, Categories.CategoryName

307

Chapter 10

FROM Categories INNER JOIN Products ON Categories.CategoryID = Products.CategoryID
WHERE (((Products.Discontinued)=0))
(1 row(s) affected)

I can’t stress enough my recommendation that you avoid the system tables where possible —but I do
like you to know your options.

Protecting Code: Encrypting Views

If you're building any kind of commercial software product, odds are that you're interested in protecting
your source code. Views are the first place we see the opportunity to do just that.

All you have to do to encrypt your view is use the WITH ENCRYPTION option. This one has a couple of
tricks to it if you're used to the WITH CHECK OPTION clause:

0 WITH ENCRYPTION goes after the name of the view, but before the AS keyword

0 WITH ENCRYPTION does not use the OPTION keyword

In addition, remember that if you use an ALTER VIEW statement, you are entirely replacing the existing
view except for access rights. This means that the encryption is also replaced. If you want the altered
view to be encrypted, then you must use the WITH ENCRYPTION clause in the ALTER VIEW statement.

Let’s do an ALTER VIEW on our CustomerOrders_vw view that we created in Northwind. If you
haven't yet created the CustomerOrders_vw view, then just change the ALTER to CREATE (don’t forget
to run this against Northwind):

ALTER VIEW CustomerOrders_vw
WITH ENCRYPTION
AS
SELECT cu.CompanyName,
o.0OrderDate,
od.ProductID,
p.ProductName,
od.Quantity,
od.UnitPrice,
od.Quantity * od.UnitPrice AS ExtendedPrice
FROM Customers AS cu
INNER JOIN Orders AS o
ON cu.CustomerID = o.CustomerID
INNER JOIN [Order Details] AS od
ON o0.0rderID = od.OrderID
INNER JOIN Products AS p
ON od.ProductID = p.ProductID

Now do an sp_helptext on our CustomerOrders_vw

EXEC sp_helptext CustomerOrders_vw

308

Views

SQL Server promptly tells us that it can’t do what we’re asking:
The object comments have been encrypted.
The heck you say, and promptly go to the syscomments table:
SELECT sc.text FROM syscomments sc
JOIN sysobjects so
ON sc.id = so.id

WHERE so.name = 'CustomerOrders_vw'

But that doesn’t get you very far either —SQL Server recognizes that they table was encrypted and will
give you a NULL result.

In short— your code is safe and sound. Even if you pull it up in other viewers (such as the Management
Studio, which actually won't even give you the Modify option on an encrypted table), you'll find it useless.

Make sure you store your source code somewhere before using the WITH ENCRYP-
TION option. Once it’s been encrypted, there is no way to get it back. If you haven’t
stored your code away somewhere and you need to change it, then you may find
yourself re-writing it from scratch.

About Schema Binding

Schema binding essentially takes the things that your view is dependent upon (tables or other views),
and “binds” them to that view. The significance of this is that no one can make alterations to those
objects (CREATE, ALTER) unless they drop the schema-bound view first.

Why would you want to do this? Well, there are a few reasons why this can come in handy:

Q It prevents your view from becoming “orphaned” by alterations in underlying objects. Imagine,
for a moment, that someone performs a DROP or makes some other change (even deleting a col-
umn could cause your view grief), but doesn’t pay attention to your view. Oops. If the view is
Schema Bound, then this is prevented from happening.

Q To allow Indexed Views: If you want an index on your view, you must create it using the
SCHEMABINDING option. (We’ll look at Indexed Views just a few paragraphs from now.)

Q If you are going to create a schema-bound user-defined function (and there are instances where
your UDF must be schema bound) that references your view, then your view must also be
schema bound.

Keep these in mind as you are building your views.

309

Chapter 10

Making Your View Look Like a Table with
VIEW_METADATA

This option has the effect of making your view look very much like an actual table to DB-LIB, ODBC,
and OLE-DB clients. Without this option, the metadata passed back to the client API is that of the base
table(s) that your view relies on.

Providing this metadata information is required to allow for any client-side cursors (cursors your client
applications manages) to be updateable. Note that, if you want to support such cursors, you're also
going to need to use an INSTEAD OF trigger.

Indexed (Materialized) Views

In SQL Server 2000, this one was only supported in the Enterprise Edition (OK, the Developer and
Evaluation Editions also supported it, too, but you aren’t allowed to use test and development editions
in production systems). It is, however, supported in all editions of SQL Server 2005.

When a view is referred to, the logic in the query that makes up the view is essentially incorporated into
the calling query. Unfortunately, this means that the calling query just gets that much more complex. The
extra overhead of figuring out the impact of the view (and what data it represents) on the fly can actu-
ally get very high. What’s more, you're often adding additional joins into your query in the form of the
tables that are joined in the view. Indexed views give us a way of taking care of some of this impact
before the query is ever run.

An Indexed View is essentially a view that has had a set of unique values “materialized” into the form of a
clustered index. The advantage of this is that it provides a very quick lookup in terms of pulling the infor-
mation behind a view together. After the first index (which must be a clustered index against a unique set
of values), SQL Server can also build additional indexes on the view using the cluster key from the first
index as a reference point. That said, nothing comes for free — there are some restrictions about when you
can and can’t build indexes on views (I hope you're ready for this one—it’s an awfully long list!):

Q The view must use the SCHEMABINDING option.

Q Ifit references any user-defined functions (more on these later), then these must also be schema
bound.

Q The view must not reference any other views —just tables and UDFs.

Q All tables and UDFs referenced in the view must utilize a two-part (not even three-part and
four-part names are allowed) naming convention (for example dbo . Customers,
BillyBob. SomeUDF) and must also have the same owner as the view.

Q The view must be in the same database as all objects referenced by the view.

QO The ANSI_NULLS and QUOTED_IDENTIFIER options must have been turned on (using the SET
command) at the time the view and all underlying tables were created.

Q Any functions referenced by the view must be deterministic.

310

Views

To create an example Indexed View, let’s start by making a few alterations to the CustomerOrders_vw
object that we created earlier in the chapter:

ALTER VIEW CustomerOrders_vw
WITH SCHEMABINDING
AS
SELECT cu.CompanyName,
0.0rderID,
o.0OrderDate,
od.ProductID,
p.ProductName,
od.Quantity,
od.UnitPrice
FROM dbo.Customers AS cu
INNER JOIN dbo.Orders AS o
ON cu.CustomerID = o.CustomerID
INNER JOIN dbo. [Order Details] AS od
ON 0.0rderID = od.OrderID
INNER JOIN dbo.Products AS p
ON od.ProductID = p.ProductID

The big things to notice here are:

Q We had to make our view use the SCHEMABINDING option.

Q Inorder to utilize the SCHEMABINDING option, we had to go to two-part naming for the objects
(in this case, all tables) that we reference.

We had to remove our calculated column — while you can build indexed views with non-aggregate
expressions, the query optimizer will ignore them.

This is really just the beginning —we don’t have an indexed view as yet. Instead, what we have is a
view that can be indexed. When we create the index, the first index created on the view must be both

clustered and unique.

CREATE UNIQUE CLUSTERED INDEX ivCustomerOrders
ON CustomerOrders_vw (CompanyName, OrderID, ProductID)

Once this command has executed, we have a clustered view. We also, however, have a small problem
that will become clear in just a moment.

Let’s test our view by running a simple SELECT against it:
SELECT * FROM CustomerOrders_vw
If you execute this, everything appears to be fine—but try displaying the graphical showplan as shown

in Figure 10-7 (Display Estimated Execution Plan is the tooltip for this, and you'll find it toward the cen-
ter of the toolbar).

311

Chapter 10

Query 1: Query cost (relative to the batch): 100%
SELECT * FRON CustomerOrders_vw
— 2] Lt
SELECT Hash Match Index Scan
ch-c- u ' {Irmer Join) [Morcherind] . [dbol. [Produccs]. [Froda.
— Cost: Z1 & Cost: 2 %
=] Fﬁ
Hash Match Index Scan
(Innar Join) [Morchering]. [dbo] . [Mustonars] . [Coup,
Cost: 25 & Cost: 2 %
23 1
'—‘j gﬁl—"
Hash Match Clusterad Index Scan
iTrmar Join} [Mortheind] . [dbo]. [Ordars]. [PH_Orda..
Cost: 23 % Cozt: 12 &
by
Clusterad Indax Scan
[Morthowind] . [dbo]. [Order Details].[.
Cost: 8 %
Figure 10-7

I mentioned a paragraph or two ago that we had a small problem — the evidence is in this showplan.
If you look through all the parts of this, you'll see that our index isn’t being used at all!

At issue here is the size of our tables. The Northwind database doesn’t have enough data. You see, the
optimizer runs a balance between how long it will take to run the first plan that it finds versus the
amount of work it takes to keep looking for a better plan. For example, does it make sense to spend
two more seconds thinking about the plan when the plan you already know about could be done in
less than one second?

In our example above, SQL Server looks at the underlying table, sees that there really isn’t that much
data out there, and decides that the plan it has is “good enough” before the optimizer gets far enough
to see that the index on the view might be faster.

Keep this issue of “just how much data is there” versus “what will it cost to keep looking for a better
plan” in mind when deciding on any index — not just indexed views. For small datasets, there’s a very
high possibility that SQL Server will totally ignore your index in favor of the first plan that it comes
upon. In such a case, you pay the cost of maintaining the index (slower INSERT, UPDATE, and DELETE
executions) without any benefit in the SELECT.

Just so we get a chance to see a difference, however, let’s create a database that will have enough
data to make our index more interesting. You can download and execute a population script called
CreateAndLoadNorthwindBulk.sqgl.

Figure that, if you load the default amount of data, you're going to use up somewhere in the area of
55MB of disk space for Nor thwindBulk. Also, be aware that the population script can take a while to
run, as it has to generate and load thousands and thousands of rows of data.

Now just re-create your view and index in your new NorthwindBulk database.

USE NorthwindBulk
GO

CREATE VIEW CustomerOrders_vw

312

Views

WITH SCHEMABINDING
AS
SELECT cu.CompanyName,
0.0rderID,
o.0rderDate,
od.ProductID,
p.ProductName,
od.Quantity,
od.UnitPrice
FROM dbo.Customers AS cu
INNER JOIN dbo.Orders AS o
ON cu.CustomerID = o.CustomerID
INNER JOIN dbo. [Order Details] AS od
ON 0.0rderID = od.OrderID
INNER JOIN dbo.Products AS p
ON od.ProductID = p.ProductID
GO

CREATE UNIQUE CLUSTERED INDEX ivCustomerOrders

ON CustomerOrders_vw (CompanyName, OrderID, ProductID)

Now re-run the original query, but against NorthwindBulk:
USE NorthwindBulk

SELECT * FROM CustomerOrders_vw

And check out your new query plan (see Figure 10-8).

SELECT * FROM CustomerOrders_wvw

b

Clustered Index Scan
[MorthwindBulk] . [dbo] . [CustomerOrde.
Cost: 100 %

Figure 10-8

This time, SQL Server has enough data that it does a more thorough query plan. In this case, it accepts
the index view that exists on our table. The overall performance of this view is now much faster (row for

row) than the previous model would have been.

Summary

Views tend to be either the most over- or most under-used tools in most of the databases I've seen. Some
people like to use them to abstract seemingly everything (often forgetting that they are adding another

layer to the process when they do this). Others just seem to forget that views are even an option.

Personally, like most things, I think you should use a view when it’s the right tool to use —not before,

not after. Things to remember with views include:

313

Chapter 10

a

Stay away from building views based on views —instead, adapt the appropriate query informa-
tion from the first view into your new view.

Remember that a view using the WITH CHECK OPTION provides some flexibility that can’t be
duplicated with a normal CHECK constraint.

Encrypt views when you don’t want others to be able to see your source code — either for com-
mercial products or general security reasons.

Using an ALTER VIEW completely replaces the existing view other than permissions. This
means you must include the WITH ENCRYPTION and WITH CHECK OPTION clauses in the ALTER
statement if you want encryption and restrictions to be in effect in the altered view.

Use sp_helptext to display the supporting code for a view —avoid using the system tables.

Minimize the user of views for production queries — they add additional overhead and hurt
performance.

Common uses for views include:

0O 0 0O O

Filtering rows
Protecting sensitive data
Reducing database complexity

Abstracting multiple physical databases into one logical database

In our next chapter, we'll take a look at batches and scripting. We got a brief taste when we ran the
INSERT script in this chapter to insert a row into the Orders table, and then used information from the
freshly inserted row in an insert into the Order Details table. Batches and scripting will lead us right
into stored procedures — the closest thing that SQL Server has to its own programs.

Exercises

314

1.

2.

Add a view called Managers in the Northwind database that shows only employees that super-
vise other employees.

Change the view you just created to be encrypted.

Create and index the existing Northwind view called “Products by Category” based on the
columns CategoryName and ProductName.

11

Writing Scripts and Batches

Whether you've realized it or not, you've already been writing SQL scripts. Every CREATE state-
ment that you write, every ALTER, every SELECT is all (if you're running a single statement) or
part (multiple statements) of a script. It’s hard to get excited, however, over a script with one
line in it— could you imagine Hamlet’s “To be, or not to be . . .” if it had never had the following
lines—we wouldn’t have any context for what he was talking about.

SQL scripts are much the same way. Things get quite a bit more interesting when we string several
commands together into a longer script—a full play or at least an act to finish our Shakespeare anal-
ogy. Now imagine that we add a more rich set of language elements from .NET to the equation—
now we're ready to write an epic!

Scripts generally have a unified goal. That is, all the commands that are in a script are usually build-
ing up to one overall purpose. Examples include scripts to build a database (these might be used for
a system installation), scripts for system maintenance (backups, Database Consistency Checker util-
ities (DBCCs)) —scripts for anything where several commands are usually run together.

We will be looking into scripts during this chapter, and adding in the notion of batches —which
control how SQL Server groups your commands together. In addition, we will take a look at
SQLCMD — the command line utility, and how it relates to scripts.

SQLCMD is new with SQL Server 2005. For backward compatibility only, SQL Server also
supports osql.exe (the previous tool that did command line work). You may also see references to
isql.exe (do not confuse this with isqlw.exe), which served this same function in earlier releases.
Isql.exe is no longer supported as of SQL Server 2005.

Script Basics

A script technically isn’t a script until you store it in a file where it can be pulled up and reused.
SQL scripts are stored as text files. The SQL Server Management Studio provides many tools to
help you with your script writing. The basic query window is color coded to help you not only
recognize keywords, but also understand their nature. In addition, you have a step debugger, code
templates, the object browser, and more.

Chapter 11

Scripts are usually treated as a unit. That is, you are normally executing the entire script or nothing at all.
They can make use of both system functions and local variables. As an example, let’s look at the script
that we used to INSERT order records in the chapter on views (Chapter 10):

USE Northwind
DECLARE @Ident int

INSERT INTO Orders

(CustomerID, OrderDate)

VALUES

("ALFKI', DATEADD (day,-1,GETDATE()))

SELECT @Ident = @E@IDENTITY

INSERT INTO [Order Details]

(OrderID, ProductID, UnitPrice, Quantity)
VALUES

(@Ident, 1, 50, 25)

SELECT 'The OrderID of the INSERTed row is ' + CONVERT (varchar (8),@Ident)

We have six distinct commands working here, covering a range of different things that we might do in a
script. We're using both system functions and local variables, the USE statement, INSERT statements, and
both assignment and regular versions of the SELECT statement. They are all working in unison to accom-
plish one task —to insert complete orders into the database.

The USE Statement

The USE statement sets the current database. This affects any place where we are making use of default
values for the database portion of our fully qualified object name. In this particular example, we have
not indicated what database the tables in our INSERT or SELECT statements are from, but, since we’ve
included a USE statement prior to our INSERT and SELECT statements, they will use that database (in
this case, Northwind). Without our USE statement, we would be at the mercy of whoever executes the
script to make certain that the correct database was current when the script was executed.

Don’t take this as meaning that you should always include a USE statement in your
script—it depends on what the purpose of the script is. If your intent is to have a
general-purpose script, then leaving out the USE statement might actually be helpful.

Usually, if you are naming database-specific tables in your script (that is, non-system
tables), then you want to use the USE command. I also find it very helpful if the
script is meant to modify a specific database —as I've said in prior chapters, I can’t
tell you how many times I've accidentally created a large number of tables in the
master database that were intended for a user database.

Next we have a DECLARE statement to declare a variable. We’ve talked about DECLARE statements briefly
before, but let’s expand on this some.

316

Writing Scripts and Batches

Declaring Variables

The DECLARE statement has a pretty simple syntax:

DECLARE @<variable name> <variable type>|[,
@<variable name> <variable type>|[,
@<variable name> <variable type>]]

You can declare just one variable at a time, or several. It's common to see people reuse the DECLARE
statement with each variable they declare, rather than using the comma separated method. It’s up to
you, but no matter which method you choose, the value of your variable will always be NULL until you
explicitly set it to some other value.

In our case, we’ve declared a local variable called @ident as an integer. Technically, we could have got
away without declaring this variable —instead, we could have chosen to just use @eIDENTITY directly.
@E@IDENTITY is a system function. It is always available, and supplies the last identity value that was
assigned in the current connection. As with most system functions, you should make a habit of explicitly
moving the value in @eIDENTITY to a local variable. That way, you're sure that it won’t get changed
accidentally. There was no danger of that in this case, but, as always, be consistent.

I like to move a value I'm taking from a system function into my own variable. That
way I can safely use the value and know that it’s only being changed when I change
it. With the system function itself, you sometimes can’t be certain when it's going to
change because most system functions are not set by you, but by the system. That
creates a situation where it would be very easy to have the system change a value at
a time you weren’t expecting it, and wind up with the most dreaded of all computer
terms: unpredictable results.

Setting the Value in Your Variables

Well, we now know how to declare our variables, but the question that follows is, “How do we change
their values?” There are currently two ways to set the value in a variable. You can use a SELECT state-
ment or a SET statement. Functionally, they work almost the same, except that a SELECT statement has
the power to have the source value come from a column within the SELECT statement.

So why have two ways of doing this? Actually, I still don’t know. After publishing two books that ask
this very question, I figured someone would e-mail me and give me a good answer — they didn’t. Suffice
to say that SET is now part of the ANSI standard, and that’s why it’s been put in there. However, I can’t
find anything wrong with the same functionality in SELECT —even ANSI seems to think that it's OK.
I'm sure there’s a purpose in the redundancy, but what it is I can’t tell you. That said, there are some dif-
ferences in the way they are typically put to use.

Setting Variables Using SET

SET is usually used for setting variables in the fashion that you would see in more procedural languages.
Examples of typical uses would be:

SET @TotalCost = 10
SET @TotalCost = @QUnitCost * 1.1

317

Chapter 11

Notice that these are all straight assignments that use either explicit values or another variable. With a
SET, you cannot assign a value to a variable from a query — you have to separate the query from the
SET. For example:

USE Northwind

DECLARE @QTest money

SET @Test = MAX(UnitPrice) FROM [Order Details]
SELECT @QTest

Causes an error, but:
USE Northwind
DECLARE @Test money

SET @Test = (SELECT MAX(UnitPrice) FROM [Order Details])
SELECT @QTest

works just fine.

Although this latter syntax works, by convention, code is never implemented this way. Again, I don’t

know for sure why it’s “just not done that way”, but I suspect that it has to do with readability — you
want a SELECT statement to be related to retrieving table data, and a SET to be about simple variable
assignments.

Setting Variables Using SELECT
SELECT is usually used to assign variable values when the source of the information you're storing in
the variable is from a query. For example, our last illustration above would be far more typically done
using a SELECT:
USE Northwind

DECLARE @QTest money

SELECT @Test = MAX(UnitPrice) FROM [Order Details]
SELECT @Test

Notice that this is a little cleaner (it takes less verbiage to do the same thing).
So again, the convention on when to use which goes like this:

Q Use SET when you are performing a simple assignment of a variable— where your value is
already known in the form of an explicit value or some other variable.

Q Use SELECT when you are basing the assignment of your variable on a query.

I'm not going to pick any bones about the fact that you’ll see me violate this last convention in many
places in this book. Using SET for variable assignment first appeared in version 7.0, and I must admit

318

Writing Scripts and Batches

that, even 6+ years after that release, I still haven't completely adapted yet. Nonetheless, this seems to be
something that’s really being pushed by Microsoft and the SQL Server community, so I strongly recom-
mend that you start out on the right foot and adhere to the convention.

Reviewing System Functions

There are over 30 parameterless system functions available. Some of the ones you should be most con-
cerned with are in the table that follows:

Variable

@@CURSOR_ROWS

@E@DATEFIRST

@@ERROR

@@FETCH_STATUS

@@IDENTITY

@RQOPTIONS

Purpose

Returns how many rows are

currently in the last cursor set

opened on the current
connection.

Returns what is currently set
as the first day of the week
(say, Sunday vs. Monday).

Returns the error number of
the last T-SQL statement
executed on the current
connection. Returns 0 if no
error.

Used in conjunction with a
FETCH statement.

Returns the last identity
value inserted as a result of
the last INSERT or SELECT
INTO statement.

Returns information about
options that have been set
using the SET command.

Comments

SQL 7 can populate cursors
asynchronously. Be aware that the
value in this variable may change if the
cursor is still in the process of being
populated.

Is a system-wide setting —if someone
changes the setting, you may not get
the result you expect.

Is reset with each new statement. If you
need the value preserved, move it to a
local variable immediately after the
execution of the statement for which
you want to preserve the error code.

Returns 0 for valid fetch, % for beyond
end of cursor set, -2 for a missing
(deleted) row. Typical gotcha is to
assume that any non-zero value means
you are at the end of the cursor—a -2
may just mean one missing record.

Is set to NULL if no identity value was
generated. This is true even if the lack
of an identity value was due to a failure
of the statement to run. If multiple
inserts are performed by just one
statement, then only the last identity
value is returned.

Since you get only one value back, but
can have many options set, SQL Server
uses binary flags to indicate what
values are set. In order to test whether
the option you are interested is set,
you must use the option value together
with a bitwise operator.

Tnble continued on following page

319

Chapter 11

Variable

@E@REMSERVER

@@ROWCOUNT

@@SERVERNAME

@E@TRANCOUNT

@@VERSION

Purpose

Used only in stored
procedures. Returns the value
of the server that called the
stored procedure.

One of the most used system
functions. Returns the number
of rows affected by the last
statement.

Returns the name of the local
server that the script is running
from.

Returns the number of active
transactions — essentially the
transaction nesting level — for
the current connection.

Returns the current version of
SQL Server as well as the date,
processor and O/S
architecture.

Comments

Handy when you want the sproc to
behave differently depending on the
remote server (often a geographic
location) from which it was called. Still,
in this era of .NET, I would question
whether anything needing this variable
might have been better written using
other functionality found in .NET.

Commonly used in non runtime error
checking. For example, if you try to
DELETE a row using a WHERE clause,
and no rows are affected, then

that would imply that something
unexpected happened. You can then
raise an error manually.

Can be changed by using
sp_addserver and then restarting
SQL Server, but rarely required.

A ROLLBACK TRAN statement
decrements @@TRANCOUNT to 0 unless
you are using savepoints. BEGIN TRAN
increments @@TRANCOUNT by 1, COMMIT
TRAN decrements @@TRANCOUNT by 1.

Unfortunately, this doesn’t return the
information into any kind of structured
field arrangement, so you have to parse
it if you want to use it to test for
specific information.

Don’t worry if you don’t recognize some of the terms in a few of these. They will become clear in due
time, and you will have this table to look back on for reference at a later date. The thing to remember is
that there are sources you can go to in order to find out a whole host of information about the current
state of your system and your activities.

Using @@IDENTITY

@R@IDENTITY is one of the most important of all the system functions. Remember when we saw identity
values all the way back in Chapter 5? An identity column is one where we don’t supply a value, and
SQL Server inserts a numbered value automatically.

320

Writing Scripts and Batches

In our example case, we obtain the value of @@ IDENTITY right after performing an insert into the
Orders table. The issue is that we don’t supply the key value for that table —it’s automatically created
as we do the insert. Now we want to insert a record into the Order Details table, but we need to know
the value of the primary key in the associated record in the Orders table (remember, there is a foreign
key constraint on the Order Details table that references the Orders table). Because SQL Server gen-
erated that value instead of us supplying it, we need to have a way to retrieve that value for use in our
dependent inserts later on in the script. @ IDENTITY gives us that automatically generated value
because it was the last statement run.

In the case of our example, we could have easily gotten away with not moving @@IDENTITY to a local
variable —we could have just referenced it explicitly in our next INSERT query. I make a habit of always
moving it to a local variable, however, to avoid errors on the occasions when I do need to keep a copy.
An example of this kind of situation would be if we had yet another INSERT that was dependent on the
identity value from the INSERT into the Orders table. If T hadn’t moved it into a local variable, then it
would be lost when I did the next INSERT, because it would have been overwritten with the value from
the Order Details table, which, since Order Details has no identity column, means that @@ IDENTITY
would have been set to NULL. Moving the value of @@IDENTITY to a local variable also let me keep the
value around for the statement where I printed out the value for later reference.

Let’s create a couple of tables to try this out:

CREATE TABLE TestIdent

(
IDCol int IDENTITY
PRIMARY KEY

)

CREATE TABLE TestChildl
(
IDcol int
PRIMARY KEY
FOREIGN KEY
REFERENCES TestIdent (IDCol)
)

CREATE TABLE TestChild2
(
IDcol int
PRIMARY KEY
FOREIGN KEY
REFERENCES TestIdent (IDCol)

What we have here is a parent table —it has an identity column for a primary key (as it happens,

that’s the only column it has). We also have two child tables. They each are the subject of an identifying
relationship — that is, they each take at least part (in this case all) of their primary key by placing a for-
eign key on another table (the parent). So what we have is a situation where the two child tables need
to get their key from the parent. Therefore, we need to insert a record into the parent first, and then
retrieve the identity value generated so we can make use of it in the other tables.

321

Chapter 11

Try It Out

Now that we have some tables to work with, we’re ready to try a little test script:

/******‘k*****'k*********************‘k******

* This script illustrates how the identity
* value gets lost as soon as another INSERT

* happens
R RS S S SRS S SRS EE SRR R EEEEEEEEEEEEEEEEEE R R R */

DECLARE @Ident int -- This will be a holding variable
-- We'll use it to show how we can
-- move values from system functions
-- into a safe place.

INSERT INTO TestIdent
DEFAULT VALUES

SET @Ident = @E@IDENTITY
PRINT 'The value we got originally from @Q@IDENTITY was ' +

CONVERT (varchar (2) ,@Ident)
PRINT 'The value currently in @Q@IDENTITY is ' + CONVERT (varchar(2),@@IDENTITY)
/* On this first INSERT using @@IDENTITY, we're going to get lucky.
** We'll get a proper value because there is nothing between our
** original INSERT and this one. You'll see that on the INSERT that
** will follow after this one, we won't be so lucky anymore. */
INSERT INTO TestChildl
VALUES

(@Q@IDENTITY)

PRINT 'The value we got originally from @@IDENTITY was ' +
CONVERT (varchar (2) ,@Ident)
IF (SELECT Q@IDENTITY) IS NULL
PRINT 'The value currently in @Q@IDENTITY is NULL'
ELSE
PRINT 'The value currently in @@IDENTITY is ' + CONVERT (varchar (2),@@IDENTITY)

-- The next line is just a spacer for our print out
PRINT ''

/* The next line is going to blow up because the one column in
** the table is the primary key, and primary keys can't be set
** to NULL. @Q@IDENTITY will be NULL because we just issued an
** INSERT statement a few lines ago, and the table we did the
** TNSERT into doesn't have an identity field. Perhaps the biggest
** thing to note here is when @@IDENTITY changed - right after
** the next INSERT statement. */
INSERT INTO TestChild2
VALUES
(@Q@IDENTITY)

322

Writing Scripts and Batches

How It Works

What we’re doing in this script is seeing what happens if we depend on @@IDENTITY directly rather
than moving the value off to a safe place. When we execute the preceding script, everything’s going to
work just fine until the final INSERT. That final statement is trying to make use of @eIDENTITY directly,
but the preceding INSERT statement has already changed the value in @@ IDENTITY. Because that state-
ment is on a table with no identity column, the value in @ IDENTITY is set to NULL. Because we can’t
have a NULL value in our primary key, the last INSERT fails:

(1 row(s) affected)
The value we got originally from @Q@IDENTITY was 1
The value currently in Q@IDENTITY is 1

(1 row(s) affected)
The value we got originally from Q@@IDENTITY was 1
The value currently in @@IDENTITY is NULL

Msg 515, Level 16, State 2, Line 44
Cannot insert the value NULL into column 'IDcol', table 'master.dbo.TestChild2';
column does not allow nulls. INSERT fails.

The statement has been terminated.

If we make just one little change (to save the original @@ IDENTITY value):

/**'k***'k**********************************

* This script illustrates how the identity
* value gets lost as soon as another INSERT
* happens

R R R */

DECLARE @Ident int -- This will be a holding variable
-- We'll use it to show how we can
-- move values from system functions
-- into a safe place.

INSERT INTO TestIdent
DEFAULT VALUES

SET @Ident = @@IDENTITY
PRINT 'The value we got originally from @@IDENTITY was ' +

CONVERT (varchar (2) ,@Ident)
PRINT 'The value currently in @@IDENTITY is ' + CONVERT (varchar(2),@@IDENTITY)
/* On this first INSERT using @@IDENTITY, we're going to get lucky.
** We'll get a proper value because there is nothing between our
** original INSERT and this one. You'll see that on the INSERT that
** will follow after this one, we won't be so lucky anymore. */
INSERT INTO TestChildl
VALUES

(G@QIDENTITY)

PRINT 'The value we got originally from @@IDENTITY was ' +
CONVERT (varchar (2) ,@Ident)

323

Chapter 11

IF (SELECT Q@IDENTITY) IS NULL
PRINT 'The value currently in @Q@IDENTITY is NULL'
ELSE
PRINT 'The value currently in @Q@IDENTITY is ' + CONVERT (varchar (2),@@IDENTITY)

-- The next line is just a spacer for our print out
PRINT ''

/* This time all will go fine because we are using the value that
** we have placed in safekeeping instead of @Q@IDENTITY directly.*/
INSERT INTO TestChild2
VALUES

(@Ident)

This time everything runs just fine:

(1 row(s) affected)

The value we got originally from @@IDENTITY was 1
The value currently in @@IDENTITY is 1

(1 row(s) affected)

The value we got originally from @@IDENTITY was 1
The value currently in @@IDENTITY is NULL

(1 row(s) affected)

In this example, it was fairly easy to tell that there was a problem because of the
attempt at inserting a NULL into the primary key. Now, imagine a far less pretty
scenario — one where the second table did have an identity column. You could eas-
ily wind up inserting bogus data into your table and not even knowing about it— at
least not until you already had a very serious data integrity problem on your hands!

Using @@ROWCOUNT

In the many queries that we ran up to this point, it'’s always been pretty easy to tell how many rows a
statement affected — Query Analyzer tells us. For example, if we run:

USE Northwind
SELECT * FROM Categories

then we see all the rows in Categories, but we also see a count on the number of rows affected by our
query (in this case, it’s all the rows in the table):

(8 row(s) affected)
But what if we need to programmatically know how many rows were affected? Much like @@ IDENITY,
@@ROWCOUNT is an invaluable tool in the fight to know what’s going on as your script runs —but this

time the value is how many rows were affected rather than our identity value.

Let’s examine this just a bit further with an example:

324

Writing Scripts and Batches

USE Northwind
GO

DECLARE @RowCount int -- Notice the single @ sign
SELECT * FROM Categories
SELECT @RowCount = @@ROWCOUNT
PRINT 'The value of @RROWCOUNT was ' + CAST (@RowCount AS varchar(5))
This again shows us all the rows, but notice the new line that we got back:
The value of @E@ROWCOUNT was 8
We'll take a look at ways this might be useful when we look at stored procedures later in the book. For

now, just realize that this provides us with a way to learn something about what a statement did, and
it’s not limited to use SELECT statements — UPDATE, INSERT, and DELETE also set this value.

If you look through the example, you might notice that, much as I did with
@R@IDENTITY, I chose to move the value off to a holding variable. @@ROWCOUNT will
be reset with a new value the very next statement, so, if you're going to be doing
multiple activities with the @@ROWCOUNT value, you should move it into a safe
keeping area.

Batches

A batch is a grouping of T-SQL statements into one logical unit. All of the statements within a batch are
combined into one execution plan, so all statements are parsed together and must pass a validation of the
syntax or none of the statements will execute. Note, however, that this does not prevent runtime errors
from happening. In the event of a runtime error, any statement that has been executed prior to the runtime
error will still be in effect. To summarize, if a statement fails at parse-time, then nothing runs. If a statement
fails at runtime, then all statements until the statement that generated the error have already run.

All the scripts we have run up to this point are made up of one batch each. Even the script we’ve been
analyzing so far this in chapter is just one batch. To separate a script into multiple batches, we make use
of the GO statement. The GO statement:

Q Must be on its own line (nothing other than a comment can be on the same line); there is an
exception to this discussed shortly, but think of a GO as needing to be on a line to itself.

Q Causes all statements since the beginning of the script or the last Go statement (whichever is
closer) to be compiled into one execution plan and sent to the server independently of any
other batches.

Q Isnota T-SQL command, but, rather, a command recognized by the various SQL Server com-
mand utilities (OSQL, ISQL, and the Query Analyzer).

325

Chapter 11

A Line to Itself

The Go command should stand alone on its own line. Technically, you can start a new batch on the same
line after the GO command, but you'll find this puts a serious damper on readability. T-SQL statements
cannot precede the GO statement, or the GO statement will often be misinterpreted and cause either a
parsing error or some other unexpected result. For example, if I use a GO statement after a WHERE clause:

SELECT * FROM Customers WHERE CustomerID = 'ALFKI' GO
the parser becomes somewhat confused:

Msg 102, Level 15, State 1, Line 1
Incorrect syntax near 'GO'.

Each Batch Is Sent to the Server Separately

Because each batch is processed independently, an error in one batch does not preclude another batch
from running. To illustrate, take a look at some code:

USE AdventureWorks

DECLARE @MyVarchar varchar (50) --This DECLARE only lasts for this batch!
SELECT @MyVarchar = 'Honey, I''m home...'

PRINT 'Done with first Batch...'

GO

PRINT @MyVarchar --This generates an error since @MyVarchar

--isn't declared in this batch
PRINT 'Done with second Batch'

GO

PRINT 'Done with third batch' -- Notice that this still gets executed
-- even after the error

GO

If there were any dependencies between these batches, then either everything would fail —or, at the
very least, everything after the point of error would fail —but it doesn’t. Look at the results if you run
the above script:

Done with first Batch...

Msg 137, Level 15, State 2, Line 2

Must declare the scalar variable "@MyVarchar".
Done with third batch

Again, each batch is completely autonomous in terms of runtime issues. Keep in mind, however, that
you can build in dependencies in the sense that one batch may try to perform work that depends on the
first batch being complete — we’ll see some of this in the next section when we talk about what can and
can’t span batches.

326

Writing Scripts and Batches

GO Is Not a T-SQL Command

Thinking that Go is a T-SQL command is a common mistake. GO is a command that is only recognized by
the editing tools (Management Studio, SQLCMD). If you use a third-party tool, then it may or may not
support the GO command, but most that claim SQL Server support will.

When the editing tool encounters a GO statement, it sees it as a flag to terminate that batch, package it
up, and send it as a single unit to the server —without including the Go. That's right, the server itself has
absolutely no idea what GO is supposed to mean.

If you try to execute a GO command in a pass-through query using ODBC, OLE DB, ADO, ADO.NET or
any other access method, you'll get an error message back from the server. The GO is merely an indicator
to the tool that it is time to end the current batch, and time, if appropriate, to start a new one.

Errors in Batches

Errors in batches fall into two categories:

0 Syntax errors

] Runtime errors

If the query parser finds a syntax error, processing of that batch is cancelled immediately. Since syntax
checking happens before the batch is compiled or executed, a failure during the syntax check means
none of the batch will be executed —regardless of the position of the syntax error within the batch.

Runtime errors work quite a bit differently. Any statement that has already executed before the runtime
error was encountered is already done, so anything that statement did will remain intact unless it is part
of an uncommitted transaction. (Transactions are covered in Chapter 14, but the relevance here is that
they imply an all or nothing situation.) What happens beyond the point of the runtime error depends
on the nature of the error. Generally speaking, runtime errors will terminate execution of the batch from
the point where the error occurred to the end of the batch. Some runtime errors, such as a referential-
integrity violation will only prevent the offending statement from executing — all other statements in
the batch will still be executed. This later scenario is why error checking is so important — we will cover
error checking in full in our chapter on stored procedures (Chapter 12).

When to Use Batches

Batches have several purposes, but they all have one thing in common — they are used when something
has to happen either before or separately from everything else in your script.

Statements That Require Their Own Batch

There are several commands that absolutely must be part of their own batch. These include:

] CREATE DEFAULT
O CREATE PROCEDURE

a CREATE RULE

327

Chapter 11

a CREATE TRIGGER

a CREATE VIEW

If you want to combine any of these statements with other statements in a single script, then you will
need to break them up into their own batch by using a GO statement.

Note that, if you DROP an object, you may want to place the DROP in its own batch or
at least with a batch of other DROP statements. Why? Well, if you're going to later cre-
ate an object with the same name, the CREATE will fail during the parsing of your
batch unless the DROP has already happened. That means you need to run the DROP
in a separate and prior batch so it will be complete when the batch with the CREATE
statement executes.

Using Batches to Establish Precedence

Perhaps the most likely scenario for using batches is when precedence is required — that is, you need
one task to be completely done before the next task starts. Most of the time, SQL Server deals with this
kind of situation just fine — the first statement in the script is the first executed, and the second state-
ment in the script can rely on the server being in the proper state when the second statement runs. There
are times, however, when SQL Server can’t resolve this kind of issue.

Let’s take the example of creating a database together with some tables:
CREATE DATABASE Test
CREATE TABLE TestTable
(

coll int,
col2 int

Execute this and, at first, it appears that everything has gone well:

Command (s) completed successfully.

However, things are not as they seem — check out the INFORMATION_SCHEMA in the Test database, and
you'll notice something is missing;:

SELECT TABLE_CATALOG FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME =
'TestTable'

TABLE_CATALOG

master

(1 row(s) affected)

328

Writing Scripts and Batches

Hey! Why was the table created in the wrong database? The answer lies in what database was current
when we ran the CREATE TABLE statement. In my case, it happened to be the master database, so that’s
where my table was created.

Note that you may have been somewhere other than the master database when you ran this, so you may
get a different result. That's kind of the point though— you could be in pretty much any database.
That'’s why making use of the USE statement is so important.

When you think about it, this seems like an easy thing to fix—just make use of the USE statement, but
before we test our new theory, we have to get rid of the old (OK, not that old) database

USE MASTER
DROP DATABASE Test

We can then run our newly modified script:
CREATE DATABASE Test
USE Test
CREATE TABLE TestTable
(

coll int,
col?2 int

Unfortunately, this has its own problems:
Msg 911, Level 16, State 1, Line 3

Could not locate entry in sysdatabases for database 'Test'. No entry found with
that name. Make sure that the name is entered correctly.

The parser tries to validate your code and finds that you are referencing a database with your USE com-
mand that doesn’t exist. Ahh, now we see the need for our batches. We need the CREATE DATABASE
statement to be completed before we try to use the new database:

CREATE DATABASE Test
GO
USE Test
CREATE TABLE TestTable
(

coll int,

col2 int

Now things work a lot better. Our immediate results look the same:

Command (s) completed successfully.

329

Chapter 11

But when we run our INFORMATION_SCHEMA query, things are confirmed:
TABLE_CATALOG

Test
(1 row(s) affected)

Let’s move on to another example that shows an even more explicit need for precedence.

When you use an ALTER TABLE statement that significantly changes the type of a column or adds
columns, you cannot make use of those changes until the batch that makes the changes has completed.

If we add a column to our TestTable table in our Test database and then try to reference that column
without ending the first batch:

USE Test

ALTER TABLE TestTable
ADD col3 int

INSERT INTO TestTable
(coll, col2, col3)
VALUES

(1,1,1)

we get an error message — SQL Server cannot resolve the new column name, and therefore complains:

Msg 207, Level 16, State 1, Line 6
Invalid column name 'col3'.

Add one simple GO statement after the ADD col3 int, however, and everything is working fine:

(1 row(s) affected)

SQLCMD

SQLCMD is a utility that allow you to run scripts from a command prompt in a Windows command box.
This can be very nice for executing conversion or maintenance scripts, as well as a quick and dirty way
to capture a text file.

SQLCMD replaces the older OSQL. OSQL is still included with SQL Server for backward compatibility
only. An even older command line utility —ISQL —is no longer supported.

The syntax for running SQLCMD from the command line includes a large number of different switches,
and looks like this:

sglcmd

[
{ { -U <login id> [-P <password>] } | -E }

330

Writing Scripts and Batches

[-Y <display width>]
[l 111 [-RI[-bI[-v]I[-A1I[-X[111TIL-==x1

2]

]

[-S <server name> [\<instance name>]] [-H <workstation name>] [-d <db name>]
[-1 <time out>] [-t <time out>] [-h <headers>]

[-s <col separator>] [-w <col width>] [-a <packet size>]
[el [-I1]

[—-c <emd end>]1 [-L [¢ 1 1 [-q "<query>" 1 [-Q "<qguery>" 1]
[-m <error level>] [-V] [-W] [-ul [-r [0] 11]]

[-1 <input file>] [-o <output file>]

[-f <codepage> | i:<codepage> [<, o: <codepage>]
[-k[1]21]

[-y <display width>]

[

[

]

The single biggest thing to keep in mind with these flags is that many of them (but, oddly enough, not
all of them) are case sensitive. For example, both “-0” and “-q” will execute queries, but the first will
exit SQLCMD when the query is complete, and the second won't.

So, let’s try a quick query direct from the command line. Again, remember that this is meant to be run
from the Windows command prompt (don’t use the Management Console):

SQLCMD -Usa -Pmypass -Q "SELECT * FROM Northwind..Shippers"

The -P is the flag that indicates the password. If your server is configured with something other than a
blank password (and it should be!), then you’ll need to provide that password immediately following the
—P with no space in between.

If you run this from a command prompt, you should get something like:

C:\>0sgl -Usa -Pmypass -Q "SELECT * FROM Northwind..Shippers"

ShipperID CompanyName Phone

1 Speedy Express (503) 555-9831
2 United Package (503) 555-3199
3 Federal Shipping (503) 555-9931
(3 rows affected)

C:\>

Now, let’s create a quick text file to see how it works when including a file. At the command prompt,
type the following:

C:\>copy con testsqgl.sqgl

This should take you down to a blank line (with no prompt of any kind), where you can enter in this:
SELECT * FROM Northwind..Shippers

Then press F6 and Retfurn (this ends the creation of our text file). You should get back a message like:

1 file(s) copied.

331

Chapter 11

Now let’s retry our earlier query using a script file this time. The command line at the prompt has only a
slight change to it:

C:\>sglcmd -Usa -Pmypass -1 testsqgl.sqgl

This should get us exactly the same results as we had when we ran the query using -0. The major dif-
ference is, of course, that we took the command from a file. The file could have had hundreds —if not
thousands — of different commands in it.

Try It Out

As a final example of SQLCMD, let’s utilize it to generate a text file that we might import into another
application for analysis (Excel for example).

If you look back in Chapter 10, we create a view that listed yesterday’s orders for us. First, we're doing
to take the core query of that view, and stick it into a text file.

C:\copy con YesterdaysOrders.sqgl
This should again take you down to a blank line (with no prompt of any kind), where you can enter this:

SELECT cu.CompanyName,
0.0rderID,
o.0OrderDate,
od.ProductID,
p.ProductName,
od.Quantity,
od.UnitPrice,
od.Quantity * od.UnitPrice AS ExtendedPrice
FROM Customers AS cu
INNER JOIN Orders AS o
ON cu.CustomerID = o.CustomerID
INNER JOIN [Order Details] AS od
ON 0.0rderID = od.OrderID
INNER JOIN Products AS p
ON od.ProductID = p.ProductID
WHERE CONVERT (varchar(12),o0.0rderDate,101l) =
CONVERT (varchar (12) ,DATEADD (day, -1,GETDATE ()), 101)

Again press F6 to tell Windows to save the file for us.

We now have our text file source for our query, and are nearly ready to have SQLCMD help us generate
our output. First, however, is that we need there to be some data from yesterday (none of the sample
data is going to have data from yesterday unless you just ran the script to generate some orders. Just to
be sure of which script I'm talking about here, I mean the one shown in the views chapter, and reviewed
it again earlier in this chapter. So, with this in mind, let’s run that generation script one more time (you
can do this through the Query Window if you like):

USE Northwind
DECLARE @Ident int

INSERT INTO Orders

332

Writing Scripts and Batches

(CustomerID, OrderDate)
VALUES
('"ALFKI', DATEADD (day,-1,GETDATE()))

SELECT @Ident = @E@IDENTITY

INSERT INTO [Order Details]

(OrderID, ProductID, UnitPrice, Quantity)
VALUES

(@Ident, 1, 50, 25)

SELECT 'The OrderID of the INSERTed row is ' + CONVERT (varchar (8),@Ident)
OK, so we have at least one row that is an order with yesterday’s date now. So we’re most of the way
ready to go; however, we've said we want our results to a text file, so we’ll need to add some extra

parameters to our SQLCMD command line this time around to tell SQL Server where to put the output:

C:\Documents and Settings\robv.BARNICLE>sglcmd -UMyLogin -PMyPass
-iYesterdaysOrders.sqgl -oYesterdaysOrders.txt

There won’t be anything special or any fanfare when SQLCMD is done running this — you’ll simply get
your Windows drive prompt again (C:\ most likely), but check out what is in our YesterdaysOrders.txt
file now:

C:\TYPE YesterdaysOrders.txt
This gives us our one row:

Changed database context to 'Northwind'.

CompanyName OrderID OrderDate ProductID ProductName
Quantity UnitPrice

ExtendedPrice

Alfreds Futterkiste 11078 2005-08-27 14:35:50.163 1 Chai

25 50.0000
1250.0000

(1 rows affected)

How It Works

We started out by bundling the SQL commands we would need into a single script —first, the USE com-
mand, and then the actual SELECT statement.

We then execute our statement using SQLCMD. The -U and -P commands provided the login user name
and password information just as they did earlier in the chapter. The -i parameter told SQLCMD that
we had an input file, and we included that file name immediately following the -1 parameter. Finally,

we included the -o parameter to tell SQLCMD that we wanted the output written to a file (we, of
course, then provide a file name — YesterdaysOrders.txt). Don’t get confused by the two files both
named YesterdaysOrders —they are separate files with the .sql and .txt files separating what their
particular use is for.

333

Chapter 11

There is a wide variety of different parameters for SQLCMD, but the most important are the login, the
password, and the one that says what you want to do (straight query or input file). You can mix and
match many of these parameters to obtain fairly complex behavior from this seemingly simple com-
mand line tool.

Dynamic SQL: Generating Your Code
On-the-Fly with the EXEC Command

OK, so all this saving stuff away in scripts is all fine and dandy, but what if you don’t know what code
you need to execute until run time?

As a side note, notice that we are done with SQLCMD for now — the following examples should be run
utilizing the Management Console.

SQL Server allows us, with a few gotchas, to build our SQL statement on-the-fly using string manipula-
tion. The need to do this usually stems from not being able to know the details about something until
run time. The syntax looks like this:

EXEC ({<string variable>|'<literal command string>'?})
Or:
EXECUTE ({<string variable>|'<literal command string>'})
As with executing a stored proc, whether you use the EXEC or EXECUTE makes no difference.

Let’s build an example in the Northwind database by creating a dummy table to grab our dynamic
information out of:

USE Northwind
GO

--Create The Table. We'll pull info from here for our dynamic SQL
CREATE TABLE DynamicSQLExample
(

TableID int IDENTITY NOT NULL

CONSTRAINT PKDynamicSQLExample
PRIMARY KEY,

TableName varchar (128) NOT NULL
)
GO

/* Populate the table. In this case, We're grabbing every user
** table object in this database w
INSERT INTO DynamicSQLExample
SELECT TABLE_NAME

FROM Information_Schema.Tables

WHERE TABLE_TYPE = 'BASE TABLE'

334

Writing Scripts and Batches

This should get us a response something like:
(17 row(s) affected)
To quote the old advertising disclaimer: “Actual results may vary.” It’s going to depend on which exam-

ples you've already followed along with in the book, which ones you haven't, and for which ones you took
the initiative and did a DROP on once you were done with them. In any case, don’t sweat it too much.

OK, so what we now have is a list of all the tables in our current database. Now let’s say that we wanted
to select some data from one of the tables, but we wanted to identify the table only at run time by using

its ID. For example, I'll pull out all the data for the table with an ID of 1:

/* First, declare a variable to hold the table name. Remember,
** object names can be 128 characters long

*/

DECLARE @TableName varchar (128)

-- Now, grab the table name that goes with our ID
SELECT @TableName = TableName

FROM DynamicSQLExample

WHERE TableID = 14

-- Finally, pass that value into the EXEC statement
EXEC ('SELECT * FROM ' + @TableName)

If your table names went into the DynamicSQLExample table the way mine did, then a TableID of 14
should equate to the Categories table. If so, you should wind up with something like this (the right-

most columns have been snipped for brevity):

CategoryID CategoryName Description

1 Beverages Soft drinks, coffees, teas, beers,
and ales

2 Condiments Sweet and savory sauces, relishes,

spreads, and seasonings

3 Confections Desserts, candies, and sweet breads
4 Dairy Products Cheeses

5 Grains/Cereals Breads, crackers, pasta, and cereal
6 Meat/Poultry Prepared meats

7 Produce Dried fruit and bean curd

8 Seafood Seaweed and fish

The Gotchas of EXEC

Like most things that are of interest, using EXEC is not without its little trials and tribulations. Among

the gotchas of EXEC are:

335

Chapter 11

Q It runs under a separate scope than the code that calls it— that is, the calling code can’t refer-
ence variables inside the EXEC statement, and the EXEC can’t reference variables in the calling
code after they are resolved into the string for the EXEC statement.

Q It runs under the same security context as the current user —not that of the calling object.

Q It runs under the same connection and transaction context as the calling object (we’ll discuss
this further in Chapter 14).

QO Concatenation that requires a function call must be performed on the EXEC string prior to actu-
ally calling the EXEC statement — you can’t do the concatenation of function in the same state-
ment as the EXEC call.

QO EXEC can not be used inside a User Defined Function.

Each of these can be a little difficult to grasp, so let’s look at each individually.

The Scope of EXEC

Determining variable scope with the EXEC statement is something less than intuitive. The actual state-
ment line that calls the EXEC statement has the same scope as the rest of the batch or procedure that the
EXEC statement is running in, but the code that is performed as a result of the EXEC statement is consid-
ered to be in its own batch. As is so often the case, this is best shown with an example:

USE Northwind

/* First, we'll declare to variables. One for stuff we're putting into
** the EXEC, and one that we think will get something back out (it won't)
*/

DECLARE @InVar varchar (50)

DECLARE @OutVar varchar (50)

-- Set up our string to feed into the EXEC command
SET @InVar = 'SELECT @OutVar = FirstName FROM Employees WHERE EmployeeID = 1'

-- Now run it
EXEC (@Invar)

-- Now, just to show there's no difference, run the select without using a in
variable
EXEC ('SELECT @OutVar = FirstName FROM Employees WHERE EmployeeID = 1')

-- @OutVar will still be NULL because we haven't been able to put anything in it
SELECT @OutVar

Now, look at the output from this:

336

Msg 137, Level 15, State 1, Line 13
Must declare the scalar variable '@OutVar'.
Msg 137, Level 15, State 1, Line 16
Must declare the scalar variable '@OutVar'.

NULL
(1 row(s) affected)

Writing Scripts and Batches

SQL Server wastes no time in telling us that we are scoundrels and clearly don’t know what we’re doing.
Why do we get a “Must Declare” error message when we have already declared @outvar? Because we've
declared it in the outer scope —not within the EXEC itself.

Let’s look at what happens if we run things a little differently:

USE Northwind

-- This time, we only need one variable. It does need to be longer though.
DECLARE @InVar varchar(200)

/* Set up our string to feed into the EXEC command. This time we're going
** to feed it several statements at a time. They will all execute as one

** batch.

x/

SET @InVar = 'DECLARE @QOutVar varchar (50)
SELECT @OutVar = FirstName FROM Employees WHERE EmployeeID = 1
SELECT ''The Value Is '' + @OutVar'

-- Now run it
EXEC (@Invar)

This time we get back results closer to what we expect:

The Value Is Nancy

Notice the way that I'm using two quote marks right next to each other to indicate that I really want a
quote mark rather than to terminate my string.

So, what we’ve seen here is that we have two different scopes operating, and nary the two shall meet.
There is, unfortunately, no way to pass information between the inside and outside scopes without
using an external mechanism such as a temporary table. If you decide to use a temp table to communi-
cate between scopes, just remember that any temporary table created within the scope of your EXEC
statement will only live for the life of that EXEC statement.

This behavior of a temp table only lasting the life of your EXEC procedure will show
up again when we are dealing with triggers and sprocs.

A Small Exception to the Rule

There is one thing that happens inside the scope of the EXEC that can be seen after the EXEC is done —
system functions —so, things like @@ROWCOUNT can still be used. Again, let’s look at a quick example:

USE Northwind

EXEC('SELECT * FROM Customers')
SELECT 'The Rowcount is ' + CAST(@@ROWCOUNT as varchar)

337

Chapter 11

This yields us (after the result set):

The Rowcount is 91

Security Contexts and EXEC

This is a tough one to cover at this point because we haven’t covered the issues yet with stored proce-
dures and security. Still, the discussion of the EXEC command belonged here rather than in the sprocs
chapter, so here we are (this is the only part of this discussion that gets wrapped up in sprocs, so bear
with me).

When you give someone the right to run a stored procedure, you imply that they also gain the right to
perform the actions called for within the sproc. For example, let’s say we had a stored procedure that
lists all the employees hired within the last year. Someone who has rights to execute the sproc can do
so (and get results back) even if they do not have rights to the Employees table directly. This is really
handy for reasons we will explore later in our sprocs chapter.

Developers usually assume that this same implied right is valid for an EXEC statement also —it isn’t.
Any reference made inside an EXEC statement will be run under the security context of the current user.
So, let’s say I have the right to run a procedure called spNewEmployees, but I do not have rights to the
Employees table. If spNewEmployees gets the values by running a simple SELECT statement, then
everything is fine. If, however, spNewEmployees uses an EXEC statement to execute that SELECT state-
ment, the EXEC statement will fail because I don’t have the rights to perform a SELECT on the
Employees table.

Since we don’t have that much information on sprocs yet, I'm going to bypass further discussion of this
for now, but we will come back to it when we discuss sprocs later on.

Use of Functions in Concatenation and EXEC

This one is actually more of a nuisance than anything else because there is a reasonably easy
workaround. Simply put, you can’t run a function against your EXEC string in the argument for an EXEC.
For example:

USE Northwind

-- This won't work

DECLARE @NumberOfLetters int

SET @NumberOfLetters = 15

EXEC ('SELECT LEFT (CompanyName, ' + CAST (@NumberOfLetters AS varchar) + ') AS
ShortName

FROM Customers')

GO

-- But this does

DECLARE @NumberOfLetters AS int
SET @NumberOfLetters = 15
DECLARE @str AS varchar (255)

SET @str = 'SELECT LEFT(CompanyName, ' + CAST (@NumberOfLetters AS varchar) + ') AS
ShortName FROM Customers'
EXEC (@str)

338

Writing Scripts and Batches

The first instance gets us an error message because the CAST function needs to be fully resolved prior to
the EXEC line:

Msg 102, Level 15, State 1, Line 6
Incorrect syntax near 'CAST'.

But the second line works just fine because it is already a complete string:

ShortName

Alfreds Futterk
Ana Trujillo Em

Wolski Zajazd

EXEC and UDFs

This is a tough one to touch on because we haven’t gotten to user-defined functions as yet, but suffice to
say that you are not allowed to use EXEC to run dynamic SQL within a UDF — period. (EXEC to run a
sproc is, however, legal in a few cases.)

Summary

Understanding scripts and batches is the cornerstone to an understanding of programming with SQL
Server. The concepts of scripts and batches lay the foundation for a variety of functions from scripting
complete database builds to programming stored procedures and triggers.

Local variables have scope for only one batch. Even if you have declared the variable within the same
overall script, you will still get an error message if you don’t re-declare it (and start over with assigning
values) before referencing it in a new batch.

There are over 30 system functions. We provided a listing of some of the most useful system functions,
but there are many more. Try checking out the Books Online or Appendix A at the back of this book for
some of the more obscure ones. System functions do not need to be declared, and are always available.
Some are scoped to the entire server, while others return values specific to the current connection.

You can use batches to create precedence between different parts of your scripts. The first batch starts at
the beginning of the script, and ends at the end of the script or the first Go statement — whichever comes
first. The next batch (if there is another) starts on the line after the first one ends and continues to the end
of the script or the next GO statement — again, whichever comes first. The process continues to the end of
the script. The first batch from the top of the script is executed first; the second is executed second, and
so on. All commands within each batch must pass validation in the query parser, or none of that batch
will be executed; however, any other batches will be parsed separately and will still be executed (if they
pass the parser).

Finally, we also saw how we can create and execute SQL dynamically. This can afford us the opportunity

to deal with scenarios that aren’t always 100 percent predictable or situations where something we need
to construct our statement is actually itself a piece of data.

339

Chapter 11

In the next couple of chapters, we will take the notions of scripting and batches to the next level,
and apply them to stored procedures and triggers — the closest things that SQL Server has to actual
programs.

Exercises

1. Write a simple script that creates two integer variables (one called Varl and one called Var2),
p P]
places the values 2 and 4 in them respectively, and then outputs the value of the two variables
added together.

2. Create a variable called MinOrder and populate it with the smallest line item amount after dis-
count for the Northwind CustomerNo ‘ALFKI’ (Careful: we’re dealing with currency here, so
don’t just assume you're going to use an int.) Output the final value of MinOrder.

3. UseSQLCMD to output the results of the query SELECT COUNT (*) FROM Customers to the
console window.

340

12

Stored Procedures

Ah, the good stuff. If you're a programmer coming from a procedural language, then this is proba-
bly the part you've been waiting for. It’s time to get down to the main variety of “code” of SQL
Server, but before we get going too far down that road, I need to prepare you for what lies ahead —
there’s probably a lot less than you're expecting, and, at the very same time, a whole lot more. The
good news is that, with SQL Server 2005, you have .NET support— giving us a veritable “oo la la!”
of possibilities.

You see, a stored procedure, sometimes referred to as a sproc (which I usually say as one word, but
I've sometimes heard this pronounced as “ess-proc”), is really just something of a script— or more
correctly speaking, a batch — that is stored in the database rather than in a separate file. Now this
comparison is not an exact one by any means — sprocs have things such as input parameters, out-
put parameters, and return values that a script doesn’t really have, but the comparison is not that
far off either.

For now, SQL Server’s only “programming” language continues to be T-SQL, and that leaves us
miles short of the kind of procedural horsepower that you expect when you think of a true pro-
gramming language. However, T-SQL blows C, C++, Visual Basic, Java, Delphi, or whatever
away when it comes to what T-SQL is supposed to do—work on data definition, manipulation,
and access. But T-SQL’s horsepower stops right about there —at data access and management. In
short, it has an adequate amount of power to get most simple things done, but it’s not always the
place to do it.

For this chapter, we're not going to worry all that much about T-SQL’s shortcomings — instead,
we’ll focus on how to get the most out of T-SQL, and even toss in a smattering of what .NET has
added to the picture. We'll take a look at parameters, return values, control of flow, looping struc-
tures, both basic and advanced error trapping, and more. In short, this is a big chapter that deals
with many subjects. All of the major subject areas are broken up into their own sections, so you
can take them one step at a time, but let’s start right out with the basics of getting a sproc created.

Chapter 12

Creating the Sproc: Basic Syntax

Creating a sproc works pretty much the same as creating any other object in a database, except that it
uses the As keyword that you first saw when we took a look at views. The basic syntax looks like this:

CREATE PROCEDURE|PROC <sproc name>

[<parameter name> [schema.]<data type> [VARYING] [= <default value>] [OUT
[PUTIIIL,
<parameter name> [schema.]<data type> [VARYING] [= <default value>]
[OUT[PUT]] [,
11
[WITH

RECOMPILE| ENCRYPTION | [EXECUTE AS { CALLER|SELF|OWNER|<'user name'>}]
[FOR REPLICATION]
AS

<code> | EXTERNAL NAME <assembly name>.<assembly class>

As you can see, we still have our basic CREATE <Object Type> <Object Name> syntax that is the
backbone of every CREATE statement. The only oddity here is the choice between PROCEDURE and PROC.
Either option works just fine, but as always, I recommend that you be consistent regarding which one
you choose (personally, I like the saved keystrokes of PROC). The name of your sproc must follow the
rules for naming as outlined in Chapter 1.

After the name comes a list of parameters. Parameterization is optional, and we’ll defer that discussion
until a little later in the chapter.

Last, but not least, comes your actual code following the A5 keyword.

An Example of a Basic Sproc

Perhaps the best examples of basic sproc syntax is to get down to the most basic of sprocs —a sproc that
returns all the columns in all the rows on a table —in short, everything to do with a table’s data.

I'would hope that, by now, you have the query that would return all the contents of a table down cold
(Hint: SELECT * FROM. . .).If not, then I would suggest a return to the chapter on basic query syntax.
In order to create a sproc that performs this basic query, we just add the query in the code area of the
sproc syntax:

USE Northwind

GO
CREATE PROC spShippers
AS
SELECT * FROM Shippers

Not too rough — eh? If you're wondering why I put the Go keyword in before the CREATE syntax (if we
were just running a simple SELECT statement, we wouldn’t need it), it’s because most non-table CREATE
statements cannot share a batch with any other code. Indeed, even with a CREATE TABLE statement, leaving

342

Stored Procedures

out the GO can become rather dicey. In this case, having the USE command together with our CREATE PROC

statement would have been a no-no, and would have generated an error.

Now that we have our sproc created, let’s execute it to see what we get:

EXEC spShippers

We get exactly what we would have gotten if we had run the SELECT statement that’s embedded in the

sproc:
ShipperID CompanyName Phone
1 Speedy Express (503) 555-9831
2 United Package (503) 555-3199
3 Federal Shipping (503) 555-9931
(

3 row(s) affected)

You've just written your first sproc. It was easy of course, and frankly, for most situations, sproc writing
isn’t nearly as difficult as most database people would like to have you think (job preservation), but

there are lots of possibilities, and we’ve only seen the beginning.

Changing Stored Procedures with ALTER

I'm going to admit something here —I cut and pasted almost all the text you're about to read in this and
the next section (“Dropping Sprocs”), from the chapter on views. What I'm pointing out by telling you
this is that they work almost identically from the standpoint of what an ALTER statement does.

The main thing to remember when you edit sprocs with T-SQL is that you are completely replacing the
existing sproc. The only differences between using the ALTER PROC statement and the CREATE PROC

statement are:

Q ALTER PROC expects to find an existing sproc, where CREATE doesn't.

0 ALTER PROC retains any permissions that have been established for the sproc. It keeps the same
object ID within system objects and allows the dependencies to be kept. For example, if proce-
dure A calls procedure B and you drop and re-create procedure B, you no longer see the depen-

dency between the two. If you use ALTER it is all still there.

Q ALTER PROC retains any dependency information on other objects that may call the sproc being

altered.

The latter of these two is the biggie.

can’t use the sproc.

If you perform a DROP and then use a CREATE, you have almost the same effect as
using an ALTER PROC statement with one rather big difference —if you DROP and
CREATE then you will need to entirely re-establish your permissions on who can and

343

Chapter 12

Dropping Sprocs
It doesn’t get much easier than this:

DROP PROC|PROCEDURE <sproc name>

And it’s gone.

Parameterization

A stored procedure gives you some (or in the case of .NET, a lot of) procedural capability, and also

gives you a performance boost (more on that later), but it wouldn’t be much help in most circumstances
if it couldn’t accept some data to tell it what to do. For example, it doesn’t do much good to have
anspDeleteShipper stored procedure if we can’t tell it what shipper we want to delete, so we use

an input parameter. Likewise, we often want to get information back out of the sproc —not just one or
more recordsets of table data, but also information that is more direct. An example here might be where
we update several records in a table and we’d like to know just how many we updated. Often, this isn’t
easily handed back in recordset form, so we make use of an output parameter.

From outside the sproc, parameters can be passed in either by position or by reference. From the inside,
it doesn’t matter which way they come in— they are declared the same either way.

Declaring Parameters

Declaring a parameter requires two to four of these pieces of information:

Q The name

Q The datatype

QO The default value
a

The direction
The syntax is:
@parameter_name [AS] datatype [= default|NULL] [VARYING] [OUTPUT|OUT]

The name has a pretty simple set of rules to it. First, it must start with the @ sign. Other than that, the
rules for naming are pretty much the same as the rules for naming described in Chapter 1, except that
they cannot have embedded spaces.

The datatype, much like the name, must be declared just as you would for a variable —with a valid SQL
Server built-in or user defined datatype.

One special thing in declaring the datatype is to remember that, when declaring a parameter of type
CURSOR, you must also use the VARYING and OUTPUT options. The use of this type of parameter is
pretty unusual and well outside of the scope of this book, but keep it in mind in case you see it in books
online or other documentation and wonder what that’s all about.

Note also that OUTPUT can be abbreviated to OUT.

344

Stored Procedures

The default is the first place we start to see any real divergence from variables. Where variables are
always initialized to a NULL value, parameters are not. Indeed, if you don’t supply a default value, then
the parameter is assumed to be required, and a beginning value must be supplied when the sproc is
called. To supply a default, you simply add an = sign after the datatype and then provide the default
value. Once you’ve done this, the users of your sproc can decide to supply no value for that parameter,
or they can provide their own value.

Let’s create another sproc, only this time we’ll make use of a few input parameters to create a new
record in the Shippers table:

USE Northwind
GO

CREATE PROC spInsertShipper
@CompanyName nvarchar (40),
@Phone nvarchar (24)

AS
INSERT INTO Shippers
VALUES

(@CompanyName, @Phone)

Our last sproc told us what data is currently in the Shippers table, but let’s use our new sproc to insert
something new:

EXEC spInsertShipper 'Speedy Shippers, Inc.', '(503) 555-5566"

If this is executed from the Query Analyzer, we see the results of our stored procedure run just as if we
had run the INSERT statement ourselves:

(1 row(s) affected)
Now let’s run our first sproc again and see what we get:

EXEC spShippers

ShipperID CompanyName Phone

1 Speedy Express (503) 555-9831
2 United Package (503) 555-3199
3 Federal Shipping (503) 555-9931
4 Speedy Shippers, Inc. (503) 555-5566
(

4 row(s) affected)

Sure enough, our record has been inserted, and a new identity has been filled in for it.

Because we didn’t supply any default values for either of the parameters, both parameters are consid-
ered to be required. That means that, in order to have success running this sproc, we must supply both
parameters. You can easily check this out by executing the sproc again with only one or no parameters

supplied:

EXEC spInsertShipper 'Speedy Shippers, Inc.'

345

Chapter 12

SQL Server wastes no time in informing you of the error of your ways:

Msg 201, Level 16, State 4, Procedure spInsertShipper, Line 0
Procedure or Function 'spInsertShipper' expects parameter '@Phone', which was not
supplied.
Supplying Default Values
To make a parameter optional, you have to supply a default value. To do this, you just add an = together

with the value you want to use for a default after the datatype but before the comma.

Let’s try building our INSERT sproc again, only this time we won’t require the phone number:

USE Northwind
GO

CREATE PROC spInsertShipperOptionalPhone
@CompanyName nvarchar (40) ,

@Phone nvarchar (24) = NULL
AS

INSERT INTO Shippers

VALUES

(@CompanyName, @Phone)
Now we’re ready to re-issue our command, but using the new sproc this time:
EXEC spInsertShipperOptionalPhone 'Speedy Shippers, Inc'
This time everything works just fine, and our new row is inserted:
(1 row(s) affected)

EXEC spShippers

ShipperID CompanyName Phone

1 Speedy Express (503) 555-9831
2 United Package (503) 555-3199
3 Federal Shipping (503) 555-9931
4 Speedy Shippers, Inc. (503) 555-5566
5 Speedy Shippers, Inc. NULL

(5 row(s) affected)

In this particular case, we set the default to NULL, but the value could have been anything that was com-
patible with the datatype of the parameter for which we are establishing the default. Also, notice that we
didn’t have to establish a default for both values —we can make one have a default, and one not—we
decide which parameters are required (have no default), and which are not (have a default).

Creating Output Parameters

Sometimes, you want to pass non-recordset information out to whatever called your sproc. One example
of this would create a modified version of our last two sprocs.

346

Stored Procedures

Let’s say, for example, that we are performing an insert into a table (like we did in the last example), but

we are planning to do additional work using the inserted record.

Or more specifically, maybe we’re inserting a new record into our Orders table in Northwind, but we
also need to insert detail records in the Order Details table. In order to keep the relationship intact,
we have to know the identity of the orders record before we can do our inserts into the Order Details
table. The sproc will look almost exactly like our spInsertshipper did, except that it will have param-
eters that match up with the different columns in the table and, most importantly of all, it will have an

output parameter for the identity value that is generated by our insert:

USE Northwind
GO

CREATE PROC spInsertOrder

@CustomerID nvarchar (5),
@EmployeeID int,

@OrderDate datetime =
@RequiredDate datetime =
@ShippedDate datetime =
@ShipVia int,

@Freight money,
@ShipName nvarchar (40) =
@ShipAddress nvarchar (60) =
@ShipCity nvarchar (15) =
@ShipRegion nvarchar (15) =
@ShipPostalCode nvarchar (10) =
@ShipCountry nvarchar (15) =
@O0rderID int OUTPUT

AS

/* Create the new record */

INSERT INTO Orders

VALUES

(

@CustomerID,
@EmployeelD,
@OrderDate,
@QRequiredDate,
@ShippedDate,
@ShipVia,
@Freight,
@ShipName,
@ShipAddress,
@ShipCity,
@ShipRegion,
@ShipPostalCode,
@ShipCountry

NULL,
NULL,
NULL,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

/* Move the identity value from the newly inserted record into

our output variable */
SELECT @OrderID = @E@IDENTITY

347

Chapter 12

Now, let’s try this baby out, only this time, let’s set our parameter values by reference rather than by
position. In order to see how our output parameter is working, we’ll also need to write a little bit of test
code in the script that executes the sproc:

USE Northwind
GO

DECLARE @MyIdent int

EXEC spInsertOrder
@CustomerID = 'ALFKI',
@EmployeeID = 5,
@OrderDate = '5/1/1999"',
@Shipvia = 3,
@Freight = 5.00,
@O0rderID = @MyIdent OUTPUT

SELECT @MyIdent AS IdentityValue

SELECT OrderID, CustomerID, EmployeeID, OrderDate, ShipName
FROM Orders
WHERE OrderID = @MyIdent

Notice that we didn’t supply all of the parameters. Some of them were optional, and we decided to leave
some of those off —which would take the default value. If we had been calling the sproc and passing
values in using positional parameters, then we would have had to address each position in the parame-
ter list at least until the last parameter for which we wanted to supply a value.

Let’s see what this gives us—keep in mind that your identity value may vary from mine depending on
what modifications you've already made in the Orders table:

(1 row(s) affected)
IdentityValue

11078
(1 row(s) affected)

OrderID CustomerID EmployeelID OrderDate ShipName

11078 ALFKI 5 1999-05-01 00:00:00.000 NULL
(1 row(s) affected)

The first row affected line is really feedback from the sproc itself —it inserted one row. The second
resultset provides us with the identity value that was inserted — for me, this value was 11078 — this
is positive proof that our identity value was indeed passed out of the sproc by the output parameter.
Finally, we selected several columns from that row in the Orders table to verify that the row was
indeed inserted using the data we expected.

There are several things that you should take note of between the sproc itself, and the usage of it by the
calling script:

348

Stored Procedures

Q The ouTpuT keyword was required for the output parameter in the sproc declaration.

0 You must use the oUTPUT keyword when you call the sproc, much as you did when you declared
the sproc. This gives SQL Server advance warning about the special handling that parameter will
require. Be aware, however, that forgetting to include the OUTPUT keyword won’t create a run-
time error (you won’t get any messages about it), but the value for the output parameter won't
be moved into your variable (you'll just wind up with what was already there —most likely a
NULL value. This means that you'll have what I consider to be the most dreadful of all computer
terms — unpredictable results.

Q The variable you assign the output result to does not have to have the same name as the internal
parameter in the sproc. For example, in our previous sproc, the internal parameter was called
@OrderID, but the variable the value was passed to was called eMyIdent.

Q The EXEC (or EXECUTE) keyword was required since the call to the sproc wasn'’t the first thing in
the batch (you can leave off the EXEC if the sproc call is the first thing in a batch) — personally, I
recommend that you train yourself to use it regardless.

Control-of-Flow Statements

Control-of-flow statements are a veritable must for any programming language these days. I can’t imag-
ine having to write my code where I couldn’t change what commands to run depending on a condition.
T-SQL offers most of the classic choices for control of flow situations, including;:
Q IF...ELSE
Q GOTO
Q0 WHILE
Q WAITFOR
Q TRY/CATCH

We also have the CASE statement (aka SELECT CASE, DO CASE, and SWITCH/BREAK in other languages),
but it doesn’t have quite the level of control of flow capabilities that you've come to expect from other
languages.

The IF ... ELSE Statement

IF...ELSE statements work much as they do in any language, although I equate them closest to C in
the way they are implemented. The basic syntax is:

IF <Boolean Expression>

<SQL statement> | BEGIN <code series> END
[ELSE

<SQL statement> | BEGIN <code series> END]

The expression can be pretty much any expression that evaluates to a Boolean.

349

Chapter 12

Note that only the very next statement after the IF will be considered to be conditional (as per the IF).
You can include multiple statements as part of your control-of-flow block using BEGIN. . . END, but we’ll

This brings us back to one of the most common traps that I see SQL programmers fall into— improper
user of NULLs. I can’t tell you how often I have debugged stored procedures only to find a statement like:

IF @myvar = NULL

This will, of course, never be true on most systems (see below), and will wind up bypassing all their
NULL values. Instead, it needs to read:

IF @myvar IS NULL
Don'’t forget that NULL doesn’t equate to anything — not even NULL. Use IS instead of =

The exception to this is dependent on whether you have set the ANSI_NULLS option ON or OFF. The
default is that this is ON, in which case you'll see the behavior described above. You can change this
behavior by setting ANSI_NULLS to OFF. I strongly recommend against this since it violates the ANSI
standard (it’s also just plain wrong).

discuss that one a little later in the chapter.

Let’s create a new edition of our last query, and deal with the situation where someone supplies an
OrderDate that is older than we want to accept.

Our sales manager is upset because someone has been putting in orders long after she has already com-
pleted her sales analysis for the time-period in which that order is. She has established a new policy that

says that an order must be entered into the system within seven days after the order is taken, or the
order date is considered to be invalid and is to be set to NULL.

How do we change the value of the order date? That’s where our IF. . .ELSE statement comes in.

We need to perform a simple test, in which we’ll need to make use of the DATEDIFF function. The syntax

for DATEDIFF is:

DATEDIFF (<datepart>, <startdate>, <enddate>)

DATEDIFF compares our two dates —in this case the supplied order date and the current date. It can

actually compare any part of the datetime data supplied from the year down to the millisecond. In our

case, a simple dd for day will suffice, and we'll put it together with an IF statement:

IF DATEDIFF (dd, @OrderDate, GETDATE()) > 7

In the event that our returned value is over 7 —that is, over 7 days old — then we want to change the
value that we insert:

SELECT @OrderDate = NULL

Now that we’ve got ourselves set with our IF statement, let’s write that new version of the
spInsertOrder sproc:

350

USE Northwind
GO

CREATE PROC spInsertDateValidatedOrder

Stored Procedures

@CustomerID
@EmployeeID
@OrderDate
@RequiredDate
@ShippedDate
@Shipvia
@Freight
@ShipName
@ShipAddress
@ShipCity
@ShipRegion
@ShipPostalCode
@ShipCountry
@0rderID

AS

/* Test to see if supplied date is over seven days old,

replace with NU
IF DATEDIFF (dd, @O
SELECT @OrderDa

/* Create the new

INSERT INTO Orders

VALUES

(
@CustomerID,
@EmployeelD,
@OrderDate,
@RequiredDate,
@ShippedbDate,
@ShipVia,
@Freight,
@ShipName,
@ShipAddress,
@ShipCity,
@ShipRegion,
@ShipPostalCode
@ShipCountry

nvarchar(5) ,
int,
datetime
datetime
datetime
int,
money,
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
int

LL value

(¢}

NULL,
NULL,
NULL,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
UTPUT

rderDate, GETDATE()) >

te = NULL

record */

’

/* Move the identity value from the newly inserted record into

our output vari
SELECT @OrderID =

able */
Q@IDENTITY

Now let’s run the same test script we used for the original spInsertOrder sproc with only minor modi-
fications to deal with our new situation:

USE Northwind
GO

DECLARE @MyIdent

int

EXEC spInsertDateValidatedOrder
@CustomerID = 'ALFKI',

@EmployeeID = 5

’

351

Chapter 12

@OrderDate = '5/1/1999"',
@Shipvia = 3,

@Freight 5.00,

@OrderID @MyIdent OUTPUT

SELECT @MyIdent AS IdentityValue

SELECT OrderID, CustomerID, EmployeeID, OrderDate, ShipName
FROM Orders
WHERE OrderID = @MyIdent

This time, even though most of the sproc is the same, we change what we put into the database, and
therefore, what we see in our selected results:

(1 row(s) affected)
IdentityValue

11079
(1 row(s) affected)

OrderID CustomerID EmployeelID OrderDate ShipName

11079 ALFKI 5 NULL NULL
(1 row(s) affected)

Even though we supplied the same date as last time (5/1/1999), that isn’t the value that was inserted —
our IF statement picked off the illegal value and changed it before the insert.

The ELSE Clause

Now this thing about being able to change the data on the fly is just great, but it doesn’t really deal with
all the scenarios we might want to deal with. Quite often — indeed, most of the time — when we deal
with an IF condition, we have specific statements we want to execute not just for the true condition, but
also a separate set of statements that we want to run if the condition is false — or the ELSE condition.

You will run into situations where a Boolean cannot be evaluated — that is, the result is unknown (for
example, if you are comparing to a NULL). Any expression that returns a result that would be consid-
ered as an unknown result will be treated as FALSE.

The ELSE statement works pretty much as it does in any other language. The exact syntax may vary
slightly, but the nuts and bolts are still the same — the statements in the ELSE clause are executed if the
statements in the IF clause are not.

To expand our example just a bit, let’s look at the oldest records that are currently in the Orders table of
Northwind:

USE Northwind
GO

SELECT TOP 5 OrderID, OrderDate
FROM Orders

WHERE OrderDate IS NOT NULL
ORDER BY OrderDate

352

Stored Procedures

There’s something interesting about the results:

OrderID OrderDate

10248 1996-07-04 00:00:00.000
10249 1996-07-05 00:00:00.000
10250 1996-07-08 00:00:00.000
10251 1996-07-08 00:00:00.000
10252 1996-07-09 00:00:00.000

(5 row(s) affected)

None of the dates has a time component — OK, technically they’re all at midnight, but I suspect you get
the picture. It’s likely that this was done on purpose, as it makes date (without time) comparisons much
easier.

What we want to do is convert our sproc to make sure that we store all dates as just dates—no times.
The current sproc won’t work because it will insert the entire date, including time —but to verify that,
let’s test it out:

USE Northwind
GO

DECLARE @MyIdent int
DECLARE @MyDate smalldatetime

SELECT @MyDate = GETDATE ()

EXEC spInsertDateValidatedOrder
@CustomerID = 'ALFKI',
@EmployeeID = 5,

@OrderDate = @MyDate,
@Shipvia = 3,

@Freight = 5.00,

@OrderID = @MyIdent OUTPUT

SELECT @MyIdent AS IdentityValue
SELECT OrderID, CustomerID, EmployeeID, OrderDate, ShipName

FROM Orders
WHERE OrderID = @MyIdent

When we insert our date, the time comes along with it:

(1 row(s) affected)

IdentityValue

11080

(1 row(s) affected)

OrderID CustomerID EmployeeID OrderDate ShipName
11080 ALFKI 5 2000-07-22 16:48:00.000 NULL

(1 row(s) affected)

353

Chapter 12

So, what we have is an either/or situation. Either we now want the date changed to NULL, or we want
the time truncated from the date. Unfortunately, SQL Server doesn’t give us a function that does it auto-
matically (another severe let down in my not so humble opinion). Fortunately, however, we again have a
workaround.

Truncating the Time from a Datetime Field

In order to truncate a date, we can either take the date apart piece by piece and reassemble it without the
time, or, as I prefer, we can use the CONVERT function on it, to convert it to a timeless day and then con-
vert it back.

CONVERT () is just one of many functions that are available to us in SQL Server. Originally, it was the
one and only method to convert data between datatypes. These days, CONVERT should be getting much
less use in scripts because much of its functionality is duplicated by CAST (), which is ANSI-compliant
(whereas CONVERT isn’t). Still, CONVERT has some special date formatting capabilities that can’t be dupli-
cated by CAST.

CONVERT works with this syntax:
CONVERT (<target data type>, <expression to be converted>, <style>)

The first two parameters are pretty self-describing, but the last one isn’t—it only applies when dealing
with dates and its purpose is to tell SQL Server in which format you want the date to be. Examples of
common date formats include 1, for standard U.S. mm/dd/yy format and 12 for the standard ISO for-
mat (yymmdd). Adding 100 to any of the formats adds the full century to the date scheme (for example,
standard U.S. format with a four-digit year —mm/dd/yyyy — has a style of 101).

For example, it would look something like this for the GETDATE function:
SELECT CONVERT (datetime, (CONVERT (varchar, GETDATE () ,112)))

This takes things to an ANSI date format and then back again:

2000-06-06 00:00:00.000
(1 row(s) affected)

Implementing the ELSE Statement in Our Sproc

Now that we've figured out how to do the pieces, it’s time to move that into our actual sproc. This time,
however, we're going to make use of the ALTER command rather than creating a separate procedure.
Remember that, even when using an ALTER statement, we must entirely redefine the procedure:

USE Northwind
GO

ALTER PROC spInsertDateValidatedOrder

@CustomerID nvarchar(5),
@EmployeelID int,
@OrderDate datetime = NULL,

354

Stored Procedures

@RequiredDate datetime = NULL,
@ShippedDate datetime = NULL,
@Shipvia int,
@Freight money,
@ShipName nvarchar (40) = NULL,
@ShipAddress nvarchar (60) = NULL,
@ShipCity nvarchar (15) = NULL,
@ShipRegion nvarchar (15) = NULL,
@ShipPostalCode nvarchar (10) = NULL,
@ShipCountry nvarchar (15) = NULL,
@OrderID int OUTPU
AS
/* I don't like altering input parameters—I find that it helps in debugging
** if I can refer to their original values at any time. Therefore, I'm going
** to declare a separate variable to assign the end value we will be
** inserting into the table. */
DECLARE @InsertedOrderDate smalldatetime
/* Test to see if supplied date is over seven days old, if so
** replace with NULL value
** otherwise, truncate the time to be midnight */
IF DATEDIFF (dd, @OrderDate, GETDATE()) > 7

INSERT INTO Orders

SELECT @InsertedOrderDate =
ELSE
SELECT @InsertedOrderDate =

CONVERT (datetime, (CONVERT (varchar, @OrderDate, 112)))

/* Create the new record */

VALUES

(

@CustomerID,
@EmployeelD,

@InsertedOrderDate,

@RequiredDate,

@ShippedDate,
@Shipvia,
@Freight,
@ShipName,
@ShipAddress,
@ShipCity,
@ShipRegion,

@ShipPostalCode,

@sShipCountry

NULL

/* Move the identity value from the newly inserted record into
our output variable */

SELECT @OrderID =

@@IDENTITY

Now, if we re-run the original batch, we have the effect we were after:

355

Chapter 12

(1 row(s) affected)
IdentityValue

11081
(1 row(s) affected)

OrderID CustomerID EmployeelD OrderDate ShipName

11081 ALFKI 5 2000-07-22 00:00:00.000 NULL
(1 row(s) affected)

We now have a sproc that handles the insert differently depending on the specific values that are given
to the sproc.

If you look closely, you'll note that I changed more than just the IF . . . ELSE statement for this version
of the sproc—1I also changed things so that a holding variable was declared for the order date.

The purpose behind this has to do with a general philosophy I have about changing input parameter val-
ues. With the exception of where you are changing parameter values for the express purpose of passing
out a changed value, I don’t think you should change parameter values. Why? Well, part of it is a clar-
ity issue—1I don’t want people to have to look in multiple places for where my variables are declared if
possible. The other reason is perhaps a more convincing one— debugging. I like to retain my input val-
ues for as long as possible so that, when I need to debug, I can easily check my input value against the
various places in the code I make use of the input value. That is, I want to simplify being able to tell if
things are working correctly.

Grouping Code into Blocks

Sometimes you need to treat a group of statements as though they were all one statement (if you execute
one, then you execute them all —otherwise, you don’t execute any of them). For instance, the IF statement
will, by default, only consider the very next statement after the IF to be part of the conditional code. What
if you want the condition to require several statements to run? Life would be pretty miserable if you had to
create a separate IF statement for each line of code you wanted to run if the condition holds.

Thankfully, SQL Server gives us a way to group code into blocks that are considered to all belong
together. The block is started when you issue a BEGIN statement, and continues until you issue an END
statement. It works like this:

356

IF <Expression>
BEGIN --First block of code starts here—executes only if
--expression is TRUE
Statement that executes if expression is TRUE
Additional statements

Still going with statements from TRUE expression
IF <Expression> --Only executes if this block is active
BEGIN
Statement that executes 1f both outside and inside
expressions are TRUE
Additional statements

Still statements from both TRUE expressions

Stored Procedures

END
Out of the condition from inner condition, but still
part of first block
END --First block of code ends here
ELSE
BEGIN
Statement that executes 1f expression is FALSE
Additional statements

Still going with statements from FALSE expression
END

Notice our ability to nest blocks of code. In each case, the inner blocks are considered to be part of the
outer block of code. I have never heard of there being a limit to how many levels deep you can nest your
BEGIN. . . END blocks, but I would suggest that you minimize them. There are definitely practical limits
to how deep you can keep them readable —even if you are particularly careful about the formatting of
your code.

Just to put this notion into play, let's make yet another modification to our last order insert sproc. This
time, we're going to provide a little bit of useful information to our user as we go through code that
alters what the caller of the sproc has provided. This can act as something of a lead-in for the upcoming
section on error handling.

Any time we decide to change the data we’re inserting to be something other than what the user sup-
plied, we also need to inform the user of exactly what we’re doing. We'll use a PRINT statement to
output the specifics of what we’ve done. We’ll add these PRINT statements as part of the code in our
IF...ELSE statement so the information can be topical. Note that a PRINT statement doesn’t generate
any kind of error —it just provides textual information regardless of error status.

We'll discuss this further in the error handling section.

USE Northwind
GO

ALTER PROC spInsertDateValidatedOrder

AS

/* I don't like altering input paramters—I find that it helps in debugging

@CustomerID nvarchar (5),
@EmployeeID int,
@OrderDate datetime = NULL,
@RequiredDate datetime NULL,
@ShippedDate datetime NULL,
@Shipvia int,

@Freight money,

@ShipName nvarchar (40) NULL,
@ShipAddress nvarchar (60) NULL,
@ShipCity nvarchar (15) NULL,
@ShipRegion nvarchar (15) NULL,
@ShipPostalCode nvarchar (10) NULL,
@ShipCountry nvarchar (15) NULL,
@0rderID int OUTPUT

357

Chapter 12

** if I can refer to their original value at any time. Therefore, I'm going
** to declare a separate variable to assign the end value we will be

** inserting into the table. */

DECLARE @InsertedOrderDate smalldatetime

/* Test to see if supplied date is over seven days old, if so
** replace with NULL value
** otherwise, truncate the time to be midnight*/
IF DATEDIFF (dd, @OrderDate, GETDATE()) > 7
BEGIN
SELECT @InsertedOrderDate = NULL
PRINT 'Invalid Order Date'
PRINT 'Supplied Order Date was greater than 7 days old.'
PRINT 'The value has been reset to NULL'
END
ELSE
BEGIN
SELECT @InsertedOrderDate =
CONVERT (datetime, (CONVERT (varchar, @OrderDate, 112)))
PRINT 'The Time of Day in Order Date was truncated'
END

/* Create the new record */

INSERT INTO Orders

VALUES

(
@CustomerID,
@EmployeelD,
@InsertedOrderDate,
@QRequiredDate,
@ShippedDate,
@Shipvia,
@Freight,
@ShipName,
@ShipAddress,
@ShipCity,
@ShipRegion,
@ShipPostalCode,
@ShipCountry

/* Move the identity value from the newly inserted record into
our output variable */
SELECT @OrderID = @@IDENTITY

Now when we execute our test batch, we get slightly different results. First, the test batch using the cur-
rent date:

USE Northwind
GO

DECLARE @MyIdent int

358

Stored Procedures

DECLARE @MyDate smalldatetime
SELECT @MyDate = GETDATE ()

EXEC spInsertDateValidatedOrder
@CustomerID = 'ALFKI',
@EmployeeID = 5,

@OrderDate = @MyDate,

@Shipvia = 3,
@Freight = 5.00,
@OrderID = @MyIdent OUTPUT

SELECT OrderID, CustomerID, EmployeeID, OrderDate, ShipName
FROM Orders
WHERE OrderID = @MyIdent

Note that we’ve deleted the line SELECT @MyIdent AS IdentityValue from the test batch for
brevity’s sake.

And we can see that not only was our value truncated in terms of the actual data, but we also have the
message that explicitly tells us:

The Time of Day in Order Date was truncated
(1 row(s) affected)
OrderID CustomerID EmployeeID OrderDate ShipName

11080 ALFKI 5 1999-08-30 00:00:00.000 NULL
(1 row(s) affected)

Next, we run the older version of the test batch that manually feeds an older date:

USE Northwind
GO

DECLARE @MyIdent int
EXEC spInsertDateValidatedOrder

@CustomerID = 'ALFKI',
@EmployeeID = 5,

@0rderDate = '1/1/1999',
@ShipVia = 3,

@Freight = 5.00,

@O0rderID = @MyIdent OUTPUT

SELECT OrderID, CustomerID, EmployeeID, OrderDate, ShipName
FROM Orders
WHERE OrderID = @MyIdent

Again we see an explicit indication of what happened to our data:
Invalid Order Date

Supplied Order Date was greater than 7 days old.
The value has been reset to NULL

359

Chapter 12

(1 row(s) affected)
OrderID CustomerID EmployeelID OrderDate ShipName

11085 ALFKI 5 NULL NULL
(1 row(s) affected)

The CASE Statement

The CASE statement is, in some ways, the equivalent of one of several different statements depending on
the language from which you’re coming. Statements in procedural programming languages that work in
a similar way to CASE include:

Switch: C, C++, Delphi
Select Case: Visual Basic
Do Case: Xbase

Evaluate: COBOL

0O 0 0O O

I'm sure there are others — these are just from the languages that I've worked with in some form or
another over the years. The big drawback in using a CASE statement in T-SQL is that it is, in many ways,
more of a substitution operator than a control-of-flow statement.

There is more than one way to write a CASE statement— with an input expression or a Boolean expres-
sion. The first option is to use an input expression that will be compared with the value used in each
WHEN clause. The SQL Server documentation refers to this as a simple CASE:

CASE <input expression>

WHEN <when expression> THEN <result expression>
[...n]

[ELSE <result expression>]

END

Option number two is to provide an expression with each WHEN clause that will evaluate to TRUE/FALSE.
The docs refer to this as a searched CASE:

CASE

WHEN <Boolean expression> THEN <result expression>
[...n]

[ELSE <result expression>]

END

Perhaps what’s nicest about CASE is that you can use it “inline” with (that is, as an integral part of) a
SELECT statement. This can actually be quite powerful.

Let’s move away from our previous example (the searched CASE) for the time being (don’t worry, we’ll
be back to it), and look at a simple CASE statement from a couple of different perspectives.

A Simple CASE

A simple CASE takes an expression that equates to a Boolean result. Let’s get right to an example:

360

Stored Procedures

USE Northwind
GO

SELECT TOP 10 OrderID, OrderID % 10 AS 'Last Digit', Position =
CASE OrderID % 10
WHEN 1 THEN 'First'
WHEN 2 THEN 'Second'’
WHEN 3 THEN 'Third'
WHEN 4 THEN 'Fourth'
ELSE 'Something Else'
END
FROM Orders

For those of you who aren’t familiar with it, the % operator is for a modulus. A modulus works in a simi-
lar manner to the divide by (/), but it only gives you the remainder. Therefore, 16 % 4 = 0 (4 goes into
16 evenly); but 16 % 5 = 1 (16 divided by 5 has a remainder of 1). In the example, since we’re dividing
by ten, using the modulus is giving us the last digit of the number we’re evaluating.

Let’s see what we got with this:

OrderID Last Digit Position

10249 9 Something Else
10251 1 First

10258 8 Something Else
10260 0 Something Else
10265 5 Something Else
10267 7 Something Else
10269 9 Something Else
10270 0 Something Else
10274 4 Fourth

10275 5 Something Else

(10 row(s) affected)

Notice that whenever there is a matching value in the list, the THEN clause is invoked. Since we have an
ELSE clause, any value that doesn’t match one of the previous values will be assigned whatever we’ve
put in our ELSE. If we had left the ELSE out, then any such value would be given a NULL.

Let’s go with one more example that expands on what we can use as an expression. This time, we’ll use
another column from our query:

USE Northwind
GO

SELECT TOP 10 OrderID % 10 AS "Last Digit",

ProductID,

"How Close?" = CASE OrderID % 10
WHEN ProductID THEN 'Exact Match!'
WHEN ProductID - 1 THEN 'Within 1°'
WHEN ProductID + 1 THEN 'Within 1°'
ELSE 'More Than One Apart'

END

361

Chapter 12

FROM [Order Details]
WHERE ProductID < 10
ORDER BY OrderID DESC

Notice that we’ve used equations at every step of the way on this one, yet it still works . ..

Last Digit ProductID How Close?
Within 1
Exact Match!
Within 1
More Than One Apart
More Than One Apart
More Than One Apart
Exact Match!
More Than One Apart
Exact Match!

7 More Than One Apart
10 row(s) affected)

NN WP ONJ o

As long as the expression evaluates to a specific value that is of compatible type to the input expression,
then it can be analyzed, and the proper THEN clause applied.

A Searched CASE

This one works pretty much the same as a simple CASE, with only two slight twists:

Q There is no input expression (remember that’s the part between the CASE and the first WHEN).

QO The WHEN expression must evaluate to a Boolean value (whereas in the simple CASE examples
we’ve just looked at we used values such as 1, 3, and ProductID + 1).

Perhaps what I find the coolest about this kind of CASE is that we can completely change around what is
forming the basis of our expression — mixing and matching column expressions depending on our dif-
ferent possible situations.

As usual, I find the best way to get across how this works is via an example:

USE Northwind
GO

SELECT TOP 10 OrderID % 10 AS "Last Digit",
ProductID,
"How Close?" = CASE
WHEN (OrderID % 10) < 3 THEN 'Ends With Less Than Three'
WHEN ProductID = 6 THEN 'ProductID is 6'
WHEN ABS (OrderID % 10 - ProductID) <= 1 THEN 'Within 1'
ELSE 'More Than One Apart'
END
FROM [Order Details]
WHERE ProductID < 10
ORDER BY OrderID DESC

This is substantially different from our simple CASE examples, but it still works:

362

Stored Procedures

Last Digit ProductID How Close?

7 8 Within 1

7 7 Within 1

7 6 ProductID is 6

7 4 More Than One Apart

7 3 More Than One Apart

7 2 More Than One Apart

6 6 ProductID is 6

5 2 More Than One Apart

2 2 Ends With Less Than Three
1 7 Ends With Less Than Three
(

10 row(s) affected)
There are a couple of things to pay particular attention to in how SQL Server evaluated things:

Q Even when two conditions evaluate to TRUE, only the first condition is used. For example, the
second to last row meets both the first (the last digit is smaller than 3) and third (the last digit is
within 1 of the ProductID) conditions. For many languages including Visual Basic, this kind of
statement always works this way. If you're from the C world, however, you'll need to remember
this when you are coding; no “break” statement is required — it always terminates after one
condition is met.

0 You can mix and match what fields you're using in your condition expressions. In this case, we
used OrderID, ProductID, and both together.

Q You can perform pretty much any expression as long as, in the end, it evaluates to a Boolean result.

Let’s try this out with a slightly more complex example. In this example, we're not going to do the mix
and match thing —instead, we’ll stick with just the one column we’re looking at (we could change
columns being tested —but, most of the time, we won’t need to). Instead, we're going to deal with a
more real-life scenario that I helped solve for a rather large e-commerce site.

The scenario is this: marketing people really like nice clean prices. They hate it when you apply a 10 per-
cent markup over cost, and start putting out prices like $10.13, or $23.19. Instead, they like slick prices
that end in numbers like 49, 75, 95, or 99. In our scenario, we're supposed to create a possible new price
list for analysis, and they want it to meet certain criteria.

If the new price ends with less than 50 cents (such as our $10.13 example above), then marketing would
like the price to be bumped up to the same dollar amount but ending in 49 cents ($10.49 for our exam-
ple). Prices ending with 50¢ to 75¢ should be changed to end in 75¢, and prices ending with more than
75¢ should be changed to end with 95¢. Let’s look at some examples of what they want:

If the New price Would Be Then It Should Become
$10.13 $10.49
$17.57 $17.75
$27.75 $27.75
$79.99 $79.95

363

Chapter 12

Technically speaking, we could do this with nested IF. . .ELSE statements, but:

Q It would be much harder to read — especially if the rules were more complex.

Q We would have to implement the code using a cursor (bad!) and examine each row one at a time.
In short — yuck!

A CASE statement is going to make this process relatively easy. What’s more, we're going to be able to
place our condition inline to our query and use it as part of a set operation — this almost always means
that we're going to get much better performance than we would with a cursor.

Our marketing department has decided they would like to see what things would look like if we
increased prices by 10 percent, so we’ll plug a 10 percent markup into a CASE statement, and, together
with a little extra analysis, we’ll get the numbers we're looking for:

USE Northwind
GO

/* I'm setting up some holding variables here. This way, if we get asked
** to run the query again with a slightly different value, we'll only have
** to change it in one place.

*/

DECLARE @Markup money

DECLARE @Multiplier money

SELECT @Markup = .10 -- Change the markup here
SELECT @Multiplier = @Markup + 1 -- We want the end price, not the amount
-- of the increase, so add 1

/* Now execute things for our results. Note that we're limiting things
** to the top 10 items for brevity—in reality, we either wouldn't do this
** at all, or we would have a more complex WHERE clause to limit the
** increase to a particular set of products
*/
SELECT TOP 10 ProductID, ProductName, UnitPrice,
UnitPrice * @Multiplier AS "Marked Up Price", "New Price" =
CASE WHEN FLOOR (UnitPrice * @Multiplier + .24)
> FLOOR (UnitPrice * @Multiplier)
THEN FLOOR (UnitPrice * @Multiplier) + .95
WHEN FLOOR (UnitPrice * @Multiplier + .5) >
FLOOR (UnitPrice * @Multiplier)
THEN FLOOR (UnitPrice * @Multiplier) + .75
ELSE FLOOR (UnitPrice * @Multiplier) + .49
END
FROM Products
ORDER BY ProductID DESC -- Just because the bottom's a better example
-- in this particular case

The FLOOR function you see here is a pretty simple one —it takes the value supplied and rounds down
to the nearest integer.

364

Stored Procedures

Now, I don’t know about you, but I get very suspicious when I hear the word “analysis” come out of
someone’s lips — particularly if that person is in a marketing or sales role. Don’t get me wrong — those
people are doing their jobs just like I am. The thing is, once they ask a question one way, they usually
want to ask the same question another way. That being the case, I went ahead and set this up as a script—
now all we need to do when they decide they want to try it with 15 percent is make a change to the initial-
ization value of @Markup. Let’s see what we got this time with that 10 percent markup though:

ProductID ProductName UnitPrice Marked Up Price New Price
77 Original Frankfurter grine SoRe 13.0000 14.3000 14.4900
76 Lakkalikoori 18.0000 19.8000 19.9500
75 Rhénbrdu Klosterbier 7.7500 8.5250 8.7500
74 Longlife Tofu 10.0000 11.0000 11.4900
73 R6d Kaviar 15.0000 16.5000 16.7500
72 Mozzarella di Giovanni 34.8000 38.2800 38.4900
71 Flotemysost 21.5000 23.6500 23.7500
70 Outback Lager 15.0000 16.5000 16.7500
69 Gudbrandsdalsost 36.0000 39.6000 39.7500
68 Scottish Longbreads 12.5000 13.7500 13.7500

(10 row(s) affected)

Look these over for a bit, and you'll see that the results match what we were expecting. What’s more, we
didn’t have to build a cursor to do it.

Now, for one final example with this CASE statement, and to put something like this more into the con-
text of sprocs, let’s convert this to something the marketing department can call themselves.

In order to convert something like this to a sproc, we need to know what information is going to be
changing each time we run it. In this case, the only thing that will change will be the markup percentage.
That means that only the markup percent needs to be accepted as a parameter —any other variables can
remain internal to the sproc.

To change this particular script then, we only need to change one variable to a parameter, add our CREATE
statements, and we should be ready to go. However, we are going to make just one more change to clarify
the input for the average user:

USE Northwind
GO

CREATE PROC spMarkupTest
@MarkupAsPercent money
AS

DECLARE @Multiplier money

-- We want the end price, not the amount
SELECT @Multiplier = @MarkupAsPercent / 100 + 1 /*of the increase, so add 1

** Now execute things for our results. Note that we're limiting things

** to the top 10 items for brevity—in reality, we either wouldn't do this
** at all, or we would have a more complex WHERE clause to limit the

** increase to a particular set of products

*/

365

Chapter 12

SELECT TOP 10 ProductId, ProductName, UnitPrice,
UnitPrice * @Multiplier AS "Marked Up Price", "New Price" =
CASE WHEN FLOOR (UnitPrice * @Multiplier + .24)
> FLOOR (UnitPrice * @Multiplier)
THEN FLOOR (UnitPrice * @Multiplier) + .95
WHEN FLOOR (UnitPrice * @Multiplier + .5) >
FLOOR (UnitPrice * @Multiplier)
THEN FLOOR (UnitPrice * @Multiplier) + .75
ELSE FLOOR (UnitPrice * @Multiplier) + .49
END
FROM Products
ORDER BY ProductID DESC -- Just because the bottom's a better example
-- 1in this particular case

Now, to run our sproc, we only need to make use of the EXEC command and supply a parameter:
EXEC spMarkupTest 10

Our results should be exactly as they were when the code was in script form. By putting it into sproc
form, however, we:

Q Simplified the use for inexperienced users

Q Sped up processing time
The simplified use for the end user seems pretty obvious. They probably would be pretty intimidated if

they had to look at all that code in the script—even if they only had to change just one line. Instead,
they can enter in just three words —including the parameter value.

The performance boost is actually just about nothing in an interactive scenario like this case, but, rest
assured, the process will run slightly faster (just milliseconds in many cases —longer in others) as a
sproc—we’ll look into this much further before the chapter’s done.

Looping with the WHILE Statement

The WHILE statement works much as it does in other languages to which you have probably been
exposed. Essentially, a condition is tested each time you come to the top of the loop. If the condition is
still TRUE, then the loop executes again —if not, you exit.

The syntax looks like this:

WHILE <Boolean expression>
<sql statement> |

[BEGIN
<statement block>
[BREAK]
<sqgl statement> | <statement block>
[CONTINUE]
END]

366

Stored Procedures

While you can just execute one statement (much as you do with an IF statement), you'll almost never
see a WHILE that isn’t followed by a BEGIN. . . END with a full statement block.

The BREAK statement is a way of exiting the loop without waiting for the bottom of the loop to come and
the expression to be re-evaluated.

I'm sure I won’t be the last to tell you this, but using a BREAK is generally thought of as something of
bad form in the classical sense. I tend to sit on the fence on this one. I avoid using them if reasonably
possible. Most of the time, I can indeed avoid them just by moving a statement or two around while still
coming up with the same results. The advantage of this is usually more readable code. It is simply easier
to handle a looping structure (or any structure for that matter) if you have a single point of entry and a
single exit. Using a BREAK violates this notion.

All that being said, sometimes you can actually make things worse by reformatting the code to avoid
a BREAK. In addition, I've seen people write much slower code for the sake of not using a BREAK
statement — bad idea.

The CONTINUE statement is something of the complete opposite of a BREAK statement. In short, it tells
the WHILE loop to go back to the beginning. Regardless of where you are in the loop, you immediately
go back to the top and re-evaluate the expression (exiting if the expression is no longer TRUE).

We'll go ahead and do something of a short example here just to get our feet wet. As I mentioned before,
WHILE loops tend to be rare in non-cursor situations, so forgive me if this example seems lame.

What we're going to do is create something of a monitoring process using our WHILE loop and a WAITFOR
command (we’ll look at the specifics of WAITFOR in our next section). We're going to be automatically
updating our statistics once per day:

WHILE 1 =1
BEGIN

WAITFOR TIME '01:00'

EXEC sp_updatestats

RAISERROR ('Statistics Updated for Database', 1, 1) WITH LOG
END

This would update the statistics for every table in our database every night at 1 a.m. and write a log
entry of that fact to both the SQL Server log and the Windows NT application log. If you want check
to see if this works, leave this running all night and then check your logs in the morning.

Note that an infinite loop like this isn't the way that you would normally want to schedule a task. If
you want something to run every day, set up a job using the Management Studio. In addition to not
keeping a connection open all the time (which the preceding example would do), you also get the capa-
bility to make follow up actions dependent on the success or failure of your script. Also, you can e-mail
or net-send messages regarding the completion status.

The WAITFOR Statement

There are often things that you either don’t want to or simply can’t have happen right this moment, but
you also don’t want to have to hang around waiting for the right time to execute something.

367

Chapter 12

No problem — use the WAITFOR statement and have SQL Server wait for you. The syntax is incredibly
simple:

WAITFOR
DELAY <'time'> | TIME <'time'>

The WAITFOR statement does exactly what it says it does — that is, it waits for whatever you specify as
the argument to occur. You can specify either an explicit time of day for something to happen, or you can
specify an amount of time to wait before doing something.

The DELAY Parameter

The DELAY parameter choice specifies an amount of time to wait. You cannot specify a number of days —
just time in hours, minutes, and seconds. The maximum allowed delay is 24 hours. So, for example:

WAITFOR DELAY '01:00°'

would run any code prior to the WAITFOR, then reach the WAITFOR statement, and stop for one hour,
after which execution of the code would continue with whatever the next statement was.

The TIME Parameter

The TIME parameter choice specifies to wait until a specific time of day. Again, we cannot specify any
kind of date —just the time of day using a 24-hour clock. Once more, this gives us a one-day time limit
for the maximum amount of delay. For example:

WAITFOR TIME '01:00'

would run any code prior to the WAITFOR, then reach the WAITFOR statement, and stop until 1 a.m., after
which execution of the code would continue with whatever the next statement was after the WAITFOR.

TRY/CATCH Blocks

I'm actually going to defer much of the discussion on this to our upcoming section on error handling.
Still, it’s important to touch on this from a control of flow point of view. TRY/CATCH blocks are new
with SQL Server 2005, and for those of you coming from programming languages that don’t have
TRY/CATCH, I'll preface the upcoming discussion by saying they are all about handling exceptions.

For now, we’ll just address them in the most simplistic of terms —when they do what they do. In short,
if your code runs without any kind of exception, or an error “level” (more on those in a bit) that is 10

or below, then the code will execute according to the TRY block. The moment, however, that your code
has an error that is above 10 (11 or higher), then it will immediately move to the first line in the CATCH
block and proceed from there.

Note that the CATCH block will execute only if the error is not of a variety that imme-
diately terminates your script. Again, we’ll cover this further in our section on error
handling, but some forms of errors will immediately terminate all execution of your
sproc—in this case, that means that even your CATCH block will not be executed.

368

Stored Procedures

Confirming Success or Failure
with Return Values

You'll see return values used in a couple of different ways. The first is to actually return data, such as
an identity value or the number of rows that the sproc affected — consider this an evil practice from the
dark ages. Instead, move on to the way that return values should be used and what they are really there
for — determining the execution status of your sproc.

If it sounds like I have an opinion on how return values should be used, it’s because I most definitely do.
I was actually originally taught to use return values as a “trick” to get around having to use output
parameters — in effect, as a shortcut. Happily, I overcame this training. The problem is that, like most
shortcuts, you're cutting something out, and, in this case, what you're cutting out is rather important.

Using return values as a means of returning data back to your calling routine clouds the meaning of the

return code when you need to send back honest-to-goodness error codes. In short —don’t go there!

Return values are all about indicating success or failure of the sproc, and even the extent or nature of
that success or failure. For the C programmers among you, this should be a fairly easy strategy to relate
to—it is a common practice to use a function’s return value as a success code, with any non-zero value
indicating some sort of problem. If you stick with the default return codes in SQL Server, you'll find that
the same rules hold true.

How to Use RETURN

Actually, your program will receive a return value whether you supply one or not. By default, SQL
Server automatically returns a value of zero when your procedure is complete.

To pass a return value back from our sproc to the calling code, we simply use the RETURN statement:

RETURN [<integer value to return>]

Note that the return value must be an integer.

Perhaps the biggest thing to understand about the RETURN statement is that it unconditionally exits from
your sproc. That is, no matter where you are in your sproc, not one single more line of code will execute
after you have issued a RETURN statement.

By unconditionally, I don’t mean that a RETURN statement is executed regardless of where it is in code.
On the contrary, you can have many RETURN statements in your sproc, and they will only be executed

when the normal conditional structure of your code issues the command. Once that happens however,
there is no turning back.

Let’s illustrate this idea of how a RETURN statement affects things by writing a very simple test sproc:

USE Northwind
GO

CREATE PROC spTestReturns

369

Chapter 12

AS
DECLARE @MyMessage varchar (50)
DECLARE @MyOtherMessage varchar (50)

SELECT @MyMessage = 'Hi, it''s that line before the RETURN'
PRINT @MyMessage

RETURN

SELECT @MyOtherMessage = 'Sorry, but we won''t get this far'

PRINT @MyOtherMessage
RETURN

OK, now we have a sproc, but we need a small script to test out a couple of things for us. What we want
to see is:

0O What gets printed out

O What value the RETURN statement returns

In order to capture the value of a RETURN statement, we need to assign it to a variable during our EXEC
statement. For example, the following code would assign whatever the return value is to @Returnval:

EXEC @ReturnVal = spMySproc
Now let’s put this into a more useful script to test out our sproc:
DECLARE @QReturn int

EXEC @Return = spTestReturns
SELECT @Return

Short but sweet— when we run it, we see that the RETURN statement did indeed terminate the code
before anything else could run:

Hi, it's that line before the RETURN

(1 row(s) affected)

We also got back the return value for our sproc, which was zero. Notice that the value was zero even
though we didn’t specify a specific return value — that’s because the default is always zero.

Think about this for a minute — if the return value is zero by default, then that means that the default
return is also, in effect, “No Errors”. This has some serious dangers to it. The key point here is to make
sure that you always explicitly define your return values— that way, you are reasonably certain to be
returning the value you intended rather than something by accident.

Now, just for grins, let’s alter that sproc to verify that we can send whatever integer value we want back
as the return value:

370

Stored Procedures

USE Northwind
GO

ALTER PROC spTestReturns
AS

DECLARE @MyMessage varchar (50)
DECLARE @MyOtherMessage varchar (50)

SELECT @MyMessage = 'Hi, it''s that line before the RETURN'
PRINT @MyMessage
RETURN 100

SELECT @MyOtherMessage = 'Sorry, but we won''t get this far'
PRINT @MyOtherMessage
RETURN

Now re-run your test script, and you'll get the same result save for that change in return value:

Hi, it's that line before the RETURN

100
(1 row(s) affected)

Dealing with Errors

Sure. We don’t need this section. I mean, our code never has errors, and we never run into problems,
right? OK, well, now that we’ve had our moment of fantasy for today, let’s get down to reality. Things
80 wrong —it’s just the way that life works in the wonderful world of software engineering. Fortunately,
we can do something about it. Unfortunately, you're probably not going to be happy with the tools you
have. Fortunately again, there are ways to make the most out of what you have, and ways to hide many
of the inadequacies of error handling in the SQL world.

Three common error types can happen in SQL Server:

Q Errors that create runtime errors and stop your code from proceeding further.

Q Errors that SQL Server knows about, but that don’t create runtime errors such that your code
stops running. These can also be referred to as “inline” errors.

Q Errors that are more logical in nature and to which SQL Server is essentially oblivious.

Now, here things get a bit sticky, and versions become important, so hang with me as we go down a very
much winding road

As I write this, most SQL Server texts for 2005 are not out— but I'll go ahead and venture a guess that
most beginning books will not discuss much in the way of prior versions. Indeed, I've generally avoided
it as it just adds more complexity. That said, I'm very much going to touch on prior versions in this sec-
tion. Why? Well, most database developers will either work with prior versions at some point in time,
or, at the very least, work with code that pre-dates SQL Server 2005. In this section, that is critical
because there was no formal error handler in SQL Server 2000 and earlier.

371

Chapter 12

With this is mind, I'm going to give you a “slimmed down” version of how error handling used to be—
if for no other reason that to help you grasp the “why they did it that way” in older code you may come
across. If you're certain that you're going to be a “SQL Server 2005 code only” kinda DBA, then, by all
means, feel free to skip ahead to error handling in the TRY /CATCH era.

One thing remains common between the old and new error handling models —higher level runtime
errors.

It is possible to generate errors that will cause SQL Server to terminate the script immediately. This was
true prior to TRY/CATCH, and it remains true even in the TRY/CATCH era. Errors that have enough
severity to generate a runtime error are problematic from the SQL Server side of the equation. The new
TRY/CATCH logic is a bit more flexible for some errors than what we had before —but we still have
times where our sproc doesn’t even know that something bad happened. On the bright side, all the cur-
rent data access object models pass through the message on such errors, so you know about them in
your client application and can do something about them there.

The Way We Were ...

In prior versions of SQL Server, there was no formal error handler. You did not have an option that
essentially said, “If any error happens, go run this code over in this other spot.” Instead, we had to mon-
itor for error conditions within our own code, and then decide what to do at the point we detected the
error (possibly well after the actual error occurred).

Handling Inline Errors

Inline errors are those pesky little things where SQL Server keeps running as such, but hasn’t, for some
reason, succeeded in doing what you wanted it to do. For example, let’s try to insert a record into the
Order Details table that doesn’t have a corresponding record in the Orders table:

USE Northwind
GO

INSERT INTO [Order Details]

(OrderID, ProductID, UnitPrice, Quantity, Discount)
VALUES

(999999,11,10.00,10, 0)

SQL Server won't perform this insert for us because there is a FOREIGN KEY constraint on Order
Details that references the PRIMARY KEY in the Orders table. Since there is no record in the Orders
table with an OrderID of 999999, the record we are trying to insert into Order Details violates that
constraint and is rejected:

Msg 547, Level 16, State 0, Line 2

The INSERT statement conflicted with the FOREIGN KEY constraint

"FK_Order Details_Orders". The conflict occurred in database "Northwind", table
"Orders", column 'OrderID'.

The statement has been terminated.

Pay attention to that error 547 up there —that’s something of which we can make use.

372

Stored Procedures

Making Use of @@ERROR

We've already talked some about this bad boy when we were looking at scripting, but it’s time to get a
lot friendlier with this particular system function.

To review, @RERROR contains the error number of the last T-SQL statement executed. If the value is zero,
then no error occurred.

The caveat with @@ERROR is that it is reset with each new statement— this means
that if you want to defer analyzing the value, or you want to use it more than once,
you need to move the value into some other holding bin — a local variable that you
have declared for this purpose.

Let’s play with this just a bit using our INSERT example from before:

USE Northwind
GO

DECLARE @Error int

-- Bogus INSERT - there is no OrderID of 999999 in Northind
INSERT INTO [Order Details]

(OrderID, ProductID, UnitPrice, Quantity, Discount)
VALUES

(999999,11,10.00,10, 0)

-- Move our error code into safe keeping. Note that, after this statement,
-- Q@Error will be reset to whatever error number applies to this statement
SELECT @Error = @E@ERROR

-- Print out a blank separator line
PRINT "'

-- The value of our holding variable is just what we would expect
PRINT 'The Value of @Error is ' + CONVERT (varchar, @Error)

-- The value of @RERROR has been reset - it's back to zero
PRINT 'The Value of @@ERROR is ' + CONVERT (varchar, @Q@ERROR)

Now execute our script, and we can examine how @@ERROR is affected:

Msg 547, Level 16, State 0, Line 5

The INSERT statement conflicted with the FOREIGN KEY constraint

"FK_Order Details_Orders". The conflict occurred in database "Northwind", table
"Orders", column 'OrderID'.

The statement has been terminated.

The Value of @Error is 547
The Value of @E@ERROR is 0

373

Chapter 12

This illustrates pretty quickly the issue of saving the value from @@ERROR. The first error statement is only
informational in nature. SQL Server has thrown that error, but hasn’t stopped our code from executing.
Indeed, the only part of that message that our sproc has access to is the error number. That error number
resides in @@ERROR for just that next T-SQL statement — after that it’s gone.

Notice that @Error and @@ERROR are two separate and distinct variables, and can
be referred to separately. This isn’t just because of the case difference (depending
on how you have your server configured, case sensitivity can affect your variable
names), but rather because of the difference in scope. The @ or @@ is part of the
name, so just the number of @ symbols on the front makes each one separate and
distinct from the other.

Using @@ERROR in a Sproc

Let’s go back to our spInsertDateValidatedOrder stored procedure that we started back when we
were dealing with IF. . .ELSE statements. All the examples we worked with in that sproc ran just fine.
Of course they did — they were well-controlled examples. However, that’s not the way things work in
the real world. Indeed, you never have any idea what a user is going to throw at your code. The world
is littered with the carcasses of programmers who thought they had thought of everything, only to find
that their users had broken something (you might say they thought of something else) within the first
few minutes of operation.

We can break that sproc in no time at all by just changing one little thing in our test script:

USE Northwind
GO

DECLARE @MyIdent int
DECLARE @MyDate smalldatetime

SELECT @MyDate = GETDATE ()

EXEC spInsertDateValidatedOrder

@CustomerID = 'ZXZXZ',
@EmployeeID = 5,

@OrderDate = @MyDate,
@ShipVia = 3,

@Freight = 5.00,

@OrderID = @yIdent OUTPUT

SELECT OrderID, CustomerID, EmployeeID, OrderDate, ShipName
FROM Orders
WHERE OrderID = @MyIdent

This seemingly simple change creates all kinds of havoc with our sproc:

The Time of Day in Order Date was truncated

Server: Msg 547, Level 16, State 1, Procedure spInsertDateValidatedOrder, Line 44
INSERT statement conflicted with COLUMN FOREIGN KEY constraint
'FK_Orders_Customers'. The conflict occurred in database 'Northwind', table
'Customers', column 'CustomerID'.

374

Stored Procedures

The statement has been terminated.

OrderID CustomerID EmployeelID OrderDate ShipName

(0 row(s) affected)

Our row wasn’t inserted. It shouldn’t have been — after all, isn’t that why we put in constraints —to
ensure that bad records don’t get inserted into our database?

The nasty thing here is that we get a big ugly message that’s almost impossible for the average person to
understand. What we need to do is test the value of @eERROR and respond accordingly.

We can do this easily using an IF. . .ELSE statement together with either @@ERROR (if we can test the
value immediately and only need to test it once), or a local variable, into which we have previously
moved the value of @@ERROR.

Personally, I like my code to be consistent, so I always move it into a local variable and then do all my
testing with that — even when I only need to test it once. I have to admit to being in the minority on
that one though. Doing this when you don’t need to takes up slightly more memory (the extra variable)
and requires an extra assignment statement (to move @RERROR to your local variable). Both of these
pieces of overhead are extremely small and I gladly trade them for the idea of people who read my code
knowing that they are going to see the same thing done the same way every time.

In addition, it doesn’t make much sense to still select out the inserted row, so we’ll want to skip that part
since it’s irrelevant.

So let’s add a couple of changes to deal with this referential integrity issue and skip the code that doesn’t
apply in this error situation.

USE Northwind
GO

ALTER PROC spInsertDateValidatedOrder

@CustomerID nvarchar (5),
@EmployeeID int,
@0rderDate datetime = NULL,
@RequiredDate datetime = NULL,
@ShippedDate datetime = NULL,
@Shipvia int,
@Freight money,
@ShipName nvarchar (40) = NULL,
@ShipAddress nvarchar (60) = NULL,
@ShipCity nvarchar (15) = NULL,
@ShipRegion nvarchar (15) = NULL,
@ShipPostalCode nvarchar (10) = NULL,
@ShipCountry nvarchar (15) = NULL,
@OrderID int OUTPUT

AS

-- Declare our variables
DECLARE @Error int

375

Chapter 12

DECLARE @InsertedOrderDate smalldatetime

/* Test to see if supplied date is over seven days old, if so
** replace with NULL value
** otherwise, truncate the time to be midnight*/
IF DATEDIFF (dd, @OrderDate, GETDATE()) > 7
BEGIN
SELECT @InsertedOrderDate = NULL
PRINT 'Invalid Order Date'
PRINT 'Supplied OrderDate was greater than 7 days old.'
PRINT 'The value has been reset to NULL'
END
ELSE
BEGIN
SELECT @InsertedOrderDate =
CONVERT (datetime, (CONVERT (varchar, @0rderDate, 112)))
PRINT 'The Time of Day in Order Date was truncated'
END

/* Create the new record */

INSERT INTO Orders

VALUES

(
@CustomerID,
@EmployeelID,
@InsertedOrderDate,
@QRequiredDate,
@ShippedDate,
@ShipvVia,
@Freight,
@ShipName,
@ShipAddress,
@ShipCity,
@ShipRegion,
@ShipPostalCode,
@ShipCountry

-- Move it to our local variable and check for an error condition
SELECT @Error = @E@ERROR

IF @Error != 0
BEGIN
-- Uh, oh—something went wrong.

IF @Error = 547
-- The problem is a constraint violation. Print out some informational
-- help to steer the user to the most likely problem.
BEGIN
PRINT 'Supplied data violates data integrity rules'
PRINT 'Check that the supplied customer number exists'
PRINT 'in the system and try again'
END
ELSE

376

Stored Procedures

-- Oops, it's something we haven't anticipated, tell them that we

-- don't know, print out the error.

BEGIN
PRINT 'An unknown error occurred. Contact your System Administrator'
PRINT 'The error was number ' + CONVERT (varchar, @Error)

END

-- Regardless of the error, we're going to send it back to the calling

-- piece of code so it can be handled at that level if necessary.

RETURN @Error

END

/* Move the identity value from the newly inserted record into
our output variable */
SELECT @OrderID = @QE@IDENTITY

RETURN

Now we need to run our test script again, but it’s now just a little inadequate to test our sproc—we need
to accept the return value so we know what happened. In addition, we have no need to run the query to
return the row just inserted if the row couldn’t be inserted —so we’ll skip that in the event of error.

USE Northwind
GO

DECLARE @MyIdent int
DECLARE @MyDate smalldatetime
DECLARE @Return int

SELECT @MyDate = GETDATE()

EXEC @QReturn = spInsertDateValidatedOrder

@CustomerID = 'ZXZXZ',
@EmployeeID = 5,

@OrderDate = @MyDate,
@Shipvia = 3,

@Freight = 5.00,

@OrderID = @MyIdent OUTPUT

IF @Return = 0
SELECT OrderID, CustomerID, EmployeeID, OrderDate, ShipName
FROM Orders
WHERE OrderID = @MyIdent
ELSE
PRINT 'Value Returned was ' + CONVERT (varchar, @Return)

Realistically, not much changed —just five lines. Nonetheless, the behavior is quite a bit different when
we have an error. Run this script, and we wind up with a different result than before we had our error
checking:

The Time of Day in Order Date was truncated

Server: Msg 547, Level 16, State 1, Procedure spInsertDateValidatedOrder, Line 42
INSERT statement conflicted with COLUMN FOREIGN KEY constraint
'"FK_Orders_Customers'. The conflict occurred in database 'Northwind', table
'Customers', column 'CustomerID'.

377

Chapter 12

The statement has been terminated.

Supplied data violates data integrity rules
Check that the supplied customer number exists
in the system and try again

Value Returned was 547

We didn’t have an error handler in the way most languages operate these days, but we were able to han-
dle it nonetheless.

Handling Errors Before They Happen

Sometimes you have errors that SQL Server doesn’t really have an effective way to even know about, let
alone tell you about. Other times we want to prevent the errors before they happen. These we need to
check for and handle ourselves.

Sticking with the main example sproc we’ve used for this chapter, let’s address some business rules that
are logical in nature, but not necessarily implemented in the database. For example, we’ve been allowing
nulls in the database, but maybe we don’t want to do that as liberally anymore. We've decided that we
should no longer allow a null OrderDate. We still have records in there that we don’t have values for,

so we don’t want to change over the column to disallowing nulls at the table level. What to do?

The first thing we need to take care of is editing our sproc to no longer allow NULL values. This seems
easy enough —just remove the NULL default from the parameter, right? That has two problems to it:

Q SQL Server will generate an error if the parameter is not supplied, but will still allow a user to
explicitly supply a NULL.

Q Even when the user fails to provide the parameter, the error information is vague.

We get around these problems by actually continuing with our NULL default just as it is, but this time
we're testing for it. If the parameter contains a NULL, we then know that one was either not supplied or
the value supplied was NULL (which we don’t allow anymore) — then we act accordingly. So the ques-
tion becomes, “How do I test to see if it's a NULL value?” Simple: just the way we did in our WHERE
clauses in queries:

IF @OrderDate IS NULL
<abort the INSERT and print a message>

Let’s make the modifications to our now very familiar sproc:

USE Northwind
GO

ALTER PROC splInsertDateValidatedOrder

@CustomerID nvarchar (5),
@EmployeeID int,

@OrderDate datetime = NULL,
@QRequiredDate datetime = NULL,
@ShippedDate datetime = NULL,
@ShipVia int,

@Freight money,

@ShipName nvarchar (40) = NULL,

378

Stored Procedures

@ShipAddress nvarchar (60) = NULL,
@ShipCity nvarchar (15) = NULL,
@ShipRegion nvarchar (15) = NULL,
@ShipPostalCode nvarchar (10) = NULL,
@ShipCountry nvarchar (15) = NULL,
@OrderID int OUTPUT

AS

-- Declare our variables
DECLARE @Error int
DECLARE @InsertedOrderDate smalldatetime

/* Here we're going to declare our constants. SQL Server doesn't really
** have constants in the classic sense, but I just use a standard

** yariable in their place. These help your code be more readable

** —particularly when you match them up with a constant list in your

** client. */

DECLARE @INVALIDDATE int

/* Now that the constants are declared, we need to initialize them.
** Notice that SQL Server ignores the white space in between the

** yariable and the "=" sign. Why I put in the spacing would be more
** obvious 1f we had several such constants—the constant values

** would line up nicely for readability

*/

SELECT @INVALIDDATE = -1000

/* Test to see if supplied date is over seven days old, if so
** it is no longer valid. Also test for NULL values.
** Tf either case is true, then terminate sproc with error
** message printed out. */
IF DATEDIFF (dd, @OrderDate, GETDATE()) > 7 OR @OrderDate IS NULL
BEGIN
PRINT 'Invalid Order Date'
PRINT 'Supplied Order Date was greater than 7 days old '
PRINT 'or was NULL. Correct the date and resubmit.'
RETURN @INVALIDDATE
END

-- We made it this far, so it must be OK to go on with things.
SELECT @InsertedOrderDate =

CONVERT (datetime, (CONVERT (varchar, @rderDate, 112)))

PRINT 'The Time of Day in Order Date was truncated'

/* Create the new record */

INSERT INTO Orders

VALUES

(
@CustomerID,
@EmployeelD,
@InsertedOrderDate,
@RequiredDate,
@ShippedDate,

379

Chapter 12

@ShipVia,
@Freight,
@ShipName,
@ShipAddress,
@ShipCity,
@ShipRegion,
@ShipPostalCode,
@ShipCountry

-- Move it to our local variable, and check for an error condition
SELECT @Error = @E@ERROR

IF @Error != 0
BEGIN
-- Uh, oh—something went wrong.

IF @Error = 547
-- The problem is a constraint violation. Print out some informational
-- help to steer the user to the most likely problem.
BEGIN
PRINT 'Supplied data violates data integrity rules'
PRINT 'Check that the supplied customer number exists'
PRINT 'in the system and try again'
END
ELSE
-- Oops, it's something we haven't anticipated, tell them here that we
-- don't know, print out the error.
BEGIN
PRINT 'An unknown error occurred. Contact your System Administrator'
PRINT 'The error was number ' + CONVERT (varchar, @Error)
END
-- Regardless of the error, we're going to send it back to the calling
-- piece of code so it can be handled at that level if necessary.
RETURN @Error
END

/* Move the identity value from the newly inserted record into
our output variable */
SELECT @OrderID = @@IDENTITY

RETURN

We're going to want to test this a couple of different ways. First, we need to put back in a valid customer
number, and then we need to run it. Assuming it succeeds, then we can move on to supplying an unac-
ceptable date:

USE Northwind
GO

DECLARE @MyIdent int
DECLARE @MyDate smalldatetime

380

Stored Procedures

DECLARE @Return int
SELECT @MyDate = '1/1/1999'

EXEC @QReturn = spInsertDateValidatedOrder
@CustomerID = 'ALFKI',
@EmployeeID = 5,
@OrderDate = @MyDate,
@Shipvia = 3,
@Freight = 5.00,
@0rderID = @MyIdent OUTPUT

IF @Return = 0
SELECT OrderID, CustomerID, EmployeeID, OrderDate, ShipName
FROM Orders
WHERE OrderID = @MyIdent
ELSE
PRINT 'Value Returned was ' + CONVERT (varchar, @Return)

This time, when we run it, we get an error message:

Invalid Order Date

Supplied Order Date was greater than 7 days old
or was NULL. Correct the date and resubmit.
Value Returned was -1000

Note that this wasn’t a SQL Server error —as far as SQL Server’s concerned, everything about life is just
fine. What’s nice though, is that, were we using a client program (say one you wrote in VB, C++, or some
other language), we would be able to track the 1000 against a known constant and send a very specific
message to the end user.

Manually Raising Errors

Sometimes we have errors that SQL Server doesn’t really know about, but we wish it did. For example,
perhaps in our previous example we don’t want to return —~1000. Instead, we’d like to be able to create
a runtime error at the client end that the client would then use to invoke an error handler and act
accordingly. To do this, we make use of the RATSERROR command in T-SQL. The syntax is pretty
straightforward:

RAISERROR (<message ID | message string>, <severity>, <state>
[, <argument>

[,<...n>11)
[WITH optionl,...nl]

Message ID/Message String

The message ID or message string you provide determines what message is sent out to the client.

Using a message ID creates a manually raised error with the ID that you specified and the message that
is associated with that ID as found in the sysmessages table in the master database.

381

Chapter 12

If you want to see what your SQL Server has as predefined messages, you can always perform a
SELECT * FROM master..sysMessages. This will include any messages you've manually added
to your system using the sp_addmessage stored procedure or through the Enterprise Manager.

You can also just supply a message string in the form of ad hoc text without creating a more permanent
message in sysmessages. For example:

RAISERROR ('Hi there, I''m an error', 1, 1)
raises a rather simple error message:

Msg 50000, Level 1, State 50000
Hi there, I'm an error

Notice that the assigned message number, even though we didn’t supply one, is 50000. This is the
default error value for any ad hoc error. It can be overridden using the WITH SETERROR option.

Severity

For those of you already familiar with Windows servers, severity should be an old friend. Severity is an
indication of just how bad things really are based on this error. For SQL Server, however, what severity
codes mean can get a little bizarre. They can range from essentially being informational (severities 1-18),
to being considered as system level (19-25), and even catastrophic (20-25). If you raise an error of sever-
ity 19 or higher (system level), then the WITH LOG option must also be specified. 20 and higher will auto-
matically terminate the users’ connections (they hate that!).

So, let’s get back to what I meant by bizarre. SQL Server actually varies its behavior into more ranges
than NT does —or even than the Books Online will tell you about. They fall into six major groupings:

1-9 Purely informational only, but will return the specific error code in the message
information. No matter what you set the state (discussed next) to in your
RAISERROR, it will wind up coming out with the same value as the error
number (don’t ask me why — it just does).

10 Also informational, but will not raise an error in the client and will not provide
any specific error information other than the error text.

11-16 These terminate execution of the procedure and raise an error at the client. From
this point forward, the state is shown to be whatever value you set it to.

17 Usually, only SQL Server should use this severity. Basically, it indicates that SQL
Server has run out of resources (for example tempdb was full) and can’t complete
the request.

18-19 Both of these are severe errors, and imply that the underlying cause requires
system administrator attention. With 19, the WITH LOG option is required, and the
event will show up in the NT or Win2K Event Log if you are using that OS family.

20-25 Your world has just caved in —so has the user’s connection. Essentially, this is a
fatal error. The connection is terminated. As with 19, you must use the WITH LOG
option, and a message will, if applicable, show up in the Event Log.

382

Stored Procedures

State

State is an ad hoc value. It is something that recognizes that exactly the same error may occur at multiple
places within your code. The notion is that this gives you an opportunity to send something of a place
marker for where exactly the error occurred.

State values can be between 1 and 127. If you are troubleshooting an error with Microsoft tech support,
they apparently have some arcane knowledge that hasn’t been shared with us of what some of these
mean. I'm told that, if you make a tech support call to MS, they are likely to ask and make use of this
state information.

Error Arguments

Some predefined errors will accept arguments. These allow the error to be somewhat more dynamic in
nature by changing to the specific nature of the error. You can also format your error messages to accept
arguments.

When you want to make use of dynamic information in what is otherwise a static error message, you
need to format the fixed portion of your message such that it leaves room for the parameterized section
of the message. This is done using placeholders. If you're coming from the C or C++ world, then you'll
recognize the parameter placeholders immediately — they are very similar to the printf command
arguments. If you're not from the C world, these may seem a little odd to you. All of the placeholders
start with the % sign, and are then coded for what kind of information you’ll be passing to them:

Placeholder Type Indicator Type of Value

D Signed integer —note that Books Online also indicates that i is
an OK choice, but I've had problems getting it to work as
expected

0 Unsigned octal

P Pointer

S String

U Unsigned integer

X or x Unsigned hexadecimal

In addition, there is the option to prefix any of these placeholder indicators with some additional flag
and width information:

Flag What It Does

- (dash or minus sign) Left justify —makes a difference only when you supply a fixed
width.

+ (plus sign) Indicate the positive or negative nature if the parameter is a

signed numeric type.

Table continued on following page

383

Chapter 12

Flag What It Does

0 Tells SQL Server to pad the left side of a numeric value with
zeroes until it reaches the width specified in the width option.

(pound sign) Only applies to octal and hex values. Tells SQL Server to use
the appropriate prefix (0 or 0x) depending on whether it is octal
or hex.

0k Pad the left of a numeric value with spaces if positive.

Last, but not least, you can also set the width, precision, and long/short status of a parameter:

Q Width: Set by simply supplying an integer value for how much space we want to hold for the
parameterized value. You can also specify a *, in which case SQL Server will automatically
determine the width depending on the value you've set for precision.

0 Precision: Determines the maximum number of digits output for numeric data.

Q Long/Short: Set by using an h (short) or I (long) when the type of the parameter is an integer,
octal, or hex value.

To use this in an example:

RAISERROR ("This is a sample parameterized %s, along with a zero
padding and a sign%+0104",1,1, "string", 12121)

If you execute this, you get back something that looks a little different from what'’s in the quotes:
Msg 50000, Level 1, State 50000

This is a sample parameterized string, along with a zero
padding and a sign+000012121

The extra values supplied were inserted, in order, into our placeholders, with the final value being refor-
matted as specified.

WITH <option>

There are currently three options that you can mix and match when you raise an error:

a Loc
a SETERROR

a NOWAIT

WITH LOG

This tells SQL Server to log the error to the SQL Server error log and the NT application log (the latter
applies to installations on NT only). This option is required with severity levels that are 19 or higher.

384

Stored Procedures

WITH SETERROR

By default, a RAISERROR command does not set @@ERROR with the value of the error you generated —

instead, @@ERROR reflects the success or failure of your actual RATSERROR command. SETERROR over-
rides this and sets the value of @eERROR to be equal to your error ID.

WITH NOWAIT

Immediately notifies the client of the error.

Adding Your Own Custom Error Messages

We can make use of a special system stored procedure to add messages to the system. The sproc is called
sp_addmessage, and the syntax looks like this:

sp_addmessage [@msgnum =] <msg id>,
[@severity =] <severity>,

[@msgtext =] <'msg'>

[, [@lang =] <'language'>]

[, [@with_log =] [TRUE|FALSE]]

[, [@replace =] 'replace']

All the parameters mean pretty much the same thing that they did with RATSERROR, except for the addi-
tion of the language and replace parameters and a slight difference with the WITH LOG option.

@lang

This specifies the language to which this message applies. What’s cool here is that you can specify a sep-
arate version of your message for any language supported in syslanguages.

@with_log

This works just the same as it does in RATSERROR in that, if set to TRUE the message will be automatically
logged to both the SQL Server error log and the NT application log when raised (the latter only when
running under NT). The only trick here is that you indicate that you want this message to be logged by
setting this parameter to TRUE rather than using the WITH LOG option.

Be careful of this one in the Books Online. Depending on how you read it, it would be easy to interpret
it as saying that you should set @with_log to a string constant of 'WITH_LOG', when you should set

it to TRUE. Perhaps even more confusing is that the REPLACE option looks much the same, and it must
be set to the string constant rather than TRUE.

@replace

If you are editing an existing message rather than creating a new one, then you must set the @replace
parameter to ' REPLACE . If you leave this off, you’ll get an error if the message already exists.

385

Chapter 12

Creating a set list of additional messages for use by your applications can greatly
enhance reuse, but more importantly, it can significantly improve readability of your
application. Imagine if every one of your database applications made use of a con-
stant list of custom error codes. You could then easily establish a constants file (a
resource or include library for example) that had a listing of the appropriate errors —
you could even create an include library that had a generic handling of some or all
of the errors. In short, if you're going to be building multiple SQL Server apps in
the same environment, consider using a set list of errors that is common to all your
applications.

Using sp_addmessage
As has already been indicated, sp_addmessage creates messages in much the same way as we create ad
hoc messages using RAISERROR.

As an example, let’s add our own custom message that tells the user about the issues with their order date:

sp_addmessage

@msgnum = 60000,

@severity = 10,

@msgtext = '%s is not a valid Order date.
Order date must be within 7 days of current date.'

Execute the sproc and it confirms the addition of the new message:

(1 row(s) affected)

No matter what database you're working with when you run sp_addmessage, the
actual message is added to the sysmessages table in the master database. The signif-
icance of this is that, if you migrate your database to a new server, the messages will
need to be added again to that new server (the old ones will still be in the master
database of the old server). As such, I strongly recommend keeping all your custom
messages stored in a script somewhere so they can easily be added into a new system.

It’s also worth noting that you can add and delete custom messages using Enterprise
Manager (right-click on a server, and then go to 211 Tasks | Manage SQL Server
messages). While this is quick and easy, it makes it more problematic to create

and test the scripts I recommend in the paragraph above. In short, I don’t recom-
mend its use.

Removing an Existing Custom Message

To get rid of the custom message, use:

sp_dropmessage <msg num>

Putting Our Error Trap to Use

Now it’s time to put all the different pieces we’ve been talking about to use at once.

386

Stored Procedures

First, if you tried out the sp_dropmessage on our new error 60000 — quit that! Add the message back so

we can make use of it in this example.

What we want to do is take our sproc to the next level up. We’re going to modify our sproc again so that
it takes advantage of the new error features we know about. When we’re done, we’ll be able to generate

a trappable runtime error in our client so we can take appropriate action at that end.
All we need to do is change our PRINT statement to have a RAISERROR:

USE Northwind
GO

ALTER PROC spInsertDateValidatedOrder

@CustomerID nvarchar (5),
@EmployeeID int,
@OrderDate datetime = NULL,
@RequiredDate datetime NULL,
@ShippedDate datetime = NULL,
@ShipvVia int,
@Freight money,
@ShipName nvarchar (40) NULL,
@ShipAddress nvarchar (60) NULL,
@ShipCity nvarchar (15) NULL,
@ShipRegion nvarchar (15) NULL,
@ShipPostalCode nvarchar (10) = NULL,
@ShipCountry nvarchar (15) = NULL,
@0rderID int OUTPUT

AS

-- Declare our variables

DECLARE @Error int

DECLARE @BadDate varchar (12)

DECLARE @InsertedOrderDate smalldatetime

/* Test to see if supplied date is over seven days old, if so
** it is no longer valid. Also test for null values.
** Tf either case is true, then terminate sproc with error
** message printed out. */
IF DATEDIFF (dd, @OrderDate, GETDATE()) > 7 OR @OrderDate IS NULL
BEGIN
--RAISERROR doesn't have a date data type, so convert it first
SELECT @BadDate = CONVERT (varchar, @OrderDate)
RAISERROR (60000,1,1, @BadDate) WITH SETERROR
RETURN @E@ERROR
END

-- We made it this far, so it must be OK to go on with things.
SELECT @InsertedOrderDate =
CONVERT (datetime, (CONVERT (varchar, @rderDate, 112)))
PRINT 'The Time of Day in Order Date was truncated'
/* Create the new record */
INSERT INTO Orders
VALUES
(

Chapter 12

@CustomerID,
@EmployeelD,
@InsertedOrderDate,
@QRequiredDate,
@ShippedDate,
@Shipvia,
@Freight,
@ShipName,
@ShipAddress,
@ShipCity,
@ShipRegion,
@ShipPostalCode,
@ShipCountry

-- Move it to our local variable, and check for an error condition
SELECT @Error = @E@ERROR

IF @Error != 0
BEGIN
-- Uh, Oh—something went wrong.

IF @Error = 547
-- The problem is a constraint violation. Print out some informational
-- help to steer the user to the most likely problem.
BEGIN
PRINT 'Supplied data violates data integrity rules'
PRINT 'Check that the supplied customer number exists'
PRINT 'in the system and try again'
END
ELSE
-- Oops, it's something we haven't anticipated, tell them that we
-- don't know, print out the error.
BEGIN
PRINT 'An unknown error occurred. Contact your System Administrator'
PRINT 'The error was number ' + CONVERT (varchar, @Error)
END
-- Regardless of the error, we're going to send it back to the calling
-- piece of code so it can be handled at that level if necessary.
RETURN @Error
END

/* Move the identity value from the newly inserted record into
our output variable */
SELECT @OrderID = @@IDENTITY

RETURN

What a Sproc Offers

Now that we’ve spent some time looking at how to build a sproc, we probably ought to ask the question
as to why to use them. Some of the reasons are pretty basic; others may not come to mind right away if
you're new to the RDBMS world. The primary benefits of sprocs include:

388

Stored Procedures

Q Making processes that require procedural action callable

Q Security

a Performance

Creating Callable Processes

As I've already indicated, a sproc is something of a script that is stored in the database. The nice thing is
that, because it is a database object, we can call to it—you don’t have to manually load it from a file

before executing it.

Sprocs can call to other sprocs (called nesting). For SQL Server 2005, you can nest up to 32 levels deep.

This gives you the capability of reusing separate sprocs much as you would make use of a subroutine in
a classic procedural language. The syntax for calling one sproc from another sproc is exactly the same as
it is calling the sproc from a script. As an example, let’s create a mini sproc to perform the same function

as the test script that we’ve been using for most of this chapter:

USE Northwind
GO

CREATE PROC spTestInsert

@MyDate smalldatetime
AS
DECLARE @MyIdent int
DECLARE @Return

EXEC @Return =

int

spInsertDateValidatedOrder

@CustomerID = 'ALFKI',
@EmployeeID = 5,

@OrderDate = @MyDate,
@ShipVia = 3,

@Freight = 5.00,

@OrderID = @MyIdent OUTPUT

IF @Return = 0

SELECT OrderID, CustomerID, EmployeeID, OrderDate,

FROM Orders

WHERE OrderID =
ELSE

PRINT 'Error Returned was '

@MyIdent

+ CONVERT (varchar,

@Return)

ShipName

Now just call the sproc supplying a good date, then a bad date (to test the error handling). First the good

date:
DECLARE @Today smalldatetime
SELECT @Today = GETDATE ()

EXEC spTestlInsert
@MyDate = @Today

Using today’s date gets what we expect:

389

Chapter 12

The Time of Day in Order Date was truncated
(1 row(s) affected)

OrderID CustomerID EmployeelID OrderDate ShipName

11097 ALFKI 5 2000-09-18 00:00:00.000 NULL
(1 row(s) affected)

Then a bad date:
EXEC spTestInsert '1/1/2004
Again, this yields us what we expect —in this case an error message:

Msg 18054, Level 16, State 1, Procedure spInsertDateValidatedOrder, Line 33

Error 60000, severity 1, state 1 was raised, but no message with that error number
was found in sys.messages. If error is larger than 50000, make sure the user-
defined message is added using sp_addmessage.

Error Returned was 60000

Note that local variables are just that—local to each sproc. You can have five different copies of
@MyDate, one each in five different sprocs and they are all independent of each other.

Using Sprocs for Security

Many people don’t realize the full use of sprocs as a tool for security. Much like views, we can create a
sproc that returns a recordset without having to give the user authority to the underlying table. Granting
someone the right to execute a sproc implies that they can perform any action within the sproc, provided
that the action is taken within the context of the sproc. That is, if we grant someone authority to execute
a sproc that returns all the records in the Customers table, but not access to the actual Customers table,
then the user will still be able to get data out of the Customers table provided they do it by using the
sproc (trying to access the table directly won’t work).

What can be really handy here is that we can give someone access to modify data through the sproc, but
then only give them read access to the underlying table. They will be able to modify data in the table
provided that they do it through your sproc (which will likely be enforcing some business rules). They
can then hook directly up to your SQL Server using Excel, Access, or whatever to build their own cus-
tom reports with no risk of “accidentally” modifying the data.

Setting users up to directly link to a production database via Access or Excel has to
be one of the most incredibly powerful and yet stupid things you can do to your sys-
tem. While you are empowering your users, you are also digging your own grave in
terms of the resources they will use and long running queries they will execute (nat-
urally, they will be oblivious to the havoc this causes your system).

If you really must give users direct access, then consider using replication or backup
and restores to create a completely separate copy of the database for them to use.
This will help insure you against record locks, queries that bog down the system,
and a whole host of other problems.

390

Stored Procedures

Sprocs and Performance

Generally speaking, sprocs can do a lot to help the performance of your system. Keep in mind, however,
that like most things in life, there are no guarantees —indeed, some processes can be created in sprocs

that will substantially slow the process if the sproc hasn’t been designed intelligently.

Where does that performance come from? Well, when we create a sproc, the process works something
like what you see in Figure 12-1.

We start by running our CREATE PROC procedure. This parses the query to make sure that the code
should actually run. The one difference versus running the script directly is that the CREATE PROC

command can make use of what's called deferred name resolution. Deferred name resolution ignores the
fact that you may have some objects that don’t exist yet. This gives you the chance to create these objects

later.
Added to:
Time of Creation sysobjects
sysdepends
syscomments
First run/ . .
Recompile Optimized and compiled
Not first run, but not in cache
At Execution
Recompiled
Not first run and in cache
A A
Added to the
procedure cache in
memory
Figure 12-1

391

Chapter 12

After the sproc has been created, it sits in wait for the first time that it is executed. At that time, the sproc
is optimized, and a query plan is compiled and cached on the system. Subsequent times that we run our
sproc will, unless we specify otherwise using the WITH RECOMPILE option, use that cached query plan
rather than creating a new one. This means that whenever the sproc is used it can skip much of the opti-
mization and compilation process. Exactly how much time this saves varies depending on the complex-
ity of the batch, the size of the tables involved in the batch, and the number of indexes on each table.
Usually, the amount of time saved is seemingly small —say, perhaps one second for most scenarios —
yet that difference can really add up in terms of percentage (1 second is still 100 percent faster than

2 seconds). The difference can become even more extreme when we have the need to make several calls
or when we are in a looping situation.

When a Good Sproc Goes Bad

Perhaps one of the most important things to recognize on the downside of sprocs is that, unless you
manually interfere (using the WITH RECOMPILE option), they are optimized based on either the first time
that they run, or when the statistics have been updated on the table(s) involved in any queries.

That “optimize once, use many times” strategy is what saves the sproc time, but it’s a double-edged
sword. If our query is dynamic in nature (the query is built up as it goes using the EXEC command), then
the sproc may be optimized for the way things ran the first time, only to find that things never run that
way again —in short, it may be using the wrong plan!

It’s not just dynamic queries in sprocs that can cause this scenario either. Imagine a Web page that lets us
mix and match several criteria for a search. For example, let’s say that we wanted to add a sproc to the
Northwind database that would support a web page that allows users to search for an order based on:

Q Customer number
Q Order ID

Q Product ID

O Order date

The user is allowed to supply any mix of the information, with each new piece of information supplied
making the search a little more restricted and theoretically faster.

The approach we would probably take to this would be to have more than one query, and select the right
query to run depending on what was supplied by the user. The first time that we execute our sproc, it is
going to run through a few IF. . .ELSE statements and pick the right query to run. Unfortunately, it’s
just the right query for that particular time we ran the sproc (and an unknown percentage of the other
times). Any time after that first time the sproc selects a different query to run, it will still be using the
query plan based on the first time the sproc ran. In short, the query performance is really going to suffer.

Using the WITH RECOMPILE Option

We can choose to use the security and compartmentalization of code benefits of a sproc but still ignore

the precompiled code side of things. This lets us get around this issue of not using the right query plan
because we're certain that a new plan was created just for this run. To do this, we make use of the WITH
RECOMPILE option, which can be included in two different ways.

First, we can include the WITH RECOMPILE at runtime. We simply include it with our execution script:

392

Stored Procedures

EXEC spTestInsert '1/1/2004'
WITH RECOMPILE

This tells SQL Server to throw away the existing execution plan, and create a new one —but just this
once. That is, just for this time that we’ve executed the sproc using the WITH RECOMPILE option.

We can also choose to make things more permanent by including the WITH RECOMPILE option right
within the sproc. If we do things this way, we add the WITH RECOMPILE option immediately before our
AS statement in our CREATE PROC or ALTER PROC statements.

If we create our sproc with this option, then the sproc will be recompiled each time that it runs, regard-
less of other options chosen at run time.

Extended Stored Procedures (XPs)

The advent of NET in SQL Server has really changed the area of Extended Stored Procedures. These
used to be the bread and butter of the “hard core” code scenarios —when you hit those times where
basic T-SQL and the other features of SQL Server just wouldn’t give you what you needed.

With the advent of .NET to deal with things like O/S file access and other external communication or
complex formulas, the day of the XP would seem to be waning. XPs still have their teeny tiny place in
the world for times where performance is so critical that you want the code running genuinely in pro-
cess to SQL Server, but this is truly a radical approach in the NET era.

For purposes of this book, I'll merely say that SQL Server does allow for the idea of externally written
code that runs as a .DLL to SQL Server. XPs are created using some form of low-level programming lan-
guage. Currently, the only languages actively supported are C and C++.

A Brief Look at Recursion

Recursion is one of those things that aren’t used very often in programming. Still, it’s also one of those
things for which, when you need it, there never seems to be anything else that will quite do the trick. As
a “just in case”, a brief review of what recursion is seems in order.

The brief version is that recursion is the situation where a piece of code calls itself. The dangers here
should be fairly self-evident —if it calls itself once, then what’s to keep it from calling itself over and
over again? The answer to that is you. That is, you need to make sure that if your code is going to be
called recursively, you provide a recursion check to make sure you bail out when it’s appropriate.

I'd love to say that the example I'm going to use is all neat and original —but it isn’t. Indeed, for an
example, I'm going to use the classic recursion example that’s used with about every textbook recursion
discussion I've ever seen — please accept my apologies now —it’s just that it’s an example that can be
understood by just about anyone, so here we go.

So what is that classic example? Factorials. For those who have had a while since math class (or their last
recursion discussion), a factorial is the value you get when you take a number and multiply it successively

393

Chapter 12

by that number less one, then the next value less one, and so on until you get to 1. For example, the facto-
rial of 5 is 120 — that’s 5¥4*3*2*1.

So, let’s look at an implementation of such a recursive sproc:

CREATE PROC spFactorial
@vValueIn int,
@vValueOut int OUTPUT
AS
DECLARE @InWorking int
DECLARE @OutWorking int
IF @ValueIn != 1
BEGIN
SELECT @InWorking = @ValueIn - 1

EXEC spFactorial @InWorking, @OutWorking OUTPUT

SELECT @ValueOut = @ValueIn * @OutWorking
END
ELSE
BEGIN
SELECT @ValueOut = 1
END
RETURN
GO

When you run this CREATE script, you will wind up with an informational message that indicates that:

Cannot add rows to sysdepends for the current stored procedure because it depends
on the missing object spFactorial. The stored procedure will still be created.

Whenever SQL Server creates objects, it stores away dependency information so it
knows which objects are dependent on what other objects. In this case, our sproc is
dependent upon itself —but how can SQL Server set the dependency information
on a sproc that doesn’t exist yet? It’s something of a “What came first, the chicken or
the egg” kind of thing. For the most part, this is informational and not really some-
thing to worry about.

So, what we're doing is accepting a value in (that’s the value we want a factorial of), and providing a
value back out (the factorial value we've computed). The surprising part is that our sproc does not, in
one step, do everything it needs to calculate the factorial. Instead, it just takes one number’s worth of the
factorial, and then turns around and calls itself. The second call will deal with just one number’s worth,
and then again call itself. This can go on and on up to a limit of 32 levels of recursion. Once SQL Server
gets 32 levels deep, it will raise an error and end processing.

Note that any calls into .NET assemblies count as an extra level in your recursion
count, but anything you do within those assemblies does not count against the
recursion limit.

394

Stored Procedures

Let’s try out our recursive sproc with a little script:

DECLARE @WorkingOut int

DECLARE @WorkingIn int

SELECT @WorkingIn = 5

EXEC spFactorial @WorkingIn, @WorkingOut OUTPUT

PRINT CAST (@WorkingIn AS varchar) + ' factorial is ' + CAST(@WorkingOut AS varchar)
This gets us the expected result of 120:
5 factorial is 120

You can try different values for @WorkingIn, and things should work just fine with two rather signifi-
cant hitches:

Q Arithmetic overflow when our factorial grows too large for the int (or even bigint) datatype

Q The 32 level recursion limit

You can test the arithmetic overflow easily by putting any large number in —anything bigger than about
13 will work for this example.

Testing the 32-level recursion limit takes a little bit more modification to our sproc. This time, we’ll
determine the triangular of the number. This is very similar to finding the factorial, except that we use
addition rather than multiplication. Therefore, 5 triangular is just 15 (5+4+3+2+1). Let’s create a new
sproc to test this one out—it will look almost just like the factorial sproc with only a few small changes:

CREATE PROC spTriangular
@ValuelIn int,

@ValueOut int OUTPUT

AS

DECLARE @InWorking int
DECLARE @OutWorking int
IF @ValueIn != 1

BEGIN
SELECT @InWorking = @ValueIn - 1
EXEC spTriangular @InWorking, @OutWorking OUTPUT
SELECT @ValueOut = @ValueIn + @OutWorking
END
ELSE
BEGIN
SELECT @ValueOut = 1
END
RETURN
GO

As you can see, there weren’t that many changes to be made. Similarly, we only need to change our
sproc call and the PRINT text for our test script:

395

Chapter 12

DECLARE @WorkingOut int

DECLARE @WorkingIn int

SELECT @WorkingIn = 5

EXEC spTriangular @WorkingIn, @WorkingOut OUTPUT

PRINT CAST (@WorkingIn AS varchar) + ' Triangular is ' + CAST(@WorkingOut AS
varchar)

Running this with a @valueIn of 5 gets our expected 15:
5 Triangular is 15
However, if you try to run it with a @ValueIn of more than 32, you get an error:

Msg 217, Level 16, State 1, Procedure spTriangular, Line 12
Maximum stored procedure, function, trigger, or view nesting level exceeded
(limit 32).

I'd love to say there’s some great workaround to this, but, unless you can somehow segment your recur-
sive calls (run it 32 levels deep, then come all the way back out of the call stack, then run down it again),
you're pretty much out of luck. Just keep in mind that most recursive functions can be rewritten to be

a more standard looping construct—which doesn’t have any hard limit. Be sure you can’t use a loop
before you force yourself into recursion.

Debugging

Real-live debugging tools first made an appearance in SQL Server in SQL Server 2000. Much like SQL
Server 2005, you needed your settings to be just perfect and several starts to align in order to get it
working — once it did, it was wonderful.

The debugging effort for SQL Server 2005 is highly integrated with Visual Studio, and really does work
fairly well.

I'm not going to kid you — the debugging tools are a pain at best (and impossible at worst) to get func-
tional. Given the focus on security in recent years, so many parts of your server are locked down to
external calls now that remote debugging (which is what you're going to want if you have more than
one developer on the project) is particularly difficult to get going. All I can say is hang with it and keep
trying —it’s worth the effort once you get it working.

Setting Up SQL Server for Debugging

Depending on the nature of your installation, you may have to do absolutely nothing in order to get
debugging working. If, however, you took the default path and installed your SQL Server to run using
the Localsystem account, then debugging will either not work at all. The upshot of this is that, if you
want to use debugging, then you really need to configure the SQL Server service to run using an actual
user account — specifically, one with admin access to the box the SQL Server is running on.

Having SQL Server run using an account with admin access is definitely something that most security
experts would gag, cough, and choke at. It's a major security loophole. Why? Well, there are things that

396

Stored Procedures

would wind up running with admin access also. Imagine any user who could create assemblies on your
system also being able to delete any file on your box, move things around, or possibly worse. This is a
“Development System Only” kind of thing. Also, make sure that you're using a local admin account
rather than a domain admin.

Starting the Debugger

Much of using the Debugger works as it does in VB or C++— probably like most modern debuggers for
that matter.

Before we get too far into this, I'm going to warn you that, while the Debugger is great in many
respects, it leaves something to be desired in terms of how easy it is to find it. It's not even built into the
query tool direction anymore, so pay attention to the steps we’ll have to walk through in order to find it
and you'll see what I mean.

OK, to get the Debugger going, you'll need to start up Visual Studio and create a project of any type that
includes data sources by default (Integration Services is an example of a project type that is installed
with SQL Server and includes data sources as a project node). Go to the Server Explorer (found under
the View menu), and right-click Data Sources; then select New Data Source (if you don’t have one
already). Add in the connection information in the Add Connection dialog, as shown in Figure 12-2.

Add Connection Ej@

Enter information to connect to the selected data source or dlick
"Change" ta choose a different data source andfor provider.

[Daka source:

Microsoft SOL Server (SqlClient)

Server name:

schweitzer v

Log on ko the server

() Use Windows Authentication
O Use 50L Server Authentication

Connect ko a database

(%) Select or enter a database name:
Marthwind v

() attach a database file!

Tesk Connection Ok H Cancel]

Figure 12-2

397

Chapter 12

Next, we need to navigate to the sproc (or UDF) that we want to debug and right-click. In our case, we
want to navigate to the spTriangular stored procedure that we created in the last section, and right-
click on it—then choose Step Into Stored Procedure, as shown in Figure 12-3.

E %
= [Data Connections

= [schweitzer Morthwind, dbo
[Database Diagrams
[Tables
[Wiews
1 Stored Procedures
=] CustOrderHist

[- BB

=] CustOrdersDetai

(=] CustOrdersOrders

ﬂ Emplovee Sales by Country

=] Sales by Year

=] SalesByCategory
sp_alterdiagram
sp_creatediagram

=2 = R R e B R R e R R = R B

=] Ten Mast Ex Add Mew Stored Procedure
[Functions e

[Synonyms
[Types Execute
1 Assemblies
?'5 SErvers

Open

[

Step Inko Stored Procedure

Copy

Delete

Refresh

[ElL X &

Properties

Figure 12-3

This brings up the Run Stored Procedure dialog, and prompts us to fill in the required information for
the parameters our stored procedure has, much like Figure 12-4.

We need to set each non-optional parameter’s value before the sproc can run. For the @valuelIn, we'll
just set it to 3 — that will allow us to recurse just a bit and let us look into a few extra features. For the

@valueOut, let’s use the set to null option, as shown in Figure 12-5.

Then just click OK. The results are shown in Figure 12-6.

398

Stored Procedures

Run Stored Procedure

The stored procedure <dbo.[spTriangular]> requires the following parameters:

Type | Drirection | MName | alue |
int In @Yalueln 3
int InfOut @y alueout SMULL =

QK

l [Cancel

Figure 12-4

o spTriangular

El Edr Mew Fraject Debug Dgta Took Test Wandow Commonity Hel
] =R N = EAr YN] S R Y 7 R SR
PR er e e s e NS = T o 52 [E 2 Hex [e Iz = & 36303 3 3 4 By b
- dbo.spTnangul...zer.Northend) | - 3 | Sclution Exphrer -0 X
I r o o - - — -
;_Tcn PROC apTrianyular = =Y
Valu=In 1int
‘ Salubion ‘Sakionl' {0 peojects
Vg lusine iat SOTFOT (el)
A5
TECLARE BInWorking int
PECLARE §OucVorking 1ot
o TF @ValuelIn !'= 1
BEGIN
[5ELECT Tnmarising - Bvsluetn - |
EXEC spTrimngular BIoWorking, BousVorking SUTRUT
[FELECT BValustur = (WalueIn + BOwsWorking
END
LEE
BECGIN
END
RETOAN
i
L | |
Aukas - 0 3| Oupt -0 X
Mg Vae Tres o ckput frem: Dsbug = L L) 2 L= | [F]
@ @ourtiorking e uzo-actach To process ' 652] [30L] schweitser’ on nachine 'sokwaitzar' succecdad. ~
@ @vduain 3 i Tha thresd 'schweitzer [S5]° {0xd70) kas sxived wich sode O (0203. 1
The thread 'scheeitzer [S5]' {0xd70) hax sxited with code O (0z0).
The thread 'schwsitzsr [S5]' (0xd70) hax sxated wich code 0 (Oz0).
The thread ' schweibzer L0%ATY ham mated winh code 0 (020
Furming dho. [spTrisngalarv] © @BWalueln = 3. OWalaelut = <HULL* | L
v
Flautns ok Sy Call et | Ereabpaints |] Command W |] immedbate vandow | (5] outau |
Hzady Ln¥ ol 1 chi N5

Figure 12-5

399

Chapter 12

" dbo.spTriangular: Stored Procedure(newton|2aB8ef-ea60-46.C\S0L SERVER 2000 SAMPLE DATAB . MDF) - Micrasoft Visual Studio mE =]
File Ecit Vew Fropct Dshug Oate Tooks Test Window Community Help
- 5 e G| & A - - = O s o
3 3 e = (= 2 e | 3 - 2 & | i ' A S
dbospTriang ORTHWHRD.MDF) -
=
=
ing = Bvalusln - 3|
Elokorking, W ag CUTRUT
t = GValueIn = BCutWorkiog
=
| k>
Locaks - B X || Cdlstack - 3 X
Mame Vakae Tipe Mame Lang
@ EYalu=ln 3 nt . dbo.soTriangular (newton'\2a888e 2f-eaf0-46,C:'G0L SERVER 2000 SAMPLE DATASASES\NORTHWID. MDF)int 8Valu T-5Q
@ @vakieous nt
¢ E0ulWurdng nt
@ @inWarkng nt
=] Cutput | 5] Loca's [Z5]watch 1 Ecal stack [immesate window
Raady n 12 Col 1 chi INS
Figure 12-6

Parts of the Debugger

Several things ar

e worth noticing when the Debugger window first comes up:

Q The yellow arrow on the left indicates the current row — this is the next line of code that will be
executed if we do a “go” or we start stepping through the code.

Q There are icons at the top to indicate our different options, including;:

Q

Q

400

Continue: This will run to the end of the sproc. After you click this, the only thing that
will stop execution is a runtime error or hitting a breakpoint.

Step Into: This executes the next line of code and stops prior to running the next line of
code regardless of what procedure or function that code is in. If the line of code being exe-
cuted is calling a sproc or function, then Step Into has the effect of calling that sproc or
function, adding it to the call stack, changing the locals window to represent the newly
nested sproc rather than the parent, and then stopping at the first line of code in the
nested sproc.

Step Over: This executes every line of code required to take us to the next statement
that is at the same level in the call stack. If you are not calling another sproc or a UDE,
then this command will act just like a Step Into. If, however, you are calling another
sproc or a UDF, then a Step Over will take you to the statement immediately following
where that sproc or UDF returned its value.

Stored Procedures

Q step out: This executes every line of code up to the next line of code at the next high-
est point in the call stack. That is, we will keep running until we reach the same level as
whatever code called the level we are currently at.

QO Run To Cursor: This works pretty much like the combination of a breakpoint and
a Go. When this choice is made, the code will start running and keep going until it gets
to the current cursor location. The only exceptions are if there is a breakpoint prior to
the cursor location (then it stops at the breakpoint instead) or if the end of the sproc
comes before the cursor line is executed (such as when you place the cursor on a line
that has already occurred or is in part of a control-of-flow statement that does not get
executed).

O Restart: This does exactly what it says it does. It sets the parameters back to their orig-
inal values, clears any variables and the call stack, and starts over.

QO stop Debugging: Again, this does what it says —it stops execution immediately. The
debugging window does remain open, however.

0 Toggle Breakpoints and Remove All Breakpoints:In addition, you can set break-
points by clicking in the left margin of the code window. Breakpoints are points that
you set to tell SQL Server to “stop here!” when the code is running in debug mode.

This is handy in big sprocs or functions where you don’t want to have to deal with
every line—you just want it to run up to a point and stop every time it gets there.

There are also a few of what we'll call “status” windows; let’s go through a few of the more important
of these.

The Locals Window

As Iindicated back at the beginning of the book, I'm pretty much assuming that you have experience
with some procedural language out there. As such, the Locals window probably isn’t all that new of a
concept to you. The simple rendition is that it shows you the current value of all the variables that are
currently in scope. The list of variables in the Locals window may change (as may their values) as you
step into nested sprocs and back out again. Remember — these are only those variables that are in scope
as of the next statement to run.

Three pieces of information are provided for each variable or parameter:

Q The name
Q The current value

Q The datatype

However, perhaps the best part to the Locals window is that you can edit the values in each variable.
That means it’s a lot easier to change things on the fly to test certain behaviors in your sproc.

The Watch Window

Works much as it does in any modern debugger. You can set up variables here that you want to keep
track of and even trigger break points based on a change in value of watched variables.

401

Chapter 12

The Callstack Window

The callstack window provides a listing of all the sprocs and functions that are currently active in the
process that you are running. The handy thing here is that you can see how far in you are when you are
running in a nested situation, and you can change between the nesting levels to verify what current vari-
able values are at each level.

The Output Window

Much as this one sounds, the output window is the spot where SQL Server prints any output. This
includes result sets as well as the return value when your sproc has completed running.

Using the Debugger Once It’s Started

Now that we have the preliminaries out of the way and the Debugger window up, we’re ready to start
walking through our code.

The first executable line of our sproc is the IF statement, so that’s the line that is current when the
Debugger starts up. You should notice that none of our variables has had any values set in it yet except
for the @valueIn that we passed in as a parameter to the sproc —it has the value of 3 that we passed
in when we filled out the Debug Procedure dialog earlier.

Step forward one line by pressing F11 or using the Step Into icon or menu choice.

Since the value of @valueIn is indeed not equal to 1, we step into the BEGIN. . . END block specified
by our IF statement. Specifically, we move to our SELECT statement that initializes the @InWorking
parameter. As we’ll see later, if the value of @valueIn had indeed been one, we would have immedi-
ately dropped down to our ELSE statement.

Again, step forward one line by pressing F11 or using the Step Into icon or menu choice, as shown in
Figure 12-7.

Pay particular attention to the value of @ InWorking in the Locals window. Notice that it changed to the
correct value (@valueIn is currently 3, so 3-1 is 2) as set by our SELECT statement. Also notice that our
Callstack window only has the current instance of our sproc in it— since we haven’t stepped down
into our nested versions of the sproc yet, we only see one instance.

Now go ahead and step into our next statement. Since this is the execution of a sproc, we’re going to see
a number of different things change in our Debugger window, shown in Figure 12-8.

Notice that it appears that our arrow that indicates the current statement jumped back up to the IF state-
ment. Why? Well, this is a new instance of our sproc. We can tell this based on our Callstack window —
notice that it now has two instances of our sproc listed. The blue one at the top is the current instance.
Notice also that the @valueIn parameter has the value of 2 —that is the value we passed in from the
outer instance of the sproc.

If you want to see the value of variables in the scope of the outer instance of the sproc, just double-click

on that instance’s line in the Callstack window (the one with the green arrow) and you’ll see several
things change again, as shown in Figure 12-9.

402

Stored Procedures

Ble Edt Wew Project Debug Tods Tegt Wncow Communty Hed
[— EPRE R S | B i o RS |
4 iilgﬁsh'aiﬂeaivl" L
X J MDF} | - %
ALTER FROC spTriangular -x'
@Valueln i
@ValueQut anc OUTEUT
AsS
DECLARE §ILnWorking int
TECLARE @0utWorking int
IF §ValueIn != 1
EEGTH 5
E}:T_IC'I BIcWorking = BValueln -
EXEC spTriangular §loWorking, §CutWorking CUTERUT
EELECT @ValueOut = §Valueln + ingd
o
EL3E
BEGIN
SELECT Evalueow
END
RETURK
s
< m [2]
| Locas B %[Cdlstack - 1%
| hame Vahe Tire | Mame Lang!
B B | = o saTrimguierivme o\ 2a88B=2 w6046, QL SERVER 2000 SAMPLE DATABASES NORTHAND. MDF) it Evak T-501
@ Svakieout nt a5y . CHSL SERVER DATAS: RTHIWND.MDE it @Vals T-500
» BOulurking nt
@ inWarkng nt
3] cutpt Mm 1 | vcal stack [menedite wincow
feady

Figure 12-7

Fle Ecit Vew Progect Dsbug Oatz Took Test Window Community Help
[— EPRE R RSeS| B i o RS |
4 a4 L] h‘ =-= Hex E-l L
dbospTr MDF)| ==
ALTER FROC spTriangular -x'
#Valueln inc, |
@ValueQut anc OUTEUT
as
DECLARE §ILnWorking int
TECLARE @0utWorking int
IF §ValueIn != 1
EEGTH 5
[EELECT BloWorking = Bvalueln - 1
[EXEC spTriangular §loWorking, §CutWorking CUTERUT
EELECT @ValueOut = §Valueln + ingd
SELECT BValueCuw
END
RETURK
(]
4] u [2]
Loceks - x| Call Stack -1 X
| rame vahe | Tipe [reame Lang!
@ EYaleln 3 nt = doo.soTrianguler (e ton'\ 25388 2f-eaf0-46. C: GOL SERVER 2000 SAMPLE DATASASESINORTHWND. MDF)int Vel T-5Q1
& @vakisour nt i cha.s .CHE0L SERVER CATAR SRTHINTDLMOE) it @uaks T-501
» BOulurking nt
% @inWorkng z nt
3] cutpt Mm 1 | vcal stack [menedite wincow
feady Ln12 col 1 chi s

Figure 12-8

Chapter 12

" dbo.spTriangular: Stored Procedure(newton|2aB8ef-ea60-46.C\S0L SERVER 2000 SAMPLE DATAB . MDF) - Micrasoft Visual Studio mE =]
Bl Edt Vew Propect Dsbug Catz Took Test Window Community Help

- 5 e G| & A - - = O s o
Lhou @ e = (= 2 e | 3 - 2 G| -] Ew.R ey |

dbospTriang ORTHWHRD.MDF) -

')LX

ing = Bvalusln - 3|

= BloWorking, Working GUTEUT

2t = §Valuelsn + BCutWorkiog

s

| k>
Locaks - B X || Cdlstack - 3 X
Mame Vakae Tipe Mame Langi
@ EYalu=ln 1 nt . doo.soTriangular (newton'\2a888 2 abl L SERVER 2000 SAMPLE DATASASES\WORTHWND. MOF)int Evaku T-500
@ Sakieous nt dha.sTrangular e SERVER 3 E DATARASES\NORTHATD, uaks T
¢ E0ulWurdng nt doo.goTrianguler (newton' 25333« 2f-ea€0-46,C:'G0L SERVER 2000 SAMPLE DATASASES\NORTHWID. MDF) int &Yalu T-5Q
GinWorkng nt

2] Cutpit | 7] ocals [t 1 Ecal stack [immesate window
Ready Ln 18 Col 1 chi INS
Figure 12-9

There are two things to notice here. First, the values of our variables have changed back to those in the
scope of the outer (and currently selected) instance of the sproc. Second, the icon for our current execu-
tion line is different. This new green arrow is meant to show that this is the current line in this instance
of the sproc, but it is not the current line in the overall callstack.

Go back to the current instance by clicking on the top item in the Callstack window. Then step in three
more times. This should bring you to the top line (the IF statement) in our third instance of the sproc.
Notice that our callstack has become three deep, and that the values of our variables and parameters in
the Locals window have changed again. Last, but not least, notice that this time our @valueIn parame-
ter has a value of 1.

Step into the code one more time, and you'll see a slight change in behavior. This time, since the value in
@valueIn isindeed equal to 1, we move into the BEGIN. . . END block defined with our ELSE statement,
as shown in Figure 12-10.

Since we’ve reached the bottom, we’re ready to start going back up the callstack.

Notice that our callstack is back to only two levels. Also, notice that our output parameter (@0outWorking)
has been appropriately set.

This time, let’s do something different and do a Step out (Shift+F11). If you're not careful, it will look
like absolutely nothing has changed.

404

Stored Procedures

% dbo.spTriangular: Stored Procedure(newton'\2aBa8e2f-eat0-46.C:\S0L SERVER 2000 SAMPLE DATAB MDF) - Microsoft Visual Studio
File Ecit Vew Progect Dshug Oate Took Test Window Communty Help

A=A N AR R RS | : : ol =
I3 rl P P2 [T =z e | 2 - B | & e —_ | # g

] Dutpust | 5] Locals | Flviatch | s Call Stack | Immedate Window

Ready

iamg.. ORTHWHD.MDF)
S —

riangular

- I |[cd Slack
Trpe Tame.
nt » dbo.soTriangular(:

nt
nt

Ln 14 col 1 chi

BENX]

*
=
P

Figure

12-10

In this case, to use the old cliché, looks are deceiving. Again, notice the change in
the callstack window and in the values in the Locals window — we stepped

out of what was then the current instance of the sproc and moved up a level in the
callstack. If you now keep stepping into the code (F11), then our sproc has finished
running and we’ll see the final version of our status windows and their respective
finishing values. A big word of caution here! If you want to be able to see the truly
final values (such as an output parameter being set), make sure that you use the step
Into option to execute the last line of code.

If you use an option that executes several lines at once, such as a Go or Step Out, all
you will get is the output window without any final variable information.

A workaround is to place a break point on the last point at which you expect to per-
form a RETURN in the outermost instance of your sproc. That way, you can run in
whatever debug mode you want, but still have execution halt in the end so you can
inspect your final variables.

So, you should now be able to see how the Debugger can be very handy indeed.

405

Chapter 12

.NET Assemblies

Because of just how wide open of a topic these are, as well as their potential to add exceptional complex-
ity to your database, these are largely considered out of scope for this title save for one thing —letting
you know they are there.

.NET assemblies can be associated with your system and utilized to provide the power behind truly
complex operations. You could, just as an example, use a .NET assemble in a user-defined function to
provide data from a external datasource (perhaps one that has to be called on the fly, such as news feeds
or stock quotes) even though the structure and complex communications required would have ruled out
such a function in prior versions.

Without going into too much detail on them for now, let’s look at the syntax for adding an assembly to
your database:

CREATE ASSEMBLY <assembly name>

AUTHORIZATION <owner name>

FROM <path to assembly>

WITH PERMISSION_SET = [SAFE ‘ EXTERNAL_ACCESS | UNSAFE]

The CREATE ASSEMBLY part of things works as pretty much all our CREATE statements have — it indi-
cates the type of object being created and the object name.

Then comes the AUTHORIZATION — this allows you to set a context that the assembly is always to run
under. That is, if it has tables it needs to access, how you set the user or rolename in AUTHORIZATION
will determine whether it can access those tables or not.

After that, we go to the FROM clause. This is essentially the path to your assembly along with the mani-
fest for that assembly.

Finally, we have WITH PERMISSION_SET. This has three options:

a SAFE: This one is, at the risk of sounding obvious, well . . . safe. It restricts the assembly from
accessing anything that is external to SQL Server. Things like files or the network are not avail-
able to the assembly.

0 EXTERNAL_ACCESS: This allows external access such as files or the network, but requires that
the assembly still run as managed code.

0 unsarEe: This one is, at the risk of again sounding obvious —unsafe. It allows your assembly not
only to access external system objects, but also to run unmanaged code.

I cannot stress enough the risks you are taking when running .NET assemblies in
anything other than SAFE mode. Even in EXTERNAL_ACCESS mode you are allow-
ing the users of your system to access your network, files, or other external resources
is what is essentially an aliased mode — that is, they may be able to get at things that
you would rather they not get at, and they will be aliased on your network to what-
ever your SQL Server login is while they are making those accesses. Be very, very
careful with this stuff.

406

Stored Procedures

NET assemblies will be discussed extensively in Professional SQL Server 2005 Programming.

Summary

Wow! That'’s a lot to have to take in for one chapter. Still, this is among the most important chapters in
the book in terms of being able to function as a developer in SQL Server.

Sprocs are the backbone of code in SQL Server. We can create reusable code, and get improved perfor-
mance and flexibility at the same time. We can use a variety of programming constructs that you might
be familiar with from other languages, but sprocs aren’t meant for everything.

Pros to sprocs include:

Q Usually better performance
Q Possible use as a security insulation layer (control how a database is accessed and updated)
0 Reusable code
Q Compartmentalization of code (can encapsulate business logic)
Q Flexible execution depending on dynamics established at runtime
Cons to sprocs include:

0 Not portable across platforms (Oracle, for example has a completely different kind of imple-

mentation of sprocs)
Q May get locked into the wrong execution plan in some circumstances (actually hurting

performance)

Sprocs are not the solution to everything, but they are still the cornerstones of SQL Server programming.
In the next chapter, we’ll take a look at the sprocs brand new, and very closely related cousin — the UDF.

Exercises

1. Write a simple stored procedure that returns the desired Customer record from the Northwind
database given a parameter of the CustomerID.

2. Write a stored procedure that accepts a Territory ID, Territory Description, and Region ID and
inserts them as new row in the Territories table in Northwind.

3. Alter the procedure you created in #2 to pre-check for the existence of the foreign key (RegionID)
before attempting the insert. If the RegionID doesn’t exist, throw an error with the error text
“RegionID is not valid. Please check your RegionID and try again.”

4. Alter the procedure you created in #2 to handle the exception after the fact when a RegionID
doesn’t exist. Trap all other errors and provide the generic error message: “An unhandled
exception has occurred. Contact your system administrator.”

407

13

User Defined Functions

Well, here we are already at one of my favorite topics. Five years after their introduction, user-
defined functions — or UDFs —remain one of the more under-utilized and misunderstood objects
in SQL Server. In short, these were awesome when Microsoft first introduced them in SQL Server
2000, and the advent of .NET just adds some extra “umpf” to them. One of the best things about
them from your point of view is, provided you’ve done the book in order, you already know most
of what you need to write them. They are actually very, very similar to stored procedures — they
just have certain behaviors and capabilities about them that set them apart and make them the
answer in many situations.

In this chapter, we're not only going to introduce what UDFs are, but we’re also going to take a

look at the different types of UDFs, how they vary from stored procedures, and, of course, what
kind of situations we might want to use them in. Finally, we’ll take a quick look at how you can
use .NET to expand on their power.

What a UDF Is

A user-defined function is, much like a sproc, an ordered set of T-SQL statements that are pre-
optimized and compiled and can be called to work as a single unit. The primary difference
between them is how results are returned. Because of things that need to happen in order to
support these different kinds of returned values, UDFs have a few more limitations to them
than sprocs do.

OK, so I've said what a UDF is, so I suspect I ought to take a moment and say what it is not. A
UDF is definitely NOT a replacement for a sproc — they are just a different option that offers us
yet one more form of code flexibility.

With a sproc, you can pass parameters in, and also get values in parameters passed back out. You
can return a value, but that value is really intended to indicate success or failure rather than return
data. You can also return result sets, but you can’t really use those result sets in a query without
first inserting them into some kind of table (usually a temporary table) to work with them further.

Chapter 13

With a UDF, however, you can pass parameters in, but not out. Instead, the concept of output parameters
has been replaced with a much more robust return value. As with system functions, you can return a
scalar value—what’s particularly nice, however, is that this value is not limited to just the integer data-
type as it would be for a sproc. Instead, you can return most SQL Server datatypes (more on this in the
next section).

As they like to say in late-night television commercials: “But Wait! There’s more!” The “more” is that
you are actually not just limited to returning scalar values —you can also return tables. This is wildly
powerful, and we’ll look into this fully later in the chapter.

So, to summarize, we have two types of UDFs:

O Those that return a scalar value

Q Those that return a table
Let’s take a look at the general syntax for creating a UDF:

CREATE FUNCTION [<schema name>.]<function name>

([<@parameter name> [AS] [<schema name>.]<scalar data type> [= <default
value>]

[,...n 1 1)

RETURNS {<scalar type>|TABLE [(<Table Definition>)]}

[WITH [ENCRYPTION] |[SCHEMABINDING] |
[RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT] | [EXECUTE AS {
CALLER | SELF | OWNER | <'user name'>}]
]
[AS] { EXTERNAL NAME <external method> |
BEGIN

[<function statements>]

{RETURN <type as defined in RETURNS clause>|RETURN (<SELECT statement>)}
END }[;]

This is kind of a tough one to explain because parts of the optional syntax are dependent on the choices
you make elsewhere in your CREATE statement. The big issues here are whether you are returning a
scalar datatype or a table and whether you're doing a T-SQL based function or doing something utiliz-
ing the CLR and .NET. Let’s look at each type individually.

UDFs Returning a Scalar Value

This type of UDF is probably the most like what you might expect a function to be. Much like most of
SQL Server’s own built-in functions, they will return a scalar value to the calling script or procedure;
functions such as GETDATE () or USER ()) return scalar values.

Aslindicated earlier, one of the truly great things about a UDF is that you are not limited to an integer for
a return value —instead, it can be of any valid SQL Server datatype (including user-defined datatypes!),
except for BLOBs, cursors, and timestamps. Even if you wanted to return an integer, a UDF should look
very attractive to you for two different reasons:

410

User Defined Functions

Q Unlike sprocs, the whole purpose of the return value is to serve as a meaningful piece of data—
for sprocs, a return value is meant as an indication of success or failure, and, in the event of fail-
ure, to provide some specific information about the nature of that failure.

0 You can perform functions in-line to your queries (for instances, include it as part of your
SELECT statement) — you can’t do that with a sproc.

So, that said, let’s create a simple UDF to get our feet wet on the whole idea of how we might utilize
them differently from a sproc. I'm not kidding when I say this is a simple one from a code point of view,
but I think you’ll see how it illustrates my sprocs versus UDFs point.

One of the most common function-like requirements I see is a desire to see if an entry in a datetime field
occurred on a specific day. The usual problem here is that your datetime field has specific time-of-day
information that prevents it from easily being compared with just the date. Indeed, we’ve already seen
this problem in some of our comparisons in previous chapters.

Let’s go back to our Accounting database that we created in an earlier chapter. Imagine for a moment
that we want to know all the orders that came in today. Let’s start by adding a few orders in with today’s
date. We'll just pick customer and employee IDs we know already exist in their respective tables (if you
don’t have any records there, you'll need to insert a couple of dummy rows to reference). I'm also going
to create a small loop to add in several rows:

USE Accounting
DECLARE @Counter int

SET @Counter = 1
WHILE @Counter <= 10

BEGIN
INSERT INTO Orders
VALUES (1, DATEADD (mi,@Counter,GETDATE()), 1)
SET @Counter = @Counter + 1
END

So, this gets us 10 rows inserted, with each row being inserted with today’s date, but one minute apart
from each other.

OK, if you're running this just before midnight, some of the rows may dribble over into the next day, so
be careful — but it will work fine for everyone except the night owls.

So, now we're ready to run a simple query to see what orders we have today. We might try something like:

SELECT *
FROM Orders
WHERE OrderDate = GETDATE()

Unfortunately, this query will not get us anything back at all. This is because GETDATE () gets the current
time down to the millisecond —not just the day. This means that any query based on GETDATE () is very
unlikely to return us any data —even if it happened on the same day (it would have had to have hap-
pened within in the same minute for a smalldatetime, and within a millisecond for a full datetime
field).

411

Chapter 13

The typical solution is to convert the date to a string and back in order to truncate the time information,
and then perform the comparison.

It might look something like:

SELECT *
FROM Orders
WHERE CONVERT (varchar(12), OrderDate, 101) = CONVERT (varchar(12), GETDATE(), 101)

This time, we will get back every row with today’s date in the OrderDate column—regardless of what
time of day the order was taken. Unfortunately, this isn’t exactly the most readable code. Imagine you had
a large series of dates you needed to perform such comparisons against —it can get very ugly indeed.

So now let’s look at doing the same thing with a simple user-defined function. First, we’ll need to create
the actual function. This is done with the new CREATE FUNCTION command, and it’s formatted much
like a sproc. For example, we might code this function like this:

CREATE FUNCTION dbo.DayOnly (@Date datetime)
RETURNS varchar (12)
AS
BEGIN

RETURN CONVERT (varchar(12), @Date, 101)
END

where the date returned from GETDATE () is passed in as the parameter and the task of converting the
date is included in the function body and the truncated date is returned.

To see this function in action, let’s reformat our query slightly:

SELECT *
FROM Orders
WHERE dbo.DayOnly (OrderDate) = dbo.DayOnly (GETDATE())

We get back the same set as with the stand-alone query. Even for a simple query like this one, the new
code is quite a bit more readable. The call works pretty much as it would from most languages that sup-
port functions. There is, however, one hitch — the schema is required. SQL Server will, for some reason,
not resolve functions the way it does with other objects.

As you might expect, there is a lot more to UDFs than just readability though. You can embed queries in
them and use them as an encapsulation method for subqueries. Almost anything you can do procedu-
rally that returns a discrete value could also be encapsulated in a UDF and used inline with your queries.

Let’s take a look at a very simple subquery example. The subquery version looks like this:

USE pubs
SELECT Title,

Price,

(SELECT AVG(Price) FROM Titles) AS Average, Price - (SELECT AVG (Price) FROM
Titles)

AS Difference

FROM Titles
WHERE Type='popular_comp'

412

User Defined Functions

This gets us back a pretty simple set of data:

Title Price Average Difference
But Is It User Friendly? 22.9500 14.7662 8.1838
Secrets of Silicon Valley 20.0000 14.7662 5.2338
Net Etiquette NULL 14.7662 NULL

(3 row(s) affected)
Warning: Null value is eliminated by an aggregate or other SET operation.

Let’s try it again, only this time we’ll encapsulate both the average and the difference into two functions.
The first encapsulates the task of calculating the average and the second does the subtraction.

CREATE FUNCTION dbo.AveragePrice()
RETURNS money
WITH SCHEMABINDING
AS
BEGIN
RETURN (SELECT AVG (Price) FROM dbo.Titles)
END
GO

CREATE FUNCTION dbo.PriceDifference (@Price money)
RETURNS money
AS
BEGIN
RETURN @Price - dbo.AveragePrice()
END

Notice that it’s completely legal to embed one UDF in another one.

Note that the WITH SCHEMABINDING option works for functions just the way that it did for views —if
a function is built using schema-binding, then any object that function depends on cannot be altered or
dropped without first removing the schema-bound function. In this case, schema-binding wasn't really
necessary, but I wanted to point out its usage and also prepare this example for something we’re going
to do with it a little later in the chapter.

Now let’s run our query using the new functions instead of the old subquery model:

USE pubs
SELECT Title,
Price,
dbo.AveragePrice() AS Average,
dbo.PriceDifference (Price) AS Difference
FROM Titles
WHERE Type='popular_comp'

This yields us the same results we had with our subquery, but without the warning!
Note that, beyond the readability issue, we also get added benefit of reuse out of this. For a little exam-

ple like this, it probably doesn’t seem like a big deal, but as your functions become more complex, it can
be quite a time saver.

413

Chapter 13

UDFs That Return a Table

User-defined functions in SQL Server are not limited to just returning scalar values. They can return some-
thing far more interesting — tables. Now, while the possible impacts of this are sinking in on you, I'll go
ahead and add that the table that is returned is, for the most part, usable much as any other table is. You can
perform a JOIN against it and even apply WHERE conditions against the results. It’s very cool stuff indeed.

To make the change to using a table as a return value is not hard at all—a table is just like any other SQL
Server datatype as far as a UDF is concerned. To illustrate this, we’ll build a relatively simple one to start:

USE pubs
GO

CREATE FUNCTION dbo.fnAuthorList ()
RETURNS TABLE

AS
RETURN (SELECT au_id,
au_lname + ', ' + au_fname AS au_name,
address AS addressl,
city + ', ' + state + ' ' + zip AS address2
FROM authors)
GO

This function returns a table of SELECTed records and does a little formatting: joining the last and first
names, separating them with a comma, and concatenating the three components to fill the address2
column.

At this point, we're ready to use our function just as we would use a table — the only exception is that,
as was discussed with scalar functions, we must use the two-part naming convention:

SELECT *
FROM dbo.fnAuthorList ()

The results are a bit lengthy, so I've clipped out the middle of them, but you should get the picture:

au_id au_name address1 address2
172-32-1176 White, Johnson 10932 Bigge Rd. Menlo Park, CA 94025
213-46-8915 Green, Marjorie 309 63rd St. Oakland, CA 94618
#411

238-95-7766 Carson, Cheryl 539 Darwin Ln. Berkeley, CA 94705
893-72-1158 McBadden, 301 Putnam Vacaville, CA 95688

Heather
899-46-2035 Ringer, Anne 67 Seventh Av. Salt Lake City, UT 84152
998-72-3567 Ringer, Albert 67 Seventh Av. Salt Lake City, UT 84152

414

User Defined Functions

Now, let’s add a bit more fun into things. What we did with this table up to this point could have been
done just as easily —easier in fact—with a view. But what if we wanted to parameterize a view? What if
we wanted this to show only authors who had sold at least certain quantity of books? We could do this
with a view by joining with another table or two, but, then again, things get a bit messy and we would
wind up having to include a column in our view we don’t necessarily want (the sales quantity) and then
use a WHERE clause. It might look something like this:

--CREATE our view
CREATE VIEW vSalesCount

AS
SELECT au.au_id,
au.au_lname + ', ' + au.au_fname AS au_name,
au.address,
au.city + ', ' + au.state + ' ' + zip AS address2,

SUM(s.gty) As SalesCount
FROM authors au
JOIN titleauthor ta

ON au.au_id = ta.au_id
JOIN sales s

ON ta.title_id = s.title_id
GROUP BY au.au_id,

au.au_lname + ', ' + au.au_fname,
au.address,
au.city + ', ' + au.state + ' ' + zip

GO

This would yield us what was asked for, with a few twists. First, we can’t parameterize things right in
the view itself, so we’re going to have to include a WHERE clause in our query. Second, we’ll need to
provide a specific SELECT list to filter out the vSalesCount column (remember, we want to show the
authors who sold over a specific value, but not necessarily their actual sales):

SELECT au_name, address, Address2 FROM vSalesCount
WHERE SalesCount > 25

This should get you results that look something like this:

au_name address address2

Green, Marjorie 309 63rd St. #411 Oakland, CA 94618
Carson, Cheryl 589 Darwin Ln. Berkeley, CA 94705
0'Leary, Michael 22 Cleveland Av. #14 San Jose, CA 95128

Dull, Ann 3410 Blonde St. Palo Alto, CA 94301
DeFrance, Michel 3 Balding P1. Gary, IN 46403
MacFeather, Stearns 44 Upland Hts. Oakland, CA 94612
Panteley, Sylvia 1956 Arlington P1. Rockville, MD 20853
Hunter, Sheryl 3410 Blonde St. Palo Alto, CA 94301
Ringer, Anne 67 Seventh Av. Salt Lake City, UT 84152
Ringer, Albert 67 Seventh Av. Salt Lake City, UT 84152

415

Chapter 13

To simplify things a bit, we’ll encapsulate everything in a function instead:

USE pubs
GO

CREATE FUNCTION dbo.fnSalesCount (@SalesQty bigint)
RETURNS TABLE

AS
RETURN (SELECT au.au_id,
au.au_lname + ', ' + au.au_fname AS au_name,
au.address,
au.city + ', ' + au.state + ' ' + zip AS Address?2
FROM authors au
JOIN titleauthor ta
ON au.au_id = ta.au_id
JOIN sales s
ON ta.title_id = s.title_id
GROUP BY au.au_id,
au.au_lname + ', ' + au.au_fname,
au.address,
au.city + ', ' + au.state + ' ' + zip
HAVING SUM(gty) > @SalesQty
)
GO

Now we're set up pretty well —to execute it, we just call the function and provide the parameter:

SELECT *
FROM dbo.fnSalesCount (25)

And we get back the same result set—no WHERE clause, no filtering the SELECT list, and, as our friends
down under would say, “no worries”; we can use this over and over again without having to use the old
“cut and paste” trick. Note, also, that while you could have achieved similar results with a sproc and an
EXEC command, you couldn’t directly join the results of the sproc to another table.

To illustrate this, let’s take our example just one step further. Let’s say that you have a manager who
wants a report listing the author and the publisher(s) for every author who’s sold over 25 books. With a
stored procedure, you couldn’t join to the results, so you would pretty much be out of luck. (I can think
of one several step processes to do this, but it isn’t pretty at all.) With our function, this is no problem:

SELECT DISTINCT p.pub_name, a.au_name
FROM dbo.fnSalesCount (25) AS a
JOIN titleauthor AS ta
ON a.au_id = ta.au_id
JOIN titles AS t
ON ta.title_id = t.title_id
JOIN publishers AS p
ON t.pub_id = p.pub_id

We get back our author listing along with all the different publishers that they have:

416

User Defined Functions

pub_name au_name

Algodata Infosystems Carson, Cheryl
Binnet & Hardley DeFrance, Michel
Algodata Infosystems Dull, Ann

Algodata Infosystems Green, Marjorie
New Moon Books Green, Marjorie
Algodata Infosystems Hunter, Sheryl
Algodata Infosystems MacFeather, Stearns
Binnet & Hardley MacFeather, Stearns
Algodata Infosystems O'Leary, Michael
Binnet & Hardley O'Leary, Michael
Binnet & Hardley Panteley, Sylvia
New Moon Books Ringer, Albert
Binnet & Hardley Ringer, Anne

New Moon Books Ringer, Anne

As you can see, we joined to the function just as if it were a table or view. The only real difference is that
we were allowed to parameterize it.

Well, all this would probably be exciting enough, but sometimes we need more than just a single SELECT
statement. Sometimes, we want more than just a parameterized view. Indeed, much as we saw with some
of our scalar functions, we may need to execute multiple statements in order to achieve the results that
we want. User-defined functions support this notion just fine. Indeed, they can return tables that are cre-
ated using multiple statements, as we’ve seen in a single statement function — the only big difference is
that you must both name and define the metadata (much as you would a temporary table) for what you'll
be returning.

For this example, we'll deal with a very common problem in the relational database world — hierarchies.
Imagine for a moment that you are working in the Human Resources department for Northwind. You have
an Employees table, and it has a unary relationship that relates each employee to their boss through the
ReportsTo column — that is, the way you know who someone’s boss is by relating the ReportsTo column
back to another EmployeeID. A very common need in a scenario like this is to be able to create a reporting
“tree” —that is, a list of all of the people who exist below a given manager in an organization chart.

At first blush, this would seem pretty easy. If we wanted to know all the people who report to Andrew
Fuller, we might write a query that would join the Employees table back to itself —something like:

Use Northwind

SELECT Emp.EmployeeID, Emp.LastName, Emp.FirstName, Emp.ReportsTo
FROM Employees AS Emp

417

Chapter 13

JOIN Employees AS Mgr

ON Mgr.EmployeeID = Emp.ReportsTo
WHERE Mgr.LastName = 'Fuller'

AND Mgr.FirstName = 'Andrew'

Again, at first glance, this might appear to give us what we want:

EmployeeID LastName FirstName ReportsTo
1 Davolio Nancy 2

3 Leverling Janet 2

4 Peacock Margaret 2

5 Buchanan Steven 2

8 Callahan Laura 2

(

5 row(s) affected)

But, in reality, we have a bit of a problem here. At issue is that we want all of the people in Andrew Fuller’s
reporting chain—not just those who report to Andrew Fuller, but those who report to people who report to
Andrew Fuller, and so on. You see that if you look at all the records in Northwind, you’ll find a number of
employees who report to Steven Buchanan, but they don’t appear in the results of this query.

OK, so some of the quicker or more experienced among you may now be saying something like, “Hey, no
problem! I'll just join back to the Employees table one more time!” You could probably make this work
for such a small data set, or any situation where the number of levels of your hierarchy is fixed — but
what if the number of hierarchy levels isn’t fixed? What if people are reporting to Steven Buchanan, and
still others report to people under Steven Buchanan —it could go on virtually forever. Now what? Glad
you asked . . .

What we really need is a function that will return all the levels of the hierarchy below whatever
EmployeelID (and, therefore, ManagerID) we provide. To do this, we have a classic example of recursion. A
block of code is said to recurse anytime it calls itself. We saw an example of this in our last chapter with our
spFactorial and spTriangular stored procedures. Let’s think about this scenario for a moment:

1. Weneed to figure out all the people who report to the manager that we want.
2. Foreach person in Step 1, we need to know who reports to them.

3. Repeat Step 2 until there are no more subordinates.

This is recursion all the way. What this means is that we're going to need several statements to make our
function work: Some statements to figure out the current level, and at least one more to call the same
function again to get the next lowest level.

Keep in mind that UDFs are going to have the same recursion limits that sprocs had — that is, you can
only go to 32 levels of recursion, so, if you have a chance of running into this limit, you'll want to get
creative in your code to avoid errors.

Let’s put it together. Notice the couple of changes in the declaration of our function. This time, we need
to associate a name with the return value (in this case, @Reports)— this is required any time you're
using multiple statements to generate your result. Also, we have to define the table that we will be
returning — this allows SQL Server to validate whatever we try to insert into that table before it is
returned to the calling routine.

418

User Defined Functions

CREATE FUNCTION dbo.fnGetReports
(@EmployeeID AS int)
RETURNS @Reports TABLE
(
EmployeeID int NOT NULL,
ReportsTolID int NULL
)

AS

BEGIN

/* Since we'll need to call this function recursively - that is once for each
reporting

** employee (to make sure that they don't have reports of their own), we need a
holding

** yariable to keep track of which employee we're currently working on. */
DECLARE @Employee AS int

/* This inserts the current employee into our working table. The significance here
is
** that we need the first record as something of a primer due to the recursive
nature
** of the function - this is how we get it. */
INSERT INTO @Reports
SELECT EmployeeID, ReportsTo
FROM Employees
WHERE EmployeeID = @QEmployeeID
/* Now we also need a primer for the recursive calls we're getting ready to start
making
** to this function. This would probably be better done with a cursor, but we
haven't
** gotten to that chapter yet, so.... */
SELECT @Employee = MIN(EmployeeID)
FROM Employees
WHERE ReportsTo = @EmployeelD

/* This next part would probably be better done with a cursor but we haven't gotten
to

** that chapter yet, so we'll fake it. Notice the recursive call to our function!
*/

WHILE @Employee IS NOT NULL

BEGIN
INSERT INTO @Reports
SELECT *
FROM fnGetReports (@Employee)
SELECT @Employee = MIN(EmployeeID)
FROM Employees
WHERE EmployeeID > @Employee
AND ReportsTo = @EmployeeID
END
RETURN
END
GO

419

Chapter 13

I've written this one to provide just minimal information about the employee and their manager —1I can
join back to the Employees table if need be to fetch additional information. I also took a little bit of lib-
erty with the requirements on this one, and added in the selected manager to the results. This was done
primarily to support the recursion scenario and also to provide something of a base result for our result
set. Speaking of which, let’s look at our results — Andrew Fuller is EmployeeID #2, so we'll feed that
into our function:

SELECT * FROM fnGetReports(2)

This gets us not only the original five people who reported to Andrew Fuller, but also those who report
to Steven Buchanan (who reports to Mr. Fuller) and Mr. Fuller himself (remember, I added him in as
something of a starting point).

EmployeeID ReportsToID

—~ 00 WOV J o Ul i WE DN
N O OO NN N

9 row(s) affected)

As it happens, this is all of the employees in Northwind (unless you've added some yourself), but, if you
play around with the data in the ReportsTo column some, you'll see we are indeed getting back the
expected results. To test just a little further, however, you can feed in Steven Buchanan’s ID (which is 5):

SELECT * FROM fnGetReports(5)

EmployeeID ReportsToID
5 2

6 5

7 5

9 5

(

4 row(s) affected)

We get the limited results we expected. Now, let’s go the final step here and join this back to actual data.
We'll use it much as we did our original query looking for the reports of Andrew Fuller:

DECLARE @EmployeeID int

SELECT @QEmployeeID = EmployeelD
FROM Employees
WHERE LastName = 'Fuller'
AND FirstName = 'Andrew'

SELECT Emp.EmployeeID, Emp.LastName, Emp.FirstName, Mgr.LastName AS ReportsTo

420

User Defined Functions

FROM Employees AS Emp
JOIN dbo.fnGetReports (@EmployeeID) AS gr
ON gr.EmployeeID = Emp.EmployeeID
JOIN Employees AS Mgr
ON Mgr.EmployeeID = gr.ReportsToID

This gets us back all eight employees who are under Mr. Fuller:

EmployeeID LastName FirstName ReportsTo
1 Davolio Nancy Fuller

3 Leverling Janet Fuller

4 Peacock Margaret Fuller

5 Buchanan Steven Fuller

6 Suyama Michael Buchanan
7 King Robert Buchanan
9 Dodsworth Anne Buchanan
8 Callahan Laura Fuller

(

8 row(s) affected)

This should have you asking why Mr. Fuller didn’t show up in the query — after all, we’ve already
proven that he shows up in the results of the function. The reason that he doesn’t show up is that the
value in the ReportsTo column for his record is NULL, and so there’s nothing to join back to the
Employees table based on. The filtering happened because of the query, not because of the function.

So, as you can see, we can actually have very complex code build our table results for us, but it’s still a
table that results and, as such, it can be used just like any other table.

Understanding Determinism

Any coverage of UDFs would be incomplete without discussing determinism. If SQL Server is going to
build an index over something, it has to be able to deterministically define (define with certainty) what
the item being indexed is. Why does this matter to functions? Well, because we can have functions that
feed data to things that will be indexed (computed column or indexed view).

User-defined functions can be either deterministic or non-deterministic. The determinism is not defined
by any kind of parameter, but rather by what the function is doing. If, given a specific set of valid inputs,
the function will return exactly the same value every time, then the function is said to be deterministic.
An example of a built-in function that is deterministic is SUM() . The sum of 3, 5, and 10 is always going
to be 18 — every time the function is called with those values as inputs. The value of GETDATE () , how-
ever, is non-deterministic — it changes pretty much every time you call it.

To be considered deterministic, a function has to meet four criteria:

Q The function must be schema-bound. This means that any objects that the function depends on
will have a dependency recorded and no changes to those objects will be allowed without first
dropping the dependent function.

Q All other functions referred to in your function, regardless of whether they are user- or system-
defined, must also be deterministic.

421

Chapter 13

Q You cannot reference tables that are defined outside the function itself (use of table variables
and temporary tables is fine, as long as the table variable or temporary table was defined inside
the scope of the function).

O You cannot use an extended stored procedure inside the function.

The importance of determinism shows up if you want to build an index on a view or computed column.
Indexes on views or computed columns are only allowed if the result of the view or computed column
can be reliably determined. This means that, if the view or computed column refers to a non-deterministic
function, no index will be allowed on that view or column. This situation isn’t necessarily the end of the
world, but you will want to think about whether a function is deterministic or not before creating indexes
against views or columns that use that function.

So, this should beget the question: “How do I figure out whether my function is deterministic or not?”
Well, beyond checking the rules we’ve already described, you can also have SQL Server tell you whether
your function is deterministic or not—it’s stored in the IsDeterministic property of the object. To
check this out, you can make use of the OBJECTPROPERTY function. For example, we could check out the
determinism of our DayOnly function that we used earlier in the chapter:

USE Accounting

SELECT OBJECTPROPERTY (OBJECT ID('DayOnly'), 'IsDeterministic')

It may come as a surprise to you (or maybe not) that the response is that this function is not deterministic:

(1 row(s) affected)

Look back through the list of requirements for a deterministic function and see if you can figure out why
this one doesn’t meet the grade.

When I was working on this example, I got one of those not so nice little reminders about how it’s the
little things that get you. You see, I was certain this function should be deterministic, and, of course, it
wasn't. After too many nights writing until the morning hours, I completely missed the obvious —
SCHEMABINDING.

Fortunately, we can fix the only problem this one has. All we need to do is add the WITH SCHEMABINDING
option to our function, and we’ll see better results:

ALTER FUNCTION DayOnly (@Date datetime)
RETURNS varchar (12)
WITH SCHEMABINDING
AS
BEGIN

RETURN CONVERT (varchar(12), @Date, 101)
END

Now, we just re-run our OBJECTPROPERTY query:

(1 row(s) affected)

422

User Defined Functions

And voila —a deterministic function!

We can compare this, however, with our AveragePrice function that we built in the pubs database. It
looked something like this:

USE Pubs
GO

CREATE FUNCTION dbo.AveragePrice()
RETURNS money
WITH SCHEMABINDING
AS
BEGIN
RETURN (SELECT AVG(Price) FROM dbo.Titles)
END

In this function we used schema-binding right from the beginning, so let’s look at our OBJECTPROPERTY:
SELECT OBJECTPROPERTY (OBJECT_ID('AveragePrice'), 'IsDeterministic')

Despite being schema-bound, this one still comes back as being non-deterministic. That’s because this
function references a table that isn’t local to the function (a temporary table or table variable created
inside the function).

Under the heading of “one more thing,” it’s also worth noting that the PriceDif ference function we
created at the same time as AveragePrice is also non-deterministic. For one thing, we didn’t make it
schema-bound, but, more important, it references AveragePrice —if you reference a non-deterministic
function, then the function you're creating is non-deterministic by association.

Debugging User-Defined Functions

This actually works just the same as the sproc example we saw in Chapter 12.

In Visual Studio, use the Server Explorer to set up a connection and navigate to your UDEF. Right click,
and choose Step Into — it all works the same except for where you pick it out in the list (from functions
instead of sprocs).

.NET in a Database World

As we discussed in Chapter 12, with SQL Server 2005 we gained the ability to use .NET assemblies in our
stored procedures and functions. Much as it did with sprocs, this has enormous implications for functions.

Considering most who read this title will be beginners, it’s hard to fully relate the impact that .NET has
in our database world. The reality is that you won't use it all that often, and yet, when you do, the effects
can be profound. Need to implement a complex formula for a special function? No problem. Need to
access external data sources such as credit card authorization companies and such things? No problem.
Need to access other complex data sources? No problem. In short, things we used to have to either skip
or otherwise perform extremely complex development for (in some cases, it was all smoke and mirrors
before) suddenly become relatively straightforward.

423

Chapter 13

What does this mean in terms of functions? Well, I already gave the example of implementing a complex
formula in a function. But now imagine something like external tabular data—let’s say representing a
.csv or some other data in a tabular fashion —very doable with a .NET assembly created as a function in
SQL Server.

.NET assemblies in SQL Server remains, however, something of an advanced concept, and one I'll defer
to the Professional series title for SQL Server 2005. That said, it's important to understand that the option
is available and consider it as something worth researching in that “wow, have no idea how we're
going to do this!” situation.

Summary

What we added in this chapter was, in many ways, not new at all. Indeed, much of what goes into user-
defined functions is the same set of statements, variables, and general coding practices that we have
already seen in scripting and stored procedures. However, UDFs still provide us a wonderful new area
of functionality that was not previously available in SQL Server. We can now encapsulate a wider range
of code, and even use this encapsulated functionality inline with our queries. What’s more, we can now
also provide parameterized views and dynamically created tables.

User-defined functions are, in many ways, the most exciting of all the new functionality added to SQL
Server. In pondering their uses, I have already come to realize that I'm only scratching the surface of
their potential. Over the life of this next release, I suspect that developers will implement UDFs in ways
I have yet to dream of —let’s hope you'll be one of those developers!

Exercise

1. Reimplement the spTriangular function from Chapter 12 as a function instead of a stored
procedure.

424

14

Transactions and Locks

This is one of those chapters that, when you go back to work, makes you sound like you've had
your Wheaties today. Nothing in what we’re going to cover in this chapter is wildly difficult, yet
transactions and locks tend to be two of the most misunderstood areas in the database world. As
such, this “beginning” (or at least I think it’s a basic) concept is going to make you start to look like
a real pro.

In this chapter, we're going to:

Q Demystify transactions
0 Examine how the SQL Server log and “checkpoints” work

Q Unlock your understanding of locks

We'll learn why these topics are so closely tied to each other, and how to minimize problems with
each.

Transactions

Transactions are all about atomicity. Atomicity is the concept that something should act as a unit.
From our database standpoint, it’s about the smallest grouping of one or more statements that
should be considered to be “all or nothing.”

Often, when dealing with data, we want to make sure that if one thing happens, another thing
happens, or that neither of them does. Indeed, this can be carried out to the degree where 20
things (or more) all have to happen together or nothing happens. Let’s look at a classic example.

Imagine that you are a banker. Sally comes in and wants to transfer $1,000 from checking to sav-
ings. You are, of course, happy to oblige, so you process her request.

Chapter 14

Behind the scenes, we have something like this happening:

UPDATE checking
SET Balance = Balance—1000
WHERE Account = 'Sally'
UPDATE savings
SET Balance = Balance + 1000
WHERE Account = 'Sally'

This is a hyper-simplification of what’s going on, but it captures the main thrust of things: you need to
issue two different statements — one for each account.

Now, what if the first statement executes and the second one doesn’t? Sally would be out of a thousand
dollars! That might, for a short time, seem OK from your perspective (heck, you just made a thousand
bucks!), but not for long. By that afternoon you’d have a steady stream of customers leaving your

bank —it’s hard to stay in the bank business with no depositors.

What you need is a way to be certain that if the first statement executes, the second statement executes.
There really isn’t a way that we can be certain of that—all sorts of things can go wrong from hardware
failures to simple things such as violations of data integrity rules. Fortunately, however, there is a way to
do something that serves the same overall purpose —we can essentially forget that the first statement
ever happened. We can enforce at least the notion that if one thing didn’t happen, then nothing did —at
least within the scope of our transaction.

In order to capture this notion of a transaction, however, we need to be able to define very definite bound-
aries. A transaction has to have very definitive begin and end points. Actually, every SELECT, INSERT,
UPDATE, and DELETE statement you issue in SQL Server is part of an implicit transaction. Even if you issue
only one statement, that one statement is considered to be a transaction —everything about the statement
will be executed, or none of it will. Indeed, by default, that is the length of a transaction — one statement.

But what if we need to have more than one statement be all or nothing — such as our preceding bank
example? In such a case, we need a way of marking the beginning and end of a transaction, as well as
the success or failure of that transaction. To that end, there are several T-SQL statements that we can use
to “mark” these points in a transaction. We can:

0 BEGIN a transaction: Set the starting point.

QO CcoMMIT a transaction: Make the transaction a permanent, irreversible part of the database.

0 ROLLBACK a transaction: Essentially saying that we want to forget that it ever happened.

0 SAVE a transaction: Establishing a specific marker to allow us to do only a partial rollback.

Let’s look over all of these individually before we put them together into our first transaction.

BEGIN TRAN

The beginning of the transaction is probably one of the easiest concepts to understand in the transaction
process. Its sole purpose in life is to denote the point that is the beginning of a unit. If, for some reason, we
are unable to or do not want to commit the transaction, this is the point to which all database activity will
be rolled back. That is, everything beyond this point that is not eventually committed will effectively be
forgotten as far as the database is concerned.

426

Transactions and Locks

The syntax is:

BEGIN TRAN[SACTION] [<transaction name>|<@transaction variable>]

COMMIT TRAN

The committing of a transaction is the end of a completed transaction. At the point that you issue the
COMMIT TRAN, the transaction is considered to be what is called durable. That is, the effect of the transaction
is now permanent, and will last even if you have a system failure (as long as you have a backup or the
database files haven’t been physically destroyed). The only way to “undo” whatever the transaction
accomplished is to issue a new transaction that, functionally speaking, is a reverse of your first transaction.

The syntax for a cOMMIT looks pretty similar to a BEGIN:

COMMIT TRAN[SACTION] [<transaction name>|<@transaction variable>]

ROLLBACK TRAN

Whenever I think of a ROLLBACK, I think of the old movie The Princess Bride. If you’ve ever seen the film
(if you haven’t, I highly recommend it), you'll know that the character Vizzini (considered a genius in
the film) always said, “If anything goes wrong — go back to the beginning.”

That was some mighty good advice. A ROLLBACK does just what Vizzini suggested — it goes back to the
beginning. In this case, it’s your transaction that goes back to the beginning. Anything that happened
since the associated BEGIN statement is effectively forgotten about. The only exception to going back to
the beginning is through the use of what are called save points —which we’ll describe shortly.

The syntax for a ROLLBACK again looks pretty much the same, with the exception of allowance for a save
point.

ROLLBACK TRAN[SACTION] [<transaction name>|<save point name> |
<@transaction variable>|<@savepoint variable>]

SAVE TRAN

To save a transaction is essentially to create something of a bookmark. You establish a name for your
bookmark (you can have more than one). After this “bookmark” is established, you can reference it in a
rollback. What's nice about this is that you can roll back to the exact spot in the code that you want to—
just by naming a save point to which you want to roll back.

The syntax is simple enough:

SAVE TRAN[SACTION] [<save point name>| <@savepoint variable>]
The thing to remember about save points is that they are cleared on ROLLBACK — that is, even if you save
five save points, once you perform one ROLLBACK they are all gone. You can start setting new save points

again, and rolling back to those, but whatever save points you had when the ROLLBACK was issued are gone.

SAVE TRAN can get extremely confusing and I can’t recommend it for the beginning user, but keep it in
mind as being there.

427

Chapter 14

How the SQL Server Log Works

You definitely must have the concept of transactions down before you get into trying to figure out the
way that SQL Server tracks what’s what in your database. You see, what you think of as your database is
only rarely a complete version of all the data. Except for rare moments when it happens that everything
has been written to disk, the data in your database is made up of not only the data in the physical
database file(s), but also any transactions that have been committed to the log since the last checkpoint.

In the normal operation of your database, most activities that you perform are “logged” to the transaction
log rather than written directly to the database. A checkpoint is a periodic operation that forces all dirty
pages for the database currently in use to be written to disk. Dirty pages are log or data pages that have
been modified after they were read into the cache, but the modifications have not yet been written to
disk. Without a checkpoint the log would fill up and/or use all the available disk space. The process
works something like the diagram in Figure 14-1.

Data needed

Room in cache
for new data?

Yes Y(is lJ
.

Data in cache? No—> Issue checkpoint

. Read data Write any
Read or modify '”lto _Ca‘*l‘e S? modified
data in cache placing leas cache
recently used pages to disk
data

Data changed?

Yes
|

Write changes
to log

Figure 14-1
428

Transactions and Locks

Don’t mistake all this as meaning that you have to do something special to get your data out of the
cache. SQL Server handles all of this for you. This information is only provided here to facilitate your
understanding of how the log works, and, from there, the steps required to handle a transaction.
Whether something is in cache or not can make a big difference to performance, so understanding when
things are logged and when things go in and out of the cache can be a big deal when you are seeking
maximum performance.

Note that the need to read data into a cache that is already full is not the only reason that a checkpoint
would be issued. Checkpoints can be issued under the following circumstances:

By a manual statement — using the CHECKPOINT command
At normal shutdown of the server (unless the WITH NOWAIT option is used)
When you change any database option (for example, single user only, dbo only, and so on)

When the Simple Recovery option is used and the log becomes 70 percent full

U 00U o

When the amount of data in the log since the last checkpoint (often called the active portion of
the log) exceeds the size that the server could recover in the amount of time specified in the
recovery interval option

Failure and Recovery

A recovery happens every time that SQL Server starts up. SQL Server takes the database file, and then
applies (by writing them out to the physical database file) any committed changes that are in the log
since the last checkpoint. Any changes in the log that do not have a corresponding commit are rolled
back —that is, they are essentially forgotten about.

Let’s take a look at how this works depending on how transactions have occurred in your database.
Imagine five transactions that span the log as pictured, in Figure 14-2.

Let’s look at what would happen to these transactions one by one.

Transaction 1

Absolutely nothing would happen. The transaction has already been through a checkpoint, and has been
fully committed to the database. There is no need to do anything at recovery, because any data that is
read into the data cache would already reflect the committed transaction.

Transaction 2

Even though the transaction existed at the time that a checkpoint was issued, the transaction had not
been committed (the transaction was still going). Without that commitment, the transaction does not
actually participate in the checkpoint. This transaction would, therefore, be “rolled forward.” This is just
a fancy way of saying that we would need to read all the related pages back into cache, and then use the
information in the log to re-run all the statements that we ran in this transaction. When that’s finished,
the transaction should look exactly as it did before the system failed.

429

Chapter 14

Checkpoint Checkpoint Checkpoint System Failure
Transaction 1f‘>

| Transaction 2 >
| Transaction 4 >
Transaction 5 >

Figure 14-2

Transaction 3

It may not look the part, but this transaction is exactly the same as Transaction 2 from the standpoint

of what needs to be done. Again, because Transaction 3 wasn't finished at the time of the last check-
point, it did not participate in that checkpoint just like Transaction 2 didn’t. The only difference is that
Transaction 3 didn’t even exist at that time, but, from a recovery standpoint, that makes no difference —
it’s where the commit is issued that makes all the difference.

Transaction 4

This transaction wasn’t completed at the time of system failure, and must, therefore, be rolled back. In
effect, it never happened from a row data perspective. The user would have to re-enter any data, and
any process would need to start from the beginning.

Transaction 5

This one is no different than Transaction 4. It appears to be different because the transaction has been
running longer, but that makes no difference. The transaction was not committed at the time of system
failure, and must therefore be rolled back.

430

Transactions and Locks

Implicit Transactions

Primarily for compatibility with other major RDBMS systems such as Oracle or DB2, SQL Server sup-
ports (it is off by default, but can be turned on if you choose) the notion of what is called an implicit
transaction. Implicit transactions do not require a BEGIN TRAN statement —instead, they are automati-
cally started with your first statement. They then continue until you issue a COMMIT TRAN or ROLLBACK
TRAN statement. The next transaction then begins with your next statement.

Implicit transactions are something of a dangerous territory and are well outside the scope of this book.
Suffice to say that I highly recommend that you leave this option off unless you have a very specific rea-
son to turn it on (such as compatibility with code written in another system).

Locks and Concurrency

Concurrency is a major issue for any database system. It addresses the notion of two or more users each
trying to interact with the same object at the same time. The nature of that interaction may be different
for each user (updating, deleting, reading, inserting), and the ideal way to handle the competition for
control of the object changes depending on just what all the users in question are doing and just how
important their actions are. The more users — more specifically, the more transactions — that you can
run with reasonable success at the same time the higher your concurrency is said to be.

In the OLTP environment, concurrency is usually the first thing we deal with in data and it is the focus of
most of the database notions put forward in this book. (OLAP is usually something of an afterthought —it
shouldn’t necessarily be that way, but it is.) Dealing with the issue of concurrency can be critical to the
performance of your system. At the foundation of dealing with concurrency in databases is a process
called locking.

Locks are a mechanism for preventing a process from performing an action on an object that conflicts
with something already being done on that object. That is, you can’t do some things to an object if some-
one else got there first. What you can and cannot do depends on what the other user is doing. It is also a
means of describing what is being done, so the system knows if the second process action is compatible
with the first process or not. For example, 1, 2, 10, 100, 1000, or whatever number of user connections the
system can handle are usually all able to share the same piece of data at the same time as long as they all
only want the record on a read-only basis. Think of it as being like a crystal shop —lots of people can be
in looking at things —even the same thing —as long as they don’t go to move it, buy it, or otherwise
change it. If more than one person does that at the same time, you're liable to wind up with broken crys-
tal. That’s why the shopkeeper usually keeps a close eye on things, and they will usually decide who
gets to handle it first.

The SQL Server lock manager is that shopkeeper. When you come into the SQL Server “store,” the lock
manager asks what is your intent—what it is you're going to be doing. If you say “just looking,” and no
one else already there is doing anything but “just looking,” then the lock manager will let you in. If you
want to “buy” (update or delete) something, then the lock manager will check to see if anyone’s already
there. If so, then you must wait, and everyone who comes in behind you will also wait. When you are let
in to “buy,” no one else will be let in until you are done.

431

Chapter 14

By doing things this way, SQL Server is able to help us avoid a mix of different problems that can be
created by concurrency issues. We will examine the possible concurrency problems and how to set a
transaction isolation level that will prevent each, but for now, let’s move on to what can and cannot be
locked, and what kinds of locks are available.

What Problems Can Be Prevented by Locks

Locks can address four major problems:

Q Dirty reads

QO Non-repeatable reads

Q Phantoms

Q Lostupdates
Each of these presents a separate set of problems, and can be handled by mix of solutions that usually
includes proper setting of the transaction isolation level. Just to help make things useful as you look
back at this chapter later, I'm going to include information on which transaction isolation level is appro-

priate for each of these problems. We’ll take a complete look at isolation levels shortly, but for now, let’s
first make sure that we understand what each of these problems is all about.

Dirty Reads

Dirty reads occur when a transaction reads a record that is part of another transaction that isn’t complete
yet. If the first transaction completes normally, then it’s unlikely there’s a problem. But what if the trans-
action were rolled back? You would have information from a transaction that never happened from the
database’s perspective!

Let’s look at it in an example series of steps:

Transaction 1 Transaction 2 Logical Database = Uncommitted What Transaction 2
Command Command Value Database Value Shows
BEGIN TRAN 3
UPDATE BEGIN TRAN 3 5
col =5
SELECT SELECT 3 5 5
anything @var = col
ROLLBACK UPDATE 3 5
anything
SET whatever
= @var

Oops— problem!!!

Transaction 2 has now made use of a value that isn’t valid! If you try to go back and audit to find where
this number came from, you'll wind up with no trace and an extremely large headache.

432

Transactions and Locks

Fortunately, this scenario can’t happen if you're using the SQL Server default for the transaction isola-
tion level (called READ COMMITTED, which will be explained later in the section “Setting the Isolation
Level”).

Non-Repeatable Reads

It’s really easy to get this one mixed up with a dirty read. Don’t worry about that—it’s only terminol-
ogy. Just get the concept.

A non-repeatable read is caused when you read the record twice in a transaction, and a separate transac-
tion alters the data in the interim. For this one, let’s go back to our bank example. Remember that we
don’t want the value of the account to go below 0 dollars:

Transaction 1 Transaction 2 @Var What Transaction 1 Value in Table
Thinks Is in The Table
BEGIN TRAN NULL 125
SELECT @Var BEGIN TRAN 125 125 125
= value FROM
table
UPDATE value, 75
SET value =

value—50

IF @Var >=100 END TRAN 125 125 75

UPDATE value, 125 125 (waiting 75

SET value = for lock to clear)

value—100

(Finish, wait for lock 125 75 Either: -25

to clear, then continue) (If there isn’t a

CHECK constraint
enforcing > 0)
Or: Error 547 (If
there is a CHECK)

Again, we have a problem. Transaction 1 has pre-scanned (which can be a good practice in some instances —
remember that section, “Handling Errors Before They Happen” in Chapter 12?) to make sure that the value
is valid, and that the transaction can go through (there’s enough money in the account). The problem is

that, before the UPDATE was made, Transaction 2 beat Transaction 1 to the punch. If there isn’t any CHECK
constraint on the table to prevent the negative value, then it would indeed be set to -25—even though it
logically appeared that we prevented this through the use of our IF statement.

We can prevent this problem in only two ways:

O Create a CHECK constraint and monitor for the 547 Error.

a Set our ISOLATION LEVEL to be REPEATABLE READ Or SERTALIZABLE.

433

Chapter 14

The CHECK constraint seems fairly obvious. The thing to realize here is that you are taking something of
a reactive rather than a proactive approach with this method. Nonetheless, in most situations we have a
potential for non-repeatable reads, so this would be my preferred choice in most circumstances.

We'll be taking a full look at isolation levels shortly, but for now, suffice to say that there’s a good chance
that setting it to REPEATABLE READ or SERIALIZABLE is going to cause you as many headaches (or
more) as it solves. Still —it’s an option.

Phantoms

No —we're not talking the “of the opera” kind here —what we’re talking about are records that appear
mysteriously, as if unaffected by an UPDATE or DELETE statement that you've issued. This can happen
quite legitimately in the normal course of operating your system, and doesn’t require any kind of elabo-
rate scenario to illustrate. Here’s a classic example of how this happens.

Let’s say you are running a fast food restaurant. If you're typical of that kind of establishment, you prob-
ably have a fair number of employees working at the “minimum wage” as defined by the government.
The government has just decided to raise the minimum wage from $6.25 to $6.75 per hour, and you want
to run an update on the Employees table to move anyone making less than $6.75 per hour up to the new
minimum wage. No problem you say, and you issue the rather simple statement:

UPDATE Employees
SET HourlyRate = 6.75
WHERE HourlyRate < 6.75

ALTER TABLE Employees
ADD ckWage CHECK (HourlyRate >= 6.75)
GO

That was a breeze, right? Wrong! Just for illustration, we’re going to say that you get an error message
back:

Msg 547, Level 16, State 1, Line 1
ALTER TABLE statement conflicted with COLUMN CHECK constraint 'ckWage'. The
conflict occurred in database 'FastFood',6 table 'Employees', column 'HourlyRate'.

So you run a quick SELECT statement checking for values below $6.75, and sure enough you find one.
The question is likely to come rather quickly, “How did that get there! I just did the UPDATE which
should have fixed that!” You did run the statement, and it ran just fine—you just got a phantom.

The instances of phantom reads are rare, and require just the right circumstances to happen. In short,
someone performed an INSERT statement at the very same time your UPDATE was running. Since it was
an entirely new row, it didn’t have a lock on it, and it proceeded just fine.

The only cure for this is setting your transaction isolation level to SERIALIZABLE, in which case any
updates to the table must not fall within your WHERE clause, or they will be locked out.

Lost Updates

Lost updates happen when one update is successfully written to the database, but is accidentally over-
written by another transaction. I can just hear you right about now, “Yikes! How could that happen?”

434

Transactions and Locks

Lost updates can happen when two transactions read an entire record, then one writes updated informa-
tion back to the record, and the other writes updated information back to the record. Let’s look at an
example.

Let’s say that you are a credit analyst for your company. You get a call that customer X has reached their
credit limit, and would like an extension, so you pull up their customer information to take a look. You
see that they have a credit limit of $5,000, and that they appear to always pay on time.

While you're looking, Sally, another person in your credit department, pulls up customer X’s record to
enter a change in the address. The record she pulls up also shows the credit limit of $5,000.

At this point, you decide to go ahead and raise customer X's credit limit to $7,500, and press enter. The
database now shows $7,500 as the credit limit for customer X.

Sally now completes her update to the address, but she’s using the same edit screen that you are — that
is, she updates the entire record. Remember what her screen showed as the credit limit? $5,000. Oops,
the database now shows customer X with a credit limit of $5,000 again. Your update has been lost!

The solution to this depends on your code somehow recognizing that another connection has updated
your record between when you read the data and when you went to update it. How this recognition
happens varies depending on what access method you're using.

Lockable Resources

There are six different lockable resources for SQL Server, and they form a hierarchy. The higher level the
lock, the less granularity it has (that is, you're choosing a higher and higher number of objects to be
locked in something of a cascading action just because the object that contains them has been locked).
These include, in ascending order of granularity:

Q Database: The entire database is locked. This happens usually during database schema changes.

Q Table: The entire table is locked. This includes all the data-related objects associated with that
table including the actual data rows (every one of them) and all the keys in all the indexes asso-
ciated with the table in question.

Q Extent: The entire extent is locked. Remember than an extent is made up of eight pages, so an
extent lock means that the lock has control of the extent, the eight data or index pages in that
extent, and all the rows of data in those eight pages.

Q Page: All the data or index keys on that page are locked.

Q Key: There is a lock on a particular key or series of keys in an index. Other keys in the same
index page may be unaffected.

QO Row or Row Identifier (RID): Although the lock is technically placed on the row identifier (an
internal SQL Server construct), it essentially locks the entire row.

Lock Escalation and Lock Effects on Performance

Escalation is all about recognizing that maintaining a finer level of granularity (say a row-lock instead of
a page lock) makes a lot of sense when the number of items being locked is small. However, as we get
more and more items locked, then the overhead associated with maintaining those locks actually hinders

435

Chapter 14

performance. It can cause the lock to be in place longer (thus creating contention issues — the longer the
lock is in place, the more likely that someone will want that particular record). When you think about
this for a bit, you'll realize there’s probably a balancing act to be done somewhere, and that’s exactly
what the lock manager uses escalation to do.

When the number of locks being maintained reaches a certain threshold, then the lock is escalated to the
next highest level, and the lower level locks do not have to be so tightly managed (freeing resources, and
helping speed over contention).

Note that the escalation is based on the number of locks rather than the number of users. The impor-
tance here is that you can single-handedly lock a table by performing a mass update —a row lock can
graduate to a page lock which then escalates to a table lock. That means that you could potentially be
locking every other user out of the table. If your query makes use of multiple tables, it’s actually quite
possible to wind up locking everyone out of all of those tables.

While you certainly would prefer not to lock all the other users out of your object, there are times when
you still need to perform updates that are going to have that effect. There is very little you can do about
escalation other than to keep your queries as targeted as possible. Recognize that escalations will hap-
pen, so make sure you ve thought about what the possible ramifications of your query are.

Lock Modes

Beyond considering just what resource level you're locking, you also should consider what lock mode
your query is going to acquire. Just as there are a variety of resources to lock, there is also a variety of
lock modes.

Some modes are exclusive of each other (which means they don’t work together). Some modes do noth-
ing more than essentially modify other modes. Whether modes can work together is based on whether
they are compatible (we’ll take a closer look at compatibility between locks later in this chapter).

Just as we did with lockable resources, let’s take a look at lock modes one by one.

Shared Locks

This is the most basic type of lock there is. A shared lock is used when you only need to read the data—
that is you won’t be changing anything. A shared lock wants to be your friend, as it is compatible with
other shared locks. That doesn’t mean that it still won’t cause you grief — while a shared lock doesn’t
mind any other kind of lock, there are other locks that don’t like shared locks.

Shared locks tell other locks that you're out there. It’s the old, “Look at me! Ain’t I special?” thing. They
don’t serve much of a purpose, yet they can’t really be ignored. However, one thing that shared locks do
is prevent users from performing dirty reads.

Exclusive Locks

Exclusive locks are just what they sound like. Exclusive locks are not compatible with any other lock.
They cannot be achieved if any other lock exists, nor will they allow a new lock of any form to be created
on the resource while the exclusive lock is still active. This prevents two people from updating, deleting,
or whatever at the same time.

436

Transactions and Locks

Update Locks

Update locks are something of a hybrid between shared locks and exclusive locks. An update lock is a
special kind of placeholder. Think about it—in order to do an UPDATE, you need to validate your WHERE
clause (assuming there is one) to figure out just what rows you're going to be updating. That means that
you only need a shared lock, until you actually go to make the physical update. At the time of the physi-
cal update, you'll need an exclusive lock.

Update locks indicate that you have a shared lock that’s going to become an exclusive lock after you've
done your initial scan of the data to figure out what exactly needs to be updated. This acknowledges the
fact that there are two distinct stages to an update:

Q First, the stage where you are figuring out what meets the WHERE clause criteria (what’s going to
be updated). This is the part of an update query that has an update lock.

Q Second, the stage where, if you actually decide to perform the update, the lock is upgraded to
an exclusive lock. Otherwise, the lock is converted to a shared lock.

What's nice about this is that it forms a barrier against one variety of deadlock. A deadlock is not a type of
lock in itself, but rather a situation where a paradox has been formed. A deadlock would arise if one lock
can’t do what it needs to do in order to clear because another lock is holding that resource — the prob-
lem is that the opposite resource is itself stuck waiting for the lock to clear on the first transaction.

Without update locks, these deadlocks would crop up all the time. Two update queries would be run-
ning in shared mode. Query A completes its query and is ready for the physical update. It wants to esca-
late to an exclusive lock, but it can’t because Query B is finishing its query. Query B then finishes the
query, except that it needs to do the physical update. In order to do that, Query B must escalate to an
exclusive lock, but it can’t because Query A is still waiting. This creates an impasse.

Instead, an update lock prevents any other update locks from being established. The instant that the sec-
ond transaction attempts to achieve an update lock, they will be put into a wait status for whatever the
lock timeout is — the lock will not be granted. If the first lock clears before the lock timeout is reached,
then the lock will be granted to the new requester, and that process can continue. If not, an error will be
generated.

Update locks are compatible only with shared locks and intent shared locks.

Intent Locks

An intent lock is a true placeholder, and is meant to deal with the issue of object hierarchies. Imagine a
situation where you have a lock established on a row, but someone wants to establish a lock on a page,
or extent, or modify a table. You wouldn’t want another transaction to go around yours by going higher
up the hierarchy, would you?

Without intent locks, the higher level objects wouldn’t even know that you had the lock at the lower
level. Intent locks improve performance, as SQL Server needs to examine intent locks only at the table
level, and not check every row or page lock on the table, to determine if a transaction can safely lock the
entire table. Intent locks come in three different varieties:

Q Intent shared lock: A shared lock has or is going to be established at some lower point in the

hierarchy. For example, a page is about to have a page level shared lock established on it. This
type of lock applies only to tables and pages.

437

Chapter 14

O Intent exclusive lock: This is the same as intent shared, but with an exclusive lock about to be
placed on the lower-level item.

O Shared with intent exclusive lock: A shared lock has or is about to be established lower down
the object hierarchy, but the intent is to modify data, so it will become an intent exclusive at
some point.

Schema Locks

These come in two flavors:

QO Schema modification lock (Sch-M): A schema change is being made to the object. No queries
or other CREATE, ALTER, or DROP statements can be run against this object for the duration of the
Sch-M lock.

0 Schema stability lock (Sch-S): This is very similar to a shared lock; this lock’s sole purpose is to
prevent a Sch-M since there are already locks for other queries (or CREATE, ALTER, DROP state-
ments) active on the object. This is compatible with all other lock types.

Bulk Update Locks

A bulk update lock (BU) is really just a variant of a table lock with one little (but significant) difference.
Bulk update locks will allow parallel loading of data — that is, the table is locked from any other “nor-
mal” (T-SQL Statements) activity, but multiple BULK INSERT or bcp operations can be performed at the
same time.

Lock Compatibility

The table that follows shows the compatibility of the resource lock modes (listed in increasing lock
strength). Existing locks are shown by the columns; requested locks by the rows:

IS S U IX SIX X
Intent Shared (IS) YES YES YES YES YES NO
Shared (S) YES YES YES NO NO NO
Update (U) YES YES NO NO NO NO
Intent Exclusive (IX) YES NO NO YES NO NO
Shared with Intent Exclusive (SIX) YES NO NO NO NO NO
Exclusive (X) NO NO NO NO NO NO

Also:

Q The Sch-S is compatible with all lock modes except the Sch-M.
Q The Sch-M is incompatible with all lock modes.
Q The BU is compatible only with schema stability and other bulk update locks.

438

Transactions and Locks

Specifying a Specific Lock Type — Optimizer Hints

Sometimes you want to have more control over how the locking goes either in your query, or perhaps in
your entire transaction. You can do this by making use of what are called optimizer hints.

Optimizer hints are ways of explicitly telling SQL Server to escalate a lock to a specific level. They are
included right after the name of the table (in your SQL Statement) that they are to affect.

Optimizer hints are seriously in the “Advanced” side of things. They are often abused by people who are
experienced SQL Server developers, and they are not to be trifled with.

Think of it this way — Microsoft has invested literally millions of dollars in such things as their query
optimizer and knowing what locks to utilize in what situations. Query hints are meant to adjust for the
little things the optimizer may not know about, but in the vast majority of cases, you are not going to
know more than their optimizer team did. Shy away from these until the later stages of your SQL Server
learning process (and I promise, I'll cover them well in the Professional version of this book).

Determining Locks Using the Management Studio

Perhaps the nicest way of all to take a look at your locks is by using the Management Studio. The
Management Studio will show you locks in two different sorts — by process ID or by object —by utilizing
the Activity Monitor.

To make use of the Management Studio’s lock display, just navigate to the Management = Activity
Monitor node of your server. Then right-click and choose the kind of information you're after. You
should come up with a new window that looks something like Figure 14-3.

*# Activity Monitor - SCHWEITZER

2l : | 2) Refresh 7 Fiter.. |5 Help
4y Process Info
% e o s Displaped 7 fems from a total of 25 e,
Procssz D 4 | System Process | Ussr | Databaze | Status | Open Transactions | Command |Applr_‘atim
f/'i 51 no MyLagin master sesping 0 AWAITING COMBMAND Microzolt SOL Server Managemsd
(3 B2 no MyLagin Marthwind slesping 0 AWAITING COMBMAND Microzolt SOL Server Managemd
4 53 no MyLagin Marthwind slesping 0 AWAITING COMBMAND Microzolt SOL Server Managemd
Statu 4) 54 no MyLagin Marthwind sleeging 0 AWAITING COMBMAND Microzolt SOL Server Managemd
Last Refresh: () 55 no MyLagin rnaster skeeping 0 AwAITING COMMAND MNet SqlClient Data Provider
8/20/2005 54634 P @ 56 no MyLogin tempdb nnable 2 SELECTINTD Microsalt SOL Server Managsme
. (3 57 no SCHWEITZERVAdminisiraler ReponServer seeping 0 AWAITING COMMAND - Repot Sener
Hext Refresh
tanusal
] Mieve refresh setlings
Filtes: Applied
T Views filler s=tings
Server: SCHWEITZER
Connection; MyLogin
25 View connection propeities
o D
v
£ b4
Figure 14-3

439

Chapter 14

Just expand the node that you're interested in (either the Process 1ID or the Object), and you'll see
various locks.

Perhaps the coolest feature in this shows itself when you double-click on a specific lock in the right-hand
side of the window. A dialog box will come up and tell you the last statement that was run by that pro-
cess ID. This can be very handy when you are troubleshooting deadlock situations.

Setting the Isolation Level

We’ve seen that several different kinds of problems that can be prevented by different locking strategies.
We’ve also seen what kinds of locks are available and how they have an impact on the availability of
resources. Now it’s time to take a closer look at how these process management pieces work together to
ensure overall data integrity — to make certain that you can get the results you expect.

The first thing to understand about the relationship between transactions and locks is that they are inex-
tricably linked with each other. By default, any lock that is data modification-related will, once created,
be held for the duration of the transaction. If you have a long transaction, this means that your locks
may be preventing other processes from accessing the objects you have a lock on for a rather long time.
It probably goes without saying that this can be rather problematic.

However, that’s only the default. In fact, there are actually four different isolation levels that you can set:

READ COMMITTED (the default)
READ UNCOMMITTED

REPEATABLE READ

0O 0 0O O

SERIALIZABLE
The syntax for switching between them is pretty straightforward:

SET TRANSACTION ISOLATION LEVEL <READ COMMITTED|READ UNCOMMITTED
| REPEATABLE READ|SERIALIZABLE>

The change in isolation level will affect only the current connection —so you don’t need to worry about
adversely affecting other users (or them affecting you).

Let’s start by looking at the default situation (READ COMMITTED) a little more closely.

READ COMMITTED

With READ COMMITTED, any shared locks you create will be automatically released as soon as the state-
ment that created them is complete. That is, if you start a transaction, run several statements, run a
SELECT statement, and then run several more statements, the locks associated with the SELECT state-
ment are freed as soon as the SELECT statement is complete —SQL Server doesn’t wait for the end of the
transaction.

440

Transactions and Locks

Action queries (UPDATE, DELETE, and INSERT) are a little different. If your transaction performs a query
that modifies data, then those locks will be held for the duration of the transaction (in case you need to
roll back).

By keeping this level of default, with READ COMMITTED, you can be sure that you have enough data
integrity to prevent dirty reads. However, non-repeatable reads and phantoms can still occur.

READ UNCOMMITTED

READ UNCOMMITTED is the most dangerous of all isolation level choices, but also has the highest perfor-
mance in terms of speed.

Setting the isolation level to READ UNCOMMITTED tells SQL Server not to set any locks, and not to honor
any locks. With this isolation level, it is possible to experience any of the various concurrency issues we
discussed earlier in the chapter (most notably a dirty read).

Why would one ever want to risk a dirty read? When I watch the newsgroups on Usenet, I see the ques-
tion come up on a regular basis. It’s surprising to a fair number of people, but there are actually good
reasons to have this isolation level, and they are almost always to do with reporting.

In an OLTP environment, locks are both your protector and your enemy. They prevent data integrity
problems, but they also often prevent, or block, you from getting at the data you want. It is extremely
commonplace to see a situation where the management wants to run reports regularly, but the data
entry people are often prevented from or delayed in entering data because of locks held by the man-
ager’s reports.

By using READ UNCOMMITTED, you can often get around this problem — at least for reports where the
numbers don’t have to be exact. For example, let’s say that a sales manager wants to know just how
much has been done in sales so far today. Indeed, we’ll say he’s a micro-manager, and asks this same
question (in the form of re-running the report) several times a day.

If the report happened to be a long running one, then there’s a high chance that his running it would
damage the productivity of other users due to locking considerations. What'’s nice about this report
though, is that it is a truly nebulous report— the exact values are probably meaningless. The manager is
really just looking for ballpark numbers.

By having an isolation level of READ UNCOMMITTED, we do not set any locks, so we don’t block any other
transactions. Our numbers will be somewhat suspect (because of the risk of dirty reads), but we don’t
need exact numbers anyway, and we know that the numbers are still going to be close even on the off
chance that a dirty read is rolled back.

You can get the same effect as READ UNCOMMITTED by adding the NOLOCK optimizer hint in your query.
The advantage to setting the isolation level is that you don’t have to use a hint for every table in your
query, or use it in multiple queries. The advantage to using the NOLOCK optimizer hint is that you don’t
need to remember to set the isolation level back to the default for the connection. (With READ UNCOM-
MITTED you do.)

441

Chapter 14

REPEATABLE READ

The REPEATABLE READ escalates your isolation level somewhat, and provides an extra level of concur-
rency protection by preventing not only dirty reads (the default already does that), but also preventing
non-repeatable reads.

That prevention of non-repeatable reads is a big upside, but holding even shared locks until the end of
the transaction can block users” access to objects, and therefore hurt productivity. Personally, I prefer to
use other data integrity options (such as a CHECK constraint together with error handling) rather than
this choice, but it remains an available option.

The equivalent optimizer hint for the REPEATABLE READ isolation level is REPEATABLEREAD (these are
the same, only no space).

SERIALIZABLE

SERIALIZABLE is something of the fortress of isolation levels. It prevents all forms of concurrency issues
except for a lost update. Even phantoms are prevented.

When you set your isolation to SERIALIZABLE, you're saying that any UPDATE, DELETE, or INSERT to
the table or tables used by your transaction must not meet the WHERE clause of any statement in that
transaction. Essentially, if the user was going to do something that your transaction would be interested
in then it must wait until your transaction has been completed.

The SERIALIZABLE isolation level can also be simulated by using the SERIALIZABLE or HOLDLOCK opti-
mizer hint in your query. Again, like the READ UNCOMMITTED and NOLOCK debate, the option of not hav-
ing to set it every time versus not having to remember to change the isolation level back is the big issue.

Going with an isolation level of SERIALIZABLE would, on the surface, appear to be the way you want
to do everything. Indeed, it does provide your database with the highest level of what is called consis-
tency — that is, the update process works the same for multiple users as it would if all your users did
one transaction at a time (processed things serially).

As with most things in life, however, there is a trade-off. Consistency and concurrency can, from a practi-
cal sense, be thought of as polar opposites. Making things SERIALIZABLE can prevent other users from
getting to the objects they need — that equates to lower concurrency. The reverse is also true— increasing
concurrency (by going to a REPEATABLE READ for example) reduces the consistency of your database.

My personal recommendation on this is to stick with the default (READ COMMITTED) unless you have
a specific reason not to.

Dealing with Deadlocks (aka “A 1205")

OK. So now you've seen locks, and you’'ve also seen transactions. Now that you've got both, we can
move on to the rather pesky problem of dealing with deadlocks.

As we’ve already mentioned, a deadlock is not a type of lock in itself, but rather a situation where a
paradox has been formed by other locks. Like it or not, you’ll bump into these on a regular basis (partic-
ularly when you're just starting out), and you'll be greeted with an error number 1205. So prolific is this
particular problem that you'll hear many a database developer refer to them simply by the number.

442

Transactions and Locks

Deadlocks are caused when one lock can’t do what it needs to do in order to clear because a second lock
is holding that resource, and vice versa. When this happens, somebody has to win the battle, so SQL
Server chooses a deadlock victim. The deadlock victim’s transaction is then rolled back and is notified
that this happened through the 1205 error. The other transaction can continue normally (indeed, it will
be entirely unaware that there was a problem, other than seeing an increased execution time).

How SQL Server Figures Out There’s a Deadlock

Every five seconds SQL Server checks all the current transactions for what locks they are waiting on but
haven't yet been granted. As it does this, it essentially makes a note that the request exists. It will then
re-check the status of all open lock requests again, and, if one of the previous requests has still not been
granted, it will recursively check all open transactions for a circular chain of lock requests. If it finds such
a chain, then one or more deadlock victims will be chosen.

How Deadlock Victims Are Chosen

By default, a deadlock victim is chosen based on the “cost” of the transactions involved. The transaction
that costs the least to rollback will be chosen (in other words SQL Server has to do the least number of
things to undo it). You can, to some degree override this by using the DEADLOCK_PRIORITY SET option
available in SQL Server, this is, however, generally both ill advised and out of the scope of this book.

Avoiding Deadlocks

Deadlocks can’t be avoided 100 percent of the time in complex systems, but you can almost always
totally eliminate them from a practical standpoint — that is, make them so rare that they have little rele-
vance to your system.

To cut down or eliminate deadlocks, follow these simple (OK, usually simple) rules:

Q Use your objects in the same order.

Q Keep your transactions as short as possible and in one batch.
Q Use the lowest transaction isolation level necessary.
Q

Do not allow open-ended interruptions (user interactions, batch separations) within the same
transaction.

Q In controlled environments, use bound connections (described briefly below).

Nearly every time I run across deadlocking problems, at least one (usually more) of these rules has been
violated. Let’s look at each one individually.

Use Objects in the Same Order

This is the most common problem area within the few rules that I consider to be basic. What's great
about using this rule is that it almost never costs you anything to speak of —it’s more a way of think-
ing. You decide early in your design process how you want to access your database objects —including
order —and it becomes a habit in every query, procedure, or trigger that you write for that project.

443

Chapter 14

Think about it for a minute —if our problem is that our two connections each have what the other
wants, then it implies that we're dealing with the problem too late in the game. Let’s look at a simple
example.

Consider that we have two tables: Suppliers and Products. Now say that we have two processes that
make use of both of these tables. The Process 1 accepts inventory entries, updates Products with the
new amount of product on hand, and then updates suppliers with the total amount of product that
we’ve purchased. Process 2 records sales; it updates the total amount of product sold in the Suppliers
table, and then decreases the inventory quantity in Products.

If we run these two processes at the same time, we're begging for trouble. Process 1 will grab an exclu-
sive lock on the Products. Process 2 grabs an exclusive lock on the Suppliers table. Process 1 then
attempts to grab a lock on the Suppliers table, but it will be forced to wait for Process 2 to clear its
existing lock. In the meantime, Process 2 tries to create a lock on the Products table, but it will have to
wait for Process 1 to clear its existing lock. We now have a paradox —both processes are waiting on each
other. SQL Server will have to pick a deadlock victim.

Now let’s rearrange that scenario, with Process 2 changed to first decrease the inventory quantity in
Products, and then update the total amount of product sold in the Suppliers table. This is a functional
equivalent to the first way we organized the processes, and it will cost us nothing to perform it this new
way. The impact though, will be stunning —no more deadlocks (at least not between these two pro-
cesses)! Let’s walk through what will now happen.

When we run these two processes at the same time, Process 1 will grab an exclusive lock on the
Products table (so far, it’s the same). Process 2 then also tries to grab a lock on the Products table, but
will be forced to wait for Process 1 to finish (notice that we haven’t done anything with suppliers yet).
Process 1 finishes with the Products table, but doesn’t release the lock because the transaction isn’t
complete yet. Process 2 is still waiting for the lock on Products to clear. Process 1 now moves on to grab
a lock on the Suppliers table. Process 2 continues to wait for the lock to clear on Products. Process 1
finishes and commits or rolls back the transaction as required, but frees all locks in either case. Process 2
now is able to obtain its lock on the Products table, and moves through the rest of its transaction with-
out further incident.

Just swapping the order in which these two queries are run has eliminated a potential deadlock prob-
lem. Keep things in the same order wherever possible and you, too, will experience far less in the way of
deadlocks.

Keeping Transactions as Short as Possible

This is another of the basics. Again, it should become just an instinct —something you don’t really think
about, something you just do.

This is one that never has to cost you anything really. Put what you need to put in the transaction, and
keep everything else out—it’s just that simple. Why this works isn’t rocket science — the longer the
transaction is open, and the more it touches (within the transaction), then the higher the likelihood that
you're going to run into some other process that wants one or more of the objects that you're using
(reducing concurrency). If you keep your transaction short, you minimize the number of objects that can
potentially cause a deadlock, plus you cut down on the time that you have your lock on them. It’s as
simple as that.

444

Transactions and Locks

Keeping transactions in one batch minimizes network roundtrips during a transaction, reducing possible
delays in completing the transaction and releasing locks.

Use the Lowest Transaction Isolation Level Possible

This one is considerably less basic, and requires some serious thought. As such, it isn’t surprising just
how often it isn’t thought of at all. Consider it Rob’s axiom — that which requires thought is likely not to
be thought of. Be different — think about it.

We have several different transaction isolation levels available. The default is READ COMMITTED. Using a
lower isolation level holds shared locks for a shorter duration than a higher isolation level, thereby
reducing locking contention.

No Open-Ended Transactions

This is probably the most common sense out of all the recommendations here —but it’s one that’s often
violated because of past practices.

One of the ways we used to prevent lost updates (mainframe days here folks!) was just to grab the lock
and hold it until we were done with it. I can’t tell you how problematic this was (can you say yuck!).

Imagine this scenario (it’s a real-life example): someone in your service department likes to use update
(exclusive locks) screens instead of display (shared locks) screens to look at data. He goes on to look at a
work order. Now his buddy calls and asks if he’s ready for lunch. “Sure!” comes the reply, and the ser-
vice clerk heads off to a rather long lunch (1-2 hours). Everyone who is interested in this record is now
locked out of it for the duration of this clerk’s lunch.

Wait— it gets worse. In the days of the mainframe, you used to see the concept of queuing far more
often (it actually can be quite efficient). Now someone submits a print job (which is queued) for this
work order. It sits in the queue waiting for the record lock to clear. Since it’s a queue environment, every
print job your company has for work orders now piles up behind that first print job (which is going to
wait for that person’s lunch before clearing).

This is a rather extreme example —but I'm hoping that it clearly illustrates the point. Don’t ever create
locks that will still be open when you begin some form of open-ended process. Usually we're talking
user interaction (like our lunch lover), but it could be any process that has an open-ended wait to it.

Summary

Transactions and locks are both cornerstone items to how SQL Server works, and, therefore, to maximiz-
ing your development of solutions in SQL Server.

By using transactions, you can make sure that everything you need to have happen as a unit happens, or
none of it does. SQL Server’s use of locks ensures that we avoid the pitfalls of concurrency to the maxi-
mum extent possible (you'll never avoid them entirely, but it’s amazing how close you can come with a
little — OK a lot — of planning). By using the two together, you are able to pass what the database indus-
try calls the ACID test. If a transaction is ACID, then it has:

445

Chapter 14

Q Atomicity: The transaction is all or nothing.

QO Consistency: All constraints and other data integrity rules have been adhered to, and all related
objects (data pages, index pages) have been updated completely.

Q Isolation: Each transaction is completely isolated from any other transaction. The actions of one
transaction cannot be interfered with by the actions of a separate transaction.

Q Durability: After a transaction is completed, its effects are permanently in place in the system.
The data is “safe,” in the sense that things such as a power outage or other non-disk system fail-
ure will not lead to data that is only half written.

In short, by using transactions and locks, you can minimize deadlocks, ensure data-integrity, and
improve the overall efficiency of your system.

In our next chapter, we’ll be looking at triggers. Indeed, we'll see that, for many of the likely uses of trig-
gers, the concepts of transactions and rollbacks will be at the very center of the trigger.

446

15

Triggers

Ah, triggers. Triggers are cool, triggers are neat, and triggers are our friends. At the very same
time, triggers are evil, triggers are ugly, and triggers are our enemy. In short, I am often asked,
“Should I use triggers?” The answer is, like most things in SQL, “It depends.” There’s little that’s
black and white in the wonderful world of SQL Server — triggers are definitely a very plain shade
of gray.

From a beginner’s point of view (and by this chapter in this book, I hope you're a lot less of a
beginner —but still . . .), you really want to be certain you know what you're doing before you go
the triggers route, so sit back, listen, learn, and decide for yourself whether they are right for you.

In this chapter, we'll try to look at triggers in all of their colors — from black all the way to white
and a whole lot in between. The main issues we’ll be dealing with include:

Q Whatis a trigger?

Using triggers for more flexible referential integrity

Using triggers to create flexible data integrity rules

Using INSTEAD OF triggers to create more flexible updateable views

Other common uses for triggers

U 0 U oo

Controlling the firing order of triggers

d Performance considerations

By the time we’re done, you should have an idea of just how complex the decision about when
and where not to use triggers is. You'll also have an inkling of just how powerful and flexible they
can be.

Most of all, if I've done my job well, you won’t be a trigger extremist (which so many SQL Server
people I meet are) with the distorted notion that triggers are evil and should never be used.
Neither will you side with the other end of the spectrum, who think that triggers are the solution

Chapter 15

to all the world’s problems. The right answer in this respect is that triggers can do a lot for you, but they
can also cause a lot of problems. The trick is to use them when they are the right things to use, and not to
use them when they aren't.

Some common uses of triggers include:

QO Enforcement of Referential Integrity: Although I recommend using Declarative Referential
Integrity (DRI) whenever possible, there are many things that DRI won’t do (for example,
referential integrity across databases or even servers, many complex types of relationships, and
SO on).

Q Creating audit trails, which means writing out records that keep track of not just the most cur-
rent data, but also the actual change history for each record.

Q Functionality similar to a CHECK constraint, but which works across tables, databases, or even
servers.

Q Substituting your own statements in the place of a user’s action statement (usually used to
enable inserts in complex views).

In addition, you have the new, but likely much more rare case (like I said, they are new, so only time will
tell for sure) DDL trigger —which is about monitoring changes in the structure of your table.

And these are just a few. So, with no further ado, let’s look at exactly what a trigger is.

What Is a Trigger?

A trigger is a special kind of stored procedure that responds to specific events. There are two kinds of
triggers: Data Definition Language (DDL) Triggers and Data Manipulation Language (DML) Triggers.

DDL Triggers fire in response to someone changing the structure of your database in some way
(CREATE, ALTER, DROP, and similar statements). These are new with SQL Server 2005 and are critical to
some installations (particularly high security installations), but are pretty narrow in use. In general, you
will only need to look into using these where you need extreme auditing of changes/history of your
database structure. Their use is a fairly advanced concept, and as such, I'm covering them here as mostly
a “be aware these exist” thing, and we’ll move on to the meatier version of triggers.

DML triggers are pieces of code that you attach to a particular table or view. Unlike sprocs, where you
needed to explicitly invoke the code, the code in triggers is automatically run whenever the event(s) you
attached the trigger to occur in the table. Indeed, you can’t explicitly invoke triggers — the only way to
do this is by performing the required action in the table that they are assigned to.

Beyond not being able to explicitly invoke a trigger, you’ll find two other things that exist for sprocs but
are missing from triggers: parameters and return codes.

448

Triggers

While triggers take no parameters, they do have a mechanism for figuring out what records they are
supposed to act on (we’ll investigate this further later in the chapter). And, while you can use the
RETURN keyword, you cannot return a specific return code (because you didn’t explicitly call the trig-
ger, what would you return a return code to?).

What events can you attach triggers to? — the three “action” query types you use in SQL. So, there are
three types of triggers, plus hybrids that come from mixing and matching the events and timing that fire

them:

1.

2.
3.
4

INSERT triggers
DELETE triggers
UPDATE triggers

A mix and match of any of the above

It’s worth noting that there are times when a trigger will not fire— even though it seems that the action
you are performing falls into one of the preceding categories. At issue is whether the operation you are
doing is in a logged activity or not. For example, a DELETE statement is a normal, logged activity that
would fire any delete trigger, but a TRUNCATE TABLE, which has the effect of deleting rows, just deallo-
cates the space used by the table— there is no individual deletion of rows logged, and no trigger is fired.

The syntax for creating triggers looks an awful lot like all of our other CREATE syntax, except that it has
to be attached to a table —a trigger can’t stand on its own.

Let’s take a look:

CREATE TRIGGER <trigger name>

AS

ON [<schema name>.]<table or view name>

[WITH ENCRYPTION | EXECUTE AS <CALLER | SELF | <user> >]
{{{FOR|AFTER} <[DELETE] [,] [INSERT] [,] [UPDATE]>} |INSTEAD OF}
[WITH APPEND]

[NOT FOR REPLICATION]

< <sql statements> | EXTERNAL NAME <assembly method specifier> >

As you can see, the all too familiar CREATE <object type> <object name> is still there as well as the
execution stuff we’ve seen in many other objects —we’ve just added the ON clause to indicate the table to
which this trigger is going to be attached, as well as when and under what conditions it fires.

ON

This part just names what object you are creating the trigger against. Keep in mind that, if the type of the
trigger is an AFTER trigger (if it uses FOR or AFTER to declare the trigger), then the target of the ON clause
must be a table— AFTER triggers are not supported for views.

449

Chapter 15

WITH ENCRYPTION

This works just as it does for views and sprocs. If you add this option, you can be certain that no one will
be able to view your code (not even you!). This is particularly useful if you are going to be building soft-
ware for commercial distribution, or if you are concerned about security and don’t want your users to be
able to see what data you're modifying or accessing. Obviously, you should keep a copy of the code
required to create the trigger somewhere else, in case you want to re-create it sometime later.

As with views and sprocs, the thing to remember when using the WITH ENCRYPTION option is that you
must reapply it every time you ALTER your trigger. If you make use of an ALTER TRIGGER statement
and do not include the WITH ENCRYPTION option, then the trigger will no longer be encrypted.

The FOR|AFTER vs. the INSTEAD OF Clause

In addition to deciding what kind of queries will fire your trigger (INSERT, UPDATE, and/or DELETE),
you also have some choice as to the timing of when the trigger fires. While the FOR (alternatively, you
can use the keyword AFTER instead if you choose) trigger is the one that has been around a long time
and that people generally think of, you also have the ability to run what is called an INSTEAD OF trigger.
Choosing between these two will affect whether you enter your trigger before the data has been modi-
fied or after. In either case, you will be in your trigger before any changes are truly committed to the
database.

Confusing? Probably. Let’s try it a different way with a diagram that shows where each choice fires (see
Figure 15-1).

The thing to note here is that, regardless of which choice you make, SQL Server will put together two
working tables — one holding a copy of the records that were inserted (and, incidentally, called
INSERTED) and one holding a copy of any records that were deleted (called DELETED). We'll look into the
details of the uses of these working tables a little later. For now realize that, with INSTEAD OF triggers,
the creation of these working tables will happen before any constraints are checked, and with FOR trig-
gers, these tables will be created after constraints are checked. The key to INSTEAD OF triggers is that
you can actually run your own code in the place of whatever the user requested. This means we can
clean up ambiguous insert problems in views (remember the problem back in Chapter 10 with inserting
when there was a JOIN in the view?). It also means that we can take action to clean up constraint viola-
tions before the constraint is even checked.

As positively glorious as this sounds, this is actually pretty complex stuff. It means that you need to
anticipate every possibility. In addition, it means that you are effectively adding a preprocess to every
queries that changes data in any way for this table (this is not a good thing performance wise). Cool as
they sound, INSTEAD OF triggers fall in the category of fairly advanced stuff, and are well outside the
scope of this book.

Triggers using the FOR and AFTER declaration behave identically to each other. The big difference

between them and INSTEAD OF triggers is that they build their working tables after any constraints have
been checked.

450

Triggers

Statement issued:
“INSERT INTO...”

|

Begin transaction
(if one hasn’t
been explicitly

defined)
INSTEAD OF
trigger fired.
*
Does an INSTEAD Populate inserted | | ISFEEL)I(_:I(S;S
OF trigger exist? and deleted tables INSERTm Actions on
other objects

Yes :
) trigger
Check contraints perform a similar
l action on the

table?
Log statement

|

Populate inserted
and deleted tables

|

Fire FOR/AFTER
triggers

|

Commit transaction
(if one hasn’t been
explicitly defined)

|

All done!

No

Figure 15-1

451

Chapter 15

FOR|AFTER

The FOR (or, alternatively, you can use AFTER) clause indicates under what type of action(s) you want
this trigger to fire. You can have the trigger fire whenever there is an INSERT, UPDATE, or DELETE, Or any
mix of the three. So, for example, your FOR clause could look something like:

FOR INSERT, DELETE
. or:

FOR UPDATE, INSERT
. or:

FOR DELETE

As was stated in the section about the ON clause, triggers declared using the FOR or AFTER clause can
only be attached to tables—no views are allowed (see INSTEAD OF triggers for those).

INSERT Trigger

The code for any trigger that you mark as being FOR INSERT will be executed anytime that someone
inserts a new row into your table. For each row that is inserted, SQL Server will create a copy of that new
row and insert it in a special table that exists only within the scope of your trigger. That table is called
INSERTED, and we’'ll see much more of it over the course of this chapter. The big thing to understand is
that the INSERTED table only lives as long as your trigger does. Think of it as not existing before your
trigger starts or after your trigger completes.

DELETE Trigger

This works much the same as an INSERT trigger does, save that the INSERTED table will be empty (after
all, you deleted rather than inserted, so there are no records for the INSERTED table). Instead, a copy of
each record that was deleted is inserted into another table called DELETED. That table, like the INSERTED
table, is limited in scope to just the life of your trigger.

UPDATE Trigger

More of the same, save for a twist. The code in a trigger declared as being FOR UPDATE will be fired
whenever an existing record in your table is changed. The twist is that there’s no such table as UPDATED.
Instead, SQL Server treats each row as if the existing record had been deleted, and a totally new record
was inserted. As you can probably guess from that, a trigger declared as FOR UPDATE contains not one
but two special tables called INSERTED and DELETED. The two tables have exactly the same number of
rows, of course.

WITH APPEND

WITH APPEND is something of an oddball and, in all honesty, you're pretty unlikely to use it; nonethe-
less, we'll cover it here for that “just-in-case” scenario. WITH APPEND only applies when you are running
in 6.5 compatibility mode (which can be set using sp_dbcmptlevel).

SQL Server 6.5 and prior did not allow multiple triggers of the same type on any single table. For exam-
ple, if you had already declared a trigger called trgCheck to enforce data integrity on updates and

452

Triggers

inserts, then you couldn’t create a separate trigger for cascading updates. Once one update (or insert, or
delete) trigger was created, that was it—you couldn’t create another trigger for the same type of action.

This was a real pain. It meant that you had to combine logically different activities into one trigger.
Trying to get what amounted to two entirely different procedures to play nicely together could, at times,
be quite a challenge. In addition, it made reading the code something of an arduous task.

Along came SQL Server 7.0 and the rules changed substantially. No longer do we have to worry about
how many triggers we have for one type of action query —you can have several if you like. When run-
ning our database in 6.5 compatibility mode, though, we run into a problem — our database is still
working on the notion that there can only be one trigger of a given type on a given table.

WITH APPEND gets around this problem by explicitly telling SQL Server that we want to add this new
trigger even though we already have a trigger of that type on the table—both will be fired when the
appropriate trigger action (INSERT, UPDATE, DELETE) occurs. It's a way of having a bit of both worlds.

NOT FOR REPLICATION

Adding this option slightly alters the rules for when the trigger is fired. With this option in place, the
trigger will not be fired whenever a replication-related task modifies your table. Usually a trigger is fired
(to do the housekeeping/cascading/etc.) when the original table is modified and there is no point in
doing it again.

AS

Exactly as it was with sprocs, this is the meat of the matter. The AS keyword tells SQL Server that your
code is about to start. From this point forward, we’re into the scripted portion of your trigger.

Using Triggers for Data Integrity Rules

Although they shouldn’t be your first option, trigger can also perform the same functionality as a CHECK
constraint or even a DEFAULT. The answer to the question “Should I use triggers vs. CHECK constraints?”
is the rather definitive: “It depends.” If a CHECK can do the job, then it’s probably the preferable choice.
There are times, however, when a CHECK constraint just won’t do the job, or when something inherent in
the CHECK process makes it less desirable than a trigger. Examples of where you would want to use a
trigger over a CHECK include:

O Your business rule needs to reference data in a separate table
Q Your business rule needs to check the delta (difference between before and after) of an update

O Yourequire a customized error message

A summary table of when to use what type of data integrity mechanism is provided at the end of
Chapter 6.

This really just scratches the surface of things. Since triggers are highly flexible, deciding when to use
them really just comes down to whenever you need something special done.

453

Chapter 15

Dealing with Requirements Sourced from Other Tables

CHECK constraints are great— fast and efficient—but they don’t do everything you’d like them to.
Perhaps the biggest shortcoming shows up when you need to verify data across tables.

To illustrate this, let’s take a look at the Products and Order Details tables in the Northwind
database. The relationship looks like Figure 15-2.

7| OrderiD a@f 7 | ProductID

7 | ProductID = ProductName
UnitPrice SupplierlD
Quantity CategorylD
Discount QuantityPerUnit
UnitPrice
UnitsInStock
UnitsOnOrder
ReorderLevel
Discontinued

Figure 15-2

So, under normal DRI, you can be certain that no 0rder Detail item can be entered into the Order
Details table unless there is a matching ProductID in the Products table. We are, however, looking
for something more than just the “norm” here.

Our Inventory department has been complaining that our Customer Support people keep placing orders
for products that are marked discontinued. They would like to have such orders rejected before they get
into the system.

We can’t deal with this using a CHECK constraint because the place where we know about the discontin-
ued status (the Products table) is in a separate table from where we are placing the restriction (the
Order Details table). Don’t sweat it though —you can tell the Inventory department, “No problem!”
You just need to use a trigger:

CREATE TRIGGER OrderDetailNotDiscontinued
ON [Order Details]
FOR INSERT, UPDATE
AS
IF EXISTS
(
SELECT 'True'
FROM Inserted i
JOIN Products p
ON 1i.ProductID = p.ProductID
WHERE p.Discontinued = 1
)
BEGIN
RAISERROR('Order Item is discontinued. Transaction Failed.',616,1)
ROLLBACK TRAN
END

454

Triggers

Let’s go ahead and test out our handiwork. First, we need a record or two that will fail when it hits our
trigger:

SELECT ProductID, ProductName FROM Products WHERE Discontinued = 1

ProductID ProductName

5 Chef Anton's Gumbo Mix

9 Mishi Kobe Niku

17 Alice Mutton

24 Guarand Fantdstica

28 Rossle Sauerkraut

29 Thiiringer Rostbratwurst

42 Singaporean Hokkien Fried Mee
53 Perth Pasties

(8 row(s) affected)
So let’s go ahead and add an Order Details item that violates this constraint:

INSERT [Order Details]

(OrderID, ProductID, UnitPrice, Quantity, Discount)
VALUES

(10000, 5, 21.35, 5, 0)

This gets the rejection that we expect:

Msg 50000, Level 16, State 1, Line -1074284106
Order Item is discontinued. Transaction Failed.

Remember that we could, if desired, also create a custom error message to raise, instead of the ad hoc
message that we used with the RATSERROR command.

Using Triggers to Check the Delta of an Update

Sometimes, you're not interested as much in what the value was or is as you are in how much it
changed. While there isn’t any one column or table that gives you that information, you can calculate it
by making use of both the Inserted and Deleted tables in your trigger.

To check this out, let’s take a look at the Products table again. Products has a column called
UnitsInStock. Recently, there has been a rush on several products, and Northwind has been selling out
of several things. Since Northwind needs more than just a few customers to stay in business in the long
run, it has decided to institute a rationing system on their products. The Inventory department has
requested that we prevent orders from being placed that try to sell more than half of the units in stock
for any particular product.

455

Chapter 15

To implement this, we make use of both the Inserted and Deleted tables:

CREATE TRIGGER ProductIsRationed
ON Products
FOR UPDATE
AS
IF EXISTS
(
SELECT 'True'
FROM Inserted i
JOIN Deleted d
ON i.ProductID = d.ProductID
WHERE (d.UnitsInStock - i.UnitsInStock) > d.UnitsInStock / 2
AND d.UnitsInStock - i.UnitsInStock > 0
)
BEGIN
RAISERROR ('Cannot reduce stock by more than 50%% at once.',16,1)
ROLLBACK TRAN
END

Before we test this out, let’s analyze what we’re doing here.

First, we’re making use of an IF EXISTS just as we have throughout this chapter. We only want to do
the rollback if something exists that meets the evil, mean, and nasty criteria that we’ll be testing for.

Then we join the INSERTED and DELETED tables together — this is what gives us the chance to compare
the two.

Our WHERE clause is the point where things might become a bit confusing. The first line of it is pretty
straightforward. It implements the nominal statement of our business requirement; updates to the
UnitsInStock column that are more than half the units we previously had on hand will meet the crite-
rion, and ready the transaction to be rejected.

The next line, though, is not quite so straightforward. As with all things in programming, we need to
think beyond the nominal statement of the problem, and think about other ramifications. The require-
ment really only applies to reductions in orders —we certainly don’t want to restrict how many units be
put in stock —so we make sure that we only worry about updates where the number in stock after the
update is less than before the update.

If both of these conditions have been met (over 50 percent, and a reduction rather than addition to the
inventory), then we raise the error. Notice the use of two % signs, rather than one, in the RAISERROR.
Remember that a $ works as a placeholder for a parameter, so one % by itself won’t show up when your
error message comes out. By putting two in a row, %, we let SQL Server know that we really did want
to print out a percent sign.

OK —let’s check out how it works. We'll just pick a record and try to do an update that reduces the stock
by more than 50 percent:

UPDATE Products

SET UnitsInStock = 2
WHERE ProductID = 8

456

Triggers

Ijust picked out “Northwoods Cranberry Sauce” as our victim, but you could have chosen any
ProductID as long as you set the value to less than 50 percent of its previous value. If you do, you'll get
the expected error:

Msg 50000, Level 16, State 1, Line -1074284106
Cannot reduce stock by more than 50% at once.

Note that we could have also implemented this in the Order Details table by referencing the actual
order quantity against the current UnitInStock amount, but we would have run into several problems:

Q Updates that change: Is the process that’s creating the Order Details record updating
Products before or after the Order Details record? That makes a difference in how we make
use of the UnitsInStock value in the Products table to calculate the effect of the transaction.

O The inventory external to the Order Details table updates would not be affected: They
could still reduce the inventory by more than half (this may actually be a good thing in many
circumstances, but it’s something that has to be thought about).

Using Triggers for Custom Error Messages

We've already touched on this in some of our other examples, but remember that triggers can be handy
for when you want control over the error message or number that gets passed out to your user or client
application.

With a CHECK constraint for example, you're just going to get the standard 547 error along with its rather
nondescript explanation. As often as not, this is less than helpful in terms of the user really figuring out
what went wrong —indeed, your client application often doesn’t have enough information to make an
intelligent and helpful response on behalf of the user.

In short, sometimes you create triggers when there is already something that would give you the data
integrity that you want, but won’t give you enough information to handle it.

Other Common Uses for Triggers

In addition to the straight data integrity uses, triggers have a number of other uses. Indeed, the possibili-
ties are fairly limitless, but here are a few common examples:

Q Updating summary information
0 Feeding de-normalized tables for reporting

Q Setting condition flags

As you can see, the possibilities are pretty far reaching —it’s really all about your particular situation
and the needs of your particular system.

457

Chapter 15

Other Trigger Issues

You have most of it now but if you're thinking you are finished with triggers, then think again. As I indi-
cated early in the chapter, triggers create an awful lot to think about. The sections that follow attempt to
point out some of the biggest issues you need to consider, plus provide some information on additional
trigger features and possibilities.

Triggers Can Be Nested

A nested trigger is one that did not fire directly as a result of a statement that you issued, but rather
because of a statement that was issued by another trigger.

This can actually set off quite a chain of events — with one trigger causing another trigger to fire which,
in turn, causes yet another trigger to fire, and so on. Just how deep the triggers can fire depends on:

QO Whether nested triggers are turned on for your system (this is a system-wide, not database-level
option; it is set using the Management Studio or sp_configure, and defaults to on).

Q Whether there is a limit of nesting to 32 levels deep.

QO Whether a trigger has already been fired. A trigger can, by default, only be fired once per trigger
transaction. Once fired, it will ignore any other calls as a result of activity that is part of the same
trigger action. Once you move on to an entirely new statement (even within the same overall
transaction), the process can start all over again.

In most circumstances, you actually want your triggers to nest (thus the default), but you need to think
about what’s going to happen if you get into a circle of triggers firing triggers. If it comes back around to
the same table twice, then the trigger will not fire the second time, and something you think is important
may not happen; for example, a data integrity violation may get through. It’s also worth noting that, if
you do a ROLLBACK anywhere in the nesting chain, then entire chain is rolled back. In other words, the
entire nested trigger chain behaves as a transaction.

Triggers Can Be Recursive

What is a recursive trigger? A trigger is said to be recursive when something the trigger does eventually
causes that same trigger to be fired. It may be directly (by an action query done to the table on which the
trigger is set), or indirectly (through the nesting process).

Recursive triggers are rare. Indeed, by default, recursive triggers are turned off. This is, however, a way
of dealing with the situation just described where you are nesting triggers and you want the update to
happen the second time around. Recursion, unlike nesting, is a database-level option, and can be set
using the sp_dboption system sproc.

The danger in recursive triggers is that you'll get into some form of unintended loop. As such, you’ll
need to make sure that you get some form of recursion check in place to stop the process if necessary.

Triggers Don’t Prevent Architecture Changes

This is a classic good news/bad news story.

458

Triggers

Using triggers is positively great in terms of making it easy to make architecture changes. Indeed, I often
use triggers for referential integrity early in the development cycle (when I'm more likely to be making
lots of changes to the design of the database), and then change to DRI late in the cycle when I'm close to
production.

When you want to drop a table and re-create it using DRI, you must first drop all of the constraints
before dropping the table. This can create quite a maze in terms of dropping multiple constraints, mak-
ing your changes, and then adding back the constraints again. It can be quite a wild ride trying to make
sure that everything drops that is supposed to so that your changed scripts will run. Then it’s just as
wild a ride to make sure that you've got everything back on that needs to be. Triggers take care of all this
because they don’t care that anything has changed until they actually run.

There’s the rub though —when they run. You see, it means that you may change architecture and break
several triggers without even realizing that you've done it. It won’t be until the first time that those trig-
gers try to address the object(s) in question that you find the error of your ways. By that time, you may
find difficulty in piecing together exactly what you did and why.

Both sides have their hassles —just keep the hassles in mind no matter which method you’re employing.

Triggers Can Be Turned Off Without Being Removed

Sometimes, just like with CHECK constraints, you want to turn off the integrity feature so you can do
something that will violate the constraint, but still has a valid reason for happening (importation of data
is probably the most common of these).

Another common reason for doing this is when you are performing some sort of bulk insert (importation
again), but you are already 100 percent certain the data is valid. In this case, you may want to turn off
the triggers to eliminate their overhead and speed up the insert process.

You can turn a trigger off and on by using an ALTER TABLE statement. The syntax looks like this:

ALTER TABLE <table name>
<ENABLE |DISABLE> TRIGGER <ALL|<trigger name>>

As you might expect, my biggest words of caution in this area are, “Don’t forget to re-enable your triggers!”

One last thing. If you're turning them off to do some form of mass importation of data, I highly recom-
mend that you kick out all your users and go either to single-user mode, dbo-only mode, or both. This
will make sure that no one sneaks in behind you while you had the triggers turned off.

Trigger Firing Order

In long ago releases of SQL Server (7.0 and prior), we had no control over firing order. Indeed, you may
recall me discussing how there was only one of any particular kind of trigger (INSERT, UPDATE,
DELETE) prior to 7.0, so firing order was something of a moot point. Later releases of SQL Server pro-
vide a limited amount of control over which triggers go in what order. For any given table (not views,
since firing order can only be specified for AFTER triggers and views only accept INSTEAD OF triggers),
you can elect to have one (and only one) trigger fired first. Likewise, you may elect to have one (and
only one) trigger fired last. All other triggers are considered to have no preference on firing order — that

459

Chapter 15

is, you have no guarantee in what order a trigger with a firing order of “none” will fire in other than that
they will fire after the FIRST trigger (if there is one) is complete and before the LAST trigger (again, if
there is one) begins (see Figure 15-3).

Original
statement
completes

FIRST trigger
fires and
completes

Any of these could
fire at any time after
the FIRST completes

(exact firing
order may vary), but
they will complete
before the LAST is

allowed to fire.

NONE trigger NONE trigger NONE trigger

LAST trigger

Figure 15-3

The creation of a trigger that is to be first or last works just the same as any other trigger. You state the
firing order preference after the trigger has already been created using a special system stored proce-
dure, sp_settriggerorder.

The syntax of sp_settriggerorder looks like this:

sp_settriggerorder[@triggername =] '<trigger name>',
[@order =] '{FIRST|LAST|NONE}',
[@stmttype =] '{INSERT|UPDATE|DELETE} '

There can be only one trigger that is considered to be “first” for any particular action (INSERT, UPDATE,
or DELETE). Likewise, there can be only one “last” trigger for any particular action. Any number of trig-
gers can be considered to be “none” — that is, the number of triggers that don’t have a particular firing

order is unlimited.

460

Triggers

So, the question should be, “Why do I care what order they fire in?” Well, often you won't care at all. At
other times, it can be important logic-wise or just a good performance idea. Let’s consider what I mean
in a bit more detail.

Controlling Firing Order for Logic Reasons

Why would you need to have one trigger fire before another? The most common reason would be that
the first trigger lays some sort of foundation for, or otherwise validates, what will come afterwards.
Under SQL Server 6.5 and earlier, we didn’t have to think about this kind of thing much—we were only
allowed one trigger of any particular type (UPDATE, DELETE, or INSERT) for a given table. This meant
that having one thing happen before another wasn’t really a problem. Because you combined all logic
into one trigger, you just put the first thing that needed to happen first in the code and the last part last
(no real rocket science there at all).

Version 7.0 came along and made things both better and worse than they were before. You were no
longer forced to jam all of your logic into one trigger. This was really cool because it meant that you
could physically separate parts of your trigger code that were logically different, which, in turn, both
made the code much easier to manage and also allowed one part of the code to be disabled (remember
that NO CHECK thing we did a few sections ago?) while other parts of the code continued to function.
The downside was that, if you went ahead and separated out your code that way, you lost the logical
stepping order that the code had when it was in one trigger.

By gaining at least a rudimentary level of control over firing order, we now have something of the best
of both worlds —we can logically separate our triggers, but still maintain necessary order of precedence
on what piece of code runs first or last.

Controlling Firing Order for Performance Reasons

On the performance front, a FIRST trigger is the only one that really has any big thing going for it. If you
have multiple triggers, but only one of them is likely to generate a rollback (for example, it may be
enforcing a complex data integrity rule that a constraint can’t handle), you would want to consider mak-
ing such a trigger a FIRST trigger. This makes certain that your most likely cause of a rollback is already
complete before you invest any more activity in your transaction. The more you do before the rollback is
detected, the more that will have to be rolled back. Get the highest possibility of that rollback happening
determined before performing additional activity.

INSTEAD OF Triggers

INSTEAD OF triggers were added in SQL Server 2000, and remain one of the more complex features of
SQL Server. While it is well outside the scope of a “beginning” concept, I'm still a big believer in even
the beginner learning about what things are available, and so we’ll touch on what these are about here.

Essentially, an INSTEAD OF trigger is a block of code we can use as an interceptor for anything that any-
one tries to do to our table or view. We can either elect to just go ahead and do whatever the user
requests or, if we choose, we can go so far as doing something that is entirely different.

Like regular triggers, INSTEAD OF triggers come in three different flavors: INSERT, UPDATE, and

DELETE. In each case, the most common use is the same —resolving ambiguity of what table(s) are to
receive the actual changes when you're dealing with a view based on multiple tables.

461

Chapter 15

Performance Considerations

I've seen what appear almost like holy wars happen over the pros and cons, evil and good, and light and
dark of triggers. The worst of it tends to come from purists — people who love the theory, and that’s all
they want to deal with, or people that have figured out how flexible triggers are and want to use them
for seemingly everything.

My two bits worth on this is, as I stated early in the chapter, use them when they are the right things to
use. If that sounds sort of non-committal and ambiguous — good! Programming is rarely black and
white, and databases are almost never that way. I will, however, point out some facts for you