
THE 

ALAHRFEUER 

.. of II8rning C may be modeled by three steps: 

IerItand the language syntax; 
IW what meaning the translator will ascribe to properly formed constructions; 
'fIGp. programming style fitting for the language. 

lei in this book are designed to hefp the reader through step two. They will 
I the reeder's mastery of the basic rules of C and lead the reader into seldom
:omens, beyond reasonable limits, and past a few open pits. In short, they 
,. r'" with insight into C that is usually only gained through considerable 
Ie. 

IUIe Book is a workbook intended to be used with a C language textbook. The 
ivided into sections, each containing C programs that explore a particular aspect 
ompanying detailed descriptions of how the programs work are tips and caveats 
~ allcceeslul C programs. 

Iaook of Int.r •• t ... 

ogramming Language by Brian W. Kemighan and Dennis M. Ritchie is the 
l8X1book on the C language. h includes a tutorial introduction to C giving a 
~ to most of the language; it incorporates complete programs as 
5; it deecribes the standard 1/0 library showing how to write programs that can 
I bIlwefnc:omputer systems; and it illustrates how to interface with the UNIX 
~~. 

226p. 

• 

i5 
n 

e 
a 
[ 
• COl 

a' .. -i' 
n 
-a .. 
0 
CI 
Dl a 
i. 
S -Q) 
:I 
CI 
I: 
Q) 

'i 

"TI m c 
m 
]I 

(J 1.0 
OSB 

THE ,'* 

P117~les lor the C Programming Langu 
ALAN R. FEUER 



PRENTICE-HALL SOFTWARE SERIES 

Brian W. Kernighan, advisor 

THE C PUZZLE BOOK 

Alan R. Feuer 
Bell Laboratories 

Murray Hill, New Jersey 

PRENTICE-HALL, INC., 
Englewood Cliffs, NJ 07632 

637.0 
DSS 



L_.]Y of Congress Cataloging In PubUcation Data 

Feuer. Alan. 
The C puzzle book. 

(Prentice.Han software series) 
Includes index. 
1. C (Computer program language) 2. UNIX (Computer 

system) l. Title. II. Series. 
QA76.73.CI5F48 001.64'24 82-5302 
ISBN 0_13_109934-5 AACR2 
ISBN 0-13-109926-4 (pbk.) 

Edilorial/produCiion supervision: Nancy Milnamow 

Cover design: Ray Lundgren 
Manufacturing burn: Gordon Osbourne 

© 1982 by Bell Laboratories. Incorporated 

All rights reserved. No part of this book 
may be reproduced in any form or 
by any means without permission in writing 

from the publisher. 

Printed in the United States of America 

10 9 8 7 6 5 4 

ISBN 0-13-109934-5 
ISBN 0-13-109926-4 {pbk.} 

Prentice-Hall International. Inc .. London 
Prentice-Hall of Australia Pty. Limited. Sydney 
Prentice-Hall of Canada. Ltd., Toronto 
Prentice-Hall of India Private Limited. New Delhi 
Prentice-Hall of Japan. Inc., Tokyo 
Prentice-Hall of Southeast Asia pte. Ltd .• Singapore 
Whitehall Books Limited. Wellington. New Zealand 

CONTENTS 

Preface .......................................................................................... page vii 

PUZZLES 

Operators ................................. . ....................................................... page I 

1. Basic Arithmetic Operators 3 

2. Assignment Operators 5 

3. Logic and Increment Operators 7 

4. Bitwise Operators 9 

5. Relational and Conditional Operators II 

6. Operator Precedence and Evaluation 13 

Basic Types.......... ............... ....... 15 .................................................... page 

I. Character, String, and Integer Types 17 

2. Integer and Floating Point Casts 19 

3. More Casts 21 

Included Files ............................. . . ................................................. page 23 

Control Flow .......................... . ...................................................... page 25 

I. if Statement 27 

2. while and for Statements 29 

3. Statement Nesting 31 

4. switch. break, and continue Statements 33 

Programming Style ........................................................................ page 35 

I. Choose the Right Condition 37 

2. Choose the Right Construct 39 

Storage Classes........ ............... . 4 ...................................................... page I 

1. Blocks 43 

2. Functions 45 

3. More Functions 47 

4. Files 49 



inters and Arrays ......................................... ·········· .................... page 51 

1. Simple Pointer and Array 53 

2. Array of Pointers 55 

3. Multidimensional Array 57 

4. Pointer Stew 59 

·uc:tures ............ ··································· ............... . 
....................... page 61 

1. Simple Structure, Nested Structure 63 

2. Array of Structures 65 

3. Array of Pointers to Structures 67 

cprocessor .................................................. . ............................... page 69 

1. The Preprocessor Doesn't Know C 71 

2. Caution Pays 73 

UTIONS 

)perators ....................................................................................... page 77 

. T ............................. page 97 
kislC ypes ................. ······· .. ·· .. ······················ .. . 

~ontrol Flow .................................................. · .......... · ........ ·· ...... ·page 105 

trogramming Style ............................................. ·· .............. ·· .... · .. page 117 

. Cl ............................ page 123 itorage asses ............................................... . 

d A 
......................... page 129 'ointers an rrays ................. · ........................ ·· 

, ................................................. page 141 ,tructures ................................. .. 

~reprocessor ................................................... . ............................ page 158 

'ENDlCFS 

P d T bl ........................ page 165 1. rece ence a e ......................................... .. 

Operator Summary Table .......................... ·· .......................... ·page 167 2. 
3. ASCII Table ........................................................................... page 171 

Hi h Ch rt .................. page 173 4. Type erarc Y a .......................................... . 

PREFACE 

C is not a large language. Measured by the weight of its reference manual, C could even 
classified as small. The small size reflects a lack of confining rules rather than a lack of PO\\ 

Users of C learn early to appreciate the elegance of expression afforded by its clear design. 

Such elegance might seem needlessly arcane for new C programmers. The lack of restricti( 
means that C programs can be and are written with full-bodied expressions that may appear 
printing errors to the novice. The cohesiveness of C often admits clear, but terse, ways 
express common programming tasks. 

The process of learning C, as for any programming language, may be modeled by three stt 
(no doubt repeated many times over). Step one is to understand the language syntax, at Ie 
to the point where the translator no longer complains of meaningless constructions. Step twe 
to know what meaning the translator will ascribe to properly formed constructions. And st 
three is to develop a programming style fitting for the language; it is the art of writing cle, 
concise, and correct programs. 

The puzzles in this book afe designed to help the reader through the second step. They \\ 
challenge the reader's mastery of the basic rules of C and lead the reader into seldom reach 
corners, beyond reasonable limits, and past a few open pits. (Yes, C, as all real languages, l
its share of obscurities that are learned by experience.) 

The puzzles should not be read as samples of good coding; indeed, some of the code 
atrocious. But this is to be expected. Often the same qualities that make a program poor ma 
a puzzle interesting: 

• ambiguity of expression, requiring a rule book to interpret; 

• complexity of structure, data and program structure not easily kept in one's head; 

• obscurity of usage, using concepts in nonstandard ways. 

C is still an evolving language. Depending upon the vintage of your local compiler, some 
the features explored here may not be implemented and some of the implemented features m. 
not be explored here. Fortunately, the evolution of C has proceeded uniformly, so it is ve 
unlikely that your compiler will have a feature implemented in a different way than describt 
here. 

HOW TO USE THIS BOOK 

The C Puzzle Book is a workbook intended to be used with a C language textbook such as The 
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall, 1978). Th 
book is divided into sections with one major topic per section. Each section comprises 
programs that explore different aspects of the section topic. The programs are sprinkled wit 
print statements. The primary task is to discover what each program prints. All of tb 



viii PREFACE 

programs are independent of one another, though the later puzzles assume that you understand 
the properties of C illustrated in earlier puzzles. 

The output for each program is given on the page following the text of the program. Each of 
the programs was run from the text under the UNIXt Operating System on Digital Equipment 
Corporation PDP 11/70 and VAX 11/780 computers. For the few cases where the output is 
different on the two machines, output is given from both. 

The larger portion of the book is devoted to step-by-step derivations of the puzzle solutions. 
Many of the derivations are accompanied by tips and caveats for programming in C. 

A typical scenario for using the puzzles might go like this: 

• Read about a topic in the language textbook . 

• For each program in the puzzle book section on the topic 

- Work the puzzles of the program. 

- Compare your answers to the program output. 

- Read the solution derivations. 

ACKNOWLEDGEMENTS 

The first C puzzles were developed for an introductory C programming course that I taught at 
Bell Laboratories. The encouraging response from students led me to hone the puzzles and 
embellish the solutions. A number of my friends and colleagues have given valuable 
comments and corrections to various drafts of this book. They are Al Boysen, Jr., Jeannette 
Feuer, Brian Kernighan, John Linderman, David Nowitz, Elaine Piskorik, Bill Roome, Keith 
Vollherbst, and Charles Wetherell. Finally, I am grateful for the fruitful environment and 
generous support provided me by Bell Laboratories. 

Alan Feuer 

t UNIX is a trademark of Dell Laboratories. 

THE C PUZZLE BOOK 



PUZZLES 



Operators 

1. Basic Arithmetic Operators 

2. Assignment Operators 

3. Logic and Increment Operators 

4. Bitwise Operators 

5. Relational and Conditional Operators 

6. Operator Precedence and Evaluation 

C programs are built from statements, statements from expressions, and 
expressions from operators and operands. C is unusually rich in operators; see 
the operator summary of Appendix 2 if you need convincing. Because of this 
richness, the rules that determine how operators apply to operands play a 
central role in the understanding of expressions. The rules, known as 
precedence and associativity, are summarized in the precedence table of 
Appendix 1. Use the table to solve the problems in this section. 



PUZZLnS 3 

Operators 1: Basic Arithmetic Operators 

What does the following program print? 

main ( ) 
{ 

int Xj 

x = -
x = 3 

x = -
x = 

} 

3 + 4 

+ 4 % 

3 * 4 

7 + 6 

* 5 -
5 - 6j 

% - 6 
) % 5 

6j printf("%d\n",x)j 
printf("%d\n",x)j 

/ 5 j printf("%d\n",x)j 

/ 2j printf("%d\n",x)j 

(Operators J. J ) 

(Operators J. 2) 

(Operators J. 3) 

(Operators J. 4 ) 



PUZZLES 

IUTPUT: 

11 

1 

o 
1 

Operators 1: Basic Arithmetic Operators 

(Operators 1.1) 

(Operators 1.2) 

(Operators 1.3) 

(Operators 1.4) 

~rivations begin on page 77. 

Operators 2: Assignment Operators 

What does the following program print? 

#define PRINTX printf("%d\n",x) 

main ( ) 

int x=2, y, Z; 

x *= 3 + 2; PRINTX; 

x *= y = Z = 4; PRINTX; 

x = y == Z; PRINTX; 
x == ( y = Z ); PRINTX; 

(Operators 2. J) 

(Operators 2.2) 

(Operators 2.3) 

(Operators 2.4) 

PUZZLES 



PUZZLES 

Operators 2: Assignment Operators 

ffTPUT: 

10 (Operators 2.1) 

40 (Operators 2.2) 

(Operators 2.3) 

1 (Operators 2.4) 

,rivations begin on page 80. 

PUZZLES 7 

Operators 3: Logic and Increment Operators 

What does the following program print? 

#define PRINT(int) printf("%d\n",int) 

main( ) 

int x, y, Z; 

x = 2 ; Y = 1 • , z = o· , 
x = x &.&. Y 

, , 
Z; PRINT(x) ; , , 

PRINT( x ' I Y &.&. ) ; I I Z 

x = y = 1; 

z = x ++ - 1; PRINT(x); PRINT(z); 

z += - x ++ + ++ y; PRINT(x); PRINT(z); 

z = x / ++ x; PRINT(z); 

(Operators 3.1 ) 

(Operators 3.2) 

(Operators 3.3) 

(Operators 3.4) 

(Operators 3.5) 



PUZZLFS 

Operators 3: Logic and Increment Operators 

UTPUT: 

1 (Operators 3.1) 

1 (Operators 3.1) 

2 (Operators 3.3) 

0 

3 (Operators 3.4) 

0 

? (Operators 3.5) 

terlvalions begin on page 83. 

f. 

Operators 4: Bitwise Operators 

What does the following program print? 

#define PRINT(int) printf("int = %d'n",int) 

maine ) 
{ 

int x, y, Z; 

x = 03; Y = 02; Z = 01; 
PRINT( x y & Z ); 

PRINT( x Y & - Z ); 

PRINT( x y & - Z ); 

PRINT( x & y && Z ); 

x = 1 ; Y = -1 ; 
PRINT( I x x ) ; 

PRINT( - x I 
X ) ; I 

PRINT( x A x ) ; 

X «= 3 ; PRINT (x) ; 

y «= 3 ; PRINT(y) ; 

y »= 3 ; PRINT(y) ; 

(Operators 4.1) 

(Operators 4.1) 

(Operators 4.3) 

(Operators 4.4) 

(Operators 4.5) 

(Operators 4.6) 

(Operators 4.7) 

(Operators 4.8) 

(Operators 4.9) 

(Operators 4.10) 

PUZZLFS S 



Operators 4: Bitwise Operators 

OUTPUT: 

x I y & z I = 3 (Operators 4.1) 

x I 
Y & - z 3 (Operators 4.2) I 

x y & - z = (Operators 4.3) 

x & y && z = 1 (Operators 4.4) 

I x I x (Operators 4.5) I 

- x I 
X I = -1 (Operators 4.6) 

x x = 0 (Operators 4.7) 

x = 8 (Operators 4.8) 

y = -8 (Operators 4.9) 

y ? (Operators 4.10) 

Derivations begin on page 86. 

Operators 5: Relational and Conditional Ooerators 

What does the following program print? 

'define PRINT(int) printf("int = %d'n",int) 

main ( ) 
{ 

int x=1, y=1, z=1; 

x += y += z; 
PRINT( x < y ? y : x ); 

PRINT( x < y ? x ++ : y ++ ); 

PRINT(x); PRINT(y); 

PRINT( z += x < Y ? x ++ 

PRINT(y); PRINT(z); 

x-3; y-z-4; 

y ++ ); 

PRINT( (z >- y >- x) ? 1: 0); 
PRINT( z >- y && Y >- x ); 

(Operators 5.1) 

(Operators 5.2) 

(Operators 5.3) 

(Operators 5.4) 

(Operators 5.5) 



Operators 5: Relational and Conditional Operators 

OUTPUT: 

x < Y ? Y : x = 3 

x < Y ? x ++ : y ++ = 2 

x = 3 

Y .. 3 

z += x < y ? x ++ 

y = 4 

z = 4 
(z >= Y >= x) ? 1 

y ++ 

0110 

Z >= Y && y >= x = 1 

Derivations begin on page 91. 

4 

(Operators 5.1) 

(Operators 5.2) 

(Operators 5.3) 

(Operators 5.4) 

(Operators 5.5) 

Operators 6: Operator Precedence and Evaluation 

What does the following program print? 

'define PRINT3(x,y,z) printf("x=~d'ty=~d'tz=~d'n",x,y,z) 

maine ) 
{ 

int x, y, Z; 

x = y = z .. 1 ; 

++x I I ++y && ++z; PRINT3(x,y,z); I I (Operators 6.1) 

x .. Y = z = 1 ; 

++x && ++y I I ++z; PRINT3(x,y,z); I I (Operators 6.2) 

x = Y = z = 1 ; 

++x && ++y && ++z; PRINT3(x,y,z); (Operators 6.3) 

x = y .. z '" -1 ; 

++x && ++y I I ++z; PRINT3(x,y,z); I I (Operators 6.4) 

x = Y = z = -1 ; 

++x " ++y && ++z; PRINT3(x,y,z); I I (Operators 6.5) 

x = Y = z = -1 ; 

++x && ++y && ++z; PRINT3(x,y,z); (Operators 6.6) 



Operators 6: Operator Precedence 

OUTPUT: 

x=2 y=1 z=1 (Operators 6.1 ) 
x=2 y=2 z .. 1 (Operators 6.2) 
x=2 y=2 z=2 (Operators 6.3) 
x-o y=-1 z=o (Operators 6.4) 
x=o y=o z=-1 (Operators 6.5) 
x=o y=-1 z=-1 (Operators 6.6) 

Derivations begin on page 94. 

dEvaluation 

1. Character, String, and Integer Types 

2. Integral and Floating Point Casts 

3. More Casts 

C has a comparatively small set of primitive types. The types may blindly be 
mixed in expressions, the results governed by a simple hierarchy of 
conversions. This hierarchy is illustrated in Appendix 4. 

For some of the puzzles in this section you will need to know the 
corresponding integer value of some characters. The tables in Appendix 3 
show the values for the characters in the ASCII set. A few of the puzzles yield 
a different result on the V AX than on the PDP 11. For those puzzles, output 
from both machines is given. 

15 



f 
f. 

_ JZZLES 17 

Basic Types 1: Character, String, and Integer Types 

What does the following program print? 

#include <stdio.h> 

#define PRINT(format,x) printf("x = %format'n" ,x) 

int integer = 5; 
char character = '5'; 

char *string = "5"; 

maine ) 
{ 

PRINT(d,string); PRINT(d,character); PRINT(d,integer); 

PRINT(s,string); PRINT(c,character); PRINT(c,integer=53); 

PRINT(d,( '5'>5»; (Basic Types 1.1) 

int sx = -8; 

unsigned ux = -8; 

PRINT(o,sx); PRINT(o,ux); 

PRINT(o, sx»3 ); PRINT(o, ux»3 ); 

PRINT(d, ax»3 ); PRINT(d, ux»3 ); (Basic Types 1.2) 



18 PUZZLI 

Basic Types 1: Character, String, and Integer Types 

OUTPUT: 

string = an address 

character = 53 

integer = 5 

string = 5 

character = 5 
integer=53 = 5 
( '5'>5 ) = 1 

(Basic Types 1.1) 

sx = 177770 (Basic Types I.2-PDP 11) 

ux = 177770 
sx»3 = 177777 or 017777 

ux»3 = 17777 
ax»3 = -1 M 8191 

ux»3 = 8191 

sx = 37777777770 

ux = 37777777770 
sx»3 = 37777777777 or 03777777777 

ux»3 = 3777777777 
ax»3 = -1 or 536870911 

ux»3 = 536870911 

Derivations begin on page 97. 

(Basic Types 1.2-VAX) 

PUZZLF1 

Basic Types 2: Integer and Floating Point Casts 

What does the following program print? 

'include <atdio.h> 

'define PRIx) printf("x = X.8g\t",(double)x) 

'define NL putchar('\n') 

'define PRINT4(x1,x2,x3,x4) PR(x1); PR(x2); PR(x3); PR(x4) 

main( ) 
{ 

double d; 

float f; 

long 1; 

int i; 

i = 1 = f 

d = f = 1 

i = 1 = f 

d = f = 1 

= d = 
= i = 
= d = 

i = 
PRINT4(i,1,f,d); 

100/3; PRINT4(i,l,f,d); 

100/3; PRINT4(i,1,f,d); 

100/3:.; PRINT4(i,1,f,d); 

(double)100/3; 

i = 1 = f = d = (double)(100000/3l; 

PRINT4(i,1,f,d); 

d = f = 1 = i = 100000/3; PRINT4(i,1,f,d); 

(Basic Typej l.1 

(Basic Typej t.z 
(Basic Typej i'.) 

(Basic Typej < 4 

(Basic Typej ~. '7 



20 PUZZLES 

Basic Types 2: Integer and Floating Point Casts 

OUTPUT: 

i .. 33 
1 -

33 f .. 33 d .. 33 

i .. 33 1 - 33 f • 33 d .. 33 

i .. 33 1 .. 33 f • 
33.333332 d .. 

i • 33 1 .. 33 f .. 33 d .. 33 

i • overflow 1 .. 33333 f • 33333 

i .. overflow 1 .. -32203 f .. -32203 

i .. 33333 1 .. 33333 f .. 33333 

i .. 33333 1 .. 33333 f • 33333 

Derivations begin on page 99. 

33.333333 

d .. 33333 

d .. -32203 

d .. 33333 

d .. 33333 

(Basic Types 2.1) 
Ii 

(Basic Types 2.2) ~ 

f (Basic Types 2.3) t 
(Basic Types 2.4) ~ 

~. 

(Basic Types 2.5·PDP 11) k" 
(Basic Types 2.6·PDP 11) ~', 

(Basic Types 2.5·YAX) 

(Basic Types 2.6·YAX) 

J 

I 
f 
~ 

i 

Basic Types 3: More Casts 

What does the following program print? 

#include <stdio.h> 

#define PR(x) printf("x = %g\t",(double)(x» 
#define NL putchar('\n') 

#define PRINT1(x1) PR(x1); NL 

'define PRINT2(x1,x2) PR(x1); PRINT1(x2) 

maine ) 
{ 

double d=3.2, X; 
int i=2, y; 

X = (y-d/i)*2; PRINT2(x,y); 

y - (x=d/i)*2; PRINT2(x,y); 

y d * (x=2.5/d); PRINT1(y); 
x d * (y = «int)2.9+1.1)/d); PRINT2(x,y); 

PUZZLE 

(Basic TypeJ 

(Basic TypeJ 

(Basic Typej 

(Basic Typej 



22 PUZZLES 

Basic Types 3: More Casts 

OUTPUT: 

x = 2 Y = 1 (Basic Types 3.1) 

x • 1.6 Y = 3 (Basic Types 3.2) 

Y .. 2 (Basic Types 3.3) 

x = 0 y = 0 (Basic Types 3.4) 

Derivations begin on page 103. 

Included Files 

Each of the remaining programs in this book begins with the preprocessor statement 

linclude "defs.h" 

When the programs are compiled, the preprocessor replaces this line with the contents of the 
file defs.h, making the definitions in defs.h available for use. Here is a listing of 
defs.h: 

linclude <stdio.h> 

Idefine PR(format,value) printf("value • ~format\t",(value» 
Idefine NL putchar('\n') 

Idefine PRINT1(f,x1) PR(f,x1), NL 
Idefine PRINT2(f,x1~x2) PR(f,x1), PRINT1(f,x2) 
Idefine PRINT3(f,x1,x2,x3) PR(f,x1), PRINT2(f,x2,x3) 
Idefine PRINT4(f,x1,x2,x3,x4) PR(f,x1), PRINT3(f,x2,x3,x4) 

def8.h begins with an include statement of its own, calling for the insertion of the file 
.tdio.h, as required by the standard C library. The rest of defs.h comprises macros for 
printing. As an example, to print 5 as a decimal number, the PRINT1 macro could be called 
by the expression 

PRINT 1 ( d , 5 ) 

which expands to 

PR(d, 5), NL 

which further expands to 

printf("S .. ~d\t·,(S», putchar('\n'). 

The PRINT macros point out a feature of the preprocessor that often causes confusion. A 
IIICrO name that appears inside a string (Le., enclosed within double quotes) will not be 
expanded. However, argument names within the body of a macro will be replaced wherever 
they are found, even inside strings. Notice that the macro PR takes advantage of the latter 
property. See the Preprocessor Section, beginning on page 69, for a more detailed description 
of macro substitution. 

23 



Control Flow 

1. if Statement 

2. while and for Statements 

3. Statement Nesting 

4. swi tch, break, and continue Statements 

C, as most programming languages, has control constructs for conditional 
selection and looping. To work the puzzles in this section, you will need to 
know how to determine the extent of each construct. In a well-formatted 
program, extent is indicated by indentation. Reading a poorly-formatted 
program is difficult and error prone; the following puzzles should convince you. 

25 



Control Flow 1: if Statement 

What does the following program print? 

#include "defs.h" 

maine ) 
{ 

int x, y= 1, z; 

if( yl=O ) x=5; 

PRINT1 (d,x); 

if( y==O ) x=3; 

else x=5; 

PRINT1 (d,x); 

x=1 ; 

if( y<O ) if( y>O ) x=3; 

else x=5; 

PRINT1 (d,x); 

if( z=y<O ) x=3; 

else if( y==O ) x=5; 

else x=7; 

PRINT2(d,x,z); 

if( z=(y==O) ) x=5; x=3; 
PRINT2(d,x,z); 

if( x=z=y ); x=3; 

PRINT2(d,x,z); 

(Control Flow 1.1) 

(Control Flow 1.2) 

(Control Flow 1.3) 

(Control Flow 1.4) 

(Control Flow 1.5) 

(Control Flow 1.6) 

PUZZLI 7 



28 PUZZLFS 

Control Flow 1: if Statement 

OUTPUT: 

x .. 5 (Control Flow 1.1) 

x .. 5 (Control Flow 1.2) 

x • 1 (Control Flow 1.3) 

x • 7 z .. 0 (Control Flow 1.4) 

x .. 3 z = 0 (Control Flow 1.5) 

x • 3 z = (Control Flow 1.6) 

~ns begin on page 105. 

Control Flow 2: whi Ie and for Statements 

What does the following program print? 

'include "defs.h" 

maine ) 
( 

int x, y, Z; 

x=y=O; 

while( y<10 ) ++y; x += y; 

PRINT2(d,x,y) ; 

x=y=O; 

while( y<10 ) x += ++y; 

PRINT2(d,x,y); 

y=1 ; 

whi le ( y< 1 0 ) 

x = y++; z = ++y; 
} 

PRINT3(d,x,y,z); 

fore y=1; y<10; y++ ) x=y; 

PRINT2(d,x,y) ; 

fore y=1; (x=y)<10; y++ ) 

(Control Flow 2.1) 

(Control Flow 2.2) 

(Control Flow 2.3) 

(Control Flow 2.4) 

PRINT2 (d,x,y); (Control Flow 2.5) 

fore x=O,y=1000; y>1; x++,y/=10 ) 

PRINT2 (d, x, y) ; (Control Flow 2.6) 

J LFS 29 



30 PUZZLES 

Control Flow 2: whi Ie and for Statements 

OUTPUT: 

x • 10 Y = 10 (Control Flow 2.1) 

x • 55 y ,. 10 (Control Flow 2.2) 

x • 9 Y = 11 Z II: 11 (Control Flow 2.3) 

x .. 9 Y = 10 (Control Flow 2.4) 

x .. 10 y = 10 (Control Flow 2.5) 

x • 0 y = 1000 (Control Flow 2.6) 

x .. 1 Y .. 100 

x .. 2 Y .. 10 

Derivations begin on page 108. 

Control Flow 3: Statement Nesting 

What does the following program print? 

linclude "defs.h" 

Idefine ENUF 3 

Idefine EOS '\.0' 

Idefine NEXT(i) input[i++] 
Idefine FALSE 0 

Idefine TRUE 1 

char input[]="PI=3.14159, approximately"; 

main( ) 
{ 

char C; 

int done, high, i, in, low; 

i=low=in=high=O; 

while( C=NEXT(i) 1= EOS ) 
if( c<'O' ) low++; 

else if( c>'9' ) high++; 
else in++; 

PRINT3(d,low,in,high); 

i=low=in=high=O; done=FALSE; 

while( (c=NEXT(i» I=EOS && Idone 
if( c<'O' ) low++; 

else if( c>'9' ) high++; 
else in++; 

if( low>=ENUF I I high>=ENUF I I in>=ENUF 
done = TRUE; 

PRINT3(d,low,in,high); 

i=low=in=high=Oj done=FALSE; 

while( (c=NEXT(i»I=EOS && Idone 

if ( c<' 0' ) done ,. (++low==ENUF); 

else if( c>'9' ) done = (++high==ENUF); 
else done = (++in==ENUF); 

PRINT3(d,low,in,high); 

• _.2LES 31 

(Control Flow 3. J) 

(Control Flow 3.2) 

(Control Flow 3.3) 



32 PUZZLES 

Control Flow 3: Statement Nesting 

OUTPUT: 

low .. 25 in .. 0 high .. 0 (Control Flow 3.1 ) 

low = 3 in = 6 high = 16 (Control Flow 3.2) 

low '"' 0 in = 0 high = 3 (Control Flow 3.3) 

Derivations begin on page 112. 

LZlES 33 

Control Flow 4: swi tch, break, and continue Statements 

What does the following program print? 

#include "defs.h" 

char input[] = "SSSWILTECH1\1\11W\1WALLMP1"; 

main( ) 
{ 

int i, c; 

forI i=2; (c=input[i]) 1='\0'; i++) { 

switch(c) { 

case 'a': putchar('i'); continue; 

case '1': break; 
case 1: while( (c=input[++i]II=='\1' && cl=='\.O' ) 

case 9: putchar('S'); 

case 'E': case 'L': continue; 

default: putchar(c); continue; 
} 

putchar (' '); 

pu tchar ( , \n ' ) ; (Control Flow 4. J ) 



34 PUZZLES 

Control Flow 4: swi tch, break, and continue Statements 

OUTPUT: 

SWITCH SWAMP (Control Flow 4.1) 

Derivation begins on page 114. 

Programming Style 

1. Choose the Right Condition 

2. Choose the Right Construct 

Much has been written about programming style, about which constructs to 
avoid and which to imitate. A cursory conclusion from the seemingly diverse 
advice is that good style is largely a matter of personal taste. A more reasoned 
conclusion is that good style in programming, as elsewhere, is a matter of good 
judgement. And while there are many good style guidelines, there are few 
always appropriate, always applicable style rules. 

With this in mind, the following puzzles illustrate a few common style 
blunders. The solutions given are not so much answers, as in other sections, 
but rather alternatives. If there is an overall lcey to good style, it is a 
recognition of the final two steps in writing a readable program: 

• Establish a clear statement of the idea to be coded . 

• Develop the structure of the code from the structure of the idea statement. 



PUZZLES 37 

Programming Style 1: Choose the Right Condition 

Improve the following program fragments through reorganization. 

while (AI { 

} 

do { 

if(B) continue; 

C; 

if( IA) continue; 

else B; 

C; 
} while(A); 

if(A) 

if(B) 

if(C) D; 
else; 

else; 
else 

if(B) 

if(C) E; 
else F; 

else; 

while ( (c=qetchar ( ) ) I .. ''\n' ) { 

if( c==' , ) continue; 

if( c==',\t' ) continue; 

if( c<'O' ) return(OTHER); 

if( c<='9' ) return(DIGIT); 

if( c<'a' ) return(OTHER); 

if( c<='z' ) return(ALPHA); 

return(OTHER); 

(Programming Style 1.1) 

(Programming Style 1.2) 

(Programming Style 1.3) 



Derivations begin on page 119. 

Storage Classes 

1. Blocks 

2. Functions 

3. More Functions 

4. Files 

Each variable in C possesses two fundamental properties, type and storage class. 
Type has been covered in an earlier section. 

Storage class determines the scope and lifetime for a variable. scope being that 
. part of a program in which a variable is known and lifetime being that portion 

of an execution during which a variable has a value. The boundaries of scope 
and lifetime are blocks, functions, and files. 



IS 

Derivations begin on pIlge 117. 

PUZZL~ 39 

Programming Style 2: Choose the Right Construct 

Improve the following program fragments through reorganization. 

done .. i .. O; 

while( i<MAXI && Idone ) { 

} 

} 

if( (x/=2»1 ) (i++; continue; } 
done++; 

if(A) { B; return; } 

if(e) D; return; } 

if (E) { F; return; } 

Go , return; 

plusflqazeroflq-neqflq-O; 
if( a>O ) ++plusflq; 

if( a-=O ) ++zeroflq; 
else if( Iplusflq ) ++neqflq; 

i=O; 
while«c=qetchar(»I-EOF){ 
if(cl='\n'&&cl='\t'){s[i++]=c;continue;} 
if(c=='\n')break; 
if(c.a'\t')c=' 'i 

s[i++]=Ci} 

if ( x 1=0 ) 

else 

if( j>k ) y.j/x; 
else yak/x; 

if( j>k ) y-j/NEARZERO; 

else y-k/NEARZERO; 

(Programming Style 2.1~ 

(Programming Style 2.2) 

(Programming Style 2.3) 

(Programming Style 2.4) 

(Programming Style 2.5) 



Storage Classes 1 : Blocks 

What does the following program print? 

#include "defs.h" 

int i=O; 

main( l 
{ 

auto int i=1; 

PRINT 1 (d, i l ; 
{ 

int i=2; 

PRINT 1 ( d , i l ; 
{ 

} 

i += 1; 

PRINT1(d,il; 

PRINT 1 ( d , i l ; 

PRINT1 (d, i l; (Storage Classes 1.1) 

PUZZLES 43 



44 PUZZL~ 

OUTPUT: 

i • 1 

i • 2 

i • 3 

i = 3 

i = 1 

Storage Classes 1: Blocks 

(Storage Classes 1.1) 

Derivations begin on page 123. 

Storage Classes 2: Functions 

What does the following program print? 

'include ndefs.h" 

'define LOW 0 

'define HIGH 5 

'define CHANGE 2 

int i=LOW; 

main( ) 
( 

auto int i=HIGH; 

reset( i/2 ); PRINT1(d,i); 

reset( i=i/2 ); PRINT1(d,i); 

i = reset( i/2 ); PRINT1(d,i); 

workover(i); PRINT1(d,i); 

workover(i) 

int i; 

i = (i%i) * «i*i)/(2*i) + 4); 
PRINT 1 (d , i ) ; 

return(i); 

int reset(i) 

int i; 

} 

i = i<=CHANGE ? HIGH LOW; 

return( i); 

(Storage Classes 2.1) 

PUZZLES 



46 PUZ2LES 

Storage Classes 2: Functions 

OUTPUT: 

i .. 5 (Storage Classes 2.1) 

i .. 2 

i .. 5 

i • 0 

i - 5 

Derivations begin on page J 24. 

Storage Classes 3: More Functions 

What does the following program print? 

#include "defs.h" 
~ int i.1; 

lDain( ) 
{ 

} 

auto int i, j; 
i .. reset ( ) ; 

fort j.1; j<-.3; j++ ) { 

PRINT2(d,i,j); 

PRINT1(d,next(i»; 

PRINT1(d,last(i»; 
PRINT1(d,new(i+j»; 

} 

int reset() 
{ 

return(i); 

int next(j) 

int j; 
{ 

return( j=i++ ); 

int last (j) 

int j; 
{ 

static int i-10; 
return( jai-- ) ; 

iDt new(i) 

int i; 
{ 

auto int j-10; 
return( i-j+-i ) ; 

(Storage Classes 3.1) 

'UZ2LFS 4 



48 PUZZLES 

Storage Classes 3: More Functions 

OUTPUT: 

i _ 1 j = 1 (Storage Classes 3.1) 

next(i) = 1 
last(i) .. 10 

new(i+j) = 12 
i .. 1 j=2 

next(i) = 2 

last(i) = 9 

new( i+j) = 13 

i=1 j .. 3 

next(i) .. 3 
last(i) .. 8 

new(i+j) • 14 

Derivations begin on page 125 

Storage Classes 4: Files 

What does the following program print? 

#include "defs.h" 

int i=1; 

maine ) 
( 

auto int i, j; 

i = reset(); 

for ( j = 1; j < = 3; j + + ) { 

PRINT2(d,i,j); 

PRINT1(d,next(i»; 

PRINT1(d,last(i»; 
PRINT1(d,new(i+j»; 

Ia QIIOI~r file 

atatic int i-10; 

int next( ) 
( 

return( i+=1 ) ; 

int last( ) 
( 

return( i-=1 ) ; 

int new( i) 

int i; 
( 

static int j=5; 
return( i=j+=i ) ; 

) 

In yet another file 

extern int i; 

reset( ) 
{ 

return(i); 

JZZLES 49 

(Storage Classes 4.1) 



50 PUZZLES 

OUTPUT: 

i .. 1 j = 
next(i) .. 11 

last(i) .. 10 
new(i+j) .. 7 

i=1 j=2 

next(i) = 11 

last(i) .. 10 
new(i+j) .. 10 

i-1 j=3 

next(i) = 11 

hst(i) .. 10 
new(i+j) .. 14 

Storage Classes 4: Files 

(Storage Classes 4.1 ) 

Derivations begin on page 127. 

.I. ointers and Arrays 

1. Simple Pointer and Array 

2. Array of Pointers 

3. Multidimensional Array 

4. Pointer Stew 

Pointers have long been abused by programmers and thus maligned in style 
guides. Specifically, pointers are criticized since, by their nature, it is 
impossible to identify fully a pointer's referent without backing up to where the 
pointer was last defined; this adds complexity to a program and makes 
verification much more difficult. 

The C language, rather than restricting the use of pointers, often makes them 
the natural choice for use. As the following puzzles will illustrate, pointers and 
arrays are very closely related. For any application using array indexing, a 
pointer version also exists. The warnings against the dangers of pointer misuse 
apply as strongly to C as to any language. 

51 



PUZZLES 

Pointers and Arrays 1: Simple Pointer and Array 

What does the following program print? 

linclude "defs.h" 

int a[)={O,1,2,3,4}; 

maine ) 
{ 

int i, *p; 

fore i=O; i<=4; i++ ) PR(d,a[i); 
NL; 

fore p= &a[O); p<=&a[4); p++ ) 

PR(d,*p) ; 

NL; NL; 

fore p= &a[O),i=1; i<=5; i++ 
PR ( d , P [ i ) ) ; 

NL; 

fore p=a,i=O; p+i<=a+4; p++,i++ 

PR(d,*(p+i»; 

NL; NL; 

fore p=a+4; p>=a; p-- ) PR(d,*p); 
NL; 

(Pointers and Arrays 1.1) 

(Pointers and Arrays 1.2) 

(Pointers and Arrays 1.3) 

(Pointers and Arrays 1.4) 

(Pointers and Arrays 1.5) 

fore p=a+4,i=O; i<=4; i++ ) PR(d,p[-i); (Pointers and Arrays 1.6) 
NL; 

fore p=a+4; p>=a; p-- ) PR(d,a[p-a); 
NL; 

(Pointers and Arrays 1.7) 



i4 PUZZLES 

Pointers and Arrays 1: Simple Pointer and Array 

rJUTPUT: 

&[i] • 0 ali] • 1 ali] • 2 &[i] .. 3 ali] = 4 
(Pointers and Arrays 1.1) 

• p • 0 .p ... 1 • p = 2 *p ... 3 .p • 4 
(Pointers and Arrays 1.2) 

p[i] = p[i] • 2 p[i] = 3 p[i] • 4 p[i] = ? 
(Pointers and Arrays 1.3) 

.(p+i) '"' 0 *(p+i) '"' 2 *(p+i) = 4 (Pointers and Arrays 1.4) 

• p = 4 *p = 3 *p .. 2 *p = 1 *p • 0 

(Pointers and Arrays 1.5) 

p[-i] = 4 p[-i] = 3 p[-i] = 2 p[-i] = 1 p[-i] .. 0 

(Pointers and Arrays 1.6) 

alp-a] = 4 alp-a] • 3 alp-a] .. 2 alp-a] .. 1 alp-a] = 0 

(Pointers and Arrays 1.7) 

Derivations begin on page 129. 

,LES 55 

Pointers and Arrays 2: Array of Pointers 

What does the following program print? 

#include "defs.h" 

int a[]={O.1.2.3.4}; 

int *p[]={a.a+1.a+2.a+3.a+4}; 

int **pp=pj 

maine ) 
{ 

} 

PRINT2(d.a.*a)j 

PRINT3(d.p.*p.**p); 

PRINT3(d.PP.*PP.**pp)j 
NL; 

pp++j PRINT3(d,pp-p,*pp-a,**pp)j 

*PP++j PRINT3(d.pp-p.*pp-a.**pp); 

*++ppj PRINT3(d,pp-p.*pp-a,**pp); 

++*PPj PRINT3(d,pp-p.*pp-a.**pp); 
NL; 

pp=pj 

**PP++j PRINT3(d,pp-p.*pp-a.**pp)j 

*++*PPj PRINT3(d.pp-p,*pp-a,**pp)j 

++**pp; PRINT3(d,pp-p.*pp-a.**pp)j 

(Pointers and Arrays ~.1) 

(Pointers and Arrays 2.2) 

(Pointers and Arrays 2.3) 

(Pointers and Arrays 2.4) 



56 PUZZLES 

Pointers and Arrays 2: Array of Pointers 

OUTPUT: 

4 .. address of a 

p = address of p 

pp = address of p 

*a .. 0 
*p .. address of a **p = 0 

*pp = address of a **pp ,. 0 

pp-p .. 
pp-p .. 
pp-p = 
pp-p .. 
pp-p .. 
pp-p = 
pp-p = 

1 

2 

3 
3 

1 

1 

1 

*pp-a .. 1 **pp" 1 

*pp-4 = 2 **pp" 2 
*pp-a .. 3 **pp" 3 

*pp-A .. 4 **pp" 4 

*pp-4 .. 1 
*pp-a ,. 2 

**pp .. 1 

**pp .. 2 

*pp-4 .. 2 **pp" 3 

Derivations begin on JKlge 132. 

(Pointers and Arrays 2.2) 

(Pointers and Arrays 2.3) 

(Pointers and Arrays 2.4) 

ruZZLES 57 

Pointers and Arrays 3: Multidimensional Array 

What does the following program print? 

'include "defs.h" 

int a[3][3] = { 

{ 1, 2, 3 } , 
{ 4, 5, 6 } , 

7, 8, 9 } 

} ; 

int *pa[3] = { 

a[O], a [ 1 ] , 
} ; 

int *p = a [ 0 ] ; 

maine ) 
( 

int i; 

a[2] 

fore i=O; i<3; i++ 
PRINT3(d, a[i][2-i], *a[i], 

NL; 

fore i=O; i<3; i++ 
PRINT2(d, *pa[i] , p[il ) ; 

(Pointers and Arrays 3.1) 

*(*(a+i)+i) ) ; 

(Pointers and Arrays 3.2) 

(Pointers and Arrays 3.3) 



58 PUZZLE 

Pointers and Arrays 3: Multidimensional Array 

OUTPUT: 

&[i][2-i] = 3 *&[i] 

&[i][2-i] = 5 *&[i] 

&[i][2-i] .. 7 *&[i] 

*p&[i] .. 1 p[i] 

*p&[i] .. 4 p[i] 

*p&[i] .. 7 p[i] 

Derivations begin on page 136. 

.. 1 

.. 4 

.. 7 

• 1 

• 2 
.. 3 

* ( * (&+ i) + i) .. 1 (Pointers and Arrays 3.21 

*(*(&+i)+i) .. 5 

*(*(&+i)+i) .. 9 

(Pointers and Arrays 3.11 

ZLES 59 

Pointers and Arrays 4: Pointer Stew 

What does the following program print? 

'include "defs.h" 

char 

} j 

char 

char 

*0£ ] .. { 

"ENTER", 

"NEW" , 

"POINT", 

"FIRST" 

**cp[] = 

***cpp = 

{ c+3, c+2, c+1, c }j 

cp; 

maine ) 
{ 

printf("%s", **++cpp )j 

printf("%s ", *--*++cpp+3 )j 

printf("%s", *cpp[-2]+3 ); 

printf("%s~n", cpp[-1][-1]+1 ); 

(Pointers and Arrays 4.1) 

(Pointers and Arrays 4.2) 



60 PUZZLES 

Pointers and Arrays 4: Pointer Stew 

OUTPUT: 

POINTER STEW (Pointers and Arrays 4.1) 

Derivation begins on page 138. 

~tructures 

1. Simple Structure, Nested Structure 

2. Array of Structures 

3. Array of Pointers to Structures 

A structure, that is the C data type struct, is a fundamental building block 
(or data structures. It provides a convenient way to package dissimilar but 
related data items. 

61 



PUZZLES 

Structures 1: Simple Structure, Nested Structure 

What does the following program print? 

#include "defs.h" 

maine ) 
{ 

} 

static struct S1 { 

char c[41, *s; 
} s1 = { "abc", "def" }; 

static 8truct S2 { 

char *cp; 

struct S 1 s81; 

} 82 = { "ghi", { "jkl", "mno" } }; 

PRINT2(c, 81.c[o1, *S1.8); 
PRINT2(8, s1.c, 81.8); 

PRINT2(8, s2.cp, 82.S81.8); 

PRINT2(8, ++82.cp, ++82.881.s); 

(Structures 1.1) 

(Structures 1.2) 

(Structures 1.3) 

(Structures 1.4) 

(Structures 1.5) 



64 PUZZLE 

Structures 1: Simple Structure, Nested Structure 

OUTPUT: 

s1.c[0] • a 

s1.c = abc 

s2.cp = ghi 
++s2.cp = hi· 

*s1.s • d 
s1.s = def 
s2.ss1.s = mno 

++82.881.8 = no 

Derivations begin on page ]"]. 

(Structures] .2) 

(Structures ].3) 

(Structures].4 ) 

(Structures 1.5) 

Structures 2: Array of Structures 

What does the following program print? 

linclude "defs.h" 

atruct 51 { 

char *S; 
int i; 

struct 51 *s1p; 

aain( ) 
{ 

static struct S1 a[] = { 

{ "abcd", 1 , a+1 } , 
{ "efgh", 2, a+2 } , 
{ "ijkl", 3, a } 

} . , 
struct 51 *p = a; 
int i; 

PRINT3(s, a[O].s, p->s, a[2].s1p->s); 

for ( i = 0; i '< 2; i + + ) { 

PR(d, --a[i].1); 
PR(c, ++a[1].s[3]); 

NL; 

JZZLFS 6S 

(Structures 2.1) 

(Structures 2.2) 

(Structures 2.3) 

PRINT3(s, ++(p->s), a[(++p)->i].s, a[--(p->s1p->1)].s); 

(Structures 2.4) 



66 PUZZLES 

OUTPUT: 

a[O].s = abed 

--a[i1.i • 0 
--a[ i]. i = 

Structures 2: Array of Structures 

p->s = abed 

++a[i].8[3] = e 

++a[i].s[3] = i 

a[2].s1p->s = abed 
(Strudures 2.2) 

(Structures 2.3) 

++(p->s) = bee a[(++p)->i].s = etgi a[--(p->s1p->i)].s. ijkl 
(Strudures 2.4) 

Derivations begin on page 145. 

Structures 3: Array of Pointers to Structures 

What does the following program print? 

linelude "deta.h" 

struet S1 { 

char *s; 

struet 51 *s1p; 
} ; 

llain( ) 

{ 

static 
{ 

{ 

{ 

struct 51 al] 

"abcd". a+1 

"efgh". a+2 

"ijJtl". a } 

} ; 

struct 51 *p[3]; 

int ii 

} . 
} . 

• { 

fore i-Oj i<3; i++ ) p[i] - a[i].s1p; 

PRINT3(s. p[O]->s. (*p)->a. (**p).s); 

awap(*p.a) ; 
PRINT3(s. p[O]->s. (*p)->a. (*p)->s1p->s); 

swap(p[O]. p[01->a1p); 

P LES 67 

(Structures 3.1) 

(Structures 3.2) 

(Structures 3.3) 

PRINT3(s, p[O]->s, (*++p[ol).s, ++(*++(*p)->s1p).a); 
(Structures 3.4) 

••• p(p1.p2 ) 

.truct S1 *p1. *p2; 
{ 

} 

char *temp; 

temp • p1->s; 
p1->s • p2->s; 

p2->s .. temp; 



68 PUZZLJ 

Structures 3: Array of Pointers to Structures 

OUTPUT: 

p[O]->s • efqh 

p[O]->s = abed 

p[O]->s • ijkl 

(*p)->s • efqh (**p).s = efqh (Structures 3.2) 
(*p)->s • abed (*p)->s1p->s = ijkl (Structures 3.3) 

(*++p[O]).s • abed ++(*++(*p)->s1p).s. jkl 

(Structures 3.4) 

Derivalions begin on page 152. 

Preprocessor 

1. The Preprocessor Doesn't Know C 

2. Caution Pays 

Though in a strict sense the preprocessor is not part of the C language, few C 
programs would compile without it. Its two most important functions are 
macro substitution and file inclusion. 

This section concentrates on macro substitution. When used judiciously, 
macros are a versatile tool that can enhance the readability and efficiency of a 
program. When used unwisely, macros, like other features in C, can lead to 
insidious bugs. To solve the puzzles in this section, follow the rules for 
expanding macros very carefully. 

69 



PUZZLES •• 

Preprocessor 1: The Preprocessor Doesn't Know C 

What does the following program print? 

'include <stdio.h> 
'define FUDGE(k) k+3.141S9 

'define PR(a) printf(-a= "d't",(int)(a» 
'define PRINT(a) PR(a); putchar("n') 
'define PRINT2(a,b) PR(a); PRINT(b) 

'define PRINT3(a,b,c) P~(a); PRINT2(b,c) 
'define MAX(a,b) (a<b ? b : a) 

maine ) 
{ 

{ 

} 

{ 

} 

{ 

} 

int x=2; 
PRINT( x*FUDGE(2) >; 

int eel; 
fore eel-O; eel<-100; cel+aSO 

PRINT2( eel, 9./S*cel+32 ); 

int x-1, y a 2; 
PRINT3( MAX(x++,y),x,y ); 

PRINT3( MAX(x++,y),x,y ); 

(Preprocessor 1.1) 

(Preprocessor 1.2) 

(Preprocessor 1.3) 



72 PUZZLES 

Preprocessor 1: The Preprocessor Doesn't Know C 

OUTPUT: 

x*FUDGE(2) = 7 

cel= 0 cel= 50 
MAX(x++,y)= 2 

MAX(x++,y)= 3 

Derivations begin on page 158. 

cel= 100 9./5*cel+32 ~ 302 

x= 2 y .. 2 

x'"' 4 Y = 2 

(Preprocessor I./j 
(Preprocessor III 

(Preprocessor I.JJ 

Preprocessor 2: Caution Pays 

What does the following program print? 

linclude <stdio.h> 
Idefine NEG(a)-a 
Idefine weeks(mins) 
Idefine days(mins~ 
Idefine hours(mins) 
Idefine mins(secs) 

(days(mins)/7) 
(hours(mins)/24) 

(mins/60) 

(secs/60) 
Idefine TAB(c,i,oi,t) if(c=='\t')\ 

P LES 73 

for(t-S-(i-oi-1)XS,oi=i; t; t--)\ 
putchar(' ') 

Idefine PR ( a ) 

Idef ine PRINT ( a ) 
printf("a= Xd\t",(int)(a» 
PR(a); putchar('\n') 

aain( ) 
( 

} 

} 

} 

int x=1; 

PRINT( -NEG(x) ); 

PRINT( weeks(100BO) ); 

PRINT( days(mins(B6400» ); 

static char input[] = "\twhich\tif?"; 
char c; 

int i, oldi, temp; 

(Preprocessor 2.1) 

(Preprocessor 2.2) 

fore oldi= -1,i=0; (c=input[i])I='\O'; i++ 
if( c<' , ) TAB(c,i,oldi,temp); 

else putchar(c); 
putchar ( , \n' ) ; (Preprocessor 2.3) 



74 PUZZLES 

Preprocessor 2: Caution Pays 

OUTPUT: 

-NEG(x)= 0 

weeks(10080) • 1 

days(mins(86400» = 1 

eleven spaces 

Derivations begill 011 page' 161. 

(Preprocessor 1.1) 

(Preprocessor 2.2) 

(Preprocessor 1.3) 

SOLUTIONS 



Operators 1.1 

x = - 3 + 4 * 5 - 6 

x = (-3) + 4 * 5 - 6 

x = (-3) + (4*5) - 6 

x = «-3)+(4*5» - 6 

x= «(-3)+(h5»-6) 

(x=«(-3)+(4*5»-6» 

(x=«-3+(4*5»-6) 

(x=«-3+20)-6) 

(x=(17-6» 

(x= 11 ) 

11 • an integer 

BASIC ARITHMETIC OPERATORS .. 

Begin by reading the precedence table in Appendix 1 
from high to low. 

The highest level operator in the expression is the 
unary -. We'll use parentheses to indicate the order 
of binding operands to operators. 

Next highest in the expression is *. 
Both + and - are at the same precedence level. The 
order of binding thus depends on the associativity rule. 
for that level. For + and -, associativity is left to 
right. First the + is bound. 

And then the -. 

And finally, near the bottom of the precedence table, 
is =. Now that we have completely identified the 
operands for each operator, we can evaluate the 
expression. 

For this expression, evaluation proceeds from the 
inside out. 

Replace each sUbexpression by its resulting value. 

The value of an assignment expression is the value of 
the right-hand sid, cast in the type of the left-hand 
side. 

About print! Printf is the formatted print routine that comes as part of the standard C 
library. The first argument to printf is a format string. It describes how any remaining 
arguments are to be printed. The character " begins a print specification for an argument. 
In our program, "d told printf to interpret and print the next argument as a decimal 
number. We will see other print specifications in later programs. Printf can also output 
literal characters. In our program, we "printed" a newline character by giving its name 
(\n) in the format string. 



78 BASIC ARITHMETIC OPERATORS 

Operators 1.2 

x_3+4"5-6 

x = 3 + (4"5) - 6 

x = (3+(4"5» - 6 

x= «3+(4"5»-6) 

(x"( (3+(4"5) )-6» 

(x-«3+4)-6) 

(x-(7-6» 

(x=1) 

1 

Operators 1.3 

x= (-3) *4,,(-6) IS 

x D «-3)*4)" (-6) 15 

x = « (-3)*4)"(-6» 15 

x = « «-3)*4),,(-6) )/5) 

(x=««-3)*4),,(-6»/5» 

(x=«(-3*4)"-6)/5» 

(x=«-12"-6)/5» 

(x-(O/5» 

(x=o) 

o 

This expression is very similar to the previous one. 

Following precedence 

and associativity 

leads to 

this. (The modulo, ", operator yields the 
remainder of dividing 4 by 5.) 

Again, evaluation is from the inside out. 

This expression is a bit more complex than the 
last, but rigorous adherence to precedence and 
associativity will untangle it. 

*, ", and I are all at the same precedence level, 
and they associate from left to right. 

Evaluating from the inside out. 

Operators 1.4 

x = ( 7 + 6 ) " 5 I 2 

x=(7+6)"5/2 

x = «7+6)"5) ~. 2 

x= «(7+6)"5)/2) 

(x=«(7+6)"5)/2» 

(x=«13"5)/2» 

(x=(3/2» 

(x= 1) 

1 

BASIC ARITHMETIC OPERATORS 79 

Of course we are not totally at the mercy of predefined 
precedence. Parentheses can always be used to effect 
or clarify a meaning. 

Subexpressions within parentheses bind first. 

Then. it is according to the precedence and associativity 
rules as before. 

Evaluating. 

Integer arithmetic truncates any fractional part. 

About programming style. As mentioned in the Preface, the programs in this book are not 
models to be copied. They were designed to make you think about the mechanics of how C 
works. But the puzzles do contain messages about program style. If a construct always 
forces you to consult a reference to find out how some detail is handled, then the construct 
is either not well written or it should be accompanied by a comment that provides the 
missing details. 

The message from this first set of puzzles is to use parentheses in complex expressions to 
help the reader associate operands with operators. 



80 ASSIGNME,'I' OPERATORS 

Operators 2.1 

initially x=2 

x *= 3 + 2 

x*=(3+2) 

(x*=(3+2) ) 

(x*=5) 

(x=x*S) 

(x=10) 

10 

Again follow the precedence table. 

As we saw earlier, the assignment operators have lower 
precedence than the arithmetic operators. (* = is an assignment 
operator.) 

Evaluating. 

Expanding the assignment to its equivalent form. 

About define. This program begins with the line 

#define PRINTX printf ( ""d\n H, x) 

Any line in a C program that begins with the character , is a statement to the.£ 
w:e~~~cOJ! One job done by the preprocessor is the substitution of one st~ing by another. 
The define statement in this program tells the preprocessor to replace all mstances of the 
string PRINTX with the string printf( ""d\n" ,x). 

Operators 2.2 

initially x= 10 

x *= y = z = 4 

x*=y= (z=4) 

x *= (y=(z=4» 

(x*=(y=(z=4») 

(x*=(y=4) ) 

(x*=4) 

40 

Operators 2.3 

initially y=4, z=4 

x = Y == z 

x = (y==z) 

(x=(y==z) ) 

(x={ TRUE) ) 

(x=1) 

ASSIGNMENT OPERATORS 81 

In this expression all the operators are assignments, hence 
associativity determines the order of binding. Assignment 
operators associate from right to left. 

, Evaluating. 

Often a source of confusion for programmers new to C is 
the distinction between = (assignment) and = = (test for 
equality). From the precedence table it can be seen that 
= = is bound before =. 

Relational and equality operators yield a result of TRUE, an 
integer 1, or FALSE, an integer o. 



82 ASSIGNt.t~NT OPERATORS 

Operators 2.4 

initially x.1, za4 

x.·(y=z) 

(x •• (y .. z» 

(x.·") 
FALSE, or 0 

In this expression the assignment has be~n forced to have 
higher precedence than the test for equabty through the 
of parentheses. 

Evaluating. 

The value of the expression is O. Note however ~hat the 
value of x has not changed ( ... does not change Its 
operands), so PRINTX prints 1. 

Operators 3.1 

initially x=2, y= 1, z=O 

x .. x &.&. Y I I z 

x = (x&'&'y) I I z 

x = « x&.&.y) I I z ) 
'" (x= ( (x&'&'y) I I z} } 

(x-«TRUE&'&'TRUE)llz» 

(x= ( TRUE I I z) ) 

(x= (TRUE I I whatever) 

(x=TRUE) 

(x=1 ) 

LOGIC AND INCREMENT OPL ••.• TORS 83 

Bind operands to operators according to precedence. 

Logical operators are evaluated from left to right. 
An operand to a logical operator is FALSE if. it is 
zero and _TRUE .ifit_!s_!,!!y!~!I!.~ c:l~~ 

The logical AND, &.&., yields TRUE only when both 
its operands are TRUE, otherwise FALSE. 

Once one argument to the OR, I I, is known to be 
TRUE we know the result of the I I will be TRUE 
regardless of the other operand. Hence there is no 
need to evaluate the expression further. 

More about define. The define statement that begins this program is a little fancier than 
that in the previous program. Here, PRINT is the name of a macro with arguments, not just 
a simple string. The preprocessor performs two levels of substitution on macros with 
arguments: first the .!ctual arguments are substituted for the lp!J!l.l!! arguments in the macro 
body, and then the resulting macro body is substituted for the macro call. 

For example, in this program PRINT has one formal argument, into PRINT (x) is a call 
of PRINT with the actual argument X. Thus, each occurrence of int in the macro body is 
first replaced by x, and then the resulting string, printf ( ""d\n n ,x), is substituted for 
the call, PRINT (x). Notice that the formal parameter int did not match the middle 
letters in printf. This is because the formal arguments of a macro are identifiers; int 
only matches the identifier into 



84 LOGIC At NCREMENT OPERATORS 

Operators 3.2 

initially x= 1 , y= 1 , z=O 

X 
I I I Y &.&. z , I 

X 
I I ( I y) &.&. z I I 

X 
I I (( Iy)&.&.z) , I 

( x I I ( ( I Y ) &'&'z) ) 

( TRUE I I ( ( I y) &'&'z) ) 

( TRUE I I whatever) 

TRUE, or 1 

Operators 3.3 

initially x= 1 , y= 1 

Z :: X ++ -

Z :: (x++) - 1 

z=((x++)-1) 

(z=((x++)-1» 

( z = ( 1-1 ) ) , and x= 2 

(z=O) 

o 

Binding operands to operators. 

Evaluating from left to right. 

Following precedence. 

The + + to the right of its operand is a post increment. 
This means that x is incremented after its value is used 
in the expression. 

Operators 3.4 

initially x=2, y= 1, z=O 

z += - x ++ + ++ y 

z += - (x++) + (++y) 

z += (-(x++» + (++y) 

z += ((-(x++) )+(++,y» 

(z+=((-(x++»+(++y») 

LOGIC AND INCREMENT 01 .TORS 8S 

Unary operators associate from right to left, 
thus + + binds before unary -. (Actually, the 
expression would not be legal if it. were 
arranged so that the - bound first since + + and 
- - expect a reference to a variable (an lvalue)· 
as their operand. x is an IvafUe~ but -x is not.) 

(z+= ( (-2) +2) ) , and x=3, y=2 Evaluating from the inside out. 

(z+=O) 

(z = 0+0) 

(z=O) 

o 

Operators 3.5 

initially x=3, z=O 

z = x I ++ x 

z=x/(++x) 

z = (x/( ++x» 

(z=(x/(++x) » 

You may be tempted at this point to begin evaluating this expression as before, from 
the inside out. First the value of x would be retrieved and incremented to be divided 
into the value of x. One question that might be asked is what value is retrieved from x 
for the numerator, 3 or 4? That is, is the value for the numerator retrieved before or 
after the increment is stored? The C language does not specify when such a side 
effect) actually occurs; that is left to the compiler writer. The message is to avoid 
writing expressions that depend upon knowing when a side effect will occur. 

I. A side effect is any change to the state of a program that occurs as a byproduct of executing a 
statement. By rar the most common side effects in C relate to storing intermediate values in 
variables, such as with the increment operator as above or with an embedded assignment operator. 



86 BITWISE OPr,l\.A TORS 

Operators 4.1 

initially x=03. y.02. z=O 1 

xly&.z 

(x I (y&'z) ) 

(x I (02&01) ) 

(x 10) 

(0310) 

03 

Integer constants preceded by 0 (zero) are octal 
values. Octal notation is particularly useful when 
working with the bitwise operators because it is 
easy to translate octal numbers to binary. In this 
problem, 01, 02, and 03 are equivalent to 1, 2, 
and 3, so using octal is merely a cue to the reader 
that the program will deal with the values of x, y, 
and z as bit strings. 

Following precedence. 

The innermost expression is evaluated first. 

In binary, 0 1 - 1, 02- 1 0, 0 3 - 11 

10 
& 01 

00 

00 
11 

11 

Operators 4.2 

initially x=03. y=02. z=O 1 

xly&-z 

( x I (y& ( - z ) ) ) 

( x I (y& - 0 1 ) ) 

(xl(02&-01» 

(03102) 

3 

Operators 4.3 

initially x.03. y.02. z:aO 1 

x"y&-z 

(x" ( y& ( - z ) ) ) 

(x"(02&-01» 

(03"02) 

1 

BITWISE OPERATORS 87 

- complements each of the bits of its operand. 
Thus O ••• 0 1 becomes 1 ••• 10. 

In binary, 

0 ••• 010 
& 1 ••• 110 
---------0000010 

10 
11 

11 

This is the same as the previous problem except 
that the exclusive or, ", has been substituted for 
the inclusive or, I. 

In binary, 

10 
A 11 

01 



88 BITWISE OPERATORS 

Operators 4.4 

initially x=03, y=02, z=01 

x 6. Y 6.6. z 

( (x6.y) 6.6.z ) 

«036.02)6.6.z) 

(026.6.z) 

(TRUE6.6.z) 

(TRUE6.6.0 1) 

(TRUE6.6.TRUE) 

TRUE, or 1 

Operators 4.5 

initially x = 0 1 

Ixlx 

«lx)lx) 

« ITRUE) Ix) 

(FALSEI01) 

(0 101) 

1 

6.6. yields TRUE whenever both operands are 
TRUE. 

Operators 4.6 

initially X=O 1 

-xIx 

«-x)lx) 

(-01101) 

-1 

Operators 4.7 

initially x=O 1 

x"x 

(01"01) 

o 

In binary, 

1 ••• 110 
I 0 .•. 001 

1 ••• 111, or - 1 

BITWISE OPERATORS 89 

(The answer is the same for all values of x. Actually, it is -1 
on a two's-complement machine, like the PDP-II. On a 
one's-complement machine 1 ..• 1 would be -0. For the few 
cases in this book where it matters, two's-complement will be 
used.) 

In binary, 

O ••• 01 
AD ••• 01 

o ... 00 

(The answer is the same for all values of x.) 



I 

90 BITWISE 0 A TORS 

q"uo,s 4.8 

initially x=O 1 

x «= 3 

x .. 01«3 

x.8 

Operators 4.9 

initially y=-O 1 

Y «~a 3 

y=-01«3 

y. -8 

Operators 4. J 0 

initially y=-08 

y »= 3 

y = -08»3 

In binary, 

0000 ••• 01 
« 3 

O ••• 01000, which is 8 

Each place shifted to the left is an effective multiplication by 2. 

In binary, 

1111 ... 11 
« 3 

-----1:::11000, or -8 

It is tempting at this point to assume that y - -1. Unfortunately this is not always tk ' 
case, since the computer may not preserve the sign of a number when shifting. C docI 
not guarantee that the shift will be arithmetically correct. In any case, there is a mllCl 
clearer way to divide by 8, namely y=y/8. 

Operators 5.1 

initiallyx=3, y=2, z=1 

x<y?y:x 

(x<y) ? (y) : (x) 

«x<y)?(y): (x» 

(FALSE?(y): (x» 

( (x) ) 

( 3 ) 

3 

Operators 5.2 

initially x=3, y=2, z=1 

x < y ? x ++ : y ++ 

«x<y)?(x++):(y++» 

(FALSE?(x++):(y++» 

( (y++) ) 

(2), and y==3 

2 

RELATIONAL AND CONDITIONAL OPL ... TORS 91 

The conditional operator, aside from taking three 
operands, is parsed like any other operator. 

First the condition is evaluated. Then either the 
true part or the false part is evaluated, but not 
both. 

In this problem the value of the condition is 
FALSE, thus the value of the conditional 
expression is the value of the false part. 

First evaluate the condition. 

The condition is FALSE so the false part is 
evaluated. 

(And since x+ + was not evaluated, x remains 3.) 



92 RELAl AL AND CONDmONAL OPERATORS 

Operators 5.3 

initially x.3. y.3. z.1 

z +- x < y? x ++ : y ++ 

(z+=«x<y)?(x++):(y++») 

(z+=(FALSE?(X++):(Y++») 

(z+-( (y++» 

(z+-(3». and y.4 

(z=z+3) 

(z-4) 

4 

Operators 5.4 

initially x- 3. y=4. z .. 4 

(z >- y > .. x) ? 1 : 0 

( ( ( z> =y ) > -x) ? ( 1 ) : ( 0 ) ) 

«TRUE>ax)?(1):(O» 

( ( 1 > .. x) ? ( 1 ) : ( 0 ) ) 

(FALSE? ( 1 ) : (0) ) 

( ( 0 ) ) 

o 

The result of the conditional expression is 
the right-hand side of the assignment. 

The condition is evaluated from the inside 
out. 

The value of the innermost relation is 
TRUE. It is compared to the integer x. 
While this is legal in C, it is really playing 
footloose with the value TRUE being an 
integer 1, and, as in this problem, it is 
usually not what's wanted. (The next 
puzzle shows the right way to compare 
three values.) 

Operators 5.5 

initially x=3. y=4. z=4 

z > = Y &.&. Y > = x 

«z>=y)&'&'(y>=x) ) 

(TRUE&.&.(y>=x) ) 

(TRUE&.&.TRUE) 

(TRUE) 

RELATIONAL AND CONDITIO!,,, ... OPERATOR 

Evaluating from left to right. 



94 OPERA TOR PRECEDENCE AND EVALUATION 

Operators 6.1 

initiaUy x=1 , Y'" 1, z=1 

+ + x I I + + y && + + z 

«++x)II«++y)&&(++z») 

(211 «++y)&&.(++z»), and x-2 

( TRUE I I whatever) 

TRUE, or 1 

Operators 6.2 

initially x-1, y a 1, z= 1 

++ x && ++ y II ++ z 

«(++x),,(++y»II(++z» 

«TRUE&'(++Y» II (++z», and x.2 

«2"2) II (++z», and y.2 

( TRUE I I (+ +Z ) ) 

TRUE, or 1 

Binding operands to operators. 

Evaluating from left to right. 

Since the left operand of the I I is 
TRUE, there is no need to evaluate 
further. In fact, C guarantees that it 
will not evaluate further. The rule is 
that a logical expression is evaluated 
from left to right until its truth value is 
known. For this problem that means y 
and z remain 1. 

Evaluating from left to right. 

z is not affected. 

About eva/1Ullion OI'der and precedence. For most operators, the order of evaluation - is 
determined by precedence. As can be seen from the puzzles in this section, there are a rew 
exceptions to this general rule: 
• Pre- increment and decrement operators are always evaluated before their operand is 

considered in an expression. 

• Post- increment and decrement operators are always evaluated after their operand i 

considered. 

OPERATOR PRECEDENCE AND EVALUATION 95 

Operators 6.3 

initially x= 1, y= 1, z= 1 

+ + x && + + Y && + + z 

«(++x)&&(++y»&&(++z» 

( (2&&2 )&&( ++z) ), and x=2, y=2 

(TRUE&&(++z» 

(TRUE&&TRUE), andz=2 

TRUE, or 1 

Operators 6.4 

initially x=-1, y=-1, z=-1 

+ + x && + + y : : + + z 

(((++x)&&(++y»II(++z» 

( (0&& (++y) ) I I (++z) ) , and x=O 

((FALSE&&(++y»II(++z» 

(FALSE I I (++z) ) 

(FALSE: 1(0», and z=O 

(FALSE I I FALSE) 

FALSE, or 0 

There is no need to evaluate ++y since 
the left operand to && is FALSE. The 
value of the I I operation is still not 
known, however. 



96 OPERA TOR PRECEDENCE AND EVALUATION 

Operators 6.5 

initially x=-1 , y=-1, z=-1 

+ + x I I + + y &.&. + + z 

«++x)II«++y)&'&'(++z») 

(FALSEII «++y)&.&.(++z»), and x=O 

(FALSEII (FALSE&'&'(++z»), and y=O 

(FALSEIIFALSEI 

FALSE, or 0 

Operators 6.6 

initially x=-1, y=-1, z=-1 

++ x&.&. ++ Y &.&. ++ z 

( ( ( ++ x ) &.&. ( + + y) ) &.&. ( ++ z ) ) 

«FALSE&'&'(++y) )&.&.(++z», and x=O 

(FALSE&'&' ( ++ z) ) 

FALSE, or 0 

AbouJ side effects in logical expressions. As you have surely learned by now, the evaluation of 
a logical expression can be tricky in C because the right-band part of the expression is 
evaluated conditionflily on the value of the left-band part. Actually. conditional evaluation is 
a useful property of the logical operators. The trouble arises when the right-hand part of a 
logical expression contains a side effect; sometimes the side effect will occur and sometimes 
it won't. So, while in general it is good practice to use side effects carefully, it is vital in 
logical expressions. 

Basic Types J. J 

PRINT(d,"5") 

PRINT (d, ' 5' ) 

PRINT(d,s) 

PRINT( 8, "5") 

PRI NT ( c , ' 5' ) 

PRINT(c,s3) 

PRINT(d,('5'>5» 

CHARACTER, STRING, AND INTEGER TYPES 97 

"d format instructs printf to print the argument as a 
decimal number. n 5" is a pointer to a character array 
(i.e., the address of the two character array , 5 ' , 
'\0 '). 

"d causes the decimal value of the character ' 5' to be 
printed. I 

The integer 5 is printed in decimal. 

"8 format instructs printf that the argument is a 
pointer to a character array. Since .. 5 n is a pointer to a 
character array, the content of that array,S, is printed. 

"c format instructs printf to translate the argument 
into the character its value represents. Since ' 5' is 
the encoded value for 5, 5 is printed. 

As seen earlier, the decimal number 53 is the ASCII 
code value for the character 5. 

One last time. ' 5' has the integer value 53 which is 
greater than the integer 5. 

I. The value given here is that for the ASCII character code (see Appendix 3). The ASCII code is but 
one of several ~dcs used by computers to represent characters. It will be used in this book for those 
few cases where It matters. 



98 C~AcrER, ___ .ING, AND INTEGER TYPFS 

Basic Types 1.2 

initially sx=-8, ux=-8 

PRINT(O,sx) 

PRINT(o,ux) 

PRINT(0,sx»3) 

PRINT(0,ux»3) 

PRINT(d,sx»3) 

PRINT(d,ux»3) 

"0 instructs printf to print the argument as an octal 
number. 

The value -8 is a string of 1's and O's just as valid for 
unsigned variables as for signed ones. 

We have seen this problem earlier. With some 
versions of C, right shifting of a signed integer causes 
the sign bit to be copied into the vacated high order 
bits, thus having the desirable property of preserving 
sign. Beware-lhis is compiler dependent! 

When right shifting an uns igned integer the high 
order bits are always filled with O's. 

In decimal, right shifting a signed - 8 three places 
yields the expected - 1 if sign is preserved, 8 19 1 
otherwise (in tWO's-complement on a 16-bit machine). 

For an uns igned - 8, the result is always 8191 (on a 
16-bit machine). 

INTEGER AND FLOATING POINl _ .. S1'S 99 

Basic Types 2.1 

i = 1 = f = d = 100/3 

(i= (1= (f= (d= (100/3»») 

(i= (1= (f= (d-33) ») 

(i= (1= (f=(double)33) », and d=33 

(i= (1=(float)33) ), and f=33 

(i=(10ng)33), and 1=33 

(integer) 33, and i=33 

33, an integer 

Basic Types 2.2 

d = f = 1 = i = 100/3 

(d: (f= (1= (i=( 100/3» ») 

(d= (f= (1=(integer)33) », and i=33 

(d .. (f=(10ng)33) ), and 1=33 

(d=(float)33), and f=33 

( (double) 33) , and d=33 

33, a double 

Evaluation is from right to left. 

Since both 1 0 0 and 3 are integers, 
the division is integer division and 
thus the quotient is truncated. 

Recall that the value of an 
assignment expression is the value 
of the right-hand side cast in the 
type of the left-hand side. 



100 INTEGER A,~J} FLOATING POINT CASTS 

Basic Types 2.3 

i = 1 = f = d = 100/3. 

(i= (1= (f= (d= (100/3.» ») 

(i= (1= (f=(double)33.333333) » 

and d=33. 333333 

(i= (1=(float)33.333333) 

and f .. 33. 33333x 

(i=(1ong)33.33333x) t and 1=33 

(integer) 33) • and i=33 

33 t an integer 

Basic Types 2.4 

d: f = 1 .. i .. (double) 100/3 

(d= (f: (1= (i= «double) 100) 13»» 

(d= (f= (1= (i=33.333333) ») 

(d: (f= (1=(integer)33.333333) » 
and i=33 

(d .. (f=(longl33) ) t and 1=33 

(d- (float) 33) t and f=33 

« double) 33) • and d=33 

33 t a double 

3. is a double so the quotient 
retains its precision. 

The printf specification in this 
program is "". 8g". which tells 
printf to output numbers of up 
to eight significant digits. Seven 
significant digits is about the limit 
of precision for floats on the 
PDP-II and VAX. so the eighth 
digit is unreliable. The number of 
significant digits is, of course, 
machine dependent. 

The float to long conversion is 
through truncation. 

Notice that type cast has higher 
precedence than I. 

INTEGER AND FLOATING POlL ~ASTS 101 

Basic Types 2.5 

i = 1 = f = d = (double) (10000013) 

(i= (1= (f= (d= «double) (100000/3» »» 

(i= (1= (f= (d=(double)33333) ») 

(i= (1= (f=(double)33333) ». and d=33333 

(i= (1:(float)33333) ). and f=33333 

(i=(long)33333). and 1=33333 

( (integer) 33333) • and i=33333 or overflow 

33333. an integer, or overflow 

The operand to the 
type cast is the quotient 
from the integer 
division of 100000 by 
3. 

33333 cannot be 
represented as a 16-bit 
signed integer. Most 
implementations of C 
will happily permit 
arithmetic over- or 
underflow. When your 
calculations potentially 
push the limits of your 
machine, it is wise to 
insert explicit range 
checks. 



102 INTEGER .... .) FWATING POINT CASlS 

Basic Types 2.6 

d .. f .. 1 = i .. 100000/3 

(d- (f- (1= (i-100000/3) ») 

(d- (f- (1-(integer)33333) » 

and i .. 33333, or overtlow 

(d- (f=(long)-32203) 

and 1--32203 

(d-(float)-32203), and f=-32203 

((double)-32203), and d=-32203 

-32203, a double 

As we've seen before, 33333 is 
overtlow for a 16-bit signed integer. 
For integer representations with more 
bits, i would get 33333, as would 1, 
f, and d. We'll continue with the calC 

for 16-bit integers. 

The result of an operation that leads to 
overflow is a legitimate number, just 
not the number expected. The 33333 
is lost, regardless of future type casts. 

About numbers. The treatment of numbers is not one of C's strong points. C does not 
provide a way to catch arithmetic errors even if the hardware so obliges. The range of tile 
numerical data types is fixed by the compiler writer; there is no way to specify a range in the 
language. To achieve range checking, about the best one can do is explicitly test the value 
of variables at critical points in a calculation. 

IIsic Types 3.1 

initially d=3. 2, i=2 

x = (y=d/i) *2 

(x= (y=3.2/2) *2) 

(x= (y=1.6)*2) 

(x=1*2), and y=1 

(x=2) 

2, and x=2 

_ .. lac Types 3.2 

initially d=3. 2, i=2 

y=(x=d/i)*2 

(y= (x=1.6)*2) 

(y=1.6*2), and x=1.6 

(y .. 3.2) 

3, and y=3 

MORE '-n~'TS 103 

3.2, a double, is of higher type than 2, an into 
Thus the quotient is a double. 

y, an int, gets 1.6 truncated. 

Since x is a double, the result of the assignment is a 
double. 

1.6, a double, determines the type of the product. 

y, an int, gets 3.2 truncated. 



104 MORE CAS1~ 

Basic Types 3.3 

initially d=3. 2. i=2 

y=d. (x=2.S/d) 

(y. d. (x=2.S/d) 

(y= d.2. Sid) t and x=2. Sid 

(y=2.S) 

2, and y=2 

Basic Types 3.4 

initially d=3. 2. i=2 

x = d • (y = ( (int) 2.9+ 1. 1) /d) 

(x=d. (y=(2+1.1)/d) 

(x- d. (y=3.1/d) ) 

(x- d. (y=. something) 

(x=d.O) t and y=O 

0, and x=O 

x is a double, so the precision of 
2. S/d is retained. 

y gets 2. S truncated. 

Type cast has higher precedence than 
+. 

y gets 0 regardless of the value of 
"something", since" • something" is 
between 0 and 1. 

About mixing types. By now you have seen enough examples of how mixing floating point 
and integer values in expressions can lead to surprises. It is best to avoid arithmetic with 
operands of mixed type. If you do need it, make the type conversions explicit by carefwlly 
using casts. 

Control Flow J. J 

initially y= 1 

if( yl=O ) x=S; 

( y 1 =0 ) 

( 11 =0 ) 

TRUE 

x = S 

Control Flow J. 2 

initially y= 1 

if ( y==O ) x=3; else x=S; 

( y==O ) 

FALSE 

x = S 

IF STA._ •.• ENT 105 

The first step is to evaluate the condition. 

Since the condition is TRUE, the true part of 
the if statement is executed. 

Evaluate the condition. 

Execute the false part of the if statement. 



106 IF STATEMEr-.. 

Colll1'01 Flow J.3 

initially y = 1 

x=1 
ifC yeO) ifC y>O ) x=3; 
else x-S; 

if(yeO){ 
if(y>O)x .. 3; 
else x=5; 

} 

( yeO ) 

FALSE 

Control Flow 1.4 

initially y .. 1 

if ( z-yeO ) x=3; 
else if ( y •• O ) x",S; 
else x=7; 

(z=(yeO) 

z.(1<O) ) 

z·FALSE ) 

FALSE. and zaO 

( y •• O ) 

FALSE 

x-7 

First x is assigned 1. 

The braces indicate statement nesting. 

The condition of the first if is FALSE, thus the 
true part is skipped. The e 1 s e clause is contained 
in the true part of the first if since it belongs to 
the second if. The rule in C is that an.::all.L 
clause belon8!J.!Llite closesLg....!..hat .. ~~acce2t i.!: 

Begin by evaluating the first condition. We will 
use parentheses, as before, to indicate the bindill8 
of operands to operators. 

Since the condition of the first if statement is 
FALSE, the false part of the if is executed. The 
false part is another if statement, so its conditio8 
is evaluated. 

The condition is FALSE, thus the false part of the 
sec nd if statement is executed. 

Control Flow J .5 

initially y= 1 

if( z=(y==O) ) x=Si x=3 

if( z=(y==O) {x=S;} x=3i 

( z=(y==O) ) 

( z=FALSE ) 

FALSE. and z=O 

x = 3 

Control Flow 1.6 

initially y= 1 

if( x=z=y ) i x=3i 

if( x=z=y ) { i } x=3i 

( x=(z=y» 

( x= ( z = 1 ) ) 

( x= 1 ). and z = 1 

TRUE, and x= 1 

x = 3 

IF STATE~ __ .. T 107 

The true part of an if is the single 
statement or block following the condition 
for the if. 

Evaluate the condition. 

Since the if statement does not have a 
false part, control falls through to the next 
statement. 

The true part of the if is a null statement. 

Evaluate the condition. 

The if condition is TRUE, so the true part 
of the if is executed. The true part is a 
null statement and has no effect. Finally, 
the statement following the if is executed. 



108 WHILE AND I STATEMENTS 

Control Flow 2.1 

initially x= 0, y= 0 

while( y<10 ++y; x +- y; 

while( y<10) ++y; 

( y< 10 ) 

y.O 

++y 

y _ 0 through 9 in the loop 

y. 10 on exit 

X +- y; 

x.O+10 

x. 10 

Begin by analyzing the factors that control 
the execution of the while statement: 

The loop condition. The body of the loop is 
executed as long as the loop condition 
evaluates to TRUE. 

The exit condition. The exit condition, the 
negation of the loop condition, is TRUE 
upon a normal termination of the loop. 

The initial value of the control variable. 
This is the value of the control variable 
during the first iteration of the loop body. 

The effed on the control variable of 
executing the body of the loop. 

y- 0 the first time in the loop. Each time 
through the body y is incremented by 1. 

When y== 10 the loop condition evaluates 
to FALSE and the iteration terminates. 

Control passes to the statement following 
the loop body. 

• 

Control Flow 2.2 

initially x= 0, y= 0 

while( y<10 ) x += ++y; 

( y< 10 ) 

( y> = 10 

Y = 0 

++y 

y = 0 through 9 in the loop 

x += ++y 

x = 55 

y = 10 on exit 

Control Flow 2.3 

initially y= 1 

while( y<10 ) {x = y++; z = ++y; } 

WHILE AN D FOR STATE 

The loop condition. 

The exit condition. 

iTS 109 

The initial value of the control variable. 

The effect of the loop on the control 
variable. 

As in the previous problem. 

x gets the sum of the values of y (after 
y is incremented) in the loop. 

The sum of the integers 1 to 10. 

( y< 10 ) The loop condition. 

( y> = 1 0 

Y = 1 

y++, ++y 

y = 1, 3 , 5 , 7 , 9 in the loop 

x= 1,3,5,7,9 

z=3,5,7,9,11 

y = 11 on exit 

The exit condition. 

The initial value of the control variable. 

The effect of the loop on the control 
variable. 

y= 1 the first time in the loop and is 
incremented by 2 each time through 
the loop. 

x takes on the value of y in the loop 
before it is incremented. 

z takes on the value of y in the loop 
after it has been incremented by 2. 



110 WHILE AND l STATEMENTS 

Control Flow 2.4 

fore y=1; y<10; y++) x=y; 

y++ 

y • 1 through 9 in the loop 

x .. 1 through 9 

y. 10 on exit 

COnl1'01 Flow 2.5 

fore y.1; (x=y)<10; y++ ) 

y<10 

y>=10 

y.1 

y++ 

y .. 1 through 9 in the loop 

X" 1 through 10 

y .. 10 on exit 

The for statement aggregates the 
controlling factors of the loop. 

Loop condition. 

Exit condition. 

Initial value. 

Effect. 

x gets the value of y in the body of the 
loop. 

Loop condition. 

Exit condition. 

Initial value. 

Effect. 

x gets the value of y just before the 
evaluation of the loop condition. Note that 
the condition is evaluated one time more 
than the body is executed. 

, 

Control Flow 2.6 

fore x=O,y=1000; y>1; x++,y/=10 
PRINT2 ( d, x, y) ; 

y>1 

y=1000 

y/=10 

Y • 1 000 , 100 , 10 in tht: loop 

x .. 0, 1 , 2 in the loop 

y .. 1 on exit 

X" 3 on exit 

WHILE AND FOR STATF 

Loop condition. 

Exit condition. 

Initial value. 

Effect. 

ITS III 

x-O from the for statement 
initialization. x is incremented 
after the body and before the 
test. (The PRINT2 statement 
is in the body.) 



112 STATEMENT NESTING 

Control Flow 3.1 

initially i=in=high-low .. O, input.·PI-3. 141 S9, approximately· 

while( e-(NEXT(i) I-EOS) ) 

iff 1<'0' ) low++ 

while ( e- (I I-EOS ) 

Control Flow 3.2 

The loop condition effectively is 
NEXT(i) I=EOS, where 
NEXT ( i) successively takes on the 
character values from input. e 
gets the truth value of 
NEXT ( i) I "EOS, which, by 
definition, is TRUE in the loop and 
FALSE on exit. 

e is always 1 in the loop, so low is 
always incremented (1 < 060). 

The iteration continues until all the 
characters in input have been 
read. C uses the ASCII nul 
character, 0 0, as the end of string 
marker. 

initially i-in-high-low-O, done-FALSE, 

input-·PI-3. 141 S9. approximately· 

while( (e-NEXT{i» I-EOS &.&. Idone ) 

if ( , P' <' 0' ) 

e18e iff 'p'>'9' ) 

while ( , I' I-EOS &&. I done) 

e successively takes on the value of 
each character from input. 

The first time through the loop 
e - ' P " hence the if condition is 
FALSE. 

TRUE, and high+ +. 

Back at the loop test. (The if 
statement comparing low, high, 
and in with ENUF is outside the 
loop, indentation to the contrary.) 
Since done is not effected within 
the loop, the iteration ends when 
e'" EOS. In the loop. the counters 
low, in, and high are 
incremented depending upon the 

'-----_____________________ ----'value of e with respect to the digit 

Control Flow 3.3 

initially i=in=high=low=O. done=FALSE. 

input="PI=3.141S9, approximately· 

STATEMENT NESTING 113 

whi le ( (e=NEXT (i) ) I =EOS && I done) ( e successively takes on the 
value of each character from 
input. 

iff ,P'<'O' ) FALSE. 

else iff 'P'>'9' TRUE. 

done = (++high==ENUF) high, after being incremented, 
is not equal to ENUF, so done 
is assigned FALSE. high-1. 

while( 'I' I=EOS && Idone ) TRUE. 

iff '1'<'0' ) FALSE. 

else iff '1'>'9' TRUE. 

done .. (++high .... ENUF) 

while( ,=,I=EOS && Idone 

iff '='<'0') 

else iff '='>'9' 

done = (++high-=ENUF) 

while( '3'I-EOS &&. Idone 

high=2,done-FALS~ 

TRUE. 

FALSE. 

TRUE. 

high=3, done=TRUE. 

done=TRUE, so 
Idone=FALSE, and the loop 

terminates. 



114 SWITCH, Bl __ .• K, AND CONTINUE STATEMENTS 

ConlTOl Flow 4.1 

char input[) ."SSSWIL'1'ECH1\ 1\ 11W\ 1WALLMP1" The character array input is 
initialized to the character 
string "sss ... MP1". 

8witch( 'S') { 

default: putchar('S') 

continue 

for(; (c-input[3)1.'\0'; i++) { 

8witch( 'W') { 

default: putchar( 'W'); continue 

8witch( 'L') { 

case ' L' : continue 

In the for loop: 

i-S,C-'L'; 

i-6, c-''1''; 

i-7, c-'E'; 

i-a,c-'c'; 

i-9, c.'H'; 

8witch('1') { 

c takes character values from 
input beginning at the third 
character. 

The first time through the 
awi tch statement c- ' S' . 

The default case is taken 
since none of the case labels 
match'S'. S is printed. 

The continue statement 
forces the next iteration of 
the innermost enclosing loop, 
in this case, the for loop. 
Notice that continue is 
effectively a branch to the 
reinitialization expression of 
the for. 

c gets the fourth character 
from input. 

c .... 'W'. 

As before, W is printed. 

Similarly for 1-4, c-'I'. 

i=S, c-'L'. 

The ' L' case is taken; 
nothing is printed. 

Nothing is printed. 

'1' printed. 

Nothing is printed. 

C is printed. 

H is printed. 

i-10, c-' 1'. 

SWITCH, BREAK, AND CONTINUESTATL __ NTS 115 

ca8e ' l' : break 

putchar (' ') 

for(; (c=input[111)l_'\0'; i++) { 

switch('\1') { 

ca8e 1: 

while( (c-input[++il)I_'\1' &&cl.'\O') 

In the while loop: 

i-12, c='\11'; 

i.13,c='W'; 

i-14,c-'\1'; 

case 9: putchar ( , S' ) 

ca8e ' E': ca8e ' L': continue 

The break statement forces 
an exit from the innermost 
enclosing loop or 8wi tch. In 
this case, it causes a branch to 
the statement following the end 
of the 8wi tch. 

A space is printed. 

Back at the top of the for 
loop. 

The character constant ' \n I , 

where n is up to four octal 
digits, yields a character with 
the octal value n. For instance, 
\ 0 yields the ASCII character 
nul, and \ 101 the character 
A. 

Case labels may be either 
character or integer constants. 
\ 1 matches the integer 1 since 
C automatically coerces char 
to into 

The exit condition for the 
while is either c._'\ l' or 
end of string. Each time the 
while test is made, i is 
incremented by 1, thus, the 
loop advances i past the 
characters of input to either 
the next ' \ 1 ' character or the 
end of string. 

Nothing is printed. 

Nothing is printed. 

The while loop terminates. 

The statements from each case 
follow one another directly; 
there is no implied break 
between cases. Case 9 foUows 
case 1. S is printed. 

Cases ' E I and I L' follow case 
9. 



116 SWITCH, B.u .. AK, AND CONTINUE STATEMENTS 

forI ; (c=input[ 15]); i++) { 

In the for loop: 

i .. 15. c='W'; 

i=16. c='A'; 

i-17. c='L'; 

i=1S. c='L'; 

i=19. c='M'; 

i=20. c='P'; 

i- 21. c=' 1 ' ; 

i-22. c='\O'; 

putchar ( , \n' ) 

Again, back to the top of the 
for loop. 

W is printed. 

A is printed. 

Nothing is printed. 

Nothing is printed. 

M is printed. 

P is printed. 

Space is printed. 

The for loop terminates. 

CHOOSE THE RIGHT CONDITION 117 

Programming Style 1.1 

The need for a continue statement can often be eliminated by altering a test condition. 
The resulting code is sometimes remarkably cleaner. 

For this problem, simply negating the test to the if statement will do. 

while(A) 
H(IB) C; 

Programming Style 1.2 

The do ..• whi leis another of the C constructs that can sometimes be replaced to 
advantage. If either a do .•• whi 1 e or a whi 1 e can be used, the whi leis always 
preferred since it has the desirable property that the condition is tested before every 
iteration of the loop. That the condition is not tested before the first iteration of a 
do .•. whi 1 e loop has been the source of many a program bug. 

In this problem, the if and do .•• whi 1 e are redundant; they are effecting a whi le. 

do ( 
if(A) { B; C; } 

} while (A) ; 

while(A) { 
B; C; 

First, eliminate the continue. 

Then replace the do ••• while and if with a while. 



liS CHOOSE The RIGHT CONDITION 

Programming Style 1.3 

The problem of deeply nested if stat~ments is well .. known to mos~ experi~~ced 
programmers: by the time one gets to the mnermost condition the surrounding .c~nditioDa 
have been forgotten or obscured. The counter approach is to qualify each condition fully, 
but this tends to generate long conditions that are obscure from the start. Alas, good 
judgement must prevail! 

Here are two possibilities for this problem: 

or, 

if( A && B && C ) D; 
else if( IA && B && C ) E; 
else if( IA && B && IC ) F; 

if( B ) 
if( A && C ) D; 
else if( IA && C ) E; 
else if( IA && IC ) F; 

Programming Style 1.4 

This problem has a straightforward idea hierarchy: 

• while there are more characters on the line 
• multi way switch based on character type 

• return ALPHA 
• return DIGIT 
• return OTHER. 

This translates easily into C: 

while( (e-getehar(» I- '\n' ) { 
if( e>.'a' && e<.'z' ) return(ALPHA); 
else if( e>-'O' && e<-'9' ) return(DIGIT); 
else if( el-'" && el.'\t' ) return(OTHER); 

} 

return(EOL); 

CHOOSE THE RIGHT CONSTRUCT 119 

Programming Style 2.1 

done = i • 0; 
while( i<MAXI && Idone ) { 

if( (x/-2) > 1 ) i++; 
else done++; 

} 

i • 0; 
while( i<MAXI && (x/.2»1 ) i++; 

fore i=O; i<MAXI && (x/.2»1; i++ 

Programming Style 2.2 

The first observation is that the 
if ••• continue construct is 
effecting an if ••• else. So 
make it an if ••• else! 

Then it becomes clear that 

• one loop condition is done 
equal to FALSE; 

• done is FALSE as long as 
the if condition is TRUE; 

• thus, one loop condition is 
(x/2) > 1. 

Make it explicit! 

A while statement that is 
preceded by an initialization 
and that contains a change of 
the loop control variable is 
exactly a for statement. 

There are usually many ways to express an idea in C. A useful guideline is to group ideas 
into chunks. C provides a hierarchy of packaging for these chunks: 

• the lowest level ideas become expressions; 

• expressions are grouped together into statements; 

• statements are grouped together into blocks and functions. 

In this problem there is a two level idea hierarchy. At the lowest level are the expressions 
B, D, F, and G. They are related as the mutually exclusive cases of a multiway switch. A 
cohesive representation for a general multiway switch is the if .•• else if construction. 

if (A) B; 
else if(C) D; 
else if(E) F; 
else G; 
return; 



~o CHOOSE THE RIGHT CONSTRUCT 

rogramming Style 2.3 

The key observation in this problem is that the underlying structure is a three-way switch 
with mutually exclusive cases. 

plusflg = zeroflg = negflg = 0; 

if( a>O ) ++plusflg; 
else if( a==O ) ++zeroflg; 
else ++negflg; 

CHOOSE THE RIGHT CONSTRUCT 121 

Programming Style 2.4 

or, 

i = 0; 
while( (c=getchar(»I=EOF && cl="n' ) { 

iff clz"n' && cl=',t' ) { 
8[i++] = c; 
continue; 

} 

iff c=="t' 
s[i++] = c; 

) c = 

i = 0; 

, '. • 

while( (c=getchar(»I=EOF && cl="n' ) { 
iff cl="t' ) { 

s[i++] = c; 
continue; 

} 

iff c=="t' ) s[i++] = 

i = 0; 

, ' . • 

while( (c=getchar(»I=EOF && cl="n' 
iff cl="t' ) s[i++] = c; 
else s[i++] = ' '; 

fore i=O; (c=getchar(» I=EOF && cl="n'; i++ 
iff cl="t' ) s[i] = c; 
else s[i] = ' '; 

fore i=O; (c=getchar(» I=EOF && cl="n'; i++ 
s[i] z cl="t' ? c : ' '; 

Reformatting the 
statements to indicate 
nesting is a good start. 
Then look closer at the 
break and 
continue statements 
to see if they are really 
necessary. The break 
goes easily by adding 
the negation of the 
break condition to the 
condition for the . 
while. 

The first if condition 
can then be reduced. 
(c I = ' 'n' is now a 
loop condition, hence it 
must always be TRUE 
in the if test.) 

The continue 
statement is effecting 
an if ... else. 

Finally, it is clear that 
s [ i] gets the next 
character if the 
character is not a tab, 
otherwise it gets a 
space. In other words, 
the code merely 
replaces tabs by spaces. 
The last two versions 
show this quite clearly 
while also pointing out 
the close relationship of 
the if to the 
conditional. In this 
example, the if 
emphasizes the test for 
tab and the conditional 
emphasizes the 
assillnml!'!nt tn .. r; 1 



122 CHOOSE THe KIGHT CONSTRUCT 

Programming Style 2.5 

if( j>k ) y = j I (xl=O ? x : NEARZERO); 
else y • k I (xl-O ? x : NEARZERO); 

y • MAX(j.k) I (xl-O ? x NEARZERO) ; 

In this problem it is quite clear 
that x I '" 0 is not the primary 
idea; the test simply protects 
against division by zero. The 
conditional nicely subordinates 
the zero check. 

A case can be made that the 
assignment to y is the primary 
idea, subordinating both tesu. 
(MAX returns the greater of ill ' 
two arguments.) 

Storage Classes 1.1 

int i-O; 

main( ) 

{ 

auto int i-1; 

PRINT 1 ( d. i.l ) ; 

{ 

int i=2; 

PRINT 1 ( d • i.2) ; 

PRINT 1 ( d • i.2) ; 

} 

PRINT 1 ( d • 1.2) ; 

PRINT 1 (d. 1.1) ; 

} 

BLOCKS 123 

i.O - 0 
(The notation x.n is used to reference the variable x defined at 
block level n.l) The storage class of i.O is extern.2 The scope of 
i.O is potentially any program loaded with this file. The lifetime 
of 1.0 is the full execution time of this program. 

Block level is now 1. 

i.l - 1 (i at level 1). 
The storage class of i.l is auto. The scope of i.l is the function 
main. 'The lifetime of i.l is the duration of the execution of 
main. 

When two variables have the same name, the innermost variable is 
referenced when the name is given; the outer variable is not 
directly accessible. 

Block level is now 2. 

i.2'" 2. 
The storage class of i.2 is auto, the default storage class for 
variables defined in block 1 or deeper. The scope of i.2 is block 2 
and its lifetime is the duration of execution of block 2. 

Block level is now 3. 

i.2 - 3. 

i.2 is printed since it is the innermost variable named i. 

Block level returns to 2. 

i.2 is printed again. 

Block level returns to I; i.2 dies. 

With the death of 1.2, i.l became the innermost variable named 
i. 

Block level returns to O. 

I. ne block level at any point in the text of a program is the count of left braces ({) minus the count of 
riaht braces (}). In other words, it is the number of textually open blocks. The outermost level of a 
propam, i.e., no blocks open, is block level O. 

1 You might ask why the storage class of i is not explicitly declared here using the extern keyword. 
Unless declared otherwise, the storage class for variables defined at block level 0 is extern. Tagging 
a variable with extern does not define the variable. Instead, it tells the compiler that the variable 
has been defined elsewhere at block level O. 



124 FUNCTIONS 

Storage Classes 2.1 

int i=LOW; 

main( ) 

{ 

auto int i=HIGH; 

reset(i.1I2) ; 

PRINT1 (d, 1.1); 

reset( 1.l=i.1/2); 

PRINT1(d,i.l); 

i.l =reset (1.112) ; 

1.0 == O. 

i.l == 5. 

The function reset is called with the value i.1/2, or 
2. Its execution has no effect on i.1. 

reset is again called with i.1/2. This time i.l is 
assigned 2 as a side effect of the function call. Again, 
reset has no effect on i.1. 

i.l gets the value returned by reset called with 
i.1/2. We will expand the function call in line. 

int reset ( 1) The type of the value returned by a function is 
specified in its declaration. reset returns a value of 
type into 

{ (int i=l;) i.reset == 1. 
Parameters in a function behave like initialized local 
variables. We indicate these implied assignments by 
surrounding them with parentheses. 

i.reset = i.reset<=2? 5 2; i.reset == 5. 

return( 1.reset) ; reset returns the integer 5; thus, i.l == 5. 

} 

PRINT1(d,1.l) 

workover ( i.l ) ; 

workover(5) 

{ (int i=5;) 

i.workover = 0 * whatever; 

PRINT 1 ( d , 1. workover) ; 

return( i.workover) ; 

} 

PRINT1 (d, i.l) ; 

workover is passed the value of 1.1; 1.1 is not 
affected by the call. We'll expand workover since it 
includes a PRINT. 

If not otherwise specified, functions return an into 

1.workover = 5. 

i.workover == O. 

workover returns 0, but the value is ignored in the 
calling routine. 

Storage Classes 3.1 

int i=l; 

main( ) 

auto int i,j; 

1.1 = reset(); 

reset ( ) 

return ( 1.0) ; 

} 

fort j.l=l; j.l<3; j.l++ ) { 

PRINT2(d,1.I, j.l); 

PRINT 1 (d, next (1.1) ) ; 

int next( 1) 

{ (int j=l;) 

return( j.next=i.O++); 

} 

PRINT1 (d,last( i.l); 

int last ( 1 ) 

{ (int j=1;) 

static int i=10; 

MORE FUNCTIONS 125 

1.0 = 1. 

i.l and j.l are defined, but not yet set. 

i.l gets the value returned by reset. 

As reset has neither a parameter nor a 
local variable named i, the reference to i 
must refer to 1.0. reset returns 1, so 
1.1 = 1. 

j.l 1. 

j.next = 1. 

i.O = 2 but next returns 1 since the 
increment occurs after the value of i.O is 
taken. 

The return statement references i.O 
since next knows of no other i. j.next 
dies with the return. 

j.last = 1. 

i.last = 10. 
last has a local variable named i 
initialized to 10. The storage class of i is 
static, which means that i is initialized 
when the program is loaded and dies when 
the program is terminated. 



126 MOREFU IONS 

return ( j.last= i.last- - ) ; 

} 

PRINT1 (d,new( i.l+j.l»; 

int new( 2) 

{ (int i-2;) 

intj=10; 

return( i.new= j.new+=i.new) ; 

} 

forI j.l=1; j.l<3; j.l++ ) { 

PRINT2 ( d , i.l , j.l ) ; 

PRINT1 (d, next (i.l) ) ; 

PRINT1 (d,last( Ll»; 

PRINT1 (d,new( i.l+j.l»; 

} 

} 

i.last = 9 but 10 is returned since the 
decrement occurs after the value is taken. 

j.last dies with the return. but i.last lives 
on. Thus. when last is called again. 
i.last will be 9. 

i.new == 2. 

j.new"" 10. 

j.new .. 12. i.new .... 12. and 12 is 
returned. 
j.newand i.new die with the return. 

j.l ... 2. 
Back to the f or statement. For this 
iteration we will generalize about the effcc:l 
of each statement. 

The effect of executing the loop body is to 
increment j.l by one. The loop has no 
effect on the value of i.1. 

next ignores the value it is passed and 
returns the current value of i.O. As a side 
effect of executing next. i.O is 
incremented by one. 

last also ignores the value of its passed 
argument. It returns the current value of 
its local static variable. i.1ast. As a 
side effect of executing last. i.last is 
decremented by one. 

new returns the value of its argument pllll 
10. There are no lasting side effects. 

Storage Classes 4.1 

int i=1; 

main ( ) 

auto int i, j ; 

i.l = reset(); 

extern int i; 

reset( ) 

{ 

return ( La) ; 

LES 121 

i.O = 1. 

The extern statement tells the compiler that i is an 
external variable defined elsewhere. possibly in 
another file. Here i refers to La. 

i.O is the external i referenced in reset. 
~.1 == 1. 

forI j.l=1; j.l<3; j.l++){ j.l 1. 

PRINT2 (d, i.l , j.l ) ; 

PRINT 1 ( d, next ( i.l ) ) ; 

static int i-10; 

next( ) 

return( i.nln+=1) ; 

} 

PRINT1 (d,last(i.l»; 

last ( ) 

return ( Lnln - -1 ) ; 

} 

The second source file begins with an external 
definition of a variable named i. This definition 
might appear to be in conflict with the external 
variable i defined in the first file. The designation 
static, however, tells the compiler that this i is 
~nown only within the current file. In other words, it 
IS only known within the functions next, last, and 
new. We will reference it by i.nln; i.nln - 10. 

The declaration of next does not include any 
arguments. The value passed by main is ignored. 

i.nln - 11 and next returns 11. 

Lnln = 10 and last returns 10. last references 
the same i previously incremented by next. 



128 FILfS 

PRINT1 (d,new( i.I+j.I)); 

new(2) 

{ (int i=2;) 

static int j=S; 

return( i.new=j.new=S+2) ; 

fore j.I=1; j.I<3; j.l++ ) { 

PRINT2 (d, i.I, j.I); 

PRINT1 (d,next( i.I)); 

PRINT1 (d ,last( i.I) ); 

PRINT1 (d,new( i.l+j.I)); 

} 

} 

i.new == 2. 

j.new = 5. 

j.new = 7, i.new = 7, and 7 is returned. 
i.nln is unaffected, i.new will die with the 
return, and j.new will be 7 when new is called 
again. 

j.l == 2. 
In this iteration we will generalize about the 
effect of each statement. 

The effect of the loop is to increment j.I by 
one. 

next increments i.nln and returns the 
resulting value. 

last decrements i.nln and returns the 
resulting value. 

new adds its argument to j.new and returns 
the resulting sum. 

Pointers and Arrays 1.1 

int a [] = {O, 1 ,2,3,4} ; 

fore i=O; i<=4; i++ ) 

PR ( d , a [ i ] ) ; 

Pointers and Arrays 1.2 

int *p; 

for ( p= &.a [ 0 ] ; 

p<=&.a[4]; 

PR(d,*p) ; 

p++ ) 

p<=&.a[4] 

SIMPLE POINTER AND, .AY 129 

a is defined to be an array of five integers, with 
elements a [ i ] = i for i from 0 to 4. 

i takes on the values 0 to 4. 

a [ i] successively accesses each element of a. 

Declarations of the form type *x tell the compiler 
that when *x appears in an expression it yields a 
value of type type. x is a pointer-to-type taking on 
values that are addresses of elements of type type. 
Type is the base type of x. In this problem, p is 
declared as a pointer-to-integer; the base type of p 
is into 

&.a [ 0] evaluates to the address of a [ 0 ] . 

Array elements are stored in index order, that is, 
a [ 0] precedes a [ 1 ] precedes a [ 2] and so on. 
Thus p, initialized to &.a [ 0 ]. is less than &.a [ 4 ]. 

*p evaluates to the integer stored at the address 
contained in p. Since p holds &.a [0], *p is 
a[ 0]. 

When applied to a pointer variable, the increment 
operator advances the pointer to the next element 
of its base type. What actually happens is that the 
pointer is incremented by sizeof (base type) 
bytes. C does not test to insure that the reSUlting 
address is really that of a valid element of the base 
type. In this problem, p is advanced to the next 
element of a. 

p is again tested against the end of the array. The 
loop is terminated when p points beyond the last 
element of a. While in the loop, p points 
successively to each element of a in index order. 



130 SIMPLE POL,..,R AND ARRAY 

Pointers and Arrays 1.3 

fore p-&a[0],i .. 1; i< .. 5; i++ 

PR(d,p[i]); 

p points to the start of the array a. i takes 
on the values 1 through 5. 

p [ i] successively refers to the elements of 
a. p [ 5] points outside of the array. 

About arrays and indices. Though by far the most common use of [ ] is to represent array 
subscripting. [] actually is a general indexing operator. x [ i] is defined to be * (x+ i). 
wbere x is usually an address and i is usually integral. The rules of address arithmetic 
apply, so i is in units of sizeof (base type of x). (It should by now be clear why array 
indices begin at O. An array name is actually a pointer to the first element in the array. An 
index is the offset from the array start. The offset to the first element from the array start is 
0.) In this last problem. i is used to index offp. p[i]'" *(p+i)'" *(a+i)'" a[i]. 
i goes from 1 to 5. Wben i-5, p+i points just beyond the end of the array, hence the 
value at p+i is unknown. This is such a common mistake, it is worth noting again: all 
array with n eiemenlS has indices 0/ 0 through n - 1. 

Pointers and Anays 1.4 

for(p=a,i=O; 

p+i <- a+4; 

PR(d,*(p+i»; 

p++, i++ ) 

p+i <- a+4 

PR(d,*(p+i»; 

p++, i++ 

p+i <- a+4 

PR(d,*(p+i»; 

p++, i++ 

p+i <- a+4 

p gets the address of the first element of a. 

p=a, i=O, so p+i"'a+O. which is less 
than a+4. 

*(p+i) ... *(a+O) - a[O]. 

p points to the second element of a, i is 
1. 

p-a+1, i-1. thus p+i-a+2. 

* ( p+ i) - a [ 21. 

p-a+2, i-2. 

p+i"'" a+4. 

*(p+i) - a[41. 

p-a+3, i-3. 

p+i - a+6, and the loop terminates. 

Pointers and Arrays 1.5 

fore p=a+4; 

p >= a; 

p--

Pointers and Arrays 1.6 

fort p=a+4, i-O; i<-4; i~+ 

PR(d,p[-i]); 

Pointers and Arrays 1.7 

fore p=a+4; p>-a; p-- ) 

PR(d,a[p-a]); 

SIMPLE POINTER AND ARRAY 131 

p points to the fifth element of a. 

The loop terminates when p points below a. 

The integer pointed to by p is printed. 

p is decremented to the preceding element. 

p points to the last element of a, i goes from 
o to 4. 

The element - i away from the last element of 
a is printed. 

p points successively to the elements of a from 
the last to the first. 

p-a evaluates to the offset from the start of 
the array to the clement pointed to by p. In 
other words. p-a is the index of the clement 
pointed to by p. 



132 ARRAYOF ITERS 

Pointers and Arrays 2.1 

int a[] .. {O,1,2,3,4} 

int *p[] = {a,a+1,a+2,a+3,a+4}; 

int **pp .. p; 

a is initialized to be an array of five 
integers. 

When encountered in an expression, 
*p [ ] evaluates to an integer, thus . 
p[ ] must point to an integer, and PIS 

an array of pointer-to-integer. The five 
elements of p initially point to the five 
elements of a. 

**pp evaluates to an integer, hence 
*pp must point to an integer, and pp 
must point to a pointer-to-integer. pp 
initially points to p [ 0 ]. 

Figure 2.1 illustrates the relationships between pp, p, and a. 

pp 

p 

a 

Figure 2.1 

Pointers and Arrays 2.2 

PRINT2(d,a,*a); 

PRINT3(d,p,*p,**p); 

PRINT3(d,pp,*pp,**pp); 

Pointers and A"ays 2.3 

pp++ 

pp-p 

*pp-a 

**pp 

*PP++ 

++*pp 

ARRAY OF ___ ITERS 133 

As noted earlier, the name of an array is 
synonymous with the address of the first element in 
the array. The value of a is thus the address of the 
array a, and *a is equivalent to a [0]. 

p evaluates to the address of the first element of 
the array p, *p yields the value of the first 
element, i.e., p [0], and **p yields the integer at 
the address contained in p [0], i.e., the value at 
a [01. 

pp yields the contents of pp, which is the address 
of p. *pp yields the value at p, or p[ 0]. And 
**pp yields the integer pointed to by p[ 0], or 
a[ 0 1. 

pp is a pointer to pointer-to-integer (the base type 
of pp is pointer-to-integer), so pp++ increments 
pp to point to the next pointer in memory. The 
effect of pp++ is indicated by the bold arrow in 
Figure 2.3-1. 

pp points to the second element of the array p, 
p[ 11. The value of pp is thus p+ 1. 
pp-p = (p+ 1) -po which is 1. 

pp points to p[ 1] and *pp points to the second 
element of the array a. The value of *pp is thus 
a+1. *pp-a= (a+1)-a. 

* pp points to a [ 1 ], so * * pp yields the contents 
at a [ 1]. 

*(PP++) 
Unary operators group from right to left. First the 
increment is bound, then the indirection. The bold 
arrow in Figure 2.3-2 shows the effect of the 
increment. 

*(++pp) 
(Figure 2.3-3) 

++(*pp) 
(Figure 2.3-4) 



134 ARRAY OF Pv,!'lTERS ARRAY OF POIN .. "RS 135 

Pointers and A"ays 2.4 

pp pp 

p p pp pp 

a a p p 

a a 
Figure 2.3-1 Figure 2.3-2 

Figure 2.4-1 pp=p Figure 2.4-2 * ( * (pp+ + ) ) 

pp pp 

p p pp pp 

a a p p 

a a 
Figure 2.3-3 Figure 2.3-4 

Figure 2.4-3 * ( + + ( *pp) ) Figure 2.4-4 ++ ( * ( *pp) ) 



136 MUL TIDI~ :IONAL ARRAY 

Pointers and Arrays 3.1 

int a[3][3] = { 

{ 1,2,3 } , 
{ 4,5,6 } , 
{ 7,8,9 } 

}; 

int *pa[3] = { 
a[O],a[1],a[2] 

} ; 

int *p = a[O]; 

a is a 3 by 3 matrix with rows 123,456, and 789. 
a [ i ] [ j ] evaluates to an integer at offset j from 
the start of row i. a [ i] yields the address of the 
first element of row i. And a yields the address of 
the first row of the matrix a. Thus a is a pointer to 
three-element-integer-array, and a [ ] is a pointer
to-integer. 

*pa [ ] evaluates to an integer, thus pa [ ] is a 
pointer-to-integer and pa is an array of pointer-to
integer. pa [ 0] is initialized to the first element of 
the first row of a, pa [ 1 ] to the first element in tM 
second row, and pa [ 2] to the first element in the 
third row. 

p is a pointer-to-integer initially pointing to the lint 
element of the first row of the matrix a. 

Figure 3.1 illustrates the relationships between a, pa, and p. 

pa[O] 
pa[1] 
pa[2] 

Figure 3.1 

1 

4 
7 

2 3 
5 6 
8 9 

Pointers and Arrays 3.2 

for(i=O; i<3; i++) 

a[i][2-i] 

Pointers and Arrays 3.3 

for(i=O; i<3; i++) 

pa[i] 

p[i] 

MULTIDIMENSIONAL. AY 137 

i goes from 0 to 2 in the loop. 

a [ i ] [ 2 - i] selects the diagonal from a [ 0 ] [ 2] to 
a[2][0]. 

a [ i) yields the address of the first element of the 
ith row in the matrix a. *a [i) yields the value of 
the first element of the ith row. 

a + i yields the address of the ith row of a. * ( a + i ) 
yields the address of the first element from the ith 

# row. * (a+ i) + i yields the address of the ith . 
element from the ith row. And * ( * (a+ i) + i) gets 
the integer value from the ith element of the ith 
row. 

i goes from 0 to 2 in the loop. 

pa [i ] accesses the ith element of pa. *pa [i) 
accesses the integer pointed to by the ith element of 
pa. 

p points to the first element of the first row in the 
matrix a. Since the base type of p is int, p[ i] 
yields the ith element of the first row in a. 

About QlTay addresses. We have noted several times that the address of an array and the 
address of the first element in the array have the same value. In this past puzzle, we saw 
that a and a [0] evaluated to the same address. One difference between the address of an 
array and the address of the first element in the array is the type of the address and, hence, 
the unit of arithmetic on an expression containing the address. Thus, since the type of a is 
pointer to three-element-integer-array, the base type of a is three-element-integer-array and 
a+ 1 refers to the next three-element-integer-array in memory. Since the type of a [ 0] is 
pointer-to-integer, the base type of a [0] is integer and a [ 0 ] of" 1 refers to the next integer 
in memory. 



138 POINTER S1 

Pointers and Arrays 4. J 

char .c£] • { 
"ENTER", 
"NEW", 
"POINT", 
"PIRST" 

char •• cp[] • { 
c+3,c+2,c+1,c 

} ; 

char ••• cpp • CPt 

.c£ ] evaluates to a character, so c [ ] points to 
characters and c is an array of pointer-to-character. 
The elements of c have been initialized to point to the 
character arrays "ENTER". "NEW". "POINT". and 
"PIRST" . 

•• cp[] evaluates to a character •• cp[] is a pointer
to-character. and cp [ ] is a pointer-to-pointer-to
character. Thus cp is an array of pointers to pointer
to-character. The elements of cp have been initialized 
to point to the elements of c. 

***cpp evaluates to a character. **cpp points to a 
character •• cpp points to a pointer-to-character. and 
cpp points to a pointer-to-pointer-to-character. 

Pilure 4.1 illustrates the relationships between CPP. cpo and c. 

cpp 

cp 

c 

N E 0 
T W I R 

E & N S 
R T T 
& & & 

Figure 4.1 

Pointers and Arrays 4.2 

POINTE) EW 139 

Increment cpp then follow the pointers. 
(Figure 4.2-1) 

Increment CPP. follow the pointer to cp [ 2 ]. 
decrement cp [ 2 ]. follow the pointer to c [ 0 ). 
index 3 from the address in c [0]. (Figure 
4.2-2) 

Indirectly reference - 2 from cpp yielding 
cp [ 0 ]. follow the pointer to c [ 3 ]; index 3 
from the address in c [31. (Figure 4.2-3} 

Indirectly reference -1 from cpp yielding 
cp [ 1 ]. indirectly reference - 1 from cp [ 1 ] 
yielding c [ 1 ]. index 1 from the address in 
c£ 11. (Figure 4.2-4) 

About pointers. If you can work this puzzle correctly then you know everything you will ever 
need to about the mechanics of using pointers. The power of pointers lies in their 
generality: we can chain them together to form an endless variety of complex data 
structures. The danger of pointers lies in their power: complex pointer chains are seldom 
readable and even more seldom reliable. 



140 POINTER S 

Pointers and Arrays 2.4 

cpp 

cp 

c 

E N P F 
N E 0 I 

T W I R 

E & N S 
R T T 

& & & 

Figure 4.2-1 

Cpp Cpp 

cp cp 

c c 

E 

N E 

T W I 

E & N 

R T 

& & 

Figure 4.2-3 

I 

W I R 

& N S 
T T 

& & 

Figure 4.2-2 

R T T 

& & & 

Figure 4.2-4 

Structures 1.1 

atatic atruct 51 { 
char c[ 4], *a; 

} al = { "abc", "def" }; 

atatic atruct 52 { 
char *cp; 
atruct 51 aal; 

SIMPLE STRUcrURE. NESTED SU 'URE 141 

The structure tag 5 1 refers to a 
structure containing a character 
array, c, of length 4, and a 
character pointer, a. The 
structure variable a 1 is an instanc 
of the structure 5 1 initialized to 

char c[4]-"abc", 
*a-"def" 

The structure has been defined as 
atatic so that it may be 
initialized in the definition. 

a2 • { "ghi", { "jkl", "mno" } }; 

The structure tag 52 refers to a 
structure containing a character 
pointer, cp, and an instance of tht 
structure 51, a a 1. The structure 
variable a 2 is an instance of the 
structure 52 initialized to 

Figure 1.1 depicts the structures a 1 and a 2. 

C 

8 

Cp 

881 

81 

82 

C 

8 
I jl ~I 1 1&1 

J;"~RII.A 1 1 

char *cp="ghi"; 
atruct 51 aal-

{ n j k 1 ., "mno·}; 

=::::::::: 



142 SIMPLE STR 'DRE, NESTED STRUCTURE 

Structures 1.2 

PRJ:NT2(c. 

(81.C)[0] 

c 
s 

c 
s 

A character is to be printed. 

Reference the first character of the e field of the structure 81. 
(Figure 1.2-1) 

Reference the character pointed to by the 8 field of the 
structure 81. (Figure 1.2-2) 

s1 

Figure 1.2-1 

s1 

Figure 1.2-2 

Structures 1.3 

PRINT2(8. 

81.e 

81.8 

c 
s 

c 
s 

SIMPLE STRUCTURE, NESTED STRt JRE 143 

A string is printed. 

Reference the string pointed to by the e field of the structure 
s 1. Recall that c = &.0[ 0 1. (Figure 1.3-1) 

Reference the string pointed to by the s field of the structure 
81. (Figure 1.3-2) 

s1 

Figure 1.3-1 

s1 

Figure 1.3-2 



144 SIMPLE STJ TURE, NESTED STRUCTURE 

Structures 1.4 

Structures 1.5 

cp 
ss1 

Figure 1.4-1 s2. cp 

c p '--_...---,..---.,---,---; 
ss1 

s 

Figure 1.4-2 (s2. ss 1) • s 

s2 
Cp Iglhlil&1 

ss1 c j 
s Imlnlol&1 

Figure 1.5-1 ++(s2.cp) 

s2 

c p L----r"--'T'----,r-:-'T"":':--1 
ss1 

s 

Figure 1.5-2 + + ( ( s 2 • s s 1) • 8 ) 

Structures 2.1 

struct S 1 { 
char *s; 
int ii 

} ; 
struct S1 *s1pi 

static struct S1 a[] = 
{ "abcd", 1, a+1.}, 
{ "efgh", 2, a+2 }, 
{ "ijkl", 3, a } 

} i 

struct S1 *p=ai 

rl&ure 2.1 depicts the array a and the pointer p. 

pi • s 
i 

s1p 
CaC 1] s 

i 
s1p 

Car 2] s 

ARRAY OF STRU( lFS 145 

S 1 is declared to be a tag referring to a 
structure containing a character pointer, s, an 
integer, i, and a pointer to structure of type 
S 1, s 1 p. This is only a declaration; an 
instance of S 1 is not created. 

a is a three-element array with elements of 
type structure S 1. a has been defined as 
s ta tic so that it can be initialized in the 
definition. 

p is a pointer to structures of type S 1. P is 
initialized to point to the first element of a. 

a 

Figure 2.1 



146 ARRAY OF STRUCTURES 

Structures 2.2 

PRINT3(s. 

(a[O]).s 

p->s 

«(a[2]).s1p)-»s 

Strings are to be printed. 

Reference the string pointed to by the s field of the 
structure that is the first element of a. (Figure 2.2-1) 

Reference the string pointed to by the s field of the 
structure pointed to by p. (Figure 2.2-2) 

Reference the string pointed to by the s field of the 
structure pointed to by the s 1 p field of the structure 
that is the third element of a. (Figure 2.2-3) 

a 
s 
i 1 

i 

C a [ 2 ] _S_~-=--+--_-l 

Figure 2.2-1 

pi • 

pI • 

ARRAYOFSTRUCTURES 147 

a 

j 1 

C a [1] 
s1p 

s 
j 2 

C a [2] 
s1p 

s 
j 3 

s1p 

Figure 2.2-2 

a 
s 
i 1 

C a[ 1] 
s1p 

s 
j 2 

Figure 2.2-3 



148 ARRAY 01 ~.RucrURF.S 

Structures 2.3 

fore i=O; i<2; i++ ) { 

PR(d, 

--( (a[i]) .i) 

PR(e, 

++«(a[i).s)[3) 

pI L-_ •• _-~~--4--a [ 0 ] 

] 

] 

S 

i 

i takes on the values of 0 and 1. 

Print an integer. 

Decrement then reference the integer in the i 
field of the structure that is the ith element of 
a. (Figure 2.3-1 shows the case for i=O) 

Print a character. 

Increment then reference the fourth character 
of the string pointed to by the s field of the 
structure that is the ith element of a. (Figure 
2.3-2 shows the case for i=O) 

a 
.. 
0 

s1p f-e 

s .... 

i 2 
s1p f-e 

s 
i 3 

s1p r---e 

Figure 2.3-1 

ARRAY OF S' __ cruRES 14 

a 
pi • s 

i 0 

C~[ 1] 
s1p 

s 
i :2 

Ca[2] 
s1p 

s 
i 3 

s1p 

Figure 2.3-2 



ISO ARRAY OF UCfURES 

Structures 2.4 

++(p->s) 

4[«++p)->i)].s 

4[--(fp->s1p)->i)].s 

Increment the s field of the structure pointed 
to by p, then output the string pointed to by 
the s field. (Figure 2.4-1) 

First p is incremented, then the s field of the 
p->ith structure of 4 is accessed. (Figure 
2.4-2) 

The i field of the structure pointed to by the 
s 1 p field of the structure pointed to by p is 
decremented then used as an index into 4. 
(Figure 2.4-3) 

a 
pi ......... --a[Ol s 

i o 

i 
s1p 

~a[21-s--l------""~I i I j I kill s I 
i 

s1p 

Figure 2.4-1 

p 

P --_...J 
i 

i 
s1p 

a 

o 

1 

3 

Figure 2.4-2 

i 
,..,y.--S 1p 

a 

o 

ARRAY OFSTRUcrURES lSI 

a [ 1-:0"] -s-+-~-:!_[ elf I g I i I s] 
i 

i 
s1p 

Figure 2.4-3 



152 ARRAY OL __ INTERS TO STRUcrURFS 

Structures 3.1 

struct 51 { 
char *s; 
struct 51 *s1p; 

} ; 

static struet 51 a[] = { 
{ "abed", a+1 }, 
{ "efqh", &+2 }, 
{ "ijkl", & } 

} ; 

struct 51 *(p[3]); 

Fagurc 3.1 depicts the arrays a and p. 

p 
p[O] § a[O] 
p[1] 
p[2] 

s 
s1p 

s 
s1p 

s 
s1p 

5 1 is declared to be a tag referring to a 
structure containing a character pointer, s, and 
a pointer to structure of type 5 1, s 1 p. 

a is a three-element array with elements of 
type structure 5 1. a has been defined as 
static so that it can be initialized in the 
definition. 

When encountered in a program statement, .. 
expression * ( p [ ] ) yields a structure 51. 
Thus, p [ 1 points to a ~tructure 51, and pill 
three-element array of pointers to structura fII 
type 51. 

a 
lalblcldl&1 

Figure 3.1 

Structures 3.2 

for ( i = 0; i < 3; i + + ) 

p[i] = (aCi]).s1p; 

ARRAY OF POINTERS TO STRUcrURFS 153 

i takes on the values 0, 1, 2. 

(p[O])->s, (*p)->s, (**p).s 

The i~h ele.ment of p gets a copy of 
the pOInter In the s 1p field of the ith 
element of a. (Figure 3.2-1) 

T~ese are all ways of saying the same 
thIng. (Figure 3.2-2) 

p 
pC 0] 
pC 1 ] 1--_-..1 

pC 2] 

a 
s 

s1p 
s 

s1p 
s 

s1p 

Figure 3.2-1 

a 
s 

p 
:,[0 ] 

s1p 
s 

p[ 1 ] 
,[2 ] 

s1p 
s 

s1p 

Figure 3.2-2 



154 ARRAY Of "ITERS TO STRUcrURES 

Structures 3.3 

temp • (5.a [ 1 ] ) - > 8 ; 

( 5.a [ 1 ) ) - > 8 = (5.a [ 0 ] ) - > 8 

( 5.a [ 0 ) ) - > s • temp 

(p[O])->s. (*p)->s 

«*p)->s1p)->s 

p 
pro] 
p[ 1] 
p[2] 

s 

p points to p [ 0 ], so * p yields the content of 
p [ 0] or 5.a [ 1 J. a yields 5.a [ 0 J. 

Equivalently, temp - a [ 1 ) • s. 

Or, a ( 11. s -= at 0 1. s 

swap swaps the strings pointed to by the 8 

fields of its arguments. (Figure 3.3-1) 

(Figure 3.3-2) 

(Figure 3.3-3) 

a 
I a\ hi C\ d\ &] 

s1p 
s 

s1p 
s 

s1p 

Figure 3.3-1 

p 
p[ 0] 
p [ 1 ] t-----t 

, p[ 2] 

s 
;-o~--s1p 

ARRAY OF POINTERS TO STRUC J uRES 155 

a 

---t---~ 
S 

,-r---s1p 

[2] -s---t-~~t--_liljlklll&1 
~--s1p 

Figure 3.3-2 

p a 
prO] s 

, pC 1 ] r----;=~t__I dk"--- S 1 p 
,pC 2] -s .-.,-.-~ 

-----' 

lalblc/dlsl 

,.---s1p 
--;------1 

S 

~--s1p 
--""'------' 

Figure 3.3-3 



156 ARRAY Of ~TERS TO STRUCTURES 

Structures 3.4 

swap ( p [ 0 ], (p [ 0 ] ) - > S 1 p) ; p [ 0] contains &.a [ 1 ]. (p [ 0 ] ) - > S 1 P 
contains &.a [ 2 1. (Figure 3.4-1) 

p a 
p[O] S 

1----1 
p[1] 

1----1 
p[2] 

1...--_.....1 

.Pt.---- S 1 P 
--=-1------1 

S 

......,iJ ..... --s1p 
-~I----i 

s 
---s1p _....:........L __ .....I 

Figure 3.4-1 

p a 

ARRAY OF POINTERS TO STRUCl is 157 

p a 
prO] s 

I---~ 

p[ 1 ] ~~--s 1p 
p[2]~;=j~~~ --s~~-~ 

p 
. , p[ 0] 

p [ 1 ] 1-----1 

. p[ 2] 

~:-II--- s 1 P 
--=-I---~ 

s 
---s1p 

--=-L--_....J 

Figure 3.4-3 (* (++ (p[ 0] ) ) ) . s 

s 
~---s1p 

a 

- __ 1--_-1 

le/f/glhisl 

/i/jlkI1Isl 

p[O] ~~~~~~ ~-~ 
s 

[a I b I c I d I SJ 

[ elf I g I h I SJ 

p[1] 
J----I 

1----1 
p[2] 

'-------' 

S 

AfIr.--- S 1 p 
-~--....., 

s 
...-lr---s1p 

-....::......,1------1 
s 

---s1p 
--'-------' 

Figure 3.4-2 (p( 0] ) ->s 

~-.---s1p 
--1----1 

s 
-----s1p 

Figure 3.4-4 ++( (*(H( (*P)->s1p») .s) 



158 THE PREP :FSSOR DOESN'T KNOW C 

Preprocessor 1,1 

int x=2; 
PRINT( x*FUDGE(2) ); 

PR(a); putchar('\n') 

PRe x*FUDGE(2) ); putchar('\n') 

printf(" x*FUDGE(2) • %d\t", 
(int)(x*FUDGE(2») 

printf(" x*FUDGE(2) • %d\tft, 
(int)(x*k+3.1459» 

(int)(x*2+3.14159) 

To understand the effect of a 
preprocessor macro, expand it in place. . 

Always expand the leftmost macro. 
First, substitute the macro replacclllCll 
string for the macro call. 

Then substitute the argument(s) in Ik, 
call for those in the replacement striIJ. 
Expand the leftmost macro, PR tm 
time. 

Substitute the macro arguments. 

A macro name that occurs between 
quotes is not expanded. However, 
macro arguments are expanded 
wherever they occur in the macro ~ 
Thus, x*FUDGE ( 2) replaces a in.·' 
macro PR, but FUDGE ( 2) is left 
unexpanded in the format of the cal. 
printf. 

Replace the formal parameter k by., 
actual parameter. Surprise! First 
multiply, then add (then truncate), 

Beware! Macros can be a source of subtle trickery. Expanding a macro is strictly a matter 
of replacing one string by another. The macro preprocessor knows next to nothing about C. 
Most surprises can be avoided by adhering to a few conventions. 

Convention 1: Parenthesize all macro bodies that contain operatOf's. 

The unwanted interaction between the replacement string and its context in this problem. 
avoided if FUDGE (k) is defined to be (k+3. 14159). 

THE PREPROCFSSOR DOESN'T Kl 

Preprocessor 1.2 

for(cel=O; cel<-100; cel+=50) 
PRINT2( cel,9./5*cel+32 ); 

r C 159 

for(cel=O; cel<-100; cel+=50) 
PRe cel); 

First expand the call to PRINT2. 

PRINT( 9./5*cel+32 ); 

for(cel=O; cel<-100; cel+=50) Then expand the call to PR. 
printf(" cel- %d\t",(int)(cel»; 

PRINT( 9./5*cel+32 ); 

for(cel=O; cel<=100; cel+=50) Expand the call to PRINT. 
printf(" cel- %d\t",(int)(cel»; 

PRe 9./5*cel+32 ); putchar('\n'); 

for (cel=O; cel<= 100; cel+=50) Expand the call to PR. 
printf(" cel- %d\t",(int)(cel»; 

printf(" 9./5*cel+32 =%d\t", 
(int)(9./5*cel+32»; 

putchar( '\n'); 

The call to PRINT2 may look like a single statement, but it expands to three, Only the first 
PR is contained within the for loop. The second PR is executed following the loop, with 
cel=150. 

Convention 2: Keep macro bodies cohesive; prefer an expression to a statement, a single 
SlGlement to mulliple statements. 

For this problem, using commas in place of the semicolons in the body of the PRINT 
macros satisfies Convention 2. 



160 THE PREPR( 
I 

Prept'ocessor 1.3 

SOR DOFSN'T KNOW C 

int x= 1, y=2; 

PRINT3( MAX(X++,y) ,x,y ); 

(a<b ? b : a) ,x,y 

(x++<y? y : x++) ,x,y 

(1<2?y: x++), andx-2 

(y) 

2 

PRINT3( MAX(x++,y) ,x,y ); 

(x++<y ? y : x++) ,x,y 

(2<2? y: x++), andx=3 

(x++) 

3, and x=4 

The PRINT3 macro is, of course, expanded 
before MAX. However, to avoid obscuring 
the point of the puzzles, in this and 
following solutions the PRINT macros will 
not be expanded. The first step then is to 
substitute the replacement string for the call 
to MAX. 

Next, substitute the actual arguments for 
the formal arguments. 

Finally, evaluate. 

Now execute the second call to PRINT3. 

x++ appears only once in the macro call but twice in the expansion, causing x to be 
incremented sometimes by one and sometimes by two. The burden of protecting against 
such unfortunate side effects can be placed either with the macro writer or the macro user. 

Convention 3: Avoid /?UlCl'O bodies that can cause obscure or inconsistent side effects. 
Convention 3A: Avoid expressions with side effects in macro ca/Is. 

In general, the problem of side effects in macros is quite tricky. Following Convention} 
often means copying arguments into local variables within the macro; this extra overhead 
reduces the speed advantage of macro calls over function calls. Following Convention 3A 
requires knowing when a routine has been coded as a macro rather than a function; at best, 
this violates the notion of the routine as an abstraction, and at worst, the routine may be 
rewritten causing the assumption no longer to be valid. 

For this problem following Convention 3A preserves MAX intact. 

Preprocessor 2.1 

intx=1; 

PRINT ( -NEG (x) ); 

--a 

--x, and x=o 

CAUTI( AYS 161 

First substitute the macro replacement string 
for the macro call. (As before, the PRINT 
macro will not be expanded.) 

Then substitute the argument in the call for the 
one in the replacement string. 

T:e macro replace~ent string ~s e~ctly. those characters that foUow the closing parenthesis 
o the ar~ume?t hst. ~he trIck In. thiS puzzle is that the -a immediately foUows the 
parenthesIs. Stl~l, follo':"lDg Convention 1 by defining NEG ( a) to be (_ a) produces the 
expected expansIOn. It IS also a good practice to begin each replacement string with either a 
tab or a space. 

Preprocessor 2.2 

PRINT( weeks( 10080) 

(days( 10080)/7) 

«hours(10080)/24)/7) 

«(10080/60)/24)/7) 

PRINT( days(mins(86400» 

(hours(mins(86400»/24) 

«mins(86400)/60)/24) 

«(86400/60)160)124) 

Rep.lace each macro call with the macro body. 
Notice that there is not a conflict between the 
macro parameter mins and the macro mins. 

Evaluate. 

Expand the leftmost macro. 

Evaluate. 



162 CAUTI4 AYS 

~eprocessor 2.3 

static char input. "\twhich\if?"; 

if(c<' ') TAB(c,i,oldi,temp); 
else putchar(c); 

if(c<' '} 
if(c·.'\t'} 

for(temp.8-(i-oldi-1)~8,oldizi; temp; temp--} 
putchar(' '}; 

else putchar(c}; 

TAB includes an open if statement. On expansion, the if consumes the following else. 

Convention 4: Malee macro replacement strings complete C entities, be they expressions, 
statements (minus the c/osing semicolon), or blocks. 

For this problem, appending a null else clause to the TAB macro alleviates the difficulty. 
(Notice that enclosing the macro replacement string in braces, i.e., making it a block, does 
not solve the problem.) 

About macros and functions. Very often a routine can be implemented using either a macro 
or a function. The advantage of using a macro is that it will be executed faster since the 
runtime overhead of a function call is avoided. The advantages of using a function are that 
none of the tricky situations we've seen in the puzzles with macros will occur, and if the 
routine is called several times, the implementation will probably require less memory. This 
leads us to the final convention for using macros: 

Convention 5: Keep macros simple. If you can't keep a macro simple, make it afunction. 

APPENDICES 



APPE1'.1.I.X 1: Precedence Table 

OPERATOR ASSOCIATIVITY 
primary: ()[]->. left to right 
unary: 1 - ++ -- - (type ) * &. si~¢of right to left 
multiplicative: */" left to right 
additive: + - left to right 
shift: « » left to right 
relational: < <= > >= left to right 
equality: == 1= left to right . 
bitwise: &. left to right 
bitwise: A left to right 
bitwise: I left to right I 

logical: &.& left to right 
logical: I I left to right I I 

conditional: ? : right to left 
assignment: = += -= etc. right to left 
comma: • left to right 

The precedence table illustrates the relative precedence of operators. Precedence determines 
the order in which operands are bound to operators. Operators receive their operands in order 
of decreasing operator precedence. 

To determine the relative precedence of two operators in an expression find the operators in the 
OPERATOR column of the table. The operator higher in the list has the higher precedence. If 
the two operators are on the same line in the list, then look at the corresponding 
ASSOCIATIVITY entry. If it indicates "left to right", then the operator to the left in the 
expression has the higher precedence; if it indicates "right to left", then vice versa. 

165 



i , 
I 
I 
j 
t 

1 
1 
\ 
.. 

APPENDIX 2: Operator Summary Table 

Arithmetic operators (operands are numbers and pointers) 

• Additive 

o erator 
x+y 

x-y 

• Multiplicative 

o erator 

x*y 

x/y 

x"y 

-x 

• Incremental 

o erator 
x++ (x--) 

++x (--x) 

°elds 
sum of x and y 

difference of x less y 

°elds 
product of x and y 

quotient of x divided 
by y 

remainder of dividing x 
by y 

arithmetic negation of 
x 

ields 
x 
x is incremented 
(decremented) after 
use 

x+ 1 (x-1) 
x is incremented 
(decremented) before 
use 

restrictions 
if either operand is a 
pointer the other must 
be integralt 

if either operand is a 
pointer the other must 
be integral or a pointer 
of the same base type 

restrictions 
x, y must not be 
pointer 

x, y must not be 
pointer 

x, y must not be 
double, 6oat, or pointer 

x, y must not be 
pointer 

restrictions 
x must be a reference 
to a numeric value or a 
pointer 

x must be a reference 
to a numeric value or a 
pointer 

t Integral stands for the types int, char, short, long. and unsignedo 

167 



168 OPERATOR SUMMARY TABLE 

Assignment operators 

o erator 

xop= y 

ields 
Y cast in the type of x, 
x gets the value of y 

x op (y) cast in the 
type of x, x gets the 
value of x op (y) 

Bitwise operators (operands are integral) 

• Logical 

orator 
x&y 

xly 

xAy 

-x 

• Shift 

o erator 
x«y 

x»y 

"elds 
bit by bit AND of x and 
y; AND yields a 1 for 
each place both x and 
y have a 1, 0 
otherwise 

bit by bit inclusive OR 

of x and y; inclusive 
OR yields a 0 for each 
place both x and y 
have a 0, 1 otherwise 

bit by bit exclusive OR 

of x and y; exclusive 
OR yields a 0 for each 
place x and y have the 
same value, 1 
otherwise 

one's-complement of 
x; 1s become Os and 
Os 1s 

ields 
x left shifted y places, 
the lowest y bits get Os 

x right shifted y places; 
the highest y bits get 
Os for positive x, 1s or 
Os depending on the 

restrictions 
x, y may be any type 
but array 

x, y may be any type 
but array or structure 

restrictions 

restrictions 
y must be positive and 
less than the number of 
bits per computer word 

y must be positive and 
less than the number of 
bits per computer word 

Logical operators (operands are numbers and pointers) 

o erator ields 
x&&y AND of x and y: 1 if 

both x and yare 
nonzero, 0 otherwise 

xlly inclusive OR of x and 
y: 0 if both x and y 
are zero, 1 otherwise 

Ix logical negation of x: 0 
if x is nonzero, 1 
otherwise 

Comparison (operands are numbers and pointers) 

• Relational 

o erator 
x<y (x>y) 

x<=y (x>=y) 

• Equality 

o erator 
x==y (x I =y) 

• Conditional 

o erator 
x?y:z 

ields 
1 if x is less than 
(greater than) y, 0 
otherwise 

1 if x is less than or 
equal to (greater than 
or equal to) y, 0 
otherwise 

ields 
1 if x is equal to (not 
equal to) y, 0 
otherwise 

ields 
y if x is nonzero, Z 

otherwise 

OPERATOR SUMMARY TABLE 169 

restrictions 
result is of type int 

result is of type int 

result is of type int 

restrictions 
result is of type int 

result is of type int 

restrictions 
result is of type int 

restrictions 



) OPERATOR SUMMARY TABLE 
ASCII Table APPENDIX 3: 

Idress operators 
In octal 

o erator 'elds restrictions 
1000 nuliOO 1 sohl002 stxl003 etxl004 eotl005 enql006 aekl007 bell 

IIX the value at the address x must be a pointer 
1010 bs 1011 ht 1012 nl 1013 vt 1014 np 1015 er 1016 so 1017 si I 

contained in x cast in 1020 dlel021 de11022 de21023 de31024 de41025 nakl026 synl027 etb 
the base type of x 1030 eanl031 em 1032 subl033 esel034 fs 1035 9S 1036 rs 1037 us 

&.x the address of x x must be a reference 1040 sp 1041 I 1042 " 1043 # 1044 S 1045 " 1046 &. 1047 
to a value 1050 ( 1051 ) 1052 II 1053 + 1054 , 1055 - 1056 • 1057 I 

one of the operands 
1060 o 1061 1 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7 

xCy] the value at the address /070 8 /071 9 1072 /073 1074 < 1075 = 1076 > 1077 ? 
x+y cast in the base must be an address and 

1100 @l 1101 A 1102 B 1103 C 1104 D 1105 E 1106 F 1107 G 
type of the address the other must be 

1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 1117 0 
operand integral 

1120 p 1121 Q 1122 R 1123 S 1124 or 1125 U 1126 V 1127 W 

x.y the value of the y field x must be a structure, 1130 X 1131 y 1132' Z 1133 [ 1134 \ 1135 ] 1136 A 1137 

of the structure x y a structure field 1140 ' 1141 a 1142 b 1143 e 1144 d 1145 e 1146 f 1147 9 

x must be pointer to a 
1150 h 1151 i 1152 j 1153 k 1154 I 1155 m 1156 n 1157 0 

x->y the value of the y field 1160 p 1161 q /162 r /163 s /164 t /165 u /166 v 1167 w 
of the structure at the structure, y a structure 

1170 x 1171 y 1172 z 1173 { 1174 1175 } 1176 - 1177 dell 
address x field 

In hexadecimal 

00 null 01 sohl 02 stxl 03 etxl 04 eotl 05 enql 06 aekl 07 bell 
'pe operators 08 bs I 09 ht I Oa nl I Ob vt I Oe np 1 Od er I Oe so I Of si I 

restrictions 
10 dlel 11 de11 12 de21 13 de31 14 de4/ 15 nak 16 syn/ 17 etbl 

0 rator ields 18 19 I 1a subl 1b esel 1e fs I 1d 1e rs I 1£ us I ean em 9S 
(type) x x cast in the type type x may be any 20 sp 21 I I 22 " I 23 #1 24 s I 25 " 26 &. I 27 • I 

expression 28 ( 29 ) I 2a II I 2b + I 2e , I 2d 2e I 2f / I 
sizeof x the size in bytes of x x may be any 30 0 31 1 I 32 2 1 33 3 I 34 4 I 35 5 36 6 I 37 7 I 

expression 38 8 39 9 I 3a I 3b 1 3e < 1 3d II: 3e > 1 3f ? I 
40 @l 41 A 1 42 BI 43 c 1 44 DI 45 E 46 F 1 47 G 1 

sizeof(type) the size in bytes of an 48 H 49 I 1 4a JI 4b K I 4e L I 4d M 4e NI 4f 0 / 
object of type type 50 p 51 Q I 52 RI 53 s 1 54 or I 55 U 56 V I 57 W I 

58 X 59 yl 5a Z 1 5b [ I 5e \ 1 5d ] 5e A 1 5f I 
60 61 a I 62 b I 63 e I 64 d I 65 e 66 f I 67 9 I 
68 h 69 i I 6a j I 6b k I 6e I 1 6d m 6e nl 6f 01 

:quence operator 70 p 71 q I 72 r 1 73 s I 74 t I 75 u 76 vi 77 wi 
78 x 79 y I 7a z I 7b { / 7e / 7d } 7e - I 7f dell 

o erator ields restrictions 

X,y y x, y may be any 
x is evaluated before y expression 

ASCII (American Standard Code for Information Interchange) maps a set of control an( 
printable characters into a set of seven bit binary numbers. The tables above show tht 
correspondence between each character and its value. Generally, the characters below 04l 
octal (20 hexadecimal) are considered control characters and are not printable, though newline 

1\,r;)/~;~~J 
tab, formfeed, etc. are located here. 040 and above are the familiar printing characters. Digit: 
and letters are ordered in their natural way; 1 is before 2 and A is before B. 

/:"./: DtDI¢ 
~ ! 



APPENI.l!X 4: Type Hierarchy Chart 

double ~ float 

long 

T 

unsigned 

int ~ char, short 

The type hierarchy chart illustrates the ordering of the arithmetic types. The execution of each 
arithmetic operator in an expression yields a result with the type of its highest typed operand. 
Similarly, when two quantities are compared by a relational operator, the lower typed operand is 
cast in the type of the higher typed operand. The vertical arrows in the chart show the basic 
ordering: double is the highest type, int the lowest. The horizontal arrows indicate the 

. aut~~~_!YI'C:~()I!Y~<:rsj()J!..s.,._.That is, operands of type f loa t are always converted to type 
double before being consid~.~ in an expressioJ!. Likewise. operands of types char and 
short are always converted to type into 


