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Preface 

When seen from space, “Planet Earth” is a mix of clouds, with the majority (two 
thirds) of the total surface under ocean water with the remaining third of land forming 
what we call continents, with various degrees of increasing albedo from open water 
bodies, vegetation, bare soil, rocks, deserts, and snow/ice packs. 

In a very short time (relative to Earth's age), the modern human civilization has 
conquered its neighboring space with probes, satellites, and vehicles carrying humans 
for exploration. From the range of observing platforms (airborne or space-borne) 
circumventing our inner atmosphere to its boundary, in low Earth orbit up to 
geostationary orbit, a large number of Earth observation sensors and satellites are 
monitoring the state of our home planet. 

Monitoring of water and land objects enters a revolutionary age with the rise of 
ubiquitous remote sensing and public access. Earth monitoring satellites permit 
detailed, descriptive, quantitative, holistic, standardized, global evaluation of the state 
of the Earth skin in a manner that our actual Earthen civilization has never been able 
to before. 

The water monitoring topics covered in this book include the remote sensing of open 
water bodies, wetlands and small lakes, snow depth and underwater seagrass, along 
with a variety of remote sensing techniques, platforms, and sensors. 

The Earth monitoring topics include geomorphology, land cover in arid climate, and 
disaster assessment after a tsunami. Finally, advanced topics of remote sensing cover 
atmosphere analysis with GNSS signals, earthquake visual monitoring, and 
fundamental analyses of laser reflectometry in the atmosphere medium. 

Remotely yours, 

Dr. Yann Chemin 
International Water Management Institute 

Sri Lanka 
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On the Use of Airborne Imaging Spectroscopy 
Data for the Automatic Detection and 
Delineation of Surface Water Bodies 

Mathias Bochow1,2 et al.* 
1Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences 

2Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association 
Germany 

1. Introduction 
There is economical and ecological relevance for remote sensing applications of inland and 
coastal waters: The European Union Water Framework Directive (European Parliament and the 
Council of the European Union, 2000) for inland and coastal waters requires the EU member 
states to take actions in order to reach a good ecological status in inland and coastal waters by 
2015. This involves characterization of the specific trophic state and the implementation of 
monitoring systems to verify the ecological status. Financial resources at the national and local 
level are insufficient to assess the water quality using conventional methods of regularly field 
and laboratory work only. While remote sensing cannot replace the assessment of all aquatic 
parameters in the field, it powerfully complements existing sampling programs and offers the 
base to extrapolate the sampled parameter information in time and in space. 

The delineation of surface water bodies is a prerequisite for any further remote sensing based 
analysis and even can by itself provide up-to-date information for water resource 
management, monitoring and modelling (Manavalan et al., 1993). It is further important in the 
monitoring of seasonally changing water reservoirs (e.g., Alesheikh et al., 2007) and of short-
term events like floods (Overton, 2005). Usually the detection and delineation of surface water 
bodies in optical remote sensing data is described as being an easy task. Since water absorbs 
most of the irradiation in the near-infrared (NIR) part of the electromagnetic spectrum water 
bodies appear very dark in NIR spectral bands and can be mapped by simply applying a 
maximum threshold on one of these bands (Swain & Davis, 1978: section 5-4). Many studies 
took advantage of this spectral behaviour of water and applied methods like single band 
density slicing (e.g., Work & Gilmer, 1976), spectral indices (McFeeters, 1996, Xu, 2006) or 
multispectral supervised classification (e.g., Frazier & Page, 2000, Lira, 2006). However, all of 
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these methods have the drawback that they are not fully automated since the analyst has to 
select a scene-specific threshold (Ji et al., 2009) or training pixels. Moreover there are certain 
situations where these methods lead to misclassification. For instance, water constituents in 
turbid water as well as water bottom reflectance and sun glint can raise the reflectance 
spectrum of surface water even in the NIR spectral range up to a reflectance level which is 
typical for dark surfaces on land such as dark rocks (e.g., basalt, lava), bituminous roofing 
materials and in particular shadow regions. Consequently, Carleer & Wolff (2006) amongst 
others found the land cover classes water and shadow to be highly confused in image 
classifications. This problem especially occurs in environments where both, a high amount of 
shadow and water regions can exist, such as urban landscapes, mountainous landscapes or 
cliffy coasts as well as generally in images with water bodies and cloud shadows. 

In this investigation we focus on the development of a new surface water body detection 
algorithm that can be automatically applied without user knowledge and supplementary 
data on any hyperspectral image of the visible and near-infrared (VNIR) spectral range. The 
analysis is strictly focused on the VNIR part of the electromagnetic spectrum due to the 
growing number of VNIR imaging spectrometers. The developed approach consists of two 
main steps, the selection of potential water pixels (section 4.1) and the removal of false 
positives from this mask (sections 4.2 and 4.3). In this context the separation between water 
bodies and shadowed surfaces is the most challenging task which is implemented by 
consecutive spectral and spatial processing steps (sections 4.3.1 and 4.3.2) resulting in very 
high detection accuracies. 

2. Optical fundamentals of water remote sensing 
For the spectral identification of water pixels and the separation from other dark surfaces 
and shadows it is necessary to understand the influencing factors contributing to the surface 
reflectance of water bodies and especially to the optical complexity and variability of coastal 
and inland waters. The spectral reflectance of water (its apparent water colour) is a function 
of the optically visible water constituents (suspended and dissolved) and the depth of the 
water body (Effler & Auer, 1987, Bukata et al., 1991, Bukata et al., 1995). The concentration 
and composition of (i) phytoplankton, (ii) suspended particulate matter (SPM) and (iii) 
dissolved organic matter loading dominate the optical properties of natural waters. Shallow 
coastal and inland waters may also contain the spectral signal contribution from the bottom 
reflectance that significantly differs with the various materials (mainly sands (different 
colours), muds (different colours), macrophytes (different abundances, groups and 
compositions), reefs (different structures, different colours). 

Smith & Baker (1983) and Pope & Fry (1997) provide absorption spectra of pure water derived 
from laboratory investigations. The Ocean Optic Protocols (Müller & Fargion, 2002) propose 
the absorption spectra of Sogandares & Fry (1997) for wavelengths between 340 nm and 380 
nm, Pope & Fry (1997) for wavelengths between 380 nm and 700 nm, and Smith & Baker (1983) 
for wavelengths between 700 nm and 800 nm. Buiteveld et al. (1994) investigated the 
temperature dependant water absorption properties. Morel (1974) provides spectral values of 
the pure water volume scattering coefficient at specific temperatures and salinity, and the 
directional phase function. Gege (2005) used the data from the afore listed publications to 
construct the WASI absorption spectrum of pure water. This absorption spectrum formed the 
basis of the knowledge-based algorithm for water identification presented in Section 4.3.1. 
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Specular reflection of direct sunlight at the water surface into the sensor should be avoided 
by choosing a different viewing geometry. Specular reflection of the diffuse incoming sky 
radiation at the water surface can not be avoided and accounts up to 2 to 4 % of the overall 
surface reflectance that is measured by a sensor. Thus, most of the incoming radiation 
penetrates the water. Wavelengths larger than 800 nm are entirely absorbed by a large water 
column of pure water, so reflectance and transmission are no more significant in those 
longer wavelengths. As solar and sky radiation transmits into the water, the scattering by 
suspended particles and the absorption by suspended and dissolved water constituents are 
the water colouring processes. The wavelength peak of the spectral reflectance from 
transparent waters lies in the blue wavelength range and in this case energy may be 
reflected from the bottom up of up to 20 meters deep. If waters are less transparent due to 
higher concentrations of phytoplankton and sediments, and if the back-reflected signal from 
the bottom in shallow water bodies reach back to the air/water interface, there is significant 
reflectance from the water body also at the longer wavelength ranges (green to red) and 
there is a rise of the water-leaving reflectance even in the NIR wavelength region. In the case 
of phytoplankton blooming, high sediment loads or shallow waters with a bright bottom 
reflectance the water leaving signal significantly rises in the NIR and the overall reflectance 
may reach near 10 to 15 %. Therefore, there is no mono-type of the shape and the magnitude 
of the spectral water-leaving reflectance (Fig. 1). Inland and coastal waters may exhibit 
bright, turbid waters due to phytoplankton and sediments or bottom reflectance of their 
shallow areas, and in these cases simple thresholding techniques are no solution for the 
extraction and delineation of water bodies. 

 
Fig. 1. Surface reflectance spectra, RS (scale 0-1), of different inland waters (Rheinsberg Lake 
District, Germany) representing different water colours (Reigber, in prep). GWUMM, 
Grosser Wummsee, highly transparent, oligotrophic (nature reserve, densely forested); 
ZOOTZ, Zootzensee, mesotroph (rural, forested); ZETHN, Zethner See, turbid, mesotroph-
eutrophic (rural); BRAMI, Braminsee, highly turbid, polytrophic (fish farming, rural) 

3. Overview of existing methods for water body mapping 
In the majority of algorithms for water body mapping a spectral band in the NIR spectral 
region plays an important role due to the high absorption of water and resulting high 
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contrast in NIR bands to many other surface types. However, Manavalan et al. (1993) found 
that optimal cut-of gray values for individual spectral bands have to be carefully adjusted 
and are varying between different images. Band ratios or spectral indices are often used to 
mitigate spectral differences between images and also to enhance the contrast between 
surface types. Consequently, indices like the NDWI (McFeeters, 1996) (Equation 1) and 
MNDWI (Xu, 2006) (Equation 2) have been developed. Basically, the authors suggest a 
default threshold value of zero for these indices, i.e. gray values greater than zero represent 
water pixels. However, the comparative study of Ji et al. (2009) showed that an image and 
landscape specific adjustment of threshold values can improve results. Therefore, these 
methods are not fully suitable for automation. Further, NDWI shows high false positives in 
build-up areas (Xu, 2006). Xu developed the MNDWI to enhance the separation between 
water and built-up areas using Landsat ETM+ images. However, in high spatial resolution 
images there is no single spectral profile for the class “built-up areas” (Roessner et al., 2011) 
and many man-made materials have positive NDWI and/or MNDWI values (Fig. 2 and 
Tab. 1). This is also true for shadow over non-vegetated areas. Fig. 3 shows that indices like 
the NDWI are not suitable for water body mapping in urban areas using high spatial 
resolution images since no threshold value can be found for which both, false positives and 
false negatives are low. 
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Fig. 2. Reflectance spectra of man-made materials with positive NDWI and/or MNDWI 
values. The gray bars indicate Landsat TM bands which are typically taken for calculating 
the NDWI and MNDWI. The spectra were collected from the test site Potsdam 

Surface type NDWI MNDWI 
Copper 0.28 0.10
Plastic -0.13 0.01

Shadow 0.03 -0.10
PVC 0.03 0.20
Zinc 0.09 -0.17

Table 1. Corresponding index values of the spectra in Fig. 2 
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Fig. 3. True colour composite of an AISA image of Helgoland, Germany, with (b) histogram 
of the NDWI, (c) Water mask by threshold 0 (red line in histogram) on the NDWI; (d) Water 
mask by threshold 0.13 (green line in histogram) on the NDWI. In image c the water body 
(bottom left side) is almost totally included in the water mask but many urban features are 
so, too. In image d some parts of the water body are already lost but still some urban 
features are present 
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where green is a green band and NIR is a NIR band 
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where green is a green band and MIR is a middle infrared band 

In addition to the spectral-based approaches object-oriented methods have been developed 
for water body mapping (e.g. Xiao & Tien, 2010). However, since these methods use size and 
shape features they have to be adjusted individually for each application and can not be 
used for mapping ponds, rivers and coastal waters with the same configuration at the same 
time. 



 
Remote Sensing of Planet Earth 

 

6 

contrast in NIR bands to many other surface types. However, Manavalan et al. (1993) found 
that optimal cut-of gray values for individual spectral bands have to be carefully adjusted 
and are varying between different images. Band ratios or spectral indices are often used to 
mitigate spectral differences between images and also to enhance the contrast between 
surface types. Consequently, indices like the NDWI (McFeeters, 1996) (Equation 1) and 
MNDWI (Xu, 2006) (Equation 2) have been developed. Basically, the authors suggest a 
default threshold value of zero for these indices, i.e. gray values greater than zero represent 
water pixels. However, the comparative study of Ji et al. (2009) showed that an image and 
landscape specific adjustment of threshold values can improve results. Therefore, these 
methods are not fully suitable for automation. Further, NDWI shows high false positives in 
build-up areas (Xu, 2006). Xu developed the MNDWI to enhance the separation between 
water and built-up areas using Landsat ETM+ images. However, in high spatial resolution 
images there is no single spectral profile for the class “built-up areas” (Roessner et al., 2011) 
and many man-made materials have positive NDWI and/or MNDWI values (Fig. 2 and 
Tab. 1). This is also true for shadow over non-vegetated areas. Fig. 3 shows that indices like 
the NDWI are not suitable for water body mapping in urban areas using high spatial 
resolution images since no threshold value can be found for which both, false positives and 
false negatives are low. 

M
IR

N
IR

g
re

e
n

Wavelength [nm]

200015001000500

1000

2000

3000

R
ef

le
ct

an
ce

[%
*1

00
]

Spectral profiles of selected surface types

 
Fig. 2. Reflectance spectra of man-made materials with positive NDWI and/or MNDWI 
values. The gray bars indicate Landsat TM bands which are typically taken for calculating 
the NDWI and MNDWI. The spectra were collected from the test site Potsdam 

Surface type NDWI MNDWI 
Copper 0.28 0.10
Plastic -0.13 0.01

Shadow 0.03 -0.10
PVC 0.03 0.20
Zinc 0.09 -0.17

Table 1. Corresponding index values of the spectra in Fig. 2 
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Fig. 3. True colour composite of an AISA image of Helgoland, Germany, with (b) histogram 
of the NDWI, (c) Water mask by threshold 0 (red line in histogram) on the NDWI; (d) Water 
mask by threshold 0.13 (green line in histogram) on the NDWI. In image c the water body 
(bottom left side) is almost totally included in the water mask but many urban features are 
so, too. In image d some parts of the water body are already lost but still some urban 
features are present 
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In addition to the spectral-based approaches object-oriented methods have been developed 
for water body mapping (e.g. Xiao & Tien, 2010). However, since these methods use size and 
shape features they have to be adjusted individually for each application and can not be 
used for mapping ponds, rivers and coastal waters with the same configuration at the same 
time. 
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4. Material and methods 
In this investigation a knowledge-based algorithm for the automated mapping of water 
bodies was developed based on a spectral database from five airborne hyperspectral 
datasets from the two German cities Berlin (two datasets) and Potsdam, and the German 
island Helgoland (two datasets) (Tab. 2). Five independent datasets were used for validation 
(Tab. 2). The selected scenes comprise urban, rural and coastal landscapes as well as 
different sensors to prove the wide applicability of the developed approach. The AISA Eagle 
sensor is an airborne VNIR pushbroom scanner (400 – 970 nm) with 12 bit radiometric 
resolution and variable spatial and spectral binning options, the latter resulting in mean 
spectral sampling intervals between 1.25 nm and 9.2 nm (Spectral Imaging Ltd., 2011) and  

Test site Sensor Acquisition date, time (UTC) Pixel size (rounded) 

Berlin (urban) HyMap 20.06.2005, 09:38 * 
20.06.2005, 10:12 * 

4 m 
4 m 

Potsdam (urban) HyMap 07.07.2004, 10:29 * 4 m 

Helgoland (coastal) AISA Eagle 
09.05.2008, 08:32 * 
09.05.2008, 09:26 ° 
09.05.2008, 09:41 * 

1 m 
1 m 
1 m 

Rheinsberg (rural) HyMap 20.06.1999, 10:46 ° 10 m 
Dresden (urban) HyMap 07.07.2004, 09:39 ° 4 m 
Mönchsgut (coastal) HyMap 03.09.1998, 13:47 ° 6 m 
Döberitzer Heide (rural) AISA Eagle 19.08.2009, 11:42 ° 2 m 

* Datasets analyzed during algorithm development 
° Independent datasets for validation 

Table 2. Dataset-specific characteristics  
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Fig. 4. Location of the test sites within Germany 
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488 to 60 spectral bands, respectively. The mean spectral sampling interval of the analyzed 
datasets is 2.3 nm for “Döberitzer Heide” and 4.6 nm for “Helgoland”. The HyMap sensor is 
an airborne VNIR-SWIR whiskbroom scanner with 16 bit radiometric resolution consisting 
of four detector modules with mean spectral sampling intervals of 15 nm (VIS and NIR), 13 
nm (SWIR1) and 17 nm (SWIR2) (Cocks et al., 1998). The 128 spectral bands cover the 
spectral region from 440 nm to 2500 nm. 

Water detection is a trivial task as long as there are no other dark surfaces present in the 
image. Unfortunately, the most prominent spectral characteristic of water pixels – water 
pixels are very dark – also applies to a couple of other surfaces such as dark rocks (e.g., lava, 
basalt) or bituminous roofing materials and especially to pixels covered by shadow. To 
account for this, we developed a two-step approach that firstly masks low albedo pixels as 
potential water pixels (section 4.1) and secondly applies a process of elimination to 
consecutively remove false positives (sections 4.2 and 4.3). 

4.1 Masking potential water pixels 

Masking of potential water pixels is done by thresholding a spectral mean image of all NIR 
bands between 860 nm and 900 nm of a sensor. As pointed out before water absorbs most of 
the incident energy in the NIR spectral region exhibiting a high brightness contrast to the 
majority of other surfaces. However, since every scene is different a scene-specific threshold 
has to be found. This is done automatically based on the histogram of the NIR spectral mean 
image (Fig. 5). After finding the histogram peak of low albedo surfaces (first local  
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Fig. 5. Histograms (left: full, right: subset) of the NIR spectral mean images of two test sites 
(top: Helgoland, bottom: Berlin) 
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image. Unfortunately, the most prominent spectral characteristic of water pixels – water 
pixels are very dark – also applies to a couple of other surfaces such as dark rocks (e.g., lava, 
basalt) or bituminous roofing materials and especially to pixels covered by shadow. To 
account for this, we developed a two-step approach that firstly masks low albedo pixels as 
potential water pixels (section 4.1) and secondly applies a process of elimination to 
consecutively remove false positives (sections 4.2 and 4.3). 

4.1 Masking potential water pixels 

Masking of potential water pixels is done by thresholding a spectral mean image of all NIR 
bands between 860 nm and 900 nm of a sensor. As pointed out before water absorbs most of 
the incident energy in the NIR spectral region exhibiting a high brightness contrast to the 
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Fig. 5. Histograms (left: full, right: subset) of the NIR spectral mean images of two test sites 
(top: Helgoland, bottom: Berlin) 
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maximum) and a point near to the second local maximum (red dots in Fig. 5) the histogram 
between these two points is approximated by a polynomial of degree 5 (magenta dashed 
lines in Fig. 5). Then, the x value at the local minimum of the polynomial plus a safety 
margin of 2 is taken as the maximum reflectance threshold to be applied on the NIR spectral 
mean image. This results in a low albedo mask shown exemplarily for the test site Potsdam 
in Fig. 6. From this mask the water pixels have to be identified and other low albedo 
surfaces (mostly shadow) have to be removed. 

    
Fig. 6. Low albedo mask (right-hand) for the test site Potsdam 

4.2 Differentiation between macrophytes in water and vegetation under shadow on 
land 

Reflectance spectra of macrophytes (big emergent, submergent, or floating water plants) are 
characterized by spectral features of vegetation, such as the chlorophyll absorption features 
in the blue and red wavelength regions and the red edge in the NIR wavelength region. The 
light absorbing properties of water result in reflectance spectra exhibiting a comparably low 
albedo to those of shadowed vegetation on land (Fig. 7). Therefore, shadowed vegetation 
cannot be removed from the low albedo mask by simply thresholding an NDVI image.  

 
Fig. 7. Reflectance spectra of macrophytes in comparison with a reflectance spectrum of 
shadowed vegetation on land. The blue bars mark the wavelength of the two ratios used for 
distinguishing both surface types 

On the Use of Airborne Imaging Spectroscopy Data for the  
Automatic Detection and Delineation of Surface Water Bodies 

 

11 

However, a diagnostic spectral difference between both surfaces can be found in the NIR 
spectral region where the increasing water absorption causes the reflectance spectra of 
macrophytes to decrease between 710 – 740 nm as well as 815 – 880 nm. Therefore, pixels of 
shadowed vegetation can be removed from the low albedo mask using the condition: 

VI*  >  1.0   AND   (R740 – R710 / 740 – 710  <  -0.001   OR    R880 – R815 / 880 – 815  <  -0.01) (3) 

where 

VI* = modified vegetation index = max(R710, R720) / R680 

R740 = reflectance at wavelength 740 nm 
Reflectance values must be scaled between 0 – 100 

4.3 Removal of shadow pixels 

Water and shadow reflectance spectra are on average both very dark. The reflectance level 
of both decreases with wavelength due to a decreasing proportion of diffuse irradiation 
(case of shadow) and due to the increasing light absorption (case of water). Additionally, 
both show a high spectral variability due to different types of shadowed surfaces (case of 
shadow) and due to varying water constituents and bottom reflection (case of water). 
However, despite this variation all water reflectance spectra have one thing in common: the 
pure water itself. Therefore, spectral features of pure water, especially absorption features, 
can be seen in every reflectance spectrum of water. However, the presence of these spectral 
features depends on the spectral superimposition of the water constituents and bottom 
coverage. Section 4.3.1 describes how these aspects can be considered in the development of 
a knowledge-based classifier for spectrally distinguishing water and shadow. Section 4.3.2 
then continues with a spatial analysis. 

4.3.1 Spectral analysis for water-shadow-separation based on spectral slopes 

Fig. 8 shows the absorption spectrum of pure water (logarithmic scale) in comparison with 
selected surface reflectance spectra of different water bodies of the analyzed datasets. It can 
be seen that the increasing absorption within specific wavelength intervals (1st, 2nd, 4th and 
5th light red bar) results in decreasing reflectance for most of the reflectance spectra. The 3rd 
light red bar represents a short wavelength interval of stagnating absorption where some 
water reflectance spectra temporarily rise due to increasing reflectance of water constituents 
or water bottom before decreasing again. However, these effects are not present within all 
wavelength intervals of all water reflectance spectra because they can be superimposed by 
the reflectance of the water constituents and water bottom. In order to find the slope 
combinations that occur for typical water bodies we analyzed 112.041 surface reflectance 
spectra from five datasets (two from Helgoland, two from Berlin, one from Potsdam). The 
selected datasets contain several types of water bodies (rivers, lakes, ponds, North Sea; 
transparent to productive and turbid waters). A first-degree polynomial was fitted to the 
spectra within each of the five wavelength intervals using the least squares method. If the 
algebraic sign of the slope within a wavelength interval met the expectation it was coded to 
1 otherwise to 0. This resulted in a five-digit binary vector for each analyzed water 
reflectance spectrum representing the co-occurrence of slopes within the respective 
diagnostic wavelength intervals that met the expectation. The 25 possible binary vectors 
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However, a diagnostic spectral difference between both surfaces can be found in the NIR 
spectral region where the increasing water absorption causes the reflectance spectra of 
macrophytes to decrease between 710 – 740 nm as well as 815 – 880 nm. Therefore, pixels of 
shadowed vegetation can be removed from the low albedo mask using the condition: 

VI*  >  1.0   AND   (R740 – R710 / 740 – 710  <  -0.001   OR    R880 – R815 / 880 – 815  <  -0.01) (3) 

where 

VI* = modified vegetation index = max(R710, R720) / R680 

R740 = reflectance at wavelength 740 nm 
Reflectance values must be scaled between 0 – 100 

4.3 Removal of shadow pixels 

Water and shadow reflectance spectra are on average both very dark. The reflectance level 
of both decreases with wavelength due to a decreasing proportion of diffuse irradiation 
(case of shadow) and due to the increasing light absorption (case of water). Additionally, 
both show a high spectral variability due to different types of shadowed surfaces (case of 
shadow) and due to varying water constituents and bottom reflection (case of water). 
However, despite this variation all water reflectance spectra have one thing in common: the 
pure water itself. Therefore, spectral features of pure water, especially absorption features, 
can be seen in every reflectance spectrum of water. However, the presence of these spectral 
features depends on the spectral superimposition of the water constituents and bottom 
coverage. Section 4.3.1 describes how these aspects can be considered in the development of 
a knowledge-based classifier for spectrally distinguishing water and shadow. Section 4.3.2 
then continues with a spatial analysis. 

4.3.1 Spectral analysis for water-shadow-separation based on spectral slopes 

Fig. 8 shows the absorption spectrum of pure water (logarithmic scale) in comparison with 
selected surface reflectance spectra of different water bodies of the analyzed datasets. It can 
be seen that the increasing absorption within specific wavelength intervals (1st, 2nd, 4th and 
5th light red bar) results in decreasing reflectance for most of the reflectance spectra. The 3rd 
light red bar represents a short wavelength interval of stagnating absorption where some 
water reflectance spectra temporarily rise due to increasing reflectance of water constituents 
or water bottom before decreasing again. However, these effects are not present within all 
wavelength intervals of all water reflectance spectra because they can be superimposed by 
the reflectance of the water constituents and water bottom. In order to find the slope 
combinations that occur for typical water bodies we analyzed 112.041 surface reflectance 
spectra from five datasets (two from Helgoland, two from Berlin, one from Potsdam). The 
selected datasets contain several types of water bodies (rivers, lakes, ponds, North Sea; 
transparent to productive and turbid waters). A first-degree polynomial was fitted to the 
spectra within each of the five wavelength intervals using the least squares method. If the 
algebraic sign of the slope within a wavelength interval met the expectation it was coded to 
1 otherwise to 0. This resulted in a five-digit binary vector for each analyzed water 
reflectance spectrum representing the co-occurrence of slopes within the respective 
diagnostic wavelength intervals that met the expectation. The 25 possible binary vectors 
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were numbered from 0 to 31 whereas the 0 vector (none of the 5 slopes met the expectation) 
was excluded from further analysis. The numbered combinations are shown in Fig. 9 in 
comparison with the numbered combinations of 33.721 analyzed shadow spectra. It can be 
seen that many combinations are occupied either by water or by shadow spectra and thus 
provide a clear separation between water and shadow. These combinations are 
implemented in the developed approach so that applied to an image many pixels of the low 
albedo mask can either be identified as water or rejected as shadow. The other combinations 
marked by the orange arrows are ambiguous. Pixels that fall into these combinations need a 
consecutive spatial processing described in Section 4.3.2. 

Water absorption vs water reflectance

Wavelength [nm]

450 500 550 600 650 700 750 800 850 900

 
 

Fig. 8. Absorption of pure water (thick blue line, logarithmic scale, source: WASI (Gege, 
2005)) in comparison to water surface reflectance spectra from different water bodies of the 
analyzed datasets. The increasing absorption within specific wavelength intervals (light red 
bars) results in decreasing reflectance for most of the reflectance spectra but is partly 
superimposed by the reflectance of the water constituents and water bottom 
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Fig. 9. Numbered slope combinations for water and shadow reflectance spectra. Due to the 
different amount of analyzed pixels of water and shadow (112.041 and 33.721) the relative 
frequency per land cover class is given. Combinations that are occupied by only one bar (or 
one very big and one very small bar) provide a clear separation between water and shadow. 
The combinations marked by the orange arrows are spectrally ambiguous 

4.3.2 Spatial analysis for water-shadow-separation 

Pixels of the low albedo mask that have not been identified as water or shadow based on the 
unambiguous spectral slope combinations are subjected to a consecutive spatial analysis. In 
this processing the idea is to decide according to the dominating spectral decision (see 
previous section) made within the neighbourhood of the ambiguous pixels (Fig. 10). The 
spectral decisions in the neighbourhood are counted using a 3x3 filter kernel resulting in a 
water score and a no-water score for each ambiguous pixel. If one of the two scores is more 
than three times higher than the other the ambiguous pixel is either identified as water or as 
no-water and is written into the respective image of confirmed water or no-water areas. If this 
is not the case the filter kernel iteratively grows up to a size of 33x33. Thereby, the identified 
water and no-water pixels are written into the respective image of identified water or no-water 
areas after each iteration so that they can be counted by the filter of the following iterations. 
When the filter kernel has reached a size of 33x33 and there are still ambiguous pixels left the 
decision threshold is reduced to two times higher than the other score and the filter kernel is 
reset to a size of 3x3. When the filter kernel reached a size of 33x33 for the second time it is 
again reset to a size of 3x3 and the decision is then simply related to the higher score. At this 
stage the filter starts growing again without a limit and until a decision was made for every 
ambiguous pixel. The graduation of the decision threshold has the advantage that pixels with 
an unambiguous neighbourhood are confirmed first and then accounted for in the following 
iterations. Finally, after all pixels have been identified either by spectral or spatial processing, 
the spectrally or spatially identified water pixels are combined into the final water mask. A last  
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4.3.2 Spatial analysis for water-shadow-separation 

Pixels of the low albedo mask that have not been identified as water or shadow based on the 
unambiguous spectral slope combinations are subjected to a consecutive spatial analysis. In 
this processing the idea is to decide according to the dominating spectral decision (see 
previous section) made within the neighbourhood of the ambiguous pixels (Fig. 10). The 
spectral decisions in the neighbourhood are counted using a 3x3 filter kernel resulting in a 
water score and a no-water score for each ambiguous pixel. If one of the two scores is more 
than three times higher than the other the ambiguous pixel is either identified as water or as 
no-water and is written into the respective image of confirmed water or no-water areas. If this 
is not the case the filter kernel iteratively grows up to a size of 33x33. Thereby, the identified 
water and no-water pixels are written into the respective image of identified water or no-water 
areas after each iteration so that they can be counted by the filter of the following iterations. 
When the filter kernel has reached a size of 33x33 and there are still ambiguous pixels left the 
decision threshold is reduced to two times higher than the other score and the filter kernel is 
reset to a size of 3x3. When the filter kernel reached a size of 33x33 for the second time it is 
again reset to a size of 3x3 and the decision is then simply related to the higher score. At this 
stage the filter starts growing again without a limit and until a decision was made for every 
ambiguous pixel. The graduation of the decision threshold has the advantage that pixels with 
an unambiguous neighbourhood are confirmed first and then accounted for in the following 
iterations. Finally, after all pixels have been identified either by spectral or spatial processing, 
the spectrally or spatially identified water pixels are combined into the final water mask. A last  
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Fig. 10. Spatial processing illustrated by an exemplary subset of the Potsdam test site 

aesthetic correction is done by filling up one pixel wholes within water areas which are 
considered as errors induced by noise. The filling of wholes can optionally be extended onto 
larger wholes (up to a certain size) which are likely to be boats (see Fig. 11). 
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Fig. 11. (continued) 
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Fig. 10. Spatial processing illustrated by an exemplary subset of the Potsdam test site 

aesthetic correction is done by filling up one pixel wholes within water areas which are 
considered as errors induced by noise. The filling of wholes can optionally be extended onto 
larger wholes (up to a certain size) which are likely to be boats (see Fig. 11). 
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Fig. 11. Automatically detected water areas for the ten test sites Berlin_09:38, Berlin_10:12, 
Potsdam, Helgo_08:32, Helgo_09:26, Rheinsberg, Dresden_sub1, Dresden_sub2, Mönchsgut, 
Döberitzer (top to bottom; same order as in Tab. 3) 
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5. Results and discussion 
In order to assess the accuracy of the developed approach water areas have been 
comprehensively digitized on-screen for selected validation sites of 175.000 pixels in size 
(350 by 500 or 500 by 350). The subsets have been chosen to contain as many challenging 
surface types as possible and to represent all different landscape types and sensors. Based 
on the digitized water reference areas no-water reference areas have been created by 
buffering the water reference areas with a two pixel buffer because of the mixed pixel 
problem and inverting the buffered areas. Using the reference areas of water and no-water 
several error metrics based on confusion matrices have been calculated. These are the 
probability of detection (POD), probability of false detection (POFD), false alarm  
ratio (FAR), overall accuracy (OA), average accuracy (AA) and kappa coefficient given in  
Tab. 3. 

 
Test site POD POFD FAR OA AA Kappa 

Berlin_09:38 79.5 0.1 9.6 99.8 89.7 0.845 
Berlin_10:12 71.8 0.6 34.7 99.0 85.6 0.679 
Potsdam 98.2 0.5 1.8 99.2 98.9 0.977 
Helgo_08:32 99.8 2.3 25.3 97.8 98.8 0.843 

Helgo_09:26 99.6 0.2 3.1 99.8 99.7 0.982 
Rheinsberg 98.2 0.3 3.0 99.6 99.0 0.974 
Dresden_sub1 98.7 0.0 7.9 100.0 99.3 0.953 
Dresden_sub2 100.0 2.5 25.1 97.7 98.8 0.844 
Mönchsgut 98.8 0.0 0.2 99.7 99.4 0.991 
Döberitzer 100.0 1.8 1.9 99.1 99.1 0.981 

Table 3. Results of the accuracy assessment. The first four test sites are subsets of datasets 
from which reflectance spectra have been analysed during the algorithm development. The 
last six test sites are subsets from independent validation datasets. The largest errors are 
highlighted in gray and discussed below. 

The overall accuracy (a common error measure for classification results) amounts to 97% or 
above for all the test sites. However, to evaluate the detection accuracy of an 
underrepresented class the overall accuracy is not the best measure because it credits correct 
detections and correct not-detections equally and it is strongly influenced by the dominating 
class, i.e. the no-water class in this study. The overall measures average accuracy and 
especially kappa coefficient – although very high, too - reveal the remaining problems of the 
algorithm much better (highlighted in gray in Tab. 3). However, the most sensitive measures 
are the class-specific measures POD and FAR. 

POFD, POD and FAR are typical measures for evaluating the accuracy of forecasting 
methods (Jolliffe & Stephenson, 2003) as well as two-class classification problems like 
detection tasks (one class of interest and one background class). The POFD of a class, also 
known as the false alarm rate, measures the fraction of false alarm pixels in relation to the 
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background class, i.e. the number of false alarm pixels divided by the total number of 
ground truth pixels of the background class (= omission error of the no-water class). The 
achieved POFDs for the test sites are very low (usually below 1 %) showing that water can 
be well distinguished from no-water surfaces. This is a big step forward compared to the 
NDWI and MNDWI which applied to high spatial resolution data result in many false 
positives for urban surface materials (see Fig. 3). 

The POD of a class, also known as hit rate, measures the fraction of the detected pixels of the 
class of interest that were correctly identified, i.e. the number of correctly identified pixels 
divided by the total number of ground truth pixels of the class (= producer accuracy of the 
water class). The achieved PODs for most of the test sites are very high (> 98 %) showing 
that the developed algorithm usually detects almost all water pixels. False negatives occur 
only for small water bodies (small ponds within the park at the top left in Berlin_09:38, parts 
of the river in Berlin_10:12, and narrow rivers in Rheinsberg). Possible explanations are the 
adjacency effect (light from neighbouring pixels that is scattered into the instantaneous field 
of view by the atmosphere) and diffuse illumination of the water surface by surrounding 
trees. These two effects might be the reason for the spectral shape of the water spectra of 
small water bodies with surrounding trees that looks much more like a reflectance spectrum 
of vegetation than one of water (Fig. 12) and do not show the typical decreasing slopes that 
enabled the spectral identification of water as shown in section 4.3.1. 

 
Fig. 12. A typical surface reflectance spectrum of water (blue) compared to a reflectance 
spectrum of a small water body with surrounding trees (green) 

The false alarm ratio (FAR) gives the fraction of false alarm pixels in relation to the number 
of detected water pixels in the image, i.e. the number of false alarm pixels divided by the 
total number of classified water pixels ( = commission error of water class). This error 
measure reveals clearly if to much water pixels have been falsely identified. This is the case 
for the test sites Berlin_10:12, Helgo_08:32, and Dresden_sub2 as well as in a weakened form 
for Berlin_09:38. In all of these test sites the confusion is related to shadow areas classified as 
water. For the test site Helgo_08:32 this can be explained by the intertidal zone which is wet 
even when the water is gone. Therefore, it is possible that there are some small water 
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influenced areas under the shadow which is a problem that has not yet been regarded in the 
water-shadow separation (section 4.3.1) and is still an open issue for the future. 

Another open issue is the detection of white water pixels which are usually to bright to be 
included in the low albedo mask (section 4.1). This can be seen in the top left side of the test 
site Mönchsgut. 

Overall, it can be seen from Tab. 3 that the accuracies of the independent datasets is not less 
than the accuracies of the datasets analyzed during the algorithm development. Thus, the 
algorithm seems to be robust and generalizes well to unknown datasets. 

6. Conclusion 
A new algorithm for the detection and delineation of surface water bodies based on high 
spatial resolution airborne VNIR imaging spectroscopy data has been developed. In contrast 
to existing methods the proposed approach does not require a priori knowledge nor user 
input, manual thresholding or fine-tuning of input parameters and is able to automatically 
detect and delineate surface water bodies with a very high accuracy. Thus, the developed 
algorithm is suitable for implementation in automated processing chains. The algorithm was 
tested on different sensor data (AISA Eagle and HyMap), works for different types of 
landscapes (tested: urban, rural and coastal) and is not influenced by different atmospheric 
correction methods (tested: ATCOR-4 (Richter, 2011), MIP (Heege & Fischer, 2004), ACUM-
R (unpublished in-house development by K. Segl), the method of L. Guanter et al. (Guanter 
et al., 2009), and empirical line correction). Future issues will be to improve the detection of 
small and narrow water bodies, the detection of white water and of water under shadow. 
Furthermore, the proposed method will be tested on hyperspectral VNIR satellite data. 
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1. Introduction

Wetlands and small lakes are areas with great ecological value that are increasingly threatened
through excessive pressure on water resources. In some cases, this pressure can lower the
aquifer and result in a significant reduction of the area of small lakes or the drying out of
wetlands. In other cases, logging, road building and other degradations of the surroundings
of lakes can increase nutrients loads that reach the water and alter the state of these lakes
towards eutrophication and reduction of the open water surface through colonization by
aquatic plants. The first requirement to help protect these areas is a thorough mapping and
monitoring of the changes that affects them: past, present and future. Many of these areas are
poorly known and have not been mapped thoroughly and most have never been monitored.
Remote sensing is the only effective means to perform both tasks by enabling rapid mapping
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the current and wind or to dry out causing the death of its vegetation (Junk & Silva, 1999).
Conversely, in the "Rio Doce" lake system of the present study (Figure 1), the water level is
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almost constant throughout the year (average variation of less than 1 m), therefore the floating
islands that form tend to perpetuate and grow and can eventually occupy the whole area of
the lake.

Fig. 1. Location of the Rio Doce study area including the Rio Doce State Park (black thick
line).

Although the process of floating island formation is a natural one, in certain cases it can
be initiated or accelerated by human interference. Our hypothesis is that a significant
degradation of the surroundings of the lakes can cause an increase in sediments and nutrients
load that can alter the state of the lake from oligotrophic to eutrophic. This new chemical
balance is known to be beneficial for the development of free floating macrophytes species. If
the aquatic environment is lentic, isolated and perennial (without seasonal flooding pulses)
the emergence of macrophyte tend to colonize an ever increasing area of the lake and will
eventually lead to the formation of floating islands. These floating island can, in turn grow
indefinitely until the whole lake is covered. There are a number of these completely covered
lakes in the Rio Doce lake system. Although we speculated that it is the degree of human
interference (logging, agriculture, fertilizers, road construction, etc.) that is the main factor
responsible for causing some lakes to be colonized by floating islands and others not, a clear
trend could not be verified. Some lakes appear to have seen their open water area increased
despite the degradation of their surroundings.
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The objective of this study is to verify if the history of recent human interferences can help
explain the formation of large areas of floating islands within the Rio Doce lake system. To do
so, we have used a 20 years temporal series of Landsat images to assess the behavior of these
lakes in terms of their area of open water and determine if it can be associated with the degree
of human interference. A high resolution Ikonos1 mosaic of images and a RapidEye2 mosaic
were also used to complement our field data for the initial delineation of the lakes.

2.1 Material and method

2.1.1 Study area

The Rio Doce valley is located in the eastern part of the state of Minas Gerais and is an
important physiographic feature of Southeastern Brazil. The relief is strongly ondulating at
an average altitude of about 250 m a.s.l. and varies between 195 and 525 m a.s.l. with many
depressions occupied by lakes (Gilhuis, 1986). Annual rainfall ranges between 1000 and 1250
mm and the climate by is hot and humid (Köppen: Aw) megathermic, with a distinct dry
(April-September) and rainy season (October to March).

The Rio Doce lake district is the third largest lake system in the Brazilian territory (Tundisi
et al., 1981). According to Esteves (1988), these water bodies originated in the Pleistocene
through a blocking of the mouth of former tributaries of the Doce and Piracicaba rivers under
the influence of an epirogenetic shift. This also explains the continuity and depth (up to about
30 m) of the lakes, meandering their ways.

The Rio Doce lake system is situated in the Atlantic Forest domain (Mata Atlântica), where
the vegetation is classified as mesophilous semi-deciduous forest (Veloso et al., 1991). The
dense native forest that naturally surrounds the lakes prevents the entry of large quantities of
allochthonous material (sediments), allowing the limnological characteristics of these water
bodies to sustain over time without large fluctuations in their physicochemical characteristics
and in the chemical composition of their sediments (Meis(de) & Tundisi, 1986). Under these
conditions, the lakes generally present an oligotrophic state and a low diversity of dominant
macrophytes (Ikusuma & Gentil, 1985).

However, these lakes are in various states of health and those within the boundaries of
Rio Doce State Park (RDSP) are generally well preserved. In 2009 some of the lakes
located in this protected area have been recognized internationally as a Ramsar Site (site
1900 http://www.ramsar.org/), with an important wetland area for the conservation of
biodiversity as well as economic, cultural, scientific and recreational resources (SMASP 1997).
Most of the lakes located outside the RDSP boundaries have had their surrounding native
vegetation devastated, a factor that changed their original oligotrophic status to eutrophic.
Since the 1950s these areas have suffered from various human activities, beginning with the
removal of vegetation for charcoal production to supply metallurgical plants. Today, these
areas are used for extensive plantations of eucalyptus and are intertwined by an extensive
network of paved and unpaved roads. Other sources of threat include residential and
industrial pollution, hunting and predatory fishing, fragmentation of remaining habitat and
introduction of exotic species.

1 An American commercial satellite operated by Space Imaging Corporation and producing
panchromatic and multispectral images with ground resolutions of one and four meters respectively.

2 A German-owned constellation of five satellites producing five meter resolution multispectral imagery.
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2.1.2 Satellite and cartographic data

The imagery data available for this project came in the form of an Ikonos mosaic of 2006,
a RapidEye set of images of 2010, Landsat historical data and out-of-date cartographic data
(last updated in the 70’s). The Ikonos mosaic was already pan-sharpened 3 and was made
available by the Forest Institute of Minas Gerais (Instituto Estadual de Florestas - Minas Gerais).
The RapidEye images with a ground resolution of 5 m were also made available by the IEF and
were used to complete the Ikonos mosaic to the North, South and East. The Landsat database
was constituted of 17 Landsat-5 TM images covering the 1989-2010 period, two of which had
to be excluded because of their poor quality (Table 1). The cartographic data consisted mainly
of the hydrographic network which was added to map products.

Date Quality Date Quality Date Quality
04/07/1985 good 05/07/1997 * rejected 24/07/2004 good
04/05/1986 good 08/07/1998 good 14/05/2007 good
15/07/1989 good 28/08/1999 good 05/09/2008 good
27/08/1993 good 27/06/2000 good 07/08/2009 good
01/10/1994 good 27/04/2001 good 26/08/2010 good
18/07/1996 good 20/06/2003 * rejected
Legend: *images with too many clouds or haze

Table 1. List of Landsat-5 TM images (orbit/scene 217-73 and 74) used in this study along
with a quality assessment.

Field work was conducted over a period of four years in which as many as 20 lakes were
visited and over 200 species of aquatic plants were collected and identified (Pivari et al., 2008).
Positional data was also acquired using a navigation GPS to register the images to a common
cartographic projection (UTM 23 South).

Because no survey of the lakes was done, our approach was to use the Ikonos and RapidEye
images as basis for the contouring of all the lakes while accounting for possible positioning
inaccuracies by applying a buffer of 75 meters outside the interpreted vectors. These vector
would subsequently be used to eliminate undesirable classified pixels and areas. At the same
time, based on the knowledge acquired in the field, the wetland areas were divided into four
different classes: 1) macrophytes with visible open water, 2) bogs, 3) peatland, and 4) floating
islands. Figure 2 shows examples of these wetland classes.

Our main goal being to determine if the formation of floating islands can be related to the
degradation of the surroundings, these wetland classes were considered as a whole and it
was assumed that what was not classified as open water belonged to the wetland class, that
is within the vicinities of the lakes. The main reason for not considering these different types
of wetlands was that they were not spectrally separable from the tests we conducted. We also
had insufficient validation data to do a full scale classification of aquatic communities.

2.1.3 Lake classification with MAGIC

To classify the open water areas of the lakes, a region-based unsupervised classification
approach was adopted where two classes were sought: water and non-water. The MAGIC

3 Pan-sharpening involves resampling the 4 m multispectral imagery to 1 m using the panchromatic
channel.
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Fig. 2. The four main types of wetland encountered in the study region: (a) floating island,
(b) peatland, (c) macrophytes with open water and (d) bogs.

(©2010 Systems Design Engineering, University of Waterloo, Canada) program (Clausi et al.,
2010) is the product of an ongoing research (actually in version 2) and was chosen to segment
and classify the images for having yielded excellent results in several other studies (Barbosa &
Maillard, 2010; Maillard et al., 2008). MAGIC is an acronym that stands for "MAp Guided Ice
Classification" because it was originally developed as a tool for classification of sea ice types.
With new applications being tested and implemented, the "I" in MAGIC might eventually
stand for "image".

The classification of MAGIC is unique in its implementation and the principles it embodies.
It is an hybrid segmentation-classification approach that uses two different paradigms:
"watershed" and Markov Random Fields (MRF). The segmentation is started by applying
a "watershed" algorithm that produces a preliminary segmentation and generates segments
(areas) of 10-30 pixels depending on the noise level in the image. The "watershed" algorithm
implemented in MAGIC was developed by Vincent & Soille (1991) and divides an image into
segments with closed boundaries. The "watershed" algorithm first looks for local minima
and then works by region growing until it finds a divide line with another "catchment" area.
However, it tends to oversegment the image, a characteristic that MAGIC takes advantage of
in order not to "miss" any object.
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Conversely, the MRF model (Li, 1995) assumes that the conditional probability of a pixel given
its neighbors is equal to the conditional probability of that pixel given the rest of the image.
This makes it possible to consider every pixel within its neighborhood as an independent
process (Tso & Mather, 2001) and to compute the conditional probability of a pixel belonging
to a given class using the Bayes rule:

P(Yi|x) = p(x|Yi)P(Yi)

∑i[p(x|Yi)P(Yi)]
(1)

where p(x|Yi) is the conditional distribution of vector x given class/segment Yi and P(Yi) is
the prior probability of the Yi class. Suppose that the energy associated to the prior probability
is Er and that Ef represents the energy of the spatial context p(x|Yi), then the general energy
formula is given by Geman et al. (1990):

E = Er + αEf (2)

where Ef is the energy form of feature vector f having k dimensions. Assuming a Gaussian
distribution Ef can be modeled as:

Ef = ∑
s,m=Ys
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where μm and σm are the mean and standard deviation of mth class in the kth feature vector.
Er represents the energy of the labels (classes) in the neighborhood of the pixel being analyzed
based on a system of clique (generally pairs or triplets of contiguous pixels):

Er = ∑
s

[
β ∑

t∈Ns

δ(ys, yt)

]
(4)

where ys and yt are the respective class of pixels s and t (inside the clique), and δ(ys, yt) = −1
if ys = yt and δ(ys, yt) = 1 if ys �= yt. β is a constant. In the absence of training samples to
determine the labels of the pixels of the clique, these are initially randomly determined and
gradually stabilize by iteration.

In equation 2, α is a parameter that sets the proportions of the relative contribution of Er and
Ef within E. The adaptation of Deng & Clausi (2005) adopted in MAGIC makes α iteratively
change the weighting between the spectral (global) and spatial (local) components; early
iterations favor the spectral component and increased iterations gradually increase the weight
on the spatial component.

MAGIC is unique in the sense that instead of working on pixels, it uses the actual segments
produced by the "watershed" algorithm. These segments are arranged topologically, so that
all contiguous segments can be determined through an adjacency graph or RAG (Region
Adjacency Graph). MAGIC will then merge contiguous segments if the union produces a
decrease in the total energy of the neighborhood defined above.

The advantage of the MRF model is its inherent ability to describe both the spatial
context location (the local spatial interaction between neighboring segments) and the overall
distribution in each segment (based on parameters of distribution of spectral values for
example). This new approach was entitled "Iterative Region Growing Using Semantics" or
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IRGS and is described in Yu & Clausi (2008). Because MAGIC associates the segments to a
predefined set of classes, it is considered a region-based unsupervised classification system.

MAGIC incorporates a number of innovative features such as 1) importing vector polygons
to guide or restrict the classification (hence the "map-guided"), 2) a number of other
segmentation approaches both traditional (e.g. K-means, gaussian mixture) and MRF-based,
3) the ability to compute texture features (grey level co-occurrence matrix and gabor) and
4) a functional graphical user interface (GUI). Figure 3 illustrates the GUI of MAGIC with
the classification results for the Landsat 2010 image and the pop-up window for the IRGS
algorithm.

Fig. 3. The graphical user interface (GUI) of MAGIC also showing the pop-up window for
the IRGS segmentation / classification.

The unsupervised classification was performed on all Landsat images using exclusively the
mid-infrared band (band 5) generally considered the best option for separating land from
water (Ji et al., 2009; Xu, 2006). This approach also included rivers in the classification results
which were eliminated using the lake buffers. Other "misclassified" pixels (dark shadows,
tiny reservoirs) were also eliminated by the process.
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where ys and yt are the respective class of pixels s and t (inside the clique), and δ(ys, yt) = −1
if ys = yt and δ(ys, yt) = 1 if ys �= yt. β is a constant. In the absence of training samples to
determine the labels of the pixels of the clique, these are initially randomly determined and
gradually stabilize by iteration.

In equation 2, α is a parameter that sets the proportions of the relative contribution of Er and
Ef within E. The adaptation of Deng & Clausi (2005) adopted in MAGIC makes α iteratively
change the weighting between the spectral (global) and spatial (local) components; early
iterations favor the spectral component and increased iterations gradually increase the weight
on the spatial component.

MAGIC is unique in the sense that instead of working on pixels, it uses the actual segments
produced by the "watershed" algorithm. These segments are arranged topologically, so that
all contiguous segments can be determined through an adjacency graph or RAG (Region
Adjacency Graph). MAGIC will then merge contiguous segments if the union produces a
decrease in the total energy of the neighborhood defined above.

The advantage of the MRF model is its inherent ability to describe both the spatial
context location (the local spatial interaction between neighboring segments) and the overall
distribution in each segment (based on parameters of distribution of spectral values for
example). This new approach was entitled "Iterative Region Growing Using Semantics" or
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IRGS and is described in Yu & Clausi (2008). Because MAGIC associates the segments to a
predefined set of classes, it is considered a region-based unsupervised classification system.

MAGIC incorporates a number of innovative features such as 1) importing vector polygons
to guide or restrict the classification (hence the "map-guided"), 2) a number of other
segmentation approaches both traditional (e.g. K-means, gaussian mixture) and MRF-based,
3) the ability to compute texture features (grey level co-occurrence matrix and gabor) and
4) a functional graphical user interface (GUI). Figure 3 illustrates the GUI of MAGIC with
the classification results for the Landsat 2010 image and the pop-up window for the IRGS
algorithm.

Fig. 3. The graphical user interface (GUI) of MAGIC also showing the pop-up window for
the IRGS segmentation / classification.

The unsupervised classification was performed on all Landsat images using exclusively the
mid-infrared band (band 5) generally considered the best option for separating land from
water (Ji et al., 2009; Xu, 2006). This approach also included rivers in the classification results
which were eliminated using the lake buffers. Other "misclassified" pixels (dark shadows,
tiny reservoirs) were also eliminated by the process.
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2.1.4 Area calculation and statistical modeling

The calculation of the open water area in each lake was a straight forward operation
performed by simply counting the water pixels within each individual lake contour (plus
buffer). Each lake was treated as an individual "area of interest" for witch a statistics
calculation yielded the total number of non-zero pixels. The area of each lake and each year
was organized into a worksheet and processed using MiniTab (Copyright ©2011 Minitab Inc.).
Because many small lakes "disappeared" during the period analyzed, some of which could
"reappear" some years after, their inclusion into the regression processed posed an analysis
problem and so it was decided to retain only the lakes larger than 10 hectares. This was also
partly due to the resolution of the Landsat images (0.9 ha) that did not allow a satisfactory
precision for very small areas. Simple linear regression was performed between the area of
all remaining lakes and the time represented by the year of the Landsat images. The slope
parameter of the regressions (provided it was statistically significant) was used to determine
the trend in the behavior of the open water areas of the lakes through the 1989 - 2009 period.

2.2 Results

2.2.1 Open water classification

Because MAGIC is unsupervised and the user only feeds in the number of classes (and a
region weight parameter that controls the merging of neighboring segments), it is normally
better to specify more classes than actually needed so that the clusters in the spectral domain
are more restrictive and more consistent. In this case, after a few trials, we found that six
classes worked best and could be adopted for all 15 images. The non-water classes are then
eliminated by defining which class number represents water (which is not necessarily the
same all the time since class numbers are attributed randomly). The next step consisted in
eliminating lakes smaller than 10 ha, rivers and any pixel being wrongly attributed the same
class as water like very dark shadows (very rarely). The vectorized lakes interpreted from the
Ikonos and RapidEye images with a 75 m buffer was used as a mask to retain only the 147
lakes larger than 10 ha. Figure 4 illustrates this process.

Between lakes, peatbogs, and swamps, there were 765 interpreted "objects", more than half
of which (399) did not have open water at any time, or did not pertain to the Rio Doce lake
system leaving some 366 "objects" with open water. However, only 173 had open water in
all 16 years analyzed. The graph in Figure 5 shows the number of lakes with open water for
each year of the 16 Landsat images as well as the number of lakes considering the number
of years without open water. From the subjective analysis of both curves, we estimate that
there are usually between 240 and 260 lakes. We also found that this number appears to be
slowly increasing with time, which might be the results of more restrictive land use and more
protective measures from both the authorities and the forestry companies.

2.2.2 Regression: Open water area vs year

Despite the fact that an average of ≈ 250 lakes have open water, only 107 lakes were left
after the elimination of the lakes that had more than four years without open water because
of the negative effect it would have of the regression analysis. One hundred and seven (107)
regressions were done using the area of the lake as dependent and the year as independent.
Of these, only the regressions with a coefficient of determination above 0.5 were retained and
only when a clear trend (growing or shrinking) could be identified (| slope |> 0.003). This left
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(a) (b) (c)

Fig. 4. Results of the open water classification for lakes larger than 10 ha and for the year
2009: a) the classification results of the unsupervised region-based classification using 6
classes, b) after elimination of the non-water classes, c) after eliminating small lakes and
rivers.

(a) (b)

Fig. 5. Graph showing in a) the number of lakes for each year studied and, in b) the number
of lakes considering the number of years without open water (zero meaning that the lakes
have open water in all years, 15 meaning that these lakes had no open water in 15 of the 16
years).

a total of 27 lakes for which the slope of the regression, the coeficient of determination and
the area are listed in Table 2. The table also outlines which lakes are shrinking (left column) or
growing (right column) and which are inside or outside the protected area of the State Park.
These results are also illustrated graphically in Figure 6.
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a total of 27 lakes for which the slope of the regression, the coeficient of determination and
the area are listed in Table 2. The table also outlines which lakes are shrinking (left column) or
growing (right column) and which are inside or outside the protected area of the State Park.
These results are also illustrated graphically in Figure 6.
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SHRINKING GROWING
Inside State Park Outside State Park

Lake slope r2 Area (ha) Lake slope r2 Area (ha)
141 -0.0039 65.00 31.72 116 0.0032 62.30 63.78
140 -0.0039 78.60 303.24 113 0.0059 57.40 20.26
110 -0.0170 65.90 86.79 111 0.0079 63.30 15.58
109 -0.0058 92.00 68.42 97 0.0120 50.50 224.68
108 -0.0373 68.90 10.27 94 0.0260 74.50 11.86
103 -0.0055 73.00 24.03 87 0.0183 76.20 21.40
45 -0.0093 73.50 24.64 84 0.0070 53.30 20.26

Outside State Park 79 0.0032 70.50 161.77
120 -0.0071 73.10 48.58 28 0.0033 61.30 20.07
118 -0.0068 67.30 31.22 24 0.0049 52.30 64.70
115 -0.0099 61.60 23.93 4 0.0025 51.50 62.85
114 -0.0062 62.50 62.53 2 0.0119 65.60 28.89
85 -0.0347 71.00 15.57
72 -0.0404 93.60 23.64
69 -0.0363 60.20 15.75
55 -0.0350 91.30 21.85

Table 2. Slope and coefficients of determination for the lakes that have seen their open water
area significantly changed during the period of study. The lakes are separated as being inside
or outside the Rio Doce State Park. The areas correspond to the vectors interpreted form the
2010 RapidEye image.

2.3 Discussion and future research

The results generated were directly usable to establish an historical progression of the
situation of the open water area of over one hundred lakes. The region-based unsupervised
classification of the water / non-water classes proved to be fast and accurate when compared
with the digitized contours extracted from the Ikonos and RapidEye mosaics. This new
approach saved the time and effort that would have been needed to create training samples.
Because the study was based on historical data, no validation could be made available. Still,
based on the comparison with the visual interpretation, the extraction of the open water area
of these lakes proved very accurate, especially when considering their spatial consistency
(i.e. the contiguousness of the water pixels). Some questions remain open like the density of
aquatic plants needed for a pixel to fall in or out of the open water class. It is clear that this
parameter depends on the plant species, on the quality of the water and on the time of year
(phenology). Because of the large number of similar lakes involved in the study, it stands out
that this parameters does not affect the overall results.

However, the results obtained do not agree with our initial hypothesis stating that the
degradation of the surroundings of the lakes tend to have a shrinking effect on the open water
area of the lakes. Instead, the study shows that the problem is far more complex than we
originally expected and that only a thorough and constant monitoring of some of the lakes
in various situations could lead to a better understanding. One important observation is that
even the lakes in the protected areas are not necessarily safe from the accelerated process of
being transformed into bogs or being covered by floating islands. In particular, it has been
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Fig. 6. Image map showing the dynamics of the lakes in the Rio Doce lake system. Only lake
larger than 10 ha have been color-coded according to their dynamic state (shrinking or
growing). The map overlays band 5 of the 2010 Landsat image (faded).

observed that Nymphaeaceae caerulea (a kind of water lily), an exotic plant from Africa, is
propagating even in remote lakes, probably through the actions of aquatic birds.

Future research will be focused on acquiring more thorough validation data to classify aquatic
communities like it was done in another study of the Pandeiros (Barbosa & Maillard, 2010). It
is also planned to implement a program to monitor the dynamic of aquatic plant communities
for some lakes that appear to be shrinking or growing both inside and outside the State Park
and in different environments (eucalyptus, pasture, forest). Since the Government of Minas
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Gerais has implemented a program to acquire RapidEye images of the whole State once or
twice a year, this new perspective will facilitate a constant monitoring program with good
ground resolution (5 m).

3. Second case study: The receding of six small lakes in the upper Peruaçu
watershed

The Cerrado biome as a whole covers over one and a half million square kilometers in Brazil,
about 9% of which can be considered semiarid mostly in Northeast Brazil. In Southeastern
Brazil the only patch of semiarid Cerrado is at the northernmost tip of Minas Gerais in an
ecological tension zone between Cerrado and Caatinga (thorn shrub). The Peruaçu river
watershed, a ≈ 1500km2 area falls within this zone and has attracted much attention because
of its natural beauty and its archeological and cultural heritage. Receiving less than 1000 mm
of precipitations yearly, and having up to seven months without any rain, water resources
in the region is critical to the survival of populations but has been suffering from excessive
exploitation. In particular, the Veredas do Peruaçu State Park is apparently seeing the
continuous lowering of its aquifer in the last few decades. This is mostly observable from the
receding of a few small lakes (Figure 7) inside the park and one larger lake outside. Although
the phenomenon is obvious to the local population, over exploitation of water resources
appears to continue undisturbed.

Fig. 7. Location of the six lakes in the Study area near the head waters of the Peruaçu River.

Even though human occupation can be considered sparse, because the Peruaçu watershed
is small (1450 km2) and the region is considered semiarid, we stipulate that the pressure of
irrigation, eucalyptus plantations and wells is too great for its supporting capacity. It could
be argued that the lowering is caused by local changes in the precipitation and water balance
(WB), but since no records of the level of the aquifer or the lakes are available for the past, we
had to develop a methodology entirely based on historical remote sensing and meteorological
data to unambiguously demonstrate and quantify the phenomenon.

A multi-temporal remote sensing approach was used to create a time sequence of images to
monitor the size of the Peruaçu lakes. Landsat images stood as the most logical choice for
analyzing the dynamics of these lakes for being the longest record of systematical remote
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sensing data available for civil use. Passive optical infrared images are also considered the
most effective type of data for delineating water bodies since they absorb almost totally the
incoming radiation and produce a sharp contrast with the surrounding vegetation and soil
(Bonn & Rochon, 1992; Jensen, 2005).

Considering the small size of the lakes under investigation, the resolution of Landsat TM
images is somewhat marginally acceptable because of the mixed pixel problem. The fact that
water bodies are smooth continuous surfaces let us postulate that mixed border pixels have a
predictable behavior and could be sub-sampled using some interpolation technique.

The objective of this study is to infer the dynamics of the fluctuations of the water level of the
aquifer through past monitoring of the successive shrinking and growing of the open water
surface of six lakes found in the Veredas do Peruaçu State Park and surroundings. To achieve
this, we created a methodology for extracting the open water surfaces of these lakes from
an historical series of Landsat TM images using interpolation to overcome the mixed pixel
problem. We also computed the water balance record for the same period to verify if the
behavior of the aquifer can be attributed to modifications in the climate record.

3.1 Material and method

3.1.1 Study area

The study area (Figure 7) is located in Northern Minas Gerais - Brazil, a savannah region
that can be marginally classified as semiarid with less than 1000 mm of rain per year. Five of
the six lakes under study are inside the limits of the Veredas do Peruaçu State Park. The sixth
and largest lake Formosa is outside the protected area but still in its immediate vicinities.
The hydrographic network is part of the Peruaçu River Basin being a left tributary of the São
Francisco River. Rainfall is unevenly distributed during the year and is mostly concentrated
between November and March. The whole region is mostly flat with deep soils composed
mostly of sand and less than 15% of clay that have a low capacity of water retention.

The lakes themselves are small with the largest having an average area of around ten hectares.
Because there is no general agreement about the names of the four smaller lakes, they were
given the genereic names One, Two, Three and Four while the two larger ones are called
Formoza and Azul. Although there has been a few hypothesis to explain the genesis of these
lakes and their relative alignment, no conclusive results were ever presented. Lake Four had
open water until 2000 but has dried up and is now but an intermittently saturated herbaceous
round field. Unofficial reports by the local population all outline the gradual decrease of the
open water surface of most of these lakes but no actual study was ever undertaken.

Until the 1970s the region was occupied by small family groups descended from the Indian
tribe Xacriabá. In the middle of that decade the Brazilian government offered subsidies and
incentives to companies that were willing to invest in eucalyptus plantations for wood supply.
This was also the beginning of a much denser occupation of the area by workers and farmers.
The impacts of the plantations were reflected in the decrease of biodiversity, both in terms
of fauna and flora, and also by an increased pressure on water resources. Eucalypt planting
ceased in the early 1990’s, then the companies abandoned their activities in the region due
to low productivity and a practice that was not well adapted to the natural conditions. The
region was recognized as having unique biological characteristics and the Brazilian authorities
created a national park (Cavernas do Peruaçu) and a state park (Veredas do Peruaçu) to protect
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the natural beauties and the archeological heritage (rock paintings) of the Peruaçu watershed
(Maillard et al., 2009). Although the area is now protected by law, the effect of the previous
uses can still be observed and the area surrounding the parks still suffer from human pressure,
especially on water.

3.1.2 Data and data pre-processing

A total of 51 images from Landsat-5 TM (World Reference System: orbit/scene 219/70) were
chosen. Landsat-5 has been continuously collecting image data since 1984 which constitutes
the beginning the period considered by this research and ends in 2009. Two images from
Landsat-7 ETM+ were also acquired to complete the dataset for the year 2002 for which the
Landsat-5 scenes were too cloudy. The dates of the images (Table 3) correspond ideally to the
end of the wet season (first image) and the end of the dry season (second image) but had to
be slightly shifted in cases where images were either of low quality (clouds) or unavailable.
Three images also had to be excluded because they presented calibration problems.

Year 1st 2nd Year 1st 2nd Year 1st 2nd

image image image image image image
1984 13/jun 13/oct 1985 31/may 06/oct 1986 15/mar 09/oct
1987 02/mar 12/oct 1988 21/apr 30/oct 1989 Excluded Excluded
1990 10/mar 20/oct 1991 30/apr 07/oct 1992 18/may 23/sep
1993 18/mar 12/oct 1994 22/apr 12/aug 1995 24/apr 02/oct
1996 26/mar 20/oct 1997 09/feb 07/oct 1998 20/jun 26/oct
1999 19/mar 11/sep 2000 24/apr 15/oct 2001 24/mar 01/oct
2002 20/apr* 13/oct* 2003 20/jul 08/oct 2004 01/apr 24/sep
2005 04/apr 13/oct 2006 20/jun 30/sep 2007 Excluded 03/oct
2008 24/feb 05/oct 2009 14/mar 06/sep 2010 4/may**

Table 3. List of Landsat images (* indicates Landsat-7, the rest are Landsat-5; ** the 2010
image was only used to validate the lake contour extraction method).

The images were geometrically and radiometrically corrected and an atmospheric effect
compensation was also applied. The geometric correction was done in an "image-to-image"
approach using a one-meter Ikonos image as basis (which was geometrically adjusted using
control points from a geodetic GPS survey). The atmospheric and radiometric correction were
applied using an in-house program build for that purpose: Corat_Landsat. The program takes
as input a worksheet containing 1) the name of the image file, 2) the digital number value for
the dark object substraction (Chavez Jr., 1988) for bands 1, 2, 3, 4, 5 and 7, 3) the sun elevation
angle and 4) the sun-earth distance in astronomical units. The output is a 16 bit reflectance
image (reflectance values were redistributed between 0 and 10000).

The calculation of the water balance was based on the method proposed by Thornthwaite &
Mather (1955) which consists in determining the hydraulic characteristics of a given region
without direct measurements on the ground. The water balance is the simple budget between
input and output of water within a watershed:
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where P is the precipitation, Gin and Gout represents the ground water flow, Q is the runoff
water and ET is the evapotranspiration.

The procedure simplifies the calculation by estimating all its components from only two input
parameters: average daily temperature and precipitation:

AWt = AWt−1exp
(
− PETt

AWC

)
(6)

where AWt is the available water at time t, AWt−1 is the available water at time t − 1, PETt is
the potential evapotranspiration at time t and AWC is the soil’s water holding capacity. The
water balance can be summarized in three situations.

• ΔP < 0; net precipitation (precipitation - potential evapotranspiration) is less than zero:
the soil is drying.

• ΔP > 0 but ΔP + AWt−1 ≤ AWC; net precipitation is more than zero but net precipitation
plus the available water from time t − 1 is less or equal than the soil’s water holding
capacity: soil is wetting.

• ΔP > 0 but ΔP + AWt−1 > AWC; net precipitation is more than zero and net precipitation
plus the available water from time t − 1 is more than the soil’s water holding capacity: soil
is wetting above capacity and water goes to runoff.

3.1.3 Interpolation and lake contours extraction

Because the lakes are all very small, the 30 m spatial resolution of Landsat TM images became
restrictive in terms of contour definition of the lakes. To overcome this limitation, we decided
to exploit the very stable behavior of water in the optical infrared region of the electromagnetic
spectrum that simply absorbs almost all energy in that part of the spectrum (Ji et al., 2009).
In fact, water reflection is almost zero beyond 760 nm (McCoy, 2005). Conversely, the
surroundings of all these small lakes is composed of sand and vegetation in large proportion
which both reflect much more than water even in the absorbtion bands caused by water
content in the leaves as can be seen in Figure 8. In many cases, a simple threshold in
an infrared image histogram can reliably separate water from the other land covers with a
relatively good rate of success and investigators have developed simple techniques for doing
so in a systematical manner (Bryant & Rainey, 2002; Jain et al., 2005). Histograms of near
infrared images containing a fair amount of open water surfaces are usually bimodal with the
first peak directly related to water. Yet, when one looks closer, the water-land limit is often
blurred by a varying width occupied by aquatic plants that can fluctuate over various time
scales (yearly or seasonally). Using a sequence of historical Landsat images for which we
had no validation data, we needed to have a very strict definition of the water-land interface.
We defined the lake "water-edge" as the point at which water overwhelmingly dominates the
surface and estimated that point to correspond to 70-80%.

Scale (or spatial resolution) can have various effects on image classification accuracy. A
finer resolution can usually decrease the proportion of pixels falling on the border of objects
(hence less mixed pixels) which can result in less classification confusion. Conversely, a finer
resolution will generally increase the spectral variation of objects that can, in turn increase
classification confusion (Markham & Townshend, 1981). Fortunately, water (especially clear
and deep) is a spectrally smooth surface for which a finer resolution will bring more benefit
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where P is the precipitation, Gin and Gout represents the ground water flow, Q is the runoff
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In fact, water reflection is almost zero beyond 760 nm (McCoy, 2005). Conversely, the
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surface and estimated that point to correspond to 70-80%.
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(a) (b)

Fig. 8. Reflectance values samples in a Landsat sub-scene for the visible, near and mid-
infrared bands (a) Image section in false color, (b) graph of reflectance values for water, dry
savanna vegetation and sandy deposits.

(less border pixels) than disadvantage (spectral variation). This special context led us to
stipulate that the lake edge pixels can be subdivided into proportions of water and water
edge using a weighted interpolation method. Amongst the various interpolation methods we
opted for the minimum curvature interpolation (a variation of bi-cubic spline) with tension as
described in Smith & Wessel (1990). This interpolation method has the advantage of being
able to generate a smooth surface without generating undesirable fluctuations (artifact peaks
or dips) by using a tension parameter. This interpolation proved better than "inverse distance
weighted" that tends to produce artifact dips between sampling points (Maune et al., 2001).
The minimum curvature worked well and fast and generated smooth ramps while keeping a
sharp water-land edge. Figure 9 illustrates the effect of interpolating the Landsat data to 5 m
on the lake extraction processing.

(a) 30 m (b) 5 m

Fig. 9. Comparison of the lake extraction methods using the original 30 m Landsat data (a)
and the 5 m interpolated data (b).

3.1.4 Classification

Because the classification was binary in nature (water vs non-water), a supervised pixel-based
approach was chosen to yield maximum control. Classification approaches such as maximum
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likelihood can produce posterior probability maps to which can be applied a threshold
(hardened). This approach has the advantage to require training data only for the object of
interest whereas classical classification procedures require all classes to have been defined
using training data. In this case the posterior probability is simply the Gaussian probability
density of the "water" class. In simple nominal classification, a pixel can be classified as
pertaining to a particular class even if its probability is low, as long as it is higher than for
all the other classes. By using a high threshold value (i.e. > 90%) to attribute a water label to
a pixel, we are able to use but a single class and avoid having to gather training data for other
objects or surfaces.

3.1.5 Validation

Two validation data sets were used for testing the performance of the extraction of the
lake contours from the interpolated Landsat data which also involved our definition of the
"water-land" edge. First, the contours from the dry season image of 2006 were compared
against the contours extracted from a pan-sharpened Ikonos image (1 m) five days apart from
the Landsat image. Secondly, the four lakes of the VPSP (data from the larger lake outside
the park could not be acquired) were surveyed using a geodetic GPS in kinetic mode to be
compared with the contour from the Landsat image (with a five days difference). Coordinates
of the lake contour were acquired at an interval of 15 meters with an approximate precision of
10 cm.

The validation was done by two complementary methods: 1) by expressing the difference
between the areas as a proportion of the validated area (1 − Areal−Aobserved

Areal
× 100); and 2) by

overlapping the two contours (interpolated Landsat and validation data) and dividing the
overlap area (intersection) by the merged areas (union) of both contours as illustrated in
Figure 10. The latter accounts for errors of registration and edge definition of the lakes.

Fig. 10. Validation method for testing the accuracy of the lake contours extracted from the
interpolated Landsat images.

3.1.6 Correlation between the lake areas and the water balance

If the behavior of the area of the lakes can be related to a local climate change, then the
water budget should be the best indicator of such relationship. Even though the response
of the water level to a change in the water budget is not spontaneous, the trend should
still be statistically perceptible. Because the areas of the lakes are not normally distributed,
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a pixel, we are able to use but a single class and avoid having to gather training data for other
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lake contours from the interpolated Landsat data which also involved our definition of the
"water-land" edge. First, the contours from the dry season image of 2006 were compared
against the contours extracted from a pan-sharpened Ikonos image (1 m) five days apart from
the Landsat image. Secondly, the four lakes of the VPSP (data from the larger lake outside
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3.1.6 Correlation between the lake areas and the water balance

If the behavior of the area of the lakes can be related to a local climate change, then the
water budget should be the best indicator of such relationship. Even though the response
of the water level to a change in the water budget is not spontaneous, the trend should
still be statistically perceptible. Because the areas of the lakes are not normally distributed,
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a regression was not recommended. Spearman’s correlation does not assume a normal
distribution of the dependant variable and was chosen instead. The correlation was also
computed between the area of the lakes themselves as a means to infer a generalized trend.

3.2 Results

Figure 11 shows the annual budget averaged every five years for the period along with the
average budget for the whole period (black line). Apart from the two first periods (1984-1989
and 1990-1994) which appear as exceptionally high and exceptionally low respectively, the
other periods do not show any trend towards an increase or a decrease.

Fig. 11. Water balance over the region averaged for every five years between 1984 and 2009
and overall average (black continuous line).

3.2.1 Extraction and validation of the lake contours

All 51 selected Landsat images were geometrically rectified, registered to a UTM grid,
corrected for atmospheric interferences (using Chavez’s DOS method) and transformed in
reflectance values. The images were then interpolated to a 5 m resolution using a minimum
curvature algorithm. Apart from a few exceptions, the multi-temporal dataset shows an
almost constant shrinking of the lake surfaces areas and the disappearance of one small water
body (Lake Four). Figure 12 shows the 1984 and 2009 image sections side by side to illustrate
the shrinking of all six lakes. The triangular area at the bottom of the 1984 image, was part of
a eucalyptus plantation and is now naturally regenerating into cerrado vegetation.

Extraction of the lake surface area of open water using the posterior probability of the
maximum likelihood classification yielded good visual results in all images. This was
evaluated by looking at the spatial consistency of the results. Validation of the 2010
classification results confirmed the appropriateness of the methodology. By using the
posterior probability of a single water class, we found that there was always an easily
identifiable break between the water and non-water classes that made the selection of a
threshold very easy. The threshold was applied to all 51 images and the area of all six
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Fig. 12. Comparison of the lakes between October 1984 and September 2009.

lakes computed for every date. The graph in Figure 13 shows how these areas have changes
between 1984 and 2009. Table 4 gives an over view of the shrinking of the six lakes. The lake
areas of 1990 are also indicated (in bold) for being the record size for all lakes. While Lake
Four has completely disappeared since 2000, four other lakes have lost between 59 and 80%
of their area. Lake Azul has somewhat retained much more of its original area (loss of 29%)
and it is also the only lake surrounded by hydromorphic gley soil with a higher clay content.

Areas Lakes
m2 Four Three Two One Azul Formosa
1990 4962 28778 37413 56402 105389 296237
1984 375 14795 32471 39030 92670 291502
2009 0 2928 7228 12243 65829 170409
% loss 100% 80,2% 77,7% 68,6% 29,0% 58,5%

Table 4. Comparison of the areas of all six lakes between 1984 and 2009 with the shrinking
expressed in percentage (1990 was the record year for all lakes).

Fig. 13. Graph showing the evolution of the area of all six lakes for the period 1984-2009.
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Lakes Area Comparison Intersection/Union×100
GPS Ikonos GPS Ikonos

Three 94,54% n/a 81.05% n/a
Two 93,34% 86,01% 91,53% 71,04%
One 89,50% 94,41% 89,16% 83,85%
Azul 94,18% 96,36% 92,13% 93,20%

Formosa n/a 95,08% n/a 92.66%

Table 5. Validation of the lake contour extraction using the GPS survey and the Ikonos scene.
Column 2 and 3 show the results for the area comparison; column 4 and 5 show the accuracy
obtained with the intersection

union × 100 approach.

Since we did not have precise elevation data, the water surfaces areas could not be associated
with precise altimetric level measurements. We used the digital elevation surface (DES) from
the ASTER sensor (ground resolution of 30 m) to overlay the contours of the lakes to estimate
the height of the water level for the 1984-2009 period. Our analysis shows that Lake Azul
has lowered by about 1 meter whereas lakes One, Two, Three and Formosa appear to have
lowered by slightly more than 2 meters. Figure 14 shows the 1984 and 2009 levels on the
ASTER DES profile for Lake Formosa (we did not, however have access to bathymetric data
and the depth of the lake is unknown).

Fig. 14. Water level of Lake Formosa in 1984 and 2009 on an ASTER DES profile.

The validation of the data was done using the approach described in section 3.1.5. Table 5
shows the validation obtained with both control datasets (GPS and Ikonos image) and with
the two methods of comparison (simple comparison of areas and "intersection ÷ union"
approach). As expected, the accuracies with the latter method are slightly lower but since
all accuracies but one are well above 80%, we conclude that both our extraction method and
our geometric correction are within very acceptable boundaries. Figure 15 shows the contours
extracted from the Landsat image of 2010 and the GPS survey contours for three of the lakes.

3.2.2 Statistical testing

Spearman’s correlation test was applied to the area series of all lakes along with the AW data
for the same period. The results are presented in Table 6. The only correlation between the
areas of the lakes and the AW is Lake Four which has dried up since 2000 and the level of
significance is p=0.05. Conversely, all the lakes are strongly related among themselves with a
significance of 0.01. This confirms that the trend is statistically significant and that we can
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(a) Landsat lake contours (2010)

(b) Geodetic GPS lake contours

Fig. 15. Comparison of the contours of three of the six lakes using the interpolated Landsat
data (top) and the geodetic GPS survey data (bottom) made five days after image acquisition.

infer that the lakes are rapidly shrinking. Even Lake Azul which has kept a much more
constant surface area is strongly correlated with all the other lakes (0.601 to 0.871). Since
the AW cannot be said to be correlated with the shrinking of the lakes, the meteorological
explanation becomes much less plausible and the human pressure on the watershed can more
easily be pinpointed as responsible.

AW Lakes
Lakes Four Three Two One Azul
Four *0.329
Three 0.209 **0.455
Two 0.209 **0.611 **0.834
One 0.075 **0.566 **0.735 **0.957
Azul 0.259 **0.601 **0.871 **0.866 **0.789
Formosa 0.068 **0.524 **0.674 **0.899 **0.897 **0.730
* Significant at 0.05 ** Significant at 0.01

Table 6. Results of the Spearman’s correlation tests.

3.2.3 Discussion and future research

In this study we proposed an innovative approach for monitoring small lakes using medium
resolution Landsat data. The approach uses minimum curvature interpolation to artificially
improve the resolution of the image data and produce a much cleaner lake contour that
matches the actual measured contour with a high success rate (15 validation out of 16
with better than 80% and 10 better than 90%). Using posterior probability of a maximum
likelihood classifier, we were able to systematically extract contours from six lakes for 50
different dates with ease and good matching of control data. Even though we did not have
bathymetric data or even precise elevation data of the surroundings of the lakes, the digital
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Since we did not have precise elevation data, the water surfaces areas could not be associated
with precise altimetric level measurements. We used the digital elevation surface (DES) from
the ASTER sensor (ground resolution of 30 m) to overlay the contours of the lakes to estimate
the height of the water level for the 1984-2009 period. Our analysis shows that Lake Azul
has lowered by about 1 meter whereas lakes One, Two, Three and Formosa appear to have
lowered by slightly more than 2 meters. Figure 14 shows the 1984 and 2009 levels on the
ASTER DES profile for Lake Formosa (we did not, however have access to bathymetric data
and the depth of the lake is unknown).

Fig. 14. Water level of Lake Formosa in 1984 and 2009 on an ASTER DES profile.

The validation of the data was done using the approach described in section 3.1.5. Table 5
shows the validation obtained with both control datasets (GPS and Ikonos image) and with
the two methods of comparison (simple comparison of areas and "intersection ÷ union"
approach). As expected, the accuracies with the latter method are slightly lower but since
all accuracies but one are well above 80%, we conclude that both our extraction method and
our geometric correction are within very acceptable boundaries. Figure 15 shows the contours
extracted from the Landsat image of 2010 and the GPS survey contours for three of the lakes.

3.2.2 Statistical testing

Spearman’s correlation test was applied to the area series of all lakes along with the AW data
for the same period. The results are presented in Table 6. The only correlation between the
areas of the lakes and the AW is Lake Four which has dried up since 2000 and the level of
significance is p=0.05. Conversely, all the lakes are strongly related among themselves with a
significance of 0.01. This confirms that the trend is statistically significant and that we can
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(a) Landsat lake contours (2010)

(b) Geodetic GPS lake contours

Fig. 15. Comparison of the contours of three of the six lakes using the interpolated Landsat
data (top) and the geodetic GPS survey data (bottom) made five days after image acquisition.

infer that the lakes are rapidly shrinking. Even Lake Azul which has kept a much more
constant surface area is strongly correlated with all the other lakes (0.601 to 0.871). Since
the AW cannot be said to be correlated with the shrinking of the lakes, the meteorological
explanation becomes much less plausible and the human pressure on the watershed can more
easily be pinpointed as responsible.

AW Lakes
Lakes Four Three Two One Azul
Four *0.329
Three 0.209 **0.455
Two 0.209 **0.611 **0.834
One 0.075 **0.566 **0.735 **0.957
Azul 0.259 **0.601 **0.871 **0.866 **0.789
Formosa 0.068 **0.524 **0.674 **0.899 **0.897 **0.730
* Significant at 0.05 ** Significant at 0.01

Table 6. Results of the Spearman’s correlation tests.

3.2.3 Discussion and future research

In this study we proposed an innovative approach for monitoring small lakes using medium
resolution Landsat data. The approach uses minimum curvature interpolation to artificially
improve the resolution of the image data and produce a much cleaner lake contour that
matches the actual measured contour with a high success rate (15 validation out of 16
with better than 80% and 10 better than 90%). Using posterior probability of a maximum
likelihood classifier, we were able to systematically extract contours from six lakes for 50
different dates with ease and good matching of control data. Even though we did not have
bathymetric data or even precise elevation data of the surroundings of the lakes, the digital
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elevation surface produced from ASTER data with a resolution of 30 m, made it possible to
estimate that the aquifer lowered, during the 25 year period (1984-2009), by up to two meters.
The water balance using the Thornthwaite approach is well suited for area with limited
climatological information and provides valuable insight on the climatological condition
ruling water availability. In the present case, the water balance could not be statistically
correlated (Spearman’s correlation) to the shrinking of six small lakes in Northern Minas
Gerais, Brazil. It became clear that, if the present situation continues, these small lakes (and
the nearby palm swamps) will disappear with drastic consequences for the populations of
humans and animals.

Future studies will concentrate on matching the lake size with precise elevation data and
piezometric measurements. Although Landsat data proved most useful for extracting the
open water surface, we plan to shift towards more precise satellite data such as RapidEye
for which the Minas Gerais Government is acquiring on a regular base (twice a year) for the
whole state. Future research will also explore more thoroughly the possibilities of artificially
increasing resolution through interpolation. More interpolations methods need to be tested
and compared with various situations. With the recent installation of a nearby weather station,
precise local data will yield better control on monitoring the water budget throughout the year.

4. Overall conclusions

Multi-temporal remote sensing offers countless opportunities for monitoring past and present
changes in land cover and land use. By monitoring the size and shape of water bodies, we can
infer on human pressure and climate change. Small water bodies are especially fragile areas
with a very high ecological value (the value of the services provided by lakes and wetlands
has been considered as high as 8.498 and 14.785 $ha−1yr−1 respectively according to Costanza
et al., 1997) that are very sensitive to changes in temperature or the equilibrium of nutrients
input (Mitsch & Gosselink, 2000).

In this chapter, two new approaches for monitoring small lakes and wetlands were used.
First by using a region-based unsupervised classification based on an hybrid implementation
(watershed and Markov random fields) we ensured a non-arbitrary systematic approach that
did not rely on training samples or a subjective threshold. The MAGIC program proved
very reliable for processing a large number of scenes while maintaining a very stable and
predictable behavior. Although it turned out to work better by choosing a larger number of
classes than actually needed, finding the water class was always easy and could easily be
automated in certain cases like this one (for example by ordering the signatures through their
mean). Future work will concentrate on determining the parameters that govern the precise
amount of water within a pixel for it to fall in the water class.

Secondly, an interpolation method was used to artificially increase the resolution (from 30 m
to 5 m) of a series of Landsat images to improve the contour definition of a set of very small
lakes and to characterize their dynamic throughout a 25 years period. Much care was taken to
validate the methodology by using two distinct methods of validation to account for all type
of errors. The validation yielded a precision between 80% and 93% in all cases except one.
Future work will concentrate on having this approach improve by using precise elevation
data to associate an actual water level with the size of the lakes.

The use of historical satellite data is often made difficult by the absence of validation data
and one must generally rely of sparse observations to corroborate results. One solution lies
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on validating the methodology using recent data and then to apply it to the historical data.
Landsat has been an invaluable source of data since the 80’s (Thematic Mapper) and even the
70’s (Multi Spectral Scanner) by systematically acquiring data at regular predictable intervals
over the same region. The newer generations of satellites platforms work mostly on a "per
demand" scheme and require more carefully planned logistics of image acquisition. It is
also likely that future post-Landsat multi-temporal studies will have to deal with data from
different sensors with different resolutions and even different spectral specifications. This will
bring new challenges to multi-temporal studies for which much research is still needed.
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correlated (Spearman’s correlation) to the shrinking of six small lakes in Northern Minas
Gerais, Brazil. It became clear that, if the present situation continues, these small lakes (and
the nearby palm swamps) will disappear with drastic consequences for the populations of
humans and animals.

Future studies will concentrate on matching the lake size with precise elevation data and
piezometric measurements. Although Landsat data proved most useful for extracting the
open water surface, we plan to shift towards more precise satellite data such as RapidEye
for which the Minas Gerais Government is acquiring on a regular base (twice a year) for the
whole state. Future research will also explore more thoroughly the possibilities of artificially
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and compared with various situations. With the recent installation of a nearby weather station,
precise local data will yield better control on monitoring the water budget throughout the year.
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infer on human pressure and climate change. Small water bodies are especially fragile areas
with a very high ecological value (the value of the services provided by lakes and wetlands
has been considered as high as 8.498 and 14.785 $ha−1yr−1 respectively according to Costanza
et al., 1997) that are very sensitive to changes in temperature or the equilibrium of nutrients
input (Mitsch & Gosselink, 2000).

In this chapter, two new approaches for monitoring small lakes and wetlands were used.
First by using a region-based unsupervised classification based on an hybrid implementation
(watershed and Markov random fields) we ensured a non-arbitrary systematic approach that
did not rely on training samples or a subjective threshold. The MAGIC program proved
very reliable for processing a large number of scenes while maintaining a very stable and
predictable behavior. Although it turned out to work better by choosing a larger number of
classes than actually needed, finding the water class was always easy and could easily be
automated in certain cases like this one (for example by ordering the signatures through their
mean). Future work will concentrate on determining the parameters that govern the precise
amount of water within a pixel for it to fall in the water class.

Secondly, an interpolation method was used to artificially increase the resolution (from 30 m
to 5 m) of a series of Landsat images to improve the contour definition of a set of very small
lakes and to characterize their dynamic throughout a 25 years period. Much care was taken to
validate the methodology by using two distinct methods of validation to account for all type
of errors. The validation yielded a precision between 80% and 93% in all cases except one.
Future work will concentrate on having this approach improve by using precise elevation
data to associate an actual water level with the size of the lakes.

The use of historical satellite data is often made difficult by the absence of validation data
and one must generally rely of sparse observations to corroborate results. One solution lies
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70’s (Multi Spectral Scanner) by systematically acquiring data at regular predictable intervals
over the same region. The newer generations of satellites platforms work mostly on a "per
demand" scheme and require more carefully planned logistics of image acquisition. It is
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1. Introduction 
Global changing is a great challenge that affects the nowadays world, even arises and 
becomes kinds of the political issues. The changing of the snow is not only a sensitive factor 
act as a driving force but can be influenced much in the global temperature variation, 
especially for the seasonal snow cover which is vastly distributed over the northern 
hemisphere. Snow cover influences the atmosphere and ocean, and therefore the climate 
system, through both direct and indirect effects (Judah, 1991). In the climate regime, the 
snow cover alters the surface energy and water circle in a global scale in the climate 
processing (Fg.1). From the IPCC (2001), the recent and anticipated reductions in snow cover 
due to future greenhouse warming are an important topic for the global change community. 
Large seasonal variations in snow cover are of importance on continental to hemispheric 
scales induces to investigate its natural variability in the climate-system forcing of such 
trends, versus possible anthropogenic influences (Roger, 2002). So, understanding the 
spatial pattern in the temporal variability of snow cover increase the current understanding 
of global climate change and provide a mechanism for exploring future trends ( Steve 
Vavrus, 2007) . As such, snow cover is an appropriate indicator of climate perturbations and 
may be a suitable surrogate for investigations of climate change (Serreze , 2000; IPCC, 2001; 
Roger, 2002; Wulder, 2007; IPCC AR4, 2007). 

Recent research result over China area revealed that the long time series snow trend is not 
suit for the whole trend over northern hemisphere and regional northern American (Qin, 
2006; Xu, 2007; Wang, 2008;). From Qin's research (2006) of snow cover for the period of 1951  
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1. Introduction 
Global changing is a great challenge that affects the nowadays world, even arises and 
becomes kinds of the political issues. The changing of the snow is not only a sensitive factor 
act as a driving force but can be influenced much in the global temperature variation, 
especially for the seasonal snow cover which is vastly distributed over the northern 
hemisphere. Snow cover influences the atmosphere and ocean, and therefore the climate 
system, through both direct and indirect effects (Judah, 1991). In the climate regime, the 
snow cover alters the surface energy and water circle in a global scale in the climate 
processing (Fg.1). From the IPCC (2001), the recent and anticipated reductions in snow cover 
due to future greenhouse warming are an important topic for the global change community. 
Large seasonal variations in snow cover are of importance on continental to hemispheric 
scales induces to investigate its natural variability in the climate-system forcing of such 
trends, versus possible anthropogenic influences (Roger, 2002). So, understanding the 
spatial pattern in the temporal variability of snow cover increase the current understanding 
of global climate change and provide a mechanism for exploring future trends ( Steve 
Vavrus, 2007) . As such, snow cover is an appropriate indicator of climate perturbations and 
may be a suitable surrogate for investigations of climate change (Serreze , 2000; IPCC, 2001; 
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Fig. 1. This conceptual diagram illustrates the connectivity of the positive ice/snow albedo 
feedback, terrestrial snow and vegetation feedbacks and the negative cloud/radiation 
feedback. (Source: Chapin III, 2005) 

and 1997, the results show that western China did not experience a continual decrease in snow 
cover during the great warming periods of the 1980s and 1990s. The positive trend of snow 
cover in western China snow cover is consistent with increasing snowfall, but is in 
contradiction to regional warming. Xu’s result (2007) also show that the SCA of the entire 
Tarim basin in Xinjiang Province revealed a slowly increasing trend from 1958 to 2002, the SCA 
change in the cold season was positively correlated with the contemporary precipitation 
change. Wang (2008) reported an inconsistent tend with a reported Northern Hemisphere 
increasing trend based on limited in situ observations in Xinjiang Province which is a western 
province in China. While over the area located in the southern parts of the high land of Tibet 
Plateau, China, some investigators explore that annual snow cover has declined by –16% per 
decade between 1990 and 2001, which is explained due to the contribution of enhanced Indian 
black carbon (Menon et al., 2010) and the additional absorption of solar radiation by soot on 
snow cover area (Chand, 2009). Over Tibetan Plateau area, Pu’s study (2007) indicated that a 
decreasing trend of snow cover fraction using snow data of 2000–2006 from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) data is –0.34% per year. In their study, the 
meteorological station data (Xu, 2007) and the satellite sensor (Scanning Multichannel 
Microwave Radiometer, SMMR) observed snow depth (SD), NOAA snow cover area data and 
MODIS snow cover fraction products are used. When concerning the climate change impact 
on snow cover, the variability of snow cover area is negatively associated with to air 
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temperature(Wang, 2008), and positive trend of the snow cover area is connected with the 
increasing precipitation records (Qin, 2006;) in western China. While over Tibet Plateau area, 
China, it is difficult to analyze the long time series trend for its highly rugged mountain, west-
east variation and sparse meteorological stations. The data used in these studies are mostly 
based on the some single satellite products and meteorological station records which are 
sparse over the high altitude area of Tibet Plateau. Furthermore, the meteorological stations are 
affected by station location, observing practices and land covers, and are not uniformly 
distributed. Therefore, it is important to evaluate the gross representative satellite data in a 
large scale area for more than twenty years and try to deliberate the climate impact on the 
snow behaviors over Tibet Plateau area in mid-latitude. 

According to the importance of the snow and the climate singularity aspects, in this work, we 
used the available snow cover area (Snow Cover Area), snow depth (Snow Water Equivalent, 
SWE) products to examine the climatological characteristics and time series analysis over 
Tibetan Plateau area and study the new snow-retrieval algorithm over China area which often 
experiences the shallow snow situation. This chapter includes two parts, the first is to analyse 
the snow products, include the near-time optical and passive microwave remote sensing and 
the blended SCA and SWE products, the second is to analyse the perspective view of the 
shallow snow retrieval analysis based on the passive microwave high frequency. 

2. Climatology analyses of the satellite-based snow parameters over China 
2.1 Introduction 

The climatology features for a long time series of snow parameters over land could provide 
the signature of climate changes across the globe. According to the IPCC AR4 report, the 
snow extent is sharply decreasing over Northern Hemisphere from the prediction of the 
nine General Circulation Models since 2000. This part provides a climatology analysis of the 
SCA and SWE over China area and Tibetan Plateau from the satellite observation. The data 
set includes snow extent and snow water equivalence. Snow extent products are 24 km daily 
Northern Hemisphere snow and ice coverage from the NOAA/NESDIS Interactive Multi-
sensor Snow and Ice Mapping System (IMS), Near-Real-Time SSM/I-SSMIS EASE-Grid 
Daily Global Ice Concentration (NISE) and Snow Extent and the Moderate-resolution 
Imaging Spectroradiometer (MODIS, TERRA/AQUA) snow cover fraction (SCF) products 
from 1999 to now, and the SWE products include Global Monthly EASE-Grid Snow Water 
Equivalent Climatology from 1978 to 2007, and the Advanced Microwave Scanning 
Radiometer for EOS (AMSR-E) from 2002 to now. The SCF (MODIS) and SWE (AMSR-E) are 
employed to analyse the ten years’ time series over Tibetan Plateau (the area is defined by the 
area where the atmosphere pressure is less than 700 hPa). 

2.2 Satellite–based snow products and processing method 

2.2.1 Snow extent and snow cover fraction products 

a. IMS Daily Northern Hemisphere Snow and Ice Analysis at 24 km Resolution 

This data is 24 km daily Northern Hemisphere snow and ice coverage by the 
NOAA/NESDIS Interactive Multi-sensor Snow and Ice Mapping System (IMS) (National Ice 
Center, 2008). The key parameters for this type of data are listed below: 
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the signature of climate changes across the globe. According to the IPCC AR4 report, the 
snow extent is sharply decreasing over Northern Hemisphere from the prediction of the 
nine General Circulation Models since 2000. This part provides a climatology analysis of the 
SCA and SWE over China area and Tibetan Plateau from the satellite observation. The data 
set includes snow extent and snow water equivalence. Snow extent products are 24 km daily 
Northern Hemisphere snow and ice coverage from the NOAA/NESDIS Interactive Multi-
sensor Snow and Ice Mapping System (IMS), Near-Real-Time SSM/I-SSMIS EASE-Grid 
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Equivalent Climatology from 1978 to 2007, and the Advanced Microwave Scanning 
Radiometer for EOS (AMSR-E) from 2002 to now. The SCF (MODIS) and SWE (AMSR-E) are 
employed to analyse the ten years’ time series over Tibetan Plateau (the area is defined by the 
area where the atmosphere pressure is less than 700 hPa). 

2.2 Satellite–based snow products and processing method 

2.2.1 Snow extent and snow cover fraction products 

a. IMS Daily Northern Hemisphere Snow and Ice Analysis at 24 km Resolution 

This data is 24 km daily Northern Hemisphere snow and ice coverage by the 
NOAA/NESDIS Interactive Multi-sensor Snow and Ice Mapping System (IMS) (National Ice 
Center, 2008). The key parameters for this type of data are listed below: 
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- Time Span: 1997~2011 
- Polar Stereographic Projection 
- 1024*1024 grid 
- Spatial Resolution :~24km 
- Time frequencies: Daily 
- Four types parameters: Ocean\Land\Sea ice\Snow 
- Optical satellite and other sources (environmental satellite imagery) 
- Distorted much in China Area 

From the sample data map in fig.2, we can find that the SCA data is distorted over China 
area. Over the northern hemisphere, the China area is not a dominant domain in the 
continent analysis. It is fit for the onset, duration and end of the snow for its daily 
resolution. 

b. Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and Snow 
Extent 

The Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and Snow 
Extent product (Near-real-time Ice and Snow Extent, NISE) provides daily, global near-real-
time maps of sea ice concentrations and snow extent. They are derived from the passive 
microwave data from the Special Sensor Microwave Imager/Sounder (SSMIS) on board the 
Defense Meteorological Satellite Program (DMSP) F17 satellite (Nolin, 1998). 

 
Fig. 2. The sample product from the 24km IMS SCA products, the SCA over China is 
obvious for its Plateau shape in the upper part of the map 

- Time Span: 1995.05~2011.08 
- EASE-Grid Projection. 
- 721*721 grid 
- Spatial Resolution :~25km 
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- Parameters : Snow extent, Sea ice concentration 
- Time frequencies: daily 
- NISE Product Source: passive microwave remote sensing data 
- Distorted much in China Area 

The snow cover over China is showed in the right part of the EASE-GRID projection image 
(Fig. 3), which is also distorted for some extent. The data could be used to evaluation the 
onset, duration and end of the snow appearance.  

c. MODIS/Aqua Snow Cover 8-Day L3 Global 0.05Deg Climate Modeling Grid (CMG) 

The MODIS Snow Cover 8-Day L3 Global 0.05Deg CMG (Fig. 4.) is a global map of snow 
cover expressed as a percentage of land, i.e. snow cover fraction, in each CMG cell for an 
eight-day period, which are derived from the Normalized Difference Snow Index (NDSI) of 
MODIS spectro-radiometer data (Hall, 1995). The percentage of snow-covered land is based 
on the clear-sky view of land in the CMG cell, and count the number of snow observation 
over land. So the amount of snow observed in a CMG cell is based on the cloud-free 
observations mapped into the CMG grid cell for all land in that cell (Hall, 2007). Compared 
with the daily snow-cover products, the eight-day SCFs products greatly reduce the percent 
of cloud obscured or masked pixels from near half to less than 7% over Tibet Plateau (Riggs, 
2003), which is more suitable to analyse the trend for at a long time span. 

- Time span: 2002 to 2010 
- Latitude/longitude projection 
- Grid resolution is 0.05 degrees 
- Parameters: Snow cover fraction 
- Time frequencies: eight days 
- Source: MODIS optical remote sensing under cloud-free  condition 
- Suit for the CMG projection 

 
Fig. 3. The sample product from the NISE products, the SCA over China is also obvious for 
its Plateau shape in the right part of the map (EASE-GRID) 
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Fig. 4. Sample image derived from MODIS/Aqua Snow Cover Daily L3 Global 0.05Deg 
CMG data set 08 February 2004 (cited from 
http://nsidc.org/data/modis/data_summaries/cmg_sample.html) 

2.2.2 Snow water equivalent products 

a. Global Monthly EASE-Grid Snow Water Equivalent Climatology 

This data set comprises global, monthly SWE from November 1978 to 2007, with periodic 
updates released as resources permit. Global data is gridded to the Northern and Southern 
25 km Equal-Area Scalable Earth Grids (EASE-Grids) (Fig.5). 

- Time Span: 1978 – 2007 
- EASE-Grid Projection. 
- 721*721grid 
- Spatial Resolution :~25km 
- Time frequencies: Monthly 
- Parameters : Snow water equivalent and Snow cover frequency of occurrence 
- Source: Scanning Multichannel Microwave Radiometer (SMMR) and selected Special 

Sensor Microwave/Imagers (SSM/I)  and Visible snow parameters as a factor 
- Distorted much in China Area 

b. AMSR-E/Aqua L3 Global Snow Water Equivalent EASE-Grids 

We also use the AMSR-E snow products to check the SWE variation and climatology over 
Tibet Plateau. The SWE_Northern daily data (Tedesco, 2004) is used in the next process. The 
data characteristics are listed. 

- Time span: 2002~2010 
- EASE-Grid Projection. 
- 721*721grid 
- Spatial Resolution :~25km 
- Time frequencies: Daily 
- Parameters: Snow Water Equivalent (mm) 
- Source: AMSR-E passive microwave remote sensing 
- Distorted much in China Area 

This data are processed into the maximum and average SWE for the Tibet Plateau. 
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Fig. 5. Northern Hemisphere average snow water equivalent (mm) from passive microwave, 
with additional area indicated as snow by Northern Hemisphere EASE-Grid weekly snow 
cover in red, March, 2003.(cited: 
http://nsidc.org/data/docs/daac/nsidc0271_ease_grid_swe_climatology/NL200303.NSID
C8.BP_VIS35.png) 

2.2.3 Multisource satellite data processing method 

According to the data characteristics mentioned above, the different projections and 
resolutions data need to be projected in the same project that could provide a same base for 
the later analysis. We select the equal latitude and longitude project to provide a more 
effective understanding for the China mid-latitude area. A tool has been developed to 
processing the EASE_Grid, Polar Stereographic Projections into the 0.05 degree latitude and 
longitude map. Fig. 6 shows the transform scheme from the multi-projection to the equal 
latitude and longitude. 

When all of these data products are resampled, we analyse the onset and duration of the 
data from the SCA products (named: IMS and NISE) using the accumulating, the first and 
the end day of the snow. The monthly SWE products are used to calculate the climatological 
characteristics over China by the averaging method.  

2.2.4 Onset, duration of the snow cover over China 

After all of the data mentioned above is projected into the same equal latitude and longitude 
grid. The IMS and NISE daily snow cover data are processed to the onset, duration and the 
end time map, the base-time for IMS product is 31/May, and the day of the year 183 (almost 
31/May) for NISE products. The Global Monthly EASE-Grid Snow Water Equivalent  
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Fig. 6. The resampling processing in the transition process (multi-projection to equal latitude 
and longitude) 

Climatology data is reprocessed to analyse the averaged monthly climatologic 
characteristics. The data quality control has been done to make sure that the 
representativeness suit for statistical analysis. The China area is defined as 150N-560N, and 
670E-1360E, includes all of the Chinese land area, part of the center-Asia, Mongolia, and part 
of the southern Russia, where the snow often appear.  

a. Onset of the snow cover over China 

The onset of the snow cover is plotted using the data from IMS and NISE products for 
fourteen (1997~2011) and sixteen (1995~2011) at whole year respectively (Fig.7 just shows 
the corresponding 4 years of these two dataset). From fig.7, the snow cover over Tibet High 
Mountain and the Centre Asia Mountain is always influenced much by the mountain 
glaciers, the mostly early snow are showed in the northern part and Tibet Plateau area of 
high mountains marked the permanent snow area (the onset data value is 1). Along with the 
latitude which changes from south to north, the snow appearance shows its latitude 
dependency over land area, the high latitude experience early snow cover compared to the 
low latitude area. The NISE and IMS onset of the snow cover all show postpone in the first 
snow occurrence, while the IMS records give an explicit result.  

These two products show the same regime of the onset of the snow cover but they have 
explicit difference when compare together (compare these two column in fig.7). The data 
from NISE take larger area as blank or snow-free area, such as the Yellow River area at 
Central Plains China. There is more snow record at the beginning of the 31/May at the 
south margin of the Tibet Plateau that is not suit for the rain forest area in the Northern 
Indian Mountains. Over the Khrebet Kropotkina area and the northern glacier rich areas the 
NISE products show the early records about the snow appearance. Overall, the NISE  
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Fig. 7. The onset time of the snow appearance over China, left column is from the IMS 
products, and the right column is from NISE products. We just give the winter of 4 years, 
1998-1999, 2002-2003, 2006-2007 and 2010-2011. 

products give out a relative late onset time than that of IMS over flat area which could be 
attributed to the rugged mountain’s influence in the microwave signal in NISE. While for 
the IMS products, the coverage area are larger than that from NISE (SSM/I) products, and 
show the early first snow occurrences. The IMS spatial distribution of the snow are possibly 
more accuracy than that of NISE, such as the Korea Island and the southern China where 
there is snowy in the January or February. 

b. Duration of Snow cover over China 

The duration of snow cover for a region is also a sign of climate condition. The duration of 
the snow is derived from the snow products, IMS and NISE. From fig.8, the duration 
distribution of the snow is inhomogeneous. The high land area experiences the longest time 
of the snow cover, such as the expected Tibet Plateau and the northern glacier rich area. The 
duration of the snow have direct relationship with the latitude (higher latitude, longer snow 
duration), and the southeastern China has the least time of snow cover where the climate is 
temperate continental climate. 

The snow duration data from these two dataset are similar distributed but the NISE (i.e. 
SSM/I) product shows the longer time when compare the same region in the lower latitude 
at high land, for example, the snow over Tibet Plateau. Over the high latitude area, the time-
span of the snow existence from IMS is somewhat longer than that from NISE. These aspects 
reveal that the satellite snow products of optical and microwave estimation are different in 
northern part of China and high land of Tibet Plateau, which is similar with the finding of 
Wang (2007).  

From fig.8, the time series of the snow cover duration is increasing over the patchy snow 
cover areas, such as the low land of the China area, e.g. south-east of China and the Yellow 
river area. It seems that there is somewhat a little bit of longer and longer duration of the  
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Fig. 7. The onset time of the snow appearance over China, left column is from the IMS 
products, and the right column is from NISE products. We just give the winter of 4 years, 
1998-1999, 2002-2003, 2006-2007 and 2010-2011. 
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Fig. 8. The duration of the snow appearance over China, left column is from the IMS 
products, and the right column is from NISE products 

snow over Tibet Plateau area from IMS records for fourteen years, but an ambiguous trend 
is for the 14 or 16 years. Over the southeastern China, the snow obviously exits in every 
winter time, but the NISE products does not record for its empirical ancillary data in the 
algorithm, we could get that the data from IMS is more reliable for the situation over China 
than that from NISE (SSM/I). 

c. The monthly climatologic characteristics over China 

The monthly snow climatology map is derived from the EASE-Grid Snow Water 
Equivalent (SWE) for about 30 years’ satellite records. From fig.9, the seasonal snow 
change is obvious in the most area of China. The winter and early spring time from 
December to the March of next year is the snowiest over the northern China. The 
maximum snow cover area is in January. From May to September, the snow cover became 
less and less except the high altitude of Tibet Plateau area. The minimum snow cover area 
is in August. While the maximum SWE and snow cover area of northern China and Tibet 
Plateau area is quite different, the SWE (mm) reach its peak in November over Tibet 
Plateau, and the northeastern China suffered its maximum SWE (mm) in February. The 
snow cover area in Qinghai-Xizang (Tibet) experiences the largest snow cover in January, 
which is consistent with Qin’s result (2006), while the western area (Xinjiang province) of 
China reaches its maximum snow in February along with the maximum SWE (mm) which 
is earlier than that of Qin’s (2006). The southeastern China is almost snow-free for the all 
year time.  

The climatological characteristic of Tibet plateau area is different than that of the low land 
area of China, especially the northern part of China. The latitude dependency is obvious in 
the northern China. Another control factor is the altitude, especially over the Northern 
Mongolia when compared with the ASTER Global Digital Elevation Map 
(http://asterweb.jpl.nasa.gov/images/GDEM-10km-colorized.png). 
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Fig. 9. The monthly averaged SWE (mm) of the snow appearance over China, data is from 
Global Monthly EASE-Grid Snow Water Equivalent Climatology for 1978-2007 
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2.2.5 SWE from AMSR-E/Aqua and SCA MODIS/Terra (Aqua) over Tibetan Plateau for 
the last ten years 

From the above analysis, the Tibet Plateau area is quite special in the seasonal snow cover 
not only for the SCA (Squa. km) but also for the SWE (mm). We consider the high land of 
Tibet Plateau as one whole area by filtering the atmosphere pressure that is lower than 700 
hPa, which includes all of the Tibet, China, part of the Qinghai province and the Center Asia 
mountain areas (see Fig.10). The AMSR-E/Aqua L3 Global Snow Water Equivalent EASE-
Grids and the MODIS/Aqua Snow Cover 8-Day L3 Global 0.05Deg Climate Modeling Grid 
(CMG) data are employed to analyse the snow time series trend over the Tibetan Plateau 
area.  
 

 
 

Fig. 10. Definition of Tibet Plateau area- according to the air pressure (when < 700hpa) 

a. Time-series climatological analysis 

The AMSR-E/Aqua provides 8 years’ monthly average SWE for the study area, and the total 
area of the pixels covered by snow is also presented monthly. The time series analysis is in 
Fig.11, which give a slightly increasing trend for 8 years from 2002 (launch time) to summer, 
2010.  From fig.11, the average monthly SWE (mm) reach the max value in February 
(2002/2003, 2003/2004, 2005/2006, 2009/2010) or March (2006/2007, 2007/2008, 2008/2009), 
and the minimum value appear in August except the summer in 2005, which is quite similar 
with the section in 2.2.4 c. When we check the SCA from AMSR-E/Aqua, the SCA (Squa. 
km) reach its maximum extent in January except the winter of 2005/2006, the minimum 
extent is in July (2002, 2005, 2008) or August (2003, 2004, 2006, 2007, 2009).  These tells a 
positive trend of SCA and SWE over the high altitude region (<700hpa) of Tibet Plateau area.  
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Fig. 11. Time series of the averaged AMSR-E Snow Water Equivalence (SWE) (Average 
snow cover area, the SCA plot is not showed here). 

b. The monthly averaged SWE (mm) and SCA(Squa. km) from 2002.6 to 2010.7 

The time series analysis for the averaged SWE (mm) is presented in Fig.12, the fluctuation 
for each month in the near eight years is small but can find that the slightly trend (see Table 
1). The trend analysis shows that the SWE (mm) experience a slightly increasing in this eight 
years from June to September, which is almost in the summer and autumn time of one year 
in China, while other time (winter and spring) are decreasing in the averaged SWE (mm). 
The SCA parameter of the study area shows the same trend as the averaged SWE (see table1 
at right column). This climatological characteristic is fit for the Warming and Wetting of the 
Tibet Plateau (Bao, Q., 2010) for the increasing precipitation in the summer time, while the 
increasing precipitation could not influence the winter and spring snow-rich situation.  
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Fig. 12. The time series of average SWE (mm) for twelve months in one year 
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Fig. 11. Time series of the averaged AMSR-E Snow Water Equivalence (SWE) (Average 
snow cover area, the SCA plot is not showed here). 

b. The monthly averaged SWE (mm) and SCA(Squa. km) from 2002.6 to 2010.7 

The time series analysis for the averaged SWE (mm) is presented in Fig.12, the fluctuation 
for each month in the near eight years is small but can find that the slightly trend (see Table 
1). The trend analysis shows that the SWE (mm) experience a slightly increasing in this eight 
years from June to September, which is almost in the summer and autumn time of one year 
in China, while other time (winter and spring) are decreasing in the averaged SWE (mm). 
The SCA parameter of the study area shows the same trend as the averaged SWE (see table1 
at right column). This climatological characteristic is fit for the Warming and Wetting of the 
Tibet Plateau (Bao, Q., 2010) for the increasing precipitation in the summer time, while the 
increasing precipitation could not influence the winter and spring snow-rich situation.  
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Fig. 12. The time series of average SWE (mm) for twelve months in one year 
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Month Rate of Changing Averaging SWE (mm) Rate of Changing SCA (Squa. KM) 
Jan. -0.00037 -7.36287 
Feb. -0.00035 -17.9450 
Mar. -0.00062 -17.4998 
Apr. -0.00012 -29.1789 
May -0.00021 -89.2610 
Jun. 0.000049 26.7051 
Jul. 0.00014 23.9970 

Aug. 0.00012 20.2665 
Sep. 0.00004 -48.7194 
Oct. -0.00017 -14.1196 
Nov. -0.00030 21.7514 
Dec. -0.00021 -2.1661 

Table 1. The trend slope for the average SWE (mm) and SCA (Squa. km) from AMSR-
E/Aqua eight years records 

c. The time series of the monthly snow cover fraction  

For the snow cover fraction area (SFC) statistic for Tibet Plateau study area in Fig.13. The 
snow data from MODIS/Aqua (Terra) can provide the snow cover fractional distribution in 
different time at the same day (morning and afternoon). In Fig. 13, the time series of the 
SCFs are plotted for different span (0-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 
70-80%, 80-90%, 90-100% and 100%) for two satellites (MODIS/Terra and Aqua). Compared 
these two figures, the SCF area from Aqua satellite is general larger than that of Aqua with 
the same seasonal characteristic possibly for its different overpass time (morning and 
afternoon) at mid-latitude area. The summer time (almost in later August or early 
September) has the least area for the SCF which is greater than 20%, while the winter time 
(especially in the February) has the maximum area. When focus on the SCF less than 20%, 
the situation is a different result than that more than 10%, the summer time has the greater 
area than that in winter time for these two satellites, due to the summer patchy snow 
fractional pixels influence the satellite estimation. The time series analysis trends for these 
different SCF’s range are showed in Table.2. The changing rate indicates a positive trend for 
the last ten year, especially for the large SFC which almost distribute in the high altitude 
mountain area. The largest increasing rate is the SFC between 90% and 100% which indicate 
the high mountain area suffering an increasing snow cover because the full cover areas are 
mostly in the high elevation mountain area. Another aspect is that the changing rate for 
MODIS/Terra record is larger than MODIS/Aqua’s, but the reason has not discovered in 
this study.  
 

 0-10% 10-20% 10-20% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100% 100% 

MODIS/Aqua -0.05629 1.82353 1.62721 1.77621 1.51221 1.54443 2.00536 2.14856 3.00974 7.61426 2.35225 

MODIS/Terra 1.52948 1.63037 1.14803 1.2696 1.29663 1.36101 1.52654 1.59566 2.20187 8.62898 4.85512 

Table 2. The slope coefficients for different SCF range during ten year (Terra) and eight year 
(Aqua) running 
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Fig. 13. The time series analysis for different snow cover fractions derived from 
MODIS/terra and MODIS/Aqua 

2.3 Conclusions 

From what we have analyzed, the climatological characteristics show that the onset time of 
snow over China area are slightly postponed, while the duration is undecided by the 
satellite record of NISE (SSM/I) and IMS, the monthly climatology analysis reveals that the 
snow distribution is quite different in the altitude and latitude, the Tibet Plateau area 
experiences the maximum SWE in November. The northern China and lower land reach the 
maximum area in December and January. 
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c. The time series of the monthly snow cover fraction  

For the snow cover fraction area (SFC) statistic for Tibet Plateau study area in Fig.13. The 
snow data from MODIS/Aqua (Terra) can provide the snow cover fractional distribution in 
different time at the same day (morning and afternoon). In Fig. 13, the time series of the 
SCFs are plotted for different span (0-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 
70-80%, 80-90%, 90-100% and 100%) for two satellites (MODIS/Terra and Aqua). Compared 
these two figures, the SCF area from Aqua satellite is general larger than that of Aqua with 
the same seasonal characteristic possibly for its different overpass time (morning and 
afternoon) at mid-latitude area. The summer time (almost in later August or early 
September) has the least area for the SCF which is greater than 20%, while the winter time 
(especially in the February) has the maximum area. When focus on the SCF less than 20%, 
the situation is a different result than that more than 10%, the summer time has the greater 
area than that in winter time for these two satellites, due to the summer patchy snow 
fractional pixels influence the satellite estimation. The time series analysis trends for these 
different SCF’s range are showed in Table.2. The changing rate indicates a positive trend for 
the last ten year, especially for the large SFC which almost distribute in the high altitude 
mountain area. The largest increasing rate is the SFC between 90% and 100% which indicate 
the high mountain area suffering an increasing snow cover because the full cover areas are 
mostly in the high elevation mountain area. Another aspect is that the changing rate for 
MODIS/Terra record is larger than MODIS/Aqua’s, but the reason has not discovered in 
this study.  
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MODIS/Aqua -0.05629 1.82353 1.62721 1.77621 1.51221 1.54443 2.00536 2.14856 3.00974 7.61426 2.35225 
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Table 2. The slope coefficients for different SCF range during ten year (Terra) and eight year 
(Aqua) running 

Satellite-Based Snow Cover Analysis and the  
Snow Water Equivalent Retrieval Perspective over China 

 

65 

2000/1/1

2000/7/1

2001/1/1

2001/7/1

2002/1/1

2002/7/1

2003/1/1

2003/7/1

2004/1/1

2004/7/1

2005/1/1

2005/7/1

2006/1/1

2006/7/1

2007/1/1

2007/7/1

2008/1/1

2008/7/1

2009/1/1

2009/7/1

2010/1/1

0.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

3.5x106

4.0x106

4.5x106

5.0x106

 

 O
ffs

et
 Y

 v
al

ue
s 

(S
qu

a.
 k

m
)

Date

   Terra SCF
 100%
 90-100%
 80-90%
 70-80%
 60-70%
 50-60%
 40-50%
 30-40%
 20-30%
 10-20%
 0-10%

 

2002/7/1

2003/1/1

2003/7/1

2004/1/1

2004/7/1

2005/1/1

2005/7/1

2006/1/1

2006/7/1

2007/1/1

2007/7/1

2008/1/1

2008/7/1

2009/1/1

2009/7/1

2010/1/1

0.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

3.5x106

4.0x106

4.5x106

5.0x106

 O
ffs

et
 Y

 v
al

ue
s 

(S
qu

a.
 k

m
)

Date

   Aqua SCF
 100%
 90-100%
 80-90%
 70-80%
 60-70%
 50-60%
 40-50%
 30-40%
 20-30%
 10-20%
 0-10%

 
Fig. 13. The time series analysis for different snow cover fractions derived from 
MODIS/terra and MODIS/Aqua 

2.3 Conclusions 

From what we have analyzed, the climatological characteristics show that the onset time of 
snow over China area are slightly postponed, while the duration is undecided by the 
satellite record of NISE (SSM/I) and IMS, the monthly climatology analysis reveals that the 
snow distribution is quite different in the altitude and latitude, the Tibet Plateau area 
experiences the maximum SWE in November. The northern China and lower land reach the 
maximum area in December and January. 
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The products of SCA and SWE could provide a long time series data and derived snow 
climatological analysis, when compared the optical and microwave remote sensing products 
of snow, IMS SCA and NISE SCA show difference each other, the blank area in Tibet and 
northwestern China could not enough to provide analytical result, though these are some 
clues on it. The snow product of IMS seems provide more reliable results over China area, 
and it is recommended that a new snow algorithm from satellite is needed for the accuracy 
assessment. 

In the traditional view, the satellite data could provide more reliable large-scale snow 
parameters than the local observational station, the trend from several snow products 
provides the same continental regime over Northern American, it looks like snow cover gets 
a negative response to the global warming, while, a near local look over the Tibet Plateau, 
the result shows that the snow cover area appears a positive trend with snow equivalent 
water from PSW dataset, and the situation is also same over the China West Area.  

From the monthly snow water equivalent (mm) which is recorded from the AMSR-E/Aqua, 
two snow parameters are derived, one is the averaged SWE monthly and another is the 
snow cover area (squa. km). The result reveals the positive trend of the averaged SWE (mm) 
and snow cover area (squa. km) over the Tibet Plateau area, which is the same situation with 
the result of western China (Qin, 2006 and Xu, 2007). While the monthly trend for more than 
ten years, we can find some interest results (see b part in 2.2.5). The averaged SWE and 
Snow cover area experience slightly increasing trend in the summer and autumn time (June, 
July, August and September), while in the winter and spring time (from October to next 
May), these parameters shows its negative trend. 

From the MODIS SCF time series analysis according to the different percentage pixels, we 
can find that the SCF less than 20% are quite variable with more pixels in summer time than 
that in the winter time, while all of the pixels that contain more snow indicate a similar 
positive trend, and less pixels in summer time than that in winter time. The higher of the 
SCF, the higher trend value for the line. The data from the MODIS/Aqua show very similar 
result as that of MODIS/Terra, but larger area than Terra’s. 

It is hoped that China mainland area whose cryosphere is a major element in the climate 
now undertake national programs designed to address questions of global environment 
change. 

3. Analysis between AMSR-E brightness temperature and ground snow depth 
over Tibet Plateau, China 
3.1 Introduction 

Over the Tibet Plateau (Western China), snow cover is presented only for a few months per 
year, except mountainous areas. However, it highly influences the energy flux, atmosphere 
dynamics and surface water reservoirs. Recently, much effort has been put into developing 
region-specific retrieval algorithms for snow parameter retrieval from passive microwave 
measurements. Automatic station observations of snow cover are essential factors in the 
development of these retrieval algorithms, but they cannot provide comprehensive 
information on the snow cover distribution. The recent study has improved the snow depth 
accuracy for some extent, but the method highly depend on the method training for the 
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artificial neural network methodology (Yungang Cao, 2008) without more physical 
explanation. From the Fig.14, the distribution of the meteorological stations in the Tibet 
Plateau can be seen to be very sparse, especially over the main part of the Plateau. 
Furthermore, many of them are near areas of human activity, and provide few 
measurements for a long time span with very shallow snow depth values (see Fig.15 
example for DanXung Station) (Che, 2004). Armstrong (2001) notes that passive microwave 
remote sensing tends to underestimate the snow in the fall and early winter due to the weak 
signal of thin snow with the 36.5GHz and 18.7GHz (Armstrong, 2001), while the situation is 
the opposite over Tibet Plateau. Matthew H. Savoie (2009) improved the accuracy of the 
snow measurement by considering the atmospheric influence to some extent; Qiu etc. (2009) 
paid attention to the atmosphere influence via the experiment and model simulation.  

Due to the thin snow (snow occurrence) is often seen over western China, especially over 
the Tibet Plateau, more comprehensive analysis is urgent with the station observation data 
and microwave Tbs. In this work, we consider the shallow snow situation, and try to explain 
the discrepancy between the in situ time series measurement of snow (snow depth, SD) and 
the values retrieved from passive microwave remote sensing with the traditional difference 
between the brightness temperature at 36.5GHz and 18.7GHz, and that from 89.0GHz-
18.7GHz and 18.7GHz-10.7GHz. Then, we analyze the ability of the higher frequencies in 
snow parameter retrieval over the Tibet Plateau (e.g. 89.0GHz at AMSR-E) using the time 
series data comparison. 

3.2 Snow depth and AMSR-E brightness temperature 

3.2.1 Snow depth data 

We selected the snow depth measurements at the NamCo station over 4700m in altitude, 
which is located beside the NamCo Lake and the Mt. Nyainqenttanglha (Fig.14, circle). The 
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, operates a station in the  

 
Fig. 14. The distribution of the selected meteorological station over Tibet Plateau and 
western China (from China Meteorological Data Sharing Server System, data used in this 
work) and the geographic location of the Namco station site (30046.44’N, 90059.31’E). 
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The products of SCA and SWE could provide a long time series data and derived snow 
climatological analysis, when compared the optical and microwave remote sensing products 
of snow, IMS SCA and NISE SCA show difference each other, the blank area in Tibet and 
northwestern China could not enough to provide analytical result, though these are some 
clues on it. The snow product of IMS seems provide more reliable results over China area, 
and it is recommended that a new snow algorithm from satellite is needed for the accuracy 
assessment. 

In the traditional view, the satellite data could provide more reliable large-scale snow 
parameters than the local observational station, the trend from several snow products 
provides the same continental regime over Northern American, it looks like snow cover gets 
a negative response to the global warming, while, a near local look over the Tibet Plateau, 
the result shows that the snow cover area appears a positive trend with snow equivalent 
water from PSW dataset, and the situation is also same over the China West Area.  

From the monthly snow water equivalent (mm) which is recorded from the AMSR-E/Aqua, 
two snow parameters are derived, one is the averaged SWE monthly and another is the 
snow cover area (squa. km). The result reveals the positive trend of the averaged SWE (mm) 
and snow cover area (squa. km) over the Tibet Plateau area, which is the same situation with 
the result of western China (Qin, 2006 and Xu, 2007). While the monthly trend for more than 
ten years, we can find some interest results (see b part in 2.2.5). The averaged SWE and 
Snow cover area experience slightly increasing trend in the summer and autumn time (June, 
July, August and September), while in the winter and spring time (from October to next 
May), these parameters shows its negative trend. 

From the MODIS SCF time series analysis according to the different percentage pixels, we 
can find that the SCF less than 20% are quite variable with more pixels in summer time than 
that in the winter time, while all of the pixels that contain more snow indicate a similar 
positive trend, and less pixels in summer time than that in winter time. The higher of the 
SCF, the higher trend value for the line. The data from the MODIS/Aqua show very similar 
result as that of MODIS/Terra, but larger area than Terra’s. 

It is hoped that China mainland area whose cryosphere is a major element in the climate 
now undertake national programs designed to address questions of global environment 
change. 

3. Analysis between AMSR-E brightness temperature and ground snow depth 
over Tibet Plateau, China 
3.1 Introduction 

Over the Tibet Plateau (Western China), snow cover is presented only for a few months per 
year, except mountainous areas. However, it highly influences the energy flux, atmosphere 
dynamics and surface water reservoirs. Recently, much effort has been put into developing 
region-specific retrieval algorithms for snow parameter retrieval from passive microwave 
measurements. Automatic station observations of snow cover are essential factors in the 
development of these retrieval algorithms, but they cannot provide comprehensive 
information on the snow cover distribution. The recent study has improved the snow depth 
accuracy for some extent, but the method highly depend on the method training for the 
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artificial neural network methodology (Yungang Cao, 2008) without more physical 
explanation. From the Fig.14, the distribution of the meteorological stations in the Tibet 
Plateau can be seen to be very sparse, especially over the main part of the Plateau. 
Furthermore, many of them are near areas of human activity, and provide few 
measurements for a long time span with very shallow snow depth values (see Fig.15 
example for DanXung Station) (Che, 2004). Armstrong (2001) notes that passive microwave 
remote sensing tends to underestimate the snow in the fall and early winter due to the weak 
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Fig. 14. The distribution of the selected meteorological station over Tibet Plateau and 
western China (from China Meteorological Data Sharing Server System, data used in this 
work) and the geographic location of the Namco station site (30046.44’N, 90059.31’E). 
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area. A snow campaign covering the whole winter offseason between 2006.10~2007.2 was 
conducted. SD records are acquired over three sites around the Namco station. Compared to 
the AMSR-E/Aqua satellite footprint, these sites are regarded as one site and represent the 
general situation of the whole area in this work, though this is a fairly inaccurate estimation 
in mountainous areas. Other time-series SD data in this work is from the winter-time 
observation (stations at Fig.14) in 2009~2010, when northern China were suffered from vast 
snowfall. 

Fig 15 (left) shows a time series of the measured in situ snow depth values. From 
24/10/2006, snow depth increases from 23cm to about 45cm on 8/11/2006, after which the 
depth decreased to 17cm on 28/1/2007. In this time span, several snowfall events happened 
on 12/11/2006, 14/11/2006 and 16/1/2007, with 2 cm of new snow in the last case. A 
relatively large shift appeared on 14/12/2006 because of the change of the observation sites 
for the surface wind. 
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Fig. 15. The SDs from the Danxung station (No.55493) (Left) and the SD (cm) field campaign 
near NamCo station (Right) 

3.2.2 AMSR-E L2A swath dataset and processing 

We selected the AMSR-E daily L2A swath brightness temperature (ascending and 
descending pass, A/D, http://nsidc.org/data/docs/daac/ae_l2a_tbs.gd.html) over the 
experiment site and other western stations in China according to the geographic coordinate, 
which means that the extracted swath Tbs are in the area of 10km2 around the site. We chose 
the Tb difference between 89.0/36.5/18.7GHz and 10.7GHz channels for the gradient time 
series comparison with station snow depth (cm).  

3.3 Comparison result at Nam Co experiment site 

3.3.1 The AMSR-E swath L2A Tb gradient time series 

We plotted the Tb gradient between 89.0/36.5GHz and 18.7GHz with different resolutions 
corresponding to the snow measurement time at Nam Co in Fig. 15. Compared to the snow 
depth (the solid lines), the brightness temperature gradient (traditional algorithm prototype) 
at Fig. 15 shows a good relationship for the snow depth decreasing period 
(24/11/2006~26/1/2007) at 89.0GHz (named high frequency) gradient and 36.5GHz (named 
low frequency) gradient. For this period of time (snow depth are less than 30 cm), we can 
understand that the high frequency are more sensitive to the snow evolution than  the low  
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Fig. 16. The brightness temperature gradient between 89.0/36.5GHz and 18.7GHz with 
different resolution corresponding to the snow measurement time. The solid lines stand for 
the ground snow depth. 

frequency, and the bottom panel in Fig.16 indicates the high resolution (L2A.res3) resample 
is more sensitive to the snow evolution than that of low resolution (L2A.res1).  

Fig.17 shows a sample, located beside (20km away from the field measurement site, the time 
stamp starts from October 1st), it indicates the same trend as the previous Fig.15. During the 
first 15days, the 89.0GHz shows a good sensitivity to the fresh snow. During the later 
succeeding 17days (7/11/2006~24/11/2006), the gradient becomes more and more large, 
but the snow depth decreases (compare to the Fig.15). This can be explained preliminarily 
by the evolution of the snow grain size and density, which typically increases with time. A 
more physical explanation needs e.g. the model simulation work on the snow emission of 
snow grain size, snow depth and snow density, in order to decide which part plays a 
dominant role (Pulliainen, 1999). 

3.3.2 Comparison to the AMSR-E daily SWE product 

Another comparison (Fig.17) has been done by using the AMSR-E daily snow products, 
which are EASE-Grid with coarse resolution (25km) and the snow depths at Fig.15. From 
these figures, we can find that the maximum estimated AMSR-E SWE(mm) (using 36.5GHz 
gradient) over NamCo station at the winter of 2006~2007 occurs around 26/12/2006, which 
are do not match the snow measurement, with a  delay of almost one month.  
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area. A snow campaign covering the whole winter offseason between 2006.10~2007.2 was 
conducted. SD records are acquired over three sites around the Namco station. Compared to 
the AMSR-E/Aqua satellite footprint, these sites are regarded as one site and represent the 
general situation of the whole area in this work, though this is a fairly inaccurate estimation 
in mountainous areas. Other time-series SD data in this work is from the winter-time 
observation (stations at Fig.14) in 2009~2010, when northern China were suffered from vast 
snowfall. 

Fig 15 (left) shows a time series of the measured in situ snow depth values. From 
24/10/2006, snow depth increases from 23cm to about 45cm on 8/11/2006, after which the 
depth decreased to 17cm on 28/1/2007. In this time span, several snowfall events happened 
on 12/11/2006, 14/11/2006 and 16/1/2007, with 2 cm of new snow in the last case. A 
relatively large shift appeared on 14/12/2006 because of the change of the observation sites 
for the surface wind. 
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Fig. 15. The SDs from the Danxung station (No.55493) (Left) and the SD (cm) field campaign 
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3.2.2 AMSR-E L2A swath dataset and processing 

We selected the AMSR-E daily L2A swath brightness temperature (ascending and 
descending pass, A/D, http://nsidc.org/data/docs/daac/ae_l2a_tbs.gd.html) over the 
experiment site and other western stations in China according to the geographic coordinate, 
which means that the extracted swath Tbs are in the area of 10km2 around the site. We chose 
the Tb difference between 89.0/36.5/18.7GHz and 10.7GHz channels for the gradient time 
series comparison with station snow depth (cm).  

3.3 Comparison result at Nam Co experiment site 

3.3.1 The AMSR-E swath L2A Tb gradient time series 

We plotted the Tb gradient between 89.0/36.5GHz and 18.7GHz with different resolutions 
corresponding to the snow measurement time at Nam Co in Fig. 15. Compared to the snow 
depth (the solid lines), the brightness temperature gradient (traditional algorithm prototype) 
at Fig. 15 shows a good relationship for the snow depth decreasing period 
(24/11/2006~26/1/2007) at 89.0GHz (named high frequency) gradient and 36.5GHz (named 
low frequency) gradient. For this period of time (snow depth are less than 30 cm), we can 
understand that the high frequency are more sensitive to the snow evolution than  the low  
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Fig. 16. The brightness temperature gradient between 89.0/36.5GHz and 18.7GHz with 
different resolution corresponding to the snow measurement time. The solid lines stand for 
the ground snow depth. 

frequency, and the bottom panel in Fig.16 indicates the high resolution (L2A.res3) resample 
is more sensitive to the snow evolution than that of low resolution (L2A.res1).  

Fig.17 shows a sample, located beside (20km away from the field measurement site, the time 
stamp starts from October 1st), it indicates the same trend as the previous Fig.15. During the 
first 15days, the 89.0GHz shows a good sensitivity to the fresh snow. During the later 
succeeding 17days (7/11/2006~24/11/2006), the gradient becomes more and more large, 
but the snow depth decreases (compare to the Fig.15). This can be explained preliminarily 
by the evolution of the snow grain size and density, which typically increases with time. A 
more physical explanation needs e.g. the model simulation work on the snow emission of 
snow grain size, snow depth and snow density, in order to decide which part plays a 
dominant role (Pulliainen, 1999). 

3.3.2 Comparison to the AMSR-E daily SWE product 

Another comparison (Fig.17) has been done by using the AMSR-E daily snow products, 
which are EASE-Grid with coarse resolution (25km) and the snow depths at Fig.15. From 
these figures, we can find that the maximum estimated AMSR-E SWE(mm) (using 36.5GHz 
gradient) over NamCo station at the winter of 2006~2007 occurs around 26/12/2006, which 
are do not match the snow measurement, with a  delay of almost one month.  
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Compared with the gradient figure, from Fig.16, we can find that the 36.5GHz gradient 
shows a relatively stable value from 1/12/2006~26/12/2006. The discrepancy between the 
SWE and TB gradients is probably due to the response of 37 GHz saturating for SWE values 
over 120-140mm, or the mixed pixel by the lake. This requires a more extensive field dataset 
to acquire the explanation.  

If we consider the typical snow density over Tibet area to be approximately 0.239g/cm3, we 
get a maximum snow depth value of about 75 cm from the AMSR-E observation. This is 
quite larger compared to the in situ measurements, an indication that the AMSR-E SWE 
value is overestimated, which is consistent with the result in paper(Pulliainen, 1999). 

3.4 Time series analysis between Tb and snow depth 

We selected several observations over western China (Fig.14) for the qualitative analysis, 
which include the Xinjiang and Neimenggu deep snow and Gansu, Qinghai and Tibet 
shallow snow depth situations. 

All of the figures in Fig.18 are plotted with the three gradients (Tb difference at 89.0-18.7, 
36.5-18.7 and 18.7-10.7) and the corresponding snow depths (see Fig.18). 
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Fig. 18. The time series Tb difference (89/36.5-18.7GHz and 18.7-10.7GHz) and the ground 
snow depth (cm). The first 4 figures are plotted only ascending Tb and the corresponding 
ground measurements (local morning time), the last four figures are plotted with all of the 
Tb (A/D) and snow depth at any available time. 

We get the preliminary analysis result, the Tbs at18.7-10.7GHz are insensible to the snow 
evaluation except the deep snow depth (a, b and f), although the depression in f is obvious due 
to the local vegetation influence. Over deep snow (a, b, f and g, continuous accumulation > 
20cm), the Tbs at 36.5-18.7GHz are more reliable than that of high frequency, while over the 
shallow snow (c, d, e and h, discontinuous snow occurrence, < 15cm), the pair 36.5/18.7 is 
insensitive, but the high frequency pair (89.0/18.7) shows its distinct response. The pair 
89.0/18.7 shows its shallow snow retrieval ability in a, b, c, d, e and when the snow depth over 
20cm, the signal is more variable and suspect. The pair 89.0/18.7 indicates its sensitive response 
to the quick presence of the snowfall, and keeps turbulence when the snow depths are 
unchanged due to the temporal snow physical characteristics and climate factors. The last four 
figures show that the A/D Tbs act the similar behaviors with difference correlation intensity. 

3.5 Conclusions 

From what we have shown above, it can be argued that the high frequency (89.0GHz) shows 
its sensitive to the relative shallow snow pack, which suggests that we can develop the 
shallow snow depth retrieval via the good Tb pair and ground snow depths over the 
western China. Model simulation work is needed to explain the discrepancy of the snow 
evolution and brightness temperature gradient at high frequencies, and we should enhance 
the following aspects, the possible mixed pixel effect, the atmosphere effect elimination, and 
the vegetation effect removal. 
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Compared with the gradient figure, from Fig.16, we can find that the 36.5GHz gradient 
shows a relatively stable value from 1/12/2006~26/12/2006. The discrepancy between the 
SWE and TB gradients is probably due to the response of 37 GHz saturating for SWE values 
over 120-140mm, or the mixed pixel by the lake. This requires a more extensive field dataset 
to acquire the explanation.  

If we consider the typical snow density over Tibet area to be approximately 0.239g/cm3, we 
get a maximum snow depth value of about 75 cm from the AMSR-E observation. This is 
quite larger compared to the in situ measurements, an indication that the AMSR-E SWE 
value is overestimated, which is consistent with the result in paper(Pulliainen, 1999). 

3.4 Time series analysis between Tb and snow depth 

We selected several observations over western China (Fig.14) for the qualitative analysis, 
which include the Xinjiang and Neimenggu deep snow and Gansu, Qinghai and Tibet 
shallow snow depth situations. 

All of the figures in Fig.18 are plotted with the three gradients (Tb difference at 89.0-18.7, 
36.5-18.7 and 18.7-10.7) and the corresponding snow depths (see Fig.18). 
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Fig. 18. The time series Tb difference (89/36.5-18.7GHz and 18.7-10.7GHz) and the ground 
snow depth (cm). The first 4 figures are plotted only ascending Tb and the corresponding 
ground measurements (local morning time), the last four figures are plotted with all of the 
Tb (A/D) and snow depth at any available time. 

We get the preliminary analysis result, the Tbs at18.7-10.7GHz are insensible to the snow 
evaluation except the deep snow depth (a, b and f), although the depression in f is obvious due 
to the local vegetation influence. Over deep snow (a, b, f and g, continuous accumulation > 
20cm), the Tbs at 36.5-18.7GHz are more reliable than that of high frequency, while over the 
shallow snow (c, d, e and h, discontinuous snow occurrence, < 15cm), the pair 36.5/18.7 is 
insensitive, but the high frequency pair (89.0/18.7) shows its distinct response. The pair 
89.0/18.7 shows its shallow snow retrieval ability in a, b, c, d, e and when the snow depth over 
20cm, the signal is more variable and suspect. The pair 89.0/18.7 indicates its sensitive response 
to the quick presence of the snowfall, and keeps turbulence when the snow depths are 
unchanged due to the temporal snow physical characteristics and climate factors. The last four 
figures show that the A/D Tbs act the similar behaviors with difference correlation intensity. 

3.5 Conclusions 

From what we have shown above, it can be argued that the high frequency (89.0GHz) shows 
its sensitive to the relative shallow snow pack, which suggests that we can develop the 
shallow snow depth retrieval via the good Tb pair and ground snow depths over the 
western China. Model simulation work is needed to explain the discrepancy of the snow 
evolution and brightness temperature gradient at high frequencies, and we should enhance 
the following aspects, the possible mixed pixel effect, the atmosphere effect elimination, and 
the vegetation effect removal. 
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1. Introduction 
In nowadays, seagrass has been regarded as one of the healthy indexes for costal ecosystem, 
for it can provide shelter for fish living and laying egg, and also provide food for fish, 
tortoise, Dugong and seabirds. Management and preservation of coastal marine resources is 
a formidable challenge given the rapid pace of change affecting coastal environments. Fast, 
accurate, and quantitative tools are needed for detecting change in coastal ecosystems. 
Traditional in-situ surveys are time and labor intensive, generally lack the spatial resolution 
and precision required to detect subtle changes before they become catastrophic, and can be 
difficult to maintain from year to year (Orth & Moore, 1983, Peterson & Fourqurean 2001). In 
recent times satellite technology has played a vital role in seagrass monitoring. Remote 
sensing was a useful method for detection of land use change and seagrass. Satellite remote 
detecting of seagrass was different from that of terrestrial vegetation for water absorbing 
greatly at red and infer-red spectrum. When seagrass distributed underwater, visible 
spectrum was often used to detect the density and living state of seagrass. Lennon 
introduced the advantage of satellite remote sensing on detection of seagrass in 1989 and 
regarded red, blue and green as the most useful channel for detecting seagrass distribution 
(Lennon, 1989). Dahdouh-Guebas (1999) also used channel of blue, red and green to map the 
distribution of seagrass in Kenyan coast. Understanding of light scattering by plant canopies 
is crucial for remote sensing quantification of vegetation abundance and distribution 
(Jacquemoud et al. 1996). Hyperspectral data is very useful for assessing seagrass resources 
as it contains plentiful information. High turbidity is one of the important reasons for 
seagrass decline and usually was a problem for detection of seagrass with remote sensing. 
Phinn (2005) retrieved the seagrass along the coast of Moreton Bay, Australia and found that 
seagrass in turbid water was relatively difficult to detect. After studied variation of seagrass 
distribution and species affected by land use change, Batish (2002) concluded that hurricane 
and strong rainfall was the main factors for mud losing and sediment resuspension, which 
increased the water turbidity. The need for precise detection of living status and distribution 
of seagrass led some researchers to use high resolution remote sensing data. Among them 
SPOT data was very useful, for it had spatial resolution of 2.5m, 5m, 10m and four bands 
(visible and inferred, Bands B1: 0.50–0.59μm; B2: 0.61–0.68μm; B3: 0.78–0.89μm; B4 : 1.58–
1.75 μm with a resolution of 20 m ). Pasqualini (2005) used SPOT 5 data to map the 
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distribution of Posidonia oceanica along Zakinthos Island in Greece with Principal 
Component Analysis, obtained good results and the accuracy was between 73%-96%. 
However, SPOT data only have two visible bands, which limited the use of image for 
retrieval of substrate information. IKONOS was another satellite data with high resolutions. 
Some researchers used the IKONOS data to retrieve the types of sea bottom and seagrass 
distribution. Andrefouet (2005) used IKONOS data to classify tropical coral reef 
environment, overall accuracy was 77% for 4–5 classes, 71% for 7–8 classes, 65% in 9–11 
classes, and 53% for more than 13 classes. Compared with SPOT data, IKONOS and 
Quickbird have their advantage on more bands cover visible spectrum. Compared with 
IKONOS data, Quickbird is better for higher spatial resolution. Some researchers compared 
Quickbird data with Landsat-5 and CASI data, the conclusion was reached that Quickbird 
was better for mapping of seagrass cover, species and biomass to high accuracy levels (> 
80%) (Phinn et al. 2008). 

New technology provided by ocean color remote sensing provides high spatial and 
temporal resolution of the benthos, but the application of ocean color data in shallow waters 
is still in its early stage. Unverified classification techniques neglect the confounding effects 
of reflectance from benthos and spectral shifts, and this can lead to considerable errors. In 
optically shallow water, the radiance can be modified due to spectral scattering and 
absorption by phytoplankton, suspended organic and inorganic matter and dissolved 
organic substances (Dekker et al., 1992). Therefore, more efforts should be paid in accuracy 
of classification of seagrass on water column correction. A foremost problem for mapping 
seagrass by analysis of remote sensing data is water column effect. Most photons are 
absorbed or scattered by all particulates in optically shallow water (Morel et al.1977, Gordon 
et al., 1983). So water depth and water column inherent optical properties must be measured 
for mapping seagrass (Holden et al., 2001). While most water column correction procedures 
may not be appropriate for mapping or deriving quantitative information of seagrass. For  
instance, simply subtracting a deep-water remote sensing reflectance from each pixel is 
based on the assumption that energy traveling through a water column behaves the same 
way regardless of substrate type and water depth. In fact, when light penetrates water its 
intensity decreases exponentially with increasing depth. This process is known as 
attenuation and it exerts a profound effect on remotely sensed data of aquatic environment. 
The severity of attenuation differs with the wavelength of electromagnetic radiation. The 
single/quasi-single scattering theory and numerical simulations are often used to estimate 
water column effects (Liang, 2007). In these approaches a parameterized forward model for 
reflectance such as Hydrolight (for aquatic applications) takes a series of parameters 
describing the optical properties of participating media or canopy structure. Image analysis 
then uses a search algorithm to find the parameter space location which minimizes the 
distance of the corresponding spectral space location from the image pixel reflectance 
(Goodman & Ustin, 2007). With the approach, the model may take substantial 
computational effort. Often the model is simplified or approximated to facilitate inversion. 
So, model accuracy must be compromised. Conger et al. (2006) applied the approach 
separating determinations of the spectral albedos of typical materials covering the floor 
(Morel, 1993) to develop a simple technique to merge SHOALS (Scanning Hydrographic 
Operational Airborne Lidar Survey) LIDAR bathymetry data with Quickbird data. The 
remote sensing data with respect to depth was linearized in the model by subtracting an 
optically deep water value from the entire waveband under consideration and taking the 
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natural logarithm of the result. Subtracting a deep-water remote sensing reflectance from 
each pixel (Cannizzaro & Carder, 2006) or utilizing the water optical properties which are 
derived from adjacent deep waters, were used to correct water column effects. Modeled 
shallow water reflectance typically has an inverse exponential relationship with depth 
(Mobley, 1994), so a regular subdivision of a depth parameter would over-sample the deep 
water spectral space region with similar reflectance spectra produced from unnecessary 
forward model runs. At the same time the shallow water spectral space region would be 
relatively under-sampled with a higher discretization error in the tabulated reflectance 
(Froidefond & Ouillon, 2005). The interaction between multiple parameters (e.g. depth vs. 
water clarity) makes the general problem of efficient and accurate LUT (look-up tables) 
construction very hard to tackle by analytical means (Hedley et al., 2009). Routine or large-
scale operational image analysis by physics-based methods therefore demands the 
development of efficient approaches for both modeling and inversion. Often the model is 
simplified or includes too many parameters which cannot be measured directly (i.e. the 
attenuation coefficients for the upward streams originating from the water column and from 
the bottom) (Sathe & Sathyendranath, 1992; Nichols & Kyrala, 1992). In our investigation an 
optical model of in-coming solar radiation transfer was developed, in which multi-layer 
water was considered. Implementation of the method was found to be effective for 
improving the accuracy of coastal habitat maps and essential for deriving empirical 
relationships between remotely sensed data and interested features in the marine 
environment. Retrieved bottom reflectance was then used to study the relationship between 
reflectance and the LAI (leaf area index) of seagrass. In addition, it was found that the peak 
location of retrieved bottom reflectance was highly correlated to LAI of seagrass measured 
in Sanya Bay, South China Sea. Then, this paper studied the seagrass distribution along the 
northeast coast of Xincun Bay and Sanya Bay. The first aim was to give a regional bio-optical 
model of seagrass for detecting seagrass distribution with high accuracy. The second was to 
provide the information of seagrass distribution and living state for government and people 
to understand how to preserve and protect seagrass.  

2. Water column model 
In our investigation an optical model of in-coming solar radiation transfer was adopted, in 
which multi-layer water was considered (Yang et al. 2010). This algorithm which had been  
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used to successfully extract seagrass and coral reefs information in Sanya Bay enables us to 
simulate radiation fields in a wide range of optical characteristics of these layers to analyse 
the mechanisms of the formation of the radiation characteristics inside and outside the 
layers, and to estimate any contribution of each region. Differences in water column 
properties would only modify the input to the equation for retrieving bottom reflectance but 
not the equation.  

At the core of the inversion method by Yang et al. (2010) lies an analytical expression for 
( )0 ,water

rsR λ− , subsurface remote sensing reflectance of the water column, for an optical 
shallow water body: 
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Where Q is the radio of the subsurface upward irradiance to radiance conversion factor, and 
has a value of 3.25 (Morel & Gentili 1993)；λ is the wavelength; k is a unique attenuation 
coefficient which is invariable with respect to depth; z is water depth measured downward 
from the detector; zsurf is the distance between ocean surface and the detector; βw(ψ,λ) is the 
total volume scattering function (VSF) for pure seawater (Morel 1977); Morel gave the 
values of β (90°, λ0) at the reference wavelengths of 350 and 600nm, and λ0 is the wavelength 
value selected from the reference wavelength table; The wavelength dependence of λ-4.32 
results from the wavelength dependence of the index of refraction; The factor 0.835 is 
attributed to the anisotropic properties of the water molecules (Chami et al. 2006); bp is the 
particle scattering coefficient; g is a parameter that can be adjusted to control the relative  
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Fig. 2. The fraction of incident power scattered out of the beam through an angle ψ into a 
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amounts of forward and backward scattering in βHG, Henyey-Greenstein phase function 
(Henyey-Greenstein, 1941); R (0-, λ) is the irradiance reflectance just beneath the sea surface.  

In addition, ψ is the angle of reflection of the incident beam; ψ1, and ψ2 can be expressed as: 
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Where, FOV is the field of view of the sensor, α0 is the solar attitude, and θ0 is the view 
angle. In addition, the final signal detected by the receiver results from the flux reflected by 
the bottom (as if the bottom were black) and the flux reflected by the bottom (when it is not 
black) (Maritorena et al., 1994). For simplification, reflectance, mentioned below, represents 
the remote sensing reflectance. Finally, we can get the bottom reflectance, Rbrs: 
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Here R is the total irradiance radio just below the surface.  

3. Results and analysis 
3.1 The difference between uncorrected and corrected reflectance 

Fig. 3 shows the retrieved bottom reflectance was lower than the in situ measured 
reflectance and the change between the corrected and uncorrected reflectance did exist (Fig. 
4) (Yang et al. 2010). The range of the variation varied widely, and the difference was much 
larger at 400-450 nm. The variation in spectral reflectance was determined mainly by 
absorption and scattering properties of shallow water. 

 
Fig. 3. Reflectance spectra of seagrass; Rrs(0-) represents subsurface remote-sensing 
reflectance; Rrsb represents the bottom reflectance (Yang et al. 2010). 
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used to successfully extract seagrass and coral reefs information in Sanya Bay enables us to 
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Fig. 4. (a) Comparison of the in situ measured bottom reflectance with subsurface remote-
sensing reflectance; (b) Comparison of the in situ measured bottom reflectance with the 
retrieved bottom reflectance from the optical model; Rrs(0-) represents subsurface remote-
sensing reflectance; Rrsb represents the bottom reflectance  (Yang et al. 2010). 

3.2 Spectral characteristics of seagrass 

Fig. 5 shows that the reflectance of Thalassia increased between 518 and 532 nm, which 
might indicate changes in xanthophyl-cycle pigmentation. In South China Sea the leaves of 
Thalassia display olive-drab color, and this just coincides with the relevant spectral features 
of Thalassia detected around 550 nm. The reflectance differences between 600 and 650 nm 
can mainly be attributed to different proportions of red, orange, yellow and brown 
carotenoids. Between 650 and 680 nm reflectance decreased, and that suggests reduced 
absorption of light by chlorophyll, which may be resulted from reduction in chlorophyll. 
The reflectance overlapped around 720nm may be relative to the total effect whereby the 
relationship between light harvesting efficiency and chlorophyll content is non-linear due to 
pigment self-shading among thyllakoid layers. The particularly strong package e 
ffect observed in seagrass was largely attributed to restriction of chloroplasts to  
the leaf epidermis (Cummings et al. 2003, Enriquez 2005). Zone between 800 and 840 nm  

 
Fig. 5. The remote sensing reflectance of seagrass meadows  (Yang et al. 2010). 
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encompasses a spectral region of maximum reflectance, although a weak water absorption 
feature occurs near the 812 nm (Becker et al. 2005). In addition, the seagrass can also 
spectrally be identified with leaf samples coated by epibionts including a diverse array of 
microalgae, bacteria, juvenile macroalgae and sessile invertebrates such as tubeworms and 
bryozoans. It was found that seagrass reflectance reduced drastically at the green peak 
without having a noticeable effect on the chlorophyll absorbance trough in infrared. 
However, biliproteins of algal epibionts were responsible for the increased reflectance peaks 
observed between 560-670 nm.  

3.3 LAI and the spectral response 

The spectral reflectance of seagrass measured at different station changed regularly with 
LAI. The bands with good relationship with LAI were 555,635, 650 and 675 nm (Yang and 
Yang 2009), for absorption and reflectance of seagrass photosynthetic and accessory pigment 
(Fig. 6), and correlation coefficient of quadratic equation was greater than 0.79. These results 
can be explained as lower leaf area index the exposed area of sediment was greater, and 
water leaving radiance from seagrass bed is weaker; with higher seagrass LAI, water 
leaving radiance from bottom is dominant by seagrass and increased with increasing LAI. 
Previous study showed that the bands with good relationship with LAI were 555,635, 650 
and 675 nm, for absorption and reflectance of seagrass photosynthetic and accessory  
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Fig. 6. Relationship between seagrass LAI and different hyperspectral band (Yang et al. 
2011b) 
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Fig. 4. (a) Comparison of the in situ measured bottom reflectance with subsurface remote-
sensing reflectance; (b) Comparison of the in situ measured bottom reflectance with the 
retrieved bottom reflectance from the optical model; Rrs(0-) represents subsurface remote-
sensing reflectance; Rrsb represents the bottom reflectance  (Yang et al. 2010). 
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encompasses a spectral region of maximum reflectance, although a weak water absorption 
feature occurs near the 812 nm (Becker et al. 2005). In addition, the seagrass can also 
spectrally be identified with leaf samples coated by epibionts including a diverse array of 
microalgae, bacteria, juvenile macroalgae and sessile invertebrates such as tubeworms and 
bryozoans. It was found that seagrass reflectance reduced drastically at the green peak 
without having a noticeable effect on the chlorophyll absorbance trough in infrared. 
However, biliproteins of algal epibionts were responsible for the increased reflectance peaks 
observed between 560-670 nm.  

3.3 LAI and the spectral response 

The spectral reflectance of seagrass measured at different station changed regularly with 
LAI. The bands with good relationship with LAI were 555,635, 650 and 675 nm (Yang and 
Yang 2009), for absorption and reflectance of seagrass photosynthetic and accessory pigment 
(Fig. 6), and correlation coefficient of quadratic equation was greater than 0.79. These results 
can be explained as lower leaf area index the exposed area of sediment was greater, and 
water leaving radiance from seagrass bed is weaker; with higher seagrass LAI, water 
leaving radiance from bottom is dominant by seagrass and increased with increasing LAI. 
Previous study showed that the bands with good relationship with LAI were 555,635, 650 
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Fig. 6. Relationship between seagrass LAI and different hyperspectral band (Yang et al. 
2011b) 
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pigment, the results in the paper are also confident with the results of previous study. 
Compared with Quickbird bands (Band1 (0.45-0.52μm), 2(0.52-0.59μm), 3(0.63-0.69μm) and 
4(0.77-0.89μm)). Band 2 and band 3 of Quickbird can be well used for retrieving seagrass 
distribution. 

3.4 The peak location and LAI 

Red edge refers to the region of rapid change in reflectance of chlorophyll in the near 
infrared range. Vegetation absorbs most of the light in the visible part of the spectrum but is 
strongly reflective at wavelengths greater than 700 nm. The change can be from 5% to 50% 
reflectance between 680 nm to 730 nm. The phenomenon accounts for the brightness of 
foliage in infrared photography. It is used in remote sensing to monitor plant activity and 
could be useful to detect light-harvesting organisms on distant planets. Fig.7 also shows the 
typical reflectance characteristics of seagrass with an obvious spectral peak at red edge, and 
the peak at the wavelength of 695-710 nm range shifted to the red with increasing of leaf 
areas. Fig.7 indicates a strong relationship between the peak location and LAI with a 
coefficient of correlation of 0.7263 in the near infrared range. 
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Fig. 7. Relationship between the peak location and LAI  (Yang et al. 2010). 

3.5 Relationship between seagrass LAI, NDVI and Hyperspectral Bands 

The Normalized Difference Vegetation Index (NDVI) is a simple numerical indicator that 
can be used to analyze remote sensing measurements. In order to fully explore the useful 
information in hyperspectra, the red band reflectance of NDVI was replaced by the green 
and blue band reflectance. The equations are listed as follows: 

 Red NDVI          RNDVI=(NIR-Red)/(NIR+Red) (5) 

 Green NDVI       GNDVI=(NIR-Green)/(NIR+Green)  (6) 

 Blue NDVI         BNDVI=(NIR-Blue)/(NIR+Blue)  (7) 
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where, NIR is near infrared reflectance. In the paper, VNDVI is taken as the general name of 
BNDVI, GNDVI and RNDVI. Hyperspectra, leaf area index and NDVI (Normalized 
Difference Vegetation Index) of seagrass were measured and calculated with equations (5, 6, 
7), and the relationship between them was obtained. 

As Fig.8 indicates, the spectral reflectance of seagrass measured at different stations changed 
regularly with LAI. The bands with a good correspondence with LAI were 555, 635, 650 and 
675 nm, for absorption and reflectance of seagrass photosynthetic and accessory pigment. 
However, at the band around 400 and 720 nm, a relatively poor relationship with LAI was 
found (Table 1). The peaks and troughs on the reflectance spectra were also affected by 
factors such as reflectance and transmission of single leaves, types of background, leaf angle, 
the geometry of sun and sensor angles, etc, and these effects can be reduced to great extent 
when hyperspectral measurement are taken in situ. 
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Fig. 8. Relationship between spectral bands and seagrass LAI  (Yang et al. 2009). 

 

550 nm y = 0.0011x2 - 0.0026x + 0.0099 R2 = 0.8846 

635 nm y = 0.001x2 - 0.0028x + 0.0072 R2 = 0.8575 

650 nm y = 0.001x2 - 0.0029x + 0.0068 R2 = 0.8512 

675 nm y = 0.0008x2 - 0.0026x + 0.0053 R2 = 0.7929 

400 nm y = 0.0011x2 - 0.0041x + 0.0068 R2 = 0.7728 

700 nm y = 0.0008x2 - 0.0024x + 0.0057 R2 = 0.7604 

Table 1. Relationship between LAI and different hyper spectral band. In Table 1, y is remote 
sensing reflectivity from bottom, x is LAI. 
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In order to monitor seagrass with satellite remote sensing, the relationship between Leaf 
Area Index (LAI) and the Normalized Difference Vegetation Index (NDVI) was correlated. 
Analysis indicated that a good relationship existed between NDVI and LAI. Relationships 
between every VNDVI (RNDVI, GNDVI and BNDVI) and LAI were studied. Fig.9 shows 
that the VNDVI increased with the increase of LAI. The correlation coefficient between G-
NDVI and LAI (0.7357) was better than the RNDVI (0.6705) and BNDVI (0.6729), which 
means that GNDVI is more sensitive than RNDVI and BNDVI when applied to seagrass 
remote sensing. However, when LAI is less than 1.5, the correlation coefficient between 
VNDVI and LAI is relatively low. A0s the band set in the visible and infrared of the satellite 
remote sensing data (CBERS, Landsat TM, and QuickBird) is blue (0.45-0.52μm), green (0.52-
0.59μm), red (0.63-0.69μm) and infra-red (0.77-0.89μm), NDVI was retrieved with blue, 
green and red also, which is compatible with the satellite data band set. 
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Fig. 9. Relationship between LAI and NDVI  (Yang et al. 2009). 

3.6 Seagrass detection with satellite remote sensing 

QuickBird data was used for correcting seagrass density and detailed distribution 
retrieved with Landsat and CBERS data, for detailed seagrass distribution was very 
important for us to compare seagrass distribution changes (Yang and Yang 2009). With 
the water body correction, sun glint correction and computation of bands, seagrass 
distribution along the south coast of Xincun Bay was retrieved and showed in Fig 10 
(Yang 2008). From the Quickbird image, substrate types, such as sand, seagrass can be 
detected clearly, and the profiles from bank to the center of Xincun Bay were sea pond, 
sand, seagrass and optically deep water. In shallow water near bank and relatively deeper 
water, no seagrass can be detected. The pattern of seagrass distribution can be detected 
clearly, and seagrass mainly distributed in the pattern of cluster, with tens meter distance 
away from the bank.  
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Fig. 10. Seagrass distribution in the northwest of Xincun Bay with Quickbirds (Yang et al. 
2011b).  

The pattern of seagrass distribution can also be clearly classified, and seagrass was mainly 
distributed in a stripe pattern, some tens of meters away from the coastline (YANG and 
HUANG 2011a). Seagrass density is regular in the main seagrass bed. From the outside to 
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In order to monitor seagrass with satellite remote sensing, the relationship between Leaf 
Area Index (LAI) and the Normalized Difference Vegetation Index (NDVI) was correlated. 
Analysis indicated that a good relationship existed between NDVI and LAI. Relationships 
between every VNDVI (RNDVI, GNDVI and BNDVI) and LAI were studied. Fig.9 shows 
that the VNDVI increased with the increase of LAI. The correlation coefficient between G-
NDVI and LAI (0.7357) was better than the RNDVI (0.6705) and BNDVI (0.6729), which 
means that GNDVI is more sensitive than RNDVI and BNDVI when applied to seagrass 
remote sensing. However, when LAI is less than 1.5, the correlation coefficient between 
VNDVI and LAI is relatively low. A0s the band set in the visible and infrared of the satellite 
remote sensing data (CBERS, Landsat TM, and QuickBird) is blue (0.45-0.52μm), green (0.52-
0.59μm), red (0.63-0.69μm) and infra-red (0.77-0.89μm), NDVI was retrieved with blue, 
green and red also, which is compatible with the satellite data band set. 
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Fig. 9. Relationship between LAI and NDVI  (Yang et al. 2009). 

3.6 Seagrass detection with satellite remote sensing 

QuickBird data was used for correcting seagrass density and detailed distribution 
retrieved with Landsat and CBERS data, for detailed seagrass distribution was very 
important for us to compare seagrass distribution changes (Yang and Yang 2009). With 
the water body correction, sun glint correction and computation of bands, seagrass 
distribution along the south coast of Xincun Bay was retrieved and showed in Fig 10 
(Yang 2008). From the Quickbird image, substrate types, such as sand, seagrass can be 
detected clearly, and the profiles from bank to the center of Xincun Bay were sea pond, 
sand, seagrass and optically deep water. In shallow water near bank and relatively deeper 
water, no seagrass can be detected. The pattern of seagrass distribution can be detected 
clearly, and seagrass mainly distributed in the pattern of cluster, with tens meter distance 
away from the bank.  

 
Seagrass Distribution in China with Satellite Remote Sensing 

 

85 

 
Fig. 10. Seagrass distribution in the northwest of Xincun Bay with Quickbirds (Yang et al. 
2011b).  

The pattern of seagrass distribution can also be clearly classified, and seagrass was mainly 
distributed in a stripe pattern, some tens of meters away from the coastline (YANG and 
HUANG 2011a). Seagrass density is regular in the main seagrass bed. From the outside to 
the center of the main seagrass bed, seagrass distribution coverage was under 20%, 20-40%, 
40-60%, 60-80% and greater than 80%. Among them, the area of seagrass coverage greater 
than 80% accounted for more than 30% of the total seagrass bed (Fig. 11). Seagrass species in  

 
Fig. 11. Seagrass density retrieved with QuickBird (Yang et al. 2009). 



 
Remote Sensing of Planet Earth 

 

86

Xincun Bay are mainly Enhalus acoroides, Thalassia hemprichii, Cymodocea rotundata and 
Halodule uninervis; however, we could not differentiate one species from another with 
QuickBird data. Detection accuracy of seagrass with Quickbird data was mainly by 
comparing pixels of satellite remote sensing with in situ observations. In this paper, the 
accuracy was more than 80% for seagrass coverage greater than 20% when compared with 
the in situ observation results. Detailed information on seagrass distribution was very 
important for us to know the density of seagrass distribution and can be used as basis for 
comparing seagrass distribution changes. In order to further study seagrass distribution 
changes in Xincun Bay, Landsat TM and CBERS data was used (Yang et al. 2009). 
Compared with QuickBird, seagrass detected with Landsat TM and CBERS had fewer 
classes, which only showed the distribution range, for pattern and species cannot be 
clearly obtained. However, the distribution contour can be detected clearly, which was 
enough for comparison of seagrass distribution changes. Landsat data was usually used 
for detecting seagrass distribution for cost-effective and relatively higher revisit 
frequency, and visible band was regarded as the most useful. Lennon introduced the 
advantage of satellite remote sensing with Landsat TM data on detection of seagrass in 
1989 and regarded red, blue and green as the most useful channel for detecting seagrass 
distribution (Lennon, 1989). Dahdouh-Guebas (1999) also used channel of blue, red and 
green of Landsat TM data to map the distribution of seagrass in Kenyan coast with good 
results.  

The imperfect was that band spectrum coverage was relatively wider and the pixel sizes 
(20–30 m) are of a similar magnitude to the size of the habitat patches. So it was 
problematical when applied Landsat data on detecting seagrass in small area and 
distinguishing seagrass species. In 1970s, Yang et al (1979) investigated the seagrass 
distribution in the Chinese costal water, and distribution of seagrass in coastal water of 
Hainan province showed in the references. However, seagrass in the west coast of Hainan 
province disappeared in recent years. Some researchers regarded that it is mainly caused by 
aquaculture. Seagrass distributed in the east coast of Hainan province only confined within 
a few bays. Because different species of seagrass live in different environment, distribution 
of seagrass is confined by its growth habitat. Generally speaking, vertical distribution of 
seagrass from coastal to relative deep water around the coast of Hainan Province were 
Halophila, Cymodocea, Syringgodium, Ehaus, Thalassia, Ha-lophila. Substrates of sand, seagrass 
and coral were differentiated with different reflective characteristics. Based on the results, 
we can find that area of seagrass distribution in Sanya bay decreased, from distributed in 
the whole south coast in 1991 to less than 1 hectare in southwest coast of Sanya bay in 1999 
(Fig 12).  

Seagrass distribution in the south coast of Xincun Bay was mainly studied (Yang et al. 
2009). In order to compare seagrass distribution in detail, we divided seagrass distribution 
regions as A, B and C (Fig. 12). Seagrass distribution in region A and region B was 
connected as one big seagrass bed in 1991, however, the two region seagrass separated 
gradually and they were only connected with a line of seagrass in 1999. Finally, complete 
separation was observed in 2001. Seagrass distribution in region C was relatively large 
with an elliptical shape in 1991; however, the shape of seagrass bed became thinner by 
1999 and became a line in 2001. In 2006, seagrass at region C could be detected with 
satellite remote sensing.  
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Fig. 12. Seagrass distribution change from 1991 to 2006 (Yang et al. 2009). 
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4. Impacts of environmental factors for seagrass distribution 
4.1 Effluent diffusion in Sanya Bay 

As water with high concentration of nutrients in Sanya River flow into Sanya Bay, it 
diffused by current and wave. The effluent plume streaming out of the Sanya river into the 
Sanya Bay flows straight for only a short distance before it is washed westward by the 
longshore current (Yang 2008). Sanya Bay is an open bay, the flows-in water only stay in a 
short time. Landsat TM data of 1991 was used to detect the diffuse pattern in Sanya Bay. 
From the satellite images, the water plume of Sanya River mainly distributed along the 
south of Sanya Bay. The reason is when tidal water rushed into Sanya Bay it splits and flows 
back from the south of Sanya Bay. In Sanya Bay, Seagrass mainly distributed along the north 
coast of Lu Huitou peninsular, the plume of Sanya River affected seagrass distribution in 
great extent.  

 
Fig. 13. The diffuse pattern of flows-in water in Sanya Bay (Yang 2008). 

4.2 Land use change 

Satellite Landsat data was used to retrieve land use change around Sanya bay. Sanya River 
and the island between the two rivers was chose as land use change indexes (Yang 2008). 
From the satellite images, area of eastern and western Sanya Rivers reduced in 1999 
compared with that in 1991. However the area of island between the two rivers enlarged 
more than 30%. The decreased river area, correspondently decreased the ecological wet land 
along the Sanya River, reduced the area for waste water cleaning. Seashore land use change 
was also retrieved with remote sensing data. From remote sensing data, the shape of costal 
line at the northeast of Lu Huitou peninsular changed greatly. In situ observation proved 
that buildings were constructed just along the coastal line. In situ observation also found 
that coast at the middle north of Lu Huitou peninsular was constructed as sea bath and sea 
diving area. 
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Fig. 14. Landsat TM data of Land use change around Sanya Bay in 1999 compared with that 
of in 1991 (Yang 2008). 
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4.3 Tendency of water chemical indexes by land use change in Sanya Bay 

Water quality of Sanya River and Sanya Bay, such as water transparency and water quality 
indexes, was provided by Sanya ecological field station and references. In situ water 
chemical data of inorganic nitrogen, phosphorus and chlorophyll a concentration was used 
for validation and correction of the results from satellite remote sensing data. Results 
showed that water quality of Sanya River degraded in 2002 compared with that in 
1991（Fig.15）; water quality in Sanya bay near the Sanya River mouth was also degraded. 
However, water quality in other part of Sanya bay changed little. Perhaps Sanya bay is an 
open bay, where water exchange rate is relatively high.  
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Fig. 15. Waste water discharge in Sanya Bay in 1991 and 2002 (Yang 2008). 

4.4 Relationship between land use change and seagrass distribution 

Seagrass distribution in Sanya area conversely correlated with land use change, the more 
area of land use change the less coverage of seagrass distribution. This mainly because 
distribution of seagrass was confined by the following factors: (1) Sediments, in the area 
close to the bank, were sand and frequently affected by hydrodynamics, on which seagrass 
cannot grow flourish. (2) Human activities, such as aquaculture, digging clam worm and 
ship sailing, also affected seagrass growth in shallow waters; (3)Transparency was also an 
important factor for seagrass growth. Clear water mainly distributed in the southwest of 
Sanya Bay, which provided the suitable condition for large area continuous seagrass 
distributed in the area.  

5. Discussions and conclusions 
As described in our investigation, much is known about the photophysiology of seagrass, 
while much is still required for us to effectively manage this important yet diminishing 
resource. New coastal ocean remote sensing techniques permit benthic habitats to be 
explored with higher resolution than ever before, however, the application of ocean color 
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remote sensing to quantitative mapping of sparse seagrass species is still in its early 
development.  

An optical model was proposed to simulate the radiation transfer in multi-layer, non-
homogenous, heterogeneous, natural media. This algorithm enables us to simulate radiation 
fields in a wide range of variations of optical characteristics of these layers and to analyze 
the mechanisms of the formation of the radiation characteristics inside and outside the 
layers, as well as to estimate any contribution of each region. Based on the algorithm, we 
appropriately removed the distorting influence of the water column on the remotely sensed 
signal to retrieve an estimate of the reflectance of seagrass. Implementation of the method 
was found to be effective for improving the accuracy of coastal habitat maps and essential 
for deriving empirical relationships between remotely sensed data and features of interest in 
the marine environment. Retrieved bottom reflectance was then used to study the optical 
characteristics of seagrass. Through spectrum analysis it was found that the wavelengths for 
the discrimination and mapping of seagrass meadows of Sanya Bay, South China Sea lay 
between 500-630 nm as well as 680-710 nm. An appropriate hyper spectral band set for the 
remote sensing of seagrass should include narrow bands (maximum 5-10 nm bandwidth) 
centered around 555, 650, 675 and 700 nm. If satellite images were used, the effect of 
atmosphere should be taken into account. Though the blue band is more easily affected by 
atmosphere, the accurate surface reflectance could be acquired with the development of the 
theory and models in atmosphere correction. The relationship between seagrass leaf area 
index (LAI) and hyperspectra is very important when satellite remote sensing data is 
applied for detecting seagrass distribution.  

Seagrass distribution in Xincun Bay spanning 15 years (1991-2006) was retrieved with 
satellite remote sensing. From the seagrass detection results, the resolution of satellite 
remote sensing image is very important for seagrass detection, so QuickBird data was more 
suitable for seagrass detection than Landsat TM and CBERS, especially when the seagrass 
distribution area was relatively small. Results in the paper proved that five classes can be 
classified clearly with QuickBird; however, only seagrass distribution contours can be 
detected with Landsat TM and CBERS data. 

Though the accuracy of seagrass detection with satellite remote sensing can be affected by 
many factors, seagrass in Xincun Bay can be detected clearly for the sediment there was 
sand. Compared with satellite remote sensing data in 1991, the seagrass distribution area 
was reduced gradually and large areas of seagrass had disappeared by 2006. Human 
activities and extreme natural disasters were the main reasons for seagrass reduction, 
especially land use changes in recent years. The effect of land use change on seagrass 
distribution can be concluded as following: seagrass distribution in Sanya area conversely 
correlated with land use change, the more area of land use change the less coverage of 
seagrass distribution. Mainly because of land use change changed the water quality and 
sediment type.  

Except for hydrodynamic effect, distribution of seagrass was also affected by the following 
factors: (1) Sediments, in the area close to the bank, were sand and frequently affected by 
hydrodynamics, on which seagrass cannot grow flourish. (2) Human activities, such as 
aquaculture, digging clam worm and ship sailing, also affected seagrass growth in shallow 
waters; (3)Transparency was also an important factor for seagrass growth. Clear water 
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Fig. 15. Waste water discharge in Sanya Bay in 1991 and 2002 (Yang 2008). 
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remote sensing to quantitative mapping of sparse seagrass species is still in its early 
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distributed in the northeast of Xincun Bay, which provided the suitable condition for large 
area continuous seagrass distributed in the area.  

Human activities, such as construction of shrimp ponds, aquaculture, fishing with standing 
net, clam digging, boat sailing, capturing prawns and fishes with blasting and trawling, 
affected seagrass growth in shallow waters. The area dedicated to shrimp ponds increased 
greatly in recent years, which had great negative effects on seagrass distribution. 
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distributed in the northeast of Xincun Bay, which provided the suitable condition for large 
area continuous seagrass distributed in the area.  

Human activities, such as construction of shrimp ponds, aquaculture, fishing with standing 
net, clam digging, boat sailing, capturing prawns and fishes with blasting and trawling, 
affected seagrass growth in shallow waters. The area dedicated to shrimp ponds increased 
greatly in recent years, which had great negative effects on seagrass distribution. 
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1. Introduction 
Thematic maps in the Earth Sciences are an essential tool for the representation, analysis and 
visualization of geological processes. Among the large variety of thematic maps, 
geomorphological maps are particularly useful in understanding natural phenomena 
associated with human activities (Dramis & Bisci, 1998 and references within). 

Geomorphological maps report the erosion and depositional relief landforms, including 
submarine ones, highlighting the morphographic and morphometric characters and 
interpreting the endogenous and exogenous morphological processes, both past or present, 
that produce and shape the topographic relief. In this kind of maps, the chronological 
sequence is also reported, distinguishing between active and inactive landforms. The 
geomorphological mapping, in addition to its scientific value, is the necessary starting point 
of different studies such applied geology and environmental protection investigations for 
socio-economic improvement. 

A major problem with geomorphological information is that it is extremely complex to be 
represented due to the huge amount of data. 

In particular, the reproduced information can be summarized as follows:  

- Topographic, hydrographical and morphometric data; 
- Lithological and structural data; 
- Morphogenetic processes: 
- Structural and volcanic landforms, 
- Mass wasting landforms, 
- Karst landforms, 
- Eolic landforms, 
- Glacial and nival landforms, 
- Marine (emerged and submerged), lagoon and lacustrine landforms, 
- Large relict and flattened areas with minor forms of complex origin associated, 
- Weathering landforms, 
- Anthropic landforms. 
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- Morpho-chronologic data; 
- Morpho-evolutive data. 

Often the result is an analogical map that is not easily readable, both for the large amount of 
information, or for the great number of symbols associated with the different landforms. 

In order to adapt this kind of data to a digital file, the original map must be converted in a 
vector format (points, poly-lines and polygons) using a Geographical Information System or 
GIS software (Bocco et al., 2001; Gustavsson et al., 2006; Vitek et al., 1996). 

The use of the rich symbolism available in most GIS software, improve the graphic 
rendering, but does not solve the problem of readability of the map. 

Images acquired by remote sensing and image analysis techniques can bring a significant 
contribution in improving the geomorphological mapping. 

The main results of this approach are: 

- a static and dynamic visualization (3D visualization) of Digital Elevation Models 
(DEMs) derived from satellite data. These techniques allow a better view of shapes and 
morphogenetic processes represented in the map. 

- the calculation of primary and secondary topographic attributes (slope, aspect, planar 
and radial curvature, roughness) closely related to the presence of some morphogenetic 
processes and their level of activity. The selection of meaningful ranges of attribute 
values enable to identify the geometry of the landforms.  

- an analysis of multispectral images, with various combinations of RGB bands to 
highlight some specific morphogenetic processes (such as landslide prone areas). 

In this paper the geomorphological map of the Subasio Mountain Regional Park (Umbria 
region, central Italy) is presented. The map is the result of the interaction of different 
datasets, both traditional and innovative in geomorphology. Aerial photos and field survey 
are enhanced by DEMs and satellite images to achieve a digital final product that is not only 
a simple thematic map, but also an interactive and upgradable Geographical Database. The 
geomorphological processes producing the present landscape are therefore better visible 
and understandable through the use of new tools: hillshade layer in transparency under 
different thematic maps and 3D virtual flight on the area where the map is overlaid to 
satellite images in a new, prospective view. 

2. GIS, DEMs and remotely sensed data in computer cartography: An 
overview 
Automatic mapping techniques are currently supported by tools with a high potential in the 
field of graphic representation of data such as GIS and by the use of remotely sensed data. 
Thematic maps produced with these methods show clear advantages, although some limits 
in the restitution of certain themes, in particular the geomorphological symbology, are 
evident. 

They represent a digital geo-referenced and updatable database, i.e. a cartographic 
document with hyperlinks to the obtained results by the manipulation of remotely sensed 
data. This document can be also exportable to different platforms (handhelds PC, WebGIS) 
for a wide spectrum of applications. 
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These types of data have significant advantages over traditional methods because they: i) 
overlay broad areas in relatively short acquisition times; ii) have a better accuracy and 
precision of the measured data relative to traditional techniques; iii) are in a digital format 
and, therefore, are simple to elaborate for both research and application purposes; iv) can be 
easily updated allowing to examine the same areas at different periods and to evaluate both 
the possible morphological evolution and the kinetics of investigated processes. 

For these reasons, research in the Earth Sciences and in geomorphology is integrating, or in 
some cases completely replacing, traditional techniques of acquisition of spatial information 
with these new tools (Schmidt & Andrew, 2005; Yongxin, 2007).  

It is worth noting that the use of images and digital data, in addition to the advantages 
described above, opens the possibility to apply new techniques of analysis of physical 
variables responsible for morphogenetic processes. This being so, the spatial analysis in GIS 
and the most common systems of image analysis, represent a new field of Earth Sciences 
and not only a simple application of the theoretical traditional knowledge (Burrough & 
McDonnell, 1998). The huge potential offered by modern systems, allowing the 
simultaneous integration and analysis of a large number of spatial data by a variety of 
mathematical functions, investigate the spatial connections between variables and reveal 
new relationships and landscape evolution models (sensu Evans, 1972; Hengl & Reuter, 
2009; Pike, 2000). 

Two new kinds of data are particular useful for the production of geomorphological maps: 
DEMs and remotely sensed images. 

A Digital Elevation Model (DEM) is the modelling of the Earth’s surface or part of it in a 
digital format. Two types of DEMs exist: Triangulated Irregular Network (TIN) and Grid 
DEM. A TIN is a complex vector data resulting from the interpolation of a set of irregularly 
spaced points (Braun and Sambridge, 1997; Peucker et al., 1977; Sambridge et al., 1995; Tucker 
et al., 2001). A square-grid DEM is a raster data where the topography assessment is modeled 
in a “gridded set of points in Cartesian space attributed with elevation values that describe the Earth’s 
ground surface” (Wilson, in press). Although grid DEMs show several disadvantages due to the 
regular spatial resolution, occasionally causing the inability to detect some topographic 
variations, or the impossibility of modelling particular landforms features (such stream 
meandering), they are used in most studies focusing on terrain analysis in geomorphological, 
hydrogeological (flood analysis) and environmental applications (Moore et al., 1991). 
Moreover, the remote sensing techniques produce new data models increasing the quality and 
spreading of these data. Because of these reasons grid DEMs are nowadays the most widely 
used in geological models requiring topographic assessment. 

DEMs can be produced by different procedures (Nelson et al., 2009; Taramelli et al., 2008; 
Wilson, in press): 

1. Vectorization of existing hard-copy topographic maps. Contour lines and spot height 
can be digitalized and converted in a vector format to be stored like polylines and 
points with location and altitude value. This procedure allows to obtain a DEM for each 
part of the Earth represented on a topographic map, but show several disadvantages. In 
particular, they are time consuming and the quality of the final product strictly depends 
on the original map and on the acquisition methods. 
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- Morpho-chronologic data; 
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2. Ground survey methods with a set of field data (points) collected with Global Position 
System (GPS) or Electronic Distance Measuring (EDM). Although this method allows to 
save a large number of input data in areas with a strong topographic complexity, it is 
time consuming and sometimes very expensive. Therefore, it can be a reasonable choice 
only for some restricted areas.  

3. Remote sensing techniques with passive and active sensors. These procedures permit to 
obtain data with a very high horizontal resolution and vertical accuracy for large areas. 
Nowadays remote sensing DEMs are the improving resource in this field research and 
application. 

When, by transparency tools, satellite images or digital orthophotos (geological, 
geomorphological, land-cover e.g.) are overlaid as several thematic maps to a shaded relief, 
a composite visualization is achieved. In geomorphology DEMs are commonly used to 
calculate topographic attributes (Franklin, 1991; Moore et al., 1991; Pike, 1988; Wiebel & 
Heller, 1991). Among them, primary attributes are morphometric parameters deriving from 
DEMs, i.e. slope, aspect, plan and profile curvature. The visualization of topographic 
attributes and their analysis can be a very useful tool to better understand the 
geomorphological processes acting on a study area. 

Remotely sensed imageries have a large improvement in both areal coverage and technical 
characteristics. Moreover, the selection of the most fitting band combination in RGB (Red, 
Green, and Blue) allows highlighting the required morphological characteristics and 
processes and facilitates landforms recognition.  

3. The study area: The Subasio Mountain regional park (Umbria, central Italy) 
The study area is located in the Umbria region (central Italy). This region is well-known 
because of its natural heritage and exceptional geological value. Twenty-seven geosites or 
“any place where you can define a geological and geomorphological interest for conservation”, (Gray, 
2004) are already individuated and studied.  Seven regional and one national natural park 
are present on the territory (Figure 1). 

The entire region shows a strong correlation between geological attributes and the relief 
energy associated with topography assessment. 

The Subasio Mountain regional park covers an area of 7,200 hectares. The area has a 
triangular shape, is bordered to the south by the Subasio massif, a rolled and asymmetric 
anticline. To the west the limit follows the Tescio River. Towards NE the central part and the 
apex are crossed by close river networks. 

In the study area outcropping lithotypes can be clustered in three main complexes and in 
different types of superficial deposits (Figure 2). 

The first and youngest is the Fluvial Lacustrine Complex (Holocene – Pliocene) with 
pebbles, sand and clay sediments arranged in deposits that are heterogeneous for thickness, 
shape and areal extent. This complex is associated with the lowest slope values and plain 
areas. 

The second complex is the Terrigenous one (Miocene), consisting of alternating layers of 
sandstone or limestone with clay or marl. According to the percentage of clay and the dip  
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Fig. 1. Location map of the Umbria Region (central Italy). The white circle marks the Subasio 
Regional Park. (1) Geosites, (2) Regional Parks. 

 
Fig. 2. Left: DEM of Subasio Mountain Regional Park with altitude values in meters a.s.l. 
Right: geological map. (1) Alluvial deposits, (2) Colluvial deposits; (3) Debris deposits 
(active); (4) Debris deposits (ancient); (5) Fluvial Lacustrine complex; (6) Travertine; (7) 
Calcareous complex; (8) Terrigenous complex with prevalent clay percentage; (9) 
Terrigenous complex with prevalent arenaceous percentage. 
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direction of the layers, the energy relief shows medium values. Mass wasting processes 
prevail together with fluvial erosion landforms on a rolling hill landscape (Figure 3).  

The oldest complex is the Calcareous one (upper Trias – Oligocene) corresponding to the 
mountain areas of the region and to the highest values of energy relief and altitude. The 
Calcareous Complex consists of a thick multilayer sequence where limestone prevails and 
karstic features and debris deposition at the base of the slopes are the most frequent 
geomorphological morphotypes (Figure 4). 

 
Fig. 3. The Terrigenous Complex view, photographed from the top of Subasio Mountain, 
northwards (photo by L. Mancinelli). 

 
Fig. 4. The Calcareous Complex on the top of the Subasio Mountain with a macro-doline in 
the foreground (photo by L. Mancinelli). 
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The geologic history of the area is tightly related with geological evolution of central Italy. 
From a tectonic point of view the area is the result of two different tectonic periods. In the 
Miocene a compressive phase originated anticlines and synclines (like the Subasio 
Mountain) followed, since Pliocene, by uplift with an extensional tectonic phase affecting 
the entire area. Because of this, a sharp increase of energy relief has forced the 
entrenchment of the stream network resulting in headward and stream erosion and with 
the simultaneous triggering of landslides along the slopes (Malinverno & Ryan, 1986, 
Mayer et al., 2003). 

The strong heterogeneity of the substrate is responsible for the great variety of relief and 
geomorphological processes acting on the area. Hence, the Subasio M. Park is a perfect test-
area to assess a method focusing the geomorphologic map editing. 

4. The interactive geomorphologic map: A qualitative and quantitative 
approach in a GIS environment 
The essential steps required to elaborate the final digital geomorphological map are 
summarized in Figure 5. 

 
Fig. 5. Flow chart showing the steps required to produce the final digital geomorphological 
map starting from the analogical data.  

The geomorphological map was produced to a medium scale 1:25000, with ESRI’s ArcGIS 
9.3 (© ESRI) with an equivalent project scale. The Spatial Reference is ED50 (European 
Datum) UTM (Universal Transverse Mercator) Zone 33N. The project extent is set on the 
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mask corresponding to the polygon shape of the park boundaries. In the GIS project the 
background is prepared with a topographic raster image in the TIFF format (Sheet N. 123 of 
the Topographic Map of Italy) and the river network in a vector format (DWG). The 
drainage pattern is separated from the other topographic data to highlight the relationships 
with fluvial landforms. 

The traditional working techniques are the first step. Therefore, field survey, aerial photo 
interpretation and collection of scientific papers focused on the study area are required. An 
analogical geomorphological map is the intermediate result. The map, scanned and 
rasterized with a high accuracy, is imported in the GIS project and then georeferenced. 

The following stage, the vectorization of each single group of landforms, is particularly 
important. The symbology associated with a geomorphological map is complex. Thus, it is 
not always possible to draw symbols identical to those proposed in the traditional and 
official legends. The “Legend for the Geomorphogical Map of Italy” at a scale of 1:50000  is 
used as a reference (GLCG, 1994). 

Thirty-eight vector layers are compiled. Each layer includes a variable number of landforms. 
Table 1 summarizes the layers and the relative information. 
 

N. Layer Landforms Geomorphologic 
process 

Shape 
feature 

N. Layer Landforms Geomorphologic 
process 

Shape 
feature 

1 Park boundary Topographic Polygon 20 Fluvial lacustrine 
deposit 

Fluvial Polygon 

2 Eluvial Colluvial 
deposits 

Superficial deposit Polygon 21 Fluvial scarp Fluvial Polyline 

3 Terrigenous 
Complex 1 

Bedrock Polygon 22 Sheet erosion Fluvial Polygon 

4 Terrigenous 
Complex 2 

Bedrock Polygon 23 Gully erosion Fluvial Polygon 

5 Calcareous 
Complex 

Bedrock Polyline 24 Gully erosion Fluvial Polyline 

6 Fault Structural Factors Polyline 25 Badlands Fluvial Polygon 
7 Fractures and 

joints line 
Structural Factors Polyline 26 Elbow river 

capture 
Fluvial Polyline 

8 Ridge Structural Factors Polyline 27 Gorge Fluvial Polyline 
9 Peaks Structural Factors Point 28 Debris deposit 

(actual) 
Mass wasting Polygon 

10 Sadde Structural Factors Point 29 Debris deposit 
(ancient) 

Mass wasting Polygon 

11 Slope asymmetry Structural Factors Point 30 Gravitational 
scarp 

Mass wasting Polyline 

12 Structural Scarp Structural Factors Polyline 31 Landslide, fall Mass wasting Polygon 
13 Flatiron Structural Factors Polyline 32 Landslide, slide Mass wasting Polygon 
14 Esplanade area Structural Factors Polygon 33 Landslide, slump Mass wasting Polygon 
15 Triangular facet Structural Factors Polygon 34 Landslide, flow Mass wasting Polygon 
16 River Fluvial Polyline 35 Travertine Karstic Polygon 
17 Valley Fluvial Point 36 Doline Karstic Polygon 
18 Alluvial deposit Fluvial Polygon 37 Anthropic scarp Anthropic Polyline 
19 Alluvial fan Fluvial Polygon 38 Quarry Anthropic Point 

Table 1. Layers of shapefile corresponding to geologic bedrock complexes, superficial 
deposits and geomorphologic features vectorized in the project. 
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For each landform a unique code for the graphic properties of the layer is individuated.  

As an example, Table 2 reports some of the used codes. 
 

Layer - landforms Type FONT UNICODE 
Layers dip direction Character Marker 

Symbol 
ESRI Geology AGSO 1 162 

Peaks Character Marker 
Symbol 

ESRI Transportation & 
Civic 

114 

Slope asymmetry Character Marker 
Symbol 

ESRI Geology 196 

Saddle Character Marker 
Symbol 

ESERI Cartography 164 

Valley Character Marker 
Symbol 

ESRI Geology USGS 56 

“V” shaped valley Character Marker 
Symbol 

Lucida Sans 86 

Valley with a flat 
bottom 

Character Marker 
Symbol 

ESRI Geology USGS 200 

Quarry (active) Character Marker 
Symbol 

ESRI Geometric 
Symbols 

199 

Quarry (inactive) Character Marker 
Symbol 

ESRI Geometric 
Symbols 

198 

Gully erosion Character Marker 
Symbol 

ESRI Geology AGSO 1 193 

Sheet erosion Character Marker 
Symbol 

ESRI Geology AGSO 1 114 

Table 2. Some examples of codes used for drawing the symbols in the final map, according 
to the features proposed in the official Italian Geomorphological Legend. 

In the Attribute Tables several information are stored for each layer. In particular, for the 
different lithotypes and superficial deposits the following fields are included: i) a brief 
description of the lithology, ii) its age and iii) thickness, and iv) a link to a photo of a 
significant outcrop. For each landform the data included in the attribute table are: i) the 
main geomorphologic process responsible for landform creation, ii) the state of activity, and 
iii) the area and the perimeter. A link to a photo, together with a description of the most 
significant characteristics of the landform, are included. 

5. Remotely sensed data as a support for the map creation 
Several digital and analogical sources of data can be used to produce thematic maps both in 
the stage before the preparation of the map and in the successive stages. 

Aerial photo interpretation is a well-established working tool in Earth Science research; 
DEMs and satellite images, on the contrary, are considered as new tools with an enormous 
potential, not yet fully explored. In the following paragraphs the different data are described 
according to their use in this work. 
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5.1 The aerial photo interpretation: A traditional technique for landform detection 

The main goal in reading an aerial photo  in the Earth Science applications is to identify and 
understand the physical landforms on the terrestrial surface and, in some cases, 
underground morphologies. Aerial photos can be in an analogical or in a digital format. 
Both of them are acquired by an aerial platform using a camera slipped into a mount located 
at the bottom of the aircraft. Analogical and digital cameras are quite similar. Analogical 
images, taken on a photographic film, can be in natural or black and white colours and show 
the topographic surface as a series of overlapping photos for a large percentage of the 
detected area. Digital images are taken on a strip with a linear scanner in black and white, 
colour (RGB format) or infrared. The most important difference is the storage device where 
the digital camera system uses a charge-coupled device (CCD) that can strongly vary in 
capacity and resolution, affecting the quality of the images. Both data sets have advantages. 
Digital images can have a better resolution and filter only few bands of the electromagnetic 
spectrum allowing the use on specific research fields. In addition they are subjected to 
editing and post-processing, for example to sharpen the edges of the objects represented on 
the image. On the contrary analogical films are more nuanced and show a better colour 
rendering. Moreover, in the analogical data, the images show a much more natural aspect 
giving the opportunity to better visualize and identify natural features on the surface. 

In both cases aerial photos show a “bird’s – eye” view of the Earth surface and, unlike the 
topographic maps that are a selective representation of reality, omitting a large number of 
natural features, aerial photos  provide an objective idea of the arrangement of the spatial 
pattern. 

The limits of this technique are related to the presence of clouds or haze in the atmosphere 
and snow on the Earth surface covering the topographic pattern. Moreover, distortion 
effects have to be corrected for an optimal use of the data sets. 

Aerial photos are used in a wide group of applications: engineering, logistic and planning, 
mineral exploration, geoarchaeology, mining and resource extraction, land use and 
landcover analysis and so on.  

In geomorphology air photos interpretation is an irreplaceable tool to detect landforms 
allowing to identify the type of bedrock and the main morphological processes acting in the 
study area and the palaeogeographic reconstruction of particular morphological situations 
(past river captures or the infilling of ancient lacustrine depressions). Some large landforms 
are more evident on the aerial photos than on the field due to the landform location or the 
topography arrangement. 

Therefore, the aerial photo interpretation is a fundamental method in every 
geomorphological mapping process. 

Moreover, the possibility to observe images taken in different periods of time, and with 
diverse scales, permits to monitor the landscape evolution (multitemporal and multi-scalar 
observation). Examples include the evolution of a landslide, the health status of vegetation, 
the rate of retreat of a cliff, the changes affecting a river drainage network.  

The first elements of interpretation in geomorphology are the size of the objects identified 
and their shape. Also the spatial arrangement is very important, so site, situation and 
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association are characteristics to be taken into account. Site is the relationship of a feature to 
the environment (elevation, slope, surface cover). Situation observes the mutual spatial 
relationship of the features. Association refers to the possibility that, when particular 
geomorphological processes or landforms are recorded is quite obvious to find associated 
features. Other important characteristics are diagnostic for geomorphogical interpretation: 
tone or colour is the brightness or the shade of gray or the colour of the detected element and 
depends on the amount of light that it reflects, constituting a sort of spectral signature of 
anthropogenic and natural objects in the area. Also, a transition between two different tones 
is relevant to detect a variation in some physical processes and useful to locate landform 
limits. Texture can be defined as the arrangement of tone or colour structured in a well 
recognizable pattern and depends strongly on the scale of the photos. When features are too 
small on an image to be identified, their repetition can be a clear evidence of a specific 
feature. So, the smoothness (uniform and homogeneous texture) or the roughness (coarse 
and heterogeneous texture) of an image can identify a particular vegetation cover (e.g. tree 
as rough, grass as smooth). Pattern, or the spatial arrangement of a landform, is the last 
characteristic used in geomorphology, particularly useful in drainage network recognition 
(dendritic, rectangular, parallel and so on). 

In the study area aerial photo interpretation was one of the first activity carried out, joined 
with field survey and bibliographical research. In this project analogical photos in black and 
white were used at a scale of 1:33000 (year 1977) and 1:10000 (year 2004). 

The use of black and white in this case is preferred because it allows to better highlight tones 
and textural variations on the images. At first it is useful to observe photos on a small scale 
(1:33000) for an overview of the area. Features due to tectonic and structural control like 
faults, ridge alignments, structural scarps, discontinuity along slopes are best identified in 
this scale. Also the river drainage pattern, any anomaly along river tracks and large 
landslide phenomena are well evident at this scale. In the study area these photos highlight 
the morphological units linked with the different bedrocks. The calcareous anticline of the 
Subasio Mountain shows distinctive characteristics (high slope values, low rates of drainage 
density), significantly different from the rest of the area, where the presence of rock types 
with an high clay abundance, strongly influences the morphological arrangement (i.e. high 
value of drainage density and medium and low slope values, high index of landslides, 
fluvial erosion with badlands and fluvial scarps). Photos analysed at a larger scale (1:10000) 
are more useful for identifying and drawing landforms. The accuracy is detailed enough for 
mapping the different morphological elements of a landslide (e.g. crown, main and minor 
scarps, the displaced material, the accumulation and so on). The choice to use two distinct 
years of acquisition of the images (1997 and 2004) ensure the multitemporal analysis of the 
area assigning a relative age to some deposits and landforms (active, inactive). The work is 
divided into a first phase of identification and drawing of landforms directly on aerial photo 
(Figure 6) and subsequent transposition of vector data in a GIS environment. 

5.2 DEMs and satellite images: A new perspective to view the landscape 

The resulting geomorphologic map has several advantages. The final document is 
upgradable and easily editable. The organization of data into layers lets the user to select, 
for viewing and printing operations, one or more layers simultaneously. The attribute tables 
associated with the themes contain alphanumeric data in unlimited quantities.  
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small on an image to be identified, their repetition can be a clear evidence of a specific 
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and heterogeneous texture) of an image can identify a particular vegetation cover (e.g. tree 
as rough, grass as smooth). Pattern, or the spatial arrangement of a landform, is the last 
characteristic used in geomorphology, particularly useful in drainage network recognition 
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In the study area aerial photo interpretation was one of the first activity carried out, joined 
with field survey and bibliographical research. In this project analogical photos in black and 
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faults, ridge alignments, structural scarps, discontinuity along slopes are best identified in 
this scale. Also the river drainage pattern, any anomaly along river tracks and large 
landslide phenomena are well evident at this scale. In the study area these photos highlight 
the morphological units linked with the different bedrocks. The calcareous anticline of the 
Subasio Mountain shows distinctive characteristics (high slope values, low rates of drainage 
density), significantly different from the rest of the area, where the presence of rock types 
with an high clay abundance, strongly influences the morphological arrangement (i.e. high 
value of drainage density and medium and low slope values, high index of landslides, 
fluvial erosion with badlands and fluvial scarps). Photos analysed at a larger scale (1:10000) 
are more useful for identifying and drawing landforms. The accuracy is detailed enough for 
mapping the different morphological elements of a landslide (e.g. crown, main and minor 
scarps, the displaced material, the accumulation and so on). The choice to use two distinct 
years of acquisition of the images (1997 and 2004) ensure the multitemporal analysis of the 
area assigning a relative age to some deposits and landforms (active, inactive). The work is 
divided into a first phase of identification and drawing of landforms directly on aerial photo 
(Figure 6) and subsequent transposition of vector data in a GIS environment. 

5.2 DEMs and satellite images: A new perspective to view the landscape 

The resulting geomorphologic map has several advantages. The final document is 
upgradable and easily editable. The organization of data into layers lets the user to select, 
for viewing and printing operations, one or more layers simultaneously. The attribute tables 
associated with the themes contain alphanumeric data in unlimited quantities.  
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1) Peak, 2) Saddle, 3) Ridge, 4) Scarp, 5) River valley with a “V” shape, 6) Doline, 7) Structural surface, 
8) Calcareous Morphological Unit,  9) Marly Morphological Unit. 

Fig. 6. Aerial photo of the Subasio Mountain and the surrounding area with some examples 
of features identified and drawn on the photo (b/w, scale 1:33000, year 1977). 

However, at this point of the project, the paper is simply a digital geomorphological map. 
The subsequent implementation of satellite data is an added value and offers the possibility 
to obtain additional useful spatial information for different types of applications. 

The topographic model used in this project is the Shuttle Radar Topography Mission DEM 
elaborated for Italy with an horizontal resolution of about 90mx90m (Taramelli & Barbour, 2006). 

Several topographic attributes including an hillshade, to better visualize the topographic 
surface and slope and aspect grids are derived (Figure 7). 
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The four slope classes are: 1) 0°-13°, 2) 13°-20°, 3) 20°-27°, 4) 27°-48°. 

Fig. 7. Hillshade (on the left) and slope (on the right) grids derived from SRTM DEM. 

Geomorphological processes are strictly related to topographic trends and the spatial 
distribution of the phenomena is always significant.  

 
a) Falls, b) Slides, c) Flows, d) Complex landslides. 1) Eluvial and colluvial deposits, 2) Alluvial 
deposits, 3) Calcareous Complex, 4) Terrigenous Complex (1), 5) Terrigenous Complex (2), 6) Debris 
(active), 7) Debris (inactive), 8) Fluvial lacustrine deposits. 

Fig. 8. Diagrams showing the spatial distribution of landslides on several lithotypes. 
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Spatial analysis tools can calculate the statistical distribution of the landforms, starting from 
the topographic grids (Melelli & Taramelli, 2010; Taramelli & Melelli, 2009). In Figure 8 a 
statistical distribution of the different types of landslide is shown. 

To better understand to what extent the topographic parameter influences the spatial 
distribution of a geomorphological process a quantitative analysis is required. Therefore, the 
digital map, with the addition of a DEM, becomes an interactive document for further 
applications. 

Remotely sensed data also offer further enhancements to geomorphological mapping and 
landscape comprehension. A different perspective view of the area, together with the 
overlapping of different types of data in a 3D view, is an appealing idea for a different use 
of geomorphological mapping, in particular for a non-specialized audience. Due to the 
aforementioned difficulties in interpreting the geomorphological symbolism, a backdrop 
layer resulting from remotely sensed images can aid in the comprehension of the landforms. 
The perspective view, joined with virtual flights through the area, increase even more the 
visualization of the landscape. The user can observe any landform in a perspective view 
and, with a virtual cloche, can fly near and above the feature. So it is possible to intuitively 
distinguish the main scarp or the convexity on a slope corresponding to the accumulation of 
a landslide. The transparency tool can make simultaneously visible the alignment of a fault 
system on the geomorphological map and the corresponding geomorphological features 
(scarps or triangular facets) on the underlying DEM or satellite image. In the same way a 
badland drawn on a map is better evident with an  image overlaid, where the dense 
network of valleys engravings on a slope with the absence of vegetation and the grey light 
colours of the clay bedrock are shown. 

The use of remotely sensed images can improve this kind of perception. It is well known 
that particular RGB arrangements can highlight different natural aspects on the ground: 432 
for vegetation, 741 for the moisture content in the soil coverage and so on. So the 
manipulation of a remotely sensed image under the digital geomorphological map with a 
3D perspective view due to the DEM addition, is the best possible analysis of a 
geomorphological map. 

In this example, the Arcscene ESRI Tool was used to obtain a 3D view of the park and a virtual 
flight on the area. In order to achieve a more realistic view an ASTER image (Advanced 
Spaceborne Thermal Emission and Reflection Radiometer) is overlapped (Abrams, 1999; 
Yamaguchi et al., 1998). ASTER is an imaging instrument flying on the Terra satellite 
(http://asterweb.jpl.nasa.gov/index.asp). The satellite was launched in December 1999 as part 
of NASA’s Earth Observing System (EOS). The data are in 14 bands (from the visible to the 
thermal infrared wavelengths) and offer high-resolution characteristics. Thanks to the swath 
width of the sensor, each ASTER image takes an area of 60 x 60 km (Figure 9). 

All the data described above can be represented in the final double-sided printing layout of 
the map showing how interactive this kind of document can be (Figures 10 and 11). Figure 
10 represents the first side of the map with the Figure 11 on the back. 

In the final layout, the part dedicated to the geomorphogical data and the section for the 
grids and satellite images have the same importance. So the remote sensing information is 
added to make the final product in keeping with the rest of the maps, becoming  a source of 
information for the knowledge of the territory. 
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Fig. 9. A still image of the virtual flight on the park with the geomorphogical map 
overlapping an ASTER image (view from SW). The RGB combination is the 742. The 3D 
view is assured by the SRTM DEM height values.  
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Fig. 9. A still image of the virtual flight on the park with the geomorphogical map 
overlapping an ASTER image (view from SW). The RGB combination is the 742. The 3D 
view is assured by the SRTM DEM height values.  
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Fig. 10. The final layout of the geomorphological map (front side) with the 
geomorphological map, a geological sketch, some significant photos and the scheme of the 
transition from the analogical product to the digital one. 
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Fig. 11. The final layout of the geomorphological map (back side) including the remotely 
sensed data. 
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Fig. 11. The final layout of the geomorphological map (back side) including the remotely 
sensed data. 
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6. Conclusions 
Cartography is experiencing an important change with the introduction of computer 
systems and digital images (GIS, satellite images). In particular in the Earth Sciences, 
geomorphological mapping begins to benefit from the digitalization of information. 

From a graphical point of view, given the complexity of symbology, geomorphological 
maps interpretation is often difficult, especially for non-experts. 

The potential offered by GIS can solve this problem. In addition, the input of satellite data 
allows integrating additional information to better understand the mechanisms that regulate 
the morphogenetic processes. 

The remote spatial data acquisition techniques are also moving important steps. Therefore, 
the availability of data with high accuracy allows having a progressively more accurate 
information on the topographic attributes evaluation and for 3D observations of landforms. 

Statistical distribution of landforms, morphogenetic processes and numerical calculation of 
quantitative indices (Melelli & Floris, 2011; Serrano & Ruiz-Flaño 2007a,b) benefit 
significantly from these new techniques. Today is possible to merge the information 
collected by traditional techniques (aerial photo-interpretation or field survey) with 
numerical data, obtaining final documents completely different from traditional 
cartography. The data can be updated, queried and displayed in various ways. They can 
also, with the help of statistical analysis, offer new research methods to build advanced 
models for morphogenetic processes of landscape evolution. 
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1. Introduction 
Arid environment is a dry landscape or region that received an extremely low amount of 
precipitation. Arid areas are located where vegetation cover is sparse to almost nonexistent. 
Almost one third of earth land surface is arid or desert. Over desert areas, a number of land 
cover patterns can be observed. One example is given here for the Arabian Peninsula. The 
located area can be found in Fig. 1. This pattern does not correlate with vegetation; the area 
is extremely arid with little or no vegetation. In addition, specific land cover is defined as 
the observed physical layer including natural and planted vegetation and human 
constructions, which cover the surface of the Earth. Land cover classification is a tool that 
fills an important informational niche for natural resource managers, decision-makers, and 
stakeholders. It serves to categorize natural ecosystems, managed crops, and urban areas. 
As a general form, land cover classifications provide the elemental information to appraise 
the impact of human interactions within the environment and to assess scientific 
foundations for sustainability, vulnerability and resilience of land systems and their use  
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(Han et al., 2004). Land cover is referred to as natural vegetation, water bodies, rock/soil, 
artificial cover others resulting due to land transformation (Roy and Giriraj, 2008). One 
difficulty with land cover mapping in arid environment is the spectral similarity of their 
cover types. This situation leads to misclassification of land cover types. 

Many classifiers have been developed, but it is difficult to identify the most appropriate 
approach to use for features of interest in a given study area. Different results can be 
attained depending on the classifiers used. In this article, four approaches—minimum-
distance classifier (MD), maximum likelihood classifier (ML), artificial neural network  
(NN), and frequency-based contextual classifier (FBC)—were implemented to classify ALOS 
AVNIR-2 data in the western Saudi Arabia study area in Mecca city using identical training 
samples and test data sets. In the literature several studies on the classification methods 
comparison of multispectral remote sensing data have been reported. Some of them 
investigated the use of NN or contextual approaches and compared their performances with 
the ones of classical statistical methods. (Benediktsson et al., 1990; Gong & Howarth, 1992; 
Stuckens et al., 2000; Seto & Liu, 2003; Erbek et al., 2010).  

The test area is composed of a variety of land-cover types, including urban, mountain, land, 
vegetation, ritual area and shadow. However, the major part of the Mecca province of Saudi 
Arabia is made up of arid environment, and only a very small portion of the area is covered 
by vegetation. This article is aimed at investigating the performances of statistical and 
advanced classification approaches using spectral and ancillary data for land-cover 
inventorying of a complex area in Mecca city. The different performances of the four 
classification approaches are evaluated in terms of overall accuracy, performance in 
heterogeneous area and training samples.  

2. Remote sensing 
Remote sensing from earth observation satellites is a powerful tool that has been used for 
monitoring and acquiring rapid information on land earth surfaces. Land cover mapping is 
one of the core areas in the remote sensing application. Remote sensing can be used to 
provide up to date spatial information of a wide variety of land cover assessment at 
multiple resolutions. In recent decades, a major effort has been made to study and monitor 
land cover using different satellite multispectral sensors such as SPOT, IKONOS, MODIS, 
QuickBird, Formosat, Landsat and ALOS AVNIR (Han et al., 2004; Wang et al., 2004;  Coop 
et al., 2009; Avelar et al., 2009; Chen et al., 2009; Bagan et al., 2010; Mustapha et al., 2010). 
The land-cover mapping by using remote-sensing data is a very difficult task when complex 
urban areas are involved. The main difficulties are related to the characterization of such 
spectrally complex and heterogeneous environments and to the choice of an effective 
classification approach. Interpretation and analysis of urban landscapes from remote 
sensing, however, present unique challenges due to the spectral heterogeneity of urban 
surfaces and make it extremely difficult to identify the features interest in observed 
reflectance. Satellite remote sensing provides greater amounts of information on the 
geographic distribution of land cover, along with advantages of cost and time savings for 
regional size areas (Yuan et al., 2005). Optical imaging satellite sensor systems such as 
Landsat, SPOT and ALOS AVNIR, work at a spatial resolution of 10–30 m in multi-spectral 
bands. Ikonos and Quickbird, the latest sensor systems, provide high to very high spatial 
resolution data with 2–4 m resolution for the multi-spectral bands. But high or very high-
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resolution sensors lead to noise in generally homogeneous classes as the data contains 
increased information in a single pixel. For that reason the authors used the medium 
resolution of ALOS AVNIR data for preparing this project. 

The Advanced Land Observation Satellite (ALOS) has been operating since January 24, 2006. 
The mission objectives of ALOS are cartography, disaster monitoring, etc. In particular, such 
geographical information as elevation, topography, land use, and land-cover map is 
necessary basic information in many practical applications and research areas. To achieve 
these objectives, ALOS has three mission instruments: two optical instruments, which are 
Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), the Phased Array 
type L-band Synthetic Aperture Radar (PALSAR) and Advanced Visible and Near- Infrared 
Radiometer type 2 (AVNIR-2) (Tadono et al., 2009). But we only concerned with AVNIR-2 
sensor for this article. AVNIR-2 has four spectral bands with about 10 m of instantaneous 
field of view (IFOV), 70 km (consists of 7100 pixels) of FOV, and a mechanical pointing 
function (by moving mirror) along the cross-track direction (+-44◦) for effective global land 
observation (Murakami et al., 2009). One of the purposes for this sensor is to provide land 
cover and land-use classification maps for monitoring at regional levels. The instrument, 
however, does not have SWIR capabilities (Wulder et al., 2008). The information pertaining 
to the sensor can be found in Table 1 while ALOS satellite with their three instruments is 
given in Fig. 2. 
 

ALOS AVNIR-2 Characteristics 
Orbit Sun synchronous, descending 10:30 
Repeat cycle 46 days 
Altitude 691.65km 
Inclination 98.16 deg 
Cross rack coverage -44~+44 deg by mirror pointing 
FOV 70km 
IFOV 10m 
Number of band 4 (Blue, Green, Red, NIR bands) 

Table 1. ALOS AVNIR-2 characteristics  

 
Fig. 2. ALOS satellite with three instruments (Source: Japan Aerospace Exploration Agency) 
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Fig. 2. ALOS satellite with three instruments (Source: Japan Aerospace Exploration Agency) 
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3. Classification methodology 
To begin the processing of raw satellite data, remote sensing images were involved in three 
stages in order to complete this project. The stages are data pre-processing, image 
classification and data analysis as shown in Fig. 3. 

 
Fig. 3. Classification methodology 

3.1 Image preprocessing 

The application of raw remote sensing images for spatial analysis requires several pre-
processing procedures. These procedures are used in order to subset the images from the 
original scene, to correct geometric distortion and to remove noise from the image due to 
error generated by the sensors. In the sub-setting process, the larger images in the original 
scene have been cut out to a smaller size within the desire area. Meanwhile, geometric 
correction was done by using second order polynomial coordinate transformation to relate 
the location of the reference image to the equivalent row and column positions in the ALOS 
AVNIR-2 images. A total of 23 ground control points were used in this process with 0.45 
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pixel error was obtained. On the other hand, filtering procedure was used in order to 
remove or reduce noisy element in the imagery. 7x7 low pass averaging filter was selected 
as a window to smooth the imagery. The filter applying a mathematical calculation using 
pixel values under selected window and replacing the central pixel with the new value.  

3.2 Supervised image classification 

The aim of the image classification process is to categorize all pixels in an image into their 
respective classes. Basically, there are two ways in order to perform the classification which 
are supervised and unsupervised classification methods. In a supervised classification, it 
requires to train a sufficient number of pixels for each class to create a representative 
signature. Unlike supervised classification, neither prior knowledge nor training sets are 
required to produce a classification map in the unsupervised or clustering methods. 
Therefore, the image can be automatically divided into spectrally distinct classes that still 
need to be interpreted in terms of land cover classes (Han et al., 2004). According (Cihlar et 
al., 1998), supervised classification methods are more effective in identifying complex land 
cover classes compared to unsupervised approaches, if detailed a priori knowledge of the 
study area and good training data exist. Moreover, the classification results are also 
influenced by a variety of factors, including availability of remotely sensed data, landscape 
complexity, image band selection, the classification algorithm used, analyst’s knowledge 
about the study area, and analyst’s experience with the classifiers used (Lu et al., 2004). For a 
given study area, selecting a suitable classifier becomes significant in improving the 
classification results. A comparative study of different classifiers is necessary to understand 
which classifier is most suitable for a specific landscape. Hence, four classifiers, ranging 
from simple MD to complex NN, are analyzed in this article. Different classifiers have their 
own advantages and disadvantages. Selecting a classifier most suitable for the 
characteristics of the study area can improve classification results.  

The concept of image classification is often implemented based on the fact that the spectral 
signature of each pixel contains information on the physical characteristics of the observed 
materials underlying the pixel. By analyzing such information from satellite images we can 
infer the type of materials associated with that pixel. However, the major problem is that 
spectral non-homogeneity within a particular type of material or land cover makes the 
classification of land cover difficult (Ju et al., 2005). Taking into account physical 
characteristics of Mecca city, we chose to classify here the following land cover features: 
urban, mountain, land, vegetation, ritual area and shadow. Table 2 present the description  
 

Class Description 
Urban Residential, commercial, building, roadway, infrastructures, concrete 

and any develop areas. 
Mountain Hill, large rock, rugged terrain 
Land Bare soil, sandy soil, desert, open land 
Vegetation Trees, agriculture area, vegetated area 
Ritual area Grand mosque in Mecca and Mina tent in Mina City. 
Shadow Appearing due to the high mountain or building 

Table 2. Detail description of the classes 
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classification of land cover difficult (Ju et al., 2005). Taking into account physical 
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urban, mountain, land, vegetation, ritual area and shadow. Table 2 present the description  
 

Class Description 
Urban Residential, commercial, building, roadway, infrastructures, concrete 

and any develop areas. 
Mountain Hill, large rock, rugged terrain 
Land Bare soil, sandy soil, desert, open land 
Vegetation Trees, agriculture area, vegetated area 
Ritual area Grand mosque in Mecca and Mina tent in Mina City. 
Shadow Appearing due to the high mountain or building 

Table 2. Detail description of the classes 
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of each class. Although ritual area can be group under urban class, but the authors decided 
to separate them into a new class due to the special characteristic of the class, thus, need to 
be appeared in the classified map. Ritual area which includes a grand mosque and a 
thousand of tents was a holy area for Muslims. Muslims or pilgrims need to visit to these 
places as part of their religious event during Hajj Season. Meanwhile, although shadow is 
not a pure land cover type and mostly appear in the mountainous area, the author also 
decided to separate them into another class due to their spectrally different against 
mountain. Hence, to classify the images into those six classes, the statistical minimum 
distance and maximum likelihood techniques representing traditional method and artificial 
neural network and contextual representing advanced method were applied. The details 
pertaining to the four classifiers will be explained in the next section. 

3.3 Data analysis 

In this section, the results of all classifiers will be presented. All analysis regarding the 
performance of four classifiers will be discussed in detail in section 8.  

4. Traditional method 
Of the many classifiers, MD and ML may be the most popular due to their simple theory 
and availability in almost any image processing or GIS software packages. Both of the 
classifiers also recognised as statistical method.  

4.1 Minimum distance to mean (MD) 

MD is a non-parametric classifier that has no assumption of data sets for features of interest. 
It is computationally simple and fast, only requiring the mean vectors for each band from 
the training data. Candidate pixels are assigned to the class that is spectrally closer to the 
sample mean. This method does not consider class variability; thus, large differences in the 
variance of the classes often lead to misclassification (Lu et al., 2004). The minimum distance 
algorithm allocates a pixel by its minimum Euclidean distance to the center of each class. 
The pixel is assigned to the closest class, or marked as unknown if it is farther than a pre-
defined distance from any class mean. Though if a pixel lies on the edge of a class, it might 
be that the value of the pixel is closer to the mean of a neighbor class and it will be assigned 
to the neighbor class (Avelar et al., 2009).  

4.2 Maximum likelihood (ML) 

ML is a parametric classifier that assumes normal spectral distribution of data within each 
class. An equal prior probability among the classes is also assumed. This classifier is based 
on the probability that a pixel belongs to a particular class. It takes the variability of classes 
into account by using the covariance matrix; thus, it requires more computation per pixel 
compare to MD. The ML classifier considers that the geometrical shape of the set of pixels 
belonging to a class can be described by an ellipsoid. Pixels are grouped according to their 
position in the influence zone of a class ellipsoid. The probability that a pixel will be a 
member of each class is evaluated. The pixel is assigned to the class with the highest 
probability value or left as unknown if the probability value lies below a pre-defined 
threshold (Avelar et al., 2009). 
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ML requires the use of training pixels for each class and is therefore dependent on the 
availability of enough training pixels to produce reasonable estimates of the mean class 
vector (class spectral signature) and covariance matrix. For each class, training pixels were 
collated from all images of the same resolution, giving a pooled training sample set (Lim et 
al., 2009). ML requires sufficient representative spectral training sample data for each class 
to accurately estimate the mean vector and covariance matrix needed by the classification 
algorithm. When the training samples are limited, then inaccurate estimation of the mean 
vector and covariance matrix often results in poor classification results. Traditional pixel-
based classification approaches are limited as regards the analysis of heterogeneous 
landscapes and lead to the reported ‘salt and pepper’ results (Aplin et al., 1999; Lu and 
Weng, 2007). Therefore, the ML classifier needs more training data to characterize the 
classes than the other methods (Pignatti et al., 2009). 

5. Advanced method 
In recent years, many advanced methods have been applied in remote sensing image 
classification, each of which has both strengths and limitations. We examined two 
classification methods, the artificial neural network with back propagation algorithm and 
contextual classification using frequency based approach, for each of the ALOS AVNIR-2 
data sets.  

5.1 Neural network (NN) 

Artificial neural networks (NN) are computational systems that inspired from biological 
neurons, so neurons provide the information processing ability (Khan et al., 2010). NNs, like 
people, learn by example. NN is configured for a specific application, such as pattern 
recognition or data classification, through a learning process. In the last decade, NN has 
gained momentum in remote sensing field due to the good results obtained in many 
applications. NN models have two important properties: the ability to learn from input data 
and to generalize and predict unseen patterns based on the data source, rather than on any 
particular a priori model. Although there are a wide range of network types and possible 
applications in remote sensing, most attention has focused on the use of Multilayer 
Perceptron (MLP) networks trained with a back-propagation learning algorithm for 
supervised classification. Fig. 4 demonstrated the basic NN structure.  

 
Fig. 4. Basic neural network architecture 
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Generally, NN require three or more layers of processing nodes: an input layer which 
accepts the input variables (e.g., satellite image band values) used in the classification 
procedure, one or more hidden layers which identify internal structure of the input data, 
and an output layer. The number of nodes (also called processing units or neurons) at the 
input layer is equal to the dimensionality of the input vector. For the purpose of land cover 
classification, the number of nodes at the output layer is the same as the number of the 
classes intended for the classification scheme. In the meantime, the size of the hidden layer 
can be a crucial question in network design and need to be determined carefully. Nodes 
between any two consecutive layers are fully connected with connection weights controlling 
the strength of the connections. The relationship of input - hidden layers and hidden – 
output layer are given by Equation 1 and 2 (Sarkheil et al., 2009):  

  
(1)

 

  
(2)

 
where: 
ai is the input node i of the input layer, 
bj is the output node j of the hidden layer, 
Wij is the weight between input and hidden layer, 
Vji is the weight between hidden and output layer.  

The complexity of the MLP network can be changed by varying the number of layers and 
the number of units in each layer. Hence, the right structures of NN have to be found by 
experiments. It has been reported by several researchers (Lippmann, 1987; Cybenko, 1989) 
that a single hidden layer should usually be sufficient for most problems, especially for 
classification tasks. The major efforts were focused on controlling the complexity of the 
model in order to avoid a too complex model structure which may lead into an over fitted 
ANN model (Niska et al., 2010). 

The non-parametric neural network classifiers have numerous advantages over the 
statistical methods, such as no assumption about the probabilistic models of data, the ability 
to generalize in noisy environments, and the ability to learn complex patterns. Other 
advantages of NNs are that they can classify data with a smaller training set than 
conventional classifiers and be more tolerant of noise present in the training patterns 
(Mather, 1999).  

5.2 Frequency-based contextual (FBC) 

Unlike three methods previously discussed, contextual technique considering both spectral 
and spatial information in order to perform the classification process instead of depending 
on spectral component alone (Mustapha et al., 2011). Classification results of spectral data 
can be improved by taking into account other information into the original image. The 
simplest way is to incorporate spatial information within the neighboring pixel. Contextual 
information, or so-called context for simplicity, may be defined as how the probability of 
presence of one object (or objects) is affected by its (their) neighbors (Tso & Olsen, 2005). 
There are many examples of contextual classification approach, but in this present article we 
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only concern with FBC approach. Frequency-based contextual classification of multispectral 
imagery is performed by using a grey level reduced image and a set of training site bitmaps. 
The input layer must be 8-bit data. Any 16-bit and 32-bit data layers should be scaled to 8-
bits. 

There are a number of factors affecting the land cover classification accuracy of the FBC. For 
instance, the collection of the training area and selection of the pixel window size are very 
important for this approach. The training area must be representative and of a reasonable 
size to capture the spatial structure of any land cover type in an image. Nevertheless, pixel-
window size determines the amount of spatial information that can be included in the 
classification. Because the optimal pixel window varies with the individual class and image 
resolution, it is usually difficult to determine before image classification. Therefore, an 
appropriate window size is usually determined empirically. Pixel window size needs to be 
specified specifically when performing contextual classification on each pixel. Users may 
have to run the contextual classifier with the same input data, but using different settings for 
window size until a desirable output is produced. In general, contextual classification 
performs better when specifying a larger window size, especially if the original input image 
contains complicated mixed classes (such as urban areas). If the classes are uniform and 
spectrally pure, then a smaller window size may sufficient. A few examples of different 
window sizes are shown in Fig. 5. It seems clear that the inclusion of spatial arrangement 
information of gray-level values in a pixel neighborhood can considerably improve the 
performance of the FBC, as expected by Gong and Howarth (1992). But, this classifier also 
has their drawback itself. Contextual classification cannot classify pixels along the edges of 
the image. If the output window borders the edge of the image file, then the output pixels 
along the edge are set to zero, to indicate unclassified or unknown pixels. Usually, the error 
patterns caused by the contextual classification algorithm are usually systematically located 
along the class boundaries. Meanwhile, the classification results demonstrate that a 
significant increase in overall accuracy can be achieved by combining spatial data with 
spectral data when comparing the results obtained from traditional method although it 
cannot overtake the performance of neural network algorithm. 

 
Fig. 5. Examples of window sizes used in frequency based contextual method (3x3, 5x5, 7x7). 
Black pixel indicates the center pixel of the specific window.  
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6. Training areas development 
Training is the identification of a sample of pixels of known class membership obtained 
from reference data. These training pixels are used to derive spectral signatures for 
classification, and signature statistics are evaluated to ensure adequate separability. Then, 
the pixels of the image are allocated to the class with greatest similarity to the training data 
metrics (Alberti et al., 2004). The training stage of a supervised classification is designed to 
provide the necessary information. The training sites were used to train the supervised 
classification algorithm for classification process. In remote sensing, the aim of the training 
stage has typically been the production of descriptive statistics for each class which may 
then be used in the determination of class membership by the selected classifier (Foody & 
Mathur, 2006). Obtaining enough training data has been a tough question with land cover 
applications. Two sets of training data were finally prepared. The first set of data was 
prepared for the use of the traditional method. Meanwhile, the second set of the training 
data was used for the advance method. The use of the different datasets for classifying same 
area by using different classifier will be discussed in section 8.3.  

For advanced method, knowledge of the statistical distribution is not required. Rather NNs 
learn it from a representative training set. In our case, the training phase of the NN was 
based on the back-propagation (BP) learning rule to minimize the mean square error (MSE) 
between the desired target vectors and the actual output vectors. Training patterns were 
presented to the network, and the weights of each node were adjusted so that the 
approximation created by the NN minimized the error between the desired output and the 
added output created by the network. In a network each connecting line has an associated 
weight. NN are trained by adjusting these input weights (connection weights), so that the 
calculated outputs approximate the desired. In the learning phase, input patterns from 
training data are fed forward through a network initiated with random synapse weights. 
The root-mean-square error (RMSE) is calculated between the network outputs and the 
desired outputs. The errors are back-propagated through the network and the synapse 
weights are adjusted in order to reduce the total RMSE. This process continues until a 
convergence criterion is satisfied (Rumelhart et al., 1986). The successful generalization of 
the NNs used in this application is indicated by the low residual RMS errors. The training is 
finished when the output value is equal to the ideal output value. Mean Squares of the 
network Errors (MSE) is given by the Equation 3 (Moghadassi et al., 2009): 

  
(3)

 
where 
Target output (τi) 
αi is output from neuron  

Meanwhile, the selection of training sets were based on field surveys, reference information 
from SPOT-5 images and visual inspection of the image of the particular area. Only the 
training samples believed to be the most useful and informative were selected for the 
classification. Training data acquisition can be a very costly process. Training data that are 
not carefully selected may introduce error. Collection of training data is the crucial step for 
image classification and it directly influences the classification accuracy (Wang et al., 2007). 
Training set size can impact greatly on classification result. However, size is only one 
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attribute of a training set. Some of the literature suggests the use of a minimum of 10–30p 
cases per-class for training, where p is the number of wavebands used (Piper, 1992 & 
VanNiel et al., 2005). In addition, all training and test sample sites were revisited on the 
ground to confirm accuracy of measurement. 

7. Accuracy assessment 
Accuracy assessment is an important aspect of land cover mapping as a guide to map 
quality. The accuracy assessment sites were used to provide a statistical assessment of the 
accuracy produced by each of the classification mapping approaches tested for this project. 
The accuracy assessment sites were set aside until the map was completed and accuracy 
assessment was performed. This process insured that the accuracy data were completely 
independent of the training data (Thomas et al., 2003).  

The error matrix is the standard method used to assess classification accuracy. In the error 
matrix, the column represents the reference data, while the rows represent the classified 
data (Table 3). It is typical to extract several statistics from the error matrix: overall accuracy, 
Kappa coefficient, producer’s accuracy and user’s accuracy. To conduct the accuracy 
assessment, a total of 500 sample plots, covering different land cover types, were randomly 
allocated and examined using field data, a SPOT-5 image with 5m in spatial resolution and 
high resolution of google earth map. Luedeling & Buerkert (2008) used the google earth map 
as one of their validation method. The sampling pixels used for accuracy assessment were 
selected using the randomly stratified sampling method. In addition, the test pixels were 
uniformly distributed in entire image. 
 

Classified Reference 
1 2 3 4 5 Total 

1 p11 p12 p13 p14 p15 p1+ 
2 p21 p22 p23 p24 p25 p2+ 
3 p31 p32 p33 p34 p35 p3+ 
4 p41 p42 p43 p44 p45 p4+ 
5 p51 p52 p53 p54 p55 p5+ 

Total p+1 p+2 p+3 p+4 p+5  

Table 3. Population error matrix with pij representing the proportion of area in the mapped 
land cover category i and the reference land cover category j. 

Overall accuracy is the simplest and one of the most popular accuracy measures and is 
computed by dividing the total correct (i.e., the sum of the major diagonal) by the total 
number of pixels in the error matrix (Congalton, 1991). Meanwhile, Rosenfield and 
Fitzpatricklin (1986) identified the Kappa coefficient as a suitable accuracy measure in the 
thematic classification for representing class accuracy. Its strength lies in the fact that it takes 
all the elements (diagonal and non-diagonal) of the confusion matrix into consideration, in 
contrast to the overall accuracy measures which only consider the diagonal element of the 
matrix. In addition, Two types of thematic errors can be measured in a confusion matrix. 
They take into account the accuracy of individual categories. One is given by the producer’s 
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attribute of a training set. Some of the literature suggests the use of a minimum of 10–30p 
cases per-class for training, where p is the number of wavebands used (Piper, 1992 & 
VanNiel et al., 2005). In addition, all training and test sample sites were revisited on the 
ground to confirm accuracy of measurement. 

7. Accuracy assessment 
Accuracy assessment is an important aspect of land cover mapping as a guide to map 
quality. The accuracy assessment sites were used to provide a statistical assessment of the 
accuracy produced by each of the classification mapping approaches tested for this project. 
The accuracy assessment sites were set aside until the map was completed and accuracy 
assessment was performed. This process insured that the accuracy data were completely 
independent of the training data (Thomas et al., 2003).  

The error matrix is the standard method used to assess classification accuracy. In the error 
matrix, the column represents the reference data, while the rows represent the classified 
data (Table 3). It is typical to extract several statistics from the error matrix: overall accuracy, 
Kappa coefficient, producer’s accuracy and user’s accuracy. To conduct the accuracy 
assessment, a total of 500 sample plots, covering different land cover types, were randomly 
allocated and examined using field data, a SPOT-5 image with 5m in spatial resolution and 
high resolution of google earth map. Luedeling & Buerkert (2008) used the google earth map 
as one of their validation method. The sampling pixels used for accuracy assessment were 
selected using the randomly stratified sampling method. In addition, the test pixels were 
uniformly distributed in entire image. 
 

Classified Reference 
1 2 3 4 5 Total 

1 p11 p12 p13 p14 p15 p1+ 
2 p21 p22 p23 p24 p25 p2+ 
3 p31 p32 p33 p34 p35 p3+ 
4 p41 p42 p43 p44 p45 p4+ 
5 p51 p52 p53 p54 p55 p5+ 

Total p+1 p+2 p+3 p+4 p+5  

Table 3. Population error matrix with pij representing the proportion of area in the mapped 
land cover category i and the reference land cover category j. 

Overall accuracy is the simplest and one of the most popular accuracy measures and is 
computed by dividing the total correct (i.e., the sum of the major diagonal) by the total 
number of pixels in the error matrix (Congalton, 1991). Meanwhile, Rosenfield and 
Fitzpatricklin (1986) identified the Kappa coefficient as a suitable accuracy measure in the 
thematic classification for representing class accuracy. Its strength lies in the fact that it takes 
all the elements (diagonal and non-diagonal) of the confusion matrix into consideration, in 
contrast to the overall accuracy measures which only consider the diagonal element of the 
matrix. In addition, Two types of thematic errors can be measured in a confusion matrix. 
They take into account the accuracy of individual categories. One is given by the producer’s 
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accuracy, which indicates the proportion of ground base reference samples correctly 
assigned. It details errors of omission, i.e., when a pixel is omitted from its correct category. 
The other error is given by the user’s accuracy, which indicates the proportion of data from 
the estimation map representing that category on the ground. It is a measure of errors of 
commission, i.e., when a pixel is committed to an incorrect category (Avelar et al., 2009). 

8. Performance evaluation 
The six classes-urban, mountain, land, vegetation, ritual area and shadow were classified 
using four different classifiers, and classification accuracy assessments were conducted 
(Table 4-7). Performances of each of the classifiers that have been tested will be analyzed 
based on three factors. In order to make a comparison, the classifiers performance are 
analyse in term of  their classification accuracy, training samples and performance in 
heterogeneous area. The area of each class estimated through various techniques was 
compared and evaluated with the corresponding actual area as obtained from the reference 
data. For lack of additional satellite data, concurrent with the periods of the field surveys, a 
reference dataset was generated based on the ordered SPOT-5 satellite data and expert 
knowledge.  

8.1 Classification accuracy 

From the perspective of the classification accuracy, there are four parameters could be 
discussed which are overall accuracy, kappa coefficient, user’s and producer’s accuracies 
(analysis per class). These parameters can be calculated from error matrix tables. A 
classification error matrix was computed for quantitative accuracy assessment. Table 4, 5, 6 
and 7 demonstrated the error matrices table deriving from MD, ML, NN and FBC classifier. 
The dominant land cover types in the selected area were urban, mountain and land areas 
which correspond to 95% of the entire image. The remaining 5% of the image is consisted by 
vegetation, ritual area and shadow.  

For MD algorithm which is the simplest classifier among others, the result of overall 
accuracy was 64.2% with 0.479 value of kappa coefficient was obtained. The user accuracy is 
varied between 50.7% for urban class and 100.0% for vegetation and ritual area classes. 
Mountain, land and shadow classes recorded 79.6%, 62.2% and 73.1% respectively. For 
producer accuracy, the accuracy for each class using MD approach was as follow: 67.1% for 
urban, 57.9% for mountain, 70.9% for land, 45.5% for vegetation (lowest), 66.7% for ritual 
area and 95.0% for Shadow (highest). A total of 500 random sample points were tested in 
order to verify the classification result with 321 points was correctly classified. Meanwhile, 
urban class recorded almost half of the tested pixels that correctly classified with most of the 
misclassified pixel go to mountain class. A total of 129 out of 162 observations had been 
correctly classified for mountain class and 33 points were wrongly classified with 26 points 
were misclassified as urban class. The high number of wrongly pixels go to urban class is 
due to the fact that the mountainous area in the arid environment is not cover by tree but it 
is filled by stones and rocks which is has a similar spectral characteristic of urban area. 
Nevertheless, vegetation and ritual area classes gave the perfect result by correctly classified 
all tested points. Both classes are easily to classify due to the significantly different on their 
spectral characteristics among other classes. In the other hand, 56 out of 90 observations for 
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land class were correctly classified whereas 19 out of 26 observations for shadow class were 
correctly classified. Most of the incorrect pixels were classified as mountain class. This is not 
surprising because most of the shadow appear within mountainous area.  

Meanwhile, ML algorithm was the second traditional method that has been tested in this 
project. It gave better result than MD classifier. The overall accuracy was 77.6% while the 
kappa coefficient had a value of 0.659. For each classes (user accuracy), urban recorded 
69.8%, 83.4% for mountain, 82.9% for land, 92.6% for vegetation, 66.7% for ritual area 
(lowest) and 100.0% for shadow (highest). Although overall classification result was better 
than MD, but two classes (vegetation and ritual area) showing lower percentage than MD. 
In the meantime, producer accuracy is varied between 61.5% (shadow) and 100.0% (ritual 
area). Urban, mountain, land and vegetation classes had a value of 85.4%, 69.6%, 73.3% and 
96.2% respectively. Further evaluation of the error matrix shows that 388 out of 500 points 
used from the same random samples were correctly classified. The classifier had some 
difficulty separating cleared land from land under construction (urban) and mountain from 
urban area, as exhibited by error matrix table that showed 68 points were wrongly classified 
to both classes (53 points for mountain, 15 points for land). This is understandable because 
their spectral characteristics are very similar. However, the result of urban class revealed 
that significant improvement (nearly 20%) was achieved compared to the MD classifier. In  
 

 Urb Mou Lan Veg Rit Sha Total UA (%) 
Urb 108 82 22 1 0 0 213 50.7 
Mou 26 129 1 5 0 1 162 79.6 
Lan 26 6 56 0 2 0 90 62.2 
Veg 0 0 0 5 0 0 5 100.0 
Rit 0 0 0 0 4 0 4 100.0 
Sha 1 6 0 0 0 19 26 73.1 
Total 161 223 79 11 6 20 500  
PA (%) 67.1 57.9 70.9 45.7 66.7 95.0   
Overall accuracy = 64.2% 
Kappa coefficient = 0.479 

Table 4. Error matrix derived from Minimum Distance-to-Mean classifier  
 

 Urb Mou Lan Veg Rit Sha Total UA (%) 
Urb 164 53 15 1 0 2 235 69.8 
Mou 15 126 7 0 0 3 151 83.4 
Lan 11 2 63 0 0 0 76 82.9 
Veg 4 1 4 18 0 0 27 66.7 
Rit 1 0 0 0 2 0 3 66.7 
Sha 0 0 0 0 0 8 8 100.0 
Total 195 182 89 19 2 13 500  
PA (%) 84.1 69.2 70.8 94.7 100.0 61.5   
Overall accuracy = 76.2% 
Kappa coefficient = 0.649 

Table 5. Error matrix derived from Maximum Likelihood classifier  
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accuracy, which indicates the proportion of ground base reference samples correctly 
assigned. It details errors of omission, i.e., when a pixel is omitted from its correct category. 
The other error is given by the user’s accuracy, which indicates the proportion of data from 
the estimation map representing that category on the ground. It is a measure of errors of 
commission, i.e., when a pixel is committed to an incorrect category (Avelar et al., 2009). 

8. Performance evaluation 
The six classes-urban, mountain, land, vegetation, ritual area and shadow were classified 
using four different classifiers, and classification accuracy assessments were conducted 
(Table 4-7). Performances of each of the classifiers that have been tested will be analyzed 
based on three factors. In order to make a comparison, the classifiers performance are 
analyse in term of  their classification accuracy, training samples and performance in 
heterogeneous area. The area of each class estimated through various techniques was 
compared and evaluated with the corresponding actual area as obtained from the reference 
data. For lack of additional satellite data, concurrent with the periods of the field surveys, a 
reference dataset was generated based on the ordered SPOT-5 satellite data and expert 
knowledge.  

8.1 Classification accuracy 

From the perspective of the classification accuracy, there are four parameters could be 
discussed which are overall accuracy, kappa coefficient, user’s and producer’s accuracies 
(analysis per class). These parameters can be calculated from error matrix tables. A 
classification error matrix was computed for quantitative accuracy assessment. Table 4, 5, 6 
and 7 demonstrated the error matrices table deriving from MD, ML, NN and FBC classifier. 
The dominant land cover types in the selected area were urban, mountain and land areas 
which correspond to 95% of the entire image. The remaining 5% of the image is consisted by 
vegetation, ritual area and shadow.  

For MD algorithm which is the simplest classifier among others, the result of overall 
accuracy was 64.2% with 0.479 value of kappa coefficient was obtained. The user accuracy is 
varied between 50.7% for urban class and 100.0% for vegetation and ritual area classes. 
Mountain, land and shadow classes recorded 79.6%, 62.2% and 73.1% respectively. For 
producer accuracy, the accuracy for each class using MD approach was as follow: 67.1% for 
urban, 57.9% for mountain, 70.9% for land, 45.5% for vegetation (lowest), 66.7% for ritual 
area and 95.0% for Shadow (highest). A total of 500 random sample points were tested in 
order to verify the classification result with 321 points was correctly classified. Meanwhile, 
urban class recorded almost half of the tested pixels that correctly classified with most of the 
misclassified pixel go to mountain class. A total of 129 out of 162 observations had been 
correctly classified for mountain class and 33 points were wrongly classified with 26 points 
were misclassified as urban class. The high number of wrongly pixels go to urban class is 
due to the fact that the mountainous area in the arid environment is not cover by tree but it 
is filled by stones and rocks which is has a similar spectral characteristic of urban area. 
Nevertheless, vegetation and ritual area classes gave the perfect result by correctly classified 
all tested points. Both classes are easily to classify due to the significantly different on their 
spectral characteristics among other classes. In the other hand, 56 out of 90 observations for 
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land class were correctly classified whereas 19 out of 26 observations for shadow class were 
correctly classified. Most of the incorrect pixels were classified as mountain class. This is not 
surprising because most of the shadow appear within mountainous area.  

Meanwhile, ML algorithm was the second traditional method that has been tested in this 
project. It gave better result than MD classifier. The overall accuracy was 77.6% while the 
kappa coefficient had a value of 0.659. For each classes (user accuracy), urban recorded 
69.8%, 83.4% for mountain, 82.9% for land, 92.6% for vegetation, 66.7% for ritual area 
(lowest) and 100.0% for shadow (highest). Although overall classification result was better 
than MD, but two classes (vegetation and ritual area) showing lower percentage than MD. 
In the meantime, producer accuracy is varied between 61.5% (shadow) and 100.0% (ritual 
area). Urban, mountain, land and vegetation classes had a value of 85.4%, 69.6%, 73.3% and 
96.2% respectively. Further evaluation of the error matrix shows that 388 out of 500 points 
used from the same random samples were correctly classified. The classifier had some 
difficulty separating cleared land from land under construction (urban) and mountain from 
urban area, as exhibited by error matrix table that showed 68 points were wrongly classified 
to both classes (53 points for mountain, 15 points for land). This is understandable because 
their spectral characteristics are very similar. However, the result of urban class revealed 
that significant improvement (nearly 20%) was achieved compared to the MD classifier. In  
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Urb 108 82 22 1 0 0 213 50.7 
Mou 26 129 1 5 0 1 162 79.6 
Lan 26 6 56 0 2 0 90 62.2 
Veg 0 0 0 5 0 0 5 100.0 
Rit 0 0 0 0 4 0 4 100.0 
Sha 1 6 0 0 0 19 26 73.1 
Total 161 223 79 11 6 20 500  
PA (%) 67.1 57.9 70.9 45.7 66.7 95.0   
Overall accuracy = 64.2% 
Kappa coefficient = 0.479 

Table 4. Error matrix derived from Minimum Distance-to-Mean classifier  
 

 Urb Mou Lan Veg Rit Sha Total UA (%) 
Urb 164 53 15 1 0 2 235 69.8 
Mou 15 126 7 0 0 3 151 83.4 
Lan 11 2 63 0 0 0 76 82.9 
Veg 4 1 4 18 0 0 27 66.7 
Rit 1 0 0 0 2 0 3 66.7 
Sha 0 0 0 0 0 8 8 100.0 
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PA (%) 84.1 69.2 70.8 94.7 100.0 61.5   
Overall accuracy = 76.2% 
Kappa coefficient = 0.649 

Table 5. Error matrix derived from Maximum Likelihood classifier  
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 Urb Mou Lan Veg Rit Sha Total UA (%) 
Urb 187 48 23 0 0 0 258 72.4 
Mou 2 162 4 1 0 1 170 95.3 
Lan 0 0 40 0 0 0 40 100.0 
Veg 0 0 0 15 0 0 15 100.0 
Rit 0 0 0 0 5 0 5 100.0 
Sha 0 0 0 0 0 12 12 100.0 
Total 189 210 67 16 5 13 500  
PA (%) 98.9 77.1 59.7 93.8 100.0 92.3   
Overall accuracy = 84.2% 
Kappa coefficient = 0.757 

Table 6. Error matrix derived from Back-propagation Neural Network classifier  

 

 Urb Mou Lan Veg Rit Sha Total UA (%) 
Urb 163 45 15 5 0 1 229 71.2 
Mou 13 165 0 0 0 0 178 92.7 
Lan 2 0 58 0 0 0 60 96.7 
Veg 0 0 0 2 0 0 2 100.0 
Rit 3 0 1 0 6 0 10 60.0 
Sha 0 1 0 0 0 14 15 93.3 
Unk 2 3 1 0 0 0 6  
Total 183 214 75 7 6 15 500  
PA (%) 89.1 77.1 77.3 28.6 100.0 93.3   
Overall accuracy = 81.6% 
Kappa coefficient = 0.722 

* Note: Urb = Urban, Mou = Mountain, Lan = Land, Veg = Vegetation, Rit = Ritual area, Sha = Shadow 
and Unk = Unknown. 

Table 7. Error matrix derived from Frequency-based Contextual classifier  

addition, 126 out of 151 observations were correctly classified for mountain class whereas 63 
out of 76 observations were correctly classified for land class. Most of the misclassification 
for both classes goes to urban class. For vegetation class, although it has lower percentage 
over MD classifier, but the result still to be considered as a good result by obtaining over 
90% with only 2 out of 27 observations were wrongly classified. Ritual area class was 
another category that showed their percentage lower than MD classifier. Although the class 
was easily to classify but they recorded only 66.7% when validation process was performed. 

The lower in accuracy for the ritual area class is explained by the fact that only 3 out of 500 
points were tested in that particular class meaning insufficient validation points occurred in 
this class. The result is expected to be higher if more validation point is added during the 
validation process as this class was a homogenous category. In the other hand, shadow class 
gave a perfect result by correctly classified all tested pixels. 

However, NN approach which was one of the advanced methods tested in this project 
demonstrated superior result in term of overall accuracy. The NN outperformed the other 
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classifiers for this factor. The overall accuracy was 84.2% and had a value of 0.757 for kappa 
coefficient. The NN method seems to do a much better job in classifying all classes than the 
other methods, which seems to be the primary reason for its high overall accuracy. The 
success of this classifier is due to the fact that four classes (land, vegetation, ritual area and 
shadow) have been tested correctly perfect (100% is obtained in analysis per class). In fact, 
the mountain class achieved a high user’s accuracy (95.3 percent) using NN method with 
162 out of 170 observations were correctly classified. Nevertheless, urban class recoded 
72.5% in analysis per class but it still acceptable and highest among other classes. From the 
view point of statistical analysis, most of the pixels in urban area were confuse with 
mountain (48 points) and land (23 points). The reason why each of classifier always resulted 
urban class to the lower percentage compared to other classes will be explained in the next 
sub-section. Meanwhile, producer’s accuracy varied between 59.7% for land class and 100% 
for ritual area class. Urban, mountain, vegetation and shadow classes recorded 98.9%, 
77.1%, 93.8% and 92.3% respectively.  

The network architecture for the NN had three layers, with twelve units in the hidden layer, 
four units in the input layer (one for each spectral band), and six units in the output layer 
(one for each class). The other parameters used in the NN algorithm are shown in Table 8. 
These network structures were determined through trial and error meaning the number of 
hidden units used in this application was determined through experimental simulations. 
Fig. 6 shows the variation of RMSE values at convergence as a function of the number of 
hidden nodes. The experiments were performed with a maximum number of iterations of 
1000 and the final RMSE was between 0.009 and 0.109 with the number of hidden nodes 
ranging from 3 to 15 nodes with increment of 3. The minimum RMSE with the smallest 
number of nodes was attained adopting architecture with 12 hidden nodes. This was the 
architecture finally adopted for the learning and classification process. 
 

NN architecture 4-12-6 
Momentum rate  0.9 
Learning rate 0.1 
Iteration  1000 epochs 

Table 8. Parameters used in the neural network algorithm 

 
Fig. 6. Graph of RMSE versus Number of Nodes 
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addition, 126 out of 151 observations were correctly classified for mountain class whereas 63 
out of 76 observations were correctly classified for land class. Most of the misclassification 
for both classes goes to urban class. For vegetation class, although it has lower percentage 
over MD classifier, but the result still to be considered as a good result by obtaining over 
90% with only 2 out of 27 observations were wrongly classified. Ritual area class was 
another category that showed their percentage lower than MD classifier. Although the class 
was easily to classify but they recorded only 66.7% when validation process was performed. 

The lower in accuracy for the ritual area class is explained by the fact that only 3 out of 500 
points were tested in that particular class meaning insufficient validation points occurred in 
this class. The result is expected to be higher if more validation point is added during the 
validation process as this class was a homogenous category. In the other hand, shadow class 
gave a perfect result by correctly classified all tested pixels. 

However, NN approach which was one of the advanced methods tested in this project 
demonstrated superior result in term of overall accuracy. The NN outperformed the other 
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classifiers for this factor. The overall accuracy was 84.2% and had a value of 0.757 for kappa 
coefficient. The NN method seems to do a much better job in classifying all classes than the 
other methods, which seems to be the primary reason for its high overall accuracy. The 
success of this classifier is due to the fact that four classes (land, vegetation, ritual area and 
shadow) have been tested correctly perfect (100% is obtained in analysis per class). In fact, 
the mountain class achieved a high user’s accuracy (95.3 percent) using NN method with 
162 out of 170 observations were correctly classified. Nevertheless, urban class recoded 
72.5% in analysis per class but it still acceptable and highest among other classes. From the 
view point of statistical analysis, most of the pixels in urban area were confuse with 
mountain (48 points) and land (23 points). The reason why each of classifier always resulted 
urban class to the lower percentage compared to other classes will be explained in the next 
sub-section. Meanwhile, producer’s accuracy varied between 59.7% for land class and 100% 
for ritual area class. Urban, mountain, vegetation and shadow classes recorded 98.9%, 
77.1%, 93.8% and 92.3% respectively.  

The network architecture for the NN had three layers, with twelve units in the hidden layer, 
four units in the input layer (one for each spectral band), and six units in the output layer 
(one for each class). The other parameters used in the NN algorithm are shown in Table 8. 
These network structures were determined through trial and error meaning the number of 
hidden units used in this application was determined through experimental simulations. 
Fig. 6 shows the variation of RMSE values at convergence as a function of the number of 
hidden nodes. The experiments were performed with a maximum number of iterations of 
1000 and the final RMSE was between 0.009 and 0.109 with the number of hidden nodes 
ranging from 3 to 15 nodes with increment of 3. The minimum RMSE with the smallest 
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Fig. 6. Graph of RMSE versus Number of Nodes 
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For FBC classifier, it is required to determine window sizes before begin the classification 
process. This window size was very important because it will impact on how much the spatial 
information will be included during decision making process. But the exactly size is not easy to 
determine. Hence, it was determined by experiment. From the experimental simulations, 9x9 
window size was determined as an optimum window. But we decided to choose window sizes 
of 7x7 instead of 9x9 as the images used for other three classifiers were filter out using 7x7 
averaging filter to reduce the noisy effect from the original image. Moreover, there are no 
significant differences on overall accuracy between these two windows as well as for the 
remaining of window sizes beyond 9x9 as shown in Fig 7. The FBC techniques used in this 
project achieved higher overall accuracy and kappa coefficient (81.6 percent and 0.722) rather 
than traditional method. Even though it cannot overtake the performance of NN but their result 
is still good and acceptable. Further evaluation of the error matrix shows that the additional of 
contextual information increases map accuracy. The high quality of the spatial information had 
a large impact on the success of this method. However, there are some extremely difficult types 
of confusion to map. Desert landscaping often consist of gravel, and certain types of gravel can 
be spectrally indistinguishable from urban. To make the confusion even more complex, some 
part of mountainous area were located within urban area. This situation would lead the 
misclassification to be occurred since their spectral characteristic is similar. In the meantime, the 
class specific producer accuracy varied between 28.6% for vegetation class and 100.0% for ritual 
area class. User accuracy reached the highest value of 100.0% for vegetation class. Lowest values 
were obtained for the class ritual area with 60.0%. The integration of contextual information 
showed its benefits in the sharp improvement in accuracy for the mountain and land classes 
compared to traditional method. Other behavior of FBC method that it can be seen from the 
classification result that pixels at the edge of different land cover type are mostly misclassified. 
At the center of each land cover type, most classes are correctly classified. By evaluating error 
matrix table, it revealed that urban and mountain classes were confused each other. Shadow, 
land and vegetation classes were easily classified with all observation points were classified 
correctly for vegetation class. Nevertheless, the unexpected result was achieved by ritual area 
class where it gave lower result (60 percent) although this class was considered as homogenous 
area with has uniformly in their spectral characteristic. The sharp decrease in accuracy for that 
class is explained by the fact that it was not suitable to use the current window sizes due to the 
homogenous behavior of the class. For this situation, smaller window size is more suitable and 
could be expected to increase the class accuracy. 

 
Fig. 7. Graph showing experimental result of FBC using different window sizes 
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In general, the NN approach generally provided the highest accuracies for all classes. 
Considering the overall accuracy, NN provided the best classification results with 84.2% and 
MD provided the poorest results with overall accuracy of 64.2%. Fig. 8 provides a 
comparison of kappa and overall accuracy results among the different classifiers. It indicates 
that NN and FBC have a significantly better accuracy than do MD and ML classifiers. MD 
produced lower classification accuracy because it only used the mean vector and ignored 
the covariance between the classes. ML produced a relatively higher accuracy than did MD 
because it takes the covariance into account in its algorithm. However, ML assumes a 
normal distribution for the histograms of the classes, which is not always true. Both MD and 
ML only consider per-pixel information, ignoring texture or contextual information. 
Comparing the two approaches (traditional and advanced methods), the proposed NN 
classifier proved to be more effective, with a 6.6% and 20.0% increase in accuracy compared 
to ML and MD classifier whereas FBC could increased their accuracy up to 4.0% and 17.4% 
compared to the same classifiers.  

 
Fig. 8. Comparison of overall accuracy and kappa coefficient using different classifier 

8.2 Performances in heterogeneous area 

The heterogeneity environment in an image is a major problem in classification where a 
pixel contains more than one land cover class. In our case, urban class is considered as a 
heterogeneous area instead of homogenous area for remaining of the five other classes. In 
this section, we will explain the reason why the percentage of urban class in this work is 
always lower compared to other classes. This is due to the urban factor itself. The spectral 
characteristics of urban surfaces are known to be complex. This is due to the fact that much 
information could be extracted from the urban class. Urban areas are characterized by a 
large variety of built-up environments and natural vegetation covers which not only 
determine the surface features of a city, such as land use patterns, but also influence 
ecological, climatic and energetic conditions of land surface processes (Chen et al, 2009). For 
instance, sites under construction possess a more varied high reflectance resulting from 
building construction foundations and construction materials. Cleared land exhibits high 
uniform spectral reflectance which is characteristic of bare soil, while some vegetated area 
also located in urban environment. These numbers of information in a single class would 



 
Remote Sensing of Planet Earth 

 

132 

For FBC classifier, it is required to determine window sizes before begin the classification 
process. This window size was very important because it will impact on how much the spatial 
information will be included during decision making process. But the exactly size is not easy to 
determine. Hence, it was determined by experiment. From the experimental simulations, 9x9 
window size was determined as an optimum window. But we decided to choose window sizes 
of 7x7 instead of 9x9 as the images used for other three classifiers were filter out using 7x7 
averaging filter to reduce the noisy effect from the original image. Moreover, there are no 
significant differences on overall accuracy between these two windows as well as for the 
remaining of window sizes beyond 9x9 as shown in Fig 7. The FBC techniques used in this 
project achieved higher overall accuracy and kappa coefficient (81.6 percent and 0.722) rather 
than traditional method. Even though it cannot overtake the performance of NN but their result 
is still good and acceptable. Further evaluation of the error matrix shows that the additional of 
contextual information increases map accuracy. The high quality of the spatial information had 
a large impact on the success of this method. However, there are some extremely difficult types 
of confusion to map. Desert landscaping often consist of gravel, and certain types of gravel can 
be spectrally indistinguishable from urban. To make the confusion even more complex, some 
part of mountainous area were located within urban area. This situation would lead the 
misclassification to be occurred since their spectral characteristic is similar. In the meantime, the 
class specific producer accuracy varied between 28.6% for vegetation class and 100.0% for ritual 
area class. User accuracy reached the highest value of 100.0% for vegetation class. Lowest values 
were obtained for the class ritual area with 60.0%. The integration of contextual information 
showed its benefits in the sharp improvement in accuracy for the mountain and land classes 
compared to traditional method. Other behavior of FBC method that it can be seen from the 
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Fig. 7. Graph showing experimental result of FBC using different window sizes 

Analysis of Land Cover Classification  
in Arid Environment: A Comparison Performance of Four Classifiers 

 

133 

In general, the NN approach generally provided the highest accuracies for all classes. 
Considering the overall accuracy, NN provided the best classification results with 84.2% and 
MD provided the poorest results with overall accuracy of 64.2%. Fig. 8 provides a 
comparison of kappa and overall accuracy results among the different classifiers. It indicates 
that NN and FBC have a significantly better accuracy than do MD and ML classifiers. MD 
produced lower classification accuracy because it only used the mean vector and ignored 
the covariance between the classes. ML produced a relatively higher accuracy than did MD 
because it takes the covariance into account in its algorithm. However, ML assumes a 
normal distribution for the histograms of the classes, which is not always true. Both MD and 
ML only consider per-pixel information, ignoring texture or contextual information. 
Comparing the two approaches (traditional and advanced methods), the proposed NN 
classifier proved to be more effective, with a 6.6% and 20.0% increase in accuracy compared 
to ML and MD classifier whereas FBC could increased their accuracy up to 4.0% and 17.4% 
compared to the same classifiers.  

 
Fig. 8. Comparison of overall accuracy and kappa coefficient using different classifier 

8.2 Performances in heterogeneous area 

The heterogeneity environment in an image is a major problem in classification where a 
pixel contains more than one land cover class. In our case, urban class is considered as a 
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this section, we will explain the reason why the percentage of urban class in this work is 
always lower compared to other classes. This is due to the urban factor itself. The spectral 
characteristics of urban surfaces are known to be complex. This is due to the fact that much 
information could be extracted from the urban class. Urban areas are characterized by a 
large variety of built-up environments and natural vegetation covers which not only 
determine the surface features of a city, such as land use patterns, but also influence 
ecological, climatic and energetic conditions of land surface processes (Chen et al, 2009). For 
instance, sites under construction possess a more varied high reflectance resulting from 
building construction foundations and construction materials. Cleared land exhibits high 
uniform spectral reflectance which is characteristic of bare soil, while some vegetated area 
also located in urban environment. These numbers of information in a single class would 
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create the high possibility of mixed pixel to be occurred. Mixed pixel problem increases the 
difficulty in classification process and lead to has misclassification pixels and reduce the 
classification accuracy. As stated by Small (2005), the highly heterogeneous nature of urban 
surface materials is problematic at multiple spatial scales, resulting in a high percentage of 
mixed pixels in moderate resolution imagery and even limiting the utility of high spatial 
resolution imagery. Furthermore, Alberti et al., (2004) in their article mentioned that 
interpretation and analysis of urban landscapes from remote sensing, however, present 
unique challenges due to the characteristics of urban land cover which amplify the spectral 
heterogeneity of urban surfaces and make it extremely difficult to identify the source of 
observed in observed reflectance.  

The greatest challenge for each of the classifiers is to accurately determine various materials 
that make up urban surface reflectance. Hence, the classification result could be increased 
extremely if any classifiers can performed well in these urban mixing surfaces as it 
represented almost one third of the entire image. Fig. 9 shows a comparison of different 
classifiers for each class. It is evident that all four classifiers have produced noisy results, 
although the results generated by the NN and FBC are slightly less noisy compared to that 
of the ML and MD methods. The increasing of accuracy in urban class of advanced methods 
compared to traditional methods is mainly attributed to better identification between urban 
features and mountain, leading to significant increases in overall classification accuracy is 
achieved. The results indicate that the NN with back-propagation algorithm network is able 
to adjust the values of the network connections so that the activations of the output neurons 
match more closely the desired output values. Meanwhile, the key to successful mapping 
from the FBC method is it able to utilize the advantages of neighborhood information to 
enhance classification performance. We may conclude that the inclusion of contextual 
information can considerably improve the remotely sensed imagery classification 
performance and visual interpretation if the model is well defined and the relating 
parameter is carefully chosen. From the visual inspection, result of ML and MD 
classification performance yet preserves the potential difficulty in interpreting the classified 
images in a meaningful way because the different class pixels are still mixing and resulting 
in a noisy image view as shown in Fig 10. Significant confusion occurred between urban and  

 
Fig. 9. Comparison of four classifiers for each class 
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Fig. 10. Result of land cover classification using (a) MD, (b) ML, (c) NN and (d) FBC 
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mountain classes as their spectral characteristic are very similar. So that traditional per pixel 
classifiers such as ML and MD are not recommended to be used when the image contain 
large portion of heterogeneity area surfaces. The MD too broadly classified class by often 
overlapping another class because the classifier lacks sophisticated spectral discrimination 
between very complex features. The ML is more sophisticated, but being a per-pixel 
classifier, created a “salt and pepper”pattern classification, which showed 
misclassification has been occurred. 

8.3 Training sample 

In supervised classification approach, training stage become a major part in the decision 
making process as it will affected the outcome of the classification result. In order to 
analyse the performance of the four classifiers in term of training sample, two sets of 
training data were prepared. Training samples were chosen across the study area and the 
number of samples for each land cover type was listed in Table 9. However, the 
classification results greatly depended on the quality of training datasets and required 
abundant and accurate field measurements from all classes of interest. One difficulty 
encountered in particularly heterogeneous areas, such as the urban class, is related to the 
difficulty of identifying a sufficient number of pure pixels for classifier training and 
validation. Unlike the other classes, particularly on the vegetation, ritual area and shadow 
classes were easy to identify due to the spectrally different among each other. The use of 
different training data sets for the classification of the same images is due to the 
differences of the classifier characteristic behavior in the decision making process. For 
example, traditional method needs more training data as this type of method was a 
statistical approach. With a large number of the training data, it can generate the 
statistical information for the classification process. Meanwhile, advanced method do not 
required a large number of training data as it not a statistical approach. They have their 
own way to handle the training stage. For instance, the training of a network by back-
propagation involves three stages: the feed forward of the input training pattern, the 
calculation and back-propagation of the associated error, and the adjustment of the 
weights (Rezapour et al., 2010). In fact, the weights are usually randomized at the 
beginning of the training.  

Evaluation on table 9 demonstrated that traditional method needs almost double size of 
pixels in order to perform classification compared to advanced method. We also conducted 
experiment for traditional method by using the dataset that prepared for advance method 
(data set 2). The experimental results revealed that both classifiers cannot perform well with 
this training dataset as their overall accuracy were decreased from 77.6% to 68.0% and 64.2% 
to 57.0% for ML and MD classifiers. The amounts of seven to nine percent reduction were 
obtained. This indicates that the small number of training samples is not sufficient for both 
of classifiers. The experiment shows the strong evidence that the traditional classifier needs 
a large number of training samples in order to perform the classification. 

In addition, the training samples of ML and MD were selected in their raster layer. Any 
repeatable on experiments are without difficulty. The training process is not take long time 
to complete although they have a large number of training data. Unlike NN and FBC, their 
training samples were collected in bitmap layer. The number of bitmap layer is 
corresponding to the number of intended classes. The training process is time consuming  
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Class 
Traditional method 

(ML and MD) 
Set 1 

Advanced method 
(NN and FBC) 

Set 2 

Urban 6230 3032 

Mountain 7128 3751 

Land 5579 2767 

Vegetation 3157 1186 

Ritual area 1898 541 

Shadow 1875 763 

Total samples 25867 12040 

Table 9. Number of training samples for each class 

especially for NN classifier. This is due to the fact that the repeatable on experiments 
required all the parameter settings and also the first set of random weights. If the structure 
has more than one hidden layer, hence, more time is needed to finish the training process. 
Lippman (1987) suggested that NN with more than one hidden layer are harder to use 
because they add the problem of hidden structures and lengthen training time. For FBC, it 
also takes longer time in training stage but not too longer as NN. Thus, NN was found the 
least friendly in training and the most expensive in terms of time requirement although they 
have less number in training sample. 

9. Conclusion 
In this article, four different approaches to the classification of complex areas by use 
multispectral data have been described. The main purpose of our investigation was to 
quantitatively assess, also from the viewpoint of statistical significance, the capabilities of 
the four approaches to exploit ALOS AVNIR-2 satellite data in an effective way. Some 
interesting conclusions can be drawn from the obtained results. Different classifiers have 
their own advantages and disadvantages. For a given research topic, deciding which 
classifier is more appropriate depends on a variety of factors. Even though some 
classifiers provide more accurate results than others, all four used in this research are 
useful in extracting land-cover information. However, of the four classifiers tested, NN 
and FBC are the two most recommended approaches when classifying the image that 
surrounding with desert environment especially for urban class. Experimental results 
confirm the significant superiority of the advanced method in the context of multispectral 
data classification over the conventional classification methodologies. Sophisticated 
algorithms are needed to successfully discriminate distinct features in complex 
environments. In this case, classification problems will be either related to spatial/spectral 
aspects or to spectral mixtures at a given resolution. Our results show that NN and FBC 
had the best performance to address the land cover heterogeneity of the study area. These 
two classification approaches have proved to be suited for classification of complex areas. 
NN method was preferred because they are capable of handling large amounts of data 
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and do not require simplifying hypotheses on the statistical distribution. The NN 
approach provided better overall accuracy than did the FBC, ML and MD approaches. On 
the other hand, the NN approach requires a complex and expensive design phase (e.g., 
concerning the correct size of the hidden layers and parameter settings) and a much 
longer training time. For FBC, the contribution of the spatial information (neighboring 
pixels) to the digital satellite imagery for land cover mapping was very valuable instead 
of depending on multispectral data alone. Although there are several limitations, the 
results of the classification procedures performed highlight the accuracy improvement 
compared to traditional method. The traditional classification methods, in this case ML 
and MD, reach their limitations in urban systems due to the high spectral heterogeneity of 
urban features. The misclassification of some urban features came therefore as no 
surprise, since high-quality buildings, streets and their surroundings are very 
heterogeneous. 

In conclusion, remote sensing has been shown to be a useful tool for evaluating the 
performances of different classifiers in arid environment. Remote sensing classifications 
should be considered the technique of choice for land cover study and monitoring. In 
many instances remotely sensed data are used to derive information on a specific land 
cover class of interest. Although a conventional classifier may be used to derive this 
information but it cannot handle the complex mixture environment and always produced 
noisy image in that particular environment such as in the urban class. Urban 
environments represent one of the most challenging areas for remote sensing analysis due 
to high spatial and spectral diversity of surface materials. Finally, future study are 
planned that will compare the results of this study to those that can be obtained using 
object based approaches. Additionally, research will be conducted on the use of high-
resolution image and applying it to more extensive remote sensing data such as 
hyperspectral images.  

10. Acknowledgment 
The authors would like to acknowledge the Universiti Sains Malaysia (USM) for funding 
this project. We would also like to thank JAXA for providing the satellite images. The 
authors would like to thank the anonymous referees for their helpful comments and 
suggestions. 

11. References 
Aplin, P.; Atkinson, P. M. & Curran, P. J. (1999). Fine Spatial Resolution Simulated Satellite 

Sensor Imagery for Land Cover Mapping in the United Kingdom. Remote Sensing of 
Environment, Vol.68, No.3, pp. 206-216, ISSN 0034-4257 

Avelar, S.; Zah, R. & Tavares-Correa, C. (2009). Linking Socioeconomic Classes and Land 
Cover Data in Lima, Peru: Assessment through the Application of Remote Sensing 
and GIS. International Journal of Applied Earth Observation and Geoinformation, Vol.11, 
No.1, pp. 27-37, ISSN 0303-2434 

Bagan, H.; Takeuchi, W.; Kinoshita, T.; Bao, Y. & Yamagata, Y. (2010). Land Cover 
Classification and Change Analysis in the Horqin Sandy Land from 1975 to 2007. 

Analysis of Land Cover Classification  
in Arid Environment: A Comparison Performance of Four Classifiers 

 

139 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.3, 
No.2, pp. 168-177, ISSN 1939-1404  

Benediktsson, J. A.; Swain, P. H. & Ersoy, O. K. (1990). Neural Network Approaches Versus 
Statistical Methods in Classification of Multisource Remote Sensing Data. IEEE 
Transactions on Geoscience and Remote Sensing, Vol.28, No.4, pp. 540-552, ISSN 0196-
2892 

Cihlar, J.; Xia, Q. H.; Chen, J.; Beaubien, J; Fung, K. & Latifovic, R. (1998). Classification by 
Progressive Generalization: A New Automated Methodology for Remote Sensing 
Multichannel Data. International Journal of Remote Sensing, Vol.19, No.14, pp. 2685-
2704, ISSN 0143-1161 

Chen, H.; Chang, N.; Yu, R. & Huang, Y. (2009). Urban Land Use and Land Cover 
Classification Using the Neural-fuzzy Inference Approach with Formosat-2 Data. 
Journal of Applied Remote Sensing, Vol.3, pp. 033558, ISSN 1931-3195 

Congalton, R. G. (1991). A Review of Assessing the Accuracy of Classification of 
Remotely-sensed Data. Remote Sensing of Environment, Vol.37, No.1, pp. 35-46, 
ISSN 0034-4257 

Coops, N. C.; Wulder, M. A. & Iwanicka, D. (2009). Exploring the Relative Importance of 
Satellite-derived Descriptors of Production, Topography and Land Cover for 
Predicting Breeding Bird Species Richness over Ontario, Canada. Remote Sensing of 
Environment, Vol.113, No.3, pp. 668-679, ISSN 0034-4257 

Cybenko, G. (1989). Approximation by Superposotions of a Sigmoidal Function. Mathematics 
of Control, Signals and Systems, Vol.2, No.4, pp. 303-314, ISSN 0932-4194 

Erbek, F. S.; Ozkan, C. & Taberner, M. (2010). Comparison of Maximum Likelihood 
Classification Method with Supervised Artificial Neural Network Algorithms for 
Land Use Activities. International Journal of Remote Sensing, Vol.25, No.9, pp. 1733-
1748, ISSN 0143-1161 

Foody, G. M. & Mathur, A. (2006). The Use of Small Training Sets Containing Mixed Pixels 
for Accurate Hard Image Classification: Training on Mixed Spectral Responses for 
Classification by a SVM. Remote Sensing of Environment, Vol.103, No.2, pp. 179-189, 
ISSN 0034-4257 

Gong, P. & Howarth, P. J. (1992). Frequency-based Contextual Classification and Gray Level 
Vector Reduction for Land Use Identification. Photogrammetric Engineering & Remote 
Sensing, Vol.58, No.4, pp. 423-437, ISSN 0099-1112 

Han, K. S.; Champeaux, J. S. & Roujean, J. L. (2004). A Land Cover Classification Product 
over France at 1 km Resolution using SPOT4/VEGETATION Data. Remote Sensing 
of Environment, Vol.92, No.1, pp. 52-66, ISSN 0034-4257 

Ju, J.; Gopal, S. & Kolaczyk, E. D. (2005). On the Choice of Spatial and Categorical Scale in 
Remote Sensing Land Cover Classification. Remote Sensing of Environment, Vol.96, 
No.1, pp. 62-77, ISSN 0034-4257 

Khan, L.; Javed, K. & Mumtaz, S. (2010). ANN Based Short Term Load Forecasting 
Paradigms for WAPDA Pakistan. Australian Journal of Basic and Applied Sciences, 
Vol. 4, No.5, pp. 932-947, ISSN 1991-8178 

Lim, A.; Hedley, J. D.; LeDrew, E.; Mumby, P. J. & Roelfsema, C. (2009). The Effects of 
Ecologically Determined Spatial Complexity on the Classification Accuracy of 



 
Remote Sensing of Planet Earth 

 

138 

and do not require simplifying hypotheses on the statistical distribution. The NN 
approach provided better overall accuracy than did the FBC, ML and MD approaches. On 
the other hand, the NN approach requires a complex and expensive design phase (e.g., 
concerning the correct size of the hidden layers and parameter settings) and a much 
longer training time. For FBC, the contribution of the spatial information (neighboring 
pixels) to the digital satellite imagery for land cover mapping was very valuable instead 
of depending on multispectral data alone. Although there are several limitations, the 
results of the classification procedures performed highlight the accuracy improvement 
compared to traditional method. The traditional classification methods, in this case ML 
and MD, reach their limitations in urban systems due to the high spectral heterogeneity of 
urban features. The misclassification of some urban features came therefore as no 
surprise, since high-quality buildings, streets and their surroundings are very 
heterogeneous. 

In conclusion, remote sensing has been shown to be a useful tool for evaluating the 
performances of different classifiers in arid environment. Remote sensing classifications 
should be considered the technique of choice for land cover study and monitoring. In 
many instances remotely sensed data are used to derive information on a specific land 
cover class of interest. Although a conventional classifier may be used to derive this 
information but it cannot handle the complex mixture environment and always produced 
noisy image in that particular environment such as in the urban class. Urban 
environments represent one of the most challenging areas for remote sensing analysis due 
to high spatial and spectral diversity of surface materials. Finally, future study are 
planned that will compare the results of this study to those that can be obtained using 
object based approaches. Additionally, research will be conducted on the use of high-
resolution image and applying it to more extensive remote sensing data such as 
hyperspectral images.  

10. Acknowledgment 
The authors would like to acknowledge the Universiti Sains Malaysia (USM) for funding 
this project. We would also like to thank JAXA for providing the satellite images. The 
authors would like to thank the anonymous referees for their helpful comments and 
suggestions. 

11. References 
Aplin, P.; Atkinson, P. M. & Curran, P. J. (1999). Fine Spatial Resolution Simulated Satellite 

Sensor Imagery for Land Cover Mapping in the United Kingdom. Remote Sensing of 
Environment, Vol.68, No.3, pp. 206-216, ISSN 0034-4257 

Avelar, S.; Zah, R. & Tavares-Correa, C. (2009). Linking Socioeconomic Classes and Land 
Cover Data in Lima, Peru: Assessment through the Application of Remote Sensing 
and GIS. International Journal of Applied Earth Observation and Geoinformation, Vol.11, 
No.1, pp. 27-37, ISSN 0303-2434 

Bagan, H.; Takeuchi, W.; Kinoshita, T.; Bao, Y. & Yamagata, Y. (2010). Land Cover 
Classification and Change Analysis in the Horqin Sandy Land from 1975 to 2007. 

Analysis of Land Cover Classification  
in Arid Environment: A Comparison Performance of Four Classifiers 

 

139 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.3, 
No.2, pp. 168-177, ISSN 1939-1404  

Benediktsson, J. A.; Swain, P. H. & Ersoy, O. K. (1990). Neural Network Approaches Versus 
Statistical Methods in Classification of Multisource Remote Sensing Data. IEEE 
Transactions on Geoscience and Remote Sensing, Vol.28, No.4, pp. 540-552, ISSN 0196-
2892 

Cihlar, J.; Xia, Q. H.; Chen, J.; Beaubien, J; Fung, K. & Latifovic, R. (1998). Classification by 
Progressive Generalization: A New Automated Methodology for Remote Sensing 
Multichannel Data. International Journal of Remote Sensing, Vol.19, No.14, pp. 2685-
2704, ISSN 0143-1161 

Chen, H.; Chang, N.; Yu, R. & Huang, Y. (2009). Urban Land Use and Land Cover 
Classification Using the Neural-fuzzy Inference Approach with Formosat-2 Data. 
Journal of Applied Remote Sensing, Vol.3, pp. 033558, ISSN 1931-3195 

Congalton, R. G. (1991). A Review of Assessing the Accuracy of Classification of 
Remotely-sensed Data. Remote Sensing of Environment, Vol.37, No.1, pp. 35-46, 
ISSN 0034-4257 

Coops, N. C.; Wulder, M. A. & Iwanicka, D. (2009). Exploring the Relative Importance of 
Satellite-derived Descriptors of Production, Topography and Land Cover for 
Predicting Breeding Bird Species Richness over Ontario, Canada. Remote Sensing of 
Environment, Vol.113, No.3, pp. 668-679, ISSN 0034-4257 

Cybenko, G. (1989). Approximation by Superposotions of a Sigmoidal Function. Mathematics 
of Control, Signals and Systems, Vol.2, No.4, pp. 303-314, ISSN 0932-4194 

Erbek, F. S.; Ozkan, C. & Taberner, M. (2010). Comparison of Maximum Likelihood 
Classification Method with Supervised Artificial Neural Network Algorithms for 
Land Use Activities. International Journal of Remote Sensing, Vol.25, No.9, pp. 1733-
1748, ISSN 0143-1161 

Foody, G. M. & Mathur, A. (2006). The Use of Small Training Sets Containing Mixed Pixels 
for Accurate Hard Image Classification: Training on Mixed Spectral Responses for 
Classification by a SVM. Remote Sensing of Environment, Vol.103, No.2, pp. 179-189, 
ISSN 0034-4257 

Gong, P. & Howarth, P. J. (1992). Frequency-based Contextual Classification and Gray Level 
Vector Reduction for Land Use Identification. Photogrammetric Engineering & Remote 
Sensing, Vol.58, No.4, pp. 423-437, ISSN 0099-1112 

Han, K. S.; Champeaux, J. S. & Roujean, J. L. (2004). A Land Cover Classification Product 
over France at 1 km Resolution using SPOT4/VEGETATION Data. Remote Sensing 
of Environment, Vol.92, No.1, pp. 52-66, ISSN 0034-4257 

Ju, J.; Gopal, S. & Kolaczyk, E. D. (2005). On the Choice of Spatial and Categorical Scale in 
Remote Sensing Land Cover Classification. Remote Sensing of Environment, Vol.96, 
No.1, pp. 62-77, ISSN 0034-4257 

Khan, L.; Javed, K. & Mumtaz, S. (2010). ANN Based Short Term Load Forecasting 
Paradigms for WAPDA Pakistan. Australian Journal of Basic and Applied Sciences, 
Vol. 4, No.5, pp. 932-947, ISSN 1991-8178 

Lim, A.; Hedley, J. D.; LeDrew, E.; Mumby, P. J. & Roelfsema, C. (2009). The Effects of 
Ecologically Determined Spatial Complexity on the Classification Accuracy of 



 
Remote Sensing of Planet Earth 

 

140 

Simulated Coral Reef Images. Remote Sensing of Environment, Vol.113, No.5, pp. 965-
978, ISSN 0034-4257  

Lippmann, R.P. (1987). An Introduction to Computing with Neural Nets, IEEE ASSP 
Magazine, Vol.4, No.2, pp. 4–22, ISSN: 0740-7467  

Lu, D. & Weng, Q. (2007). A Survey of Image Classification Methods and Techniques for 
Improving Classification Performance. International Journal of Remote Sensing, 
Vol.28, No.5, pp. 823-870, ISSN 0143-1161 

Lu, D.; Mausel, P.; Batistella, M. & Moran, E. (2004). Comparison of Land-Cover 
Classification Methods in the Brazilian Amazon Basin. Photogrammetric Engineering 
& Remote Sensing, Vol.70, No.6, pp. 723-731, ISSN 0099-1112 

Luedeling, E. & Buerkert, A. (2008). Typology of Oases in Northern Oman Based on Landsat 
and SRTM Imagery and Geological Survey Data. Remote Sensing of Environment, 
Vol.112, No.3, pp. 1181-1195, ISSN 0034-4257 

Mather, P. (1999). Computer Processing of Remotely-Sensed Images an Introduction, John Wiley & 
Sons, New York 

Moghadassi, A.; Parvizian, F. & Hosseini, S. (2009). A New Approach Based on Artificial 
Neural Networks for Prediction of High Pressure Vapor-liquid Equilibrium. 
Australian Journal of Basic and Applied Sciences, Vol.3, No.3, pp. 1851-1862, ISSN 
1991-8178 

Murakami, H.; Tadono, T.; Imai, H.; Nieke, J. & Shimada, M. (2009). Improvement of 
AVNIR-2 Radiometric Calibration by Comparison of Cross-Calibration and 
Onboard Lamp Calibration. IEEE Transactions on Geoscience and Remote Sensing, 
Vol.47, No.12, pp. 4051-4059, ISSN 0196-2892 

Mustapha, M. R.; Lim, H. S. & MatJafri, M. Z. (2010). Comparison of Neural Network and 
Maximum Likelihood Approaches in Image Classification. Journal of Applied 
Sciences, Vol.10, No.22, pp. 2847-2854, ISSN 1812-5654 

Mustapha, M. R.; Lim, H. S.; MatJafri, M. Z. & Syahreza, S. (2011). Comparison of 
Frequency-based Contextual and Maximum Likelihood Methods for Land Cover 
Classification in Arid Environment. Journal of Applied Sciences, Vol.11, No.17, pp. 
3177-3184, ISSN 1812-5654 

Niska, H.; Skon, J.; Packalen, P.; Tokola, T.; Maltamo, M. & Kolehmainen, M. (2010). Neural 
Networks for the Prediction of Species-Specific Plot Volumes Using Airborne Laser 
Scanning and Aerial Photographs. IEEE Transactions on Geoscience and Remote 
Sensing, Vol.48, No.3, pp. 1076-1085, ISSN 0196-2892 

Pignatti, S.; Cavalli, R. S.; Cuomo, V.; Fusilli, L.; Pascucci, S.; Poscolieri, M. & Santini, F. 
(2009). Evaluating Hyperion Capability for Land Cover Mapping in a Fragmented 
Ecosystem: Pollino National Park, Italy. Remote Sensing of Environment, Vol.113, 
No.3, pp. 622-634, ISSN 0034-4257 

Piper, J. (1992). Variability and Bias in Experimentally Measured Classifier Error Rates. 
Pattern Recognition Letters, Vol.13, No. 10, pp. 685-692, ISSN 0167-8655 

Rezapour, O. M.; Shui, L. T. & Ahmad, D. (2010). Review of Artificial Neural Network 
Model for Suspended Sediment Estimation. Australian Journal of Basic and Applied 
Sciences, Vol.4, No.8, pp. 3347-3353, ISSN 1991-8178  

Analysis of Land Cover Classification  
in Arid Environment: A Comparison Performance of Four Classifiers 

 

141 

Rosenfield, G. H. & Fitzpatrick-Lins, K. (1986). A Coefficient of Agreement as a Measure of 
Thematic Classification Accuracy. Photogrammetric Engineering & Remote Sensing, 
Vol.52, No.2, pp. 223-227, ISSN 0099-1112 

Roy, P. S. & Giriraj, A. (2008). Land Use and Land Cover Analysis in Indian Context. Journal 
of Applied Sciences, Vol.8, No.8, pp. 1346-1353, ISSN 1812-5654  

Rumelhart, D.E., Hinton, G. E & Williams, R. J. (1986). Learning Internal Representation by 
Error Propagation, in: Parallel Distributed Processing: Explorations in the 
Microstructures of Cognition, Rumelhart, D. E & McClelland, J. L (Eds.), 318-
362MIT Press, Cambridge, Massachusetts 

Sarkheil, H.; Hassani, H. & Alinia, F. (2009). The Fracture Network Modeling in Naturally 
Fractured Reservoirs Using Artificial Neural Network Based on Image Loges and 
Core Measurements. Australian Journal of Basic and Applied Sciences, Vol.3, No.4, pp. 
3297-3306, ISSN 1991-8178 

Seto, K. C. & Liu, W. (2003). Comparing ARTMAP Neural Network with the Maximum-
Likelihood Classifier for Detecting Urban Change. Photogrammetric Engineering & 
Remote Sensing, Vol.69, No.9, pp. 981-990, ISSN 0099-1112 

Small, C.; (2005). A Global Analysis of Urban Reflectance. International Journal of Remote 
Sensing, Vol.26, No.4, pp. 661-681, ISSN 0143-1161 

Stuckens, J.; Coppin, P. R. & Bauer, M. E. (2000). Integrating Contextual Information with 
per-Pixel Classification for Improved Land Cover Classification. Remote Sensing of 
Environment, Vol.71, No.3, pp. 282-296, ISSN 0034-4257 

Tadono, T.; Shimada, M.; Murakami, H. & Takaku, J. (2009). Calibration of PRISM and 
AVNIR-2 Onboard ALOS “Daichi”. IEEE Transactions on Geoscience and Remote 
Sensing, Vol.47, No.12, pp. 4042-4050, ISSN 0196-2892  

Thomas, N.; Hendrix, C. & Congalton, R. G. (2003). A Comparison of Urban Mapping 
Methods Using High Resolution Digital Imagery. Photogrammetric Engineering & 
Remote Sensing, Vol.69, No.9, pp. 963-16, ISSN 0099-1112 

Tso, B. & Olsen, R. C. (2005). A Contextual Classification Scheme Based on MRF Model with 
Improved Parameter Estimation and Multiscale Fuzzy Line Process. Remote Sensing 
of Environment, Vol.97, No.1, pp. 127-136, ISSN 0034-4257 

VanNiel, T. G.; McVicar, T. R & Datt, B. (2005). On the Relationship between Training 
Sample Size and Data Dimensionality of Broadband Multi-temporal Classification. 
Remote Sensing of Environment, Vol.98, No.4, pp. 468-480, ISSN 0034-4257 

Wang, C.; Menenti, M., Stoll, M.;Belluco, E. & Marani, M. (2007). Mapping Mixed Vegetation 
Communities in salt Marshes using Airborne Spectral Data. Remote Sensing of 
Environment, Vol.107, No.4, pp. 559-570, ISSN 0034-4257 

Wang, L.; Sousa, W. P.; Gong, P. & Biging, G. S. (2004). Comparison of IKONOS and 
QuickBird Images for Mapping Mangrove Species on the Caribbean Coast of 
Panama. Remote Sensing of Environment, Vol.91, No.3-4, pp. 432-440, ISSN 0034-
4257 

Wulder, M. A.; White, J. C.; Goward, S. N.; Masek, J. G.; Irons, J. R.; Herold, M.; Cohen, W. 
B.; Loveland, T. R. & Woodcock, C. E. (2008). Landsat Continuity: Issues and 
Opportunities for Land Cover Monitoring. Remote Sensing of Environment, Vol.112, 
No.3, pp. 955-969, ISSN 0034-4257 



 
Remote Sensing of Planet Earth 

 

140 

Simulated Coral Reef Images. Remote Sensing of Environment, Vol.113, No.5, pp. 965-
978, ISSN 0034-4257  

Lippmann, R.P. (1987). An Introduction to Computing with Neural Nets, IEEE ASSP 
Magazine, Vol.4, No.2, pp. 4–22, ISSN: 0740-7467  

Lu, D. & Weng, Q. (2007). A Survey of Image Classification Methods and Techniques for 
Improving Classification Performance. International Journal of Remote Sensing, 
Vol.28, No.5, pp. 823-870, ISSN 0143-1161 

Lu, D.; Mausel, P.; Batistella, M. & Moran, E. (2004). Comparison of Land-Cover 
Classification Methods in the Brazilian Amazon Basin. Photogrammetric Engineering 
& Remote Sensing, Vol.70, No.6, pp. 723-731, ISSN 0099-1112 

Luedeling, E. & Buerkert, A. (2008). Typology of Oases in Northern Oman Based on Landsat 
and SRTM Imagery and Geological Survey Data. Remote Sensing of Environment, 
Vol.112, No.3, pp. 1181-1195, ISSN 0034-4257 

Mather, P. (1999). Computer Processing of Remotely-Sensed Images an Introduction, John Wiley & 
Sons, New York 

Moghadassi, A.; Parvizian, F. & Hosseini, S. (2009). A New Approach Based on Artificial 
Neural Networks for Prediction of High Pressure Vapor-liquid Equilibrium. 
Australian Journal of Basic and Applied Sciences, Vol.3, No.3, pp. 1851-1862, ISSN 
1991-8178 

Murakami, H.; Tadono, T.; Imai, H.; Nieke, J. & Shimada, M. (2009). Improvement of 
AVNIR-2 Radiometric Calibration by Comparison of Cross-Calibration and 
Onboard Lamp Calibration. IEEE Transactions on Geoscience and Remote Sensing, 
Vol.47, No.12, pp. 4051-4059, ISSN 0196-2892 

Mustapha, M. R.; Lim, H. S. & MatJafri, M. Z. (2010). Comparison of Neural Network and 
Maximum Likelihood Approaches in Image Classification. Journal of Applied 
Sciences, Vol.10, No.22, pp. 2847-2854, ISSN 1812-5654 

Mustapha, M. R.; Lim, H. S.; MatJafri, M. Z. & Syahreza, S. (2011). Comparison of 
Frequency-based Contextual and Maximum Likelihood Methods for Land Cover 
Classification in Arid Environment. Journal of Applied Sciences, Vol.11, No.17, pp. 
3177-3184, ISSN 1812-5654 

Niska, H.; Skon, J.; Packalen, P.; Tokola, T.; Maltamo, M. & Kolehmainen, M. (2010). Neural 
Networks for the Prediction of Species-Specific Plot Volumes Using Airborne Laser 
Scanning and Aerial Photographs. IEEE Transactions on Geoscience and Remote 
Sensing, Vol.48, No.3, pp. 1076-1085, ISSN 0196-2892 

Pignatti, S.; Cavalli, R. S.; Cuomo, V.; Fusilli, L.; Pascucci, S.; Poscolieri, M. & Santini, F. 
(2009). Evaluating Hyperion Capability for Land Cover Mapping in a Fragmented 
Ecosystem: Pollino National Park, Italy. Remote Sensing of Environment, Vol.113, 
No.3, pp. 622-634, ISSN 0034-4257 

Piper, J. (1992). Variability and Bias in Experimentally Measured Classifier Error Rates. 
Pattern Recognition Letters, Vol.13, No. 10, pp. 685-692, ISSN 0167-8655 

Rezapour, O. M.; Shui, L. T. & Ahmad, D. (2010). Review of Artificial Neural Network 
Model for Suspended Sediment Estimation. Australian Journal of Basic and Applied 
Sciences, Vol.4, No.8, pp. 3347-3353, ISSN 1991-8178  

Analysis of Land Cover Classification  
in Arid Environment: A Comparison Performance of Four Classifiers 

 

141 

Rosenfield, G. H. & Fitzpatrick-Lins, K. (1986). A Coefficient of Agreement as a Measure of 
Thematic Classification Accuracy. Photogrammetric Engineering & Remote Sensing, 
Vol.52, No.2, pp. 223-227, ISSN 0099-1112 

Roy, P. S. & Giriraj, A. (2008). Land Use and Land Cover Analysis in Indian Context. Journal 
of Applied Sciences, Vol.8, No.8, pp. 1346-1353, ISSN 1812-5654  

Rumelhart, D.E., Hinton, G. E & Williams, R. J. (1986). Learning Internal Representation by 
Error Propagation, in: Parallel Distributed Processing: Explorations in the 
Microstructures of Cognition, Rumelhart, D. E & McClelland, J. L (Eds.), 318-
362MIT Press, Cambridge, Massachusetts 

Sarkheil, H.; Hassani, H. & Alinia, F. (2009). The Fracture Network Modeling in Naturally 
Fractured Reservoirs Using Artificial Neural Network Based on Image Loges and 
Core Measurements. Australian Journal of Basic and Applied Sciences, Vol.3, No.4, pp. 
3297-3306, ISSN 1991-8178 

Seto, K. C. & Liu, W. (2003). Comparing ARTMAP Neural Network with the Maximum-
Likelihood Classifier for Detecting Urban Change. Photogrammetric Engineering & 
Remote Sensing, Vol.69, No.9, pp. 981-990, ISSN 0099-1112 

Small, C.; (2005). A Global Analysis of Urban Reflectance. International Journal of Remote 
Sensing, Vol.26, No.4, pp. 661-681, ISSN 0143-1161 

Stuckens, J.; Coppin, P. R. & Bauer, M. E. (2000). Integrating Contextual Information with 
per-Pixel Classification for Improved Land Cover Classification. Remote Sensing of 
Environment, Vol.71, No.3, pp. 282-296, ISSN 0034-4257 

Tadono, T.; Shimada, M.; Murakami, H. & Takaku, J. (2009). Calibration of PRISM and 
AVNIR-2 Onboard ALOS “Daichi”. IEEE Transactions on Geoscience and Remote 
Sensing, Vol.47, No.12, pp. 4042-4050, ISSN 0196-2892  

Thomas, N.; Hendrix, C. & Congalton, R. G. (2003). A Comparison of Urban Mapping 
Methods Using High Resolution Digital Imagery. Photogrammetric Engineering & 
Remote Sensing, Vol.69, No.9, pp. 963-16, ISSN 0099-1112 

Tso, B. & Olsen, R. C. (2005). A Contextual Classification Scheme Based on MRF Model with 
Improved Parameter Estimation and Multiscale Fuzzy Line Process. Remote Sensing 
of Environment, Vol.97, No.1, pp. 127-136, ISSN 0034-4257 

VanNiel, T. G.; McVicar, T. R & Datt, B. (2005). On the Relationship between Training 
Sample Size and Data Dimensionality of Broadband Multi-temporal Classification. 
Remote Sensing of Environment, Vol.98, No.4, pp. 468-480, ISSN 0034-4257 

Wang, C.; Menenti, M., Stoll, M.;Belluco, E. & Marani, M. (2007). Mapping Mixed Vegetation 
Communities in salt Marshes using Airborne Spectral Data. Remote Sensing of 
Environment, Vol.107, No.4, pp. 559-570, ISSN 0034-4257 

Wang, L.; Sousa, W. P.; Gong, P. & Biging, G. S. (2004). Comparison of IKONOS and 
QuickBird Images for Mapping Mangrove Species on the Caribbean Coast of 
Panama. Remote Sensing of Environment, Vol.91, No.3-4, pp. 432-440, ISSN 0034-
4257 

Wulder, M. A.; White, J. C.; Goward, S. N.; Masek, J. G.; Irons, J. R.; Herold, M.; Cohen, W. 
B.; Loveland, T. R. & Woodcock, C. E. (2008). Landsat Continuity: Issues and 
Opportunities for Land Cover Monitoring. Remote Sensing of Environment, Vol.112, 
No.3, pp. 955-969, ISSN 0034-4257 



 
Remote Sensing of Planet Earth 

 

142 

Yuan, F.; Sawaya, K. E.; Loeffelholz, B. C & Bauer, M. E. (2005). Land Cover Classification 
and Change Analysis of the Twin Cities (Minnesota) Metropolitan Area by 
Multitemporal Landsat Remote Sensing. Remote Sensing of Environment, Vol.98, No. 
2-3, pp. 317-328, ISSN 0034-4257 

7 

Application of Remote Sensing  
for Tsunami Disaster 

Anawat Suppasri1, Shunichi Koshimura1, Masashi Matsuoka2, 
 Hideomi Gokon1 and Daroonwan Kamthonkiat3 

1Tsunami Engineering Laboratory, Disaster Control Research Centre,  
Graduate School of Engineering, Tohoku University 

2National Institute of Advanced Industrial Science and Technology 
3Department of Geography, Faculty of Liberal Arts, Thammasat University 

1,2Japan 
3Thailand 

1. Introduction 
This chapter aims to introduce an application of remote sensing to recent tsunami 
disasters. In the past, acquiring tsunami damage information was limited to only field 
surveys and/or using aerial photographs. In the last decade, remote sensing was applied 
in many tsunami researches, such as tsunami damage detection. Satellite remote sensing 
can help us survey tsunami damage in many ways. In general, the application of remote 
sensing for tsunami disasters can be classified into three stages depending on time and 
disaster-related information. In the first stage, general damage information, such as 
tsunami inundation limits, can be obtained promptly using an analysis combined with 
ground truth information in GIS. The tsunami inundation area is one of the most 
important types of information in the immediate aftermath of a tsunami because it helps 
estimate the scale of the tsunami’s impact. Travel to a tsunami-affected area for field 
surveys takes a lot of time, given the presence of damaged roads and bridges, with much 
debris as obstacles. In the second stage, detailed damage interpretation can be analysed; 
i.e., classification of the building damage level. Recently, the quality of commercial 
satellite images has improved. These images help us clarify, i.e., whether a house was 
washed away or survived; they can even classify more damage levels. The third stage 
combines the damage and hazard information obtained from a numerical simulation, such 
as the tsunami inundation depth. The damage data are compiled with the tsunami hazard 
data via GIS. Finally, a tsunami vulnerability function can be developed. This function is a 
necessary tool for assessing future tsunami risk.  

The contents of this chapter are arranged in three sections: 

- Satellite image analysis for detecting tsunami-affected areas 
- Tsunami damage level classification by visual interpretation and image analysis  
- Development of a tsunami vulnerability function by applying a numerical model 
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2. General satellite image analysis for tsunami-affected areas 
2.1 NDVI analysis using optical high-resolution satellite imagery 

Tsunami inundation limit 

Recent advances in remote sensing technologies have expanded the capabilities of detecting 
the spatial extent of tsunami-affected areas and damage to structures. The highest spatial 
resolution of optical imageries from commercial satellites is up to 60–70 centimetres 
(QuickBird owned by DigitalGlobe, Inc.) or 1 metre (IKONOS operated by GeoEye). Since 
the 2004 Sumatra-Andaman earthquake tsunami, these satellites have captured images of 
tsunami-affected areas, and the images have been used for disaster management activities, 
including emergency response and recovery. To detect the extent of a tsunami inundation 
zone, NDVI (Normalised Difference Vegetation Index) is the most common index obtained 
from the post-event imagery, focusing on the vegetation change due to the tsunami 
penetration on land. The NDVI is calculated from these individual measurements as 
follows:  

 (1)

where R and NIR stand for the spectral reflectance or radiance in the visible (red) and near-
infrared bands, respectively. Focusing on the existence of tsunami debris, 100 points were 
sampled to identify the NDVI threshold to classify the tsunami inundation zone. As shown 
in Fig. 1, the NDVI values are calculated within a range 0.34 ± 0.05. As a result, the extent of 
the tsunami inundation zone is determined by the supervised classification based on the 
NDVI threshold. As shown in Figure 2 (a), the QuickBird imagery clearly detects the 
vegetation change between pre- and post-tsunami. Tsunami debris can be seen along the 
edge of the tsunami inundation zone. Figure 2 (b) shows the result of the detection of the 
tsunami inundation zone by applying the threshold value of NDVI, and the result is 
consistent with the field survey. 

 
Fig. 1. Threshold value of NDVI within the tsunami inundation zone obtained from the 
analysis of the post-tsunami satellite imagery. 
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Fig. 2. (a) Vegetation change found from pre- and (b) post-event imageries and estimated 
extent of tsunami inundation zone by the supervised classification of NDVI. 

Damage and recovery monitoring of mangrove 

Because mitigation and protection against the 2004 Indian Ocean Tsunami was one of the 
important services that mangrove ecosystems provided in the affected areas, a six-year 
program to conserve and rehabilitate mangrove forests in the tsunami-impacted areas was 
implemented by the Thai Government after the tsunami. However, information on 
mangrove restoration and reforestation is limited to field surveys. Monitoring proposals 
were applied for a damaged mangrove area. Kamthonkiat et al. (2011) used ASTER images 
acquired in 2003, 2005 (two months after the 2004 Indian Ocean tsunami), 2006 and 2010 and 
the analysis using NDVI to monitor the mangrove recovery in tsunami-impacted areas in 
the southern part of Thailand. Figure 3 depicts the area of mangroves in 2003 in red and the 
area impacted by the tsunami in 2005 in dark blue and white for the same location. After the 
mangrove trees were uniformly or homogeneously replanted in the same location in the last 
quarter of 2005 in Takuapa District, the areas marked in red increased in 2006 and increased 
still further in 2010, as shown in Fig. 3 (Note: red represents vegetation or mangroves, white 
represents bare soil/sand, and blue/dark blue represent water). The recovery process can be 
detected, as some parts in light blue became red in 2006, and most became red in 2010 
meaning the mangroves recovered to nearly the normal condition before the tsunami attack. 
These results show the abilities of geoinformatic technologies, especially regarding the time 
series analysis. 
 

 
Fig. 3. Damage and recovery process due to the 2004 tsunami in Takuapa, Thailand 

2003 2005 2006 2010 
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2.2 TerraSAR-X image analysis 

Among the various sensors, SAR (Synthetic Aperture Radar) is remarkable for its ability to 
record the physical value of the Earth's surface (Henderson and Lewis, 1998). Unlike passive 
optical sensors, SAR enables the observation of surface conditions day or night, even 
through clouds. SAR interferometric analyses using phase information have successfully 
provided quantification of relative ground displacement levels due to natural disasters 
(Massonnet et al., 1993). More importantly, intensity information obtained from SAR 
represents a physical value (backscattering coefficient) that is strongly dependent on the 
roughness of the ground surface and the dielectric constant. Based on this idea, models for 
satellite C- and L-band SAR data were developed to detect building damage areas due to 
earthquakes by clarifying the relationship between the change in the backscattering 
coefficient from pre- and post-event SAR images (Matsuoka & Yamazaki, 2004; Matsuoka & 
Nojima, 2009) and then applying the models to tsunami-induced damage areas (Koshimura 
& Matsuoka, 2010). TerraSAR-X, which is the first German radar satellite with high-
resolution X-band, was successfully launched on June 15, 2007, and has been in operation 
for data acquisition since early 2008. The day after the event, TerraSAR-X observed the 
coastal area in the affected regions by the StripMap-mode, which captures the Earth’s 
surface with an approximately 3-metre resolution. Typically, man-made structures show 
comparatively high reflection due to the cardinal effect of structures and the ground. Open 
spaces or damaged buildings have comparatively low reflectance because they scatter the 
microwaves in different directions. Buildings may be reduced to debris by earthquake 
ground motion, and in some cases, the debris of buildings may be removed, leaving the 
ground exposed. Thus, the backscattering coefficient determined after building collapse is 
likely to be lower than that obtained prior to the event (Matsuoka & Yamazaki, 2004; Nojima 
et al., 2006). Inundated areas also show a lower backscattering coefficient because of the 
smooth surface and the dielectric constant of water bodies (Fig. 4 centre). By examining the 
backscattering characteristics of tsunami damage in typical areas, however, the reverse case 
occurred in some damaged areas in farmlands and controlled forests. To explain these 
anomalies in the post-tsunami TerraSAR-X image, several factors need to be considered, 
such as changes of the Earth’s surface and its materials. Scattered debris from collapsed 
buildings, visible in the farmlands and bare ground in the post-tsunami image, show 
brighter reflections than in the pre-tsunami image (Fig. 4 centre). 

 
Fig. 4. Comparison between TerraSAR-X image and IKONOS (GeoEye) image 
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For the areas where some trees in the forest were washed away, the significant 
backscattering characteristics changed from volume scattering to surface scattering with 
significant roughness. These kinds of characteristics affecting the backscattering echo 
were identified in the tsunami-affected areas in the TerraSAR-X image. Following Nojima 
et al. (2006), the regression discriminant function for building damage was calculated 
from two characteristic values, the correlation coefficient and the difference in 
backscattering coefficient for pre- and post-event SAR images. First, following the 
accurate positioning of the two SAR images, a speckle noise filter with a 21×21 pixel 
window (Lee, 1980) was applied to each image. The difference value, d, is calculated by 
subtracting the average value of the backscattering coefficient within a 13×13 pixel 
window in the pre-event image from the post-event image (after – before). The correlation 
coefficient, r, is also calculated from the same 13×13 pixel window (Matsuoka & 
Yamazaki, 2004). The result of applying regression discriminant analysis, using the d and 
r, is shown in Equation (2). 

 ZR1 = -A·d – B·r  (2) 

Here, ZR1 represents the discriminant score from the SAR images where the values of 
parameter A and B are 1.21 and 4.36, respectively. The pixels whose ZR1 value is positive 
(red) are interpreted as suffering severe damage (Fig. 5 left). Because both coefficients are 
negative, higher and negative d or smaller r produce larger ZR1 values. A preliminary 
formula for the C-band dataset was used because that for the X-band was unavailable. For 
this reason, the backscattered echoes were stronger in the post-tsunami image. To detect 
such damaged areas using image analysis, cases where the reverse occurs need to be 
considered. Therefore, the following Equation (3) was also calculated based on a positive 
value for the difference in backscattering coefficient d. 

 ZR2 = A·d – B·r (3) 

Here, ZR2 represents another discriminant score where the values of parameters A and B are 
1.21 and 4.36, respectively. Using this formula, the pixels whose ZR2 value is positive (red) 
might be assigned as damaged areas (Fig. 5 centre).  

 
Fig. 5. Computed ZR1 and ZR2 from TerraSAR-X image to determine inundation area 
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Two discriminant scores, ZR1 and ZR2, were calculated for the TerraSAR-X image pair using 
the described procedure. The threshold values for ZR1 and ZR2 were determined to be 6 and 
0, respectively. The extracted areas where the ZR1 is larger than 6 or the ZR2 is larger than 0 
are shown in red in Fig. 6.  

 
Fig. 6. Threshold values for ZR1 and ZR2 in the case of the 2011 Tohoku tsunami in Miyagi 
prefecture. The tsunami inundation area was extracted when the ZR1 was larger than 6 or the 
ZR2 was larger than 0. 

3. Tsunami damage detection and classification by remote sensing 
This section mainly focuses on how remote sensing is used for further research on the 
detailed classification of tsunami damage areas using structural damage as an example. By 
taking advantage of satellite remote sensing, the spatial distribution of structural damage by 
a tsunami can be identified. SAR images are widely used to determine tsunami-affected or 
inundated areas using the reflection property or backscattering coefficient as mentioned in 
the previous section. However, through inspecting a set of pre- and post-tsunami satellite 
images visually or manually, the presence of building roofs can be interpreted. The highest 
spatial resolution of commercial optical satellite imaging is up to 60-70 cm (QuickBird) or 1 
m (IKONOS). The advantage of using high-resolution optical satellite images for damage 
interpretation is the capability of understanding structural damage visually. These images 
also enable us to comprehend the spatial extent of damage at the regional scale, where post-
tsunami surveys hardly penetrate because of limited of survey time and resources. 
However, note that no structural types were identified by the interpretation of the satellite 
images. Additionally, the damage feature that can be identified from the satellite images is 
only structural destruction or major structural failure, which reveals the change of a roof’s 
shape, namely “collapsed” and “major or severe damage.” Accordingly, the interpretation 
“Destroyed” means “Collapsed” or “Major or severe damage,” and “Survived” is classified 
as “Moderate,” “Minor,” “Slight” and “No” damage. An example of building damage 
classification is shown in Fig. 7. 
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Fig. 7. Example of building damage classification criteria for the 2009 Samoa tsunami 

3.1 The 1993 Hokkaido Nansei-Oki tsunami 

In 1993, a tsunami accompanied by a M7.8 earthquake off the south–west coast of Hokkaido, 
Japan, struck Okushiri Island, which is 30 kilometers west of Hokkaido, within 5 minutes 
after the quake, causing more than 200 casualties. In particular, the Aonae district in the 
southernmost area of Okushiri Island suffered devastating damage due to an approximately 
11-m tsunami that struck from the west coast of the island as well as fire caused during and 
after the tsunami attack (Murosaki, 1994). Visual damage inspection was conducted using 
pre- and post–tsunami aerial photographs acquired on 29 October 1990 and 14 July 1993 
(one day after the event occurred), as shown in Fig. 8. Because the Aonae district suffered 
from extensive fire during and after the tsunami attack, it is not possible to discriminate 
between tsunami and fire damage by the aerial photographs alone. Thus, focusing on the 
existence of house roofs, the structural damage was categorised into five classes according to 
the damage area, whether flooded or burned, reported by Shuto (2007). The number of 
inspected houses and structures was 769, and the result of the structural damage 
interpretation in Aonae district is shown in Table 1 (Koshimura et al., 2009a). The method to 
detect the damaged area using SAR image analysis was applied to the tsunami-affected area 
in Okushri Island. Using a set of pre- and post–tsunami SAR images acquired by JERS 
(Japanese Earth Resources Satellite), Matsuoka & Yamazaki (2002) calculated the correlation 
and difference in the backscattering coefficient to represent the changes in the tsunami-
affected area. To detect the impacted area, the discriminant score, Equation (2), was  
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Damage category Cause Number of 
houses 

Destroyed or Major damage Flooded by tsunami 417 

Destroyed, Burned or Major damage Flooded by tsunami and 
burned by fire 123 

Burned or Major damage Burned by fire 75 
Destroyed Unknown 11 
Survived (Moderate, slight or no 
damage) — 143 

Table 1. Results of structural damage interpretation in Aonae district, Okushiri Island 

incorporated, and the values of parameters A and B were modified to 1.277 and 2.729, 
respectively. Fig. 8 shows a comparison among the results of the visual damage 
interpretation of the aerial photographs, the post–tsunami JERS/SAR image (Fig. 8(b)) and 
the discriminant score ZR1 (or ZRj). It is found that ZR1 represents relatively larger values in 
severely impacted areas and that ZR1 (Fig. 8(c)) is likely to be fairly consistent with the 
results of the visual interpretation (Fig. 8(a)). To increase the capability of the SAR image 
analysis to detect the tsunami impacted area, further discussion is required to explore the 
relationships between ZR1 and the structural damage probability by correlating both with 
regard to the JERS/SAR resolution. 

 
Fig. 8. Comparison among (a) the result of the visual damage interpretation of the aerial 
photographs, (b) the post–tsunami JERS/SAR image and (c) the discriminant score ZR1 
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3.2 The 2004 Indian Ocean tsunami 

The 2004 Indian Ocean megathrust earthquake occurred on 26 December 2004, creating a 
gigantic tsunami striking coastal communities over a large area. The earthquake, with a 
magnitude of 9.3 was the second largest ever recorded and caused the deadliest tsunami 
disaster in history. The tsunami devastated 11 Asian and African countries, and at least 
282,517 people lost their lives. There were two locations to which satellite images were 
applied for tsunami damage detection, Indonesia and Thailand. 

3.2.1 Banda Aceh, Indonesia 

Banda Aceh, a city in northern Sumatra, Indonesia, suffered more than 70,000 casualties and 
12,000 house damage incidents during the 2004 event. We acquired the post–tsunami survey 
data from JICA (2005), which was based on a visual interpretation of the pre- and post–
tsunami satellite imageries (IKONOS) with some random field checks, focusing on the 
existence of the individual structures’ roofs. Figure 16 indicates the post–tsunami survey result 
in terms of structural damage in the city by JICA (2005). As shown in the right panels of the 
figure, the use of high–resolution optical satellite images has the capability to detect individual 
damages and be utilised as a promising technology for post–disaster damage investigation. 
Throughout the visual inspection of the two satellite images, the remaining roofs were 
interpreted as “Survived” and the roofs that disappeared as “Destroyed”. The total number of 
inspected buildings in the tsunami-inundated area was 48,910, of which 16,474 were 
interpreted as destroyed and 32,436 as survived, as shown in Fig. 9 (Koshimura et al., 2009c). 

 
Fig. 9. Visual damage inspection results in Banda Aceh, Indonesia  
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3.2.2 Phang Nga and Phuket, Thailand 

Phang Nga and Phuket were two of six southern Andaman coast provinces that were 
damaged by the tsunami. They provinces are famous for sightseeing areas such as Khao Lak 
and Patong. Therefore, reinforced concrete (RC) buildings are common in this area. 
Regarding structural damage, 4,806 houses were affected by the tsunami, of which 3,302 
houses were destroyed completely, and as many as 1,504 were partly damaged. The 
maximum water level of approximately 15 m reported at Khao Lak in the Phang Nga 
province and of 7 m at Kamala and Patong Beach in Phuket gave these areas their respective 
distinction as the worst and second-worst areas, with structural damage to 2,508 and 1,033 
houses, respectively. High-resolution satellite images (IKONOS) taken before and after the 
tsunami event were used for visual damage interpretation. The pre-event images were 
acquired on 13 January 2003 and 24 January 2004 for Phang Nga and Phuket; the post-event 
images were both acquired on 15 January 2005. In a recent study (Gokon et al., 2011), four 
damage levels were classified “Not collapsed” (moderate, slight or no damage), “Major 
damage”, “Collapsed” and “Washed away,” using a QuickBird satellite image with a 
0.6×0.6 m2 resolution. However, the 1.0×1.0 m2 resolution of the IKONOS satellite image is 
not fine enough for a visual interpretation to differentiate the damage levels of buildings. 
Therefore, the classification of the building damage in this study was limited to “Not 
destroyed” and “Destroyed” (Koshimura et al., 2009c). The remaining roof buildings were 
interpreted as “Not destroyed” and those that had disappeared were classified as 
“Destroyed”. Note that the buildings classified as “Not destroyed” may have had some sort 
of Damage that could be identified by the satellite images. The results of the building 
damage inspection in residential areas are presented in Fig. 10 (Suppasri et al., 2011a), which 
shows damaged buildings in residential areas in Khao Lak, Phang Nga province (1,722 
destroyed and 1,285 not destroyed) and the populated residential areas in Kamala and 
Patong, Phuket province (233 destroyed and 1,356 not destroyed). The visual interpretation 
data resulted in an accuracy of more than 90 per cent after being checked with the 
investigation data. 

 
Fig. 10. Visual damage inspection results in Phang Nga and Phuket, Thailand  
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3.3 The 2007 Solomon Islands tsunami 

The 2007 Solomon Islands earthquake took place on 1 April 2007 near the provincial capital 
of Ghizo on Ghizo Island, in the Solomon Islands. The magnitude of this earthquake was 
calculated by the United States Geological Survey (USGS) as 8.1 on the moment magnitude 
scale. The tsunami that followed the earthquake killed 52 people. The structural/house 
damage was focused on Ghizo Island and was caused by the tsunami. First, the QuickBird 
pan-sharpened composite images of Ghizo Island were acquired pre- and post-tsunami (23 
September 2003 and 5 April 2007) to build house inventories for visual damage inspection, 
as shown in Fig. 11 (Koshimura et al., 2010). The extent of the tsunami inundation zone is 
determined by the supervised classification based on the NDVI of the post-tsunami satellite 
imagery (Fig. 12), as already shown in section 2.1. 

 
Fig. 11. The structural damage interpretation is divided into four classes: slight/no damage, 
substantial damage, collapsed and washed away 

 
Fig. 12. Visual damage inspection results for Ghizo Island, Solomon Islands 
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September 2003 and 5 April 2007) to build house inventories for visual damage inspection, 
as shown in Fig. 11 (Koshimura et al., 2010). The extent of the tsunami inundation zone is 
determined by the supervised classification based on the NDVI of the post-tsunami satellite 
imagery (Fig. 12), as already shown in section 2.1. 

 
Fig. 11. The structural damage interpretation is divided into four classes: slight/no damage, 
substantial damage, collapsed and washed away 

 
Fig. 12. Visual damage inspection results for Ghizo Island, Solomon Islands 
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3.4 The 2009 Samoa Islands tsunami 

In 2009, a tsunami accompanied by a M8.1 earthquake off the southwest coast of Tutuila 
Island, American Samoa, struck the Samoa and Tonga islands and caused a total of 184 
deaths and 7 missing. A visual damage inspection was conducted using pre- and post-
tsunami QuickBird images acquired on 15 April 2007, 24 September 2009, 29 September 
2009, 02 October 2009 and November 2009. The damaged structures were classified into four 
categories: washed-away, collapsed, major damage and survived (as previously mentioned 
in Fig. 7). The number of inspected houses and structures in the four study areas, namely, 
Pago Pago, Amanave, Poloa and Leone, totalled 451, and the results are summarised in Fig. 
13 and Table 2 (Gokon et al., 2011). 

 
Fig. 13. Visual damage inspection results in Tutuila Island, American Samoa 
 

Damage category Number of houses (Pago Pago/Amanave/Poloa/Leone/Total 
Washed-away 34/42/13/28/117 
Collapsed 7/3/1/7/18 
Major damage 142/0/12/28 
Survived 5434/4/196/288 

Table 2. Results of structural damage interpretation in Tutuila Island, American Samoa 
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3.5 The 2010 Chile tsunami 

A moment magnitude 8.8 earthquake struck the central region of Chile on February 27, 2010. 
The earthquake produced a tsunami that caused major damage in locations spanning over 
500 km of coastline, from Tirúa to Pichilemu. The coastal locations were affected by both 
ground shaking and the tsunami. As of May 2010, 521 people had died and 56 persons were 
still missing. The earthquake and tsunami destroyed over 81,000 houses, and another 
109,000 were severely damaged. Following Matsuoka & Nojima (2009), the regression 
discriminant function for building damage was calculated from two characteristic values: 
the correlation coefficient and the difference in the backscattering coefficient for pre- and 
post-event SAR images (Matsuoka & Koshimura, 2010). First, following the accurate 
positioning of the two SAR images, a speckle noise filter with a 21×21 pixel window was 
applied to each image. The difference value, d, is calculated by subtracting the average value 
of the backscattering coefficient within a 13×13 pixel window in the pre-event image from 
the post-event image (after – before). The correlation coefficient, r, is also calculated from the 
same 13×13 pixel window. The result of applying regression discriminant analysis, using the 
d and r from the building damage dataset of the 1995 Kobe earthquake, is shown in 
Equation (2), where the values of parameters A and B are modified to 1.277 and 2.729, 
respectively. Here, ZR1 in Equation (2) represents the discriminant score from the SAR 
images. The pixels whose ZR1 value is positive are interpreted as suffering severe damage. 
Because both coefficients are negative, higher and negative d or smaller r produce larger ZR1 
values. However, in the tsunami damage areas in the PALSAR images in the 
abovementioned examination, the backscattered echoes were stronger in the post-tsunami 
image. To detect such damaged areas using image analysis, cases where the reverse occurs 
need to be considered. Therefore, the absolute value of the difference in the backscattering 
coefficient, |d|, was calculated, which changed the coefficient of the difference to positive 
values, as shown in Equation (3), where the values of parameters A and B are modified to 
1.277 and 2.729, respectively. Here, ZR2 represents the modified discriminant score. Using 
this formula, the pixels whose ZR2 value is positive might be assigned as areas damaged not 
only by earthquakes but also by tsunamis. Using the procedure described above and the 
PALSAR images of the 2010 Chile earthquake tsunami, discriminant scores ZR2 were 
calculated in the areas shown to be vulnerable on the inundation susceptibility maps, and 
the tsunami damage distribution was estimated.  

         
Fig. 14(a). Distribution of ZR2 obtained by ALSAR images in Talcahuano and optical images 
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The results are shown in Fig. 14 (a) and (b). The sections on the sea are masked, but the areas 
where the river could not be masked have large ZR2 values because of the surface changes 
caused by the flow of water. The wetlands near Talcahuano and Llico, where the ZR2 values 
are large, seem to be affected by the tsunami. Figure 14(b) shows a close-up ZR2 image of the 
Dichato area, with a comparison pre- and post-tsunami from an optical image (Koshimura 
et al., 2011).  

 
 

   
Fig. 14(b). Distribution of ZR2 in a close-up of the Dichato area and comparison of optical 
images pre- and post-tsunami 

Post-tsunami 
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3.6 The 2011 Tohoku tsunami 

On March 11, 2011, a giant earthquake of M9.0, whose epicentre was located off the eastern 
part of Miyagi prefecture, Japan, caused catastrophic damage to the coastal area facing the 
Pacific Ocean of the Tohoku district. This earthquake caused an enormous tsunami with a 
run-up height that reached 40 m and destroyed approximately 270,000 houses. Aerial 
photos that were captured on March 12, 13 and 19 and April 1 and 5 in 2011 by GSI were 
used to classify the electronic building map into 2 classes: washed-away or surviving 
(Gokon & Koshimura, 2011). First, the panels of ortho photos, with a resolution of 80 
cm/pixel, are combined with mosaic image processing. Then the electronic map and the 
aerial photos were integrated into the same coordinate system in ArcGIS. Finally, a visual 
inspection was performed for the building damage one by one (washed-away or surviving) 
for all the buildings in the inundation area in Miyagi prefecture, Japan. Housing damage 
characteristics can be explained by bathymetry conditions as follows: the Ria coast, i.e., the 
towns of Minami-Sanriku in Fig. 15 (upper-left), has the potential to amplify the tsunami 
height. As a result, the probabilities of the washed away houses in the inundation area are 
estimated to be over 70%. In Ishinomaki city, the number of washed away houses is small in 
an area located behind the breakwaters and control forests. The effect of the breakwaters 
and control forests in reducing tsunami damage is shown in Fig. 15 (lower-left). Most of the 
buildings in Matsushima town and Shiogama city, located in a bay with a small opening 
and almost 270 small Islands acted as natural barrier, survived the tsunami, as shown in Fig. 
15 (right). 

 
Fig. 15. Visual damage inspection results in Minami-Sanriku town (upper-left), Ishinomaki 
city (lower-left), and Matsushima town and Shiogama city (right). The red rectangles show 
washed away houses and the blue areas indicate tsunami inundation areas. 

4. Developing a tsunami vulnerability function by applying a numerical model 
The next step is to apply the previous damage inspection data with the tsunami numerical 
model. One method is to develop a fragility curve (Koshimura et al., 2009b). The tsunami 
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The results are shown in Fig. 14 (a) and (b). The sections on the sea are masked, but the areas 
where the river could not be masked have large ZR2 values because of the surface changes 
caused by the flow of water. The wetlands near Talcahuano and Llico, where the ZR2 values 
are large, seem to be affected by the tsunami. Figure 14(b) shows a close-up ZR2 image of the 
Dichato area, with a comparison pre- and post-tsunami from an optical image (Koshimura 
et al., 2011).  

 
 

   
Fig. 14(b). Distribution of ZR2 in a close-up of the Dichato area and comparison of optical 
images pre- and post-tsunami 

Post-tsunami 

Pre-tsunami 

 
Application of Remote Sensing for Tsunami Disaster 157 

3.6 The 2011 Tohoku tsunami 

On March 11, 2011, a giant earthquake of M9.0, whose epicentre was located off the eastern 
part of Miyagi prefecture, Japan, caused catastrophic damage to the coastal area facing the 
Pacific Ocean of the Tohoku district. This earthquake caused an enormous tsunami with a 
run-up height that reached 40 m and destroyed approximately 270,000 houses. Aerial 
photos that were captured on March 12, 13 and 19 and April 1 and 5 in 2011 by GSI were 
used to classify the electronic building map into 2 classes: washed-away or surviving 
(Gokon & Koshimura, 2011). First, the panels of ortho photos, with a resolution of 80 
cm/pixel, are combined with mosaic image processing. Then the electronic map and the 
aerial photos were integrated into the same coordinate system in ArcGIS. Finally, a visual 
inspection was performed for the building damage one by one (washed-away or surviving) 
for all the buildings in the inundation area in Miyagi prefecture, Japan. Housing damage 
characteristics can be explained by bathymetry conditions as follows: the Ria coast, i.e., the 
towns of Minami-Sanriku in Fig. 15 (upper-left), has the potential to amplify the tsunami 
height. As a result, the probabilities of the washed away houses in the inundation area are 
estimated to be over 70%. In Ishinomaki city, the number of washed away houses is small in 
an area located behind the breakwaters and control forests. The effect of the breakwaters 
and control forests in reducing tsunami damage is shown in Fig. 15 (lower-left). Most of the 
buildings in Matsushima town and Shiogama city, located in a bay with a small opening 
and almost 270 small Islands acted as natural barrier, survived the tsunami, as shown in Fig. 
15 (right). 

 
Fig. 15. Visual damage inspection results in Minami-Sanriku town (upper-left), Ishinomaki 
city (lower-left), and Matsushima town and Shiogama city (right). The red rectangles show 
washed away houses and the blue areas indicate tsunami inundation areas. 

4. Developing a tsunami vulnerability function by applying a numerical model 
The next step is to apply the previous damage inspection data with the tsunami numerical 
model. One method is to develop a fragility curve (Koshimura et al., 2009b). The tsunami 

Matsushima 

Shiogama 



 
Remote Sensing of Planet Earth 158 

fragility curve is a function used to estimate the structural fragility against tsunami 
hazards. Visual inspections of satellite images taken before and after tsunami events are to 
be used to classify whether the buildings were destroyed or not based on the remaining 
roofs. Then a tsunami inundation model is created to reconstruct the tsunami features, 
such as inundation depth, current velocity, and hydrodynamic force of the event. For the 
tsunami inundation model, a set of nonlinear shallow water equations are discretised 
using the Staggered Leap-frog finite difference scheme (Imamura, 1995), with the bottom 
friction in the form of Manning’s formula according to a land use condition. In general, 
two methods exist for modelling flow resistance depending on the relation between the 
scale of an obstacle and the grid size: the topography model and the equivalent roughness 
model. The topography model is used when the grid size is finer than the obstacle. The 
tsunami in the model simulation will not pass into a grid space that is occupied by an 
obstacle. Then the flow around an obstacle and the contracting flow between obstacles can 
be simulated. However, in a larger grid size, such as that of this study, the obstacle is 
smaller than the grid size. The equivalent roughness model is then appropriate for this 
problem. In a non-residential area, the roughness coefficient is inferred from land use, and 
it is used to quantify the Manning’s roughness coefficient (s·m−1/3). The lowest Manning’s 
roughness coefficient is 0.02 for smooth ground, followed by 0.025 for shallow water or 
natural beach and by 0.03 for vegetated area. However, Manning’s roughness coefficient 
in a densely populated area is highly affected by the number of buildings in each 
computational grid. In a densely populated town, in which the building occupation ratio 
is high, the resistance law with the composite equivalent roughness coefficient according 
to land use and building conditions was first studied by Aburaya & Imamura (2002), as 
shown in Equation (4). 
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In this equation, n0 signifies the Manning’s roughness coefficient (n0=0.025, s·m-1/3), θ 
denotes the building/house occupation ratio in percentage varying within the range from 
0 to 100 in the finest computational grid of 52 m and obtained by calculating the building 
area over the grid area using GIS data. CD represents the drag coefficient (CD=1.5), w 
stands for the horizontal scale of houses, and D is the modelled flow depth. Fragility 
curves can be developed for various types, such as building material (wood, block or 
reinforced concrete), number of floors and country. Developed tsunami fragility curves 
are crucial for future tsunami risk assessment when tsunami hazards and exposure data 
are given. 

4.1 Method and procedure for developing tsunami fragility curves 

To develop tsunami fragility curves, a statistical approach is used with a synergistic use of 
the numerical model results and damage data by the procedure itemised below. 

Damage data acquisition 

The damage data was obtained from pre- and post–tsunami aerial photographs (e.g., 
number of destroyed or surviving structures). 
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Fig. 16. Tsunami damage detected by the visual interpretation of IKONOS pre- and post-
tsunami imageries. The red dots indicate totally damaged houses and the blue dots not-
damaged. 

Tsunami hazard estimation 

Speculate the hydrodynamic feature of tsunamis by numerical modelling. 

 
Fig. 17. Modelled tsunami inundation in the city of Banda Aceh. The result is validated by 
the measured flow depth shown with the squares in the figure. 

Data assimilation between the damage data and tsunami hazard information 

Correlate the damage data and the hydrodynamic features of tsunami inundation through 
the GIS analysis. 

Sample determination 

Sample sorting by the level of hydrodynamic features to explore an arbitrary range of these 
features such that each range includes the determined number of samples; check the data 
distribution. 
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Fig. 18. Histogram of damaged and not-damaged houses to calculate the damage probability 

Calculating damage probability 

Calculate the structural damage probabilities by counting the number of destroyed or 
surviving structures within each range of the tsunami hydrodynamic features described 
above. 

 
Fig. 19. The plot of damage probabilities and the median values of inundation depths that 
were compiled from sample data 

Regression analysis 

Determine the fragility curves by the regression analysis of the discrete set of the 
structural damage probabilities and hydrodynamic features of a tsunami. The damage 
probabilities of buildings and a discrete set were calculated and shown against a median 
value within a range. Linear regression analysis was performed to develop the fragility 
function. 
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Fig. 20. An example of the plot on normal probability paper 

Taking as an analogy earthquake engineering studies, the cumulative probability PD of 
damage occurrence is assumed to be given with two statistical parameters, (μ, σ) or (μ’, σ’). The 
cumulative probability P of the occurrence of damage is given either by Equation (5) or (6):  

���� � � �� � �
� � (5)

���� � � ��� � � �′
�′ � (6)

In these equations, Φ represents the standardised normal (log-normal) distribution function, 
x stands for the hydrodynamic feature of the tsunami (e.g., inundation depth, current 
velocity and hydrodynamic force), and μ and σ (μ’ and σ’), respectively, signify the mean 
and standard deviation of x (ln x). Two statistical parameters of the fragility function, μ and 
σ (μ’ and σ’), are obtained by plotting x (ln x) against the inverse of Φ on normal or log-
normal probability papers and performing a least-squares fitting of this plot. Consequently, 
two parameters are obtained by taking the intercept (= μ or μ’) and the angular coefficient (= 
σ or σ’) in Equations (7) or (8):  

 � � ���� � � (7) 

 ���� � ����� � �� (8) 

Throughout the regression analysis, the parameters are determined as shown in Table 8 to 
obtain the best fit of fragility curves with respect to the inundation depth, the maximum 
current velocity and the hydrodynamic force on structures per unit width. Here, the 
hydrodynamic force acting on a structure is defined as its drag force per unit width as 
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where CD denotes the drag coefficient (CD = 1.0 for simplicity), ρ is the density of water (= 
1,000 kg/m3), u stands for the current velocity (m/s), and D is the inundation depth (m). 
From this result, all the fragility functions with respect to the inundation depth, current 
velocity and hydrodynamic force are given by the standardised lognormal distribution 
functions with μ’ and σ’. It should be noted that because the damage interpretation using the 
pre- and post–tsunami satellite images focused on whether the houses’ roofs remained, we 
supposed that the structural damage was caused by the tsunami inundation. Additionally, 
note that the tsunami damage to structures was caused by both hydrodynamic force/impact 
and the impact of floating debris, i.e., these facts are reflected in the damage probabilities 
but not in the numerical model results (the estimated hydrodynamic features). In that sense, 
the present fragility functions might indicate overestimation in terms of the damage 
probabilities to the hydrodynamic features of the tsunami inundation flow. 

4.2 Tsunami fragility curves for Okushiri Island, Japan 

The task of discriminating between the damage caused by tsunami inundation or by fire 
was quite speculative. Thus, fragility curves were developed using 523 houses within the 
inundation zone estimated by the numerical model. A relationship between the damage 
probability and the tsunami’s hydrodynamic features were obtained as a discrete set of 
structural damage probabilities using a range of approximately 50 buildings and the 
tsunami hazard. The relationship was explored with the form of a fragility curve by 
performing the regression analysis. Structural damage is severe when the inundation depth 
is greater than 3 m, the current velocity is greater than 4 m/s and the hydrodynamic force is 
greater than 25 kN/m (Fig. 21). 

   
Fig. 21. Tsunami fragility curves as a function of tsunami features for Okushiri Island 
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local inundation depth exceeds 2 or 3 m, the current velocity exceeds 2.5 m/s or the 
hydrodynamic load on a structure exceeds 5 kN/m (Fig. 22). 
 

   
 

Fig. 22. Tsunami fragility curves as a function of tsunami features for Banda Aceh 
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where CD denotes the drag coefficient (CD = 1.0 for simplicity), ρ is the density of water (= 
1,000 kg/m3), u stands for the current velocity (m/s), and D is the inundation depth (m). 
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supposed that the structural damage was caused by the tsunami inundation. Additionally, 
note that the tsunami damage to structures was caused by both hydrodynamic force/impact 
and the impact of floating debris, i.e., these facts are reflected in the damage probabilities 
but not in the numerical model results (the estimated hydrodynamic features). In that sense, 
the present fragility functions might indicate overestimation in terms of the damage 
probabilities to the hydrodynamic features of the tsunami inundation flow. 
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The task of discriminating between the damage caused by tsunami inundation or by fire 
was quite speculative. Thus, fragility curves were developed using 523 houses within the 
inundation zone estimated by the numerical model. A relationship between the damage 
probability and the tsunami’s hydrodynamic features were obtained as a discrete set of 
structural damage probabilities using a range of approximately 50 buildings and the 
tsunami hazard. The relationship was explored with the form of a fragility curve by 
performing the regression analysis. Structural damage is severe when the inundation depth 
is greater than 3 m, the current velocity is greater than 4 m/s and the hydrodynamic force is 
greater than 25 kN/m (Fig. 21). 
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local inundation depth exceeds 2 or 3 m, the current velocity exceeds 2.5 m/s or the 
hydrodynamic load on a structure exceeds 5 kN/m (Fig. 22). 
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Fig. 23(b). Tsunami fragility curves as a function of tsunami features for Phuket 

4.5 Tsunami fragility curves for American Samoa, USA 

A visual inspection shows that there were 134 damaged and 210 surviving houses. The 
damage probabilities were calculated using a range of 20 buildings, and a linear regression 
analysis was performed. From Fig. 24, 80% of the buildings were damaged when the 
inundation depth exceeds 6 m. More than half of the buildings were damaged if the current 
velocity exceeds 2 m/s. The damage due to the hydrodynamic force increased rapidly up to 
10 kN/m. 
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Event 
(Year) Location Tsunami feature Building 

type μ σ μ' σ' R2 

Nansei 
Hokkaido 

(1993) 

Okushiri 
Island 

Inundation depth 
Mainly 
wood 

0.216 0.736 0.82 
Current velocity 0.475 0.776 0.89 

Hydrodynamic force 1.033 1.186 0.92 

Indian 
Ocean 
(2004) 

Banda 
Aceh 

Inundation depth Mainly 
wood & 

brick 

2.985 1.117 0.99 
Current velocity 0.799 0.278 0.97 

Hydrodynamic force 2.090 0.791 0.99 

Indian 
Ocean 
(2004) 

Phang 
Nga 

Inundation depth 

Some RC

0.689 0.903 0.80 
Current velocity 0.649 0.952 0.72 

Hydrodynamic force 1.748 1.937 0.75 

Phuket 
Inundation depth 0.917 0.642 0.62 
Current velocity 0.352 0.675 0.32 

Hydrodynamic force 0.821 3.000 0.50 

Samoa 
(2009) 

American 
Samoa 

Inundation depth 
Some RC

1.170 0.691 0.89 
Current velocity 0.541 1.650 0.73 

Hydrodynamic force 1.070 3.160 0.72 

Table 3. Summary of statistical parameters for developed fragility curves 

5. Conclusion 
This chapter introduced how remote sensing can be applied for tsunami research fields. In 
general, remote sensing is used for rapid and large-scale damage detection to understand 
the scale of a tsunami, especially when accessibility to disaster-affected areas is limited in 
the immediate aftermath. Some of the general applications shown in this chapter are related 
to the tsunami inundation limit, damaged buildings/debris and mangrove recovery 
monitoring. SAR images are used to determine tsunami-affected areas using the reflection 
property or backscattering coefficient as mentioned in the previous section. The next step 
focused on damage classification in a tsunami affected area, i.e., structural damage of 
housing or buildings. The benefit of high-resolution images from the sky helps tsunami 
researchers interpret the tsunami damage level based on roofs. A one-metre resolution, such 
as that of IKONOS, could help classify buildings as destroyed or not destroyed. In addition, 
a very high-resolution satellite image such as QuickBird (0.6 m resolution) was used to 
classify a number of levels, i.e., washed-away, collapsed, major damage or survived. Some 
recent research on tsunami events was introduced, namely, the 1993 Hokkaido Nansei-oki 
tsunami, the 2004 Indian Ocean tsunami, the 2007 Solomon tsunami, the 2009 Samoa 
tsunami, the 2010 Chile tsunami and the most recent 2011 Tohoku tsunami. However, 
information from the sky has some limitations because it is impossible to make a detailed 
damage inspection of a structural member, and it might  have some errors compared with 
an actual field survey. Finally, classified structural damage data from a visual interpretation 
of high-resolution satellite images were used in combination with the tsunami numerical 
simulation to develop tsunami vulnerability curves called tsunami fragility curves. Tsunami 
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Event 
(Year) Location Tsunami feature Building 

type μ σ μ' σ' R2 
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Island 

Inundation depth 
Mainly 
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Current velocity 0.475 0.776 0.89 
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Ocean 
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Samoa 
(2009) 

American 
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Inundation depth 
Some RC

1.170 0.691 0.89 
Current velocity 0.541 1.650 0.73 

Hydrodynamic force 1.070 3.160 0.72 

Table 3. Summary of statistical parameters for developed fragility curves 

5. Conclusion 
This chapter introduced how remote sensing can be applied for tsunami research fields. In 
general, remote sensing is used for rapid and large-scale damage detection to understand 
the scale of a tsunami, especially when accessibility to disaster-affected areas is limited in 
the immediate aftermath. Some of the general applications shown in this chapter are related 
to the tsunami inundation limit, damaged buildings/debris and mangrove recovery 
monitoring. SAR images are used to determine tsunami-affected areas using the reflection 
property or backscattering coefficient as mentioned in the previous section. The next step 
focused on damage classification in a tsunami affected area, i.e., structural damage of 
housing or buildings. The benefit of high-resolution images from the sky helps tsunami 
researchers interpret the tsunami damage level based on roofs. A one-metre resolution, such 
as that of IKONOS, could help classify buildings as destroyed or not destroyed. In addition, 
a very high-resolution satellite image such as QuickBird (0.6 m resolution) was used to 
classify a number of levels, i.e., washed-away, collapsed, major damage or survived. Some 
recent research on tsunami events was introduced, namely, the 1993 Hokkaido Nansei-oki 
tsunami, the 2004 Indian Ocean tsunami, the 2007 Solomon tsunami, the 2009 Samoa 
tsunami, the 2010 Chile tsunami and the most recent 2011 Tohoku tsunami. However, 
information from the sky has some limitations because it is impossible to make a detailed 
damage inspection of a structural member, and it might  have some errors compared with 
an actual field survey. Finally, classified structural damage data from a visual interpretation 
of high-resolution satellite images were used in combination with the tsunami numerical 
simulation to develop tsunami vulnerability curves called tsunami fragility curves. Tsunami 
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features during inundation, such as inundation depth, current velocity and hydrodynamic 
force can be simulated by the numerical model. The tsunami fragility function can be 
constructed by combining the inspected damage data and simulated tsunami features using 
a statistical approach. The developed tsunami fragility curves for each location could be 
important tools for tsunami risk assessment against potential future tsunamis. However, 
applying tsunami fragility for future risk evaluation should be performed with care. The 
structural characteristics and behaviour of housing and buildings differ by country (Fig. 24). 
For example, an RC-frame building with brick walls is common in Southeast Asian 
countries. However, wooden walls are commonly used in Japan because of their light 
weight for reducing damage from earthquakes. These differences cause the tsunami damage 
characteristics to be different (Suppasri et al., 2011b). 

  
Fig. 25. Examples of building damage in the case of the 2004 Indian Ocean tsunami in 
Thailand and the 2011 Tohoku tsunami in Japan 
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1. Introduction 
It is well known that Global Navigation  Satellite  Systems signals (which include for 
example the U.S. GPS and its modernization, the Russian GLONASS, the future European 
Galileo, the Chinese COMPASS), commonly processed for navigation purposes, can also be 
used to characterize media where they propagate in. In the last decade, GNSS atmospheric 
and Earth’s surface remote sensing become more and more important, thanks to technical 
improvements applied to the processing of such “free-of-charge”, everywhere available and 
weather insensitive signals.  

For example, remote sensing of wet part of troposphere is possible “extracting” the 
atmospheric delays from GNSS observations. These delays are associated to water vapour 
and are accumulated by the signal along its propagation path. In the double difference 
phase observation adjustment (a standard GNSS signal pre-processing) it is possible and 
quite easy to estimate the wet contribution to atmospheric total delay mapped into the 
zenith direction, the so-called Zenith Wet Delay. From one side the estimate of propagation 
delays is essential to improve the accuracy of the height determination in the geodetic 
positioning framework (Kleijer, 2004). From the remote sensing point of view, Zenith Wet 
Delay may be then transformed into the so-called Integrated Precipitable Water Vapour 
(IPWV). Therefore, the knowledge of the temporal behaviour of IPWV above a GPS receiver 
network allows meteorologists to know the evolution of total water vapour content in 
atmosphere, which is one of the variable operatively used in Numerical Weather Prediction 
Models. These aspects are described in section 2. 

A second important application allows to add vertical variability information to the 
atmospheric parameter distribution with respect to the previous one, which represents an 
“integrated” quantity. The amplitude and phase variations experienced by GNSS signal 
crossing the atmospheric “limb” and received on-board a Low Earth Orbit satellite, can be 
used to infer temperature and water vapor profiles, thanks to the GNSS Radio Occultation 
technique (Melbourne et al., 1994; Ware et al., 1996; Kursinski et al., 1997; Hajj, 2002). Even if 
aspects related to such very important Remote Sensing technique are not treated in the present 
chapter (a comprehensive tutorial can be found in Liou et al (2010), while review of results 
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obtainable can be found in Anthes et al. (2008) and Luntama et al. (2008)) a mention is due. 
When signals cross in this way the atmosphere, they are delayed and their path is bent: 
therefore, the signal can be received also below the terrestrial limb, when the satellites are not 
yet in view. GNSS Radio Occultation is based on the inversion of the excess-phase (carrier 
phase in excess with respect the one experienced considering vacuum propagation) and 
amplitude evolution measured on the received signal when it is “occulted” with respect to the 
transmitter. Applying Geometric Optics algorithms or Wave Optics algorithm and Fourier 
operators to such observables, time evolutions of two important parameters identifying each 
trajectory followed by the signal can be derived: its total bending and its impact parameter, 
which is the distance of the trajectory asymptotes from the Earth’s mass centre. Such quantities 
are in turn related to the integral of the atmospheric refraction index vertical profile, in a 
mathematical formulation that is invertible in a closed form. Result of the inversion is a very-
accurate and high-resolved (up to about 100 m) atmospheric refractivity vertical profile, from 
which the corresponding temperature and humidity profiles can be inferred.  

The second technique described in this chapter adds a further spatial variability 
characterization possibility with respect to that given by IPWV and Radio Occultation. It 
deals with the three-dimensional reconstruction of atmospheric refractivity and, thus, water 
vapour density, applying tomographic techniques to phase delays measurements collected 
by small (but dense) networks of GPS receivers. Because of volume dimensions, 
inhomogeneity spatial distribution and geometric constraints, all the weak points of 
tomography emerge in characterizing neutral atmospheric parameter distributions using 
GNSS signals. Results and comments are given in section 3. 

The last application we will describe (section 4) is the most recent and maybe the most 
challenging one. It foresees the use of GNSS signals reflected off from lands and oceans for 
characterizing the Earth’s surface at L-band frequencies. The signal is received under bistatic 
geometry since the received signal power is that which is forward scattered from the Earth’s 
surface towards the GNSS-R (GNSS-Reflectometry) receiver. The reflected signal contains 
many differences with respect to the direct one, in terms of delay, Doppler shift, power 
strength and polarization. Once the reflected signal is received, it is processed using hardware 
or software correlators. The reflecting surface features are dipped inside the shape, the 
magnitude and the maxima location (which is related to the propagation delay) of the 
obtained correlation function. Among the possible remote sensing applications we list: ocean 
altimetry (from delay); wind speed and ocean scatterometry (from shape and spreading), ice 
topography and monitoring (from delay and magnitude); soil moisture (from magnitude). 

2. Integrated precipitable water vapour 
Water vapour is one of the main constituents of the atmosphere and its accurate and 
frequent sampling is obviously of great use for climatological research as well as operational 
weather forecasting. Moreover, water vapour is one of the most variable atmospheric 
constituents, fundamental in the transfer of energy in atmosphere: improving knowledge of 
its distribution is fundamental to set good initial conditions in numerical weather forecast. 
In addition, water vapor fluctuations are a major error source in ranging measurements 
through the Earth's atmosphere, and therefore the principal limiting factor in space geodesy 
applications such as GNSS, very long baseline interferometry, satellite altimetry, and 
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Interferometric Synthetic Aperture Radar (InSAR). Several techniques are well established to 
derive the vertically Integrated Precipitable Water Vapor (IPWV)1, in particular using 
ground-based and spaced-based radiometers, radiosonde observations and GNSS receivers.  

Radiosonde observations produce an accurate measurement of the water vapour profile, but 
the temporal and spatial resolution is rather poor. Radiosondes are typically launched every 
6 to 12 hours, which may cause significant variations in water vapour to go undetected.  

Ground-based microwave radiometers show problems during periods of rain fall and space-
based radiometer observations can be degraded in the presence of clouds. This prevents 
reliable measurements during periods where changes in water vapour could be quite great. 
Besides these limitations, all systems involve considerable costs.  

The technique to estimate IPWV by means of GNSS receivers is based on measurements of 
the tropospheric delay time of navigation signals. Therefore the delay, regarded as a 
nuisance parameter by geodesists, can be directly related to the amount of water vapour in 
the atmosphere, and hence is a product of considerable value for meteorologists. 
Furthermore, water vapour estimation with ground-based GNSS receivers is not affected by 
rain fall and clouds, and can therefore be considered an all-weather system.  

So, GNSS is a valuable complement to radiosondes and radiometers, taking into account 
that GNSS IPWV estimates come from an existing GNSS infrastructure and frequently from 
quite dense receiver networks. 

2.1 Description of observables, theoretical basis and retrieval technique 

The use of GNSS receivers to estimate IPWV is based on measurements of the delay 
affecting the navigation signals during their propagation in troposphere (neutral 
atmosphere) from the GNSS satellites to the receivers on ground. The dispersive ionospheric 
effect can be removed with a good level of accuracy by a linear combination of dual 
frequency data.  

Such a technique is founded on the non-dispersive refractive characteristics of the neutral 
atmosphere, governed by its composition. The water vapour molecules in atmosphere are 
polar in nature possessing a permanent dipole moment. All the other gases are non-polar 
molecules and a dipole moment is induced among these gases when microwave propagates 
through atmosphere. These molecules reorient themselves according to the polarity of 
propagating wave. In the retrieval technique to be described the atmosphere is considered 
as the sum of a dry component (mainly due to O2) and a wet component.  

Consequently, the neutral delay due to the troposphere can be decomposed into the 
hydrostatic delay associated with the induced dipole moment of the atmosphere 
constituents and the wet delay associated with the permanent dipole moment of water 
vapour (Askne & Nordius, 1987; Brunner & Welsch, 1993; Treuhaft & Lanyi, 1987). The 
zenith hydrostatic delay (ZHD) has a typical magnitude of about 2.4 m at sea level, and it 
grows with increasing zenith angle reaching about 9.3 m for elevation angle of 15°. With 
                                                 
1 Consider the total amount of atmospheric water vapour contained in a vertical column of unit cross 
section: if this water vapour were to condensate and precipitate, the equivalent height of the liquid water 
within the column is the Integrated Precipitable Water Vapour, usually measured in cm or in g/cm2 
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1 Consider the total amount of atmospheric water vapour contained in a vertical column of unit cross 
section: if this water vapour were to condensate and precipitate, the equivalent height of the liquid water 
within the column is the Integrated Precipitable Water Vapour, usually measured in cm or in g/cm2 
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simple models and accurate surface pressure measurements, it is usually possible to predict 
accurately the ZHD. The zenith wet delay (ZWD) can vary from a few millimeters in very 
arid condition to more than 350 mm in very humid condition, and it is not reliable to predict 
the wet delay with an useful degree of accuracy from surface measurements of pressure, 
temperature and humidity.  

Therefore, from GNSS radio signals the total tropospheric delay is provided and, measuring 
the ZHD, it is possible to retrieve the remaining ZWD, incorporating mapping functions 
which describe the dependence on path orientation. The ZWD time series are then directly 
transformed into an estimate of IPWV: GNSS receivers can estimate IPWV with a temporal 
resolution of 30 min or better and with an accuracy better than 0.15 cm. 

2.1.1 Retrieval algorithm 

In this section the retrieval algorithm used for the estimation of IPWV from GNSS 
observations is presented.  

Using GNSS methods of path delay correction, developed for geodetic applications, it is 
possible to estimate time-varying atmospheric zenith neutral delay ZTD (excess path length 
due to signal travel in the troposphere at zenith) defined as: 

 610 ( )
H

ZTD ZHD ZWD N s ds
∞

−= + =   (1) 

where ds has units of length in the zenith, H is the surface height and N(s), usually 
expressed in parts per million (ppm), is the refractivity of air given by (Thayer, 1974): 
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where Pd is the dry air pressure (hPa), T is the air temperature (K), e is the partial pressure 
of water vapour (hPa), Zd and Zw are the dry air and water vapour compressibility factors, 
that consider the departure of air from an ideal gas. Values for inverse dry and wet 
compressibility factors differ from unity of about one part per thousand, and are given by: 
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where Tc is temperature in Celsius.  

Several authors have given values for the empiric constants k1, k2 and k3 of eq. 2: a typical 
choice is k1=77.604 (K⋅ hPa-1), k2=64.79 (K⋅ hPa-1) and k3=3.776⋅105(K2⋅hPa-1) (Thayer, 1974). 

In eq. 2, the first two terms of N are due to the induced dipole effect of the neutral 
atmospheric molecules (dry gases and water vapour), and the third term is caused by the 
permanent dipole moment of the water vapour molecule. Therefore, the hydrostatic part is 
described by: 
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and the wet part is: 
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In the estimation algorithm of IPWV we can identify four principal steps: 

1. We start with the estimation of the neutral zenith path delay from GNSS observations 
(Bevis et al., 1992), which are elaborated using a specific GNSS software (e.g. Bernese 
GPS software or others). The neutral radio path delay has to be estimated using precise 
orbit ephemerides, choosing a proper cut-off angle (e.g. 15 degrees), resolution time 
(e.g. 30 minutes), and a suitable law as dry and wet mapping functions. Different kinds 
of mapping functions exist and they are different in number of meteorological 
parameters involved (Herring, 1992; Ifadis, 1986; Niell, 1996). 

2. Computation of the ZHD component of the atmosphere, that is the greater component 
in magnitude of ZTD but it is less variable with respect to ZWD. 

If atmospheric profiles of temperature and dry pressure are available near the GPS station, 
the ZHD can be computed using eq. 4. Since such an availability is difficult in time and 
space, alternative and more simple procedures can be adopted for a reliable estimation of 
the hydrostatic delay. 

If surface pressure is known with an accuracy of 0.3 hPa or better, ZHD can be estimated 
through simple models to better than 1 mm (Elgered et al., 1991), e.g. using the 
Saastamoinen model (Saastamoinen, 1972): 

 ( )
0.22768Z f ,

sPHD Hλ=  (6) 

 ( ) ( )( )f λ, 1 0.00266 cos 2 0.00028 H Hλ= − ⋅ −  (7) 

where ZHD depends on actual surface pressure Ps (hPa), on latitude λ (rad) and on the 
surface height H (km). The error introduced by the assumption of hydrostatic equilibrium in 
the model formulation is typically of the order of 0.01%, corresponding to 0.2 mm in the 
zenith delay. 

3. Then ZWD is computed by subtracting ZHD from ZTD.  
4. Finally, it is possible to retrieve IPWV using the relationship: 

 IPWV Π ZWD= ×  (8) 

Typical values for the parameter П are approximately 0.16, so 6 mm of ZWD is equivalent to 
about 1 mm of IPWV. 

The parameter П is a function of various physical constants and of the weighted mean 
temperature Tm of the atmosphere (Askne & Nordius, 1987; Davis et al., 1985): 
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where ds has units of length in the zenith, H is the surface height and N(s), usually 
expressed in parts per million (ppm), is the refractivity of air given by (Thayer, 1974): 
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where Pd is the dry air pressure (hPa), T is the air temperature (K), e is the partial pressure 
of water vapour (hPa), Zd and Zw are the dry air and water vapour compressibility factors, 
that consider the departure of air from an ideal gas. Values for inverse dry and wet 
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where Tc is temperature in Celsius.  

Several authors have given values for the empiric constants k1, k2 and k3 of eq. 2: a typical 
choice is k1=77.604 (K⋅ hPa-1), k2=64.79 (K⋅ hPa-1) and k3=3.776⋅105(K2⋅hPa-1) (Thayer, 1974). 

In eq. 2, the first two terms of N are due to the induced dipole effect of the neutral 
atmospheric molecules (dry gases and water vapour), and the third term is caused by the 
permanent dipole moment of the water vapour molecule. Therefore, the hydrostatic part is 
described by: 
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and the wet part is: 

 6 1 6 1
2 3 210 10w w

e eZWD k Z ds k Z ds
T T

− − − −= ⋅ + ⋅   (5) 

In the estimation algorithm of IPWV we can identify four principal steps: 

1. We start with the estimation of the neutral zenith path delay from GNSS observations 
(Bevis et al., 1992), which are elaborated using a specific GNSS software (e.g. Bernese 
GPS software or others). The neutral radio path delay has to be estimated using precise 
orbit ephemerides, choosing a proper cut-off angle (e.g. 15 degrees), resolution time 
(e.g. 30 minutes), and a suitable law as dry and wet mapping functions. Different kinds 
of mapping functions exist and they are different in number of meteorological 
parameters involved (Herring, 1992; Ifadis, 1986; Niell, 1996). 

2. Computation of the ZHD component of the atmosphere, that is the greater component 
in magnitude of ZTD but it is less variable with respect to ZWD. 

If atmospheric profiles of temperature and dry pressure are available near the GPS station, 
the ZHD can be computed using eq. 4. Since such an availability is difficult in time and 
space, alternative and more simple procedures can be adopted for a reliable estimation of 
the hydrostatic delay. 

If surface pressure is known with an accuracy of 0.3 hPa or better, ZHD can be estimated 
through simple models to better than 1 mm (Elgered et al., 1991), e.g. using the 
Saastamoinen model (Saastamoinen, 1972): 

 ( )
0.22768Z f ,

sPHD Hλ=  (6) 

 ( ) ( )( )f λ, 1 0.00266 cos 2 0.00028 H Hλ= − ⋅ −  (7) 

where ZHD depends on actual surface pressure Ps (hPa), on latitude λ (rad) and on the 
surface height H (km). The error introduced by the assumption of hydrostatic equilibrium in 
the model formulation is typically of the order of 0.01%, corresponding to 0.2 mm in the 
zenith delay. 

3. Then ZWD is computed by subtracting ZHD from ZTD.  
4. Finally, it is possible to retrieve IPWV using the relationship: 

 IPWV Π ZWD= ×  (8) 

Typical values for the parameter П are approximately 0.16, so 6 mm of ZWD is equivalent to 
about 1 mm of IPWV. 

The parameter П is a function of various physical constants and of the weighted mean 
temperature Tm of the atmosphere (Askne & Nordius, 1987; Davis et al., 1985): 
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where ρ is the density of liquid water, Rν  is the specific gas constant for water vapour, m is 
the ratio of molar masses of water vapour and dry air, and k1, k2, k3 are the constants 
defined previously. 

The transformation described in eq. 8 assumes that the wet path delay is entirely due to 
water vapour and that liquid water and ice do not contribute significantly to the wet delay 
(Duan et al., 1996).  

2.2 State of the art 

The '90s witnessed the fast increasing of the use of the tropospheric delay time of GNSS 
signals to estimate the Integrated Precipitable Water Vapour (Bevis et al., 1992; Bevis et al., 
1994; Businger et al., 1996; Coster et al., 1997; Davies & Watson, 1998; Duan et al., 1996; 
Emardson et al., 1998; Kursinski, 1994; Rocken et al., 1993; Ware et al., 1997; Yuan et al., 
1993). 

Although the IPWV retrieval algorithm from ZTD measurements is well-established, 
different strategies were adopted for the time-varying parameter П. Anyway, П can be 
estimated with such an accuracy that very little uncertainty is introduced during the 
computation of eq. 8. 

Bevis et al. (1994) provided an error budget for П and showed that in most practical conditions 
the uncertainty for this parameter is essentially due to the uncertainty for Tm (usually 
predicted from the surface temperature Ts on the basis of regressions), leading to a relative 
error in П of the order of 2%. In fact, exact calculations of Tm require profiles of atmospheric 
temperature and water vapor, as from radiosoundings or analysis from Numerical Weather 
Prediction Models (e.g the global European model, ECMWF). Since those data are not easily 
available, Tm is commonly estimated using station data of surface air temperature with 
empirical linear or more complicated relationship (the so-called Tm-Ts relationship) that can be 
site-dependent and may vary seasonally and diurnally (Bevis et al., 1994).  

A simple and alternative approach can be considered for П estimation: the use of a linear 
regression (ZWD and IPWV as predictors and predictands, respectively) from historical data 
base of radiosoundings or ECMWF available near the site of interest for the water vapour 
estimation, leading again to a relative error in П just above 2%. Considering monthly 
averages of П the uncertainty is around 1.5% (Basili et al., 2001). This approach does not 
need measurements of surface temperature for each computation of П.  

Estimation of water vapour features by GNSS is valuable from the point of view of climate 
monitoring, atmospheric research, and other applications such as ground-based and 
satellite-based sensor calibration and validation. GNSS tropospheric delays are also useful 
for operational weather prediction models (Gutman & Benjamin, 2001; Macpherson et al., 
2008; Smith et al., 2000). 
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The IPWV retrieval by means of a GNSS ground-based receiver can be used to monitor in 
situ water vapour time series, or to compare the IPWV values estimated by co-located 
ground-based sensors (e.g. microwave radiometer, photometer). Networks of GNSS 
receivers can be used to monitor the water vapour field, mapping its horizontal distribution. 

The possibility of mapping IPWV measured by GNSS networks has been explored (de Haan 
et al., 2009; Morland & Matzler, 2007), also combining IPWV data retrieved from GNSS 
receivers and from satellite-based radiometers to produce IPWV maps over extended areas 
(Basili et al., 2004; Lindenbergh et al, 2008). 

2.3 Results 

The degree of accuracy in IPWV estimation by GNSS receivers exploiting the tropospheric 
propagation delay at L-band is usually around 0.10-0.20 cm. The horizontal resolution of 
zenith columnar water vapour associated to a single receiver using standard methods 
(azimuthally symmetric weighting functions) is in the order of tens of kilometers, roughly 
corresponding to the aperture of the cone which includes all the lines of sight of the various 
GNSS satellites observed at different elevation angles. 

Besides GNSS, several techniques are well established to derive the vertically IPWV, such as 
ground-based microwave radiometers (MWR), radiosonde observations (RAOBs), analysis 
data from Numerical Weather Prediction Models (e.g ECMWF). Some examples of IPWV 
comparisons among different techniques during experimental campaigns are reported in 
this sub-section. 

For instance, during an experimental campaign in Rome, Italy (20 September - 3 October, 
2008), different instruments managed by the Sapienza University of Rome were operative at 
the same site: a GPS receiver (included in the Euref Permanent Network) a MWR (a dual-
channel type, 23.8 and 31.4 GHz, model WVR-1100, Radiometrics) and six RAOBs (Pierdicca 
et al., 2009). Also, analysis data from ECMWF nearest the site were considered. The IPWV 
time series for the entire campaign are plotted in Fig. 1. 

 
Fig. 1. Rome, Sapienza University of Rome (41.89 N and 12.49 E, 72 m a.s.l.), 20 September - 
3 October, 2008. Time series of IPWV from MWR (blue dots), GPS (green), RAOBs (yellow 
squares) and ECMWF (magenta circles). 
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where ρ is the density of liquid water, Rν  is the specific gas constant for water vapour, m is 
the ratio of molar masses of water vapour and dry air, and k1, k2, k3 are the constants 
defined previously. 
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error in П of the order of 2%. In fact, exact calculations of Tm require profiles of atmospheric 
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Prediction Models (e.g the global European model, ECMWF). Since those data are not easily 
available, Tm is commonly estimated using station data of surface air temperature with 
empirical linear or more complicated relationship (the so-called Tm-Ts relationship) that can be 
site-dependent and may vary seasonally and diurnally (Bevis et al., 1994).  

A simple and alternative approach can be considered for П estimation: the use of a linear 
regression (ZWD and IPWV as predictors and predictands, respectively) from historical data 
base of radiosoundings or ECMWF available near the site of interest for the water vapour 
estimation, leading again to a relative error in П just above 2%. Considering monthly 
averages of П the uncertainty is around 1.5% (Basili et al., 2001). This approach does not 
need measurements of surface temperature for each computation of П.  

Estimation of water vapour features by GNSS is valuable from the point of view of climate 
monitoring, atmospheric research, and other applications such as ground-based and 
satellite-based sensor calibration and validation. GNSS tropospheric delays are also useful 
for operational weather prediction models (Gutman & Benjamin, 2001; Macpherson et al., 
2008; Smith et al., 2000). 
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The IPWV retrieval by means of a GNSS ground-based receiver can be used to monitor in 
situ water vapour time series, or to compare the IPWV values estimated by co-located 
ground-based sensors (e.g. microwave radiometer, photometer). Networks of GNSS 
receivers can be used to monitor the water vapour field, mapping its horizontal distribution. 

The possibility of mapping IPWV measured by GNSS networks has been explored (de Haan 
et al., 2009; Morland & Matzler, 2007), also combining IPWV data retrieved from GNSS 
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propagation delay at L-band is usually around 0.10-0.20 cm. The horizontal resolution of 
zenith columnar water vapour associated to a single receiver using standard methods 
(azimuthally symmetric weighting functions) is in the order of tens of kilometers, roughly 
corresponding to the aperture of the cone which includes all the lines of sight of the various 
GNSS satellites observed at different elevation angles. 

Besides GNSS, several techniques are well established to derive the vertically IPWV, such as 
ground-based microwave radiometers (MWR), radiosonde observations (RAOBs), analysis 
data from Numerical Weather Prediction Models (e.g ECMWF). Some examples of IPWV 
comparisons among different techniques during experimental campaigns are reported in 
this sub-section. 

For instance, during an experimental campaign in Rome, Italy (20 September - 3 October, 
2008), different instruments managed by the Sapienza University of Rome were operative at 
the same site: a GPS receiver (included in the Euref Permanent Network) a MWR (a dual-
channel type, 23.8 and 31.4 GHz, model WVR-1100, Radiometrics) and six RAOBs (Pierdicca 
et al., 2009). Also, analysis data from ECMWF nearest the site were considered. The IPWV 
time series for the entire campaign are plotted in Fig. 1. 

 
Fig. 1. Rome, Sapienza University of Rome (41.89 N and 12.49 E, 72 m a.s.l.), 20 September - 
3 October, 2008. Time series of IPWV from MWR (blue dots), GPS (green), RAOBs (yellow 
squares) and ECMWF (magenta circles). 
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The IPWV root mean square (rms) difference of GPS compared with MWR is 0.10 cm, with 
RAOBs and ECMWF is around 0.15 cm. 

With reference to an Italian ground-based network of GPS receivers, managed by the Italian 
Space Agency (ASI), another experimental campaign was conducted in Cagliari (Italy), 
during the whole 1999 (Basili et al., 2001). The experimental site was selected at the Cagliari 
GPS station where a ground-based dual-channel microwave radiometer (WVR-1100) was 
operated for the whole campaign of measurements. Also, data from RAOBs released at 
Cagliari every six hours were available. Results of the experiment for the whole 1999 are 
shown in Fig. 2, gathered in non-precipitating conditions to avoid problems with the 
radiometer measurements. The comparison is performed considering a sampling time of 6 
hours, in coincidence with RAOB releases. 

This long-term comparison has shown a fairly good agreement among the two remote 
sensors and the RAOBs, with an error standard deviation similar to other experiments 
reported in literature. 

 
Fig. 2. Scatterplots of IPWV computed at Cagliari, 1999, by three different instruments 
(RAOB, GPS and WVR). Left: IPWV-GPS vs. IPWV-RAOB; right: IPWV-WVR vs. IPWV-GPS 
(Basili et al. 2001). Bias and STD refer to the mean difference and to the standard deviation 
of the difference. 

3. Wet atmospheric refractivity maps through tomography 
As it has already been shown in Section 2, the remote sensing of “wet” troposphere is 
possible by estimating the wet contribution to atmospheric total delay mapped into the 
zenith direction, the ZWD, in the general adjustment of double difference phase 
observations. Following a step ahead, it is also possible to try to extract some information on 
the three dimensional distribution of atmospheric parameters, from total delay observations 
taken by different line of sights. Tomography deals with the inversion of integral 
measurements collected from a great variety of directions, for the extraction of non-
homogeneous signatures inside the analyzed volume. Requirements necessary to make 
tomographic inversion procedures effective are well known. The geometry of the signal 
paths is crucial for the stability of the inversion procedure. All the voxels (volume pixels) 
have to be crossed by a lot of rays coming from different directions. Horizontal resolution 
can be improved only considering quite dense GNSS networks. Vertical resolution can be 
improved if receivers are deployed on a sloped area. This section presents results already 
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published by Notarpietro et al. (2011), results obtained applying a tomographic inversion to 
real observations taken on October 2010 in Italy, by a dense network of GNSS receivers.  

3.1 State of the art 

Several activities were carried out in the past in the field of neutral atmospheric tomography 
based on observations performed on GNSS signals. Starting from one of the first concept 
description given by Elosegui et al. (1999), the effectiveness of a 4-dimensional (4D) water 
vapour field tomographic reconstruction was assessed by Flores et al. (2000) on a 20x20x15 
km atmospheric domain against ECMWF (European Centre for Medium-Range Weather 
Forecast) data. After that, several methods were applied to different kind of real or 
simulated GPS observables (obtained by more or less dense receiver networks), 
demonstrating the effectiveness of water vapour field reconstructions on different 
atmospheric volume sizes, with different resolutions, against radiosonde data, Numerical 
Weather Prediction models or other independent water vapour dataset. Some reference 
papers (the list is not exhaustive) are that of Hirahara (2000), Gradinarsky and Jarlemark 
(2004), Champollion (2005, 2009), Bi et al. (2006), Troller et al. (2006), Nilsson and 
Gradinarsky (2006).  

In the framework of the European Space Agency project METAWAVE (Mitigation of 
Electromagnetic Transmission errors induced by Atmospheric Water Vapour Effects), we 
applied a new approach to the ZWDs estimated from the observations collected by a local 
network of GPS geodetic receivers deployed over a small area around the city of Como. Such 
new approach is based on an algorithm previously developed, on which we shown, from a 
simulative point of view only, the possibility to infer wet refractivity fields without using first 
guess atmospheric models and without adopting any a priori informations (Notarpietro et al., 
2008). Such an algorithm has been applied to real measurements collected by a local network 
of GPS receivers. In what follows we will summarize the results we obtained. 

3.2 Theoretical basis, retrieval technique, observables and validation approach 

Basically, two different classes of algorithms can be applied to perform atmospheric 
tomography (and tomography in general). The first belongs to iterative reconstruction 
techniques (for example the Algebraic, the Multiplicative Algebraic or the Simultaneous 
Iterative Reconstruction Techniques, respectively called ART, MART and SIRT, see Herman 
1980) which need a good first guess atmospheric model to converge at the “good” solution. 
The second belongs to the Least Square Inversion (or Generalized Inversion) techniques, 
which are “one-step” algorithms and do not need a first guess. Notarpietro et al. (2008), 
shown the possibility to infer Wet Refractivity fields without using first guess atmospheric 
models. The algorithm accomplishes the reconstruction in two consecutive steps. The first 
step allows the retrieval of a “raw” three dimensional wet refractivity distribution directly 
from Slant Wet Delays (SWD) observables ΔΦwet (defined as equivalent optical length), 
which in turn depend on the wet refractivity (Nw) distribution along the ray path, in the way 
defined by the following equation: 

 wet 6
w

ray-path

10 N ds−ΔΦ =   (11) 
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published by Notarpietro et al. (2011), results obtained applying a tomographic inversion to 
real observations taken on October 2010 in Italy, by a dense network of GNSS receivers.  
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In the framework of the European Space Agency project METAWAVE (Mitigation of 
Electromagnetic Transmission errors induced by Atmospheric Water Vapour Effects), we 
applied a new approach to the ZWDs estimated from the observations collected by a local 
network of GPS geodetic receivers deployed over a small area around the city of Como. Such 
new approach is based on an algorithm previously developed, on which we shown, from a 
simulative point of view only, the possibility to infer wet refractivity fields without using first 
guess atmospheric models and without adopting any a priori informations (Notarpietro et al., 
2008). Such an algorithm has been applied to real measurements collected by a local network 
of GPS receivers. In what follows we will summarize the results we obtained. 

3.2 Theoretical basis, retrieval technique, observables and validation approach 

Basically, two different classes of algorithms can be applied to perform atmospheric 
tomography (and tomography in general). The first belongs to iterative reconstruction 
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1980) which need a good first guess atmospheric model to converge at the “good” solution. 
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which are “one-step” algorithms and do not need a first guess. Notarpietro et al. (2008), 
shown the possibility to infer Wet Refractivity fields without using first guess atmospheric 
models. The algorithm accomplishes the reconstruction in two consecutive steps. The first 
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Linearizing eq. 11 and considering the entire observation dataset, the following matrix 
equation turns out: 

 610−= ⋅wet
wΔΦ L N  (12) 

where L is the Data Kernel to be inverted to obtain the wet refractivity distribution, which is 
a matrix containing for each row, the lengths of each segment inside each voxel crossed by 
the generic rectilinear ray-path connecting the receiver and the satellite. This tomographic 
pre-processing step pertains to Least Square Inversion algorithms (Lawson & Hanson, 1974). 
It achieves the result through the constrained inversion (using Singular Value 
Decomposition) of the Tikonov-regularized Data Kernel matrix. Although the resolution 
obtainable with this pre-processing step is quite rough (the entire tropospheric volume has 
been divided into 2x2x20 voxels grid), this result is used as first guess for the algebraic 
technique used in the second phase of the proposed reconstruction algorithm. In particular 
we applied the SIRT technique to obtain the distribution of wet refractivity inside the 
tropospheric volume characterized by the final resolution (4x4x20 voxels grid). 

With the aim of studying the potentialities of GNSS in the determination of local wet 
refractivity fields, needed for instance to correct InSAR derived landslide deformation maps, 
we used observations collected during a couple of weeks in 2008 by the MisT GPS network, 
defined by eight geodetic receivers that were deployed around the COMO Permanent 
Network station (which is placed in the North West part of Italy). This network was born for 
different purposes from the tomographic reconstruction of the wet refractivity field, and its 
design was not fully compliant with the requirements of this technique (details about each 
MisT station are reported in Table 1, while the MisT network topology is shown in Fig. 3). 
An attempt to improve the original design of the MisT network was done by performing a 
different daily campaign collecting data by two additional GPS portable receivers, named 
BISB and BOLE, placed at higher altitudes from the original network (respectively in the top 
of Monte Bisbino e Monte Boletto). 
 

Station Height Receiver type 
ANZA 280 m Leica GRX1200 
BRUN 738 m Leica GX1200 
CAST 286 m Leica GRX1200 

COMO 292 m Topcon Odyssey 
LAPR 349 m Leica GX1200 
PRCO 266 m Leica GX1200 
NAND 746 m Leica GX1200 
MGRA 353 m Leica GX1200 
DANI 614 m Leica GX1200 
BISB 1373 m Topcon GB1000 

BOLE 1199 m Trimble 4700 

Table 1. MisT GPS network description. Highligthed raws are those related the two 
“mountainous” receivers 
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Fig. 3. Geographic distribution of the MisT network. The two “mountainous” GPS receivers 
are highlighted. The final volume discretization is also superimposed.  

A daily multi-station adjustment of observations collected by the whole network was 
performed via the Bernese V0.5 software, to estimate jointly the station positions and the 
Hourly ZWDs parameters. These are basically averaged value of the tropospheric delay 
zenithal projection, affecting all the signals from the considered station to all the satellites in 
view, as they move along their orbits in 1 h time. Differences between the actual 
instantaneous slant delays and these averaged values projected back on the slant direction 
are to be found in the double difference adjustment residuals (this analysis is not described 
here). More precisely, carrier phase double differences were processed, all the single 
differences being formed with respect to the COMO reference station. The Bernese software 
models the tropospheric delay in each station-receiver phase measurement as the sum of a 
hydrostatic component and a wet one. The first can be modelled (and slanted toward the 
satellite position using the dry Niell’s mapping function (Niell, 1996)) considering the 
Saastamoinen formulation (Davis et al., 1985) and interpolating surface pressure data (in 
time and space) obtained by 0.25°x0.25° ECMWF analysis. The second can be expressed as 
the product of an unknown parameter, the ZWD, by a known coefficient computed in our 
case from the wet Niell’s mapping function. For each MisT station, input data were Hourly 
ZWDs, estimated during the week from October 12th to October 18th, 2008 and from 
November 13th to November 19th, 2008. Hourly ZWDs related to each MisT station, were 
then “geometrically” projected along the slant paths (using Niell’s mapping functions) by 
upsampling at 1-min sample intervals the 15 min GPS satellites positions obtained from 
International GNSS Service (IGS) sp3 files and inverted using the developed tomographic 
procedure. 

It has to be pointed out that the standard dataset adopted for tomographic reconstructions 
is built up by considering only 6 out of 9 MisT receivers. Firstly, COMO, ANZA and 
CAST are the three stations belonging to the so called MisT inner sub-network. We 
considered only ANZA among the three close stations of COMO, ANZA and CAST 
(deployed at distances less than 200 m from one-another), whose ZWDs are highly 
correlated (>95%). Moreover, ZWD data obtained processing NAND observations are 
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Linearizing eq. 11 and considering the entire observation dataset, the following matrix 
equation turns out: 

 610−= ⋅wet
wΔΦ L N  (12) 

where L is the Data Kernel to be inverted to obtain the wet refractivity distribution, which is 
a matrix containing for each row, the lengths of each segment inside each voxel crossed by 
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defined by eight geodetic receivers that were deployed around the COMO Permanent 
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Station Height Receiver type 
ANZA 280 m Leica GRX1200 
BRUN 738 m Leica GX1200 
CAST 286 m Leica GRX1200 

COMO 292 m Topcon Odyssey 
LAPR 349 m Leica GX1200 
PRCO 266 m Leica GX1200 
NAND 746 m Leica GX1200 
MGRA 353 m Leica GX1200 
DANI 614 m Leica GX1200 
BISB 1373 m Topcon GB1000 

BOLE 1199 m Trimble 4700 

Table 1. MisT GPS network description. Highligthed raws are those related the two 
“mountainous” receivers 
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Fig. 3. Geographic distribution of the MisT network. The two “mountainous” GPS receivers 
are highlighted. The final volume discretization is also superimposed.  
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used for self-consistency validation purposes (‘leave-one-out’ quality assessment) and are 
not included in the input dataset.  

As we have previously stated, our tomographic approach is based on two consecutive 
reconstruction steps. The first one (data kernel generalized inversion) creates the first guess 
field for the second one (algebraic tomography), which doubles the horizontal resolution 
(from 2x2x20 to a 4x4x20 voxels grid, i.e. means 4.5x6.5x0.5 km3). It has to be stressed that 
volume resolution is strictly related to the geometrical distribution of GNSS receivers and to 
the availability of observations. Higher resolutions would introduce an increasing number 
of voxels not crossed by any ray, thus worsening the final results. On the contrary, lower 
resolutions would imply a too coarse description of the field. 

Considering the available observables we were able to obtain 168 or 144 Hourly wet 
refractivity maps (for the October or the November week respectively). Validation is carried 
out considering the difference between ZWD GNSS measurements taken over NAND 
receiver and corresponding ZWD estimates evaluated by vertically integrating the 
reconstructed wet refractivity maps. Considering the entire observing period, final statistics 
are thus based on 168 (144) ZWD differences (measured-estimated) distribution for the 
October (November) week and results are given in terms of their mean values and their rms 
values.  

3.3 Results 

In what follows, we will show results related to the so called baseline scenario and 
improvements obtained adding observations taken by mountainous receivers and from low 
elevation angles. Some hints about the impact of distance and height of the reconstruction 
error and about validation against independent data will be also given. 

3.3.1 Baseline scenario results and effect of mountainous observation ingestion 

The baseline scenario is that defined considering observations taken by the reduced MisT 
network formed by ANZA, BRUN, LAPR, PRCO, MGRA and DANI stations. For the 
October week, tomographic reconstructions were carried out considering ZWDs observed 
by the reduced MisT network observations taken during 12–18 October. The good 
agreement between measured and estimated ZWD time series evaluated above NAND 
during this period and for this scenario is shown in Fig. 4, while some statistics are given 
in column A of Table 2. Since data from the two mountainous receivers (BISB and BOLE 
in Fig. 3) were available only on 12th October, 2008, between 9.00 am and 7.00 pm, 
comparisons of measured and estimated ZWDs above NAND receiver were  performed 
also considering observations taken by the reduced MisT network in this smaller period 
(column B of Table 2). A bias decrease of 0.4 mm is observed adding BOLE (1199 m a.s.l.) 
observations (see column C, Table 2) and of 1 mm adding both BOLE and BISB (1373 m 
a.s.l.) data (see column D, Table 2) in the input dataset. This demonstrate the necessity of 
measurements collected at higher altitudes which allows a best reconstruction of vertical 
refractivity gradients characterizing the first three atmospheric layers. The high rms error 
with respect the one characterizing the baseline result given in column B, Table 2, is 
probably due to the more noisy data acquired by the two portable mountainous receivers 
(this is also evidenced by the decrease in correlation observed between NAND ZWDs 
measurements and estimates). 
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Fig. 4. Time series of ZWDs measured (blue dots) and estimated (red dots) after 
reconstruction above NAND station, for the baseline experiment. 

 
Table 2. Statistics of the ZWD difference (measured-estimated after reconstruction) over the 
NAND reference station. 

3.3.2 Ingestion of low elevation observations 

Considering the baseline scenario described in paragraph 3.3.1, it is clear that the 
improvement in the reconstruction of lower layers is strictly related to the availability of 
trajectories crossing (and discriminating) the lower tropospheric layers. In our tomographic 
reconstruction, only rays exiting from the top boundary of the analyzed 18x26 km2x10 km 
volume were considered. In our case, the mean elevation angle was about 30°. Since the 
MisT network topography is fixed, to overcome this limit and therefore improving the 
retrieved field, we try to ingest also low elevation trajectories which enter from the lateral 
boundaries of the analyzed volume. Since SWDs associated to these rays contains both a 
contribution of the wet refractivity field inside the considered volume (namely, the inner 
volume) and outside the volume (the outer volume) up to 10 km height, we modelled and 
removed this last quantity from the SWDs associated to low elevation (< 30°) ray before 
entering the tomographic approach. The wet refractivity model considered in the outer 
volume was obtained considering three different approaches:  

a. from a very coarse tomographic reconstruction performed on a bigger volume using the 
same GNSS experimental data (considering as input data those observed by the entire 
MisT network except those taken by the NAND receiver); 

b. interpolating the CIRA-Q wet atmospheric climatologic model (Kirchengast et al., 1999) 
in the outer volume; 

c. considering data taken by ECMWF analysis (91 pressure levels, 0.25°x0.25° grid 
resolution), collocated in time and space with the centre of each voxel belongs to the 
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outer volume (this was done by a bilinear space interpolation and a linear time 
interpolation of the meteorological data). 

Results related to this analysis are summarized in Table 3. They confirm the importance of 
the availability of low elevation measurements issued from different altitudes to improve 
the estimation of vertical refractivity gradients in such a tomographic approach. It has to be 
noted that the availability of external independent information (atmospheric models or, 
better, meteorological data) for modelling the SWD component of low elevation 
observations in the outer volume seems to be necessary in this case. Because of the MisT 
network design (receivers not homogeneously distributed in the inner volume), the internal 
procedure based on the coarse tomographic reconstruction (case a)) is not very effective. 

 
Table 3. Self-consistency results considering SWD derived by low elevation observations 
(taken during the October week) after the application of the outer volume wet refractivity 
modelling strategies a., b. and c.. Results are relative to the statistics of ZWD errors 
(measured-estimated after reconstruction) over the NAND reference station. Results related 
to the baseline scenario are reported in the first column as a reference. In the last column the 
evident outliers due to measurements (see blue dots in Fig. 4) were removed. 

3.3.3 Impact of distance and height on reconstruction goodness 

Results described previously are good, but are related to the baseline scenario. 
Considering this scenario, the validation has been performed above NAND receiver, 
which is in a good position since its baseline from the COMO master station is between 
the nearest and the farthest stations. In this further analysis we have considered all the 
measurements (ZWDs or ZTDs) available from the MisT network (8 receivers) during the 
entire week (excluding only the COMO receiver, see Fig. 3). Then we have excluded data 
(ZWDs or ZTDs) observed by one receiver per time, keeping such data as reference for the 
self-consistency validation purpose for that receiver. For each case we have run our 
tomographic reconstruction considering all the 168 Hourly ZWDs (or ZTDs) available per 
each station for the October week, mapping them into the slant directions and including 
also low elevation observations (following the procedure described in paragraph 3.3.2). 
The obtained 168 Wet Refractivity Maps (considering ZWDs as input to the tomography) 
or Total Refractivity Maps (considering ZTDs as input) have then been used to evaluate 
the ZWD and ZTD estimates above the reference receiver, which are compared with the 
ZWD and ZTD observations above that receiver. This analysis has been repeated for each 
receiver of the MisT network. 

Root Mean Squares of ZWDs and ZTDs differences (measured-estimated after 
reconstruction) are then reported in function of the distance of the station from the COMO 
master station or in function of the height of the station. Such results are plotted in Fig. 5. 
The same analysis has been performed considering data taken by the MisT network 
extended to the two mountainous receivers during 12 October from 9:00 AM to 7:00 PM 
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(only 10 Hourly averaged ZWDs or ZTDs observations are contemporaneously available to 
any receivers of the “extended” network). In this case results are shown in Fig. 6. 

 
Fig. 5. rms of the differences between ZWDs (blue dots) or ZTDs (red dots) observed and 
estimated above each reference receiver, excluding data of that receiver from the input 
dataset before the reconstruction. All data observed by the MisT network during the entire 
week are taken into account. (Left) rms are plotted against the distance of the reference 
receiver from COMO master station. (Right) rms are plotted against the height of the 
reference receiver above WGS84. The degraded results obtained excluding BRUN receiver 
(which is the highest one) are highlighted. 

 
Fig. 6. Like Fig. 5, but considering all data observed by the MisT network and by the two 
mountainous receivers during the 10 hours of 12th October, 2008. 

First of all this analysis confirms the impact of a good height displacement of receivers in 
the network. Even if MisT network topography has not been optimized for the geography 
of the analyzed area and for tomographic applications, if we consider the impact of height 
in the evaluation of propagation delays, we can say that the lack of receivers placed at 
higher altitudes will worsen final results. In particular, considering the original MisT 
network, where all the receivers are more or less placed in the same layer of the map (Fig. 
5) we want to highlight that, if data observed at the highest receiver (namely BISB, which 
is placed in another vertical layer) are not given in input to the tomography, the rms of 
the difference between estimated and measured zenith delays (both Wet and Total) is 
generally doubled.  
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Things are better if we consider the MisT network plus the mountainous receivers. In this 
case the worsening is not so emphasized, since it is compensated by other receivers placed 
at similar altitudes (see Fig. 6). In both cases it seems that the results worsening follows a 
(more than) linear rule. It is absolutely not clear why the effects on the evaluation of Wet 
delays and Total delays are inverted, considering or not considering the mountainous 
receivers. It has to be noted that the network solution obtained for the mountainous 
receivers is not as accurate as that obtained for the other receivers, since the mountainous 
sensor positions have not been fixed. Moreover, results reflect 10 hours of observations 
instead of the entire week.  

As far as the impact with distance is concerned, it is quite difficult to identify a clear 
relationship with results. Obviously if we exclude data observed by the nearest receivers 
(ANZA or CAST) to the reference one (COMO), results are better (rms is halved 
considering both the weekly data of the original MisT network and the 10 hours data of 
the MisT network plus mountainous receivers) than that we can obtain excluding one of 
the other (farther) receivers. But for all the other cases, it seems that final results are 
insensitive to distance. It is a surprising result since we expected a certain error 
correlation with distance. But the farthest receivers (MGRA and DANI) are placed in 
opposite positions with respect the map center and are the southest receivers (see Fig. 3). 
If we take into account low elevation observations (even if such observations are 
averaged, since they are obtained simply mapping hourly averaged Zenith observations 
into slant directions), rays related to the northern receivers (all the others) anyway interest 
the atmospheric volume above the southest receivers (and not viceversa, given the orbital 
positions of GPS satellites). And this could probably compensate the “distance” effect. 
Anyway, also in this case, further analysis and measurements are necessary to better 
understand if there is a clear relationship. 

3.3.4 Validation against independent data 

In order to assess the goodness of inferred wet refractivity fields in different points of the 
grid considering independent data, we also did a comparison of ZWDs obtained vertically 
integrating wet refractivity fields derived after tomographic reconstruction along each 
column of retrieved maps with those derived by ECMWF analysis co-located in the same 
points (and times), even if the ECMWF horizontal resolution (0.25°x0.25°) and time 
resolution (6 h) are too coarse with respect those characterizing our final maps. 

Statistical comparisons were performed considering the 168 wet refractivity maps obtained 
using data observed by the reduced MisT network (plus NAND receiver) collected during 
the October week and considering the 144 maps obtained for the November one. Results are 
shown in Fig. 7, where the time series of both ZWDs estimated after tomographic 
reconstruction (blue lines) and evaluated using ECMWF data (red lines) are plotted for each 
column of our volume discretization. We classified the areas accordingly to the 
corresponding rms values (computed for each ZWD difference time series, after the average 
bias removal) using green, yellow and red colors. As expected, the northern part is where 
the agreement is worse. In that area we had no receiver and less satellites were in view in 
the north direction. On the other hands, in the southern area, agreement is better even if no 
receivers were present, thanks to the availability of a higher number of rays. The best area is 
obviously the central one.  
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Fig. 7. Time series of ZWD obtained integrating ECMWF (red) collocated and estimated 
with tomography (blue) wet refractivity maps. Left: October week data; right: November 
week observations. The black numbers shown the column “number” inside the map. 

Even if our main goal was to demonstrate the effectiveness in adopting tomographic 
reconstruction procedures for the evaluation of propagation delays inside water vapour 
fields, the real water vapour vertical variability and its time evolution is also well 
reproduced. Fig. 8(bottom) shows the time evolution of wet refractivity vertical profiles 
evaluated in the map centre (voxel 11 – see Fig. 7) during the overall October week, 
considering data taken by all the available MisT receivers. Unfortunately, no meaningful  

 
Fig. 8. Time evolution of wet refractivity distribution evaluated in the central column of the 
map (voxel 11) during the overall October week, considering data taken by all the available 
MisT receivers. Top: integrated wet refractivity along zenith (namely the ZWD time series). 
Bottom: vertical wet refractivity profile (measured in N-units) evolution (Heights are given 
in meters). 
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sensor positions have not been fixed. Moreover, results reflect 10 hours of observations 
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If we take into account low elevation observations (even if such observations are 
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using data observed by the reduced MisT network (plus NAND receiver) collected during 
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Fig. 7. Time series of ZWD obtained integrating ECMWF (red) collocated and estimated 
with tomography (blue) wet refractivity maps. Left: October week data; right: November 
week observations. The black numbers shown the column “number” inside the map. 

Even if our main goal was to demonstrate the effectiveness in adopting tomographic 
reconstruction procedures for the evaluation of propagation delays inside water vapour 
fields, the real water vapour vertical variability and its time evolution is also well 
reproduced. Fig. 8(bottom) shows the time evolution of wet refractivity vertical profiles 
evaluated in the map centre (voxel 11 – see Fig. 7) during the overall October week, 
considering data taken by all the available MisT receivers. Unfortunately, no meaningful  

 
Fig. 8. Time evolution of wet refractivity distribution evaluated in the central column of the 
map (voxel 11) during the overall October week, considering data taken by all the available 
MisT receivers. Top: integrated wet refractivity along zenith (namely the ZWD time series). 
Bottom: vertical wet refractivity profile (measured in N-units) evolution (Heights are given 
in meters). 
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meteorological events happened during the observing period. Anyway, an increase of wet 
refractivity (water vapour concentration) can be evidenced between the 100th (4 am, 16th 
October) and the 120th (midnight, 16th October) hours, with a peak around the 110th hour 
(2 pm, 16th October). The increase is well reproduced in terms of integrated wet refractivity 
along zenith (see ZWD evolution in Fig. 8(top)). Moreover, meteorological data (not shown 
here) confirmed an increase of cloud covering during that time interval.  

4. GNSS reflectometry 
Other than for atmosphere monitoring, GNSS signals may be used to characterize the Earth 
surface. In this section this kind of remote sensing technique is described, considering two 
scenarios of observation: ocean and land. 

The exploitation of GNSS signals reflected off the oceans allows to obtain altimetry 
measurements (sea surface heights), surface roughness from which wind intensity and 
direction is determined, sea-ice topography and its stratification. Additionally, land 
observations are used to determine the soil moisture content and to monitor the surface 
snow cover.  

The most of performed experiments are based on code measurements, since signal phase 
coherence after reflections is not many times maintained, because smooth surfaces are rarely 
found in reality. 

4.1 Description of observables, theoretical basis and retrieval technique 

For remote sensing purposes, the reflected and direct GNSS signals coming from the same 
satellite are collected on bistatic radar geometry; at least two antennas are required: the first 
RHCP (Right Hand Circularly Polarized) and zenith looking in charge of receiving the direct 
signal, the second LHCP (Left Hand Circularly Polarized) and nadir looking used to track 
the reflections. 

In order to be more precise, the overall system could be considered as a multistatic 
observing system, since up to 6/7 GNSS transmitters are contemporary visible by the 
receiver antenna. 

Each reflection is geo-referenced knowing the geometry of acquisition, looking at the point 
where the GNSS signal is reflected under specular condition; for doing this, the observer 
coordinates are necessary. Therefore the direct signal is used not only as a reference but also 
for computing the position of the receiver.  

Three acquisition scenarios are possible: 

• Ground based: in this static configuration, the receiver is placed over mountains, towers 
and bridges and the collected measurements are used for testing the instrument 
functionalities and for monitoring small areas (i.e. coastal altimetry, local soil moisture 
content determination);  

• On aircraft: the sensor is placed on aircrafts or rarely on balloons to demonstrate its 
performances and to monitor small regions with higher spatial resolution than space-
based measurements. This dynamic configuration requires an evaluation of the 
Doppler shift due to the non-zero velocity of the aircraft; furthermore, this Doppler 
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shift improves the resolution on the surface by means of iso-Doppler lines 
computation.  

• Space based: the sensor is placed on board a LEO satellite (400-800 km) with the aim of 
monitoring the entire Earth surface assuring a global coverage of the acquired 
reflections, which may be detected also very far from coastal zones (i.e. in the middle of 
the ocean); the Doppler shift experienced by the signal is the largest achievable among 
the three described scenarios.  

The shape and extension of the footprint of the reflections depends on: the surface 
roughness, the sensor height above the Earth surface, the elevation of the reflected ray, the 
direction of the incidence plane respect to the receiver velocity. 

The footprint must be considered lying on a plane tangent to the Earth surface in the 
specular reflection point. The distance of the specular reflection point from the receiver 
nadir increases when the elevation of the GNSS satellite decreases. 

Inside the area interested by the reflection, the smallest resolution achievable from a 
geometrical point of view is determined by the cells generated by the intersections of the 
iso-delay and iso-Doppler lines. 

Iso-delay lines are determined considering the points on the surface by which the reflected 
signal arrives at the receiver with the same delay. Generally speaking, these points are 
ellipses and are determined considering a single chip of the GNSS code as relative delay 
associated to each ellipse respect to the adjacent one (Martin-Neira, 1993). 

Iso-Doppler lines are determined considering the hyperbolas on the surface where reflected 
signals come to the receiver with the same Doppler shift. The zero Doppler line is computed 
as the line passing through the receiver and orthogonal to its velocity direction (Martin-
Neira, 1993). 

Clearly, we cannot forget the antenna footprint, which acts as a filter in delay and Doppler on 
the surface looks. When the surface is smooth, the total power received is almost coming from 
the first Fresnel zone defined around the specular scattering point (Beckmann & Spizzichino, 
1987). In this case, the computation of the cross-correlation between the reflected signal and 
the local GPS code replica gives a waveform simply delayed respect to the cross-correlation of 
the direct signal, but with the same triangle shape and a noise floor around.  

When the surface is rough non-coherent reflections are expected and the use of the Fresnel 
zone to model the received power is ineffective. In this case, the glistening zone represents 
the source of scattered power (Beckmann & Spizzichino, 1987). 

N scattering elements contained in the glistening zone are considered in determining the 
cross-correlation function  
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where Λ is the triangle cross-correlation function and the m index indicates the quantities 
referred to the modelled signal generated with the local GPS code replica. Through this 
formulation Rp becomes a summation of triangle functions weighted with the amplitude of 
the nth element scattered field and delayed accordingly to the phase shift associated to each 
nth scattering element. The final correlation function shape in this case is shown in Fig. 9. 
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Fig. 9. Shape of the correlation function for non-coherent reflections (black); each triangle 
refers to the signals received by an isorange, 8 samples equal to 1 C/A chip  

The basic observables are the delay of the reflected signal respect to the direct one, and the 
received power after reflection. Both observables are retrieved looking at the correlation 
function of the reflected signal and eventually comparing or normalizing it with the 
correspondent correlation of the direct signal. 

The delay is used to determine the surface height, so is considered in case of GNSS signals 
reflected off water surfaces (Martin-Neira et al., 2001; Hajj & Zuffada, 2003). The height of 
the surface respect to the observer is retrieved in eq. 14 through the relative delay Δτ, the 
speed of light c and the elevation angle of the reflection γ. 

 γ=τΔ sinh2c  (14) 

On the other hand, the reflected power is used to determine the surface reflectivity and the 
scattering cross section (Masters et al., 2004).  

The surface reflectivity belongs to the coherent part of the scattered power that is 
measurable from the specular part of the received echo; it is used to determine the reflection 
coefficient that is related to the incident angle and dielectric constant. The dielectric constant 
is related to the soil composition and to its moisture content following empirical models or 
carefully calibrating the data (Masters et al., 2004). 

The surface can be characterized looking at its roughness from the scattering cross section, 
since it contains the non-specular part of the reflected power. In this case we consider 
reflected power part calculated from the amplitude and the gradient of the correlation 
function on the right side of its maximum. 

In order to retrieve surface winds over the sea, the shape of the non-specular echo is 
compared with a simulated one obtained using a sea surface model (Zavorotny & 
Voronovich, 2000; Elfouhaily et al., 2002). 
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4.2 State of the art 

Winds retrieval and altimetry are the more consolidated applications, while soil moisture 
and ice monitoring are under-development. 

Many instruments were developed up to now (Nogues-Correig et al.,2007) and the 
techniques of retrieval have been tested through many experimental activities. The early 
experiments deal basically with altimetry; measurements were collected either from a static 
position (Martin-Neira et al, 2001), from balloon (Cardellach et al., 2003) or from aircraft 
(Lowe et al, 2002). Other set of experiments were developed to retrieve the ocean surface 
state (Garrison et al., 2000), such as wind or sea roughness. Last but not least, the technique 
was demonstrated on board a small satellite, the UK-DMC (Gleason et al., 2005). 

Nevertheless, nowadays no operative missions exist in this field. 

From our point of view, during the SMAT-F1 project we developed a prototype based on a 
Software Defined Radio solution, using a navigation software receiver (Tsui, 2005). This is 
the NGene SW receiver, developed by NAVSAS group of Politecnico di Torino (Fantino et 
al., 2009). The instrument is highly reconfigurable, since collects raw I and Q IF samples of 
the incoming signals (direct and reflected). A sampling frequency of 8.1838 MHz is used, 
giving about 8 samples per C/A code chip. 

Moreover, the small hardware architecture is made up of cheap COTS (Commercial Of The 
Shelf) components, with very low overall weight and power consumptions. These features 
make the system suitable to be easily placed on board aircrafts, also small U.A.V.s 
(Unmanned Aerial Vehicle) (Cucca et al., 2010). 

4.3 Results 

Using the described receiving system, we carried out two experiments. The first data 
collection has been made on a static position looking at the sea surface from a high cliff. The 
second was performed placing the receiver on an aircraft and acquiring GNSS signals 
reflected from rice fields. 

4.3.1 Sea surface data collection 

The first data collection was carried out on December 2010, from Sardinia Eastern coast at 
157 m above the sea surface, near Cala Gonone. This region is characterized by high cliffs 
like those shown in Fig. 10. 

 
Fig. 10. The Sardinia Eastern Coast  near Cala Gonone (©Google Maps) 
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scattering cross section (Masters et al., 2004).  
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measurable from the specular part of the received echo; it is used to determine the reflection 
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Considering the satellites in view, we pointed our antenna towards 170° of azimuth respect 
to geographical North. We successfully track reflected signals coming from GPS satellite 16 
and GPS satellite 30. The geometry of acquisition was determined computing the iso-delay 
lines  with ½ C/A code chip step and the specular reflection points, shown in Fig. 11 (in red 
for the 16th and in green for the 30th) together with the antenna footprint (depicted in light 
blue). All the points have been superimposed on ©Google static Maps and georeferenced in 
UTM. For both satellites the relative delay-doppler maps were computed over 1 s of non-
coherent integration time and normalized from 0 to 1. Results are shown in Fig. 12. For 
satellite 30 (Fig. 12 (left)), the map is characterized by a very low noise, since the expected 
scattered signal is almost coherent and limited to one iso-range area, with no successive 
returns with delay greater than 1 chip  (8 samples rising to the maximum, 8 samples going 
down to the noise floor). 

  
Fig. 11. Specular reflection point and iso-delay lines superimposed in UTM on ©Google 
static Maps (satellite 16 in red, satellite 30 in green) 

 
Fig. 12. Delay-Doppler maps for satellite 16 (right) and satellite 30 (left) 
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For satellite 16 (Fig. 12 (right)) two different echoes are visible. The first echo is coming from 
the coast (range closest to the observer and lower intensity due to scattering from the 
terrain); while the second is characterized by a greater delay, a different Doppler and 
successive returns lasting about 2 chips. In this case the correlation peak expires after 24 
samples. This is a typical example of the capability to extract informations also from the un-
coherent part of the signal.  

Thus, our receiving system is able to track coherent and un-coherent reflections and to 
contemporary distinguish between echoes with different delays, Doppler shifts and 
intensity.  

4.3.2 Rice fields data collection 

During the second data collection of May 2011, an experiment performed flying over an area 
placed in the Piedmont region (north west part of Italy), the receiving system was placed on 
board a small aircraft in order to track reflections from rice fields. Since rice fields are 
flooded during this month, they are a perfect scenario to study reflection phenomena. 

Like in the previous experiment, the geometry of reflections was analyzed and all the 
satellites with elevation lower than 33° were discarded, since below this elevation the 
specular reflections did not enter inside the -3 dB beam-width of the LHCP nadir looking 
antenna. 

The signal to noise ratio detected from the reflected signal was normalized respect to the 
correspondent direct signal; moreover, we compute all the specular reflection points visible 
and to each point we associate the relative normalized signal to noise ratio. 

On board the aircraft, a video camera was placed to see which fields were really flooded 
during the acquisition. The panoramic view extracted from the video was superimposed on 
©Google Maps, together with the specular reflection points (Fig. 13). After the 
superposition, we have noticed a good agreement between the fields’ state and the received 
power (see Fig. 13 and 14). The minimum received power correspondent to a low 
normalized signal to noise ratio is clearly associated to not flooded fields. 

 
Fig. 13. Specular reflection points tracks for satellite 8 and 26 over Piedmont rice fields with 
relative normalized signal to noise ratio. See Fig. 13 for the red rectangle zoom. 

Furthermore, we compare the signals of two different satellites with similar elevation but 
different azimuth; we notice a high correlation between the two specular reflection point 
tracks both from the qualitative (Fig. 13, Fig. 14) and the quantitative (Fig. 15) point of view. 
The quantitative comparison is performed considering the reflected power coming from the 
same longitude, considering a bean of 0.01°.  Further investigations on this behavior are 
under development. 
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coherent part of the signal.  
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intensity.  
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satellites with elevation lower than 33° were discarded, since below this elevation the 
specular reflections did not enter inside the -3 dB beam-width of the LHCP nadir looking 
antenna. 

The signal to noise ratio detected from the reflected signal was normalized respect to the 
correspondent direct signal; moreover, we compute all the specular reflection points visible 
and to each point we associate the relative normalized signal to noise ratio. 

On board the aircraft, a video camera was placed to see which fields were really flooded 
during the acquisition. The panoramic view extracted from the video was superimposed on 
©Google Maps, together with the specular reflection points (Fig. 13). After the 
superposition, we have noticed a good agreement between the fields’ state and the received 
power (see Fig. 13 and 14). The minimum received power correspondent to a low 
normalized signal to noise ratio is clearly associated to not flooded fields. 

 
Fig. 13. Specular reflection points tracks for satellite 8 and 26 over Piedmont rice fields with 
relative normalized signal to noise ratio. See Fig. 13 for the red rectangle zoom. 

Furthermore, we compare the signals of two different satellites with similar elevation but 
different azimuth; we notice a high correlation between the two specular reflection point 
tracks both from the qualitative (Fig. 13, Fig. 14) and the quantitative (Fig. 15) point of view. 
The quantitative comparison is performed considering the reflected power coming from the 
same longitude, considering a bean of 0.01°.  Further investigations on this behavior are 
under development. 



 
Remote Sensing of Planet Earth 

 

194 

 
Fig. 14. Zoom of the specular reflection point tracks along the rice fields on ©Google Maps   

 
Fig. 15. Quantitative comparison of normalized signal to noise ratio for satellite 8 (red) and 
26 (blue) considering reflection points with the same longitude 

5. Conclusions and outlook 
Scope of this chapter was to give an overview on some very powerful and quite recent 
Remote Sensing possibilities emerged exploiting GNSS observations, which complement the 
atmospheric and Earth’s surface remote sensing traditionally performed by dedicated 
payloads and instrumentation. 

GPS ground receivers can provide valuable and accurate information on integrated 
precipitable water vapor, considering that single receivers or fairly dense networks are 
available in many part of the world, providing a quite cheap and reliable source of 
information. As described previously, many investigations have been carried out in this 
respect to develop processing techniques, to validate the results through comparisons with 
independent sources and to exploit the final product. For instance, ZTD or IPWV data from 
a GPS ground based network can be assimilated into Numerical Weather Prediction models, 
or integrated with additional sources of IPWV to produce two-dimensional water vapour 
fields, leading to improved products.  

As far as the tomographic approach for the retrieval of Neutral Atmospheric Refractivity 
maps is concerned, we demonstrated that it is possible (and with a good level of accuracy) 
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as long as some tricks are taken into account. In particular it has to be outlined that, in order 
to make neutral atmospheric tomography more effective, the choice of the GNSS network 
topology is a key aspect. A good horizontal receiver’s distribution guarantees a good 
retrieval of horizontal gradients. A good vertical receiver’s distribution guarantees also a 
good retrieval of vertical gradients. Even if our network topology was not optimal for 
tomographic purposes, the inclusion of measurements (even if not very accurate) performed 
by two receivers placed at higher heights and of the low elevation observations, 
demonstrate this aspect. Since a suitable vertical receiver distribution is difficult to 
implement, the availability of quasi-horizontal observations is necessary. Then, limb 
sounding Radio Occultation observations are necessary in order to guarantee good 
observations coming also from low elevation angles (this aspect has already been 
demonstrated by Foelsche and Kirchengast, 2001 and Notarpietro et al., 2008).  

GNSS signals reflected off the Earth surface which represent an error source for navigation 
purposes, are instead useful for characterizing land and sea surfaces both from a monitoring 
and early-warning point of view. In particular the possibility of extracting information 
about the sea height and roughness, the soil moisture content, the snow and ice cover state 
have been successfully proven. Presently, no operative missions exist but many 
experimental activities have been carried out and the interest of national space agencies is 
constantly growing. From our point of view, we put some efforts in developing an 
instrument capable of collecting reflected GNSS signals, since we believe in the potentialities 
of this technique.  

We definitely believe that the “expansion” of GNSS sources expected when also the 
European GALILEO, the Indian IRNSS and the Chinese BEIDOU navigation satellite 
systems will be deployed, together with the consequent availability of Radio Occultation 
observations, and the consequent availability of “vertical” and “horizontal” observations, 
will improve definitively all the techniques here presented.  
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1. Introduction

Advances in metrology contribute to various fields, and many sensors are developed as a
result, such as high-performance devices, compact and lightweight devices, and low-cost
devices, depending on the specific application environment. The sensors used in the recent
years to measure physical quantities commonly feature electrical elements, and when such
sensors are attached to measurement points, it is necessary to supply electrical power at these
points. This implies that external power must be supplied via wiring, or, that an internal
electrical power source must be fitted into the sensor. Furthermore, wired or wireless methods
are needed to transmit the measurement data from the sensor.

In some environments, this can be a limiting factor for the applicability of measurements.
To solve this problem, measurement techniques that do not require electrical power to be
supplied to measurement points have been developed, which utilize optical elements or
ultrasound, for example. In an earlier paper, we proposed a mechanism that makes the use
of moiré fringes to visualize a physical force without any need for an electrical power supply
at the measurement points. We also demonstrated typical applications of this technique by
fitting the mechanism to a robot gripper (Takaki, 2008) and an endoscopic surgical instrument
(Takaki, 2010a).

In addition, a large number of research has been carried out on the maintenance and
management of large structures such as industrial plants, buildings, or bridges, by measuring
their physical behavior. In particular, there have been many studies on vibrational phenomena
(Umemoto, 2010) (Yun, 2010) (Kim, 2010). However, providing wiring for all the sensors in
such large structures is no easy matter. We therefore propose the use of markers that utilize
moiré fringes to enable acceleration to be visualized and displayed, without the need for an
electrical power supply at the measurement points. In this manner, it is possible to measure
acceleration remotely, without any wiring, by capturing images of the markers with a camera.

There have been previous studies on measuring displacement by means of moiré fringes
(Kobayashi, 1987) (Reid, 1984) (Basehore, 1981) (Meadows, 1970) (Takasaki, 1970). Although
these techniques have the advantage of not requiring a direct supply of electrical power at
the measurement points, they require the use of lasers or special light sources to enable the
projection of stripe patterns in order to generate the moiré fringes. The technique proposed in
the present paper is different in that it does not require any special light source, but instead
utilizes ambient light.
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In our proposed method, moiré fringes are generated by superimposing two glass plates,
printed with parallel line gratings. Although a similar method was previously suggested for
measuring displacement (Masanao, 1986), it has no provision for measuring acceleration or
for the remote acquisition of data using a camera.

In the present study, we propose acceleration visualization markers (Takaki, 2010b) that enable
the display of moiré fringes corresponding to the magnitude of the acceleration, and we
demonstrate a method for acquiring acceleration data by means of the captured images of
these markers . Chapter 2 of this report describes the principle by which the magnitude of
the acceleration can be measured using moiré fringes. Chapter 3 describes the method for
acquiring one-axis acceleration data using captured images of the markers, and Chapter 4
describes the method of upgrading the marker to an x- and y-axis acceleration visualization
markers. Chapter 5 describes the developed markers, created using selected materials with
careful attention paid to damping characteristics, and explains the mechanical characteristics
of the markers. It is shown how acceleration data can be acquired using a high-speed video
camera. Chapter 6 concludes this study.

2. Principle

2.1 Seismic system and acceleration

It is well known that acceleration can be measured using the seismic system (Holman, 2001),
which consists of a spring, a damper, and a weight, as shown in Fig. 1 (i). Let us assume
that a measurement object is under acceleration, as shown in Fig. 1 (ii), and that it moves
by a displacement xo . The displacement of the weight xw is caused by the influence of the
acceleration. We discuss the method of calculating the acceleration of the object ẍo from the
relative displacement xo − xw. Let m, b, and k be the mass of the weight, viscosity of the
damper, and spring constant of the spring, respectively, and these are constant. The sum of
the forces acting on the weight is then

mẍw + b(ẋw − ẋo) + k(xw − xo) = 0, (1)

where ẍw, ẋw and ẋo are

ẍw =
d2xw

dt2 , ẋw =
dxw

dt
and ẋo =

dxo

dt
. (2)
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We consider the initial conditions as xw(0) = 0, ẋw(0) = 0, and xo(0) = 0. We then obtain the
Laplace transform equation as follows:

ms2Xw(s) + bsXw(s) + kXw(s) = bsXo(s) + kXo(s). (3)

Thus, Xw(s)/Xo(s) is
Xw(s)
Xo(s)

=
bs + k

ms2 + bs + k
. (4)

The transfer function of the seismic system with input xo − xw and output ẍo is written as

G(s) = L
(

xw − xo

ẍo

)
=

Xw(s)− Xo(s)
s2Xo(s)

=
1
s2

(
Xw(s)
Xo(s)

− 1
)

=
−1

s2 + 2ζωns + ω2
n

, (5)

where ζ is the dimensionless damping ratio and ωn is the natural angular frequency of the
system. ζ and ωn are given by

ζ =
b

2
√

mk
and ωn =

√
k
m

(6)

The transfer function of a system G(s) can be described in the frequency domain as

G(jω) =
−(1/ωn)

2

1 − (ω/ωn)2 + 2ζ(ω/ωn)j
(7)

The magnitude |G(jω)| (= |(xw − xo)/ẍo|) and the phase angle φ are respectively written as

|G(jω)| = (1/ωn)2
√(

1 − (ω/ωn)
2
)2

+
(

2ζ (ω/ωn)
2
)2

and

φ = − tan−1 2ζ(ω/ωn)

1 − (ω/ωn)2 − π (8)

When ω � ωn, as shown in Fig. 2, |G(jω)| and φ are approximately given by

|G(jω)| =
∣∣∣∣

xw − xo

ẍo

∣∣∣∣ �
1

ω2
n

and φ � −π (9)

Therefore, the relationship between the relative displacement xw − xo and the acceleration ẍo
can be written as

ẍo � ω2
n(xo − xw). (10)

According to this equation, the natural angular frequency ωn can be obtained from constant
values of the mass of the weight m and spring constant k, as we can see by Eq. 6; therefore,
ω2

n is a constant. If the relative displacement xo − xw is magnified sufficiently, the acceleration
ẍo also becomes perceivable. However, in general, the relative displacement xo − xw is too
small to observe. Therefore, it is necessary to use a technology that can magnify the relative
displacement xo − xw. We have focused on the use of a moiré fringe to magnify the relative
displacement in this case.
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It is well known that acceleration can be measured using the seismic system (Holman, 2001),
which consists of a spring, a damper, and a weight, as shown in Fig. 1 (i). Let us assume
that a measurement object is under acceleration, as shown in Fig. 1 (ii), and that it moves
by a displacement xo . The displacement of the weight xw is caused by the influence of the
acceleration. We discuss the method of calculating the acceleration of the object ẍo from the
relative displacement xo − xw. Let m, b, and k be the mass of the weight, viscosity of the
damper, and spring constant of the spring, respectively, and these are constant. The sum of
the forces acting on the weight is then

mẍw + b(ẋw − ẋo) + k(xw − xo) = 0, (1)

where ẍw, ẋw and ẋo are

ẍw =
d2xw

dt2 , ẋw =
dxw

dt
and ẋo =

dxo

dt
. (2)
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We consider the initial conditions as xw(0) = 0, ẋw(0) = 0, and xo(0) = 0. We then obtain the
Laplace transform equation as follows:

ms2Xw(s) + bsXw(s) + kXw(s) = bsXo(s) + kXo(s). (3)

Thus, Xw(s)/Xo(s) is
Xw(s)
Xo(s)

=
bs + k

ms2 + bs + k
. (4)

The transfer function of the seismic system with input xo − xw and output ẍo is written as

G(s) = L
(

xw − xo

ẍo

)
=

Xw(s)− Xo(s)
s2Xo(s)

=
1
s2

(
Xw(s)
Xo(s)

− 1
)

=
−1

s2 + 2ζωns + ω2
n

, (5)

where ζ is the dimensionless damping ratio and ωn is the natural angular frequency of the
system. ζ and ωn are given by

ζ =
b

2
√

mk
and ωn =

√
k
m

(6)

The transfer function of a system G(s) can be described in the frequency domain as

G(jω) =
−(1/ωn)

2

1 − (ω/ωn)2 + 2ζ(ω/ωn)j
(7)

The magnitude |G(jω)| (= |(xw − xo)/ẍo|) and the phase angle φ are respectively written as

|G(jω)| = (1/ωn)2
√(

1 − (ω/ωn)
2
)2

+
(

2ζ (ω/ωn)
2
)2

and

φ = − tan−1 2ζ(ω/ωn)

1 − (ω/ωn)2 − π (8)

When ω � ωn, as shown in Fig. 2, |G(jω)| and φ are approximately given by

|G(jω)| =
∣∣∣∣

xw − xo

ẍo

∣∣∣∣ �
1

ω2
n

and φ � −π (9)

Therefore, the relationship between the relative displacement xw − xo and the acceleration ẍo
can be written as

ẍo � ω2
n(xo − xw). (10)

According to this equation, the natural angular frequency ωn can be obtained from constant
values of the mass of the weight m and spring constant k, as we can see by Eq. 6; therefore,
ω2

n is a constant. If the relative displacement xo − xw is magnified sufficiently, the acceleration
ẍo also becomes perceivable. However, in general, the relative displacement xo − xw is too
small to observe. Therefore, it is necessary to use a technology that can magnify the relative
displacement xo − xw. We have focused on the use of a moiré fringe to magnify the relative
displacement in this case.
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2.2 Moiré fringe

Let us understand the concept of a moiré fringe (Kobayashi, 1987). As shown in Fig. 3 (i), line
gratings 1 and 2 have the same pitch pg and line grating 2 is inclined at a small angle ϕ and
superimposed on line grating 1; a fringe known as the moiré fringe appears at a large pitch
pm (> pg). The pitch pm is larger than the pitch pg of line gratings 1 and 2. The relationship
between the pitches is given by

pm =
1

2 sin ϕ
2

pg. (11)

As shown in Fig. 3 (ii), when line grating 1 is moved in the direction (x) at pitch pg, the moiré
fringe moves in the direction (X) at pitch pm. Therefore, the displacement can be displayed
visually at a magnification of 1/2 sin(ϕ/2). This magnification is defined as M. When the
relative displacement of the line gratings is xo − xw, the displacement of the moiré fringe can
be described by the following equation:

xm = M(xo − xw). (12)

2.3 Structure of the acceleration visualization marker

To obtain a constant magnification M using moiré fringes, as described in Section 2.2, even if a
relative displacement xo − xw occurs, the angle ϕ must be maintained as a constant. To satisfy
this requirement, two elastic plates of the same shape are used, as shown in Fig. 4 (i). This
structure permits a relative displacement xo − xw without any change in the angle ϕ, as shown
in Fig. 4 (ii). Moreover, the elasticity and the damping capacity of the elastic plates function
as the spring and the damper of the seismic system, respectively. If a weight is installed in
this structure, it becomes a seismic system, and the acceleration ẍo can be calculated from the
relative displacement xo − xw.
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Fig. 4. Structure of the acceleration visualization marker

Line gratings 1 and 2 are respectively printed on transparent and opaque glass plates and
fixed at locations (a) and (b) as shown in Fig. 4. The relative displacement xo − xw produced
by the acceleration ẍo is displayed by the moiré fringe at magnification M. Therefore, the
magnitude of the acceleration ẍo can be confirmed visually. These acceleration visualization
elements combine to form the acceleration visualization marker.
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To obtain a constant magnification M using moiré fringes, as described in Section 2.2, even if a
relative displacement xo − xw occurs, the angle ϕ must be maintained as a constant. To satisfy
this requirement, two elastic plates of the same shape are used, as shown in Fig. 4 (i). This
structure permits a relative displacement xo − xw without any change in the angle ϕ, as shown
in Fig. 4 (ii). Moreover, the elasticity and the damping capacity of the elastic plates function
as the spring and the damper of the seismic system, respectively. If a weight is installed in
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Line gratings 1 and 2 are respectively printed on transparent and opaque glass plates and
fixed at locations (a) and (b) as shown in Fig. 4. The relative displacement xo − xw produced
by the acceleration ẍo is displayed by the moiré fringe at magnification M. Therefore, the
magnitude of the acceleration ẍo can be confirmed visually. These acceleration visualization
elements combine to form the acceleration visualization marker.
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3. Method of extracting acceleration value by image processing

3.1 Fitted sine curve

The image of a moiré fringe is trimmed from an original image taken by a camera, and the x-
and y-axes are defined as shown in Fig. 5 (i). The size of the trimmed image is (X, Y), and the
brightness value of the pixel at (x, y) is defined as I(x, y). f (x) is the average of the brightness
value along the y-axis. f (x) can be written as

f (x) =

Y−1

∑
k=0

I(x, k)

Y
(13)

g(x) is a fitted sine curve of f (x). g(x) can be written as follows:

g(x) = A sin(
2π

pi
x + θ) + B (14)

Figure 5 (ii) shows the difference between f (x) and g(x) in a example case. pi, A, B, and θ are
the pitch, amplitude of the brightness value, offset of the brightness value, and phase of the
moiré fringe in the trimmed image, respectively. pi can be obtained from an autocorrelation
analysis of f (x), and A, B, and θ can be obtained using the least square method.

3.2 Phase of fitted sine curve and displacement of moiré fringe

Figure 6 (i) shows the image of a moiré fringe when no acceleration is applied to the
acceleration visualization marker. The brightness value of this moiré fringe is fitted to g(x),
and the phase in this state is assumed to be θ0, as indicated by (a) in Fig. 6 (iii). When
acceleration is applied to the marker, a relative displacement of xo − xw occurs, and the moiré
fringe moves by xm, which can be calculated from Eq. (12). In the image, when a unit length
corresponds to l pixels, the moiré fringe moves by lxm, as shown in Fig. 6 (ii). When the phase
θ shifts by Δθ, as indicated by (b) in Fig. 6 (iii), the relationship between these two terms is
given by
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lxm =
pi

2π
Δθ (15)

From Eqs. (10), (12), and (15), the acceleration ẍo is given by

ẍo � ω2
n pi

2πlM
Δθ (16)

Here, phase Δθ can take the value Δθ + 2πn (n is an integer) because a sine curve is a periodic
function. Therefore, it is necessary to obtain the value of n. Let Δθn and Δθn−1 be the phase
Δθ calculated from current image data and one frame of previous image data, respectively.
When the frame rate of the video camera is high, the difference between Δθn and Δθn−1 takes
a small value, and it can be assumed that

|Δθn − Δθn−1| < π. (17)

When Δθn−1 is known, the value of n can be known because the range of Δθn is limited.

4. x- and y-axis acceleration visualization marker

The previous chapter described the one-axis maker. This chapter describes a method of
upgrading the marker to an x- and y-axis acceleration marker. Fig. 7(i) shows a moiré fringe
having the same configuration as that shown in Fig. 3. When line gratings 1 and 2 in Fig. 7(i)
are rotated by 90◦ , the moiré fringe is also rotated by 90◦, as shown in Fig. 7(ii). This moiré
fringe moves in the direction (Y) when line grating 1� is moved in the direction (y). Fig. 7(iii)
shows a square grating which can be obtained by combining the line gratings shown in Fig.
7 (i) and Fig. 7 (ii), and a square-shaped moiré fringe is observed. When square grating 1 is
moved in the directions (x) and (y), the square-shaped moiré fringe moves in the directions
(X) and (Y). Therefore, even a slight displacement along the x- and y-axes can be magnified
and displayed visually.
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f (x) =

Y−1

∑
k=0

I(x, k)

Y
(13)

g(x) is a fitted sine curve of f (x). g(x) can be written as follows:
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x + θ) + B (14)

Figure 5 (ii) shows the difference between f (x) and g(x) in a example case. pi, A, B, and θ are
the pitch, amplitude of the brightness value, offset of the brightness value, and phase of the
moiré fringe in the trimmed image, respectively. pi can be obtained from an autocorrelation
analysis of f (x), and A, B, and θ can be obtained using the least square method.
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Fig. 8. Structure of the x- and y-axis acceleration visualization marker

For the same reasons as those described in Section 2.3, the angle ϕ must be maintained as
a constant. To satisfy this requirement, two horizontal elastic plates and two vertical elastic
plates are used, as shown in Fig. 8(i). This structure permits x- and y-axis displacement
without any change in the angle ϕ, as shown in Fig. 8(ii). Line gratings 1 and 2 are respectively
printed on opaque and transparent glass plates and fixed at locations (a) and (b) shown in Fig.
8. The x- and y-axis relative displacements produced by x- and y-axis acceleration components
are displayed by the moiré fringe at magnification M. If a weight is installed in this structure,
it becomes a seismic system, and the x- and y-axis acceleration values can be calculated using
same algorithm as that described in Section 3.
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5. Experiment

5.1 Developed 1-axis acceleration visualization marker

The damping characteristic of the elastic plates influences the performance of the acceleration
visualization marker. We selected two materials for the elastic plates: M2052 and 2017.
M2052 includes manganese (73%), copper (20%), nickel (5%), and iron (2%), and it has a high
damping capacity (Kawahara, 1993a) (Kawahara, 1993b). 2017 is an aluminum base alloy and
its damping capacity is low. Figure 9 shows the developed 1-axis acceleration visualization
marker, and, as shown, the shape of the elastic plates is the same.

The pitch of the line grating pg is 0.02 mm, and its line thickness is 0.01 mm. The pitch of
the moiré fringe pm of the developed marker by using M2052 is 6.1 mm, and the relative
displacement xo − xw can be displayed visually at a magnification M of 303. The total mass is
11.7 g. The values of pm, M, and the total mass in the case where 2017 is used are 5.5 mm, 277,
and 13.0 g, respectively.

For a comparison of the accuracies of the acceleration values obtained using the marker and
calculated using the algorithm described in Section 2.1, the same natural angular frequency
ωn needs to be maintained. To adjust the natural angular frequency ωn, we machined the
weight and adjusted its mass. Therefore, the shape of the weight became different. Details
related to the natural angular frequency ωn are described in Section 5.5.

5.2 Natural angle frequency and damping capacity of the 1-axis marker

To examine the mechanical characteristics of the developed 1-axis acceleration visualization
marker, the marker was freely vibrated and the displacement of the weight was measured
with a laser displacement sensor (KEYENCE, LK-G30). The experimental result is shown in
Fig. 10. The natural angular frequency ωn of the markers made M2052 is 409 rad/s (=65.1
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ωn needs to be maintained. To adjust the natural angular frequency ωn, we machined the
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related to the natural angular frequency ωn are described in Section 5.5.
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To examine the mechanical characteristics of the developed 1-axis acceleration visualization
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Fig. 10. Damped free vibration

Hz), and the damping ratio ζ is 0.0473. Values of ωn and ζ obtained when marker are made
using 2017 are 406 rad/s (=64.6 Hz) and 0.0011, respectively. The vibration of the composed
marker of M2052 attenuates faster than that composed of 2017.

5.3 Acceleration measurement using the 1-axis marker

Using image processing, the proposed marker was verified to be able to provide an accurate
value of acceleration. Figure 11 shows the experimental setup. The developed 1-axis
markers made using M2052 and 2017 are attached to a vibration exciter. For comparison, a
conventional 3-axis acceleration sensor (Freescale Semicondutor, MMA7260Q) is also attached
to the vibration exciter. A high-speed camera (Photron, FASTCAM-1024PCI) takes images of
the marker from a distance of 470 mm at 2000 fps. A distance of 1 mm corresponds to 6.0
pixels in the taken image, and the size of the image is 1024×512 pixels. The amplitude of the
vibration exciter is measured by the laser displacement sensor. A LED is used to achieve the
synchronization of the high-speed camera, the laser displacement sensor, and the acceleration
sensor.

Figure 12 shows the image of a moiré fringe trimmed from the image obtained from the
high-speed camera. Its size is 125×100 pixels. Figure 13 shows the average of the brightness
value along the y-axis, f (x), and the fitted sine curve g(x). Figure 14 shows the acceleration
values obtained from the markers made using M2052 and 2017 and from the acceleration
sensor when the vibration exciter vibrates at 13 Hz. The amplitude of the vibration exciter is
0.58 mm.

The acceleration value obtained from the marker made using M2052 is close to that obtained
from the acceleration sensor. However, the corresponding value obtained from the marker
made using 2017 has an additional acceleration component at 65 Hz. The root mean square
errors for the proposed method using M2052 or 2017 as materials for the marker and the 3-axis
acceleration sensor are 0.24 m/s2 and 1.4 m/s2, respectively. Higher accuracy can be obtained
from the marker made using M2052 than from that made using 2017.
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Figure 15 shows the power spectra of the acceleration values obtained from the acceleration
sensor and the proposed markers made using M2052 and 2017. All the power spectrums have
a peak at 13 Hz. This peak corresponds to the frequency of the vibration exciter. The natural
angular frequencies ωn of the two developed markers are both approximately 400 rad/s (=65
Hz). The power spectrum of the marker made using M2052 is close to that of the acceleration
sensor at 65 Hz. However, the power spectrum of the marker made using 2017 has a strong
sharp peak at 65 Hz. This is because it vibrates sympathetically with the slight vibration of 65

211Acceleration Visualization Marker Using Moiré Fringe for Remote Sensing



10 Will-be-set-by-IN-TECH

-0.6
-0.3

 0
 0.3
 0.6

 0  0.2  0.4  0.6  0.8  1D
is

pl
ac

em
en

t o
f 

   
 th

e 
w

ei
gh

t [
m

m
]

D
is

pl
ac

em
en

t o
f 

   
 th

e 
w

ei
gh

t [
m

m
]

Time [s]

-0.6
-0.3

 0
 0.3
 0.6

 0  0.2  0.4  0.6  0.8  1
Time [s]

2017

M2052

Fig. 10. Damped free vibration

Hz), and the damping ratio ζ is 0.0473. Values of ωn and ζ obtained when marker are made
using 2017 are 406 rad/s (=64.6 Hz) and 0.0011, respectively. The vibration of the composed
marker of M2052 attenuates faster than that composed of 2017.

5.3 Acceleration measurement using the 1-axis marker

Using image processing, the proposed marker was verified to be able to provide an accurate
value of acceleration. Figure 11 shows the experimental setup. The developed 1-axis
markers made using M2052 and 2017 are attached to a vibration exciter. For comparison, a
conventional 3-axis acceleration sensor (Freescale Semicondutor, MMA7260Q) is also attached
to the vibration exciter. A high-speed camera (Photron, FASTCAM-1024PCI) takes images of
the marker from a distance of 470 mm at 2000 fps. A distance of 1 mm corresponds to 6.0
pixels in the taken image, and the size of the image is 1024×512 pixels. The amplitude of the
vibration exciter is measured by the laser displacement sensor. A LED is used to achieve the
synchronization of the high-speed camera, the laser displacement sensor, and the acceleration
sensor.

Figure 12 shows the image of a moiré fringe trimmed from the image obtained from the
high-speed camera. Its size is 125×100 pixels. Figure 13 shows the average of the brightness
value along the y-axis, f (x), and the fitted sine curve g(x). Figure 14 shows the acceleration
values obtained from the markers made using M2052 and 2017 and from the acceleration
sensor when the vibration exciter vibrates at 13 Hz. The amplitude of the vibration exciter is
0.58 mm.

The acceleration value obtained from the marker made using M2052 is close to that obtained
from the acceleration sensor. However, the corresponding value obtained from the marker
made using 2017 has an additional acceleration component at 65 Hz. The root mean square
errors for the proposed method using M2052 or 2017 as materials for the marker and the 3-axis
acceleration sensor are 0.24 m/s2 and 1.4 m/s2, respectively. Higher accuracy can be obtained
from the marker made using M2052 than from that made using 2017.
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Figure 15 shows the power spectra of the acceleration values obtained from the acceleration
sensor and the proposed markers made using M2052 and 2017. All the power spectrums have
a peak at 13 Hz. This peak corresponds to the frequency of the vibration exciter. The natural
angular frequencies ωn of the two developed markers are both approximately 400 rad/s (=65
Hz). The power spectrum of the marker made using M2052 is close to that of the acceleration
sensor at 65 Hz. However, the power spectrum of the marker made using 2017 has a strong
sharp peak at 65 Hz. This is because it vibrates sympathetically with the slight vibration of 65
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Hz included in the vibration exciter and does not attenuate because its damping ratio is small,
as described in Section 5.5. Therefore, the high-damping material M2052 is more suitable for
the acceleration visualization marker than the low-damping material 2017.

5.4 Developed x- and y-axis acceleration visualization marker

Figure 16 shows the developed x- and y-axis acceleration visualization marker. The material
used for the elastic plates is M2052. The pitch of the line grating pg is 0.03 mm, and its line
thickness is 0.01 mm. The pitch of the moiré fringe pm is 8.9 mm, and the relative displacement
xo − xw can be displayed visually at a magnification of 298. The total mass is 33 g.

5.5 Natural angle frequency and damping capacity of the x- and y-axis acceleration
visualization marker

To obtain the natural angular frequency ωn and the damping ratio ζ of the developed x- and
y-axis acceleration visualization marker, the marker was freely vibrated and the displacement
of the weight was measured with the laser displacement sensor. The experimental results are
shown in Fig. 17. The natural angular frequencies ωn for the x- and y-axes are 300 rad/s
(=47.7 Hz) and 323 rad/s (=51.4 Hz), respectively, and the damping ratios ζ are 0.114 and
0.093, respectively.

5.6 Acceleration measurement using the x- and y-acceleration visualization marker

The developed x- and y-axis acceleration visualization marker could provide an accurate
value of x- and y-axis acceleration, as confirmed by using image processing. Figure 18 shows
the experimental setup. The developed x- and y-axis marker is attached to a vibration exciter.
For comparison, the 3-axis acceleration sensor is also attached to the vibration exciter. The
camera takes images of the marker from a distance of 600 mm at 2000 fps. A distance of 1 mm
corresponds to 3.6 pixels in the taken image, and the size of the image is 512 × 512 pixels. The
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amplitude of the vibration exciter is measured using the laser displacement sensor. A LED is
used to obtain the synchronization of the high-speed camera, the laser displacement sensor,
and the acceleration sensor.

Figure 19 shows the acceleration values obtained from the x- and y-axis markers and from
the acceleration sensor when the amplitude of the vibration exciter is less than 1 mm. The
acceleration value obtained from the markers is close to that obtained from the acceleration
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Hz included in the vibration exciter and does not attenuate because its damping ratio is small,
as described in Section 5.5. Therefore, the high-damping material M2052 is more suitable for
the acceleration visualization marker than the low-damping material 2017.

5.4 Developed x- and y-axis acceleration visualization marker

Figure 16 shows the developed x- and y-axis acceleration visualization marker. The material
used for the elastic plates is M2052. The pitch of the line grating pg is 0.03 mm, and its line
thickness is 0.01 mm. The pitch of the moiré fringe pm is 8.9 mm, and the relative displacement
xo − xw can be displayed visually at a magnification of 298. The total mass is 33 g.

5.5 Natural angle frequency and damping capacity of the x- and y-axis acceleration
visualization marker

To obtain the natural angular frequency ωn and the damping ratio ζ of the developed x- and
y-axis acceleration visualization marker, the marker was freely vibrated and the displacement
of the weight was measured with the laser displacement sensor. The experimental results are
shown in Fig. 17. The natural angular frequencies ωn for the x- and y-axes are 300 rad/s
(=47.7 Hz) and 323 rad/s (=51.4 Hz), respectively, and the damping ratios ζ are 0.114 and
0.093, respectively.

5.6 Acceleration measurement using the x- and y-acceleration visualization marker

The developed x- and y-axis acceleration visualization marker could provide an accurate
value of x- and y-axis acceleration, as confirmed by using image processing. Figure 18 shows
the experimental setup. The developed x- and y-axis marker is attached to a vibration exciter.
For comparison, the 3-axis acceleration sensor is also attached to the vibration exciter. The
camera takes images of the marker from a distance of 600 mm at 2000 fps. A distance of 1 mm
corresponds to 3.6 pixels in the taken image, and the size of the image is 512 × 512 pixels. The
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amplitude of the vibration exciter is measured using the laser displacement sensor. A LED is
used to obtain the synchronization of the high-speed camera, the laser displacement sensor,
and the acceleration sensor.

Figure 19 shows the acceleration values obtained from the x- and y-axis markers and from
the acceleration sensor when the amplitude of the vibration exciter is less than 1 mm. The
acceleration value obtained from the markers is close to that obtained from the acceleration
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sensor. The root mean square errors for the x- and y-axis acceleration values given by the
proposed method and those given by the 3-axis acceleration sensor are 0.22 m/s2 and 0.23
m/s2, respectively.

Figure 20 shows the power spectra of the signals shown in Fig. 19. The natural angular
frequencies ωn of the x-axis, 323 rad/s (=51.4 Hz), and y-axis, 300 rad/s (=47.7 Hz), are
not observed in the power spectra for x- and y-axis acceleration values obtained using the
proposed marker, and the obtained values are close to the acceleration value given by the
acceleration sensor.
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6. Conclusion

This paper presents an acceleration visualization marker that uses a moiré fringe. It can enable
the visualization of acceleration without the use of electrical elements such as amplifiers and
strain gauges and can provide an accurate value of acceleration using image processing. Our
future work will involve the measurement of the acceleration value from a remote place
located more than 100 m away by using a telephoto lens.
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sensor. The root mean square errors for the x- and y-axis acceleration values given by the
proposed method and those given by the 3-axis acceleration sensor are 0.22 m/s2 and 0.23
m/s2, respectively.

Figure 20 shows the power spectra of the signals shown in Fig. 19. The natural angular
frequencies ωn of the x-axis, 323 rad/s (=51.4 Hz), and y-axis, 300 rad/s (=47.7 Hz), are
not observed in the power spectra for x- and y-axis acceleration values obtained using the
proposed marker, and the obtained values are close to the acceleration value given by the
acceleration sensor.
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6. Conclusion

This paper presents an acceleration visualization marker that uses a moiré fringe. It can enable
the visualization of acceleration without the use of electrical elements such as amplifiers and
strain gauges and can provide an accurate value of acceleration using image processing. Our
future work will involve the measurement of the acceleration value from a remote place
located more than 100 m away by using a telephoto lens.
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Looking at Remote Sensing the  
Timing of an Organisation's Point of View  
and the Anticipation of Today's Problems 

Y. A. Polkanov 
Private 
Belarus 

1. Introduction 
Any remote measurement involves recording a signal from some sort of continuous 
medium of atmosphere in general. This is a signal which possesses a certain temporary 
structure, and in turn, this temporary structure bears some information on the spatial 
inhomogeneities of the continuous medium’s structure and the arrangement of its specific 
properties (e.g. optical, microphysical, etc.). The nature of these structures depends upon the 
thermodynamic processes in the environment and the sustainability of these processes. 
Thermodynamics is the inevitable factor for their participation and it demands an account of 
the processes having obviously extended character. The classical approach assumes some 
property of the environment at a certain point in time and at a certain point in the medium. 
In accordance with this, today’s remote measurements use the digitisation of a received 
signal with certain stable time step of digitisation. All efforts have been consolidated so as to 
receive the medium-sized digital signal samples which have been reduced to an acceptable 
size. Such an approach has at its core a logical contradiction – information of the properties 
of an extended environment trying to get at the point where it actually is not. There is 
something that is subject to consideration absolutely from other positions and the use of 
other tools. Measurements should be conducted in a certain ’visible‘ volume which provides 
the effect of the ’presence‘ of the medium and which has a specific thermodynamic 
’meaning‘; that is, that it has some of the ’thermodynamic memory‘. These volumes should 
be comparable (in length) to the length of all zones’ (lines’) measurements. However, this 
generates a new contradiction which arises when the discretisation signal is read out. How 
should one get a spatial resolution close to the size of the inhomogeneity with the signal 
time’s discretization using intervals commensurate with the length of the track 
measurements? This contradiction can be resolved only indirectly, using a principle that can 
be called a kind of ‘principle of relativity‘. Here, we use a pair of discrete samples which 
have a common border and a second boundary which is different to the desired step of 
discretization. This approach provides for the possibility of studying the environment and 
its irregularities while maintaining the required signal/noise ratio. 

The internal logic of this approach abstracts the properties of the medium at the point and 
then moves on to the study of the environment as a self-organising system. The ’test body‘ 
of such research is the structure of the inhomogeneities of the medium. The nature of this 
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1. Introduction 
Any remote measurement involves recording a signal from some sort of continuous 
medium of atmosphere in general. This is a signal which possesses a certain temporary 
structure, and in turn, this temporary structure bears some information on the spatial 
inhomogeneities of the continuous medium’s structure and the arrangement of its specific 
properties (e.g. optical, microphysical, etc.). The nature of these structures depends upon the 
thermodynamic processes in the environment and the sustainability of these processes. 
Thermodynamics is the inevitable factor for their participation and it demands an account of 
the processes having obviously extended character. The classical approach assumes some 
property of the environment at a certain point in time and at a certain point in the medium. 
In accordance with this, today’s remote measurements use the digitisation of a received 
signal with certain stable time step of digitisation. All efforts have been consolidated so as to 
receive the medium-sized digital signal samples which have been reduced to an acceptable 
size. Such an approach has at its core a logical contradiction – information of the properties 
of an extended environment trying to get at the point where it actually is not. There is 
something that is subject to consideration absolutely from other positions and the use of 
other tools. Measurements should be conducted in a certain ’visible‘ volume which provides 
the effect of the ’presence‘ of the medium and which has a specific thermodynamic 
’meaning‘; that is, that it has some of the ’thermodynamic memory‘. These volumes should 
be comparable (in length) to the length of all zones’ (lines’) measurements. However, this 
generates a new contradiction which arises when the discretisation signal is read out. How 
should one get a spatial resolution close to the size of the inhomogeneity with the signal 
time’s discretization using intervals commensurate with the length of the track 
measurements? This contradiction can be resolved only indirectly, using a principle that can 
be called a kind of ‘principle of relativity‘. Here, we use a pair of discrete samples which 
have a common border and a second boundary which is different to the desired step of 
discretization. This approach provides for the possibility of studying the environment and 
its irregularities while maintaining the required signal/noise ratio. 

The internal logic of this approach abstracts the properties of the medium at the point and 
then moves on to the study of the environment as a self-organising system. The ’test body‘ 
of such research is the structure of the inhomogeneities of the medium. The nature of this 
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structure is directly dependent upon the thermodynamic stability of the environment. 
Changes within the structure of the inhomogeneities are more mobile and are preceded by 
changes in the thermodynamic state of the environment as a whole. We take this as an 
axiom. As such, the structure of the inhomogeneities is central to the prediction of processes 
within the environment. This becomes especially important during the development process 
of a catastrophic scenario. Their nonlinear nature makes standard methods for the analysis 
of irregularities ineffective because of the number of initial assumptions, which often only 
apply to the environment in the classical sense. Therefore, I propose a structural-statistical 
method for analysing the structure of inhomogeneities.  

2. Methodological approach 
2.1 Measurements 

The results of the actual measurements of laser systems for the remote-sensing of the 
atmosphere are used to verify the proposed approach. Currently, the laser systems for 
remote-sensing use high-power pulsed lasers, and the backscattering signal is written with a 
certain sampling step corresponding to the required spatial resolution. Moreover, the 
growth of the length of the track-sensing leads to a disproportionate growth of the power 
source and the dynamic range of the incoming signal. It also causes the multiple scattering 
effects which can be difficult to take into account.  

The new approach is based upon the use of a low-power radiation source (for example, a 
source of white light) within the specified parameters of the gating. The dark pulse of the 
continuous light source has a duration equal to usual laser pulse lidar (about 10-8 c). The 
time interval between the dark pulses is close to the time of the radiation propagation in an 
area where we can neglect the multiple scattering. The digitisation of the remote-sensing 
signal can be performed with standard digital systems (a constant gate) as well as with 
systems based on the proposed approach (an increasing gate). 

I propose to restore the average characteristics of the medium to long sections of a length 
close to the length of the track measurements. This will significantly increase the accuracy of 
the reconstruction of the properties of the real heterogeneous medium. Signal processing 
assumes the creation of the registration system with an increasing time-step gate of the 
incoming signal (the one-dimensional case). 

The comparative calculation of the required radiation power was held for a given 
signal/noise ratio for different average atmosphere extinction coefficients σ = 10-2,..., 1 km-1 
(the old and new systems). 

For high transparency (σ = 10-2 km-1), the maximum length of the zone of measurement is 
chosen equal to the length of the layer of a dense atmosphere, significantly affecting the 
scattering signal (Lmax = 30 km). To muddy the atmosphere, this distance is set by the 
condition that the optical depth does not exceed τ = 2σL = 10. This allows us to consider 
the scattering of the signal with an accuracy of 0.05% and to neglect the signal over large 
distances. Single scattering occurs with the condition τ = 2σL <3 (Kovalev, V. A., 1973; 
Ablavskij, L. M. and Kruglov, P. A., 1974). The calculations were made on the assumption 
of single scattering. The data obtained is used only so as to illustrate the detected trends 
(τ> 3). 
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All estimates are carried out based on an expression derived from the lidar equation for 
systems I and II (Polkanov, Y. A. and Ashkinadze, D. A., 1988): 

 ni = AW1 (e-2σli (1 - e-2σlc))/L2 (1) 

 ( )( ) ( )
L /l1,2 s

i l /lT s

22 li 2 lc
i1,i2 2 i sn AW e 1  e / l  l / 2σ σ

=

− −= − +  (2) 

Where ni, ni1,i2 - obtained discrete values from the scattering signal (number of photon counts); 
A – a coefficient which brings together the supporting equipment characteristics; W1,2 – the 
power of the laser radiation; L – the distance from the centre section of the route, by which the 
signal is recorded; li - the distance from the system to this site; ls – the length of the section; lT - 
the length of the shadow zone of the lidar where the signal is not recorded (600 m). We assume 
for the system that II L2 > L1, (ni2 - ni1) = ni. An advanced assessment of the relative 
measurement error of the signal (δi, δix for System I and System II) was conducted on the basis 
the expressions (Polkanov, Y. A. et al., 1985; Polkanov, Y. A. et al., 2004): 

 δi = tβ((ni – nn)1/2)/ ni (3) 

 δix = tβ((nix – 2Bx nn)1/2)/ nix (4) 

Where tβ – the coefficient equal to the probability of the matching error computed to its 
actual value (if tβ = 2, the probability is equal to 0.95). The necessity of this evaluation is due 
to the appearance depending δix (t) for system II (signal/noise = const). This is due to the 
progressive rise in the value of the time intervals recording the scattering signal (with the 
digitisation step – ts). The level of background illumination takes into account the 
introduction of the coefficient B = f (t) in (4). The measurement error for individuals counts 
the signal and background-level measurement errors, becoming comparable for large 
intervals of TS. They are significantly higher than the level of internal noise (in. ns.) receiving 
system (in this case, n in.ns ~ 0.1, ts = 0,4 ms). Moreover, the summed value of the signal 
increases to a certain point in time, reaching a maximum level of accumulated signal 
(Kovalev, V. A., 1973; Ablavskij, L. M. and Kruglov, P. A., 1974). However, the level of 
background illumination increases linearly with time. The calculations used the results of 
the actual measurement system I (ni, nb, σ). The coefficient A in (1) is also evaluated and 
used in subsequent calculations for the system II (2). 

2.2 Processing 

The following processing scheme was assumed: the initial signal (as a time function)  the 
generalised structure of a signal  an elementary cell of the signal structure. The 
multiplication of such cells allows the complete restoration of the characteristic structures in 
the supervised space. 

The indicator of the time stability of the signal structure was the dispersion of the 
components of the elementary cell of a signal structure. If the dispersion exceeds an interval 
between elements of the revealed cell then the structure is unstable. The correlation of the 
generalised frequency structure of a horizontal signal and the generalised parameter which 
fixes the thermodynamic stability of the environment is a characteristic sign of the self-
organising of the environment. 
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Where tβ – the coefficient equal to the probability of the matching error computed to its 
actual value (if tβ = 2, the probability is equal to 0.95). The necessity of this evaluation is due 
to the appearance depending δix (t) for system II (signal/noise = const). This is due to the 
progressive rise in the value of the time intervals recording the scattering signal (with the 
digitisation step – ts). The level of background illumination takes into account the 
introduction of the coefficient B = f (t) in (4). The measurement error for individuals counts 
the signal and background-level measurement errors, becoming comparable for large 
intervals of TS. They are significantly higher than the level of internal noise (in. ns.) receiving 
system (in this case, n in.ns ~ 0.1, ts = 0,4 ms). Moreover, the summed value of the signal 
increases to a certain point in time, reaching a maximum level of accumulated signal 
(Kovalev, V. A., 1973; Ablavskij, L. M. and Kruglov, P. A., 1974). However, the level of 
background illumination increases linearly with time. The calculations used the results of 
the actual measurement system I (ni, nb, σ). The coefficient A in (1) is also evaluated and 
used in subsequent calculations for the system II (2). 

2.2 Processing 

The following processing scheme was assumed: the initial signal (as a time function)  the 
generalised structure of a signal  an elementary cell of the signal structure. The 
multiplication of such cells allows the complete restoration of the characteristic structures in 
the supervised space. 

The indicator of the time stability of the signal structure was the dispersion of the 
components of the elementary cell of a signal structure. If the dispersion exceeds an interval 
between elements of the revealed cell then the structure is unstable. The correlation of the 
generalised frequency structure of a horizontal signal and the generalised parameter which 
fixes the thermodynamic stability of the environment is a characteristic sign of the self-
organising of the environment. 
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The basis for the reception of new results is a series of works on the laser sounding of the 
atmosphere in stable nightime conditions. This has allowed the development of certain 
methods for the structural-statistical processing of an initial remote signal. The aim is to 
reveal the signs of the steady organisation of the frequency structure of environmental 
inhomogeneities. 

The generalised regular structure comes from the summary of the sequence of the discrete 
readouts. They were received by the scanning of the investigated volume of the 
environment in a horizontal plane to a set of directions and with the set angular permission 
(Polkanov, Y. A. et al., 1989).  

During the following stage, the signal is represented in the form of a regular structure of 
local maxima and minima. There was a separate analysis of the ’plus‘ and ’minus‘ structures 
(Polkanov, Y. A. and Kudinov. V. N., 1989). 

These components behave as whole object and are registered as a uniform regular structure 
(type harmonious) only in the case of a steadily vertical stratified environment. When the 
infringement of the stability of the stratification of environmental communication between 
the ’plus‘ and ’minus‘ structures decreases, they become increasingly independent of one 
another other. The degree of such dependence can be characterised by a certain numerical 
parameter (Polkanov, Y. A. et al., 1991; Polkanov, Y. A. et al., 2009).  

The thermodynamic stability of the environment and its stratification can be characterised 
numerically by a special generalised parameter on the basis of Richardson's number. With 
the infringement of the thermodynamic stability of the environment, this parameter adopts 
wavy characteristics on a vertical plane. The length of such a ’wave‘ with the falling of the 
environmental stability was decreased. 

The integrated regular structure of vertical thermodynamic distribution is an indicator of 
such stratification of the environment.  

It is possible to speak about the communication of the optical structure horizontal stability  
with the vertical stability of the thermodynamic structure of the environment and its 
stratification as being an indicator of such stability (Polkanov, Y. A. et al. 1989). 

Besides this, the infringement of the stability of the environment leads to the infringement of 
the stability of the revealed structure and the occurrence of obvious anomalies within the 
structure (Polkanov, Y. A. et al., 1991; Polkanov, Y. A. et al., 2008) whose behaviour can 
provide information on the direction of the reorganisation (self-organisation) of the 
environment. 

3. Update of the concept of signal/noise ratio 
It transpired that the signal/background noise ratio (S/N) is ambiguous due to the accuracy 
of the measurement of the scattering signal by the use of the extended strobe. Indeed, when 
ti = const and S/N = const for the system I, this automatically means the constancy accuracy 
of the scattering signal (∂ = const) from strobe to strobe. For example, we set ∂ = 10% for σ ~ 
0.1 km-1 for the basic equipment (system I) with S/N = 10. For the systems of type II, the 
signal is accumulated over time intervals the value of which is not constant, but rather 
varies in such a way that satisfies the condition: ti (n) = (ti (n-1) + ti)) is ti (n)> ti (n-1). The 
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essential point here is the rise of the level of the recorded background illumination with the 
increasing duration of the strobe. The scattering signal increases from the strobe to strobe – 
in general – to the so-called maximum accumulated signal (Kovalev, V. A., 1973). 

The background illumination level is significantly higher than the corresponding internal 
noise receiver (in.ns = 0.1 for ti = 0.4 ms). It exceeds the signal of system I, with a point, but 
is comparable with the level of the scattering of the signal of system II (τ < 3). In this case, 
the accuracy of the scattering signal and the background are similar, and they can be used as 
useful signals on an equal basis. 

In fact, we have a mixture of two signals - the scattering signal and the background signal. 
Their value increases from strobe to strobe and the first of them (S) rises to a certain level 
(Wmax) whilst the second of them (b) increases linearly with time and indefinitely. 

In these circumstances, the accuracy of the scattering signal increases when S/N = const (1 
because a strobe the length of the time of registration is increasing. 

Thus, there is a new dependence - ∂ (t) which was previously unavailable for system I . 
Table 1 lists the measurement error depending upon the distance ls (n) corresponding to the 
interval gating ts (n), if S/N = 10 = const, for σ = 0.1 km-1, nb = 50, ti = 0.4 s. 

 

L (km) 1 2 3 4 5 10 
δ,% 3,7 1,7 1,3 1,2 1,1 0,8 

Table 1. The measurement error decreases with increasing interval gating. 

Model calculations showed that the measurement accuracy of the scattering signal for 
system II is several times higher than the measurement accuracy for system I. This means 
that for the same radiation power of remote systems, greater measurement accuracy is 
achieved for systems of type II through special time organisation and its recording of the 
digitised signal (∂II ≠ const ≤ ∂I = const). 

We can talk about the actual incompleteness of the concept of the signal/background ratio 
for the registration systems of type II when the strobe length (a single reference signal) 
depends upon the position of the laser pulse on a remote line sensing. Moreover, it is 
possible that the signal/background ratio is less than unity but that the measurement 
accuracy remains high. This is possible when the signal/internal noise ratio (S/in.ns) and 
the background/internal noise ratio (b/in.ns) is much higher than 1. An example of such 
situations is provided by Table 2. 

 

L(km) 1 2 3 4 5 10 
S/N 1,23 0,81 0,65 0,55 0,49 0,33 

Table 2. Signal/background ratio, depending upon the length of the strobe (km) and where 
the measurement error δ = 10% (const). 

The obtained simulation results suggest that the measurement accuracy was higher than 
expected, if only to carry out the calculation of the signal/background ratio for systems of 
type II. 
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4. Data analysis and simulation results 
Model calculations based on the data obtained by the laser probing of the atmosphere by 
means of system I with an output power equal to 0.67 mW (Ashkinadze, D. A., Belobrovik, 
V. P., Spiridovich, A. L., Kugeiko, M. M. and Polknov, Y. A., 1980; Ashkinadze, D. A and 
Polkanov, Y. A., 1980; Polkanov, Y. A. et al., 1985; Polkanov, Y. A and Ashkinadze D. A., 
1988; Polkanov, Y. A. et al., 1991).  

The results of real lidar measurements are used to model the time organization of the 
proposed emission and detection. Lidar has the following characteristics: 

• Radiation source: 

Radiation energy E = 0.01 J; 

Pulse duration To = 15 ns; 

Pulse repetition frequency f = 50 Hz. 

• Receiving system: 

Diameter of the receiving mirror D = 0.1 m;  

Operation of a photomultiplier tube (PMT) - an account of the photons; 

Quantum efficiency of PMT η = 0,1; 

• Recording equipment: 

Time interval signal detection in single channel ti = 0,4 mkc; 

Number of cycles of signal m – 3000; 

Total measurement time t = 60 s (Polkanov, Y. A. et al., 1985). 

The measurement conditions corresponded to the registration of a Poisson flow of the signal 
photons (Polkanov, Y. A., 1983). The number of the cycles of the accumulation provided a 
measurement error of no worse than 50%. 

 
Fig. 1. The lidar scheme, with a separated transmitter and receiver. 

The simulation results are presented as a set of tables. 
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4.1 The simulation results of the proposed temporal organisation of the detected 
signal 

We shall call this remote sensing system (lidar) as a base ‘System I’ (the old system), and a 
system with increasing intervals of registration (strob) ‘System II’ (the new system). 

 
Fig. 2. Discrete-time signal xc(t) processing for System I. 

 
Fig. 3. Discrete-time signal xc(t) processing for System II (T1 = T, T2 = 2T, T3 = 3T, T4 = 4T). 

The calculation of the signal/background ratio and the corresponding measurement errors 
of the scattering signal is carried to the appropriate conditions of ‘twilight’ (∂1) and ‘cloudy 
day’ (∂2) when the level of background illumination increases by two orders of magnitude. 
The following table shows the dynamic range (DR) and signal/background ratio  for the a 
wide range length of the path sounding (L) for each value of the extinction coefficient (σ) 
from the real range. The level of illumination is selected for the corresponding conditions 
with a high transparency of the atmosphere (~ 10-2 km-1). 
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4. Data analysis and simulation results 
Model calculations based on the data obtained by the laser probing of the atmosphere by 
means of system I with an output power equal to 0.67 mW (Ashkinadze, D. A., Belobrovik, 
V. P., Spiridovich, A. L., Kugeiko, M. M. and Polknov, Y. A., 1980; Ashkinadze, D. A and 
Polkanov, Y. A., 1980; Polkanov, Y. A. et al., 1985; Polkanov, Y. A and Ashkinadze D. A., 
1988; Polkanov, Y. A. et al., 1991).  

The results of real lidar measurements are used to model the time organization of the 
proposed emission and detection. Lidar has the following characteristics: 

• Radiation source: 

Radiation energy E = 0.01 J; 

Pulse duration To = 15 ns; 

Pulse repetition frequency f = 50 Hz. 

• Receiving system: 

Diameter of the receiving mirror D = 0.1 m;  

Operation of a photomultiplier tube (PMT) - an account of the photons; 

Quantum efficiency of PMT η = 0,1; 

• Recording equipment: 

Time interval signal detection in single channel ti = 0,4 mkc; 

Number of cycles of signal m – 3000; 

Total measurement time t = 60 s (Polkanov, Y. A. et al., 1985). 

The measurement conditions corresponded to the registration of a Poisson flow of the signal 
photons (Polkanov, Y. A., 1983). The number of the cycles of the accumulation provided a 
measurement error of no worse than 50%. 

 
Fig. 1. The lidar scheme, with a separated transmitter and receiver. 

The simulation results are presented as a set of tables. 
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4.1 The simulation results of the proposed temporal organisation of the detected 
signal 

We shall call this remote sensing system (lidar) as a base ‘System I’ (the old system), and a 
system with increasing intervals of registration (strob) ‘System II’ (the new system). 

 
Fig. 2. Discrete-time signal xc(t) processing for System I. 

 
Fig. 3. Discrete-time signal xc(t) processing for System II (T1 = T, T2 = 2T, T3 = 3T, T4 = 4T). 

The calculation of the signal/background ratio and the corresponding measurement errors 
of the scattering signal is carried to the appropriate conditions of ‘twilight’ (∂1) and ‘cloudy 
day’ (∂2) when the level of background illumination increases by two orders of magnitude. 
The following table shows the dynamic range (DR) and signal/background ratio  for the a 
wide range length of the path sounding (L) for each value of the extinction coefficient (σ) 
from the real range. The level of illumination is selected for the corresponding conditions 
with a high transparency of the atmosphere (~ 10-2 km-1). 
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Fig. 4. Organisation model of the discrete-time signal processing. 

 
σ 

(km-1) L(km) 1 2 3 4 5 10 15 30 DR 

 s/n 19,00 9,40 6,50 5,00 4,00 3,00 1,30 0,60 29 
0.01 ∂1 (%) 2,60 2,10 2,01 2,03 2,06 2,36 2,62 3,29 29 

 ∂2 (%) 8,34 8,87 9,94 11,10 12,15 17,21 20,69 28,75 29 
 s/n 164,30 82,30 54,80 40,00 31,80 15,10 9,90 4,80 34 

0.1 ∂1 (%) 0,84 0,66 0,63 0,63 0,63 0,63 0,65 0,66 34 
 ∂2 (%) 1,24 1,25 1,36 1,51 1,65 2,29 2,79 2,97 34 
 s/n 363,60 166,70 106,00 75,50 59,40 27,70 18,10 15,90 23 

0.3 ∂1 (%) 0,56 0,46 0,44 0,44 0,44 0,44 0,45 0,46 23 
 ∂2 (%) 0,70 0,66 0,63 0,87 0,95 1,26 1,52 1,61 23 
 s/n 419,80 156,80 94,80 66,70 52,10    8 

1.0 ∂1 (%) 0,52 0,46 0,46 0,47 0,47    8 
 ∂2 (%) 0,63 0,77 0,87 0,98 1,06    8 

σ(km-1) L(km) 0.1 0.2 0.3 0.4 0.5    8 
 s/n 420000 156000 95000 66000 52000    8 

10.0 ∂1 (%) 0,05 0,05 0,05 0,05 0,05    8 
 ∂2 (%) 0,05 0,05 0,05 0,05 0,05    8 

Table 3. The measurement error (∂) of the signal/noise ratio (S/N) and the dynamic range 
(DR), depending upon the length of the path sounding (L) and the extinction coefficient of 
the medium (σ).  

The measurement error of these conditions is calculated by formula (1) and does not exceed 
a few percent. For most cases, we can assume that it will be less then common instrument 
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errors of the detecting apparatus. The error increases with the daytime measurements (at the 
same transparency), but by no more than an order of magnitude; its increase is insignificant 
for the extinction coefficient range σ = 1-10 km-1. The dynamic range of the 
signal/background ratio is small and varies with changing conditions in the atmosphere; it 
is much smaller than in the case of system I (DR = 8 - 34).  

The data obtained suggests the following conclusions: 

1. The use of ’growing‘ of the proposed type of strobe allows for the measurement of the 
single-scattering signal with a high precision. Measurements become possible in the 
daytime. 

2. Small dynamic range of the signal/background ratio will simplify the recording 
equipment without compromising the accuracy of the measurement by eliminating any 
redundant requirements for its performance. 

3. The use of this approach shifts the problem of increasing the measurement accuracy 
from the area associated with the environment to the area associated only with the 
instrumental capabilities of the remote systems (i.e. they are more controlled). 

4. An additional advantage of the developed approach is the small dynamic range of 
change of the error signal scattering, depending upon the distance to the considered 
section of the remote sensor.  

The accuracy varies slightly from a strobe to strobe on most of the track soundings. This 
provides significant advantages for the correctness of the subsequent interpretation of the 
data. 

 
Fig. 5. Normalised error of measurement, depending upon the length of the path sounding. 

The analysis of the dynamic range of the scattering signal also shows the advantages of 
system II. The dynamic range of the signal does not exceed the value 102, compared with 
value 106 for systems of type I. Table 5 shows the value (DR) of the scattering signal and the 
background level for system II. In our case, the range for backlight can reach 103, remaining 
several orders of magnitude lower than for the scattering signal of system I. 
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errors of the detecting apparatus. The error increases with the daytime measurements (at the 
same transparency), but by no more than an order of magnitude; its increase is insignificant 
for the extinction coefficient range σ = 1-10 km-1. The dynamic range of the 
signal/background ratio is small and varies with changing conditions in the atmosphere; it 
is much smaller than in the case of system I (DR = 8 - 34).  

The data obtained suggests the following conclusions: 

1. The use of ’growing‘ of the proposed type of strobe allows for the measurement of the 
single-scattering signal with a high precision. Measurements become possible in the 
daytime. 

2. Small dynamic range of the signal/background ratio will simplify the recording 
equipment without compromising the accuracy of the measurement by eliminating any 
redundant requirements for its performance. 

3. The use of this approach shifts the problem of increasing the measurement accuracy 
from the area associated with the environment to the area associated only with the 
instrumental capabilities of the remote systems (i.e. they are more controlled). 

4. An additional advantage of the developed approach is the small dynamic range of 
change of the error signal scattering, depending upon the distance to the considered 
section of the remote sensor.  

The accuracy varies slightly from a strobe to strobe on most of the track soundings. This 
provides significant advantages for the correctness of the subsequent interpretation of the 
data. 

 
Fig. 5. Normalised error of measurement, depending upon the length of the path sounding. 

The analysis of the dynamic range of the scattering signal also shows the advantages of 
system II. The dynamic range of the signal does not exceed the value 102, compared with 
value 106 for systems of type I. Table 5 shows the value (DR) of the scattering signal and the 
background level for system II. In our case, the range for backlight can reach 103, remaining 
several orders of magnitude lower than for the scattering signal of system I. 
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σ(km-1) L(km) 1 30 DR 
0.01 signal 6462 15600 72 
0.01 background (noise) 850 25000 900 

σ (km-1) L(km) 1 2 DR 
0.1 signal 57580 113730 59 
0.1 background (noise) 850 25000 900 

σ(km-11) L(km) 1 17 DR 
0.3 signal 127465 217625 29 
0.3 background (noise) 850 14150 283 

σ (km-1) L(km) 1 2 DR 
1 signal 147150 190310 6,5 
1 background (noise) 850 4150 24,4 

σ (km-1) L(km) 0,1 0,5 DR 
10 signal 14739000 19004096 6,4 
10 background (noise) 85 415 24,4 

Table 4. The number of the signal count (ns) and the background (nb) for the photon 
counting mode, and the dynamic range (DR), depending upon the extinction coefficient of 
the medium (σ). 

 

σ(km-1) L(km) 1 2 3 4 5 10 15 30 
 Δls(m) 10 43 97 18 29 125 320 169 

0.01 Δts(ns) 67 287 647 120 193 233 2130 1130 
 ΔPnbg 8 36 81 15 24 104 26 141 
 Δls(m) 2 6 16 36 70 40 500 9700 

0.1 Δts(ns) 13 40 107 240 467 266 3300 64700 
 ΔPbg 2 5 13 30 58 733 417 8083 
 Δls(m) 0,6 4,4 18,0 60,0 190,0 

N ex.n. = 0,3 
 

ΔPs > ΔРex.n. 
 

ΔPs = 100, 10, 1 

0.3 Δts(ns) 4 29 120 400 1270 
 ΔPnng 0б5 3б7 15,0 50,0 158,0 
 Δls(m) 0,7 21,7 730,0 50,0  

1.0 Δts(ns) 4,7 145,0 4870,0 333,0  
 ΔPnbg 0б6 18,0 608,0 42  

σ(km-1) L(km) 0.1 0.2 0.3 0.4  
 Δls(m) - 0,3 3,9 6,0  

10.0 Δts(ns) - 2 26 40,0  
 ΔPnbg - 0,2 2,6 5,0  

Table 5. The required increase of the signal sampling interval (space, time) which provided 
the desired signal increase and its corresponding background increase. 
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To estimate the limiting possibilities of system II, we calculated the allowable spatial 
resolution of the remote sensing under various conditions in the atmosphere. The 
calculation was performed as follows:  

1. A constant increment of the scattering signal ΔPs is posed. 
2. The increment area sounding (ΔL) which provided a signal increment (ΔPs) for certain 

values of the extinction coefficient (σ) and the length of track is then identified. 
3. The increment ΔL thereby obtained is taken as the minimum spatial discretisation step 

track at a distance L. 
4. The necessary step time sampling rate is determined for the recording equipment (Δts) 

on the basis of the obtained values, ΔL. 
5. The increment background illumination (the number of the background count ΔPb) is 

determined on the basis of the intervals’ increment, Δts 

To estimate the limiting possibilities of system II, we calculated the valid value of the spatial 
resolutions under various conditions in the atmosphere. The calculation was performed as 
follows: the value of ΔPs given as the number of samples (100, 10, 1), with the transition 
from one value to another. The value ΔPs does not exceed step ΔL spatial discretisation 
achieved the basic apparatus in version of the system I. The calculation results for W0 = 0.67 
mW are shown by Table 6. The increments ΔPs certainly took higher increments due to the 
internal noise receiver. This was the case for σ = 10-2 km-1 to L = 30 km, for σ = 0.1 km-1 to L 
= 15km, for σ = 0.3 km-1 to L = 5 km, and for σ = 1 km-1 to L = 4 km. 

We have exceeded ΔPs over ΔPb in all cases (to dusk) when ΔPc = 100, 10. This is much less 
than was the case for system I. The simulation results suggest that there is a real opportunity 
to provide the increment of the scattering signal on the increment of the recorded 
background illumination (ΔPs> ΔPb) for a wide range of conditions by the adjustment of the 
values Δt. At the same time, the allowed (minimum) time increments Δts (increments for the 
individual remote-sensing signal samples) do not exceed – in this case – hundreds of 
nanoseconds (in the zone of single scattering). 

4.2 The simulation results of the proposed organisation of the sounding signal 
radiation 

The proposed approach can be applied not only to the organisation of the temporary 
registration of the incoming signal (in the case of passive systems), but also to the temporary 
organisation of the radiation of the sounding signal (in the case of active systems). 

We consider three types of organisation of the radiation source: 

• Pulsed light source (laser) with a pulse substantially shorter than the sounding track 
(type I). 

• Pulsed light source (laser) with a pulse substantially equal the sounding track (type II). 
• Long pulsed light source with a repetition-rate that ensures the duration of the interval 

between the pulses is equal or near to the pulse length of type I (type III), dark pulse 
laser (Mingming, Feng, Kevin L. Silverman, Richard P. Mirin and Steven T. Cundiff, 
2010). 

Again, asAs before, the basic system is taken to be a real system of type I (V. E. Zuev, M. V. 
Kabanov, 1977) with a constant duration of strobe (ts = 0.4 ms) and the characteristics  
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organisation of the radiation of the sounding signal (in the case of active systems). 

We consider three types of organisation of the radiation source: 

• Pulsed light source (laser) with a pulse substantially shorter than the sounding track 
(type I). 

• Pulsed light source (laser) with a pulse substantially equal the sounding track (type II). 
• Long pulsed light source with a repetition-rate that ensures the duration of the interval 

between the pulses is equal or near to the pulse length of type I (type III), dark pulse 
laser (Mingming, Feng, Kevin L. Silverman, Richard P. Mirin and Steven T. Cundiff, 
2010). 

Again, asAs before, the basic system is taken to be a real system of type I (V. E. Zuev, M. V. 
Kabanov, 1977) with a constant duration of strobe (ts = 0.4 ms) and the characteristics  
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 1 2 3 
Duration of the radiation impulse 15 ns 18 μs 18 μs 

Length of the radiation impulse 4.5 m 5.4 km 5.4 km 

Radiation Energy 0,01 J 18 μsJ 18 μJ 

Radiation impulse power 667 kW 1 W 1 W 

Registration strobe duration 0.4 μs 0.4 μs 0.4 μs 

Registration strobe length 60 m 60 m 60 m 

Strobe numbers on a line 90 90 90 

Line length 5.4 km 5.4 km 5.4 km 

Measurement total time 60 s 60 s 60 s 

Number of the accumulation cycles 3000 514000 3300000 

Frequency of the impulses 50 Hz 8.57 kHz 55.5 kHz 

Spatial interval between impulses » 5 km 30 km « 5 km 

Total radiation energy 30 J 9.25 J 60 J 

Average radiation power 0.5 W 0.15 W 1.0 W 

Background readout number in a strobe 50 8570 55500 

Signal readout number in a strobe (min) 83 4258 182600 

Measurement error 33% 7% 0.6% 

Background readout number/parcel 0.017 0.017 0.017 

Number of signal readout number/parcel 
(min) 0.028 0.008 0.055 

Table 6. The calculated characteristics of the equivalent remote-sensing systems of type I, II 
and III. 

described above. In addition, we used data obtained by probing the system in advanced 
atmospherics with the extinction coefficient σ = 0.1 km-1. 

The comparative evaluation of the above types of systems was carried out under the 
assumption used that in the future there would be a a source of continuous light source 
radiation with a radiated power ~ 1W, since this energy is easily attainable at the present 
level of the laser system development. We select a maximum . The length of the route 
maximises the accumulated signal for the conditions of a single scattering (τ = 2σl ≤ 3). For 
system III, an assumption is introduced – the interval between pulses (60 m) does not 
affect the accumulated signal for distances greater than the path length of the maximum 
accumulation (L max ~ τ = 3) (Polkanov, Y. A. et al., 2007; Polkanov, Y. A. et al., 2008). 

The temporal organisation of the remote-sensing signal reception, the level of background 
illumination, and the total measurement time is expected the same for all the simulated 
systems. This data is shown by Table 7, which summarises all of the necessary 
characteristics for comparison. 
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The analysis of this data allows us can conclude that to provide the necessary signal levels 
due to the growth of the pulse repetition rate, the frequency of system II should be raised to 
8.57 kHz, and that of for system III to 55.5 kHz. These limitations are needed so as to 
exclude the presence on the track sensing of the two light pulses (for systems I and II) or the 
dark pulses (for system III). 

The computed frequencies provided a growing number of background counts (compared 
with system I) for system II (171 times) and system III (- 1100 times). Accordingly, the 
number of signal photon counts was increased in 51 and 2200 times. This allows us to 
reduce the measurement error from 33% to 7% and 0.6% respectively for systems II and III. 
The evaluation shows that the use of systemsusing a system of type II andor type III – even 
with a radiation source with a capacity of 1 Watt – can significantly improve the 
measurement accuracy of the scattering signal, relative to the system I (radiation power ~  
1 Watt). 

 
Fig. 6. Normalised power systems I (old) and II (new) as a function of environmental 
conditions (σ=0,01-1 km-1) at the same signal/noise ratio. 

This is achieved through the formation of the continuous emission of long pulses (dark 
pulses) with a high repetition rate. It allows for a fixed measurement time (60 s) registering a 
much larger number of photons. Thus, we can reduce the required power of the radiation 
source. It is interesting estimating the maximum possible repetition rate laser pulses for 
system II. The pulse length varies from one pulse to the next the length of the registration 
strobe (single reference signal) changes from one strobe to another gate. To eliminate the 
effect of the scattering signal from the previous pulse, the interval between pulses (lΔ) was 
chosen according to the condition: σ (lΔ + MDV) = 7.5. In this case, the contribution from the 
previous pulses in the signal did not exceed 10% of the maximum accumulated signal. The 
values of the maximum possible repetition-rate of system II is represented in the table 
below. 

Here, the following notation was used: lτ0 – the pulse duration τ0; lΔ - the interval between 
pulses in meters; f – the frequency of pulses; M – the number of the accumulation cycles; Eo  
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The analysis of this data allows us can conclude that to provide the necessary signal levels 
due to the growth of the pulse repetition rate, the frequency of system II should be raised to 
8.57 kHz, and that of for system III to 55.5 kHz. These limitations are needed so as to 
exclude the presence on the track sensing of the two light pulses (for systems I and II) or the 
dark pulses (for system III). 

The computed frequencies provided a growing number of background counts (compared 
with system I) for system II (171 times) and system III (- 1100 times). Accordingly, the 
number of signal photon counts was increased in 51 and 2200 times. This allows us to 
reduce the measurement error from 33% to 7% and 0.6% respectively for systems II and III. 
The evaluation shows that the use of systemsusing a system of type II andor type III – even 
with a radiation source with a capacity of 1 Watt – can significantly improve the 
measurement accuracy of the scattering signal, relative to the system I (radiation power ~  
1 Watt). 

 
Fig. 6. Normalised power systems I (old) and II (new) as a function of environmental 
conditions (σ=0,01-1 km-1) at the same signal/noise ratio. 

This is achieved through the formation of the continuous emission of long pulses (dark 
pulses) with a high repetition rate. It allows for a fixed measurement time (60 s) registering a 
much larger number of photons. Thus, we can reduce the required power of the radiation 
source. It is interesting estimating the maximum possible repetition rate laser pulses for 
system II. The pulse length varies from one pulse to the next the length of the registration 
strobe (single reference signal) changes from one strobe to another gate. To eliminate the 
effect of the scattering signal from the previous pulse, the interval between pulses (lΔ) was 
chosen according to the condition: σ (lΔ + MDV) = 7.5. In this case, the contribution from the 
previous pulses in the signal did not exceed 10% of the maximum accumulated signal. The 
values of the maximum possible repetition-rate of system II is represented in the table 
below. 

Here, the following notation was used: lτ0 – the pulse duration τ0; lΔ - the interval between 
pulses in meters; f – the frequency of pulses; M – the number of the accumulation cycles; Eo  
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lτ0 (km) 1 2 3 4 5 10 15 30 
τ0 (μs) 3,3 6,7 10,0 13,3 16,7 33.0 50,0 100,0 
σ (km-1)  0,01 - 0,1  
lΔ (km)  30  
f (kHz) 9,7 9,4 9,1 8,8 8,6 7,5 6,7 5,0 

M 581 000 562 000 546 000 528 000 516 000 450 000 400 000 300 000 
E0 (μJ) 51,6 53,4 54,9 56,8 58,1 66,7 74,6 100,0 
W0(W) 15,6 8,0 5,5 4,3 3,5 2,0 1,5 1,0 
σ (km-1)  0,3  
lΔ (km)  11,7  
f (kHz) 23,6 21,9 20,4 19,1 17,9 1`3,9 11,2 10,4 

M 1 420 000 1 310 000 1 220 000 1 150 000 1 080 000 830 000 670 000 620 000 
E0 (μJ) 21,0 23,0 24,0 26,0 28,0 36,0 45,0 48,0 
W0(W) 6,4 3,4 2,5 2,0 1,7 1,1 0,9 0,8 
σ (km-1)  1.0  
lΔ (km)  3,5  
f (kHz) 66,7 54,5 46,1 40,0 35,3  

M 4 000 000 3 300 000 2 800 000 2 400 000 2 100 000

fE0 =const 
 
 

W0 = 0,5 W 
 
 

E(2)Σ = E(1)Σ 

E0 (μJ) 7,5 9,2 10,8 12,5 14,2
W0(W) 2,3 1,4 1,1 0,9 0,8
σ (km-1)  10.0
lΔ (km)  0,35
f (kHz) 666,7 545,4 461,5 400,0 352,3

M 40 000 
000 

33 000 
000 

28 000 
000 

24 000 
000 

21 000 
000 

E0 (μJ) 0,7 0,9 1,1 1,2 1,4
W0(W) 2,3 1,4 1,1 0,9 0,8

Table 7. The maximum possible pulse repetition frequency (f) of the radiation remote-
sensing systems (type II) depending upon the environment (σ). 

– the energy of the radiation. This provides an accuracy that is not worse than the accuracy 
of the measurement system II for the same values of the extinction coefficient (σ). The 
number of emitted photons is equal in all the simulated cases. This corresponds to the 
radiation energy of system I for a full-time measurement (60 sec), which corresponds to the 
average power W0 = 0.5 W. This allows us to visually compare systems with different types 
of organisation of the radiation source. Likewise, we assessed the limiting frequencies of the 
pulses of radiation systems for system III. The data obtained is summarised in the following 
table: 
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σ (km-1) lτ0 τ0 (μs) lΔ (m) f (kHz) M E0 (μJ) W0 (W) 

0,01 30,0 100 60 10 600 000 50,0 0,5 

0,1 30,0 100 60 10 600 000 50,0 0,5 

0,3 16,7 55,7 60 18 1 100 000 28,0 0,5 

1,0 5,0 16,7 60 60 3 600 000 8,4 0,5 

10,0 0,5 1,7 60 600 36 000 000 0,9 0,5 

Table 8. The maximum possible pulse repetition frequency of the radiation remote-sensing 
systems depending upon the environment (type III). 

The necessary energy radiation does not exceed ten microjoules at the limiting frequencies. 
This suggests the use of low-power lasers as radiation sources in systems II and III, with 
optical shutters which open with a given frequency (f). The maximum frequency is obtained 
at ~ 1 MHz, but it has a range of 10-100 kHz in most cases. This is achieved by conventional 
optical shutters.  

In the above conditions, the maximum pulse power of system II does not exceed 18W. For 
system III, the power is equal to 0.5W which is sufficient to achieve a measurement error not 
worse than tenths of a percent, excluding the errors caused by the instrument. 

4.3 The simulation results of the signal structure stability of remote-sensing 

We investigated the behaviour of three sample models in relation to the signal from a self-
organising environment. The behaviour of the three sample models was analyzed. It has a 
16-17 readout and a digitisation step - 30 minutes, with total duration of measurements from 
12 to 17 days.  

The averaging of the intervals between local maxima and minima gives the generalised 
intervals of the structure of the inhomogeneities (М+, М-). 

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

M1+

M1-

 
Fig. 7. Results of the interval definition between the elements of the generalised structure of 
different types, ’plus‘ and ’minus‘ (M+, M-) for some areas (1-12). 
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Table 7. The maximum possible pulse repetition frequency (f) of the radiation remote-
sensing systems (type II) depending upon the environment (σ). 
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of the measurement system II for the same values of the extinction coefficient (σ). The 
number of emitted photons is equal in all the simulated cases. This corresponds to the 
radiation energy of system I for a full-time measurement (60 sec), which corresponds to the 
average power W0 = 0.5 W. This allows us to visually compare systems with different types 
of organisation of the radiation source. Likewise, we assessed the limiting frequencies of the 
pulses of radiation systems for system III. The data obtained is summarised in the following 
table: 
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σ (km-1) lτ0 τ0 (μs) lΔ (m) f (kHz) M E0 (μJ) W0 (W) 

0,01 30,0 100 60 10 600 000 50,0 0,5 
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0,3 16,7 55,7 60 18 1 100 000 28,0 0,5 

1,0 5,0 16,7 60 60 3 600 000 8,4 0,5 

10,0 0,5 1,7 60 600 36 000 000 0,9 0,5 

Table 8. The maximum possible pulse repetition frequency of the radiation remote-sensing 
systems depending upon the environment (type III). 

The necessary energy radiation does not exceed ten microjoules at the limiting frequencies. 
This suggests the use of low-power lasers as radiation sources in systems II and III, with 
optical shutters which open with a given frequency (f). The maximum frequency is obtained 
at ~ 1 MHz, but it has a range of 10-100 kHz in most cases. This is achieved by conventional 
optical shutters.  

In the above conditions, the maximum pulse power of system II does not exceed 18W. For 
system III, the power is equal to 0.5W which is sufficient to achieve a measurement error not 
worse than tenths of a percent, excluding the errors caused by the instrument. 

4.3 The simulation results of the signal structure stability of remote-sensing 

We investigated the behaviour of three sample models in relation to the signal from a self-
organising environment. The behaviour of the three sample models was analyzed. It has a 
16-17 readout and a digitisation step - 30 minutes, with total duration of measurements from 
12 to 17 days.  

The averaging of the intervals between local maxima and minima gives the generalised 
intervals of the structure of the inhomogeneities (М+, М-). 
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Fig. 7. Results of the interval definition between the elements of the generalised structure of 
different types, ’plus‘ and ’minus‘ (M+, M-) for some areas (1-12). 
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Fig. 8. Results of the interval definition between the elements of the generalised structure of 
different types, ’plus‘ and ’minus‘ (M+, M-) for some areas (1-13). 
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Fig. 9. Results of the interval definition between the elements of the generalised structure of 
different types, ’plus‘ and ’minus‘ (M+, M-) for some areas (1-17). 

The interval size changes between the elements of the generalised structure as ’plus‘ or 
’minus‘ has a complex character:  

For the first sample, the peak growth of the interval sizes for the ’plus‘ structure (several 
times) in the third and fifth day is observed. It takes place against a wavy course of the 
’minus‘ structure signal. The character of the change of the ’plus‘ and ’minus‘ structures 
actually coincides with each other in the range of the 9-12 day.  

For the second sample, the waviness, falling down character of the dependence, with some 
subsequent general lifting and the constant prevalence (leadership) of the ’minus‘ signal 
structure, is characterised. 
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For the third sample, we see the integral character and the mutual position of the structures, 
which repeats the second sample at more of the pulse character of the ’minus‘ signal 
structure. 

This is probably an estimation of the revealed structure of the corresponding dispersion 
(D+, D-). 
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Fig. 10. The results of the dispersion definition between the elements of the generalised 
structure of different types, ’plus‘ and ’minus‘ (D+, D-) for some areas (1-12). 
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Fig. 11. Results of the dispersion definition between the elements of the generalised 
structure of different types, ’plus‘ and ’minus‘ (D+, D-) for some areas (1-13). 

Change of the dispersion of an interval between the elements of the signal structure 'plus‘ 
and ’minus‘ has the following character:  
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Fig. 8. Results of the interval definition between the elements of the generalised structure of 
different types, ’plus‘ and ’minus‘ (M+, M-) for some areas (1-13). 
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Fig. 9. Results of the interval definition between the elements of the generalised structure of 
different types, ’plus‘ and ’minus‘ (M+, M-) for some areas (1-17). 

The interval size changes between the elements of the generalised structure as ’plus‘ or 
’minus‘ has a complex character:  

For the first sample, the peak growth of the interval sizes for the ’plus‘ structure (several 
times) in the third and fifth day is observed. It takes place against a wavy course of the 
’minus‘ structure signal. The character of the change of the ’plus‘ and ’minus‘ structures 
actually coincides with each other in the range of the 9-12 day.  

For the second sample, the waviness, falling down character of the dependence, with some 
subsequent general lifting and the constant prevalence (leadership) of the ’minus‘ signal 
structure, is characterised. 
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For the third sample, we see the integral character and the mutual position of the structures, 
which repeats the second sample at more of the pulse character of the ’minus‘ signal 
structure. 

This is probably an estimation of the revealed structure of the corresponding dispersion 
(D+, D-). 
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Fig. 10. The results of the dispersion definition between the elements of the generalised 
structure of different types, ’plus‘ and ’minus‘ (D+, D-) for some areas (1-12). 
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Fig. 11. Results of the dispersion definition between the elements of the generalised 
structure of different types, ’plus‘ and ’minus‘ (D+, D-) for some areas (1-13). 

Change of the dispersion of an interval between the elements of the signal structure 'plus‘ 
and ’minus‘ has the following character:  
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Fig. 12. Results of the dispersion definition between the elements of the generalised 
structure of the different types, ’plus‘ and ’minus‘ (D+, D-) for some areas (1-17). 

For the first sample, the behaviour was similar to the behaviour of the intervals, i.e. the peak 
growth of the dispersion (instability) of the plus‘ structure intervals (several times) for the 
third and fifth day, and against a wavy course the ’minus‘ structure is characterised.  

For the second sample, as well as for intervals, a poorly wavy character of dependence, with 
a constant prevalence (leadership) ’minus‘ structure is characterised. 

For the third sample, the general character and mutual position of the structures has more 
pulse character, with emissions in the behaviour structure ’minus‘ for the second and 
eleventh day. 

For a fuller analysis, additional characteristics have been used: 

W – The regularity index; the average probability of the sample regular ’plus‘, ’minus‘ 
structure filling. 

S – The connectivity index, the generalised difference of the probabilities of the sample 
regular ’plus‘, ’minus‘ structure filling. 

The regularity index (W) of the frequency of the regular structure of the inhomogeneities 
shows that the probability of filling of the regular sample of the inhomogeneities at a certain 
interval (I = 1-13) is close to 0.5 only in the case where there is a sufficiently steady structure.  

The characteristic tendency - the general course of curve W (I) is a little below the line 0,5. 
Essentially, the different behaviour of the regularity index (W) for the ’plus‘ and ’minus‘ 
structures is observed. 

The W (I) of the ’minus‘ structure has a wavy character and actually does not reach the 
values 0,5. The W (I) of the ’plus‘ of the structure has a peaking characteristic and can reach 
values essentially more than 0,5 i.e. to fill all the sample.  
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It is probably necessary to draw a conclusion - the general excess of the level of probability 
0,5 ‘plus’ to for “plus” structures with big emissions W (I) ’plus‘ against the smooth 
behaviour of W (I) ’minus‘ can be a criterion for the displacement of the general course of an 
analysed signal towards its lifting. 
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Fig. 13. The results of the calculation of the regularity index for the three situations 
presented above for the regular structure (W1). 
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Fig. 14. The results of the calculation of the regularity index for the three situations 
presented above for the regular structure (W2). 
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Fig. 15. The results of the calculation of the regularity index for the three situations 
presented above for the regular structure (W3). 

The connectivity index (S) of the ’plus‘ and ’minus‘ structures is equal to zero and 
corresponds to a case of the behaviour synchronisation of the ’plus‘ and ’minus‘ structures, 
as a uniform structure of a harmonious type. 
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Fig. 12. Results of the dispersion definition between the elements of the generalised 
structure of the different types, ’plus‘ and ’minus‘ (D+, D-) for some areas (1-17). 

For the first sample, the behaviour was similar to the behaviour of the intervals, i.e. the peak 
growth of the dispersion (instability) of the plus‘ structure intervals (several times) for the 
third and fifth day, and against a wavy course the ’minus‘ structure is characterised.  

For the second sample, as well as for intervals, a poorly wavy character of dependence, with 
a constant prevalence (leadership) ’minus‘ structure is characterised. 

For the third sample, the general character and mutual position of the structures has more 
pulse character, with emissions in the behaviour structure ’minus‘ for the second and 
eleventh day. 

For a fuller analysis, additional characteristics have been used: 

W – The regularity index; the average probability of the sample regular ’plus‘, ’minus‘ 
structure filling. 

S – The connectivity index, the generalised difference of the probabilities of the sample 
regular ’plus‘, ’minus‘ structure filling. 

The regularity index (W) of the frequency of the regular structure of the inhomogeneities 
shows that the probability of filling of the regular sample of the inhomogeneities at a certain 
interval (I = 1-13) is close to 0.5 only in the case where there is a sufficiently steady structure.  

The characteristic tendency - the general course of curve W (I) is a little below the line 0,5. 
Essentially, the different behaviour of the regularity index (W) for the ’plus‘ and ’minus‘ 
structures is observed. 

The W (I) of the ’minus‘ structure has a wavy character and actually does not reach the 
values 0,5. The W (I) of the ’plus‘ of the structure has a peaking characteristic and can reach 
values essentially more than 0,5 i.e. to fill all the sample.  
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It is probably necessary to draw a conclusion - the general excess of the level of probability 
0,5 ‘plus’ to for “plus” structures with big emissions W (I) ’plus‘ against the smooth 
behaviour of W (I) ’minus‘ can be a criterion for the displacement of the general course of an 
analysed signal towards its lifting. 
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Fig. 13. The results of the calculation of the regularity index for the three situations 
presented above for the regular structure (W1). 
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Fig. 14. The results of the calculation of the regularity index for the three situations 
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Fig. 15. The results of the calculation of the regularity index for the three situations 
presented above for the regular structure (W3). 

The connectivity index (S) of the ’plus‘ and ’minus‘ structures is equal to zero and 
corresponds to a case of the behaviour synchronisation of the ’plus‘ and ’minus‘ structures, 
as a uniform structure of a harmonious type. 
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Fig. 16. The results of the calculation of the regularity index for the three situations 
presented above for the regular structure (W1). 

The displacement of the connectivity index (S) in the ’plus‘ and ’minus‘ zone specifies on 
increase in the influence of ’plus‘ and ’minus‘ structures with an increase in the 
independence of their behaviour, rather than each other.  

The displacement of the connectivity index (S) in a ’plus‘ zone can be interpreted as the 
presence of the leader-structure of the ’plus‘ type. 

The displacement of an index of connectivity (S) in the ’minus‘ zone can be interpreted as 
the presence of the leader- structure of the ’minus‘ type. 
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Fig. 17. The results of the calculation of the regularity index for the three situations 
presented above for the regular structure (W2). 
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Fig. 18. The results of the calculation of the connectivity index for the three situations 
presented above for the regular structure (W3). 
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On the basis of the assumptions made, it is possible to draw the following conclusions: 

For first sample, the connectivity index S1 (I) specifies the stable leader-structure of the 
’plus‘ type. 

For the second sample, the connectivity index S1 (I) specifies the transition of leadership 
from the structure of the ’minus‘ type to the structure of the ’plus‘ type. 

For the third sample, the of connectivity index S3 (I) specifies the steady growth of the 
leadership of the structure of the ’plus‘ type. 

The conclusion about the displacement of the general course of an analysed signal towards 
its general growth proves to be true in the presence of the ’plus‘ of leader-structures in all 
three samples of a signal, as the above results show. 

5. Conclusion 
5.1 Measurements 

These estimates allow us to make some significant findings: 

1. Increasing the accuracy of the measurement of the scattering signal can be achieved 
through the use of the described methods of the signal processing, long laser impulses 
or dark laser impulses. 

2. This approach allows more accurate measurement of the scattering signal, by at least an 
order of magnitude, as well as measurements during the daytime up to distances 
comparable with the meteorological visibility range (MDV), including the area of 
multiple scattering. 

3. The proposed system of remote measurement organisation allows us to solve existing 
contradictions and provides a specified signal/noise ratio under a wide range of 
conditions and at different times for remote tracks, and it allows the more accurate linking 
of the principles of recording equipment with the methodology of interpreting the data. 

4. The application of the proposed approach to the principles of the construction of lidar 
systems allows us to use low-power light sources and, in a large measure, to get rid of 
hardware errors caused by shock loads on the receiving system. 

5. This organisation of remote sensing systems allows us to pass from the problem of 
signal detection with high accuracy to the problem of minimising the distortion of the 
received signal, which is caused by instrumental factors. 

6. The system with the probe interval (dark pulse) between impulses (type III) is the 
greatest prospect and it retains all of the advantages of systems of type II but with more 
performance. 

The results obtained allow for a new approach to the problem of reconstructing the 
characteristics of the environment based upon remote sensing. It is not correctly solved for a 
real, heterogeneous environment, largely due to the exclusion of the consideration of 
thermodynamic processes (Polkanov, Y. A. et al., 1991). 

5.2 Processing 

1. “Leadership ‘plus‘ structure” and “Leadership ’minus‘ structure” specifies, accordingly, 
the general lifting or falling of the signal. 
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Fig. 16. The results of the calculation of the regularity index for the three situations 
presented above for the regular structure (W1). 
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Fig. 17. The results of the calculation of the regularity index for the three situations 
presented above for the regular structure (W2). 
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Fig. 18. The results of the calculation of the connectivity index for the three situations 
presented above for the regular structure (W3). 
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On the basis of the assumptions made, it is possible to draw the following conclusions: 
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5. Conclusion 
5.1 Measurements 

These estimates allow us to make some significant findings: 

1. Increasing the accuracy of the measurement of the scattering signal can be achieved 
through the use of the described methods of the signal processing, long laser impulses 
or dark laser impulses. 

2. This approach allows more accurate measurement of the scattering signal, by at least an 
order of magnitude, as well as measurements during the daytime up to distances 
comparable with the meteorological visibility range (MDV), including the area of 
multiple scattering. 

3. The proposed system of remote measurement organisation allows us to solve existing 
contradictions and provides a specified signal/noise ratio under a wide range of 
conditions and at different times for remote tracks, and it allows the more accurate linking 
of the principles of recording equipment with the methodology of interpreting the data. 

4. The application of the proposed approach to the principles of the construction of lidar 
systems allows us to use low-power light sources and, in a large measure, to get rid of 
hardware errors caused by shock loads on the receiving system. 

5. This organisation of remote sensing systems allows us to pass from the problem of 
signal detection with high accuracy to the problem of minimising the distortion of the 
received signal, which is caused by instrumental factors. 

6. The system with the probe interval (dark pulse) between impulses (type III) is the 
greatest prospect and it retains all of the advantages of systems of type II but with more 
performance. 

The results obtained allow for a new approach to the problem of reconstructing the 
characteristics of the environment based upon remote sensing. It is not correctly solved for a 
real, heterogeneous environment, largely due to the exclusion of the consideration of 
thermodynamic processes (Polkanov, Y. A. et al., 1991). 

5.2 Processing 

1. “Leadership ‘plus‘ structure” and “Leadership ’minus‘ structure” specifies, accordingly, 
the general lifting or falling of the signal. 
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2. “Leadership interception” specifies the tendency of change for the signal, from lifting to 
falling or the reverse. 

3. Changing character of the structure means that the stability of the leadership of 
corresponding structure is subject to regular fluctuations (‘plus’  ’minus‘ or ‘minus‘ 
 ’plus’). 

4. The pointed character of the structure speaks about the obvious local tendency to 
change of the leadership of the corresponding structure. 

5. The regularity of the revealed structure has an alternating character. 
6. The higher the regularity, the higher the relative stability of the corresponding 

structure. 
7.  The higher the bond of the ’plus‘ and ’minus‘ structures, the higher their overall 

stability, even if intermittency has obvious characteristic. 
8. The regular structure is the reason for the event both of a time interval corresponding to 

the taken measurements and that taken out of it, i.e. in the short-term and in the long-
term plan. 

9. The abnormal structure was the reason for the event, and not only in a time interval 
corresponding to the taken measurements, i.e. only in the short-term plan, as the 
regular structure smoothes out a special filtration. 

For today's problems with remote sensing, it is necessary to apply the described methods of 
conflict resolution logic to the problem of reconstructing the characteristics of the 
environment. Then, the problem of measuring and processing the measurement results will 
be examined as a single complex. The extension of this logic leads to new tasks - the 
assessment of the impact of thermodynamic processes on the structure of inhomogeneities 
in the medium and their self-organisation and the development of criteria for the stability of 
such structures as indicators of self-protection and self-organisation  (Polkanov, Y. A. et al., 
200). 
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