& Ll

SCHAUM'’S

oullines 4

PROGRANMMING
with C++

Second Edition
JOHN R. HUBBARD, Ph.D.

Conforms to the new ANSI/ISO Standard for C++

470 examples and solved problems step-by-step

The only C++ book in solved-problem format

Ideal for independent study

Solutions to all the examples
and problems can be down-
loaded from the author’s
World Wide Web page

Use with these courses: < tomputer Science | and | B Introduction to 0+ + A0+ + |
A Fundamentals of G+ + [Programming with G+ + o Advanced Placement Gomputer Sciznce
[Data Structures [Saftware Engineering E’Eurrwlur Architecture B’Fruqramming Lengaages

SCHAUM’SOUTLINE OF

THEORY AND PROBLEMS

of

PROGRAMMING
WITH C++

Second Edition

JOHN R. HUBBARD, Ph.D.

Professor of Mathematics and Computer Science
University of Richmond

SCHAUM’SOUTLINE SERIES

McGRAW-HILL

New York San Francisco Washington, D.C. Auckland Bogota’ Caracas
Lisbon London Madrid Mexico City Milan Montreal
New Delhi SanJuan Singapore Sydney Tokyo Toronto

McGraw-Hill s

A Division of The McGraw-Hill Companies

Copyright © 2000, 1996 by the McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.

0-07-136811-6

The material in this eBook also appears in the print version of thistitle: ISBN 0-07-135346-1.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initia caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro-
grams. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMSOF USE

Thisis a copyrighted work and The McGraw-Hill Companies, Inc. (R1cGraw-Hill¥and its licensors reserve all rightsinand tot he work. Use of
this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sdll, publish or sublicense the work or any part of it without McGraw-Hill® prior consent. You may use the work for your own noncommercial
and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED AS ISOMcGRA W-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIESAS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has
no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be
liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. Thislimitation of liability shall apply to any claim or cause whatsoever whether
such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071368116

Preface

Like al Schaum'’s Outline Series books, this volume isintended to be used primarily for self
study, preferably in conjunction with a regular course in C++ programming language or
computer science. However, it is also well-suited for use in independent study or as a reference.

The book includes over 200 examples and solved problems. The author firmly believes that
the principles of data structures can be learned from a well-constructed collection of examples
with compl ete explanations. This book is designed to provide that support.

C++ was created by Bjarne Stroustrup in the early 1980s. Based upon C and Simula, it is
now one of the most popular languages for object-oriented programming. The language was
standardized in 1998 by the American National Standards Institute (ANSI) and the International
Standards Organization (1SO). This new ANSI/ISO Standard includes the powerful Standard
Template Library (STL). This book conformsto these standards.

Although most people who undertake to learn C++ have aready had some previous
programming experience, this book assumes none. It approaches C++ asone's first programming
language. Therefore, those who have had previous experience may need only skim the first few
chapters.

C++ is a difficult language for at least two reasons. It inherits from the C language an
economy of expression that novices often find cryptic. And as an object-oriented language, its
widespread use of classes and templates presents a formidable challenge to those who have not
thought in those terms before. It is the intent of this book to provide the assistance necessary for
first-time programmers to overcome these obstacles.

Source code for all the examples and problems in this book, including the Supplementary
Problems, may be downloaded from these websites http://projectEuclid.net/schaums ,
http://www.richmond.edu/~hubbard/schaums, http://hubbards.org/schaums, Or
http://jhubbard.net/schaums. Any corrections or addenda for the book will aso be
available at these sites.

I wish to thank al my friends, colleagues, students, and the McGraw-Hill staff who have
helped me with the critical review of this manuscript, including John Aliano, Arthur Biderman,
Francis Minhthang Bui, Al Dawson, Peter Dailey, Mohammed El-Beltagy, Gary Galvez, Libbie
Geiger, Sergei Gorlatch, Chris Hanes, John B. Hubbard, Raana Jeelani, Dick Palas, Blake Puhak,
Arni Sigurjonsson, Andrew Somers, Joe Troncale, Maureen Walker, Stefan Wentzig, and Nat
Withers. Their editorial advice and debugging skills are gratefully appreciated.

Special thanks to my wife and colleague, Anita H. Hubbard, for her advice, encouragement,
and creative ideas for this book. Many of the original problems used here are hers.

JoHN R. HUBBARD
Richmond, Virginia

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 1

Chapter 2

Chapter 3

Contents

Elementary C++ Programmingouuuitiitiini e, 1
11 GETTING STARTED ... e e 1
12 SOME SIMPLEPROGRAMS e 2
13 THE OUTPUT OPERATOR ... e e 4
14 CHARACTERSAND LITERALS e 4
15 VARIABLESAND THEIRDECLARATIONS 5
16 PROGRAM TOKENS ... e e e 6
17 INITIALIZINGVARIABLES e 7
18 OBJECTS, VARIABLES, AND CONSTANTS e 7
19 THE INPUT OPERATOR ..o e e 8
Fundamental TYpes 16
21 NUMERIC DATA TYPES . .. e e 16
22 THEBOOLEAN TY PE .. e e 17
23 ENUMERATION TYPES e e 17
24 CHARACTER TYPES . .. o e e e 19
25 INTEGER TY PES .. e e 19
26 ARITHMETICOPERATORS e e 21
2.7 THE INCREMENT AND DECREMENT OPERATORS 21
28 COMPOSITE ASSIGNMENT OPERATORS 22
29 FLOATING-POINT TYPES ... e 23
210 TYPECONVERSIONS e e 25
211 NUMERIC OVERFLOW . .. e e 26
212 ROUND-OFFERROR e e 28
213 THEE-FORMAT FOR FLOATING-POINT VALUES 30
204 SCOPE .. 31
SElECtion 36
31 THE A€ STATEMENT .. e e 36
32 THEif..else STATEMENT e 36
33 KEYWORDS .. 37
34 COMPARISON OPERATORS e 38
35 STATEMENT BLOCKS ... e e 39
3.6 COMPOUND CONDITIONS .. e 41
3.7 SHORT-CIRCUITING . .. e e 42
38 BOOLEAN EXPRESSIONS e 42
39 NESTED SELECTION STATEMENTS 43
310 THEelse if CONSTRUCT e 46
311 THEswitch STATEMENT e 47
312 THE CONDITIONAL EXPRESSION OPERATOR i 49
%

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

Vi

Chapter 4

Chapter 5

Chapter 6

CONTENTS
LEEr aAtiON .. 60
4.1 THEwhile STATEMENT e e e 60
4.2 TERMINATING A LOOP . ..t e e e e e e e e e e 62
4.3 THE do..while STATEMENT e 64
4.4 THE for STATEMENT e e e e 65
4.5 THE break STATEMENT e e 71
4.6 THE continue STATEMENT i e 73
4.7 THE goto STATEMENT e e e 74
4.8 GENERATING PSEUDO-RANDOM NUMBERS 75
FUNCLIONS ... e e e 87
51 INTRODUCTION .. e e e e e e e 87
5.2 STANDARD C++ LIBRARY FUNCTIONS, 87
53 USER-DEFINED FUNCTIONS i e e e e e 90
54 TEST DRIVERSo e e e e e e e 90
55 FUNCTION DECLARATIONSAND DEFINITIONSot 92
5.6 LOCAL VARIABLESAND FUNCTIONS i 95
5.7 void FUNCTIONS ... e e e e e e e 96
5.8 BOOLEAN FUNCTIONS e e e e e e e 98
5.9 O FUNCTIONS ... e e e e e e e e 101
510 PASSINGBY REFERENCE e 102
511 PASSINGBY CONSTANTREFERENCE, 106
512 INLINEFUNCTIONS e e e 107
5,13 SCOPE . .. 108
514 OVERLOADING e e 109
515 THEmain () FUNCTION e e 109
516 DEFAULT ARGUMENTS e e e 111
AT Y S o o 126
6.1 INTRODUCTION ... e e e e e e e 126
6.2 PROCESSING ARRAY S . . o e e e e e e 126
6.3 INITIALIZING AN ARRAY . e e e e e e 127
6.4 ARRAY INDEX OUT OFBOUNDS e 129
6.5 PASSING AN ARRAY TOA FUNCTION i 131
6.6 THE LINEAR SEARCH ALGORITHM e 133
6.7 THE BUBBLE SORT ALGORITHM e 134
6.8 THE BINARY SEARCH ALGORITHM e 134
6.9 USING ARRAYSWITH ENUMERATIONTYPES 137
6.10 TYPEDEFINITIONS e e e e e e e 138
6.11 MULTIDIMENSIONAL ARRAY S e 139

Chapter 7

Chapter 8

Chapter 9

Chapter 10

CONTENTS Vii

Pointersand References e 156
7.1 THE REFERENCE OPERATOR . ..ot e e 156
7.2 REFERENCES e e 157
7.3 POINTERS . . o e 158
7.4 THE DEREFERENCE OPERATOR ...t e e 159
7.5 DERIVED TYPES e e 161
7.6 OBJECTSAND LVALUES e s 162
7.7 RETURNING A REFERENCE e 162
7.8 ARRAYSAND POINTERS e 163
7.9 DYNAMIC ARRAY S . 168
710 USING const WITHPOINTERS 169
7.11 ARRAYSOFPOINTERSAND POINTERSTOARRAYS 170
7.12 POINTERSTOPOINTERS e e 170
7.13 POINTERSTOFUNCTIONS ... e 170
7.14 NUL,NULL, AND void e 172
C-StriNgS .ot 183
81 INTRODUCTION ... e e e e 183
8.2 REVIEW OF POINTERS e e 183
83 C-STRINGS .. e 185
8.4 STRING /O . e e e e 186
85 SOME cin MEMBERFUNCTIONS s 187
8.6 STANDARD CCHARACTERFUNCTIONS. i 190
8.7 ARRAY SOF STRINGS 191
8.8 STANDARD CSTRING FUNCTIONS i 193
Standard C++ SEriNGS oot 213
9.1 INTRODUCTION ... e e e e 213
9.2 FORMATTED INPUT .. e e e e e e 213
9.3 UNFORMATTED INPUT ... e e 214
9.4 THE STANDARD C++ string TYPE..... 216
9.5 FILES . 217
9.6 STRING STREAMS . . e e s 219
ClaSSES . o 232
10.1 INTRODUCTION ... e e e e e 232
10.2 CLASSDECLARATIONS . . . e e 232
10.3 CONSTRUCTORS e e i i 235
10.4 CONSTRUCTORINITIALIZATIONLISTS ... e 237
10.5 ACCESSFUNCTIONS ... e e e i 238
10.6 PRIVATEMEMBER FUNCTIONS e 238
10.7 THECOPY CONSTRUCTOR i s e e e e e 240
10.8 THE CLASSDESTRUCTOR ... e 242
10.9 CONSTANT OBJIECTS ..ottt e e e 243
10.10 STRUCTURES e e e e 243
10.11 POINTERSTO OBIECTS ..ot e e e 244
10.12 STATICDATA MEMBERS e 245

10.13

static FUNCTION MEMBERS i 247

viii

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

CONTENTS
Overloading Operatorsttt e e 256
111 INTRODUCTION .. e e e 256
11.2 OVERLOADING THE ASSIGNMENT OPERATOR ot 256
11.3 THE this POINTER e 256
11.4 OVERLOADING ARITHMETICOPERATORS, 258
115 OVERLOADING THE ARITHMETIC ASSIGNMENT OPERATORS 260
11.6 OVERLOADING THE RELATIONAL OPERATORSt 260
117 OVERLOADING THESTREAM OPERATORS i 261
11.8 CONVERSION OPERATORS ... e 263
119 OVERLOADING THE INCREMENT AND DECREMENT OPERATORS.. ... 264
11.10 OVERLOADING THE SUBSCRIPT OPERATOR, 266
Compositionand Inheritance i 273
121 INTRODUCTION .. e e e 273
122 COMPOSITION . . e e e 273
123 INHERITANCE ... e e e 275
124 protected CLASSMEMBERS. i 276
125 OVERRIDING AND DOMINATING INHERITED MEMBERS 278
126 private ACCESSVERSUS protected ACCESS 281
127 wvirtual FUNCTIONSAND POLYMORPHISM 282
12.8 VIRTUAL DESTRUCTORS e 285
129 ABSTRACT BASE CLASSES 286
12.10 OBJECT-ORIENTED PROGRAMMING i 290
Templatesand 1teratorsot 300
131 INTRODUCTION .. e e e e 300
132 FUNCTION TEMPLATES e e 300
133 CLASSTEMPLATES .. e e e e 302
134 CONTAINER CLASSES e e 304
135 SUBCLASSTEMPLATES ... e e 306
13.6 PASSING TEMPLATE CLASSESTO TEMPLATE PARAMETERS 307
137 A CLASSTEMPLATEFORLINKEDLISTS i 309
13.8 ITERATOR CLASSES ... i e e e 312
Standard C++ VeCtOrSo e 324
141 INTRODUCTION .. e e 324
142 ITERATORSON VECTORS e 326
143 ASSIGNINGVECTORS e e 327
144 THE erase() and insert() FUNCTIONS......................... 328
145 THE £ind () FUNCTION e e 329
146 THE C++ STANDARD vector CLASSTEMPLATE 331
147 RANGE CHECKING e e 332
Container ClasseS ii i 338
15.1 ANSI/ISOSTANDARD CH+ .o e e e e 338
152 THE STANDARD TEMPLATELIBRARY i 338
153 STANDARD C++ CONTAINER CLASSTEMPLATES 338
154 STANDARD C++ GENERICALGORITHMS 339

155 HEADERFILES e 340

Appendix A

Appendix B
Appendix C
Appendix D

Appendix E
Appendix F
Appendix G
Appendix H

CONTENTS iX

Character COUESttt e e 342
ALl TheASCH Codeot e e e e 342
A2 UNICOOE . ..ot e e 346
Standard C++ Keywordst e 348
Standard C++ OpeErators oot e e 351
Standard C++ Container Classes ...ttt 353
D.1 THEvector CLASSTEMPLATE i 353
D.2 THEdeque CLASSTEMPLATE i i 358
D.3 THE stack CLASSTEMPLATE e 359
D.4 THE queue CLASSTEMPLATE e 359
D.5 THEpriority queue CLASSTEMPLATE 360
D.6 THE 1list CLASSTEMPLATE e 361
D.7 THEmap CLASSTEMPLATE e e e 363
D.8 THE set CLASSTEMPLATE ... e e e e 365
Standard C++ Generic Algorithms i 367
TheStandard C Libraryo 396
Hexadecimal NUMbErSo e e 401
REfEreNCES 405

This page intentionally left blank.

Dedicated to
AnitaH. Hubbard

Chapter 1

Programming is best regarded as

the process of creating works of literature,
which are meant to be read.

—Donald E. Knuth

Elementary C++ Programming

A program s a sequence of instructions that can be executed by a computer. Every program is
written in some programming language. C++ (pronounced “see-plus-plus’) is one of the most
powerful programming languages available. It gives the programmer the power to write
efficient, structured, object-oriented programs.

1.1 GETTING STARTED

To write and run C++ programs, you need to have atext editor and a C++ compiler installed
on your computer. A text editor is a software system that allows you to create and edit text files
on your computer. Programmers use text editors to write programs in a programming language
such as C++. A compiler isa software system that translates programs i nto the machine language
(called binary code) that the computer’s operating system can then run. That translation process
is caled compiling the program. A C++ compiler compiles C++ programs into machine
language.

If your computer is running a version of the Microsoft Windows operating system (e.g.,
Windows 98 or Windows 2000), then it already has two text editors. WordPad and Notepad.
These can be started from the Start key. In Windows 98, they are listed under Accessories.

Windows does not come with a built-in C++ compiler. So unless someone has installed a C++
compiler on the machine you are using, you will have to do that yourself. If you are using a
Windows computer that is maintained by someone else (e.g., an Information Services depart-
ment at your school or company), you may find a C++ compiler aready installed. Use the Start
key to look under Programs for Borland C++Builder, Metrowerks CodeWarrior, Microsoft Visual
C++, or any other program with “C++” in its name. If you have to buy your own C++ compiler,
browse the Web for inexpensive versions of any of the compilers mentioned above. These are
usually referred to as IDEs (Integrated Development Environments) because they include their
own specialized text editors and debuggers.

If your computer is running a proprietary version of the UNIX operating system on a worksta-
tion (e.g., Sun Solaris on a SPARCstation), it may already have a C++ compiler installed. An
easy way to find out is to create the program shown in Example 1.1 on page 2, nameit hello.c,
and then try to compile it with the command

CC hello

The Free Software Foundation has a suite of UNIX software, named “GNU” software that can
be downloaded for free from

http://www.gnu.org/software/software.html

1

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

2 ELEMENTARY C++ PROGRAMMING [CHAP. 1

Use their GCC package which includes a C++ compiler and their Emacs editor. For DOS
systems, use their DIJGPP which includes a C++ compiler.

1.2 SOME SIMPLE PROGRAMS

Now you have a text editor for writing C++ programs and a C++ compiler for compiling
them. If you are using an IDE such as Borland C++Builder on a PC, then you can compile and
run your programs by clicking on the appropriate buttons. Other systems may require you to use
the command line to run your programs. In that case, you do so by entering the file name as a
command. For example, if your source codeisin afile named hello.cpp, type

hello
at the command line to run the program after it has been compiled.

When writing C++ programs, remember that C++ is case-sensitive. That means that main ()
isdifferent from main (). The safest policy isto type everything in lower-case except when you
have a compelling reason to capitalize something.

EXAMPLE 1.1 The“Héello, World” Program

This program simply prints “Hello, World!”:
#include <iostream>
int main()
{ std::cout << "Hello, World!\n";
}

The first line of this source code is a preprocessor directive that tells the C++ compiler where to find
the definition of the std: : cout object that is used on the third line. The identifier iostream is the
name of afilein the andard C++ Library. Every C++ program that has standard input and output must
include this preprocessor directive. Note the required punctuation: the pound sign # is required to
indicate that the word “include” is a preprocessor directive; the angle brackets < > are required to
indicate that the word “iostream” (which stands for “input/output stream”) is the name of a Standard
C++ Library file. The expression <iostreams iscalled astandard header.

The second line is also required in every C++ program. It tells where the program begins. The identi-
fier main is the name of a function, called the main function of the program. Every C++ program must
have one and only onemain () function. The required parentheses that follow the word “main” indicate
that it isafunction. The keyword int isthe name of adata typein C++. It stands for “integer”. It is used
here to indicate the return type for themain () function. When the program has finished running, it can
return an integer value to the operating system to signal some resulting status.

The last two lines constitute the actual body of the program. A program body is a sequence of program
statements enclosed in braces { }. In this example thereis only one statement:

std::cout << "Hello, World!\n";

It saysto send thestring "Hello, World!\n" to the standard output streamobject std: :cout.
Thesingle symbol << representsthe C++ output operator. When this statement executes, the characters
enclosed in quotation marks " " are sent to the standard output device which is usually the computer
screen. The last two characters \n represent the newline character. When the output device encounters
that character, it advances to the beginning of the next line of text on the screen. Finally, note that every
program statement must end with a semicolon (;).

Notice how the program in Example 1.1 is formatted in four lines of source code. That format-
ting makes the code easier for humans to read. The C++ compiler ignores such formatting. It

CHAP. 1] ELEMENTARY C++ PROGRAMMING 3

reads the program the same as if it were written all on oneling, like this:
#include <iostream>
int main() {std::cout<<"Hello, World!\n";}

Blank spaces are ignored by the compiler except where needed to separate identifiers, asin
int main

Note that the preprocessor directive must precede the program on a separate line.

EXAMPLE 1.2 Another “Hello, World” Program

This program has the same output as that in Example 1.1:
#include <iostream>
using namespace std;
int main()
{ // prints "Hello, World!":
cout << "Hello, World!\n";
return 0;
}
The second line
using namespace std;
tellsthe C++ compiler to apply the prefix std:: toresolve namesthat need prefixes. It allows usto use
cout inplace of std: :cout. Thismakeslarger programs easier to read.
Thefourth line
{ // prints "Hello, World!"
includesthe comment “prints "Hello, World!"”.A commentinaprogram isastring of characters
that the preprocessor removes before the compiler compiles the programs. It is included to add explana-
tions for human readers. In C++, any text that follows the double slash symbol //, up to the end of the
ling, isa comment. You can aso use C style comments, like this:
{ /* prints "Hello, World!" */
A C style comment (introduced by the programming language named “C”) is any string of characters
between the symbol /* and the symbol */. These comments can run over several lines.
The sixth line
return O;
isoptional for the main () functionin Standard C++. We include it here only because some compilers
expect it to be included as the last line of the main () function.

A namespace is a named group of definitions. When objects that are defined within a
namespace are used outside of that namespace, either their names must be prefixed with the
name of the namespace or they must be in a block that is preceded by a using namespace
statement. Namespaces make it possible for a program to use different objects with the same
name, just as different people can have the same name. The cout object is defined within a
namespace named std (for “standard”) inthe <iostreams> header file.

Throughout the rest of this book, every program is assumed to begin with the two lines

#include <iostream>
using namespace std;
These two required lines will be omitted in the examples. We will also omit the line
return O;
from the main () function. Be sure also to include this line if you are using a compiler (such as
Microsoft Visual C++) that expects it.

4 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.3 THE OUTPUT OPERATOR

The symbol << iscalled the output operator in C++. (It is aso called the put operator or the
stream insertion operator.) It inserts values into the output stream that is named on its left. We
usually usethe cout output stream, which ordinarily refers to the computer screen. So the state-
ment

cout << 66;
would display the number 66 on the screen.

An operator is something that performs an action on one or more objects. The output operator
<< performs the action of sending the value of the expression listed on its right to the output
stream listed on its left. Since the direction of this action appears to be from right to left, the
symbol << was chosen to represent it. It should remind you of an arrow pointing to the | eft.

The cout object is called a*“stream” because output sent to it flows like a stream. If several
things are inserted into the cout stream, they fall in line, one after the other as they are dropped
into the stream, like leaves falling from atree into a natural stream of water. The values that are
inserted into the cout stream are displayed on the screen in that order.

EXAMPLE 1.3 Yet Another “Hello, World” Program

This program has the same output as that in Example 1.1:
int main()
{ // prints "Hello, World!":
cout << "Hel" << "lo, Wo" << "rld!" << endl;

}
The output operator is used four times here, dropping the four objects "Hel", "1o, Wo", "rld!", and
endl into the output stream. The first three are strings that are concatenated together (i.e., strung
end-to-end) to form the single string "Hello, World!". The fourth object is the stream manipulator
object end1 (meaning “end of line"). It does the same as appending the endline character '\n' tothe
string itself: it sends the print cursor to the beginning of the next line. It also “flushes’ the output buffer.

1.4 CHARACTERSAND LITERALS

The three objects "Hel", "1o, won, and "r1d!" in Example 1.3 are called string literals.
Each literal consists of a sequence of characters delimited by quotation marks.

A character is an elementary symbol used collectively to form meaningful writing. English
writers use the standard Latin alphabet of 26 lower case letters and 26 upper case letters along
with the 10 Hindu-Arabic numerals and a collection of punctuation marks. Characters are stored
in computers as integers. A character set code is a table that lists the integer value for each
character in the set. The most common character set code in use at the end of the millennium is
the ASCII Code, shown in Appendix A. The acronym (pronounced “as-key”) stands for Ameri-
can Standard Code for Information Interchange.

The newline character '\n' is one of the nonprinting characters. It is a single character
formed using the backslash \ and the letter n. There are several other characters formed thisway,
including the horizontal tab character '\t ' and the alert character ' \a'. The backslash is aso
used to denote the two printing characters that could not otherwise be used within a string literal :
the quote character \ " and the backslash character itself \\.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 5

Characters can be used in a program statement as part of a string literal, or as individual
objects. When used individually, they must appear as character constants. A character constant is
acharacter enclosed in single quotes. Asindividual objects, character constants can be output the
same way string literals are.

EXAMPLE 1.4 A Fourth Version of the“Hello, World” Program

This program has the same output as that in Example 1.1:
int main()
{ // prints "Hello, World!":
cout << "Hello, W" << 'o' << "rld" << '"!' << '\n';

}
This shows that the output operator can process characters as well as string literals. The three individua
characters 'o', ' 1 ', and '\n' are concatenated into the output the same was as the two string literals
"Hello, W"and "rld".

EXAMPLE 1.5 Inserting Numeric Literalsinto the Standard Output Stream

int main()
{ // prints "The Millennium ends Dec 31 2000.":
cout << "The Millennium ends Dec " << 3 << 1 << ' ' << 2000 << endl;

}

When numeric literals like 3 and 2000 are passed to the output stream they are automatically
converted to string literals and concatenated the same way as characters. Note that the blank character
(*) must be passed explicitly to avoid having the digits run together.

1.5 VARIABLESAND THEIR DECLARATIONS

A variableis asymbol that represents a storage location in the computer’s memory. The infor-
mation that is stored in that location is called the value of the variable. One common way for a
variable to obtain avalue is by an assignment. This has the syntax

variable = expression;
First the expression isevaluated and then the resulting value is assigned to the variable. The
equals sign “=" isthe assignment operator in C++.

EXAMPLE 1.6 Using Integer Variables

In this example, the integer 44 is assigned to the variable m, and the value of the expression m + 33
isassigned to the variable n:
int main ()
{ // prints "m = 44 and n = 77":
int m, n;

m = 44; // assigns the value 44 to the variable m
cout << "m = " << m;

n=m+ 33; // assigns the value 77 to the variable n
cout << " and n = " << n << endl;

}
The output from the program is shown in the shaded panel at the top of the next page.

6 ELEMENTARY C++ PROGRAMMING [CHAP. 1

m = 44 and n = 77

We can view the variablesm and n like this; m n
The variable named m is like amailbox. Its name int int

m is like the address on a mailbox, its value 44 is like the contents of a mailbox, and itstype int islikea
legal classification of mailboxes that stipulates what may be placed inside it. The type int meansthat the
variable holds only integer values.

Note in this example that both m and n are declared on the same line. Any number of variables can be
declared together thisway if they have the same type.

Every variable in a C++ program must be declared beforeit is used. The syntax is
specifier type name initializer;
where specifier is an optiona keyword such as const (see Section 1.8), type is one of the
C++ datatypes such as int, name is the name of the variable, and initializer isan optional
initialization clause such as =44 (see Section 1.7).

The purpose of a declaration is to introduce a name to the program; i.e., to explain to the
compiler what the name means. The type tells the compiler what range of values the variable
may have and what operations can be performed on the variable.

The location of the declaration within the program determines the scope of the variable: the
part of the program where the variable may be used. In general, the scope of a variable extends
from its point of declaration to the end of the immediate block in which it is declared or which it
controls.

1.6 PROGRAM TOKENS

A computer program is a sequence of elements called tokens. These tokens include keywords
such as int, identifiers such as main, punctuation symbols such as {, and operators such as <«<.
When you compile your program, the compiler scans the text in your source code, parsing it into
tokens. If it finds something unexpected or doesn’t find something that was expected, then it
aborts the compilation and issues error messages. For example, if you forget to append the
semicolon that is required at the end of each statement, then the message will report the missing
semicolon. Some syntax errors such as a missing second quotation mark or a missing closing
brace may not be described explicitly; instead, the compiler will indicate only that it found
something wrong near that location in your program.

EXAMPLE 1.7 A Program’s Tokens

int main()
{ // prints "n = 44":
int n=44;
cout << "n = " << n << endl;
}
Theoutput is
n = 44
This source code has 19 tokens: “int”, “main”, “ (", “)”, “{", “int”, “n”", “=", “44",“;", “cout”,
‘e Mrno= T e ", << "endl”, 7, and “ } 7. Note that the compiler ignores the comment
symbol // and thetext that followsit on the second line.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 7

EXAMPLE 1.8 An Erroneous Program

Thisis the same program as above except that the required semicolon on the third line is missing:
int main()
{ // THIS SOURCE CODE HAS AN ERROR:
int n=44
cout << "n = " << n << endl;
}
One compiler issued the following error message:
Error : '; ' expected
Testing.cpp line 4 cout << "n = " << n << endl;
This compiler underlines the token where it finds the error. In this case, that is the “cout” token at the
beginning of the fourth line. The missing token was not detected until the next token was encountered.

1.7 INITIALIZING VARIABLES

In most cases it iswiseto initialize variables where they are declared.
EXAMPLE 1.9 Initializing Variables

This program contains one variable that is not initialized and one that is initialized.
int main()
{ // prints "m = ?? and n = 44":
int m; // BAD: m is not initialized
int n=44;

cout << "m = " << m << " and n = " << n << endl;

}
m = ?? and n = 44

The output is shown in the shaded box.

Thiscompiler handles uninitialized variablesin a specia way. It givesthem aspecial value that appears
as »? when printed. Other compilers may simply leave “garbage’ in the variable, producing output like
this:

m = -2107339024 and n = 44

In larger programs, uninitialized variables can cause troublesome errors.

1.8 OBJECTS, VARIABLES, AND CONSTANTS

An object is a contiguous region of memory that has an address, a size, a type, and a value.
The address of an object is the memory address of its first byte. The size of an object is simply
the number of bytesthat it occupiesin memory. The value of an object isthe constant determined
by the actual bits stored in its memory location and by the object’s type which prescribes how
those bits are to be interpreted.

For example, with GNU C++ on a UNIX workstation, the object n defined by

int n = 22;
has the memory address ox3fffcdse, the size 4, thetype int, and the value 22. (The memory
address is a hexadecimal number. See Appendix G.)

8 ELEMENTARY C++ PROGRAMMING [CHAP. 1

The type of an object is determined by the programmer. The value of an object may also be
determined by the programmer at compile time, or it may be determined at run-time. The size of
an object is determined by the compiler. For example, in GNU C++ an int hassize 4, whilein
Borland C++ its size is 2. The address of an object is determined by the computer’s operating
system at run-time.

Some objects do not have names. A variable is an object that has a name. The object defined
aboveisavariable with name ‘n’.

The word “variable’ is used to suggest that the object’s value can be changed. An object
whose value cannot be changed is called a constant. Constants are declared by preceding its type
specifier with the keyword const, like this:

const int N = 22;
Constants must be initialized when they are declared.

EXAMPLE 1.10 The const Specifier

This program illustrates constant definitions;

int main()

{ // defines constants; has no output:
const char BEEP = '\b';
const int MAXINT = 2147483647;
const int N = MAXINT/2;
const float KM_PER MI = 1.60934;
const double PI = 3.14159265358979323846;

}

Constants are usually defined for values like rt that will be used more than once in a program
but not changed.

It is customary to use al capital letters in constant identifiers to distinguish them from other
kinds of identifiers. A good compiler will replace each constant symbol with its numeric value.

1.9 THE INPUT OPERATOR

In C++, input isalmost as simple as output. The input operator >> (also called the get opera-
tor or the extraction operator) works like the output operator <<.

EXAMPLE 1.11 Usingthelnput Operator

int main ()
{ // tests the input of integers, floats, and characters:
int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
cout << "m = " << m << ", n =" << n << endl;
double x, y, z;
cout << "Enter three decimal numbers: ";
cin >> x >> y >> z;
cout << "x = " << x << ", vy =" <<y << ", z =" << z << endl;
char cl, c2, c3, c4;
cout << "Enter four characters: ";

CHAP. 1] ELEMENTARY C++ PROGRAMMING 9

cin >> cl >> c2 >> ¢3 >> c4;
cout << "cl = " << cl << ", c2 =" << Cc2 << ", 3 =" << C3
<< ", c4 = " << c4 << endl;

Enter two integers: 22 44
m = 22, n = 44
Enter three decimal numbers: 2.2 4.4 6.6
X = 2.2, y=4.4, z = 6.6
Enter four characters: ABCD
cl = A, ¢c2 =B, ¢c3 =C, c4 =D
The input is shown in boldface in the output pand.

Review Questions

1.1 Describe the two waysto include commentsin a C++ program.
1.2 What iswrong with this program?
#include <iostream>
int main ()
{ // prints "Hello, World!":
cout << "Hello, World!\n"
}
1.3 What iswrong with the following C-style comment?
cout << "Hello, /* change? */ World.\n";
14 What'swrong with this program:
#include <iostreams;
int main
{ // prints "n = 22":
n = 22;
cout << "n = << n << endl;

}
15 What does adeclaration do?

1.6 What isthe purpose of the preprocessing directive:
#include <iostream>

1.7 What isthe shortest possible C++ program?

1.8 Where does the name*C++” come from?

19 What'swrong with these declarations:

int first = 22, last = 99, new = 44, old = 66;

1.10 In each of the following, assume that m hasthe value5 and n has the value 2 before the
statement executes. Tell what the valuesof m and n will be after each of the following
statements executes:
am *= n++;

b.m += --n;

1.11 Evauate each of the following expressions, assuming in each case that m has the value 25
and n hasthevalue7:
am-8 -n
b.m =n = 3

m%n

. m¥n++

m$++n

“~ D o0

++m - n--

10

112

113

114

1.15
1.16
117
1.18
1.19
1.20

11
12

13

14

15
16

17

1.8

19

1.10

ELEMENTARY C++ PROGRAMMING [CHAP. 1

Parse the following program, identifying all the keywords, identifiers, operators, literals,
punctuation, and comments:
int main()
{ int n;
cin >> n;
n *= 3; // multiply n by 3
cout << "n=" << n << endl;

}

Identify and correct the error in each of the following:
a. cout >> count;
b. int double=44;
How do the following two statements differ:
char ch = 'A';
char ch = 65;
What code could you execute to find the character whose ASCII code is 100?
What does “floating-point” mean, and why isit called that?
What is numeric overflow?
How isinteger overflow different from floating-point overflow?
What is arun-time error? Give examples of two different kinds of run-time errors.
What is a compile-time error? Give examples of two different kinds of compile-time errors.

Problems

Write four different C++ statements, each subtracting 1 from the integer variable n.
Write ablock of C++ code that has the same effect as the statement

100 + m++;

without using the post-increment operator.

Write ablock of C++ code that has the same effect as the statement

100 + ++m;

without using the pre-increment operator.

Write a single C++ statement that subtracts the sum of x and y from =z
increments .

Write asingle C++ statement that decrementsthe variable n and then addsit to total.
Write a program that prints the first sentence of the Gettysburg Address (or your favorite
quotation).

Write a program that prints the block letter “B” in a7 x 6 grid of stars like this:

*kkk*k

n =

n =

and then

* *
* *
*kkk*k

* *
* *

*kkk*k

Write and run a program that prints the first letter of your last name as a block letter in a
7x 7 grid of stars.

Write and run a program that shows what happens when each of the following ten “escape
sequences’ isprinted: \a, \b, \n, \r, \t, \v, \', \", \\, \2.

Write and run a program that prints the sum, difference, product, quotient, and remainder of
two integers. Initialize the integers with the values 60 and 7.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 11

111

112
113
114

11

12
13
14
15

16

17
18

1.9

1.10

111

112

113

114

Write and run a program that prints the sum, difference, product, quotient, and remainder of
two integersthat are input interactively.

Write and run atest program that shows how your system handles uninitialized variables.
Write and run a program that causes negative overflow of avariable of type short.

Write and run a program that demonstrates round-off error by executing the following steps:
(2) initialize a variable a of type £1oat with the value 666666; (2) initialize a variable b of
type float with thevalue 1-1/a; (3) initialize a variable c of type f1oat with the value
1/b - 1;(4)initiadlizeavariable d of type £1oat withthevalue1/c + 1; (5) print all four
variables. Show algebraically that d = a even though the computed value of d # a. Thisis
caused by round-off error.

Answersto Review Questions

One way isto use the standard C style comment

/* like this */
The other way isto use the standard C++ style comment

// like this
Thefirst begins with a slash-star and ends with a star-slash. The second begins with a double-slash and
ends at the end of the line.
The semicolon is missing from the last statement.
Everything between the double quotes will be printed, including the intended comment.
There are four errors. the precompiler directive on the first line should not end with a semicolon, the
parentheses are missing from main (), n isnot declared, and the quotation mark on the last line has
no closing quotation mark.
A declaration tells the compiler the name and type of the variable being declared. It also may be ini-
tiaized in the declaration.
It includes contents of the header file iostream into the source code. This includes declarations
needed for input and output; e.g., the output operator <<.
int main() { }
The name refers to the C language and its increment operator ++. The name suggests that C++ isan
advance over C.
The only thing wrong with these declarationsisthat new isakeyword. Keywords are reserved and
cannot be used for names of variables. See Appendix B for alist of the 62 keywordsin C++.

. mwill be 10 and n will be 3.

. mwill be6 and n will be 1.
m - 8 - n evauatesto(25-8)-7=17-7=10
m = n = 3 evauatesto3
m - 8 - n evauatesto(25-8)-7=17-7=10
m = n = 3 evauatesto3

m$n evaluatesto 25%7 =4

. m¥n++ evaluatesto 25%(7++) = 25%7 =4

m%++n evauatesto 25%(++7) = 25%8 = 1

++m - n-- evauaesto (++25) - (7--)=26-7=19

Thekeywordls int. Theidentifiersaremain, n, cin, cout, and endl. Theoperatorsare (), >>,
*=,and <<.Theliteralsare3 and "n=". The punctuation symbolsare {, ;,and }.Thecomment
iS“// multiply n by 3".

a. The output object cout requires the output operator <<. It should be cout << count;

b. Theword double isakeywordin C++; it cannot be used as avariable name. Use: int d=44;

~Po0oTpOTpOR

12

1.15

1.16
117

1.18

1.19

1.20

121

11

12
13
14

15
16

17

ELEMENTARY C++ PROGRAMMING [CHAP. 1

Both statements have the same effect: they declare ch to beachar and initiaize it with the value 65.
Since thisisthe ASCII codefor 'A', that character constant can also be used to initialize ch to 65.
cout << "char(100) = " << char(100) << endl;

The term “floating-point” is used to describe the way decima numbers (rational numbers) are stored
in acomputer. The name refers to the way that a rational number like 386501.294 can be represented
in the form 3.86501294x10° by letting the decimal point “float” to the left 5 places.

Numeric overflow occurs in acomputer program when the size of a numeric variable gets too big for
its type. For example, on most computers values variables of type short cannot exceed 32,767, so if
avariable of that type has the value 32,767 and is then incremented (or increased by any arithmetic
operation), overflow will occur.

When integer overflow occurs the value of the offending variable will “wrap around” to negative val-
ues, producing erroneous results. When floating-point overflow occurs, the value of the offending
variable will be set to the constant inf representing infinity.

A run-time error is an error that occurs when a program is running. Numeric overflow and division by
zero are examples of run-time errors.

A compile-time error is an error that occurs when a program is being compiled. Examples: syntax
errors such as omitting a required semicolon, using an undeclared variable, using a keyword for the
name of avariable.

Solutions to Problems

Four different statements, each subtracting 1 from the integer variable n:
an=n-1;

b.n -= 1;

C. --n;

d n--;
n = 100 + m;
++m;
++m;
n = 100 + m;
z -= (X + y++);
total += --n;

int main()

{ // prints the first sentence of the Gettysburg Address
cout << "\tFourscore and seven years ago our fathers\n";
cout << "brought forth upon this continent a new nation,\n";
cout << "conceived in liberty, and dedicated to the\n";
cout << "proposition that all men are created equal.\n";

) Fourscore and seven years ago our fathers
brought forth upon this continent a new nation,
conceived in liberty, and dedicated to the
proposition that all men are created equal.

int main ()

{ // prints "B" as a block letter

cout << "E*Ek*kEN o endl;
cout << "* *" << endl;
cout << "* *" << endl;
cout << "E*Ek*kEN o endl;
cout << "* *" << endl;

cout << "* *" << endl;

w

CHAP. 1] ELEMENTARY C++ PROGRAMMING 1

cout << "F*kkknU o endl;

1.8 int main()
{ // prints "W" as a block letter

cout << "* *" << endl;
cout << " * *" << endl;
cout << " ¥ *" << endl;
cout << " * * *" << endl;
cout << " * * % *" << endl;

cout << " * ok * *" << endl;

cout << " * *" << endl;

1.9 int main()
{ // prints escape sequences

cout << "Prints \"\\nXXYY\": " << "\nXXYY" << endl;
COUL << Momm o mm oo oo " << endl;
cout << "Prints \"\\nXX\\bYY\": " << "\nXX\bYY" << endl;
COUL << Momm o m oo oo " << endl;
cout << "Prints \"\\n\\tXX\\tYY\": " << "\n\tXX\tYY" << endl;
COUL << Momm o m o oo " << endl;
cout << "Prints the \'\\a\' character: " << '\a' << endl;
COUL << Momm o mm oo oo " << endl;
cout << "Prints the \'\\r\' character: " << '\r' << endl;
COUL << Momm o mm oo " << endl;
cout << "Prints the \'\\v\' character: " << '"\v' << endl;
COUL << Momm o m oo oo " << endl;
cout << "Prints the \'\\?\' character: " << '"\?' << endl;

COUL << Momm o mm oo o " << endl;

14

1.10

11

112

int main ()
{ // prints the results of arithmetic operators

int m =

cout
cout
cout
cout
cout
cout

int main ()
{ // prints the results of arithmetic operators

<<
<<
<<
<<
<<

<<

int m,

cout

<<

ELEMENTARY C++ PROGRAMMING

60, n =

7;

"The integers are " <<

"Their
"Their
"Their
"Their
"Their

n;

"Enter

cin >> m >> n;
"The integers are " <<

cout
cout
cout
cout
cout
cout

int main ()
{ // prints the values of uninitialized variables

bool
cout
char
cout

<<
<<
<<
<<
<<

<<

b;
<<
c;
<<

int m;

cout

<<

int n;

cout

long nn;

<<

"Their
"Their
"Their
"Their
"Their

sum is
difference is
product is
quotient is
remainder is

two integers:

sum is
difference is
product is
quotient is
remainder is

// not initialized

<< b << endl;

// not initialized

" o= "
"e = [
// not
"m = "
// not
"n o= "

// not initialized

<< C << "]M
initialized
<< m << endl;
initialized
<< n << endl;

TeamLRN

m <<

<<

<<

<<

<<

<<

(m
(m
(m
(m
(m

m <<

<<

<<

<<

<<

<<

(m
(m
(m
(m
(m

<< endl;

N

o

N

o

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

endl;
endl;
endl;
endl;
endl;

endl;
endl;
endl;
endl;
endl;

[CHAP. 1

<< n << endl;

<< n << endl;

CHAP. 1] ELEMENTARY C++ PROGRAMMING 1

(@)

cout << "nn = " << nn << endl;
float x; // not initialized
cout << "x = " << X << endl;
double y; // not initialized
cout << "y = " << y << endl;

1.13 int main()
{ // prints the values an overflowing negative short int
short m=0;

cout << "m = " << m << endl;
m -= 10000; // m should be -10,000
cout << "m = " << m << endl;
m -= 10000; // m should be -20,000
cout << "m = " << m << endl;
m -= 10000; // m should be -30,000
cout << "m = " << m << endl;
m -= 10000; // m should be -40,000
cout << "m = " << m << endl;

1.14 int main()
{ float a = 666666; // = a = 666666

float b = 1 - 1/a; // = (a-1)/a = 666665/666666
float ¢ = 1/b - 1; // = 1/(a-1) = 1/666665
float d = 1/c + 1; // = a = 666666 != 671089
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "¢ = " << Cc << endl;

cout << "d = " << d << endl;

Chapter 2

Fundamental Types

2.1 NUMERIC DATA TYPES

In science there are two kinds of numbers. whole numbers (e.g., 666) and decimal numbers
(e.g., 3.14159). Whole numbers, including O and negative whole numbers, are called integers.
Decimal numbers, including negative decimal numbers and all integers, are called rational num-
bers because they can always be expressed as ratios of whole numbers (i.e., fractions). Mathe-
matics also uses irrational real numbers (e.g., »/2 and), but these must be approximated with
rational numbers to be used in computers.

Integers are used for counting; rational
numbers are used for measuring. Integers
are meant to be exact; rational numbers are

meant to be approximate. When we say Fundamental Types

there are 12 people on the jury, we mean ——Integral Types

exactly 12, and anyone can count them to ——Boolean Type

verify the statement. But when we say the bool

tree is 12 meters high, we mean approxi- 7Enumera2z1lyp&s

matc_aly 12.0 meters, ar_1d someone else_me_ly _ Character Types

be just as accurate in saying that it is | char

12.01385 meters high. —unsigned char
This philosophical dichotomy is reflected L wchar_t

in computers by the different ways in which ——Integer Types

these two fundamentally different kinds of [short

numbers are stored and manipulated. Those int

differences are embodied in the two kinds of 7uz:fgne 4 short

numeric types common to all programming _ unsigned int

languages. integral types and floating-point | unsigned long

types. The term “floating-point” refers to | Floating-point Types

the scientific notation that is used for ratio- —float

nal numbers. For example, 1234.56789 can —double

also be represented as 1.23456789 x 10, and —long double

0.00098765 as 9.8765x 10-*. These dterna-

tives are obtained by letting the decimal

point “float” among the digits and using the exponent on 10 to count how many places it has
floated to the left or right.

Standard C++ has 14 different fundamental types: 11 integral types and 3 floating-point types.
These are outlined in the diagram shown above. The integral types include the boolean type
bool, enumeration types defined with the enum keyword, three character types, and six explicit
integer types. The three floating-point types are £loat, double, and long double. The most
frequently used fundamental types are bool, char, int, and double.

16

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 2] FUNDAMENTAL TYPES 17

2.2 THE BOOLEAN TYPE

A boolean type is an integra type whose variables can have only two values. false and
true. These values are stored as the integers 0 and 1. The boolean type in Standard C++ is
named bool.

EXAMPLE 2.1 Boolean Variables

int main()
{ // prints the value of a boolean variable:
bool flag=false;

cout << "flag = " << flag << endl;
flag = true;
cout << "flag = " << flag << endl;
}
flag = 0
flag = 1

Note that the value false isprinted as the integer 0 and the value true is printed astheinteger 1.
2.3 ENUMERATION TYPES

In addition to the predefined types such as int and char, C++ alowsyou to define your own
special data types. This can be done in several ways, the most powerful of which use classes as
described in Chapter 11. We consider here a much simpler kind of user-defined type.

An enumeration typeis an integral type that is defined by the user with the syntax

enum typename { enumerator-list };
Here enum is a C++ keyword, typename stands for an identifier that names the type being
defined, and enumerator-1ist standsfor alist of names for integer constants. For example, the
following defines the enumeration type semester, specifying the three possible values that a
variable of that type can have

enum Semester {FALL, SPRING, SUMMER};
We can then declare variables of thistype:

Semester sl, s2;
and we can use those variables and those type values as we would with predefined types:

sl = SPRING;

s2 = FALL;

if (sl == s2) cout << "Same semester." << endl;

The actual values defined in the enumerator-list are called enumerators. In fact, they are
ordinary integer constants. For example, the enumerators FALL, SPRING, and SUMMER that are
defined for the semester type above could have been defined like this:

const int FALL=0;

const int WINTER=1;

const int SUMMER=2;
ThevaluesO, 1, ... are assigned automatically when the type is defined. These default values can
be overridden in the enumerator-1ist:

enum Coin {PENNY=1, NICKEL=5, DIME=10, QUARTER=25};
If integer values are assigned to only some of the enumerators, then the ones that follow are
given consecutive values. For example,

18 FUNDAMENTAL TYPES [CHAP. 2

enum Month {JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV
DEC};
will assign the numbers 1 through 12 to the twelve months.
Since enumerators are simply integer constants, it is legal to have severa different enumera-

tors with the same value:

enum Answer {NO = 0, FALSE=0, YES = 1, TRUE=1, OK = 1};
Thiswould allow the code

int answer;

cin >> answer;

if (answer == YES) cout << "You said it was o.k." << endl;
to work as expected. If the value of the variable answer is 1, then the condition will be true and
the output will occur. Note that since the integer value 1 always means “true’ in a condition, this
selection statement could also be written
if (answer) cout << "You said it was o.k." << endl;
Notice the conspicuous use of capitalization here. Most programmers usually follow these
conventions for capitalizing their identifiers:
1. Use only upper-case letters in names of constants.
2. Capitalize the first letter of each name in user-defined types.
3. Use all lower-case letters everywhere else.
These rules make it easier to distinguish the names of constants, types, and variables, especially
in large programs. Rule 2 also helps distinguish standard C++ types like float and string
from user-defined types like coin and Month.
Enumeration types are usually defined to make code more self-documenting; i.e., easier for
humans to understand. Here are a few more typical examples:
enum Sex {FEMALE, MALE};
enum Day {SUN, MON, TUE, WED, THU, FRI, SAT};
enum Radix {BIN=2, OCT=8, DEC=10, HEX=16};
enum Color {RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET};
enum Rank {TWO=2, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,
JACK, QUEEN, KING, ACE};
enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES};
enum Roman {I=1, V=5, X=10, L=50, C=100, D=500, M=1000};
Definitions like these can help make your code more readable. But enumerations should not be
overused. Each enumerator in an enumerator list defines a new identifier. For example, the
definition of roman above defines the seven identifiers 1, v, x, 1, ¢, D, and M as specific integer
constants, so these letters could not be used for any other purpose within the scope of their
definition.
Note that enumerators must be valid identifiers. So for example, this definition would not be
valid
enum Grade {F, D, C-, C, C+, B-, B, B+, A-, A}; // ERRONEOUS
because the characters '+ and ' - ' cannot be used in identifiers. Also, the definitions for Month
and rRadix shown above could not both be in the same scope because they both define the
symbol ocT.
Enumerations can a so be anonymousin C++:
enum {I=1, V=5, X=10, L=50, C=100, D=500, M=1000};
Thisisjust aconvenient way to define integer constants.

CHAP. 2] FUNDAMENTAL TYPES 19

2.4 CHARACTER TYPES

A character typeis an integral type whose variables represent characters like the letter 'a' or
the digit ' s'. Character literals are delimited by the apostrophe (). Like all integral type values,
character values are stored as integers.

EXAMPLE 2.2 Character Variables

int main ()
{ // prints the character and its internally stored integer value:
char c='A';

cout << "¢ = " << c << ", int(c) = " << int(c) << endl;
C=Itll.
cout << "c = " << c << ", int(c) = " << int(c) << endl;
c='\t'; // the tab character
cout << "¢ = " << ¢ << ", int(c) = " << int(c) << endl;
c="'1";
cout << "c = " << c << ", int(c) = " << int(c) << endl;
c = A, int(c) = 65
c = t, int(c) = 116
c = , int(c) = 9
= N, st (E) = Bl

Since character values are used for input and output, they appear in their character form instead of their
integral form: the character 'A' isprinted as the letter “A”, not as the integer 65 which is its interna
representation. The type cast operator int () isused here to reveal the corresponding integral value.
These are the characters’ ASCII codes. (See Appendix A.)

2.5 INTEGER TYPES Fundamental Types
L nte?iTypes
There are 6 integer types in Standard C++: Integer Types
——short

These types actually have several names. For int
example, short isaso named short int,and | long
int isasonamed signed int. —unsigned short

You can determine the numerical ranges of —unsigned int
the integer types on your system by running the ——unsigned long

program in the following example.
EXAMPLE 2.3 Integer Type Ranges

This program prints the numeric ranges of the 6 integer typesin C++:

#include <iostream>

#include <climits> // defines the constants SHRT MIN, etc.

using namespace std;

int main()

{ // prints some of the constants stored in the <climits> header:
cout << "minimum short = " << SHRT MIN << endl;
cout << "maximum short = " << SHRT MAX << endl;

20 FUNDAMENTAL TYPES [CHAP. 2

cout << "maximum unsigned short = 0" << endl;
cout << "maximum unsigned short = " << USHRT MAX << endl;
cout << "minimum int = " << INT_ MIN << endl;
cout << "maximum int = " << INT MAX << endl;
cout << "minimum unsigned int = 0" << endl;
cout << "maximum unsigned int = " << UINT MAX << endl;
cout << "minimum long= " << LONG MIN << endl;
cout << "maximum long= " << LONG MAX << endl;
cout << "minimum unsigned long = 0" << endl;
cout << "maximum unsigned long = " << ULONG MAX << endl;
}
minimum short = -32768
maximum short = 32767
maximum unsigned short = 0
maximum unsigned short = 65535
minimum int = -2147483648

maximum int = 2147483647

minimum unsigned int= 0

maximum unsigned int= 4294967295
minimum long = -2147483648
maximum long = 2147483647

minimum unsigned long 0

maximum unsigned long 4294967295

The header file <climits> defines the constants SHRT MIN, SHRT MAX, USHRT_ MIN, €tC.
These are the limits on the range of valuesthat avariable of the indicated type can have. For example, the
output shows that variables of type int can have valuesin the range —2,147,483,648 to 2,147,483,647 on
this computer.

On this computer, the three signed integer types have the same range as their corresponding unquali-
fied integer type. For example, signed short int isthesameas short int. Thistellsusthat the
signed integer types are redundant on this computer.

The output also reveals that the range of the int type (—2,147,483,648 to 2,147,483,647) isthe same as
that of the long int type, and that the range of the unsigned int type (0 to 4,294,967,295) isthe
same asthat of the unsigned long int type. Thistellsusthat the 1ong integer types are redundant
on this computer.

The output from Example 2.3 shows that on this computer (a Pentium Il PC running the Win-
dows 98 operating system and the CodeWarrior 3.2 C++ compiler), the six integer types have the
following ranges:

short: —32,768t0 32,767, (28 values= 1 byte)
int: —2,147,483,648 t0 2,147,483,647; (22 values = 4 bytes)
long: —2,147,483,648 t0 2,147,483,647; (22 values = 4 bytes)
unsigned short: 0 to 65,535; (28 values = 1 byte)
unsigned int!: 010 4,294,967,295; (22 values = 4 bytes)
unsigned long: 010 4,294,967,295; (2%2 values = 4 bytes)

Notethat 1ong isthesameas int and unsigned long isthesame as unsigned int.

The unsigned integer types are used for bit strings. A bit string isa string of Os and 1s asis
stored in the computer’s random access memory (RAM) or on disk. Of course, everything stored
in a computer, in RAM or on disk, is stored as Os and 1s. But all other types of data are format-
ted; i.e., interpreted as something such as a signed integer or a string of characters.

CHAP. 2] FUNDAMENTAL TYPES 21

2.6 ARITHMETIC OPERATORS

Computers were invented to perform numerical calculations. Like most programming
languages, C++ performsits numerical calculations by means of the five arithmetic operators +,
™ *1 /1 and 5.

EXAMPLE 2.4 Integer Arithmetic

This example illustrates how the arithmetic operators work.
int main()

{ // tests operators +, -, *, /, and %:
int m=54;
int n=20;
cout << "m = " << m << " and n = " << n << endl;
cout << "m+n = " << m+n << endl; // 54+20 = 74
cout << "m-n = " << m-n << endl; // 54-20 = 34
cout << "m*n = " << m*n << endl; // 54*20 = 1080
cout << "m/n = " << m/n << endl; // 54/20 = 2
cout << "m%n = " << m%n << endl; // 54%20 = 14

m+n = 74
m-n = 34
m*n = 1080
m/n = 2
mn = 14

Note that integer division results in another integer: 54/20 = 2, not 2.7.

Thelast two operators used in Example 2.4 are the division operator / and the modulus oper-
ator s (also caled the remainder operator). The modulus operator results in the remainder from
the division. Thus, 54520 = 14 because 14 is the remainder after 54 is divided by 20.

2.7 THE INCREMENT AND DECREMENT OPERATORS

The values of integral objects can be incremented and decremented with the ++ and --
operators, respectively. Each of these operators has two versions: a “pre” version and a “post”
version. The “pre” version performs the operation (either adding 1 or subtracting 1) on the object
before the resulting value is used in its surrounding context. The “post” version performs the
operation after the object’s current value has been used.

EXAMPLE 2.5 Applying the Pre-increment and Post-increment Operators

int main()
{ // shows the difference between m++ and ++m:
int m, n;
m = 44;
n = ++m; // the pre-increment operator is applied to m
cout << "m = " << m<< ", n =" << n << endl;

22 FUNDAMENTAL TYPES [CHAP. 2

m = 44;
n = m++; // the post-increment operator is applied to m
cout << "m = " << m<< ", n =" << n << endl;

m = 45, n = 45

m = 45, n = 44
Theline
n = ++m; // the pre-increment operator is applied to m
increments m to 45 and then assigns that value to n. So both variables have the same value 45 when the
next output line executes.
Theline
n = m++; // the post-increment operator is applied to m
increments m to 45 only after it has assigned the value of m to n. So n has the value 44 when the next out-
put line executes.

2.8 COMPOSITE ASSIGNMENT OPERATORS

The standard assignment operator in C++ is the equals sign =. In addition to this operator,
C++ also includes the following composite assignment operators. +=, -=, *=, /=, and s-.
When applied to a variable on the left, each applies the indicated arithmetic operation to it using
the value of the expression on the right.

EXAMPLE 2.6 Applying Composite Arithmetic Assignment Operators

int main ()

{ // tests arithmetic assignment operators:

int n=22;

cout << "n = " << n << endl;

n +=9; // adds 9 to n

cout << "After n 4= 9, n = " << n << endl;
n -=5; // subtracts 5 from n

cout << "After n -= 5, n = " << n << endl;

n *= 2; // multiplies n by 3

cout << "After n *= 2, n = " << n << endl;
n /= 3; // divides n by 9
cout << "After n /= 3, n = " << n << endl;
n %= 7; // reduces n to the remainder from dividing by 4
cout << "After n %= 7, n = " << n << endl;

n = 22

After n += 9, n = 31

After n -= 5, n = 26

After n *= 2, n = 52

After n /= 3, n = 17

After n %= 7, n = 3

~

CHAP. 2] FUNDAMENTAL TYPES 23

2.9 FLOATING-POINT TYPES

C++ supports three real number types. float, double, and long double. On Most systems,
double USestwice as many bytesas float. Typically, £1oat uses4 bytes, double uses 8 bytes,
and long double Uses S8, 10, 12, or 16 bytes.

Types that are used for real numbers are called “floating-point” types because of the way they
are stored internally in the computer. On most systems, a number like 123.45 isfirst converted to
binary form:

123.45=1111011.01110011, x 27
Then the point is “floated” so that al the bits are on its right. In this example, the floating-point
form is obtained by floating the point 7 bits to the left, producing a mantissa 2’ times smaller. So
the original number is

123.45=0.111101101110011, x 27
This number would be represented internally by storing the mantissa111101101110011 and the
exponent 7 separately. For a 32-bit £10at type, the mantissa is stored in a 23-bit segment and the
exponent in an 8-bit segment, leaving 1 bit for the sign of the number. For a 64-bit doub1le type,
the mantissais stored in a 52-bit segment and the exponent in an 11-bit segment.

EXAMPLE 2.7 Floating-Point Arithmetic

This program is nearly the same as the one in Example 2.4. The important difference is that these
variables are declared to have the floating-point type double instead of the integer type int.
int main()
{ // tests the floating-point operators +, -, *, and /:
double x=54.0;
double y=20.0;

cout << "x = " << x << " and y = " << y << endl;
cout << "x+y = " << x+y << endl; // 54.0+20.0 = 74.0
cout << "x-y = " << x-y << endl; // 54.0-20.0 = 34.0
cout << "x*y = " << x*y << endl; // 54.0%*20.0 = 1080.0
cout << "x/y = " << x/y << endl; // 54.0/20.0 = 2.7

}

x = 55 and y = 20

xX+y = 75

x-y = 35

x*y = 1100

xX/y = 2.7

Unlike integer division, floating-point division does not truncate the result: 54.0/20.0 = 2.7.

The next example can be used on any computer to determine how many bytes it uses for each
type. The program usesthe sizeof operator which returnsthe sizein bytes of the type specified.

EXAMPLE 2.8 Usingthe sizeof Operator

This program tells you how much space each of the 12 fundamental types uses:
int main ()
{ // prints the storage sizes of the fundamental types:
cout << "Number of bytes used:\n";

24

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

}

Number

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

<<

of

unsigned short:

FUNDAMENTAL TYPES

"\t char: "
"\t short: "
"\t int: "
"\t long: "

"\t unsigned char: "
"\tunsigned short: "
"\t wunsigned int: "

"\t unsigned long: "
"\t signed char: "
"\t float: "
"\t double: "

"\t long double: "

bytes used:
char:
short:
int:
long:
unsigned char:

unsigned int:
unsigned long:
signed char:
float:

double:

long double:

IS T < S NN O N N O

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

[CHAP. 2

sizeof (char) << endl;

sizeof (short) << endl;

sizeof (int) << endl;

sizeof (long) << endl;

sizeof (unsigned char) << endl;
sizeof (unsigned short) << endl;
sizeof (unsigned int) << endl;
sizeof (unsigned long) << endl;
sizeof (signed char) << endl;
sizeof (float) << endl;

sizeof (double) << endl;

sizeof (long double) << endl;

The output below shows the sizesfor atypical UNIX workstation. On this machine, int and long are
equivaent, unsigned int andunsigned long areequivaent, and double and long double are
equivaent. In other words, ‘long’ is no different from ‘regular’ on this computer.

The next program can be used to investigate floating-point types on any computer system. It
reads the values of various constants from the <cfloat> header file. To accessit, the program
must include the preprocessor directive:

#include <cfloats>
Thisislikethe #include <iostreams> directive that we always include in order to use the
cin and cout objects.

EXAMPLE 2.9 Reading from the <cfloat> Header File

This program tells you the precision and magnitude range that the £1oat type has on your system:

#include <cfloat>
#include <iostream>

using namespace std;
int main ()
{ // prints the storage sizes of the fundamental types:
int fbits = 8*sizeof (float);
"float uses " << fbits << " bits:\n\t"
FLT MANT DIG - 1 << " bits for its mantissa,\n\t "
fbits - FLT MANT DIG << " bits for its exponent,\n\t "
1 << " bit for its sign\n"

cout

<<

<<

<<

<<

<<

" to obtain:

// defines the FLT constants
// defines the FLT constants

// each byte contains 8 bits

<< FLT DIG <<

" gig. digits\n"

CHAP. 2] FUNDAMENTAL TYPES 25

<< " with minimum value: " << FLT MIN << endl
<< " and maximum value: " << FLT MAX << endl;

float uses 32 bits:
23 bits for its mantissa,
8 bits for its exponent,
1 bit for its sign
to obtain: 6 sig. digits
with minimum value: 1.17549e-38
and maximum value: 3.40282e+38

The constants FLT MANT DIG, FLT DIG, FLT MIN, and FLT MAX are defined in the <cfloat>
header file.

This output is from a UNIX workstation. It shows that the 32 bits it uses to store a float are
partitioned into 3 parts: 23 bits for the mantissa, 8 bits for the exponent, and 1 bit for the sign. The 23-bit
mantissa produces a floating-point value with 6 significant digits, and the 8-bit exponent yieldsarangein
magnitude from about 10-%" to about 3 x 10%. i.e,,

0.0000000000000000000000000000000000001 < || < 300,000,000,000,000,000,000,000,000,000,000,000,000
for any variable x declared to have type £1oat.

All floating-point arithmetic is done in double precision. So the only time you should use
float instead of double iS When you are storing large quantities of real numbers and are con-
cerned about storage space or access time.

2.10 TYPE CONVERSIONS

We saw in Chapter 1 how one integer type can be converted automatically to another. C++
also converts integral types into floating point types when they are expected. For example,
int n = 22;
float x = 3.14159;

X += n; // the value 22 is automatically converted to 22.0
cout << X - 2 << endl; // value 2 is automatically converted to 2.0
Converting from integer to float like this is what one would expect and is usually taken for

granted. But converting from afloating point type to an integral type is not automatic.
In generdl, if T isonetype and v is avalue of another type, then the expression

T (v)
converts v to type T. This is called type casting. For example, if expr is a floating-point
expression and n isavariable of type int, then

n = int (expr) ;
converts the value of expr to type int and assigns it to n. The effect is to remove the real
number’s fractional part, leaving only its whole number part to be assigned to n. For example,
2.71828 would be converted to 2. Note that this is truncating, not rounding.

EXAMPLE 2.10 Simple Type Casting

Thisprogram castsadouble vaueinto int value:
int main ()
{ // casts a double value as an int:
double v = 1234.56789;
int n = int(v);

26 FUNDAMENTAL TYPES [CHAP. 2

cout << "v = " << v<< ", n =" << n << endl;

}

v = 1234.57, n = 1234
The double vaue 1234.56789 isconverted to the int value 1234.

When one typeisto be converted to a“higher” type, the type case operator is not needed. This
is called type promotion. Here's a simple example of promotion from char al the way up to
double:

EXAMPLE 2.11 Promotion of Types
Thisprogram promotesa char toa short toan int toa float toa double:

int main ()
{ // prints promoted vales of 65 from char to double:

char c='A'; cout << " char ¢ = " << ¢ << endl;
short k=c; cout << " short k = " << k << endl;
int m=k; cout << " int m = " << m << endl;
long n=m; cout << " long n = " << n << endl;
float x=m; cout << " float x = " << X << endl;
double y=x; cout << "double y = " << y << endl;

char ¢ = A
short k = 65
int m = 65
long n = 65
float x = 65
double y = 65

Theinteger value of the character 'A' isits ASCII code 65. Thisvalueis converted asachar inc, a
short ink, an int inm, and a long in n. The value is then converted to the floating point value 65.0
and stored asa float inx and asadouble iny. Naoticethat cout printstheinteger ¢ asacharacter, and
that it prints the real numbers x and y as integers because their fractional parts are 0.

Because it is so easy to convert between integer types and real typesin C++, it is easy to forget
the distinction between them. In general, integers are used for counting discrete things, while
reals are used for measuring on a continuous scale. This means that integer values are exact,
while real values are approximate.

Note that type casting and promotion convert the type of the value of a variable or expression,
but it does not change the type of the variable itself.

In the C programming language, the syntax for casting v astype T is (T) v. C++ inherits
thisform also, sowecould havedone n = int(v) a n = (int) w

2.11 NUMERIC OVERFLOW

On most computersthe 1ong int type allows 4,294,967,296 different values. That’s alot of
values, but it's till finite. Computers are finite, so the range of any type must also be finite. But
in mathematics there are infinitely many integers. Consequently, computers are manifestly prone
to error when their numeric values become too large. That kind of error is called numeric
overflow.

CHAP. 2]

FUNDAMENTAL TYPES

EXAMPLE 2.12 Integer Overflow

This program repeatedly multipliesn by 1000 until it overflows.
int main ()

{

BB B~

n

// prints n until it overflows:

int n=1000;
cout << "n =
n *= 1000;
cout << "n =
n *= 1000;
cout << "n =
n *= 1000;
cout << "n =

1000
1000000
1000000000
-727379968

//

//

//

<< n << endl;
multiplies n by 1000
<< n << endl;
multiplies n by 1000
<< n << endl;
multiplies n by 1000
<< n << endl;

27

This shows that the computer that ran this program cannot multiply 1,000,000,000 by 1000 correctly.

EXAMPLE 2.13 Floating-point Overflow

Thisprogram is similar to the one in Example 2.12. It repeatedly squares x until it overflows.

int main ()

{

b At

X

// prints x until it overflows:

float x=1000.0;

cout << "x =

<< X << endl;

X *= x; // multiplies n by itself; i.e.,

cout << "x =

<< X << endl;

X *= x; // multiplies n by itself; i.e.,

cout << "x =

<< X << endl;

X *= x; // multiplies n by itself; i.e.,

cout << "x =

<< X << endl;

X *= x; // multiplies n by itself; i.e.,

cout << "x =

1000
le+06
le+12
le+24
inf

<< X << endl;

it

it

it

it

squares

squares

squares

squares

This shows that, starting with x = 1000, this computer cannot square x correctly more than three times.
The last output is the special symbol inf which standsfor “infinity.”

Note the difference between integer overflow and floating-point overflow. The last output in
Example 2.12 is the negative integer —727,379,968 instead of the correct value of
1,000,000,000,000 = 10*. The last output in Example 2.13 is the infinity symbol inf instead of
the correct value of 10%. Integer overflow “wraps around” to negative integers. Floating-point
overflow “sinks’ into the abstract notion of infinity.

28 FUNDAMENTAL TYPES [CHAP. 2

2.12 ROUND-OFF ERROR

Round-off error is another kind of error that often occurs when computers do arithmetic on
rational numbers. For example, the number 1/3 might be stored as 0.333333, which is not exactly
equal to 1/3. The difference is called round-off error. In some cases, these errors can cause
serious problems.

EXAMPLE 2.14 Round-off Error
This program does some simple arithmetic to illustrate roundoff error:

int main()
{ // illustrates round-off error::

double x = 1000/3.0;cout << "x = " << X << endl; // x = 1000/3
double vy = x - 333.0;cout << "y = " << y << endl; // y = 1/3
double z = 3*y - 1.0;cout << "z = " << z << endl; // z = 3(1/3) -1
if (z == 0) cout << "z == 0.\n";
else cout << "z does not equal 0.\n"; // z =0

i = 333.333

y = 0.333333

Z = -5.68434e-14

z does not equal 0.

In exact arithmetic, the variables would have the values x = 333 1/3, y = 1/3, and z= 0. But 1/3 cannot
be represented exactly as a floating-point value. The inaccuracy is reflected in the residue value for z.

Example 2.14 illustrates an inherent problem with using floating-point types within condi-
tional tests of equality. Thetest (z == o) will fail evenif z isvery nearly zero, whichislikely
to happen when z should algebraically be zero. So it is better to avoid tests for equality with
floating-point types.

The next example shows that round-off error can be difficult to recognize.

EXAMPLE 2.15 Hidden Round-off Error

This program implements the quadratic formula to solve quadratic equations.
#include <cmath> // defines the sqgrt() function
#include <iostream>
using namespace std;
int main()

{ // implements the quadratic formula
float a, b, c;
cout << "Enter the coefficients of a quadratic equation:" << endl;
cout << "\ta: ";
cin >> a;
cout << "\tb: ";
cin >> b;
cout << "\tc: ";
cin >> c;
cout << "The equation is: " << a << "*x*x + " << b

<< "*x + " << Cc << " = 0" << endl;

CHAP. 2] FUNDAMENTAL TYPES 29

float d = b*b - 4*a*c; // discriminant

float sqgrtd = sqgrt(d);

float x1 = (-b + sqgrtd)/(2*a);

float x2 = (-b - sqgrtd)/(2*a);

cout << "The solutions are:" << endl;

cout << "\txl = " << x1 << endl;

cout << "\tx2 = " << x2 << endl;

cout << "Check:" << endl;

cout << "\ta*x1l*x1l + b*xl + ¢ = " << a*x1*x1l + b*xl + ¢ << endl;
cout << "\ta*x2*x2 + b*x2 + ¢ = " << a*x2*x2 + b*x2 + ¢ << endl;

}

The quadratic formula requires computing the square root ./b2 —4ac. Thisis done on the line
float sqgrtd = sqgrt(d);
which calls the square root function sgrt () defined in the header file <cmaths. Thelast two lines of
the program check the solutions by substituting them back into the origina quadratic equation. If the
resulting expression on the left evaluates to 0 then the solutions are correct.
Thisrun solves the equation 2x? + 1x — 3 = 0 correctly:

But this run attempts to solve the equation x? + 10000000000x + 1 = 0 and fails:

Thefirst solution, x, = 0, is obviously incorrect: the resulting quadratic expression ax,? + bx, + ¢ evaluates
to 1instread of 0. The second solution, x, = —1e10 = —10,000,000,000 is even worse. The correct solutions
are x; = —0.00000 00000 99999 99999 99999 99519 and x, = 9,999,999,999.99999 99999.

Numeric overflow and round-off errors are examples of run-time errors, which are errors that
occur while the program is running. Such errors are more serious than compile-time errors such
as neglecting to declare a variable or forgetting a semicolon because they are usually harder to
detect and locate. Compile-time errors are caught by the compiler, which usually gives a pretty
good report on where they are. But run-time errors are detected only when the user notices that
the results are incorrect. Even if the program crashes, it still may be difficult to find where the
problem isin the program.

30 FUNDAMENTAL TYPES [CHAP. 2

EXAMPLE 2.16 Other Kindsof Run-TimeErrors

Here are two more runs of the quadratic formula program in Example 2.15:

The quadratic equation 1x? + 2x + 3 = 0 has no real solution because the discriminant b? — 4ac is negative.
When the program runs, the square root function sqrt (d) failsbecause d < 0. It returns the symbolic
constant nan which stands for “not a number.” Then every subsequent numeric operation that uses this
constant results in the same value. That's why the check values come out asnan at the end of the run.

Thisrun attempts to solve the equation 0x? + 2x + 5 = 0. That equation has the solution x = 2.5. But the
quadratic formulafails because a = 0:

Notice that x, comes out as nan, but X, comesout as -inf. The symbol inf stands for “infinity.”
That’s what you get when you divide a nonzero number by zero. The quadratic formula computes X, as

—b-yJb’-4ac _ -(2)- J(2)2=4(0)(5) _ _z-2-2 _ -4
2a 2(0) 0 0
which becomes -inf. But it computesx, as

—b+./b2—4ac _ —(2)+(2°-40)(5) _ =2+2 _ 0

2a - 2(0)) 0

X1 =

which becomes nan.

The three symbols inf, -inf, and nan are numeric constants. The usual humeric operators
can be applied to them, although the results are usually useless. For example, you can multiply
nan by any number, but the result will still be nan.

2.13 THE E-FORMAT FOR FLOATING-POINT VALUES

When input or output, floating-point values may be specified in either of two formats: fixed-
point and scientific. The output in Example 2.16 illustrates both: 333.333 has fixed-point
format, and -5.68434e-14 has scientific format.

TeamLRN

CHAP. 2] FUNDAMENTAL TYPES 31

In scientific format, the letter e stands for “exponent on 10.” So e-14 means 104, and thus
-5.68434e-14 means —5.68434 x 1074 = —0.0000000000000568434. Obviously, the scientific
format is more efficient for very small or very large numbers.

Floating-point values with magnitude in the range 0.1 to 999,999 will normally be printed in
fixed-point format; all otherswill be printed in scientific format.

EXAMPLE 2.17 Scientific Format
This program shows how floating-point values may be input in scientific format:

int main()
{ // prints double values in scientific e-format:

double x;
cout << "Enter float: "; «cin >> X;
cout << "Its reciprocal is: " << 1/x << endl;

Enter float: 234.567e89
Its reciprocal is: 4.26317e-92

You can use either e or in the scientific format.
2.14 SCOPE

The scope of an identifier is that part of the program where it can be used. For example,
variables cannot be used before they are declared, so their scopes begin where they are declared.
Thisisillustrated by the next example.

EXAMPLE 2.18 Scope of Variables

int main()
{ // illustrates the scope of variables:
x = 11; // ERROR: this is not in the scope of x
int x;
{ x = 22; // OK: this is in the scope of x
y = 33; // ERROR: this is not in the scope of y
int vy;

X = 44; // OK: this is in the scope of x
y = 55; // OK: this is in the scope of y
}
X = 66; // OK: this is in the scope of x
y = 77; // ERROR: this is not in the scope of y

}

The scope of x extends from the point where it is declared to the end of main (). The scope of v
extends from the point whereit is declared to the end of the internal block within whichit is declared.

A program may have several objects with the same name as long as their scopes are nested or
disjoint. Thisisillustrated by the next example.

32

FUNDAMENTAL TYPES [CHAP. 2

EXAMPLE 2.19 Nested and Parallel Scopes

int x = 11; // this x is global

int main ()
{ // illustrates the nested and parallel scopes:
int x = 22;
{ // begin scope of internal block
int x = 33;

cout << "In block inside main(): x = " << X << endl;

} // end scope of internal block

cout << "In main(): x = " << X << endl;

cout << "In main(): ::x = " << ::X << endl;

// end scope of main/()

In block inside main(): x = 33
In main(): x = 22
In main(): ::x = 11

There are three different objects named x in this program. The x that isinitialized with the value 11 is
aglobal variable, so its scope extends throughout the file. The x that is initialized with the value 22 has
scope limited to main (). Since thisis nested within the scope of the first %, it hides the first x within
main (). The x that is initialized with the value 33 has scope limited to the internal block within
main (), soit hides both the first and the second x within that block.

The last line in the program uses the scope resolution operator :: to access the global x that is
otherwise hidden in main ().

21
22

23

24
25

2.6

Review Questions

Write asingle C++ statement that prints "Too many" if the variable count exceeds 100.
Wheat iswrong with the following code:
a. cin << count;
b.if x < y min = x
else min = y;
What iswrong with this code:
cout << "Enter n: ";
cin >> n;
if (n < 0)
cout << "That is negative. Try again." << endl;
cin >> n;
else
cout << "o.k. n = " << n << endl;
What is the difference between a reserved word and a standard identifier?
What iswrong with this code:
enum Semester {FALL, SPRING, SUMMER};
enum Season {SPRING, SUMMER, FALL, WINTER};
What iswrong with this code:
enum Friends {"Jerry", "Henry", "W.D."};

CHAP. 2] FUNDAMENTAL TYPES 33

21

22

23

24

21
22

2.3

24

25
26

21

Problems

Write and run a program like the one in Example 2.2 on page 19 that prints the ASCII codes
for only the 10 upper case and lower case vowels. Use Appendix A to check your output.
Modify the program in Example 2.15 on page 28 so that it uses type double instead of
float. Then see how much better it performs on the input that illustrated round-off error.
Write and run a program to find which, if any, arithmetic operations can be applied to a vari-
able that will change its value from any of the three numeric constants inf, -inf, and nan
to something else.

Write a program that convertsinches to centimeters. For example, if the user enters 16.9 for a
length in inches, the output would be 42.926 cm. (Oneinch equals 2.54 centimeters.)

Answersto Review Questions

if (count > 100) cout << "Too many";

a. Either cout should be usedin place of cin, or the extraction operator >> should be used in
place of theinsertion operator <«<.

b. Parentheses arerequired around the condition x < vy, and asemicolonisrequired at the end of the
if clause beforethe else.

There is more than one statement between the if clause and the else clause. They need to be

made into a compound statement by enclosing them in braces { }.

A reserved word is a keyword in a programming language that serves to mark the structure of a state-

ment. For example, thekeywords if and else arereserved words. A standard identifier isakey-

word that defines atype. Among the 63 keywordsin C++, if, else,and while aresome of the

reserved words, and char, int,and float aresome of the standard identifiers.

Thesecond enum definition attempts to redefine the constants SPRING, SUMMER, and FALL.

Enumerators must be valid identifiers. String literalslike "Jerry" and "Henry" are not identifiers.

Solutions to Problems

int main()
{ // prints the ASCII codes of the vowels

cout << "int('A') = " << int('A') << endl;
cout << "int('E') = " << int('E') << endl;
cout << "int('I') = " << int('I') << endl;
cout << "int('O') = " << int('0') << endl;
cout << "int ('U') = " << int('U') << endl;
cout << "int('a') = " << int('a') << endl;
cout << "int('e') = " << int('e') << endl;
cout << "int('i') = " << int('i') << endl;
cout << "int('o') = " << int('o') << endl;
cout << "int('u') = " << int('u') << endl;

}

int ('A') = 65

int ('E') = 69

int('I') = 73

int ('0') = 79

int ('U') = 85

34 FUNDAMENTAL TYPES [CHAP. 2

2.2 int main()
{ // implements the quadratic formula
double a, b, c;
cout << "Enter the coefficients:" << endl;
cout << "\ta: ";
cin >> a;
cout << "\tb: ";
cin >> b;
cout << "\tc: ";
cin >> c;
cout << "The equation is: " << a << "*x*x + " << b
<< "*X + " << Cc << " = 0" << endl;
double d = b*b - 4*ax*c;
double sqgrtd = sqgrt(d) ;
double x1 = (-b + sqgrtd)/(2*a);
double x2 = (-b - sqgrtd)/(2*a);

cout << "The solutions are:" << endl;

cout << "\txl = " << x1 << endl;

cout << "\tx2 = " << x2 << endl;

cout << "Check:" << endl;

cout << "\ta*xl*x1l + b*x1 + ¢ = " << a*x1l*x1l + b*x1 + ¢ << endl;
cout << "\ta*x2*x2 + b*x2 + ¢ = " << a*x2*x2 + b*x2 + ¢ << endl;

2.3 Thefollowing program changes the value of x from inf to -inf and vice versa. But no arithmetic
operation will change the value of avariable once it becomesnan.
int main ()
{ // changes the value of x after it becomes inf:
float x=1e30;

cout << "x= " << X << endl;
X *= X;

cout << "x= " << X << endl;
X *= -1.0;

cout << "x= " << X << endl;
X *= -1.0;

cout << "x= " << X << endl;

——

TeamLRN

CHAP. 2] FUNDAMENTAL TYPES 35

24 Weusetwo variables of type float

int main ()

{ // converts inches to centimeters:
float inches, cm;
cout << "Enter length in inches: ";
cin >> inches;
cm = 2.54*inches;
cout << inches << " inches = " << cm << " centimeters.\n";

SR S e

Chapter 3

Selection

The programs in the first two chapters al have sequential execution: each statement in the
program executes once, and they are executed in the same order that they are listed. This chapter
shows how to use selection statements for more flexible programs. It also describes the various
integral types that are available in C++.

3.1 THE if STATEMENT

The if statement alows conditional execution. Its syntax is
if (condition) statement;
where condition IS an integral expression and statement is any executable statement. The
statement will be executed only if the value of the integral expression is nonzero. Notice the
required parentheses around the condition.

EXAMPLE 3.1 Testing for Divisibility

This program tests if one positive integer is not divisible by another:
int main ()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d) cout << n << " is not divisible by " << d << endl;

}

On the first run, we enter 66 and 7:
Enter two positive integers: 66 7
66 is not divisible by 7

The value 66%7 is computed to be 3. Since that integral value is not zero, the expression is interpreted as
atrue condition and consequently the divisibility message is printed.
On the second run, we enter 56 and 7:
Enter two positive integers: 56 7
The value 56%?7 is computed to be 0, which is interpreted to mean “false,” so the divisibility message is
not printed.

In C++, whenever an integral expression is used as a condition, the value 0 means “false” and
all other values mean “true.”

The program in Example 3.1 is inadequate because it provides no affirmative information
when n isdivisible by d. That fault can be remedied withan if..else Statement.

3.2 THE if..else STATEMENT

The if..else Statement causes one of two aternative statements to execute depending upon
whether the condition istrue. Itssyntax is

36

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 3] SELECTION 37

if (condition) statementl;

else statement2;
where condition is an integral expression and statement1 and statement2 are executable
statements. If the value of the condition is nonzero then statement1 will execute; otherwise
statement2 Will execute.

EXAMPLE 3.2 Testing for Divisibility Again

This program is the same as the program in Example 3.1 except that the i £ statement has been replaced
byan if..else statement:
int main()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d) cout << n << " is not divisible by " << d << endl;
else cout << n << " is divisible by " << d << endl;
}
Now when we enter 56 and 7, we get an affirmative response:
Enter two positive integers: 56 7
56 is divisible by 7
Since 56%7 is zero, the expression isinterpreted as being afalse condition and consequently the statement
after the else is executed.

Notethat the if..else isonly one statement, even though it requires two semicolons.
3.3 KEYWORDS

A keyword in a programming language is a word that is already defined and is reserved for a
unigue purpose in programs written in that language. Standard C++ now has 74 keywords:

and and _eq asm auto bitand
bitor bool break case catch
char class compl const const_ cast
continue default delete do double
dynamic_cast else enum explicit export
extern dfalse float for friend
goto if inline int long
mutable namespace new not not eq
operator or or_eq private protected
public register reinterpret cast return short
signed sizeof static static_cast struct
switch template this throw true

try typedef typeid typename using
union unsigned virtual void volatile
wchar t while xXor xor eq

38 SELECTION [CHAP. 3

Keywords like if and else are found in nearly every programming language. Other
keywords such as dynamic_cast are unique to C++. The 74 keywords of C++ include all 32 of
the keywords of the C language.

There are two kinds of keywords: reserved words and standard identifiers. A reserved word is
a keyword that serves as a structure marker, used to define the syntax of the language. The
keywords if and else are reserved words. A standard identifier is a keyword that names a
specific element of the language. The keywords bool and int are standard identifiers because
they are names of standard typesin C++.

See Appendix B for more information on the C++ keywords.

3.4 COMPARISON OPERATORS

The six comparison operators are
X <Yy // x is less than y

X >y // x 1s greater than y

X <= Y // x 1s less than or equal to y

X >=y // x 1s greater than or equal to y
X ==y // x is equal to y

Xx l=vy // x 1s not equal to y

These can be used to compare the values of expressions of any ordina type. The resulting
integral expression is interpreted as a condition that is either false or true according to whether
the value of the expression is zero. For example, the expression 7«8 < 6*9 evaluatesto zero,
which means that the condition is false.

EXAMPLE 3.3 The Minimum of Two Integers

This program prints the minimum of the two integers entered:

int main()

{ int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
if (m < n) cout << m << " is the minimum." << endl;
else cout << n << " is the minimum." << endl;

}

Enter two integers: 77 55

55 ig the minimum.

Note that in C++ the single equal sign “=" is the assignment operator, and the double equal
sign “==" isthe equality operator:
X = 33; // assigns the value 33 to x
X == 33; // evaluates to 0 (for false) unless 33 is the value of x

This distinction is critically important.
EXAMPLE 3.4 A Common Programming Error

This program is erroneous:
int main()
{ int n;
cout << "Enter an integer: ";

CHAP. 3] SELECTION 39

cin >> n;
if (n = 22) cout << n << " = 22" << endl; // LOGICAL ERROR!
else cout << n << " = 22" << endl;

}

Enter an integer: 77

22 = 22
Theexpression n = 22 assignsthe value 22 to n, changing it from its previous value of 77. But the
expression n = 22 itsef is an integral expression that evaluates to 22 after it executes. Thus the

condition (n = 22) isinterpreted asbeing true, because only 0 yields false, so the statement before the
else executes. Theline should have been written as
if (n == 22) cout << n << " = 22" << endl; // CORRECT

The error illustrated in Example 3.4 is called alogical error. This is the worst kind of error.
Compile-time errors (e.g., omitting a semicolon) are caught by the compiler. Run-time errors
(e.g., dividing by zero) are caught by the operating system. But no such help exists for catching
logical errors.

EXAMPLE 3.5 The Minimum of ThreeIntegers

This program is similar to the one in Example 3.3 except that it appliesto three integers:
int main()
{ int n1, n2, n3;
cout << "Enter three integers: ";
cin >> nl >> n2 >> n3;

int min=nl; // now min <= nl

if (n2 < min) min = n2; // now min <= nl and min <= n2

if (n3 < min) min = n3; // now min <= nl, min <= n2, and min <= n3
cout << "Their minimum is " << min << endl;

énter two integers: 77 33 55
Their minimum is 33
The three comments track the progress of the program: min is initialized to equal n1, so it is the
minimum of the set {n1}. After the first 1£ statement executes, min is equal to either n1 or n2,
whichever issmaller, so it isthe minimum of the set {n1, n2}. Thelast i f statement changes the value of
min to n3 only if n3 islessthan the current value of min which is the minimum of the set {n1, n2}. So
in either case, min becomes the minimum of the set {n1, n2, n3}.

3.5 STATEMENT BLOCKS

A statement block is a sequence of statements enclosed by braces { }, likethis:
{ int temp=x; x = y; vy = temp; }
In C++ programs, a statement block can be used anywhere that a single statement can be used.

EXAMPLE 3.6 A Statement Block within an if Statement

This program inputs two integers and then outputs them in increasing order:
int main()
{ int %, v;
cout << "Enter two integers: ";
cin >> x >> y;

40 SELECTION [CHAP. 3

if (x > y) { int temp=x; x = y; y = temp; } // swap x and y
cout << x << " <= " << y << endl;

}

Enter two integers: 66 44
44 <= 66
The three statements within the statement block sort the values of x and y into increasing order by

swapping them if they are out of order. Such an interchange requires three separate steps along with the
temporary storage location named temp here. The program either should execute all three statements or
it should execute none of them. That alternative is accomplished by combining the three statements into
the statement block.

Note that the variable temp isdeclared inside the block. That makesit local to the block; i.e., it only
exists during the execution of the block. If the conditionisfalse(i.e., x < y), then temp will never exist.
Thisillustrates the recommended practice of localizing objects so that they are created only when needed.

Note that a C++ program itself is a statement block preceded by int main ().

Recall (Section 1.5 on page 5) that the scope of avariableis that part of a program where the
variable can be used. It extends from the point where the variable is declared to the end of the
block which that declaration controls. So a block can be used to limit the scope of a variable,
thereby allowing the same name to be used for different variables in different parts of a program.

EXAMPLE 3.7 Using Blocksto Limit Scope

This program uses the same name n for three different variables:
int main()
{ int n=44;
cout << "n = " << n << endl;
{ int n; // scope extends over 4 lines
cout << "Enter an integer: ";
cin >> n;

cout << "n = " << n << endl;
{ cout << "n = " << n << endl; // the n that was declared first
{ int n; // scope extends over 2 lines

cout << "n = << n << endl;

}

cout << "n = " << n << endl; // the n that was declared first
}
n = 44
Enter an integer: 77
n = 77
n = 44
n = 4251897
n = 44

This program has three internal blocks. The first block declares a new n which exists only within that
block and overrides the previous variable n. So the original n retains its value of 44 when thisn is given
the input value 77. The second block does not redeclare n, so the scope of the origina n includes this
block. Thus the third output is the original value 44. The third block is like the first block: it declares a
new n which overrides the original n. But this third block does not initialize its local n, so the fourth
output is a garbage value (4251897). Finally, since the scope of each redeclared n extends only to the
block where it is declared, the last line of the program isin the scope of the original n, so it prints 44.

CHAP. 3] SELECTION 41

3.6 COMPOUND CONDITIONS

Conditionssuchasn ¢ dandx >= y can be combined to form compound conditions. Thisis
done using the logical operators s& (and), | | (or), and ¢ (not). They are defined by

p && q evaluates to true if and only if both p and g evaluate to true
p || a evaluatesto falseif and only if both p and g evaluate to false
Ip evaluates to true if and only if p evaluatesto false

Forexample, (n ¥ d || x >= y) will befalseifandonlyifn % diszeroand xislessthany.
The definitions of the three logical operators are usualy given by the truth tables below.

P|Qq|p && g pla|p || a p|!p
T 1T T T 1T T T F
T F F T F T F | T
F | T F F | T T
F F F F F F

These show, for example, that if p istrue and q is false, then the expressionp && g will be false
and the expressionp || g will betrue.

The next example solves the same problem that Example 3.5 on page 39 solved, except that it
uses compound conditions.

EXAMPLE 3.8 Using Compound Conditions

This program has the same effect as the one in Example 3.5 on page 39. This version uses compound
conditions to find the minimum of three integers:
int main()
{ int n1, n2, n3;
cout << "Enter three integers: ";
cin >> nl >> n2 >> n3;

if (nl <= n2 && nl <= n3) cout << "Their minimum is " << nl <<endl;
if (n2 <= nl && n2 <= n3) cout << "Their minimum is " << n2 <<endl;
if (n3 <= nl && n3 <= n2) cout << "Their minimum is " << n3 <<endl;

}

Enter two integers: 77 33 55
Their minimum is 33

Note that Example 3.8 is no improvement over Example 3.5. Its purpose was ssimply to illus-
trate the use of compound conditions.
Here is another example using a compound condition:

EXAMPLE 3.9 User-Friendly Input

This program allows the user to input either a“Y” or a“y” for “yes’:
int main ()
{ char ans;
cout << "Are you enrolled (y/n): ";
cin >> ans;
if (ams == 'Y' || ans == 'y') cout << "You are enrolled.\n";
else cout << "You are not enrolled.\n";

42 SELECTION [CHAP. 3

Are you enrolled (y|n): N
You are not enrolled.

It prompts the user for an answer, suggesting aresponse of either y or n. But then it accepts any charac-
ter and concludes that the user meant “no” unless either ay or ay isinput.

3.7 SHORT-CIRCUITING

Compound conditions that use && and | | will not even evaluate the second operand of the
condition unless necessary. Thisis called short-circuiting. As the truth tables show, the condition
p && g Will befaseif p isfase. Inthat casethere is no need to evaluate q. Similarly if p istrue
then there is no need to evaluate g to determinethat p || g istrue. In both cases the value of
the condition is known as soon as the first operand is eval uated.

EXAMPLE 3.10 Short-Circuiting

This program tests integer divisibility:
int main ()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;
if (d !'= 0 && n%d == 0) cout << d << " divides " << n << endl;
else cout << d << " does not divide " << n << endl;
}
Inthisrun, d ispositiveand n%d iszero, so the compound condition is true:
Enter two positive integers: 300 6
6 divides 300
In thisrun, d ispositive but n%d isnot zero, so the compound condition is false:
Enter two positive integers: 300 7
7 does not divide 300
In this run,d is zero, so the compound condition isimmediately determined to be false without evaluat-
ing the second expression “n%d == 0”:
Enter two positive integers: 300 0
0 does not divide 300
This short-circuiting prevents the program from crashing because when 4 is zero the expression n%d
cannot be evaluated.

3.8 BOOLEAN EXPRESSIONS

A boolean expression is a condition that is either true or false. In the previous example the
expressions d > 0, n¥d == 0,and (d > 0 && n%d == 0) areboolean expressions. Aswe
have seen, boolean expressions evaluate to integer values. The value 0 means “false” and every
nonzero value means “true.”

Since all nonzero integer values are interpreted as meaning “true,” boolean expressions are
often disguised. For example, the statement

if (n) cout << "n is not zero";
will print n is not zero precisely when n is not zero because that is when the boolean
expression (n) isinterpreted as “true’. Hereisamore realistic example:

CHAP. 3] SELECTION 43

if (n%d) cout << "n is not a multiple of d";
The output statement will execute precisely when n%d is not zero, and that happens precisely
when d does not divide n evenly, because n%d is the remainder from the integer division.
The fact that bool ean expressions have integer values can lead to some surprising anomaliesin
C++.

EXAMPLE 3.11 Another Logical Error

This program is erroneous:
int main()
{ int n1, n2, n3;
cout << "Enter three integers: ";
cin >> nl >> n2 >> n3;
if (nl >= n2 >= n3) cout << "max = xX"; // LOGICAL ERROR!

}

Enter an integer: 0 0 1
max = 0
The source of this error is the fact that boolean expressions have numeric values. Since the expression
(n1 >= n2 >= n3) isevaluated from lefttoright, thefirst part n1 >= n2 evaluatesto “true’ since
0>= 0. But “true” is stored as the numeric value 1. That value is then compared to the value of n3 which
is adso 1, so the complete expression evaluates to “true’ even though it is really fase! (0 is not the
maximum of 0, 0, and 1.)
The problem here is that the erroneous line is syntactically correct, so the compiler cannot catch the
error. Nor can the operating system. This is another logical error, comparable to that in the program in
Example 3.4 on page 38.

The moral from Example 3.11 is to remember that boolean expressions have numeric values,
so compound conditions can be tricky.

3.9 NESTED SELECTION STATEMENTS

Like compound statements, selection statements can be used wherever any other statement
can be used. So a selection statement can be used within another selection statement. This is
called nesting statements.

EXAMPLE 3.12 Nesting Selection Satements

This program has the same effect as the one in Example 3.10 on page 42:
int main ()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;

if (4 !'= 0)
if (n%d == 0) cout << d << " divides " << n << endl;
else cout << d << " does not divide " << n << endl;
else cout << d << " does not divide " << n << endl;

}

Thesecond if..else statement isnested withinthe if clause of thefirst if..else statement. So
thesecond if..else statement will execute only when d is not zero.

44 SELECTION [CHAP. 3

Note that the " does not divide " statement has to be used twice here. The first one, nested
within the i £ clause of the first if..else Statement, executes when d isnot zero and nsd is zero.
The second one executes when d is zero.

When if..else Statements are nested, the compiler uses the following rule to parse the
compound statement:

Match each e1se with the last unmatched i£.
Using thisrule, the compiler can easily decipher code asinscrutable asthis:

if (a > 0) if (b > 0) ++a; else if (¢ > 0) // BAD CODING STYLE
if (a < 4) ++b; else if (b < 4) ++c; else --a; // BAD CODING STYLE
else if (¢ < 4) --b; else --c; else a = 0; // BAD CODING STYLE
To make this readable for humansit should be written either like this:
if (a > 0)
if (b > 0) ++a;
else

if (¢ > 0)
if (a < 4) ++b;

else
if (b < 4) ++c;
else --a;
else
if (¢ < 4) --b;
else --c;
else a = 0;

or likethis:
if (a > 0)
if (b > 0) ++a;
else if (c > 0)
if (a < 4) ++b;
else if (b < 4) ++c;
else --a;
else if (¢ < 4) --b;
else --c;
else a = 0;
This second rendering aligns the else if pairs when they form parallel alternatives. (See
Section 3.10 on page 46.)

EXAMPLE 3.13 Using Nested Selection Satements

This program has the same effect as those in Example 3.5 on page 39 and Example 3.8 on page 41.
Thisversion usesnested if..else statementsto find the minimum of threeintegers:
int main ()
{ int n1, n2, n3;
cout << "Enter three integers: "
cin >> nl >> n2 >> n3;
if (nl < n2)
if (nl < n3) cout << "Their minimum is " << nl << endl;
else cout << "Their minimum is " << n3 << endl;
else // nl >= n2
if (n2 < n3) cout << "Their minimum is " << n2 << endl;

CHAP. 3] SELECTION 45

else cout << "Their minimum is " << n3 << endl;

}

Enter three integers: 77 33 55
Their minimum is 33

In thisrun, thefirst condition (n1 < n2) isfalse, and thethird condition (n2 < n3) istrue soit
reports that n2 isthe minimum.

This program is more efficient than the one in Example 3.8 on page 41 because on any run it
will evaluate only two simple conditions instead of three compound conditions. Nevertheless, it
should be considered inferior because its logic is more complicated. In the trade-off between
efficiency and simplicity, it is usually best to choose simplicity.

EXAMPLE 3.14 A Guessing Game

This program finds a number that the user selectsfrom 1 to 8:
int main ()

{ cout << "Pick a number from 1 to 8." << endl;
char answer;
cout << "Is it less than 5? (y|n): "; cin >> answer;
if (answer == 'y') // 1 <=n <= 4
{ cout << "Is it less than 3? (y|n): "; cin >> answer;
if (answer == 'y') // 1 <= n <= 2
{ cout << "Is it less than 2? (y|n): "; cin >> answer;
if (answer == 'y') cout << "Your number is 1." << endl;
else cout << "Your number is 2." << endl;
}
else // 3 <=n <= 4
{ cout << "Is it less than 4? (y|n): "; cin >> answer;
if (answer == 'y') cout << "Your number is 3." << endl;
else cout << "Your number is 4." << endl;
}
}
else // 5 <= n <= 8
{ cout << "Is it less than 77 (y|n): ", ¢cin >> answer;
if (answer == 'y') // 5 <= n <= 6
{ cout << "Is it less than 67? (y|n): ", ¢cin >> answer;
if (answer == 'y') cout << "Your number is 5." << endl;
else cout << "Your number is 6." << endl;
}
else // 7 <= n <= 8
{ cout << "Is it less than 87 (y|n): ", ¢cin >> answer;
if (answer == 'y') cout << "Your number is 7." << endl;
else cout << "Your number is 8." << endl;
}
}

}
By repeatedly subdividing the problem, it can discover any one of the 8 numbers by asking only three
guestions. In this run, the user’s number is 6.

46 SELECTION [CHAP. 3

Pick a number from 1 to 8.

Is it less than 5? (y|n): n
Is it less than 7? (y|n): y
Is it less than 6? (y|n): n

Your number is 6.

The algorithm used in Example 3.14 is called the binary search. It can be implemented more
simply. (See Example 6.14 on page 135.)

3.10 THE else if CONSTRUCT

Nested if..else Statements are often used to test a sequence of parallel alternatives, where
only the e1se clauses contain further nesting. In that case, the resulting compound statement is
usually formatted by lining up the else if phrasesto emphasize the paralel nature of the
logic.

EXAMPLE 3.15 Usingthe eise if Construct for Parallel Alternatives
This program requests the user’s language and then prints a greeting in that language:

int main ()

{ char language;

cout << "Engl., Fren., Ger., Ital., or Rus.? (e|f|g|i|r): ";
cin >> language;

if (language == 'e') cout << "Welcome to ProjectEuclid.";

else if (language == 'f') cout << "Bon jour, ProjectEuclid.";
else if (language == 'g') cout << "Guten tag, ProjectEuclid.";
else if (language == 'i') cout << "Bon giorno, ProjectEuclid.";
else if (language == 'r') cout << "Dobre utre, ProjectEuclid.";

else cout << "Sorry; we don't speak your language.";

éngl., Fren., Ger., Ital., or Rus.? (e|f|g|i|r): i
Bon giorno, ProjectEuclid.
Thisprogram usesnested if..else statementsto select from thefive given alternatives.
Asordinary nested if..else statements, the code could also be formatted as
if (language == 'e') cout << "Welcome to ProjectEuclid.";
else
if (language == 'f') cout << "Bon jour, ProjectEuclid.";
else
if (language == 'g') cout << "Guten tag, ProjectEuclid.";
else
if (language == 'i') cout << "Bon giorno, ProjectEuclid.";
else
if (language == 'r') cout << "Dobre utre, ProjectEuclid.";
else cout << "Sorry; we don't speak your language.";
But the given format is preferred because it displays the parallel nature of the logic more clearly. It adso
requires less indenting.

CHAP. 3] SELECTION 47

EXAMPLE 3.16 Usingthe el1se if Construct to Select a Range of Scores

This program converts atest score into its equivalent | etter grade:
int main()
{ int score;
cout << "Enter your test score: "; cin >> score;
if (score > 100) cout << "Error: that score is out of range.";
else if (score >= 90) cout << "Your grade is an A." << endl;

else if (score >= 80) cout << "Your grade is a B." << endl;
else if (score >= 70) cout << "Your grade is a C." << endl;
else if (score >= 60) cout << "Your grade is a D." << endl;
else if (score >= 0) cout << "Your grade is an F." << endl;

else cout << "Error: that score is out of range.";

}

Enter your test score: 83
Your grade is a B.
The variable score is tested through a cascade of selection statements, continuing until either one of
the conditions isfound to be true, or the last e1se isreached.

3.11 THE switch STATEMENT

The switch statement can be used instead of the else if construct to implement a
sequence of paralel aternatives. Its syntax is
switch (expression)
{ case constantl: statementListl;
case constant2: statementList2;
case constant3: statementList3;

case constantN: statementListN;
default: statementListO;
}

This evaluates the expression and then looks for its value among the case constants. If the
value is found among the constants listed, then the statements in the corresponding
statementList are executed. Otherwise if there is a default (which is optional), then the
program branches to its statementList. The expression must evaluate to an integral type
(see Section 2.1 on page 16) and the constantsmust be integral constants.

EXAMPLE 3.17 Using a switch Statement to Select a Range of Scores

This program has the same effect as the one in Example 3.16:
int main()
{ int score;
cout << "Enter your test score: "; cin >> score;
switch (score/10)
{ case 10:
case 9: cout << "Your grade is an A." << endl; break;
case 8: cout << "Your grade is a B." << endl; break;
case 7: cout << "Your grade is a C." << endl; break;

48 SELECTION [CHAP. 3

case 6: cout << "Your grade is a D." << endl; break;
case 5
case 4:
case 3:
case 2
case 1
case O
default

}

cout << "Goodbye." << endl;

}

Enter your test score: 83
Your grade is a B.
Goodbye.

First the program divides the score by 10 to reduce the range of valuesto 0—10. So in the test run, the
score 83 reduces to the value 8, the program execution branchesto case 8, and prints the output shown.
Then the break statement causes the program execution to branch to the first statement after the switch
block. That statement prints “Goodbye.”.

Note that scores in the ranges 101 to 109 and -9 to -1 produce incorrect results. (See Problem 3.14.)

cout << "Your grade is an F." << endl; break;
cout << "Error: score is out of range.\n";

It is normal to put abreak statement at the end of each case clause in a switch Statement.
Without it, the program execution will not branch directly out of the switch block after it fin-
ishes executing its case statement sequence. Instead, it will continue within the switch block,
executing the statements in the next case sequence. This (usually) unintended consequence is
called afall through.

EXAMPLE 3.18 An Erroneous Fall-through in a switch Statement

This program was intended to have the same effect as the one in Example 3.17. But with no break
statements, the program execution falls through all the case statements it encounters:
int main()
{ int score;
cout << "Enter your test score: "; cin >> score;
switch (score/10)
{ case 10:
case 9: cout << "Your grade is an A." << endl; // LOGICAL ERROR

case 8: cout << "Your grade is a B." << endl; // LOGICAL ERROR
case 7: cout << "Your grade is a C." << endl; // LOGICAL ERROR
case 6: cout << "Your grade is a D." << endl; // LOGICAL ERROR
case 5
case 4:
case 3:
case 2
case 1
case 0: cout << "Your grade is an F." << endl; // LOGICAL ERROR
default: cout << "Error: score is out of range.\n";

}

cout << "Goodbye." << endl;

}

Enter your test score: 83
Your grade is a B.
Your grade is a C.

CHAP. 3] SELECTION 49

Your grade is a D.
Your grade is an F.
Error: score is out of range.
Goodbye.
After branching to case 8, and printing “Your grade is a B.”, the program execution goes

right onto case 7 and prints “Your grade is a C.” Sincethe break statements have been
removed, it keeps falling through, al the way down to the default clause, executing each of the cout
statements along the way.

3.12 THE CONDITIONAL EXPRESSION OPERATOR

C++ provides a special operator that often can be used in place of the if...else Statement.
It is called the conditional expression operator. It usesthe ? and the : symbolsin this syntax:
condition ? expressionl : expression2
It isaternary operator; i.e., it combines three operands to produce a value. That resulting value
is either the value of expressioni or the value of expressionz, depending upon the boolean
value of the condition. For example, the assignment
min = (X<y ? x : y);
would assign the minimum of x and y to min, because if the condition x<y is true, the
expression (x<y ? x : y) evauatesto x; otherwiseit evaluatesto y.
Conditional expression statements should be used sparingly: only when the condition and both
expressions are very simple.

EXAMPLE 3.19 FindingtheMinimum Again

This program has the same effect as the program in Example 3.3 on page 38:
int main()
{ int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
cout << (m<n ? m : n) << " igs the minimum." << endl;

}

The conditional expression (m<n ? m : n) evauatestomif m<n, andton otherwise.

Review Questions

3.1 Writeasingle C++ statement that prints "Too many" if the variable count exceeds 100.
3.2 What iswrong with the following code:
a. cin << count;
b.if x < y min = x
else min = y;
3.3 What iswrong with this code:
cout << "Enter n: ";
cin >> n;
if (n < 0)
cout << "That is negative. Try again." << endl;
cin >> n;

50 SELECTION [CHAP. 3

else
cout << "o.k. n = " << n << endl;
34 What isthe difference between areserved word and a standard identifier?
3.5 State whether each of the following istrue or false. If false, tell why.
a !(p || q) isthesameas 'p || !g
b. 111p isthesameas 'p
C.p &s q || r isthesameas p && (q ||)
3.6 Construct atruth table for each of the following boolean expressions, showing its truth value
(Oor 1) for all 4 combinations of truth values of its operands p and q.
a'p || g
b. pssq || !'p&&lq
C. (p|]a) && ! (p&&q)
3.7 Usetruth tables to determine whether the two boolean expressions in each of the following

are equivaent.

a !(p && q) and !p && !g

b. 11p and p

C!p || gandp || !qg

dp & (g & r) and (p && g) && r
ep || (g&& r) ad (p || q) && r

3.8 What is short-circuiting and how isit helpful?
3.9 What iswrong with this code:

if (x = 0) cout << x << " = 0\n";
else cout << x << " != 0\n";
3.10 What iswrong with this code:
if (x <y < z) cout << Xx << " < " <<y << " < " << z << endl;

3.11 Construct alogica expression to represent each of the following conditions:
a. score isgreater than or equal to 80 but less than 90;
b. answeriseither 'N' or 'n';
C. n iseven but not 8;
d. chisacapita letter.
3.12 Construct alogica expression to represent each of the following conditions:
a. n isbetween 0 and 7 but not equal to 3;
b. n isbetween 0 and 7 but not even;
c. nisdivisible by 3 but not by 30;
d. ch isalowercase or uppercase | etter.
3.13 What iswrong with this code:
if (x == 0)
if (y == 0) cout << "x and y are both zero." << endl;
else cout << "x is not zero." << endl;
3.14 What isthe difference between the following two statements:
if (n > 2) { if (n < 6) cout << "OK"; } else cout << "NG";
if (n > 2) { if (n < 6) cout << "OK"; else cout << "NG"; }
3.15 What isa*“fal-through?
3.16 How isthe following expression evaluated?
(x <y ? -1 : (x==y 2?20 :1));
3.17 Write a single C++ statement that uses the conditional expression operator to assign the
absolute valueof x to absx.

CHAP. 3] SELECTION 51

3.18

31

3.2

3.3

34

35

3.6

3.7

3.8

39

3.10
311
3.12

3.13

3.14

31

Write a single C++ statement that prints“too many” if the variable count exceeds 100, using
a. an if statement;
b. the conditional expression operator.

Problems

Modify the program in Example 3.1 on page 36 so that it prints aresponse only if n isdivisi-
ble by 4.

Modify the program in Example 3.5 on page 39 so that it prints the minimum of four input
integers.

Modify the program in Example 3.5 on page 39 so that it prints the median of three input
integers.

Modify the program in Example 3.6 on page 39 so that it has the same effect without using a
statement block.

Predict the output from the program in Example 3.7 on page 40 after removing the declara-
tion on the fifth line of the program. Then run that program to check your prediction.

Write and run a program that reads the user’s age and then prints “You are a child.” if the
age < 18, “You are an adult.” if 18 < age < 65, and “You are asenior citizen.” if age> 65.
Write and run a program that reads two integers and then uses the conditional expression
operator to print either “multiple”’ or “not” according to whether one of the integersisamul-
tiple of the other.

Write and run a program that simulates a simple calculator. It reads two integers and a char-
acter. If the character isa +, the sum is printed; if itisa -, the difference is printed; if itisa *,
the product is printed; if it is a /, the quotient is printed; and if it is a %, the remainder is
printed. Use a switch statement.

Write and run a program that plays the game of “Rock, paper, scissors.” In this game, two
players simultaneoudy say (or display a hand symbol representing) either “rock,” “paper,” or
“scissors.” The winner is the one whose choice dominates the other. The rules are: paper
dominates (wraps) rock, rock dominates (breaks) scissors, and scissors dominate (cut) paper.
Use enumerated types for the choices and for the results.

Modify the solution to Problem 3.9 by using a switch statement.

Modify the solution to Problem 3.10 by using conditiona expressions where appropriate.
Write and test a program that solves quadratic equations. A quadratic equation is an equation
of the form ax? + bx + ¢ = 0, where a, b, and ¢ are given coefficients and x is the unknown.
The coefficients are real number inputs, so they should be declared of type float or
double. Since quadratic equations typically have two solutions, use x1 and x2 for the
solutions to be output. These should be declared of type double to avoid inaccuracies from
round-off error. (See Example 2.15 on page 28.)

Write and run a program that reads a six-digit integer and prints the sum of its six digits. Use
the quotient operator / and the remainder operator % to extract the digits from the integer.
For example, if n isthe integer 876,543, then n/1000%10 isitsthousandsdigit 6.

Correct Example 3.17 on page 47 so that it produces the correct response for all inputs.

Answersto Review Questions

if (count > 100) cout << "Too many";

52

32

3.3

34

35

3.6

37

SELECTION

[CHAP. 3

a. Either cout should be used in place of cin, or the extraction operator >> should be used in

place of theinsertion operator <«<.
b. Parentheses are required around the condition x < y, and asemicolon isrequired at the end of the

if clause beforethe else.
There is more than one statement between the if clause andthe else clause. They need to be
made into acompound statement by enclosing them in braces { }.
A reserved word is akeyword in a programming language that serves to mark the structure of a state-
ment. For example, the keywords if and else arereserved words. A standard identifier isakey-
word that defines atype. Among the 63 keywordsin C++, if, else,and while aresome of the
reserved words, and char, int,and float aresome of the standard identifiers.

a !(p || q) isnotthesameas !p || !q;forexample, if p istrueand g isfase, thefirst
expression will be false but the second expression will be true. The correct equivaent to the
expression ! (p || q) istheexpression !p && !q.

b. 111p isthesameas !p.

C.p &« g || r isnotthesameas p && (g || r);forexample if p isfaseand r istrue,
the first expression will be true, but the second expression will befase: p && q || r isthe
sameas (p && q) ||

Truth tables for boolean expressions:
plal!p || al |p|a|pssq || tpssla| |p|a| (plla) && !(p&&q)
T T T T T T T T F
T|F F T|F F T|F T
F| T T F| T F F| T T
F|F T F|F T F|F F

a. These two boolean expressions are not equivalent:
plagl ! (p&&q) plal!p && !g
T | T F T | T T
T|F T T|F T
F| T T F| T T
F|F T F|F F

b. These two boolean expressions are equivalent:

p | !'pp p p
T T T T
F| F F| F

¢. These two boolean expressions are not equivalent:

plal'p Il al plalp || !a
T[T T T[T T
T | F F T | F T
F|T T F|T F
F|F T F|F T

d. These two boolean expressions are equivalent:

p &&

(g&&r)

(p&&q)

&& ¥

e e e e B = e B R o)
e e I B e e L B YO

IR I N I N I

e e Be ey e s e B

R RS NS T N e
I I RS I e
IR I N I N I

e e Be ey e s e B

CHAP. 3] SELECTION 53

3.8

39

3.10

311

3.12

3.13

3.14

e. These two boolean expressions are not equivalent:

) && T

H
N
=)
Q

p || (g&&r)

I R R W W L)
S W R R I I o)
CRE RS R R
GRS I W
R R I W L)
I W R R I I o)
CRE RS R R
SIS R R

The term “short-circuiting” is used to describe the way C++ evaluates compound logical expressions
like (x > 2 || v > 5) and (x > 2 && y > 5).If x isgreater than 2 inthefirst expres-
sion, then y will not be evaluated. If x islessthan or equal to 2 in the second expression, then y
will not be evaluated. In these cases only the first part of the compound expression is evaluated
because that val ue alone determines the truth value of the compound expression.

The programmer probably intended to test the condition (x == 0). But by using assignment opera-
tor “=" instead of the equality operator “==" the result will be radicaly different from what was
intended. For example, if x hasthevalue22 priortothe if statement, thenthe if statement will
changethe value of x to 0. Moreover, the assignment expression (x = 0) will beevaluated to 0
which means “false,” sothe else part of the selection statement will execute, reporting that x is
not zero!

The programmer probably intended to test the condition (x < y && y < z). Thecodeaswritten
will compile and run, but not as intended. For example, if the prior valuesof x, y,and z are 44, 66,
and 22, respectively, then the algebraic condition “x <y < Z’ isfalse. But as written, the code will be
evaluated from left toright, as (x < y) < z. Firstthe condition x < y will be evaluated as
“true.” But this has the numeric value 1, so the expression (x < y) isevauated to 1. Then the
combined expression (x < y) < z isevauatedas (1) <66 whichisalso true. So the output state-
ment will execute, erroneously reporting that 44 < 66 < 22.

a. (score >= 80 && score < 90)

b. (answer == 'N' || answer == 'n')

C. (n%2 == 0 && n != 8)

d. (ch >= 'A'" && ch <= '2Z'")

a (n >0 & n < 7 & n != 3)

b. (n >0 & n < 7 && n%2 != 0)

C. ((ch >= 'A'" && ch <= 'Z') || (ch >= 'a' && ch <= 'z'))

The programmer clearly intended for the second output "x is not zero." to be printedif the
first condition (x == 0) isfalse, regardless of the second condition (y == 0). Thatis, the

else wasintended to be matched with thefirst if. Butthe“else matching” rule causesit to be
matched with the second condition, which means that the output "x is not zero." will be
printed only when x iszeroand y isnot zero. The“else matching” rule can be overridden with
braces:

if (x == 0)

{ 1f (y == 0) cout << "x and y are both zero." << endl;
}

else cout << "x ig not zero." << endl;

Now the else will be matched with thefirst if, theway the programmer had intended it to be.
Inthefirst statement, the else ismatched withthefirst if.Inthe second statement, the else is
matched with thesecond if. If n< 2, thefirst statement will print NG while the second statement wil |
do nothing. If 2 < n < 6, both statements will print OK. If n > 6, the first statement will do nothing
while the second statement will print NG. Note that this code is difficult to read becauseit does not fol-
low standard indentation conventions. The first statement should be written

54

3.15

3.16

3.17
3.18

31

32

3.3

SELECTION [CHAP. 3

if (n > 2)
{ 1f (n < 6) cout << "OK";
}
else cout << "NG";
The braces are needed hereto overridethe “else matching” rule. This else isintended to match
thefirst if. The second statement should be written
if (n > 2)
if (n < 6) cout << "OK";
else cout << "NG";
Here the braces are not needed because the else isintended to be matched with the second if.
A “fall through” ina switch statementisacasethat doesnotincludea break statement, thereby
causing control to continue right on to the next case statement.

This expression evaluatesto—1if x < vy, itevaluatestoOif x == vy, anditevauatestolif x >
Y.
absx = (x>0 ? X : -X);

a. if (count > 100) cout << "too many";
b. cout << (count > 100 ? "too many" : "");

Solutions to Problems

This version of Example 3.1 on page 36 prints a response only when nn isdivisible by d:
int main ()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d == 0) cout << n << " is divisible by " << d << endl;
}
Enter two positive integers: 56 7
56 is divisible by 7
This version of Example 3.5 on page 39 prints the minimum of four input integers:
int main ()
{ int nl, n2, n3, n4;
cout << "Enter four integers: ";
cin >> nl >> n2 >> n3 >> n4;

int min=nl; // now min <= nl

if (n2 < min) min = n2; // now min <= nl, n2

if (n3 < min) min = n3; // now min <= nl, n2, n3

if (n4 < min) min = n4; // now min <= nl, n2, n3, n4
cout << "Their minimum is " << min << endl;

}
Enter four integers: 44 88 22 66
Their minimum is 22
This program finds the median of three input integers:
int main()
{ int n1, n2, n3;
cout << "Enter three integers: ";
cin >> nl >> n2 >> n3;
cout << "Their median is ";
if (nl < n2)
if (n2 < n3) cout << n2; // nl < n2 < n3

(&)

CHAP. 3] SELECTION 5

else if (nl < n3) cout << n3; // nl < n3 <= n2
else cout << nl; // n3 <= nl < n2
else if (nl < n3) cout << nl; // n2 <= nl < n3
else if (n2 < n3) cout << n2; // n2 < n3 <= nl
else cout << n3; // n3 <= n2 <= nl

34 Thisprogram has the same effect as the one in Example 3.6 on page 39:
int main ()
{ int %, v;
cout << "Enter two integers: ";
cin >> x >> y;
if (x > y) cout << y << " <= " << x << endl;
else cout << x << " <= " << y << endl;

|

3.5 Maodification of the program in Example 3.7 on page 40:
int main ()
{ int n=44;
cout << "n = " << n << endl;
{ cout << "Enter an integer: ";
cin >> n;

cout << "n = " << n << endl;
1
{ cout << "n = " << n << endl;
!
{ int n;

cout << "n = " << n << endl;
!
cout << "n = " << n << endl;

3.6 Hereweusedthe else if construct because the three outcomes depend upon age beingin one
of three digjoint intervals:

int main ()

{ int age;
cout << "Enter your age: ";
cin >> age;
if (age < 18) cout << "You are a child.\n";
else if (age < 65) cout << "You are an adult.\n";
else cout << "you are a senior citizen.\n";

|

SELECTION [CHAP. 3

If control reaches the second condition (age < 65), thenthefirst condition must be false so in fact
18 < age < 65. Similarly, if control reaches the second e1se, then both conditions must be false so in

fact age > 65.

Aninteger m is a multiple of an integer n if the remainder from the integer division of m by n is0. So
the compound condition m $ n == 0 || n % m == 0 testswhether either isamultiple of the
other:

int main()
{ int m, n;
cin >> m >> n;
cout << (m $n==0 || n%m==0 ? "multiple" : "not") << endl;
}
30 4
not
30 5
multiple
The value of the conditional expression will be either "multiple" or "not", according to whether
the compound condition is true. So sending the complete conditional expression to the output stream
produces the desired result.
The character representing the operation should be the control variable for the switch statement:
int main()
{ int x, v;
char op;
cout << "Enter two integers: ";
cin >> x >> y;
cout << "Enter an operator: ";
cin >> op;
switch (op)

{ case '"+': cout << x + y << endl; break;
case '-': cout << x - y << endl; break;
case '*': cout << x * y << endl; break;
case '/': cout << x / y << endl; break;
case '%': cout << x % y << endl; Dbreak;

}
}

Enter two integers: 30 13
Enter an operator: %
4
In each of the five cases, we ssimply print the value of the corresponding arithmetic operation and then

break.
First define the two enum types Choice and Result. Then declare variables choicel,
choice2, and result of thesetypes, and use an integer n to get the required input and assign it to
them:
enum Choice {ROCK, PAPER, SCISSORS};
enum Winner {PLAYER1, PLAYER2, TIE};
int main|()
{ int n;
Choice choicel, choice2;
Winner winner;
cout << "Chooge rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> n;
choicel = Choice(n) ;

CHAP. 3] SELECTION 5

\‘

cout << "Player #2: ";
cin >> n;

choice2 = Choice(n) ;
if (choicel == choice2) winner = TIE;
else if (choicel == ROCK)
if (choice2 == PAPER) winner = PLAYER2;
else winner = PLAYER1;
else if (choicel == PAPER)
if (choice2 == SCISSORS) winner = PLAYER2;
else winner = PLAYERI1;
else // (choicel == SCISSORS)
if (choice2 == ROCK) winner = PLAYER2;
else winner = PLAYER1;
if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." <<endl;
else cout << "\tPlayer #2 wins." << endl;

Through aseriesof nested if statements, we are able to cover al the possihilities.
3.10 Using aswitch statement:
enum Winner {PLAYER1, PLAYER2, TIE};
int main ()
{ int choicel, choice2;

Winner winner;

cout << "Choose rock (0), paper (1), or scissors (2):" << endl;

cout << "Player #1: ";

cin >> choicel;

cout << "Player #2: ";

cin >> choice2;

gswitch (choice2 - choicel)

{ case o0:
winner
break;

case -1:
case 2:
winner
break;
case -2:
case 1:
winner

TIE;

PLAYER1;

PLAYER2;

58 SELECTION [CHAP. 3

if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." << endl;
else cout << "\tPlayer #2 wins." << endl;

}

3.11 Using aswitch statement and conditional expressions:

enum Winner {PLAYER1, PLAYER2, TIE};

int main()

{ int choicel, choice2;
cout << "Choose rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> choicel;
cout << "Player #2: ";
cin >> choice2;

int n = (choicel - choice2 + 3) % 3;
Winner winner = (n==0 ? TIE : (n==1?PLAYER1:PLAYER2)) ;
if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." << endl;
else cout << "\tPlayer #2 wins." << endl;
}
3.12 The solution(s) to the quadratic equation is given by the quadratic formula:
w= = b+ /b%2-4ac
2a

But thiswill not apply if aiszero, so that condition must be checked separately. The formula also fails
to work (for real numbers) if the expression under the square root is negative. That expression b? +
4ac is called the discriminant of the quadratic. We define that as the separate variable d and check its

sign.
#include <iostream>
#include <cmath> // defines the sqgrt() function

int main ()
{ // solves the equation a*x*x + b*x + c == 0:
float a, b, c;
cout << "Enter coefficients of quadratic equation: ";

cin >> a >> b >> ¢;

if (a == 0)
{ cout << "This is not a gquadratic equation: a == 0\n";
return O;
}
cout << "The equation is: " << a << "x™2 + " << b
<< "X + " << c << " = 0\n";
double d, x1, x2;
d = b*b - 4*a*c; // the discriminant
if (d < 0)

{ cout << "This equation has no real solutions: d < 0\n";
return 0O;

}

X1 = (-b + sqgrt(d))/(2*a);

X2 = (-b - sqgrt(d))/(2*a);

cout << "The solutions are: " << X1 << ", " << x2 << endl;

CHAP. 3]

SELECTION

5

[{e]

Note how we use the return statement inside the selection statements to terminate the program if
either a is zero or 4 is negative. The aternative would have been to use an else clauseineach if

statement.

3.13 Thisprogram prints the sum of the digits of the given integer:

int main ()
{ int n, sum;

cout << "Enter a six-digit integer:

cin >> n;

n.
7

sum = n%10 + n/10%10 + n/100%10 + n/1000%10 + n/10000%10
+ n/100000;
cout << "The sum of the digits of " << n << " is " << sum <<endl;

|

3.14 A corrected version of Example 3.17 on page 47:

int main ()

{ // reports the user's grade for a given test score:

int score;

cout << "Enter your test score:

cin >> score;

if (score > 100 || score < 0)
cout << "Error:

else

7

that score is out

switch (score/10)

{ case 10:

case 9:
case 8:
case 7:
case 6:
default:

}

cout << "Goodbye."

cout
cout
cout
cout
cout

<< "Your
<< "Your
<< "Your
<< "Your
<< "Your

<< endl;

grade
grade
grade
grade
grade

is
is
is
is
is

of range.\n";

an A.\n";
a B.\n";
a Cc.\n";
a D.\n";
an F.\n";

break;
break;
break;
break;
break;

Chapter 4

Ilteration

Iteration is the repetition of a statement or block of statements in a program. C++ has three
iteration statements: the while statement, the do..while statement, and the for statement.
Iteration statements are also called loops because of their cyclic nature.

4.1 THE while STATEMENT

The syntax for the while statementis
while (condition) statement;
where condition is an integral expression and statement IS any executable statement. If the
value of the expression is zero (meaning “false”) then the statement isignored and program
execution immediately jJumps to the next statement that followsthe while statement. If the value
of the expression isnonzero (meaning “true”’) then the statement is executed repeatedly until
the expression evaluatesto zero. Note that the condi t i on must be enclosed by parentheses.

EXAMPLE 4.1 Usingawhile Loop to Computea Sum of Consecutive | ntegers

This program computesthe sum 1+ 2 + 3 + --- + n, for an input integer n:
int main ()
{ int n, i=1;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (i <= n)
sum += i++;
cout << "The sum of the first " << n << " integers is " << sum;

}

This program uses three local variables: n, i, and sum. Each time the while loop
iterates, 1 isincremented and then added to sum. The loop stopswhen 1 = n, son isthelast
value added to sum. The trace at right shows the values of i and sum on each iteration after
the user input 8 for n. The output for thisrunis

Enter a positive integer: 8
The sum of the first 8 integers is 36
The program computed 1 +2+3+4+5+6+ 7+ 8= 36.

On the second run the user inputs 100 for n, so the while loop iterated 100 times to

computethesum 1+ 2+ 3+ -+ + 98 + 99 + 100 = 5050:

Enter a positive integer: 100
The sum of the first 100 integers is 5050

W JO0O Ul WNERE O
'_I
o

Note that the statement inside the loop isindented. This convention makes the program’s logic
easier to follow, especially in large programs.

60

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 4] ITERATION 61

EXAMPLE 4.2 Usingawhile Loop to Compute a Sum of Reciprocals

This program computes the sum of reciprocalss =1+ 1/2 + 1/3 + --- + 1/n, where n is the smallest
integer for whichn > s:
int main()
{ int bound;
cout << "Enter a positive integer: ";

cin >> bound; i sum
double sum=0.0; 0l 0.00000

int i=0; 1] 1.00000
while (sum < bound) 2| 1.50000

sum += 1.0/++1i; 3] 1.83333

cout << "The sum of the first " << i 4| 2.08333

<< " reciprocals is " << sum << endl; 51 2.28333

} 6| 2.45000
With input 3 for n, this run computes 1 + 1/2 + 1/3 + -+ + 1/11 = 3.01988: ; ; : 523:2
Enter a positive integer: 3 9 2:82897
The sum of the first 11 reciprocals is 3.01988 10| 2.92897
The trace of this run is shown at right. The sum does not exceed 3 until the 11th 11| 3.01988

iteration.
EXAMPLE 4.3 Usingawhile Loop to Repeat a Computation

This program prints the square root of each number input by the user. It usesawhile loop to allow any
number of computationsin a single run of the program:
int main ()
{ double x;
cout << "Enter a positive number: ";
cin >> X;
while (x > 0)
{ cout << "sgrt(" << x << ") = " << sqgrt(x) << endl;
cout << "Enter another positive number (or 0 to quit): ";
cin >> X;
}
}

Enter a positive number: 49

sqgrt (49) = 7

Enter another positive number (or 0 to quit): 3.14159
sqgrt (3.14159) = 1.77245

Enter another positive number (or 0 to quit): 100000
sqgrt (100000) = 316.228

Enter another positive number (or 0 to quit): 0

The condition (x > 0) in Example 4.3 uses the variable x to control the loop. Its value is
changed inside the loop by means of an input statement. A variable that is used thisway is called
aloop control variable.

62 ITERATION [CHAP. 4

4.2 TERMINATING A LOOP

We have aready seen how the break statement is used to control the switch statement. (See
Example 3.17 on page 47.) The break Statement is also used to control loops.

EXAMPLE 4.4 Using abreak Statement to Terminate a Loop

This program has the same effect as the one in Example 4.1 on page 60:

int main ()

{ int n, i=1;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (true)
{ if (i > n) break; // terminates the loop immediately

sum += i++;

}

cout << "The sum of the first " << n << " integers is " << sum;

}

Enter a positive integer: 100
The sum of the first 100 integers is 5050

This runs the same as in Example 4.1: as soon as the value of i reaches n, the loop terminates and the
output statement at the end of the program executes.

Note that the control condition on the while loop itself is true, which means continue forever. This
isthe standard way to code awhile loop when it is being controlled from within.

One advantage of using abreak Statement inside aloop is that it causes the loop to terminate
immediately, without having to finish executing the remaining statements in the loop block.

EXAMPLE 4.5 The Fibonacci Numbers

The Fibonacci numbersF, F,, F,, F,, ... are defined recursively by the equations
F, =1
Fn = Fn—1+Fn—2
For example, letting n = 2 in the third equation yields

F,=F, ,+F, ,=F, +F,=0+1=1 n|F,
Similarly, withn= 3, ol o
F,=F, ,+F, ,=F,+F =1+1=2 1| 1
and withn =4,

F,=F,,+F, ,=F,+F,=2+1=3 21t
The first ten Fibonacci numbers are shown in the table at right. 302
This program prints all the Fibonacci numbers up to an input limit: 41 3
int main() 5| 5
{ long bound; 6| 8
cout << "Enter a positive integer: "; 7113
cin >> bound; el 21

cout << "Fibonacci numbers < " << bound << ":\nO, 1";
long f£0=0, f1=1; o135

CHAP. 4] ITERATION 63

while (true)
{ long £2 = £f0 + f1;
if (£2 > bound) break; // terminates the loop immediately

cout << ", " << f2;
fo = f1;
f1 = £2;

}
}

Enter a positive integer: 1000
Fibonacci numbers < 1000:
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987
This while loop contains a block of five statements. When the condition (£2 > bound) is
evaluated to be true, the break statement executes, terminating the loop immediately, without executing
the last three statementsin that iteration.
Note the use of the newline character \n inthestring ":\no, 1".Thisprintsthecolon : atthe
end of the current line, and then prints 0, 1 at the beginning of the next line.

EXAMPLE 4.6 Usingthe exit(0) Function

The exit () function provides another way to terminate a loop. When it executes, it terminates the
program itself:

int main ()

{ long bound;
cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\nO, 1";
long f0=0, f1=1;
while (true)
{ long £2 = £0 + f1;

if (£2 > bound) exit(0); // terminates the program immediately
cout << ", " << f2;

fo = f1;

f1 = £2;

}
}

Enter a positive integer: 1000
Fibonacci numbers < 1000:
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987
Since this program has no statements following its loop, terminating the loop is the same as terminating
the program. So this program runs the same as the one in Example 4.5.

The program in Example 4.6 illustrates one way to break out of an infinite loop. The next

example shows how to abort an infinite loop. But the preferred method is to use a break state-
ment, asillustrated in Example 4.20 on page 71.

EXAMPLE 4.7 Aborting Infinite L oop

Without some termination mechanism, the loop will run forever. To abort its execution after it starts,
press <Ctrl>+C (i.e., hold the Ctrl key down and press the C key on your keyboard):

64 ITERATION [CHAP. 4

int main()
{ long bound;
cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\nO, 1";
long £0=0, f1=1;
while (true) // ERROR: INFINITE LOOP! (Press <Ctrl>+C.)
{ long £2 = £0 + £f1;
cout << ", " << f2;
fo = f1;
f1 = £2;
}
}

Enter a positive integer: 1000

Fibonacci numbers < 1000:

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597

81, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 5

040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817,

63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 11349
Since this program has no statements following its loop, terminating the loop is the same as terminat-

ing the program. So this program runs the same as the one in Example 4.5.

4.3 THE do..while STATEMENT

The syntax for the do. .while Statement is
do statement while (condition);
where condition IS an integral expression and statement iS any executable statement. It
repeatedly executes the statement and then evaluates the condition until that condition
evaluatesto false.

The do. .while statement works the same as the while statement except that its condition is
evaluated at the end of the loop instead of at the beginning. This meansthat any control variables
can be defined within the loop instead of before it. It also means that a do. . .while loop will
always iterate at least once, regardless of the value of its control condition.

EXAMPLE 4.8 Usingado. .while Loop to Compute a Sum of Consecutive Integers

This program has the same effect as the one in Example 4.1 on page 60:

int main ()

{ int n, 1i=0;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
do

sum += i++;

while (i <= n);
cout << "The sum of the first " << n << " integers is " << sum;

CHAP. 4] ITERATION 65

EXAMPLE 4.9 The Factorial Numbers

The factorial numbers 0!, 1!, 2!, 3!, --- are defined recursively by the equations

o =1
n! n(n-1)

For example, letting n = 1 in the second equation yields

n| n!

1 =1((1-1)1)=1(00) =1(1) =1 ol 1

Similarly, withn=2: 1 1
20=2(2-)H =21 =21) =2 20 2

and with n = 3: 3] 6
31=3((3-1)!)=32)=3(2)=6 é éé

The first seven factorial numbers are shown in the table at right. el 720

This program prints all the factorial numbers up to an input limit:
int main ()
{ long bound;
cout << "Enter a positive integer: ";
cin >> bound;

cout << "Factorial numbers < " << bound << ":\nl, 1";
long f=1, i=1;
do
{ £ *= ++1;
cout << ", " << f;

}

while (f < bound) ;

}

Enter a positive integer: 1000000
Factorial numbers < 1000000:
i, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880

Thedo. .while loop iterates until its control condition (£ < bound) isfase.
4.4 THE for STATEMENT

The syntax for the for statement is
for (initialization; condition; update) statement;

where initialization, condition, and update are optional expressions, and statement iS
any executable statement. Thethree-part (initialization; condition; update) controls
the loop. The initialization expression is used to declare and/or initialize control
variable(s) for the loop; it is evaluated first, before any iteration occurs. The condition
expression is used to determine whether the loop should continue iterating; it is evaluated
immediately after the initiaization; if it is true, the statement is executed. The update
expression is used to update the control variable(s); it is evaluated after the statement is
executed. So the sequence of eventsthat generate the iteration are:

1. evaluate the initialization €Xpression;

2. if the value of the condition expression is false, terminate the loop;

3. execute the statement;

4. evaluate the update expression;

5. repeat steps 2-4.

66 ITERATION [CHAP. 4

EXAMPLE 4.10 Using a for Loop to Compute a Sum of Consecutive | ntegers

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
for (int i=1l; i <= n; i++)
sum += 1i;
cout << "The sum of the first " << n << " integers is " << sum;
}
Here, the initialization expression is int i=1, the condition expressionisi <= n, and the update
expression is i++. Note that these same expressions are used in the programs in Example 4.1 on page 60,
Example 4.4 on page 62, and Example 4.8 on page 64.

In Standard C++, when aloop control variable is declared within a for loop, as i isin Exam-
ple 4.10, its scope is limited to that for loop. That means that it cannot be used outside that for
loop. It a'so means that the same name can be used for different variables outside that £or loop.

EXAMPLE 4.11 Reusing for Loop Control Variable Names

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
for (int i=1; i < n/2; i++) // the scope of this i is this loop
sum += 1i;
for (int i=n/2; i <= n; i++) // the scope of this i is this loop
sum += 1i;
cout << "The sum of the first " << n << " integers is "
<< sum << endl;
}

The two for loops in this program do the same computations as the single £ox loop in the program in
Example 4.10. They simply split the job in two, doing thefirst n/2 accumulationsin thefirst loop and the
rest in the second. Each loop independently declares its own control variable 1.

Warning: Most pre-Standard C++ compilers extend the scope of a for loop’s control variable
past the end of the loop.

EXAMPLE 4.12 The Factorial Numbers Again

This program has the same effect as the one in Example 4.9 on page 65:
int main ()
{ long bound;
cout << "Enter a positive integer: ";
cin >> bound;

CHAP. 4] ITERATION 67

cout << "Factorial numbers that are <= " << bound << ":\nl, 1";
long f=1;
for (int i=2; f <= bound; i++)
{ f *= i;
cout << ", " << f;
}

}

Enter a positive integer: 1000000
Factorial numbers < 1000000:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880
This for loop program has the same effect as the do. .while loop program because it executes the
same instructions. After initializing £ to 1, both programs initialize i to 2 and then repeat the following
five instructions: print £, multiply £ by i, increment i, check the condition (f <= bound), and
terminate the loop if the condition isfalse.

The for statement is quite flexible, as the following examples demonstrate.
EXAMPLE 4.13 Using a Descending for L oop

This program prints the first ten positive integersin reverse order:
int main ()
{ for (int i=10; i > 0; i--)
cout << " " << 1i;
}

10 987654321
EXAMPLE 4.14 Using a for Loop with a Step Greater than One

This program determines whether an input number is prime:
int main ()
{ long n;
cout << "Enter a positive integer: ";
cin >> n;

if (n < 2) cout << n << " is not prime." << endl;
else 1f (n < 4) cout << n << " is prime." << endl;
else if (n%2 == 0) cout << n << " = 2*" << n/2 << endl;
else
{ for (int d=3; d <= n/2; d += 2)
if (n%d == 0)
{ cout << n << " =" << d << "*" << n/d << endl;
exit (0) ;
}
cout << n << " is prime." << endl;

Vi
}
Enter a positive integer: 101
101 is prime.
Enter a positive integer: 975313579
975313579 = 17*57371387
Note that this for loop uses an increment of 2 on its control variablei.

68 ITERATION [CHAP. 4

EXAMPLE 4.15 Using a Sentinel to Control a for L oop

This program finds the maximum of a sequence of input numbers:
int main()
{ int n, max;
cout << "Enter positive integers (0 to quit): ";
cin >> n;
for (max = n; n > 0;)
{ if (n > max) max = n;
cin >> n;
}
cout << "max = " << max << endl;
}
Enter positive integers (0 to quit): 44 77 55 22 99 33 11 66 88 0
max = 99
This for loop is controlled by the input variable n; it continues until n < 0. When an input variable
controls aloop thisway, it is called a sentinel.
Note the control mechanism (max = n; n > 0;) inthisfor loop. Itsupdate partismissing, and
itsinitialization max = n hasno declaration. The variable max has to be declared before the for loop
because it is used outside of its block, in the last output statement in the program.

EXAMPLE 4.16 Using aLoop Invariant to Provethat a for Loop isCorrect

This program finds the minimum of a sequence of input numbers. It is similar to the program in
Example 4.15:
int main ()
{ int n, min;
cout << "Enter positive integers (0 to quit): ";
cin >> n;
for (min = n; n > 0;)
{ i1f (n < min) min = n;
// INVARIANT: min <= n for all n, and min equals one of the n
cin >> n;

}

cout << "min = " << min << endl;

}

Enter positive integers (0 to quit): 44 77 55 22 99 33 11 66 88 0
min = 11
The full-line comment inside the block of the for loop is called aloop invariant. It states a condition

that has two characteristic properties: (1) it istrue at that point on every iteration of the loop; (2) the fact
that it is true when the loop terminates proves that the loop performs correctly. In this case, the condition
min <= n for all n isalwaystrue becausethe preceding if statement resetsthe value of min if the
last input value of n was less than the previous value of min. And the condition that min equals one
of the n isawaystrue becausemin isinitialized to thefirst n and the only place where min changes
its value iswhen it is assigned to a new input value of n. Finally, the fact that the condition is true when
the loop terminates means that min is the minimum of al the input numbers. And that outcome is
precisely the objective of the for loop.

CHAP. 4] ITERATION 69

EXAMPLE 4.17 Morethan One Control Variablein a for L oop

The for loop in this program uses two control variables:

int main ()
{ for (int m=95, n=11; m%n > 0; m -= 3, n++)
cout << m << "%" << n << " = " << m%n << endl;

The two control variables m and n are declared and initialized in the control mechanism of this for
loop. Then m is decremented by 3 and n is incremented on each iteration of the loop, generating the
sequence of (m,n) pairs (95,11), (92,12), (89,13), (86,14), (83,15), (80,16). The loop terminates with the
pair (80,16) because 16 divides 80.

EXAMPLE 4.18 Nesting for L oops

This program prints a multiplication table:
#include <iomanip> // defines setw()
#include <iostream> // defines cout
using namespace std;
int main ()
{ for (int x=1; x <= 12; =x+4+)
{ for (int y=1; y <= 12; y++)
cout << setw(4) << x*y;

cout << endl;

}
}

Each iteration of the outer x loop prints one row of the multiplication table. For example, on the first
iteration when x = 1, the inner y loop iterates 12 times, printing 1*y for each value of v from 1 to 12.
And then on the second iteration of the outer x loop when x = 2, theinner y loop iterates 12 times again,
this time printing 2+*y for each value of y from 1 to 12. Note that the separate cout << endl
statement must be inside the outer loop and outside the inner loop in order to produce exactly one line for
each iteration of the outer loop.

This program uses the stream manipulator setw to set the width of the output field for each integer
printed. The expression setw(4) meansto “set the output field width to 4 columns” for the next output.

70 ITERATION [CHAP. 4

Thisaligns the outputs into a readable table of 12 columns of right-justified integers. Stream manipulators
aredefinedinthe <iomanips> header, so this program had to include the directive

#include <iomanip>
in addition toincluding the <iostream> header.

EXAMPLE 4.19 Testing a L oop Invariant
This program computes and prints the discrete binary logarithm of an input number (the greatest

integer < the base 2 logarithm of the number). It tests its loop invariant by printing the relevant values on
each iteration:

#include <cmaths> // defines pow() and log()
#include <iostream> // defines cin and cout
#include <iomanip> // defines setw()

using namespace std;

int main()
{ long n;
cout << "Enter a positive integer: ";
cin >> n;
int d=0; // the discrete binary logarithm of n
double p2d=1; // =

for (int i=n; i > 1; /= , d++)
{ // INVARIANT: 2°d <= n/i < 2*2"d
p2d=pow(2,d); // = 274
cout << setw(2) << p2d << " <= " << setw(2) << n/i
<< " < " << setw(2) << 2*p2d << endl;
}
p2d=pow(2,d); // = 2"d
cout << setw(2) << p2d << " <= " << setw(2) << n
<< " < " << setw(2) << 2*p2d << endl;
cout << " The discrete binary logarithm of " << n
<< " is " << d << endl;
double lgn = log(n)/log(2); // base 2 logarithm of n
cout << "The continuous binary logarithm of " << n
<< " is " << lgn << endl;
}
Enter a positive integer: 63
1 <= 1< 2
2 <= 2 < 4
4 <= 4 < 8
8 <= 9 < 16
16 <= 21 < 32

32 <= 63 < 64
The discrete binary logarithm of 63 is 5
The continuous binary logarithm of 63 is 5.97728
The discrete binary logarithm is computed to be the number of times the input number can be divided
by 2 before reaching 1. So the for loopinitializes i to n and then divides 1 by 2 once on each iteration.
The counter ¢ counts the number of iterations. So when the loop terminates, ¢ contains the value of the
discrete binary logarithm of n.
In addition to using the setw () function that is defined inthe <iomanip> header, this program
also usesthe log () function that isdefinedinthe <cmaths> header. That function returns the natural

CHAP. 4] ITERATION 71

(base €) logarithm of n: 1og(n) =log,n = Inn. It is used in the expression log(n)/log(2) to
compute the binary (base 2) logarithm of n: log, n = Ign = (Inn)/(In2). The printed results compare the
discrete binary logarithm with the continuous binary logarithm. The former is equal to the latter truncated
downward to its nearest integer (the floor of the number).

Theloop invariant in thisexampleisthe condition 2*d <= n/i < 2*27d (i.e,2¢<n/i <2.29).Itis
tested by printing the values of the three expressions p2d, n, and 2*p2d, where the quantity p2d is
computed with the power function pow () thatisdefined inthe <cmaths header.

We can prove that this for loop will always compute the discrete binary logarithm correctly. When it
starts,d=0andi=n,s020=2°=1,n/i=n/n=1, and 2.2¢ = 2.1= 2; thus 2¢ < n/i < 2-29. On each iteration,
dincrementsand i is halved, so n/i is doubled. Thus the condition 2¢ < n/i < 2.29 remainsinvariant; i.e,, it
istrue initially and it remains true throughout the life of the loop. When the loop terminates, i = 1, so the
condition becomes 2¢ < n/1 < 2-24, whichis equivaent to 2¢ < n < 2#1, The logarithm of this expressionis
d=1Ig(2% <lIgn<lIg(2*t) = d+1, so d is greatest integer < Ign.

4.5 THE break STATEMENT

We have already seen the break statement used in the switch Statement. It is also used in
loops. When it executes, it terminates the loop, “breaking out” of the iteration at that point.

EXAMPLE 4.20 Using abreak Statement to Terminate a L oop

This program has the same effect as the one in Example 4.1 on page 60. It uses abreak statement to
control the loop:

int main ()

{ int n, i=1;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (true)
{ if (i > n) break;

sum += i++;

}

cout << "The sum of the first " << n << " integers is " << sum;

}

Enter a positive integer: 8
The sum of the first 8 integers is 36
Aslongas (i <= n), theloop will continue, just asin Example 4.1. Butassoonas i > n, the
break statement executes, immediately terminating the loop.

Thebreak statement provides extraflexibility in the control of loops. Normally awhile loop,
ado..while lOOp, Or a £or loop will terminate only at the beginning or at the end of the com-
plete sequence of statements in the loop’s block. But the break statement can be placed any-
where among the other statements within aloop, so it can be used to terminate aloop anywhere
from within the loop’s block. Thisisillustrated by the following example.

EXAMPLE 4.21 Controlling Input with a Sentinel

This program reads a sequence of positive integers, terminated by 0, and prints their average:

72 ITERATION [CHAP. 4

int main ()
{ int n, count=0, sum=0;
cout << "Enter positive integers (0 to quit):" << endl;
for (;;) // "forever"
{ cout << "\t" << count + 1 << ": ";
cin >> n;
if (n <= 0) break;
++count;
sum += n;
}
cout << "The average of those " << count << " positive numbers is "

<< float (sum) /count << endl;

}
Enter positive integers (0 to quit):
1: 4
2: 7
3: 1
4: 5
5: 2
6: 0

The average of those 5 positive numbers is 3.8

When 0 is input, the break executes, immediately terminating the for loop and transferring
execution to the final output statement. Without the break statement, the ++count statement would
have to be put in a conditional, or count would have to be decremented outside the loop or initialized to
—1.

Note that all three parts of the for loop’s control mechanism are empty: for (; ;). Thisconstructis
pronounced “forever.” Without the break, this would be an infinite loop.

When used within nested loops, the break statement applies only to the loop to which it
directly belongs; outer loops will continue, unaffected by the break. Thisisillustrated by the fol-
lowing example.

EXAMPLE 4.22 Using abreak Statement with Nested L oops

Since multiplication is commutative (e.g., 3x4 = 4x3), multiplication tables are often presented with
the numbers above the main diagonal omitted. This program modifies that of Example 4.18 on page 69 to
print a triangular multiplication table:

int main ()
{ for (int x=1; x <= 12; X++)
{ for (int y=1; y <= 12; y++)
if (y > x) break;
else cout << setw(4) << x*y;
cout << endl;

CHAP. 4] ITERATION 73

When y > x, the execution of the inner y loop terminates and the next iteration of the outer x loop
begins. For example, when x = 3, they loop iterates 3times (withy =1, 2, 3), printing 3 6 9. Then
on its4th iteration, the condition (y > x) istrue, sothebreak statement executes, transferring control
immediately to the cout << endl statement (which is outside of the inner v loop). Then the outer x
loop beginsits 4th iteration with x = 4.

4.6 THE continue STATEMENT

Thebreak statement skipsthe rest of the statements in the loop’s block, jumping immediately
to the next statement outside of theloop. The continue statement issimilar. It also skipsthe rest
of the statements in the loop’s block, but instead of terminating the loop, it transfers execution to
the next iteration of the loop. It continues the loop after skipping the remaining statementsin its
current iteration.

EXAMPLE 4.23 Using continue and break Statements

Thislittle program illustrates the cont inue and break Statements:

int main ()
{ int n;
for (;;)
{ cout << "Enter int: "; cin >> n;
if (n%2 == 0) continue;
if (n%3 == 0) break;
cout << "\tBottom of loop.\n";
!
cout << "\tOutside of loop.\n";
!

When n hasthe value 7, both i £ conditions are false and control reaches the bottom of the loop. When
n has the value 4, the first i £ condition istrue (4 is amultiple of 2), so control skips over the rest of the
statements in the loop and jumps immediately to the top of the loop again to continue with its next
iteration. When n hasthevalue 9, thefirst i £ conditionis false (9 isnot amultiple of 2) but the second i £
condition istrue (9 isamultiple of 3), so control breaks out of the loop and jumps immediately to the first
statement that follows the loop.

74 ITERATION [CHAP. 4

4.7 THE goto STATEMENT

Thebreak statement, the continue statement, and the switch statement each cause the pro-
gram control to branch to a location other than where it normally would go. The destination of
the branch is determined by the context: break goes to the next statement outside the loop, con-
tinue goes to the loop’s continue condition, and switch goes to the correct case constant. All
three of these statements are called jump statements because they cause the control of the pro-
gram to “jump over” other statements.

The goto statement is another kind of jump statement. Its destination is specified by a label
within the statement.

A label issimply an identifier followed by a colon placed in front of a statement. L abels work
like the case statementsinside a switch statement: they specify the destination of the jump.

Example 4.22 illustrated how a break normally behaves within nested loops. execution
breaks out of only the innermost oop that contains the break statement. Breaking out of several
or all of theloopsin anest requires a goto statement, as the next example illustrates.

EXAMPLE 4.24 Using a goto Statement to Break Out of a Nest of L oops

int main()
{ const int N=5;
for (int i=0; i<N; i++)
{ for (int j=0; Jj<N; j++)
{ for (int k=0; k<N; k++)
if (i+j+k>N) goto esc;
else cout << i+j+k << " ";
cout << "* ",

}

esc: cout << "." << endl; // inside the i loop, outside the j loop
}

}

01234 * 12345 * 23405 .

1 23 45 * 2 3 45

2 3 4 5

3 4 5

4 5

When the goto is reached inside the innermost k loop, program execution jumps out to the labeled
output statement at the bottom of the outermost i loop. Since that is the last statement in the i loop, the i
loop will go on to its next iteration after executing that statement.

When i and § are 0, the k loop iterates 5 times, printing 0 1 2 3 4 followed by astar *. Then
increments to 1 and the k loop iterates 5 times again, printing 1 2 3 4 5 followed by astar *. Then
increments to 2 and the k loop iterates 4 times, printing 2 3 4 5. But then on the next iteration of the k
loop, i =0, § =2,and k = 4, s0 i+7j+k = 6, causing the goto statement to execute for the first time. So
execute jumps immediately to the labeled output statement, printing a dot and advancing to the next line.
Note that both the k loop and the § loop are aborted before finishing all their iterations.

Now i =1 and themiddle j loop beginsiterating again with § = 0. The k loop iterates 5 times, printing
1 2 3 4 5 followedby astar *. Then j incrementsto 1 and the k loop iterates 4 times, printing 2 3
4 5. But then on the next iteration of thek loop, 1 =1, § =2, and k =3, S0 i +j+k = 6, causing the goto
statement to execute for the second time. Again execution jumps immediately to the labeled output
statement, printing a dot and advancing to the next line.

CHAP. 4] ITERATION 75

On the subsequent three iterations of the outer i loop, the inner k loop never completes its iterations
because 1 +5 +4 is aways greater than 5 (because i is greater than 2). So no more stars are printed.

Note that the labeled output statement could be placed inside any of the loops or even outside of all of
them. In the latter case, the goto statement would terminate all three of the loops in the nest.

Also note how the label ed statement is indented. The convention is to shift it to the left one indentation
level to make it morevisible. If it were not alabeled statement, it would be indented as

}

cout << "." << endl;
instead of
esc: cout << "." << endl;

}

Example 4.24 illustrates one way to break out of a nest of loops. Another method is to use a
flag. A flag is aboolean variable that is initialized to false and then later set to true to signal
an exceptional event; normal program execution is interrupted when the flag becomes true. This
isillustrated by the following example.

EXAMPLE 4.25 Using a Flag to Break Out of a Nest of L oops

This program has the same output as that in Example 4.24;
int main()
{ const int N=5;
bool done=false;
for (int i=0; i<N; i++)
{ for (int j=0; j<N && !done; Jj++)
{ for (int k=0; k<N && !done; k++)
if (i+j+k>N) done = true;
else cout << i+j+k << " ";
cout << "* ",
}
cout << "." << endl; // inside the i loop, outside the j loop
done = false;

}
}
When the done flag becomes true, both the innermost k loop and the middle § loop will terminate, and
the outer i loop will finish its current iteration by printing the dot, advancing to the beginning of the next
line, and resetting the done flag to false. Then it startsits next iteration, the same as in Example 4.24.

4.8 GENERATING PSEUDO-RANDOM NUMBERS

One of the most important applications of computers is the simulation of real-world systems.
Most high-tech research and development is heavily dependent upon this technique for studying
how systems work without actually having to interact with them directly.

Simulation requires the computer generation of random numbers to model the uncertainty of
the real world. Of course, computers cannot actually generate truly random numbers because
computers are deterministic: given the same input, the same computer will always produce the

76 ITERATION [CHAP. 4

same output. But it is possible to generate numbers that appear to be randomly generated; i.e.,
numbers that are uniformly distributed within a given interval and for which there is no discern-
ible pattern. Such numbers are called pseudo-random numbers.

The Standard C header file <cstdlibs defines the function rand() which generates
pseudo-random integers in the range O to RaND_MaX, which is a constant that is also defined in
<cstdlibs. Eachtimethe rand () functioniscalled, it generates another unsigned integer in
this range.

EXAMPLE 4.26 Generating Pseudo-Random Numbers

Thisprogram usesthe rand () function to generate pseudo-random numbers:
#include <cstdlibs> // defines the rand() function and RAND MAX const
#include <iostream>
using namespace std;

int main ()
{ // prints pseudo-random numbers:
for (int 1 = 0; 1 < 8; 1i++)

cout << rand() << endl;
cout << "RAND MAX = " << RAND MAX << endl;

}

On each run, the computer generates 8 unsigned integers that are uniformly distributed in the
interval O to RAND MaX, which is 2,147,483,647 on this computer. Unfortunately each run produces the
same sequence of numbers. Thisis because they are generated from the same “seed.”

Each pseudo-random number is generated from the previously generated pseudo-random
number by applying a special “number crunching” function that is defined internally. The first
pseudo-random number is generated from an internally defined variable, called the seed for the
sequence. By default, this seed isinitialized by the computer to be the same value every time the
program is run. To overcome this violation of pseudo-randomness, we can use the srand ()
function to select our own seed.

TeamLRN

CHAP. 4] ITERATION 7

\‘

EXAMPLE 4.27 Settingthe Seed Interactively

This program is the same as the one in Example 4.26 except that it allows the pseudo-random number
generator’s seed to be set interactively:
#include <cstdlibs> // defines the rand() and srand() functions
#include <iostreams>
using namespace std;

int main ()

{ // prints pseudo-random numbers:
unsigned seed;
cout << "Enter seed: ";

cin >> seed;
srand (seed) ; // initializes the seed
for (int 1 = 0; 1 < 8; 1i++)

cout << rand() << endl;

Theline srand(seed) assignsthe value of the variable seed to the interna “seed” used by the
rand () function to initialize the sequence of pseudo-random numbers that it generates. Different seeds
produce different results.

Note that the seed value 12345 used in the third run of the program is the first number generated by
rand () inthefirst run. Consequently the first through seventh numbers generated in the third run are the
same as the second through eighth numbers generated in the first run. Also note that the sequence
generated in the second run is the same as the one produced in Example 4.26. This suggests that, on this
computer, the default seed valueis 1.

78 ITERATION [CHAP. 4

The problem of having to enter aseed valueinteractively can be overcome by using the com-
puter’'s system clock. The system clock keeps track of the current time in seconds. The
time () function defined in the header file <ctimes> returnsthe current time as an unsigned
integer. Thisthen can be used as the seed for the rand () function.

EXAMPLE 4.28 Setting the Seed from the System Clock

This program is the same as the one in Example 4.27 except that it sets the pseudo-random number
generator’s seed from the system clock.
Note: if your compiler does not recognize the <ctime> header, then use the pre-standard
<time.h> header instead.
#include <cstdlibs> // defines the rand() and srand() functions

#include <ctime> // defines the time() function

#include <iostream>

//#include <time.h> // use this if <ctime> is not recognized

using namespace std;

int main ()

{ // prints pseudo-random numbers:
unsigned seed = time (NULL) ; // uses the system clock
cout << "seed = " << seed << endl;
srand (seed) ; // initializes the seed
for (int 1 = 0; 1 < 8; 1i++)

cout << rand() << endl;

}

Here are two runs using a UNIX workstation running a M otorola processor:

On thefirst run, the time () function returns the integer 808,148,157 which is used to “seed” the ran-
dom number generator. The second run is done 3 seconds later, so the time () function returnstheinte-
ger 808,148,160 which generates a completely different sequence.

Here are two runs using a Windows PC running an Intel processor:

In many simulation programs, one needs to generate random integers that are uniformly dis-
tributed in a given range. The next example illustrates how to do that.

TeamLRN

CHAP. 4] ITERATION 79

EXAMPLE 4.29 Generating Pseudo-Random Numbersin Given Range

This program is the same as the one in Example 4.28 except that the pseudo-random numbers that it
generates are restricted to given range:
#include <cstdlib>

#include <ctime> // defines the time() function
#include <iostreams>
//#include <time.h> // use this if <ctime> is not recognized
using namespace std;
int main ()
{ // prints pseudo-random numbers:
unsigned seed = time (NULL) ; // uses the system clock
cout << "seed = " << seed << endl;
srand (seed) ; // initializes the seed

int min, max;
cout << "Enter minimum and maximum: ";

cin >> min >> max; // lowest and highest numbers
int range = max - min + 1; // number of numbers in range
for (int 1 = 0; 1 < 20; i++)

{ int r = rand()/100%range + min;
cout << ¥ << " ";

}

cout << endl;

}

Here are two runs:

The first run generates 20 integers uniformly distributed between 1 and 100. The second run generates
20 integers uniformly distributed between 22 and 66.

80 ITERATION [CHAP. 4

In the for loop, we divide rand () by 100 first to strip way the two right-most digits of the random
number. This is to compensate for the problem that this particular random number generator has of
producing numbers that alternate odd and even. Then rand () /100%range producesrandom numbers
intherange 0 to range-1,and rand() /100%range + min producesrandom numbersin the range
min tO max.

Review Questions

41 What happensin awhile loop if the control condition isfalse (i.e., zero) initially?
4.2 When should the control variablein a £or loop be declared before the loop (instead of within
its control mechanism)?
4.3 How doesthe break statement provide better control of |oops?
44 What isthe minimum number of iterations that
a. awhileloop could make?
b. ado. .while loop could make?
45 What iswrong with the following loop:
while (n <= 100)
sum += n*n;
4.6 If sisacompound statement, and e1, e2, and e3 are expressions, then what is the difference
between the program fragment:
for (el; e2; e3)
s;

and the fragment:
el;
while (e2)
{ s;
e3;

}
4.7 What iswrong with the following program:

int main ()
{ const double PI;

int n;
PI = 3.14159265358979;
n = 22;

}

4.8 Whatisan“infiniteloop,” and how can it be useful ?
4.9 How can aloop be structured so that it terminates with a statement in the middle of its block?
4.10 Why should tests for equality with floating-point variables be avoided?

Problems

41 Tracethe following code fragment, showing the value of each variable each time it changes:
float x = 4.15;
for (int i=0; i < 3; i++)

X *= 2;

CHAP. 4] ITERATION 81

4.2

43

4.4

45

4.6

4.7

4.8

49

4.10

411

412

413

414

Assumingthat e isan expressionand s isastatement, convert each of the following for
loopsinto an equivalent while loop:
a.for(;e)s
b. for (; ; e) s
Convert thefollowing for loopinto a while loop:

for (int i=1; i <= n; i++)

cout << i*i << " ";

Describe the output from this program:

int main ()

{ for (int 1 = 0; 1 < 8; i++)
if (i%2 == 0) cout << 1 + 1 << "\t";
else if (i%3 == 0) cout << 1*1 << "\t";
else if (i%5 == 0) cout << 2*1 - 1 << "\t";
else cout << 1 << "\t";

}

Describe the output from this program:
int main()
{ for (int 1=0; i < 8; i++)

{ 1f (i%2 == 0) cout << i + 1 << endl;
else if (i%3 == 0) continue;
else if (i%5 == 0) break;

cout << "End of program.\n";

}

cout << "End of program.\n";

}
Ina32-bit £loat type, 23 bitsare used to store the mantissa and 8 bits are used to store the
exponent.
a. How many significant digits of precision does the 32-bit float typeyield?
b. What is the range of magnitude for the 32-bit float type?
Write and run a program that uses awhile loop to compute and prints the sum of a given
number of squares. For example, if 5 isinput, then the program will print 55, which equals 12
+ 22+ P+ 42+,
Write and run a program that uses a for loop to compute and prints the sum of a given num-
ber of squares.
Write and run a program that uses a do. .while loOp to compute and prints the sum of a
given number of squares.
Write and run a program that directly implements the quotient operator / and the remainder
operator % for thedivision of positive integers.
Write and run a program that reverses the digits of a given positive integer. (See Problem
3.13 on page 51.)
Apply the Babylonian Algorithm to compute the square root of 2. This algorithm (so called
because it was used by the ancient Babylonians) computes ./2 by repeatedly replacing one
estimate x with the closer estimate (x + 2/x)/2. Note that this is simply the average of x and
2/X.
Write a program to find the integer square root of a given number. That is the largest integer
whose square is less than or equal to the given number.
Implement the Euclidean Algorithm for finding the greatest common divisor of two given
positive integers. This algorithm transforms a pair of positive integers (m, n) into apair (d, 0)
by repeatedly dividing the larger integer by the smaller integer and replacing the larger with

82

41

4.2

43

44

45
4.6

4.7
4.8

49

4.10

ITERATION [CHAP. 4

the remainder. When the remainder is O, the other integer in the pair will be the greatest com-
mon divisor of the original pair (and of all the intermediate pairs). For example, if mis 532
and nis 112, then the Euclidean Algorithm reduces the pair (532,112) to (28,0) by

(532,112) — (112,84) — (84,28) — (28,0).

So 28 is the greatest common divisor of 532 and 112. This result can be verified from the
facts that 532 = 28-19 and 112 = 28-8. The reason that the Euclidean Algorithm works is that
each pair in the sequence has the same set of divisors, which are precisely the factors of the
greatest common divisor. In the example above, that common set of divisorsis{1, 2, 4, 7, 14,
28} . The reason that this set of divisorsisinvariant under the reduction processis that when
m = n-q + r, anumber isa common divisor of mand nif and only if it isa common divisor of
nandr.

Answersto Review Questions

If the control condition of awhile loopisinitialy false, then theloop is skipped atogether; the state-
ment(s) inside the loop are not executed at al.

The control variable in a £or loop has to be declared before the loop (instead of within its control
mechanism) if it is used outside of the loop’s statement block, as in Example 4.14 on page 67.

Thebreak statement provides better control of loops by alowing immediate termination of the loop
after any statement within its block. Without a break statement, the loop can terminate only at the
beginning or at the end of the block.

a. The minimum number of iterationsthat awhile loop could makeisO.
b. The minimum number of iterationsthat ado. .while loop could makeis 1.
That is an infinite loop because the value of its control variable n does not change.

There is no difference between the effects of those two program fragments, unless s is abreak state-
ment or s is a compound statement (i.e., a block) that contains abreak statement or a continue
statement. For example, this for statement will iterate 4 times and then terminate normally:

for (i = 0; 1 < 4; i++)
if (i == 2) continue;
but thiswhile statement will be an infinite loop:
i = 0;
while (i < 4)
{ if (i == 2) continue;
i++;

}

The constant PI isnot initialized. Every constant must beinitialized at its declaration.

Aninfiniteloop is one that continues without control; it can be stopped only by a branching statement
within the loop (such as abreak or goto statement) or by aborting the program (e.g., with Ctrl+C).
Infinite loops are useful if they are stopped with branching statements.

A loop can be terminated by a statement in the middle of its block by using abreak or agoto state-
ment.

Floating-point variables suffer from round-off error. After undergoing arithmetic transformations,
exact values may not be what would be expected. So atest suchas (y == x) may not work cor-
rectly.

CHAP. 4] ITERATION 83

41

42

43

4.4

45

4.6

4.7

48

Solutions to Problems

First, x isinitialized to 4.15 and i isinitialized to 0. Then x is doubled three times by the three itera-

tions of the £or loop.

The equivalent while loopsare:

a. while (e) s;

b. while (true) { s; e; },assumingthat s containsnobreak or continue Statements.

The equivalent while loopis:
int i=1;
while (i <= n)

{ cout << i*i << " ";
i++;
}

The output is
1 1 3 9 5 9 7 7

The output is
End of program.

End of program.
3
End of program.
5
End of program.
End of program.

a. The 23 bits hold the 2nd through 24th bit of the mantissa. Thefirst bit must bea1, soit is not stored.
Thus 24 bits are represented. These 24 bits can hold 22 numbers. And 224 = 16,777,216, which has
7 digits with full range, so 7 complete digits can be represented. But the last digit is in doubt
because of rounding. Thus, the 32-bit £loat typeyields6 significant digits of precision.

b. The 8 bits that the 32-bit float type uses for its exponent can hold 28 = 256 different numbers.
Two of these are reserved for indicating underflow and overflow, leaving 254 numbers for expo-
nents. So an exponent can range from —126 to +127, yielding a magnitude range of 27126 =
1.175494 x 1078 to 2127 = 1.70141 x 10%,

This program uses awhile loop to compute the sum of the first n squares, where n is input:
int main()

{ int n;
cout << "Enter a positive integer: ";
cin >> n;
int sum=0, i=0;
while (i++ < n)
sum += i*i;
cout << "The sum of the first " << n << " squares is "
<< sum << endl;
}

Enter a positive integer: 6
The sum of the first 6 squares is 91
This program uses a £or |oop to compute the sum of the first n squares, where nisinput:
int main ()
{ int n;
cout << "Enter a positive integer: ";
cin >> n;
int sum=0;
for (int i=1; i <= n; i++)

84 ITERATION [CHAP. 4

sum += i*i;
cout << "The sum of the first " << n << " squares is "
<< sum << endl;

|

4.9 Thisprogramusesado. .while loop to compute the sum of the first n squares, where nisinput:
int main ()
{ int n;
cout << "Enter a positive integer: ";
cin >> n;
int sum=0, i=1;

do

{ sum += i*i;

while (i++ < n);

cout << "The sum of the first " << n << " squares is "

<< sum << endl;

|

4.10 This program directly implements the quotient operator / and the remainder operator % for the
division of positive integers. The algorithm used here, applied to the fraction n/d, repeatedly sub-
tractsthe d from the n until n islessthan d. At that point, the value of n will be the remainder, and
the number g of iterations required to reach it will be the quotient:

int main ()

{ int n, 4, q, r;
cout << "Enter numerator: ";
cin >> n;
cout << "Enter denominator: ";

cin >> d;
for (g = 0, ¥ = n; r >= d; g++)
r -= d;
cout << n << "/ " <<d<< " =" << g << endl;
cout << n << " % " << d << " =" << r << endl;
cout << "(" << g << ") (" << d << ") + (" << ¥ << ") ="

<< n << endl;

Thisruniterated 4 times: 30—-7=23,23-7=16,16—-7=9, and 9 -7 = 2. So the quotient is 4, and
the remainder is 2. Note that this relationship must always be true for integer division:
(quotient) (denominator) + (remainder) = numerator
411 Thetrick hereisto strip off the digits one at a time from the given integer and “accumulate” them in
reverse in another integer:
int main ()
{ longm, 4, n = 0;
cout << "Enter a positive integer: ";
cin >> m;

TeamLRN

CHAP. 4] ITERATION 85

412

4.13

while (m > 0)

{d=m¢% 10; // d will be the right-most digit of m
m /= 10; // then remove that digit from m
n = 10*n + d; // and append that digit to n

}

cout << "The reverse is " << n << endl;

}

Enter a positive integer: 123456
The reverse is 654321
In this run, m begins with the value 123,456. In the first iteration of the loop, d is assigned the digit 6,
m isreduced to 12,345, and n isincreased to 6. On the second iteration, d is assigned the digit 5, m is
reduced to 1,234, and n isincreased to 65. On the third iteration, d is assigned the digit 4, m is reduced
to 123, and n isincreased to 654. This continues until, on the sixth iteration, d is assigned the digit 1,
misreduced to 0, and n isincreased to 654,321.
Thisimplements the Babylonian Algorithm:
#include <cmath> // defines the fabs() function
#include <iostreams>
using namespace std;
int main()
{ const double TOLERANCE
double x = 2.0;
while (fabs(x*x - 2.0) > TOLERANCE)
{ cout << x << endl;

5e-8;

X = (x + 2.0/x)/2.0; // average of x and 2/x
}
cout << "x = " << X << ", x*x = " << X*X << endl;
}

2
1.5
1.41667
1.41422

X = 1.41421, x*x = 2
We use a“tolerance” of 5e-8 (=0.00000005) to ensure accuracy to 7 decimal places. The fabs ()
function (for “floating-point absolute value’), defined inthe <cmath> header file, returns the abso-
lute val ue of the expression passed to it. So theloop continuesuntil x*x iswithin the given tolerance
of 2.
This program finds the integer square root of a given number. This method uses an “ exhaustive” algo-
rithm to find all the positive integers whose square is less than or equal to the given number:
int main()
{ float x;
cout << "Enter a positive number: ";
cin >> X;
int n = 1;
while (n*n <= x)
++1n;
cout << "The integer square root of " << x << " ig "
<< n-1 << endl;
}
Enter a positive number: 1234.56
The integer square root of 1234.56 is 35

86 ITERATION [CHAP. 4

It startswith n=1 and continuesto increment n until n*n > x. When the £or |oop terminates, n
isthe smallest integer whose squareis greater than x, s0 n-1 istheinteger square root of x. Note the
use of the null statement in the for loop. Everything that needs to be donein the loop is done within
the control parts of the loop. But the semicolon is still necessary at the end of the loop.
414 Thisimplements the Euclidean Algorithm:
int main ()
{ int m, n, r;
cout << "Enter two positive integers: ";
cin >> m >> n;

if (m < n) { int temp = m; m = n; n = temp; } // make m >= n
cout << "The g.c.d. of " << m << " and " << n << " is ";
while (n > 0)
{r=m¢%n;
m = n;
ns=r;
}

cout << m << endl;

}

Enter two positive integers: 532 112
The g.c.d. of 532 and 112 is 28

Chapter 5

Functions

5.1 INTRODUCTION

Most useful programs are much larger than the programs that we have considered so far. To
make large programs manageable, programmers modularize them into subprograms. These
subprograms are called functions. They can be compiled and tested separately and reused in
different programs. This modularization is characteristic of successful object-oriented software.

5.2 STANDARD C++ LIBRARY FUNCTIONS

The Sandard C++ Library is a collection of pre-defined functions and other program
elements which are accessed through header files. We have used some of these aready: the
INT _MAX constant defined in <climits> (Example 2.3 on page 19), the sqgrt () function
defined in <cmath> (Example 2.15 on page 28), the rand () function defined in <cstdlib>
(Example 4.26 on page 76), and the time () function defined in <ctime> (Example 4.28 on
page 78). Our first example illustrates the use of one of these mathematical functions.

EXAMPLE 5.1 The Square Root Function sqrt ()

The square root of a given positive number is the number whose square is the given number. The
square root of 9 is 3 because the square of 3 is 9. We can think of the square root function as a “black
box.” When you put in a9, out comes a 3. When the number 2 isinput, the number 1.41421 is output. This
function has the same input-process-output nature that complete programs have. However, the processing
step is hidden: we do not need to know what the function does to 2 to produce 1.41421. All we need to
know is that the output 1.41421 does have the square root property: its square is the input 2.

Here is asimple program that uses the predefined square root function:

#include <cmath> // defines the sqgrt() function
#include <iostream> // defines the cout object
using namespace std;
int main()
{ // tests the sgrt() function:
for (int x=0; X < 6; X++)
cout << "\t" << x << "\t" << sgrt(x) << endl;

0
1
1.41421
1.73205
2
5 2.23607

This program prints the square roots of the numbers 0 through 5. Each time the expression sqgrt (x)
isevaluated in the for loop, the sgrt () functionisexecuted. Its actual code is hidden away within the
Standard C++ Library. In using it, we may confidently assume that the expression sqgrt (x) will be

> W NP o

87

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

88 FUNCTIONS [CHAP. 5

replaced by the actual square root of whatever value x has at that moment.

Notice the directive #include <cmath> on thefirst line of the program. Thisis necessary for the
compiler to find the definition of the sqgrt () function. It tells the compiler that the function is declared
inthe <cmath> header file.

A function like sqrt () isexecuted by using its name as a variable in a statement, like this:
y = sqgrt(x);

Thisiscalled invoking or calling the function. Thusin Example 5.1, the code sqrt (x) callsthe
sqgrt () function. The expression x in the parentheses is caled the argument or actual
parameter of the function call, and we say that it is passed by value to the function. So when x is
3, the value 3 is passed to the sqrt () function by thecall sqrt (x).

This process is illustrated by
this diagram. The variables x and

main ()

y are declared in main(). The (3] 3 »Sqrt”
value of x ispassed to the sqrt () Tmt

function which then returns the

value 1.73205 back t0 main(). y[1.73205 | |a 1.73205

Note that the box representing the double

sqrt () function is shaded,

indicating that itsinternal working mechanism is not visible.
EXAMPLE 5.2 Testing a Trigonometry Identity

Here is another program that usesthe <cmaths> header. Its purposeisto verify empiricaly the
identity sin2x = 2 sinx cosx.
int main()
{ // tests the identity sin 2xX = 2 sin x cos X:
for (float x=0; x < 2; x += 0.2)
cout << x << "\t\t" << sin(2*x) << "\t"
<< 2*gin(x) *cos(x) << endl;

}

0 0 0

0.2 0.389418 0.389418
0.4 0.717356 0.717356
0.6 0.932039 0.932039
0.8 0.999574 0.999574
1 0.909297 0.909297
1.2 0.675463 0.675463
1.4 0.334988 0.334988
1.6 -0.0583744 -0.0583744
1.8 -0.442521 -0.442521

The program prints x in the first column, sin 2x in the second column, and 2 sin x cos x in the third
column. For each value of x tested, sin 2x = 2 sin x cos x. Of course, this does not prove the identity, but it
does provide convincing empirical evidence of itstruth.

Notethat x hastype float instead of int. Thisallowstheincrement x += 0.2 towork correctly.

Function values may be used like ordinary variables in an expression. Thus we can write
y = sgrt(2);
cout << 2*sin(x) *cos (x);

CHAP. 5]

FUNCTIONS

We can even “nest” function calls, like this:

y:

sgrt (1l + 2*sqgrt (3 + 4*sqgrt(5)))

89

Most of the mathematical functions that you find on a pocket calculator are declared in the
<cmath> header file, including all those shown in the table below.

Some Functions Defined in the <cmath> Header

Function Description Example

acos (x) inverse cosine of x (inradians) acos (0.2) returns1.36944
asin (x) inversesineof x (inradians) asin(0.2) returns0.201358
atan (x) inverse tangent of x (in radians) atan(0.2) returns0.197396
ceil (x) ceiling of x (rounds up) ceil(3.141593) returns4.0
cos (x) cosineof x (inradians) cos (2) returns-0.416147
exp (x) exponential of x (base€) exp (2) returns7.38906

fabs (x) absolute value of x fabs (-2) returns2.0

floor (x) | floorof x (roundsdown) floor(3.141593) returns3.0
log (x) natural logarithm of x (base €) log(2) returns0.693147
logl0 (x) | common logarithmof x (base10) | 1ogl0 (2) returns0.30103
pow (x,p) | x tothepower p pow (2,3) returns8.0

sin (x) sineof x (inradians) sin(2) returns0.909297
sqgrt (x) square root of x sqgrt (2) returns1.41421

tan (x) tangent of x (inradians) tan(2) returns-2.18504

Notice that every mathematical function returns a double type. If an integer is passed to the
function, it is promoted to a double before the function processesit.

The table below lists some of the more useful header filesin the Standard C++ Library.

Some of the Header Filesin the Standard C++ Library

Header File Description

<cassert> Definesthe assert () function

<ctype> Defines functions to test characters
<cfloat> Defines constants relevant to floats
<climits> Defines the integer limits on your local system
<cmath> Defines mathematical functions

<cstdio> Defines functions for standard input and output
<cstdlib> Defines utility functions

<cstring> Defines functions for processing strings
<ctime> Defines time and date functions

These are derived from the Standard C Library. They are used the same way that Standard C++
header filessuch as <iostreams are used. For example, if you want to use the random number

function rand()

from the

<cstdlib>

directive at the beginning of your main program file:

#include <c

stdlib>

The Standard C Library is described in greater detail in Chapter 8 and in Appendix F.

header file, include the following preprocessor

90 FUNCTIONS [CHAP. 5

5.3 USER-DEFINED FUNCTIONS

The great variety of functions provided by the Standard C++ Library is still not sufficient for
most programming tasks. Programmers al so need to be able to define their own functions.

EXAMPLE 5.3 A cube () Function

Here is asimple exampl e of a user-defined function:
int cube (int x)
{ // returns cube of x:
return xX*x*x;

}

The function returns the cube of the integer passed to it. Thusthecall cube (2) would return 8.

A user-defined function has two parts: its head and its body. The syntax for the head of afunc-
tionis
return-type name(parameter-1list)
This specifies for the compiler the function’s return type, its name, and its parameter list. In
Example 5.3, the function’s return typeis int, itsnameis cube, and its parameter listis int x.
Soitshead is
int cube (int x)
The body of a function is the block of code that follows its head. It contains the code that
performs the function’s action, including the return statement that specifies the value that the
function sends back to the place where it was called. The body of the cube functionis
{ // returns cube of x:
return xX*x*x;
}
Thisisabout as simple abody as a function could have. Usually the body is much larger. But the
function’s head typically fitson asingle line.
Notethat main () itself isafunction. Itshead is
int main()
and itsbody isthe program itself. Itsreturn typeis int, itSnameismain, and its parameter list is
empty.
A function’s return statement serves two purposes: it terminates the execution of the function,
and it returns a value to the calling program. Its syntax is
return expression;
where expression isany expression whose value could be assigned to a variable whose type is
the same as the function’s return type.

5.4 TEST DRIVERS

Whenever you create your own function, you should immediately test it with a simple
program. Such a program is called a test driver for the function. Its only purpose is to test the
function. It isatemporary, ad hoc program that should be “ quick and dirty.” That means that you
need not include all the usual niceties such as user prompts, output labels, and documentation.
Once you have used it to test your function thoroughly you can discard it.

CHAP. 5] FUNCTIONS 91

EXAMPLE 5.4 A Test Driver for the cube () Function

Here is a complete program that includes the definition of the cube () function from Example 5.4
together with atest driver for it:
int cube (int x)
{ // returns cube of x:
return xX*x*x;

}

int main ()
{ // tests the cube() function:

int n=1;
while (n != 0)
{ cin >> n;
cout << "\tcube(" << n << ") = " << cube(n) << endl;
}
}
5
cube (5) = 125
-6
cube (-6) = -216
0
cube (0) = 0

This reads integers and prints their cubes until the user inputs the sentinel value 0. Each integer read is
passed to the cube () function by the call cube (n). The value returned by the function replaces the
expression cube (n) and then is passed to the output object cout.

We can visualize the relationship main () cube ()
between the main() function and s
the cube () function likethis: “ - X
The main() function passes the
value 5to the cube () function, and < 125

the cube() function returns the
value 125 to the main() function.
The argument n is passed by value to the formal parameter x. This simply means that x is
assigned the value of n when the function is called.

Note that the cube () function isdefined above the main () functioninthe example. Thisis
because the C++ compiler must know about the cube () function beforeitisusedin main().

The next example shows a user-defined function named max () which returns the larger of
thetwo ints passed toit. This function has two arguments.

EXAMPLE 5.5 A Test Driver for the max () Function

Here is afunction with two parameters. It returns the larger of the two values passed to it.
int max(int x, int y)
{ // returns larger of the two given integers:
if (x < y) return y;
else return x;

}

92 FUNCTIONS [CHAP. 5

int main()

{ // tests the max() function:
int m, n;
do

{ cin >> m >> n;

cout << "\tmax(" << m << "," << n << ") = " << max(m,n) << endl;
}
while (m != 0);
}
5 8
max (5,8) = 8
4 -3
max (4,-3) = 4
00
max (0,0) = O

Notice that the function has more than one return statement. The first one that is reached terminates
the function and returns the indicated val ue to the calling program.

A return Statement is like a break statement. It is a jump statement that jumps out of the
function that contains it. Although usually found at the end of the function, a return statement
may be put anywhere that any other statement could appear within afunction.

5.5 FUNCTION DECLARATIONS AND DEFINITIONS

The last two examplesillustrate one method of defining afunction in a program: the complete
definition of the function is listed above the main program. Thisisthe simplest arrangement and
isgood for test drivers.

Another, more common arrangement is to list only the function’s header above the main
program, and then list the function’s complete definition (head and body) below the main
program. Thisisillustrated in the next example.

In this arrangement, the function’s declaration is separated from its definition. A function
declaration is simply the function’s head, followed by a semicolon. A function definition is the
complete function: header and body. A function declaration is also called a function prototype.

A function declaration is like a variable declaration; its purpose is simply to provide the
compiler with al the information it needs to compile the rest of the file. The compiler does not
need to know how the function works (its body). It only needs to know the function’s name, the
number and types of its parameters, and its return type. This is precisely the information
contained in the function’s head.

Also like a variable declaration, a function declaration must appear above any use of the
function’s name. But the function definition, when listed separately from the declaration, may
appear anywhere outside the main () function and isusually listed after it or in a separate file.

The variables that are listed in the function’s parameter list are called parameters. They are
local variables that exist only during the execution of the function. Their listing in the parameter
list constitutes their declaration. In the example above, the parametersare x and .

The variables that are listed in the function’s calls are called the arguments. Like any other
variable in the main program, they must be declared before they are used in the call. In the
example above, the argumentsare m and n.

CHAP. 5] FUNCTIONS 93

In these examples, the arguments are passed by value. This means that their values are
assigned to the function’s corresponding parameters. So in the previous example, the value of m
is assigned to x and the value of n is assigned to y. When passed by value, arguments may be
constants or genera expressions. For example, the max() function could be called by
max (44, 5*m-n) . Thiswould assign 44 to x and the value of the expression 5*m-n toy.

EXAMPLE 5.6 The max () Function with Declaration Separ ate from Definition

This program is the same test driver for the same max () function asin Example 5.6. But here the
function’s declaration appears above the main program and the function’s definition followsiit:
int max(int, int) ;
// returns larger of the two given integers:

int main ()
{ // tests the max() function:
int m, n;
do
{ cin >> m >> n;
cout << "\tmax(" << m << "," << n << ") = " << max(m,n) << endl;

}

while (m != 0);

}

int max(int x, int y)
{ if (x < y) return y;
else return x;

}

Notice that the formal parameters x and y are listed in the header in the definition (as usual) but not in the
declaration.

Function declarations are very similar to variable declarations, especialy if the function has
no parameters. For example, in a program that processes strings, you might need a variable
named length to store the length of a string. But a reasonable alternative would be to have a
function that computes the length of the string wherever it is needed, instead of storing and
updating the value. The function would be declared as

int length() ;
whereas the variable would be declared as

int length;
The only difference is that the function declaration includes the parentheses (). In redlity, the
two alternatives are quite different, but syntactically they are nearly the same when they are
used. In caseslike this, one can regard afunction as akind of an “active variable;” i.e., avariable
that can do things.

EXAMPLE 5.7 SEPARATE COMPILATION
Function definitions are often compiled independently in separate files. For example, al the

functions declared in the Standard C++ Library are compiled separately. One reason for separate
compilation is “information hiding”—that is, information that is necessary for the complete

94 FUNCTIONS [CHAP. 5

compilation of the program but not essential to the programmer’s understanding of the program
is hidden. Experience shows that information hiding facilitates the understanding and thus
success of large software projects.

EXAMPLE 5.8 The max () Function Compiled Separately

This shows one way that the max function and its test driver could be compiled separately. The test
driverisinafilenamed test max.cpp andthefunctionisin aseparatefilenamed max.cpp.

test _max.cpp

int max(int, int) ;
// returns larger of the two given integers:

int main ()
{ // tests the max() function:
int m, n;

do
{ cin >> m >> n;
cout << "\tmax(" << m << "," << n << ") = " << max(m,n) << endl;
while (m != 0);
max.cpp

int max(int x, int y)
{ if (x < y) return y;
else return x;

The actual commands that you would use to compile these files together depend on the system you are

using. In UNIX you could doiit like this:

$ Cc++ -C max.c

$ c++ -c test max.c

$ c++ -o0 test max test max.o max.o

$ test_max
(Here the dollar sign is the system prompt.) The first command compiles the max function, the second
command compiles the test driver separately, the third command links them together to produce the exe-
cutablemodule test_max, which isthen run by the command on the fourth line.

One advantage of compiling functions separately is that they can be tested separately before
the program(s) that call them are written. Once you know that the max function works properly,
you can forget about how it works and save it as a “black box” ready to be used whenever it is
needed. Thisis how the functions in the math library are used. It is the “ off-the-shelf software”
point of view.

Another advantage of separate compilation isthe ease with which one module can be replaced
by another equivalent module. For example, if you happen to discover a better way to compute
the maximum of two integers, you can compile and test that function and then link that module
with whatever programs were using the previous version of the max () function.

CHAP. 5] FUNCTIONS 95

5.6 LOCAL VARIABLES AND FUNCTIONS

A local variableis smply avariable that is declared inside a block. It is accessible only from
within that block. Since the body of a function itself is a block, variables declared within a
function are local to that function; they exist only while the function is executing. A function’s
formal parameters (arguments) are also regarded as being local to the function.

The next two examples show functions with local variables.

EXAMPLE 5.9 The Factorial Function

The factorial numbers were introduced in Example 4.9 on page 65. The factorial of apositive integer n
isthe number n! obtained by multiplying n by all the positive integers less than n:
nt=(n)(n-1)---(3)(2)(2)
For example, 5! = (5)(4)(3)(2)(1) = 120.
Here is an implementation of the factoria function:
long fact (int n)

{ // returns n! = n*(n-1)*(n-2)*...*(2) (1)
if (n < 0) return O;
int £ = 1;
while (n > 1)
f *= n--;

return f;
}
This function has two local variables: n and £. The parameter n isloca because it is declared in the
function’s parameter list. The variable £ islocal because it is declared within the body of the function.
Hereis atest driver for the factoria function:
long fact (int) ;
// returns n! = n*(n-1)*(n-2)*...*(2) (1)

int main ()
{ // tests the factorial() function:
for (int i=-1; i < 6; i++)
cout << " " << fact(i);
cout << endl;
}
01126 24 120
This program could be compiled separately, or it could be placed in the same file with the function and
compiled together.

EXAMPLE 5.10 The Permutation Function

A permutation is an arrangement of elements taken from a finite set. The permutation function P(n,k)
gives the number of different permutations of any k items taken from a set of nitems. One way to compute
this function is by the formula

n!

P(n, k) = TR

For example,
5! 5! 120

== === =20
(5-2)! 3! 6

P(5,2) =

96 FUNCTIONS [CHAP. 5

So there are 20 different permutations of 2 items taken from a set of 5. For example, here are the 20 differ-
ent permutations of length 2 taken from the set {A, B, C, D, E}: AB, AC, AD, AE, BC, BD, BE, CD, CE,
DE, BA, CA, DA, EA, CB, DB, EB, DC, EC, ED.

The code below implements this formula for the permutation function:

long perm(int n, int k)

{ // returns P(n,k), the number of permutations of k from n:
if (n < O || k <0 || k > n) return 0;
return fact(n)/fact(n-k);

}

Notice that the condition (n < 0 || k < 0 || k > n) isusedtohandlethe caseswhere either
parameter is out of range. In these cases the function returns an “impossible” value, 0, to indicate that its
input was erroneous. That value would then be recognized by the calling program as an “error flag.”

Hereis atest driver for the perm () function:

long perm(int,int) ;
// returns P(n,k), the number of permutations of k from n;

int main()
{ // tests the perm() function:
for (int 1 = -1; i < 8; i++)
{ for (int j=-1; j <= i+1l; F++)
cout << " " << perm(i,j);
cout << endl;

}
}

o N O

0
6 0

12 24 24 0

20 60 120 120 O

30 120 360 720 720 O

7 42 210 840 2520 5040 5040 O

Note that the test driver checks the “exceptional cases where i <0, § <0, and §j > i. Such values are
called boundary values because they lie on the boundary of the output set (where perm () returns0).

Oo0oo0ooooooo
HRRRPRRPRRPRRPRPO
OU A WN KR O

5.7 void FUNCTIONS

A function need not return avalue. In other programming languages, such a function is called
aprocedure or a subroutine. In C++, such afunction isidentified ssmply by placing the keyword
void where the function’s return type would be.

A type specifies a set of values. For example, thetype short specifiesthe set of integers from
-32,768 to 32,767. The void type specifies the empty set. Consequently, no variable can be
declared with void type. A void function is simply one that returns no value.

EXAMPLE 5.11 A Function that Prints Dates

void printDate (int, int, int);
// // prints the given date in literal form;

CHAP. 5] FUNCTIONS 97

int main()
{ // tests the printDate() function:
int month, day, vyear;
do
{ cin >> month >> day >> year;
printDate (month, day, year) ;

}

while (month > 0);

void printDate (int m, int d, int vy)
{ // prints the given date in literal form:

if m< 1 || m>12 || d <1 |] d > 31 ||y < 0)

{ cerr << "Error: parameter out of range.\n";
return;

}

switch (m)

{ case 1: cout << "January "; break;
case 2: cout << "February "; Dbreak;
case 3: cout << "March "; break;
case 4: cout << "April "; break;
case b5: cout << "May "; break;
case 6: cout << "June "; break;
case 7: cout << "July "; break;
case 8: cout << "August "; break;
case 9: cout << "September "; break;
case 10: cout << "October "; break;
case 1l1: cout << "November "; Dbreak;
case 12: cout << "December "; Dbreak;

}

cout << d << ", " << y << endl;

}

12 7 1941
December 7, 1941
5 16 1994

May 16, 1994
00O

Error: parameter out of range.

The printDate () function returns no value. Its only purpose isto print the date. So its return type
isvoid. Thefunction usesa switch statement to print the month as aliteral, and it prints the day and
year asintegers.

Note that the function returns without printing anything if the parameters are obviously out of range
(eg., m > 12 or y < 0). Butimpossible valuessuch as February 31, 1996 would be printed.
Corrections for these anomalies are |eft as exercises.

Sincea void function does not return avalue, it need not include a return statement. If it
doeshavea return statement, then it should appear simply as
return;
with no expression following the keyword return. In this case, the purpose of the return
statement is simply to terminate the function.

98 FUNCTIONS [CHAP. 5

A function with no return value is an action. Accordingly, it is usually best to use a verb
phrase for its name. For example, the above function is named printDate instead of some
noun phrase like date.

5.8 BOOLEAN FUNCTIONS

In some situations it is helpful to use a function to evaluate a condition, typically withinan i f
statement or a while statement. Such functions are called boolean functions after the British
logician George Boole (1815-1864) who devel oped boolean algebra.

EXAMPLE 5.12 Classifying Characters

The following program classifies the 128 ASCI| characters (see Appendix A):
#include <cctype> // defines the functions isdigit (), islower (), etc.
#include <iostream> // defines the cout object
using namespace std;

void printCharCategory (char c);
// prints the category to which the given character belongs;

int main ()
{ // tests the printCharCategory () function:
for (int c=0; ¢ < 128; c++)
printCharCategory(c) ;

void printCharCategory (char c)
{ // prints the category to which the given character belongs:
cout << "The character [" << ¢ << "] 1is a ";

if (isdigit (¢)) cout << "digit.\n";

else if (islower(c)) cout << "lower-case letter.\n";

else if (isupper(c)) cout << "capital letter.\n";

else if (isspace(c)) cout << "white space character.\n";

else if (iscntrl(c)) cout << "control character.\n";

else if (ispunct(c)) cout << "punctuation mark.\n";

else cout << "Error.\n";

}
The void function printCharCategory () cals the six boolean functions isdigit(),

islower (), isupper (), isspace(), iscntrl (), and ispunct (). Each of these functionsis
predefined inthe <cctypes> header file. These functions are used to test objects’ character type (i.e., “c

type’).

Hereis part of the output:

Ml bl A 00 A0 Al (ol A e,

The character [] is white space character.
The character [!] is punctuation mark.

The character ["] is punctuation mark.

The character [#] is punctuation mark.

The acharankern (8] Aa A& prnatnak’on nark

a
a
a
a

The complete output contains 128 lines.

CHAP. 5] FUNCTIONS 99

This example illustrates severa new ideas. The main idea is the use of the boolean functions
isdigit (), islower (), isupper(), isspace(), iscntrl (), and ispunct (). For example,
thecall isspace(c) teststhe character c to determine whether it isawhite space character. (There are
six white space characters: the horizontal tab character \t, the newline character \n, the vertical tab
character \v, the formfeed character \ £, the carriagereturn character \r, and the space character.) If
c isany of these characters, then the function returns anonzero integer for t rue; otherwiseit returns O for
false. Placing the call asthe conditioninthe i f statement causes the corresponding output statement to
execute if and only if ¢ isone of these characters.

Each character is tested within the printCharCategory () function. Although the program could
have been written without this separate function, its use modularizes the program, making it more
structured. We are conforming here to the general programming principle that recommends that every task
be relegated to a separate function.

Functionssuch as isdigit () and ispunct () which are defined in the C header files (such
as <cctype>) were originally defined for the C programming language. Since that language
does not have a standard boolean type, those boolean functions return an integer instead of true
or false. But since those C++ boolean values are stored as integers (see Section 2.2), the conver-
sion from integer value to bool value is automatic.

EXAMPLE 5.13 A Function that Tests Primality

Here is a boolean function that determines whether an integer is a prime number:
bool isPrime(int n)
{ // returns true if n is prime, false otherwise:
float sgrtn = sqgrt(n);

if (n < 2) return false; // 0 and 1 are not primes
if (n < 4) return true; // 2 and 3 are the first primes
if (n%2 == 0) return false; // 2 is the only even prime
for (int d=3; d <= sqgrtn; d += 2)

if (n%d == 0) return false; // n has a nontrivial divisor
return true; // n has no nontrivial divisors

This function works by looking for a divisor d of the given number n. It tests divisibility by the value of
the condition (n%d == 0). Thiswill betrue precisely when d isadivisor of n. In that case, n cannot be
a prime number, so the function immediately returns false. If the for loop finishes without finding any
divisors of n, then the function returns t rue.

We can stop searching for divisors once we get past the square root of n becauseif n isaproduct d*a,
then one of these factors must be less than or equal to the square root of n. We define the sqrtn outside
the loop so that it only hasto be eval uated once.

It is aso more efficient to check for even numbers (n%2 == 2) first. Thisway, once we get to the
for loop, we need only check for odd divisors. Thisis done by incrementing the divider 4 by 2 on each
iteration.

Hereisatest driver and atest run for the ispPrime () function:

#include <cmath> // defines the sqgrt() function
#include <iostream> // defines the cout object
using namespace std;

bool igPrime (int) ;
// returns true if n is prime, false otherwise;

100 FUNCTIONS [CHAP. 5

int main()
{ for (int n=0; n < 80; n++)
if (isPrime(n)) cout << n << " ";
cout << endl;
}
2 35 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79

Notice that, like the “c-type” functions in the previous example, a verb phrase is used for the name of

this function. The name i sPrime makes the function’s use more readable for humans: the code
if (isPrime(n)) .
is amost the same as the ordinary English phrase “if nis prime...”

It should be noted that this function is not optimal. In searching for divisors, we need only check prime
numbers, because every composite (non-prime) number is a unique product of primes. To modify this
function so that it checks only prime divisors requires that the primes be stored as they are found. That
requires using an array. (See Problem 6.22 on page 144.)

EXAMPLE 5.14 A Leap Year Function

A leap year isayear in which one extra day (February 29) is added to the regular calendar. Most of us
know that the leap years are the years that are divisible by 4. For example, 1992 and 1996 are leap years.
Most people, however, do not know that there is an exception to this rule: centennial years are not leap
years. For example, 1800 and 1900 are not leap years. Furthermore, there is an exception to the exception:
centennial years which are divisible by 400 are leap years. Thus, the year 2000 is aleap year.

Here is a boolean function that implements this definition:

bool isLeapYear (int y)
{ // returns true iff y is a leap year:

return y % 4 == 0 & y % 100 != 0 || y % 400 == 0;
}
The compound condition v % 4 == 0 & y % 100 != 0 || y % 400 == 0 will betrue

precisely when v is divisible by 4 but not by 100 unless it is also divisible by 400. In these cases the
function returns true; in al other cases it returns false.
Here is atest driver and test run for the function:
bool isLeapYear (int) ;
// returns true iff y is a leap year;

int main ()

{ // tests the isLeapYear () function:
int n;
do
{ cin >> n;
if (isLeapYear(n)) cout << n << " is a leap year.\n";
else cout << n << " is not a leap year.\n";

}

while (n > 1);

}
Theoutput is

2000

2000 is a leap year.
2001

2001 is not a leap year.
0

0 is a leap year.

CHAP. 5] FUNCTIONS 101

5.9 1/0 FUNCTIONS

Functions are particularly useful for encapsulating tasks that require messy details that are not
very relevant to the primary task of the program. For example, in processing personnel records,
you might have a program that requires interactive input of a user’s age. By relegating this task
to a separate function, you can encapsulate the details needed to ensure correct data entry
without distracting the main program.

We have already seen examples of output functions. The only purpose of the printbate ()
function in Example 5.11 on page 96 was to print the date represented by its input parameters.
Instead of sending information back to the calling function, it sends its information to the
standard output (i.e., the computer screen). An input function like the one described above is
analogous. Instead of receiving its information through its parameters, it reads it from standard
input (i.e., the keyboard).

The next exampleillustrates an input function. The while (true) control of theloop in this
example makes it look like an infinite loop: the condition (true) isalwaystrue. But the loop
isactualy controlled by the return statement which not only terminates the loop but also termi-
nates the function.

EXAMPLE 5.15 A Function for Reading the User’s Age

Here is a simple function that prompts the user for his’her age and then returnsiit. It is “robust” in the
sense that it rejects any unreasonable integer input. It repeatedly requests input until it receives an integer
in the range 0 to 120:

int age()
{ // prompts the user to input his/her age, and returns that value:
int n;
while (true)
{ cout << "How old are you: ";
cin >> n;
if (n < 0) cout << "\a\tYour age could not be negative.";
else if (n > 120) cout << "\a\tYou could not be over 120.";
else return n;
cout << "\n\tTry again.\n";
}
}

As soon as the input received from cin is acceptable, the function terminates with a return
statement, sending the input back to the calling function. If the input is not acceptable (either n < 0 or
n > 120), then the system beep is sounded by printing the character '\a' and a comment printed.
Then the user is asked to “ Try again.”

Note that thisis an example of a function whose return statement is not at the end of the function.

Here is atest driver and output from a sample run:

int age();
// prompts the user to input his/her age, and returns that value;

int main()
{ // tests the age() function:
int a = age();
cout << "\nYou are " << a << " years old.\n";

}

102 FUNCTIONS [CHAP. 5

How old are you: 125
You could not be over 120.
Try again.
How old are you: -3
Your age could not be negative.
Try again.
How old are you: 99

You are 99 years old.

Notice that the function’s parameter list is empty. But even though it has no input parameters, the
parentheses () must beincluded both in the function’s header and in every call to the function.

5.10 PASSING BY REFERENCE

Until now, all the parameters that we have seen in functions have been passed by value. That
means that the expression used in the function call is evaluated first and then the resulting value
is assigned to the corresponding parameter in the function’s parameter list before the function
begins executing. For example, in the call cube (x), if x has the value 4, then the value 4 is
passed to the local variable n before the function beginsto execute its statements. Since the value
4 is used only locally inside the function, the variable x is unaffected by the function. Thus the
variable x is aread-only parameter.

The pass-by-value mechanism allows for more general expressions to be used in place of an
argument in the function call. For example the cube () function could aso be called as
cube (3), Or @S cube (2*x-3), Of VEN 8S cube (2*sqgrt (x) -cube (3)). In each case, the
expression within the parentheses is evaluated to a single value and then that value is passed to
the function.

The read-only, pass-by-value method of communication is usually what we usually want for
functions. It makes the functions more self-contained, protecting them against accidental side
effects. However, there are some situations where a function needs to change the value of the
parameter passed to it. That can be done by passing it by reference.

To pass a parameter by reference instead of by value, simply append an ampersand, s, to the
type specifier in the functions parameter list. This makes the local variable a reference to the
argument passed to it. So the argument is read-write instead of read-only. Then any changeto the
local variable inside the function will cause the same change to the argument that was passed to
it.

Note that parameters that are passed by value are called value parameters, and parameters that
are passed by reference are called reference parameters.

EXAMPLE 5.16 The swap () Function

Thislittle function iswidely used in sorting data:
void swap (float& x, float& vy)
{ // exchanges the values of x and y:
float temp = x;
X =Y
y = temp;

CHAP. 5] FUNCTIONS 103

Its sole purpose is to interchange the two objects that are passed to it. Thisis accomplished by declaring
theformal parameters x and y asreferencevariables. floats& x, float& y. Thereference opera-
tor & makes x and y synonyms for the arguments passed to the function.
Here isatest driver and output from a sample run:
void swap (float&, float&);
// exchanges the values of x and y;

int main ()
{ // tests the swap() function:
float a = 22.2, b = 44.4;

cout << "a = " << a << ", b =" << b << endl;
swap(a,b);
cout << "a = " << a << ", b =" << b << endl;

}

a =22.2, b = 44.4

a = 44.4, b = 22.2
When the call swap (a,b) executes, the function createsits local references x and y, so that x is the
function’slocal name for a, and y is the function’s local name for b. Then the function’s three statements
execute: the local variable temp isdeclared and initialized with the value of x (whichisa); then x (which
isa) is assigned the value of y (which isb); then y (which isb) is assigned the value of temp. So a ends
up with the value 44.4, and b ends up with the value 22.2:

Uponthecall swap(a,b):

swap () o main()
ol RGeS
fleate | . float
T “#far)
float& 4 float

Upon the return:

swap(Q) main()
x[:] T - —éI!I!
fleate | i float
T GEE
float& » float
float

Note that the function declaration
void swap (floaté&, float&) ;
includes the reference operator & for each reference parameter, even though the parameters are omitted.
Some programmers write the reference operator & as a prefix to the parameter, like this:
void swap(float &x, float &y)
instead of as a suffix to its type as done here. That style is more common among C programmers. In C++,
we think of x as the parameter and floats as its type. But the compiler will accept floats x,
float &x, float & x,0r even floaté&x. It'smostly amatter of taste.

104 FUNCTIONS [CHAP. 5

EXAMPLE 5.17 Passing By Value and Passing By Reference

This example shows the difference between passing by value and passing by reference:
void f (int,inté&) ;
// changes reference argument to 99:;

int main ()
{ // tests the f() function:
int a = 22, b = 44;

cout << "a = " << a << ", b =" << b << endl;
f(a,b);

cout << "a = " << a << ", b =" << b << endl;
f(2*a-3,b);

cout << "a = " << a << ", b =" << b << endl;

}

void f (int x, int& y)
{ // changes reference argument to 99:

X = 88;

y = 99;
}
a =22, b = 44
a = 22, b = 99
a = 22, b = 99

Thecdl f(a,b) passesa by valuetox and it passesb by referencetoy. So x isalocal variable that
isassigned a’svaue of 22, whiley is an dias for the variable b whose value is 33. The function assigns
88 to x, but that has no effect on a. But when it assigns 99 to v, it isrealy assigning 99 to b, because y is
an diasfor b. So when the function terminates, a still hasitsorigina value 22, while b has the new value
99. The argument a is read-only, while the argument b is read-write.

Uponthecall f(a,b):

f() main ()
<[] 222
int . L int
O RaER
int& 4 int

Upon the return:

£() main ()
. a
int e i int
qus
int& » int

The next table summarizes the differences between passing by value and passing by reference.

CHAP. 5] FUNCTIONS
Passing By Value Ver sus Passing By Reference
Passing By Value Passing By Reference
int x; int &x;

The parameter x isalocal variable.
It isaduplicate of the argument.
It cannot change the argument.

The argument passed by value may be a
constant, avariable, or an expression.

The argument is read-only.

The parameter x isalocal reference.
It isasynonym for the argument.
It can change the argument.

The argument passed by reference must
be avariable.

The argument is read-write.

A common situation where reference parameters are needed is where the function has to
return more than one value. It can only return one value directly with a return statement. So if
more than one value must be returned, reference parameters can do the job.

EXAMPLE 5.18 Returning Morethan One Value

This function returns two values by using two reference parameters. the area and circumference
of acircle whose radius has the given length r:
void computeCircle (double& area, double& circumference, double r)
{ // returns the area and circumference of a circle with radius r:
const double PI = 3.141592653589793;
area = PI*r*r;
circumference = 2*PI*r;
}
Hereis atest driver and output from a sample run:
void computeCircle (double&, double&, double) ;
// returns the area and circumference of a circle with radius r;

int main()
{ // tests the computeCircle() function:
double r, a, c;
cout << "Enter radius: ";
cin >> r;
computeCircle(a, ¢, r);
cout << "area = " << a << ", circumference = " << ¢ << endl;

}

Enter radius: 100
area = 31415.9, circumference = 628.319
Note that the output parameters area and circumference arelisted first in the parameter list, to the
left of the input parameter r. This standard C style is consistent with the format of assignment statements:
y = x, where the information (the value) flows from the read-only variable x on the right to the
read-write variable y on the left.

106 FUNCTIONS [CHAP. 5

5.11 PASSING BY CONSTANT REFERENCE

There are two good reasons for passing a parameter by reference. If the function has to change
the value of the argument, as the swap () function did, then it must be passed by reference.
Also, if the argument that is passed to a function takes up a lot of storage space (for example, a
one-megabyte graphics image), then it is more efficient to passit by reference to prevent it from
being duplicated. However, this also alows the function to change the value (i.e., contents) of
the argument. If you don’t want the function to change its contents (for example, if the purpose
of the function is to print the object), then passing by reference can be risky. Fortunately, C++
provides a third alternative: passing by constant reference. It works the same way as passing by
reference, except that the function is prevented from changing the value of the parameter. The
effect is that the function has access to the argument by means of its formal parameter alias, but
the value of that formal parameter may not be changed during the execution of the function. A
parameter that is passed by value is called “read-only” because it cannot write (i.e., change) the
contents of that parameter.

EXAMPLE 5.19 Passing By Constant Reference

Thisillustrates the three ways to pass a parameter to afunction:
void f (int x, int& y, const int& z)
{ x += z;
y += 2;
cout << "x = " << X << ", y =" <<y << ", z =" << 2z << endl;
}
The first parameter a is passed by value, the second parameter b is passed by reference, and the third
parameter c is passed by constant reference:
void f (int, int&, const inté&);
int main()
{ // tests the f() function:
int a = 22, b = 33, c = 44;

cout << "a = " << a << ", b="<<Db<x< ", ¢ =" << c << endl;
f(a,b,c);
cout << "a = " << a << ", b="<<b<< ", c=" << c << endl;
f(2*a-3,b,c);
cout << "a = " << a << ", b="<<b<<", c=" << c << endl;
}
a =22, b =33, ¢ = 44
X =66, v =177, z = 44
a =22, b =177, ¢ = 44
x =85, y =121, z = 44
a =22, b =121, c = 44

The function changes the formal parameters x and v, but it would not be able to change z. The
function’s change of x has no effect upon the argument a because it was passed by value. The function’s
change of y causes the same change on the argument b because it was passed by reference.

Passing parameters by constant reference is used mostly in functions that process large
objects, such as arrays and class instances that are described in later chapters. Objects of funda-
mental types (integers, floats, etc.) are usually passed either by value (if you don’t want the func-
tion to change them) or by reference (if you do want the function to change them).

CHAP. 5] FUNCTIONS 107

5.12 INLINE FUNCTIONS

A function call involves substantial overhead. Extra time and space have to be used to invoke
the function, pass parameters to it, allocate storage for its local variables, store the current
variables and the location of execution in the main program, etc. In some cases, it is better to
avoid all this by specifying the function to be in1ine. Thistells the compiler to replace each call
to the function with explicit code for the function. To the programmer, an inline function appears
the same as an ordinary function, except for the use of the in1ine specifier.

EXAMPLE 5.20 Inlining the Cube Function

Thisisthesame cube () function asin Example 5.3 on page 90:
inline int cube (int x)
{ // returns cube of x:
return xX*x*x;
}
The only difference is that the inline keyword has been added as a prefix to the function’s head. This
tells the compiler to replace the expression cube (n) in the main program with the actual code
(n) * (n) * (n) . So thistest program
int main()
{ // tests the cube() function:
cout << cube(4) << endl;
int x, v;
cin >> x;
y = cube (2*x-3) ;
}
will actually be compiled as though it were this program:
int main()
{ // tests the cube() function:
cout << (4)*(4)*(4) << endl;
int x, v;
cin >> x;
y = (2*X+43) * (2*X+3) * (2*X+3) ;

}

When the compiler replaces the in1ine function call with the function’s actual code, we say
that it expands the inline function.

The C++ Standard does not actually require the compiler to expand inline functions. It only
“advises’ the compiler to do so. A compiler that doesn’t follow this “advice” could still be
validated as a Standard C++ compiler. On the other hand, some Standard C++ compilers may
expand some simple functions even if they are not declared to be inline.

Warning: use of inlined function can cause negative side effects. For example, inlining a
40-line function that is called in 26 different locations would add at least 1000 lines of unnoticed
source code to your program. Inlined functions can also limit the portability of your code across
platforms.

108 FUNCTIONS [CHAP. 5

5.13 SCOPE

The scope of variable names was described in Section 3.5. The scope of a name consists of
that part of the program where it can be used. It begins where the name is declared. If that decla-
ration isinside afunction (including the main () function), then the scope extends to the end of
the innermost block that contains the declaration.

A program can have several objects with the same name if their scopes are nested or digoint.
Thisisillustrated by the next example, which is an elaboration of Example 3.7 on page 40.

EXAMPLE 5.21 Nested and Parallel Scopes

Inthisexample, £() and g () areglobal functions, and thefirst x isaglobal variable. So their scope
includes the entirefile. Thisis called file scope. The second x isdeclared inside main () soit haslocal
Scope; i.e., it is accessible only from within main (). The third x is declared inside an internal block, so
its scopeis restricted to that internal block. Each x scope overrides the scope of the previously declared
x, S0 there is no ambiguity when the identifier x is referenced. The scope resolution operator : : isused
to access the last x whose scope was overridden; in this case, the global x whose valueis 11:

void f£(); // £() is global
void g(); // g() is global
int x = 11; // this x is global

int main()
{ int x = 22;
{ int x = 33;

cout << "In block inside main(): x = " << X << endl;
} // end scope of internal block
cout << "In main(): x = " << X << endl;
cout << "In main(): ::x = " << ::X << endl; // accesses global x
£0);
g();
} // end scope of main/()
void £ ()
{ int x = 44;
cout << "In £(): X = " << X << endl;
} // end scope of f()
void g()
{ cout << "In g(): x = " << x << endl;
} // end scope of g()
In block inside main(): x = 33
In main(): x = 22
In main(): ::x = 11
In £(): x = 44
In g(): x = 11

The x initialized with 44 has scope limited to the function £ () whichisparalel to main (); butits
scope is also nested within the global scope of the first x, so its scope overrides that of both the first x
within £ (). Inthis example, the only place where the scope of the first x isnot overridden iswithin the
function g ().

CHAP. 5] FUNCTIONS 109

5.14 OVERLOADING

C++ alows you to use the same name for different functions. As long as they have different
parameter type lists, the compiler will regard them as different functions. To be distinguished,
the parameter lists must either contain a different number of parameters, or there must be at least
one position in their parameter lists where the types are different.

EXAMPLE 5.22 Overloading the max () Function

Example 5.6 on page 93 defined a max () function for two integers. Here we define two other max ()
functions in the same program:
int max(int, int);
int max(int, int, int);

int main ()
{ cout << max(99,77) << " " << max(55,66,33);

}

int max(int x, int y)
{ // returns the maximum of the two given integers:
return (x >y ? X : Y);

}

int max(int x, int y, int z)

{ // returns the maximum of the three given integers:
intm= (x >y ?x :vy); // m=max(x,vy)
return (z > m ? z : m);

}

99 66
Three different functions, all named max, are defined here. The compiler checkstheir parameter liststo
determine which one to use on each call. For example, the first call passes two ints, so the version that
has two ints in its parameter list is called. (If that version had been omitted, then the system would
promote the two ints 99 and 77 to the doubles 99.0 and 77.0 and then pass them to the version that has two
doublesin its parameter list.)

Overloaded functions are widely used in C++. Their value will become more apparent with
the use of classes in Chapter 12.

5.15 THE main () FUNCTION

Every C++ program requires afunction named main (). Infact, we can think of the complete
program itself as being made up of the main () function together with al the other functions
that are called either directly or indirectly from it. The program starts by calling main ().

Since main () isafunction with returntype int,itisnormal to end its block with

return O;
although most compilers do not require this. Some compilers allow it to be omitted but will issue
awarning when it is. The value of the integer that is returned to the operating system should be
the number of errors counted; the value 0 is the default.

110 FUNCTIONS [CHAP. 5

The return statement in main () can be used to terminate the program abnormally, as the
next exampleillustrates.

EXAMPLE 5.23 Using the return Satement to Terminate a Program

int main()
{ // prints the quotient of two input integers:
int n, d;
cout << "Enter two integers: ";
cin >> n >> d;
if (d == 0) return O;
cout << n << "/" << d << " =" << n/d << endl;

}

Enter two integers: 99 17
99/17 = 5

If the user inputs O for d, the program will terminate without output:
Enter two integers: 99 0

In any function, the return statement will terminate the current function and return control to
the invoking function. That's why a return statement in main() terminates the program.
There are actually four ways to terminate a program abnormally (i.e., before execution reaches
the end of the main block):

1. use areturn Statement in main ();

2. call the exit () function;

3. call the abort () function;

4. throw an uncaught exception.

Theexit () and abort () functionsare described in Appendix F.

The exit () function is defined inthe <cstdlibs> header. It is useful for terminating a

program from within a function other than main (). Thisisillustrated by the next example.

EXAMPLE 5.24 Usingthe exit () Function to Terminate a Program

#include <cstdlib> // defines the exit () function
#include <iostream> // defines the cin and cout objects
using namespace std;

double reciprocal (double x);

int main ()
{ double x;
cin >> X;
cout << reciprocal (%) ;

}

double reciprocal (double x)

{ // returns the reciprocal of x:
if (x == 0) exit(1l); // terminate the program
return 1.0/x;

}

CHAP. 5] FUNCTIONS 111

If the user enters O for x, the program will terminate from within the reciprocal () function
without attempting to divide by it.

5.16 DEFAULT ARGUMENTS

In C++ the number of arguments that a function has can vary during run-time. Thisis done by
providing default values for the optional arguments.

EXAMPLE 5.25 Default Parameters

This function evaluates the third degree polynomia a, + a;x + ax? + a3x3. The actual evaluation is
done using Horner’s Algorithm, grouping the calculations as a,, + (a, + (a, + ax)X)x for greater efficiency:
double p(double, double, double=0, double=0, double=0);

int main ()
{ // tests the p() function:
double x = 2.0003;

cout << "p(x,7) = " << p(x,7) << endl;

cout << "p(x 7,6) =" << p(x,7,6) << endl;

cout << "p(x,7,6,5) = " << p(x,7,6,5) << endl;
cout << "p(x,7,6,5,4) = " << p(x,7,6,5,4) << endl;

}

double p(double x, double a0, double al, double a2, double a3)
{ // returns a0 + al*x + a2*x"2 + a3+*x"3:

return a0 + (al + (a2 + a3*x)*x)*x;

}

p(x,7) =7

p(x,7,6) = 19.0018

p(x,7,6,5) = 39.0078
p(x,7,6,5,4) = 71.0222

Thecal p(x,a0,a1,a2,a3) evaluates the third-degree polynomial a, + a,x + ax? + ax® But
since al, a2, and a3 al have the default value O, the function can also be called by p(x,a0) to
eva uate the constant polynomia a,, or by p(x,a0,al) to evauate the first-degree polynomia a, +
ax orby p(x,a0,al,a2) toevaluatethe second-degree polynomial a,+ ax + a2x2.

Note how the default values of O are given in the function prototype. For example, the call
p(x,7,6,5),whichisequivdenttothecal p(x,7,6,5,0), evauates the second degree polynomial
7+6x+5%2

In the example above, the function may be called with 2, 3, 4, or 5 arguments. So the effect of
allowing default parameter valuesisrealy to allow a variable number of arguments passed to the
function.

If afunction has default parameter values, then the function’s parameter list must show all the
parameters that have default values to the right of those that don’t, like this:

void f(int a, int b, int=4, int=7, int=3); // OK
void g(int a, int=2, int=4, int, int=3); // ERROR
In other words, all “optional” parameters must be listed last.

112

51
52
5.3
54
5.5
5.6
5.7
5.8
59

5.10

5.1

52
5.3
54
5.5
5.6

57

5.8

5.9

5.10

511

5.12

FUNCTIONS [CHAP. 5

Review Questions

Wheat are the advantages of using functions to modularize a program?
What is the difference between afunction’s declaration and its definition?
Where can the declaration of a function be placed?
When does afunction need an include directive?
What is the advantage of putting afunction’s definition in a separate file?
What is the advantage of compiling a function separately?
What are the differences between passing a parameter by value and by reference?
What are the differences between passing a parameter by reference and by constant refer-
ence?
Why is a parameter that is passed by value referred to as “read-only”? Why is a parameter
that is passed by reference referred to as “ read-write” ?
What iswrong with the following declaration:
int f(int a, int b=0, int c¢);

Problems

In Example 5.14, the following expression was used to test whether v isaleap year:

Yy $ 4 ==0&&y % 100 !=0 || vy % 400 == 0
This expression is not the most efficient form. If v isnot divisible by 4, it will still test the
condition v % 400 == 0 which would have to be false. C++ implements “short circuit-

ing,” which means that subsequent parts of a compound condition are tested only when nec-
essary. Find an equivaent compound condition that is more efficient due to short circuiting.
Describe how a void function with one reference parameter can be converted into an
equivalent non-void function with one value parameter.
Write a simple program like the one in Example 5.2 on page 88 to check the trigonometry
C0S2X = 2 cos?X — 1.
Write aprogram like the one in Example 5.2 that checks the identity: cos?x + sin?x = 1.
Write aprogram like the one in Example 5.2 that checks the identity: b* = elx!ogb),
Write and test the following min function that returns the smallest of four given integers:
int min(int, int,int,int) ;
Write and test the following max () function that usesthe max (int, int) function from
Example 5.5 on page 91 to find and return the largest of four given integers:
int max(int, int,int) ;
Write and test the following min () function that usesa min (int,int) function to find
and return the smallest of four given integers:
int min(int, int,int, int) ;
Write and test the following average () function that returns the average of four numbers:
float average(float x1, float x2, float x3, float x4)
Write and test the following average () function that returns the average of up to four pos-
itive numbers:
float average(float x1, float x2=0, float x3=0, float x4=0)
Implement the factorial function fact () with a for loop. (See Example 4.9 on page 65.)
Determine which values of n will cause fact (n) to overflow.
A more efficient way to compute the permutations function P(n,k) is by the formula

P(n,k) = (n)(n-1)(n—-2)---(n—k+2)(n—k+1)

CHAP. 5] FUNCTIONS 113

5.13

514

5.15

5.16

5.17

5.18

5.19

5.20

This means the product of the kintegersfrom n downton—k+ 1. Usethisformulato rewrite
and test the perm () function from Example 5.10.
The combination function C(n,k) gives the number of different (unordered) k-element subsets
that can be found in a given set of n elements. The function can be computed from the for-
mula
Ky = n!

cn k) =
Implement this formula
The combinations function C(n,k) can be computed from the formula

P(n, k)
k!

Usethisformulato rewrite and test the comb () function implemented in Problem 5.13.

A more efficient way to compute C(n,K) is shown by the formula

C(n,K) = (((((((("1)(n-1))/2)(n=2))/3)--(n—+2))/(k=1))(n—k+1))/k

This aternates divisions and multiplications, each time multiplying by the next decremented
value from n and then dividing by the next incremented value from 1. Use this formula to
rewrite and test the comb () function implemented in Problem 5.13. Hint: Usea for loop
like the onein Problem 5.12.

Pascal’s Triangleis atriangular array of numbers that begins like this:

C(n, k) =

Each number in Pascal’s Triangle is one of the combinations C(n,k). (See Problem 5.13.) If
we count the rows and the diagonal columns starting with 0, then the number C(n,k) isin row
n and column k. For example, the number C(6,2) = 15 isin row number 6 and column num-
ber 2. Write a program that usesthe comb () function to print Pascal’s Triangle down to row
number 12.
Write and test the digit () function:

int digit (int n, int k)
Thisfunction returnsthe kth digit of the positive integer n. For example, if n istheinteger
29,415, thenthecall digit(n, 0) wouldreturnthedigit5, and thecall digit(n, 2)
would return the digit 4. Note that the digits are numbered from right to left beginning with
the “zeroth digit.”
Write and test a function that implements the Euclidean Algorithmto return the greatest com-
mon divisor of two given positive integers. See Problem 4.14 on page 67.
Write and test a function that uses the greatest common divisor function (Problem 5.18) to
return the least common multiple of two given positive integers.
Write and test the following power () function that returns x raised to the power n, wheren
can be any integer:

double power (double x, int p);
Use the algorithm that would compute x° by multiplying 1 by x 20 times.

114

521

5.22

5.23

5.24

5.25

5.26

51

52

53

54

55

56

FUNCTIONS [CHAP. 5

The ancient Greeks classified numbers . o
geometrically. For example, a number . - ..:.. ..:.:.. .:::.
was called “triangular” if that number of

.) T,=1 T,=3 T,=6 T,=10 T.=15
pebbles could be arranged in a symmetric 1 2 s 4 5

triangle. The first ten triangular numbers
are (0,1, 3,6, 10, 15, 21, 28, 36, and 45. Write and test the bool ean function:
int isTriangular (int n)
This function returns 1 if the given integer n isatriangular number, and O otherwise.
Write and test the following isSquare () function that determines whether the given inte-
ger is asquare number:
int isSquare(int n)
Thefirst ten square numbersare0, 1, 4, 9, 16, 25, 36, 49, 64, and 81.
Write and test the following isPentagonal () function that determines whether the given
integer is a pentagonal number:
int isPentagonal (int n)

Thefirst ten pentagonal numbersare 0, 1, 5, 12, 22, 35, 51, 70, 92, and 117.
Write and test the following computeCircle () function that returns the area a and the
circumference c of acircle with given radius r:
void computeCircle(float& a, float& c, float r).
Write and test the following computeTriangle () function that returns the areaa and the
perimeter p of atriangle with given side lengths a, b, and c:
void computeTriangle (float& a, float& p, float a, float b, float
c)
Write and test the following computeSphere () function that returnsthe volume v and the
surface area s of a sphere with given radius r:
void computeSphere(float& v, float& s, float r).

Answersto Review Questions

A separately compiled function can be regarded as an independent “ black box” which performs a spe-
cific task. Once the function has been thoroughly tested, the programmer need not be concerned about
how it works. This frees the programmer to concentrate on the development of the main program.
Moreover, if a better way of implementing the function is found later, it can replace the previous ver-
sion without affecting the main program.

A function’s declaration (also called its prototype) is essentially only the function’s header. A func-
tion’s definition is the complete function: header and body block. The declaration provides only the
information needed to call the function: its name, its parameter types, and its return type; it is the
interface between the function and its caller. The definition gives al the information about the func-
tion, including the details of how it works; it is the function’s implementation.

A function may be declared anywhere as long as its declaration is above all references to the function.
So the declaration must come before any calls to it, and if its definition is separate then it too must
come after its declaration.

An include directiveisused to include other files. Typicaly, function declarations and/or defini-
tions are listed in a separate “header” file (with.h file extension). If only the declarations are in the
header file, then the definitions would be compiled separately in other files.

The advantage of putting a function’s definition in a separate header file is that it doesn’t have to be
brought into the editor when changes are made to the functions that call it.

The advantage of compiling a function separately is that it does not need to be recompiled when the
functionsthat call it are recompiled.

CHAP. 5] FUNCTIONS 115

57

5.8
59
5.10

51

52

53

54

A parameter passed by value is duplicated by its corresponding argument. A parameter passed by
reference is simply renamed by its corresponding argument.

A parameter passed by constant reference cannot be changed by the function to which it is passed.

A parameter that is passed by value cannot be changed (rewritten).

The function has a default value for a parameter (b) that precedes a parameter (c) that has no default
value. This violates the requirement that all default parameters be listed after all the other parameters
in the function’s parameter list.

Solutions to Problems

The compound condition

y%4 == 0 && (y % 100 != 0 || y % 400 == 0)
is equivalent and more efficient. The two can be seen to be equivalent by checking their valuesin the
four possibilities, represented by the four y values 1995, 1996, 1900, and 2000. This condition is
more efficient because if y isnot divisible by 4 (the most likely case), then it will not test y further.
Convert the reference parameter into a return value. For example, the function

void f (int& n)

{ n *= 2;

}
is equivalent to the function

int g(int n)

{ return 2*n;

}
The two functions are invoked differently:

int x=22, y=44;

f(x); // double the value of x

y = g(y); // double the value of y
But in both cases, the effect isto double the value of the parameter.
Thisissimilar to Example 5.2:

int main()

{ for (float x=0; x < 1; x += 0.1)

cout << cos(2*x) << '\t' << 2%*cos(x)*cos(x) - 1 << endl;
}
1 1
0.980067 0.980067
0.921061 0.921061
0.825336 0.825336
0.696707 0.696707
0.540302 0.540302
0.362358 0.362358
0.169967 0.169967
-0.0291997 -0.0291997
-0.227202 -0.227202

The equal values show that the identity is true for the 10 values of x tested.
Thisissimilar to Example 5.2:
int main()
{ for (double x=0; x < 2; X += 0.2)
{ double s=sin(x);
double c=cos (x) ;
cout << s*s << "\t" << c*c << "\t" << s*s+c*c << endl;

116 FUNCTIONS [CHAP.5

55 Thisissimilar to Example 5.2
int main ()
{ double b=2;
double 1lg2=log(2) ;
for (double x=0; X < 2; X += 0.2)
cout << pow(b,x) << "\t" << exp(x*lg2) << endl;

5.6 Thistests afunction that returns the minimum of four integers:

int min(int, int,int, int) ;
int main ()
{ cout << "Enter four integers: ";

int w, x, y, 2Z;

cin >> w >> x >> y >> z;

cout << "Their minimum is " << min(w,x,y,z) << endl;
1
int min(int nl, int n2, int n3, int n4)
{ int min=ni;

if (n2 < min) min = n2;

if (n3 < min) min = n3;

if (n4 < min) min = n4;

return min;

|

5.7 Thistests afunction that returns the maximum of three integers:
int max(int, int,int) ;
int main ()
{ cout << "Enter three integers: ";
int x, v, z;
cin >> x >> y >> z;
cout << "Their maximum is " << max(x,y,z) << endl;

TeamLRN

CHAP. 5] FUNCTIONS 117

int max(int, int);
int max(int x, int y, int z)
{ int max(int, int);
return max (max(x,y),z);
}
int max(int x, int y)
{ // returns the maximum of the two given integers:
if (x < y) return y;
else return x;
}
Enter three integers: 44 88 66
Their maximum is 88
5.8 Thistestsafunction that returns the minimum of four integers:
int min(int, int,int,int) ;
int main()
{ cout << "Enter four integers: ";
int w, x, v, z;
cin >> w >> X >> y >> zZ;
cout << "Their minimum is " << min(w,x,y,2z) << endl;
}
int min(int, int) ;
int min(int nl, int n2, int n3, int n4)
{ int ml2=min(nl,n2);
int m34=min(n3,n4) ;
return (ml2 < m34 ? ml2 : m34);
}
int min(int m, int n)
{ return (m < n ? m : n);

}

Enter four integers: 44 88 22 66
Their minimum is 22
5.9 Thistestsafunction that returns the average of four numbers:
double ave (double,double,double,double) ;
double main ()
{ cout << "Enter four numbers: ";
double w, x, vy, z;
cin >> w >> X >> y >> zZ;
cout << "Their average is " << ave(w,Xx,y,z) << endl;
}
double ave (double x1, double x2, double x3, double x4)
{ return (x1 + x2 + x3 + x4)/4.0;
}
Enter four numbers: 44 88 22 66
Their average is 55
5.10 Thistestsafunction that returns the average of four or fewer numbers:
double ave (double,double=0,double=0,double=0) ;
double main ()
{ cout << "Enter four non-zero numbers: ";
double w, x, vy, z;
cin >> w >> X >> y >> zZ;
cout << "The average of the first one is " << ave(w) << endl;

118 FUNCTIONS [CHAP.5

cout << "The average of the first two is " << ave(w,X) << endl;
cout << "The average of the first three is " << ave(w,x,y)<<endl;
cout << "The average of all four is " << ave(w,x,y,z) << endl;

}

double ave (double x1, double x2, double x3, double x4)

{ double sum = x1 + X2 + X3 + X4;
if (x2 == 0) return sum;
if (x3 == 0) return sum/2.0;
if (x4 == 0) return sum/3.0;

return sum/4.0;

5.11 Thisteststhe factoria function:
long fact (int n);
int main ()
{ for (int i=-1; 1<20; i++)
cout << "fact(" << 1 << ") = " << fact(i) << endl;
!
long fact (int n)
{ i1f (n < 2) return 1;
long f=1;
for (int 1i=2; 1 <= n; 1++)
f *= 1i;

return f£;

——

This overflows when n = 13 on machines that implement the 1ong type with 32-hits.

TeamLRN

CHAP. 5] FUNCTIONS 119

5.12 Thistests the permutation function:
long perm(int n, int k);
int main()

{ for (int 1 = -1; 1 < 6; i++)
{ for (int j = -1; J <= i+1; j++)
cout << " " << perm(i,j);
cout << endl;
1
!
long perm(int n, int k)
{ if m <0 || k <0 || k > n) return 0;
int p = 1;
for (int 1 = 1; 1 <= k; i++, n--)
p *= n;
return p;
1

5.13 Thistests the combination function:
long comb (int n, int k);
int main|()

{ for (int 1 = -1; 1 < 6; i++)
{ for (int j = -1; j <= i+1; j++)
cout << " " << comb(i,]j);
cout << endl;
!
!

long fact (int n);

long comb (int n, int k)

{ if m <0 || k <0 || k > n) return 0;
return fact (n)/ (fact (k) *fact (n-k)) ;

!

long fact (int n)
{ 1f (n < 2) return 1;
long f=1;
for (int 1i=2; 1 <= n; 1++)
f *= 1i;
return f;

}

Note that the fact () function must be declared abovethe comb () function because it is used by
comb () . But it does not need to be declared above main () becauseitisnot used there.

120 FUNCTIONS

5.14 Thistests the combination function:
long comb (int n, int k);
int main()

{ for (int 1 = -1; 1 < 9; i++)
{ for (int j = -1; J <= i+1l; J++)
cout << " " << comb(i,j);
cout << endl;
}
}

long perm(int,int) ;
long fact (int) ;
long comb (int n, int k)

{ if (n < O || k <0 || k > n) return 0;

return perm(n,k)/fact (k) ;

}

long perm(int n, int k)

{ if (n < O || k <0 || k > n) return 0;
int p = 1;
for (int i = 1; 1 <= k; i++, n--)
p *= n;

return p;

}

long fact (int n)
{ if (n < 2) return 1;

long f=1;
for (int i=2; 1 <= n; i++)
f *x= 1i;

return f;
}
The output is the same as for Problem 5.13.
5.15 Thistests the combination function:
long comb(int n, int k);
int main|()

{ for (int 1 = -1; 1 < 9; i++)
{ for (int j = -1; J <= i+1l; J++)
cout << " " << comb(i,J);
cout << endl;
}
}

long comb (int n, int k)

{ if (n < O || k <0 || k > n) return 0;

long ¢ = 1;
for (int i=1; i<=k; i++, n--)
c = c*n/i;
return c;
}
The output is the same as for Problem 5.13.
5.16 Thisprints Pascal’s Triangle:
long comb(int n, int k);
int main ()
{ const m = 13;
for (int i = 0; i < m; 1i++)

[CHAP. 5

CHAP. 5] FUNCTIONS 121

{ for (int § = 1; j < m-i; F++)
cout << setw(2) << ""; // print whitespace
for (int j = 0; J <= i; J++)

cout << setw(4) << comb(i,j);
cout << endl;

}
}

long comb (int n, int k)

{ if m <0 || k <0 || k > n) return 0;
long ¢ = 1;
for (int i=1; i<=k; i++, n--)
c = c¢*n/i;
return c;

5.17 Thistests afunction that extracts a digit from an integer:
int digit (long, int) ;
int main ()
{ int n, k;
cout << "Integer: ";
cin >> n;

do
{ cout << "Digit: ";
cin >> k;
cout << "Digit number " << k << " of " << n

<< " is " << digit(n, k) << endl;
} while (k > 0);
1
int digit(long n, int k)
{ for (int 1 = 0; 1 < k; i++)
n /= 10; // remove right-most digit
return n % 10;

122 FUNCTIONS [CHAP. 5

5.18 Thisteststhe greatest common divisor function:
long gcd(long, long) ;
int main ()
{ int m, n;
cout << "Enter two positive integers: ";
cin >> m >> n;
cout << "gcd(" << m << "," << n << ") =" << gcd(m,n) << endl;
}
long gcd(long m, long n)
{ // returns the greatest common divisor of m and n:
if (m<n) swap(m,n);
assert(n >= 0);
while (n>0)
{ long r=m%n;

return m;
}
Enter two positive integers: 144 192
gcd(144,192) = 48
5.19 Thisteststhe least common multiple function:
long lcm(long, long) ;
int main ()
{ int m, n;
cout << "Enter two positive integers: ";
cin >> m >> n;
cout << "lcm(" << m << "," << n << ") =" << lcm(m,n) << endl;
}
long gcd(long, long) ;
long lcm(long m,long n)
{ return m*n/gcd(m,n) ;
}
long gcd(long m,long n)
{ 1f (m < n) swap(m,n);
while (n>0)

{ int r = m%n;
m = n;
n=r;

}

return m;

}

Enter two positive integers: 144 192
lcm(144,192) = 576
5.20 Thisteststhe power function:

double pow (double, int) ;

int main ()

{ cout << "Enter a positive float x and an integer n: ";
double x;
int n;
cin >> X >> n;

CHAP. 5] FUNCTIONS 123

cout << "pow (" << X << "," << n << ") = " << pow(x,n) << endl;

}

double pow(double x, int n)

{ 1f (x == 0) return 0;

if (n == 0) return 1;

double y=1;

for (int 1=0; i < n; i++)
y *= x;

for (int i=0; 1 > n; i--)
Yy /= %x;

return y;

1
5.21 Thistests aboolean function that tests integers for triangularity:
int isTriangular (int) ;
int main ()
{ const int MAX=12;
for (int 1=0; 1i<MAX; i++)
if (isTriangular(i)) cout << 1 << " is triangular.\n";
else cout << 1 << " is not triangular.\n";
1
int isTriangular (int n)
{ int x=0, y=0, dy=1;
while (y < n)
y += dy++;
if (y == n) return true;
else return false;

}

5.22 Thistests aboolean function that tests integers for squares:
int isSquare (int) ;
int main ()
{ const int MAX=20;
for (int 1=0; i<MAX; i++)
if (isSquare(i)) cout << i << " is square.\n";
else cout << 1 << " is not square.\n";
!
int isSquare(int n)
{ int i=0;
while (i*i<n)

124 FUNCTIONS [CHAP.5

++1;
if (i*1i == n) return true;
else return false;

}

5.23 Thistests aboolean function that tests integers for pentangularity:
int isPentagonal (int) ;
int main()
{ const int MAX=40;
for (int 1=0; i<MAX; i++)
if (isPentagonal(i)) cout << 1 << " is pentagonal.\n"
else cout << 1 << " is not pentagonal.\n";

}

int isPentagonal (int n)
{ int x=0, y=0, dy=1;
while (y < n)

{ vy += ay;
dy += 3;
}
if (y == n) return true;

else return false;

5.24 Thistests afunction that has reference parameters:
void computeCircle (double& area, double& circ, double r);
int main ()
{ double a, c, r;
cout << "Enter the radius: ";
cin >> r;

TeamLRN

CHAP. 5] FUNCTIONS 125

computeCircle(a,c,r);
cout << "The area of a circle of radius " << r << " is " << a
<< "\nand its circumference is " << ¢ << endl;

void computeCircle (double& area, double& circ, double r)
{ const double PI=3.141592653589793;

area = PI*r*r;

circ = 2*PI*r;

|

5.25 Thistests afunction that has reference parameters:
void computeTriangle (float& a, float& p, float x,float y,float z);
int main ()
{ float a, p, %, v, z;
cout << "Enter the sides: ";
cin >> X >> y >> z;
computeTriangle(a,p,X,v,2) ;
cout << "The area of the triangle is " << a
<< "\nand its perimeter is " << p << endl;
1

void computeTriangle(float& a, float& p, float x, float y, float

z)

{p=x%x+7v + z;
float s = p/2.0; // the semiperimeter of the triangle
a = sgrt(s*(s-x)*(s-y)*(s-z)); // Heron's formula

5.26 Thistests afunction that has reference parameters:

void computeSphere (double& a, double& v, double r);

int main ()

{ double a, v, r;
cout << "Enter the radius: ";
cin >> r;
computeSphere (a,v,r) ;
cout << "The area of a sphere of radius " << ¥ << " is " << a

<< "\nand its volume is " << Vv << endl;

}

void computeSphere (double& a, double& v, double r)
{ const double PI=3.141592653589793;

a = 4.0*PIl*r*r;

v = a*r/3.0;

Chapter 6

Arrays

6.1 INTRODUCTION

An array is a sequence of objects all of which have the same type. The objects are called the
elements of the array and are numbered consecutively 0, 1, 2, 3, These numbers are called
index values or subscripts of the array. The term “subscript” is used because as a mathematical
sequence, an array would be written with subscripts: a,, a,, a,, The subscripts locate the
element’s position within the array, thereby giving direct accessinto the array.

If the name of the array is a, then a[0] isthe name of the element that isin position 0, a[1]
is the name of the element that isin position 1, etc. In general, the ith element isin position i—1.
So if the array has n elements, their namesare a[o0l, al1], al[2], ..., a[n-1].

We usually visualize an array as a series of adjacent storage compartments a

that are numbered by their index values. For example, the diagram here shows ol 11.11
an array named a with 5 elements. a[o] contains11.11, a[1] contains 33.33, 1] 33.33
a[2] contains 55.55, a[3] contains 77.77, and a[4] contains 99.99. The 2| 55.55
diagram actually represents a region of the computer’'s memory because an Z ;;;;

array is aways stored this way with its elements in a contiguous sequence.
The method of numbering the ith element with index i—1 is called zero-based indexing. It
guarantees that the index of each array element is equal to the number of “steps’ from the initia
element a[o] tothat element. For example, element a[3] is3 stepsfrom element afo].
Virtually all useful programs use arrays. If several objects of the same type are to be used in
the same way, it is usually simpler to encapsulate them into an array.

6.2 PROCESSING ARRAYS

An array isacomposite object: it iscomposed of several elements with independent values. In
contrast, an ordinary variable of a primitive typeis called a scalar object.

The first example shows that array elements can be assigned and accessed the same as
ordinary scalar objects.

EXAMPLE 6.1 Using Direct Accesson Arrays

int main ()
{ double al3];

al[2] = 55.55;
al0] = 11.11;
all] = 33.33;
cout << "al[0] = " << a[0] << endl;
cout << "al[l] = " << al[l] << endl;
cout << "al[2] = " << a[2] << endl;
}
126

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 6] ARRAYS 127

alo] = 11.11
all] = 33.33
al[2] = 55.55

Thefirst line declares a to be an array of 3 elements of type double. The next three lines assign values
to those elements.

Arrays are usually processed with £or loops.
EXAMPLE 6.2 Printing a Sequence in Order

This program reads five numbers and then prints them in reverse order:

int main()

{ const int SIZE=5; // defines the size N for 5 elements
double a[SIZE]; // declares the array’s elements as type double
cout << "Enter " << SIZE << " numbers:\t";
for (int i=0; i<SIZE; i++)

cin >> ali];
cout << "In reverse order: ";
for (int i=SIZE-1; i>=0; i--)
cout << "\t" << alil;
}

Enter 5 numbers: 11.11 33.33 55.55 77 .77 99.99
In reverse order: 99.99 77 .77 55.55 33.33 11.11

The first line defines the symbolic constant S1zE to be 5 elements. The second line declares a to be an
array of 5 elements of type double. Then thefirst £or loop reads 5 values into the array, and the second
for loop prints them in reverse order.

The syntax for an array declaration is

type array-namelarray-sizel;
where type isthe array’s element type and array-size is its number of elements. The
declaration in Example 6.1

double al[SIZE];
declares a to be an array of 5 elements, each of type double. Standard C++ requires
array-size t0 be a positive integer constant. So it must be either a symbolic constant as in
Example 6.1, or an integer literal like this:

double al5];
Generally, it is better to use a symbolic constant since the same size value is likely to be used in
for loopsthat process the array.

6.3 INITIALIZING AN ARRAY

In C++, an array can be initialized with an optional initializer list, like this: a
float al]l = {22.2, 44.4, 66.6 }; o] 22.2
The values in the list are assigned to the elements of the array in the order that 1 44.4
they are listed. The size of the array is set to be equal to the number of valuesin 2| 66.6

theinitializer list. So this single line of code declares a to be an array of 3 floats
and then initializes those for elements with the four values given in the list.

128 ARRAYS [CHAP. 6

EXAMPLE 6.3 Initializing an Array

This program initializes the array a and then printsits values:
int main()
{ float all = { 22.2, 44.4, 66.6 };
int size = sizeof(a)/sizeof (float) ;
for (int i=0; i<size; i++)
cout << "\tal[" << i << "] = " << al[i] << endl;
alo] 22.2
al1] 44 .4
al2] 66.6
The first line declares a to be the array of 3 elements described above. The second line uses the
sizeof () function to compute the actual number of elements in the array. The vaue of
sizeof (float) iS4 becauseonthismachineafloat vaueoccupies4 bytesin memory. The vaue of
sizeof (a) is 12 because the complete array occupies 12 bytes in memory. Therefore, the value of
size iscomputed to be 12/4 = 3.

An array can be “zeroed out” by declaring it with an initializer list together a

with an explicit size value, like this: o| 55.5
float al7] = { 55.5, 66.6, 77.7 }; 1 66.6
This array is declared to have 7 elements of type £loat; then itsinitializer list 2| 77.7
initializes the first 3 elements with the given values and the remaining 4 00
elements with the value 0. ‘; 22
7 0.0

EXAMPLE 6.4 Initializing an Array with Trailing Zeros

Thisprogram initializes the array a and then printsits values:
int main ()

{ float al7] = { 22.2, 44.4, 66.6 };
int size = sizeof(a)/sizeof (float) ;
for (int i=0; i<size; i++)

cout << "\tal[" << i << "] = " << ali]l << endl;
}
alo] = 22.2
all] = 44.4
al2] = 66.6
al[3] =0
al4] =0
al[5] = 0
ale] = 0

Note that the number of valuesin an array’s initializer list cannot exceed its size:
float al3] = { 22.2, 44.4, 66.6, 88.8 }; // ERROR: too many values!
An array can be initialized to be al zeros by using an empty initiaizer list. So, for example,
the following three declarations are equival ent:

float al] = { 0o, 0, 0, O, O, 0, O, O, 0 };
float al9] = { 0, 0 };
float al9] = { o, 0, 0, O, O, 0, O, O, 0 };

But note that this is not the same as using no initializer list. Just as with a variable of
fundamental type, if an array is not initialized it will contain “garbage” values.

CHAP. 6] ARRAYS 129

EXAMPLE 6.5 An Uninitialized Array

Thisprogram initializes the array a and then printsits values:
int main ()
{ const int SIZE=4; // defines the size N for 4 elements

float al[SIZE]; // declares the array's elements as type float
for (int i=0; i<SIZE; i++)
cout << "\tal[" << i << "] = " << al[i] << endl;
}

al0] = 6.01838e-39
all] = 9.36651e-39
al2] = 6.00363e-39
al3] =0

Note that the values in the uninitialized array may or may not be zero; it depends upon how that part of
memory was used prior to the execution of this program.

Note that an initialization is not the same as an assignment. Arrays can be initialized, but they

cannot be assigned:

float al7] { 22.2, 44.4, 66.6 };

float b[7] = { 33.3, 55.5, 77.7 };

b = a; // ERROR: arrays cannot be assigned!
Nor can an array be used to initialize another array:

float al[7] = { 22.2, 44.4, 66.6 };

float b[7] = a; // ERROR: arrays cannot be used as initializers!

6.4 ARRAY INDEX OUT OF BOUNDS

In some programming languages, an index variable will not be allowed to go beyond the
bounds set by the array’s definition. For example, in Pascal, if an array a is defined to be indexed
from 0 to 3, then the reference a (61 will crash the program. Thisis a security device that does
not exist for arrays in C++ (or C). As the next example shows, the index variable may run far
beyond its defined range without any error being detected by the computer.

EXAMPLE 6.6 Allowingan Array Index to Exceed its Bounds

This program has a run-time error: it accesses a part of memory that is not allocated:
int main ()
{ const int SIZE=4;

float al[SIZE] = { 33.3, 44.4, 55.5, 66.6 };
for (int i=0; i<7; i++) // ERROR: index is out of bounds!
cout << "\tal[" << i << "] = " << ali]l << endl;
}
al[0] = 33.3
all] = 44.4
al[2] = 55.5
al[3] = 66.6
af[4] = 5.60519e-45
a[5] = 6.01888e-39
al[6] = 6.01889e-39

The last three values printed are garbage val ues, left from the previous use of those bytes in memory.

130 ARRAYS [CHAP. 6

Allowing an array index to exceed its bounds can cause disastrous side effects, as the next
example shows.

EXAMPLE 6.7 Causing Side Effects

This program inadvertently changes the value of a variable when it accesses a nonexistent element of
an array:
int main ()
{ const int SIZE=4;

float al]l = { 22.2, 44.4, 66.6 };
float x=11.1;
cout << "x = " << X << endl;
al[3] = 88.8; // ERROR: index is out of bounds!
cout << "x = " << X << endl;
} a
x = 11.1 of 22.2
x = 88.8 1 44.4 %
The variable x is declared after the array a, so the system allocates 2| 666
a 4-byte block of memory to x that immediately follows the 12 bytes
of memory that it allocates to the 3 elements of a. Consequently, the x| 88.8
16 contiguous bytes of memory that a and x occupy are configured as

though x were a[3]. So when the program assigns 88.8 to a[3]
(which does not exist), it actually changes the value of x to 88.8. This S
is depicted in the diagram on the right which represents 20 contiguous
bytes of memory; the four bytes used to store 88.8 immediately follow
the four bytes used to store 66.6.

Thisisthe worst kind of run-time error. It changes the value of avariable which is completely indepen-
dent and not even mentioned in the code where the change occurs. Thiskind of error is called a side effect.
It can have disastrous consequences because it may not be detected.

It is the C++ programmer’s responsibility to ensure that array index values are kept in range.
As Example 6.7 shows, the penalty for shirking that responsibility can be severe if the resulting
side effects are not detected.

The next example shows that a different kind of run-time error can occur if an array index is
allowed to get too big.

EXAMPLE 6.8 Causing Unhandled Exceptions

This program crashes because the array index gets too big:
int main()
{ const int SIZE=4;

float al]l = { 22.2, 44.4, 66.6 };
float x=11.1;
cout << "x = " << X << endl;

a[3333] = 88.8; // ERROR: index is out of bounds!
cout << "x = " << X << endl;

CHAP. 6] ARRAYS 131

When run on a Windows workstation, this program generates
the alert panel shown here. Thislittle window is reporting that the

program attempted to access memory location 0040108e. That
location is outside the segment of memory that was allocated to
the process that is running the program. So the Windows operat-
ing system aborted the program.

Unhandled exception: cO000005
At address: 00401 08e

The run-time error that occurred in Example 6.8 is called an unhandled exception because
there is no code in the program to respond to the error. It is possible to include code in C++ pro-
grams so that the program won'’t crash. Such code is called an exception handler.

Unlike some other programming languages (e.g., Pascal and Java), the Standard C++ compiler
will not alow arrays to be assigned and it will not restrict array indexes from exceeding their
bounds. It isthe programmer’s responsibility to prevent these compile-time and run-time errors.
The reward for this extra responsibility is faster, more efficient code. If those benefits are not
important to your application, then you should use Standard C++ vector objects instead of
arrays. (See Chapter 10.)

6.5 PASSING AN ARRAY TO A FUNCTION

Thecode float a[] that declaresan array a in the previous examples tells the compiler two
things: the name of the array is a, and the array’s elements have type £1oat. The symbol a stores
the array’s memory address. So the code float a[] provides al the information that the
compiler needs to declare the array. The size of the array (i.e., the number of elements in the
array) does not need to be conveyed to the compiler. C++ requires the same information to be
passed to afunction that uses an array as a parameter.

EXAMPLE 6.9 Passing an Array to a Function that Returnsits Sum

int sum(int[],int);
int main ()

{ int all = { 11, 33, 55, 77 };

int size = sizeof (a)/sizeof (int) ;

cout << "sum(a,size) = " << sum(a,size) << endl;
int sum(int al], int n)

{ int sum=0;
for (int i=0; i<n; i++)
sum += alil;
return sum;
}
sum(a,size) = 176
The function’s parameter list is (int all, int =n). The function prototype, which is used to
declare the function above main (), uses (int[],int);thisisthesameasin the prototype except that
the names of the parameters are omitted. (They can be included.) The function call, which occurs inside
main (), UseS sum(a,size); thislists the names of the parameters without their types. Note that the
actual name of the type for the object a is int[].

132 ARRAYS [CHAP. 6

When an array is passed to afunction, asinthecall sum(a,size) inExample 6.9, the value
of array name a isactually the memory address of the first element (a [01) in the array. The func-
tion uses that address value to access and possibly modify the contents of the array. So passing
an array to afunction is similar to passing a variable by reference: the function can change the
values of the array’s elements. Thisisillustrated in the next example.

EXAMPLE 6.10 Input and Output Functionsfor an Array

This program uses a read () function to input values into the array a interactively. Then it uses a
print () function to print the array:
void read(int[], inté&) ;
void print (int[],int);
int main ()
{ const int MAXSIZE=100;
int a[MAXSIZE]={0}, size;
read(a,size) ;
cout << "The array has " << size << " elements: ";
print (a,size);

}

void read(int al[], int& n)

{ cout << "Enter integers. Terminate with 0:\n";
n = 0;
do
{ cout << "a[" << n << "]: ";

cin >> aln];
} while (aln++] != 0 && n < MAXSIZE);
--n; // don't count the 0
}
void print (int al[l, int n)
{ for (int 1=0; i<n; i++)

}

cout << afi] << " ";

Enter integers. Terminate with O0:
al0o]: 11
all]l: 22
al[2]: 33
al[3]: 44
al4]: 0

The array has 4 elements: 11 22 33 44
The read () function changesthe valuesof the array a and the value of the size parameter n. Sincen
isascalar variable, it must be passed by reference to allow the function to change its value. Since a isan
array variable, it must be passed by value and the function is able to change the values its elements.

Note that the size of the array has to be passed explicitly to the function that processes the
array. In C++ afunction is unable to compute the size of an array passed to it.

Example 6.10 shows that a function can change the values of an array’s elements even though
the array variable is passed by value. That is possible because the value of the array variable
itself is the memory address of the first element of the array. Passing the value of that address to
the function gives the function all the information it needs to access and change that part of
memory where the array is stored. This is accomplished by a direct calculation of the elements’

CHAP. 6] ARRAYS 133

locations from the given memory address and the array index. For example, in the input state-
ment

cin >> alnl]; 0x0064fdba
in Example 6.10, when n = 3 the system computes that the memory _ Ox0064fdnh
address of a[3] is3x4 = 12 bytes past the memory address of a[o01]. ’ g;gggz;ggg
That addressis passed (by value) to the function in the variable a, so the 3 Oxdosddco
explicit address of a[3] isobtained. For example, suppose that a[0]) §§§§§§£§§
is stored in the four contiguous bytes starting at location 0x0064fdbc B oo0sdidos
(“ox0064fdbc” is hexadecimal notation for 6,618,556). Then the 8§8823§3§$
calculated address for a[3] is0x0064fdc8 (hexadecimal for 6,618,568 *Sigggﬁﬁﬂig
= 6,618,556 + 12). In this calculation, the number 12 is called the offset §§§§§§£§§§
for the element a[3]. (See Problem 6.5 on page 143. Also see 0x0064fdcd

Appendix G for information on hexadecimal numerals.)

Note that an array name (whose value is amemory address) itself is a constant, so it cannot be
changed anywhere. This simply means that the array cannot be moved to another place in
memory.

EXAMPLE 6.11 Printingthe Memory L ocation of an Array a
o 22.2
This program prints the value of the address stored in an array name. | 444
int main() 2| 666
{ int all = { 22, 44, 66, 88 }; | 888
cout << "a = " << a; // the address of al[0]
}
a = 0x0064fdec a

The array name a has two interpretations. It is used with an index to name each element of the
array, so it identifies the complete composite object. But as a variable, its value is the memory
address of the first byte of the first element a o] inthearray.

6.6 THE LINEAR SEARCH ALGORITHM

Computers are probably used more for the storage and retrieval of information than for any
other purpose. Datais often stored in a sequentia structure such as an array. The ssmplest way to
find an object in an array is start at the beginning and inspect each element, one after the other,
until the object is found. This method is called the Linear Search algorithm.

EXAMPLE 6.12 TheLinear Search

This program tests a function that implements the Linear Search algorithm;

int index (int,int[],int) ;
int main()
{ int all = { 22, 44, 66, 88, 44, 66, 55 };
cout << "index(44,a,7) = " << index(44,a,7) << endl;

cout << "index(50,a,7) = " << index(50,a,7) << endl;

}

134 ARRAYS [CHAP. 6

int index (int x, int all], int n)
{ for (int 1=0; i<n; i++)
if (afli] == x) return i;
return n; // x not found
}
index (44,a,7) = 1
index(50,a,7) = 7

6.7 THE BUBBLE SORT ALGORITHM

The Linear Search algorithm is not very efficient. It obviously would not be a good way to
find a name in the telephone book. We can do this common task more efficiently because the
names are sorted in alphabetical order. To use an efficient searching algorithm on a sequential
data structure such as an array, we must first sort the structure to put its elements in order.

There are many algorithms for sorting an array. Although not as efficient as most others, the
Bubble Sort is one of the ssimplest sorting algorithms. It proceeds through a sequence of itera-
tions, each time moving the next largest item into its correct position. On each iteration, it
compares each pair of consecutive elements, moving the larger element up.

EXAMPLE 6.13 The Bubble Sort

This program tests a function that implements the Bubble Sort algorithm.
void print (float[],int);

void sort (float[],int);

int main()

{ float al]l = {55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7};
print(a,8);
sort (a, 8) ;

print(a,8);
}
void sort(float al[]l, int n)
{ // bubble sort:
for (int i=1; i<n; i++)
// bubble up max{al[0..n-i]}:
for (int j=0; j<n-i; j++)
if (alj] > alj+1]) swap(aljl,alj+1]);
// INVARIANT: al[n-1-i..n-1] is sorted

}

55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7

22.5, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9
The sort () function uses two nested loops. The inside for loop compares pairs of adjacent elements
and swaps them whenever they are out of order. Thisway, each element “bubbles up” past all the elements
that are less than it.

6.8 THE BINARY SEARCH ALGORITHM

The binary search uses the “divide and conquer” strategy. It repeatedly divides the array into
two pieces and then searches the piece that could contain the target value.

CHAP. 6] ARRAYS 135

EXAMPLE 6.14 The Binary Search Algorithm

This program tests a function that implements the Binary Search algorithm. It uses the same test driver
that was used in Example 6.12 on page 133 to test the Linear Search algorithm:

int index (int,int[],int) ;

int main()

{ int all = { 22, 33, 44, 55, 66, 77, 88 };
cout << "index(44,a,7) = " << index(44,a,7) << endl;
cout << "index(60,a,7) = " << index(60,a,7) << endl;

}

int index (int x, int al]l, int n)

{ // PRECONDITION: al[0] <= all]l <= ... <= aln-1];

// binary search:

int lo=0, hi=n-1, i;

while (lo <= hi)

{ 1 = (lo + hi)/2; // the average of lo and hi

if (afli] == x) return i;
if (ali]l < x) lo = i+l1; // continue search in ali+1..hi]
else hi = i-1; // continue search in al[lo..i-1]
}
return n; // x was not found in al[0..n-1]
}
index (44,a,7) = 2
index(60,a,7) = 7

Note that the array is already sorted before the Binary Search is applied. That requirement is expressed
in the PRECONDITION specified asa comment in the function’s code.

On each iteration of thewhile loop, the middleelement a[i] of thesubarray a[lo..hi] (i.e,dl
the elements from a[lo]l to a[hil) isexamined. If itis not the target x, then the search continues
either on the upper half a[i+1..hi]l oronthelower half a[lo..i-11.If (a[i] < x),thenx
could not be in the lower half (since the array is sorted into increasing order), so the lower half can be
ignored and the search continued on only the upper half. Similarly, if the condition (a[i] < x) isfase,
then the search is continued on only the lower half. So on each iteration of the loop, the scope of the
search isreduced by about 50%. The loop stops either when x isfoundat a[i] and the function returns,
or when 1o > hi. In that latter case, the subarray a[lo..hil isempty, meaning that x was not found,
so the function returns n.

Hereisatrace of thecall index(44,a,7). When

lo | hi i alil ?? X
the loop begins, x =44, n =7, 10 =0, and hi = 6; the
middle element of the array a[0..6] isal[3] =55 01 6|3 5 > 44
which is greater than x, so hi getsresettoi-1 =2. On 2 1 33 < 44
the second iteration, 1o = 0 and hi = 2; the middle 2 2 44 —= 44

element of thesubarray a[0..2] isa[1] =33 which
islessthan x, so 1o getsreset to i +1 = 2. On thethird iteration, 1o = 2 and hi = 2; the middle element of
thesubarray a[2..2] isal[2] =44 whichisequal to x, so the function returns 2, indicating that the
target x iswasfound at a[2].

Hereisatrace of thecal index(60,a,7).When 1 . . .
. o | hi i alil ?? X
the loop begins, x =44, n =7, 10 =0, and hi = 6; the
middle element of the array a[0..6] isal[3] =55 0 1 6] 3| 55 < 60
whichislessthan x, so 1o getsresetto i+1 = 4. On the 4 5 77 > 60
second iteration, 1o =4 and hi = 6; the middle element 4 | a 66 S 60

of the subarray af4..6] isal[5] = 77 which is

136 ARRAYS [CHAP. 6

greater than x, so hi getsreset to i -1 = 4. On the third iteration, 1o = 4 and hi = 4; the middle element
of the subarray a[4..4] isal4] = 66 which is greater than x, so hi getsreset to i-1 = 3. That
terminates the loop, so the function returns 7, indicating that the target x was not found.

The Binary Search algorithm is significantly different from the Linear Search algorithm. The
most important distinction is that the Binary Search works only on sorted arrays. The benefit of
that requirement isthat the Binary Search is much faster than the Linear Search. For example, on
an array of 100 elements, the Linear Search could take up to 100 iterations, but the Binary
Search will not need more than 8 iterations, no matter what the target is. That is because the
Binary Search runs in logarithmic time; i.e., the number of iterations cannot exceed Ign + 1,
where n is the size of the array and Ign is the binary (base 2) logarithm of n. When n =100, Ign
+ 1=7.64. Note that in Example 6.14, n= 7 elements, so Ign + 1 = 3.81; this means that no more
than 3 iterations will ever be needed.

A third distinction between the two algorithms is that the Linear Search returns the smallest
index i for which a[i] == x. But the Binary Search is not specific: if there are multiple copies
of x, you cannot be sure which oneis located by the returned index.

Since the Binary Search requires that the array be sorted, it is useful to have a separate
function that tests that condition.

EXAMPLE 6.15 Determining whether an Array is Sorted

This program tests a boolean function that determines whether a given array is nondecreasing.

bool isNondecreasing(int al[]l, int n);

int main()

{ int all = { 22, 44, 66, 88, 44, 66, 55 };
cout << "isNondecreasing(a,4) = " << isNondecreasing(a,4) << endl;
cout << "isNondecreasing(a,7) = " << isNondecreasing(a,7) << endl;

}

bool isNondecreasing(int al], int n)

{ // returns true iff al[0] <= al[l] <= ... <= al[n-1]:

for (int i=1; i<n; i++)
if (alil<ali-1]) return false;
return true;

}

isNondecreasing(a,4) 1
igNondecreasing(a, 7) 0
If the function finds any adjacent par (ali-11,a[i]) of elements that decrease (i.e,
alil<ali-11]), then it returns false. If that doesn't happen, then it returns true, meaning that the
array is nondecreasing.
Note that the boolean values true and £alse are printed as the integers 1 and 0; that is how they are
stored in memory.

If the precondition in Example 6.14 that the array be sorted is not true, the Binary search func-
tion search () will not work correctly. Such conditions can be checked automatically using the
assert () function definedinthe <cassert> header. This function takes a boolean argument.
If the argument is £alse, the function terminates the program and reports the fact to the operat-
ing system. If the argument is true, the program continues unaffected.

CHAP. 6] ARRAYS 137

EXAMPLE 6.16 Usingthe assert () Function to Enforce a Precondition

This program tests an improved version of the search () function from Example 6.14. This version
usesthe isNondecreasing() functionfrom Example 6.15 to determine whether the array is sorted. It
passes the resulting boolean return valueto the assert () function so that the search will not be carried
out if the array is not sorted:

#include <casserts> // defines the assert () function
#include <iostream> // defines the cout object
using namespace std;

int index (int x, int all, int n);

int main()

{ int all = { 22, 33, 44, 55, 66, 77, 88, 60 };
cout << "index(44,a,7) = " << index(44,a,7) << endl;
cout << "index(44,a,7) = " << index(44,a,8) << endl;
cout << "index(60,a,7) = " << index(60,a,8) << endl;

}

bool isNondecreasing(int al[]l, int n);

int index (int x, int al]l, int n)

{ // PRECONDITION: al[0] <= al[l] <= ... <= aln-1];

// binary search:

assert (isNondecreasing(a,n));
int lo=0, hi=n-1, i;

while (lo <= hi)

{ i = (lo + hi)/2;
if (afli] == x) return i;
if (ali]l < x) lo = i+1l; // continue search in ali+1l..hi]
else hi = i-1; // continue search in al[lo..i-1]
}
return n; // x was not found in a[0..n-1]
}
index (44,a,7) = 2
Here, thearray a[] isnotcompletely
sorted. But itsfirst 7 elementsareinorder. ittt
So on the first call i.ndex (44,a,7), the Azzertion [izMondecreazingla.n]] failed in T esting.cpp'' on line 23
index () function makes the cal
isNondecreasing(a, 7) which
returns the boolean value true to the
assert () function, and the output is

the same as in Example 6.14. But on the second call index(44,a,8), the subsequent call
isNondecreasing(a, 8) returnsthe boolean value false tothe assert () function which then
aborts the program, causing Windows to display the alert pand shown here.

6.9 USING ARRAYSWITH ENUMERATION TYPES
Enumeration types were described in Chapter 2. They are naturally processed with arrays.
EXAMPLE 6.17 Enumerating the Days of the Week

Thisprogram definesan array high[]1 of seven £loats, representing the high temperatures for
the seven days of aweek:

138 ARRAYS [CHAP. 6

int main ()
{ enum Day { SUN, MON, TUE, WED, THU, FRI, SAT };
float high[SAT+1] = {88.3, 95.0, 91.2, 89.9, 91.4, 92.5, 86.7};
for (int day = SUN; day <= SAT; day++)
cout << "The high temperature for day " << day

<< " was " << high[day] << endl;

}

The high temperature for day 0 was 88.3
The high temperature for day 1 was 95.0
The high temperature for day 2 was 91.2
The high temperature for day 3 was 89.9
The high temperature for day 4 was 91.4
The high temperature for day 5 was 92.5

The high temperature for day 6 was 86.7
The array sizeis SAT+1 because SAT hasthe integer value 6 and the array needs 7 elements.
The int variable day, declared as an index in the for loop, takes the values SUN, MON, TUE, WED,
THU, FRI, or SAT. Remember that they are actually stored astheintegers 0, 1, 2, 3, 4, 5, and 6.
Note that it is not possible to print the names of the symbolic constants.

The advantage of using enumeration constants this way is that they render your code
“self-documenting.” For example, in Example 6.17 the £or loop control
for (int day = SUN; day <= SAT; day++)
speaks for itself.

6.10 TYPE DEFINITIONS

Enumeration types are one way for programmersto define their own types. For example,
enum Color { RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET };
defines the type color which can then be used to declare variables like this:
Color shirt = BLUE;
Color car[] = { GREEN, RED, BLUE, RED };
float wavelength[VIOLET+1] = {420, 480, 530, 570, 600, 620};
Here, shirt is avariable whose value can be any one of the 6 values of the type color and is
initialized to have the value BLUE, car isan array of 4 such color type variablesindexed from 0
to 3, and wavelength iSan array of 6 f1loat type variables indexed from RED tO VIOLET.
C++ also provides a way to rename existing types. The keyword typedef declares a new
name (i.e., asynonym or alias) for a specified type. The syntax is
typedef type alias;
where type is the given type and alias is the new name. For example, if you are used to
programming in Pascal, you might want to use these type aliases:
typedef long Integer;
typedef double Real;
Then you could declare variables like this:
Integer n = 22;
const Real PI = 3.141592653589793;
Integer frequency[64];
Note the syntax for the typede£ of an array type:
typedef element-type aliasl|];
It shows that the number of elementsin an array is not part of itstype.

CHAP. 6] ARRAYS 139

A typedef statement does not define a new type; it only provides a synonym for an existing
type. For example, the sum () function defined in Example 6.9 on page 131 could be called by
cout << sum(frequency,4);
even though the frequency([] array is declared (above) to have elements of type Integer.
There is no conflict in the parameter because Integer and int are merely different names for
the same type.
The next example shows another usefor typedefs.

EXAMPLE 6.18 The Bubble Sort Again

This is the same program as in Example 6.13 on page 134. The only change is the typedef£ for the
type name sequence which isthen used in the parameter lists and the declaration of a in main () :
typedef float Sequencell];
void sort (Sequence, int) ;
void print (Sequence, int) ;
int main()
{ sequence a = {55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7};
print(a,8);
sort(a,8) ;
print(a,8);
}
void sort (Sequence a, int n)
{ for (int i=n-1; 1i>0; i--)
for (int j=0; j<i; j++)
if (alj] > alj+1]) swap(aljl,alj+1]);
}
Note the typedef:
typedef float Sequencell];
The brackets [] appear after the alias type name sequence. Thisaliasis then used without brackets to
declare array variables and formal parameters.

6.11 MULTIDIMENSIONAL ARRAYS

The arrays we have used previously have all been one-dimensional. This means that they are
linear; i.e., sequential. But the element type of an array can be almost any type, including an
array type. An array of arrays is called a multidimensional array. A one-dimensional array of
one-dimensional arrays is called a two-dimensional array; a one-dimensional array of
two-dimensional arraysis called athree-dimensional array; etc.

The simplest way to declare a multidimensional array islike this:

double al[32][10] [4];

Thisis athree-dimensional array with dimensions 32, 10, and 4. The statement
al25]1[8]1[3] = 99.99

would assign the value 99.99 to the element identified by the multi-index (25,8,3).

EXAMPLE 6.19 Reading and Printing a Two-Dimensional Array
This program shows how a two-dimensiona array can be processed:

void read(int al] [5]);
void print (cont int al] [5]);

140 ARRAYS [CHAP. 6

int main()
{ int al3]1[5];
read(a) ;
print (a) ;
}
void read(int al] [5])
{ cout << "Enter 15 integers, 5 per row:\n”;
for (int i=0; i<3; i++)
{ cout << "Row " << i1 << ": ";
for (int j=0; j<5; Jj++)
cin >> alil [j1;
}
}

void print (const int al] [5])
{ for (int 1=0; i<3; i++)
{ for (int j=0; Jj<5; Jj++)
cout << " " << ali] [j];
cout << endl;

}
}

Enter 15 integers, 5 per row:
Row 0: 44 77 33 11 44
Row 1: 60 50 30 90 70
Row 2: 85 25 45 45 55
44 77 33 11 44
60 50 30 90 70
85 25 45 45 55
Notice that in the functions' parameter lists, the first dimension is left unspecified while the second
dimension (5) is specified. This is because the two-dimensional array al[][] is stored as a
one-dimensional array of three 5-element arrays. The compiler does not need to know how many of these
5-element arrays are to be stored, but it does need to know that they are 5-element arrays.

When a multi-dimensional array is passed to a function, the first dimension is not specified,
while all the remaining dimensions are specified.

EXAMPLE 6.20 Processing a Two-Dimensional Array of Quiz Scores

const NUM_STUDENTS = 3;

const NUM_QUIZZES = 5;

typedef int Score [NUM_STUDENTS] [NUM_QUIZZES] ;

void read(Score) ;

void printQuizAverages (Score) ;

void printClassAverages (Score) ;

int main()

{ sScore score;
cout << "Enter " << NUM _QUIZZES << " scores for each student:\n";
read (score) ;
cout << "The quiz averages are:\n";
printQuizAverages (score) ;
cout << "The class averages are:\n";
printClassAverages (score) ;

CHAP. 6] ARRAYS 141

void read (Score score)

{ for (int s=0; s<NUM _STUDENTS; s++)
{ cout << "Student " << s << ": ";

for (int g=0; g<NUM _QUIZZES; Jg++)
cin >> scorels] [ql;

1
1
void printQuizAverages (Score score)
{ for (int s=0; s<NUM _STUDENTS; s++)
{ float sum = 0.0;
for (int g=0; g<NUM_QUIZZES; g++)
sum += score([s] [q];
cout << "\tStudent " << s << ": " << sum/NUM_QUIZZES << endl;

}
}

void printClassAverages (Score score)
{ for (int g=0; g<NUM QUIZZES; g++)
{ float sum = 0.0;
for (int s=0; s<NUM_STUDENTS; s++)
sum += score([s] [q];
cout << "\tQuiz " << g << ": " << sum/NUM_STUDENTS << endl;

This uses a typedef to define the alias score for the two-dimensional array type. This makes the
function headers more readable.

The printQuizAverages () function prints the average of each of the 3 rows of scores, while the
printClassAverages () function printsthe average of each of the 5 columns of scores.

EXAMPLE 6.21 Processing a Three-Dimensional Array

This program simply counts the number of zerosin a three-dimensional array:

int numZeros (int al] [4] [3], int nl, int n2, int n3);
int main ()

{ int al2]1[411(3] = { { {5,0,2}, {0,0,9}, {4,1,0}, {7.,7.7} },
{ {3,0,0}, {8,5,0}, {0,0,0}, {2,0,9} }
}i
cout << "This array has " << numZeros(a,2,4,3) << " zeros:\n";

142

ARRAYS [CHAP. 6

int numZeros (int al] [4] [3], int nl, int n2, int n3)
{ int count = 0;

for (int 1 = 0; 1 < nl; i++)

for (int j = 0; j < n2; Jj++)
for (int k = 0; k < n3; k++)
if (ali] [j] [k] == 0) ++count;

return count;

}

This array has 11 zeros:

Notice how the array is initialized: it is a 2-element array of 4-element arrays of 3 elements each. That
makes atotal of 24 elements. It could have been initialized like this:

int al[2] (4] [3]={5,0,2,0,0,9,4,1,0,7,7,7,3,0,0,8,5,0,0,0,0,2,0,9};

or like this:

int al[2][4][3]={{5,0,2,0,0,9,4,1,0,7,7,7},{3,0,0,8,5,0,0,0,0,2,0,9}};

But these are more difficult to read and understand than the three-dimensional initializer list.
Also notice the three nested for loops. In general, processing a d-dimensional array is done with d
for loops, one for each dimension.

6.1
6.2
6.3

6.4
6.5

6.6
6.7

6.1

Review Questions

How many different types can the elements of an array have?

What type and range must an array’s subscript have?

What values will the elements of an array have when it is declared if it does not include an
initializer?

What values will the elements of an array have when it is declared if it hasan initializer with
fewer values than the number of elementsin the array?

What happensif an array’sinitializer has more values than the size of the array?

How does an enum statement differ from a typedef statement?

When a multi-dimensional array is passed to a function, why does C++ require all but the
first dimension to be specified in the parameter list?

Solved Programming Problems

Modify the program in Example 6.1 on page 126 so that each input is prompted and each
output islabeled, like this:

Enter 5 numbers
alo]: 11.11
al[l]: 33.33
al[2]: 55.55
al3]: 77.77
al4]: 99.99
In reverse order, they are:

al4] = 99.99
al3] = 77.77
al[2] = 55.55
all] = 33.33
alo] = 11.11

CHAP. 6] ARRAYS 143

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

Modify the program in Example 6.1 on page 126 so that it fills the array in reverse and then

prints them in the order that they are stored, like this:
Enter 5 numbers:

al[4]: 55.55

al[3]: 66.66

al2]: 77.77

al[l]: 88.88

al0]: 99.99
In reverse order, they are:

al0] = 99.99
al[l] = 88.88
al2] = 77.77
al[3] = 66.66
al[4] = 55.55

Modify the program in Example 6.9 on page 131 so that it tests the following function:
float ave(int[] a, int n);
// returns the average of the first n elements of al]
Modify the program in Example 6.10 on page 132 so that it prints the array, its sum, and its
average. (See Example 6.9 on page 131 and Problem 6.3.)
Modify the program in Example 6.11 on page 133 so that it prints the memory address and its
contents for each element of an array. For an array hamed a, use the expressions a, a+1,
a+2, €tc. to obtain the addresses of a[0], al[1], al2], etc, and use the expressions *a,
* (a+1), *(a+2), €fc. to obtain the contents of those locations. Declare the array as
unsigned int all;
so that the array element values will be printed as integers when inserted into the cout
stream.
Modify the program in Example 6.12 on page 133 so that it returns the last location of the
target instead of the first.
Modify the program in Example 6.15 on page 136 so that it returns true if and only if the
array is nonincreasing.
Write and test the following function that returns the minimum value among the first n ele-
ments of the given array:
float min(float al], int n);
Write and test the following function that returns the index of the first minimum value among
thefirst n elements of the given array:
int minIndex(float al[], int n);
Write and test the following function that returns through its reference parameters both the
maximum and the minimum values stored in an array:
void getExtremes (float& min, float& max, float al], int n);
Write and test the following function that returns through its reference parameters both the
largest and the second largest val ues (possibly equal) stored in an array:

void largest (float& maxl, float& max2, float all, int n);
Write and test the following function that removes an item from an array:
void remove (float al[]l, int& n, int i);

The function removes a[i] by shifting al the elements above that position are down and
decrementing n.
Write and test the following function that attempts to remove an item from an array:

bool removeFirst (float al], int& n, float x);
The function searchesthefirst n elements of the array a for theitem x. If x isfound, itsfirst
occurrence is removed, al the elements above that position are shifted down, n is decre-

144

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

ARRAYS [CHAP. 6

mented, and true is returned to indicate a successful removal. If x is not found, the array is
left unchanged and false isreturned. (See Problem 6.12.)
Write and test the following function that removes items from an array:

void removeAll (float al], int& n, float x);

The function removes all occurrences of x among the first n elements of the array a and
decreases the value of n by the number removed. (See Problem 6.13.)
Write and test the following function:

void rotate(int al[], int n, int k);
The function “rotates’ the first n elements of the array a, k positions to the right (or —k
positions to the left if k is negative). Thelast k elements are “wrapped” around to the
beginning of the array. For example, the call rotate(a,8,3) would transform the array
{22,33,44,55,66,77,88,99} into {77,88,99,22,33,44,55,66}. The cal rotate(a,8,-5)
would have the same effect.
Write and test the following function:

void append(int al[], int m, int b[], int n);
The function appends the first n elements of thearray b onto the end of the first m ele-
ments of the array a. It assumesthat a hasroom for at least m + n elements. For exam-
ple, if a is{22,33,44,55,66,77,88,99} and b is {20,30,40,50,60,70,80,90} then the call
append (a,5,b,3) would transform a into {22,33,44,55,66,20,30,40}. Note that b is
left unchanged and only n elementsof a are changed.
Write and test the function

void insert (float al[]l, int& n, float x)

This function insertstheitem x into the sorted array a of n elements and increments n.
The new item is inserted at the location that maintains the sorted order of the array. This
requires shifting elements forward to make room for the new x. (Note that this requires the
array to have at least n+1 elements all ocated.)
Implement the Insertion Sort algorithm for sorting an array of n elements. In this algorithm,
the main loop index i runs from 1 to n—1. On the ith iteration, the element a[i] is
“inserted” into its correct position among the subarray alo..i]. Thisis done by shifting
one position up all the elementsin the subarray that are greater than a[i]. Then a[i]l is
copied into the gap between the elements that are lessthan or equal to a[i] and those that
are greater. (Hint: usethe insert () agorithm from Problem 6.17.)
Implement the Selection Sort algorithm for sorting an array of n elements. Thisagorithm has
n-1 iterations, each selecting the next largest element a[j] and swapping it with the ele-
ment that isin the position where a[j] should be. So on thefirst iteration it selects the larg-
est of al the elements and swaps it with a [n-1], and on the second iteration it selects the
largest from the remaining unsorted elements a[0..n-2] and swapsit with a[n-21, etc.
On itsith iteration it selects the largest from the remaining unsorted elements a[0..n-1]
and swaps it with a [n-i]. (Hint: use the same loops asin Example 6.13 on page 134.)
Rewrite and test the Bubble Sort function presented in Example 6.13 on page 134, asan indi-
rect sort. Instead of moving the actual elements of the array, sort an index array instead.
Write and test the function

int frequency(float al[l, int n, int x);
This function counts the number of timestheitem x appears among thefirst n elements of
thearray a and returnsthat count asthe frequency of x in a.
Implement the Sieve of Eratosthenes to find prime numbers. Define a boolean array named
isPrime [SIZE], Set itsvalues isPrime[0] and isPrime[1] false (2 is the first

CHAP. 6] ARRAYS 145

6.23

6.24

6.25

6.26

6.27

6.28

6.29

prime), and set al the other elements true. Then for each i from 4 to s1zZE-1, set
isPrime[i] false if i isdivisbleby 2 (i.e, i%2 = 0). Then for each i from 6 to
SIZE-1,Set isPrime[i] false if i isdivisbleby 3. Repeat this process for each possi-
ble divisor from 2 to s1zE/2. When finished, al the isfor which isPrime[i] istill
true are the prime numbers. They are the numbers that have fallen through the sieve.
Write and test the following function:

void reverse(int al[], int n);
Thefunction reversesthefirst n elements of the array. For example, thecal reverse(a,5)
would transform the array {22,33,44,55,66,77,88,99} into {66,55,44,33,22,77,88,99} .
Write and test the following function:

bool isSymmetric(int all, int n);
The function returnstrue if and only if the array obtained by reversing the first n elementsis
the same as the original array. For example, if a is{22,33,44,55,44,33,22} then the call
isSymmetric(a,7) would return true, but thecall isSymmetric(a,4) would return
false. Warning: The function should leave the array unchanged.
Write and test the following function:

void add(float al[], int n, float bl[]);
The function adds the first n elements of b to the corresponding first n elements of a. For
example, if a is{2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9} and b is {6.0,5.0,4.0,3.0,2.0,1.0}, then the
cal add(a,5,b) would transform a into {8.2,8.3,8.4,8.5,8.6,7.7,8.8,9.9} .
Write and test the following function:

void multiply (float all, int n, float bl[]);
The function multiplies the first n elements of a by the corresponding first n elements of b.
For example, if a is the array {2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9} and b is the array
{4.0,-3.0,2.0,-1.0,0.0,0.0}, then the call multiply(a,5,b) would transform a into the
array { 8.8,-9.9,8.8,-5.5,0.0,7.7,8.8,9.9} .
Write and test the following function:

float innerProduct (float al[], int n, float bl[]);

The function returns the inner product (also called the “dot product” or “scalar product”) of
the first n elements of a with the first n elements of b. Thisis defined as the sum of the prod-
ucts of corresponding terms. For example, if a isthearray { 2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9}
and b is the array {4.0,-3.0,2.0,-1.0,0.0,0.0}, then the call innerProduct(a,5,b)
would return (2.2)(4.0) + (3.3)(-3.0) + (2.2)(4.0) + (5.5)(-1.0) + (6.6)(0.0) = 2.2.
Write and test the following function:

float outerProduct3 (float pl] [3], float all, float bl[]);
The function returns the outer product of thefirst 3 elements of a with the first 3 elements of
b. For example, if a isthe array { 2.2,3.3,4.4} and b isthearray { 2.0,—1.0,0.0}, then the call
outerProduct (p,a,b) would transform the two-dimensional array p into

44 -22 00
6.6 -3.3 00
88 —4.4 00

Itselement p[i] [§] istheproduct of a[i] with b[]].

Write and test a function that implements the Perfect Shuffle of a one-dimensional array with
an even number of eements. For example, it would replace the array
{11,22,33,44,55,66,77,88} withthearray {11,55,22,66,33,77,44,88}.

146

6.30

6.31

6.32

6.33

6.34

6.35

6.36

ARRAYS [CHAP. 6

Write and test the function that “rotates” 90° clockwise a two-dimensiona square array of
ints. For example, it would transform the array

11 22 33

44 55 66

77 88 99
into the array

77 44 11

88 55 22

99 66 33
Write and run a program that reads an unspecified number of numbers and then prints them
together with their deviations from their mean.
Write and test the following function:
double stdev(double x[], int n);
The function returns the standard deviation of a data set of n numbers x,, ..., X, defined by
the formula

where x isthe mean of the data. Thisformula says. square each deviation (x[i] - mean);
sum those squares; divide that square root by n-1; take the square root of that sum.
Extend the program from Problem 6.31 so that it al so computes and prints the Z-scores of the
input data. The Z-scores of the n numbersx, ..., x._, are defined by z = (x; — X)/s. They nor-
malize the given data so that they are centered about 0.0 and have standard deviation 1.0.
Use the function defined in Problem 6.32.
In theimaginary “good old days’” when agrade of “C” was considered “ average,” teachers of
large classes would often “curve” their grades according to the following distribution:
A: 15<z
B: 05<z<15
C: -05<z<05
D: -15<z<-05
F: z<-15
If the grades were normally distributed (i.e., their density curve is bell-shaped), then this
algorithm would produce about 7% A’s, 24% B’s, 38% C's, 24% D’s, and 7% F's. Here the z
values are the Z scores described in Problem 6.33. Extend the program from Problem 6.33 so
that it prints the “curved” grade for each of the test scores read.
Write and test a function that creates Pascal’s Triangle in the square matrix that is passed to
it. For example, if the two-dimensiona array a and the integer 4 were passed to the function,
then it would load the following into a:
10000
11000
12100
13310
14641
In the theory of games and economic behavior, founded by John von Neumann, certain
two-person games can be represented by a single two-dimensional array, caled the payoff
matrix. Players can obtain optimal strategies when the payoff matrix has a saddle point. A
saddle point is an entry in the matrix that is both the minimax and the maximin. The minimax

CHAP. 6] ARRAYS 147

6.1
6.2
6.3
6.4

6.5
6.6

6.7

6.1

6.2

6.3

of amatrix is the minimum of the column maxima, and the maximin is the maximum of the
row minima. The optimal strategies are possible when these two values are equal. Write a
program that prints the minimax and the maximin of agiven matrix.

Answersto Review Questions

Only one: al of an array’s elements must be the same type.

An array’s subscript must be an integer type with range from 0 to n-1, where nisthe array’s size.

In the absence of an initializer, the elements of an array will have unpredictable initial values.

If the array’s initializer has fewer values than the array size, then the specified values will be assigned
to the lowest numbered elements and the remaining elements will automatically be initialized to zero.
Itisan error to have moreinitia values than the size of the array.

An enum Statement defines an enumeration type which is a new unsigned integer type. A typedef
merely defines a synonym for an existing type.

When a multi-dimensional array is passed to afunction, all dimensions except the first must be speci-
fied so that the compiler will be able to compute the location of each element of the array.

Solutions to Problems

Example 6.1 modified with input prompts and output |abels:
int main()
{ const int SIZE=5;
double a[SIZE];

cout << "Enter " << SIZE << " numbers:\n";
for (int i=0; i<SIZE; i++)
{ cout << "\tal[" << i << "]: ";

cin >> ali];
cout << "In reverse order, they are:\n";
for (int i=SIZE-1; i>=0; i--)
cout << "\ta[" << i << "] = " << al[il] << endl;

Example 6.1 modified so that inputs are stored in reverse:
int main ()
{ const int SIZE=5;
double a[SIZE];

cout << "Enter " << SIZE << " numbers:\n";
for (int i=SIZE-1; i>=0; i--)
{ cout << "\tal[" << i << "]: ";

cin >> ali];
cout << "In reverse order, they are:\n";
for (int i=0; i<SIZE; i++)
cout << "\tal[" << i << "] = " << al[i] << endl;

Example 6.9 modified so that it tests a function that returns the average of the elements of an array:
float ave(int[],int) ;
int main()
{ int all = { 11, 33, 55, 77 };

148

6.4

6.5

6.6

ARRAYS [CFU\P.G
int size = sizeof (a)/sizeof (int) ;
cout << "ave(a,size) = " << ave(a,size) << endl;
}
float ave(int al[]l, int n)

{ float sum=0.0;
for (int i=0; i<n; i++)
sum += al[i];
return sum/n;
}
Example 6.10 modified so that that it printsthe array, its sum, and its average:
void read(int[],inté&) ;

void print (int[], int) ;
int sum(int[],int) ;
float ave(int[],int) ;

int main ()

{ const int MAXSIZE=100;
int a[MAXSIZE]={0}, size;
read(a,size) ;

cout << "The array has " << size << " elements: ";
print (a, size);
cout << "\nIts sum is " << sum(a,size)

<< "\nand its average is " << ave(a,size) << endl;

}

The function definitions are the same as in Example 6.9, Example 6.10, and Problem 6.3.
Example 6.11 modified so that that it prints the memory locations and their contents for each element

of an array:

int main()

{ unsigned int all = { 22, 44, 66, 88 };
cout << "a =" << a << ", *a = " << *a << endl;
cout << "a+l = " << a+l << ", *(a+l) = " << *(a+l) << endl;
cout << "a+2 = " << a+2 << ", *(a+2) = " << *(a+2) << endl;
cout << "a+3 = " << a+3 << ", *(a+3) = " << *(a+3) << endl;

}

a = 0x0064fdbc, *a = 22

a+l = 0x0064fdc0, *(a+l) = 44

a+2 = 0x0064fdc4, *(a+2) = 66

a+3 = 0x0064fdc8, *(a+3) = 88
The o0x that prefixes each memory location indicates that those are hexadecimal (base 16) val-
ues. (Most computers express memory addresses in hexadecimal notation.) Note that each
addressis 4 bytes past its predecessor; that showsthat unsigned int objects occupy 4 bytesin
memory.
Example 6.12 modified so that that it prints the memory locations and their contents for each element
of an array:

int index (int,int[],int) ;

int main()

{ int all = { 22, 44, 66, 88, 44, 66, 55 };
cout << "index(44,a,7) = " << index(44,a,7) << endl;
cout << "index(50,a,7) = " << index(50,a,7) << endl;
int index(int x, int all, int n)

{ for (int i=n-1; i>=0; i--)

CHAP. 6]

6.7

6.8

6.9

6.10

6.11

6.12

6.13

ARRAYS

if (afli] == x) return i;
return n;
index (44,a,7) = 4
index(50,a,7) = 7

Example 6.15 modified so that that it determines whether the array is nonincreasing:

bool isNonincreasing(int al], int n)
{ for (int i=1; i<n; i++)
if (aflil>al[i-1]) return false;
return true;
}
float min(float al[]l, int n)
{ assert(n >= 0);
float min=a([0];
for (int i=1; i<n; i++)
if (afli]l] < min) min = ali];
return min;
}
int minIndex(float al[l, int n)
{ assert(n >= 0);
int j=0;
for (int i=1; i<n; i++)
if (ali] < aljl) j = i;
return j;
}
void getExtremes (float& min, float& max, float all, int n)
{ assert(n >= 0);

min = max = al[0];
for (int i=1; i<n; i++)
if (afli]l] < min) min = ali];
else if (ali] > max) max = ali];

}

void largest(float& maxl, float& max2, float al[]l, int n)
{ assert(n >= 1);

if (n == 1) return al0];

int il1=0, i2;

for (int i=1; i<n; i++)

if (afi]l > aflil]l) i1 = 1i;
maxl = al[il];
i2 = (i1 == 0?1 : 0);
for (int i=i2+1; di<n; i++)
if (i != i1 && ali]l > ali2]) i2 = i;
max2 = ali2];

}

void remove(float all, int& n, int i)
{ for (int j=i+1; j<n; J++)

alj-11 = aljl;

--n;

}
bool removeFirst(float a[l, int& n, float x)
{ for (int 1=0; i<n; i++)

if (al[i] == x)

149

150 ARRAYS [CHAP. 6

{ for (int j=i+1; j<n; J++)
alj-11 = aljl;
--n;
return true;

}

return false;
}
6.14 void removeAll (float all, int& n, float x)

{ for (int 1=0; i<n; i++)

if (ali]l == x)

{ for (int j=i+1; j<n; J++)

alj-11 = aljl;
--n;

}
}

6.15 void rotate(int al[]l, int n, int k)
{ const int MAXOFFSET=100;
assert (k < MAXOFFSET) ;

int temp [MAXOFFSET] ;

if (k > 0)
{ for (int j=0; j<k; j++) // copy k elements into templ]
temp[j] = aln-k+j];
for (int i=n-1; i>=k; i--) // shift n-k elements
ali]l] = ali-k];
for (int 1i=0; i<k; 1i++) // copy k elements back to al]
ali]l] = templ[i];
}
if (k < 0)
{ for (int 3=0; j<-k; J++) // copy -k elements into temp (]
temp[j] = aljl;
for (int i=0; i<n+k; i++) // shift n+k elements
ali] = ali-k];
for (int i=n+k; i<n; i++) // copy -k elements back to al]
ali]l = temp[i-n-k];

}
}

6.16 void append(int al[l, int m, int b[], int n)
{ for (int j=0; j<n; j++) // copy n elements into al]
alm+j] = b[jl;
}
6.17 void insert(float al[]l, int& n, float x)
{ int j=n;
while (j>0 && alj-11>x)
alj--1 = alj-11;
aljl = x;
++0;

}

6.18 void sort(float all, int n)
{ // insertion sort:
for (int i=1; i<n; i++)
{ // insert al[i] among al[0..i-1]:
float x=ali];

CHAP. 6]

6.19

6.20

6.21

6.22

ARRAYS 151
int j=1i;
while (j>0 && al[j-1]>x)
alj--1 = alj-11;
aljl = x;
// INVARIANT: al[0..i] is sorted
}

}
void sort(float all, int n)

{ // selection sort:
for (int i=1; i<n; i++)
{ // select alk] = max{al0],al1],...,aln-1il}:
int k=0;
for (int j=1; j<=n-i; j++)
if (aljl=alk]l) k = j;
swap (a[k],aln-1]);
// INVARIANT: al[n-1-i..n-1] is sorted
}
}
void sort(float al[l, int indx[], int n)
{ // indirect bubble sort:
for (int i=1; i<n; i++)
// bubble up max{al0],al1],...,aln-1il}:
for (int j=0; j<n-i; j++)
if (alindx[j]] > alindx[j+1]]) swap (indx[j],indx[j+1]);
// INVARIANT: a[indx[n-1-i]] <= alindx[n-i]] <= ..alindx[n-1]1]
}
int frequency(float[],int,int) ;
int main()
{ float all = {561, 508, 400, 301, 329, 599, 455, 400, 346, 346,
329, 375, 561, 390, 399, 400, 401, 561, 405, 405,
455, 508, 473, 329, 561, 505, 329, 455, 561, 599,
561, 455, 346, 301, 455, 561, 399, 599, 508, 508};
int n=40, x;
cout << "Item: ";
cin >> X;

cout << x << " has frequency " << frequency(a,n,x) << endl;
}
int frequency(float al[l, int n, int x)
{ int count = 0;

for (int i=0; i<n; i++)

if (af[i] == x) ++count;

return count;
}
Item: 400
400 has frequency 3
#include <iomanip> // defines the setw() function
#include <iomanip> // defines the setw() function

#include <iostream> // defines the cout object
using namespace std;

const int SIZE = 400;

void sieve (bool[],int);

void print (bool[],int);

152 ARRAYS [CHAP. 6

int main ()

{ // prints all the prime numbers less than SIZE:
bool isPrimel[SIZE] = {0};
sieve (isPrime, SIZE) ;
print (isPrime, SIZE) ;

!

void sieve (bool isPrime[], int n)

{ // sets isPrime[i] = false iff i is not prime:
for (int 1i=2; i<n; 1i++)
isPrime[i] = true; // assume all i > 1 are prime

for (int p=2; p<=n/2; p++)
for (int m=2*p; m<n; m += p)
isPrime[m] = false; // no multiple of p is prime

1
void print (bool al], int n)
{ // prints each i for which isPrime[i] is true:
for (int i=1; i<n; 1i++)
if (af[i]) cout << setw(3) << 1i;
else cout << setw(3) << (1%20==0?'\n':' "');

6.23 void reverse(int al]l, int n)
{ for (int i=0; i<n/2; i++)
swap (a[i]l,aln-1-1i]);
1

6.24 bool isSymmetric(int al[l, int n)
{ for (int 1=0; i<n/2; i++)
if (afi] != a[n-1-i]) return false;
return true;
!
6.25 void add(float all, int n, float bl[])
{ for (int 1=0; i<n; i++)
alil += bl[il;
!

TeamLRN

CHAP. 6] ARRAYS 153

6.26

6.27

6.28

6.29

6.30

void multiply(float all, int n, £float bl[l)
{ for (int 1=0; i<n; i++)

ali] *= b[i]l;
}

float innerProduct(float all, int n, £float bI[])
{ float p=0;
for (int i=0; i<n; i++)
p += alil*bli];
return p;
}
void outerProduct3 (float pl[] [3], float al[l, float bI[])
{ for (int 1=0; i<3; i++)
for (int j=0; j<3; Jj++)
plil [j] = alil*bl[j];
}
void shuffle(int al[]l, int n
{ // The pPerfect Shuffle for an even number of elements:
assert(n <= SIZE) ;
int temp[SIZE];
for (int i=0; i<n/2; i++)
{ temp[2*i] = alil;
temp[2*i+1] = al[n/2+1];
}
for (int i=0; i<n; i++)
ali]l] = templ[i];
}
const int SIZE=3;
typedef int Matrix[SIZE] [SIZE];
void print (Matrix) ;
void rotate (Matrix) ;
int main()
{ // tests the rotate() function:
Matrix m = { 11, 22, 33, 44, 55, 66, 77, 88, 99 };
print (m) ;
rotate (m) ;
print (m) ;
}
void print (Matrix a)
{ for (int 1=0; i<SIZE; i++)
{ for (int j=0; J<SIZE; J++)
cout << alil [§] << "\t";
cout << endl;

}

cout << endl;
}
void rotate (Matrix m)
{ Matrix temp;
for (int i=0; i1<SIZE; i++)
for (int j=0; j<SIZE; j++)
temp[i] [j] = m[SIZE-j-1]1[i];
for (int i=0; i1<SIZE; i++)
for (int j=0; j<SIZE; Jj++)

154

6.31

6.32

ARRAYS [CHAP. 6

m[i] [J] = templ[di] [J1;
1
const int SIZE = 100;
void read (double[],int&) ;
double mean (double[],int) ;
int main ()
{ double x[SIZE];

int n=0;
read (x,n) ;
double m = mean(x,n);
cout << "mean = " << m << endl;
for (int 1 = 0; 1 < n; 1i++)
cout << "x[" << 1 << "] = " << x[1i]
<< ", dev[i] = " << x[1] - m << endl;

}

void read(double x[], int& n)
{ cout << "Enter data. Terminate with 0:\n";
while (n<SIZE)
{ cout << "x[" << n << "]: ";
cin >> x[n];
if (x[n] == 0) break;
else ++n;
!
}

double mean (double x[], int n)
{ double sum=0;
for (int 1=0; i<n; 1i++)
sum += x[i];
return sum/n;

}

double stdev(double al[]l, int n)
{ assert(n > 1);
double sum=0;
for (int 1=0; i<n; 1i++)
sum += alil;
double mean = sum/n;
sum=0;
double deviation;
for (int 1=0; i<n; 1i++)
{ deviation = al[i] - mean;
sum += deviation*deviation;

}

return sqgrt(sum/(n-1));

TeamLRN

CHAP. 6]

6.33

6.34

6.35

6.36

ARRAYS

int main ()
{ double xI[] =

int n=8;
print (x,n) ;
double m = mean(x,n);
double g = stdev(x,n);
cout << "mean = " << m << ", std dev = " << s << endl;
for (int i=0; i<n; i++)

cout << "x[" << 1 << "] = " << x[1i]

<< ", zZ[" << 1 << "] =" << (x[1] - m)/s << endl;

}

int main()
{ double xI[] =
int n=8;
print (x,n) ;
double m = mean(x,n);
double g = stdev(x,n);
cout << "mean = "
for (int i=0;
{ double z =
cout <<

<< m << ",
i++)
- m)/s;
<< 1 << "]
<< ", z["
if (z >= 1.5)
else if (z
else if (z
else if (z
else cout
}
}
void build pascal (int pl[] [SIZE],
{ assert(n > 0 && n < SIZE);
for (int i=0; i<SIZE;
for (int j=0; j<SIZE, J++)
if (isn || 3> p[l][j]
else if (j==0 || ==1) p
else pli]l [J] = pli-111[]-

i<n;
(x[1]
"X[" =
<< 1 << "] ="
A"
cout << "

cout << " =
0.5)
-0.5)
-1.5)

<< " = F"

cout << "
cout << "
<< endl;

i++)

}

double max_of col (Matrix m,
{ double max=m[0] []];

for (int i=1;

if (m[i] [j] >max)
return max;

int n,
i<n; 1++)
max =

}

double minimax (Matrix m, int n)
{ assert(n>0 && n < SIZE);

m([i] [§];

std dev

{ 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9 };

{ 2.5, 4.5, 6.3, 6.7, 7.2, 7.5, 7.8, 9.9 };

= " << s << endl;

" e x[1]

<< Z;

1

double minimax=max of col(m,n,0);

for (int j=1; j<n; Jj++)
{ double mm = max of col(m,n,j);
if (mm<minimax) minimax = mm;

}

return minimax;

Cll
Dll

<< endl;
= B"

<< endl;
<< endl;
<< endl;

int n)

int j)

155

Chapter 7

Pointers and References

7.1 THE REFERENCE OPERATOR

Computer memory can be imagined as avery large array of bytes. For
example, a computer with 256 MB of RAM (256 megabytes of
random-access memory) actually contains an array of 268,435,456 (2%)
bytes. As an array, these bytes are indexed from 0 to 268,435,455. The
index of each byte is its memory address. So a 256 MB computer has
memory addresses ranging from 0 to 268,435,455, whichis 0x00000000
to oxoff£££££ in hexadecimal (see Appendix G). The diagram at right
represents that array of bytes, each with its hexadecimal address.

A variable declaration associates three fundamental attributes to the
variable: its name, its type, and its memory address. For example, the
declaration

int n;
associatesthe name n, thetype int, and the address of some locationin
memory where the value of n is stored. Suppose that address is
0x0064fdfo. Then we can visualize n likethis:
0x0064fdf0

n

int

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008

0x0064fdee
0x0064fdef
0x0064fdfo
0x0064fdf1l
0x0064fdf2
0x0064fdf3
0x0064fdf4
0x0064fdfs5
0x0064fdfe
0x0064fdf7
0x0064fdfs8
0x0064fdf9
0x0064fdfa
0x0064fdfb
0x0064fdfc
0x0064fdfd
0x0064fdfe
0x0064fdff
0x0064fe00
0x0064fe0l

OxOffffff7
OxOffffffsg
OxOffffffo
ox0ffffffa
0x0ffffffb
ox0ffffffc
OxOffffffd
ox0ffffffe
OxOfffffff

The variable itself is represented by the box. The variable’'s name n is on the left of the box, the
variable's address 0x0064 £d£0 isabove the box, and the variable' stype int is below the box.

On most computers, variables of type int occupy 4 bytes in memory.
So the variable n shown above would occupy the 4-byte block of
memory represented by the shaded rectangle in the diagram at right,
using bytes 0x0064fdf0, 0x0064fdf1, 0x0064fdf2, and 0x0064fdf3.
Note that the address of the object is the address of the first byte in the
block of memory where the object is stored.

If the variable isinitialized, like this:

int n=44;
then the two representations ook like this:

0x0064fdf0
n
The variable’svalue 44 is stored in the four bytes allocated to it.
In C++, you can obtain the address of avariable by using the reference

0x0064fdee
0x0064fdef
0x0064fdfo
0x0064fdf1l
0x0064fdf2
0x0064fdf3
0x0064fdf4
0x0064fdfs5
0x0064fdfe

0x0064fdee
0x0064fdef
0x0064fdfo
0x0064fdf1l
0x0064fdf2
0x0064fdf3
0x0064fdf4
0x0064fdfs5
0x0064fdfe

operator &, also called the address operator. The expression sn evaluates to the address of the

variable n.

156

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 7] POINTERS AND REFERENCES 157

EXAMPLE 7.1 Printing Pointer Values

int main ()
{ int n=44;

cout << "m = " << n << endl; // prints the value of n
cout << "&n = " << &n << endl; // prints the address of n
n = 44

&n = 0x0064fdfo
The output shows that the address of n is 0x0064£d£0. You can tell that the output 0x0064£d£0
must be an address because it is given in hexadecimal form, identified by its 0x prefix. The decimal form
for this number is 6,618,608. (See Appendix G)

Displaying the address of a variable thisway is not very useful. The reference operator s has
other more important uses. We saw one use in Chapter 5: designating reference parametersin a
function declaration. That useis closely tied to another: declaring reference variables.

7.2 REFERENCES

A referenceisan alias or synonym for another variable. It is declared by the syntax
type& ref-name = var-name;
where type is the variabl€'s type, ref-name is the name of the reference, and var-name is the
name of the variable. For example, in the declaration
int& rn=n; // r is a synonym for n
rn is declared to be areference to the variable n, which must aready have been declared.

EXAMPLE 7.2 Using References
Thisdeclaresrn as a reference to n:

int main ()
{ int n=44;

int& rn=n; // r is a synonym for n
cout << "n = " << n << ", rn = " << rn << endl;
--n;
cout << "n = " << n << ", rn = " << rn << endl;
rn *= 2;
cout << "n = " << n << ", rn = " << rn << endl;
}
n = 44, rn = 44
n = 43, rn = 43
n = 86, rn = 86

The two identifiers n and rn are different names for the same variable; they aways have the same value.
Decrementing n changes both n and nr to 32. Doubling rn increases both n and rn to 64.

Like constants, references must be initialized when they are declared. But unlike a constant, a
reference must be initialized to avariable, not aliteral:
int& rn=44; // ERROR: 44 is not a variable!
(Some compilers may allow this, issuing awarning that atemporary variable had to be created to
allocate memory to which the reference rn can refer.)

158 POINTERS AND REFERENCES [CHAP. 7

Although areference must be initialized to avariable, references are not variables. A variable
is an object; i.e., a block of contiguous bytes in memory used to store accessible information.
Different objects must occupy digoint blocks of memory.

EXAMPLE 7.3 References Are Not Separ ate Variables

int main ()
{ int n=44;

int

int& rn=n; // r is a synonym for n
cout << " &n = " << &n << ", &rn = " << &rn << endl;
int& rn2=n; // r is another synonym for n
int& rn3=rn; // r is another synonym for n
cout << "&rn2 = " << &rn2 << ", &rn3 = " << &rn3 << endl;
}
&n = 0x0064fde4, &rn = 0x0064fdes
&rn2 = 0x0064fde4, &rn3 = 0x0064fde4
The first line of output shows that n and rn have the same 0%0064£d04
address. 0x0064fde4. Thus they are merely different names for n

the same object. The second line of output shows that an object can
have several references, and that a reference to a reference is the
same as areference to the object to which it refers. In this program,
there is only one object: an int named n with address
0x0064fde4. The names rn, rn2, and rn3 are al references to
that same object.

rn’ rn2 rn3

In C++, the reference operator & is used for two distinct purposes. When applied as a prefix to
the name of an object, it forms an expression that evaluates to the address of the object. When
applied as a suffix to atype T, it names the derived type “reference to T”. For example, ints is
thetype “referenceto int”. Soin Example 7.3, n is declared to have type int and rn is declared
to have type reference to int.

C++ actually has five kinds of derived types. If T isatype, then const T isthe derived type
“constant T”, T() isthederived type*“functionreturning T”, TI1 isthe derived type “array of
T”, T& iSsthederived type “referenceto ”, and T+ isthe derived type“pointer to T”.

References are used mostly for reference parameters (See Section 5.10 on page 102.). We see
now that they work the same way as reference variables: they are merely synonyms for other
variables. Indeed, a reference parameter for a function is really just a reference variable whose
scopeis limited to the function.

7.3 POINTERS

The reference operator & returns the memory address of the variable to which it is applied.
We used this in Example 7.1 on page 157 to print the address. We can also store the address in
another variable. The type of the variable that stores an address is called a pointer. Pointer
variables have the derived type “pointer to T”, where T is the type of the object to which the
pointer points. As mentioned in Section 7.2, that derived type is denoted by T+. For example,
the address of an int variable can be stored in a pointer variable of type int*.

CHAP. 7]

POINTERS AND REFERENCES

EXAMPLE 7.4 Using Pointer Variables

This program definesthe int variablen and the int* variablepn:

int main ()

{ int n=44;

cout
int*
cout
cout

}
n = 44,

&pn = 0x0064fde0

Thevariable n isinitialized to 44. Itsaddressis 0x0064fddc. The variable
pn is initialized to &n which is the address of n, so the value of pn is
0x0064 fddc, as the second line of output shows. But pn is a separate object,

<< "n =

pn=&n;

<< n

<< "&pn =
&n =

" << n<< ", &n = " << &n << endl;
// pn holds the address of n

pn = " << pn << endl;
" << &pn << endl;

0x0064fddc

pn = 0x0064fddc

as the third line of output shows: it has the distinct address 0x0064£deo0.

The variable pn is called a “pointer” because its value “points’
to the location of another value. The value of a pointer is an
address. That address depends upon the state of the individua
computer on which the program is running. In most cases, the
actual value of that address (here, 0x0064fddc) is not relevant to
the issues that concern the programmer. So diagrams like the one
above are usually drawn more simply like this. This captures the
essential features of n and pn: pn is a pointer to n, and n has the

value 44. A pointer can be thought of asa*“locator”: it locates another object.

7.4 THE DEREFERENCE OPERATOR

159

0x0064fddc
44

a]

int

0x0064fde0

pn | 0x0064fddc

0x0064fdda
0x0064fddb
0x0064fddc
0x0064fddd!
0x0064fdde
0x0064fddf
0x0064fde0
0x0064fdel
0x0064fde2
0x0064fde3
0x0064fde4
0x0064fde5

int*

6\57
A
0.
(83

If pn points to n, we can obtain the value of n directly from p; the expression *pn evauates
to the value of n. This evaluation is called “dereferencing the pointer” pn, and the symbol * is
called the dereference operator.

EXAMPLE 7.5 Dereferencing a Pointer

This is the same program as in Example 7.4 with one more line of code:

int main ()

{ int n=44;

cout
int*
cout
cout
cout

<<

"n o=

pn=&n;

<<

<<

<<

"&pn
n *pn

" << n<< ", &n = " << &n << endl;
// pn holds the address of n

pn = " << pn << endl;
" << &pn << endl;
" << *pn << endl;

POINTERS AND REFERENCES

0x0064fdcc

160
n = 44, &n =
pn = 0x0064fdcc
&pn = 0x0064£fddo
*pn = 44

[CHAP. 7

Thisshowsthat *pn isan diasfor n: they both have the value 44.

EXAMPLE 7.6 Pointersto Pointers

This continues to build upon the program from Example 7.4:
int main ()
{ int n=44;

cout << " n =
cout << " &n = "
int* pn=&n; // pn
cout << " pn = "
cout << " &pn = "
cout << " *pn = "
int** ppn=&pn; //
cout << " ppn = "
cout << " &ppn = "
cout << " *ppn = "
cout << "**ppn = "
}
n = 44
&n = 0x0064£d78
pn = 0x0064£fd78
&pn = 0x0064fd7c
*pn = 44
ppn = 0x0064fd7c
&ppn = 0x0064£d80
*ppn = 0x0064£d78
**ppn = 44

<< n << endl;
<< &n << endl;
holds the address of n
<< pn << endl;

<< &pn <<
<< *pn <<
ppn holds
<< ppn <<

<< &ppn << endl;
<< *ppn << endl;
<< **ppn << endl;

endl;
endl;

the address of pn

endl;

The variable ppn points to pn which pointston. So
*ppn isanaiasfor pn, just as *pn isan aliasfor n. Therefore * *ppn isalso an aiasfor n.

int

ppn

int**

Note in Example 7.6 that each of the three variables n, pn, and ppn, has a different type: int,
int*, and int*=*. In genera, if T1 and T2 are different types, then any of their derived types
will also be different. So although pn and ppn are both pointers, they are not the same type: pn

has type pointer to int, while ppn has type pointer to int*.

The reference operator & and the dereference operator * areinverses. n == *p whenever
p == &n. Thiscanasobeexpressedas *sn == n and &*p ==

EXAMPLE 7.7 Referencing Isthe Opposite of Der eferencing

This also builds

int main ()
{ int n=44;

cout
cout
int¥*

<< " n =
<< " &n =
pn=&n;

<< n << endl;
<< &n << endl;

upon the program from Example 7.4:

// pn holds the address of n

CHAP. 7]

cout << " pn
cout << " &pn =
cout << " *pn

int nn=*pn;

POINTERS AND REFERENCES

161

= " << pn << endl;

" << &pn << endl;

= " << *pn << endl;

// nnn is a duplicate

cout << " nn = " <<
cout << " &nn = " <<
int& rpn=*pn; // rpn
cout << " rpn = " <<
cout << " &rpn = " <<
}
n = 44
&n = 0x0064£d74
pn = 0x0064£fd74
&pn = 0x0064£d78
*pn = 44
nn = 44
&nn = 0x0064fd7c
rpn = 44
&rpn = 0x0064fd74

Here p points to the integer named np and rnp isa

nn << endl;

&nn << endl;

is a reference for n
rpn << endl;

&rpn << endl;

0x0064fd7¢c
44 | n|

0x0064£d74
44

int

nn

reference that is initialized to the value to which pn
points. So pn references n and rpn dereferences pn. Therefore rpn isan diasfor n; i.e., they are differ-
ent names for the same object. The output verifies this: n and rpn have the same address: 0x0064£d74.

7.5 DERIVED TYPES

Like the reference operator &, the dereference operator * is used for two distinct purposes.
When applied as a prefix to a pointer to an object, it forms an expression that evaluates to that
object’s value. When applied as a suffix to atype T, it names the derived type “ pointer to T”. For
example, int* isthetype “pointer to int”.

As mentioned above, there are five kinds of derived typesin C++. Here are some declarations
of derived types:

const int C = 33;

int& rn = n;

int* pn = &n;

int al[] = { 33, 66 };

int £() = { return 33; };

//
//
//
//
//

const int

reference to int
pointer to int

array of int

function returning int

A derived type can derive from any other type. So many combinations are possible:

int* const Pn=44;
const int* pN=&N;

//
//

constant pointer to an int
pointer to a constant int

const int* const PN=&N; // constant pointer to a constant int
float& arl[]l = { x, v }; // array of 2 references to floats
float* apl]l = { &x, &y }; // array of 2 pointers to floats

long& r() { return n; } // function returning reference to long
long* p() { return &n; } // function returning pointer to long
long (*pf) () { return 44; } // pointer to function returning long

Some derived types require the assistance of typedefs.
typedef char Word[255];
Word& pa=a;

Word*

pa=é&a;

//
//
//

type array of 255 chars
reference to an array of 255 chars
pointer to an array of 255 chars

162 POINTERS AND REFERENCES [CHAP. 7

7.6 OBJECTS AND LVALUES

The Annotated C++ Reference Manual [Ellis] states: “An object is a region of storage. An
Ivalue is an expression referring to an object or function.” Originally, the terms “Ivalue” and
“rvalue’ referred to things that appeared on the left and right sides of assignments. But now
“Ivalue” ismore general.

The simplest examples of lvalues are names of objects, i.e., variables:

int n;
n = 44; // n is an lvalue
The simplest examples of things that are not Ivalues are literals:
44 = n; // ERROR: 44 is not an lvalue
But symbolic constants are lvalues:
const int MAX = 65535; // MAX is an lvalue
even though they cannot appear on the left side of an assignment:
MAX = 21024; // ERROR: MAX is constant

Lvaluesthat can appear on the left side of an assignment are called mutable Ivalues; those that
cannot are called immutable Ivalues. A variable is a mutable lvalue; a constant is an immutable
Ivalue. Other examples of mutable lvalues include subscripted variables and dereferenced point-
ers:

int al[8];

al[5] = 22; // al5] is a mutable lvalue
int* p = &n;

*p = 77; // *p is a mutable lvalue

Other examples of immutable lvalues include arrays, functions, and references.

In general, an lvalue is anything whose address is accessible. Since an address is what a refer-
ence variable needs when it is declared, the C++ syntax requirement for such a declaration speci-
fiesan Ivalue:

type& refname = lvalue;
For example, thisisalegal declaration of areference:

int& r = n; // OK: n is an lvalue
but these are illegal:
int& r = 44; // ERROR: 44 is not an lvalue
int& r = n++; // ERROR: n++ is not an lvalue
int& r = cube(n); // ERROR: cube(n) is not an lvalue

7.7 RETURNING A REFERENCE

A function’s return type may be a reference provided that the value returned is an lvalue
which is not local to the function. This restriction means that the returned value is actually a
reference to an lvalue that exists after the function terminates. Consequently that returned Ivalue
may be used like any other lvalue; for example, on the left side of an assignment:

EXAMPLE 7.8 Returning a Reference

int& max(int& m, int& n) // return type is reference to int
{ return (m >n ? m : n); // m and n are non-local references

}

CHAP. 7] POINTERS AND REFERENCES 163

int main ()
{ int m = 44, n = 22;

cout << m << ", " << n << ", " << max(m,n) << endl;
max (m,n) = 55; // changes the value of m from 44 to 55
cout << m << ", " << n << ", " << max(m,n) << endl;

44, 22, 44

55, 22, 55

The max () function returns areference to the larger of the two variables passed to it. Since the return
value isareference, the expression max (m,n) actslikeareferenceto m (since m islarger than n). So
assigning 55 to the expression max (m,n) isequivalent to assigningitto m itself.

EXAMPLE 7.9 Using a Function asan Array Subscript

float& component (float* v, int k)
{ return vlk-1];

}

int main ()

{ float vI[4];
for (int k = 1; k <= 4; k++)
component (v,k) = 1.0/k;
for (int 1 = 0; 1 < 4; 1i++)
cout << "v[" << i << "] = " << v[i] << endl;
}
v[0] =1
v[1l] = 0.5
v[2] = 0.333333

v[3] = 0.25
The component () function allows vectors to be accessed using the scientific “ 1-based indexing”

instead of the default “0-based indexing.” So the assignment component (v,k) = 1.0/k isredly the
assignment v [k+1] = 1.0/k.We'll seeabetter way to do thisin Chapter 10.

7.8 ARRAYS AND POINTERS

Although pointer types are not integer types, some integer arithmetic operators can be applied
to pointers. The affect of this arithmetic is to cause the pointer to point to another memory loca-
tion. The actual change in address depends upon the size of the fundamental type to which the
pointer points.

Pointers can be incremented and decremented like integers. However, the increase or decrease
in the pointer’s value is equal to the size of the object to which it points:

EXAMPLE 7.10 Traversing an Array with a Pointer

This example shows how a pointer can be used to traverse an array.
int main()
{ const int SIZE = 3;
short al[SIZE] = {22, 33, 44};

164 POINTERS AND REFERENCES [CHAP. 7

cout << "a = " << a << endl;
cout << "sizeof (short) = " << sizeof (short) << endl;
short* end = a + SIZE; // converts SIZE to offset 6

short sum = 0;
for (short* p = a; p < end; p++)
{ sum += *p;

cout << "\t p = " << p;

cout << "\t *p = " << *p;

cout << "\t sum = " << sum << endl;
cout << "end = " << end << endl;

a = 0x3fffdla
sizeof (short) = 2

p = 0x3fffdla *p = 22 sum = 22
p = 0x3fffdlc *p = 33 sum = 55
p = 0x3fffdle *p = 44 sum = 99

end = 0x3fffd20
The second line of output shows that on this machine short integers occupy 2 bytes. Since p isa
pointer to short, each timeit isincremented it advances 2 bytesto thenext short integerinthearray.
That way, sum += *p accumulates their sum of the integers. If p were apointer to double and
sizeof (double) were 8bytes, then eachtime p isincremented it would advance 8 bytes.

Example 7.10 shows that when a pointer is incremented, its value is increased by the number
s1ze (in bytes) of the object to which it points. For example,

float al8];
float* p = a; // p points to alo0]
++p; // increases the value of p by sizeof (float)

If floatsoccupy 4 bytes, then ++p; increasesthevalueof p by 4,and p += 5; increases
thevalue of p by 20. Thisishow an array can be traversed: by initializing a pointer to the first
element of the array and then repeatedly incrementing the pointer. Each increment moves the
pointer to the next element of the array.
We can also use a pointer for direct accessinto the array. For example, we can accessa [5]1 by

initializing the pointer to a[o0] and then adding 5 to it:

float* p = a; // p points to alo0]

p += 5; // now p points to al5]
So once the pointer isinitialized to the starting address of the array, it works like an index.

Warning: In C++ it is possible to access and even modify unallocated memory locations. This
is risky and should generally be avoided. For example,

float al8];

float* p = al7]; // p points to last element in the array
++p; // now p points to memory past last element!
*p = 22.2; // TROUBLE!

The next example shows an even tighter connection between arrays and pointers: the name of
an array itself isa const pointer to the first element of the array. It also shows that pointers can
be compared.

CHAP. 7] POINTERS AND REFERENCES 165

EXAMPLE 7.11 Examining the Addresses of Array Elements

int main ()

{ short all = {22, 33, 44, 55, 66};
cout << "a = " << a << ", *a = " << *a << endl;
for (short* p = a; p < a + 5; p++)
cout << "p = " << p << ", *p = " << *p << endl;
}
a = 0x3fffdog8, *a = 22
p = 0x3fffd08, *p = 22
p = 0x3fffdo0a, *p = 33
p = 0x3fffd0c, *p = 44
p = 0x3fffdle, *p = 55
p = 0x3fffd10, *p = 66

Initially, a and p arethe same: they are both pointersto short and they have the same value
(ox3f£f£fdo8). Since a isaconstant pointer, it cannot be incremented to traverse the array. Instead, we
increment p and use the exit condition p < a + 5 toterminate theloop. Thiscomputes a + 5 to
be the hexadecima address 0x3fffd408 + G5*sizeof (short) = Ox3fffd08 + 5*2 =
0x3f£ffd08 + Oxa = 0x3fffdil2, sotheloopcontinuesaslongas p < 0x3fffdi12.

The array subscript operator [1 is equivaent to the dereference operator *. They provide
direct access into the array the same way:
al0] == *a
all]l] == *(a + 1)
al2] == *(a + 2), €fc.
So the array a could be traversed like this:
for (int 1 = 0; 1 < 8; 1i++)

cout << *(a + 1) << endl;
The next example illustrates how pointers can be combined with integers to move both
forward and backward in memory.

EXAMPLE 7.12 Pattern Matching

In this example, the loc function searches through the first n1 elementsof array a1 looking for
the string of integers stored inthefirst n2 elementsof array a2 insideit. If found, it returns apointer to
thelocation within a1 where a2 begins; otherwiseit returnsthe NULL pointer.

short* loc(short* al, short* a2, int nl, int n2)

{ short* endl = al + nl;
for (short* pl = al; pl < endl; pl++)
if (*pl == *a2)
{ int jJ;
for (7 = 0; j < n2; j++)
if (p1l[j] != a2[j]) break;
if (j == n2) return pl;
}
return O;

}

int main ()
{ short a1[9] = {11, 11, 11, 11, 11, 22, 33, 44, 55};

166 POINTERS AND REFERENCES [CHAP. 7

short a2([5] = {11, 11, 11, 22, 33};

cout << "Array al begins at location\t" << al << endl;
cout << "Array a2 begins at location\t" << a2 << endl;
short* p = loc(al, a2, 9, 5);

if (p)
{ cout << "Array a2 found at location\t" << p << endl;
for (int 1 = 0; 1 < 5; 1i++)
cout << "\t" << &pli] << ": " << plil

<< "\t" << &a2[i] << ": " << a2[i] << endl;

}

else cout << "Not found.\n";

Array al begins at location 0x3fffdi2
Array a2 begins at location 0x3fffdos
Array a2 found at location 0x3fffdle

0x3fffdl6: 11 0x3fffdosg: 11
0x3fffd18: 11 0x3fffdoa: 11
0x3fffdla: 11 0x3fffdoc: 11
0x3fffdlc: 22 0x3fffdoe: 22
0x3fffdle: 33 O0x3fffdil0: 33
The pattern matching algorithm uses two loops. The outer loop is controlled by the pointer p1 which
pointsto elementsin array a1 wheretheinner loop will begin checking for a match with array a2. The
inner loop is controlled by the integer § which is used to compare corresponding elements of the two
arrays. If amismatch is found, the inner loop aborts and the outer loop continues by incrementing p1 to
look for a match starting with the next element of a1. If the inner loop is alowed to finish, then the
condition (j == n2) will betrueand the current location pointed to by p1 isreturned.
Thetest driver verifiesthat the match has indeed been found by checking the actual addresses.

EXAMPLE 7.13 THE new OPERATOR

When a pointer is declared like this:
float* p; // ©p is a pointer to a float
it only allocates memory for the pointer itself. The value of the pointer will be some memory
address, but the memory at that address is not yet allocated. This means that storage could
already be in use by some other variable. Inthiscase, p isuninitialized: it is not pointing to any
allocated memory. Any attempt to access the memory to which it pointswill be an error:
*p = 3.14159; // ERROR: no storage has been allocated for *P
A good way to avoid this problem is to initialize pointers when they are declared:
float x = 3.14159; // x contains the value 3.14159
float* p = &x; // p contains the address of x
cout << *p; // OK: *p has been allocated
In this case, accessing *p isno problem because the memory needed to store the float 3.14159
was automatically allocated when x was declared; p pointsto the same allocated memory.
Another way to avoid the problem of a dangling pointer is to allocate memory explicitly for
the pointer itself. Thisis done with the new operator:
float* qg;
q = new float; // allocates storage for 1 float
*q = 3.14159; // OK: *q has been allocated

CHAP. 7] POINTERS AND REFERENCES 167

The new operator returns the address of ablock of s unallocated bytes in memory, where sisthe
sizeof afloat. (Typicaly, sizeof (float) iS4 bytes) Assigning that addressto g guarantees
that *q isnot currently in use by any other variables.
Thefirst two of these lines can be combined, thereby initializing g asitisdeclared:
float* g = new float;
Note that using the new operator to initidlize g only initializes the pointer itself, not the
memory to which it points. It is possible to do both in the same statement that declares the
pointer:
float* g = new float(3.14159);
cout << *Qq; // ok: both g and *g have been initialized
In the unlikely event that there is not enough free memory to allocate a block of the required
size, the new operator will return o (the NuLL pointer):
double* p = new double;
if (p == 0) abort(); // allocator failed: insufficient memory
else *p = 3.141592658979324;
This prudent code callsan abort () function to prevent dereferencing the NULL pointer.
Consider again the two alternatives to allocating memory:
float x = 3.14159; // allocates named memory
float* p = new float(3.14159); // allocates unnamed memory
In the first case, memory is allocated at compile time to the named variable x. In the second
case, memory is allocated at run time to an unnamed object that is accessible through *p.

EXAMPLE 7.14 THE delete OPERATOR

The delete operator reversesthe action of the new operator, returning allocated memory to
the free store. It should only be applied to pointers that have been allocated explicitly by the new
operator:

float* g = new float(3.14159);

delete q; // deallocates g

*q = 2.71828; // ERROR: g has been deallocated
Dedllocating g returns the block of sizeof (float) bytes to the free store, making it
available for alocation to other objects. Once g has been deallocated, it should not be used
again until after it has been reallocated. A deallocated pointer, also called a dangling pointer, is
like an uninitialized pointer: it doesn’t point to anything.

A pointer to a constant cannot be deleted:

const int * p = new int;
delete p; // ERROR: cannot delete pointer to const
Thisrestriction is consistent with the general principle that constants cannot be changed.

Using the delete operator for fundamental types (char, int, float, double, €tC.) iS

generally not recommended because little is gained at the risk of a potentially disastrous error:
float x = 3.14159; // x contains the value 3.14159
float* p = &Xx; // p contains the address of x
delete p; // RISKY: p was not allocated by new

Thiswould deallocate the variable x, amistake that can be very difficult to debug.

168 POINTERS AND REFERENCES [CHAP. 7

7.9 DYNAMIC ARRAYS

An array nameisreally just a constant pointer that is allocated at compile time:
float al20]; // a 1is a const pointer to a block of 20 floats
float* const p = new float[20]; // so is p
Here, both a and p are constant pointersto blocks of 20 floats. The declaration of a iscalled
static binding because it is allocated at compile time; the symbol is bound to the allocated
memory even if the array is never used while the program is running.
In contrast, we can use a non-constant pointer to postpone the allocation of memory until the
program is running. Thisis generally called run-time binding or dynamic binding:
float* p = new float[20];
An array that is declared thisway is called a dynamic array.
Compare the two ways of defining an array:
float al20]; // static array
float* p = new float[20]; // dynamic array
The static array a is created at compile time; its memory remains allocated throughout the
run of the program. The dynamic array p iscreated at run time; its memory allocated only when
its declaration executes. Furthermore, the memory allocated to the array p is deallocated as
soon asthe delete operator isinvoked on it:
delete [] p; // deallocates the array p
Note that the subscript operator [1 must be included this way, because p isan array.

EXAMPLE 7.15 Using Dynamic Arrays

The get () function here creates adynamic array:
void get (double*& a, int& n)

{ cout << "Enter number of items: "; cin >> n;
a = new double[n];
cout << "Enter " << n << " items, one per line:\n";
for (int 1 = 0; 1 < n; 1i++)

{ cout << "\t" << i+l << ": ";
cin >> ali];

}
}
void print (double* a, int n)
{ for (int 1 = 0; 1 < n; i++)
cout << af[i] << " ";
cout << endl;

}

int main ()

{ double* a; // a is simply an unallocated pointer
int n;
get (a,n) ; // now a is an array of n doubles
print (a,n) ;
delete [] a; // now a is simply an unallocated pointer again
get (a,n) ; // now a is an array of n doubles

print (a,n) ;

CHAP. 7] POINTERS AND REFERENCES 169

Enter number of items: 4
Enter 4 items, one per line:

1: 44.4
2: 77.7
3: 22.2
4: 88.8

44.4 77.7 22.2 88.8
Enter number of items: 2
Enter 2 items, one per line:
1: 3.33
2: 9.99
3.33 9.99
Insidethe get () function, the new operator allocates storagefor n doubles after thevalueof n is
obtained interactively. So the array is created “on the fly” while the program is running.
Before get () isused to create another array for a, the current array has to be deall ocated with the
delete operator. Note that the subscript operator [1 must be specified when deleting an array.
Note that the array parameter a isa pointer that is passed by reference:
void get (double*& a, int& n)
Thisis necessary because the new operator will change the value of a which is the address of the first
element of the newly allocated array.

7.10 USING const WITH POINTERS

A pointer to a constant is different from a constant pointer. This distinction isillustrated in the
following example.

EXAMPLE 7.16 Constant Pointer sand Pointersto Constants

This fragment declares four variables. apointer p, aconstant pointer cp, apointer pc to aconstant,
and a constant pointer cpc to aconstant:

int n = 44; // an int

int* p = &n; // a pointer to an int

++ (*p) ; // ok: increments int *p

++p; // ok: increments pointer p

int* const cp = &n; // a const pointer to an int

++ (*cp) ; // ok: increments int *cp

++CpP; // illegal: pointer cp is const
const int k = 88; // a const int

const int * pc = &k; // a pointer to a const int

++ (*pc) ; // illegal: int *pc is const
++pC; // ok: increments pointer pc
const int* const cpc = &k; // a const pointer to a const int
++ (*cpc) ; // illegal: int *cpc is const
++CpC; // illegal: pointer cpc is const

Note that the reference operator * may be used in a declaration with or without a space on
either side. Thus, the following three declarations are equivalent:
int* p; // indicates that p has type int* (pointer to int)
int * p; // style sometimes used for clarity
int *p; // old C style

170 POINTERS AND REFERENCES [CHAP. 7

7.11 ARRAYS OF POINTERS AND POINTERSTO ARRAYS

The elements of an array may be pointers. Here is an array of 4 pointersto type double:
double* pl[4];

Its elements can allocated like any other pointer:
pl0] = new double(2.718281828459045) ;
pll] = new double(3.141592653589793) ;

We can visudize thisarray like this.

The next example illustrates a useful application of
pointer arrays. It shows how to sort a list indirectly by
changing the pointers to the elements instead of moving the elements themselves. Thisis equiv-
alent to the Indirect Bubble Sort shown in Problem 5.12.

p

2.718281828459045 |
double

0
1
2 | 3.141592653589793 |
3 double

EXAMPLE 7.17 Indirect Bubble Sort

void sort (float* p[], int n)
{ float* temp;
for (int 1 = 1; 1 < n; 1i++)
for (int j = 0; j < n-1i; j++)

if (*pl[j] > *plj+1])

{ temp = p[jl;
plil = plj+1];
pli+l] = temp;

}

}
On each iteration of the inner loop, if the floats of adjacent pointers are out of order, then the
pointers are swapped.

7.12 POINTERSTO POINTERS

A pointer may point to another pointer. For example,
char ¢ = 't';
char* pc = &c;
char** ppc = &pc;
char*** pppc = &ppc;

***pppc = 'w'; // changes value of ¢ to 'w'
We can visuadlize these variables like this:
The assignment ***pppc = 'w' refers to the contents of the

address pc that is pointed to by the address ppc that is pointed to by
the address pppc.

7.13 POINTERSTO FUNCTIONS

Like an array name, afunction name is actually a constant pointer. We can think of itsvalue as
the address of the code that implements the function.

CHAP. 7] POINTERS AND REFERENCES 171

A pointer to a function is simply a pointer whose value is the address of the function name.
Since that name is itself a pointer, a pointer to a function is just a pointer to a constant pointer.

For example,
int f£(int); // declares function £
int (*pf) (int); // declares function pointer pf
pf = &f; // assigns address of f to pf
We can visualize the function pointer like this: of

The value of function pointers is that they allow us to define
functions of functions. This isdone by passing afunction pointer
as a parameter to another function. £

EXAMPLE 7.18 The Sum of a Function

int £ (int n)

{

The sum() function hastwo parameters: the function pointer pf y o
and theinteger n:
int sum(int (*) (int), int);

int square(int) ;
int cube (int) ;

int main()

{ cout << sum(square,4) << endl; // 1 + 4 + 9 + 16
cout << sum(cube,4) << endl; // 1 + 8 + 27 + 64

}

The call sum(square,4) computes and returns the sum square (1) + square(2) +
square (3) + square(4).Snce square (k) computesand returns k+*k, the sum() function
retuns 1 + 4 + 9 + 16 = 30.

Here are the function definitions and the output:

int sum(int (*pf) (int k), int n)
{ // returns the sum £(0) + £(1) + £(2) + . . . + f(n-1):
int s = 0;
for (int i1 = 1; 1 <= n; i++)
s += (*pf) (1);

return s;

}

int square(int k)
{ return k*k;

}

int cube (int k)
{ return k*k*k;
}
30
100
The sum() function evaluates the function to which pf points, at each of theintegers 1 through
n, and returns the sum of these n values.
Note that the declaration of the function pointer parameter pf inthe sum () function’'s parameter list
requires the dummy variable k.

172 POINTERS AND REFERENCES [CHAP. 7

7.14 NUL, NULL, AND void

The constant o (zero) has type int. Nevertheless, this symbol can be assigned to all the
fundamental types:

char ¢ = 0; // initializes ¢ to the char '\0'
short 4 = 0; // initializes d to the short int 0
int n = 0; // initializes n to the int 0

unsigned u = 0; // initializes u to the unsigned int 0
float x = 0; // initializes x to the float 0.0
double z = 0; // initializes z to the double 0.0

In each case, the object isinitialized to the number 0. In the case of type char, the character c
becomesthe null character; denoted by '\o' or nNuL, itisthe character whose ASCII codeisO.

The values of pointers are memory addresses. These addresses must remain within that part of
memory allocated to the executing process, with the exception of the address oxo. Thisis called
the NULL pointer. The same constant applies to pointers derived from any type:

char* pc = 0; // initializes pc to NULL

short* pd = 0; // initializes pd to NULL

int* pn = 0; // initializes pn to NULL

unsigned* pu = 0; // initializes pu to NULL

float* px = 0; // initializes px to NULL

double* pz = 0; // initializes pz to NULL

The nuLL pointer cannot be dereferenced. Thisis acommon but fatal error:

int* p = 0;

*p = 22; // ERROR: cannot dereference the NULL pointer

A reasonabl e precaution is to test a pointer before attempting to dereferenceit:
if (p) *p = 22; // ok
This tests the condition (p != NULL) because that condition is true precisely when p is
nonzero.
The name void denotes a specia fundamental type. Unlike al the other fundamental types,
void canonly be used in aderived type:
void x; // ERROR: no object can have type void
void* p; // OK
The most common use of thetype void isto specify that a function does not return avalue:
void swap (double&, double&) ;
Another, different use of void isto declare a pointer to an object of unknown type:
void* p = qg;
This use is most common in low-level C programs designed to manipulate hardware resources.

Review Questions

7.1 How do you access the memory address of avariable?
7.2 How do you access the contents of the memory location whose address is stored in a pointer
variable?
7.3 Explain the difference between the following two declarations:
int nl=n;
int& n2=n;

CHAP. 7] POINTERS AND REFERENCES 173

7.4

75

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

Explain the difference between the following two uses of the reference operator &:
int& r = n;

p = &n;

Explain the difference between the following two uses of theindirection operator *:
int* q = p;
n = *p;

True or false? Explain:

a. lf (x == y) then (&x == &y).

b. If (x == y) then (*x == *y).

a. What is a“dangling pointer”?
b. What dire consequences could result from dereferencing a dangling pointer?
¢. How can these dire consequences be avoided?
Wheat iswrong with the following code:
int& r = 22;
Wheat is wrong with the following code:
int* p = &44;
Wheat is wrong with the following code:
char ¢ = 'w';
char p = &c;
Why couldn’t the variable ppn in Example 7.6 on page 160 be declared like this:
int** ppn=&&n;
What is the difference between “ static binding” and “dynamic binding”?
Wheat is wrong with the following code:
char ¢ = 'w';
char* p = c;
Wheat is wrong with the following code:
short al[32];
for (int 1 = 0; 1 < 32; i++)
*a++ = 1*i;
Determine the value of each of the indicated variables after the following code executes.
Assume that each integer occupies 4 bytes and that m is stored in memory starting at byte
0x3£££d00.
int m = 44;
int* p = &m;
int& r = m;
int n = (*p)++;
int* g = p - 1;
r = *(--p) + 1;
++*q;
m
n
&m
*p
r
. *g
Classify each of the following as amutable Ivalue, an immutable Ivalue, or a non-lvalue:
a. double x = 1.23;
b.4.56*x + 7.89
C. const double Y = 1.23;

S0P o0 TP

174

7.17

7.18

7.19
7.20

7.21

7.22

7.23
7.24

7.25

7.26

7.27

POINTERS AND REFERENCES [CHAP. 7

. double al8] = {0.0};

a[5]

double f() { return 1.23; }

L £(1.23)

.double& r
double* p
*p

. const double* p = &x;

X

&X;

T o STQ o

|. double* const p = &x;
Wheat iswrong with the following code:
float x = 3.14159;
float* p = &x;
short d = 44;
short* g = &d4;

p = 4d;
Wheat iswrong with the following code:
int* p = new int;
int* g = new int;
cout << "p = " << p << ", P+ g=" << p + g << endl;

What is the only thing that you should ever do with the NULL pointer?
In the following declaration, explain what type p is, and describe how it might be used:
double**** p;

If x hastheaddress ox3fffdic, thenwhat will valuesof p and g be for each of thefol-

lowing:

double x = 1.01;

double* p = &x;

double* g = p + 5;
and g arepointersto int and n isan int, which of the following arelegal:
+ q

~PoO0TE

8B B 00 T T g
I+

Q T B B Q

What does it mean to say that an array isrealy aconstant pointer?

How isit possible that afunction can access every element of an array when it is passed only

the address of the first element?

Explain why the following three conditions are true for anarray a andanint i:
alil == *(a + 1);
*(a + 1) == ifal;
ali] == ifal;

Explain the difference between the following two declarations:
double * f () ;
double (* f)();

Write a declaration for each of the following:

a. anarray of 8 f1oats;

b. an array of 8 pointersto float;

c. apointer to an array of 8 f10ats;

d. apointer to an array of 8 pointersto float;

CHAP. 7] POINTERS AND REFERENCES 175

7.1
7.2

7.3

7.4

75

7.6

7.7

7.8

7.9

7.10

7.11

e. afunction that returnsa f1oat;

f. afunction that returns a pointer to a f1oat;

g. apointer to afunction that returnsa £1oat;

h. apointer to afunction that returns a pointer to a f1oat;

Problems

Write afunction that uses pointers to copy an array of double.

Write a function that uses pointers to search for the address of a given integer in a given
array. If the given integer is found, the function returns its address; otherwise it returns
NULL.

Write afunction that ispassed an array of n pointersto floatsand returnsanewly created
array that containsthose n float values.

Implement a function for integrating a function by means of Riemann sums. Use the formula
b n
j f(x)dx = 3 f(a+jh)h
a J =1
Write a function that returns the numerical derivative of agiven function f at a given point x,
using a given tolerance h. Use theformula
. _ f(x+h)—f(x—=h)
f'(x) = on

Write afunction that is passed an array of n pointersto floatsand returns a pointer to the
maximum of the n floats.

Write the following function that is passed an array of n pointersto floatsand returnsa
newly created array that containsthose n float valuesin reverse order.

float* mirror (float* pl[], int n)
Write the following function that returns the number of bytesthat s has to be incremented
before it points to the null character '\o':

unsigned len(const char* g)
Write the following function that copies the first n bytes beginning with *s2 into the bytes
beginning with *s1, where nisthe number of bytesthat s2 hasto beincremented beforeit
points to the null character '\o':

void cpy(char* sl, const char* g2)
Write the following function that copies the first n bytes beginning with *s2 into the bytes
beginning at the location of the first occurrence of the null character’ \o’ after *s1, where
n isthe number of bytesthat s2 hasto beincremented beforeit points to the null character
"\O"':

void cat (char* sl1, const char* s2)
Write the following function that compares at most n bytes beginning with s2 with the cor-
responding bytes beginning with s1, where n is the number of bytes that s2 hasto be
incremented before it points to the null character '\o'. If al n bytes match, the function
should return O; otherwise, it should return either -1 or 1 according to whether the byte from
s1 islessthan or greater than the byte from s2 at the first mismatch:

int cmp (char* sl1, char* s2)

176

7.12

7.13

7.14

7.15

7.16
7.17
7.18
7.19

7.20

7.21

7.22

7.23

7.24

POINTERS AND REFERENCES [CHAP. 7

Write the following function that searches the n bytes beginning with s for the character c,
where nisthe number of bytesthat s hasto beincremented beforeit pointsto the null char-
acter '\o'. If thecharacter isfound, a pointer to it is returned; otherwise return NULL:
char* chr(char* s, char c)
Write the following function that returns the sum of the floats pointed to by the first n
pointersin the array p:
float sum(float* pl[], int n)
Write the following function that changes the sign of each of the negative £1oatspointedto
by thefirst n pointersinthearray p:
void abs (float* p[], int n)
Write the following function that indirectly sortsthe £1loatspointed to by thefirst n point-
ersinthearray p by rearranging the pointers:
void sort (float* p[], int n)
Implement the Indirect Selection Sort using an array of pointers. (See Problem 6.19 on page
144 and Example 7.17 on page 170.)
Implement the Indirect Insertion Sort. (See Problem 6.18 on page 144 and Example 7.17 on
page 170.)
Implement the Indirect Perfect Shuffle. (See Problem 6.29 on page 145.)
Rewritethe sum () function (Example 7.18 on page 171) so that it applies to functions with
return type double instead of int. Then test it on the sgrt () function (defined in
<math.h>) and thereciprocal function.
Apply the riemann() function (Problem 7.4 on page 173) to the following functions
defined in <math.hs:
a. sqgrt (), ontheinterval [1, 4];
b. cos (), ontheinterva [0, n/2];
C. exp (), ontheinterva [0, 1];
d. 1og (), ontheinterval [1, €.
Apply the derivative () function (Problem 7.5 on page 175) to the following functions
defined in <math.hs:

a. sqrt (), at the point x = 4;
b. cos(), at the point x = p/6;
C. exp(), at the point x = 0;
d. log(), at the point x = 1.

Write the following function that returns the product of the n valuesf(1), f(2), ..., and f(n).
(See Example 7.18 on page 171.)

int product (int (*pf) (int k), int n)
Implement the Bisection Method for solving equations. Use the following function:

double root (double (*pf) (double x), double a, double b, int n)
Here, pf pointsto afunction £ that definesthe equation f(x) = O that isto be solved, a
and b bracket the unknown root x (i.e.,, a<x<b),and n isthe number of iterationsto use.
For example, if f(x) = x> -2, then root (f,1,2,100) would return 1.414213562373095
(= \2), thereby solving the equation x2 = 2. The Bisection Method works by repeatedly
bisecting the interval and replacing it with the half that contains the root. It checks the sign of
the product f(a) f(b) to determine whether the root isin theinterval [a, b].
Implement the Trapezoidal Rule for integrating a function. Use the following function:

double trap (double (*pf) (double x), double a, double b, int n)
Here, pf pointsto the function £ that isto be integrated, a and b bracket the interva [a, b]
over which f isto be integrated, and n is the number of subintervals to use. For example, the

CHAP. 7] POINTERS AND REFERENCES 177

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8
7.9
7.10

7.11

7.12

7.13

7.14

7.15

cal trap(square,1,2,100) would return 1.41421. The Trapezoidal Rule returns the
sum of the areas of the n trapezoids that would approximate the area under the graph of f. For
example, if n =5, then it would return the following, where h = (b-a)/5, the width of each

g[f(a) + 2f(a+ h) + 2f(a+ 2h) + 2f(a + 3h) + 2f(a+ 4h) + f(b)]
trapezoid.

Answersto Review Questions

Apply the address operator & to the variable &x.

Apply the dereference operator * to the variable *p.

Thedeclaration int nl=n; definesnl tobeacloneof n; itisaseparate object that has the same

value asn. The declaration int& n2=n; definesn2 tobeasynonym of n; it isthe same object as

n, with the same address.

The declaration int& r = n; declaresr to be areference (alias) for the int variablen. The

assignment p = &n; assignsthe addressof n to the pointer p.

The declaration int* g = p; declares g to be apointer (memory address) pointing to the same

int towhich p points. Theassignment n = *p; assignston the int to which p points.

a. True &x == x and &y == y because &x and &y are synonyms for x and y, respectively; so
if (x == y) thenthey all havethe same value.

b. False: different objects can have the same value, but different objects have different addresses.

a. A “dangling pointer” is a pointer that has not been initialized. It is dangerous because it could be
pointing to unallocated memory, or inaccessible memory.

b. If a pointer pointing to unallocated memory is dereferenced, it could change the value of some
unidentified variable. If a pointer pointing to inaccessible memory is dereferenced, the program
will probably crash (i.e., terminate abruptly).

c. Initialize pointers when they are declared.

You cannot have areference to a constant; it’s address is not accessible.

The reference operator & cannot be applied to a constant.

Thevariable p hastype char, whilethe expression &c hastypepointer to char. Toinitidize p

to &c, p would haveto be declared astype char*.

The declaration is invalid because the expression &&n isillegal. The reference operator & can be

applied only to objects (variables and class instances). But &n isnot an object, it isonly areference.

References do not have addresses, so &&n does not exist.

Static binding iswhen memory is allocated at compile time, as with the array declaration:
double af400];

Dynamic binding is when memory is allocated at run time, by means of the new operator:
double* p;

p = new double[400];

Thevariable p hastype char*, whiletheexpression ¢ hastype char. Toinitialize p toc, p

would have the sametype as c: either both char or both char*.

The only problem is that the array name a is a constant pointer, so it cannot be incremented. The fol-

lowing modified code would be okay:
short al[32];
short* p = a;

for (int i1 = 0; 1 < 32; i++)
*pP++ = i*i;

a. m=46

b.n =44

C. &m = 0x3fffdoo

178

7.16

7.17
7.18
7.19
7.20
7.21
7.22

7.23

7.24

7.25

7.26

7.27

POINTERS AND REFERENCES [CHAP. 7

*p = 46

r =46

*q = 46

mutable lvalue;

not an lvalue;

immutable Ivalue;

immutable Ivalue;

mutable lvalue;

immutable Ivalue;

mutable Ivalue if return typeis anon-local reference; otherwise not an Ivalue;
. mutable lvalue;

mutable lvalue;

mutable Ivalue, unless p pointsto a constant, in which case *p isan immutable Ivalue;
mutable lvalue;

[. immutable Ivalue;

The pointers p and g have different types: p is pointer to £ 1loat while g ispointer to short. Itisan
error to assign the address in one pointer type to a different pointer type.

Itisan error to add two pointers.
Testitto seeif it isNULL. In particular, you should never try to dereference it.

p is a pointer to a pointer to a pointer to a pointer to a double. It could be used to represent a
four-dimensional array.

The value of p is the same as the address of x: 0x3fffdlc. The vaue of g depends upon
sizeof (double). If objects of type double occupy 8 bytes, then an offset of 8(5) = 40 is added
to p to give g the hexadecimal value 0x3f£fd44.

The only expressions among these six that areillegal are p + g and n - g.

The name of an array is a variable that contains the address of the first element of the array. This
address cannot be changed, so the array name is actually a constant pointer.

In the following code that adds all the elements of the array a, each increment of the pointer p locates
the next element:

const SIZE = 3;

short al[SIZE] = {22, 33, 44};

short* end = a + SIZE; // adds SIZE*sizeof (short) = 6 to a
for (short* p = a; p < end; p++)

KT TT@meao o "o Q

sum += *p;
Thevalue a [1] returned by the subscripting operator [] isthe value stored at the address computed
from the expression a + 1i.Inthat expression, a isapointer toitsbasetype T and i isan int, soO
theoffset i*sizeof (T) isaddedtotheaddressa. The same evaluation would be made from the
expression i + a whichiswhat would be used for i[a].

The declaration double * f(); declares £ to beafunction that returns a pointer to double. The
declaration double (* £) (); declares *£f to beapointer to afunction that returns adouble.

a. float a[8];
float* a[8];
float (* a) [8
float* (* a) [
float £ () ;
float* f£();
float (* £) ();
float* (* £) ();

S@ "o a0

CHAP. 7] POINTERS AND REFERENCES 179

Solutions to Problems

71 The copy () functionusesthe new operator to alocate an array of n doubles. The pointer p
contains the address of the first element of that new array, so it can be used for the name of the array,
asin p[i].Then after copying the elementsof a intothe new array, p isreturned by the function

double* copy(double al[]l, int n)
{ double* p = new doublel[n];
for (int 1 = 0; 1 < n; 1i++)
plil = alil;
return p;

}

void print (double [], int);

int main ()

{ double al8] = {22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9};
print(a, 8);
double* b = copy(a, 8);
al2] = afl4] = 11.1;
print(a, 8);
print (b, 8);

22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9
22.2, 33.3, 11.1, 55.5, 11.1, 77.7, 88.8, 99.9
22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9

Inthisrunweinitialize a asanarray of 8 doubles. Weusea print () function to examine the
contents of a. The copy () function is called and its return value is assigned to the pointer b
which then serves as the name of the new array. Before printing b, we change the values of two of
a's elementsin order to check that b isnot the sasme array as a, asthelast two print () cdls
confirm.
7.2 Weusea for looptotraversethearray. If the target isfoundat a[i],thenitsaddress &a [1i]
isreturned. Otherwise, NULL isreturned:
int* location(int al], int n, int target)
{ for (int 1 = 0; 1 < n; i++)
if (al[i] == target) return &alil;
return NULL;
}
The test driver calls the function and stores its return address in the pointer p. If that is nonzero (i.e.,
not NULL), thenitandthe int to which it pointsare printed.
int main ()
{ int al[8] = {22, 33, 44, 55, 66, 77, 88, 99}, * p, n;
do
{ cin >> n;
if (p = location(a, 8, n)) cout << p << ", " << *p << endl;
else cout << n << " was not found.\n";
} while (n > 0);

180

7.3

74

POINTERS AND REFERENCES [CHAP. 7

Weusea for looptotraversethearray until p pointstothe target:
float* duplicate(float* p[], int n)
{ float* const b = new float[n];

for (int i = 0; i < n; 1i++)
b[i]l = *pl[i];
return b;

}

void print (float [], int);
void print (float* [], int);

int main ()
{ float al8] = {44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5};
print (a, 8);

float* p([8];
for (int 1 = 0; 1 < 8; 1i++)

plil = &alil; // pli] points to ali]
print (p, 8);
float* const b = duplicate(p, 8);
print (b, 8);

This function, named riemann (), issimilar tothe sum() function in Example 7.18. Its first
argument is a pointer to a function that hasone double argument and returnsa double. In this
test run, we passit (apointer to) the cube () function. The other three arguments are the boundaries
a and b of theinterva [a, b] over which theintegration is being performed and the number n of
subintervals to be used in the sum. The actual Riemann sum is the sum of the areas of the n rectan-
gles based on these subintervals whose heights are given by the function being integrated:

double riemann (double (*) (double), double, double, int);

double cube (double) ;

int main ()

{ cout << riemann(cube,0,2,10) << endl;
cout << riemann (cube,0,2,100) << endl;
cout << riemann (cube,0,2,1000) << endl;
cout << riemann (cube,0,2,10000) << endl;

}

// Returns [f(a)*h + f(a+h)*h + f(a+2h)*h + . . . + f£(b-h)*h],
// where h = (b-a)/n:

TeamLRN

CHAP. 7] POINTERS AND REFERENCES 181

7.5

double riemann (double (*pf) (double t), double a, double b, int n)

{ double s = 0, h = (b-a)/n, x;
int i;
for (x a, i =0; 1i<n; X += h, i++)
s += (*pf) (x);

(
return s*h;

double cube (double t)
{ return t*t*t;

}

.24

.9204

.992

.9992

In this test run, we are integrating the function y = x3 over the interval [0, 2]. By elementary calculus,
the value of thisintegral is 4.0. The call riemann (cube,0,2,10) approximates this integral
using 10 subintervals, obtaining 3.24. The call riemann (cube,0,2,100) approximates the
integral using 100 subintervals, obtaining 3.9204. These sums get closer to their limit 4.0 as n
increases. With 10,000 subintervals, the Riemann sum is 3.9992. Note that the only significant differ-
ence between this riemann () functionandthe sum() functioninExample 7.18 isthat the sum
is multiplied by the subinterval width h before being returned.

This derivative () functionissimilartothe sum() functionin Example 7.18, except that it
implements the formula for the numerical derivative instead. It has three arguments: a pointer to the
function f, the x value, and the tolerance h. In thistest run, we passit (pointers to) the cube () func-
tionand the sqrt () function.

#include <iostream>

w w w w

#include <cmaths>

using namespace std;

double derivative (double (*) (double), double, double) ;
double cube (double) ;

int main ()

{ cout << derivative(cube, 1, 0.1) << endl;
cout << derivative(cube, 1, 0.01) << endl;
cout << derivative(cube, 1, 0.001) << endl;
cout << derivative(sgrt, 1, 0.1) << endl;
cout << derivative(sqgrt, 1, 0.01) << endl;
cout << derivative(sgrt, 1, 0.001) << endl;

// Returns an approximation to the derivative f' (x):
double derivative (double (*pf) (double t), double x, double h)
{ return ((*pf) (x+h) - (*pf) (x-h))/(2*h);

}

double cube (double t)
{ return t*t*t;

}

182

7.6

POINTERS AND REFERENCES [CHAP. 7

.01
.0001

.500628
.500006
5
The derivative of the cube () function x3is3x?, anditsvalue at x = 1is3, so the numerical deriva-
tive should be close to 3.0 for small h. Similarly, the derivative of the sqrt () function /X is
1/(2./%) , and its value at x = 1is 1/2, so its numerical derivative should be close to 0.5 for small h.
The pointer pmax is used to locate the maximum f£loat. It isinitialized to have the same value as
p[0] which pointstothefirst f1oat. Theninsidethe for loop, the f1oat towhich p[i] points
is compared to the £1oat to which pmax points, and pmax is updated to point to the larger £1oat
when it is detected. So when the |oop terminates, pmax pointsto the largest £1oat:

float* max(float* pl[]l, int n)

{ float* pmax = pl[0];

O O O W W Ww

for (int 1 = 1; 1 < n; 1i++)
if (*p[i] > *pmax) pmax = pl[i];
return pmax;
}
void print (float [], int);
void print (float* [], int);

int main()

{ float al8] = {44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5};
print(a, 8);
float* p[8];
for (int 1

pli]l = &a

print (p, 8);
float* m = max(p, 8);
cout << m << ", " << *m << endl;

= 0; 1 < 8; i++)
1

[i // pli]l points to ali]

44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5

44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5

0x3fffcd4, 99.9
Here we have two (overloaded) print () functions: one to print the array of pointers, and one to
print the £1oatstowhich they point. After initializing and printing the array a, we definethe array p
and initialize its elements to point to the elements of a. Thecall print (p, 8) verifiesthat p pro-
vides indirect access to a. Finally, the pointer m is declared and initialized with the address returned
by themax () function. Thelast output verifies that m does indeed point to the largest £ 1oat among
those accessed by p.

Solutionsto Problems 7.7-7.24 are available on-line at projectEuclid.net.

Chapter 8

C-Strings

8.1 INTRODUCTION

A C-string (also called a character string) is a sequence of contiguous characters in memory
terminated by the wuL character '\o'. C-strings are accessed by variables of type char*
(pointer to char). For example, if s hastype char*, then

cout << s << endl;
will print all the characters stored in memory beginning at the address s and ending with the first
occurrence of the NuL character.

The C header file <cstring> provides a wealth of special functions for manipulating
C-strings. For example, thecall strlen(s) will returnthe number of charactersin the C-string
s, ot counting its terminating NuL character. These functions all declare their C-string parame-
ters as pointers to char. So before we study these C-string operations, we need to review
pointers. (See Section 7.3 on page 158.)

8.2 REVIEW OF POINTERS 0x0064fdde

int

A pointer is a memory address. For example, the following

0x0064fde0

declarations define n to be an int with value 44 and pn to be a pn
pointer containing the address of n: int
int n = 44;
int* pn = &n;
If we imagine memory to be a sequence of bytes with hexadecimal 0x0064£dda
addresses, then we can picture n and pn as shown at right. This Eiﬁﬁéiﬁﬁﬁé
shows n stored at the address s4f£ddc and pn stored at the address Ox0064£ads
64fdeo0. The variable n contains value 44 and the variable pn Egééggéz 7
contains the address value 64 £ddc. The value of pn is the address of 0x0064 £de WL
n. Thisrelationship isusually represented by a smpler diagram like Oxoseatdee
the one shown at right below. This shows two rectangles, one 00064408
labeled n and one labeled pn. The rectangles represent storage G004 Eda
locations in memory. The variable pn points to the variable n. We 0x0064£dec

can access n through the pointer pn by means of the dereference
operator *. For example, the statement
*on = 77;

would change the value of n to 77.

We can have more than one pointer pointing to the same object:

float* g = &x;

Now *pn, *q, and x are all names for the same object whose
address is 64 fddc and whose current value is 77. Thisis shown in
the diagram at right. Here, g is stored at the address 64 fde4. The value stored in g is the address
64fddc of n.

183

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

184 C-STRINGS

The example below traces these definitions on a Windows
workstation running Metrowerks CodeWarrior C++ on a Pentium
Il processor. As these diagrams indicate, memory is allocated in
ascending order. The first object n, is stored at address 65fccs,
occupying bytes 6sfccs—65fccb. The second object, pn, is stored
at address 65fccc. Thethird object, g, is stored at address 65fcdo.

EXAMPLE 8.1 Tracing Pointers

Thisprogram is similar to Example 7.5 on page 159:

int main ()

{ int n=44; // n holds the int 44
cout << "int n=44; // n holds the int 44:\n";
cout << "\t\t n =" << n << endl;
cout << "\t\t &n = " << &n << endl;

int* pn=&n;
cout << "int* pn=é&n;

// pn holds the address of n

cout << "\t\t n =" << n << endl;

cout << "\t\t &n = " << &n << endl;
cout << "\t\t pn = " << pn << endl;
cout << "\t\t &pn = " << &pn << endl;
cout << "\t\t *pn = " << *pn << endl;

[CHAP. 8

0x0065fcce
0x0065fcc7
0x0065fccs
0x0065fcc9
0x0065fcca
0x0065fcchb
0x0065fccc
0x0065fccd
0x0065fcce
0x0065fccf
0x0065fcdo
0x0065fcdl
0x0065fcd2
0x0065fcd3
0x0065fcd4
0x0065fcd5

int*

// pn holds the address of n:\n";

*pn = 77; // changes the value of n to 77

cout << "*pn = 77; // changes the value of n to 77:\n";
cout << "\t\t n =" << n << endl;

cout << "\t\t &n = " << &n << endl;

cout << "\t\t pn = " << pn << endl;

cout << "\t\t &pn = " << &pn << endl;

cout << "\t\t *pn = " << *pn << endl;

int* g=&n; // q also holds the address of n

cout << "int* g=&n; // q also holds the address of n:\n";
cout << "\t\t n = << n << endl;

cout << "\t\t &n = " << &n << endl;

cout << "\t\t pn = " << pn << endl;

cout << "\t\t &pn = " << &pn << endl;

cout << "\t\t *pn = " << *pn << endl;

cout << "\t\t g =" << q << endl;

cout << "\t\t &g = " << &g << endl;

cout << "\t\t *g = " << *g << endl;

TeamLRN

CHAP. 8] C-STRINGS 185

int* g=&n; // g also holds the address of n:

n = 77

&n = 0x0065fcc8
pn = 0x0065fcc8
&pn = 0x0065fccc
*pn = 77

g = 0x0065fcc8
&g = 0x0065fcdo
*q = 77

If p isapointer, then the statement cout << *p will aways print the value of the object to which p
points, and the statement cout << p will usualy print the value of the addressthat is stored in p. The
important exception to this second rule is when p is declared to have type char*.

8.3 C-STRINGS

In C++, aC-string isan array of characters with the following important features:

An extra component is appended to the end of the array, and its value is set to the
NUL character '\o'. This means that the total number of characters in the array
is always 1 more than the string length.

The C-string may be initialized with a string literal, like this:

char str([] = "Bjarne";
Note that this array has 7 elements: 's', 'j', 'a', 'r', 'n', 'e',and '\o'.
The entire C-string may be output as a single object, like this:

cout << str;
The system will copy characters from str to cout until the nuL character
"\o' isencountered.

The entire C-string may be input as a single object, like this:

cin >> buffer;
The system will copy characters from cin into buffer until a white space
character is encountered. The user must ensure that buffer is defined to be a char-
acter string long enough to hold the input.

The functions declared in the <cstring> header file may be used to manipulate
C-strings. These include the string length function strlen(), the string copying
functions strcpy () and strncpy (), the string concatenating functions strcat ()
and strncat (), the string comparing functions strcmp () and strncmp (), and
the token extracting function strtok (). These functions are described in Section
8.8 on page 193.

EXAMPLE 8.2 C-StringsAre Terminated with the NUL Character

Thislittle demo program shows that the NUL character '\0' isappended to the C-string:
int main()

{

char s[] = "ABCD";
for (int 1 = 0; 1 < 5; 1i++)

cout << "s[" << 1 << "] = '"" << s[i] << "'\n";

186 C-STRINGS [CHAP. 8

When the NUL character is sent to cout, nothing is printed—not even a blank. This is seen by
printing one apostrophe immediately before the character and another apostrophe immediately after the
character.

8.4 STRING 1/0

Input and output of C-strings are done in several ways in C++ programs. One way is to use
the Standard C++ string class operators. Other methods are described here.

EXAMPLE 8.3 Ordinary Input and Output of C-Srings

This program reads words into a 79-character buffer:
int main ()
{ char word[80];
do
{ cin >> word;
if (*word) cout << "\t\"" << word << "\"\n";
} while (*word) ;

}

In thisrun, the while loop iterated 10 times: once for each word entered (including the Ctrl+Z that
stopped the loop). Each word in the input stream cin is echoed to the output stream cout. Note that
the output stream is not “flushed” until the input stream encounters the end of the line.

Each C-string is printed with a double quotation mark " on each side. This character must be
designated by the character pair \" inside a C-string literal.

The expression *word controls the loop. It is the initial character in the C-string. It will be nonzero
(i.e, “true”) as long as the C-string word contains a C-string of length greater than 0. The C-string of
length O, called the empty C-string, contains the NUL character '\o' inits first element. Entering
Ctrl+Z+Enter+Entersends the end-of-file character in from cin. Thisloads the empty C-string into word,
setting *word (whichisthesameas word[0])to '\0' and stoppingtheloop. Thelast line of output
shows only the Ctrl+Z echo, as *z.

The Enter key may have to be pressed twice after Ctrl+Z is entered.

Note that punctuation marks (apostrophes, commas, periods, etc.) are included in the C-strings, but
whitespace characters (blanks, tabs, newlines, etc.) are not.

TeamLRN

CHAP. 8] C-STRINGS 187

The do loopin Example 8.3 could be replaced with:
cin >> word
while (*word)
{ cout << "\t\"" << word << "\"\n";
cin >> word;

}

When Ctrl+Z ispressed, thecall cin >> word assignstheempty C-stringto word.

Example 8.3 and Example 8.1 illustrate an important distinction: the output operator <<
behaves differently with pointers of type char* than with other pointer types. With a char*
pointer, the operator outputs the entire character string to which the pointer points. But with any
other pointer type, the operator will simply output the address of the pointer.

8.5 SOME cin MEMBER FUNCTIONS

The input stream object cin includes the input functions. cin.getline(), cin.get (),
cin.ignore (), cin.putback (), and cin.peek (). Each of these function namesincludes the
prefix “cin.” because they are “member functions’ of the cin object.

Thecall cin.getline(str,n) readsupto n charactersinto str andignorestherest.

EXAMPLE 84 The cin.getline () Function with Two Parameters

This program echoes the input, line by line:
int main()
{ char line[80];
do
{ cin.getline(line, 80);
if (*line) cout << "\t[" << line << "]\n";
} while (*line);
}
Note that the condition (*1ine) will evaluateto “true’ precisely when 1ine contains a non-empty
C-string, because only then will 1ine[0] be different from the NUL character (ASCII value 0).

Thecal cin.getline(str,n,ch) readsall input up to the first occurrence of the delimit-
ing character ch into str. If the specified character ch isthe newline character '\n', then
thisis equivalent to cin.getline(str,n). Thisisillustrated in the next example where the
delimiting character isthe comma ', '.

EXAMPLE 85 The cin.getline() Function with Three Parameters

This program echoes the input, clause by clause:
int main()
{ char clause[80];
do
{ cin.getline(clause, 80, ',');
if (*clause) cout << "\t[" << clause << "]\n";
} while (*clause);

}

188 C-STRINGS [CHAP. 8

Notice that the invisible endline character that follows “weary,” is stored as the first character of the
next input line. Since the comma is being used as the delimiting character, the endline character is
processed just like an ordinary character.

The cin.get () function is used for reading input character-by-character. The call
cin.get (ch) copiesthe next character from the input stream cin into the variable ch and
returns 1, unless the end of file is detected in which case it returns O.

EXAMPLE 8.6 The cin.get () Function

This program counts the number of occurrences of the letter ‘e’ in the input stream. The loop continues
aslong asthe cin.get (ch) function issuccessful at reading charactersinto ch:
int main()
{ char ch;
int count = 0;
while (cin.get (ch))
if (ch == 'e') ++count;
cout << count << " e's were counted.\n";

}

The opposite of get is put. The cout.put () function isused for writing to the output
stream cout character-by-character. Thisisillustrated in the next example.

EXAMPLE 8.7 The cout.put() Function

This program echoes the input stream, capitalizing each word:
int main()
{ char ch, pre = '"\0';
while (cin.get (ch))
{ if (pre == ' ' || pre == '\n') cout.put (char (toupper(ch))) ;
else cout.put (ch);
pre = ch;
}
}

TeamLRN

CHAP. 8] C-STRINGS 189

Fourscore and seven years ago our fathers
Fourscore And Seven Years Ago Our Fathers
brought forth upon this continent a new nation,
Brought Forth Upon This Continent A New Nation,
A

Z

The variable pre holds the previously read character. The ideais that if pre isablank or the
newline character, then the next character ch would be the first character of the next word. In that case,
ch isreplaced by its equivalent uppercase character ch + 'A' - r'a’.

The header file <ctype.h> declares the function toupper (ch) which returns the uppercase
equivalent of ch if ch isalowercaseletter.

The cin.putback () function restoresthe last character read by a cin.get () back to the
input stream cin. The cin.ignore () function reads past one or more charactersin the input
stream cin without processing them. Example 8.8 illustrates these functions.

The cin.peek() function can be used in place of the combination cin.get() and
cin.putback () functions. The call
ch = cin.peek ()
copies the next character of theinput stream cin intothe char variable ch without removing
that character from the input stream. Example 8.9 shows how the peek () function can be used
in place of the get () and putback () functions.

EXAMPLE 8.8 The cin.putback() and cin.ignore() Functions
Thistests afunction that extracts the integers from the input stream:

int nextInt () ;

int main ()

{ int m = nextInt(), n = nextInt();
cin.ignore (80, '\n') ; // 1gnore rest of input line
cout << m << " 4+ " << n << " =" << m+n << endl;

}

int nextInt ()
{ char ch;
int n;

while (cin.get(ch))

if (¢ch >= '0' && ch <= '9') // next character is a digit

{ cin.putback(ch) ; // put it back so it can be
cin >> n; // read as a complete int
break;

}

return n;

}
What is 305 plus 94167
305 + 9416 = 9721
The nextiInt () function scans past the charactersin cin until it encounters the first digit. In this
run, that digit is 3. Since this digit will be part of the first integer 305, it is put back into cin so that the
complete integer 305 can beread into n and returned.

190 C-STRINGS [CHAP. 8

EXAMPLE 8.9 The cin.peek() Function

Thisversion of the nextInt () function isequivalent to the onein the previous example:
int nextInt ()

{ char ch;
int n;
while (ch = cin.peek())
if (ch >= '0' && ch <= '9")

{ cin >> n;
break;
}
else cin.get (ch);
return n;
}

The expression ch = cin.peek () copiesthe next character into ch, and returns 1 if successful.
Then if ch isadigit, the complete integer is read into n and returned. Otherwise, the character is
removed from cin and the loop continues. If the end-of-file is encountered, the expression ch =
cin.peek () returnsO0, stopping the loop.

8.6 STANDARD C CHARACTER FUNCTIONS

Example 8.7 on page 188 illustratesthe toupper () function. Thisis one of a series of char-
acter manipulation function defined in the <cctype> header file. These are summarized in the

following table.

isalnum() int isalnum(int c) ;
Returns nonzero if ¢ isan alphabetic or numeric character; otherwise returns 0.
isalpha () int isalpha(int c¢);
Returns nonzero if ¢ isan alphabetic character; otherwise returns 0.
iscntrl () int iscntrl (int c);
Returns nonzero if ¢ isacontrol character; otherwise returns 0.
isdigit () int isdigit (int <) ;
Returns nonzero if ¢ isadigit character; otherwise returns 0.
isgraph () int isgraph(int c);
Returns nonzero if ¢ isany non-blank printing character; otherwise returns 0.
islower () int islower (int c);
Returns nonzero if ¢ isalowercase alphabetic character; otherwise returns 0.
isprint () int isprint(int c);
Returns nonzero if ¢ isany printing character; otherwise returns 0.
ispunct () int ispunct (int c);
Returns nonzero if ¢ isany printing character, except the alphabetic characters,
the numeric characters, and the blank; otherwise returns 0.

CHAP. 8] C-STRINGS 191

isspace() int isspace(int c);
Returns nonzero if ¢ isany white-space character, including theblank ' ', the
formfeed '\ f', thenewline '\n', thecarriagereturn '\r',the horizontal tab
"\t ', and thevertical tab '\v'; otherwise returns 0.

isupper () int isupper(int c);
Returns nonzero if ¢ isan uppercase alphabetic character; otherwise returns 0.

isxdigit () int isxdigit (int c);
Returns nonzeroif ¢ isone of the 10 digit characters or one of the 12 hexadecimal
digit letters; 'a', 'b', 'c', 'd', 'e', 'f', 'A', 'B', 'C', 'D', 'E',
or 'F'; otherwise returnsO.

tolower () int tolower (int c) ;
Returns the lowercase version of ¢ if ¢ isan uppercase aphabetic character;
otherwise returns c.

toupper () int toupper(int c);
Returns the uppercase version of c if ¢ is alowercase alphabetic character; other-
wisereturns c.

Note that these functions receivean int parameter ¢ and they return an int. Thisworks
because char isan integer type. Normally, a char is passed to the function and the return
valueisassigned to a char, SO we regard these as character-modifying functions.

8.7 ARRAYS OF STRINGS

Recall that a two-dimensional array is really a one-dimensiona array whose components
themselves are one-dimensional arrays. When those component arrays are C-strings, we have an
array of C-strings.

Example 8.10 declares the two-dimensional array name as B

char name[5] [20] ; i

This declaration allocates 100 bytes, arranged like this: :
Each of the 5 rows is a one-dimensional array of 20 characters)
and therefore can be regarded as a character string. These
C-strings are accessed as name [0], name[1], name[2], name[3], name[4].In the sample
run shown in Example 8.10, the data would be stored like this:
Here, the symbol & represents the NuL character '\o'.

10 11 12 13 14 15 16 17 18 19

in|glt|ijn@

4
g

012 3 5 7 8 9
Gle|o|rigle| |Wlals/h
Jlohmn| |Aldjam|s||
Tlhiomla|s| |Jle|f|f|e|r|s|omn|T|

EXAMPLE 8.10 An Array of Srings

2w N = O

This program reads in a sequence of C-strings, storing them in an array, and then prints them:
int main()
{ char name[5] [20];
int count=0;
cout << "Enter at most 4 names with at most 19 characters:\n";
while (cin.getline (name[count++], 20))

--count;

192 C-STRINGS [CHAP. 8

cout << "The names are:\n";
for (int i=0; i<count; i++)
cout << "\t" << i << ". [" << name[i] << "]" << endl;

}

Enter at most 8 names with at most 23 characters:
George Washington
John Adams
Thomas Jefferson
*z
The names are:
0. [George Washington]
1. [John Adams]
2. [Thomas Jefferson]
Note that all the activity inthe while loop isdone within its control condition:
cin.getline (name [count++],20)
Thiscall tothe cin.getline() function reads the next lineinto name [count] and then incre-
ments count. The function returns nonzero (i.e., “true”) if it was successful in reading a character string
into name [count]. When the end-of-file is signalled (with <Control-D> or <Control-Z>), the
cin.getline () function fails, so it returns O which stopsthe while loop. The body of thisloop is
empty, indicated by the line that contai ns nothing but a semicolon.

A more efficient way to store C-strings is to declare an array of pointers. char* name[4] ;
Here, each of the 4 components hastype char* which meansthat each name [1] isaC-string.
This declaration does not initially allocate any storage for C-string data. Instead, we need to store
al the datain a buffer C-string. Then we can set each name [i] equal to the address of the first
character of the corresponding name in the buffer. Thisis done in Example 8.11. This method is
more efficient because each component of name [i] usesonly as many bytes as are needed to
store the C-string (plus storage for one pointer). The trade-off is that the input routine needs a
sentinel to signa when the input is finished.

EXAMPLE 811 A Sring Array

This program illustrates the use of the getline () function with the sentinel character 's'. It is
nearly equivaent to that in Example 8.10. It reads a sequence of names, one per line, terminated by the
sentinel ' $'. Thenit prints the names which are stored in the array name:

int main ()

{ char buffer[80];
cin.getline (buffer,80,'s"');
char* name [4] ;

name [0] = buffer;
int count = 0;
for (char* p=buffer; *p != '\0'; p++)
if (*p == '\n')
{ *p = "\o'; // end name [count]
name [++count] = p+l; // begin next name

}

cout << "The names are:\n";
for (int i=0; i<count; i++)
cout << "\t" << i << ". [" << name[i] << "]" << endl;

CHAP. 8] C-STRINGS 193

Theentireinputisstored in buffer asthesingle C-string containing “George Washington\nJdohn
Adams\nThomas Jefferson\n”.The for loop then scansthrough buffer using the pointer p. Each
time p findsthe '\n' character, it terminates the C-string in name [count] by appending the NUL
character '\0' toit. Then it incrementsthe counter count and storesthe address p+1 of the next
character in name [count].

The resulting array name looks like this: name
Note that the extra bytes that padded the °|® »{Glelolrigle] Malshlilnlglt/oini]
ends of the names in Example 8.10 are not | & Jlolhin [2ldlalmisle]
required here 2| @+——»[T]holmals] [J[e[f]fle[r]s[on]e]
' 3| @—¢

If the C-strings being stored are known at compile time, then the C-string array described
aboveis quite a bit simpler to handle. Example 8.12 illustrates how to initialize a C-string array.

EXAMPLE 8.12 Initializing a String Array

Thisprogram is nearly equival ent to those in the previous two examples. It initializes the C-string array
name and then printsits contents:
int main ()
{ char* namel[]

= { "George Washington", "John Adams", "Thomas Jefferson" };
cout << "The names are:\n";
for (int 1 = 0; 1 < 3; 1i++)

cout << "\t" << i << ". [" << name[i] << "]" << endl;

The names are:
0. [George Washingtonl]
1. [John Adams]
2. [Thomas Jefferson]

The storage of the datain the name array hereisthe same asin Example 8.11.
8.8 STANDARD C STRING FUNCTIONS

The C header file <cstrings, also called the C-Sring Library, includes a family of
functions that are very useful for manipulating C-strings. Example 8.13 illustrates the simplest of
these functions, the C-string length function, which returns the length of the C-string passed to it.

EXAMPLE 8.13 The strlen() Function

This program is a simple test driver for the strlen() function. Thecall strlen(s) simply
returns the number of charactersin s that precede the first occurrence of the NUL character '\0
#include <cstring>
int main()

{ char s[] = "ABCDEFG";
cout << "strlen(" << 8 << ") = " << strlen(s) << endl;
cout << "strlen(\"\") = " << strlen("") << endl;
char buffer[80];
cout << "Enter string: "; cin >> buffer;

cout << "strlen(" << buffer << ") = " << gtrlen(buffer) << endl;

194 C-STRINGS [CHAP. 8

In some ways, C-strings behave like fundamental objects (i.e., integers and reals). For exam-
ple, they can be output to cout inthe sameway. But C-strings are structured objects, composed
of smaller pieces (characters). So many of the operations that are provided for fundamental
objects, such as the assignment operator (=), the comparison operators (<, >, ==, <=, >=, and
1 =), and the arithmetic operators (+, etc.) are not available for C-strings. Some of the functionsin
the C String Library simulate these operations. In Chapter 12 we will learn how to write our own
versions of these operations.

The next example illustrates three other C-string functions. These are used to locate charac-
ters and substrings within a given C-string.

EXAMPLE 8.14 The strechr (), strrchr(), and strstr() Functions

#include <cstring>

int main ()

{ char s[] = "The Mississippi is a long river.";
cout << "s = \"" << 8 << "\"\n";
char* p = strchr(s, ' ');
cout << "strchr(s, ' ') points to s[" << p - s << "].\n";
p = strchr(s, 's');
cout << "strchr(s, 's') points to s[" << p - s << "].\n";
p = strrchr(s, 's');
cout << "strrchr(s, 's') points to s[" << p - s << "]l.\n";
p = strstr(s, "is");
cout << "strstr(s, \"is\") points to s[" << p - s << "]1.\n";
p = strstr(s, "isi");
if (p == NULL) cout << "strstr(s, \"isi\") returns NULL\n";
}
S = "The Mississippi is a long river."
strchr(s, ' ') points to s[3].
strchr (s, 's') points to s[6].
strrchr(s, 's') points to s[17].
strstr(s, "is") points to s[5].
strstr(s, "isi") returns NULL
Thecal strchr(s, ' ') returnsapointer tothe first occurrence of the blank character ' ' within
the C-string s. The expression p - s computes the index (offset) 3 of this character within the

C-string. (Remember that arrays used zero-based indexing, so the initia character 'T' hasindex 0.)
Similarly, the character 's' first appearsatindex 6in s.

Thecal strrchr(s, ' ') returnsapointer to thelast occurrence of the character 's' withinthe
C-string s; thisis s[17].

Thecal strstr(s, "is") returnsapointer to thefirst occurrence of the substring "is" within
the C-string s; thisisat s[5]. Thecal strstr(s, "isi") returnsthe NULL pointer because
"isi" does not occur anywhere within the C-string s.

There are two functions that simulate the assignment operator for C-strings. strcpy () and
strncpy (). The call strcpy(si,s2) copies C-string s2 into C-string si1. The cal
strncpy (s1,s2,n) copiesthefirst n charactersof C-string s2 into C-string s1. Both func-
tionsreturn si1. These areillustrated in the next two examples.

CHAP. 8] C-STRINGS

EXAMPLE 8.15 The strepy () Function

Thisprogram tracescall strcpy(s1,s2):
#include <cstring>
#include <iostream>
int main ()

{ char s1[] "ABCDEFG" ;
char s2[] = "XYyz";
cout << "Before strcpy(sl,s2):\n";
cout << "\tsl = [" << 81 << "], length
cout << "\ts2 = [" << 82 << "], length

strcpy (sl,s2);

cout << "After strcpy(sl,s2):\n";

cout << "\tsl = [" << 81 << "], length
cout << "\ts2 = [" << 82 << "], length

}

Before strcpy(sl,s2):
sl = [ABCDEFG], length = 7
s2 = [XYZ], length = 3
After strcpy(sl,s2):
sl = [XYZ], length 3
s2 = [XYZ], length 3
After s2 is copied into s1, they are indistinguish-
able: both consist of the 3 characters xyz. The effect
of strcpy(sl,s2) canbe visuaized asshown at
right. Since s2 has length 3, strcpy(si,s2)
copies 4 bytes (including the NUL character, shown
as @), overwriting the first 4 characters of s1. This
changes the length of s1 to 3.

o1 [0 —=

o2 [—=

<<

<<

<<

<<

strlen(sl)
strlen(s2)

strlen(sl)
strlen(s2)

Q|@(H HO|Qw >

ISISIEHE

sl

<<

<<

[0}—>

strcpy (sl,s2)

[0}—>

endl;
endl;

endl;
endl;

195

Q| Q|| H Q| N| (M

SIS

Notethat strcpy(s1,s2) createsaduplicate of C-string s2. The resulting two copies are distinct

C-strings. Changing one of these C-strings later would have no effect upon the other C-string.

EXAMPLE 8.16 TheFunction strnecpy ()

This program traces calls strncpy(s1,s2,n):
int main()

{ char s1[] = "ABCDEFG";
char s2[] = "XYyz";
cout << "Before strncpy(sl,s2,2):\n";
cout << "\tsl = [" << 81 << "], length
cout << "\ts2 = [" << 82 << "], length

strncpy(sl,s2,2);

cout << "After strncpy(sl,s2,2):\n";
cout << "\tsl = [" << 81 << "], length
cout << "\ts2 = [" << 82 << "], length

}

Before strncpy(sl,s2,2):

sl = [ABCDEFG], length = 7

s2 = [XYZ], length = 3
After strncpy(sl,s2,2):

sl = [XYCDEFG], length = 7

s2 = [XYZ], length = 3

<<

<<

<<

<<

strlen(sl)
strlen(s2)

strlen(sl)
strlen(s2)

<<

<<

<<

<<

endl;
endl;

endl;
endl;

196 C-STRINGS [CHAP. 8

The call strncpy(sil,s2,2) replaces the first 2
characters of s1 with xv, leaving the rest of s1
unchanged. The effect of strncpy (s1,s2,2) can °' [of—
be visualized as shown here. Since s2 has length 3,
strncpy(sl,s2,2) copies 2 bytes (excluding the
NUL character @), overwriting the first 2 characters of
s1. This has no effect upon the length of s1 whichis?7. strnepy (s1,52,2)

s1[@f—»

V|@(H HO|Qw >
Q@ |H g Q|

If n<strlen(s2),asitisintheabove example,
then strncpy (s1,s2,n) simply copies the firstn 52 [o}—
characters of s2 into the beginning of s1. However,
if n > strlen(s2), then strnecpy(sl,s2,n) has
the same effect as strepy (s1,s2): it makes s1 a
duplicate of s2 with the same length.

The strcat() and strncat() functions work the same as the strcpy() and
strncpy () functions except that the characters from the second C-string are copied onto the
end of the first C-string. The term “cat” comes from the word “catenate” meaning “string
together.”

s2 [@f—»

QN|K| >
SIS

EXAMPLE 8.17 The String Concatenation Function strcat ()

Thisprogram tracescall strcat (s1,s2) which appendsthe C-string s2 onto the end of s1:
int main()

{ char s1[] = "ABCDEFG";
char s2[] = "Xyz";
cout << "Before strcat(sl,s2):\n";
cout << "\tsl = [" << 81 << "], length = " << strlen(sl) << endl;
cout << "\ts2 = [" << 82 << "], length = " << strlen(s2) << endl;

strcat(sl,s2);

cout << "After strcat(sl,s2):\n";

cout << "\tsl = [" << 81 << "], length
cout << "\ts2 = [" << 82 << "], length

}

Before strcat(sl,s2):
sl = [ABCDEFG], length = 7
s2 = [XYZ], length = 3
After strcat(sl,s2):
sl = [ABCDEFGXYZ], length = 10
s2 = [XYZ], length = 3
The cal strcat(sl,s2) appends Xyz onto the
end of s1. It can be visualized as shown here. Since =1 [@}—»
s2 haslength 3, strcat(sl,s2) copies4 bytes
(including the NUL character, shown as @), overwrit-
ing the NUL characters of s1 and its following 3
bytes. Thelength of s1 isincreased to 10.

" << gtrlen(sl) << endl;
" << gtrlen(s2) << endl;

sl

!

QN[X Q= H D QW >

Q|@(H| | O|Qw >

If any of the extra bytes following s1 that are streat (s1,s2)

needed to copy s2 arein use by any other object, s2[ef—» s2 [@f—»
thenal of s1 anditsappended s2 will be copied

to some other free section of memory.

QN[M
SIS

CHAP. 8] C-STRINGS 197
EXAMPLE 8.18 The Second Sring Concatenation Function strncat ()
This program traces calls strncat (s1,s2,n):
#include <cstring>
#include <iostream>
using namespace std;
int main ()
{ // test-driver for the strncat () function:
char s1[] = "ABCDEFG";
char s2[] = "Xyz";
cout << "Before strncat(sl,s2,2):\n";
cout << "\tsl = [" << 81 << "], length = " << strlen(sl) << endl;
cout << "\ts2 = [" << 82 << "], length = " << strlen(s2) << endl;
strncat (sl,s2,2);
cout << "After strncat(sl,s2,2):\n";
cout << "\tsl = [" << 81 << "], length = " << strlen(sl) << endl;
cout << "\ts2 = [" << 82 << "], length = " << strlen(s2) << endl;
}
Before strncat(sl,s2,2):
sl = [ABCDEFG], length = 7
s2 = [XYZ], length = 3
After strncat(sl,s2,2):
sl = [ABCDEFGXY], length = 9
s2 = [XYZ], length = 3
Thecal strncat(sl,s2,2) appends Xy ontothe
end of s1. The effect can be visualized as shown here. 1 [o] x 1 o] .
Since s2 haslength 3, strncat (s1,s2,2) copies ° E ° E
2 bytes overwriting the NUL character of s1 and the ° >
byte that followsit. Then it putsthe NUL character in £ £
the next byte to complete the C-string s1. This 2 z
increases its length to 9. (If either of the extra 2 bytes °
had been in use by some other abject, then the entire 10 strncatTol,s2)
characters ABCDEFGXY® would have been written in
some other free part of memory.) =2 [o] i; =2 [o] g
%) a
The next exampleillustrates the C-string token-

ize function. Its purpose is to identify “tokens’
within agiven C-string: e.g., words in a sentence.

EXAMPLE 8.19 The String Tokenize Function strtok ()

This program shows how strtok () isused to extract the individua words from a sentence.

#include <cstring>
#include <iostream>
using namespace std;
int main ()

{ // test-driver for the strtok() function:
char s[] = "Today's date is March 12, 2000.";
char* p;
cout << "The string is: [" << s << "]\nIts tokens are:\n";

p = strtok(s, " ");

198 C-STRINGS [CHAP. 8

while (p)
{ cout << "\t[" << p << "]\n";
p = strtok(NULL, " ");

}

cout << "Now the string is: [" << s << "]\n";

}
The string is: [Today's date is March 12, 2000.]
Its tokens are:
[Today's]
[date]
[is]
[March]
[12,]
[2000.]
Now the string is: [Today'sl

Thecall p = strtok(s, " ") setsthepointer p to point to the first token in the C-string s and
changes the blank that follows "Today's" totheNUL character '\o' (denoted by @ inthefollowing
diagram). This has the effect of makingboth s and p the C-string "Today's". Then each successive
cal p = strtok (NULL, " ") advancesthe pointer p tothe next non-blank character that follows
the new NUL character, changing each blank that it passes into a NUL character, and changing the first
blank that follows *p intoaNUL character. This hasthe effect of making p the next substring that was
delimited by blanks and is now delimited by NUL characters. This continues until p reaches the NUL
character that terminated the original C-string s. That makes p NUL (i.e., 0), which stopsthe while
loop. The combined effect upon the original C-string s of all thecallsto strtok () istochange every
blank into a NUL. This “tokenizes’ the C-string s, changing it into a sequence of distinct token strings,
only thefirst of which isidentified by s.

T T T T
o o o o
p d d d d
a a a a
y strtok(s," ") y strtok (NULL," ") y strtok (NULL," ") y
g - 0 - ' ' '
S S S S
@ @ @
d d d d
a a a a
e e e e
@ @
i i i i
S S S S
JC 5
M M M M
a a a a
JC

Note that the strtok () function changes the C-string that it tokenizes. Therefore, if you
want to use the original C-string after you tokenize it, you should duplicateit with strcpy ().

Also note that the second parameter of the strtok () functionisaC-string. This function
uses al the characters in this C-string as delimitersin the first C-string. For example, to identify
wordsin s, you might use strtok(s, " ,:;.").

The strpbrk () function also uses a C-string of characters as a collection of characters. It
generalizesthe strchr () function, looking for the first occurrence in the first C-string of any
of the charactersin the second C-string.

CHAP. 8]

C-STRINGS 199

EXAMPLE 8.20 The strpbrk() Function

#include <cstring>
#include <iostream>
using namespace std;
int main ()

{ char s[] = "The Mississippi is a long river.";
cout << "s = \"" << 8 << "\"\n";
char* p = strpbrk(s, "nopgr");
cout << "strpbrk(s, \"nopgr\") points to s[" << p - s << "]l.\n";
p = strpbrk(s, "NOPQR") ;
if (p == NULL) cout << "strpbrk(s, \"NOPQR\") returns NULL.\n";
}
S = "The Mississippi is a long river."

strpbrk (s, "nopgr") points to s[12].
strpbrk (s, "NOPQR") returns NULL.

Thecal strpbrk(s, "nopgr") returnsthe first occurrencein s of any of the five characters

Inl, Iol, Ipl,

'g',or 'r'.Thefirst of thesefoundisthe 'p' a s[12].

Thecal strpbrk(s, "NOPQR") returnsthe NULL pointer because none of these five characters

occursin s.

The following table summarizes some of the most useful functions declared in <cstrings.
Notethat size t isaspecia integer typethat isdefinedinthe <cstring> file.

memcpy ()

strcat ()

strchr ()

strcmp ()

strcpy ()

strcspn ()

strlen()

strncat ()

void* memcpy (void* sl, const void* s2, size_ t n);
Replacesthefirst n bytesof *s1 withthefirst n bytesof *s2.Returns s.

char* strcat (char* sl, const char* s2);
Appends s2 to s1.Returns s1.

char* strchr (const char* s, int c);
Returns a pointer to the first occurrenceof ¢ in s. Returns NULL if ¢ isnotin s.

int strcmp (const char* sl, const char* s2);

Compares s1 with substring s2. Returns a negative integer, zero, or a positive inte-
ger, according to whether s1 islexicographically less than, equal to, or greater than
s2.

char* strcpy(char* sl, const char* s2);
Replaces s1 with s2. Returns si.

size_t strcspn(char* sl, const char* s2);
Returns the length of the longest substring of s1 that beginswith s1[0] and con-
tains none of the charactersfound in s2.

size_t strlen(const char* s);
Returns the length of s, which isthe number of characters beginningwith s[0] that
precede the first occurrence of the NUL character.

char* strncat(char* sl, const char* s2, size t n);
Appendsthefirst n charactersof s2 to si1.Returns si1.If n > strlen(s2),
then strncat (s1,s2,n) hasthe sameeffect as strcat (s1,s2).

200

C-STRINGS [CHAP. 8

strncmp ()

strncpy ()

strpbrk ()

strrchr ()

strspn ()

strstr()

strtok ()

int strncmp (const char* sl, const char* s2, size t n);
Comparesthefirst n charactersof s1 withthefirst n charactersof s2. Returnsa
negative integer, zero, or a positive integer, according to whether the first substring is
lexicographically less than, equal to, or greater than the second. If n >
strlen(s2),then strncmp (s1,s2,n) and strcmp(sl,s2) havethe same
effect.

char* strncpy(char* sl, const char* s2, size t n);
Replacesthefirst n charactersof s1 withthefirst n charactersof s2. Returns s1.
If n < strlen(s1),thenthelengthof s1 isnotaffected. If n > strlen(s2),
then strncpy (s1,s2,n) and strcpy(sl,s2) have the same effect.

char* strpbrk(const char* sl, const char* g2);
Returns the address of thefirst occurrencein s1 of any of the charactersin s2.
Returns NULL if none of the charactersin s2 appearsin s1.

char* strrchr (const char* s, int c);
Returns a pointer to the last occurrence of ¢ in s. Returns NULL if ¢ isnotin s.

size_t strspn(char* sl, const char* s2);
Returns the length of the longest substring of s1 that beginswith s1[0] and con-
tains only charactersfound in s2.

char* strstr(const char* sl, const char* s2);
Returns the address of thefirst occurrence of s2 asasubstring of s1. Returns NULL
if ch isnotin s1.

char* strtok(char* sl, const char* s2);

Tokenizes the C-string s1 into tokens delimited by the characters found in C-string
s2. After theinitial call strtok (s1, s2),eachsuccessivecall strtok (NULL,
s2) returnsapointer to next token found in s1. These calls change the C-string s1,
replacing each delimiter with the NUL character '\o'.

8.1
char
char
char
char
char
char
char
char
char
char
char
char
char

Review Questions

Consider the following declarations for s:

s[6];

ter, '1v, 1, IOI}I.

new char[6];
{IHI’ e, Ill,
"Hello";

new ("Hello") ;

IOI}I.

Ill,

*

* new char([6];

{IHI’ e, '1v,
"Hello";
new ("Hello") ;

* 1, IOI}I.

*

*

a. Which of theseis avalid declaration of a C++ character C-string?

CHAP. 8] C-STRINGS 201

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

b. Which of these is avalid declaration of a C++ character C-string of length 5, initialized to
the C-string "Hello" and alocated at compile time?

¢. Which of theseis avalid declaration of a C++ character C-string of length 5, initialized to
the C-string "Hello" and allocated at run time?

d. Which of theseisavalid declaration of a C++ character C-string asaformal parameter for
afunction?

What iswrong with using the statement
cln >> Ss;

toread theinput "Hello, World!" intoaC-string s?

Wheat does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095";
int count = 0;

for (char* p = s; *p; p++)

if (isupper(*p)) ++count;

cout << count << endl;

Wheat does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095";
for (char* p = s; *p; p++)
if (isupper(*p)) *p = tolower (*p);

cout << s << endl;

Wheat does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095";
for (char* p = s; *p; p++)
if (isupper (*p)) (*p)++;

cout << s << endl;

Wheat does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095";
int count = 0;

for (char* p = s; *p; p++)

if (ispunct (*p)) ++count;

cout << count << endl;

Wheat does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095";
for (char* p = s; *p; p++)
if (ispunct(*p)) *(p-1) = tolower (*p);

cout << s << endl;
What is the difference between the following two statements, if s1 and s2 have type
char*:

sl = 82;

strcpy (sl,s2);
If first contains the C-string "Rutherford" and last contains the C-string
"Hayes", then what will be the effect of each of the following calls:

.int n = strlen(first);

char* s1 = strchr(first, 'r');
char* sl = strrchr(first, 'r');
char* sl1 = strpbrk(first, "rstuv");

strcpy (first, last);
strncpy (first, last, 3);
. strcat (first, last);

SQ 00 o

. strncat (first, last, 3);

202

8.10

8.11

8.12

8.13

8.14

8.1

8.2
8.3
8.4

8.5
8.6
8.7

C-STRINGS [CHAP. 8

What do each of the following assignto n:
a.int n = strspn("abecedarian", "abcde") ;
b. int n

strspn ("beefeater", "abcdef") ;
C. int n

strspn ("baccalaureate", "abc") ;
d. int n = strcspn("baccalaureate", "rstuv") ;
Wheat does the following code print:
char* sl1 = "ABCDE";
char* s2 = "ABC";
if (strcmp(sl,s2) < 0) cout << sl << " < " << 82 << endl;
else cout << g8l << " >= " << 82 << endl;
Wheat does the following code print:
char* sl1 = "ABCDE";
char* s2 = "ABCE";
if (strcmp(sl,s2) < 0) cout << sl << " < " << 82 << endl;
else cout << 8l << " >= " << 82 << endl;
Wheat does the following code print:
char* sl1 = "ABCDE";
char* g2 = "";
if (strcmp(sl,s2) < 0) cout << sl << " < " << 82 << endl;
else cout << 8l << " >= " << 82 << endl;
Wheat does the following code print:
char* sl "o,
char* g2 = "";
if (strcmp(sl,s2) == 0) cout << sl << " == " << 82 << endl;
else cout << g8l << " I= " << 82 << endl;

Problems

Explain why the following alternative to Example 8.12 does not work:
int main ()
{ char name[10] [20], buffer[20];

int count = 0;
while (cin.getline (buffer,20))
name [count++] = buffer;
--count;
cout << "The names are:\n";
for (int 1 = 0; i < count; i++)
cout << "\t" << i << ". [" << name[i] << "]" << endl;

}

Writethe strcpy () function.
Writethe strncat () function.
Write and test a function that returns the plural form of the singular English word that is
passed to it.
Write a program that reads a sequence of names, one per line, and then sorts and prints them.
Write and test afunction to reverse a C-string in place, without any duplication of characters.
Write and run the variation of the program in Example 8.3 that uses

while (cin >> word)
instead of

do..while (*word)

CHAP. 8] C-STRINGS 203

8.8 Writethe strchr () function.

8.9 Write afunction that returns the number of occurrences of a given character within a given
C-string.

8.10 Writeandtest the strrchr () function.

8.11 Writeandtest the strstr () function.

8.12 Writeandtestthe strncpy () function.

8.13 Writeandtest the strcat () function.

8.14 Writeandtestthe stremp () function.

8.15 Writeandtestthe strncmp () function.

8.16 Writeandtestthe strspn () function.

8.17 Writeandtestthe strcspn () function.

8.18 Writeandtestthe strpbrk () function.

8.19 Write a function that returns the number of words that contain a given character within a
given C-string. (See Example 8.19.)

8.20 Firgt, try to predict what the following program will do to the C-string s. (See Example 8.19 on
page 197.) Then run the program to check your prediction.

int main ()

{ char s[] = "###ABCDH#EFGH#HIJKHLAMNHHH#H#HOHPHHHH#H";
char* p;
cout << "The string is: [" << s << "]\nIts tokens are:\n";
p = strtok(s, "#");
while (p)
{ cout << "\t[" << p << "]\n";

p = strtok (NULL, "#");

}

cout << "Now the string is: [" << s << "]\n";

}
8.21 Writeaprogram that reads one line of text and then printsit with al its letters capitalized.

8.22 Write aprogram that reads one line of text and then printsit with al its blanks removed.
8.23 Write a program that reads one line of text and then prints the number of words that were
read.
8.24 Write a program that reads one line of text and then prints the same words in reverse order.
For example, the input
today is Tuesday
would produce the output
Tuesday is today

Answersto Review Questions

8.1 Among the 13 declarations:
a. Thefollowing are valid declarations for a C++ character string:

char s[6];

char s[6] = {'H', 'e', '1', '1l', '0o'};
char s([6] = "Hello";

char s[] = {'H', 'e', '1', '1', '0o'};
char s[] = "Hello";

char* s;

204

8.2

8.3
8.4

8.5

8.6
8.7

8.8

8.9

8.10

8.11
8.12
8.13
8.14

8.1

C-STRINGS [CHAP. 8

char* s = new char([6];
char* s = "Hello";
Warning: this last declaration only defines s to be a pointer to a string constant.

. The following are valid declarations for a C++ character C-string of length 5, initialized to the

C-string "Hello" and allocated at compile time:

char s[6] = {'H', 'e', '1', '1', '0'};

char s([6] = "Hello";

char s[] = {IHI’ ter, '1v, 1, IOI}I.

char s[] = "Hello";

char* s = "Hello"; // defines s as a pointer to a string constant

It is not possible to initialize a C-string like this at run time.

. The following are valid declarations for a C++ character string as a formal parameter for a func-

tion:
char sl[];
char* s;

Thiswill read only as far as the first whitespace. For the given input, it would assign "Hello," to

S

This counts the number of uppercase lettersin the C-string s, so the output is 6.

This changes al uppercase letters to lowercase in the C-string s:

123 w. 42nd st., ny, ny 10020-1095

Note that to change the case of acharacter *p, it must be assigned the return value of the function:

*p = tolower (*p);

Thisincrements all uppercase letters, changingthe w toan X,the S toa T, etc.:

123 X. 42nd Tt., 0OZ, 0OZ 10020-1095

This counts the number of punctuation charactersin the C-string s, so the output is 5.
It changes each character that is followed by a punctuation character to that following character:

123 .. 42nd S.,, N,, NY 1002--1095

Theassignment s1 = s2 simply makes s1 asynonym for s2;i.e., they both point to the same
character. Thecal strcpy(sl,s2) actuadly copiesthe charactersof s2 intothe C-string s1,
thereby duplicating the C-string.

Q0T YSTQ TP O0 T

Thisassigns theinteger 10to n.

. Thisassignsthe substring "rford" to si.

Thisassignsthe substring "rd" to si.

. Thisassignsthe substring "utherford" to si.

Thiscopies last to first,sothat first will asobethestring "Hayes".
Thiscopiesthe substring "Hay" intothefirst part of first, makingit "Hayherford".

. Thisappends last ontotheendof first,makingit "RutherfordHayes".
. Thisappendsthesubstring "Hay" ontotheendof first, makingit "RutherfordHay".

7.
6.
5.
7.

It prints. ABCDE >= ABC
It prints:. ABCDE < ABCE
It prints. ABCDE >=

It prints: !=

Solutions to Problems

This does not work because the assignment

name [count] = buffer;

CHAP. 8] C-STRINGS 205

8.2

8.3

84

assigns the same pointer to each of the C-strings name [0], name[1], etc. Arrays cannot be
assigned thisway. To copy one array into another, use strcpy (), 0r strncpy ().
This copiesthe C-string s2 into the C-string s1:
char* strcpy(char* sl, const char* g2)
{ char* p; for (p=sl; *s2;)
*D++ = *S2++;
*p o= "\0';
return sl;
}
The pointer p isinitidized at the beginning of s1.On each iteration of the for loop, the character
*s2 iscopied intothe character *p, andthenboth s2 and p areincremented. The loop continues
until *s2 isO0(i.e, the null character '\0'). Then the null character is appended to the C-string
s1 byassigningitto *p.(Thepointer p wasleft pointing to the byte after the last byte copied when
the loop terminated.) Note that this function does not allocate any new storage. So its first argument
s1 should already have been defined to be a character string with the same length as s2.
Thisfunction appendsupto n charactersfrom s2 ontotheendof si.Itisthesameasthe str-
cat () function except that its third argument n limits the number of characters copied:
char* strncat (char* sl, const char* s2, size_t n)
{ char* end; for (end=sl; *end; end++) // find end of sl
char* p; for (p=s2; *p && p-s2<n;)
*end++ = *p++;
*end = '\0';
return sl1;

Thefirst for loop findstheend of C-string s1. That iswherethe charactersfrom C-string s2 are
to be appended. The second for loop copies characters from s2 to the locations that follow s1.
Notice how the extracondition p-s2<n limitsthe number of characters copied to n: the expression
p-s2 equasthe number of characters copied because it is the difference between p (which points
to the next character to be copied) and s2 (which points to the beginning of the C-string). Note that
thisfunction does not alocate any new storage. It requiresthat C-string s1 have at least k more bytes
allocated, where k isthe smaller of n and the length of C-string s2.

Thisrequires testing the last letter and the second from last |etter of the word to be pluralized. We use
pointers p and g to accessthese letters.

void pluralize (char* s)

{ int len = strlen(s);
char* p = s + len - 1; // last letter
char* g = s + len - 2; // last 2 letters
if (*p == 'h' && (*q == '¢' || *q == 's')) strcat(p, "es");
else 1f (*p == 'g') strcat(p, "es");
else 1if (*p == 'y')
if (isvowel(*q)) strcat(p, "s");
else strcpy(p, "ies");
else if (*p == 'z'")
if (isvowel(*q)) strcat(p, "zes");

else strcat(p, "es");
else strcat(p, "s");

Two of the tests depend upon whether the second from last |etter is avowel, so we define alittle bool-
ean function isvowel () for testing that condition:

bool isvowel (char c)

{ return (c=='a' || c=='e' || c=='i' || c=='o' || c=='u');

}

206

85

C-STRINGS [CHAP. 8

The test driver repeatedly reads aword, printsit, pluralizes it, and printsit again. The loop terminates
when the user enters a single blank for aword:
bool pluralize (char*) ;

int main ()
{ char word[80];
for (;;)
{ cin.getline(word, 80);
if (*word == ' ') break;

cout << "\tThe singular is [" << word << "].\n";
pluralize (word) ;
cout << "\t The plural is [" << word << "].\n";

We assume that names have no more than 20 characters and that there will be no more than 25 names.
WEe'll read all theinput in at once and storeit all in asingle buf fer. Since each name will be termi-
nated with a NUL character, the buffer needsto belarge enough to hold 25*(20 + 1) + 1 charac-
ters (25 21-character strings plus one last NUL character). The program is modularized into five
function calls. Thecal input (buffer) readseverythingintothe buffer. Thecal token-
ize (name, numNames, buffer) “tokenizes’ the buffer, storing pointers to its namesin
the name array and returning the number of names in numNames. The cal print (name,
numNames) prints al the names that are stored in buffer. The cal sort (name, num-
Names) doesanindirect sort onthe namesstored in buf fer by rearranging the pointers stored in
the name array.

#include <cstring>

#include <iostream>

using namespace std;

const int NAME LENGTH = 20;

const int MAX NUM NAMES = 25;

TeamLRN

CHAP. 8] C-STRINGS 207

const int BUFFER_LENGTH = MAX NUM NAMES* (NAME LENGTH + 1) ;
void input (char* buffer);
void tokenize (char** name, int& numNames, char* buffer);
void print (char** name, int numNames) ;
void sort (char** name, int numNames) ;
int main()
{ char* name [MAX NUM_ NAMES] ;
char buffer [BUFFER LENGTH+1] ;
int numNames;
input (buffer) ;
tokenize (name, numNames, buffer);
print (name, numNames) ;
sort (name, numNames) ;
print (name, numNames) ;
}
Theentireinput isdone by thesinglecall cin.getline (buffer, BUFFER LENGTH, 'S$').
This reads characters until the “$” character isread, storing al the charactersin buffer.
void input (char* buffer)
{ // reads up to 25 strings into buffer:
cout << "Enter up to " << MAX NUM NAMES << " names, one per"
<< " line. Terminate with \'$\'.\nNames are limited to "
<< NAME LENGTH << " characters.\n";
cin.getline (buffer, BUFFER_LENGTH, 'S$');
}
The tokenize () functionusesthe strtok () functionto scanthroughthe buffer, “tokeniz-
ing” each substring that ends with the newline character '\n' and storing its addressin the name
array. The for loop continuesuntil p pointstothesentinel 's'. Noticethat thefunction’s name
parameter isdeclared asa char** becauseit isan array of pointersto chars. Also note that the
counter n isdeclared asan int& (passed by reference) so that its new vaue is returned to
main().
void tokenize (char** name, int& n, char* buffer)
{ // copies address of each string in buffer into name array:

char* p = strtok (buffer, "\n"); // p points to each token
for (n = 0; p && *p != 'S$'; n++)
{ name([n] = p;

p = strtok (NULL, "\n");
}
}
The print () and sort () functionsare similar to those seen before, except that both operate
here indirectly. Both functions operate on the name array.
void print (char** name, int n)
{ // prints the n names stored in buffer:
cout << "The names are:\n";
for (int i = 0; i < n; 1i++)
cout << "\t" << i+l << ". " << name[i] << endl;
}
void sort (char** name, int n)
{ // sorts the n names stored in buffer:
char* temp;

for (int i = 1; 1 < n; 1i++) // Bubble Sort
for (int j = 0; j < n-i; j++)
if (strcmp(namel[j], name[j+1]) > 0)

{ temp = namel([j];

208 C-STRINGS [CHAP. 8

name[j] = namel[j+1];
name [j+1] = temp;

On this sample run the user entered 7 names and then the sentinel “$”. The names were then printed,
sorted, and printed again.
8.6 Thefunction first locates the end of the C-string. Then it swaps the first character with the last charac-
ter, the second character with the second from last character, etc.:
void reverse (char* s)
{ char* end, temp;
for (end = s; *end; end++)
; // find end of s
while (s < end - 1)

{ temp = *--end;
*end = *s;
*s++ = temp;
}
}
Thetest driver usesthe getline () functionto read the C-string. Then it printsit, reversesit, and
printsit again:

void reverse (char¥*) ;
int main ()
{ char string[80];
cin.getline(string, 80);
cout << "The string is [" << string << "].\n";
reverse (string) ;
cout << "The string is [" << string << "].\n";

TeamLRN

CHAP. §] C-STRINGS 209

8.7 int main ()
{ char word[80];
while (cin >> word)
if (*word) cout << "\t\"" << word << "\"\n";

8.8 char* Strchr (const char* s, int c)
{ for (const char* p=s; p && *p; p++)
if (*p==c) return (char*)p;
return 0;
}
8.9 int numchr (const char* s, int c)
{ int n=0;
for (const char* p=s; p && *p; p++)
if (*p==c) ++n;
return n;
}
8.10 char* Strrchr (const char* s, int c)
{ const char* pp=0;
for (const char* p=s; p && *p; p++)
if (*p==c) pp = p;
return (char*)pp;
}
8.11 char* Strstr (const char* sl, const char* s2)
{ 1f (*s2==0) return (char*)sl; // s2 is the empty string
for (; *sl; sl++)
if (*sl==*g2)
for (const char* pl=sl, * p2=s2; *pl==*p2; pl++, pP2++)

if (*(p2+1)==0) return (char*)sl;
return 0;
1
8.12 char* Strncpy(char* sl, const char* s2, size t n)

{ char* p=s1;

for (; n>0 && *s2; n--)
*D++ = *S2++;

for (; n>0; n--)
*P++ = 0;

return sl;

——

210

8.13

8.14

8.15

8.16

8.17

8.18

8.19

C-STRINGS [CHAP. 8

char* Strcat (char* sl, const char* s2)
{ char* p=s1;

for (; *p; p++)

for (; *s2; p++, S2++)
*p o= *s2;

*p o= 0;

return sl1;
int Strcmp (char* sl, const char* s2)
{ for (; *sl==*s2; sl++, S2++)
if (*sl==0) return O0;
return (int) (*sl-*s2);
int Strncmp (char* sl, const char* s2, size t n)
{ for (; n>0; sl++, s2++, n--)
if (*sl!=*g2) return (int) (*sl-*g2);
else if (*sl1l==0) return O;
return 0O;
size_t Strspn(const char* sl, const char* s2)
{ const char *pl, *p2;

for (pl = sl ; *pl; pl++)
for (p2 = 82 ; ; p2++)
if (*p2 == '\0') // end of s2 reached; no match found

return (pl - s1) ; // so *pl is not in s2[]
else if (*pl == *p2) // *pl is not the one
break ; // aborts inner for loop
return (pl - s1) ; // returning length of sl
}
size t Strecspn(const char* sl, const char* s2)
{ const char *pl, *p2;
for (pl = sl ; *pl; pl++)
for (p2 = 82 ; *p2 ; p2++)

if (*pl == *p2) // *pl found in s2/[]
return (pl - 81) ; // and pl-sl is its index
return (pl - s1) ; // returning length of sl

}

char* Strpbrk(const char* sl, const char* g2)
{ const char *pl, *p2;
for (pl = sl ; *pl; pl++)
for (p2 = s2 ; *p2 ; pP2++)

if (*pl == *p2) // *pl found in s2[]
return (char*) pl ; // so returns its address
return NULL ; // no character of sl is in s2/[]

}

int fregInWords (const char* sentence, char ch)

{ int count = 0 ;
char* copy = new char[strlen(sentence)] ;
copy = strcpy(copy, sentence) ;
if (copy == NULL) return 0 ;

char *p = strtok(copy, "\t\n \v\f\r")

1

CHAP. 8] C-STRINGS 211

while (p) ({

for (int i = 0 ; pl[i]l ; i++)
if (pl[i] == ch) // ch found in current word
{ count++ ; // referenced by p
break ; // finished with current word
} // end if (p[i] == ch)
p = strtok (NULL, "\t\n \v\f\r") ; // advance to next word
} // end while (p)
return count ; //
}
8.20
8.21 void capitalize (char* s)
{ if (s == NULL) return;
for (char* p=s; *p; p++)
if (*p>='a' && *p<='z')*p = (char) (*p - 'a' + 'A');
}
8.22 void removeBlanks(char* g)
{ if (s == NULL) return ;
int j = 0 ;
for (int i = 0; sl[i]l ; i++)
if (s[i]l ="' ') s[j++] = s[i] ;
s[jl = '"\o' ;
}
8.23 int numWords (const char* g)
{ i1f (s == NULL) return 0 ;
int wordCount = 0 ;
char * Copy = new char[strlen(s) 1 ;
Copy = strcpy(Copy, s) ;
char * p = strtok(Copy, "\n \v\t\f\r") ;
while (p)
{ char ch0 = p[0]; // check whether first char is letter
if (((ch0 >= 'a') && (ch0 <= 'z')) || // lowercase
((ch0 >= 'A'") && (chO0 <= 'Z'))) // uppercase
wordCount++ ;
p = strtok(NULL, "\n \v\t\f\r") ;
}
return wordCount ;
}
8.24 char* reverseWords (char* reverseS, const char* s)
{ if ((reverseS == NULL) || (s == NULL)) return NULL;
char * Copy = new char[strlen(s) 1 ;
Copy = strcpy(Copy , s) ;
char * currentReverse = new char[strlen(s) 1 ;
char * revPtr = reverseS ;
*revPtr = '\0' ; // reverse starts with no words
char * pS;
pS = strtok(Copy, " \t") ; // words separated by space or tab
while (pS)
{ // reverseS = currentWordInS + currentReverse
currentReverse = strcpy(currentReverse, revPtr) ;

revPtr = addWords(revPtr, pS, currentReverse) ;
pS = strtok(NULL, " \t") ; // advance pS to next word in s

C-STRINGS

// end while (pS)

return revPtr ;

addWords (char* leftPLUSright, const char* left,
const char* right)
char * both = leftPLUSright ;
const char * pLeft = left ;
const char * pRight = right ;
while (*pLeft)

[CHAP. 8

* (both++) = * (pLeft++) ;
if (*left && *right) // both words nonempty
* (both++) = ' ' ; // so put space between
while (*pRight)
* (both++) = *(pRight++) ;
*both = '"\0' ; // terminate new string with null character

return leftPLUSright ;

Chapter 9

Standard C++ Strings

9.1 INTRODUCTION

The classic C-strings described in Chapter 8 are an important part of C++. They provide a
very efficient means for fast data processing. But as with ordinary arrays, the efficiency of
C-strings comes at a price: the risk of run-time errors, resulting primarily from their dependency
upon the use of the NUL character as a string terminator.

Standard C++ strings provide a safe alternative to C-strings. By encapsul ating the length of
the string with the string itself, there is no direct reliance on string terminators.

9.2 FORMATTED INPUT

Recall the idea of a stream in C++ as a conduit through which data passes. Input passes
through an istream object and output passes through an ostream object. The istream class
defines the behavior of objectslike cin. The most common behavior is the use of the extraction
operator >> (also called the input operator). It has two operands: the istream object from
which it is extracting characters, and the object to which it copies the corresponding value
formed from those characters. This process of forming atyped value from raw input charactersis
called formatting.

EXAMPLE 9.1 The Extraction Operator >> PerformsFormatted I nput

Suppose the code

cin
int n; < () <
cin >> n; nl:l D D D D 2 e \ir;tream)

executes on the input int

46
Thisinput actually contains
the7 characters: * v, ', v ;v 1 var 16 '\n' (four blanksfollowed by a4, a6, and the newline
character). It could be viewed as coming through the input stream. The stream object cin scans charac-
tersone at atime. If the first character it sees is a whitespace character (a blank, a tab, a newling, etc.), it
extractsit and ignores it. It continues to extract and ignore the characters in the stream until it encounters
a non-whitespace character. In this example, that would be the '4'. Since the second operand of the
expression cin >> n hastype int,the cin objectislooking for digitsto form an integer. So after
“eating” any preceding whitespace, it expects to find one of the 12 characters '+', '-', 'o', 1",
t2r, r31, g 5 g v g oor 19, |f it encounters any of the other 244 characters, it will
fail. Inthis case, it seesthe '4'. So it extracts it and then continues, expecting more digits. Aslong as it
encounters only digits, it continues to extract them. As soon as it sees a non-digit, it stops, leaving that
non-digit in the stream. In this case, that meansthat cin will extract exactly 6 characters: the 4 blanks,
the '4',andthe '6'. It discardsthe 4 blanks and then combinesthe '4' andthe '6' toform the
integer value 46. Then it copies that value into the object n.

213

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

214 STANDARD C++ STRINGS [CHAP.9

After that extrac-
tion has finished, the cin
newline character is G » =) >
gill in the input Tstream
stream. |f the next
input statement is another formatted input, then like all whitespace characters that newline character will
be ignored.

The extraction operator >> formats the data that it receives through its input stream. This
means that it extracts characters from the stream and uses them to form a value of the same type
asits second operand. In the process it ignores all whitespace characters that precede the charac-
tersit uses. A direct consequence of thisruleisthat it isimpossible to use the extraction operator
to read whitespace characters. For that you must use an unformatted input function.

The operator expression
cin >> X
has a value that can be interpreted in a condition as boolean; i.e., either true or false
depending upon whether the input is successful. That allows such an expression to be used to
control aloop.

EXAMPLE 9.2 Usingthe Extraction Operation to Control a L oop

int main ()

{ int n;
while (cin >> n)
cout << "n = " << n << endl;
}
46
n = 46
22 44 66 88
n = 22
n = 44
n = 66
n = 88
33, 55, 77, 99
n = 33
The loop continues iterating as long as the integer data is separated by only whitespace. The first
non-whitespace character, thecomma ', ' causestheinput to fail, thereby stopping the loop.

9.3 UNFORMATTED INPUT

The <iostreams files define several functions inputting characters and C-strings that do
not skip over whitespace. The most common arethe cin.get () function for reading individual
charactersand the cin.getline () function for reading C-strings.

EXAMPLE 9.3 Inputting Characterswith the cin.get () Function
while (cin.get(c))

{ 1f (¢ >= 'a' && ¢c <= 'z') ¢ += 'A' - 'a'; // capitalize c
cout.put (¢) ;

CHAP. 9] STANDARD C++ STRINGS 215

Thisloop is controlled by the input expression (cin.get (c¢)). When the input stream object cin
detects the end-of -file (signaled interactively by Ctrl+Z or Ctrl+D), the expression evaluatesto false and
stops the loop. This loop aso terminates with a break statement after reading and processing the
newline character '\n'. The if statement simply capitaizes all lowercase letters, and the
cout.put (c) statement printsthe character.

Here is asample run:

Cogito, ergo sum!
COGITO, ERGO SUM!

EXAMPLE 9.4 Inputting C-Stringswith the cin.getline() Function

This program shows how to read text data line-by-line into an array of C-strings:

const int LEN=32; // maximum word length

const int SIZE=10; // array size

typedef char Name[LEN]; // defines Name to be a C-string type

int main ()

{ Name king[SIZE];
int n=0;
while(cin.getline (king[n++], LEN) && n<SIZE)

// defines king to be an array of 10 names

’

--n; // now n == the number of names read
for (int i=0; i<n; i++)
cout << '\t' << i+41 << ". " << king[i] << endl;

}

Theobject king isan array of 10 objects of type Name. The typedef defines Name as a synonym
for C-strings of 32 chars (31 non-null). The function call cin.getline (king[n++], LEN) reads
charactersfrom cin until either it has extracted LEN-1 charactersor it encountersthe newline character,
whichever comes first. It copies these charactersinto the C-string king [n]. If it encounters the newline
character, it extractsit and ignoresit (i.e., it does not copy it into the C-string). Then it increments n.

Note that the body of the while loop is
empty. The loop stopswhen either cin detects

the end-of-fileor when n == SIZE. Sincen
starts at 0 and isincremented after the last name
is read, its value is always 1 greater than the
number of names read. So it gets decremented
once at the end so that its value equals the
number of names read. Then it is easy to print
them or process them in other ways using a
simple for loop.

When input is read from thistext file,
the output is
Kenneth II (971-995)

Duncan I (1034-1040)
Macbeth (1040-1057)
Lulach (1057-1058)

W JO0O Ul b wWwN PR

Kings.dat

Kenneth II

(971-995)

Constantine III (995-997)

Kenneth IIT
Malcolm IT

(997-1005)
(1005-1034)

Duncan I (1034-1040)
Macbeth (1040-1057)
Lulach (1057-1058)

Malcolm ITII

(1058-1093)

Constantine III (995-997)
Kenneth III (997-1005)
Malcolm II (1005-1034)

Malcolm III (1058-1093)

216 STANDARD C++ STRINGS [CHAP.9

9.4 THE STANDARD C++ string TYPE

Standard C++ defines its string type in the <strings> header file. Objects of type
string can be declared and initialized in several ways:

string s1; // sl contains 0 characters
string s2 = "New York"; // s2 contains 8 characters
string s3(60, '*'); // s3 contains 60 asterisks
string s4 = s3; // s4 contains 60 asterisks
string s5(s2, 4, 2); // 85 1is the 2-character string "Yo"

If the string isnot initialized, like s1 here, then it represents the empty string containing O
characters. A string canbeinitialized the sameway aC-string is, like s2 here. Ora string
can be initialized to hold a given number of the same character, like s3 here which holds 60
stars. Unlike a C-string, C++ string objects can be initialized with a copy of another existing
string oObject, like s4 here, or with a substring of an existing string, like ss. Note that the
standard substring designator has three parts: the parent string (s2, here), the starting character
(s2 141, here), and the length of the substring (2, here).

Formatted input works the same way for C++ strings as it does for C-strings: preceding
whitespace is skipped, and input is halted at the end of the first whitespace-terminated word.

C++ strings have a getline() function that works amost the same way as the
cin.getline () functionfor C-strings:

string s = "ABCDEFG";

getline(cin, s); // reads the entire line of characters into s
They also use the subscript operator the same way that C-strings do:

char ¢ = s[2]; // assigns 'C' to c

s[4] = '*'; // changes s to "ABCD*FG"

Note that the array index always counts how many characters precede the indexed character.
C++ stringscan be converted to C-stringslike this:

const char* c¢s = s.c_str(); // converts s into the C-string cs
The c¢_str() function hasreturntype const char*.

The C++ string class aso defines a length() function that can be used like this to

determine how many characters are stored ina string:

cout << s.length() << endl; // prints 7 for the string s == "ABCD*FG"
C++ stringscan be compared using the relational operators like fundamental s types:

if (s2 < 85) cout << "s2 lexicographically precedes s5\n";

while (s4 == s3) //...

You can also concatenate and append stringsusingthe + and += operators:
string s6 = s + "HIJK"; // changes s6 to "ABCD*FGHIJK"
s2 += s5; // changes s2 to "New YorkYo"

The substring() functionisused likethis:
s4 = s6.substr(5,3); // changes s4 to "FGH";

The erase () and replace() functionwork likethis:
s6.erase (4, 2); // changes s6 to "ABCDGHIJK"
s6.replace(5, 2, "xyz"); // changes s6 to "ABCDGxyzJK"

The £ind () function returnsthe index of the first occurrence of a given substring:
string s7 = "Mississippi River basin";
cout << s7.find("si") << endl; // prints 3

cout << s7.find("so") << endl; // prints 23, the length of the string
If the £ind () function fails, it returnsthe length of the string it was searching.

CHAP. 9] STANDARD C++ STRINGS 217

EXAMPLE 9.5 Usingthe Sandard C++ string Type

This code adds a nonsense syllable after each “t” that precedes a vowel. For example, the sentence
The first step is to study the status of the C++ Standard.
is replaced by the sentence:
The first stegep is tego stegudy the stegatus of the C++ Stegandard.
It uses an auxiliary boolean function named is_ vowel ():
string word;
int k;
while (cin >> word)
{ k = word.find("t") + 1;
if (k < word.length() && is_vowel (word[k]))
word.replace(k, 0, "eg");
cout << word << ' ';
}
The while loop is controlled by the input, terminating when the end-of-file is detected. It reads one
word at atime. If theletter £ isfound and if it isfollowed by avowel, then e.g. isinserted between
that t andthe vowel.

9.5 FILES

File processing in C++ is very similar to ordinary interactive input and output because the
same kind of stream objects are used. Input from afile is managed by an ifstream oObject the
same way that input from the keyboard is managed by the istream object cin. Similarly,
output to afileis managed by an ofstream object the same way that output to the monitor or
printer is managed by the ostream object cout. The only differenceisthat ifstream and
ofstream objects have to be declared explicitly and initialized with the external name of the
file which they manage. You aso have t0 #include the <fstream> header file (or
<fstream.h> in pre-Standard C++) that defines these classes.

EXAMPLE 9.6 Capitalizing All theWordsin a Text File

Here is a complete program that reads words from the external file named input.txt, capitalizes
them, and then writes them to the external file named output.txt:
#include <fstream>
#include <iostream>
using namespace std;
int main()
{ ifstream infile("input.txt") ;
ofstream outfile("output.txt") ;
string word;

char c;
while (infile >> word)
{ 1f (word[0] >= 'a' && word[0] <= 'z') word[0] += 'A' - 'a';

outfile << word;
infile.get(c) ;
outfile.put(c);

218 STANDARD C++ STRINGS

The picture below illustrates the process.

infile

B R

istream

string

outfile

o=

char

ostream

[CHAP. 9

1nput.tXT

‘Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogroves,

And the mome raths outgrabe.

output.txt

‘Twas Brillig, And The Slithy Toves
Did Gyre And Gimble In The Wabe;
All Mimsy Were The Borogroves,

And The Mome Raths Outgrabe.

Notice that the program has four objects: an ifstream object named infile, an ofstream
object named outfile,a string object named word, anda char object named c.

The advantage of using external files instead of command line redirection is that there is no
limit to the number of different filesthat you can use in the same program.

EXAMPLE 9.7 Merging Two Sorted Data Files

This program merges two files into a third file. The numbers stored in the files north.dat and
south.dat aresorted inincreasing order. The program reads these two input files simultaneously and
copies all their datato thefile combined.dat sothatthey are all together inincreasing order:

finl

nl ifstream

int

n2 E fin2

int <1.—————————€9

bool

more2 fout

ifstream

bool

ofstream

bool more (ifstream& fin, inté& n)

{ 1f (fin >> n) return true;
else return false;

}

bool copy (ofstream& fout, ifstream& fin, ints&

{ fout << " " << n;
return more (fin, n);

}

int main()

{ ifstream finl ("north.dat");
ifstream fin2 ("south.dat") ;
ofstream fout ("combined.dat") ;
int nl, n2;
bool morel = more(finl, nl);
bool more2 = more(fin2, n2);

north.dat

22 25 40 44 48 52 55 70 75 77
80 88 99

south.dat

20 30 33 47 50 60 66 72 85

combined.dat

20 22 25 30 33 40 44 47 48 50
52 55 60 66 70 72 75 77 80 85
88 99

n)

CHAP. 9] STANDARD C++ STRINGS 219

while (morel && more2)

if (nl < n2) morel = copy(fout, finl, nl);
else more2 = copy(fout, fin2, n2);
while (morel)
morel = copy(fout, finl, nl);
while (more2)
more2 = copy(fout, fin2, n2);

fout << endl;
}

The more () function is used to read the data from the input files. Each call attempts to read one
integer from the fin fileto the reference parameter n. It returns true if it is successful, otherwise
false. The copy () function writesthe value of n tothe fout fileand then callsthe more ()
function to read the next integer from the fin fileinto n. It alsoreturns true if and only if it is
successful.

Thefirst two callsto the more () function read 22 and 20 into n1 and n2, respectively. Both calls
return true whichallowsthemain while loop to begin. On that first iteration, the condition (n1 <
n2) isfalse sothe copy () function copies20 from n2 intothe combined.dat fileandthencalls
the more () function again which reads 30 into n2. On the second iteration, the condition (n1 < n2)
istrue (because 22 < 30), so the copy () function copies 22 from n1 intothe combined.dat file
and then callsthe more () function again which reads 25 into n1. The next iteration writes 25 to the
output file and then reads 40 into n1. The next iteration writes 30 to the output file and then reads 33 into
n2. This process continues until 85 is written to the output file from n2 and the next call to more ()
fails, assigning false to more2. That stopsthe main while loop. Then the second while loop
iterates three times, copying the last three integers from north.dat to combined.dat beforeit sets
morel to false. Thelast loop doesnot iterate at all.

Note that file objects (fin1, fin2, fout) are passed to function the same way any other objects are
passed. However, they must always be passed by reference.

9.6 STRING STREAMS

A string stream is a stream object that allows a string to be used as an internal text file.
Thisisalso caled in-memory I/0. String streams are quite useful for buffering input and output.
Their types istringstream and ostringstream aredefinedinthe <sstream> header file

EXAMPLE 9.8 Using an Output String Stream

This program creates four objects: a character string s, 1ss] aBcDEFG 33 2.718

an integer n, a floating-point number x, and an output Tstringstrean
string stream oss:
#include <iostreams> s|ABCDEFG | n| 33 | x[2.718]
#include <sstreams> string int float

#include <string>
using namespace std;
void print (ostringstreamé&) ;
int main ()
{ string s="ABCDEFG";
int n=33;
float x=2.718;
ostringstream oss;

220 STANDARD C++ STRINGS [CHAP.9

print (oss) ;
oss << 8;
print (oss) ;

0oss << " " << n;

print (oss) ;

oss << " " << Xx;

print (oss) ;
}
void print (ostringstream& oss)
{ cout << "oss.str() = \"" << oss.str() << "\"" << endl;
}
oss.str() = ""
oss.str() = "ABCDEFG"
oss.str() = "ABCDEFG 33"
oss.str() = "ABCDEFG 33 2.718"

The output string stream object oss acts like the output stream object cout: the values of the string s,
the integer n, and the number x are written to it by means of the insertion operator <<.

While the internal object oss is like an external text file, its contents can be accessed as a string
object by thecall iss.str ().

EXAMPLE 9.9 Using an Input Sring Stream issO ABCDEFG 44 3.14

istringstream

This program is similar to the one in Example 9.8
except that it reads from an input string stream iss s|2BCDEFG | n| 44 | x[3.14]
instead of writing to an output string stream.: sering e froar

void print (stringé&, int, float, istringstream&) ;
int main()
{ string s;
int n=0;
float x=0.0;
istringstream iss ("ABCDEFG 44 3.14");
print(s,n,x,iss);
iss >> s;
print(s,n,x,iss);
iss >> n;
print(s,n,x,iss);
iss >> x;
print(s,n,x,iss);

}
void print(string& s, int n, float x, istringstream& iss)
{ cout << "s = \"" << s << "\", n =" <<n<<", x="<<x
<< ", iss.str() = \"" << iss.str() << "\"" << endl;
}
S ="", n=0, x =0, iss.str() = "ABCDEFG 44 3.14"
S = "ABCDEFG", n = 0, x = 0, iss.str() = "ABCDEFG 44 3.14"
S = "ABCDEFG", n = 44, x = 0, iss.str() = "ABCDEFG 44 3.14"
S = "ABCDEFG", n = 44, x = 3.14, iss.str() = "ABCDEFG 44 3.14"

The input string stream object iss acts like the input stream object cin: values for the string s, the
integer n, and the number x are read from it by means of the extraction operator >>. But the iss object
also acts like an external file: reading from it does not change its contents.

CHAP. 9] STANDARD C++ STRINGS 221

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

9.1

9.2

9.3

Review Questions

What is the difference between a C-string and aC++ string?

What is the difference between formatted input and unformatted input?

Why can’t whitespace be read with the extraction operator?

What is a stream?

How does C++ simplify the processing of strings, external files, and internal files?
What is the difference between sequential access and direct access?

What dothe seekg() and seekp () functionsdo?

What do the read () and write () functionsdo?

Problems

Describe what the following code does:
char csl/[] "ABCDEFGHIJ";
char cs2/[] "ABCDEFGH" ;
cout << cs2 << endl;
cout << sgtrlen(cs2) << endl;

cs2[4] = 'X';
if (strcmp(csl, c¢s2) < 0) cout << csl << " < " << c82 << endl;
else cout << csl << " >= " << cs2 << endl;

char buffer[80];
strcpy (buffer, csl);
strcat (buffer, c¢s2);
char* cs3 = strchr (buffer, 'G');
cout << cs3 << endl;
Describe what the following code does:
string s = "ABCDEFGHIJKLMNOP";
cout << s << endl;
cout << s.length() << endl;
gs[8] = "1';
s.replace(8, 5, "xyz");
s.erase (6, 4);
cout << s.find("!");
cout << s.find("?");
cout << s.substr(6, 3);
s += "abcde";
string part(s, 4, 8);
string stars (8, '*');
Describe what happens when the code
string s;
int n;
float x;
cin >> s >> n >> X >> 8;
executes on each of the following inputs:
ABC 456 7.89 XYZ
. ABC 4567 .89 XYZ
ABC 456 7.8 9XYZ
. ABC456 7.8 9 XYZ
ABC456 7 .89 XYZ
ABC4 56 7.89XY Z
AB C456 7.89 XYZ
.AB C 456 7.89XYZz

SQ P00 TR

222

94

9.5

9.6

9.7

9.8

STANDARD C++ STRINGS [CHAP.9

Trace the execution of the merge program in Example 9.7 on page 218 on the following two
datafiles:

north.dat south.dat
|27 35 38 52 55 61 81 87 | |31 34 41 45 49 56 63 74 92 95|

Show each value of the variables n1, n2, morel, and more2, asthey change.
Write a program that reads full names, one per line, and then prints them in the standard tele-
phone directory format. For example, the input

Johann Sebastian Bach

George Frederic Handel

Carl Phillipp Emanuel Bach

Joseph Haydn

Johann Christian Bach

Wolfgang Amadeus Mozart

would be printed as:

Bach, Johann S.

Handel, George F.

Bach, Carl P. E.

Haydn, Joseph

Bach, Johann C.

Mozart, Wolfgang A.
Write a program that counts and prints the number of lines, words, and letter frequenciesin
itsinput. For example, the input:

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;
would produce the output:

The input had 5 lines, 37 words,

and the following letter frequencies:

A: 10 B: 3 C: 2 D: 13 E: 15 F: 1 G: 3 H: 4
I: 7 J: 0 K: 1 L: 8 M: O N: 12 O: 20 P: 0
Q: 0 R: 11 S: 5 T: 11 U: 3 V: 3 W: 6 X: 0
Y: 2 Z: 0

Implement and test the following function:
void reduce(string& s);
// Changes all capital letters in s to lowercase
// and removes all non-letters from the beginning and end.
// EXAMPLE: if s == "'Tis,", then reduce(s) makes it "tis"

Hint: First write and test the following three boolean functions:
bool is_uppercase (char c) ;
bool is_lowercase (char c);
bool is_letter (char c);
Modify your program from Problem 9.6 so that it counts the frequencies of words instead of
letters. For example, the input
[I] then went to Wm. and Mary college, to wit in the spring of
1760, where I continued 2 years. It was my great good fortune,
and what probably fixed the destinies of my life that Dr. Wm.
Small of Scotland was then professor of Mathematics, a man
profound in most of the useful branches of science, with a happy
talent of communication, correct and gentlemanly manners, & an
enlarged & liberal mind. He, most happily for me, became soon

CHAP. 9]

STANDARD C++ STRINGS

223

attached to me & made me his daily companion when not engaged in

the school;

and from his conversation I got my first views of the

expansion of science & of the system of things in which we are
placed.

would produce the output
The input had 11 lines and 120 words,
with the following frequencies:

9.9

i: 3
to:
mary:
in:

of: 1
continued:
was:
good:
probably:
life:
small:
mathematics:
profound:
branches:
happy:
correct:
an:
mind:
for:
soon:
his:
when:
school:
got:
expansion:
which:
placed:

w

HFRRRPRPNNRERRRPRPPRPRBERERRERRPRRNDRERBDR

then:
wm :
college:
the:

years:
my :
fortune:
fixed:
that:
scotland:
a:

most:
science:
talent:
gentlemanly:
enlarged:
he:

me:
attached:
daily:
not:
from:
first:
system:
we:

2 went:
2 and:
1 wit:
6 spring:
6 where:
1 it:
3 great:
1 what:
1 destinies:
1 dr:
1 professor:
2 man:
2 useful:
2 with:
1 communication:
1 manners:
1 liberal:
1 happily:
3 became:
1 made:
1 companion:
1 engaged:
1 conversation:
1 views:
1 things:
1 are:

lines and then print them in right-justified format. For example, the input

Listen,

my children,

Of the midnight ride of Paul Revere,

On the eighteenth of April,

Hardly a man is now alive
Who remembers that famous day and year.

would be printed as

On the eighteenth of April,

9.10

Listen, my children,

and you shall hear

in Seventy-five;

and you shall hear
Of the midnight ride of Paul Revere,

in Seventy-five;

Hardly a man is now alive
Who remembers that famous day and year.

string Roman (int n);
Returns the Roman numeral equivalent to the Hindu-Arabic

/7
//
//
//
//

numeral n.

PRECONDITIONS: n > O,

EXAMPLES: Roman (1776)
Roman (1812) returns

Implement and test the following function:

n < 3888
returns
"MDCCCXII",

"MDCCLXXVI",

Roman (1945) returns

HFRRRPRPRPRPRBERRPRPPRPRPRBERRERRRPRRRRBRRRR

Write a program that right-justifies text. It should read and echo a sequence of left-justified

"MCMXLV"

224

9.11

9.12

9.13

9.14

9.15

9.16

STANDARD C++ STRINGS [CHAP.9

Implement and test the following function:
int HinduArabic(string s);
// Returns the Hindu-Arabic numeral equivalent to the Roman
// numeral given in the string s.
// PRECONDITIONS: s contains a valid Roman numeral
// EXAMPLES: HindArabic ("MDCCLXXVI") returns 1776,
// HindArabic ("MDCCCXII") returns 1812

Note that thisis the inverse of the Roman () function in Problem 9.10. [Hint: Write an aux-
iliary function int v(string s, int i) that returnsthe digit for the Roman numeral
character s[i];eg., v("MDCCCXII", 1) returns 500.]
Implement Algorithm G.1 on page 403 to convert decimal numerals to hexadecimal:

string hexadecimal (int n) ;

// Returns the hexadecimal numeral that represents n.

// PRECONDITION: n >= 0

// POSTCONDITION: each character in the returned string is a

// hexadecimal digit and that string is the dexadecimal

// equivalent of n

// EXAMPLE: hexadecimal (11643) returns "2d7b"

[Hint: Write an auxiliary function char c(int k) that returnsthe hexadecimal character
for the hexadecimal digit k; eq., c(14) returns 'e'.]
Implement Algorithm G.2 on page 403 to convert hexadecimal numerals to decimal:

int decimal (string s) ;

// Returns the decimal numeral that represents the hexadecimal

// numeral stored in the string s.

// PRECONDITION: s.length() > 0 and each s[i] is a hexadecimal

// digit

// POSTCONDITION: the returns value is the decimal equivalent

// EXAMPLE: decimal ("2d7b") returns 11643

Note that thisisthe inverse of the hexadecimal () functionin Problem 9.12. [Hint: Write
an auxiliary function int v(string s, int i) that returns the decimal digit for the
hexadecimal character s[i];eg., v("2d7b", 3) returns 12.]
Implement and test the following function:

void reverse(string& s);

// Reverses the string s.

// POSTCONDITION: s[i] <--> s[len-i-1]

// EXAMPLE: reverse(s) changes s = "ABCDEFG" into "GFEDCBA"
[Hint: Use atemporary string.]
Implement and test the following function:

bool is_palindrome (string s) ;

// Returns true iff s is a palindrome

// EXAMPLES: is palindrome ("RADAR") returns true,

// is_palindrome ("ABCD") returns false
Modify the program in Example 9.7 on page 218 so that it merges the two sorted files of
names shown at the top of the next page, writing the resulting sorted lines both to a file
named Presidents.dat andto cout:

[Hint: Use getline (fin, s).]

CHAP. 9] STANDARD C++ STRINGS 225

9.1

9.2

9.3

94

9.5

9.6

9.7

9.8

Republicans Democrats

Bush, George Herbert Walker Carter, James Earl
Coolidge, Calvin Clinton, William Jefferson
Eisenhower, Dwight David Johnson, Lyndon Baines
Ford, Gerald Rudolph Kennedy, John Fitzgerald
Harding, Warren Gamaliel Roosevelt, Franklin
Hoover, Herbert Clark Truman, Harry S
McKinley, William Wilson, Woodrow

Nixon, Richard Milhous

Reagan, Ronald Wilson

Roosevelt, Theodore

Taft, William Howard

Answersto Review Questions

A C-string isan array of charsthat usesthe null character '\0' to mark theend of thestring. A C++
string isan object whose string typeisdefinedinthe <strings> fileand which hasalargerep-
ertoire of function, suchas length() and replace():

char cs[8] = "ABCDEFG"; // cs is a C-string

string s = "ABCDEFG"; // s 1s a C++ string

cout << 8 << " has " << s.length() << " characters.\n";
s.replace (4, 2, "yz"); // changes s to "ABCDyzG"

Formatted input uses the extraction operator >> which ignores whitespace. Unformatted input uses
the get () and getline () functions. The get () function readsthe next character in theinput
stream without ignoring whitespace. The getline () functionreadsall therest of the charactersin
the input stream until it reaches the newline character '\n', which it extracts and ignores.

Whitespace (blanks, tabs, newlines, etc.) cannot be read with the extraction operator because it ignores
all whitespace.

A streamis an object that manages input and output between a program and a data source. C++ alows
<iostream> objectsfor interactive I/O (viz, cin and cout), <fstream> objectsfor exter-
nal files, and <sstream> objectsfor internal files (string streams).

C++ simplifies the processing of strings, external files, and internal files, by defining the same family
of functions and operations for all three. For example, the extraction operator >> works the same way
for inputting a double from the keyboard, from an external file, or from a string stream.

Sequential access must begin at the beginning and access each element in order, one after the other.
Direct access allows the access of any element directly by locating it by its index number or address.
Arraysallow direct access. Magnetic tape has only sequential access, but CDs had direct access. If you
are on arailroad train, to go from one car to another you must use sequential access. But when you
board the train initially you have direct access. Direct access is faster than sequential access, but it
requires some external mechanism (array index, file byte number, railroad platform).

The seekg() and seekp () functions position the get pointer and the put pointer, respectively,
in an external file to allow direct access. For example, the call input.seekg(24) positionsthe
get pointer at byte number 24 in the file bound to thefile stream named input.

The read () and write () functionsare used for direct accessinput and output, respectively, of
externa files. For example, thecall input.read(s.c_str(), n) wouldcopy n bytesto the
string s directly from the file bound to thefile stream named input.

226

9.1

9.2

9.3

STANDARD C++ STRINGS [CHAP.9

Solutions to Problems

char c¢sl1[] = "ABCDEFGHIJ"; // defines csl to be that C-string
char c¢s2[] = "ABCDEFGH"; // defines csl to be that C-string
cout << ¢s2 << endl; // prints: ABCDEFGH
cout << strlen(cs2) << endl; // prints: 8
cs2[4] = 'X'; // changes cs2 to "ABCDXFGH"
if (strcmp(csl, cs2) < 0) cout << csl << " < " << c82 << endl;
else cout << csl << " >= " << cs2 << endl;

// prints: ABCDEFGHIJ < ABCDXFGH
char buffer[80]; // defines buffer to be a C-string of < 80 chars
strepy (buffer, csl); // changes buffer to "ABCDEFGHIJ"
strcat (buffer, cs2); // changes buffer to "ABCDEFGHIJABCDXFGH"
char* c¢s3 = strchr(buffer, 'G'); // make cs3 point to buffer[6]
cout << ¢s3 << endl; // prints: GHIJABCDXFGH
string s = "ABCDEFGHIJKLMNOP"; // defines s to be that string
cout << s << endl; // prints: ABCDEFGHIJKLMNOP
cout << s.length() << endl; // prints: 16
s[8] = '"1'; // changes s to "ABCDEFGH!JKLMNOP"
s.replace (10, 5, "xyz"); // changes s to "ABCDEFGH!JxyzP"
s.erase (2, 4); // changes s to "ABGH!JxyzP"
cout << s.find("!") << endl; // prints: 4
cout << s.find("?") << endl; // prints: 10
cout << s.substr(3, 6) << endl; // prints: H!Jxyz
S += "abcde"; // changes s to "ABGH!JxyzPabcde"
string part(s, 1, 10); // defines part to be "BGH!JxyzPa"
string stars(8, '*'); // defines stars to be "Fxkxkkxxn

. ABC 456 7.89 XYZ

Assigns "ABC" to s,456t0 n, 7.89t0 x, andthen "xXyz" to s.

. ABC 4567 .89 XYZ

Assigns "ABC" to s,4567t0 n,0.89t0 x,andthen "xyz" to s.

. ABC 456 7.8 9XYZ

Assigns "ABC" to s,456t0 n, 7.8t0 x,andthen "9xvyz" to s.

. ABC456 7.8 9 XYZ

Assigns "ABC456" to s, and then crashes because 7.8 is not avalid integer literal.

. ABC456 7 .89 XYZ

Assigns "ABC456" t0 s,7t0 n,0.89t0 x,andthen "xvz" to s.

. ABC4 5 67.89XY Z

Assigns "ABC4" to s, 56t0 n, and then crashes because 7.89xXY isnotavaid float
literal.

. AB C456 7.89 XYZ

Assigns "AB" to s and then crashesbecause c456 isnotavalidinteger literal. (Note that
the hexidecimal numeral c456, which can also be written c456, would qualify as a valid
integer literal. But on input, hexadecimal numerals must be prefixed with “0x”, as in
0xc456.)

.AB C 456 7.89XYZ

Assigns "ABC" to s and then crashes because ¢ isnot avalidinteger literal.

94

9.5

CHAP. 9] STANDARD C++ STRINGS 227
Tracing the merge program:
nl n2 morel more2
27 31 true true
35
34
41
38
52
45
49
56
55
61
63
81
74
92
87 false
95 false
int main()
{ string word, first, last;

char c¢;

bool is_first, is_last = true;

string name[32];

int n=0;

while (cin >> word)

{ cin.get(c); // should be either a blank or a newline
is first = is_last; // current word is a first name
is last = bool(c == '\n'); // current word is a last name
if (is_first) first = word;
else if (is_last) name[n++] = word + ", " + first;
else first += " " + word.substr(0,1) + "."; // add initial

9.6

--n;
for (int i=0; i<n; i++)

cout << '"\t' << i+l << ". " << name[i] << endl;

}

int main()
{ string word;

const int SIZE=91; // for frequency array
int lines=0, words=0, freg[SIZE] = {0}, len;
char c¢;

while (cin >> word)
{ ++words;
cin.get (c) ;
if (¢ == '\n') ++lines;
len = word.length() ;
for (int i=0; i<len; i++)
{ ¢ = wordl[i];

(int ('Z2")

228

9.7

9.8

STANDARD C++ STRINGS [CHAP.9

if (¢ >= 'a' && ¢ <= 'z') ¢ += 'A' - 'a'; // capitalize c
if (¢ >= '"A' && ¢ <= 'Z') ++freqglcl; // count c
}
}
cout << "The input had " << lines << " lines, " << words
<< " words, \nand the following letter frequencies:\n";
for (int i=65; i<SIZE; i++)
{ cout << '"\t' << char(i) << ": " << freqgli];
if (i > 0 && 1%8 == 0) cout << endl; // print 8 to a line

}

cout << endl;
}
bool is_upper (char c)
{ return bool(c >= 'A' && c <= 'Z');
}
bool is_lower (char c)
{ return bool(c >= 'a' && c <= 'z');
}
bool is_letter (char c)
{ return bool (is _upper(c) || is_lower(c));
}
void reduce (string& s)
{ while (s.length() > 0 && !is letter(s[0]))
s.erase (0, 1);
int k = s.length() - 1;
while (k > 0 && !is_letter(s[k--1))
s.erase(k+1, 1);
int len = s.length();

if (len == 0) return;
for (int i=0; i<len; i++)
if (is_upper(s[i])) s[i] += 'a' - 'A';

}

int main ()
{ ifstream in("Pr0907.in");
string s;

const int SIZE=1000; // assume at most 1000 different words
string word[SIZE] ; // holds words read
int lines=0, words=0, n=0, freq[SIZE]={0}, i;

char c¢;

while (in >> 8)
{ reduce(s);

if (s.length() == 0) continue;

++words;

in.get (c) ;

if (¢ == '\n') ++lines; // count line

for (i=0; i<n; i++)

if (word[i] == s) break;

if (i == n) word[n++] = s; // add word to list

++freqli]; // count word
}
cout << "The input had " << lines << " lines and " << words

<< " words, \nwith the following frequencies:\n";

CHAP. 9]

9.9

9.10

STANDARD C++ STRINGS

for (int i=0; i<n;
{ s = wordl[i];
if (1 > 0 && 1%3

cout << setw(1l6)
<< s.c_str()

cout << endl;
}
int main()
{ const int SIZE=100;
string line[SIZE],
int n=0, len, maxle
while (!cin.eof())
{ getline(cin, s);
len = s.length();
if (len > 0) cout
if (len > maxlen)
line[n++] = s;

}

--n;

for (int i=0;

{ s = line[i];
len = s.length() ;
cout << string(ma

}

i<n;

}

string Roman (int n)

{ int d3 = n/1000;
string s(d3, 'M');
n %= 1000;
int d2 = n/100;
if (d2 == 9) g += "
else if (d2 >= 5)

{ s += "D,

S += string(d2-5,

}

else if (d2 == 4) s
else s += string(d2,
n %= 100;

int d1 = n/10; //
if (d1 == 9) s += "
else 1f (dl >= 5)

{ s += "Lv;

g += string(dl-5,

}

else if (dl == 4) s
else s += string(dl,
n %= 10;

int d0 = n/1; // t
if (d0 == 9) s += "
else 1f (d0 >= 5)

{ S += "VU;

i++)

= 0) cout << endl;
<< setiosflags(ios:

<< ": " << getw(2)

229

// print 3 to a line

:right)

<< freqlil;

// maximum number of lines stored

S;
n=0;

<< 8 << endl;

maxlen = len;

// n == number of lines read

i++)

")

xlen-len, '

// the hundreds digit

cM™ ;

'C);

+= "CD"’.
'c);

the tens digit
Xcn;
'X');

+= "XL"’.
X' ;

he ones digit
IX";

<< 8 << endl;

// the thousands digit

230

9.11

9.12

9.13

STANDARD C++ STRINGS

g += string(do-5, 'I');
}
else if (d0 == 4) s += "IV";
else s += string(do, 'I');
return s;

}

int v(string s, int i)

{ char ¢ = s[i];
if (¢ == 'M') return 1000;
if (¢ == 'D') return 500;
if (¢ == 'C') return 100;
if (¢ == 'L') return 50;
if (¢ == 'X') return 10;
if (¢ == 'V') return 5;
if (¢ == 'I') return 1;

}

int HindArabic(string s)
{ int n0=0, nl=0, n=0;

for (int i=0; i<s.length(); i++)
{ no = n1;

n += nl = v(s,i);

if (nl>n0) n -= 2*n0;

}

return n;

}

char c(int k)

{ assert(k >= 0 && k <= 15);
if (k < 10) return char(k + '0');
return char(k - 10 + 'a');

}

string hexadecimal (int n)

{ 1f (n == 0) return string(l, '0');
string s;
while (n > 0)
{ s string (1, c(n%16)) + s;

return s;

}

int v(string s, int 1)

{ char ¢ = s[i];
assert(c >= '0' && c <= '9' || ¢ >= 'a’
if (¢ >= '0' && Cc <= '9') return int(c
else return int(c - 'a' + 10);

}

int decimal (string s)
{ int len = s.length();
assert(len > 0);
int n=0;
for (int i=0; i<len; i++)
n = 16*n + v(s,1i);

&& C <=
'0');

Ifl)’.

[CHAP. 9

CHAP. 9]

9.14

9.15

9.16

STANDARD C++ STRINGS

return n;
}
void reverse(string& s)
{ string temp = s;
int len = s.length();
for (int i=0; i<len; i++)
s[i] = templ[len-i-1];
}

bool is palindrome (string s)
{ int len = s.length();
for (int 1i=0; i<len/2; i++)
if (s[i] != s[len-i-1]) return false;
return true;
}
bool more(ifstream& fin, string& s)
{ if (getline(fin, s)) return true;
else return false;

}

bool copy(ofstream& fout, ifstream& fin,

{ fout << s << endl;
cout << s << endl;
return more (fin, s) ;

}

int main()

{ ifstream finl ("Democrats.dat");
ifstream fin2 ("Republicans.dat");
ofstream fout ("Presidents.dat") ;
string sl1, s2;
bool morel = more(finl, sl1);

bool more2 = more(fin2, s2);
while (morel && more2)
if (81l < s2) morel = copy(fout, finl,
else more2 = copy(fout, fin2, s2);
while (morel)
morel = copy(fout, finl, sl1);
while (more2)
more2 = copy(fout, fin2, s2);

fout << endl;

string& s)

231

Chapter 10

Classes

10.1 INTRODUCTION

A classis like an array: it is a derived type whose elements have other types. But unlike an
array, the elements of a class may have different types. Furthermore, some elements of a class
may be functions, including operators.

Although any region of storage may generally be regarded as an “object”, the word is usually
used to describe variables whose type is a class. Thus “object-oriented programming” involves
programs that use classes. We think of an object as a self-contained entity that storesits own data
and owns its own functions. The functionality of an object gives it life in the sense that it
“knows” how to do things on its own.

There is much more to object-oriented programming than simply including classes in your
programs. However, that is the first step. An adequate treatment of the discipline lies far beyond
an introductory outline such asthis.

10.2 CLASS DECLARATIONS

Hereis a declaration for a class whose objects represent rational numbers (i.e., fractions):
class Ratio
{ public:
void assign(int, int);
double convert() ;
void invert () ;
void print () ;
private:
int num, den;
}i
The declaration begins with the keyword c1ass followed by the name of the class and ends
with the required semicolon. The name of thisclassis ratio.

The functions assign(), convert(), invert(), and print() are called member
functions because they are members of the class. Similarly, the variables num and den are
called member data. Member functions are also called methods and services.

In this class, all the member functions are designated as public, and all the member dataare
designated as private. Thedifferenceisthat pub1ic membersare accessible from outside the
class, while private members are accessible only from within the class. Preventing access
from outside the class is called “information hiding.” It allows the programmer to compartmen-
talize the software which makes it easier to understand, to debug, and to maintain.

The following example shows how this class could be implemented and used.

232

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 10] CLASSES

EXAMPLE 10.1 Implementing theRatio Class

class Ratio

{ public:
void assign(int, int);
double convert () ;
void invert () ;
void print () ;

private:

int num, den;

}i

int main()
{ rRatio x;
x.assign(22,7);
cout << "x = ";
x.print () ;
cout << " = " << x.convert() << endl;
x.invert () ;
cout << "1/x = "; XxX.print();
cout << endl;

}

void Ratio::assign(int numerator, int denominator)

{ num = numerator;
den = denominator;

}

double Ratio::convert ()
{ return double (num)/den;

}

void Ratio::invert()
{ int temp = num;
num = den;
den = temp;

}

void Ratio::print()

{ cout << num << '/' << den;
}

X = 22/7 = 3.14286

1/x = 7/22

233

Here x isdeclared to be an object of the Ratio class. Consequently, it hasits own internal data
members num and den, and it has the ability to call the four class member functions assign (),

convert (), invert (), and print (). Notethat a member function like invert ()

iscaled by

prefixing its name with the name of its owner: x.invert (). Indeed, a member function can only be

called thisway. We say that the object x “owns’ the call.

An object like x isdeclared just like an ordinary variable. Its type is Ratio. We can think of this
type as a “user-defined type.” C++ alows us to extend the definition of the programming language by

234 CLASSES [CHAP. 10

adding the new Ratio type to the collection of predefined numeric types int, float, etc. We can
envision the abject x likethis:

Ratio

Notice the use of the specifier Ratio:: asaprefix to each function name. Thisis necessary for each
member function definition that is given outside of its class definition. The scope resolution operator : :
is used to tie the function definition to the Ratio class. Without this specifier, the compiler would not
know that the function being defined is a member function of the rRatio class. This can be avoided by
including the function definitions within declaration, as shown below in Example 10.2.

When an object like the rRatio object x in Example 10.1 is declared, we say that the class
has been instantiated, and we call the object an instance of the class. And just as we may have
many variables of the same type, we may also have may instances of the same class:

Ratio x, vy, z;

EXAMPLE 10.2 A Sdf-Contained | mplementation of theRatio Class

Here'sthe sasme RrRatio classwith the definitions of its member functions included within the class
declaration:
class Ratio

{ public:
void assign(int n, int d) { num = n; den = 4d; }
double convert () { return double (num)/den; }
void invert () { int temp = num; num = den; den = temp; }
void print () { cout << num << '/' << den; }
private:

int num, den;

}i

In most cases, the preferred style is to define the member functions outside of the class decla-
ration, using the scope resolution operator as shown in Example 10.1. That format physically
separates the function declarations from their definitions, consistent with the general principle of
information hiding. In fact, the definitions are often put in a separate file and compiled sepa-
rately. The point is that application programs that use the class need only know what the objects
can do; they do not need to know how the objects do it. The function declarations tell what they
do; the function definitions tell how they do it. This, of course, is how the predefined types (int,
double, etc.) work: we know what the result should be when we divide one float by another, but
we don’'t really know how the division is done (i.e., what algorithm is implemented). More
importantly, we don’t want to know. Having to think about those details would distract us from
the task at hand. This point of view is often called information hiding and is an important princi-
plein object-oriented programming.

When the member function definitions are separated from the declarations, as in Example
10.1, the declaration section is called the class interface, and the section containing the member
function definitions is called the implementation. The interface is the part of the class that the
programmer needs to see in order to use the class. The implementation would normally be

CHAP. 10] CLASSES 235

concealed in aseparate file, thereby “hiding” that information that the user (i.e., the programmer)
does not need to know about. These class implementations are typically done by implementors
who work independently of the programmers who will use the classes that they have
implemented.

10.3 CONSTRUCTORS

The Rratio class defined in Example 10.1 uses the assign() function to initialize its
objects. It would be more natural to have this initialization occur when the objects are declared.
That’s how ordinary (predefined) types work:

int n = 22;

char* s = "Hello";
C++ alows this simpler style of initialization to be done for class objects using constructor
functions.

A constructor isa member function that is invoked automatically when an object is declared.
A constructor function must have the same name as the class itself, and it is declared without
return type. The following exampleillustrates how we can replace the assign () function with
aconstructor.

EXAMPLE 10.3 A Constructor Function for the Ratio Class

class Ratio

{ public:
Ratio(int n, int d) { num = n; den = 4; }
void print() { cout << num << '/' << den; }
private:

int num, den;

}i

int main()
{ Ratio x(-1,3), y(22,7);
cout << "x = ";

x.print () ;
cout << " and y = ";
y.print () ;
}
X = -1/3 and y = 22/7

The constructor function has the same effect as the assign() function had in Example 10.1: it
initializes the object by assigning the specified values to its member data. When the declaration of x
executes, the constructor is called automatically and the integers -1 and 3 are passed to its parameters n
and d. The function then assigns these valuesto x’'s num and den data members. So the declarations

Ratio x(-1,3), vy (22,7);
are equivalent to the three lines
Ratio x, vy;
X.assign(-1,3);
y.assign(22,7);

236 CLASSES [CHAP. 10

A class's constructor “constructs” the class objects by allocating and initializing storage for
the objects and by performing any other tasks that are programmed into the function. It literally
creates alive object from apile of unused bits.

We can visualize the relationships between the ratio classitself and its instantiated objects
like this:

Ratio

Ratio

num| 2

Ratio

The class itself is represented by arounded box containing its member functions. Each function
maintains a pointer, named “this”, which points to the object that is calling it. The snapshot
here represents the status during the execution of the last line of the program, when the object v
is calling the print () function: y.print (). At that moment, the “this” pointer for the
constructor is NULL becauseit is not being called.

A class may have several constructors. Like any other overloaded function, these are distin-
guished by their distinct parameter lists.

EXAMPLE 104 Adding More ConstructorstotheRatio Class

class Ratio
{ public:
Ratio() { num = 0; den = 1;

}
Ratio(int n) { num = n; den = 1; }
Ratio(int n, int d) { num = n; den = 4; }
void print() { cout << num << '/' << den; }
private:

int num, den;

}i

int main()

{ Ratio x, y(4), z(22,7);
cout << "x = ";
x.print () ;
cout << "\ny ",
y.print () ;
cout << "\nz ",

.print () ;

N

0/1
4/1
b4 22/17
Thisversion of the Ratio class hasthree constructors. The first has no parameters and initializes the
declared aobject with the default values 0 and 1. The second constructor has one integer parameter and

}
Y

CHAP. 10] CLASSES 237

initializes the object to be the fractional equivalent to that integer. The third constructor isthe same asin
Example 10.2.

Among the various constructors that a class may have, the ssimplest is the one with no parame-
ters. It is called the default constructor. If this constructor isnot explicitly declared in the class def-
inition, then the system will automatically create it for the class. That is what happens in
Example 10.1.

10.4 CONSTRUCTOR INITIALIZATION LISTS

Most constructors do nothing more than initialize the object’'s member data. Consequently,
C++ provides aspecial syntactical device for constructors that simplifies this code. The deviceis
an initialization list.

Here is the third constructor in Example 10.2, rewritten using an initialization list:

Ratio(int n, int d) : num(n), den(d) { }
The assignment statements in the function’s body that assigned n to num and d to den are
removed. Their action is handled by the initialization list shown in boldface. Note that the list
begins with a colon and precedes the function body which is now empty.

Hereisthe ratio classwith itsthree constructors rewritten using initializer lists.

EXAMPLE 10.5 UsingInitializer ListsintheRatio Class

class Ratio

{ public:
Ratio() : num(0), den(1) { }
Ratio(int n) : num(n), den(1l) { }
Ratio(int n, int d) : num(n), den(d) { }
private:

int num, den;
}i
Of course, these three separate constructors are not necessary. They can be combined into a
single constructor, using default parameter values, as illustrated by the next example.

EXAMPLE 10.6 Using Default Parameter Valuesin the ratio Class Constructor

class Ratio
{ public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
private:
int num, den;

}i

int main()
{ Ratio x, y(4), z(22,7);
}
Here, x will represent 0/1, v will represent 4/1, and z will represent 22/7.
Recall that the default values are used when actual parameters are not passed. So in the declaration of
theratio object x where no values are passed, the formal parameter n is given the default value O

238 CLASSES [CHAP. 10

which isthen assigned to x.num, and the formal parameter 4 isgiven the default value 1 which isthen
assigned to x.den. In the declaration of the object y where only the value 4 is passed, the formal
parameter n is given that value 4 which is then assigned to y.num, and the formal parameter 4 is
given the default value 1 which is then assigned to y.den. No default values are used in the declaration
of =z.

10.5 ACCESS FUNCTIONS

Although a class's member data are usually declared to be private to limit access to them, it
is also common to include public member functions that provide read-only access to the data.
Such functions are called access functions. (In Java, they are also called getty methods, because
they usually use the word “get” in their names. This is in contrast to setty methods which are
used to change the values of data members and use the word “set” in their name. Getty methods
are read-only; setty methods are read-write.)

EXAMPLE 10.7 Access Functionsin theRatio Class

class Ratio

{ public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
int numerator() const { return num; }
int denominator() const { return den; }
private:

int num, den;

}i

int main ()
{ Ratio x(22,7);
cout << x.numerator() << '/' << x.denominator () << endl;

}

The functionsnumerator () and denominator () return the values of the private member data.
Note the use of the const keyword in the declarations of the two access functions. This alows the
functionsto be applied to constant objects. (See Section 10.9.)

10.6 PRIVATE MEMBER FUNCTIONS

Class member data are usually declared to be private and member functions are usually
declared to be public. But this dichotomy is not required. In some cases, it is useful to declare
one or more member functions to be private. As such, these functions can only be used within
the classitself; i.e., they are local utility functions.

EXAMPLE 10.8 Usingprivate Member Functions

class Ratio

{ public:
Ratio(int n=0, int d=1) : num(n), den(d) { reduce(); }
void print () const { cout << num << '/' << den << endl; }

private:

CHAP. 10] CLASSES 239

int num, den;
void reduce();

}i

int gcd(int, int) ;
void Ratio::reduce()
{ // enforce invariant(den > 0):
if (num == 0 || den == 0)
{ num = 0;
den = 1;
return;
}
if (den < 0)
{ den *= -1;

num *= -1;
}
// enforce invariant (gcd(num,den) == 1):
if (den == 1) return; // it's already reduced
int sgn = (num<0?-1:1); // no negatives to gcd()
int g = gcd(sgn*num,den) ;
num /= g;
den /= g;

}
int gcd(int m, int n)
{ // returns the greatest common divisor of m and n:
if (m<n) swap(m,n);
while (n=>0)
{ int r=m%n;
m = n;
n = r;
}

return m;

int main ()
{ Ratio x(100,-360);
x.print () ;

}

-5/18

Thisversionincludestheprivate function reduce () that usesthe gcd () function (see Problem
5.18 on page 113) to reduce the fraction num/den to lowest terms. Thus the fraction 100/-360 is stored
as—5/18.

Instead of having aseparate reduce () function, we could have done the actual reduction within the
constructor. But there are two good reasons for doing it this way. Combining the construction with the
reduction would violate the software principle that separate tasks should be handled by separate functions.
Moreover, the reduce () function will be needed later to reduce the results of arithmetic operations
performed on Ratio objects.

240 CLASSES [CHAP. 10

Note that the keywords public and private are caled access specifiers; they specify
whether the members are accessible outside the class definition. The keyword protected isthe
third access specifier. It is described in Chapter 13.

10.7 THE COPY CONSTRUCTOR

Every class has at least two constructors. These are identified by their unique declarations:

X(); // default constructor

X (const X&) ; // copy constructor
where x is the class identifier. For example, these two specia constructors for a widget class
would be declared:

Widget () ; // default constructor

Widget (const Widgeté&); // copy constructor
The first of these two special constructors is called the default constructor; it is called automati-
cally whenever an object is declared in the ssmplest form, like this:

Widget x;
The second of these two special constructorsis called the copy constructor; it is called automati-
cally whenever an object is copied (i.e., duplicated), like this:

Widget y(x);
If either of these two constructors is not defined explicitly, then it is automatically defined
implicitly by the system.

Note that the copy constructor takes one parameter: the object that it is going to copy. That
object is passed by constant reference because it should not be changed.

When the copy constructor is called, it copies the complete state of an existing object into a
new object of the same class. If the class definition does not explicitly include a copy constructor
(as al the previous examples have not), then the system automatically creates one by default.
The ability to write your own copy constructor gives you more control over your software.

EXAMPLE 10.9 Adding a Copy Constructor totheRatio Class

class Ratio

{ public:
Ratio(int n=0, int d=1) : num(n), den(d) { reduce(); }
Ratio(const Ratio& r) : num(r.num), den(r.den) { }
void print() { cout << num << '/' << den; }
private:

int num, den;
void reduce() ;
}i
int main()
{ Ratio x(100,360);
Ratio y(x);
cout << "x = ";
x.print () ;
cout << ", y = ";
y.print () ;

}
x = 5/18, y = 5/18

CHAP. 10] CLASSES 241

The copy constructor copies the num and den fields of the parameter r into the object being
constructed. When v is declared, it calls the copy constructor which copiesx into y.

Note the required syntax for the copy constructor: it must have one parameter, which has the
same class as that being declared, and it must be passed by constant reference: const xs.
The copy constructor is called automatically whenever

» anobject is copied by means of adeclaration initialization;
» anobject is passed by value to afunction;
» anobject isreturned by value from afunction.

EXAMPLE 10.10 Tracing Callsto the Copy Constructor

class Ratio

{ public:
Ratio(int n=0, int d=1) : num(n), den(d) { reduce(); }
Ratio(const Ratio& r) : num(r.num), den(r.den)
{ cout << "COPY CONSTRUCTOR CALLED\n"; }
private:

int num, den;
void reduce() ;

}i

Ratio f(Ratio r) // calls the copy constructor, copying ? to r
{ Ratio s = r; // calls the copy constructor, copying r to s
return s; // calls the copy constructor, copying s to ?

}

int main ()

{ Ratio x(22,7);
Ratio y(x); // calls the copy constructor, copying X to y
fly);

}

COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED

In this example, the copy constructor is called four times. It is called when y isdeclared, copying x
toy; itiscaled when y ispassed by valueto the function £, copying y tor;itiscaledwhen s is
declared, copying r to s; and itiscalled when the function £ returnsby value, even though nothing is
copied there. Note that the initialization of s looks like an assignment. But as part of adeclaration it calls
the copy constructor just as the declaration of y does.

If you do not include a copy constructor in your class definition, then the compiler generates
one automatically. This “default” copy constructor will simply copy objects bit-by-bit. In many
cases, this is exactly what you would want. So in these cases, there is no need for an explicitly
defined copy constructor.

However, in some important cases, a bit-by-bit copy will not be adequate. The string class,
described in Chapter 9, is a prime example. In objects of that class, the relevant data member

242 CLASSES [CHAP. 10

holds only a pointer to the actual string, so a bit-by-bit copy would only duplicate the pointer, not
the string itself. In cases like this, it is essential that you define your own copy constructor.

10.8 THE CLASS DESTRUCTOR

When an object is created, a constructor is called automatically to manage its birth. Similarly,
when an object comes to the end of its life, another special member function is called automati-
cally to manage its death. This function is called a destructor.

Each class has exactly one destructor. If it is not defined explicitly in the class definition, then
like the default constructor, the copy constructor, and the assignment operator, the destructor is
created automatically.

EXAMPLE 10.11 Including a Destructor intheRatio Class

class Ratio

{ public:
Ratio() { cout << "OBJECT IS BORN.\n"; }
~Ratio() { cout << "OBJECT DIES.\n"; }
private:

int num, den;

}i

int main ()
{ { Ratio x; // beginning of scope for x
cout << "Now x is alive.\n";
} // end of scope for x
cout << "Now between blocks.\n";
{ Ratio vy;
cout << "Now y is alive.\n";
}
}

OBJECT IS BORN.
Now X is alive.
OBJECT DIES.

Now between blocks.
OBJECT IS BORN.
Now y is alive.
OBJECT DIES.

The output here shows when the constructor and the destructor are called.

The class destructor is called for an object when it reaches the end of its scope. For a local
object, this will be at the end of the block within which it is declared. For a static object, it
will be at the end of the main () function.

Although the system will provide them automatically, it is considered good programming
practice always to define the copy constructor, the assignment operator, and the destructor within
each class definition.

CHAP. 10] CLASSES 243

10.9 CONSTANT OBJECTS

It is good programming practice to make an object constant if it should not be changed. Thisis
donewiththe const keyword:
const char BLANK = ' ';
const int MAX INT = 2147483647;
const double PI = 3.141592653589793;
void init(float a[], const int SIZE) ;
Like variables and function parameters, objects may also be declared to be constant:
const Ratio PI(22,7);
However, when thisis done, the C++ compiler restricts access to the object’s member functions.
For example, with the ratio class defined previously, the print () function could not be
called for this object:
PI.print () ; // error: call not allowed
In fact, unless we modify our class definition, the only member functions that could be called for
const Objects would be the constructors and the destructor. To overcome this restriction, we
must declare as constant those member functions that we want to be able to use with const
objects.
A function is declared constant by inserting the const keyword between its parameter list
and its body:
void print() comst { cout << num << '/' << den << endl; }
This modification of the function definition will alow it to be called for constant objects:
const Ratio PI(22,7);
PI.print () ; // o.k. now

10.10 STRUCTURES

The C++ class is a generalization of the C struct (for “structure’) which is a class with
only public members and no functions. One normally thinks of a class as a structure that is
given life by means of its member functions and which enjoys information hiding by means of
private data members.

To remain compatible with the older C language, C++ retains the struct keyword which
allows structs to be defined. However, a C++ struct is essentially the same as a C++ class.
The only significant difference between a C++ struct and a C++ class is with the default
access specifier assigned to members. Although not recommended, C++ classes can be defined
without explicitly specifying its member access specifier. For example,

class Ratio

{ int num, den;

}i
isavalid definition of a ratio class. Since the access specifier for its data members num and
den is not specified, it is set by default to be private. If we make it a struct instead of a
class, likethis:

struct Ratio

{ int num, den;

}i
then the data members are set by default to be pub1ic. But this could be corrected simply by
specifying the access specifier explicitly:

244 CLASSES [CHAP. 10

struct Ratio
{ private:
int num, den;

So the difference between a class and a C++ struct isreally just cosmetic.
10.11 POINTERSTO OBJECTS

In many applications, it is advantageous to use pointers to objects (and structs). Hereisa
simple example:

EXAMPLE 10.12 Using Pointersto Objects

class X
{ public:

int data;
}i

int main ()
{ X* p = new X;

(*p) .data = 22; // equivalent to: p->data = 22;
cout << "(*p).data = " << (*p).data << " = " << p->data << endl;
p->data = 44;
cout << " p->data = " << (*p).data << " = " << p->data << endl;
}
(*p) .data = 22 = 22
p->data = 44 = 44

Since p is apointer to an X object, *p isan x object, and (*p) .data accessesitspublic member
data. Note that parentheses are required in the expression (*p) .data because the direct member
selection operator “ .” has higher precedence than the dereferencing operator “ *”. (See Appendix C.)

The two notations
(*p) .data
p->data
have the same meaning. When working with pointers, the “arrow” symbol “->" is preferred
because it is smpler and it suggests “the thing to which p points.”
Here is a more important example:

EXAMPLE 10.13 A Node Classfor Linked Lists

class Node
{ public:
Node (int d, Node* g=0) : data(d), next(q) { }
int data;
Node* next;
Vi
This defines aNode class each of whose objects contain an int data member and anext pointer.
int main ()
{ int n;
Node* p;

CHAP. 10] CLASSES 245

Node* g=0;
while (cin >> n)

{ p = new Node(n, q);

g = p;

}

for (; p; p = p->next)
cout << p->data << " -> ";

cout << "*\n";

}
22 33 44 55 66 77 "D
77 -> 66 -> 55 -> 44 -> 33 -> 22 -> *

First note that the definition of the Node class includes two references to the class itself. This is
allowed because each reference is actually a pointer to the class. Also note that the constructor initializes
both data members.

The program allows the user to create a linked list in reverse. Then it traverses the list, printing each
data value

The while loop continuesreads intsinto n until the user enters the end-of-file character (Ctrl+D).
Within the loop, it gets a new node, insertsthe int into its data member, and connects the new node to
the previous node (pointed to by q). Finally, the for loop traverses the list, beginning with the node
pointedtoby p (which isthe last node constructed) and continuing until p is NUL.

The list constructed in this exampl e can be visualized like this:

O e e Tty

10.12 STATIC DATA MEMBERS

Sometimes asingle value for a data member applies to all members of the class. In this case, it
would be inefficient to store the same value in every object of the class. That can be avoided by
declaring the data member to be static. Thisisdone by including the static keyword at the
beginning of the variable's declaration. It also requires that the variable be defined globally. So
the syntax looks like this:

class X
{ public:
static int n; // declaration of n as a static data member
}i
int X::n = 0; // definition of n
Static variables are automatically initialized to O, so the explicit initialization in the definition is
unnecessary unless you want it to have a non-zero initial value.

246 CLASSES [CHAP. 10

EXAMPLE 10.14 A static Data Member

The widget class maintains a static data member count which keeps track of the number of
Widget objects in existence globally. Each time a widget is created (by the constructor) the counter is
incremented, and each time awidget is destroyed (by the destructor) the counter is decremented.

class Widget

{ public:
Widget () { ++count; }
~Widget () { --count; }
static int count;

}i

int Widget::count = 0;

int main ()
{ widget w, x;

cout << "Now there are " << w.count << " widgets.\n";
{ widget w, x, v, z;
cout << "Now there are " << w.count << " widgets.\n";
cout << "Now there are " << w.count << " widgets.\n";
Widget vy;
cout << "Now there are " << w.count << " widgets.\n";
Now there are 2 widgets.
Now there are 6 widgets.
Now there are 2 widgets.

Now there are 3 widgets.

Notice how four widgets are created inside the inner block, and then they are destroyed when program
control leaves that block, reducing the global number of widgets from 6 to 2.

A static data member is like an ordinary global variable: only one copy of the variable exists
no matter how many instances of the class exist. The main difference is that it is a data member
of the class, and so may be private.

EXAMPLE 10.15 A static DataMember thatis private

class Widget
{ public:
Widget () { ++count; }
~Widget () { --count; }
int numWidgets() { return count; }
private:
static int count;
}i

int Widget::count = 0;

int main ()

{ widget w, x;
cout << "Now there are " << w.numWidgets() << " widgets.\n";
{ widget w, x, v, z;

CHAP. 10] CLASSES 247

cout << "Now there are " << w.numWidgets() << " widgets.\n";
cout << "Now there are " << w.numWidgets() << " widgets.\n";
Widget vy;
cout << "Now there are " << w.numWidgets() << " widgets.\n";

}

Thisworksthe same way as Example 10.2. But now that the static variable count iSprivate,we
need the access function numWidgets () toread count in main().

The relationships among the class, its members, and its objects can be visualized like this:

Widget/ \

Widget () @

~Widget () @

numWidgets () @—
\w'

e[e

Yy

Widget

Widget

The rounded box represents the class itself which contains the three member functions and the
data member count. The public members are above the line and the private member(s)
are below it. Each member function maintains a pointer (named “this”) which points to the
object that owns the current function call. This snapshot shows the status during the execution of
the last line in the program: three widgets (w, x, and y) exist, and w is calling the numwid-
gets () function which returns the value of the private data member count. Note that this data
member resides within the classitself; the class objects have no data.

10.13 static FUNCTION MEMBERS

Like any ordinary member function, the numwidgets () function in Example 10.2 requires
that it be owned by some instance of the class. But since it returnsthe value of the static data
member count which is independent of the individual objects themselves, it doesn’t matter
which object callsit. We had w call it each time, but we could just aswell havehad x or y or
z call it when they exist. Moreover, we couldn’t call it at all until after some object had been
created. This is rather arbitrary. Since the action of the function is independent of the actual
function objects, it would be better to make the calls independent of them too. This can be done
simply by declaring the function to be static.

EXAMPLE 10.16 A static Function Member

The widget classmaintainsa static datamember count which keepstrack of the number of
Widget objectsin existence globally. Each time a widget is created (by the constructor) the counter is
incremented, and each time awidget is destroyed (by the destructor) the counter is decremented.

class Widget
{ public:
Widget () { ++count; }

248

}

CLASSES [CHAP. 10

~Widget () { --count; }
static int num() { return count; }
private:
static int count;
}i

int Widget::count = 0;

int main ()

{ cout << "Now there are " << Widget::num() << " widgets.\n";
Widget w, x;
cout << "Now there are " << Widget::num() << " widgets.\n";
{ widget w, x, v, z;
cout << "Now there are " << Widget::num() << " widgets.\n";
}
cout << "Now there are " << Widget::num() << " widgets.\n";
Widget vy;
cout << "Now there are " << Widget::num() << " widgets.\n";

Declaring the numWwidgets () functiontobe static rendersitindependent of the class instances.
So now it isinvoked simply as a member of the widget classusing the scope resolution operator “: :”.
This allows the function to be called before any objects have been instantiated.

The previousfigure showing rel ationshi psamong the class and itsinstances should now lookslikethis:

Widget/ \

Widget () @

~Widget () @
Widget
numWidgets ()

\\ count / l;gej

Yy

Widget

The difference is that now the member function num () hasno“this” pointer. Asa static member
function, it is associated with the class itself, not with its instances.

Static member functions can accessonly static datafrom their own class.

101
10.2
10.3
104
105
10.6
10.7
10.8

Review Questions

Explain the difference between a public member and a private member of aclass.
Explain the difference between the interface and the implementation of a class.

Explain the difference between a class member function and an application function.
Explain the difference between a constructor and a destructor.

Explain the difference between the default constructor and other constructors.

Explain the difference between the copy constructor and the assignment operator.
Explain the difference between an access function and a utility function.

Explain the difference betweena class anda struct in C++.

CHAP. 10] CLASSES 249

10.9

10.10
10.11
10.12
10.13
10.14

10.15

10.16

101

10.2

10.3

104

105

10.6

10.7

What name must a constructor have?
What name must a destructor have?
How many constructors can a class have?
How many destructors can aclass have?
How and why isthe scope resolution operator : : used in class definitions?
Which member functions are created automatically by the compiler if they are not included
(by the programmer) in the class definition?
How many times is the copy constructor called in the following code:
Widget f (Widget u)
{ widget v(u);
Widget w = v;
return w;

}

main ()
{ widget x;

Widget vy = £ (f(x));
}

Why are the parentheses needed in the expression (*p) .data?
Problems

Implement a point classfor three-dimensiona points (x,y,2). Include a default constructor,
acopy constructor, a negate () function to transform the point into its negative, @ norm()
function to return the point’s distance from the origin (0,0,0), and a print () function.
Implement a stack class for stacks of ints. Include a default constructor, a destructor,
and the usual stack operations. push(), pop(), isEmpty (), and isFull (). Use an
array implementation.

Implement a Time class. Each object of this class will represent a specific time of day, stor-
ing the hours, minutes, and seconds as integers. Include a constructor, access functions, a
function advance (int h, int m, int s) to advance the current time of an existing
object, afunction reset (int h, int m, int s) to resetthe currenttime of an existing
object, and a print () function.

Implement a Random class for generating pseudo-random numbers.

Implement a person class. Each object of this class will represent a human being. Data
members should include the person’s name, year of birth, and year of death. Include a default
constructor, a destructor, access functions, and a print function.

Implement a string class. Each object of this class will represent a character string. Data
members are the length of the string and the actual character string. In addition to construc-
tors, destructor, access functions, and a print function, include a *subscript” function.
Implement a Matrix classfor 2-by-2 matrices:

ab

cd
Include a default constructor, a copy constructor, an inverse () function that returns the
inverse of the matrix, a det () function that returns the determinant of the matrix, a Bool-

ean function issingular () that returns 1 or O according to whether the determinant is
zero,and a print () function.

250

10.8

10.9

101
10.2

103

104

105

10.6

10.7

10.8

10.9
10.10
10.11

10.12
10.13

10.14

10.15

10.16

CLASSES [CHAP. 10

Implement a Point classfor two-dimensional points (X, y). Include a default constructor, a
copy constructor, a negate () function to transform the point into its negative, a norm ()
function to return the point’s distance from the origin (0,0), and a print () function.

Implement a circle class. Each object of this class will represent a circle, storing its
radius and the x and y coordinates of its center as floatsS. Include a default constructor,
access functions, an area () function, and a circumference () function.

Answersto Review Questions

A public member isaccessible from outside theclass, a private member is not.

The classinterface consists of the member data and the member function prototypes (i.e. just the func-
tion declarations). The class implementation contains the definitions of the member functions.

A class member function is part of the class, so it has accessto theclass's private parts. An appli-
cation function is declared outside the class, and so it does not have access to the class's private
parts.

A constructor is a class member function that executes automatically whenever an object of that class
isinstantiated (i.e., constructed). A destructor is a class member function that executes automatically
whenever the scope of that object terminates (i.e., is destructed).

The default constructor is the unique constructor that has no parameters (or the one whose parameters
al have default va ues).

A class's copy constructor executes whenever an object of that class is copied by any mechanism
except direct assignment. This includes initialization, passing a parameter by value, and returning by
value.

An access functionisa public class member function that returns the value of one of the class's
data members. A utility functionisa private class member function that is used only within the
classto perform “technical” tasks.

A class anda struct inC++ areessentially the same. The only significant difference is that
the default access level for aclassis private, whilethat for astructis public.

Every class constructor must have the same name as the class itself.
Every class destructor must have the same name asthe class itself, prefixed with atilde (~).

There is no limit to the number of constructors that a class may have. But since multiple constructors
are function overloads, they all must be distinguishable by their parameter lists.

A class can have only one destructor.

The scope resolution operator : : isused in general “to resolve external references.” Itisusedin a
class definition whenever the definition of a member function is given outside the scope of the class
definition.

There are four class member functions that are created automatically by the compiler if they are not
included (by the programmer) in the class definition: the default constructor, the copy constructor, the
destructor, and the overloaded assignment operator.

The copy constructor iscaled 7 timesin this code. Each call to the function £ requires 3 callsto the
copy constructor: when the parameter is passed by valueto u, when v isinitiaized, and when w is
returned by value. The seventh call isfor theinitiaization .

The parentheses are needed in the expression (*p) .data because the direct member selection
operator “.” has higher precedence than the dereferencing operator “*”. (See Appendix C.)

CHAP. 10] CLASSES 251

Solutions to Problems

10.1 Thisimplementation of aPoint class usesthe common device of ending the name of each data mem-
ber with an underscore (_). This has the advantage of making it easy to match up the names of con-
structor parameters (x, y, and z) with their corresponding data members (x_, y_,and z_) without
conflict.

#include <cmaths>
#include <iostream>
using namespace std;
class Point

{ public:
Point (float x=0, float y=0, float z=0): x (x), y_(y), z_(z) {}
Point (const Point& p) : x (p.x), v _(p.y), z_(p.z_) { }
void negate() { x_ *= -1; y *= -1; z_ *= -1; }
double norm() { return sqrt(x_*x + y *y + z_*z); |
void print ()
{ cout << '(' << X << "," <<y << ", " <<z << ")"; }
private:

float x , v, z_;
}i
10.2 Inthisimplementation of a Stack class, top isawaystheindex of the top element on the stack. The
datamember size isthesizeof thearray that holdsthe stack items. So the stack isfull when it con-
tains that number of items. The constructor sets size to 10 as the default.

class Stack

{ public:
Stack (int s=10) : size(s), top(-1) { a = new int[sizel; }
~Stack() { delete [] a; }
void push(const int& item) { al++top] = item; }
int pop() { return altop--]; }
bool isEmpty() const { return top == -1; }
bool isFull() const { return top == (size-1); }
private:
int size; // size of array
int top; // top of stack
int* a; // array to hold stack items
}i
10.3 class Time
{ public:
Time (int h=0, int m=0, int s=0)
hr(h), min(m), sec(s) { normalize(); }
int hours() { return hr; }
int minutes() { return min; }
int seconds() { return sec; }

void advance (int =0, int =0, int =1);

void reset (int =0, int =0, int =0);

void print() { cout << hr << ":" << min << ":" << sec; }
private:

int hr, min, sec;

void normalize () ;

}i

void Time: :normalize ()

252

104

CLASSES [CHAP. 10

{ min += sec/60;
hr += min/60;
hr = hr % 24
min = min
gsec = sec

o\°

60;
60

o\°

1

}

void Time: :advance (int h, int m, int s)
{ hr += h;

min += m;

sec += s;

normalize () ;

}

void Time: :reset (int h, int m, int s)

{ hr = h;
min = m;
sec = 8;

normalize () ;

}
Thisimplementation of a Random classusesa utility function normalize (), which normalizesthe
Time object sothat itsthree data members arein the correct range: 0 < sec <60,0< min <60,
and 0 < hr < 24. It aso uses the utility function randomize (), which implements the Linear
Congruential Algorithm introduced by D. H. Lehmer in 1949. The utility function next ()
updatesthe seed by calingthe randomize () function arandom number of times.

#include <climits> // defines INT MAX and ULONG MAX constant

#include <ctime> // defines time () function

#include <iomanip> // defines the setw() function

#include <iostream> // defines the cout object

using namespace std;

class Random

{ public:
Random(long seed=0) { seed = (seed?seed:time(NULL)); }
void seed(long seed=0) { seed = (seed?seed:time(NULL)); }
int integer() { return next(); }

int integer (int min, int max)
{ return min + next ()% (max-min+1) ;}
double real()
{ return double(next())/double (INT MAX); }
private:
unsigned long _seed;
void randomize ()

{ seed = (314159265* seed + 13579)%ULONG_MAX; }
int next()
{ int iterations = seed % 3;

for (int i=0; 1 <= iterations; i++) _randomize();

return int(seed/2);

}
Vi
int main ()
{ Random random;
for (int i = 1; i <= 10; i++)
cout << setw(1l6) << setiosflags(ios::right)
<< random.integer ()
<< getw(6) << random.integer(l,6)

CHAP. 10] CLASSES 253

105

10.6

<< setw(1l2) << setiosflags(ios::fixed | ios::left)
<< random.real () << endl;

The test driver makes 10 calls to each of the three random number functions, generating 10
pseudo-random integers in the range 0 to 2,147,483,647, 10 pseudo-random integersin the range 1 to
6, and 10 pseudo-random real numbersin the range 0.0 to 1.0.

class Person

{ public:
Person (const char* =0, int =0, int =0);
~Person() { delete [] name ; }
char* name() { return name ; }
int born() { return yob ; }
int died() { return yod ; }
void print();

private:

int len_;

char* name_;
int yob , yod_ ;
Person: :Person (const char* name, int yob, int yod)
len_ (strlen(name)),
name_ (new char[len +1]),

yob_ (yob),
yod_ (yod)
{ memcpy (name , name, len +1);

}

void Person: :print ()

{ cout << "\tName: " << name_ << endl;
if (yob) cout << "\tBorn: " << yob << endl;
if (yod) cout << "\tDied: " << yod << endl;

}

To keep the object self-contained, name is stored as a separate string. To facilitate this separate
storage, we save its length in the data member len and usethe memcpy () function (defined in
string.h) to copy the string name into the string name_ . Then the destructor uses the delete
operator to de-allocate this storage.

Thisimplementation of a String class includes three constructors: the default constructor with optional
parameter size, aconstructor that allows an object to be initialized with an ordinary C string, and the
copy constructor. The second access function is named convert () because it actually converts
fromtypeString to char* type The"subscript” functionisnamed character () becauseit
returns one character in the string—the one indexed by the parameter i.

class String

{ public:
String (short =0) ; // default constructor
String (const char*) ; // constructor
String(const Stringé&) ; // copy constructor
~String() { delete [] data; } // destructor
int length() const { return len; } // access function
char* convert () { return data; } // access function
char character (short i) { char c¢ = datalil; return c; }
void print () { cout << data; }

private:

short len; // number of (non-null) characters in string

char* data; // the string

254 CLASSES [CHAP. 10

}i

String::String(short size) : len(size)

{ data = new char[len+l1];
for (int i=0; i < len; i++) datali] = ' ';
datallen] = '\0';

}

String::String(const char* str) : len(strlen(str))
{ data = new char[len+l1];

memcpy (data, str, len+1);
}

String::String(const String& str) : len(str.len)
{ data = new char[len+l1];

memcpy (data, str.data, len+l);
}

10.7 class Matrix

{ public:
Matrix (double a=0, double b=0, double c¢=0, double d=0)

a_(a), b_(b), c_(c), d_(d) { }
Matrix (const Matrix& m)

a (m.a), b (mb), c_(m.c), d (m.d_
double det() { return a_*d_ - b _*c_; }
int isSingular() { return det() == 0; }

Matrix inverse() ;
void print () ;
private:
double a , b , ¢, d_;
}i

Matrix Matrix::inverse()

{ double k = 1/det();
Matrix temp (k*d_,-k*b_,-k*c_,k*a_);
return temp;

}

void Matrix::print ()

{ cout << a_ << " " << b << '\n' << c_ << " " << d << "\n";
}
10.8 class Point
{ public:
Point() : x(0.0) , _y(0.0) {}
Point (double x, double vy): x(x) , yv(y) {}
Point (const Point & P) { x = P. x ; _y=P. vy ; }
double norm() const { return sqgrt(x* x + y* vy); }
void print() const
{ cout << "(" << X << ", " <<y << ") }
void negate() { x = -1.0 * x ; _y=-1.0* vy ; }
private:
double x ;
double vy ;
Vi
10.9 class Circle
{ public:
Circle() : x(0.0) , _y(0.0), _radius(1.0) {}

Circle(float x, float y, float radius)

CHAP. 10] CLASSES 255

x(x), y(y), _radius(radius) {}
Circle(const Circle & C)
{ x=¢C. x; _y=2C.y; radius = C. _radius; }
float diameter() const { return 2.0 * radius ; }

float area() const
{ return 3.141592654 * radius * _radius ; }

float circumference() const
{ return 3.141592654 * diameter() ; }
void print() const
{ cout << "Center is at (" << x << " , " << y
<< ") and " << "Radius = " << _radius ; }
private:
float _x ;
float v ;

float _radius ;

}i

Chapter 11

Overloading Operators

11.1 INTRODUCTION

C++ includes a rich store of 45 operators. They are summarized in Appendix C. These
operators are defined automatically for the fundamental types (int, float, €tc.). When you
define a class, you are actually creating a new type. Most of the C++ operators can be overloaded
to apply to your new class type. This chapter describes how to do that.

11.2 OVERLOADING THE ASSIGNMENT OPERATOR

Of all the operators, the assignment operator = is probably used the most. Its purpose is to
copy one object to another. Like the default constructor, the copy constructor, and the destructor,
the assignment operator is created automatically for every class that is defined. But aso like
those other three member functions, it can be defined explicitly in the class definition.

EXAMPLE 11.1 Adding an Assignment Operator tothe ratio Class

Here isaclass interface for the Ratio class, showing the default constructor, the copy constructor,
and the assignment operator:
class Ratio

{ public:
Ratio(int =0, int =1); // default constructor
Ratio (const Ratio&) ; // copy constructor
void operator=(const Ratio&); // assignment operator
// other declarations go here
private:

int num, den;
}i
Note the required syntax for the assignment operator. The name of this member function is
operator=. Itsargument list is the same as that of the copy constructor: it contains a single argument of
the same class, passed by constant reference.
Here is the implementation of the overloaded assignment operator:
void Ratio::operator=(const Ratio& r)
{ num = r.num;
den = r.den;

}

It simply copies the member data from the object r to the object that owns the call.
11.3 THE this POINTER

C++ alows assignments to be chained together, like this:
X =y =2 = 3.14;

256

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 11] OVERLOADING OPERATORS 257

This is executed first by assigning 3.14 to z, thento v, and finally to x. But, as Example 11.1
shows, the assignment operator is realy a function named operator=. In this chain, the
function is called three times. On itsfirst call, it assigns 3.14 to z, so the input to the function is
3.14. Onits second call, it assigns 3.14 to v, so itsinput again must be 3.14. So that value should
be the output (i.e., return value) of the first call. Similarly, the output of the second call should
again be 3.14 to serve as the input to the third call. The three calls to this function are nested, like
this:

f(x, £(y, £(z, 3.14)))
The point is that the assignment operator is a function that should return the value it assigns.
Therefore, instead of the return type void, the assignment operator should return a reference to
the same type as the object being assigned:

Ratio& operator=(const Ratio& r)
This alows assignments to be chained together.

EXAMPLE 11.2 ThePreferred Prototype for an Overloaded Assignment Operator

class Ratio

{ public:
Ratio(int =0, int =1); // default constructor
Ratio (const Ratio&) ; // copy constructor
Ratio& operator=(const Ratio&); // assignment operator
// other declarations go here
private:

int num, den;
// other declarations go here

}i

The preferred syntax for the prototype of an overloaded assignment operator inaclass T is
T& operator=(const T&);

The return type is a reference to an object of the same class T. But then this means that the
function should return the object that is being assigned in order for the assignment chain to work.
So when the assignment operator is being overloaded as a class member function, it should
return the object that owns the call. Since there is no other name available for this owner object,
C++ defines a specia pointer, named this, which pointsto the owner object.

We can envision the this pointer like this:

this E—» num

Ratio

Now we can give the correct implementation of the overloaded assignment operator:

EXAMPLE 11.3 Implementation of the Assignment Operator for the Ratio Class

Ratio& Ratio::operator=(const Ratio& r)
{ num = r.num;

den = r.den;

return *this;

}

258 OVERLOADING OPERATORS [CHAP. 11

Now assignments for the Ratio classcan be chained together:
Ratio x, y, z(22,7);
X =Y = Z;

The correct implementation for an overloaded assignment operator inaclassT is
T& T::operator=(const T& t)
{ // assign each member datum of t to the
// corresponding member datum of the owner
return *this;

}

Finally, note that an assignment is different from an initialization, even though they both use

the equals sign:
Ratio x(22,7); // this is an initialization
Ratio y(x); // this is an initialization
Ratio z = x; // this is an initialization
Ratio w;
w = X; // this is an assignment

Aninitialization calls the copy constructor. An assignment calls the assignment operator.
11.4 OVERLOADING ARITHMETIC OPERATORS

All programming languages provide the standard arithmetic operators +, -, *,and / for
numeric types. So it is only natura to define these for user-defined numeric types like the
Ratio class. In older programming languages like C and Pascal, this is done by defining
functions like this:

Ratio product (Ratio x, Ratio y)

{ Ratio z(x.num*y.num, x.den*y.den);

return z;

}
Thisworks. But the function hasto be called in the conventional way:

z = product (x,Vy);
C++ alows such functions to be defined using the standard arithmetic operator symbols, so that
they can be called more naturally:

z = X*y;

Like most operators in C++, the multiplication operator has a function name that uses the
reserved word operator: itS nameis “operator*”. Using thisin place of “product” in the
code above, we would expect the overloaded function to look something like this:

Ratio operator* (Ratio x, Ratio y)

{ Ratio z(x.num*y.num, x.den*y.den);
return z;

}

But this is not a member function. If it were, we would have to set it up as in with only one
argument. The operator* function requires two arguments.

Since the overloaded arithmetic operators cannot be member functions, they cannot accessthe
private member data num and den. Fortunately, C++ alows an exception to this rule so that
we can complete our definitions of the overloaded arithmetic functions. The solution is to
declare the function asa friend of theratio class.

CHAP. 11] OVERLOADING OPERATORS 259

A friend function isanonmember function that is given access to all members of the class
within which it is declared. So it has all the privileges of a member function without actually
being a member of the class. This attribute is used mostly with overloaded operators.

EXAMPLE 11.4 Declaring the M ultiplication Operator asa friend Function

Here isthe Ratio class declaration with the overloaded multiplication operator declared as a
friend function;

class Ratio
{ friend Ratio operator* (const Ratio&, const Ratio&);
public:
Ratio(int =0, int =1);
Ratio(const Ratio&) ;
Ratio& operator=(const Ratio&) ;
// other declarations go here
private:
int num, den;
// other declarations go here
Vi
Note that the function prototype is inserted inside the class declaration, above the public section.
Also note that the two arguments to the function are both passed by constant reference.
Now we can implement this nonmember just as we had expected:
Ratio operator* (const Ratio& x, const Ratio& y)
{ Ratio z(x.num * y.num, x.den * y.den);
return z;
}

Note that the keyword friend isnot used in the function implementation. Also note that the scope
resolution prefix Ratio:: isnot used because thisisnot amember function.

Hereisalittle program that uses our improved rRatio class:
EXAMPLE 11.5 TheRatio Classwith Assignment and Multiplication Operators
#include "Ratio.h"

int main ()
{ Ratio x(22,7), y(-3,8), z;

zZ = X; // assignment operator is called
z.print (); cout << endl;
X = y*z; // multiplication operator is called
x.print (); cout << endl;

}

22/17

-33/28

Note that the reduce () function was called from within the constructor to reduce -66/56 to -33/58.
(See Example 10.8 on page 238.)

260 OVERLOADING OPERATORS [CHAP. 11

11.5 OVERLOADING THE ARITHMETIC ASSIGNMENT OPERATORS

C++ allows you to combine arithmetic operations with the assignment operator; for example,
using x *= y inplaceof x = x * y. These combination operators can all be overloaded for
use in your own classes.

EXAMPLE 11.6 The Ratio Classwith an Overloaded *= Operator

class Ratio
{ public:
Ratio(int =0, int =1);
Ratio& operator=(const Ratio&) ;
Ratio& operator*=(const Ratio&) ;
// other declarations go here
private:
int num, den;
// other declarations go here
Vi
Ratio& Ratio::operator*=(const Ratio& r)
{ num = num*r.num;
den = den*r.den;
return *this;
}

The operator operator*= has the same syntax and nearly the same implementation as the basic
assignment operator operator=. By returning *this, the operator can be chained, like this:
X *=y *= z;
It is also important to ensure that overloaded operators perform consistently with each other. For
exampl e, the following two lines should have the same effect, even though they call different operators:
X = X*y;

X *=y
11.6 OVERLOADING THE RELATIONAL OPERATORS

The six relational operators <, >, <=, >=, ==,and != can be overloaded the same way that
the arithmetic operators are overloaded: as friend functions.

EXAMPLE 11.7 Overloading the Equality Operator == inthe Ratio Class

Like other friend functions, the equality operator is declared above the public section of the
class:

class Ratio

{ friend bool operator==(const Ratio&, const Ratio&);
friend Ratio operator* (const Ratio&, const Ratio&);
// other declarations go here

public:

Ratio(int =0, int =1);
Ratio(const Ratio&) ;
Ratio& operator=(const Ratio&) ;
// other declarations go here

CHAP. 11] OVERLOADING OPERATORS 261

private:
int num, den;
// other declarations go here
bool operator==(const Ratio& x, const Ratio& y)
{ return (x.num * y.den == y.num * x.den);

}
The test for equality of two fractions a/b and c/d is equivalent to the test a*d == b*c. So we end up

using the equality operator for intsto define the equality operator for Ratios.
Note that the relational operatorsreturn an int type, representing either “true” (1) or “false” (0).

11.7 OVERLOADING THE STREAM OPERATORS

C++ alows you to overload the stream insertion operator >> for customizing input and the
stream deletion operator << for customizing output. Like the arithmetic and relational
operators, these should also be declared as friend functions.

For aclass T with datamember 4, the syntax for the output operator is

friend ostream& operator<< (ostream& ostr, const T& t)

{ return ostr << t.d; }
Here, ostream isastandard class defined (indirectly) inthe iostream.h header file. Note
that all the parameters and the return value are passed by reference.

This function can then be called using the same syntax that we used for fundamental types:

cout << "x = " << x << ", y =" << y << endl;

Hereis an example of how custom output can be written:

EXAMPLE 11.8 Overloading the Output Operator << for the ratio Class

class Ratio

{ friend ostream& operator<< (ostream&, const Ratio&) ;
public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
// other declarations go here
private:

int num, den;
// other declarations go here
}i
int main()
{ Ratio x(22,7), y(-3,8);
cout << "x = " << x << ", y =" << y << endl;
}
ostream& operator<< (ostream& ostr, const Ratio& r)
{ return ostr << r.num << '/' << r.den;
}
x = 22/7, v = -3/8
When the second lineof main () executes, the expression cout << "x = " executesfirst. This
calls the standard output operator <<, passing the standard output stream cout andthestring "x = "
toit. Asusual, thisinserts the string into the output stream and then returns areference to cout. This
return value is then passed with the object x totheoverloaded << operator. Thiscal to operator<<
executeswith cout inplaceof ostr andwith x inplaceof r. Theresultisthe execution of theline

262 OVERLOADING OPERATORS [CHAP. 11

return ostr << r.num << '/' << r.den;

which inserts 22/7 into the output stream and returns a reference to cout. Then another cal to the
standard output operator << and another call to the overloaded operator are made, with the output (aref-
erenceto cout) of each call cascading into the next call asinput. Finally, the last call to the standard
output operator << ismade, passing cout and endl. Thisflushes the stream, causing the complete
line

X = 22/7, y = -3/8
to be printed.

The syntax for overloading the input operator for aclass T with datamember 4 is
friend istream& operator>>(istream& istr, T& t)
{ return istr >> t.d; }
Here, istream isanother standard class defined (indirectly) inthe iostream.h header file.
Here is an example of how custom input can be written:

EXAMPLE 11.9 OverloadingtheInput Operator >> intheRatio Class

class Ratio

{ friend istream& operators>>(istream&, Ratio&);
friend ostream& operator<< (ostream&, const Ratio&) ;
public:
Ratio(int n=0, int d=1) : num(n), den(d) { }

// other declarations go here
private:
int num, den;
int ged(int, int);
void reduce() ;
Vi
int main ()
{ Ratio x, vy;
cin >> x >> y;
cout << "x = " << x << ", y =" << y << endl;
}
igstream& operator>>(istream& istr, Ratio& r)
{ cout << "\t Numerator: "; istr >> r.num;
cout << "\tDenominator: "; istr >> r.den;
r.reduce () ;

return istr;

Numerator: -10
Denominator: -24
Numerator: 36
Denominator: -20
x = 5/12, y = -9/5

Thisversion of the input operator includes user promptsto facilitate input. It also includesacall to the
utility function reduce (). Notethat, asa friend, the operator can access this private function.

CHAP. 11] OVERLOADING OPERATORS 263

11.8 CONVERSION OPERATORS

In our origina implementation of the ratio class (Example 10.1 on page 233) we defined
the member function convert () to convert fromtype rRatio totype double:

double convert() { return double (num)/den; }
This requires the member function to be called as
x.convert () ;

In keeping with our goal to make objects of the Ratio class behave like objects of
fundamental types (i.e., like ordinary variables), we would like to have a conversion function
that could be called with a syntax that conforms to ordinary type conversions:

n = int(t) ;

y = double (x) ;
This can be done with a conversion operator.

Our ratio classaready hasthe facility to convert an object from int to Ratio:

Ratio x(22);
This is handled by the default constructor, which assigns 22t0 x.num and 1t0 x.den. This
constructor also handles direct type conversions from type int totype RrRatio:

x = Ratio(22);
Constructors of a given class are used to convert from another type to that class type.

To convert from the given class type to another type requires a different kind of member
function. Itiscalled a conversion operator, and it has adifferent syntax. If type isthetypeto
which the object isto be converted, then the conversion operator is declared as

operator type() ;
For example, amember function of the ratio classthat returnsan equivalent f1o0at would be
declared as

operator float () ;
Or, if wewant it to convert to type double, then we would declareit as

operator double() ;

And, if wewant it to be usable for constant rRatios(like pi), then we would declareit as

operator double () const;
Recall that, in our original implementation of the ratio class (Example 10.1 on page 233) we
defined the member function convert () for this purpose.

EXAMPLE 11.10 Adding a Conversion Operator tothe ratio Class

class Ratio
{ friend istream& operators>>(istream&, Ratio&);
friend ostream& operator<< (ostream&, const Ratio&) ;

public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
operator double() const;

private:

int num, den;

}i

int main ()
{ Ratio x(-5,8);
cout << "X = " << X << ", double(x) = " << double(x) << endl;

264 OVERLOADING OPERATORS [CHAP. 11

const Ratio P(22,7);
const double PI = double(P);
cout << "P = " << P << ", PI = " << PI << endl;

}

Ratio: :operator double() const
{ return double (num)/den;

}

x -5/8, double(x) = -0.625
P 22/7, PI = 3.14286

First we use the conversion operator double () toconvertthe Ratio object x intothe double
-0.625. Thenwe use it again to convert the constant Ratio object p intothe constant double pi.

11.9 OVERLOADING THE INCREMENT AND DECREMENT OPERATORS

The increment operator ++ and the decrement operator -- each have two forms: prefix and
postfix. Each of these four forms can be overloaded. We'll examine the overloading of the
increment operator here. Overloading the decrement operator works the same way.

When applied to integer types, the pre-increment operator simply adds 1 to the value of the
object being incremented. This is a unary operator: its single argument is the object being
incremented. The syntax for overloading it for aclassnamed T issimply

T operator++ () ;
So for our rRatio class, itisdeclared as
Ratio operator++ () ;

EXAMPLE 11.11 Adding a Pre-Increment Operator tothe ratio Class

This example adds an overloaded pre-increment operator ++ toour Ratio class. Although we can
make this function do whatever we want, it should be consistent with the action that the standard
pre-increment operator performs on integer types. That adds 1 to the current value of the object before
that value is used in the expression. Thisis equivaent to adding its denominator to its numerator:

22, _2+7 _ 29
7 7 7

So, wesimply add den to num andthenreturn *this, whichisthe object itself:
class Ratio

{ friend ostream& operator<< (ostream&, const Ratio&) ;
public:
Ratio(int n=0, int d=1) : num(n), den(d) { }

Ratio operator++ () ;
// other declarations go here
private:
int num, den;
// other declarations go here
Vi
int main ()
{ Ratio x(22,7), vy = ++x%;
cout << "y = " <<y << ", x = " << X << endl;

CHAP. 11] OVERLOADING OPERATORS 265

}

Ratio Ratio::operator++ ()
{ num += den;
return *this;

}

y = 29/7, x = 29/7

Postfix operators have the same function name as the prefix operators. For example, both the
pre-increment operator and the post-increment operator are named operator++. To distinguish
them, C++ specifies that the prefix operator has one argument and the postfix operator has two
arguments. (When used, they both appear to have one argument.) So the correct syntax for the
prototype for an overloaded post-increment operator is

T operator++ (int) ;
The required argument must have type int. This appears a bit strange because no integer is
passed to the function when it is invoked. The integer argument is thus a dummy argument,
required only so that the postfix operator can be distinguished from the corresponding prefix
operator.

EXAMPLE 11.12 Adding a Post-Increment Operator tothe Ratio Class

To be consistent with the ordinary post-increment operator for integer types, this overloaded version
should not change the value of x until after it has been assigned to y. To do that, we need a temporary
object to hold the contents of the object that owns the call. This is done by assigning *this to temp.
Then this object can be returned after adding den to num.

class Ratio
{ friend ostream& operator<< (ostream&, const Ratio&) ;

public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
Ratio operator++() ; // pre-increment
Ratio operator++ (int) ; // post-increment
private:

int num, den;

}i

int main ()
{ Ratio x(22,7), v = X++;
cout << "y = " <<y << ", x = " << X << endl;

}

Ratio Ratio::operator++ (int)
{ Ratio temp = *this;

num += den;

return temp;

}

y = 22/7, x = 29/7

Note that the dummy argument in the operator++ functionisanunnamed int. It need not be
named because it is not used. But it must be declared to distinguish the post-increment from the
pre-increment operator.

266 OVERLOADING OPERATORS [CHAP. 11

11.10 OVERLOADING THE SUBSCRIPT OPERATOR

Recal that, if a is an array, then the expression a[i] really means nothing more than
* (a+i). Thisisbecause a isactually the address of the initial element in the array, SO a+i is
the address of the ith element, since the number of bytesaddedto a is i timesthe size of each
array element.

The symbol [] denotes the subscript operator. Its name derives from the origina use of
arrays, where a[i] represented the mathematical symbol a,. Whenused as a[il, it hastwo
operands: a and i. Theexpression a[i] isequivalentto operator[] (a, i). Andasan
operator, [] can be overloaded.

EXAMPLE 11.13 Adding a Subscript Operator tothe ratio Class

class Ratio

{ friend ostream& operator<< (ostream&, const Ratio&) ;
public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
int& operator[] (int) ;
// other declarations go here
private:

int num, den;
// other declarations go here

}i

int main()
{ Ratio x(22,7);
cout << "x = " << X << endl;
cout << "x[1] = " << x[1] << ", x[2] = " << x[2] << endl;

}

ostream& operator<< (ostream& ostr, const Ratio& r)
{ return ostr << r.num << "/" << r.den;

}

int& Ratio::operator|[] (int i)
{ if (i == 1) return num;
else return den;

X = 22/7
x[1] = 22, x[2] = 7
The expression x[1] calls the subscript operator, passing 1 to i, which returns x.num. Similarly,
x[2] returns x.den. If 1 hasany value other than 1 or 2, then an error messageissent to cerr, the
standard error stream, and then the exit () functioniscalled.
Thisexampleisartificial. There isno advantage to accessing the fields of the Ratio object x with
x[1] and x[2] instead of x.num and x.den. However, there are many important classes where the
subscript is very useful. (See Problem 11.2.)

Note that the subscript operator is an access function, since it provides public access to
private member data.

CHAP. 11] OVERLOADING OPERATORS 267

111
11.2
11.3
11.4
11.5

11.6

11.7
11.8
11.9
11.10
11.11

11.12

111

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

Review Questions

How isthe operator keyword used?
What does *this alwaysrefer to?
Why can’'tthe this pointer be used in nonmember functions?
Why should the overloaded assignment operator return *this?
What is the difference between the effects of the following two declarations:
Ratio y(x);
Ratio y = x;
What is the difference between the effects of the following two lines:
Ratio y = x;
Ratio y; vy = x;
Why can’'t =+ be overloaded as an exponentiation operator?
Why should the stream operators << and >> beoverloaded as friend functions?
Why should the arithmetic operators +, -, *,and / beoverloaded as friend functions?
How is the overloaded pre-increment operator defintion distinguished from that of the over-
loaded post-increment operator?
Why is the int argument in the implementation of the post-increment operator left
unnamed?

What mechanism allows the overloaded subscript operator [] to be used on the left side of
an assignment statement, likethis. v[2] = 227
Problems

Implement the binary subtraction operator, the unary negation operator, and the less-than
operator < forthe rRatio class(see Example 11.4 on page 259).

Implement a vector class, with adefault constructor, a copy constructor, a destructor, and
overloaded assignment operator, subscript operator, equality operator, stream insertion oper-
ator, and stream extraction operator.

Implement the addition and division operators for the rRatio class (see Example 11.5 on
page 259).

Rewrite the overloaded input operator for the Ratio class (Example 11.9 on page 262) so
that, instead of prompting for the numerator and denominator, it reads a fraction type as
“22/7".

Implement an overloaded assignment operator = for the Point class(see Problem 10.1 on
page 249).

Implement overloaded stream insertion operator << for the point class (see Problem 10.1
on page 249).

Implement overloaded comparison operators == and != for the point class (see Prob-
lem 10.1 on page 249).

Implement overloaded addition operator + and subtraction operator - for the Point
class (see Problem 10.1 on page 249).

Implement an overloaded multiplication operator * to return the dot product of two Point
objects (see Problem 10.1 on page 249).

268

11.1
11.2
11.3
11.4
115
11.6
11.7

11.8

11.9

11.10

11.11

11.12

11.1

OVERLOADING OPERATORS [CHAP. 11

Answersto Review Questions

The operator keyword is used to form the name of a function that overloads an operator. For
example, the name of the function that overloads the assignment operator = is“operator=".

The expression *this always refers to the object that owns the call of the member function in
which the expression appears. Therefore, it can only be used within member functions.

Thekeyword this isapointer to the object that owns the call of the member function in which the
expression appears.

The overloaded assignment operator should return *this so that the operator can be used in acas-
cadeof calls, likethiss w = x = y = z;

There is no difference. Both declarations use the copy constructor to create the object y asadupli-
cate of the object x.

Thedeclaration Ratio y = x; calsthecopy constructor. Thecode Ratio y; y = x; cals
the default constructor and then the assignment operator.

The symbol ** cannot be overloaded as an operator because it is not a C++ operator.

The stream operators << and >> should be overloaded as friend functions because their left
operands should be stream objects. If an overloaded operator is a member function, then its left oper-
andis *this, whichisan object of the classto which the function is a member.

The arithmetic operators +, -, *,and / should be overloaded as friend functions so that their
left operands can be declared as const. Thisalows, for example, the use of an expression like 22
+ x. If an overloaded operator is a member function, then its left operand is *this, which is not
const.

The overloaded pre-increment operator has no arguments. The overloaded post-increment operator
has one (dummy) argument, of type int.

The int argument in the implementation of the post-increment operator is left unnamed
becauseit is not used. It isadummy argument.

By returning a reference, the overloaded subscript operator [] can be used on the |eft side of an
assignment statement, likethis: v[2] = 22. Thisisbecause, asareference, v[2] isanlvaue.

Solutions to Problems

All three of these operators are implemented as friend functions to give them accessto the num
and den datamembers of their owner objects:
class Ratio
{ friend Ratio operator- (const Ratio&, const Ratio&);
friend Ratio operator- (const Ratio&);
friend bool operator< (const Ratio&, const Ratio&) ;
public:
Ratio(int =0, int =1);
Ratio(const Ratio&) ;
Ratio& operator=(const Ratio&) ;
// other declarations go here
private:
int num, den;
int gcd(int, int)
int reduce () ;
Vi
The binary subtraction operator simply constructsand returnsa Ratio object z that representsthe
difference x - v
Ratio operator- (const Ratio& x, const Ratio& y)
{ Ratio z(x.num*y.den - y.num*x.den, x.den*y.den);

CHAP. 11] OVERLOADING OPERATORS 269

11.2

z.reduce () ;
return z;

}

Algebraically, the subtraction a/b - c/d is performed using the common denominator bd:
a ¢ _ ad—bc
b d~ bd
So the numerator of x - y shouldbe x.num*y.den - y.num*x.den andthedenominator
should be x.den*y.den. The function constructsthe Ratio object z with that numerator and
denominator. This algebraic formula can produce afraction that is not in reduced form, even if x and y
are. For example, 1/2 - 1/6 = (1-6 — 2-1)/(2-6) = 4/12. So we call the reduce () utility function
before returning the resulting object z.
The unary negation operator overloads the symbol “-". It is distinguished from the binary subtrac-
tion operator by its parameter list; it has only one parameter:
Ratio Ratio::operator- (const Ratio& x)
{ Ratio y(-x.num, x.den);
return y;
}

To negate a fraction a/b we simply negate its numerator: (-a)/b. So the newly constructed Ratio
object y hasthe same denominator as x but its numerator is -x.num. The less-than operator is
easier to do if we first modify our default constructor to ensure that every object’'s den vaueis pos-
itive. Then we can use the standard equival ence for the less-than operator:

a _c¢

6<a4:>ad<bc

bool operator< (const Ratio& x, const Ratio& y)
{ return (x.num*y.den < y.num*x.den) ;

}

Ratio::Ratio(int n, int d) : num(n), den(d)
{ i1f£ (d == 0) n = 0;
else if (d < 0) { n *= -1; d *= -1; }
reduce () ;

}
The modification ensuringthat den > 0 could instead be doneinthe reduce () function, since
that utility should be called by every member function that allows den to be changed. However,
none of our other member functions allows the sign of den to change, so by requiring it to be posi-
tive when the object is constructed we don’'t need to check the condition again.
Here isthe class declaration:
class Vector
{ friend bool operator==(const Vector&, const Vector&);
friend ostream& operator<<(ostreamé&, const Vector&) ;
friend istream& operator>s>(istream&, Vectoré&) ;

public:
Vector (int =1, double =0.0); // default constructor
Vector (const Vector&) ; // copy constructor
~Vector () ; // destructor
const Vector& operator=(const Vectoré&); // assignment operator
double& operator([] (int) const; // subscript operator
private:

int size;
double* data;

Here isthe implementation of the overloaded equality operator:

270

OVERLOADING OPERATORS [CHAP. 11

bool operator==(const Vector& v, const Vector& w)

{ if (v.size != w.size) return O;
for (int 1 = 0; i < v.sgize; i++)
if (v.datal[i] !'= w.datal[i]) return 0;

return 1;

}
It is a nonmember function which returns 1 or 0 according to whether the two vectors v and w are
equal. If their sizes are not equal, then it returns O immediately. Otherwise it checks the correspond-
ing elements of the two vectors, one a atime. If there isany mismatch, then again it returns O imme-
diately. Only if the entire loop finishes without finding any mismatches can we conclude that the two
vectors are equa and return 1.

Here isthe implementation of the overloaded stream insertion operator:

ostream& operator<< (ostream& ostr, const Vector& v)

{ ostr << ' (';

for (int i = 0; i < v.size-1; i++) {
ostr << vI[i] << ", ";

if ((i+1)%8 == 0) cout << "\n ";
return ostr << vI[i] << ")\n";

}

This prints the vector like this: (1.11111, 2.22222, 3.33333, 4.44444, 5.55556).
The conditiona inside the loop allows the output to “wrap” around several lines neatly if the vector
has more than 8 elements.

The output issent to ostr which isjust alocal name for the output stream that is passed to the
function. That would be cout if thefunction iscalled likethis: cout << v;.
Inthelast line of the function, the expression ostr << v[i] << ")\n" makestwo callstothe
(standard) stream extraction operator. Those two callsreturn ostr asthe value of this expression,
and so that object ostr isthen returned by thisfunction.

Here isthe overloaded stream extraction operator:

istream& operators>s>(istream& istr, Vector& v)

{ for (int 1 = 0; 1 < v.size; i++)

{ cout << i << ": ;
istr >> v[i];
}

return istr;

}
Thisimplementation prompts the user for each element of the vector v. It could also be implemented
without user prompts, simply reading the elements one at a time. Notice that the elements are read
from the input stream istr, which isthe first parameter passed in to the function. When the func-
tioniscaledlikethis: cin >> v; thestandardinput stream cin will be passed to the parameter
istr, so the vector elements are actualy read from cin. Theargument istr issimply aloca
name for the actual input stream which probably will be cin. Notice that this argument is aso
returned, allowing acascade of calslikethis. cin >> u >> v >> w;.

Here isthe implementation of the default constructor:

Vector: :Vector (int sz, double t) : size(sz)

{ data = new doublel[size];

for (int i = 0; 1 < size; i++)
datal[i] = t;

CHAP. 11] OVERLOADING OPERATORS 271

11.3

Thedeclaration Vector u; would construct the vector u having 1 element with the value 0.0; the
declaration vector v (4); would construct thevector v with 4 elements al with the value 0.0;
and the declaration Vector w(8, 3.14159); would construct the vector w with 8 elements
al with the value 3.14159.

This constructor uses the initialization list size (sz) to assign theargument sz to the data
member size. Then it usesthe new operator to allocate that number of elements to the array
data. Findly, itinitializes each element with thevaue t.

The copy constructor is almost the same as the default constructor:

Vector: :Vector (const Vector& v) : size(v.size)
{ data = new double[v.sizel;
for (int 1 = 0; i < size; 1i++)
datal[i] = v.datali];
}

It uses the data members of the vector argument v to initialize the object being constructed. So it
assigns v.size tothenew object’'s size member, and it assigns v.data[i] to the elements
of the new object’s data member.

The destructor simply restores the storage allocated to the data array and then sets data to
NULL and size toOQ:

Vector: :~Vector ()

{ delete [] data;
data = NULL;
size = 0;

}

The overloaded assignment operator creates a new object that duplicates the vector v:
const Vector& Vector::operator=(const Vectors& v)
{ 1f (&v != this)
{ delete [] data;
size = v.gize;
data = new doublel[v.size];
for (int 1 = 0; i < size; 1i++)
datal[i] = wv.datali];
}

return *this;

}
Thecondition (&v != this) determineswhether the object that owns the call is different from
thevector v. If theaddressof v isthesameas this (which isthe address of the current object),
then they are the same object and nothing needs to be done. This check is a safety precaution to guard
against the possibility that an object might, directly or indirectly, be assigned to itself, like this: w =
vV = W;.

Before creating a new object, the function restores the allocated data array. Then it copiesthe vec-
tor v the same way that the copy constructor did.

The overloaded subscript operator simply returns the ith component of the object’s data array:

double& Vector::operator[] (int i) const
{ return datali];
}

Ratio operator+ (const Ratio& rl, const Ratio& r2)

{ Ratio r(rl.num*r2.den+r2.num*rl.den,rl.den*r2.den) ;
r.reduce () ;
return r;

}

Ratio operator/ (const Ratio& rl, const Ratio& r2)

{ Ratio r(rl.num*r2.den,rl.den*r2.num) ;

272 OVERLOADING OPERATORS [CHAP. 11

r.reduce () ;
return r;
11.4 ostream& operator<< (ostream& ostr, const Ratio& r)
{ return ostr << r.num << "/" << r.den;
115 Point& Point::operator=(const Point& point)
{ =%
y = point. y;
_Z = point. z;
return *this;

}

point. x;

11.6 ostream& operator<< (ostream& ostr, const Point& point)

{ return ostr << "(" << X << "," << y << "," << _zZ << M)";
11.7 bool Point::operator==(const Pointé& point) const

{ return x == point. x && _y == point. y && _z == point._ z;

}

bool Point::operator!=(const Point& point) const

{ return x != point. x || _y != point. y || _z != point. z;
11.8 Point operator+ (const Point& pl, const Point& p2)

{ return Point (pl. x+p2. x,pl. y+p2. y,pl. z+p2. z);

Point operator- (const Pointé& pl, const Point& p2)

{ return Point (pl. x-p2. x,pl. y-p2. y,pl. z-p2. z);
11.9 Point operator* (const double coef, const Pointé& point)

{ return Point (coef*point. x,coef*point. y,coef*point. z);

}

Chapter 12

Composition and Inheritance

12.1 INTRODUCTION

We often need to use existing classes to define new classes. The two ways to do thisare called
composition and the inheritance. This chapter describes both methods and shows how to decide
when to use them.

12.2 COMPOSITION

Composition (also called containment or aggregation) of classes refers to the use of one or
more classes within the definition of another class. When a data member of the new class is an
object of another class, we say that the new class is a composite of the other objects.

EXAMPLE 12.1 A person Class

Here is asimple definition for a class to represent people.

class Person

{ public:
Person (char* n="", char* nat="U.S.A.", int s=1)
: name (n), nationality(nat), sex(s) { }
void printName () { cout << name; }
void printNationality () { cout << nationality; }
private:

string name, nationality;

int sex;

}i

int main ()

{ Person creator ("Bjarne Stroustrup", "Denmark");
cout << "The creator of C++ was ";
creator.printName () ;
cout << ", who was born in ";
creator.printNationality () ;
cout << ".\n";

}

The creator of C++ was Bjarne Stroustrup, who was born in Denmark.

This example illustrates the composition of the string class withinthe person class. The
next example defines another class that we can compose with the person classto improveit:

273

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

274

EXAMPLE 12.2 A pate Class

class Date

{ friend istream& operators>(istreamg,
friend ostream& operator<< (ostreamé,
public:
Date (int m=0, int d=0, int y=0) month (m) ,
void setDate(int m, int d, int y)

private:

int month, day, vyear;

istream& operators>s>(istream& in, Date& x)
{ in >> x.month >> x.day >> x.year;
return in;

}

ostream& operator<< (ostream& out,
{ static char* monthName[13] = {"",

HMarchll , llApril n , llMayll , n June n , n Julyll ,
"September", "October", "November",
out << monthName [x.month] << ' !

return out;

}

int main ()
{ Date peace(11,11,1918);

COMPOSITION AND INHERITANCE

{ month = m; day =

<< x.day << ", "

[CHAP. 12

Date&) ;
const Dateé&) ;

day(d), vyear(y) { }
d;

year = y; |

const Date& x)
"January", "February",
"August",
"December"};

<< X.year;

cout << "World War I ended on " << peace << ".\n";
peace.setDate(8,14,1945) ;

cout << "World War II ended on " << peace << ".\n";
cout << "Enter month, day, and year: ";

Date date;

cin >> date;

cout << "The date is " << date << ".\n";

}

World War I ended on November 11, 1918.
World War II ended on August 14, 1945.
Enter month, day, and year: 7 4 1776

The date is July 4, 1776.

The test driver tests the default constructor, the setDate ()
operator <<, and the overloaded extraction operator >>.

function, the overloaded insertion

Now we can usethe pate classinsidethe person classto store aperson’s date of birth and

date of death:

EXAMPLE 12.3 Composing thepate Classwith the person Class

#include "Date.h"

class Person
{ public:

CHAP. 12] COMPOSITION AND INHERITANCE 275

Person(char* n="", int s=0, char* nat="U.S.A.")
name (n), sex(s), nationality(nat) { }
void setDOB(int m, int d, int y) { dob.setDate(m, 4, y); }
void setDOD(int m, int d, int y) { dod.setDate(m, 4, y); }
void printName () { cout << name; }
void printNationality () { cout << nationality; }
void printDOB() { cout << dob; }
void printDOD() { cout << dod; }

private:
string name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male

}i

int main()

{ Person author ("Thomas Jefferson", 1);
author.setDOB(4,13,1743) ;
author.setDOD(7,4,1826) ;
cout << "The author of the Declaration of Independence was ";
author.printName () ;
cout << ".\nHe was born on ";
author.printDOB() ;
cout << " and died on ";
author.printDOD() ;
cout << ".\n";

}

The author of the Declaration of Independence was Thomas Jefferson.
He was born on April 13, 1743 and died on July 4, 1826.

Notice again that we have used a member function of one class to define member functions of the
composed class: the setbDate () functionisusedto definethe setDOB () and setDoOD () functions.

Composition is often referred to asa “has-a’ relationship because the objects of the composite
class “have’ objects of the composed class as members. Each object of the person class“has
a name anda nationality whichare string objects. Composition isone way of reusing
existing software to create new software.

12.3 INHERITANCE

Another way to reuse existing software to create new software is by means of inheritance (also
called specialization or derivation). This is often referred to as an “is-a” relationship because
every object of the class being defined “is” also an object of the inherited class.

The common syntax for deriving aclass vy fromaclass x is

class Y : public X {

//

}i
Here x iscalled the base class (or superclass) and v is called the derived class (or subclass).
The keyword public after the colon specifies public inheritance, which means that public
members of the base class become public members of the derived class.

276 COMPOSITION AND INHERITANCE [CHAP. 12

EXAMPLE 12.4 Deriving a student Classfrom the person Class

Students are people. So it is natural to usethe Person classto derivea Student class:
#include "Person.h"
class Student : public Person

{ public:
Student (char* n, int s=0, char* i="")
Person(n, s), id(i), credits(0) { }

void setDOM(int m, int d, int y) { dom.setDate(m, 4, y); }
void printDOM() { cout << dom; }

private:
string id; // student identification number
Date dom; // date of matriculation
int credits; // course credits
float gpa; // grade-point average

}i
The student class inherits al the public functiondity of the Person class, including the
Person () constructor which it uses in its constructor to initialize name inthe Person class. Note
that thisisa private member of the Person class, so it could not be accessed directly.
Hereisatest driver for the student class:
#include "Student.h"
int main ()
{ student x("Ann Jones", 0, "219360061");
x.setDOB(5, 13, 1977);
x.setDOM(8, 29, 1995);
X.printName () ;
cout << "\n\t Born: "; X.printDOB() ;
cout << "\n\tMatriculated: "; x.printDOM(); cout << endl;

}

Ann Jones
Born: May 13, 1977
Matriculated: August 29, 1995

12.4 protected CLASS MEMBERS

The student class in Section 12.3 has a significant problem: it cannot directly access the
private data members of itS Person superclass: name, nationality, DOB, DOD, and sex. The
lack of access on the first four of these is not serious because these can be written and read
through the person class's constructor and public access functions. However, thereis no way to
write or read a student’s sex. One way to overcome this problem would be to make sex adata
member of the student class. But that is unnatural: sex is an attribute that all person objects
have, not just students. A better solution is to change the private access specifier to
protected inthe person class. That allows access to these data members from derived classes.

EXAMPLE 12,5 The person Classwith protected Data Members
These are the same class definitions that were given in the two previous examples except that the

private access specifier has been changed to protected, and we have added the access function
printSex () tothe Student class:

CHAP. 12] COMPOSITION AND INHERITANCE 277

#include "Date.h"

class Person
{ public:
Person(char* n="", int s=0, char* nat="U.S.A.")
name (n), sex(s), nationality(nat) { }
void setDOB(int m, int d, int y) { dob.setDate(m, 4, y); }
void setDOD(int m, int d, int y) { dod.setDate(m, 4, y); }
void printName () { cout << name; }
void printNationality () { cout << nationality; }
void printDOB() { cout << dob; }
void printDOD() { cout << dod; }

protected:
string name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male

}i

class Student : public Person

{ public:
Student (char* n, int s=0, char* i="")
Person(n, s), id(i), credits(0) { }

void setDOM(int m, int d, int y) { dom.setDate(m, 4, y); }
void printDOM() { cout << dom; }

void printSex() { cout << (sex ? "male" : "female"); }
protected:

string id; // student identification number

Date dom; // date of matriculation

int credits; // course credits

float gpa; // grade-point average

}i
Now all five data members defined inthe Person class are accessible from its Student subclass,
as seen by the following test driver:

int main ()

{ student x("Ann Jones", 0, "219360061");
x.setDOB(5, 13, 1977);
x.setDOM(8, 29, 1995);
x.setDOD(7,4,1826) ;
X.printName () ;

cout << "\n\t Born: "; X.printDOB() ;
cout << "\n\t Sex: "; x.printSex();
cout << "\n\tMatriculated: "; x.printDOM() ;

cout << endl;

}

Ann Jones
Born: May 13, 1977
Sex: female
Matriculated: August 29, 1995

The protected access category is abalance between private and public categories:
private members are accessible only from within the class itself and its friend classes;

278 COMPOSITION AND INHERITANCE [CHAP. 12

protected membersare accessible from within the classitself, its friend classes, itsderived
classes, and their friend classes; public members are accessible from anywhere within the
file. In general, protected isusedinstead of private whenever it is anticipated that a sub-
class might be defined for the class.

A subclass inherits all the public and protected members of its base class. This means
that, from the point of view of the subclass, the public and protected members of its base
class appear as though they actually were declared in the subclass. For example, suppose that
class x and subclass v are defined as

class X
{ public:
int a;
protected:
int b;
private:
int c¢;
}i

class Y : public X
{ public:

int d;
Vi

and x and y are declared by
X X;
Y vy
Then we can visualize objects x and y as shown below.

" - Y -
[v]
= <[]

The public member a of class x isinherited asa public member of vy, and the
protected member b of class x isinherited as a protected member of y. But the
private member c¢ of class x isnot inherited by v. (The horizontal lines in each object
indicate the separate public, protected, and private regions of the object.)

12.5 OVERRIDING AND DOMINATING INHERITED MEMBERS

If v isasubclassof x,then v objectsinherit all the public and protected member data
and member functions of x. For example, the name data and printName () functionin the
pPerson class are aso members of the student class.

In some cases, you might want to define alocal version of an inherited member. For example,
if a isadatamember of x andif v isasubclassof x,thenyou could also define a separate
data member named a for v. In this case, we say that the a defined in v dominatesthe a
defined in x. Then areference y.a for anobject y of class v will accessthe a definedin v
instead of the a definedin x. To accessthe a definedin x, onewould use y.x: :a.

CHAP. 12] COMPOSITION AND INHERITANCE 279

The same rule applies to member functions. If a function named £ () isdefinedin x and
another function named £ () with the same signature is defined in v, then y.£ () invokesthe
latter function, and v.x::£() invokes the former. In this case, the local function v.f()
overridesthe £ () functiondefinedin x unlessitisinvokedas y.x::£().

These distinctions are illustrated in the following example.

EXAMPLE 12.6 Dominating a Data Member and Overriding a Member Function

Here aretwo classes, x and v, with vy inheriting from Xx.
class X
{ public:
void f£() { cout << "X::f() executing\n"; }
int a;

}i

class Y : public X

{ public:
void f£() { cout << "Y::f() executing\n"; } // overrides X::f()
int a; // dominates X::a

}i
But the membersof Y have the same signatures asthose in x. So v's member function £ () overrides
the £() definedin X,and y'sdatamember a dominatesthe a definedin X.
Hereis atest driver for the two classes:
int main ()

{ X X;
X.a = 22;
x.£();
cout << "x.a = " << xX.a << endl;
Y vy
y.a = 44; // assigns 44 to the a defined in Y
y.X::a = 66; // assigns 66 to the a defined in X
v.E(); // invokes the f() defined in Y
yv.X::£(); // invokes the f() defined in X
cout << "y.a = " << y.a << endl;
cout << "y.X::a = " << y.X::a << endl;
Xz =Y;
cout << "z.a = " << z.a << endl;

}

X::f() executing

Xx.a = 22

Y::f() executing

X::f() executing

y.a = 44

y.X::a = 66

zZ.a = 66

Here, y has access to two different data members named a and two different functions £ (). The
defaults are the ones defined in the derived class Y. The scope resolution operator : : isusedintheform

X:: to override the defaults to access the corresponding members defined in the parent class x. When
the x object z isinitiadized with v, its X membersareused: z.a isassigned thevalue vy.X::a.
This diagram illustrates the three objects x, vy, and z:

280 COMPOSITION AND INHERITANCE [CHAP. 12

“lalzz]| Yxiiales]| 7| ales]

X al 44 X

Example 12.6 and most of the remaining examplesin this chapter are designed to illustrate the
intricacies of inheritance. They are not intended to exemplify common programming practice.
Instead, they focus on specific aspects of C++ which can then be applied to more general and
practical situations. In particular, the method of dominating data members asillustrated in Exam-
ple 12.6 is rather unusual. Although it is not uncommon to override function members, dominat-
ing data members of the same type is rare. More common would be the reuse of the same data
name with a different type, like this:

class Y : public X
{ public:

double a; // the data member a in class X had type int
}

In an inheritance hierarchy, default constructors and destructors behave differently from other
member functions. As the following example illustrates, each constructor invokes its parent
constructor before executing itself, and each destructor invokes its parent destructor after execut-
ing itself:

EXAMPLE 12.7 Parent Constructors and Destructors

class X

{ public:
X() { cout << "X::X() constructor executing\n"; }
~X() { cout << "X::X() destructor executing\n"; }

}i

class Y : public X
{ public:
Y() { cout << "Y::Y() constructor executing\n"; }
~Y() { cout << "Y::Y() destructor executing\n"; }
}i
class Z : public Y
{ public:
Z(int n) { cout << "Z::Z(int) constructor executing\n"; }
~Z() { cout << "Z::Z() destructor executing\n"; }

}i

int main()
{ z z(44);
}

When z isdeclared, the z::z (int) constructor is called. Before executing, it callsthe v: :v ()
constructor which immediately calls the x::x() constructor. After the X::X() constructor has
finished executing, control returnstothe y: : ¥ () constructor which finishes executing. Then finaly the
Z::7Z() constructor finishes executing. The effect is that al the parent default constructors execute in
top-down order.

CHAP. 12] COMPOSITION AND INHERITANCE 281

The same thing happens with the destructors, except that each destructor executes its own code before
calling its parent destructor. So all the parent destructors execute in bottom-up order.

Here is amore realistic example:
EXAMPLE 12.8 Parent Constructors and Destructors

Here is ademo program that uses abase class Person and aderived class Student:
class Person
{ public:
Person (const char* s)

{ name = new char[strlen(s)+1]; strcpy(name, s); |}
~Person() { delete [] name; }
protected:

char* name;

}i

class Student : public Person

{ public:
Student (const char* s, const char* m) : Person(s)
{ major = new char[strlen(m)+1]; strcpy(major, m); }
~Student () { delete [] major; }
private:

char* major;

}i

int main ()
{ Person x("Bob") ;
{ student y("Sarah", "Biology") ;

}
}

When x isinstantiated, it callsthe person constructor which allocates 4 bytes of memory to store the
string “Bob”. Then y instantiates, first calling the person constructor which alocates 6 bytes to store
thestring “sarah” and then allocating 8 more bytes of memory to storethe string “Biology”. The scope
of y terminates before that of x because it is declared within an internal block. At that moment, v's
destructor deallocates the 8 bytes used for “Biology” and then callsthe Person destructor which deal-
locates the 6 bytes used for “sarah”. Findly, the Person destructor is called to destroy x, deallocating
the 4 bytes used for “Bob”.

12.6 private ACCESS VERSUS protected ACCESS

The difference between private and protected class members is that subclasses can
access protected members of a parent class but not private members. Since protected
is more flexible, when would you want to make members private? The answer lies at the
heart of the principle of information hiding: restrict access now to facilitate changes later. If you
think you may want to modify the implementation of a data member in the future, then declaring
it private will obviate the need to make any corollary changes in subclasses. Subclasses are
independent of private datamembers.

282 COMPOSITION AND INHERITANCE [CHAP. 12

EXAMPLE 12.9 The person Classwith protected and private Data Members

Suppose that we need to know whether people (i.e., Person objects) are high school graduates. We
could just add a protected datamember like sex that storeseither O or 1. But we might decide later
to replace it with data member(s) that contain more detailed i nformation about the person’s education. So,
for now, weset upa private datamember hs to prevent derived classes from accessing it directly:

class Person

{ public:
Person(char* n="", int s=0, char* nat="U.S.A.")
: name (n), sex(s), nationality(nat) { }
//
protected:
string name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male

void setHSgraduate(int g) { hs = g; }
int isHSgraduate() { return hs; }
private:
int hs; // = 1 if high school graduate
};

Weinclude protected access functions to alow subclasses to access the information. |f we do later
replacethe hs data member with something else, we need only modify the implementations of these two
access functions without affecting any subclasses.

12.7 virtual FUNCTIONS AND POLYMORPHISM

One of the most powerful features of C++ isthat it allows objects of different typesto respond
differently to the same function call. Thisis called polymorphism and it is achieved by means of
virtual functions. Polymorphism isrendered possible by the fact that a pointer to a base class
instance may also point to any subclass instance:

class X
{7/
}

class Y : public X // Y is a subclass if X
{7/
}

int main ()

{ x* p; // p 1s a pointer to objects of base class X
Y vy
p = &y; // p can also point to objects of subclass Y

}

Soif p hastype x* (“pointer totype x”), then p can also point to any object whose typeisa
subclass of x. However, even when p is pointing to an instance of a subclass v, itstypeis still
x*, So an expression like p->f () would invoke the function £ () defined in the base class.
Recall that p->f () isanadternate notationfor (*p) . f (). Thisinvokesthe member function £ ()
of the object to which p points. But what if p isactually pointing to an object v of a subclass of the
classto which p points, and what if that subclass Y has its own overriding version of £ () ? Which

CHAP. 12] COMPOSITION AND INHERITANCE 283

f() getsexecuted: X::£() or Y::f () ?Theansweristhat p->f () will execute X::f () because
p hadtype x*. Thefact that p happensto be pointing at that moment to an instance of subclass v is
irrelevant; it's the statically defined type x* of p that normally determinesits behavior.

EXAMPLE 12.10 Using virtual Functions

This demo program declares p to be a pointer to objects of the base class X. First it assigns p to
point to an instance x of class x. Thenitassigns p to point to aninstance y of the derived class Y.
class X
{ public:
void f£() { cout << "X::f() executing\n"; }

}i

class Y : public X
{ public:
void f£() { cout << "Y::f() executing\n"; }

; // invokes X::f () because p has type X*

; // invokes X::f () because p has type X*

}

X::f() executing

X::f() executing
Two function calls p->£f () are made. Both callsinvoke the sameversion of £ () thatisdefinedinthe
base class x because p isdeclared to beapointerto x objects. Having p pointto y has no effect on
thesecond call p->f ().

Transform X::f () intoavirtual function by adding the keyword “virtual” to its declaration:
class X
{ public:
virtual void f£() { cout << "X::f() executing\n"; }
}i

With the rest of the code left unchanged, the output now becomes

X::f() executing
Y::f() executing

Now the second call p->f () invokes Y::f() insteadof X::f ().

This example illustrates polymorphism: the same call p->f () invokes different functions.
The function is selected according to which class of object p pointsto. Thisis called dynamic
binding because the association (i.e., binding) of the call to the actual code to be executed is
deferred until run time. The rule that the pointer’s statically defined type determines which mem-
ber function gets invoked is overruled by declaring the member function virtual.

Here is amore realistic example:

284 COMPOSITION AND INHERITANCE [CHAP. 12

EXAMPLE 12.11 Polymorphism through virtual Functions

Hereisa Person classwitha Student subclassand a Professor subclass:
class Person

{ public:
Person(char* s) { name = new char[strlen(s)+1]; strcpy(name, s); }
void print () { cout << "My name is " << name << ".\n"; }
protected:

char* name;

}i

class Student : public Person

{ public:
Student (char* s, float g) : Person(s), gpal(g) { }
void print ()
{ cout << "My name is " << name << " and my G.P.A. is "

<< gpa << ".\n"; }
private:

float gpa;

}i

class Professor : public Person

{ public:
Professor (char* s, int n) : Person(s), publs(n) { }
void print ()
{ cout << "My name is " << name
<< " and I have " << publs << " publications.\n"; }
private:
int publs;

}i

int main()
{ Person* p;
Person x("Bob") ;
p = &%;
p->print () ;
Student y("Tom", 3.47);
p = &yi
p->print () ;
Professor z ("Ann", 7);
p = &z;
p->print () ;
}

My name is Bob.

My name is Tom.

My name is Ann.
The print () function defined inthe base classisnot virtual. Sothecal p->print() aways
invokes that same base classfunction Person: :print () because p hastype Person*. The pointer
p isstatically bound to that base class function at compile time.

Now change the base class function Person::print () intoa virtual function, and run the

same program:

CHAP. 12] COMPOSITION AND INHERITANCE 285

class Person

{ public:
Person(char* s) { name = new char([strlen(s+1l)]; strcpy(name, s); |}
virtual void print() { cout << "My name is " << name << ".\n"; }
protected:

char* name;

My name is Bob.
My name is Tom and my G.P.A. is 3.47
My name is Ann and I have 7 publications.

Now the pointer p isdynamically bound to the print () function of whatever object it pointsto. So

the first call p->print () invokes the base class function Person::print (), the second call
invokes the derived class function Student: :print (), and the third call invokes the derived class
function Professor::print (). We say that the call p-sprint () is polymorphic because its

meaning changes according to circumstance.

In general, a member function should be declared as virtual whenever it is anticipated that at
least some of its subclasses will define their own local version of the function.

12.8 VIRTUAL DESTRUCTORS

Virtual functions are overridden by functions that have the same signature and are defined in
subclasses. Since the names of constructors and destructors involve the names of their different
classes, it would seem that constructors and destructors could not be declared virtual. That is
indeed true for constructors. However, an exception is made for destructors.

Every class has a unique destructor, either defined explicitly within the class definition or
implicitly by the compiler. An explicit destructor may be defined to be virtual. The following
exampleillustrates the value in defining a virtual destructor:

EXAMPLE 12.12 Memory Leaks

Thisprogram is similar to Example 12.6:

class X
{ public:
X() { p = new int[2]; cout << "X(). "; }
~X() { delete [] p; cout << "~X().\n"; }
private:
int* p;

}i

class Y : public X

{ public:
Y() { @ = new int[1023]; «cout << "Y(): Y::g = " << g << ". "; }
~Y() { delete [] g; cout << "~Y(). "; }
private:

int* g;

}i

286 COMPOSITION AND INHERITANCE [CHAP. 12

int main ()
{ for (int 1 = 0; 1 < 8; i++)
{ X* r = new Y;
delete r;

}
}

Each iteration of the for loop creates a new dynamic object. As in Example 12.6, the constructors are
invoked in top-down sequence: first x () andthen v (), alocating 4100 bytes of storage (using 4 bytes
for each int). Butsince r isdeclared to beapointerto X objects, only the x destructor isinvoked,
deallocating only 8 bytes. So on each iteration, 4092 bytes are lost! This loss is indicated by the actual
values of the pointer v: :q.
To plug thisleak, change the destructor ~x () intoa virtual function:
class X
{ public:
X() { p = new int[2]; cout << "X(). "; }
virtual ~X() { delete [] p; cout << "~X().\n"; }
private:
int* p;

With the base class destructor declared virtual, eachiteration of the for loop cals both destructors,
thereby restoring all memory that was allocated by the new operator. This allows the same memory to be
reused for the pointer r.

This example illustrates what is known as a memory leak. In alarge-scale software system,
this could lead to a catastrophe. Moreover, it is a bug that is not easily located. The mora is:
declare the base class destructor virtual whenever your class hierarchy uses dynamic bind-
ing.

As noted earlier, these examples are contrived to illustrate specific features of C++ and are not
meant to exemplify typical programming practice.

12.9 ABSTRACT BASE CLASSES

A well-designed object-oriented program will include a hierarchy of classes whose interrela-
tionships can be described by atree diagram like the one below. The classes at the leaves of this

TeamLRN

CHAP. 12] COMPOSITION AND INHERITANCE 287

Vertebrate
Bird Fish Mammal

S TR

Owl Penguin Bat Carnivore Elephant Primate Rodent

CLN N

Bear Cat Dog Monkey Human Beaver Mouse

tree (e.g.,, owl, Fish, Dog) would include specific functions that implement the behavior of
their respective classes (e.g., Fish.swim(), owl.fly(), Dog.dig()). However, some of
these functions may be common to all the subclasses of a class (e.g., Vertebrate.eat (),
Mammal.suckle (), Primate.peel ()). Such functions are likely to be declared virtual in
these base classes, and then overridden in their subclasses for specific implementations.

If a virtual functioniscertainto be overriddeninall of its subclasses, then there is no need
to implement it at all in its base class. Thisis done by making the virtual function “pure.” A
pure virtual member function is a virtual function that has no implementation in its class. The
syntax for specifying a pure virtual member function isto insert the initializer “=o0;” in place of
the functions body, like this:

virtual int £() =0;

For example, in the vertebrate class above, we might decide that the eat () function
would be overridden in every one of its subclasses, and thus declare it as a pure virtual member
function within its vertebrate base class:

class Vertebrate
{ public:
virtual void eat () =0; // pure virtual function
}i
class Fish : public Vertebrate
{ public:
void eat(); // implemented specifically for Fish class elsewhere
}i

The individua classes in a class hierarchy are designated as either “abstract” or “concrete’
according to whether they have any pure virtual member functions. An abstract base class is a
class that has one or more pure virtual member functions. A concrete derived classis a class that
does not have any pure virtual member functions. In the example above, the vertebrate class
is an abstract base class, and the rFish classis aconcrete derived class. Abstract base classes
cannot be instantiated.

The existence of a pure virtual member function in a class requires that every one of its
concrete derived subclasses implement the function. In the example above, if the methods
Vertebrate.eat (), Mammal.suckle (), and Primate.peel () were the only pure virtual
functions, then the abstract base classes (“ABCs’) would be vertebrate, Mammal, and
primate, and the other 15 classes would be concrete derived classes (“CDCs’). Each of these 15

288 COMPOSITION AND INHERITANCE [CHAP. 12

CDCs would have its own implementation of the eat () function, the 11 CDCs of the Mamma1
class would have their own implementation of the suckle () function, and the 2 CDCs of the
primate classwould have their own implementation of the peel () function.

An ABC istypically defined during the first stages of the process of developing a class hierarchy. It
lays out the framework from which the details are derived in the ABC's subclasses. Its pure virtual
functions prescribe a certain uniformity within the hierarchy.

EXAMPLE 12.13 A Hierarchy of Media Classes

Here is ahierarchy of classesto represent various media objects:
Media
}

Audio Book Periodical

AN TS

CD Tape Record Magazine Newspaper Journal Newsletter

The primary ABC isthe Media class:
class Media

{ public:
virtual void print() =0;
virtual char* id() =0;
protected:

string title;
}i
It has two pure virtual functions and one data member.
Here isthe concrete Book subclass:
class Book : Media

{ public:
Book (string a="", string t="", string p="", string i="")
: author(a), publisher(p), isbn(i) { title = t; }
void print() { cout << title << " by " << author << endl; }
char* id() { return isbn; }
private:

string author, publisher, isbn;
}i
It implements the two virtual functions using its own member data.
Hereisthe concrete cb subclass:
class CD : Media

{ public:
CD(string t="", string c="", string m="", string n="")
composer (c), make(m), number (n) { title = t; }
void print () { cout << title << ", " << composer << endl; }
char* id() { return make + " " + number; }
private:

string composer, make, number;
}i
The cD classwill also beaCDC of the Audio class, which will be another ABC. So when the Audio
classis defined, its pure virtual functions will aso have to beimplemented in this cD class.

CHAP. 12] COMPOSITION AND INHERITANCE 289

Here isthe concrete Magazine subclass:
class Magazine : Media

{ public:
Magazine (string t="", string i="", int v=0, int n=0)
issn(i), volume(v), number(n) { title = t; }

void print ()
{ cout << title << " Magazine, Vol. "

<< volume << ", No." << number << endl;
char* id() { return issn; };
private:

string issn, publisher;
int volume, number;
}i
The Magazine classwill also beaCDC of the Periodical class, which will be another ABC. So
when the periodical classis defined, its pure virtual functions will also have to be implemented in
this Magazine class.
Here is atest driver for the four classes defined above:
int main()

{ Book book ("Bjarne Stroustrup", "The C++ Programming Language",
"Addison-Wesley", "0-201-53992-6");
Magazine magazine ("TIME", "0040-781X", 145, 23);
CD cd("BACH CANTATAS", "Johann Sebastian Bach",
"ARCHIV", "D120541");
book.print () ;
cout << "\tid: " << book.id() << endl;
magazine.print () ;
cout << "\tid: " << magazine.id() << endl;
cd.print () ;
cout << "\tid: " << cd.id() << endl;
}

The C++ Programming Language by Bjarne Stroustrup
id: 0-201-53992-6
TIME Magazine, Vol. 145, No.23
id: 0040-781X
BACH CANTATAS, Johann Sebastian Bach
id: ARCHIV D120541
Note that all thecallstothe print () and id() functionsareindependent of their classimplementa
tions. So the implementations of these functions could be changed without making any changesto the pro-
gram. For example, we could changethe Book: :print () function to
void print ()
{ cout << title << " by " << author
<< ".\nPublished by " << publisher << ".\n";
}

and obtain the output

The C++ Programming Language by Bjarne Stroustrup.
Published by Addison-Wesley.

without any changes to the program.

290 COMPOSITION AND INHERITANCE [CHAP. 12

12.10 OBJECT-ORIENTED PROGRAMMING

Object-oriented programming refers to the use of derived classes and virtual functions. A
thorough treatment of object-oriented programming is beyond the scope of this book. See the
books[Bergin], [Perry], and [Wang] listed in Appendix H for a more thorough treatment.

Suppose that you have three televisions, each equipped with its own video cassette recorder.
Like most VCRs, yours are loaded with features and have confusing user manuals. Your three
VCRs are al different, requiring different and complex operations to use them. Then one day
you see on the shelf of your local electronics store asimple remote controller that can operate all
kinds of VCRs. For example, it has a single “RECORD” button that causes whatever VCR it is
pointed at to record the current TV program on the current tape. This marvelous device
represents the essence of object-oriented programming (“OOP”): conceptual simplification of
diverse implementations by means of a single interface. In this example, the interface is the
remote controller, and the implementations are the (hidden) operations within the controller and
the individual VCRs that carry out the requested functions (“RECORD”, “STOP”, “PLAY”,
etc.). Theinterface isthe abstract base class below:

class VCR

{ public:
virtual void on() =0
virtual void off () =0;
virtual void record() =0;
virtual void stop () =0;
virtual void play() =0;

I — O =~

}i
and the implementations are the concrete derived classes bel ow:
class Panasonic : public VCR {
public:
void on() ;
void off () ;
void record() ;
void stop();
void play () ;

}i

class Sony : public VCR {
public:

void on() ;

void off () ;

void record() ;

void stop();

void play () ;

}i

class Mitsubishi : public VCR {
public:

void on() ;

void off () ;

void record() ;

void stop();

CHAP. 12] COMPOSITION AND INHERITANCE 291

void play () ;
}i

One important advantage of object-oriented systems is extensibility. This refers to the ease
with which the system can be extended. In the example above, the VCR controller would be
called “extensible” if it automatically works the same way on new VCRs that we might add in
the future. The controller should not have to be modified when we extend our collection of
VCRs, adding a Toshiba or replacing the Sony with an RCA.

In the object-oriented programming, we imagine two distinct points of view of the system: the
view of the consumer (i.e., the client or user) that shows what is to be done, and the view of the
manufacturer (i.e., the server or implementor) that shows how it is to be done. The consumer
sees only the abstract base class, while the manufacturer sees the concrete derived classes. The
customer’s actions are generally called operations, as opposed to the manufacturer’s implemen-
tations of these actions which are caled generally methods. In C++, the actions are the pure
virtual functions, and the methods are their implementations in the concrete derived classes. In
this context, the abstract base class (the user’s view) is called the system interface, and the
concrete derived classes (the implementor’s view) are called the system implementation:

The Two Viewsin an Object-Oriented Program

The System Interface The System Implementation
(user’sview) (implementor’s view)
shows what is done shows how it is done
abstract base class concrete derived classes
operations methods

pure virtual functions functions

This dichotomy is most effective when we use pointers to objects, asin Example 12.13. Then
we can exploit dynamic binding to make the system interface even more independent from the
system implementation. Extensibility isfacilitated by the fact that only the newly added methods
need to be compiled.

Review Questions

12.1 What isthe difference between composition and inheritance?

12.2 What isthe difference between protected and private members?
12.3 How do the default constructors and destructors behave in an inheritance hierarchy?
124 Whatisa virtual member function?

125 Whaisapure virtual member function?

12.6 What isamemory leak?

12.7 How can virtua destructors plug a memory leak?

12.8 What isan abstract base class?

12.9 What isaconcrete derived class?

12.10 What isthe difference between static binding and dynamic binding?
1211 What is polymorphism?

12.12 How does polymorphism promote extensibility?

292 COMPOSITION AND INHERITANCE [CHAP. 12

12.13 What iswrong with the following definitions:
class X
{ protected:
int a;

}i

class Y : public X
{ public:
void set (X x, int ¢) { x.a = c; }

}i
Problems

12.1 Implement a card class, acomposite Hand class, and a composite Deck classfor play-
ing poker.

12.2 Implement the following class hierarchy:

Shape

P

TwoDimensional ThreeDimensional

AN IR

Triangle Rectangle Circle Box Cone Cylinder Sphere

12.3 Define and test a Name class whose objects looks like the diagram at the top of the next
page. Then modify the Person class so that name has type Name instead of type string.

* last
first
middle| |
title
suffix 1|

nick‘Bloody Mary‘

Name

Answersto Review Questions

121 Composition of classes refers to using one class to declare members of another class. Inheritance
refers to deriving a subclass from a base class.

CHAP. 12] COMPOSITION AND INHERITANCE 293

12.2

12.3

12.4

125

12.6

12.7

12.8

12.9

12.10

12.11

12.12

12.13

121

A private member isinaccessible from anywhere outside its class definition. A protected
member isinaccessible from anywhere outside its class definition, with the exception that it is accessi-
ble from the definitions of derived classes.

In an inheritance hierarchy, each default constructor invokes its parent’s default constructor before it
executes itself, and each destructor invokes its parent’s destructor after it executesitself. The effectis
that all the parent default constructors execute in top-down order, and al the parent destructors exe-
cute in bottom-up order.

A virtual member functionisamember function that can be overridden in a subclass.

A pure virtual functionisa virtual member function that cannot be called directly; only
its overridden functions in derived classes can be called. A pure virtual functionisidentified by
theinitializer =0 at theend of its declaration.

A memory leak is the loss of access to memory in a program due to the wrong destructor being
invoked. See Example 12.12 on page 285.

By declaring a base class destructor virtual, memory leaks asin Example 12.12 on page 285 can
be prevented because after it isinvoked itsindicated subclass destructor(s) will aso be invoked.

An abstract base class is a base class which includes at least one pure virtual function. Abstract
base classes cannot be instantiated.

A concrete derived classis a subclass of an abstract base class that can be instantiated; i.e., one which
containsno pure virtual functions.

Static binding refersto the linking of a member function call to the function itself during compile time,
in contrast to dynamic binding which postpones that linking until run time. Dynamic is possible in
C++ by using virtual functions and by passing pointers to objects.

Polymorphism refers to the run-time binding that occurs when pointers to objects are used in classes
that have virtual functions. The expressions p->£f () will invoke the functions £ () thatis
defined in the object to which p points. However, that object could belong to any one of a series of
subclasses, and the selection of subclass could be made at run time. If the base-classfunctionis vir-
tual, then the selection (the “binding”) of which £ () toinvokeismade at run time. So the expres-
sion p->f () cantake“many forms.”

Polymorphism promotes extensibility by allowing new subclasses and methods to be added to a class
hierarchy without having to modify application programs that already use the hierarchy’s interface.
The protected datamember a can be accessed from thederived Y only if it isthe member of
the current object (i.e. only if itis this->a). Y cannot access x.a for any other object x.

Solutions to Problems

First weimplementa Card class
enum Rank {TWO=2, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN
JACK, QUEEN, KING, ACE};
enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES };

class Card
{ friend class Hand;
friend class Deck;
friend ostream& operator<<(ostreamé&, const Card&) ;

public:
char rank() { return rank_ ; }
char suit() { return suit ; }
private:
Card() { };:

Card(Rank rank, Suit suit) : rank_ (rank), suit_ (suit) { };

294

COMPOSITION AND INHERITANCE

Card (const Card& c)

~Card ()

Rank
Suit

}i

{ };

rank ;
suit_;

rank_ (c.rank),

suit_(c.suit)

[CHAP. 12

{ };

This class uses enumeration types for a card’s 13 possible ranks and 4 possible suits. Anticipating
the implementation of Hand and Deck classes, we declare them hereto be friend classesto
the card class. Thiswill allow them to accessthe private membersof the Card class. Notice
that all three constructors and the destructor are declared to be private. Thiswill prevent any cards
to be created or destroyed except by the Card’stwo friend classes.

Here isthe implementation of the overloaded insertion operator << for cards:

ostream& operator<< (ostream& ostr, const Card& card)
{ switch (card.rank_)

{ case TWO ostr << "two of "; break;
case THREE ostr << "three of "; Dbreak;
case FOUR ostr << "four of "; break;
case FIVE ostr << "five of "; break;
case SIX ostr << "six of "; break;
case SEVEN ostr << "seven of "; Dbreak;
case EIGHT ostr << "eight of "; Dbreak;
case NINE ostr << "nine of "; break;
case TEN ostr << "ten of "; break;
case JACK ostr << "jack of "; break;
case QUEEN ostr << "queen of "; Dbreak;
case KING ostr << "king of "; break;
case ACE ostr << "ace of "; break;

}

switch (card.suit)

{ case CLUBS ostr << "clubs"; break;
case DIAMONDS ostr << "diamonds"; Dbreak;
case HEARTS ostr << "hearts"; break;
case SPADES ostr << "spades'"; break;

}

return ostr;

}

Here isthe implementation of the Hand class:
#include "Card.h"

class Hand

{ friend class Deck;

public:

Hand (unsigned n=5) size(n) { cards new Card[n]; }
~Hand () { delete [] cards; }
void display () ;

int isPair() ;

int isTwoPair () ;

int isThreeOfKind() ;

int isStraight();

int isFlush () ;

int isFullHouse () ;

int isFourOfKind() ;

int isStraightFlush() ;

CHAP. 12]

private:
unsigned size;
Card* cards;
void sort () ;

}i

COMPOSITION AND INHERITANCE

It uses an array to store the cards in the hand. The sort ()

295

function is a private utility that is

called by the Deck classafter dealing the hand. It can be implemented by any simple sort agorithm
such asthe Bubble Sort. The display () functionisalso straightforward, using the insertion oper-
ator << thatisoverloadedinthe Ccard class.

The eight boolean functions that identify special poker hands are not so straightforward. Hereisthe
implementation of the isThreeOfKind () function:

int Hand: :isThreeOfKind ()

{ if (cards[0].rank_ == cards[1l].rank_

&& cards[1] .rank
&& cards[2] .rank
&& cards[3] .rank_
(cards[0] .rank_ !=
&& cards[1] .rank
&& cards[2] .rank
&& cards[3] .rank_

if

== cards[2] .rank_
!= cards[3] .rank_
!= cards[4] .rank)
cards [1] .rank_

== cards[2] .rank_
== cards[3] .rank_
!= cards[4] .rank)

return 1;

return 1;

if (cards[0] .rank_ != cards[1l].rank_

&& cards[1] .rank_ != cards[2].rank

&& cards[2] .rank_ == cards[3].rank_

&& cards[3] .rank_ == cards[4].rank) return 1;
return 0;

Sincethe hand is sorted by rank_, the only way there could be three cards of the same rank with the
other two cards of different rank would be one of the three forms: xxxyz, xyyyz, or xyzzz. If any of these
three formsisidentified, then the function returns 1. If not it returns 0.

The isPair () function,the isTwoPair () function,the isFullHouse ()
the isFourOfKind() function aresimilartothe isThreeOfKind () function.

The isStraight () function, the isFlush() function, andthe isStraightFlush ()
function are also tricky. Hereisthe isFlush () function:

int Hand::isFlush()

{ for (int 1 = 1; 1 < size; i++)

if (cards[i] .suit_ != cards[0] .suit_)
return 1;

function, and

return 0;

}

This compares the suit_ of each of the second through fifth cards (card[1] through

card[4]). If any of these are not the same, then we know immediately that the hand is not a flush

and can return 0. If the loop terminates naturally, then all four pairs match and 1 is returned.
Hereisthe Deck class

#include "Random.h"
#include "Hand.h"
class Deck
{ public:

Deck () ;

void shuffle() ;

void deal (Handg,
private:

unsigned top;

Card cards[52];

unsigned =5) ;

296 COMPOSITION AND INHERITANCE [CHAP. 12

Random random;
}i
It usesthe Random classinits shuffle () function. Notethat the random objectis declared
as aprivate member since it is used only by another member function:
void Deck: :deal (Hand& hand, unsigned size)
{ for (int 1 = 0; 1 < size; i++)
hand.cards[i] = cards[top++];
hand.sort () ;

The top member always locates the top of the deck; i.e., the next card to be dealt. So the deal ()
function copies the top five cards off the deck into the hand’'s cards array. Then it sorts the hand.
The Deck’s constructor initializes all 52 cards in the deck, in the order two of clubs,

three of clubs, four of clubs, ..., ace of spades:
Deck: :Deck ()
{ for (int 1 = 0; 1 < 52; i++)
{ cards[i] .rank = Rank(i%13);
cards[i] .suit_ = Suit (i%4);
}
top = 0;
}
So if hands are dealt without shuffling first, the first hand would be the straight flush of two through
six of clubs.

Finaly, hereisthe shuffle () function:
void Deck::shuffle()

{ for (int 1 = 0; 1 < 52; i++) // do 52 random swaps
{ int j = random.integer (0, 51);
Card ¢ = cards[i];
cards[i] = cardsI[j];
cards[j] = c;
}
top = 0;

It swaps the cards in each of the 52 elements with the card in a randomly selected element of the
deck’'scards array.
12.2 Here are the abstract base classes:
const double PI=3.14159265358979;
class Shape
{ public:
virtual void print() = 0;
virtual float area() 0;

Vi
class TwoDimensional : public Shape
{ public:

virtual float perimeter() = 0;
Vi

class ThreeDimensional : public Shape
{ public:

virtual float volume() = 0;
}i

Note that the print () function and the area () function prototypes are the same for all
classes in this hierarchy, so their interfaces (pure virtual functions) are placed in the Shape
base class. But only two-dimensional shapes have perimeters, and only three-dimensional shapes
have volumes, so their interfaces are placed in the appropriate second-level ABCs.

CHAP. 12] COMPOSITION AND INHERITANCE 297

Here are two of the seven concrete derived classes:
class Circle : public TwoDimensional

{ public:
Circle(float r) : radius(r) { }
void print () { cout << "Shape is a circle.\n"; }
float perimeter() { return 2*PI*radius; }
float area() { return PI*radius*radius; }
private:

float radius;
}i
class Cone : public ThreeDimensional
{ public:
Cone (float r, float h) : radius(r), height(h) { }
void print () ;
float area() ;
float volume() { return PI*radius*radius*height/3; }
private:
float radius, height;
}i
void Cone::print ()
{ cout << "Cone: radius = " << radius << ", height = "
<< height << endl;
}
float Cone::area()
{ float s = sgrt(radius*radius + height*height);
return PI*radius* (radius + s);
}
The other five concrete derived classes are similar.
12.3 Hereistheinterface for the Name class:
class Name
{ friend ostream& operator<<(ostreamé&, const Nameg) ;
friend istream& operator>>(istream&, Name&) ;
public:
Name (char*, char*, char*, char*, char*, char¥*);
string last() { return last ; }
string first() { return first ; }
string middle() { return middle ; }
string title() { return title ; }
string suffix() { return suffix ; }
string nick() { return nick ; }
void last(string s) { last = s; }
void first(string s) { first = s; }
void middle (string s) { middle = s;
void title(string s) { title = s; }
void suffix(string s) { suffix = s; }
void nick(string s) { nick = s; }
void dump () ;
private:
string last_, first , middle_ , title , suffix , nick_;

}i

298

Hereisanimple
Name: : Nam

last

void Name
{ cout <<
cout <<
cout <<
cout <<
cout <<
cout <<
}
ostreamé&
{ 1f (x.t

COMPOSITION AND INHERITANCE [CHAP. 12

mentation for the Name class:

e (char* last="", char* first="", char* middle="",
char* title="", char* suffix="", char* nick="")

(last), first (first), middle_(middle), title_(title),
suffix (suffix), nick (nick) { }

: :dump ()

"\t Last Name: " << last_ << endl;
"\t First Name: " << first << endl;
"\tMiddle Names: " << middle << endl;
"\t Title: " << title_ << endl;
"\t Suffix: " << suffix << endl;
"\t Nickname: " << nick << endl;

operator<< (ostream& out, const Name& x)
itle != "") out << x.title << " ";

out << x.first << " ";

if (x.m

iddle_ != "") out << x.middle << " ";

out << x.last ;

if (x.suffix = "") out << " " << x.suffix ;

if (x.n
return
}
istream&
{ char bu
in.getl
X.last_
in.getl
x.first
in.getl
x.middl
in.getl
x.title
in.getl
x.suffi
in.getl
x.nick_
return

}

ick_ !
out;

= "") out << ", \nn << X.l’liCk_ << n\nnl.

operator>>(istream& in, Name& x)
ffer[80];
ine (buffer, 80, '|');
= buffer;
ine (buffer, 80, '|');
_ = buffer;
ine (buffer, 80, '|');
e = buffer;
ine (buffer, 80, '|');
_ = buffer;
ine (buffer, 80, '|');
X = buffer;
ine (buffer, 80);
= buffer;
in;

Finally, hereisthemodified Person class:

#include
#include
class Per
{ public:
Perso
na

void
void
void
void
void
void

"Date.h"
"Name.h"
son

n(char* n="", int s=0, char* nat="U.S.A.")

me (n), sex(s), nationality(nat) { }

setDOB(int m, int d, int y) { dob.setDate(m, 4, y); }
setDOD (int m, int d, int y) { dod.setDate(m, 4, vy); }
printName () { cout << name; }

printNationality() { cout << nationality; }
printDOB() { cout << dob; }

printDOD() { cout << dod; }

CHAP. 12]

protected:
Name name;
Date dob, dod;
int sex;
string nationality;

}i

COMPOSITION AND INHERITANCE

299

// date of birth, date of death

// 0

Hereisatest driver for the Name class, with test run:

#include <iostream.h>
"Name.h"

#include

int main ()
{ Name x("Bach",
cout << X << endl;
.dump () ;
.last ("Clinton") ;
first("Wwilliam") ;
.middle ("Jefferson") ;
.title ("President") ;
.nick ("Bill") ;
cout << X << endl;

KX M W X X

x.dump () ;
cin >> X;

cout
cout
cout
cout
cout
cout
cout

<<

<<

<<

<<

<<

<<

<<

X << endl;

"x.
"x.
"x.
"x.
"x.
"x.

last
first
middle
title
suffix
nick

[ll
[ll
[ll
[ll
[ll
[ll

"Johann",

<<

<<

<<

<<

<<

<<

KX R X X X

.last ()
.first ()
.middle ()
.title()
.suffix()
.nick()

"Sebastian") ;

<<

<<

<<

<<

<<

<<

female,

"I\n";
"I\n";
"I\n";
"I\n";
"I\n";
"I\n";

1

male

Chapter 13

Templates and Iterators

13.1 INTRODUCTION

A template is an abstract recipe for producing concrete code. Templates can be used to
produce functions and classes. The compiler uses the template to generate the code for various
functions or classes, the way you would use a cookie cutter to generate cookies from various
types of dough. The actual functions or classes generated by the template are called instances of
that templ ate.

The same templ ate can be used to generate many different instances. Thisis done by means of
template parameters which work much the same way for templates as ordinary parameters work
for ordinary functions. But whereas ordinary parameters are place holders for objects, template
parameters are place holders for types and classes.

The facility that C++ provides for instantiating templates is one of its major features and one
that distinguishes it from most other programming languages. As a mechanism for automatic
code generation, it allows for substantial improvementsin programming efficiency.

13.2 FUNCTION TEMPLATES

In many sorting algorithms, we need to interchange a pair of elements. This simple task is
often done by a separate function. For example, the following function swaps integers:
void swap (int& m, int& n)
{ int temp = m;
m = n;
n = temp;
}
If, however, we were sorting string objects, then we would need a different function:
void swap (string& sl, string& s2)
{ string temp = s1;
sl = s82;
s2 = temp;
}
These two functions do the samething. Their only difference is the type of objects they swap. We
can avoid this redundancy by replacing both functions with a function template:

EXAMPLE 13.1 The swap Function Template

template <class T>
void swap (T& x, T& V)
{ T temp = x;

X =Y

y = temp;

}
300

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 13] TEMPLATES AND ITERATORS 301

Thesymbol T iscalled atype parameter. It is simply a place holder that is replaced by an actual type
or class when the function is invoked.

A function template is declared the same way as an ordinary function, except that it is pre-

ceded by the specification

template <class T»>
and the type parameter T may be used in place of ordinary types within the function definition.
The use of the word class here means “any type.” More generally, a template may have
several type parameters, specified like this:

template <class T, class U, class V>

Function templates are called the same way ordinary functions are called:

int m = 22, n = 66;

swap (m, n);

string sl = "John Adamg", s2 = "James Madison";

swap(sl, s2);

Rational x(22/7), y(-3);

swap(x, Yy);
For each call, the compiler generates the complete function, replacing the type parameter with
the type or class to which the arguments belong. So the call swap (m,n) generates the integer
swap function shown above, and the call swap(s1, s2) generatesthe swap function for
string objects.

Function templates are adirect generalization of function overloading. We could have written
several overloaded versions of the swap function, one for each type that we thought we might
need. Thesingle swap function template serves the same purpose. But it isan improvement in
two ways. It only has to be written once to cover all the different types that might be used with
it. And we don’t have to decide in advance which types we will use with it; any type or class can
be substituted for the type parameter T. Function templates share source code among structur-
ally similar families of functions.

EXAMPLE 13.2 The Bubble Sort Template

Thisisthe Bubble Sort (Example 6.13 on page 134) and a print function for vectors of any base type.
template<class T>
void sort (T* v, int n)

{ for (int 1 = 1; 1 < n; i++)
for (int j = 0; j < n-i; J++)
if (vI[j] > vI[j+1]) swap(vIjl, vIj+1]);

}

template<class T>

void print (T* v, int n)

{ for (int 1 = 0; 1 < n; i++)
cout << " " << v[i];
cout << endl;

}

int main()
{ short al9] = {55, 33, 88, 11, 44, 99, 77, 22, 66};

302 TEMPLATES AND ITERATORS [CHAP. 13

print(a,9);
sort(a,9) ;
print(a,9);
string s[7] = {"Tom", "Hal", "Dan", "Bob", "Sue", "Ann", "Gus"};
print(s,7);
sort(s,7) ;
print(s,7);
}
Here, both sort () and print () are function templates. The type parameter T is replaced by the
type short inthefirst callsand by theclass string inthe second calls.

A function template works like an outline. The compiler uses the template to generate each
version of the function that is needed. In the previous example, the compiler produces two ver-
sions of the sort () function and two versions of the print () function, one each for the type
short and one each for the class string. Theindividual versions are called instances of the
function template, and the process of producing them is called instantiating the template. A
function that is an instance of atemplate is also called a template function. Using templatesis a
form of automatic code generation; it allows the programmer to defer more of the work to the
compiler.

13.3 CLASSTEMPLATES

A class template works the same way as a function template except that it generates classes

instead of functions. The general syntax is

template<class T,...> class X { ... };
As with function templates a class template may have several template parameters. Moreover,
some of them can be ordinary non-type parameters.

template<class T, int n, class U> class X { ... };
Of course, since templates are instantiated at compile time, values passed to non-type parameters
must be constants:

template<class T, int n>

class X {};

int main ()

{ X<float, 22> x1; // OK
const int n = 44;
X<char, n> x2; // OK
int m = 66;
X<short, m> x3; // ERROR: m must be constant

}

Class templates are sometimes called parameterized types.

The member functions of a class template are themselves function templates with the same
template header as their class. For example, the function £ () declared in the class template
template<class T>
class X
{ T square(T t) { return t*t; }
}i
is handled the same way that the following template function would be handled:

CHAP. 13] TEMPLATES AND ITERATORS 303

template<class T>
T square (T t) { return t*t; }
It is instantiated by the compiler, replacing the template parameter T with the type passed to it.
Thus, the declaration
X<shorts> x;
generates the class and object
class X_short
{ short square(short t) { return t*t; }
i_short X;
except that your compiler may use some name other than x_short for the class.

EXAMPLE 13.3 A stack Class Template

A stack is a simple data structure that simulates an ordinary stack of objects of the same type (eg., a
stack of dishes) with the restrictions that an object can be inserted into the stack only at the top and an
object can be removed from the stack only at the top. In other words, a stack isalinear data structure with
access at only one end. A stack class abstracts this notion by hiding the implementation of the data
structure, allowing access only by means of public functions that simulate the limited operations
described above.

Hereisaclasstemplate for generating Stack classes:

template<class T>
class Stack

{ public:
Stack(int s = 100) : size(s), top(-1) { data = new T[size]; }
~Stack() { delete [] data; }
void push(const T& x) { datal++top]l = x; }
T pop() { return dataltop--1; }
int isEmpty() const { return top == -1; }
int isFull() const { return top == size - 1; }
private:
int size;
int top;
T* data;

}i
This definition uses an array data to implement a stack. The constructor initializesthe size of the
array, allocates that many elements of type T to the array, and initializes its top pointer to —1. The
value of top isaways one lessthan the number of elements on the stack, and except when the stack is
empty, top istheindex in the array of the top element on the stack. The push () function inserts an
object onto the stack, and the pop () function removes an object from the stack. A stack isEmpty ()
whenits top hasthevalue -1,andit isFull () whenits top pointer hasthevalue size - 1.
Hereisaprogram to test the Stack template

int main()

{ stack<int> intStackl(5
Stack<ints> intStack2 (1
Stack<char> charStack (
intStackl.push(77) ;
charStack.push('A") ;
intStack2.push(22) ;
charStack.push('E'") ;

) i
0);
8);

1

304 TEMPLATES AND ITERATORS [CHAP. 13

charStack.push('K'");

intStack2.push (44) ;

cout << intStack2.pop() << endl;

cout << intStack2.pop() << endl;

if (intStack2.isEmpty()) cout << "intStack2 is empty.\n";

}

44
22
intStack2 is empty.
The template has one parameter T which will be used to specify the type of the objects stored on the
stack. The first line declares intStackl to be a stack that can hold up to 5 ints. Similarly,
intStack2 isastack that can hold upto 10 ints, and charStack isastack that can hold up to 8
chars.
After pushing and popping objects on and off the stacks, the last line callsthe isEmpty () function
for intStack2. Atthatinstant, thetwo Stack classesandthree Stack objectslook likethis:

Stack<ints> intStackl intStack2 Stack<char> charStack
stack() @ stack() @
~Stack() @ top II| top ~Stack() @ top

push() @ data data push() @ data
ol 72 o] 22 ol 'A'
rop () @ 1 1| 44 rop () @ 1| 'E'
isEmpty () @ 2 2 isEmpty () @ 2| 'K
3 3 3
isFull() @ . . isFull() @ .
- Stack<int> 5 — 5
6 6
7 7
8 Stack<char>
9

Stack<int>

Thecal intStack2.isEmpty () returnsl (i.e, “true’) because intStack2.top hasthevaue-1
at that moment.

Note that there are two instances of the Stack classtemplate: Stack<int> and Stack<chars.
These are distinct classes, each generated by the compiler. Each class has its own six distinct member
functions. For example, the two functions Stack<ints::pop() and Stack<chars>::pop() ae
different: onereturnsan int and the other returnsa char.

13.4 CONTAINER CLASSES

A container is simply an object that contains other objects. Ordinary arrays and stacks are
containers. A container class is a class whose instances are containers. The stack<int> and
Stack<char> classes in Example 13.3 are container classes. Class templates are natural
mechanisms for generating container classes because the contained objects’ type can be
specified using a templ ate parameter.

A container is called homogeneous if all of its objects have the same type; otherwise it is
called a heterogeneous container. Stacks, arrays, etc., are homogeneous containers.

CHAP. 13] TEMPLATES AND ITERATORS 305

A vector is an indexed sequence of objects of the same type. The word is borrowed from
mathematics where it originally referred to a three-dimensional point x = (x,, X,, X;). Of course,
that is just an array of 3 real numbers. The subscripts on the components are the same as the
index values on the array, except that in C++ those values must begin with 0. Since subscripts
cannot be written in source code, we use the bracket notation [1 instead. SO x[0] represents
X, x[1] representsx,, and x[2] representsXx,.

EXAMPLE 134 A Vector Class Template

template<class T>
class Vector

{ public:

Vector (unsigned n=8) : size(n), data(new T[size]l) { }
Vector (const Vector<T>& Vv) : size(v.size), data(new T[size])
{ copy(v); }
~Vector() { delete [] data; }
Vector<T>& operator=(const Vector<T>&) ;
T& operator[] (unsigned i) const { return datalil; }
unsigned size() { return size; }

protected:
T* data;

unsigned size;
void copy (const Vector<T>&) ;

}i

template<class T>
Vector<T>& Vector<Ts>::operator=(const Vector<T>& V)

{ size = v.size;
data = new T[size];
copy (V) ;

return *this;

}

template<class T>
void Vector<Ts::copy(const Vector<Ts>& V)

{ unsigned min size = (size < v.size ? size : v.size);
for (int i = 0; i < min_size; i++)
datal[i] = v.datali];

}

Note that each implementation of a member function must be preceded by the same template designator
that precedes the class declaration: template<class T>.
Thistemplate would allow the following code:

Vector<shorts> v;

v[5] = 127;

Vector<short> w = v, x(3);

cout << w.size();
Here v and w areboth vector objectswith 8 elementsof type short,and x isa Vector object
with 3 elements of type short. The class and its three objects can be visualized from the diagram shown
at the top of the next page. It shows the situation at the moment when the member function w.size ()
isexecuting. Theclass vector<short> has been instantiated from the template, and three objects v,

306 TEMPLATES AND ITERATORS [CHAP. 13

/V% x w v
Vector() @ size size size
Vector () @ data data data

0 0 0

~Vector () @ N . .

operator=() @ 2 2 2

Vector<short> 3 3

operator([] () @ 4 4
size() @ / 5| 127 5| 127

6 6

copy () 7 7

\\\4444444444444444444/// Vector<short> Vector<shorts>

w, and x have been instantiated from the class. Note that the copy () functionisa protected utility
function, so it cannot be invoked by any of the class instances.

Note that the expression v [5] isused onthe left side of an assignment, even though this expression
isafunction call. Thisis possible because the subscript operator returns areferenceto a vector<Ts,
making it an lvalue.

Class templates are also called parametrized types because they act like types to which
parameters can be passed. For example, the object b above hastype vector<doubles, SO the
element type double actslike aparameter to the template vector<Ts.

13.5 SUBCLASS TEMPLATES

Inheritance works with class templates the same way as with ordinary class inheritance. To
illustrate this technique, we will define a subclass template of the vector class template
defined in Example 13.4.

EXAMPLE 13.5 A Subclass Template for Vectors

One problem with the vector class as implemented by the template in Example 13.4 is that it
requires zero-based indexing; i.e., al subscripts must begin with 0. This is a requirement of the C++
language itself. Some other programming languages allow array indexes to begin with 1 or any other
integer. We can add this useful featureto our vector classtemplate by declaring a subclass template:

template <class T>
class Array : public Vector<Ts> {

public:
Array(int i, int j) : 1i0(i), Vector<Ts(j-i+1) { }
Array (const Array<Ts>& v) : i0(v.i0), Vector<Ts>(v) { }
T& operator[] (int i) const { return Vector<Ts>::operator[] (i-i0); }
int firstSubscript() const { return i0; }
int lastSubscript() const { return i0+size-1; }
protected:
int 10;

}i
This Array class template inherits al the functionality of the vector class template and aso
allows subscripts to begin with any integer. The first member function listed is a new constructor that
allows the user to designate the first and last values of the subscript when the object is declared. The

CHAP. 13]

TEMPLATES AND ITERATORS 307

second function isthe copy constructor for this subclass, and the third function is the overloaded subscript
operator. Thelast two functions simply return the first and last values of the subscript range.

Note how thetwo Array constructorsinvoke the corresponding vector constructors, and how the
Array Subscript operator invokesthe vector subscript operator.

Array<float>

X

Array () .\ size
Array() @ data
0/3.14159
~array () @ 1[0.08516
operator= () . 21 5041.92
Array<float>
operator (] () @—
size() @
Array () @
firstSubscript() @
lastSubscript=() @
\\ copy ()
Here isatest driver and a sample run:
#include <iostream.h>
#include "Array.h"
int main ()
{ Array<float> x(1,3);
x[1] = 3.14159;
x[2] = 0.08516;
x[3] = 5041.92;
cout << "x.size() = " << xX.size () << endl;
cout << "x.firstSubscript() = " << x.firstSubscript() << endl;
cout << "x.lastSubscript() = " << x.lastSubscript() << endl;
for (int 1 = 1; 1 <= 3; i++)
cout << "xX[" << i1 << "] = " << x[i] << endl;
}
X.size() = 3
x.firstSubscript () = 1
x.lastSubscript () = 3
x[1] = 3.14159
x[2] = 0.08516
x[3] = 5041.92

13.6 PASSING TEMPLATE CLASSESTO TEMPLATE PARAMETERS

We have already seen examples of passing a class to a template parameter:

Stack<Rational> s;

Vector<string> a;

// a stack of Rational objects

// a vector of string objects

308 TEMPLATES AND ITERATORS [CHAP. 13

Since template classes work like ordinary classes, we can also pass them to template parameters.
Stack<Vector<ints>> s; // a stack of Vector objects
Array<Stack<Rational>> a; // an array of Stack objects

The next example shows how this “template nesting” can facilitate software reuse.

EXAMPLE 13.6 A Matrix Class Template

A matrix isessentially atwo-dimensional vector. For example, a*“2-by-3 matrix” isatable with 2 rows
and 3 columns:
abc
def

We can think of this as a 2-element vector, each of whose elementsis a 3-element vector:

[[abc] [def}

The advantage of this point of view isthat it allows us to reuse our vector classtemplate to define a
new Matrix classtemplate.
To facilitate the dynamic allocation of memory, we define amatrix as a vector of pointers to vectors:
Vector<Vector<T>*>
We are passing a class template pointer to the template parameter indicated by the outside angle brackets.
This really means that when the Matrix class template is instantiated, the instances of the resulting
class will contain vectors of pointersto vectors.
template<class T>
class Matrix

{ public:
Matrix (unsigned r=1, unsigned c=1) : row(r)

{ for (int i=0; i<r; i++) row[i] = new Vector<T>(c); }
~Matrix () { for (int i=0; i<row.size(); i++) delete rowl[i]; }
Vector<T>& operator|[] (unsigned i) const { return *rowl[i]; }
unsigned rows () { return row.size(); }
unsigned columns() { return row[0]->size();

protected:

Vector<Vector<T>*> row;
}i
Here the only datamember is row, avector of pointersto vectors. Asavector, row can be used with the
subscript operator: row[i] which returns a pointer to the vector that represents the ith row of the
matrix.

The default constructor assignsto each row[i] a new vector containing c elementsof type T. The
destructor hasto delete each of these vectors separately. The rows () and columns () functions
return the number of rows and columns in the matrix. The number of rows is the value that the member
function size () returnsforthe vector<vector<T>*> object row. The number of columnsisthe
value that the member function size () returnsfor the vector<T> object *row[0], which can be
referenced either by (*row[0]) .size() orby row[0]->size ().

Here isatest driver and a sample run:

int main()
{ Matrix<float> a(2,3);
alo] [0] = 0.0; af0][1] = 0.1; alo0]l[2] = 0.2;
afl1][0] = 1.0; al1][1] ; i

Il
=
=
@
N
1l
=
N

CHAP. 13] TEMPLATES AND ITERATORS 309

cout << "The matrix a has " << a.rows() << " rows and "
<< a.columns () << " columns:\n";
for (int i=0; i<2; i++)
{ for (int 3=0; j<3; j++)
cout << alil[j] << "™ ";
cout << endl;

}
}

The matrix a has 2 rows and 3 columns:
0O 0.1 0.2
1 1.1 1.2

The matrix a can bevisualized like this:

Matrix<float> a
~Matrix() @ row data data
0 — o| 0.0 ol 0.0
operator (] () @— 1 1 0.1 1l 0.1
rows () . Matrix<float> 0.2 2| 0.2
Vector<floats> Vector<float>
columns () @

The diagram shows the situation during one of the subscript accesscalls a[1] [2].

Notice that the actual data values 0.2, 1.1, etc., are stored in two separate Vector<floats> Objects.
The Matrix<floats> object m only contains pointers to those objects.

Note that our mMatrix class template used composition with the vector class template,
whileour array classtemplate used inheritance with the vector classtemplate.

13.7 ACLASSTEMPLATE FOR LINKED LISTS

Linked lists were introduced in Example 10.13 on page 244. These data structures provide an
aternative to vectors, with the advantage of dynamic storage. That is, unlike vectors, linked lists
can grow and shrink dynamically according to how many dataitems are being stored. Thereisno
wasted space for unused elementsin thelist.

EXAMPLE 13.7 A List Class Template

A list consists of alinked sequence of nodes. Each node contains one dataitem and a link to the next
node. So we begin by defininga ListNode classtemplate:
template<class T>
class ListNode

{ friend class List<T»>;
public:
ListNode (T& t, ListNode<T>* p) : data(t), next(p) { }
protected:
T data; // data field

ListNode* next; // points to next node in list

}i

310 TEMPLATES AND ITERATORS [CHAP. 13

The constructor creates a new node, assigningthe T value t toits data fieldandthepointer p to
its next fied:

- data| White, Ann
t| White, Ann @ >
string
cl@—— | o,
nex P

ListNode<string>

y

If T isaclass(instead of an ordinary type), its constructor will be called by the declaration of data.

Note that theclass List<T> isdeclared heretobea friend of the ListNode class. Thiswill
allow the member functions of the List classto access the protected members of the Node class. For
this statement to compile, some compilers require the following forward reference to precede the
ListNode template definition:

template<class T>
class List;
Thissimply tells the compiler that the identifier List will be defined later as a class template.

Hereisthe List classtemplate interface, which followsthe ListNode template definition:

template<class T>
class List
{ public:
List() : first(o) { }
~List () ;
void insert (T t); // insert t at front of list
int remove (T& t); // remove first item t in list
bool isEmpty () { return (first == 0); }
void print () ;
protected:
ListNode<T>* first;
ListNode<T>* newNode (T& t, ListNode<T>* p)
{ ListNode<T>* g = new ListNode<T> (t,p); return g; }
}i

A List object contains only the pointer named £irst. This pointsto
a ListNode object. The default constructor initializes the pointer to first @
NULL. Afteritemshavebeeninsertedintothelist, the first pointer will
point to thefirst item in the list.

The newNode () function invokesthe new operator to obtain a new
ListNode object by meansof the ListNode () constructor. The new nodewill containthe T value
t inits data fieldandthepointer p inits next field. Thefunction returns a pointer to the new node.
It is declared protected because it is a utility function that is used only by the other member
functions.

The List destructor isresponsible for deleting al the itemsin the list:

template<class T>
List<T>::~List ()
{ ListNode<T>* temp;
for (ListNode<T>* p = first; p;) // traverses list
{ temp = p;
p = p->next;
delete temp;

}

List<int>

}

CHAP. 13] TEMPLATES AND ITERATORS 311

This hasto be donein aloop that traversesthe list. Each node is deleted by invoking the delete oper-
ator on a pointer to the node.
The insert () function creates a new node containing the T value t and then inserts this new

node at the beginning of thelist:

template<class T>

void List<Ts>::insert (T t)

{ ListNode<T>* p = newNode (t,first);

first = p;
}

Since the new node will be made the first node in the list, its next pointer should point to the node that
iscurrently firstinthelist. Passingthe f£irst pointer to the NewNode constructor doesthat. Then the
first pointer isreset to point to the new node.
The remove () function removes thefirst item from thelist, returning its data value by reference
in the parameter t. The function’s return value is 1 or 0 according to whether the operation succeeded:
template<class T>
int List<T>::remove (T& t)

{ 1f (isEmpty()) return 0; // flag to signal no removal
t = first->data; // data value returned by reference
ListNode<T>* p = first;
first = first->next; // advance first pointer to remove node
delete p;
return 1; // flag to signal successful removal

}

The print () functionsimply traversesthelist, printing each node’'s data value
template<class T>
void List<Ts>::print()
{ for (ListNode<T>* p=first; p; p=p->next)
cout << p->data << " -> ";
cout << "*\n";
}
Here isatest driver and a sample run:
#include <iostream.h>
#include "List.h"

int main()

{ List<string> friends;
friends.insert ("Bowen, Van")
friends.insert ("Dixon, Tom") ;
friends.insert ("Mason, Joe")
friends.insert ("White, Ann")
friends.print () ;
string name;
friends.remove (name) ;
cout << "Removed: " << name << endl;
friends.print () ;

White, Ann -> Mason, Joe -> Dixon, Tom -> Bowen, Van -> *

Removed: White, Ann

Mason, Joe -> Dixon, Tom -> Bowen, Van -> *
Notice that, since each item is inserted at the beginning of the list, they end up in the opposite order from
their insertion.

312 TEMPLATES AND ITERATORS [CHAP. 13

This friends list can be visualized like this:

List<string>

List() @
~List() @

insert () @—

remove () @ \friends

isEmpty () @ firSt@
print() @

newNode () @—

.)

ListNode<string>
ListNode() @

A J

next@ | next@ | next@ | nextli‘

ListNode<string> ListNode<string> ListNode<string> ListNode<string>

P t| White, Ann

string

This shows the situation at the moment that the insert () function has invoked the newNode ()
function which hasinvoked the ListNode () constructor to create anew nodefor "white, Ann".

13.8 ITERATOR CLASSES

A common activity performed on a container object is the traversal of the object. For
example, to traverse a List object meansto “travel” through the list, “visiting” each element.
This was done by means of a for loop in both the destructor and the print () functionin our
List classtemplate. (See Example 13.7 on page 309.)

An iterator is an object that has the ability to traverse through a container object. It acts like a
pointer, locating one item in the container at atime. All iterators have the same basic functional-
ity, regardliess of the type of container to which they are attached. The five fundamental
operations are:

* initialize theiterator at some initia position in the container;

* return the data value stored at the current position;

 change the data value stored at the current position;

» determine whether there actually is an item at the iterator’s current position;
 advance to the next position in the container.

CHAP. 13] TEMPLATES AND ITERATORS 313

Since these five operations should be implemented by every iterator, it makes sense to declare an
abstract base class with these functions. We actually need an abstract base class template
because the container classes will be template instances:
template<class T>
class Iterator
{ public:
virtual void reset ()

=0
virtual T operator() ()

// initialize the iterator
// read current value

ERERY

virtual void operator=(T t) =0; // write current value
virtual int operator! () =0; // determine whether item exists
virtual int operator++ () =0; // advance to next item

}i

Recall that every pure virtual function prototype begins with the keyword “virtual” and ends
with the code” () =0". The parentheses are required because it is afunction, and the initializer
“=0" makes it a pure virtual function. Also recall that an abstract base class is any class that
contains at least one pure virtual function. (See Section 12.9 on page 286.)

Now we can use this abstract base class template to derive iterator templates for various
container classes.

The nist class template in Example 13.7 on page 309 had an obvious shortcoming: it
allowed insertions and deletions only at the front of the list. A list iterator will solve this
problem, as shown in the next example.

EXAMPLE 13.8 An Iterator Class Templatefor the List Class Template

#include "List.h"
#include "Iterator.h"

template<class T>
class ListIter : public Iterator<Ts>

{ public:
ListIter (List<T>& 1) : list(1l) { reset(); }
virtual void reset() { previous = NULL; current = list.first; }
virtual T operator() () { return current->data; }
virtual void operator=(T t) { current->data = t; }
virtual int operator! () ; // determine whether current exists
virtual int operator++ () ; // advance iterator to next item
void insert (T t); // insert t after current item
void prelnsert (T t); // insert t before current item
void remove () ; // remove current item

protected:

ListNode<T>* current; // points to current node
ListNode<T>* previous; // points to previous node
List<T>& list; // this is the list being traversed

}i
In addition to a constructor and the five fundamental operations, we have added three other functions
that will make lists much more useful. They allow theinsertion and deletion of items anywherein the list.
The operator! () function servestwo purposes. First it resetsthe current pointer if necessary,
and then it reports back whether that pointer is NULL. Thefirst purposeisto “clean up” after acall to the
remove () function which deletesthe nodeto which current points.

314 TEMPLATES AND ITERATORS [CHAP. 13

template<class T>
int ListIter<T>::operator! ()

{ 1f (current == NULL) // reset current pointer
if (previous == NULL) current = list.first;
else current = previous-s>next;
return (current != NULL) ; // returns TRUE if current exists
}

If the current and previous pointersareboth NULL, then either the list isempty or it has only one
item. So setting current equal tothelist's first pointer will either make current NULL or leave it
pointing to thefirst iteminthelist. If current is NULL but previous ispointing to anode, then we
simply reset current to point to the item that follows that node. Finaly, the function returns O or 1
according to whether current is NULL. Thisallows the function to be invoked in the form
if (lit)

where it isaniterator. Theexpression (!it) isread“acurrentitem exists,” because the function will
return1(i.e., “true”) if current isnot NULL. We use thisfunction to check the status of the current
pointer before invoking an insertion or deletion function that requires using the pointer.

The operator++ () “increments’ theiterator by advancing its current pointer to the next item
in the list after advancing its previous pointer. It precedes this action with the same resetting
procedure that the operator! () function performed if it findsthe current pointer NULL:

template<class T>
int ListIter<Ts>::operator++ ()

{ 1f (current == NULL) // reset current pointer

if (previous == NULL) current = list.first;
else current = previous-s>next;

else

{ previous = current; // advance current pointer
current = current-s>next;

}

return (current != NULL) ; // returns TRUE if current exists

}
This operator allows for easy traversal of thelist:

for (it.reset(); !it; ++it)
just likean ordinary for loop traversing an array. It resetstheiterator to locate thefirst item in the list.
Then after visiting that item, it increments the iterator to advance and visit the next item. Theloop contin-
uesaslongas !it returns“true’, which meansthat thereis still an item to be visited.

The insert (t) functioncreatesanew nodefor t and then insertsthat node immediately after the
current node;

template<class T>
void ListIter<T>::insert (T t)
{ ListNode<T>* p = list.newNode(t,0);

if (list.isEmpty()) list.first = p;
else
{ p->next = current-snext;

current->next = p;

CHAP. 13]

TEMPLATES AND ITERATORS

315

The insert operation can be visualized like this:
Before:
next @ | next @ | next IE‘
ListNode<string> ListNodegkstring> ListNode<string>
friendsT it
first current @— p@ data| White, Ann
A previous @’
\ next IE‘
list ._ 1« ListNode<string>
N ListIter<string>
“‘~___ - t| White, Ann
_______ i string
After:

next E}

P next E}

\J

next @

ListNode<string>
friends it

ListNodegkstring>

first

current @—
previous @’

list @- -

ListIter<string>

AYtNode<str1ng>

data| White, Ann
nextli‘

ListNode<string>

Note that the operation leavesthe current and previous pointersunchanged.

The prelInsert ()
node in front of the current node;

template<class T>

function is similar to the insert ()

function, except that it inserts the new

void ListIter<Ts>::prelInsert (T t)
{ ListNode<T>* p = list.newNode (t,current);

if (current == list.first) list.first = previous = p;

else previous->next = p;

316 TEMPLATES AND ITERATORS [CHAP. 13

The preInsert operation can be visualized like this:

Before:

next@ | next@ | nextli‘

ListNode<string>

ListNode<string> ListNodegkstring>
friends it

first @ current @—
A\ previous @’

@] 2eca[Foree s]
nextli‘

list @- - . ListNode<string>
< ListIter<string> :
R -7 t | Morse, Sam
_____ string

After:

next E} | next next IE‘
ListNode<string> ListNoge<stwing> ListNode<stging>
friendsT it T
first current @— data n
A previous @/
next U

list @-1-

ListNode<string>

ListIter<string>)

Note that like insert, thisoperation aso leavesthe current and previous pointersunchanged.
The remove () functiondeletesthe current node:

template<class T>

void ListIter<Ts>::remove ()

{ if (current == list.first) list.first = current-snext;
else previous->next = current-snext;
delete current;
current = 0;

}

It leavesthe previous pointer unchanged and the current pointer NULL.

CHAP. 13]

The remove operation can be visualized like this:

TEMPLATES AND ITERATORS

317

Before:
next @ - next @ - next
ListNode<strin ListNode<strgng> AYtNode<str1ng>
friendsT
first current @’ data| White, Ann
A previous @/
\ next IE‘
\\ list ._ 1-- ListNode<string>
AN ListIter<string> ‘,
After:
next | @ »| next
ListNode<strin ListNode< ing>
friendsT
first current IE‘ data| White, Ann
A previous @/
\ next IE‘
N list ‘_ 1~ ListNode<string>
AN ListIter<string> ‘,
Hereis atest driver for the list iterator:
#include "ListIter.h"
int main ()
{ List<string> friends;
ListIter<string> it (friends) ;
it.insert ("Bowen, Van") ;
++1it; // sets current to first item
it.insert ("Dixon, Tom") ;
++it; // sets current to second item
it.insert ("Mason, Joe") ;
++1it; // sets current to third item
it.insert ("White, Ann");
++1it; // sets current to fourth item

318 TEMPLATES AND ITERATORS [CHAP. 13

friends.print () ;

it.reset () ; // sets current to first item
++1t; // sets current to second item
it = "Davis, Jim"; // replace with new name
++1t; // sets current to third item
it.remove () ; // removes third item
friends.print () ;
if (!it) it.prelInsert ("Morse, Sam");
friends.print () ;
for (it.reset(); !it; ++it) // traverses entire list

it = "[" + it() + "1";

friends.print () ;

}

Bowen, Van -> Dixon, Tom -> Mason, Joe -> White, Ann -> *

Bowen, Van -> Davis, Jim -> White, Ann -> *

Bowen, Van -> Davis, Jim -> Morse, Sam -> White, Ann -> *

[Bowen, Van] -> [Davis, Jim] -> [Morse, Sam] -> [White, Ann] -> *

The for loop changeseach data valuein thelist by prepending aleft bracket and appending aright

bracket to each string. Notethat theassignment it = " [" + it () + "] " calsthe operator () ()
and operator=() functions of the ListIter<string> class as well as the constructor
string (const char*) and operator+=() functiondefinedinthe string class.

Togive ListIter objectstheaccesstothe protected membersof List objectsthat they need
to do their job, we need to declarethe ListIter classa friend of the List class:
template<class T>
class List
{ friend class ListIter<Ts>;
public:
// other members
protected:
ListNode<T>* first;
// other members
Vi

List iterators also need the accessto the protected membersof ListNode oObjects:
template<class T>
class ListNode

{ friend class List<T»>;
friend class ListIter<T>;
public:
ListNode (T& t, ListNode<T>* p) : data(t), next(p) { }
protected:
T data; // data field
ListNode* next; // points to next node in list

}i

An iterator acts like awindow, allowing access to one item at atime in the container. Iterators
are sometimes called cursors because they locate a specific element among the entire structure,
the same way that a cursor on your computer screen locates one character location.

A structure may have more than one iterator. For example, one could declare three iterators
onalist likethis:

List<float> list;
ListIter<float> itl(list), it2(list), it3(list);

CHAP. 13] TEMPLATES AND ITERATORS 319

itl.insert (11.01);

++1tl;

itl.insert (22.02);

++1tl;

itl.insert (33.03);

for (it2.reset(); !it2; ++it2)

it2 = 10*it2; // multiplies each stored number by 10

it3 = it1l; // replaces 110.1 with 330.3 in first item

The iterators are independent of each other. While it2 traversesthelist, it1 remainsfixed on
the third item.

131
13.2
133
134

131

13.2

133

134
135
13.6

131

13.2

133

Review Questions

What is the difference between a function template and a template function?

What is the difference between a class template and a template class?

What are the advantages and disadvantages of using alinked list instead of a vector?
How isan iterator like an array subscript?

Problems

Write and test a program that instantiates a function template that returns the minimum of
two values.

Write and test a program that instantiates a function template that implements a binary search
of asorted array of objects.

Implement and test a template for generating Queue classes. A queue works like a stack,
except that insertions are made at one end of the linear structure and removed from the other
end. It smulates an ordinary waiting line.

Modify the vector classtemplate so that existing vectors can change their size.

Add aconstructor to the vector classtemplate that replicates an ordinary array as a vector.
Derive an Array<T,E> class template from the vector<Ts class template, where the
second template parameter E holds an enumeration type to be used for the array index.

Answersto Review Questions

A function template is a template that is used to generate functions. A template function is a function
that is produced by a template. For example, swap (T&, T&) in Example 13.1isafunction tem-
plate, but thecal swap (m, n) generatesthe actual template function that isinvoked by the call.
A class template is a template that is used to generate classes. A template classis a class that is pro-
duced by a template. For example, Stack in Example 13.3 is a class template, but the type
Stack<int> usedin thedeclarationsisan actual template class.

Vectors have the advantage of direct access (aso called “random access’) to their components by
means of the subscript operator. So if the elements are kept in order, we can locate them very quickly
using the Binary Search Algorithm. Lists have the advantage of being dynamic, so that they never use
more space than is currently needed, and they aren’t restricted to a predetermined size (except for the
size of the computer’s memory). So vectors have a time advantage and lists have a space advantage.

320

134

131

13.2

TEMPLATES AND ITERATORS [CHAP. 13

Both iterators and array indexes act as locators into a data structure. The following code shows that
they work the same way:

float al100]; // an array of 100 floats
int i = 0; // an index for the array
ali] = 3.14159;

for (i = 0; i < 100; i++) cout << alil;

List<float> list; // a list of floats
ListIter<float> it(list); // an iterator for the list
it = 3.14159;

for (it.reset(); !'it; ++it) cout << it();

Solutions to Problems

A minimum function should compare two objects of the same type and return the object whose value
issmaller. The type should be the template parameter T:

template <class T»>

T min(T x, T y)

{ return (x <y ? x : v);

}
Thisimplementation uses the conditional expressionoperator: (x <y ? x : y).If x isless
than v, the expression evaluatesto x; otherwiseit evaluatesto .

Hereisthe test driver and a sample run:

#include "Ratio.h"

int main()

{ cout << "min (22, 44) = " << min(22, 44) << endl;
cout << "min(66.66, 33.33) = " << min(66.66, 33.33) << endl;
Ratio x(22, 7), y(314, 100);
cout << "min(x, y) = " << min(x, y) << endl;

}

min (22, 44) = 22

min(66.66, 33.33) = 33.33

min(x, y) = 314/100

A search function should be passed the array a, the object key to be found, and the bounds on the

array index that define the scope of the search. If the object isfound, itsindex in the array should be

returned; otherwise, the function should return -1 to signal that the object was not found:
template<class T>

int search(T al[l, T key, int first, int last)
{ while (first <= last)
{ int mid = (first + last)/2;

if (key < a[mid]) last = mid - 1;
else if (key > a[mid]) first = mid + 1;
else return mid;

}

return -1; // not found
}
Withinthe while loop, thesubarray from a[first] to a[last] isbisectedby mid.If key
< a[mid] then key cannot bein the second half of the array, so last isresetto mid-1 to
reduce the scope of the search to the first half. Otherwise, if key > a[mid],then key cannot be
in the first half of the array, so first isresetto mid+1 to reduce the scope of the search to the
second half. If both conditions are false, then key == a[mid] andwe can return.

CHAP. 13] TEMPLATES AND ITERATORS 321

133

Here isthe test driver and a sample run:
template<class T> int search(T [], T, int, int);

string names[]
= {"Adams", "Black", "Cohen", "Davis", "Evans", "Frost",
"Green", "Healy", "Irwin", "Jones", "Kelly", "Lewis"};

int main ()
{ string name;
while (cin >> name)
{ int location = search(names, name, 0, 9);
if (location == -1) cout << name << " 1is not in list.\n";

else cout << name << " is in position " << location << endl;

Like the implementation of the Stack template, this implementation uses an array data of size
eements of type T. Thelocation in the array where the next object will be inserted is always given by
the value of (front % size), and the location in the array that holds the next object to be
removed is awaysgiven by thevalueof (rear % size):
template<class T>
class Queue
{ public:
Queue (int s = 100) : size(s+1l), front(0), rear(0)
{ data = new T[sizel; }
~Queue () { delete [] data;

}

void insert (const T& x) { datalrear++ % size] = x; }

T remove () { return datal[front++ % sizel; }

int isEmpty () const { return front == rear; }

int isFull() const { return (rear + 1) % size == front; }
private:

int size, front, rear;

T* data;

}i
The test driver uses a queue that can hold at most 3 chars:
#include "Queue.h"
int main ()
{ Queue<char> g(3);
g.insert ('A');
g.insert ('B');

322 TEMPLATES AND ITERATORS [CHAP. 13

g.insert ('C');

if (g.isFull()) cout << "Queue is full.\n";
else cout << "Queue is not full.\n";

cout << g.remove () << endl;

cout << g.remove () << endl;

g.insert ('D') ;
g.insert ('E');

if (g.isFull()) cout << "Queue is full.\n";
else cout << "Queue is not full.\n";

cout << g.remove () << endl;

cout << g.remove () << endl;

cout << g.remove () << endl;

if (g.isEmpty()) cout << "Queue is empty.\n";

else cout << "Queue 1s not empty.\n";

13.4 Weadd two functions:
unsigned resize (unsigned n) ;
unsigned resize(unsigned n, T t);
Both functions transform the vector into one of sizen. If n < size,thenthelast size-n ee
ments are ssimply discarded. If n == size, then the vector isleft unchanged. If n > size, then
thefirst size elementsof the transformed vector will be the same as those of the prior version; the
last n-size areassignedthevaluet by thesecond resize () functionand areleft uninitialized
by the first. Both functions return the new size:
template<class T>
unsigned Vector<Ts>::resize(unsigned n, T t)
{ T* new data = new T[n];
copy (V) ;
for (i = size; 1 < n; 1++)
new _datali] = t;
delete [] data;
size = n;
data new_data;
return size;
}
template<class T>
unsigned Vector<Ts::resize (unsigned n)
{ T* new data = new T[n];

copy (v) ;
delete [] data;
size = n;
data = new_data;

return size;

TeamLRN

CHAP. 13] TEMPLATES AND ITERATORS 323

13.5 The new constructor convertsan array a whose elements have type T:
template<class T>
class Vector

{ public:
Vector (T* a) : size(sizeof(a)), data(new T[size])
{ for (int i = 0; i < size; i++) datalil] = alil; }

// other members
}i
Hereisatest driver for the new constructor:
int main ()
{ int all = { 22, 44, 66, 88 };
Vector<int> v(a);

cout << v.size() << endl;
for (int 1 = 0; 1 < 4; 1i++)
cout << v[i] << " ";
4

22 44 66 88

The advantage of this constructor is that we can initialize a vector now without having to assign each
component separately.

13.6 Thederived template has three member functions: two constructors and a new subscript operator:
template <class T, class E>
class Array : public Vector<Ts>

{ public:
Array (E last) : Vector<Ts>(unsigned(last) + 1) { }
Array (const Array<T,E>& a) : Vector<Ts>(a) { }

T& operator[] (E index) const
{ return Vector<Ts>::operator[] (unsigned (index)) ;

}
}i
The first constructor calls the default constructor defined in the parent class Vector<T>, passing to
it the number of E values that are to be used for the index. The new copy constructor and subscript
operator also invoke their equivaent in the parent class.
Hereisatest driver for the Array<T, E> template:
enum Days { SUN, MON, TUE, WED, THU, FRI, SAT };

int main()
{ Array<int,Days> customers (SAT) ;
customers [MON] = 27; customers[TUE] = 23;
customers [WED] = 20; customers[THU] = 23;
customers [FRI] = 36; customers[SAT] = customers[SUN] = 0;
for (Days day = SUN; day <= SAT; day++)
cout << customers[day] << " ";
}

0 27 23 20 23 36 0

The enumeration type Days defines seven values for the type. Then the object customers is
declared to be an array of intsindexed by these seven values. The rest of the program applies the
subscript operator to initialize and then print the array.

Chapter 14

Standard C++ Vectors

14.1 INTRODUCTION

Although not as efficient, Standard C++ string objects are more robust than the classic
C-strings. They are easier to use and they cause fewer run-time errors. In the same way, Standard
C++ vector objects are more robust than ordinary arrays. So vector Objects provide a good
aternative to arrays. The vector classtemplateis also the prototype for all the container classes
in the Standard C++ Library. (See Chapter 15.)

The vector classtemplateis defined in the <vectors header.

EXAMPLE 14.1 Using avector of strings

This program creates a vector v of 8 strings and then callsa load() function and a print ()
function to load and print the vector.

#include <iostream>

#include <string>

#include <vector>

using namespace std;

void load(vector<strings>&) ;

void print (vector<strings>) ;

const int SIZE=8;

int main ()

{ vector<string> Vv (SIZE) ;
load (v) ;
print (v) ;

}

void load(vector<string>& v)

{ v[0o] = "gapan";
v[1l] = "Italy";
v[2] = "Spain";
v[3] = "Egypt";
v[4] = "Chile";
v[5] = "Zaire";
v[6] = "Nepal";
v[7] = "Kenya";

}

void print (vector<string> v)
{ for (int 1=0; i<SIZE; i++)
cout << v[i] << endl;

cout << endl;

}
324

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 14] STANDARD C++ VECTORS 325

Japan
Italy
Spain
Egypt
Chile
Zaire
Nepal
Kenya

Note that this program could have been written almost the same way using an array of strings:
string vI[SIZE];
In particular, access by means of the subscript operator v [i] works the same with vectors and arrays.

EXAMPLE 14.2 Usingthe push back() and size() Functions

This is the same program as in Example 14.1 except for the changes indicated in boldface: the type
identifier strings isused in place of vector<strings, the push back () function isused instead
of assigning elementsto v [i],andthe size () functionisused instead of storing the constant SIZE as
aglobal constant.

typedef vector<string> Strings;
void load(Stringsé&) ;
void print (Strings) ;

int main ()

{ strings v;
load(v) ;
print (v) ;

}

void load(Strings& V)

{ v.push back("Japan");
.push back("Italy");
.push _back("Spain") ;
.push back ("Egypt");
.push _back("Chile") ;
.push back("Zaire");
.push back ("Nepal") ;
.push _back ("Kenya") ;

4 4 4 4 4 4 4

void print (Strings vVv)
{ for (int i=0; i<v.size(); i++)
cout << vI[i] << endl;
cout << endl;

}

Note that vector v has 0 elementswhen it is created. Each timethe push_back () functioniscalled,
it appends the new element to the end of the vector and increments its size. So when the 1oad ()
function returns, the size of v is 8.

The output here is the same as for the program asin Example 14.1.

326 STANDARD C++ VECTORS [CHAP. 14

14.2 ITERATORSON VECTORS

EXAMPLE 14.3 Using vector Iterators

This program defines the type identifier sit to stand for iterators on vectors of strings. It then uses
such an iterator to traverse the vector inthe print () function.
typedef vector<string> Strings;
typedef Strings::iterator Sit;
void load(Stringsé&) ;
void print (Strings) ;

int main ()

{ strings v;
load (v) ;
print (v) ;

}

void print (Strings v)
{ for (8it it=v.begin(); itl!=v.end(); it++)
cout << *it << endl;
cout << endl;

}

The for loop initializes the iterator it to the beginning of the vector v. The expression *it returns
the element located by the iterator. The increment expression it++ advances it to the next dement in
the vector. When it == wv.end(), it has moved to the imaginary position that follows the last
element of the vector. That signals that the traversal has finished and stops the loop.

The output here is the same as for the program asin Example 14.1.

EXAMPLE 14.4 Usingthe Generic sort () Algorithm

Thisusesthe sort () functionthatis definedinthe <algorithms> header. (See page393.) The
subsequent call print (v) showsthat the strings are sorted alphabetically.
int main()
{ strings v;
load (v) ;
sort(v.begin() ,v.end()) ;
print (v) ;

}

Chile
Egypt
Italy
Japan
Kenya
Nepal
Spain
Zaire

The generic sort () algorithm requires two iterator arguments to indicate what part of the vector is

to be sorted. The begin() and end() functions return iterators that locate the begining and ending

locations of the vector, so passing these two iteratorsto sort () indicates that the entire vector is to be

sorted.

CHAP. 14] STANDARD C++ VECTORS 327

14.3 ASSIGNING VECTORS

EXAMPLE 14.5 Using the Assignment Operator to Duplicateavector

This program demonstrates that one vector can be assigned to another.
int main ()
{ strings v, w;
load (v) ;
w = V;
sort (v.begin() ,v.end()) ;
print (v) ;
print (w) ;

Theassignment w = v hasthe same effect as the call load(w) would have: it duplicates each of the 8

elements of v and |oads them into w.
The fact that w is independent of v is evident from the output: w remains unchanged when v is sorted.

EXAMPLE 14.6 Usingthe front (), back(),and pop back() Functions

The front () function returnsthe first element in the vector. The back () function returnsthe last
element in the vector. The pop_back () function removes the last element in the vector.

int main ()

{ strings v;
load (v) ;
sort (v.begin() ,v.end()) ;
print (v) ;
cout << "v.front() = " << v.front() << endl;
cout << "v.back() = " << v.back() << endl;
v.pop back() ;
cout << "v.back() = " << v.back() << endl;
v.pop back() ;
cout << "v.back() = " << v.back() << endl;

print (v) ;

328 STANDARD C++ VECTORS [CHAP. 14

Thecal v.pop_back() removesthestring zaire from the vector v.

14.4 THE erase() and insert() FUNCTIONS

EXAMPLE 14.7 Usingthe erase () Function

int main ()
{ strings v;
load (v) ;
sort (v.begin(),v.end()) ;
print (v) ;
v.erase(v.begin()+2); // removes Italy
v.erase(v.end () -2); // removes Spain

print (v) ;

——

Thecdl v.erase(v.begin()+2) removestheelement v[2]. Itisthe element that follows the

2nd element (Egypt) from the beginning of the vector.
The cal v.erase(v.begin()-2) removes the element v[n-21, where n is the size of the

vector. It is the element that follows the 2nd element (Nepal) from the end of the vector.

TeamLRN

CHAP. 14] STANDARD C++ VECTORS 329

EXAMPLE 14.8 Usingthe insert () Function

Thisprogram illustratesthe insert () function and the use of the erase () functionto remove an
entire segment of elements.

int main ()

{ strings v;
load (v) ;
sort (v.begin() ,v.end()) ;
print (v) ;
v.erase(v.begin()+2,v.end()-2); // removes the segment Italy..Nepal

print (v) ;
v.insert (v.begin() +2, "India") ;
print (v) ;

Thecal v.erase(v.begin()+2,v.end()-2) removesthesegment v[2..5].
Thecadl v.insert (v.begin()+2,"India") inserts India immediately after the 2nd element

(Egypt) from the beginning of the vector.
145 THE find() FUNCTION

The £ind () functionis used to search for an e ement in a vector.

EXAMPLE 14.9 Usingthe £ind () Function

This program uses the find () function to obtain iterators that locate Egypt and Malta in the
vector. Then it passesthem to the sort () function to sort that segment within the vector.

int main()

{ strings v;
load (v) ;
print (v) ;
Sit egypt=find(v.begin(),v.end (), "Egypt");
Sit malta=find(v.begin(),v.end(),"Malta");

330

STANDARD C++ VECTORS [CHAP. 14

sort (egypt,malta) ;

print (v) ;

}

void load(Stringsé& v)

{ v.

<

4 4 < 9 9 4 4 < < <

.push_back ("Italy") ;
.push _back ("Spain") ;

.push back ("Nepal"
.push_back ("Kenya"

.push back("India"
.push _back ("China"
.push back("Malta"
.push _back ("Syria"

push_back ("Japan") ;

.push_back ("Egypt") ;
.push _back("Chile"
.push _back ("Zaire"

7

7

7

)
)
)
) ;
)
)
)
)

7

7

7

Thetwo iterators egypt andmalta areinitialized by the £ind () function. Together, they delineate

the segment v [3..9]

consisting of the 7 elements { Egypt, Chile, Zaire, Nepal, Kenya, India,

China}. The sort () function sortsthat segment, leaving the other 5 elements unchanged.

Likethe sort () function,the £ind () functionisageneric algorithm that requirestwo iteratorsto
specify what segment of the vector is to be processed. (See page 373.) If you want to search the entire

vector, use

the iterators that are returned by the begin () and end () functions, likethis:

find(v.begin(), v.end(), x);

TeamLRN

CHAP. 14]

14.6 THE C++ STANDARD

STANDARD C++ VECTORS

331

vector CLASSTEMPLATE

The interface for the vector classtemplate is the prototype for all the Standard C++ container
class templates. (See Chapter 15.) With only a few exceptions, each member function of the
vector class corresponds to an equivalent member function for each of the other container

classes (stack, queue, list, set, map, €tC.)

Hereisasimplified partial listing of the vector class template interface:

template <class T»>
class vector

{ friend bool operator==(const vector&, const vector&);

friend bool operator<(const vector&, const vector&) ;
public:

typedef T* iterator;
vector () ; // default constructor
vector (const vectoré&) ; // copy constructor
vector (int, const T&) ; // auxiliary constructor
vector (iterator, iterator); // auxiliary constructor
~vector () ; // destructor
vector& operator=(const vector&); // assignment operator
void assign(int, const T&); // assigns a given value
void assign(iterator, iterator); // copies elements from object
void resize (int) ; // changes size of vector
void swap (vector&) ; // swaps elements with object
bool empty () const; // returns true iff empty
int size () const; // return number of elements
iterator begin() ; // locates first element
iterator end () ; // locates dummy element at end
T& operator|[] (int) ; // subscript operator
T& at (int) ; // range-checked access
T& front () ; // accesses the first element
T& back() ; // accesses the last element
void push back (const T&); // inserts element at end
void pop_back() ; // removes last element
iterator insert (iterator, const T&) ;
void insert (iterator, int, const T&) ;
void insert (iterator, iterator, iterator) ;
iterator erase(iterator) ;
iterator erase(iterator, iterator) ;
void clear() ; // removes all the elements

private:
/] ..
Vi

EXAMPLE 14.10 Usingthe Sandard vector<> Class Template

Here is acomplete C++ program that uses the Standard vector<s> classtemplate:

#include <iostream>
#include <vector>

using namespace std;
typedef vector<doubles> Vec;

// defines the Standard vector<Ts> class template

332 STANDARD C++ VECTORS [CHAP. 14

typedef vector<bool> Bits;

template <class T»>
void copy (vector<Ts>& v, const T* x, int n)
{ vector<T> w;
for (int i=0; i<n; i++)
w.push back (x[1]);

vV o= W;
Vec projection (Vec& v, Bits& Db)
{ int v_size = v.size();
assert (b.size() >= v_size);
Vec w;

for (int i=0; i<v_size; i++)
if (b[i]) w.push back(vI[il);
return w;

void print (Vec& v)
{ int v_size = v.size();
for (int i=0; i<v_size; i++)
cout << vI[i] << " "e.
cout << endl;

int main()
{ double x[8] = { 22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9 };
Vec v;
copy (v, x, 8);
bool y[8] = { false, true, false, true, true, true, false, true };
Bits b;
copy (b, v, 8);
Vec w = projection(v, b);
print (v) ;
print (w) ;
}
22.2 33.3 44.4 55.5 66.6 77.7 88.8 99.9
33.3 55.5 66.6 77.7 99.9
Thisillustratesthe vector class push_back() and size () member functions.
The purpose of the projection (v, b) functionisto use the bit vector b as amask to remove
selected elements of the vector v. Theresulting vector w iscalled the projection of v onto the subspace
determined by b.

14.7 RANGE CHECKING

The at () member function of the standard vector class template automatically checks the
value of the index variable to ensure that it is not out of range. This protection against program
failure is not available for ordinary arrays.

CHAP. 14] STANDARD C++ VECTORS 333

141
14.2

141

14.2

14.3

14.4

141

Review Questions

What are the main differences between an array and aC++ vector?
How are vector iterators similar to array indexes?

Problems

Usethe find() algorithm to implement and test the following function for vectors of
intSs

int frequency(vector<int> v, int x);

// returns the number of occurrences of x in v;
Usethe f£ind () algorithm andthe erase () function toimplement and test the following
function for vectorsof ints:

void remove duplicates(vector<int>& v);

// removes all duplicates in v;
Usethe sort () algorithm to implement and test the following function for vectors of
floats.

float median (vector<float>& v);

// returns the middle number among those stored in v;
Implement and test the following conversion functions:

int unsignedValue (BinaryCode bc) ;

// example: if bc has these bit values 1 0 1 0 1

// unsignedValue (bc) returns 21

BinaryCode getUnsignedCode (unsigned n) ;

// returns shortest possible code for n

// example: if n = 15 returns the vector with elements 1 1 1 1

int signedvValue (BinaryCode bc) ;

// example: if bc has these bit values 1 0 1 1 1 0

// signedValue (bc) returns -30

BinaryCode getSignedCode (int n) ;

// returns shortest possible twosComplement code for n

// example: if n = 15 returns the vector with elements 0 1 1 1 1

// if n = -15 returns the vector with elements 1 0 0 0 1

These use the following definitions:
typedef vector<ints> BinaryCode;
typedef BinaryCode::iterator BCIterator;

Answersto Review Questions

Some of the main differences between arrays and C++ vectorsare:
a. An array isdeclared as

string[8] a; // a is an array of 8 strings
whileavector isdeclared as
vector<string> v(8); // v is a vector of 8 strings

b. The assignment operator is defined for vectors but not for arrays:
v = w; // assigns all the elements of the vector w to v

334

14.2

141

14.2

14.3

STANDARD C++ VECTORS [CHAP. 14
¢. The comparison operators are defined for vectoxrsbut not for arrays:
if (v == w) // true if the two vectors are equal
if (v < w) // uses the lexicographic ordering of vectors
d. The size () member function is availablefor vectors but not for arrays:
int n = v.size(); // the number of elements in the vector v

e. The at () member function is available for vectors but not for arrays:
string v8 = v.at(8); // the element at position 8
A range error exception is thrown if the element does not exist.
Some of the main similarities between arrays indexes and vector iterators are:
a. Both provide direct read-write access to the elements:

x = al3]; // assigns to x element number 3
X = *it; // assigns to x the element located by it
al3] = 44; // assigns 44 to element number 3
*it = 44; // assigns 44 to the element located by it

b. Both can be incremented and decremented.
c. Both can be used as a basis for relative positions:
X

X

*(it+3); // assigns to x the 3rd element after *it

Solutions to Problems

int frequency(vector<int> v, int x)

{ int n=0;
for (vector<ints>::iterator it=v.begin(); ; it++)
{ it = find(it,v.end(),x);
if (it==v.end()) return n;
++n;

}

return n;
}
void remove duplicates (vector<int>& v)
{ for (vector<ints>::iterator it=v.begin()+1l; it!=v.end();
{ vector<ints>::iterator jt=find(v.begin(),it,*it);
if (jt == it) ++it;
else it = v.erase(it);
}
}

typedef vector<float> ScoreVector;
typedef ScoreVector::iterator ScoreVectorIterator;

float median(ScoreVector sv);

//precondition: sv is not empty

// returns average of two sorted middle values in sv
// caller's argument remains unchanged

void getScores(ScoreVector & sv);

ali+3]; // assigns to x the 3rd element after alil

)

void print (ScoreVectorIterator start, ScoreVectorIterator stop);

int main ()
{ ScoreVector scores ;
getScores (scores);

CHAP. 14] STANDARD C++ VECTORS 335

14.4

print (scores.begin() , scores.end() - 1);
cout << "median(scores) = " << median(scores) << endl;

float median(ScoreVector v)
{ if (v.empty()) return 0.0;
int n = v.size();
sort (v.begin(), v.end());
return (vl n/2 1 + v[(n-1)/21) / 2.0;

void getScores(ScoreVector & sv)
{ float nextScore;
cout << "Enter next score or negative value to stop: ";
cin >> nextScore;
while (nextScore >= 0.0)
{ sv.push back(nextScore) ;
cout << "Enter next score or negative value to stop: ";
cin >> nextScore;

void print (ScoreVectorIterator start, ScoreVectorIterator stop)
{ for (ScoreVectorIterator svIt = start; svIt <= stop; svIt++)
cout << *svIt << endl;

typedef vector<ints> BinaryCode;
typedef BinaryCode::iterator BCIterator;

int unsignedValue(BinaryCode bc) ;
// example if bc has these bit values 1 0 1 0 1
// unsignedValue (bc) returns 21

BinaryCode getUnsignedCode(unsigned n);
// returns shortest possible code for n

// example: if n = 15 returns the vector with elements 1 1 1 1
int signedvalue (BinaryCode bc);

// example if bc has these bit values 1 0 1 1 1 0

// signedValue(bc) returns -30

BinaryCode getSignedCode(int n);

// returns shortest possible twosComplement code for n

// example: if n = 15 returns the vector with elements 0 1 1 1 1
// if n = -15 " " " " " 10001

void print (BinaryCode bc) ;
void testUnsigned() ;
void testSigned() ;

336

STANDARD C++ VECTORS [CHAP. 14
int main()
{ testUnsigned() ;
testSigned() ;
}
void testUnsigned()
{ BinaryCode bc;
for (unsigned n = 0; n <= 11; n++)
{ bc = getUnsignedCode(n);
print (bc);
cout << " has unsigned value " << unsignedvValue(bc)
<< " and signed value " << signedValue(bc) << endl;
}
}
int unsignedValue(BinaryCode bc)
{ int value = 0;
for (BCIterator bcIt = bec.begin(); bcIt != bc.end(); bcIt++)
value = value * 2 + *bclt;
return value;
}
BinaryCode getUnsignedCode(unsigned n)
{ BinaryCode answer;
answer.push back(n%2); // start with least sig bit
n=n/2;
while (n > 0)
{ BCIterator bcIt = answer.begin() ;
answer.insert(bcIt , n % 2);
n=n/2;
}
return answer;
}
void print (BinaryCode bc)
{ for (BCIterator bcIt = bc.begin(); bcIt != bc.end(); bcIt++)

cout << *bclIt << ' ';

}

int signedValue(BinaryCode bc)

{ int uvalue = unsignedvalue(bc);
if (*bc.begin() == 0) return uvalue;
int modulus = (int) pow(2 , bc.sgize());
return uvalue - modulus;

}

BinaryCode getSignedCode(int n)
{ BinaryCode answer;
if (n >= 0) // n not negative
{ answer = getUnsignedCode(n);
BCIterator bcIt = answer.begin() ;

answer.insert (bcIt , 0); // insert leading bit 0

// not negative

CHAP. 14] STANDARD C++ VECTORS 337

}

else // n is negative
{ int posN = -n;
int modulus = 2;
while (posN > 0) // build modulus

{ posN /= 2;
modulus *= 2;

}

answer = getUnsignedCode(modulus + n);

}

return answer;

}

void testSigned()

{ BinaryCode bcPos;
BinaryCode bcNeg;
for (int n = 1; n <= 12; n++)
{ bcPos = getSignedCode(n);

bcNeg = getSignedCode(-n);
int decodePos = signedValue(bcPos) ;
int decodeNeg = signedValue(bcNeg) ;

cout << decodePos << ": ";

print (bcPos) ;

cout << "\tvs\t\t" << decodeNeg << ": ";
print (bcNeg) ;

cout << endl;

Chapter 15

Container Classes

15.1 ANSI/ISO STANDARD C++

The standardization of C++ by the ANSI (American National Standards Ingtitute) and the SO
(International Standards Organization) began in 1989. The final version was approved by those
organizations in 1998. That approval defines Sandard C++.

You can obtain a complete copy of the standard from ANSI at their website:

http://www.ansi.org/
Thetitle of the document is Information Technology — Programming Languages — C+ +.

15.2 THE STANDARD TEMPLATE LIBRARY

The standardization of C++ brought forth many changes, including namespaces and an official
bool type. But the biggest improvement was the addition of the Standard Template Library (the
STL). This is a collection of class templates and functions designed to facilitate the use of
container objects such as strings, vectors, lists, stacks, queues, sets, and maps. Developed by a
team led by Alexander Stepanov at Hewlett-Packard, the STL is now known simply as part of the
Standard C++ Library. The classes that can be defined from these templates are called container
classes.

15.3 STANDARD C++ CONTAINER CLASSTEMPLATES

The ten Standard C++ container class templates are

. . . Container Templates
organized as shown at right. The details of these class P

o . ——Sequences
templates are given in Appendix C. | vector<s
A container is data structure that contains other - deque<>
objects. The objects that it contains are called its list<>
elements. All the elements in a given container must ——Associative Containers
have the same type. —set<>
A sequence container is a container whose elements 72:;:%“ >

are kept in an ordina sequence, like an array. The
position of each element isindependent of itsvalue. But
the relative positions of the elements are guaranteed not
to change unless they are intentionally moved. As the
diagram shows, there are three general sequence
containers. vector, deque, and list.

—multimap<>

——Specia Containers

—basic_string<>

——valarray<>
bitset<>

An associative container is a container whose elements are kept in sorted order. So the user
has no control over where the elements are kept; their positions are completely determined by
their values and those of the other elements in the container. So the order in which you insert the

338

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

CHAP. 15] CONTAINER CLASSES 339

elements doesn’t matter. As the diagram shows, there are four general sequence containers: set,
multiset,map,andmultimap.

The Standard C++ Library aso defines three specialized container class templates:
basic_string, valarray, and bitset. These are not classified as general containers because
their operations are not as general as the others.

The vector<> template isthe prototype of all the container classes. It generalizes the direct
access array, as described in Chapter 10. Most of its functions apply to the other templates.

The vector<> templateis outlined in Chapter 14.

The deque<> template generalizes the stack and the queue containers. A deque (pronounced
“deck”) is a sequential container that allows insertions and deletions at both ends. Special
adapters are provided that use this template to define the stack<> template and the queue<>
template.

The 1ist<> template generalizes the linked list structure which does not have indexed
access but does have much faster insertion and deletion operations. A special adapter uses the
list<> template to definethe priority queue<> template.

The set<> template provides containers that represent mathematical sets, using union and
intersection operations.

The multiset<> template isthe same asthe set<> template except that its containers
allow multiple copies elements.

The map<> template generalizes the look-up table structure. Maps are al so called an associa-
tive array. The hash table data structure is a specia kind of map.

The multimap<> template isthe same as the map<> template except that its containers
allow multiple copies elements.
The basic_string<> template generalizes the notion of acharacter string, allowing strings
of any type. The common special cases are defined by typedefs:
typedef basic_string<char> string;
typedef basic_string<wchar t> wstring;
The valarray<> templateisintended for instantiating mathematical vectors and linear array
processing.

The pitset<> templateisused for processing bitstrings. objects whose values are usualy in
hexadecimal and which are operated upon by the logical operators |, &, *, <<,and >>.

15.4 STANDARD C++ GENERIC ALGORITHMS

The Standard C++ generic agorithms are non-member functions that apply to the Standard
C++ container classes. They provide a consistent suite of tools that cover just about any applica-
tion of containers. They also allow for easy transfer of elements from one type of container to
another. The details of these functions are given in Appendix D.

Two of the most useful agorithms are the find() and sort() functions. These were
illustrated in Chapter 14. (See Examples 14.4 and 14.9.) These areillustrated with other contain-
ersin the examplesin this chapter.

340

15.5 HEADER FILES

CONTAINER CLASSES

[CHAP. 15

The Standard C++ container templates and generic algorithms are defined in the following
header files:

accumulate ()
adjacent difference()
adjacent find()
basic_string<>
binary search()
bitset<>

copy ()

copy backward ()
count ()

count if ()

deque<>

equal ()

equal find()
£i11 ()

£ill n()

find end()

find first of ()
find if ()

for each()
generate ()
generate n()
includes ()

inner product ()
inplace merge ()
iter swap ()
lexicographic_ compare()
list<>

lower bound()

make heap ()

map<>

max ()
max_element ()
merge ()

min ()
min_element ()
mismatch ()
multimap<>
multiset<>

next permutation()
nth element ()
partial sort()
partial sum()
partition()
partition_sort_ copy ()
pop_heap ()
prev_permutation ()
priority queue<>

<numerics
<numerics
<algorithms>
<string>
<algorithms>
<bitset>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<deque>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<numerics
<algorithms>
<algorithms>
<algorithms>
<list>
<algorithms>
<algorithms>
<maps>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<algorithms>
<maps>

<set>
<algorithms>
<algorithms>
<algorithms>
<numerics
<algorithms>
<algorithms>
<algorithm>
<algorithm>
<queue>

CHAP. 15]

push heap ()
queue<>

random shuffle ()
remove_ copy ()
remove copy if ()
remove if ()
replace ()
replace_copy ()
replace copy if ()
replace if ()
reverse ()
reverse_copy ()
rotate()

rotate copy ()
search n ()

set<>
set_difference()

set_intersection()

CONTAINER CLASSES

<algorithm>
<qgueue>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<set>
<algorithm>
<algorithm>

set symmetric_difference() <algorithm>

set_union()
sort ()

sort heap ()
stack<>
string<>
swap ()
transform()
unique ()
unique_ copy ()
upper_ bound ()
valarray<>
vector<>

<algorithm>
<algorithm>
<algorithm>
<stack>
<vector>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<algorithm>
<valarray>
<vector>

341

For more information on the Standard C++ container classes and their generic algorithms, see

the books [Hubbard1] and [Hubbard2] listed in Appendix H.

Appendix A

Character Codes

A.1 The ASCII Code

Each 8-bit character is stored as its ASCIIT Code, which is an integer in the range 0 to 127.
Note that the first 32 characters are nonprinting characters, so their symbols in the first column
are indicated either with their control sequence or with their escape sequence. The control
sequence of a nonprinting character is the combination of Control key and another key that is
pressed on the keyboard to enter the character. For example, the end-of-file character (ASCII
code 4) isentered withthe ctr1-p sequence. The escape sequence of anonprinting character is
the combination of the backslash character “\” (called the “control character”) and aletter that is
typed in C++ source code to indicate the character. For example, the newline character (ASCI|
code 10) iswritten “\n” in a C++ program.

Char acter Description Decimal | Octal Hex Binary
Ctrl-e@ Null, end of string 0 000 0x0 0
Ctrl-A Start of heading 1 001 0x1 1
Ctrl-B Start of text 2 002 0x2 10
Ctrl-C End of text 3 003 0x3 11
Ctrl-D End of transmission, end of file 4 004 0x4 100
Ctrl-E Enquiry 5 005 0x5 101
Ctrl-F Acknowledge 6 006 0x6 110

\a Bell, dert, system beep 7 007 0x7 111
\b Backspace 8 010 0x8 1000
\t Horizontal tab 9 011 0x9 1001
\n Linefeed, new line 10 012 0xa 1010
\v Vertical tab 11 013 0xb 1011
\f Form feed, new page 12 014 0xc 1100
\r Carriage return 13 015 0xd 1101
Ctrl-N Shift out 14 016 Oxe 1110
Ctrl-O Shiftin 15 017 Oxf 1111
Ctrl-P Data link escape 16 020 | 0x10 10000
Ctrl-Q Device control 1, resume scroll 17 021 | 0x11 10001
Ctrl-R Device control 2 18 022 | 0x12 10010
Ctrl-s Device control 3, stop scroll 19 023 | 0x13 10011

1. ASCII isan acronym for the American Standard Code for Information Interchange.

342

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

APP. A]

CHARACTER CODES

Char acter Description Decimal | Octal Hex Binary
Ctrl-T Device control 4 20 024 | 0x14 10100
Ctrl-U Negative acknowledgment 21 025 | 0x15 10101
Ctrl-Vv Synchronousidle 22 026 | 0x16 10110
Ctrl-w End transmission block 23 027 | 0x17 10111
Ctrl-X Cancel 24 030 | 0x18 11000
Ctrl-y End of message, interrupt 25 031 | 0x19 11001
Ctrl-Z Substitute, exit 26 032 | Oxla 11010
Ctrl-[Escape 27 033 | 0x1lb 11011
Ctrl-/ File separator 28 034 | oxlc 11100
Ctrl-] Group separator 29 035 | 0x1d 11101
Ctrl-" Record separator 30 036 | Oxle 11110
Ctrl-_ Unit separator 31 037 | 0x1f 11111
Blank, space 32 040 | 0x20 100000
! Exclamation point 33 041 | o0x21 100001
" Quotation mark, double quote 34 042 | 0x22 100010
Hash mark, number sign 35 043 | 0x23 100011
S Dollar sign 36 044 | 0x24 100100
% Percent sign 37 045 | 0x25 100101
& Ampersand 38 046 | 0x26 100110
' Apostrophe, single quote 39 047 | 0x27 100111
(Left parenthesis 40 050 | 0x28 101000
) Right parenthesis 41 051 | 0x29 101001
* Asterisk, star, times 42 052 | 0x2a 101010
+ Plus 43 053 | 0x2b| 101011
, Comma 44 054 | 0x2c 101100
- Dash, minus 45 055 | 0x2d 101101
Dot, period, decima point 46 056 | 0x2e 101110
/ Slash 47 057 | 0x2f 101111
0 Digit zero 48 060 | 0x30 110000
1 Digit one 49 061 | 0x31 110001
2 Digit two 50 062 | 0x32 110010
3 Digit three 51 063 | 0x33 110011
4 Digit four 52 064 | 0x34 110100
5 Digit five 53 065 | 0x35 110101
6 Digit six 54 066 | 0x36 110110
7 Digit seven 55 067 | 0x37 110111
8 Digit eight 56 070 | 0x38 111000

343

344 CHARACTER CODES [APP. A

Character Description Decimal | Octal Hex Binary
9 Digit nine 57 071 | 0x39 111001
Colon 58 072 | 0x3a 111010

; Semicolon 59 073 | 0x3s 111011
< Less than 60 074 | 0x3c| 111100
= Equal to 61 075 | 0x3d 111101
> Greater than 62 076 | 0x3e 111110
? Question mark 63 077 | 0x3f 111111
@ Commercial at sign 64| 0100| 0x40| 1000000
A Letter capital A 65| 0101 | 0x41| 1000001
B L etter capital B 66| 0102| 0x42| 1000010
C L etter capital C 67| 0103 | 0x43| 1000011
D Letter capital D 68| 0104 | 0x44 | 1000100
E Letter capital E 69| 0105| 0x45| 1000101
F L etter capital F 70| 0106 | Ox46| 1000110
G Letter capital G 71 0107 | 0x47| 1000111
H Letter capital H 72 0110 | 0x48| 1001000
I L etter capital | 73 0111 | 0x49| 1001001
J L etter capital J 74 0112 | Ox4a| 1001010
K Letter capital K 75| 0113 | O0x4b| 1001011
L Letter capital L 76| 0114 | 04xc| 1001100
M Letter capital M 77| 0115| 0x4d| 1001101
N Letter capital N 78| 0116 | Ox4e| 1001110
0 L etter capital O 79 0117 | ox4f| 1001111
P Letter capital P 80| 0120| 0x50| 1010000
Q L etter capital Q 81 0121 | 0x51| 1010001
R Letter capital R 82| 1022 | 0x52| 1010010
S L etter capital S 83| 0123| 0x53| 1010011
T Letter capital T 84| 0124 | 0x54| 1010100
U L etter capital U 85 0125 | 0x55| 1010101
\ Letter capital V 86| 0126| 0x56| 1010110
W L etter capital W 87| 0127 | 0x57| 1010111
X L etter capital X 88| 0130| 0x58| 1011000
Y Letter capital Y 89| 0131 | 0x59| 1011001
Z L etter capital Z 90| 0132| 0x5a| 1011010
L eft bracket 91| 0133| 0x5b| 1011011

\ Backslash 92| 0134 | 0x5c| 1011100
] Right bracket 93| 0135| 0x5d| 1011101

APP. A] CHARACTER CODES
Char acter Description Decimal | Octal Hex Binary
» Caret 94| 0136 0x5e| 1011110
_ Underscore 95| 0137 0x5f| 1011111
' Accent grave 96 0140| 0x60| 1100000
a Letter lowercase A 97 0141 | Ox61| 1100001
b Letter lowercase B 98 0142 | 0x62| 1100010
c Letter lowercase C 99 0143 | 0x63| 1100011
d Letter lowercase D 100 0144 | 0x64| 1100100
e Letter lowercase E 101 0145| 0x65| 1100101
f Letter lowercase F 102 0146 | 0x66| 1100110
g Letter lowercase G 103 0147 | 0x67| 1100111
h Letter lowercase H 104 0150 | 0x68| 1101000
i Letter lowercase | 105 0151 | 0x69| 1101001
3 Letter lowercase J 106 0152 | Ox6A| 1101010
k Letter lowercase K 107 0153 | 0x6B| 1101011
1 Letter lowercase L 108 0154 | 0x6C| 1101100
m Letter lowercase M 109 0155| 0x6D| 1101101
n Letter lowercase N 110 0156 0x6 | 1101110
o Letter lowercase O 111 0157 | Ox6F| 1101111
P Letter lowercase P 112 0160 | 0x70| 1110000
q Letter lowercase Q 113 0161 | 0x71| 1110001
r Letter lowercase R 114| 0162| 0x72| 1110010
s Letter lowercase S 115 0163 | 0x73| 1110011
t Letter lowercase T 116 0164 | 0x74| 1110100
u Letter lowercase U 117 0165| 0x75| 1110101
v Letter lowercase V 118 0166 | 0x76| 1110110
w Letter lowercase W 119 0167 | 0x77| 1110111
b4 Letter lowercase X 120 0170| 0x78| 1111000
y Letter lowercase Y 121 0171 | 0x79| 0111001
z Letter lowercase Z 122 0172 | O0x7a| 1111010
{ Left brace 123 0173 | 0x7b| 1111011
| Pipe 124 | 0174 | Ox7c| 1111100
} Right brace 125| 0175| 0x7d| 1111101
~ Tilde 126 0176 | 0Ox7e| 1111110
Delete Delete, rub out 127 0177 | oOox7f| 1111111

345

346 CHARACTER CODES [APP. A

A.2 Unicode

Unicode is the international standardized character set that C++ uses for its 16-bit wchar t
(wide character) type. Each code is a 16-bit integer with unique value in the range 0 to 65,535.
These values are usually expressed in hexadecimal form. (See Appendix G) For example, the
infinity symbol « has the Unicode value 8734, which is 0x0000221e in hexadecimal.

In C++, the character literal whose Unicode is 0x0000hhhh in hexadecimal is denoted
L'\xhhhh'. For example, the infinity symbol is expressed as ' \x221e", like this:
wchar t infinity = L'\x22le’;
The first 127 Unicode val ues encode the same characters as the ASCII Code.
The following table summarizes the various al phabets and their Unicodes.
You can obtain more information from the Unicode Consortium website

http://www.unicode.org/
Also, see the book [Unicode] listed in Appendix H.

Range (Hexadecimal) Alphabet
\u0000 - \uO24F Latin Alphabets
\u0370 - \uO3FF Greek
\u0400 - \uO4FF Cyrillic
\u0530 - \uO58F Armenian
\u0590 - \uO5FF Hebrew
\u0600 - \uO6FF Arabic
\u0900 - \u097F Devanagari
\u0980 - \uO9FF Bengali
\uOA00 - \uOA7F Gurmukhi
\uOA80 - \uOAFF Gujardti
\u0B00 - \uOB7F Oriya
\u0B80 - \uOBFF Tamil
\u0C00 - \uOC7F Teluga
\u0C80 - \uOCFF Kannada
\u0D00 - \uOD7F Malayam
\uOE0O0 - \uOE7F Thai
\uOE80 - \uOEFF Lao
\uOF00 - \uOFBF Tibetan
\ulOAO0 - \ulOFF Georgian
\ull00 - \ullFF Hangul Jamo
\u2000 - \u206F Punctuation
\u2070 - \u209F Superscripts and subscripts
\u20A0 - \u20CF Currency symbols
\u20D0 - \u20FF Diacritical marks
\u2100 - \u2l4F Letterlike symbols

APP. A]

CHARACTER CODES

Range (Hexadecimal)

Alphabet

\u2150 - \u2l8F
\u2190 - \u2lFF
\u2200 - \u22FF
\u2300 - \u23FF
\u2400 - \u243F
\u2440 - \u245F
\u2460 - \u24FF
\u2500 - \u257F
\u2580 - \u259F
\u25A0 - \u25FF
\u2700 - \u27BF
\u3040 - \u309F
\u30A0 - \u30FF
\u3100 - \u31l2F
\u3130 - \u31l8F
\u3190 - \u31l9F
\u3200 - \u32FF
\u4EQ00 - \u9FFF

Numeral forms

Arrows

Mathematical symbols
Miscellaneous technical symbols
Control pictures

Optical Character Recognition symbols

Enclosed alphanumerics
Box drawing

Block elements
Geometric shapes
Dingbats

Hiragana

Katakana

Bopomofo

Jamo

Kanbun

Enclosed CXK letters and months
CJX ldeographs

347

Appendix B

Standard C++ Keywords

‘Xew JUT UIDIXD 320]|([220] 31 3P ISIN0 pa.re|0ap s19alqo Jo) sse o abeiols uIrolxe

<L sselo>s3eldwsly 3x0dxd 11UNn uo e [1Idwo9 Jsyloue W) SSB0Je SMO| |V 3xodxe
! (u 3uT)X 3TOTTAX® Apo1(dwi payoaul Bueg woJy 1030nIsuod e Juansid 01 pasn atoTTdxe

*{ ++ } 100q wnus 2dA1 uoIrRIBWINUS UR 8.12[09P 0 Pas unus

‘0 = u esie JUSWRRS IT Ue UlaAleuRle saljinads asT®

d<yxI>3sed otweudp = dd

JBwiod uanibe Joy seuiod x I e suinpy

3seo oTureulp

!X oTqnop adAy Jequinu eal v sTqnop

oTTym {* -} op doo| sTTUmM" -op esaljads op

‘e 9319T9p WBWRRIS Mau e AQ pa1edo| e Alowsw S91230|ead @391°p

{0 = wns :3[negsp WBWeRrIS UY21TMS B UIased ,3SIMBYI0, 3yl aTnegysp
{3NuUTIUOD dooje ui uoresl 1eu Jo Buluuibeq oy sdwne dNUT3UOD

(d) <xIL>3sed 1suoo = dd | suofouny equislu 3|ceINWLLI UIYIIM WoJ) S109[qo abeyd 01 pasn 3seo 3suod
{Z€ = § 3UT 23SUOD UonIUIBP JURISUOD B Sa1410adS 3suod
{1q Tdwoo = oq ~ Joresedo 1ON 8sImiIg 8yl Joj wAuouAs v Tdwod

t{ -+ } x ssero uoIe e [0ap Sse|d e sal410ads sseTod
‘5 TeUD adAy sebei uy Ieyo
(z0x19)yD3eDd SIN220 UOId80Xe Ue UBYM axe] 0} SUO IR Sal10ads yo3ed

(0T/U) UDITMS uoissaIdxe [04Ju0D A}105ds 0] JWBWSTRIS YDA TMS B Ul PSS e8ed
{yesaq Wwewers y21Ims e Jo dooje saruiwe] yesaq

{per3y 1o00Oq adAy uesjooq v Tooq

fzq 10319 T9 = 09 | Joresedo HO 8sImiIg 8y} J0j WAUOUAS v I03Tq
‘Zq pueltq 19 = 09 % Joksodo ANV asimiig ay) Joj wAuouss v puelIq
{u jur ojne 320(0 UMO JIBYI UIYIIM AJUO 151X oY1 S1991q0 10} sse (o abelois oane

! (W3o9UD,) wse A302.1p Jo [quiasse ay 03 passed ag 01 U0 FeLLLIO JUl SMO| |V use

‘zq bs pue 1q =% JoTesado Juswubisse NV 8sIm1ig 8y} 1o} wAuouss v be pue

(8>X pue 0<X) %3 Jorsdo ANV ay1 Joj wAuouAs v pue

a|dwrex3

uondiisag

p JoM/Aa Y

348

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

349

STANDARD C++ KEYWORDS

APP. B]

{(3eo13)30°zTs = u | 199[qo Ue IOl 01 PasN S8IAQ JO ,Bguinu 8yl suinp. ey} Jokkedo joezTs
!D xeyo paubts sadA1 sebejul auljep 01 pasn paubts

‘u jxoys adAy sebei uy jaxoys

‘0 uaniax an[eA e suINaJ pue uoouny e S9feu iuisl eyl Jusuekels uinisx

(d) <xI>3sed 3sadasjutax = dd

adA1 pue anen USAIB Y1im 199[go Ue suinipy

3seo 3@xdisjursx

{1 qut xs3sTbex sJisifel ul palols s108(go 4oy o1y 0ads sse o afielois xs3sTbex

‘u qut :otTqnd ssejpe ulsuoiee[ep 2t1and salynads orTqnd

!u qut :ps3osjzoad ssejpe ulsuolrresp poiosijoxd ué_:owam pe3oej3oad

‘u Jut :93eatad ssepeulsuolereep s3eatad 8_towam ojeatad

‘zq be 10 TIq =| Jorsedo Juewubsse YO asimiig ay) o) WAUOUAS v bs 10

(8>X IO (0<X) | | Joriedo YO 9y} Jo) wAUOUAS v Io

! ()++103e19dO X peo Ao Jorksedo Ue a1e[oep 01 pasn zo3easdo

(0 be 10u x) =1 Jopesedo Ajienbaulay) o) wAUOUAS v bs 3j0u

((0==x) 30u) i JoreJsedo JON 8yl Joj WAUOUAS W jou

fquTt mau = d 43Ul Alowsw 9120 |V mau

{ ‘wnu jqut } 3ssg soedssweu $)001g 8d03s JO UOIE I UBPI 3Y) SMO| |V soedssureu

‘uss BuTtaas sTgeanu p 1 8yl abueyd 0] SUO1IDUNY 3 |GeINWIWI SMO| |V eTqe3lnu

!x aTqnop buot sadA1 jeal pue Jefieul aulep 01 pasn BuoT

‘u aur adA) bl uy jut

()3 IUT SUTITUT [[e9 S11 40} PaINiiIsgNs ag 01 S| 1X91 8S0YM Uo[ouNy e sakeoad SUTTUT

(0 < u) 3T Jusweels JT Uesoljioeds It

{70119 0306 WBWIES pajece| e 03 dwn(0} UoINJXBXe Sasre) o306

‘()3 3uT pusTiz SSeppe Ul UONoUN) PUSTII BSaljnads pusTaz

(1) I03 doo| x03 eSsalnads Io03

!X 3e0T] adA1 Jsquinu [eal v jeoT1s

‘osTeg=be1y T00q adA) Tooq ay) o) Sssll| 0M1 3y} JO 3UD esTe3
a|dwrex3 uondiiosaq p JoM/AS Y

[APPB

STANDARD C++ KEYWORDS

350

‘zq be x0x Tq | = Joesedo Juswubisse HO SASN[OX as1M1Ig 3y} 0} WAUOUAS v bs xox

‘zq aox Tq = 09 . 1012I8d0 HO BABNPXE 851M11g BY) 40} WAUOUAS v Iox

(0 < u) oTTUM doo| sTTUm esalypads STTYM
!oputaoad 3 Ieyom adAy Jeereyd (119-9T) apIM 3 Ieyom

‘u sTTaeTOA 3UT | |0AU0d Welboid Jo apsIN0 paIIpow aq Ued ey s13elqo serepeg STT3eTOA

‘()3 ptoa adAre Jo aoussqe ay1 serubisa proa

()3 3UT TenlITA ssejogns e Ul paulsp S| eyl uolouny jsguiswl e sakeoaq Ten3aTa

{q 3ut psubTsun sadA1 sebejul auljep 01 pasn paubtsun

t{ -+ } 2z uotun afeJ01s swes sy Adndoo sjusWS o 8SOYM 3IN1ONIS B S314109dS uotun
!p3s eopedssweu bursn X1jo4d 8Jedsawleu JO UOSSILLIO SMO| e eyl 9ARRIIg Bursn
Hf -} x sweusadiia sseTo pJomiay ayl Joj wAuoufs v sureusadig
! ()sweu- (x)pTadil >> 3nod 9d/A) s ,uossaidxe Ue sjussaidal feys 199100 ue suinpy predia
fwnN 3uT FopodAia adA1 Bunsixe ue Joj wAuoufs e sarepag Fepadig

{ ==+ } K12 SJB[puey Uo Ndeaxd Su eIU0I eyl XJ0|q € Sa1410adS K13
!onx3=HeT3y TOOq adA1 Toog ay) Jo) S[esdll| OM] 8Y} JO BUQ snij

‘()X moay3a uondsoxe Ue atesausb 0] pasn MmoIy3

{STUIx UINISI 199[qo Wa1n2 ay) 01 suiod eyl Jejuiod STY3

<], sse1o> o3eTdwal ssep s3erdws? mmeQ%W 23eTdusl

{ -~} (u) uyoatms JUBWeRS UPITMS BSal)I0ads Y03 TMs
£{ -+ } x 3oniaas uonIu1BP 8IN1ONJIS B Sa141090S 3onijs

d<yxI>3se0 oTI3e3s = dd

Jwiod uanib e Joy ;euiod x I e suinpy

3seD oT3e3s

‘U JUT DOT3e1S

wreJboid sy} Jo uoirINp aY) Jo} ISIXe Tyl S199[go Jo sse o abelols

oT3e3Ss

a|dwrex3

uondiiosaq

p JoM/AS Y

Appendix C

Standard C++ Operators

This table lists all the operators in C++, grouping them by order of precedence. The
higher-level precedence operators are evaluated before the lower-level precedence operators. For
example, in the expression (a - b=*c), the » operator will be evaluated first and the -
operator second, because * has precedence level 13 which is higher than the level 12
precedence of -. The column labeled “Assoc.” tells whether an operator is right associative or
left associative. For example, the expression (a - b - c¢) isevauatedas ((a - b) - c)
because - isleft associative. The column labeled “ Arity” tells whether an operator operates on
one, two, or three operands (unary, binary, or ternary). The column labeled “Ovrldbl.” tells
whether an operator is overloadable. (See Chapter 8.)

Op. Name Prec. | Assoc. | Arity | Ovrldbl. | Example
Global scope resolution 17 Right Unary No DX
Class scope resolution 17 Left Binary | No X::x
Direct member selection 16 Left Binary | No s.len
-> Indirect member selection 16 Left Binary | Yes p->len
[] Subscript 16 Left Binary | Yes ali]
() Function call 16 Left n/a Yes rand ()
0 Type construction 16 L eft n/a Yes int (ch)
++ Post-increment 16 Right Unary Yes n++
-- Post-decrement 16 Right Unary Yes n--
sizeof Size of object or type 15 Right Unary No sizeof (a)
++ Pre-increment 15 Right Unary Yes ++0
-- Pre-decrement 15 Right Unary Yes --n
~ Bitwise complement 15 Right Unary Yes ~8
! Logical NOT 15 Right Unary Yes 'p
+ Unary plus 15 Right Unay | Yes +n
- Unary minus 15 Right Unary Yes -n
* Dereference 15 Right Unary Yes *p
& Address 15 Right Unary | Yes &X
new Allocation 15 Right Unary Yes new p
delete Deallocation 15 Right Unary Yes delete p
0 Type conversion 15 Right Binary | Yes int (ch)
LK Direct member selection 14 Left Binary | No X.*Qq
->* Indirect member selection 14 Left Binary | Yes p->g
* Multiplication 13 Left Binary | Yes m*n
/ Division 13 L eft Binary | Yes m/n
% Remainder 13 Left Binary | Yes msn
351

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

352 STANDARD C++ OPERATORS [APP.C

Op. Name Prec. | Assoc. | Arity | Ovrldbl. | Example
+ Unary plus 15 Right Unary Yes +n
- Unary minus 15 Right Unary Yes -n
* Dereference 15 Right Unary Yes *p
& Address 15 Right Unary | Yes &x
new Allocation 15 Right Unary Yes new p
delete Dedlocation 15 Right Unary Yes delete p
0 Type conversion 15 Right Binary | Yes int (ch)
¥ Direct member selection 14 Left Binary | No X.*Q
->* Indirect member selection 14 Left Binary | Yes p->9
* Multiplication 13 Left Binary | Yes m*n
/ Division 13 Left Binary | Yes m/n
% Remainder 13 Left Binary | Yes m3n
+ Addition 12 Left Binary | Yes m+ n
- Subtraction 12 Left Binary | Yes m-n
<< Bit shift left 11 Left Binary | Yes cout << n
>> Bit shift right 11 Left Binary | Yes cin >> n
< Less than 10 Left Binary | Yes X <y
<= L ess than or equal to 10 Left Binary | Yes X <=y
> Greater than 10 Left Binary | Yes X >y
>= Greater than or equal to 10 Left Binary | Yes X >= Yy
== Equal to 9 Left Binary | Yes X ==Yy
= Not equal to 9 Left Binary | Yes X l=vy
& Bitwise AND 8 Left Binary | Yes s&t
» Bitwise XOR 7 Left Binary | Yes s™t
| Bitwise OR 6 Left Binary | Yes s|t
&& Logical AND 5 Left Binary | Yes u && v
| | Logical OR 4 Left Binary | Yes u || v
?: Conditional expression 3 Left Ternary | No uz?x:y
= Assignment 2 Right Binary | Yes n = 22
+= Addition assignment 2 Right Binary | Yes n += 8
-= Subtraction assignment 2 Right Binary | Yes n-=4
*= Multiplication assignment | 2 Right Binary | Yes n *= -1
/= Division assignment 2 Right Binary | Yes n /= 10
%= Remainder assignment 2 Right Binary | Yes n %= 10
&= Bitwise AND assignment 2 Right Binary | Yes s &= mask
*= Bitwise XOR assignment 2 Right Binary | Yes s "= mask
= Bitwise OR assignment 2 Right Binary | Yes s |= mask
<<= Bit shift left assignment 2 Right Binary | Yes S <<=
>>= Bit shift right assignment 2 Right Binary | Yes s >>= 1
’ Comma 0 Left Binary | Yes ++m, - -0

Appendix D

Standard C++ Container Classes

This appendix summarizes the standard C++ container class templates and their most widely
used member functions. This is the part of standard C++ that used to be called the Standard
Template Library (STL).

D.1 THE vector CLASSTEMPLATE

A vector object acts like an array with index range checking (using its at () member
function). As an object, it has the additional advantages over an array of being able to be
assigned, passed by value, and returned by value. The vector class template is defined in the
<vector> header. See Example D.1 on page 355.

vector () ;
// default constructor: creates an empty vector;

vector (const vector& v);
// copy constructor: creates a copy of the vector v;
// postcondition: *this == v;

vector (unsigned n, const T& x=T());

// constructor: creates a vector containing n copies of the element x;
// precondition: n >= 0;

// postcondition: size() == n;

~vector () ;
// destructor: destroys this vector;

vector& operator=(const vector& v);
// assignment operator: assigns v to this vector, making it a duplicate;
// postcondition: *this == v;

unsigned size() const;
// returns the number of elements in this wvector;

unsigned capacity () const;
// returns the maximum number of elements that this vector can have
// without being reallocated;

void reserve(unsigned n);

// reallocates this vector to a capacity of n elements;
// precondition: capacity() <= n;

// postcondition: capacity () == n;

353

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

354 STANDARD C++ CONTAINER CLASSES [APP.D

bool empty() const;
// returns true iff size() == 0;

void assign(unsigned n, const T& x=T());

// clears this vector and then inserts n copies of the element x;
// precondition: n >= 0;

// postcondition: size() == n;

T& operator|[] (unsigned 1i);

// returns element number i;

// precondition: 0 <= i < size();

// result is unpredictable if precondition is false;

T& at (unsigned 1i);

// returns element number i;

// precondition: 0 <= i < size();

// exception is thrown is precondition is false;

T& front();
// returns the first element of this wvector;

T& back();
// returns the last element of this wvector;

iterator begin();
// returns an iterator pointing to the first element of this vector;

iterator end();
// returns an iterator pointing to the dummy element that follows
// the last element of this vector;

reverse_iterator rbegin();

// returns a reverse iterator pointing to the last element of this vector;

reverse_iterator rend();
// returns a reverse iterator pointing to the dummy element that precedes
// the first element of this vector;

void push back(const T& x);

// appends a copy of the element x to the back of this vector;
// postcondition: back() == x;

// postcondition: size() has been incremented;

void pop back() ;

// removes the last element of this wvector;

// precondition: size() > 0;

// postcondition: size() has been decremented;

APP. D] STANDARD C++ CONTAINER CLASSES 355

iterator insert(iterator p, const T& x);

// inserts a copy of the element x at position p; returns p;
// precondition: begin() <= p <= end();

// postcondition: size() has been incremented;

iterator erase(iterator p);

// removes the element at position p; returns p
// precondition: begin() <= p <= end();

// postcondition: size() has been decremented;

iterator erase(iterator pl, iterator p2);

// removes the elements from position pl to the position before p2;
// returns pl;

// precondition: begin() <= pl <= p2 <= end();

// postcondition: size() has been decreased by int (p2-pl);

void clear();
// removes all the elements from this vector;
// postcondition: size() == 0;

EXAMPLE D.1 Using an Iterator on a vector Object

#include <iostream>

#include <vector>

using namespace std;

typedef vector<ints>::iterator It;

int main ()
{ vector<int> v (4);
for (int 1=0; i<4; 1i++)
v[i] = 222*i + 333;
cout << "Using the iterator it in a for loop:\n";
for (It it=v.begin(); it!=v.end(); it++)
cout << "\t*it=" << *it << "\n";
cout << "Using the iterator p in a while loop:\n";
It p=v.begin();
while(p!=v.end())
cout << "\t*p++=" << *p++ << "\n";

The vector v has 4 elements: 333, 555, 777, and 999. The second for loop uses the iterator it to
traverse the vector v from beginning to end, accessing each of its elements with *it. The while loop
has the same effect using *p.

356 STANDARD C++ CONTAINER CLASSES [APP.D

EXAMPLE D.2 Using a Reverse Iterator on a vector Object

#include <iostream>

#include <vector>

using namespace std;

typedef vector<ints::reverse iterator RIt;

int main ()
{ vector<int> v(4);
for (int 1=0; i<4; 1i++)
v[i] = 222*1 + 333;
cout << "Using the reverse iterator rit in a for loop:\n";
for (RIt rit=v.rbegin(); rit!=v.rend(); rit++)
cout << "\t*rit=" << *rit << "\n";
cout << "Using the reverse iterator rp in a while loop:\n";
RIt rp=v.rbegin() ;
while(rp!=v.rend())
cout << "\t*rp++=" << *rp++ << "\n";

The vector v has 4 elements: 333, 555, 777, and 999 (the same as in Example D.1). The second for
loop uses the reverse iterator rit to traverse the vector v backwards, accessing each of its elements with
*rit. The while loop hasthe same effect using *rp.

EXAMPLE D.3 Usingthe insert () Function on avector Object

#include <iostream>
#include <vector>

using namespace std;

typedef vector<ints> Vector;
typedef Vector::iterator It;
void print (const Vectoré&) ;

int main ()
{ Vector v(4);
for (int 1=0; i<4; 1i++)
v[i] = 222*i + 333;

print (v) ;

It it = v.insert(v.begin()+2,666) ;
print (v) ;

cout << "*it=" << *it << "\n";

TeamLRN

APP. D] STANDARD C++ CONTAINER CLASSES 357

void print (const Vector& v)

{ cout << "size=" << v.size() << ": (" << v[0];
for (int 1i=1; i<v.size(); 1i++)
cout << "," << vI[i];
cout << ")\n";
}

The vector v has 4 elements: 333, 555, 777, and 999 (the same as in Example D.1). The second for
loop uses the reverse iterator rit to traverse the vector v backwards, accessing each of its elements with
*rit. The while loop hasthe same effect using *rp.

EXAMPLE D.4 Using Some Generic Algorithmson avector Object

#include <iostream>
#include <vector>

using namespace std;

typedef vector<ints> Vector;
typedef Vector::iterator It;
void print (const Vectoré&) ;

int main ()

{ Vector v(9);
for (int 1=0; 1i<9; 1i++)

v[i] = 111*i + 111;

print (v) ;
It it=v.begin() ;
£ill(it+2,it+5,400); // replaces vI[2:5] with 400
print (v) ;
reverse (it+4,it+7) ; //
print (v) ;
iter swap (it+6,it+8);
print (v) ;
sort (it+4,it+9);
print (v) ;

void print (const Vector& v)
{ cout << "size=" << v.size() << ": (" << v[0];
for (int 1i=1; i<v.size(); 1i++)
cout << "," << vI[i];

cout << ")\n";

358 STANDARD C++ CONTAINER CLASSES [APP.D

EXAMPLE D.5 Using Some More Generic Algorithms on avector Object

#include <iostream>
#include <vectors>

using namespace std;

typedef vector<ints> Vector;
typedef Vector::iterator It;
void print (const Vector&) ;

int main ()
{ Vector v1(9);
for (int i=0; i<9; i++)
v1i[i] = 111*i + 111;
print (vl) ;
Vector v2(9);
print (v2) ;
It pl=vl.begin(), p2=v2.begin() ;
copy (pl+3,pl+8,p2+3) ;
print (v2) ;
It p = min element (pl+4,pl+8);

cout << "*p=" << *p << "\n";
p = max element (pl+4,pl+8);
cout << "*p=" << *p << "\n";
p = £find(pl,pl+9,444);
if (p != pl+9) cout << "*p=" << *p << "\n";
}
void print (const Vector& v)
{ cout << "size=" << v.size() << ": (" << v[0];
for (int i=1; i<v.size(); i++)
cout << "," << vI[i];
cout << ")\n";
}

size=9: (111,222,333,444,555,666,777,888,999)
size=9: (0,0,0,0,0,0,0,0,0)

size=9: (0,0,0,444,555,666,777,888,0)

*p=555

*p=888

*p=444

D.2 THE deque CLASSTEMPLATE

A deque (pronounced “deck”) object is a double-ended queue, intended to provide efficient
insertion and deletion at both its beginning and its end. It has the following two member
functions in addition to all the member functions that a vector class has (except the
capacity () and reserve () functions). The deque classtemplateisdefined inthe <deques
header.

APP. D] STANDARD C++ CONTAINER CLASSES 359

void push front (const T& x);

// inserts a copy of the element x at the front of this deque;
// postcondition: front() == x;

// postcondition: size() has been incremented;

void pop front();

// removes the first element of this vector;
// precondition: size() > 0;

// postcondition: size() has been decremented;

D.3 THE stack CLASSTEMPLATE

A stack object is a sequential container that allows insertions and deletions only at one end,
called its top. In the standard C++ library, the stack class template is adapted from the deque
class template. This means that stack member functions are implemented with deque member
functions, as shown below. The stack classtemplate is defined inthe <stack> header.

template <class T> class stack

{ public:
unsigned size() const { return _d.size(); }
bool empty () const { return d.empty(); }
T& top () { return d.back(); }
void push(const T& x) { _d.push back(x); }
void pop () { d.pop back(); }
protected:

deque<T> _d;

}i
D.4 THE queue CLASSTEMPLATE

A queue object is a sequential container that allows insertions only at one end and deletions
only at the other end. Like the stack class template, the queue class template is adapted from
the deque class template in the standard C++ library. This means that queue member functions
are implemented with deque member functions, as shown below. The queue class template is
defined in the <queue> header.

template <class T> class stack

{ public:
unsigned size() const { return d.size(); }
bool empty () const { return d.empty(); }
T& front () { return d.front(); }
T& back () { return d.back(); }
void push(const T& x) { _d.push back(x); }
void pop () { d.pop front(); }
protected:

deque<T> _d;

}i

360 STANDARD C++ CONTAINER CLASSES [APP.D

D.5 THE priority queue CLASSTEMPLATE

A priority gqueue Object isa container that acts like a queue except that the order in which
the elements are popped is determined by their priorities. This means that the operator< ()
function must be defined for the element type T. Thepriority gqueue classtemplate isdefined
inthe <queue> header. See Example D.6 on page 360.

vector () ;
// constructs an empty vector;

vector (const vector& v);
// constructs a copy of the vector v;
// postcondition: *this == v;

EXAMPLE D.6 Usingapriority queue Object

#include <iostream>
#include <queues
using namespace std;
int main()
{ priority queue<string> pq;
pg.push ("Japan") ;
pg.push ("Japan")
pg.push ("Korea")
pg.push ("China")
pg.push("India")
pg.push ("Nepal™")
pg.push ("Qatar") ;
pg.push ("Yemen") ;
)
)
)
)
)

7
7

7

7

7

pg.push ("Egypt") ;
pg.push ("Zaire"
pg.push ("Libya"
pg.push("Italy"
pg.push ("Spain"
pg.push("Chile") ;

while (!pg.empty())

{ cout << pg.top() << "\n";

pg.pop () ;

}

7

7

7

7

}

TeamLRN

APP. D] STANDARD C++ CONTAINER CLASSES 361

India
Egypt
China
Chile
The priority queue always maintains its highest priority element at the top (i.e, the front) of the
gueue. Using the standard lexicographic ordering (i.e., the dictionary ordering) of strings, that results in
the names being accessed in reverse alphabetical order.
Notethat priority gqueue objects store duplicate elements.

D.6 THE 1ist CLASSTEMPLATE

A 1list object is a sequential container that allows efficient insertion and deletion at any
position in the sequence. It has the following member functions in addition to all the member
functions that the deque class has (except the operator[] () and at () functions). The1list
classtemplate isdefined inthe <1ist> header.

void splice(iterator p, list& 1, iterator pl);

// moves the element from 1 at position pl to this list at position p;
// precondition: p is a valid iterator on this list;

// precondition: pl is a valid iterator on list 1;

void splice(iterator p, list& 1, iterator pl, iterator p2);

// moves the elements from 1 at positions [pl:p2-1] to this list
// beginning at position p;

// precondition: p is a valid iterator on this list;

// precondition: pl and p2 are valid iterators on list 1;

// precondition pl < p2;

void remove (const T& Xx);

// removes from this list all elements that are equal to x;

// invariant: the order of all elements that are not removed;

// invariant: all iterators pointing to elements that are not removed;

void unique();

// removes from this list all duplicate elements;

// invariant: the order of all elements that are not removed;

// invariant: all iterators pointing to elements that are not removed;

void merge(list& 1) ;

// merges all elements of list 1 into this list;

// precondition: both list 1 and this list are sorted;
// postcondition: size() in increased by 1l.size();

// postcondition: l.size() == 0;

// complexity: O(n) ;

void reverse();

// reverses the order of the elements of this list;
// invariant: size();

// complexity: O(n) ;

362

voi
!/
!/
!/
!/

STANDARD C++ CONTAINER CLASSES

d sort();

sorts the elements of this list;
postcondition: this list is sorted;
invariant: size() ;

complexity: O(n*log(n)) ;

EXAMPLE D.7 Sorting and Reversinga 1list Object

#include <iostream>
#include <list>
using namespace std;

typedef list<string> List;
typedef List::iterator It;

void print (List&) ;

int main()
{ List 1;
1.push_back ("Kenya")
.push_back ("Sudan")
.push_back ("Egypt") ;
.push back("Zaire") ;
)
)
)

7

7

.push _back ("Libya") ;
.push_back ("Congo"
1.push_back ("Ghana"
print (1) ;

l.sort();

print (1) ;
l.reverse() ;
print (1) ;

e

7

7

}

void print (List& 1)
{ cout << "\n";
for (It it=1.begin();
cout << *it << "\n";

it !'= l.end(); it++)

[APP. D

TeamLRN

APP. D] STANDARD C++ CONTAINER CLASSES 363

Zaire
Sudan
Libya
Kenya
Ghana

Egypt
Congo

D.7 THE map CLASSTEMPLATE

A map oObject (also called a dictionary, a table, or an associative array) acts like an array
whose index can be any type that implements the < operator. A map is like a mathematical
function that gives a unique y-value for each x-value. The x-value, called the key value, is the
index. The y-value is the stored object that the key identifies.

An English language dictionary is an example of a map object. The key value is the word and
its associated object is the dictionary’s definition of the word.

Another standard example would be a database table of student records. The key value is the
student identification number (e.g., Social Security number), and its associated object is the data
record for that student.

The map class template is defined in the <map> header. It has the same member functions as
the vector classtemplate.

EXAMPLE D.8 Using amap Object

#include <iostream>

#include <map.h>

using namespace std;

struct Country

{ friend ostreams& operator<< (ostream&, const Countryé&);
Country () ;
Country(string, string, string, int, int);
string abbr, capital, language;
int population, area;

}i

typedef map<string, Country> Map;

typedef Map::iterator It;

typedef pair<const string,Country> Pair;

void load (Mapé&) ;

void print (Mapé&) ;

void find (Mapé&, const string&) ;

int main()

{ Map map;
load (map) ;
print (map) ;
find (map, "Cuba") ;
find (map, "Iran") ;
find (map, "Oman") ;

364 STANDARD C++ CONTAINER CLASSES [APP.D

ostream& operator<< (ostream& ostr, const Country& c)
{ return ostr << c.abbr << ", " << c.capital << ", " << c.language
<< ", pop=" << c.population << ", area=" << c.area;

Country: :Country ()
abbr(""), capital(""), language(""), population(0), area(0) { }

Country: :Country(string ab, string c, string 1, int p, int ar)
abbr (ab), capital(c), language(l), population(p), area(ar) { }

void load (Mapé& m)

{ m["Iran"] = Country("IR","Tehran","Persian",68959931,632457);
m["Iran"] Country ("IR", "Tehran", "Farsi", 68959931,632457) ;
m["Peru"] Country ("PE", "Lima", "Spanish",26111110,496223) ;
m["Irag"] = Country("IQ", "Baghdad", "Arabic",21722287,167975) ;
m.insert (Pair ("Togo", Country ("TG", "Lome", "French",4905824,21927))) ;
m.insert (Pair ("Fiji",Country ("FJ", "Suva", "English",802611,7054)));
m.insert (Pair ("Fiji", Country ("FJ","Suva","Fijian",802611,7054))) ;

}

void print (Map& m)

{ for (It it=m.begin(); it != m.end(); it++)
cout << it->first << ":\t" << it->second << "\n";
cout << "size=" << m.size() << "\n";

void find (Map& m, const string& s)
{ cout << s;
It it = m.find(s);

if (it == m.end()) cout << " was not found.\n";

else cout << ":\t" << it->second << "\n";
%iji: FJ, Suva, English, pop=802611, area=7054
Iran: IR, Tehran, Farsi, pop=68959931, area=632457
Iraqg: IQ, Baghdad, Arabic, pop=21722287, area=167975
Peru: PE, Lima, Spanish, pop=26111110, area=496223
Togo: TG, Lome, French, pop=4905824, area=21927
size=5
Cuba was not found.
Iran: IR, Tehran, Farsi, pop=68959931, area=632457

Oman was not found.

The program creates a map whose keys are four-letter names of countries and whose mapped values
are Country oObjects, where Country is a class defined to have five fields: abbr, capital,
language, population, and area. It uses a separate function to load the datainto the map.

The 1oad () function illustratestwo different waysto insert apair element into amap. The first
four lines use the subscript operator and the last three linesuse the insert () function. The subscript
operator works the same way on amap container as with other container classes: just like an array, except
that with amap the index need not be an integer. In this exampleit is a string.

The insert () functiontakesasinglepair argument, where the two component types must be the
same as for the map itself, except that the first component (the key field) must be const.

APP. D] STANDARD C++ CONTAINER CLASSES 365

The map class does not alow duplicate keys. Note that the subscript operator replaces existing
elements when a duplicate key is inserted, so that the last pair inserted is the one that remains. But the
insert () function does not replace existing elements when a duplicate key isinserted, so thefirst pair
inserted is the one that remains.

The print () functionusestheiterator it to traversethe map. On each iteration of the for loop,
it pointsto apair object whose £irst component is the key value and whose second component isthe
data object. These two componenets are accessed by the expressions it->first and it-ssecond.
The first component is a string, the four-letter name of the country. The second componernt is a
Country object which can be passed to the output operator since it is overloaded in the Country class
definition. Note that the pairs are sorted automatically by their key values.

The find () function usesthe find member function of the map class. Thecall m.find (s)
returns an iterator that points to the map element whose £ i rst component equals s. If no such element is
found, then the returned pointer pointsto m.end (), which is the dummy element that follows the last
element of the map container.

D.8 THE set CLASSTEMPLATE

A set object acts like amap object with only the keys stored.
The set classtemplate is defined in the <set> header.

EXAMPLE D.9 Using set Functions

The program defines overloaded operators +, *, and - to perform set-theoretic union, intersection,
and relative complement operations. These are implemented using the insert () and erase()
member functionsand thethe set intersection() and set difference () genericagorithms
(nonmember functions). This example illustrates the distinctions between the set generic algorithms
(set_union(), set difference(), and set difference()) and the corresponding
set-theoreti c operations (union, intersection, and complement).

#include <iostream>

#include <set>

#include <string>

using namespace std;

typedef set<string> Set;

typedef set<string>::iterator It;
void print (Set) ;

Set operator+ (Set&,Set&); // union
Set operator* (Set&,Set&); // intersection
Set operator- (Set&,Set&); // relative complement

int main()
{ string stri[] = { "av, ©"B", wC", "D", "E", "F", "G" };
string str2[] = { "a", "E", "I, "O", "U" };
Set sl(strl,strl+7);
Set s2(str2,str2+5);
print (sl) ;
print (s2) ;
print (sl+s2) ;
print (sl*s2) ;
print (sl-s2);

366 STANDARD C++ CONTAINER CLASSES [APP.D

Set operator+ (Set& sl, Set& s2)
{ set s(s1);
s.insert (s2.begin(),s2.end()) ;
return s;

}
Set operator* (Set& sl, Set& s2)
{ set s(s1);
It it = set_intersection(sl.begin(),sl.end(),

s2.begin(),s2.end(),s.begin()) ;
s.erase(it,s.end());
return s;
}
Set operator- (Set& sl, Set& s2)
{ set s(s1);
It it = set_difference(sl.begin(),sl.end(),
s2.begin(),s2.end(),s.begin()) ;
s.erase(it,s.end());
return s;

}
void print (Set s)
{ cout << "size=" << s.size() << ": {";
for (It it=s.begin(); it != s.end(); it++)
if (it == s.begin()) cout << *it;
else cout << "," << *it;

cout << "}\n";

size=7: {A,B,C,D,E,F,G}
size=5: {A,E,I,0,U}

size=10: {A,B,C,D,E,F,G,I,0,U}
size=2: {A,E}

size=5: {B,C,D,F,G}

The set objects s1 and s2 are constructed from the string arrays str1 and str2 using the expres-
sionsstrl, stri+7,str2, and str2+7 asiterators.

The elements of a set object are always stored in sorted order. That alows the union function
(operator+ ()) to beimplemented withthe set::insert () function.

The main reason why the set generic algorithms do not produce directly the expected set-theoretic
operations is that they leave the size of the target set unchanged. Thus we usethe erase () member
function together withthe set intersection() and set_difference() generic agorithmsto
implement the operator* () and operator- () functions.

Appendix E

Standard C++ Generic Algorithms

The generic algorithms in standard C++ are the 70 nonmember function templates that apply
to container objects. There are 66 listed here aphabetically. We use the symbol [p,gl to
represents the segment of elements from *p to *(g-1)(i.e, including the element *p but
excluding the element *q). The parameters are

iterator p, g; // used to describe the segment I[p,ql

iterator r; // p <=1 <= q

unsigned n; // used as a counter

T& X, V; // values of the sequence’s element type

class p; // a predicate class, with boolean operator () ()

The parameter list (p,q,pp) isused frequently; it means that the elements from the segment
[p,q[areto be copied into the segment [pp,pp+n[Where n isthe number of elementsin
[p,ql, namely q-p.

For simplicity, we use arrays instead of general container objects. In that context, pointers
serve as iterators. Recall that if a isan array and k is an int then a+k represents the subarray

that starts with a[k], and *(a+k) = alk]. Also, if 1 isthe length of the array, then a+1
points to the (imaginary) element that follows the last element of the array.
Thefollowing print () functionisusedtodisplay then element a[o]l,...,a[n-1] ofan
array a:
void print (int* a, int n)
{ cout << "n=" << n << ": {" << alo0];

for (int i=1; i<n; i++)
cout << "," << alil;
cout << "}\n";
}
The 66 agorithms listed here naturally fall into 8 groups, summarized in the following
tables:

Searching and Sorting Algorithmsin <algorithm>

binary search() Determines whether a given value is an e ement in the segment.
inplace merge () Merges two adjacent sorted segments into one sorted segment.
lower bound () Finds thefirst element in the segment that has a given value.
merge () Merges two sorted segmentsinto athird sorted segment.
nth element () Findsthe first occurrence of agiven vaue.
partial sort() Sorts the first n elements of the segment.
partial sort copy () Copiesthe smallest n elementsof the ssgment into another sorted segment.
partition() Partitions the segment so that P(x) istrue for the elementsin thefirst part.
sort () Sorts the segment.
upper_bound () Finds the last element in the segment that has a given value.
367

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

368

STANDARD C++ GENERIC ALGORITHMS [APP. E

Nonmodifying Algorithmson Sequencesin <algorithm>

adjacent_ find()
count ()
count_1if ()
equal ()

find ()

find end()

find first of ()
find if ()
for_each()
mismatch ()

search ()

search _n()

Finds the first adjacent pair in the segment.

Counts the number of elements that have a given value.

Counts the number of elements that satisfy a given predicate.

Determines whether two segments have the same value in the same order.
Finds the first element that has a given value.

Finds the location of the last occurrence of a given substring.

Finds the location of the first occurrence of any element of a given segment.
Finds the first element that satisfies a given predicate.

Applies agiven function to each element.

Finds the first positions where two segments do not match.

Searches for a given subsequence.

Searches for a subsequence of n consecutive elements that have a given value.

Modifying Algorithmson Sequencesin <algorithm>

copy ()
copy_backward ()
£i11 ()

£i11 n()
generate ()
generate _n()
iter swap ()
random_shuffle ()
remove ()
remove_copy ()
remove copy if ()
remove_ if ()
replace()
replace_copy ()
replace_ copy if ()
replace if()
reverse ()
reverse_copy ()
rotate ()

rotate copy ()
swap ()
transform/()
unique ()

unique_copy ()

Copies the segment to a new location.

Copies the segment to a new location.

Replaces each element in the segment to a given value.

Replaces n elementsin the segment to agiven value.

Assigns the output from successive cals to f(x) to elements of the segment.
Assigns the output from n successive cals to f(x) to e ements of the segment.
Swaps the elements at the positions of the given iterators.

Shuffles the elements in the segment.

Shifts to the left all elementsthat do not have a given value.

Copies al elements into another segment that do not have a given value.
Copies all elements into another segment for which P(x) is false.

Shiftsto the left all elementsfor which P(x) isfase.

Changes the value of each element in the segment from x toy.

Copies each element to another segment changing each x to'y.

Copies each element to another segment changing x to y where P(x) is true.
Changes those elements in the segment from x to y where P(x) istrue.
Reverses the elements in the segment.

Copies the elements to a new segment in reverse order.

Shifts the elements to the left, wrapping around the end of the segment.
Copies elements to another segment, shifting to the |eft and wrapping.
Swaps the two given elements.

Appliesf(x) to each element, storing the results in another segment.

Shifts one of each occurring value to the left.

Copies the nonduplicate el ements to another segment.

APP. E] STANDARD C++ GENERIC ALGORITHMS 369

Comparison Algorithmsin <algorithm>

lexicographical compare () Returnstrueiff first ssgment is lexicographically less than second.
max () Returns the largest el ement in the segment.

max_element () Returns the position of largest element in the segment.

min () Returns the smallest element in the segment.

min element () Returns the position of smallest element in the segment.

Algorithmson Setsin <algorithm>

includes () Returns true iff every element of the second segment isin the first.
set _difference () Copiesto athird segment the relative complement of two sets.
set_intersection() Copiesto athird segment the intersection of two sets.

set symmetric_difference () Copiesto athirdsegment thesymmetric difference of two sets.

set_union() Copiesto athird segment the union of two sets.

Algorithmson Heapsin <algorithm>

make heap () Rearranges the elements of the segment into a heap.
pop_heap () Moves first element to end and then make heap () onrest.
push_heap () Shiftslast element to left to make segment a heap.
sort_heap () Applies pop heap () ntimesto sort the segment.

Permutation Algorithmsin <algorithm>

next permutation () Permutesthe segment; n! calls produce n! distinct permutations.

prev_permutation () Permutesthe segment; n! calls produce n! distinct permutations.

Numeric Algorithmsin <numeric>

accumulate () Adds the elements of the segment; returns x + sum.
adjacent _difference () Loadssecond segment with the differencesof adjacent elements.
inner product () Returns the inner product of two segments.

partial sum() L oads second segment with the partial sums from first.

Algorithms that search for an element always return an iterator that locates it or one that
locates the dummy end element that follows the last element of the sequence.
Algorithms that use predicates are illustrated with the following predicate class:
class 0Odd
{ public:
bool operator () (int n) { return n%2 ? true : false; }

}i
This classis passed as a function, like this: odd (). (See Example E.8 on page 372.)

Note that the modifying algorithms do not change the length of the segment [p, q[. Instead,
they return an iterator that points to the element that follows the modified part.

370 STANDARD C++ GENERIC ALGORITHMS

accumulate (p,q,x) ;

// returns x plus the sum of the elements in the segment [p,ql;

// invariant: [p,qgl is left unchanged;
EXAMPLE E.1 Testingthe accumulate () Algorithm

int main ()

{ int all = {0,1,1,2,3,5,8,13,21,34};
int sum = accumulate(a,a+10,1000) ;
cout << "sum=" << sum << '\n’';

sum=1088

adjacent difference(p,q,pp);
// loads the segment alpp,pp+p-gl with b[i]l = ali]l-ali-1]1;
// invariant: [p,qgl is left unchanged;

EXAMPLE E.2 Testingthe adjacent difference() Algorithm

int main()

{ int all = {0,1,1,2,3,5,8,13,21,34};
print(a,10);
int b[10];
adjacent difference(a,a+10,b);
print (b, 10);

n=10: {0,1,1,2,3,5,8,13,21,34}
n=10: {0,1,0,1,1,2,3,5,8,13}

The adjacent difference() agorithm istheinverse of the partial sum()

(Example E.36 on page 382).

adjacent find(p,q):;

// returns the location of the first element in the segment alp,ql

// that has the same value as its successor;
// invariant: [p,qgl is left unchanged;

EXAMPLE E.3 Testingthe adjacent find() Algorithm

int main()

{ int all = {0,1,0,1,1,1,0,1,1,0};
print(a,10);
int* r = adjacent find(a,a+10);

cout << "*r=" << *r << '\n'; // this is the element ali]

cout << "r-a=" << r-a << '\n'; // this is the index i

n=10: {0,1,0,1,1,1,0,1,1,0}
*r=1
r-a=3

[APP.E

algorithm

APP. E] STANDARD C++ GENERIC ALGORITHMS

binary search(p,q,x);

// returns true iff x is in the segment [p,ql;

// precondition: the segment [p,q) must be sorted;
// invariant: [p,qgl is left unchanged;

EXAMPLE E.4 Testingthe binary search() Algorithm

int main ()

{ int all = {0,1,1,2,3,5,8,13,21,34};
print(a,10);
bool found = binary search(a,a+10,21);

cout << "found=" << found << '\n';
found = binary search(a+2,a+7,21);
cout << "found=" << found << '\n';

n=10: {0,1,1,2,3,5,8,13,21,34}
found=1
found=0

copy (p,4,pPpP) ;
// copies the segment [p,ql to [pp,pp+n[where n=g-p;
// invariant: [p,qgl is left unchanged;

EXAMPLE E.5 Testingthe copy () Algorithm

int main ()

{ int all = {100,111,122,133,144,155,166,177,188,199};

print(a,10);

copy (a+7,a+10,a+2);
print(a,10);

int bl[3];

copy (a+7,a+10,b) ;
print (b, 3);

n=10: {100,111,122,133,144,155,166,177,188,199}

n=10: {100,111,177,188,199,155,166,177,188,199}
n=3: {177,188,199}

copy_backward(p,q,pp) ;
// copies the segment [p,gl[to [gg-n,qggl where n=g-p;
// invariant: [p,qgl is left unchanged;

EXAMPLE E.6 Testingthe copy backward () Algorithm

int main ()

{ int all = {100,111,122,133,144,155,166,177,188,199};

print(a,10) ;

copy backward(a+7,a+10,a+5) ;
print (a,10);

int bl[3];

copy backward(a+7,a+10,b+3) ;

371

372 STANDARD C++ GENERIC ALGORITHMS [APP.E

print (b, 3);

|

count (p,q,x) ;
// returns the number of occurrences of x in the segment
// invariant: [p,ql is left unchanged;

[P:q[i

EXAMPLE E.7 Testingthe count () Algorithm

int main ()

{ int all = {0,1,0,1,1,1,0,1,1,0};
print (a,10) ;
int n = count(a,a+10,1) ;
cout << "n=" << n << '\n';

‘

count if(p,q,P());
// returns the number of occurrences where P (x)
// invariant: [p,ql is left unchanged;

in the segment I[p,ql;

EXAMPLE E.8 Testingthe count if () Algorithm

int main()

{ int all = {0,1,0,1,1,1,0,1,1,0};
print (a,10) ;
int n = count_if(a,a+10,0dd());
cout << "n=" << n << '\n';

‘

equal (p,q,pp) ;

// returns true iff the segment [p,q) matches [pp,pp+nl[, where n = g-p;
// invariant: [p,ql and [pp,qg+n[are left unchanged;
EXAMPLE E.9 Testingthe equal () Algorithm
int main()
{ int all = {0,1,0,1,1,1,0,1,1,0};
int b[] = {0,1,0,0,1,1,0,1,0,0};
print (a,10);
print (b, 10) ;
cout << "equal(a,a+1l0,b)=" << equal(a,a+10,b) << '"\n';
cout << "equal(a+l,a+4,a+5)=" << equal(a+l,a+4,a+5) << '\n';

TeamLRN

APP. E] STANDARD C++ GENERIC ALGORITHMS 373

fu——

£fill(p,q,x);
// replaces each element in the segment [p,gql with x;

EXAMPLE E.10 Testingthe £i11() Algorithm

int main ()

{ int all = {0,1,1,2,3,5,8,13,21,34};
print (a,10) ;
£fill (a+6,a+9,0) ;
print (a,10);

‘

£fill n(p,n,x);
// replaces each element in the segment [p,p+n[with x;

EXAMPLE E.11 Testingthe £i11 n() Algorithm

int main ()

{ int all = {0,1,1,2,3,5,8,13,21,34};
print (a,10);
£fill n(a+6,3,0);
print (a,10);

‘

find (PI aq, x);
// returns the first location of x in the segment [p,ql;
// invariant: [p,ql is left unchanged;

EXAMPLE E.12 Testingthe £ind() Algorithm

int main ()

{ int all = {0,1,1,2,3,5,8,13,21,34};
print (a,10);
int* r = find(a,a+10,13);

cout << "*r=" << *r << '\n'; // this is the element alil]
cout << "r-a=" << r-a << '\n'; // this is the index i

r = find(a,a+6,13);

cout << "*r=" << *r << '\n'; // this is the element alil]

cout << "r-a=" << r-a << '\n'; // this is the index i

374

STANDARD C++ GENERIC ALGORITHMS

[APP. E

find end(p,q,pp,qq);

// returns the location of the last occurrence of the the segment
// within the segment

// invariant:

[P:q[;

[p,al and [pp,ggl are left unchanged;

EXAMPLE E.13 Testingthe find end() Algorithm

int main ()

{ int all = {0,1,0,1,1,1,0,1,1,0};
int b[] = {1,0,1,1,1};
int* r = find end(a,a+10,b,b+5); //
cout << "*r=" << *r << '\n’'; //
cout << "r-a=" << r-a << '\n'; //
r = find end(a,a+10,b,b+4); //
cout << "*r=" << *r << '\n';
cout << "r-a=" << r-a << '\n';

search for 10111 in a
this is the element al[i]
this is the index i

search for 1011 in a

[pp,aql

find first of(p,q,pp.,qq):;

// returns the position in [p,gl of the first element found that is

// [pp,aql;
// invariant:

[p,al and [pp,ggl are left unchanged;

EXAMPLE E.14 Testingthe find first of () Algorithm

int main ()

{ int all = {0,1,1,2,3,5,8,13,21,34};

int b[] = {6,7,8,9,10,11,12,13,14,15};
find first of(a,a+10,b,b+10);
// this is the element
// this is the index i

int* r =
cout << "*pr="
cout << "r-a="

<< *r <<
<< r-a <<

l\nl;
l\nl;

alil

‘

£ind if(p,q,P());

// returns the first location of where P (x)

// invariant:

[p,gl is left unchanged;

TeamLRN

in the segment

[p:q[i

APP. E] STANDARD C++ GENERIC ALGORITHMS 375

EXAMPLE E.15 Testingthe f£ind if () Algorithm

int main ()

{ int all = {2,4,8,16,32,64,128,256,333,512};
int* r = find if(a,a+10,0dd()) ;
cout << "*r=" << *r << '\n'; // this is the element ali]
cout << "r-a=" << r-a << '\n'; // this is the index i
r = find if(a,a+5,0dd()) ;
cout << "*r=" << *r << '\n'; // this is the element ali]
cout << "r-a=" << r-a << '\n'; // this is the index i

}

*r=333

r-a=8

*r=64

E=a=5

for each(p,q,f);
// applies the function f(x) to each x in the segment I[p,ql;

EXAMPLE E.16 Testingthe for each() Algorithm

void print (int);

int main ()
{ int all = {0,1,1,2,3,5,8,13,21,34};
for each(a,a+10,print) ;

}

void print (int x)
{ cout << x << " ";

0112358 13 21 34

generate(p,q, f) ;
// assigns to [p,gl the outputs of successive calls to f(x);

EXAMPLE E.17 Testingthe generate() Algorithm

long fibonacci();

int main ()

{ int al10]l={0};
generate(a,a+10, fibonacci) ;
print(a,10);

}

long fibonacci ()

{ static int f1=0, £f2=1;
int f0=£f1;
f1 = £2;

376 STANDARD C++ GENERIC ALGORITHMS [APP. E

f2 += f£0;
return f£0;

}

n=10: {0,1,1,2,3,5,8,13,21,34}

generate n(p,n,f);
// assigns the outputs of successive calls f(x) to each x in [p,p+nl[;

EXAMPLE E.18 Testingthe generate n () Algorithm

long fibonacci();

int main()

{ int al10]={0};
generate n(a,10, fibonacci) ;
print(a,10);

}

long fibonacci ()
{ static int f1=0, £f2=1;
int f0=£f1;
f1 = £2;
f2 += f0;
return £0;

}

n=10: {0,1,1,2,3,5,8,13,21,34}

includes (p,q,pp,qaq) ;

// returns true iff every element of [pp,gql is found in [p,ql;
// precondition: both segments must be sorted;

// invariant: [p,qgl and [pp,qql[are left unchanged;

EXAMPLE E.19 Testingthe includes () Algorithm

int main ()

{ int all = {0,1,1,2,3,5,8,13,21,34};
int b[] = {0,1,2,3,4};
bool found = includes(a,a+10,b,b+5);
cout << "found=" << found << '\n';
found = includes(a,a+10,b,b+4) ;
cout << "found=" << found << '\n';
found=0
found=1

inner product(p,q,pp,x)

// returns the sum of x and the inner product of [p,ql with [pp,pp+nl,
// where n = g-p;

// invariant: [p,qgl and [pp,qql are left unchanged;

APP. E] STANDARD C++ GENERIC ALGORITHMS 377

EXAMPLE E.20 Testingthe inner product () Algorithm

int main ()

{ int all = {1,3,5,7,9};
int b[] = {4,3,2,1,0};
int dot = inner product(a,a+4,b,1000);
cout << "dot=" << dot << '\n';
sum=1030

inplace merge(p,r,q);

// merges the segments [p,r[and [r,ql;

// precondition: the two segments must be contiguous and sorted;
// postcondition: the segment [p,r[is sorted;

EXAMPLE E.21 Testingthe inplace merge () Algorithm

int main()

{ int all = {22,55,66,88,11,33,44,77,99};
print(a,9);
inplace merge(a,a+4,a+9) ;
print(a,9);

{22,55,66,88,11,33,44,77,99}
: {11,22,33,44,55,66,77,88,99}

iter swap(p,q);
// swaps the elements *p and *q;

EXAMPLE E.22 Testingthe iter swap () Algorithm

int main ()

{ int all = {11,22,33,44,55,66,77,88,99};
int b[] = {10,20,30,40,50,60,70,80,90};
print(a,9);
print (b, 9);
iter swap(a+4,b+7);
print(a,9);

print (b, 9);
}
n=9: {11,22,33,44,55,66,77,88,99}
n=9: {10,20,30,40,50,60,70,80,90}
n=9: {11,22,33,44,80,66,77,88,99}
n=9: {10,20,30,40,50,60,70,55,90}

lexicographical compare(p,q,pp,qq);

// compares the two segments [pp,qgql[and [p,gl lexicographically;
// returns true iff the first precedes the second;

// invariant: [p,ql and [pp,qql are left unchanged;

378 STANDARD C++ GENERIC ALGORITHMS [APP.E

EXAMPLE E.23 Testingthe lexicographical compare() Algorithm

void test (char*,int,char*,int) ;

int main ()

{ char* s1="COMPUTER";
char* s2="COMPUTABLE";
char* s3="COMPUTE";
test(sl,3,82,3);
test(sl,8,s2,10);
test(sl1,8,83,7);
test (s2,10,83,7);
test(sl,7,83,7);

}

char* sub (char*,int) ;

(
(
(
(

void test (char* sl, int nl, char* s2, int n2)
{ bool lt=lexicographical compare(sl,sl+nl,s2,s82+n2);
bool gt=lexicographical compare(s2,s2+n2,sl,sl+nl);

if (1t) cout << sub(sl,nl) << " < " << sub(s2,n2) << "\n";
else if (gt) cout << sub(sl,nl) << " > " << sub(s2,n2) << "\n";
else cout << sub(sl,nl) << " == " << sub(s2,n2) << "\n";

}

char* sub(char* s, int n)

{ char* buffer = new char(n+1) ;
strncpy (buffer,s,n);
buffer[n] = 0;
return buffer;

lower bound(p,q,x);

// returns the position of the first occurrence of x in [p,ql;
// precondition: the segment must be sorted;

// invariant: [p,ql is left unchanged;

EXAMPLE E.24 Testingthe lower bound() Algorithm

int main()

{ int all = {11,22,22,33,44,44,44,55,66};
int* p = lower bound(a,a+9,44) ;
cout << "*p=" << *p << '\n';
cout << "p-a=" << p-a << '\n';

_

TeamLRN

APP. E] STANDARD C++ GENERIC ALGORITHMS 379

make heap (p,q);
// rearranges the elements of [p,gl into a heap;
// postcondition: [p,gl is a heap;

EXAMPLE E.25 Testingthe make heap () Algorithm

int main()

{ int all = {44,88,33,77,11,99,66,22,55};
print(a,9);
make heap (a,a+9) ;
print(a,9);

} 99
n=9: {44,88,33,77,11,99,66,22,55} I | |
n=9: {99,88,66,77,11,33,44,22,55} 88 66
77 11 33 44
max(x,y); r—Lj
// returns the maximum of x and y; 22 55

EXAMPLE E.26 Testingthe max () Algorithm

int main()
{ cout << "max(48,84)=" << max(48,84) << '\n';

}

max (48,84) =84

max_element (p,q);
// returns the position of the maximum element in the segment [pp,qql;
// invariant: [p,qgl is left unchanged;

EXAMPLE E.27 Testingthe max element () Algorithm

int main ()

{ int all = {77,22,99,55,11,88,44,33,66};
const int* p = max element (a,a+9);
cout << "*p=" << *p << '\n';
cout << "p-a=" << p-a << '\n';

}

*pP=99

p-a=2

merge (p, q,PP,dd,PPP) ;

// merges the segments [p,gl and [pp,gql into [ppp,ppp+nl,
// where n = q - p + 44 - PpP;

// precondition: [p,ql and [pp,ggl must be sorted;

// postcondition: the segment [ppp,ppp+n[is sorted;

// invariant: [p,qgl and [pp,qql[are left unchanged;

380 STANDARD C++ GENERIC ALGORITHMS [APP. E

EXAMPLE E.28 Testingthe merge () Algorithm

int main()
= {22,55,66,88};
= {11,33,44,77,99};

merge
print

,a+4,b,b+5,¢c) ;
/9);

n=9: {11,22,33,44,55,66,77,88,99}

min (x,y);
// returns the minimum of x and y;

EXAMPLE E.29 Testingthe min () Algorithm

int main()
{ cout << "min(48,84)=" << min(48,84) << '\n';

min(48,84) =48

min_element (p,q);
// returns the position of the minimum element in the segment [p,ql;
// invariant: [p,qgl is left unchanged;

EXAMPLE E.30 Testingthe min element () Algorithm

int main ()

{ int all = {77,22,99,55,11,88,44,33,66};
const int* p = min element (a,a+9) ;
cout << "*p=" << *p << '\n';
cout << "p-a=" << p-a << '\n';

lp=11

p-a=4

mismatch(p,q,pp);

// returns a pair of iterators giving the positions in [p,gl and

// in [pp,gql where the first mismatch of elements occurs;

// if the two segments match entirely, then their ends are returned;
// invariant: [p,qgl and [pp,qql[are left unchanged;

EXAMPLE E.31 Testingthe mismatch() Algorithm

int main()

{ char* sl="Aphrodite, Apollo, Ares, Artemis, Athena";
char* s2="Aphrodite, Apallo, Ares, Artimis, Athens";
int n=strlen(sl) ;
cout << "n=" << n << '\n';

APP. E] STANDARD C++ GENERIC ALGORITHMS 381

pair<char*,char*> x = mismatch(sl,sl+n,s2);

char* pl = x.first;

char* p2 = x.second;

cout << "*pl=" << *pl << ", *p2=" << *p2 << '\n';
cout << "pl-sl=" << pl-sl << '\n';

next permutation(p,q);

// permutes the elements of [p,ql; n! calls will cycle through all n!
// permutations of the n elements, where n = g-p;

EXAMPLE E.32 Testingthe next permutation() Algorithm

int main ()
{ char* s="ABCD";
for (int 1=0; 1i<24; i++)
{ next permutation(s,s+4);
cout << (i%8?'\t':'\n') << s;

}
}

The next permutation() algorithm istheinverseof the prev permutation () agorithm
(Example E.39 on page 383).

nth element(p,r,q);

// rearranges the elements of [p,gl so that *r partitions it into the two
// subsegments [p,rl[and [rl+2,q], where rl is the new location of *r,
// all the elements of [p,rl] are <= to *r, and all the elements of

// [rl+2,q] are >= to *r; *r is called the pivot element;

EXAMPLE E.33 Testingthe nth element () Algorithm

int main ()

{ int all = {77,22,99,55,44,88,11,33,66};
print(a,9);
nth element(a,a+3,a+9);
print(a,9);

‘

partial sort(p,r,q);

// sorts the first r-p elements of [p,ql, placing them in [p,r[and
// shifting the remaining g-r elements down to [r,ql[;

382 STANDARD C++ GENERIC ALGORITHMS [APP. E

EXAMPLE E.34 Testingthe partial sort() Algorithm

int main()

{ int all = {77,22,99,55,44,88,11,33,66};
print(a,9);
partial sort(a,a+3,a+9);
print(a,9);

{77,22,99,55,44,88,11,33,66}
: {11,22,33,99,77,88,55,44,66}

partial sort copy(p,dq,pp,qq) ;

// copies the gg-pp smallest elements of [p,gl into [pp,qgl in sorted
// order; then copies the remaining n elements into [qgqg,qg+nl,

// where n = g-p+pp-99;

// invariant: [p,qgl is left unchanged;

EXAMPLE E.35 Testingthe partial sort copy() Algorithm

int main()
{ int all = {77,22,99,55,44,88,11,33,66};
print(a,9);
int bl[3];
partial sort copy(a,a+9,b,b+3);
print(a,9);
print (b, 3);
=9: {77,22,99,55,44,88,11,33,66}
9: {77,22,99,55,44,88,11,33,66}
3: {11,22,33}

B ? B~

partial sum(p,q,pp);
// invariant: alp,ql is left unchanged;
// postcondition b[i] == al[0]+...+a[i] for each bli] in [pp,pp+g-pl;

EXAMPLE E.36 Testingthe partial sum() Algorithm

int main()
{ int all = {0,1,1,2,3,5,8,13,21,34};
int b[10];
partial sum(a,a+10,b);
print(a,10);
print (b, 10);

n=10: {0,1,1,2,3,5,8,13,21,34}

n=10: {0,1,2,4,7,12,20,33,54,88}

The partial sum() algorithm istheinverse of the adjacent difference() agorithm
(Example E.2 on page 370).

APP. E] STANDARD C++ GENERIC ALGORITHMS 383

partition(p,q,P());
// partitions [p,ql into [p,r[and [r,gl so that
// x is in [p,r[iff P(x) 1is true;

EXAMPLE E.37 Testingthe partition() Algorithm

int main ()

{ int all = {0,1,1,2,3,5,8,13,21,34};
print (a,10);
partition(a,a+10,0dd()) ;
print(a,10);

n=10: {0,1,1,2,3,5,8,13,21,34}
n=10: {21,1,1,13,3,5,8,2,0,34}

pop_heap (p,q) ;

// moves *p into temp, then shifts elements to the left so that the
// remaining elements form a heap in [p,g-1[into a heap, then copies
// temp into *(g-1);

// precondition: [p,gl must be a heap;

// postcondition: [p,g-1[is a heap;

EXAMPLE E.38 Tegtingthe pop heap () Algorithm

int main ()
{ int all = {44,88,33,77,11,99,66,22,55};
print(a,9);
make heap(a,a+9);
print(a,9); 88
pop_heap (a,a+9) ; l
print (a,9); 77 66

print (a, 8) ; — |___J___|

9: {44,88,33,77,11,99,66,22,55}

9: {99,88,66,77,11,33,44,22,55} F—LT
9: {88,77,66,55,11,33,44,22,99} 22 99
8
E

: {88,77,66,55,11,33,44,22}
xample E.25 on page 379 and Example E.38 on page 383.

g::i::ititiv
[T

prev_permutation(p,q);
// permutes the elements of [p,ql; n! calls will cycle backward through
// all n! permutations of the n elements, where n = g-p;

EXAMPLE E.39 Testingthe prev permutation() Algorithm

int main ()
{ char* s="ABCD";
for (int i=0; i<24; i++)
{ prev permutation (s, s+4) ;
cout << (1%8?'\t':'\n') << s;

384 STANDARD C++ GENERIC ALGORITHMS [APP.E

——

The prev _permutation () algorithmistheinverse of the next permutation () agorithm
(Example E.32 on page 381).

push heap(p,q);

// adds the element at *(g-1) to those in [p,g-1[so that [p,gl is a heap;
// precondition: [p,g-1[must be a heap;

// postcondition: [p,gl is a heap;

EXAMPLE E.40 Testingthe push heap () Algorithm

int main ()

{ int all = {66,44,88,33,55,11,99,22,77};
print (a, 8) ;
make heap(a,a+8) ;
print (a, 8) ;

print(a,9); 99
push heap(a,a+9); | ! |
print(a,9); 77 88
} [| | [| |
55 44 11 66
22 33
The push heap() agorithm reverses the effect of

pop_heap () . (See Example E.38.)

random shuffle(p,q);
// performs a random (but deterministic) shuffle on [pp,qaql

EXAMPLE E .41 Testingthe random shuffle() Algorithm

int main ()
{ char* s="ABCDEFGHIJ";
cout << s << '\n';
for (int 1=0; i<4; 1i++)
{ random shuffle(s,s+10) ;
cout << s << '\n';

}

}

TeamLRN

APP. E] STANDARD C++ GENERIC ALGORITHMS 385

remove (p,q,X) ;

// removes all occurrences of x from [p,gql, shifting (copying) the
// remaining elements to the left;

// invariant: the length of the segment remains unchanged;

EXAMPLE E.42 Testingthe remove () Algorithm

int main ()
{ char* s="All is flux,
int 1 = strlen(s);

nothing is stationary."; // Heraclitus

int n =
cout <<
cout <<

count (s, s+1,"'
nl=n
="

<< 1 <<
<< n <<

")
l\nl;
l\nl;

remove(s,s+1,' ');
cout << s << '\n';
s[l-n] = 0; // truncate s
cout << s << '\n';

fu——

Since 5 blanks were removed, the last 5 |etters remain after their copies were shifted left.

remove copy(p,dq,pp,X);

// copies all elements of
//
//
//

[p,agl that do not match x to [pp,pp+nl,
where n is the number of nonmatching elements;

returns pp+n;

invariant: [p,gl remains unchanged;

EXAMPLE E .43 Testingthe remove copy () Algorithm

int main ()
{ char* s="All is flux, nothing is stationary.";
char buffer[80];

// Heraclitus

int 1 = strlen(s);

int n = count(s,s+1,' ');

cout << "l=" << 1 << '\n';

cout << "n=" << n << '\n';

char* ss = remove copy(s,s+l,buffer,' ');
*ss = 0; // truncate buffer

cout << s << '\n';
cout << buffer <<
cout << gs-buffer <<

l\nl;
l\nl;

386 STANDARD C++ GENERIC ALGORITHMS

remove copy if(p,q,pp,P());

// copies all elements x of [p,gl for which !P(x) to [pp,pp+nl,
// where n is the number of nonmatching elements;

// returns pp+n;

// invariant: [p,qg[remains unchanged;

EXAMPLE E.44 Testingthe remove copy if () Algorithm

class Blank
{ public:

bool operator () (char c) { return c == ' '; }
}i

int main ()

{ char* s="All is flux, nothing is stationary."; // Heraclitus
char buffer[80];
int 1 = strlen(s);
int n = count(s,s+1,"' ');
cout << "l=" << 1 << '\n';
cout << "n=" << n << '\n';
char* ss = remove copy if(s,s+l,buffer,Blank());
*ss = 0; // truncate buffer

cout << s << '\n';
cout << buffer << '\n';
cout << ss-buffer << '\n';

}

1=35
n=>5
All is flux, nothing is stationary.
Allisflux,nothingisstationary.
30
Thisis the same as Example E.43 except that a predicate is used.

remove if(p,q,P());
// removes all x from [p,ql for which !P(x), shifting (copying) the
// remaining elements to the left;

EXAMPLE E .45 Testingthe remove if () Algorithm

class Blank
{ public:

bool operator () (char c) { return c == ' '; }
}i

int main ()

{ char* s="All is flux, nothing is stationary."; // Heraclitus
int 1 = strlen(s);
int n = count(s,s+1,"' ');
cout << "l=" << 1 << '\n';
cout << "n=" << n << '\n';

remove if (s,s+1,Blank());
cout << s << '\n';
s[l-n] = 0;

[APP.E

APP. E] STANDARD C++ GENERIC ALGORITHMS 387

cout << s << '\n';

}

Thisis the same as Example E.42 except that a predicate is used.

replace(p,q,X,Y):
// replaces all occurrences of x with y in [p,ql;
// invariant: the length of the segment remains unchanged;

EXAMPLE E.46 Testingthe replace () Algorithm

int main ()
{ char* s="All is flux, nothing is stationary."; // Heraclitus
int 1 = strlen(s);
cout << s << '\n';
replace(s,s+1,"' ','!"');
cout << s << '\n';

S i

replace_copy (p,d,PP,X,Y) ;

// copies all elements of [p,qgl to [pp,pp+nl, replacing each occurrence
// of x with y, where n = g-p;

// returns pp+n;

// invariant: [p,ql remains unchanged;

EXAMPLE E .47 Testingthe replace copy () Algorithm

int main ()
{ char* s="All is flux, nothing is stationary."; // Heraclitus
cout << s << '\n';
int 1 = strlen(s);
char buffer[80];
char* ss = replace_copy(s,s+1,buffer, 'n', 'N');
*ss = 0; // truncate buffer for printing

cout << s << '\n';
cout << buffer << '\n';

!
replace copy if(p,q,pp.P().,y);

// copies all elements of [p,gl to [pp,pp+nl[, replacing each x for
// which P(x) with y, where n = g-p;

388 STANDARD C++ GENERIC ALGORITHMS
// returns pp+n;

// invariant: [p,qg[remains unchanged;

EXAMPLE E .48 Testingthe replace copy if () Algorithm

class Blank
{ public:

bool operator () (char c) { return c == ' '; }
}i

int main ()

{ char* s="All is flux, nothing is stationary."; // Heraclitus

int 1 = strlen(s);
char buffer[80];
cout << s << '\n';

char* ss = replace copy if(s,s+l,buffer,Blank(),'!");

*ss = 0; // truncate buffer
cout << s << '\n';
cout << buffer << '\n';

All is flux, nothing is stationary.
All is flux, nothing is stationary.
All!is!flux, Inothing!is!stationary.

Thisis the same as Example E.47 except that a predicate is used.

replace if(p,q,P(),y);
// replaces each x for which P(x) with y in [p,ql;

EXAMPLE E .49 Testingthe replace if () Algorithm

class Blank
{ public:

bool operator () (char c) { return c == ' '; }
}i

int main ()

{ char* s="All is flux, nothing is stationary."; // Heraclitus

int 1 = strlen(s);
cout << s << '\n';
replace if(s,s+1,Blank(),'!"');
cout << s << '\n';

All is flux, nothing is stationary.
All!is!flux, Inothing!is!stationary.

Thisis the same as Example E.46 except that a predicate is used.

reverse (p,q) ;
// reverses the segment [p,ql;

[APP.E

APP. E]

EXAMPLE E.50 Testingthe reverse () Algorithm

int main ()

{

char* g="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
cout << s << '\n';

reverse (s, s+26) ;

cout << s << '\n';

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSROQPONMLKJITITHGFEDCBA

reverse copy(p,q,pp);
// copies the segment [p,ql into [pp,pp+n[in reverse order,

// where n = g-p;

// returns pp+n

// invariant: [p,qg[remains unchanged;

STANDARD C++ GENERIC ALGORITHMS 389

EXAMPLE E.51 Testingthe reverse copy() Algorithm

int main ()

{

char* g="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
cout << s << '\n';

char buffer[80];

char* ss = reverse copy(s,s+26,buffer);
*ss = 0; // truncate buffer for printing
cout << s << '\n';

cout << buffer << '\n';

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSRQPONMLKJIIHGFEDCBA

rotate(p,r,q);

// shifts [r,q[to the left by r positions into

// and wraps [p,r[around to the right end into

EXAMPLE E.52 Testingthe rotate () Algorithm

int main ()

{

char* g="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
cout << s << '\n';
rotate(s,s+4,s+26) ;
cout << s << '\n';

ABCDEFGHIJKLMNOPQRSTUVWXYZ
EFGHIJKLMNOPQRSTUVWXYZABCD

[p,p+a-r[,
[p+g-r,ql;

390 STANDARD C++ GENERIC ALGORITHMS [APP.E

rotate copy(p,r,qd,pp);

// copies the segment [r,gl[into [pp,pp+m[, where m = g-r,

// and copies the segment [p,r[into [pp+m,pp+n[, where n = g-p;
// returns pp+m+n;

// invariant: [p,ql remains unchanged;

EXAMPLE E.53 Testingthe rotate copy () Algorithm

int main ()

{ char* s="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
cout << s << '\n';
char buffer[80];
char* ss = rotate copy(s,s+4,s+26,buffer);
*ss = 0; // truncate buffer for printing
cout << s << '\n';
cout << buffer << '\n';

search(p,q,pp,q9q) ;

// searches for the subsequence [pp,gql in [p,ql;

// if found, the position r of its first occurrence is returned;

// otherwise, g is returned;

// postcondition: either r = q or [r,r+n[= [pp,gql, where n = gg-pp;
// invariant: [p,ql is left unchanged;

EXAMPLE E.54 Testingthe search() Algorithm

int main()

{ char* p="ABCDEFGHIJKLABCDEFGHIJKL";
char* pp="HIJK";
char* r = search(p,p+24,pp,pp+4) ;

int n = r-p; // number of characters before pp in p
cout << "n=r-p=" << n << '\n';

cout << "*r=" << *r << '\n';

cout << p << '"\n';

cout << string(n,'-') << pp << string(20-n,'-') << '\n';

pp = n LMNOp n ;
r = search(p,p+24,pp,pPp+5);

n = r-p;
cout << "n=r-p=" << n << '\n';
cout << p << '"\n';

cout << string(n,'-') << '\n';

TeamLRN

APP. E] STANDARD C++ GENERIC ALGORITHMS 391

search n(p,q,n,x);

// searches for the subsequence of n consecutive copies of x in [p,ql;
// if found, the position r of its first occurrence is returned;

// otherwise, g is returned;

// postcondition: either r = q or [r,r+n[= [pp,gql, where n = gg-pp;
// invariant: [p,ql is left unchanged;

EXAMPLE E.55 Testingthe search n() Algorithm

int main ()
{ char* p="0010111001111110";
char* r = search n(p,p+16,3,'1"');
int m = r-p; // number of characters before the substring in p
cout << "m=r-p=" << m << '\n';
cout << p << '"\n';
cout << string(m,'-') << string(3,'l') << string(l3-m,'-') << '\n’';
r = search n(p,p+16,4,'1"');
m = r-p; // number of characters before substring in p
cout << "m=r-p=" << m << '\n';
cout << p << '"\n';
cout << string(m,'-') << string(4,'l') << string(l2-m,'-') << '\n';

set_difference(p,q,pp,qd,pPpPpP) ;

// copies into [ppp,ppp+n[the elements in [p,gql that are not in [pp,gql;
// returns ppp+n, where n is the number of elements copied;

// invariant: [p,ql and [pp,qqgl are left unchanged;

EXAMPLE E.56 Testingthe set difference() Algorithm

int main()
{ char* p="ABCDEFGHIJ";
char* pp="AEIOUXYZ";
char pppll6];
char* gqgqg = set_difference(p,p+10,pp,pp+8,pppP) ;
cout << p << '"\n';
cout << pp << '\n';
*gqqg = 0; // terminates the ppp string
cout << ppp << '\n';

=

392 STANDARD C++ GENERIC ALGORITHMS [APP. E

set _intersection(p,q,pp,qqd,ppp) ;

// copies into [ppp,ppp+nl[the elements in [p,gl that are also in I[pp,qql;
// returns ppp+n, where n is the number of elements copied;

// invariant: [p,qgl and [pp,qql[are left unchanged;

EXAMPLE E.57 Testingthe set intersection() Algorithm

int main ()
{ char* p="ABCDEFGHIJ";
char* pp="AEIOUXYZ";
char pppl[l6];
char* r = set_intersection(p,p+10,pp,pp+8,pPpPpP) ;
cout << p << '\n';
cout << pp << '\n';
*r = 0; // terminates the ppp string
cout << ppp << '\n';

ABCDEFGHIJ
AEIOUXYZ
AET

set symmetric_difference(p,q,pp,qd,ppPpP) ;

// copies into [ppp,ppp+nl[the elements in [p,gl[that are not in I[pp,qql
// and those that are in [pp,qgql but not in I[p,ql;

// returns ppp+n, where n is the number of elements copied;

// invariant: [p,qgl and [pp,qql[are left unchanged;

EXAMPLE E.58 Testingthe set symmetric difference() Algorithm

int main ()
{ char* p="ABCDEFGHIJ";
char* pp="AEIOUXYZ";
char pppll6];
char* qqg = set_symmetric_difference(p,p+10,pp,pp+8,pPPP) ;
cout << p << '"\n';
cout << pp << '\n';
*gqq = 0; // terminates the ppp string
cout << ppp << '\n';

ABCDEFGHIJ
AEIOUXYZ
BCDFGHJOUXYZ

set_union(p,q,pp,qd,PpPpP) ;
// copies into [ppp,ppp+nl[all the elements in [p,ql and all the elements

// in [pp,ggl without duplicates;
// returns ppp+n, where n is the number of elements copied;
// invariant: [p,qgl and [pp,qql are left unchanged;

APP. E] STANDARD C++ GENERIC ALGORITHMS 393

EXAMPLE E.59 Testingthe set union () Algorithm

int main()
{ char* p="ABCDEFGHIJ";
char* pp="AEIOUXYZ";
char pppll6];
char* r = set_union(p,p+10,pp,pp+8,pPPP) ;
cout << p << '"\n';
cout << pp << '\n';
*r = 0; // terminates the ppp string
cout << ppp << '\n';

‘

sort(p,q);
// sorts I[p,ql;

EXAMPLE E.60 Testingthe sort () Algorithm

int main ()

{ char* p="GAJBHCHDIEFAGDHC";
cout << p << '"\n';
sort (p,p+16) ;
cout << p << '"\n';

‘

sort _heap(p,q):;
// sorts [p,ql;

EXAMPLE E.61 Testingthe sort heap () Algorithm

int main ()
{ int al]l = {66,88,44,77,33,55,11,99,22};
print(a,9);
make heap(a,a+9) ;
print(a,9);
sort _heap(a,a+9);
print(a,9);

‘

swap (x,y) ;
// swaps the two elements x and y;

394 STANDARD C++ GENERIC ALGORITHMS [APP. E

EXAMPLE E.62 Testingthe swap () Algorithm

int main()

{ char* p="ABCDEFGHIJ";
cout << p << '\n';
swap (p[2],p[8]);
cout << p << '\n';

ABCDEFGHIJ
ABIDEFGHCJ

transform(p,q,pp,£f);
// applies the function f(x) to each x in [p,gl and copies the result

// into [pp,pp+nl[, where n = g-p;
// invariant: [p,g[remains unchanged;

EXAMPLE E.63 Testingthe transform() Algorithm

char capital (char) ;

int main ()
{ char* s="All is flux, nothing is stationary."; // Heraclitus
int len = strlen(s);
char buffer[80];
char* ss = transform(s,s+len,buffer,capital);
*ss = 0; // truncate buffer
cout << s << '\n';
cout << buffer << '\n';

}

char capital (char c)
{ return (isalpha(c) ? toupper(c) : c);

All is flux, nothing is stationary.
ALL IS FLUX, NOTHING IS STATIONARY.

unique (p, q) ;
// removes all adjacent duplicates in [p,ql shifting their suffixes left;
// returns the position that follows the last shifted element;

EXAMPLE E.64 Testingthe unique () Algorithm

int main ()
{ char* s="All is flux, nothing is stationary."; // Heraclitus
int len = strlen(s);
cout << s << '\n';
sort (s,s+len) ;
cout << s << '\n';
char* ss = unique(s,s+len) ;
cout << s << '\n';
*ss = 0; // truncate buffer

APP. E] STANDARD C++ GENERIC ALGORITHMS

cout << s << '\n';

}

395

unique copy(p,q,pp);

// copies the nonduplicate elements of [p,gl into [pp,pp+nl[,
// where n is the number of unique elements in [p,ql;;

// returns pp+n;

// invariant: [p,ql is left unchanged;

EXAMPLE E.65 Testingthe unique copy () Algorithm

int main ()

{ char* s="All is flux, nothing is stationary."; // Heraclitus

int len = strlen(s) ;

cout << s << '\n';

sort (s,s+len) ;

cout << s << '\n';

char buffer[80];

char* ss = unique copy(s,s+len,buffer);
*ss = 0; // truncate buffer for printing
cout << s << '\n';

cout << buffer << '\n';

upper bound(p,q,x);

// returns the position that immediately follows the last occurrence

// of x in [pp,qql;
// precondition: [p,ql must be sorted;
// invariant: [p,ql is left unchanged;

EXAMPLE E.66 Testingthe upper bound() Algorithm

int main()

{ int all = {11,22,22,33,44,44,44,55,66};
int* p = upper bound(a,a+9,44) ;
cout << "*p=" << *p << '\n';
cout << "p-a=" << p-a << '\n';

‘

Appendix F

The Standard C Library

This appendix describes the pre-defined functions provided in the Standard C Library. Each
entry lists the function name, its prototype, a brief description of what it does, and the header file
where it is declared.

Function Prototype and Description Header File

abort () void abort () ; <cstdlibs>
Aborts the program.

abs () int abs(int n) ; <cstdlib>
Returns the absolute value of n.

acos () double acos (double x) ; <cmaths>
Returns the inverse cosine (arccosine) of x.

asin () double asin (double x) ; <cmaths>
Returns the inverse sine (arcsine) of x.

atan () double atan (double x) ; <cmaths>
Returns the inverse tangent (arctangent) of x.

atof () double atof (const char* g); <cstdlib>
Returns the number represented literally in the string s.

atoi () int atoi (const char* g); <cstdlib>
Returns the integer represented literally in the string s.

atol () long atol (const char* g); <cstdlib>
Returns the integer represented literally in the string s.

bad () int ios::bad(); <iostreams>
Returns nonzero if badbit isset; returns 0 otherwise.

bsearch() void* bsearch(const void* x, void* a, <cstdlib>

size t n, size_ t s,
int (*cmp) (const void, *const void*));

Implements the Binary Search Algorithm to search for x inthe
sorted array a of n eementseach of size s using the function
*cmp to compare any two such elements. If found, a pointer to the
element is returned; otherwise, the NULL pointer is returned.

ceil() double ceil (double x); <cmath>
Returns x rounded up to the next whole number.

clear () void ios::clear(int n=0) ; <iostream>
Changes stream stateto n.

clearerr () void clearerr (FILE* p); <cstdio>
Clears the end-of-file and error flags for the file *p.

close () void fstreambase::close() ; <fstream>
Closes the file attached to the owner object.

396

Copyright 2000 The McGraw-Hill. Companies, Inc. Click Here for Terms of Use.

APP. F]

THE STANDARD C LIBRARY

397

cos ()

double cos (double x) ;
Returns the inverse cosine of x.

<cmath>

cosh ()

double cosh (double x) ;
Returns the hyperbolic cosine of x: (e + eX)/2.

<cmath>

difftime ()

double difftime(time_t tl, time_t tO0);
Returns time elapsed (in seconds) fromtime to totime t1.

<ctime>

eof ()

int ios::eo0f () ;
Returns nonzero if eofbit isset; returns 0 otherwise.

<iostream>

exit ()

void exit (int n) ;

Terminates the program and returns n to the invoking process.

<cstdlib>

exp ()

double exp (double x);
Returns the exponential of x: e*.

<cmath>

fabs ()

double fabs (double Xx) ;
Returns the absolute value of x .

<cmath>

fail ()

int ios::fail() ;
Returns nonzero if failbit isset; returns O otherwise.

<iostream>

fclose ()

int fclose(FILE* p);
Closesthefile *p and flushes all buffers. Returns O if successful;
returns EOF otherwise.

<cstdio>

fgetc ()

int fgetc(FILE* p);
Reads and returns the next character from thefile *p if possible;
returns EOF otherwise.

<cstdio>

fgets ()

char* fgets(char* s, FILE* p);

Readsthe next linefrom thefile *p and storesitin *s. The“next
line” means either the next n-1 characters or all the characters up
to the next endline character, whichever comes first. The NUL
character is appended to the characters stored in s. Returns s if
successful; returns NULL otherwise.

int n,

<cstdio>

£i11 ()

char ios::£i11();

Returns the current fill character.

char ios::fill (char c);

Changesthe current fill character to ¢ and returnsthe previousfill
character.

<iostream>

flags ()

long ios::flags();
Returns the current format flags.
long ios::flags(long n);

Changes the current format flagsto n; returns previous flags.

<iostream>

floor ()

double floor (double x);
Returns x rounded down to the next whole number.

<cmath>

flush ()

ostream& ostream::flush() ;
Flushes the output buffer and returns the updates stream.

<iostream>

398 THE STANDARD C LIBRARY [APP. F
fopen () FILE* fopen (const char* p, const char* s); <cstdio>
Opensthefile *p and returns the address of the structure that rep-
resents the file if successful; returns NULL otherwise. The string
s determinesthefile smode: "rm forread, "w" forwrite, "a"
for append, "r+" for reading and writing an existing file, "w+"
for reading and writing an existing file, and "a+" for reading and
appending an existing file.
fprintf () int fprintf (FILE* p, const char* s, ...); <cstdio>
Writes formatted output to thefile *p. Returnsthe number of char-
acters printed if successful; otherwise it returns a negative number.
fputc () int fputc(int c, FILE* p); <cstdio>
Writes character ¢ tothefile *p. Returnsthe character written or
EOF if unsuccessful.
fputs () int fputs(const char* s, FILE* p); <cstdio>
Writesstring s tothefile *p. Returns a nonnegative integer if
successful; otherwise it returns EOF.
fread() size t fread(void* s, size t k, size_ t n, <cstdio>
FILE* p);
Readsupto n itemseach of size k fromthefile *p and stores
them at location s in memory. Returns the number of items read.
fscanf () int fscanf (FILE* p, const char* s, ...); <cstdio>
Readsformatted input from thefile *p and storesthem at location
s inmemory. Returns EOF if end of fileisreached; otherwiseit
returns the number of items read into memory.
fseek () int fseek (FILE* p, long k, int base); <cstdio>
Repositions the position marker of thefile *p k bytesfrom its
base, where base should be SEEk SET for the beginning of
thefile, SEEK_CUR for the current position of the file marker, or
SEEK_END for the end of thefile. Returns O if successful.
ftell () long ftell (FILE* p); <cstdio>
Returns location of the position marker in file *p or returns - 1.
fwrite () size t fwrite(void* s, size_ t k, size_ t n, <cstdio>
FILE* p);
Writes n items each of size k to the file *p and
returns the number written.
gcount () int istream::gcount () ; <iogstream>
Returns the number of characters most recently read.
get () int istream::get () ; <iostream>
istream& istream::get (signed charé& c);
istream& istream::get (unsigned charé& c);
istream& istream::get (signed char* b, int n,
char e='\n") ;
istream& istream::get (unsigned char* b, int n,
char e='\n") ;
Reads the next character ¢ from the i st ream. Thefirst version
returns c or EOF. Thelast two versionsread up to n charactersinto
b, stopping when e is encountered.

APP. F| THE STANDARD C LIBRARY 399

getc () int getc (FILE* p); <cstdio>
Same as fgetc () except implemented as a macro.

getchar () int getchar() ; <cstdio>
Returns the next character from standard input or returns EOF.

gets () char* gets(char* s); <cstdio>
Reads next line from standard input and storesit in s. Returns s or
NULL if no characters are read.

good () int ios::good() ; <iostream>
Returns nonzero if stream state iSzero; returns zero otherwise.

ignore () istream& ignore (int n=1, int e=EOF); <iostream>
Extracts up to n characters from stream, or up to character e,
whichever comes first. Returns the stream.

isalnum() int isalnum(int c); <cctype>
Returns nonzero if ¢ isan alphabetic or numeric character; returns
0 otherwise.

isalpha () int isalpha(int c); <cctype>
Returns nonzero if ¢ isan aphabetic character; otherwise returns 0.

iscntrl () int iscntrl (int c); <cctype>
Returns nonzero if c isacontrol character; otherwise returns 0.

isdigit () int isdigit(int c); <cctype>
Returns nonzero if c isadigit character; otherwise returns 0.

isgraph () int isgraph(int c); <cctypes>
Returns nonzero if ¢ isany non-blank printing character; otherwise
returns 0.

islower () int islower (int c); <cctypes>
Returns nonzero if c isalowercase al phabetic character; otherwise
returns 0.

isprint () int isprint(int c); <cctypes>
Returns nonzero if ¢ isany printing character; otherwise returns 0.

ispunct () int ispunct(int c); <cctype>
Returns nonzero if ¢ isany punctuation mark, except the alphabetic
characters, the numeric characters, and the blank character; other-
wise 0 isreturned.

isspace() int isspace(int c); <cctype>
Returns nonzero if ¢ isany white-space character, including the
blank ' ', theformfeed '\f', thenewline '\n', the carriage
return '\r',thehorizontal tab '\t', andthevertical tab '\v';
otherwise returns 0.

isupper () int isupper(int c); <cctype>
Returns nonzero if ¢ isan uppercase aphabetic character; other-
wise returns 0.

isxdigit () int isxdigit (int c); <cctypes>
Returns nonzero if < isone of the 10 digit characters or one of the
12 hexadecima digit letters; 'a', 'b', 'c', 'd', 'e', 'f',
'"A', 'B', 'C', 'D', 'E',0r 'F';otherwisereturnsO.

400 THE STANDARD C LIBRARY [APP. F
labs () long labs(long n); <cstdlib>
Returns absolute value of n.
log () double log(double x); <cmath>
Returns the natural logarithm (base e) of x.
loglo () double loglO (double x); <cmath>
Returns the common logarithm (base 10) of x.
memchr () void* memchr (const void* s, int c, size_t k); <string>
Searchesthe k bytes of memory beginning at s for character c.
If found, the address of itsfirst occurrence isreturned. Returns
NULL otherwise.
memcmp () int memcmp (const void* sl, const void* s2, <string>
size t k);
Compares the k bytes of memory beginningat s1 withthe k
bytes of memory beginning at s2 and returns a negative, zero, or
apositive integer according to whether the first string is lexico-
graphically less than, equal to, or greater than the second string.
memcpy () void* memcpy (const void* sl, const void* s2, <string>
size t k);
Copies the k bytes of memory beginning at s2 into memory
location s1 andreturns si.
memmove () int memmove (const void* sl, const void* s2, <string>
size t k);
Same as memcpy () except strings may overlap.
open () void fstream::open(const char* £, int m, <fstream>
int p=filebuf: :openprot) ;
void ifstream::open(const char* £,
int m=ios::in,
int p=filebuf: :openprot) ;
void ofstream: :open(const char* £,
int m=ios::out,
int p=filebuf: :openprot) ;
Opensthefile £ inmode m with protection p.
peek () int istream:: peek(); <iostreams>
Returns next character (or EOF) from stream without extracting it.
pow () double pow(double x, double vy); <cmath>
Returns x raised to the power y (xY).
precision() | int ios::precision() ; <iostreams>
int ios::precision(int k) ;
Returns the current precision for the stream. The second version
changes the current precision to k and returns the old precision.
tolower () int tolower (int c); <cctype>
Returns the lowercase version of ¢ if ¢ isan uppercase alpha-
betic character; otherwisereturns c.
toupper () int toupper(int c); <cctype>
Returnsthe uppercase version of ¢ if ¢ isalowercase alphabetic
character; otherwise returns c.

Appendix G

Hexadecimal Numbers

Humans normally use the base 10 numbering system. Thisis called the decimal system for the
Greek word deka for “ten.” Our ancient ancestors learned it by counting with their 10 fingers.

Computers have only 2 fingers (i.e., there are only 2 possible values for each bit), so the
binary system works well for computers. But the trouble with binary numbers is that their
representations require long strings of bits. For example, 1996 is represented as 11111001100
in binary. Most humans find long strings like that difficult to process.

Binary numbers are easy to convert to other bases if the base is a power of 2. For example,
conversion between binary and octal (base 8 = 2%) merely requires grouping the binary bits into
groups of 3 and interpreting each triplet as an octal digit. For example, to convert the binary
numeral 11111001100 write 11,111,001,100 = 3714. Here, 11 convertsto 3, 111
convertsto 7, oo1 convertsto 1, and 100 convertsto 4. Conversion from octal back to
binary is just as simple. For example, 2650 convertsto 10110101000, Which is 1448 in
decimal. Note that octal numerals use only the first 8 decimal digits: o, 1, 2, 3, 4, 5, 6, 7.

After 8, the next power of 2 is 16. Using that base makes the numerals even shorter. Thisis
called the hexadecimal system (from the Greek hex + deka for “six” + “ten”). Conversion
between binary and hexadecimal is just as ssimple asit is between binary and octal. For example,
to convert the binary numeral 10111010100 to hexadecimal, group the bits into groups of 4
(from right to left) and then translate each group into the corresponding hexadecimal digit:
101,1101,0100 = 5d4. Here, 101 convertsto 5, 1101 convertsto 11, and o100 convertsto
4. The hexadecima digits10, 11, 12, 13, 14,and 15 aredenoted by thefirst six letters of the
aphabet: a, b, c, 4, e, f.

Most operating systems provide i Calculator s £
a calculator utility that converts Edit Yiew Help
number representations between ! i
hexadecimal, decimal, octal, and |(5‘ Het Dec € DOt Bin || @ Dword C Wod O Bpe |
binary. For example, the Calculator — packspace| 2 | c |
utility in Microsoft Windows is = T FE EE TR
located in Start > Programs > & = Calculator E &
Accessories. In that application, to L Edt Vew Heh
convert from hexadecimal to _5 ! BOTERSE
decimal, select Scientific from its |r‘ Hex 0t Bin || O Do @ Gedas s |

%Ii\;v menu,t Seletﬁt thﬁe;'ae(;(ecrﬁgl) E I— I_ Backspace CE | C |
utton, enter the | |

representation of the number, and S—tl il—[l—]l ﬁl —?l—al—gl;lﬂlil
then select the Dec radio buttons, e I) O T S R R O W
The example here shows that ﬂl ﬂﬂﬂl £| ;|_2|_3|_|i|£|
0x0064fdbc is hexadecimal _| _|_3|_|| M_| _u|_,a|_|_|_|L|
notation for 6,618,556. il ‘_|_2|L| Ll LlLlLlLlLl_Fl

401

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

402 HEXADECIMAL NUMBERS [APP. G

The output manipulators dec, hex, and oct are used for converting different bases, asthe
next exampleillustrates.

EXAMPLE G.1 Using Output Manipulators

This shows how both the value and the address of a variable can be printed:
int main ()
{ int n = 1492; // Dbase 10
cout << "Base 8: n = << oct << n << endl;
cout << "Base 10: n = " << n << endl;
cout << "Base 16: n = " << hex << n << endl;

}

Here the manipulator oct isused to convert the next output to octal form. Note that the output reverts
back to decimal until the hex manipulator is used.

The next example shows how to input integers in octal and hexadecimal. Octal numerals are denoted
witha o prefix, and hexadecima numerals are denoted with a 0x prefix.

EXAMPLE G.2 Using Input Manipulators

This shows how both the value and the address of a variable can be printed:
int main ()
{ int n;
cout << "Enter an octal numeral (use 0 prefix): ";
cin >> oct >> n;

cout << "Base 8: n = " << oct << n << endl;
cout << "Base 10: n = " << dec << n << endl;
cout << "Base 16: n = " << hex << n << endl;

cout << "Enter a decimal numeral: ";

cin >> dec >> n;

cout << "Base 8: n " << oct << n << endl;

cout << "Base 10: n = " << dec << n << endl;

cout << "Base 16: n = " << hex << n << endl;

cout << "Enter a hexadecimal numeral (use O0x prefix): ";
cin >> hex >> n;

cout << "Base 8: n = " << oct << n << endl;
cout << "Base 10: n = " << dec << n << endl;
cout << "Base 16: n = " << hex << n << endl;

TeamLRN

APP. G] HEXADECIMAL NUMBERS 403

Base 16: n = 1ff
Enter a hexadecimal numeral (use 0x prefix): Ox1ff

Base 8: n = 777
Base 10: n = 511
Base 16: n = 1ff

Algorithm G.1 Decimal Integer to Hexadecimal
To convert the integer x into its equivalent hexadecimal numeral:

1. Assert x > 0.

2. Set k=0.

3. Divide x by 16, setting x equal to the (integer) quotient.

4. Set h, equal to the remainder from the previous division. Use one of the 16 hexa-
decimal digits 0, 1, 2, 3,4,5,6,7,8,9, a b, c,d,e,f, representing the numbers 0,
1,2,3,4,56,7,8,9, 10, 11, 12, 13, 14, 15, for h,.

. Add 1to k.
. If x>0, repeat steps 3—6.
7. Return h,---hhh (i.e., the hexadecimal numeral whose jth hex symbol is h)

(o2&

EXAMPLE G.3 Converting the Decimal Numeral 100,000 to Hexadecimal

Applying Algorithm G.1 to the decimal number 100,000 yields 100000, , = h,h;h,h hg
k X h

100000
6250
390

24

1

0

= 18620,

Kk

O~ WNEO
= 0o O

Algorithm G.2 Hexadecimal Integer to Decimal
To convert the hexadecimal integer h,---h,h,h; into its equivalent decimal numeral:
1. Set x =0.
2. Set j = k + 1 (the actual number of bits in the hexadecimal string).
3. Subtract 1 from j.
4. Multiply x by 16.
5. Add h; to x.
6. If j > 0, repeat steps 3—-6.
7. Return x.

EXAMPLE G.4 Converting the Hexadecimal Numeral £4d9 to Decimal

Convert £4d9 todecimal:

] h. x=2x+hj

0

160+f = 15
16-15+4= 244
16-244 + 13= 3917
16-3917 + 9 = 62,681

O R, N WH
O QO DN =

404 HEXADECIMAL NUMBERS [APP. G

S0 f4d9, = 62,681.
EXAMPLE G.5 Converting the Hexadecimal Numeral 543ab to Decimal

Converting 543ab todecimal:

] hj X=2X+ hj
5 0
4 5 160+5= 5
3 4 165+4= 84
2 3 16:84+3= 1347
1 a| 161347 +a= 21,562
0 b| 16-21,562 + b = 345,003

So 543ah,, = 345,003,

Appendix H

References

[Adamg]
C++ An Introduction to Computing, by Joel Adams, Sanford L eestma, and Larry Nyhoff.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-02-369402-5.

[Barton]
Scientific and Engineering C++, by John J. Barton and Lee R. Nackman.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-53393-6.

[Bergin]
Data Abstraction, the Object-Oriented Approach Using C++, by Joseph Bergin.
McGraw-Hill, Inc., New York, NY (1994) 0-07-911691-4.

[Bronson]
A First Book of C++, by Gary J. Bronson.
West Publishing Company, St. Paul, MN (1995) 0-314-04236-9.

[Budd]
Classic Data Sructuresin C++, by Timothy A. Budd.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-50889-3.

[Capper]
Introducing C++ for Scientists, Engineers and Mathematicians, by D. M. Capper.
Springer-Verlag, London (1994) 3-540-19847-4.

[Cargill]
C++ Programming Syle, by Tom Cargill.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-56365-7.

[CarranQ]
Data Abstraction and Problem Solving with C++, by Frank M. Carrano.
Benjamin/Cummings Publishing Company, Redwood City, CA (1993) 0-8053-1226-9.

[Carroll]
Designing and Coding Reusable C++, by Martin D. Carroll and Margaret A. Ellis.
Addison-Wesley Publishing Company, Reading, MA (1995) 0-201-51284-X.

[Cling]
C++ FAQs, Second Edition, by Marshall Cline, Greg Lomow, and Mike Girou.
Addison-Wesley Publishing Company, Reading, MA (1999) 0-201-30983-1.

[Coplien]
Advanced C++, Programming Syles and Idioms, by James O. Coplien.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-54855-0.
[Deitel]
C++ How to Program, Second Edition by H. M. Deitel and P. J. Deitel.
Prentice Hall, Englewood Cliffs, NJ (1998) 0-13-528910-6.

405

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

406 REFERENCES [APP. H

[Dewhur &]
Programming in C++, Second Edition, by Stephen C. Dewhurst and Kathy T. Stark.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-13-182718-9.

[Ellig]
The Annotated C++ Reference Manual, by Margaret A. Ellis and Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-51459-1.

[Friedman]
Problem Solving, Abstraction, and Design Using C++, by F. L. Friedman and E. B. Koffman.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-52649-2.

[Hansen]
The C++ Answer Book, by Tony L. Hansen.
Addison-Wesley Publishing Company, Reading, MA (1990) 0-201-11497-6.

[Headington]
Data Abstraction and Structures Using C++, by Mark R. Headington and David D. Riley.
D. C. Heath and Company, Lexington, MA (1994) 0-669-29220-6.

[HorowitZ]
Fundamentals of Data Sructuresin C++, by Ellis Horowitz, Sartaj Sahni, and Dinesh Mehta.
W. H. Freeman and Company, New York, NY (1995) 0-7167-8292-8.

[Hubbard1]
Fundamentals of Computing with C++, by John R. Hubbard.
McGraw-Hill, Inc, New York, NY (1998) 0-07-030868-3.

[Hubbard2]
Data Sructureswith C++, by John R. Hubbard.
McGraw-Hill, Inc, New York, NY (1999) 0-07-135345-3.

[Hughes]
Mastering the Sandard C++ Classes, by Cameron Hughes and Tracey Hughes.
John Wiley & Sons, Inc, New York, NY (1999) 0-471-32893-6.

[Johnsonbaugh]
Object-Oriented Programming in C++, by Richard Johnsonbaugh and Martin Kalin.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-02-360682-7.

[Josuttis]
The C++ Sandard Library, by Nicolai M. Josulttis.
Addison-Wesley Publishing Company, Reading, MA, 1999, 0-201-37926-0.

[Knuthl]
The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Third Edition, by Donad E. Knuth.
Addison-Wesley Publishing Company, Reading, MA, 1997, 0-201-89683-4.

[Knuth2]
The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Third Edition, by D. E. Knuth.
Addison-Wesley Publishing Company, Reading, MA, 1998, 0-201-89684-2.

[Knuth3]
The Art of Computer Programming, Vol. 3: Sorting and Searching, Second Edition, by Donald E. Knuth.
Addison-Wesley Publishing Company, Reading, MA, 1998, 0-201-89685-0.

APP. H] REFERENCES 407

[Ladd]
C++ Templates and Tools, by Scott Robert Ladd.
M&T Books, New York, NY (1995) 0-55851-437-6.

[Lippman]
The C++ Primer, Third Edition, by Stanley B. Lippman and Josee Lgjoie.
Addison-Wesley Publishing Company, Reading, MA (1998) 0-201-82470-1.

[Meyersg]|
More Effective C++, by Scott Meyers.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-201-63371-X.

[Model]
Data Structures, Data Abstraction: A Contemporary Introduction Using C++, by M. L. Model.
Prentice Hall, Englewood Cliffs, NJ (1994) 0-13-088782-X.

[Murray]
C++ Srategies and Tactics, by Robert B. Murray.
Addison-Wesley Publishing Company, Reading, MA (1993) 0-201-56382-7.

[Nelson]
C++ Programmers Guide to the Sandard Template Library, by Mark Nelson.
IDG Books Worldwide, Inc., Foster City, CA (1995) 0-56884-314-3.

[Oualling]
Practical C++ Programming, by Steve Oualline.
O’'Reilly & Associates, Sebastopol, CA (1995) 1-56592-139-9.

[Perry]
An Introduction to Object-Oriented Design in C++, by Jo Ellen Perry and Harold D. Levin.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-201-76564-0.

[Plauger 1]
The Sandard C Library, by P. J. Plauger.
Prentice Hall, Englewood Cliffs, NJ (1992) 0-13-131509-9.

[Plauger 2]
The Draft Sandard C++ Library, by P. J. Plauger.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-13-117003-1.

[Pohl.1]
Object-Oriented Programming Using C++, by Ira Pohl.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1993) 0-8053-5384-4.

[Pohl.2]
C++ for Pascal Programmers, Second Edition, by Ira Pohl.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1994) 0-8053-3158-1.

[Prata]
C++ Primer Plus, by Stephen Prata.
The Waite Group, Corte Madera, CS (1998) 1-57169-131-6.

[Ranade & Zamir]
C++ Primer for C Programmers, by Jay Ranade and Saba Zamir.
McGraw-Hill, Inc., New York, NY (1994) 0-07-051487-9.

408 REFERENCES

[Satir]
C++: The Core Language, by Gregory Satir and Doug Brown.
O’'Reilly & Associates, Sebastopol, CA (1995) 0-56592-116-X.

[Savitch]
Problem Solving with C++, by Walter Savitch.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-8053-7440-X.

[Sedgewick]
Algorithmsin C++ Parts 1-4, Third Edition, by Robert Sedgewick.
Addison-Wesley Publishing Company, Reading, MA (1998) 0-201-35088-2.

[Sengupta]
C++ Object-Oriented Data Srructures, by Saumyendra Sengupta and Carl Phillip Korobkin.
Springer-Verlag, New York, NY (1994) 0-387-94194-0

[Shammas]
Advanced C++, by Namir Clement Shammas.
SAMS Publishing, Carmel, IN (1992) 0-672-30158-X.

[Stepanov]

“The Standard Template Library,” Technical Report HPL-94-34, by A. A. Stepanov and M. Lee.

Hewlett-Packard Laboratories, April 1994.

[Stroustrupl]
The C++ Programming Language, Specia Edition, by Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (2000) 0-201-70073-5.

[Stroustrup?2]
The Design and Evolution of C++, by Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-54330-3.

[Teale]
C++ 10Sreams, by Steve Tedle.
Addison-Wesley Publishing Company, Reading, MA (1993) 0-201-59641-5.

[Trudeau]
Mastering CodeWarrior for Windows 95/NT, The Official Guide, by Jim Trudeau.
SYBEX, Alameda, CA (http://www.sybex.com/), 1997, 1-7821-2057-1.

[Unicode]
The Unicode Standard, Version 2.0, by The Unicode Consortium.
Addison-Wesley, Reading, MA (http://www2.awl.com/corp/), 1996, 0-201-48345-9.

[Wang]
C++ with Object-Oriented Programming, by Paul S. Wang.
PWS Publishing Company, Boston, MA (1994) 0-534-19644-6.

[Weiss]
Data Structures and Algorithm Analysisin C++, by Mark Allen Weiss.
Benjamin/Cummings Publishing Company, Redwood City, CA (1994) 0-8053-5443-3.

[Winston]
Onto C++, by Patrick Henry Winston.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-58043-8.

[APP. H

Index

ABC, 288 Algorithm (Cont.):
abort (), 397 inner product, 370, 378
abort () function, 110 inplace merge, 368, 378
abs (), 176, 397 iter swap, 369, 378
Absolute value, 85 lexicographical compare, 370, 379
Abstract base class, 288, 314 Linear Search, 134, 136
Access function, 238, 266 lower bound, 368, 379
Access specifier, 240 make heap, 374, 384
private, 240, 276 max, 370, 380
protected, 240, 276 max_element, 370, 380
public, 240 merge, 368, 381
accumulate agorithm, 370, 371 min, 370, 381
acos (), 397 min_ element, 370, 381
Actual parameter, 88 mismatch, 369, 381
Addition operator, 353 next permutation, 370, 382
Address, 7, 156 nth element, 368, 382
Address operator, 156, 352, 353 partial sort, 368, 383
adjacent difference agorithm, 370, 371 partial sort copy, 368, 383
adjacent_ find algorithm, 369, 371 partial sum, 370, 383
Aggregation, 273 partition, 368, 384
Alert character, 4 pop_heap, 370, 384
Algorithm: prev_permutation, 370, 384
accumulate, 370, 371 push_heap, 370, 385
adjacent difference, 370, 371 random_shuffle, 369, 385
adjacent find, 369, 371 remove, 369, 386
Babylonian, 81 remove_copy, 369, 386
Binary Search, 46, 136 remove copy_1if, 369, 387
binary search, 368, 372 remove if, 369, 387
Bubble Sort, 134, 144 replace, 369, 388
copy, 369, 372 replace_ copy, 369, 388
copy_backward, 369, 372 replace copy_ if, 369, 389
count, 369, 373 replace if, 369, 389
count_if, 369, 373 reverse, 369, 390
equal, 369, 373 reverse_copy, 369, 390
f£i11, 369, 374 rotate, 369, 390
£i11 n, 369, 374 rotate_ copy, 369, 391
find, 369, 374 search, 369, 391
find end, 369, 375 search n, 369, 392
find first of, 369, 375 Selection Sort, 144
find if, 369, 376 set_difference, 370, 392
for each, 369, 376 set_intersection, 370, 393
generate, 369, 376 set_symmetric difference, 370, 393
generate n, 369, 377 set_union, 370 393
generic, 368 sort, 368, 394
Horner’ s method, 111 sort_heap, 370, 394
includes, 370, 377 swap, 369, 395
409

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

410 INDEX

Algorithm (Cont.):
transform, 369, 395
unique, 369, 465
unique_copy, 369, 396
upper_bound, 368, 396

Alias, 157

Allocation operator, 352, 353

and keyword, 37, 349

and_eq keyword, 37, 349

Anonymous enumeration, 18

append (), 144

Arabic a phabet, 347

Argument, 88, 92
default, 111

Arithmetic operators, 21, 258

Arity, 352

Armenian alphabet, 347

Array, 126
declaration syntax, 127
multidimensional, 139

ASCII Code, 4, 19, 26, 33, 98, 343

asin (), 397

assert () function, 136

Assignment operator, 5, 22, 38, 256, 257, 328,

353
Associativity, 352
at () member function, 333

atan (), 397
atof (), 397
atoi (), 397
atol (), 397

auto keyword, 37, 349

Babylonian Algorithm, 81, 85
back () function, 328
Backslash character, 4, 343
bad (), 397
Base class, 275
begin () function, 327, 331
Bengali aphabet, 347
Binary code, 1, 402
Binary logarithm, 136
discrete, 70
Binary operator, 352
Binary Search algorithm, 46, 136, 397
binary search algorithm, 368, 372
Bisection Method, 176
Bit shift left operator, 353

Bit shift right operator, 353
Bit string, 20

bitand keyword, 37, 349
bitaor keyword, 37, 349
Bitwise AND operator, 353
Bitwise NOT operator, 352
Bitwise OR operator, 353
Bitwise XOR operator, 353
Blank character, 5

Block statement, 40

Body of afunction, 90, 92
bool keyword, 17, 37, 349
Boole, George, 98

Boolean expression, 42
Boolean function, 98
Boolean type, 17

Boolean values, 136
Bopomofo codes, 348
Boundary values, 96
break keyword, 37, 71, 73, 74, 349
bsearch (), 397

Bubble Sort algorithm, 134, 144, 302

C++ programming language, 1
C++ stylecomment, 11
Calling afunction, 88
Carriage return character, 99
case keyword, 37, 47, 74, 349
Case-sensitive, 2
Cast, 26
cat (), 175
catch keyword, 37, 349
CDC, 288
ceil (), 397
char keyword, 37, 349
Character, 4

dert, 4

backslash, 4, 343

blank, 5

control, 343

endline, 4

end-of-file, 343

horizontal tab, 4

newline, 2, 4, 343

nul, 183

quote, 4
Character constant, 5
Character type, 19

chr (), 176
cin, 24
CJK ideograph codes, 348
Class, 232, 243
Array,310
Book, 288
cD, 289
Circle, 250
Cone, 297
Date, 274
deque, 359
Fish, 287
hierarchy, 287, 288
implementation, 234
interface, 234
iterator, 314
List, 310
list, 362
ListIterator, 314
ListNode, 310
Magazine, 289
map, 364
Matrix, 249, 309, 310
Media, 288
Name, 297
Node, 244
Person, 249, 273, 277, 282, 299
Point, 249, 267
predicate, 370
priority queue, 361
Queue, 320
queue, 360
Random, 249
Ratio, 232, 235, 243, 259
set, 366
Stack, 249, 304
stack, 360
String, 249, 273
string, 325
Student, 276, 277
Time, 249
VCR, 290
Vector, 267, 306, 310
vector, 325, 354
Vertebrate, 287
class keyword, 37, 349
clear (), 397
clearerr (), 397

INDEX 411

close (), 398
cmath header, 70
cmp (), 175
Code

ASCIl, 4, 19, 33, 98

Unicode, 347
Comma operator, 353
Comment, 3,9

Cstyle, 11

C++ style, 11
Compiler, 1
Compile-time error, 29, 39
compl keyword, 37, 349
Composite assignment operators, 22
Composition, 2742 293, 310
Compound condition, 41
Concatenate, 4
Concrete derived class, 288
Conditional expression operator, 49, 353
const keyword, 37, 349
const_cast keyword, 37, 349
Constant, 8, 162, 167

INT MAX, 20

INT MIN, 20

LONG_MAX, 20

LONG_MIN, 20

SHRT MAX, 19

SHRT MIN, 19

UINT MAX, 20

ULONG_MAX, 20

USHRT MAX, 20
Constant function, 243
Constant abjects, 243
Constructor, 235, 240

copy, 240

default, 240
Container object, 368
Containment, 273
continue keyword, 37, 73, 74, 349
Control character, 343
Control sequence, 343
Control-D, 192
Control-Z, 192
Conversion operator, 263, 352, 353
copy algorithm, 369, 372
copy, 240, 241, 256
copy (), 179
copy_backward agorithm, 369, 372

412

cos (), 176, 398
cosh (), 398

count agorithm, 369, 373
count_if algorithm, 369, 373
cout, 24

cout object, 3
cpy (), 175

cstdlib, 76

C-string, 183

C-String Library, 193
C-style comment, 3
ctime, 78

cube (), 180

Cursor, 319

Cyrillic alphabet, 347

Dangling pointer, 167, 173
Date class, 274

Deallocating memory, 168
Deallocation operator, 352, 353
dec, 403

Decimal, 402

Declaration, 9

Decrement, 10

Decrement operator, 352
Default arguments, 111

Default constructor, 237, 240, 256, 270
Default copy constructor, 241
default keyword, 37, 47, 349
Default parameter values, 237
delete, 167, 169

delete keyword, 37, 349
deque class, 359

Dereference operator, 159, 165, 352, 353
Derivation, 275

derivative (), 175, 176, 181
Derived class, 275

Derived type, 161

Destructor, 242, 256
Deterministic computers, 75
Devanagari alphabet, 347
Deviation, 146

difftime (), 398

Direct access, 126

Direct member selection operator, 352, 353
Discrete binary logarithm, 70
Division operator, 21, 352, 353
DJGPP, 2

INDEX

do keyword, 37, 349
do...while statement, 60, 64
Dominating member data, 279
DOS, 2

Dot product, 145

double, 23, 24, 25

double keyword, 37, 349
Dummy argument, 265, 268
Dynamic array, 168

Dynamic binding, 168, 173, 177, 284, 285, 287

Dynamic storage, 310
dynamic_cast keyword, 37, 349

else keyword, 37, 349
Emacs, 2
Empty parameter list, 102
end () function, 327, 331
endl, 4
Endline character, 4
End-of-file character, 343
enum keyword, 37, 349
Enumeration types, 17, 137, 138
anonymous, 18
Enumerator, 17, 33
eof (), 398
Equal algorithm, 369, 373
Equality operator, 38, 269
erase () function, 329
Error
compile-time, 29, 39
logical, 39, 43
round-off, 28
run-time, 29, 39
Escape sequence, 10, 343
Euclidean Algorithm, 81, 113
Exception, 110

exit (), 398
exit () function, 110
exp (), 176, 398

Expanding an inline function, 107
explicit keyword, 37, 349
Exponent, 23, 25, 83

export keyword, 37, 349
Extenshility, 291

extern keyword, 37, 349
Extraction operator, 8

extremes (), 143

fabs (), 85, 398
Factorial function, 95
fail(), 398

Fall through, 48, 50, 54
false keyword, 17, 37, 350
fclose(), 398
fgetc (), 398
fgets (), 398

Fibonacci numbers, 62

File scope, 108

£i11(), 398

£i11 agorithm, 369, 374
£i11 nagorithm, 369, 374
find agorithm, 369, 374
£ind () function, 330
find_end algorithm, 369, 375

find first of algorithm, 369, 375

find_if algorithm, 369, 376
Fixed-point format, 30

Flag, 75

flags (), 368

float, 23,25

float keyword, 37, 350
float.h, 24

Floating-point types, 16, 24, 25
Floating-point value, 25

Floor function, 71
floor (), 398

FLT DIG, 25

FLT MANT DIG, 25

FLT MAX, 25

FLT MIN, 25

flush(), 398

fopen (), 399

for keyword, 37, 350

for statement, 60

for each agorithm, 369, 376
Forever loop, 72

Form feed character, 99
fprintf (), 399

fputc (), 399
fputs (), 399
fread (), 399

Free Software Foundation, 1
frequency (), 144
friend functions, 258, 268
friend keyword, 37, 350
front () function, 328

INDEX

fscanf (), 399

fseek (), 399

ftell(), 399

Function:
abort (), 110, 397
abs (), 176, 397
access, 238, 266
acos (), 397
append (), 144
asin (), 397
assert (), 136
atan (), 397
atof (), 397
atoi (), 397
atol (), 397
back (), 328
bad (), 397
begin (), 327, 331
body, 90
boolean, 98
bsearch (), 397
cat (), 175
ceil (), 397
chr (), 176
clear (), 397
clearerr (), 397
close (), 398
cmp (), 175
combination, 113
copy (), 179
cos (), 398
cosh (), 398
cpy (), 175
cube (), 180

declaration, 92, 114

definition, 92, 114
derivative (), 175, 176, 181
difftime (), 398

end (), 327, 331
eof (), 398
erase (), 329
exit (), 110, 398
exp (), 398
extremes (), 143
fabs (), 85, 398
fail(), 398

fclose (), 398
fgetc (), 398

413

414

Function (Cont.):

fgets (), 398
£i11 (), 398
find (), 330
flags (), 398
floor, 71
floor (), 398
flush(), 398
fopen (), 399
fprintf (), 399
fputc (), 399
fputs (), 399
fread(), 399

frequency (), 144
front (), 338
fscanf (), 399
fseek (), 399
ftell(), 399
fwrite (), 399
gcount (), 399

get (), 168, 189, 399

getc (), 400
getchar (), 400

getline (), 192, 202

gets (), 400
good (), 400
head, 90

ignore (), 189, 400
insert (), 144, 330

isalnum(), 190, 400
isalpha (), 190, 400
iscntrl (), 190, 400
isdigit (), 190, 400
isgraph (), 190, 400
islower (), 190, 400
isPalindrome (), 145, 146
isprint (), 190, 400
ispunct (), 190, 201, 405
isspace (), 191, 400
isupper (), 191, 201, 400
isvowel (), 205
isxdigit (), 191, 400
labs (), 401
largest (), 143

len(), 175

log (), 70, 405
logio0 (), 401
main (), 109

Function (Cont.):

memchr (), 401
memcmp (), 401
memcpy (), 401
memmove (), 401
mirror (), 175
open (), 401
peek (), 189, 401
pop_back (), 328

pow (), 71, 401
precision(), 401
print (), 182
product (), 176
prototype, 114

push back (), 326
putback (), 189

rand (), 76
read-only, 238
reduce (), 239, 259
remove (), 143, 144
reverse (), 202
riemann (), 176, 180
root (), 176
rotate (), 144, 146
setw(), 70

size (), 326
sizeof (), 128
sort (), 176
sqrt (), 176

square root, 29
srand (), 77

strecat (), 185, 196, 199, 201
strchr (), 199, 201

), 185, 199, 202
strepy (), 185, 195, 199, 201, 202, 205
strcspn (), 199
strlen(), 185,193, 194, 199, 201

strcmp

(
(
(
(

strncat (), 185, 197, 199, 201, 202
strncmp (), 185, 200

strncpy (), 185, 195, 200, 201, 205
strpbrk (), 199, 200, 201
strrchr (), 200

strspn (), 200
strstr (), 200
strtok (), 185, 197, 200
sum (), 171, 176, 180
time (), 78
tokenize (), 207

Function (Cont.):
tolower (), 191, 401
toupper (), 190, 191, 401
trap (), 176
utility, 238
void, 96

Function call operator, 352

Function object, 370

Function signature, 285

Fundamental types, 16, 23

fwrite (), 399

GCC, 2

gcd (), 238

gcount (), 399

generate agorithm, 369, 376
generate n adgorithm, 369, 377
Generating pseudorandom numbers, 75
Generic algorithm, 368
Georgian aphabet, 347

Get operator, 8

get (), 168, 189, 399

getc (), 400

getchar (), 400

getline (), 192, 202

gets (), 400

Getty methods, 238

GNU software, 1

good (), 400

goto keyword, 37, 350

goto Statement, 74

Greater than operator, 353
Greatest common divisor, 113
Greek aphabet, 347

Gujarati alphabet, 347
Gurmukhi alphabet, 347

Has-arelationship, 275
Head of afunction, 90
Header, 19, 92

cmath, 70

iomanip, 70
Header file, 87
Hebrew alphabet, 347
Heterogeneous container, 305
hex, 403
Hexadecimal, 402
Hiragana codes, 348

INDEX

Homogeneous container, 305
Horizontal tab character, 4, 99
Horner’s Algorithm, 111

IDE, 1

if keyword, 36, 37, 350
ignore (), 189, 400
Immutable Ivalues, 162
Implementation, 114, 290, 291
Inaccuracy, 28

includes agorithm, 370, 377
Increment operator, 11, 352
Index range checking, 354, 364
Index value, 126

Indirect access, 182

415

Indirect member selection operator, 352, 353

Indirect print, 207
Indirect Selection Sort, 176
Indirect sort, 144, 206, 207
inf, 27
Infinite loop, 72, 80
Infinity symbol, 27
Information hiding, 93, 234, 282
Inheritance, 273, 293, 310
Initialization list, 237, 271
Initializer, 6, 8
Initializer list

array, 127
inline functions, 107
inline keyword, 37, 350
Inner product, 145
inner product adgorithm, 370, 378
inplace merge agorithm, 368, 378
Input operator, 8
insert (), 144
insert () function, 330
Insertion Sort, 144
Instance, 234, 303
Instantiate, 234, 303
int keyword, 2, 24, 25, 37, 350
INT MAX constant, 20
INT MIN constant, 20
integer, 26
integral type, 16
Integrated development environment, 1
Interface, 114, 290, 291
Invariant:

loop, 70

416 INDEX

Invoking afunction, 88
iomanip header, 70
iostream, 2
iostream.h, 24
Is-arelationship, 275
isalnum(), 190, 400

isalpha (), 190, 400
iscntrl (), 190, 400
isdigit (), 98, 99, 190, 400
isgraph (), 190, 400

islower (), 98, 99, 190, 400
isPalindrome (), 145
isprint (), 190, 400

ispunct (), 98, 99, 190, 201, 400
isspace (), 98, 99, 191, 400
isupper (), 98, 99, 191, 201, 400
isvowel (), 205

isxdigit (), 191, 400

iter swap algorithm, 369, 378
Iteration, 60

Iterator, 313, 368

Jamo codes, 348
Jump statement, 74

Kannada al phabet, 347

Katakana codes, 348

Keyword, 6, 33, 37, 52
case, 47
default, 47
false, 17
true, 17

Knuth, Donald E., 407

Label, 74

labs (), 401

Lao alphabet, 347

largest (), 143

Latin alphabet, 347

Leap year, 100

Least common multiple, 113

Left associative, 351

Lehmer, D., 252

len(), 175

L ess than operator, 353

lexicographical compare algorithm, 370,
379

Linear Congruential Algorithm, 252

Linear Search agorithm, 134, 136
Linked list, 310
List:

parameter, 102
list class, 362
Literals, 4, 162
Local declaration, 40
L ocal scope, 108
Local variables, 95
log (), 176, 401
log () function, 70
log10 (), 401
Logarithm

binary, 136

discrete binary, 70
Logarithmic time, 136
Logical AND operator, 353
Logical error, 39, 43
Logica NOT operator, 352
L ogical operator, 41
long, 24
long double, 23, 24
long keyword, 37, 350
LONG_MAX constant, 20
LONG_MIN constant, 20
Loop, 60
Loop invariant, 70
lower bound agorithm, 368, 379
Lvalue, 162, 268, 307

Macro, 303

main (), 109

main () function, 2, 109

main () function, 109

make heap algorithm, 370, 380
Malayam a phabet, 347

Mantissa, 23, 25, 83

map class, 364

map template, 340

Mask, 333

Matrix, 309

max algorithm, 374, 380
max_element agorithm, 370, 380
Member data, 232

Member function, 232

Member selection operator, 352, 353
memchr (), 401

memcmp (), 401

memcpy (), 401

memmove (), 401

Memory leak, 287, 292

merge agorithm, 368, 381
Method, 232, 291

Metrowerks CodeWarrior, 1
Microsoft Visual C++, 1, 3

min algorithm, 370, 381

min_ element agorithm, 370, 381
mismatch agorithm, 369, 381
Modulus operator, 21
Multidimensional array, 139
multimap template, 340
Multiplication operator, 352, 353
multiset template, 340
mutable keyword, 37, 350
Mutable Ivalues, 162

Name, 156

Namespace, 3

namespace keyword, 37, 350
nan, 30

Natural logarithm function, 70
Negation operator, 269

Negative, 11

Nesting statements, 43

new, 167, 179

new keyword, 37, 350

newline, 207

newline character, 2, 4, 99, 343
next permutation agorithm, 370, 382
Node, 244

Nondecreasing array, 136
Nonprinting characters, 343
Normal distribution, 146

Not a number symbol, 30

Not equal to operator, 353
not_eq keyword, 37, 350

not keyword, 37, 350, 352
Notepad, 1

nth_element algorithm, 368, 382
NUL, 172

NULL, 167, 172, 183

Null statement, 86

Numeric literals, 5

Numeric overflow, 26

Numerical derivative, 175

INDEX 417

Object, 7, 162
container, 368
function, 370
Object-oriented programming, 1, 232, 234, 290
oct, 403
open (), 401
Operation, 291
Operator, 4, 352
addition, 353
address, 156, 352, 353
dlocation, 352, 353
arithmetic, 21
assignment, 5, 22, 38, 328, 353
binary, 352
bit shift, 353
bitwise, 353
comma, 353
composite assignment, 22
conditional expression, 49, 353
conversion, 352, 353
deallocation, 352, 353
decrement, 352
delete, 169
dereference, 159, 352, 353
direct member selection, 352, 353
division, 21, 352, 353
equal to, 353
equality, 38
extraction, 8
function cal, 352
get, 8
greater than, 353
increment, 352
indirect member selection, 352, 353
input, 8
insertion, 4
less than, 353
logical, 41, 353
logical not, 352
member selection, 352, 353
modulus, 21
multiplication, 352, 353
not equal to, 353
output, 2, 4
overloadable, 352
post-decrement, 352
post-increment, 21, 352
pre-decrement, 352

418

Operator (Cont.):
pre-increment, 21, 352
put to, 4
reference, 156
remainder, 21, 352, 353
scope resolution, 108, 352
sizeof, 352
stream insertion, 4
subscript, 169, 326, 352
subtraction, 353
ternary, 352
type cast, 19
type construction, 352
type conversion, 352, 353
unary, 352

operator keyword, 37, 350

or keyword, 37, 350

or_eq keyword, 37, 350

Oriya alphabet, 347

Outer product, 145

Output manipulator, 403

Output operator, 2, 4

Output stream, 4

Overflow, 83
numeric, 26

Overload, 269

Overloadable operators, 352

Overloading functions, 109

Overloading relational operators, 260

Overriding afunction, 279

Parameter, 92
Parameter list, 90
empty, 102
Parametrized types, 307
partial sort algorithm, 368, 383
partial sort_copy agorithm, 368, 383
partial sum agorithm, 368, 383
partition agorithm, 370, 383
Pascal, 138
Pascal’s Triangle, 146
Pass by constant reference, 106
Pass by reference, 102, 207
Pass by value, 93
Passed by value, 88
peek (), 189, 400
Perfect shuffle, 145
Permutation function, 95

INDEX

Person class, 277
Plural, 202
Painter, 158, 163
Pointers to objects, 244
Polymorphism, 282, 284, 285, 293
Polynomial, 111
pop_back () function, 328
pop_heap algorithm, 370, 384
Post-decrement operator, 352
Postfix operator, 265
Post-increment operator, 21, 352
pow (), 401
pow () function, 71
Precedence, 352
precision, 83
precision(), 401
Precondition, 136
Pre-decrement operator, 352
Predicate class, 370
Prefix operator, 265
Pre-increment operator, 21, 352
Preprocessor directive, 2
prev_permutation agorithm, 370, 384
Prime number, 67
print (), 182
priority queue class, 361
priority queue template, 340
private access, 240, 276
private keyword, 37, 350
Procedure, 96
Product

dot, 145

inner product, 145

outer product, 145

scalar, 145
product (), 176
Program, 1
Program body, 2
Programming language, 1

C++,1
Promotion, 26, 89
protected access, 240, 276
protected keyword, 37, 350
Pseudorandom numbers, 76
public access, 240
public inheritance, 275
public keyword, 37, 350
Pure virtual function, 287

push_back () function, 326
push_heap agorithm, 370, 385
put operator, 4

putback (), 189

Quadratic equation, 51
Quadratic formula, 58

queue class, 360

Quote character, 4

Quotient operator, 81, 84

rand () function, 76
random_shuffle agorithm, 369, 385
Range checking, 333

Ratio, 232

Read-only parameter, 102, 106

Real number types, 23. 26

reduce (), 229, 259

Reference, 157

Reference operator, 103, 156
register keyword, 37, 350
reinterpret cast keyword, 37, 350
Relational operators, 260

Remainder operator, 21, 81, 84, 352, 353
Remove algorithm, 369, 386

remove (), 143, 144

remove_ copy agorithm, 369, 387
remove_copy_if algorithm, 369, 387
remove_if agorithm, 369, 387
replace agorithm, 369, 388
replace_ copy agorithm, 369, 388
replace copy_if agorithm, 369, 389
replace_ if agorithm, 369, 389
Reserved word, 32, 33, 38, 50, 52
return keyword, 37, 350

return Statement, 90, 92

Return type, 2, 90

reverse (), 202

reverse agorithm, 369, 390
reverse_copy agorithm, 369, 390
Riemann sums, 175

riemann (), 176, 180

Right associative, 352

root (), 176

rotate (), 144, 146

rotate agorithm, 369, 391

rotate copy agorithm, 369, 391
Rounding, 25

Round-off error, 28

INDEX

Run-time binding, 168
Run-time error, 29, 39
Rvalue, 162

Scalar product, 145
Scientific, 30
Scientific format, 30
Scope, 6, 40, 108, 242
file, 108
local, 108
Scope resolution operator, 108, 234, 352
Search
binary, 46
search agorithm, 369, 391
search_n agorithm, 369, 392
Seed, 76, 77
Selection Sort, 144
Self-documenting code, 18, 138
Sentinel, 71, 207
Separately compiled function, 114
Sequential execution, 36
Service, 232
set class, 366
set_difference agorithm, 370, 392
set_intersection agorithm, 370, 393

set_symmetric difference agorithm,

370, 393
set template, 344
set_union algorithm, 370, 393
Setty methods, 238
setw () function, 69, 70
Short circuiting, 53
short keyword, 37, 350
Short-circuiting, 42
SHRT MAX constant, 19
SHRT MIN constant, 19
Shuffle, 145
Sieve of Eratosthenes, 144
Signature, 279
signed keyword, 37, 350
Significant digits, 25, 83
Simulation, 75
sin (), 176
Singular, 202
Size, 7
size () function, 326
size_t, 199
sizeof keyword, 37, 350

419

420

sizeof operator, 23, 352
sizeof () function, 128

Sort:
indirect, 144
sort (), 176

sort agorithm, 368, 394
sort () agorithm, 327
sort_heap algorithm, 370, 394
Space character, 99
Specialization, 275
Specifier, 6
sqrt (), 29, 176
Square root, 81
Square root function, 29, 87
srand () function, 77
stack class, 360
Standard C++ Library, 2, 87, 325
Standard container classes, 354
Standard deviation, 146
Standard header, 2
Standard identifier, 32, 33, 38, 50, 52
Standard output device, 2
Standard output stream, 2
Standard output stream object, 2
Standard Template Library, 354
Statement:

block, 40

break, 71

continue, 73

do..while, 64

for, 60

goto, 74

if, 36

nesting, 43

switch, 47

while, 60
Statement list, 39
Static binding, 168, 173, 177
static datamember, 245
static keyword, 37, 351
static variable, 247
static_cast keyword, 37, 351
std, 3
stdlib.h, 76
STL, 354
strcat () function, 185, 196, 199, 201
strchr () function, 194, 199, 201
stremp (), 185, 199, 202

INDEX

strepy () function, 185, 195, 196, 199, 201,
202, 205
strcspn (), 199
Stream, 4
output, 4
standard output, 2
Stream extraction operator, 4, 270
Stream insertion operator, 270
Stream manipulator, 4, 69
String:
bit, 20
string class, 325
String length function, 193
String literal, 4
strlen(), 185, 193, 199, 201

strncat (), 185, 196, 199, 201, 202
strncat () function, 197
strncmp (), 185, 200

strncpy (), 185, 196, 200, 201, 205
strncpy () function, 195

Stroustrup, Bjarne, 409
strpbrk, 199
strpbrk (), 200, 201
strpbrk () function, 199
strrchr (), 200, 201

strspn (), 200
strstr (), 194, 200
strstr () function, 194
strtok (), 185, 200
strtok () function, 197
struct, 243

struct keyword, 37, 351
Student class, 277
Subclass template, 307
Subroutine, 96
Subscript, 126, 169
Subscript operator, 165, 266, 326, 352
Subtraction operator, 268, 353
sum (), 171, 176, 180
Sun Solaris, 1
Superclass, 275
swap algorithm, 369, 395
swap () function, 102
switch keyword, 37, 351
switch statement, 47, 54, 71, 74
Symboal:

infinity, 27

not at number, 30

INDEX 421

Syntax: Type (Cont.):
array declaration, 127 wchar_t, 347
System beep, 101 Type cast operator, 19
System clock, 78 Type casting, 25
Type construction operator, 352
Tamil aphabet, 347 Type conversion operator, 352, 353
Teluga alphabet, 347 Type definition, 138
Template Type parameter, 302
map, 340 typedef keyword, 37, 326, 351
multimap, 340 typeid keyword, 37, 351
multiset, 340 typename keyword, 37, 351
priority queue, 340
set, 340 UINT MAX constant, 20
template keyword, 37, 351 ULONG_MAX constant, 20
Ternary operator, 352 Unallocated memory, 164
Test driver, 90 Unary negation, 269
Text editor, 1 Unary operator, 352
Thai aphabet, 347 Underflow, 83
this keyword, 37, 351 Unicode, 347
this pointer, 247 Uninitialized pointer, 166
throw keyword, 37, 351 union keyword, 37, 351
time () function, 37, 78, 351 unique agorithm, 369, 395
Tibetan alphabet, 347 unique_copy adgorithm, 369, 396
Time UNIX, 1
logarithmic, 136 UNIX workstation, 24
Token, 6 unsigned int, 24
tokenize (), 207 unsigned keyword, 37, 351
Tolerance, 85 unsigned long, 24
tolower (), 191, 401 upper_bound agorithm, 368, 496
toupper (), 191, 401 User prompt, 270
toupper () function, 190 USHRT_ MAX constant, 20
Transform algorithm, 369, 395 using keyword, 37, 351
trap (), 176 using namespace Statement, 3
Trapezoidal Rule, 176 Utility function, 238
Traversal, 313
Tree diagram, 287 Vaue, 5, 7
true keyword, 17 Variable, 5, 8
true keyword, 37, 351 local, 95
Truncating, 25 Vector, 320
Truth tables, 41 vector class, 325, 354
try keyword, 37, 351 Vertical tab character, 99
Type, 156 Virtual destructor, 287, 292
bool, 17 Virtual function, 282, 283
character, 19 virtual keyword, 37, 351
enumeration, 137 void, 172
floating-point, 16 void function, 96
fundamental, 16 void keyword, 37, 351

integral, 16 volatile keyword, 37, 351

422

wchar_ t keyword, 37, 351
wchar_ t type, 347

while keyword, 37, 351
while Statement, 60, 64
White space characters, 99
Windows 98, 1

WordPad, 1

INDEX

xor keyword, 37, 351
xor_eq keyword, 37, 351

Zero-based indexing, 126, 307
Z-score, 146

	SCHAUM’S OUTLINE OF THEORY AND PROBLEMS of PROGRAMMING WITH C++ Second Edition
	Preface
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Index

