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Preface

Over the past two decades, wave optics has undergone a metamorphosis, be-
coming a very exciting field. Even within the realms of classical optics, there
have been reports of nonstandard and counterintuitive phenomena. These in-
clude the prediction and subsequent realization of negative index materials
and their use for superresolution. The field of metamaterials or engineered
materials has emerged in a big way to take up the challenges of beating the
diffraction limit or the Rayleigh criterion. Even the simplest problem of re-
flection and refraction, albeit with structured beams, offers a novel way of
understanding a fundamental notion like spin-orbit coupling. Special atten-
tion is given to beams carrying orbital angular momentum. The old problems
of Goos-Hänchen and Fedorov-Imbert shifts for spatially finite (in the trans-
verse plane) beams are being looked at from an altogether different angle.
Analogous spin-orbit coupling has been observed with tightly focused beams
in stratified geometry. Another applied area of research has been the trapping
of neutral particles in typical optical tweezer setups. There have been numer-
ous applications in biology and in other related areas. On a different note, a
proper understanding of light propagation in layered media—in particular, in
periodic structures—has opened up novel means for engineering the disper-
sion. We can, in fact, control the group velocity leading to fast and slow light
via the manipulation of the Wigner delay. The recognition that the stratified
media could be the optical prototype of one-dimensional scattering problems
in quantum mechanics led to several interesting effects like the Hartman effect
and the perfect transmission through reflectionless potentials. There have been
experiments to demonstrate all such effects in optics. The issues related to the
optical theorem and nonreciprocity also drew a lot of attention. Another ma-
jor discovery was the counterintuitive report on extraordinary transmission,
which resulted from an understanding of a flaw in the scalar Fresnel-Kirchhoff
diffraction theory.

We believe that most of the above discoveries, or at least their underlying
concepts, are well within the reach of undergraduate or advanced undergrad-
uate students of optics who have some basic knowledge of EM theory and
mathematics. The main aim of this book is to show that this is indeed so. Af-
ter a brief overview of elementary concepts, the readers are exposed to some
of the recent trends. Of course, the coverage is definitely not exhaustive or
complete. The goal is to pass on the excitement and thrill so that budding
students and researchers take interest in what is happening in optics today.

xv
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xvi Preface

The book has special appeal for Indian students since a great majority of them
are not exposed to such ideas in their standard optics courses.

A ‘nonstandard’ book like this could not have been achieved without help
from others. The book resulted from lectures and notes delivered at the Uni-
versity of Hyderabad and IISER Kolkata and especially from a series of Schools
and Discussion Meetings on Metamaterials and Plasmonics over several years.
A lot of simplified research material is also included. A great many thanks to
all our collaborators. Particular thanks are due to some of our students who
helped a great deal in preparing the manuscript. Among them, Nireekshan,
Jalpa and Shourya merit special mention.

S. Dutta Gupta, Hyderabad

N. Ghosh, Kolkata

A. Banerjee, Kolkata
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1.4.1 Solution for the forced undamped oscillator . . . . . . . . . . . . 17
1.4.2 Forced damped oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1.5.1 Two coupled pendulums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Oscillations and vibrations constitute one of the major areas of study in

physics. Most systems can oscillate freely. Generally, heavier ones have low
oscillation frequency while the lighter ones have large frequencies. The vari-

ety of phenomena exhibiting repetitive motions have been discussed nicely by

French [1]:

“Systems can vibrate freely in a large variety of ways.
Broadly speaking, the predominant natural vibrations of

1
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small objects are likely to be rapid, and those of large ob-
jects are likely to be slow. A mosquito’s wings, for example,
vibrate hundreds of times per second and produce an audible
note. The whole earth, after being jolted by an earthquake,
may continue to vibrate at the rate of about one oscilla-
tion per hour. The human body itself is a treasure-house of
vibratory phenomena.”

All the above phenomena have one thing in common, i.e., repetitive motion or
periodicity. The same pattern of displacement is repeated over and over again.
It can be simple or complicated. Irrespective of the nature of oscillations, the
pattern is generally represented by plots where the horizontal axis represents
the steady progress of time. Such pictures make it easy to recognize one cycle
or one period of oscillation, which keeps on repeating.

1.1 Sinusoidal oscillations

Sinusoidal oscillations take place in a vast majority of mechanical systems.
This is due to the fact that in most cases, the restoring force is proportional to
the displacement. Such motion is always possible if the displacement is small
enough. In general the restoring force F can have the following dependence
on the displacement x:

F (x) = −(k1x+ k2x
2 + k3x

3 + ...). (1.1)

For small displacements we can ignore the terms proportional to x2, x3 and
other higher-order terms. This leads to an equation of motion

m
d2x

dt2
= −k1x, (1.2)

which has a solution of the form

x = A sin(ωt+ φ0), ω =

√

k1
m
. (1.3)

Thus sinusoidal oscillation in simple harmonic motion is a prominent possi-
bility in small oscillations. It could be an approximation (though perhaps a
very close one) to the true motion.

The mathematical reasoning for having most of the oscillations as sinu-
soidal motion is based on the Fourier theorem. According to the theorem, any
disturbance that is periodic with period T can be built up from a set of pure
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Oscillations 3

sinusoidal oscillations of periods T , T/2, T/3, etc., with appropriately chosen
amplitudes.

A motion like Eq. (1.3) is referred to as simple harmonic motion (SHM).
Its basic characteristics are listed below:

1. The motion is confined within x = ±A. A is known as amplitude.

2. The motion has period T , which is the time between successive maxima,
or, more generally, between two successive times having the same value
of the pair x and dx

dt .

Given Eq. (1.3), T must correspond to an increase of 2π in the argument of
sine:

ω(t+ T ) + φ0 = (ωt+ φ0) + 2π ⇒ T =
2π

ω
. (1.4)

The known state for displacement x and velocity v = dx
dt at t = 0 (or at any

other moment) completely specifies later (or earlier) behavior. For t = 0,

x0 = A sin(φ0), (1.5)

v0 = ωA cos(φ0), (1.6)

which can be solved for the amplitude A and phase φ0:

A =

√

x20 +
(v0
ω

)2

, (1.7)

φ0 = arctan

(

ωx0
v0

)

. (1.8)

Every real oscillation has a beginning and an end. If a SHM starts at t1
and switches off at t2, then its mathematical description amounts to three
statements:

−∞ < t < t1 x = 0,

t1 6 t 6 t2 x = A sin(ωt+ φ0),

t2 < t <∞ x = 0.

Think about the physical and mathematical implications of ‘infinite’ vs. ‘finite.’

1.1.1 Rotating vector representation

Simple harmonic motion can be regarded as the projection of uniform
circular motion (see Fig. 1.1). Let a horizontal disk of radius A rotate with
uniform angular velocity ω [rad/sec]. Let a peg P be attached to it at the edge
and let a parallel beam of light cast the shadow of the peg on the vertical wall.
Then, this shadow performs a SHM with period T = 2π/ω. The instantaneous
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θ

P

A

x

FIGURE 1.1: SHM as a projection of uniform circular motion.

position of point P is determined by radius A and the variable angle θ. As with
polar coordinates, we take the counterclockwise direction as positive. Angle θ
can be written as

θ = ωt+ α, (1.9)

where α is the value of θ at t = 0. The displacement x is then given by

x = A cos(θ) = A cos(ωt+ α) = A sin(ωt+ α+ π/2). (1.10)

Thus if SHM is written as in Eq. (1.3), then φ0 = α+ π/2.

1.2 Superposition of periodic motions

In many physical situations two or more harmonic oscillations are applied
to the same object. A typical situation may correspond to the human eardrum
subjected to sound from different sources. Henceforth we will assume the fol-
lowing: The resultant of two or more harmonic oscillations will be
taken to be the sum of individual oscillations. The associated physical
question is indeed very deep. Is the displacement produced by two disturbances
acting together equal to a straightforward superposition of the displacements
as they occur separately? The answer to this can be yes or no depending on
whether or not the displacement is proportional to the force causing
it. If simple addition (superposition) holds, we say that we are dealing with
a linear system.
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1.2.1 Superposition of two oscillations having the same
frequency

The mathematics of this physical situation is discussed in Appendix A
dealing with complex notations. Some interesting consequences follow if we
look at Eq. (A.29),

|Z0|2 = A2
0 = A2

1 +A2
2 + 2A1A2 cos(φ2 − φ1), (1.11)

which uses the same values for the amplitudes, i.e., A1 = A2 = A. For the
amplitude of the resultant field we then have

A0 = 2A cos(δ/2), δ = φ2 − φ1. (1.12)

It is clear from Eq. (1.12) that the amplitude can vanish for discrete values of
the phase difference. It can also achieve the maximum value 2A at intermediate
points. Thus destructive or constructive interference is a typical signature of
superposition of oscillatory phenomena.

1.2.2 Superposition of two oscillations having different
frequencies

Let the two oscillations of distinct frequencies be given by

x1 = A1 cos(ω1t), (1.13)

x2 = A2 cos(ω2t). (1.14)

For brevity we dropped the initial phases. For arbitrary ω1 and ω2, the resul-
tant displacement x = x1 + x2 can be complicated—perhaps never repeating
itself, for example. The condition for periodicity of the combined motion is
that the component motion periods must be commensurable. There should
exist two integers n1 and n2 such that

T = n1T1 = n2T2. (1.15)

The period of the combined motion is given by T obtained for smallest integral
values of n1 and n2. For example, for T = 0.02 sec, f1 = ω1/(2π)= 450 Hz,
f2 = ω2/(2π) = 100 Hz, and we have n1 = 9 and n2 = 2. See Fig. 1.2 for a
visual presentation of this situation.

In the case of commensurable periods, the resultant oscillation can depend
on the initial phases. This is depicted in Figs. 1.3 and 1.4 for oscillations
having maxima at t = 0 (e.g., A1 cos(ω1t) and A2 cos(ω2t)) and 0 at t = 0
(e.g., A1 sin(ω1t) and A2 sin(ω2t)).

We now analyze the beating effect, assuming the two SHM amplitudes to
be the same. In that case we obtain

x = A(cos(ω1t) + cos(ω2t)) = 2A cos

(

ω1 − ω2

2
t

)

cos

(

ω1 + ω2

2
t

)

. (1.16)
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FIGURE 1.2: Superposition of two oscillations with commensurable periods
(2:9).

Eq. (1.16) holds for any pairs of frequencies. But beat phenomena are physi-
cally meaningful when

|ω1 − ω2| ≪ ω1 + ω2, (1.17)

i.e., when the combined oscillation approximates a SHM at the average fre-
quency (ω1 + ω2)/2. The envelope of such oscillations is given by

x = ±2A cos

(

ω1 − ω2

2
t

)

. (1.18)

The beating of two oscillations with two frequencies (600 and 700 Hz) is shown
in Fig. 1.5. The time between two successive zeros of the envelope is one half-
period of the modulating envelope, i.e., 2π/(|ω1 −ω2|) because of the ± sign
in front. Thus the beat frequency is simply the difference of the individual
frequencies and not half of this frequency.

1.2.3 Combining two oscillations at right angles

Earlier we were discussing superposition of two oscillations in one dimen-
sion. We now concentrate on the case when the two oscillations take place
along perpendicular directions. Let a point moving in the xy plane experience
simultaneously the displacements along x and y as follows:

x = A1 cos(ω1t+ α1), (1.19)

y = A2 cos(ω2t+ α2). (1.20)
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FIGURE 1.3: Superposition of two oscillations with commensurable periods
(2:3) with maxima at t = 0.

We consider two special cases, namely, (i) when the perpendicular oscillations
have the same frequency and (ii) when the frequencies are different.

Perpendicular motions with equal frequencies

With a suitable choice of initial time, Eqs. (1.19) and (1.20) can be written
as

x = A1 cos(ωt), (1.21)

y = A2 cos(ωt+ δ). (1.22)

Here δ is the initial phase difference, and in this case it is the phase difference
at all other times. For different values of δ, we have different relations between
x and y:

δ = 0, y = (A2/A1)x, (1.23)

δ = π/2,
x2

A2
1

+
y2

A2
2

= 1, (1.24)

δ = π, y = −(A2/A1)x, (1.25)

δ = 3π/2,
x2

A2
1

+
y2

A2
2

= 1. (1.26)

Though the equations of the ellipse given by Eqs. (1.24) and (1.26) are the
same, the first (second) one is drawn clockwise (counterclockwise). For δ =
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FIGURE 1.4: Superposition of two oscillations with commensurable periods
(2:3) with zero at t = 0.

π/4, we can obtain the resultant motion by following the procedure outlined
in Fig. 1.6. It is again an ellipse but with major and minor axes not along x
and y directions.

Perpendicular motions with distinct frequencies

The procedure outlined above can be used to depict the motion in this
case. In Fig. 1.7 we show the resultant motion for ω2 = 2ω1 as well as δ =
0, π/4, π/2, 3π/4 and π (from left to right, respectively). Such curves are
sometimes referred to as Lissajous figures (after J. A. Lissajous, 1822–1880).
For example, Fig. 1.7 can be reproduced using the diagrammatic approach
as in Fig. 1.6. The curve depicted in the leftmost panel can be obtained by
dividing the reference circle for the motion at frequency ω2 into eight equal
time intervals, i.e., into arcs subtending π/4 each, and by remembering that
for ω2 = 2ω1, one complete cycle of ω2 corresponds to only one half-cycle of
ω1.

1.3 Free oscillations

The restoring forces in any actual system are linear in the displace-
ment only as an approximation. Nevertheless, in a vast majority of cases the
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FIGURE 1.5: Beating of two oscillations with commensurable periods (6:7).

deformation produced results in restoring forces proportional to displacement
and hence leads to simple harmonic motions. We consider several such cases
by picking examples from various areas. But first we will carry out a deeper
analysis of a basic mass-spring system, which serves as a prototype of many
oscillatory systems. Specifically we consider a point mass attached to an ideal
spring undergoing one-dimensional oscillatory motion. Two essential features
necessary for oscillatory motion can immediately be identified. They are

• An inertial component capable of carrying kinetic energy and

• An elastic component capable of storing potential energy.

Assuming Hooke’s law to be valid, we can obtain the potential energy as
proportional to the square of the displacement, while the kinetic energy is
mv2/2. We can also write the equation of motion for the mass in either of two
ways:

1. By Newton’s law (F = ma),

−kx = ma, or (1.27)

2. By conservation of total mechanical energy,

1

2
mv2 +

1

2
kx2 = E. (1.28)

Note that Eq. (1.28) can be obtained from Eq. (1.27) by writing the first in the
differential form, multiplying both sides by (dxdt ) and integrating both sides.
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1

1

2

2

FIGURE 1.6: Superposition of two perpendicular oscillations with the same
frequency, but with phase difference π/4.

Indeed,

m
d2x

dt2
dx

dt
+ kx

dx

dt
= 0, (1.29)

1

2
m

(

dx

dt

)2

+
1

2
kx2 = E. (1.30)

The solution to these equations can be written as

x = A cos(ωt+ α), (1.31)

where ω2 = k/m and the unknown constants A and α are to be determined
from the initial conditions x(t = 0) = x0 and (dxdt )t=0 = v(t = 0) = v0.

1.3.1 General solution of the harmonic oscillator equation

Consider the equation for SHM given by

d2x

dt2
+ ω2x = 0. (1.32)

We seek the solution in the form

x = Cept, (1.33)

which after substitution in Eq. (1.32) yields the characteristic equation for p
as

p2 + ω2 = 0. (1.34)
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−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

FIGURE 1.7: Superposition of two perpendicular oscillations with distinct
frequencies with phase difference δ = 0, π/4, π/2, 3π/4 and π (from left to
right).

m

k

FIGURE 1.8: Mass-spring system.

Eq. (1.34) immediately leads to a pair of purely imaginary solutions, namely,
p = ±iω and the general solution that can then be written as

x(t) = C1e
iωt + C2e

−iωt. (1.35)

Note that the general solution of a second-order ordinary differential equation
has two constants figuring in it. The physical solution will correspond to the
real part of Eq. (1.35), which can be written as

x = (C′
1 + C′

2) cos(ωt)− (C′′
1 − C′′

2 ) sin(ωt), (1.36)

where primes and double primes denote real and imaginary parts, respectively.
Introducing notations as C′

1+C
′
2 = A cosα and C′′

1 −C′′
2 = A sinα, Eq. (1.36)

can be cast in the form
x = A cos(ωt+ α). (1.37)

The same result can be obtained using the rotating vector representation. The
first (last) term in Eq. (1.35) corresponds to the vector C1 (C2) rotating in
the counterclockwise (clockwise) direction. These combine to give a harmonic
oscillation along the x-axis if the lengths are the same. C2 is rotated through
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C

ωt

−ωt

α

−α

x

C

FIGURE 1.9: Superposition of complex solutions.

some angle α clockwise from −ωt, provided that C1 is rotated through α with
respect to ωt (see Fig. 1.9). This analysis clearly reveals that linear motion can
be obtained as a superposition of circular motions, which is just the opposite
of the case of Lissajous figures, where we superposed linear motions to get
‘circular’ motion. The last statement has deep meaning in the context of the
interchangeability of linear and circular polarizations.

1.3.2 Elasticity, Hooke’s law and Young’s modulus

Stretching a rod or a wire provides the simplest example amenable to easy
analysis. We assume the system to be in static equilibrium.

1. For a given material with a given cross-sectional area A, the elongation
∆l under a given force is proportional to the original length l0. The
dimensionless ratio ∆l/lo is called the strain.

2. It is an experimental observation that for rods of a given material, but
of different A, the same strain is caused by forces proportional to A. The
ratio ∆F/A is called the stress and has the dimension of force per unit
area, or pressure.

3. For small strains (≤ 0.1%), the relation between stress and strain is
linear in accordance with Hooke’s law. The value of this constant for
any given material is called Young’s modulus of elasticity Y .

We thus have
dF/A

dl/l0
= −Y. (1.38)
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If we choose a different notation (x for displacement, and F for force)
Eq. (1.38) can be recast in the standard form of SHM,

F = −
(

AY

l0

)

x. (1.39)

Here the spring constant can be identified as k = AY/l0.

1.3.3 Pendulums

A conventional simple pendulum is shown in Fig. 1.10 and we must note
that the motion of the bob is essentially two-dimensional in contrast to the
problems discussed earlier. Indeed, though the motion is predominantly hori-
zontal (along x), there is a vertical displacement (along y) associated with a
change in the gravitational potential energy. This situation is well suited for
a discussion based on the formulas for the conservation of energy

1

2
mv2 +mgy = E, where v2 =

(

dx

dt

)2

+

(

dy

dt

)2

. (1.40)

It is clear from Fig. 1.10 that l2 = (l− y)2+ x2 or x2 = 2ly− y2 and for small
θ, y ≪ x and we have x2 = 2ly so that

y ≈ x2

2l
. (1.41)

Using this approximate relation and the other consequence
(

dx
dt

)

≫
(

dy
dt

)

, we

can recast the energy conservation relation Eq. (1.40) in the form

1

2
m

(

dx

dt

)2

+
1

2

mg

l
x2 = E. (1.42)

θ

Px

y

O

l

FIGURE 1.10: Schematic view of a simple pendulum.
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Eq. (1.42) can easily be recognized as one describing SHM with frequency
ω =

√

g/l.

Damping of free oscillations

All physical systems are subjected to dissipative processes. For example,
the motion of the bob of the pendulum is subjected to air resistance (frictional
force). In a general case, in the lowest approximation we can write the damping
force as

Fdamping = −bv. (1.43)

Note that this force is proportional to the magnitude of velocity and acts in
the opposite direction of velocity. Accounting for this force, Newton’s equation
can be reduced to

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = 0, (1.44)

where 2γ = b/m, ω2
0 = k/m (in case of a mass on a spring). Assuming a

solution of the form exp(iβt), the characteristic equation can be written as

ω2
0 − β2 + 2iγβ = 0, (1.45)

which can be easily solved for β, yielding the pair of roots given by

β1,2 = iγ ± ω, ω2 = ω2
0 − γ2. (1.46)

It is clear that damping modifies the oscillation frequency. In terms of system
parameters, ω can be expressed as

ω =

√

k

m
−
(

b

2m

)2

. (1.47)

Using Eq. (1.46) one can write the general solution as

x = C1e
iβ1t + C2e

iβ2t, (1.48)

= e−γt
(

C1e
iωt + C2e

−iωt) . (1.49)

Finally, taking the real part, Eq. (1.49) can be reduced to the following:

x = Ae−γt cos(ωt+ α). (1.50)

Thus, the solution represents ‘damped harmonic’ oscillations with frequency
ω distinct from the natural frequency ω0 (modification due to damping) with
an amplitude that decays in time in an exponential fashion. As expected this
damping is determined by γ characterized by the damping force constant b.
This is shown in Fig. 1.11. From this graph as well as Eq. (1.50), we can
recognize γ as the reciprocal of the time required for the amplitude to decay
to 1/e of its initial value.
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FIGURE 1.11: Damped harmonic oscillation with f = 600 Hz, γ = 2πf/100
and α = 0.

Depending on how ω0 and γ compare with each other, we can distin-
guish three different regimes, namely, (i) under-damped, (ii) over-damped and
(iii) critically damped. In fact, Eqs. (1.46)–(1.50) describe the under-damped
regime when γ < ω0 leads to real values for ω. In many cases γ is much smaller
than the natural frequency ω0 so that we almost have ‘harmonic’ oscillation,
albeit with exponential damping as shown in Fig. 1.11. Keeping in mind that
the total energy of harmonic oscillation is given by kA2/2, we can find the
temporal evolution of total energy as

E(t) =
1

2
kA2

0e
−2γt = E0e

−2γt, (1.51)

where A0 and E0 are the initial amplitude and energy, respectively, at time
t = 0. In the context of damped oscillatory systems, we often talk about a
universal figure of merit (dimensionless), otherwise known as the quality factor
or simply the Q-factor. It is defined as

Q =
ω0

2γ
. (1.52)

It is clear that low values of γ imply large Q-factors, meaning thereby that
the system is likely to sustain oscillations longer. The modified oscillation
frequency can be expressed in terms of the Q-factor as

ω2 = ω2
0

(

1− 1

4Q2

)

. (1.53)

Thus if Q≫ 1 it follows that ω ≈ ω0 and Eq. (1.50) can be written as

x = Ae−ω0t/(2Q) cos(ω0t+ α). (1.54)

In the over-damped case, γ > ω0, and instead of Eq. (1.46) we have

β1,2 = i(γ ± ξ), ξ2 = γ2 − ω2
0 , (1.55)
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and the general solution can be written as

x = c1e
−(γ+ξ)t + c2e

−(γ−ξ)t. (1.56)

The critically damped case corresponds to the equality γ = ω0 and in that
case the solution is written as

x = (A+Bt)e−γt. (1.57)

1.4 Forced oscillations and resonance

In contrast to the previous section, we now consider a physical oscilla-
tory system driven by a periodic force and try to explain the important phe-
nomenon of ‘resonance.’ Resonances are encountered in a variety of seemingly
different physical situations, ranging from atoms driven by laser light to a
swing pushed periodically. Let us try to understand the phenomenon of res-
onance in layperson’s terms. Any oscillatory system has a natural frequency
of oscillation ω0. If the driving field frequency ω is close to this natural fre-
quency, then the amplitude of oscillation can be made very large by quite a
small force. Away from the natural frequency (to both positive and negative
sides), the effect of the same force is not very prominent, i.e., the amplitude
produced can be very small. The farther away the frequency is from the reso-
nance frequency, the smaller is the amplitude. The enhanced response of the
system near the natural frequency is termed resonance.

For a model system we again pick the usual massm on a spring with spring
constant k. Let a sinusoidal driving force F = F0 cos(ωt) be applied to the
system so that Newton’s equation in absence of damping reads as

m
d2x

dt2
= −kx+ F0 cos(ωt) (1.58)

or
d2x

dt2
+ ω2

0 =
F0

m
cos(ωt). (1.59)

A qualitative analysis of Eq. (1.59) reveals that driven from equilibrium, the
oscillator has a tendency to oscillate at its natural frequency ω0, while the
driving force tries to leave its imprint at the driving frequency ω. Thus the
resultant motion will be a superposition of oscillations at these two frequen-
cies. However, due to inevitable damping (missing in the above equations), the
natural oscillations will die out, leaving only the forced part. The initial stage
when both the oscillations are present is termed ‘transient,’ while the long-
time behavior is dictated by the forced oscillations. Mathematically, Eq. (1.59)
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is inhomogeneous since it has a right-hand side function of time not involv-
ing the dependent variable x or its derivative. The general solution of such
an equation is a superposition of (i) a general solution of the homogeneous
equation (when the right-hand side is equated to zero) and (ii) a particular
solution of the inhomogeneous equation (in this case the forced part, not in-
volving any constants). The general solution of the homogeneous equation,
of course, contains two arbitrary constants (see, for example, Eq. (1.35)) and
this is the part that dies out in the presence of damping (see Eq. (1.49)).

1.4.1 Solution for the forced undamped oscillator

Consider the complex equivalent of Eq. (1.59):

d2x

dt2
+ ω2

0x =
F0

m
e−iωt. (1.60)

In Eq. (1.60) we used the same notation for the complex dependent variable x.
We have to remember to project it onto the real axis for the physical solution.
Assuming a solution of the form

x = Ae−i(ωt−α), (1.61)

and substituting in Eq. (1.60), we have

(ω2
0 − ω2)A =

F0

m
e−iα =

F0

m
(cosα− i sinα). (1.62)

Equating the real and imaginary parts on both sides, we have

A =
F0/m

(ω2
0 − ω2)

cosα, (1.63)

0 =
F0

m
sinα. (1.64)

In order to ensure that A is positive on both sides of the resonance frequency
ω0, we pick α = 0 for ω < ω0 and α = π for ω > ω0. Thus the complete
particular solution to Eq. (1.59) can be written as

x =
F0/m

(ω2
0 − ω2)

cosα cos(ωt− α), (1.65)

where α = 0 for ω < ω0 and α = π for ω > ω0. Thus transition through
resonance (ω = ω0) is associated with a jump in phase by π. The behavior of
amplitude and phase is shown in Fig. 1.12.

1.4.2 Forced damped oscillations

In Section A.3.2 of Appendix A, we looked at the mathematics of forced
damped oscillations in order to highlight the advantages of complex notations.

© 2016 Taylor & Francis Group, LLC

  



18 Wave Optics: Basic Concepts and Contemporary Trends

0 5 10 15
0

0.005

0.01

0.015

0.02

frequency

am
p

li
tu

d
e

0 5 10 15
0

0.2

0.4

0.6

0.8

1

frequency

p
h

as
e

f0 f0

(a) (b)

FIGURE 1.12: Undamped forced harmonic oscillation: (a) shows the ampli-
tude while (b) shows the phase in units of π.

However, we redo the exercise again due to notational changes and for main-
taining the consistency. Including damping, Eq. (1.60) can be rewritten as

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x =
F0

m
e−iωt. (1.66)

Substituting a solution of the form (1.61) and equating the real and imaginary
parts on both the sides, we have

A =
F0/m

(ω2
0 − ω2)

cosα, (1.67)

2γωA =
F0

m
sinα. (1.68)

Squaring and adding both sides of Eqs. (1.67) and (1.68), we can deduce the
expression for A as

A =
F0/m

[(ω2
0 − ω2)2 + (2γω)2]

1/2
. (1.69)

Dividing each side of Eq. (1.68) by those of Eq. (1.67), we can derive the
expression for the phase

tan(α) =
2γω

ω2
0 − ω2

. (1.70)
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FIGURE 1.13: Damped forced harmonic oscillation with resonance fre-
quency f0 = ω0/2π: (a) shows the amplitude while (b) shows the phase in
units of π.

In terms of the quality factor Q = ω0/(2γ), the expressions for the amplitude
and phase can be rewritten as

A =
F0/m

[

(ω2
0 − ω2)2 + (ωω0

Q )2
]1/2

, (1.71)

tan(α) =

ωω0

Q

ω2
0 − ω2

. (1.72)

The results for the amplitude and phase for this case are shown in Fig. 1.13,
where we have plotted these quantities for three different values of Q, namely,
Q = 10 (dash-dotted), 5 (dashed) and 1 (dotted), respectively. For comparison
we have also shown the case when there is no damping (solid lines). Note that
finite damping removes the singularity at ω = ω0. Besides, a higher-quality
factor leads to a higher response with larger amplitudes.

Transients

In the transient regime, the solution, as mentioned earlier, can be written
as

x = Be−γt cos(ω1t+ α1) +A cos(ωt− α), (1.73)

where B and α1 are arbitrary constants, ω2
1 = ω2

0 − γ2 and A and α are
given by Eqs. (1.69) and (1.70) (or Eqs. (1.71) and (1.72)). It is clear from
Eq. (1.73) that in the absence of damping and for nearby frequencies, the
solution represents the beating of two sinusoids. In the presence of damping
in off-resonant cases, the beating persists for some time and finally the os-
cillations settle down to constant amplitude A. In the resonant case there is
no beating, and the final amplitude is reached in a monotonic fashion. These
features are shown in Fig. 1.14.
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FIGURE 1.14: Transients in forced harmonic oscillation (temporal evolu-
tion of the amplitudes). (a) Corresponds to very large Q (∼ 20000). Almost
nonexistent damping leads to beating of the natural frequency ω0 and the
driving frequency ω. (b) and (c) are when Q = 20 and show the off-resonant
(ω = 0.85 ω0) and the resonant (ω ≈ ω0) behavior, respectively.

1.5 Coupled oscillations and normal modes

In most of our earlier discussions, we concentrated on the type of oscilla-
tions that have mostly the same frequency. In reality the system may have
components that oscillate with different frequencies. Each oscillating compo-
nent has specific effects on the others and vice versa. For example, a solid
body is composed of many atoms or molecules. Every atom may behave like
an oscillator, vibrating about the equilibrium position. Motion of each atom
affects the neighbors. Thus all the atoms are coupled together. A question
results: How does the coupling affect the behavior of individual oscillators?

1.5.1 Two coupled pendulums

Consider the system of two identical pendulums A and B joined by a spring
of rest length equal to the distance between the bobs (see Fig. 1.15). This sys-
tem serves as a prototype toward understanding more complicated phenomena
involving many oscillators. Let pendulum A be pulled to a distance, keeping
B held at equilibrium, and then let both be released. Oscillations of A will
decrease while those of B will gain in amplitude. Finally, the motion of A will
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AA BB

(a) (b)

FIGURE 1.15: Two coupled pendulums, (a) at rest and (b) when B is kept
at equilibrium with A displaced and both then released.

be transferred to B and then this pattern of exchange of motion will continue.
Individual motion of A or B resembles that of beating with two frequencies.
Indeed, there are two characteristic frequencies of the coupled system and
they are termed the normal modes. Any oscillation of the coupled system can
always be written as a superposition of these two normal modes.

A change in the initial conditions makes it easy to recognize the normal
modes (see Fig. 1.16). Suppose we draw both A and B to one side by equal
amounts and release them. Let the distance between them be fixed and equal
to the relaxed length of the spring. Both A and B will oscillate in phase. Since
the spring is not stretched it does not affect oscillation frequency, which is
just the individual oscillation frequency ω0 =

√

(g/l) of the pendulums. In
the absence of damping, these oscillations will continue forever. This is one of
the two normal modes and ω0 is one normal mode frequency. The solutions
in this case are given by

xA = C cos(ω0t), xB = C cos(ω0t). (1.74)

If A and B are drawn to opposite sides by equal amounts and then released,
such oscillations can persist forever. This is the other normal mode with a
higher frequency. We calculate this frequency as follows. If the pendulums
were free, a displacement of x would correspond to a restoring force of mω2

0x.
In the presence of coupling spring, either it is stretched or compressed by an
amount 2x and hence the additional force is 2kx (k is the spring constant).
Thus the equation of motion for A is

m
d2xA
dt2

+mω2
0xA + 2kxA = 0, (1.75)

or
d2xA
dt2

+ ω2
0xA + 2ω2

cxA = 0, (1.76)
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FIGURE 1.16: (a) Symmetric and (b) antisymmetric normal modes.

where ω2
c = k/m. We can easily recognize the resonance frequency ω′ from

Eq. (1.76) as

ω′2 = ω2
0 + 2ω2

c =

(

g

l
+

2k

m

)

. (1.77)

For the said initial conditions, the solutions are

xA = D cos(ω′t), xB = −D cos(ω′t). (1.78)

Note that at any given moment, the motion of B is the mirror image of motion
of A. The motions of A and B are π out of phase.

It is important to observe that if any pendulum is clamped, the angular
frequency of the other has two contributions, one from the gravity and the
other from the spring. Thus the net frequency is

√

(ω2
0 + ω2

c ). If this frequency
(characteristic of one oscillator) is taken as the reference, then the two normal
mode frequencies lie on the two sides of it (i.e., one greater and the other
smaller).

1.5.2 Superposition of normal modes

We mentioned earlier that once excited in any of the normal modes (of
course for suitable initial conditions), the system continues in the same os-
cillatory state. For any other initial conditions resulting in more complicated
oscillatory pattern, the resultant oscillations can always be perceived as a su-
perposition of the normal modes. In mathematical terms these normal modes
form a suitable basis for representing any free motion of the coupled system.
Here we show how this is done.

Pick any arbitrary moment when A is displaced by xA and B is displaced
by xB resulting in a stretching of the spring by an amount xA − xB (see
Fig. 1.17). Thus the spring pulls on A and B with a force with magnitude
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b

B A

a

FIGURE 1.17: Displacement of the two pendulums at any arbitrary mo-
ment.

proportional to k(xA − xB). Since the direction of this force is opposite for A
and B, the restoring forces on A and B, respectively, are given by

mω2
0xA + k(xA − xB) and mω2

0xB − k(xA − xB) (1.79)

so that the equations of motion are written as

m
d2xA
dt2

+mω2
0xA + k(xA − xB) = 0, (1.80)

m
d2xB
dt2

+mω2
0xB − k(xA − xB) = 0. (1.81)

Using the notations introduced earlier, the equations above can be reduced to

d2xA
dt2

+ (ω2
0 + ω2

c )xA − ω2
cxB = 0, (1.82)

d2xB
dt2

+ (ω2
0 + ω2

c )xB − ω2
cxA = 0. (1.83)

Adding and subtracting the above two equations, we have the equations for
the sum (xA + xB = q1) and difference (xA − xB = q2) displacements,

d2q1
dt2

+ ω2
0q1 = 0, (1.84)

d2q2
dt2

+ (ω2
0 + 2ω2

c)q2 = 0. (1.85)

Using the notation ω′ =
√

ω2
0 + 2ω2

c , we can write one solution (not the general
one) as

q1 = C cos(ω0t), q2 = D cos(ω′t), (1.86)
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where C and D are to be evaluated from initial conditions. The frequencies
ω0 and ω′ are known as the normal frequencies.

It is important to note the differences between the pairs of equations (1.82),
(1.83) and (1.84), (1.85), though they describe the same system. While the
first two are coupled (in the sense that one cannot be solved without the
other), in the second pair the equations are independent of each other, each
one representing a normal mode of the system. This is why if any of the
normal modes is excited, it persists forever, not being affected by the other.
In other words if through some algebraic manipulations we have reduced a
coupled system into its independent components, then we have reduced the
system to its normal modes. The dependent variables q1 and q2 are sometimes
referred to as normal coordinates, and this procedure is termed normal mode
decomposition.

Going back to the original displacements xA and xB , the solutions can be
written as

xA =
1

2
(q1 + q2) =

1

2
(C cos(ω0t) +D cos(ω′t)), (1.87)

xB =
1

2
(q1 − q2) =

1

2
(C cos(ω0t)−D cos(ω′t)). (1.88)

It is clear that if C = 0, both pendulums oscillate at one normal frequency ω′,
while D = 0 implies oscillation at the other frequency ω0. Thus one important
characteristic of the normal frequency is that both the bobs can oscillate at
that frequency.

For initial conditions given by

xA = A0,
dxA
dt

= 0, xB = 0,
dxB
dt

= 0, (1.89)

which correspond to B at the equilibrium position with null velocity while A is
moved to A0 and released (initial null velocity), we can solve for the unknown
constants to obtain C = A0, D = A0. Hence

xA =
1

2
A0(cos(ω0t) + cos(ω′t)), (1.90)

xB =
1

2
A0(cos(ω0t)− cos(ω′t)). (1.91)

Eqs. (1.90) and (1.91) can be reduced to the following form:

xA = A0 cos

(

ω′ − ω0

2
t

)

cos

(

ω′ + ω0

2
t

)

, (1.92)

xB = A0 sin

(

ω′ − ω0

2
t

)

sin

(

ω′ + ω0

2
t

)

. (1.93)

Both of these represent oscillation at the average frequency (ω′+ω0)/2 with a
low frequency modulation. The amplitude of one goes to the peak value while
that of the other goes to zero.

© 2016 Taylor & Francis Group, LLC

  



Oscillations 25

1.5.3 Coupled oscillations as an eigenproblem: Exact
analysis

Let us now address the coupled mode problem from a different angle,
namely, as an eigenvalue problem. We first reduce the two second-order equa-
tions, Eqs. (1.82) and (1.83), to a set of four coupled first-order equations by
writing the dependent variables as

x1 = xA, x2 =
dxA
dt

, x3 = xB, x4 =
dxB
dt

. (1.94)

With these definitions Eqs. (1.82) and (1.83) take the following compact ma-
trix form

d

dt









x1
x2
x3
x4









=









0 1 0 0
−ω2

oc 0 ω2
c 0

0 0 0 1
ω2
c 0 −ω2

oc 0

















x1
x2
x3
x4









. (1.95)

Here we have defined ω2
0 +ω2

c = ω2
oc. The solution of Eq. (1.95) is determined

by the eigenvalues and the corresponding eigenvectors of the 4× 4 matrix on
the right-hand side. The eigenvalues of the above 4 × 4 matrix are given by
the roots of the characteristic equation

λ4 + 2λ2ω2
oc + ω4

oc − ω4
c = 0. (1.96)

The roots of this equation are given by

λ2 = ω2
oc ± ω2

c . (1.97)

One pair of roots is given as λ = ±iω0, while the other pair is ±iω′, where
ω′ =

√

ω2
0 + 2ω2

c as before. We can thus recover the oscillation frequencies of
the normal modes expressed in Eqs. (1.84) and (1.85). Further, calculation of
the eigenvectors will lead to the normal modes q1 and q2 described earlier.

1.5.4 Coupled oscillations as an eigenproblem: Approximate
analysis

In the literature, an approximation, referred to as the slowly varying en-
velope approximation (SVEA), is often used. The purpose SVEA serves is to
get rid of the higher-order derivatives on physical grounds and thus reduce
the complexity of the problem. Here we demostrate how SVEA works in the
context of normal modes discussed earlier. We will make use of the complex
notations in order to solve Eqs. (1.82) and (1.83). We write the solutions as

xA = xa(t)e
−iω0t, (1.98)

xB = xb(t)e
−iω0t, (1.99)
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and treat xa(t) and xb(t) as slowly varying so that the change in x(t) (for
both the subscripts) over one high-frequency period (= 2π/ω0) is negligible
compared to the function itself,

∣

∣

∣

∣

d2x(t)

dt2

∣

∣

∣

∣

≪ ω0

∣

∣

∣

∣

dx(t)

dt

∣

∣

∣

∣

≪ ω2
0 |x(t)| . (1.100)

Making use of the approximation (1.100) and Eqs. (1.98) and (1.99), the set
of coupled Eqs. (1.82) and (1.83) can be written in matrix form as

(

ẋa
ẋb

)

=
i

2ω0

(

−ω2
c ω2

c

ω2
c −ω2

c

)(

xa
xb

)

= A

(

xa
xb

)

. (1.101)

The eigenvalues of the matrix A determine the frequencies for the normal
modes. The eigenvalues λ1 and λ2 are found to be

λ1 = 0, (1.102)

λ2 = −iω
2
c

ω0
. (1.103)

Thus, one of the normal modes oscillates at ω0, and the other at ω0+(ω2
c/ω0).

Note that the latter can easily be recognized as ω′ =
√

ω2
0 + 2ω2

c ≈ ω0 +
(ω2
c/ω0) when the coupling is weak (ωc ≪ ω0). In fact, SVEA is applicable

in this weak coupling situation. Further, we can find out the corresponding
eigenvectors that will correspond to the normal modes mentioned earlier. We
can refer to Goldstein [2] for a detailed analysis of similar cases.
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Chapter 2

Scalar and vector waves
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2.3.1 Lorentz model for dispersion in a dielectric . . . . . . . . . . . . . 31
2.4 Phase and group velocities: Sub- and superluminal light . . . . . . . . 33
2.5 Energy and momentum of electromagnetic waves . . . . . . . . . . . . . . . 35

2.5.1 Poynting vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.2 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 Plane waves

The plane wave is the simplest example of a three-dimensional wave. They
are characterized by plane wavefronts (see below for a definition), which are
perpendicular to the direction of propagation. In other words, they refer to
the case when all the surfaces, upon which the disturbance has a constant
phase, form a set of planes, each generally perpendicular to the propagation
direction.

We first derive the equation of a plane that is perpendicular to a given
vector k = (kx, ky, kz) (in our case the propagation vector) and that passes
through some point (x0, y0, z0). The position vector r = (x, y, z) for such a
plane satisfies

(r− r0) · k = 0, (2.1)

kx(x− x0) + ky(y − y0) + kz(z − z0) = 0, (2.2)

kxx+ kyy + kzz = a = kxx0 + kyy0 + kzz0, (2.3)

k · r = constant = a. (2.4)

The plane given by Eq. (2.4) is the locus of all points whose projection on
the k direction is a constant. Let ψ(r) vary sinusoidally in space as ψ(r) =
Aeik·r or ψ(r) = A cos (k · r). For each of these expressions, ψ is constant over
every plane defined by the plane k · r = constant. Since these functions are
harmonic, they must repeat themselves in space after λ in the direction of k:

ψ(r) = ψ(r+ λk/k). (2.5)

27
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In terms of the exponents, Eq. (2.5) reduces to

Aeik·r = Aeik·r eiλk. (2.6)

Therefore λk = 2π and we get

k =
2π

λ
. (2.7)

At a fixed point in space, both r and ψ(r) are constants, and the planes are
motionless. For things to move, ψ(r) has to vary in time:

ψ(r, t) = Aei(k·r−ωt). (2.8)

For waves propagating along the z direction, Eq. (2.8) (k having the only
nonzero component k along z) can be written in the form

ψ(z, t) = Aei(kz−ωt). (2.9)

It is easy to verify that Eq. (2.9) satisfies the scalar wave equation given by

∂2ψ

∂z2
− 1

v2
∂2ψ

∂t2
= 0, (2.10)

where the phase velocity v is given by

v = ω/k. (2.11)

We can arrive at Eq. (2.11) by making use of another simple argument. Phase
velocity is defined by the space-time invariance of the phase of the disturbance
(see Eq. (2.9)), i.e., by demanding

kz − ωt = constant. (2.12)

Taking the time derivative of Eq. (2.12), we arrive at v = dz
dt = ω

k . We shall
be discussing another type of velocity, namely, the group velocity when the
notion of a wave packet is introduced.

The scalar plane wave given by Eq. (2.9) is only a particular solution of the
scalar wave equation. In fact, any arbitrary function having the form f(z−vt)
or g(z + vt) or their superpositions can be a solution. In order to verify this,
we take the second partial derivatives of, say, f(z − vt) with respect to z and
t:

∂2f

∂z2
= f

′′

,
∂2f

∂t2
= f

′′

v2, (2.13)

where the primes denote derivatives with respect to the argument. Eq. (2.13)
substituted into Eq. (2.10) leads to an identity.
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2.2 Maxwell’s equations and vector waves

In this section we develop the notion of a vector wave where the distur-
bance is represented no longer by a scalar but by a vector. Thus we must
worry about the polarization of the wave that sheds light about the direction
of oscillation. As a typical example we consider the case of the electromagnetic
(EM) waves. The understanding of the EM waves requires an in-depth knowl-
edge of the basic laws of electromagnetics, namely, Maxwell’s equations. Due
to the lack of proper mathematical base, we will start from these equations,
try to understand the notations, and finally derive the necessary relations for
plane monochromatic waves. The detailed coverage of Maxwell’s equations
with the associated physics can be found in standard textbooks on electro-
magnetic theory [3, 4]. In many places we will cite the results without deriving
them.

In the absence of any sources, Maxwell’s equations for a homogeneous
isotropic medium with dielectric permittivity ε and magnetic permeability µ
can be written as

∇ ·E = 0, (2.14)

∇ ·B = 0, (2.15)

∇×E = −∂B
∂t
, (2.16)

∇×B = µε
∂E

∂t
. (2.17)

The material equations are given by

B = µH, D = εE. (2.18)

In Eqs. (2.14)–(2.17) the vector operator ∇ is given by

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
. (2.19)

From Eqs. (2.14)–(2.17) we can eliminate B to arrive at the vector wave
equation

∇2E− 1

v2
∂2E

∂t2
= 0, (2.20)

with

v = 1/
√
εµ, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.21)

We have an identical wave equation for B. Note that in vacuum ε = ε0 and
µ = µ0, consequently v is replaced by c = 1/

√
ε0µ0. The refractive index of

the medium is defined as
n =

c

v
. (2.22)
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Since c is a universal constant, the denser the medium (n is larger) the smaller
is the phase velocity. Using Eq. (2.11) we can rewrite the expression for the
wave-vector magnitude k as

k =
ω

v
=
ωn

c
= k0n, (2.23)

where k0 is the magnitude of the wave-vector in vacuum.
For plane waves with exponential factor like exp[i(k·r−ωt)], the operators

∇· and ∇× reduce to
∇· = ik·, ∇× = ik×, (2.24)

and hence for the complex vector amplitudes, Eqs. (2.14)–(2.17) reduce to

ik · E = 0, (2.25)

ik ·B = 0, (2.26)

ik×E = iωB, (2.27)

ik×B = −iεµωE. (2.28)

The first two equations imply that both E and B are perpendicular to k,
while the third equation implies the orthogonality of B and E. Thus k, E and
B form a right-handed mutually orthogonal triplet. This also confirms the
transverse nature of electromagnetic plane waves whereby both the electric
and magnetic field vectors oscillate in a plane perpendicular to the direction
of propagation. For future use introducing the unit vector along the direction
of propagation k̂, we rewrite Eq. (2.27) as

k̂×E = vB. (2.29)

A negative refractive index medium (see Chapter 5) is defined as having
both ε and µ negative. It can be shown that for such a medium, k, E and H
form a left-handed triplet, while for a standard medium they correspond to a
right-handed triplet.

2.3 Wave propagation in dispersive media

In this section we will assume the medium to be nonmagnetic (i.e., µ = µ0).
A medium is said to be dispersive if the corresponding refractive index depends
on the frequency, i.e.,

n = c/v = c/v(ω) = n(ω). (2.30)

It is clear from Eq. (2.30) that different frequency components of a wave
‘packet’ propagate with different velocities and for specific conditions may
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come closer to each other leading to a spread of the pulse as a function of
time (hence the name dispersion). Further, the dispersion is said to be normal
if

∂n

∂ω
> 0. (2.31)

Otherwise the medium is said to have anomalous dispersion.
In order to assess the origin, nature and consequences of dispersion, it

is necessary to incorporate the oscillatory nature of atoms (forming the di-
electric medium) under the action of the incident electromagnetic field. This
model was developed by Lorentz, and it is referred to as the Lorentz model of
dielectrics.

2.3.1 Lorentz model for dispersion in a dielectric

As mentioned earlier, the uniform dielectric medium is assumed to be a
collection of oscillators with natural frequency ω0 and decay constant γ. Let
the number density of such oscillators be given by N (i.e., N oscillators per
unit volume). The applied EM field forces any of these oscillators to execute
SHM and this leads leads to a dipole moment (microscopic polarization),

p = −ex, (2.32)

where e is the electron charge and x is the displacement from the equilibrium
position. Henceforth we will ignore the vector nature of the relevant quantities,
assuming the same direction for all of them. The macroscopic resultant dipole
moment is called the polarization P and it is given by

P = −Nex. (2.33)

Thus the problem of finding the polarization is reduced to finding the dis-
placement x under the action of the EM field, leading to a driving force

F = −eE(z, t) = −eE0 cos(kz − ωt). (2.34)

In Eq. (2.34) we only need to worry about the temporal dependence since time
is the only independent variable governing the motion of the oscillator. Thus
in complex notation, the equation for the driven oscillator can be written as

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = −eE0

m
e−iωt. (2.35)

We have already dealt with equations like Eq. (2.35), and the particular solu-
tion that survives in the long run can be written as

x(t) =
−e/m

[(ω2
0 − ω2)− (2iγω)]

E0e
−iωt =

−e/m
[(ω2

0 − ω2)− (2iγω)]
E(t). (2.36)
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And for polarization P we have

P (t) =
Ne2/m

[(ω2
0 − ω2)− (2iγω)]

E(t). (2.37)

The only step left is to write the expression for P in terms of the medium
response or the susceptibility χ as

P (t) = ε0χE(t). (2.38)

Indeed, for most of the dielectric media at low intensities, the relation be-
tween the ‘effect’ polarization and ‘cause’ electric field is linear. Comparing
Eqs. (2.37) and (2.38), we obtain the expression for the linear susceptibility χ:

χ(ω) =
Ne2/(mε0)

[(ω2
0 − ω2)− (2iγω)]

. (2.39)

For induction D we can write the following relation:

D = ε0E+P = ε0(1 + χ)E = εE. (2.40)

Thus the relation between the dielectric constant ε, refractive index n and
susceptibility χ of a nonmagnetic medium is given by

ε/ε0 = n2 = (1 + χ) (2.41)

Using the above results, it can shown that for γ = 0, n satisfies the equation
(n2 − 1)−1 = −Cλ−2 +Cλ−2

0 . Evaluation of the expression for C is left as an
exercise. We often introduce the plasma frequency ωp and rewrite n as follows:

n =
√

1 + χ(ω) =

√

1 +
ω2
p

[(ω2
0 − ω2)− (2iγω)]

, ω2
p = Ne2/(mε0). (2.42)

The complex nature of the susceptibility leads to a complex refractive index
n = n′ + in′′. The physical meaning becomes clear if we look at the spatial
part of a plane wave:

eikz = eik0nz = eik0(n
′+in′′)z = eik0n

′ze−k0n
′′z. (2.43)

The first exponential factor on the right-hand side of Eq. (2.43) corresponds to
spatial oscillation, while the second leads to damping as the wave propagates
in the positive z direction. Thus the real (imaginary) part of n defines phase
propagation (absorption). In Fig. 2.1 we show the real and imaginary parts of n
as functions of normalized frequency ω/ω0 for ωp/ω0 = 0.1 and γ/ω0 = 0.005.
A close inspection of Fig. 2.1 reveals that close to the resonance (ω/ω0 = 1)
we have anomalous dispersion, while away from the resonance the character
of dispersion is normal.
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.

FIGURE 2.1: Real and imaginary parts of the refractive index.

2.4 Phase and group velocities: Sub- and superluminal
light

In Section 2.1 the concept of phase velocity was discussed briefly. Here
we introduce the notion of group velocity by considering first the beat wave,
which results as the superposition of two co-propagating plane waves. Let
the constituent waves have the same amplitude E0 but with slightly different
frequencies ω1 and ω2 as well as wave vectors k1 and k2 so that the resultant
wave can be written as

E(z, t) = E0 [cos(k1z − ω1t) + cos(k2z − ω2t)] . (2.44)

We can rewrite Eq. (2.44) as

E(z, t) = 2E0

[

cos
1

2
[(k1 − k2)z − (ω1 −ω2)t] cos

1

2
[(k1 + k2)z− (ω1 + ω2)t]

]

.

(2.45)
Introducing new variables for the average frequencies and wave-vectors as well
as the corresponding differences, we have

k̄ = (k1 + k2)/2, ω̄ = (ω1 + ω2)/2. ∆k = (k1 − k2)/2, ∆ω = (ω1 − ω2)/2,
(2.46)

or
E(z, t) = 2E0 cos(∆kz −∆ωt) cos(k̄z − ω̄t). (2.47)

In Eq. (2.47) we can easily recognize the quickly oscillating phase term that
defines the phase velocity as v = ω̄/k̄, while the low frequency (∆ω) envelope
is determined by the first cosine term. Thus the envelope moves with a velocity
determined by

∆kz −∆ωt = constant. (2.48)
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This velocity is termed as the group velocity vg and, in the limiting case of
vanishing ∆k, takes the form

vg =
∂ω

∂k
. (2.49)

The above concepts can easily be generalized to the case of a spatio-temporal
pulse. Such a pulse is characterized by a spread of frequency about a mean
frequency and a spread of wave-vector about an ‘average’ wave-vector. If the
dispersion-induced distortions are not too much, we can still talk about a
group velocity defined by Eq. (2.49) evaluated at the mean frequency.

We now demonstrate how both phase and group velocities can exceed
the velocity of light in vacuum. Light is referred to as sub- or superluminal
depending on whether the corresponding velocities can exceed that of light in
vacuum. Thus the case of v < c is referred to as subluminal while the opposite
case bears the name of superluminal. The fact that phase velocity can exceed
c has been known for quite some time [5], since the experiments of Wood
on D2 lines of sodium. Close to the resonance, due to anomalous dispersion,
the refractive index can become less than one, resulting in v = c/n > c.
Initially, it was believed that group velocity could not exceed c. Since the
beautiful experiment of Chu and Wong [6], it has been demonstrated that
we can achieve both sub- and superluminal group velocities and make use of
positive and negative slopes of the dispersion curves. We now show how this
can be achieved. Using Eq. (2.23) or k = ωn(ω)/c, we can calculate the group
velocity as

vg =
∂ω

∂k
=

1
∂k
∂ω

=
c

n+ ω ∂n∂ω
. (2.50)

One introduces the so-called group index ng to rewrite Eq. (2.50) as follows:

vg =
c

ng
, ng = n+ ω

∂n

∂ω
. (2.51)

It is clear from Eq. (2.50) that in the absence of dispersion ( ∂n∂ω = 0 or ng = n),
group and phase velocities coincide. For positive slope of the dispersion curve,
( ∂n∂ω > 0) we usually have ng > 1 and hence subluminal light. In the case
of anomalous dispersion or negative slope of the dispersion curve, ng can be
smaller than unity, zero or even negative. Thus the group velocity can be
larger than c or even negative. Negative group velocity has the very interest-
ing consequence that the pulse peak can arrive earlier than the time when it
enters the medium. Both sub- and superluminal group velocities have been
observed in recent experiments. Crawling speed of light as small as 17 m/sec
has been reported using the so-called phenomenon of electromagnetically in-
duced transparency [7]. Finally, we conclude this discussion by saying (without
proof) that the superluminality of group velocity does not violate Einstein’s
postulates of special theory of relativity or causality principle [7].
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2.5 Energy and momentum of electromagnetic waves

Traveling waves carry energy and momentum [3, 8]. In this section we try
to understand these aspects. The physical quantity that quantifies the flux of
electromagnetic energy is the Poynting vector. We start with a discussion of
the Poynting vector.

2.5.1 Poynting vector

Electromagnetic fields can store energy. Let u be the measure of this radi-
ant energy density (per unit volume), which we simply label as energy density.
For example, for a plane parallel plate capacitor, the energy density of the field
in between the plates is given by

uE =
ε0
2
E2. (2.52)

Similarly, the energy density of the B field (e.g., for a current-carrying toroid)
is given by

uB =
1

2µ0
B2. (2.53)

For plane waves we have E = cB in vacuum. Using the relation c = 1/
√
ε0µ0

we can easily show that
uE = uB. (2.54)

Thus the total energy density is given by

u = uE + uB = ε0E
2. (2.55)

Let the electromagnetic wave travel with velocity c through an area A. Let
S also represent the transport of energy per unit time (power) per unit area.
The unit of S in SI will be W/m2. During a very small interval ∆t, the energy
contained in the cylindrical volume u(c∆tA) will cross A. Thus

S =
cu∆tA

∆tA
= uc or S =

1

µ0
EB. (2.56)

For isotropic media we make a reasonable approximation that energy propa-
gates in the direction of propagation of wave. This leads to the expression for
the Poynting vector S as follows:

S =
1

µ0
E×B or S = c2ε0E×B. (2.57)

For a harmonic plane wave propagating along k given by

E = E0 cos(k · r− ωt), (2.58)

B = B0 cos(k · r− ωt), (2.59)
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S takes the form
S = c2ε0E0 ×B0 cos

2(k · r− ωt). (2.60)

It is clear from Eq. (2.60) that at optical frequencies (∼ 1015–16 Hz), S is
a rapidly oscillating function. It is impractical to follow the instantaneous
value of the Poynting vector, which suggests the need for averaging over many
optical cycles. This is also consistent with the fact that we absorb the radiant
energy during some finite interval of time by, for example, a photocell, film
plate or the retina of the human eye. The averaging procedure for cos2 leads
to a factor 0.5. Thus the time-averaged Poynting vector has the expression

〈S〉 = c2ε0
2

|E0 ×B0| =
cε0
2
E2

0 , (2.61)

which is also known as the irradiance I. These were derived for a vacuum. For
a linear homogeneous and isotropic dielectric, the irradiance can be written
as

I = vε〈E2〉. (2.62)

2.5.2 Photons

Light is absorbed and emitted in tiny portions or quanta. An elementary
portion of electromagnetic ‘stuff’ is called a photon. Each photon has the
energy

E = ~ω. (2.63)

The corresponding momentum is given by

p = ~k. (2.64)

We refer to Section 3.3.3 of the book by Hecht for a detailed description of
the nature and properties of photons [8].
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3.1 Huygens-Fresnel principle

We first define the notion of a wavefront. The wavefront is a surface over
which an optical disturbance has a constant phase. A plane wave has a planar
wavefront perpendicular to the direction of propagation of the wave, while
a spherical wave has a wavefront in the shape of a spherical surface. The
Huygens-Fresnel principle states that every point on a primary wavefront
serves as the source of spherical secondary wavelets such that the wavefront at
some later time is the envelope of these wavelets. According to Fresnel these
secondary wavelets can interfere. The wavelets advance with a speed and fre-
quency equal to that of the primary wave at each point in space. Fig. 3.1, for
example, explains the refraction of light using the Huygens principle.

In optics it is often useful to exploit the notion of a light ray. A ray is a
line drawn in space corresponding to the direction of flow of radiant energy.
We can derive the laws of reflection and refraction using the Huygens-Fresnel
principle. These laws (referred to as Snell’s laws) govern the way light rays

37
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FIGURE 3.1: Refraction using the Huygens-Fresnel principle.

reflect or refract at the interface between two media. We shall derive these
laws in the next section.

3.2 Laws of reflection and refraction

Consider the interface between two dielectric media with refractive indices
n1 and n2, respectively. Let the incident plane wave be given by the expression

Ei = E0i cos(k · r− ωit). (3.1)

Without any loss of generality, we can write the expressions for the reflected
and transmitted waves as

Er = E0r cos(kr · r− ωrt+ φr), (3.2)

Et = E0t cos(kt · r− ωtt+ φt). (3.3)

The boundary conditions state that the tangential components of the field
must be continuous across the interface. Let the unit normal to the interface
be given by un. Thus at the interface we require the following equality:

un ×Ei + un ×Er = un ×Et. (3.4)
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Eq. (3.4) with Eqs. (3.1)–(3.3) can be satisfied for arbitrary t and r at the
interface plane if and only if the following relation holds:

ki · r− ωit = kr · r− ωrt+ φr = kt · r− ωtt+ φt. (3.5)

Eq. (3.5) has to hold for all t and hence the coefficients of t must match:

ωi = ωr = ωt. (3.6)

Eq. (3.5) easily leads to the following relations at the interface:

(ki − kr) · r = φr, (3.7)

(ki − kt) · r = φt. (3.8)

Eq. (3.7) implies that the tip of r sweeps out a plane (our interface) and
this plane is perpendicular to the difference vector ki − kr. Since un is also
normal to this plane, un and ki − kr are collinear and their cross product,
un × (ki − kr), must vanish. We thus have

ωn1

c
sin θi =

ωn1

c
sin θr or θi = θr. (3.9)

Analogously, Eq. (3.8) leads to

ωn1

c
sin θi =

ωn2

c
sin θt or

sin θi
sin θt

=
n2

n1
. (3.10)

3.3 Fermat’s principle and laws of reflection and
refraction

Fermat’s Principle: Light follows the path of least time. The laws of re-
flection and refraction can be derived from this principle, as we explain in this
section.

3.3.1 Reflection

The path L from A to B (see Fig. 3.2) is given by

L =
√

a2 + x2 +
√

b2 + (d− x)2. (3.11)

Note that x (still unknown) determines the angles of incidence and reflec-
tion. Since the incident and reflected light travel in the same medium, their
velocities are the same. Hence the ‘least time’ implies least path. The least
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FIGURE 3.2: Schematics of reflection.

path results when dL
dx = 0 or, in other words, when x satisfies the following

equation:
dL

dx
=

1

2

2x√
a2 + x2

+
1

2

2(d− x)(−1)
√

b2 + (d− x)2
= 0. (3.12)

Note that with

sin(θi) =
x√

a2 + x2
, sin(θr) =

(d− x)
√

b2 + (d− x)2
, (3.13)

we have
θi = θr. (3.14)

3.3.2 Refraction

Consider the interface between two media as shown in Fig. 3.3. Since the
velocities in the two media are different, the time t taken to cover the path
from A to B (see Fig. 3.3) is given by

t =

√
a2 + x2

v
+

√

b2 + (d− x)2

v′
, v = c/n , v′ = c/n′ . (3.15)

Applying Fermat’s principle we require that this time is minimal, i.e.,

dt

dx
=

1

v

x√
a2 + x2

− 1

v′
(d− x)

√

b2 + (d− x)2
= 0. (3.16)

As per the figure, the angle of incidence θi and refraction θt are given by

sin(θi) =
x√

a2 + x2
, sin(θt) =

(d− x)
√

b2 + (d− x)2
. (3.17)
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FIGURE 3.3: Schematics of refraction.

Eq. (3.17) thus leads to the relation

sin(θi)

sin(θt)
=

v

v′
=
n′

n
. (3.18)

3.4 Fresnel formulas

Earlier we derived the relationships connecting the various angles of re-
flection and refraction based on the analysis of the phases of the incident,
reflected and refracted light. We now try to derive the relationships between
the complex amplitudes. Whatever the polarization of the waves, we shall try
to resolve its E and B into the components parallel and perpendicular to
the plane of incidence. Depending on whether E is parallel or perpendicular,
these are usually referred to as p (or TM) and s (TE) polarizations. Any ar-
bitrary polarization can always be thought of as a superposition of these two
polarizations. Let also the interface be given by the plane z = 0.

3.4.1 s-Polarization (electric field perpendicular to the plane
of incidence)

Again making use of the continuity of the tangential components of the
electric fields at the boundary, we have

E0i +E0r = E0t. (3.19)
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FIGURE 3.4: Schematics of reflection and refraction for s-polarization.

We have taken the directions of the electric fields as shown in Fig. 3.4. The
directions of the B-fields then follow from Eq. (2.27) and they are also shown
in Fig. 3.4. Note that the boundary conditions demand that the tangential
components of B/µ must be continuous at the interface. This leads to

−Bi
µi

cos θi +
Br
µi

cos θr = −Bt
µt

cos θt. (3.20)

Henceforth we will assume that both media are nonmagnetic, i.e., µi = µt = 1.
Moreover, making use of the relations Bi = Ei/vi, Br = Er/vr, Bt = Et/vt
and also vi = vr and θi = θr, Eq. (3.20) reduces to

1

vi
(Ei − Er) cos θi =

1

vt
Et cos θt. (3.21)

Making use of the relation v = c/n and the fact that the phases are the same
at the interface, we have

ni(E0i − E0r) cos θi = ntE0t cos θt, (3.22)

(E0i + E0r) = E0t. (3.23)

The two equations above can be solved to yield the amplitude reflection and
transmission coefficients

r⊥ =

(

E0r

E0i

)

⊥
=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

, (3.24)
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FIGURE 3.5: Schematics of reflection and refraction for p-polarization.

t⊥ =

(

E0t

E0i

)

⊥
=

2ni cos θi
ni cos θi + nt cos θt

. (3.25)

3.4.2 p-Polarization (electric field parallel to the plane of
incidence)

We can derive a similar pair of equations as in the case of the s-polarization.
Referring to Fig. 3.5 for the continuity of the tangential component of E, we
now have

E0i cos θi − E0r cos θr = E0t cos θt. (3.26)

The continuity of the tangential component ofB/µ across the interface leads to

ni(E0i + E0r) = ntE0t. (3.27)

Eqs. (3.26) and (3.27) lead to the expressions for the amplitude reflection and
transmission coefficients for the parallel components:

r‖ =

(

E0r

E0i

)

‖
=
nt cos θi − ni cos θt
nt cos θi + ni cos θt

, (3.28)

t‖ =

(

E0t

E0i

)

‖
=

2nt cos θi
nt cos θi + ni cos θt

. (3.29)
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Finally, a drastic simplification takes place if we make use of Snell’s law:

r⊥ = − sin(θi − θt)

sin(θi + θt)
, (3.30)

r‖ = +
tan(θi − θt)

tan(θi + θt)
, (3.31)

t⊥ = +
2 sin θt cos θi
sin(θi + θt)

, (3.32)

t‖ = +
2 sin θt cos θi

sin(θi + θt) cos(θi − θt)
. (3.33)

3.5 Consequences of Fresnel equations

In this section we consider the various implications of Fresnel equations
both in terms of amplitudes and phases. Note that the complex amplitude
reflection and transmission coefficients given by Eqs. (3.30)–(3.33) have both
amplitudes and phases. The amplitude tells us how much will be reflected or
transmitted, while the phase carries information about the phase shift in the
wave for each act of reflection or transmission. We first look at the amplitudes,
concentrating later on the phases.

3.5.1 Amplitude relations

For normal incidence (θi = 0), Eqs. (3.24) and (3.28) can be reduced to
the following form:

[r‖]θi=0 = −[r⊥]θi=0 =
nt − ni
nt + ni

. (3.34)

The magnitude of amplitude reflection for normal incidence, for example, for
air (ni = 1.0) and glass (nt = 1.5) interface is 0.2. The equality of the reflection
coefficients is a consequence of the fact that for normal incidence, we cannot
distinguish between s- and p-polarized light (since the unique plane of inci-
dence cannot be defined). For ni < nt, it follows from Snell’s law that θi > θt
and r⊥ is negative for all values of the angle of incidence (see Eq. (3.30)).
In contrast, r‖ shows a different behavior: Starting from a positive value, it
becomes negative, passing through zero when θi + θt = π/2 since tan(π/2) is
infinite (see Eq. (3.31)). The angle θi at which this occurs is labeled θB and
it is known as the polarization angle or the Brewster angle. Indeed, for inci-
dence of arbitrarily polarized light at this angle, the reflectivity of the parallel
component will be zero and hence the reflected light will be polarized only
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FIGURE 3.6: Amplitude reflection and transmission coefficients
r⊥, r‖, t⊥ and t‖, respectively (from bottom to top), for ni = 1.0 and
nt = 1.5.

with ⊥ polarization. In order to have a comprehensive idea of the behavior
of all the amplitude reflection and transmission coefficients, we have plotted
them in Fig. 3.6 for ni = 1.0 and nt = 1.5. The Brewster angle for this case
is θB = 56.3◦.

The situation changes drastically when ni > nt, resulting in θt > θi. In
this case r⊥ is always positive while r‖ passes through zero at the Brewster
angle (see Fig (3.7)). However, both the perpendicular and parallel amplitude
reflection coefficients become complex beyond a critical angle θc given by

θc = sin−1(nt/ni). (3.35)

It is easy to verify that θi = θc corresponds to an angle of refraction equal
to π/2. For angles of incidence larger than the critical angle the magnitude
of both the amplitude reflection coefficients equals one, implying thereby the
return of all the energy to the medium of incidence. Hence the critical angle
is also referred to as the angle of total internal reflection (TIR). The Brewster
and the TIR angles for this case are given by θB = 33.7◦ and θc = 41.8◦. Note
the complementary nature of the Brewster angles for the cases of Figs. (3.6)
and (3.7).

3.5.2 Phase shifts

We first look at the phase change in reflection for the case θi > θt, i.e.,
when light enters a denser medium from a lighter one (ni < nt). It is clear
from Eq. (3.30) that, for any angle of incidence, r⊥ is negative. Thus the
perpendicular (to plane of incidence) component of the electric field undergoes
a phase shift of π under reflection when the incident medium has a lower
refractive index than the transmitting medium.
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FIGURE 3.8: Explanation of (a) out-of-phase and (b) in-phase components.

The situation is slightly more complicated for the components on the plane
of incidence, since we need to define the terms in-phase and out-of-phase.
Fig. 3.8 is handy for understanding these notions. Two fields in the incidence
plane are in-phase if their components along the unit normal to the surface
are parallel and are out-of-phase if these components are antiparallel. If two
E fields are antiparallel, then the same holds for the corresponding two B
fields.

It is clear from Eq. (3.28) that r‖ is positive or the phase difference be-
tween the reflected and incident components is zero (∆φ‖ = 0) so long as the
numerator is positive. The inequality that the numerator is positive can be
rewritten in the form

sin(θi − θt) cos(θi + θt) > 0. (3.36)
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FIGURE 3.9: Phase angles (a) ∆φ⊥ and (b) ∆φ‖ components in units of π
for ni < nt.

For ni < nt, this translates into

θi + θt < π/2, (3.37)

while for ni > nt, we have
θi + θt > π/2. (3.38)

Thus for ni < nt there will be zero phase lag between the reflected and
incident components in the range (θi = 0 − θB). Thereafter there will be a
phase difference of π (see Fig. 3.9). In contrast, for a TIR case (for ni > nt)
r‖ is negative until θ reaches the Brewster angle, which implies that ∆φ‖ = π.
From θB to θc, ∆φ‖ = 0. Beyond the critical angle the reflection coefficient is
complex and ∆φ‖ increases gradually to π at 90◦. The results for this case are
shown in Fig. 3.10, where the last plot gives the difference between the parallel
and perpendicular phases. These results will be used in order to understand
the change of polarization state under total internal reflection and their use
in various polarization devices.

3.5.3 Reflectance and transmittance

Let a light beam of circular cross-section be incident on the surface of
a dielectric at an angle θi. Since we will be dealing with the reflected and
transmitted intensities, it is better to recall the meaning and expressions of
the Poynting vector S and irradiance I. The Poynting vector gives the power
per unit area crossing a normal surface and is given by

S = c2ε0E×B. (3.39)

The radiant flux density or the irradiance is the time-averaged Poynting vector
and has the expression

< S >=
cε0
2
E2

0 . (3.40)
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FIGURE 3.10: Phase angles (a) ∆φ‖ and (b) ∆φ⊥ components in units of
π for nt < ni. (c) gives the difference ∆φ‖ −∆φ⊥.

The irradiance has the unit W/m2 and it is the average energy crossing a unit
area normal to S.

Let Ii, Ir and It be the incident, reflected and transmitted irradiances,
respectively. The corresponding cross-sectional areas are A cos θi, A cos θr
and A cos θt, respectively. The incident, reflected and transmitted powers are
IiA cos θi, IrA cos θr and ItA cos θt, respectively. The first quantity is the in-
cident energy per unit time associated with the incident beam, and hence it
is the incident power that falls on A. We define reflectance R as the ratio of
reflected and incident power (flux) as

R =
IrA cos θr
IiA cos θi

=
Ir
Ii
. (3.41)

Similarly, transmittance T can be defined as

T =
It cos θt
Ii cos θi

, (3.42)

where
Ij = vjεjE

2
0j , j = i, r, t. (3.43)

Noting that both the medium of incidence and reflection are the same,
Eq. (3.41) can be rewritten as

R =

(

E0r

E0i

)2

= r2. (3.44)

Likewise for T , we have

T =
nt cos θt
ni cos θi

(

E0t

E0i

)2

=

(

nt cos θt
ni cos θi

)

t2. (3.45)
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FIGURE 3.11: Reflectance (solid line) and transmittance (dashed line) for
(a) ⊥ and (b) ‖ orientations, respectively, for ni = 1.0 and nt = 1.5.

In Eq. (3.45) we made use of the relation µ0εj = µ0ε0n
2
j = n2

j/c
2 = 1/v2j

(j = i, t). For normal incidence when θi = θr = θt = 0, reflectance and trans-
mittance are given by the ratios of the corresponding irradiances. Note that T
is not simply equal to t2 for two reasons. First, the velocity of light in the two
media is not the same. Hence the ratio of the refractive indices must appear
in T . Second, the cross-sectional areas for incident and transmitted beams are
not the same. The energy flow per unit area will be affected accordingly.

3.5.4 Energy conservation

The energy flowing into the area A per unit time must be the same as that
flowing out of it. Thus

IiA cos θi = IrA cos θr + ItA cos θt. (3.46)

Multiplying both sides by c, Eq. (3.46) can be written as

niE
2
0i cos θi = nrE

2
0r cos θr + ntE

2
0t cos θt, (3.47)

expressed differently as

1 =

(

E0r

E0i

)2

+

(

nt cos θt
ni cos θi

)(

E0t

E0i

)2

, or R+ T = 1. (3.48)

Eq. (3.48) just states that total reflectance and transmittance in passing
through an interface add up to unity in absence of losses. The part that is not
transmitted is bound to be reflected. In component form these relations read
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as

R⊥ = r2⊥, (3.49)

R‖ = r2‖, (3.50)

T⊥ =

(

nt cos θt
ni cos θi

)

t2⊥, (3.51)

T‖ =

(

nt cos θt
ni cos θi

)

t2‖, (3.52)

R⊥ + T⊥ = 1, (3.53)

R‖ + T‖ = 1. (3.54)

The results for the reflectance and transmittance are shown in Fig. 3.11. It
is easy to identify the Brewster angle at which there is null reflectance and
unity transmittance for the p-polarized light. For normal incidence (θi = 0),
the expressions for reflectance and transmittance reduce to

R = R‖ = R⊥ =

(

n1 − n2

n1 + n2

)2

(3.55)

and

T = T‖ = T⊥ =
4n1n2

(n1 + n2)2
. (3.56)

3.5.5 Evanescent waves

It can be easily verified that it is impossible to satisfy the boundary con-
ditions if we assume that there is no transmitted wave in case of total internal
reflection. In order to understand this, we rewrite Eqs. (3.24) and (3.28) in
the form

r⊥ =
ni cos θi − nt cos θt
ni cos θi + nt cos θt

=
cos θi − (n2

ti − sin2 θi)
1/2

cos θi + (n2
ti − sin2 θi)1/2

, (3.57)

r‖ =
nt cos θi − ni cos θt
nt cos θi + ni cos θt

=
n2
ti cos θi − (n2

ti − sin2 θi)
1/2

n2
ti cos θi + (n2

ti − sin2 θi)1/2
, (3.58)

where nti = nt/ni < 1 for a TIR situation. For θi > θc, sin(θi) > sin(θc) = nti
and both r⊥ and r‖ are complex. Even then, r⊥r∗⊥ = r‖r

∗
‖ = 1 and the

reflectance R equals unity. This means that though there is a transmitted
wave, it cannot carry any energy across the boundary. In order to have a
deeper understanding, let us write the expression for the transmitted wave as
follows (we assume that the xz plane forms the plane of incidence with the
rarer medium occupying the half-space z > 0):

Et = E0t exp i(kt · r− ωt). (3.59)
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For the chosen geometry,

kt · r = ktxx+ ktzz = kt sin(θt)x+ kt cos(θt)z. (3.60)

Using Snell’s law we have

ktz = kt cos(θt) = ± kt

(

1− sin2 θi
n2
ti

)1/2

= ±i kt
(

sin2 θi
n2
ti

− 1

)1/2

= ±iβ.
(3.61)

In writing Eq. (3.61), we used the fact that when θi > θc, sin θi > nti. For the
surface component we have

ktx = (kt/nti) sin(θi). (3.62)

Thus for the transmitted wave we have the expression

Et = E0te
∓βzei[(kt/nti) sin(θi)x−ωt]. (3.63)

Here we neglect the positive exponential because it is unphysical. We thus
have a wave whose amplitude decays as we see deeper in the rarer medium.
The wave advances along the surface as a surface or evanescent wave. The
amplitude decays very fast (over a few wavelengths) as one moves away from
the interface. Thus this represents an inhomogeneous wave. For this case the
surfaces of constant phase (parallel to the yz plane) are perpendicular to
surfaces of constant amplitude (parallel to the xy plane).

One of the areas where TIR is used extensively is to design beam-splitters
with precise control of the transmission in two or more arms. Another impor-
tant area involves the use of phase change beyond the critical angle to design
various polarizers and for conversion of polarization from linear to circular
and vice versa [8].
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Before Einstein’s theory of relativity and the famous Michelson-Morley ex-
periment, scientists used to believe that light propagates through a ‘medium,’
the so-called ether, as longitudinal waves just like sound waves. The transverse
character of light was first comprehended in the experiments carried out by
Fresnel and Young with birefringent materials. The origin of the hypothesis
was based on the interference of polarized light conducted by Fresnel. It was
observed that light waves polarized in mutually orthogonal directions cannot
interfere. In order to explain this phenomenon, Young put forth his theory of
transverse nature of light waves. Despite the fact that this contradicted earlier
theories of longitudinal character of light, Fresnel used this successfully to de-
rive many useful results, including the Fresnel formulas, which were discussed
in Chapter 3. In this chapter we define the basic states of polarization and
also discuss how they can be changed as light propagates through different
kinds of media.
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4.1 Basic types of polarization: Linear and elliptically
polarized waves

Let a plane monochromatic wave propagate in the positive z direction.
Hence the E and the B fields will oscillate in the xy plane, while the propaga-
tion vector k will be directed along z (see Fig. 4.1). Since the triplet of vectors
E, B and k are mutually orthogonal, it suffices to look at only the behavior of
vector E. The wave may be considered as the superposition of two waves with
E having components along, say, the x and y directions, propagating along k:

Ex(z, t) = E0x exp[i(kz − ωt)] = ax exp[−iφx] exp[i(kz − ωt)], (4.1)

Ey(z, t) = E0y exp[i(kz − ωt)] = ay exp[−iφy] exp[i(kz − ωt)]. (4.2)

The ratio of the complex amplitudes can be written as

E0y

E0x
=
ay
ax

exp[−iδ], (4.3)

where δ = φy−φx is the phase difference between the orthogonal components.
Depending on the value of δ, different polarization states are realized. In order
to appreciate this, start with real fields at z = 0 written as

Ex(0, t) = ax cos(ωt+ φx), (4.4)

Ey(0, t) = ay cos(ωt+ φy). (4.5)

We note the following (recalling superposition of mutually perpendicular os-
cillations with the same frequency from Chapter 1) for ax = ay:

EE

B

k
E

y

x

z

FIGURE 4.1: Schematics of a plane monochromatic wave with the orienta-
tions of the various vectors.
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1. If E0y/E0x is real (i.e., δ = nπ, n = 0,±1,±2 · · · ), then the resulting
electric field is linearly polarized, oscillating along a straight line. The
ratio of the components ay/ax (in case they are different), along with
the sign of exp(−iδ), will determine the slope of this straight line.

2. If δ = π/2, then we have right circularly polarized light, while δ =
−π/2 corresponds to the left circularly polarized light. Right-handed
polarization is defined by clockwise rotation of the electric field vector
as the wave travels toward the observer.

3. If the phase difference is not a multiple of π/2, then in general we have
elliptical polarization. In this case E0y/E0x = exp(−iδ) has a complex
value and E rotates around the z-axis with the tip describing an ellipse.

We just demonstrated how superposition of linearly polarized light can gener-
ate circularly polarized light. We now show how the reverse can be achieved,
i.e., how superposition of circularly polarized light leads to linear polarization.
The general results can be extended to elliptically polarized light as well. We
consider a left circularly (denoted by superscript L) polarized light given by

ELx (0, t) = a cos(ωt), (4.6)

ELy (0, t) = a cos(ωt− π/2) = a sin(ωt). (4.7)

Consider also a right circular wave propagating in the same direction but with
additional phase φ:

ERx (0, t) = a cos(ωt+ φ), (4.8)

ERy (0, t) = a cos(ωt+ φ+ π/2) = −a sin(ωt+ φ). (4.9)

We now show that the superposition of the left and right circular components
leads to a linearly polarized light. Indeed, for the x and y components we have

Ex(0, t) = ELx (0, t) + ERx (0, t) = 2a cos(φ/2) cos(ωt+ φ/2), (4.10)

Ey(0, t) = ELy (0, t) + ERy (0, t) = −2a sin(φ/2) cos(ωt+ φ/2). (4.11)

It is clear from these equations that for φ = 0 or π, oscillations are along the
x- or y-axis, respectively, while φ = ±π/2 corresponds to oscillation angles
∓π/4. For the arbitrary value of φ, the fact that the resulting wave is linearly
polarized emerges from the relation

Ey(0, t) = − tan(φ/2)Ex(0, t). (4.12)

Based on the discussions above and the general definition (see Eq. (4.3)), we
can now state the conditions for having elliptically polarized light. Elliptical
polarization will occur

1. for ax 6= ay for δ 6= 0,±π,±2π, · · · ,

2. for ax = ay for δ 6= 0,±π/2,±π,±3π/2,±2π, · · · .
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4.1.1 Polarizers and analyzers

Pure polarization states are never emitted by real sources of light. It is
thus necessary to use optical elements in order to have plane polarized light.
Such elements are called polarizers. Polarizers can operate on different phys-
ical ground. We have already encountered some of them. For example, the
Brewster angle phenomenon can be used to get polarized light. Phase change
in total internal reflection can be used to convert plane polarized light to
circularly polarized and vice versa.

One of the most convenient methods to produce plane polarized light is
the use of polaroid films, based on the effect of dichorism. Certain materials
have different absorption coefficients for lights polarized in different directions.
PVA (polyvinyl alcohol) films doped with iodine transmit about 80% of light
in one plane while only 1% is transmitted in the plane at right angles.

A helium-neon laser with Brewster windows generates plane polarized
light. If a polarizer is inserted in the beam, we can have maximum transmis-
sion if the plane of polarization of the polarizer coincides with the polarization
plane of the laser light. The transmission is minimal if these planes are crossed
(at right angles to each other). This way we can determine the principal di-
rection of the polarizer. Unpolarized light from a source like mercury lamps
can be converted into plane polarized light by means of a polarizer. Another
polarizer (often called the analyzer) can be used to diagnose the polarization
direction and the degree of polarization (described below).

4.1.2 Degree of polarization

A beam of natural light can be considered a composition of wavelets with
two mutually orthogonal linear polarizations in 50/50 ratio. With simple ge-
ometrical considerations we estimate the intensity of light passing through a
system of polarizer and analyzer, the estimate being a function of the angle α
between the polarizer and analyzer. The electric field vector oscillates along
the principal direction of the polarizer after passing through it. Let its am-
plitude be E. The projection of this vector on the principal direction of the
analyzer is Eα = E cosα. The intensity of light passing through the analyzer
is proportional to the square of the amplitude and thus we have

Iα = I cos2 α, (4.13)

where I is the intensity of light after passing through the polarizer. If the light
source is a natural one (with indeterminate state of polarization) a maximum
of one-half of the incident light can pass through the polarizer. Thus the
maximum half of the incident intensity will be available after the polarizer.
However, there is always a small component of the orthogonal polarization
that can pass through the polarizer as well. Denoting the former and the latter
intensities by I‖ and I⊥, respectively, one can define the degree of polarization
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P as

P =
I‖ − I⊥
I‖ + I⊥

. (4.14)

The value of P less than unity corresponds to partially polarized light while
P = 1 implies perfectly polarized light. P is always less than unity for any
realistic polarizer.

4.2 Stokes parameters and Jones vectors

4.2.1 Representation of polarization states of a monochro-
matic wave

It is clear that the amplitudes ax and ay in Eqs. (4.1) and (4.2) cannot
be measured directly in any experiment. Only intensities proportional to the
squares of these amplitudes can be recorded by a detector. For characterizing
the polarization states, Stokes proposed the parameters

s0 = a2x + a2y, (4.15)

s1 = a2x − a2y, (4.16)

s2 = 2axay cos δ, (4.17)

s3 = 2axay sin δ, (4.18)

where δ = φx − φy gives the phase difference between the orthogonal com-
ponents. Only three Stokes parameters will be independent since only three
independent quantities, namely, ax, ay and δ, are involved in describing them.
Indeed, it is easy to verify that

s20 = s21 + s22 + s23. (4.19)

Use of an analyzer makes it possible to measure the intensities of the two
orthogonal polarizations a2x and a2y. Thus s0 is proportional to the intensity
of light. Later we describe how to measure the various Stokes parameters.

Another useful way to express the polarization state of light is through the
Jones vector, which expresses the electric field as a column vector:

E =

[

Ex
Ey

]

=

[

E0x exp(−iφx)
E0y exp(−iφy)

]

. (4.20)

In such notation right-handed polarization can be expressed as

ER =

[

E0x exp(−iφx)
E0x exp(−iφx − iπ/2)

]

, (4.21)
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where we use E0y = E0x and φy = φx+π/2. Dividing both sides by the length

of the vector ER =
√

E2
0x + E2

0y =
√
2E0x, we have

ER/ER =
1√
2
exp(−iφx)

[

1
exp(−iπ/2)

]

. (4.22)

Dropping the arbitrary phase, the expression for a right circularly polarized
light takes the form

ER =
1√
2

[

1
−i

]

. (4.23)

In an analogous fashion, left circularly polarized light can be expressed by

EL =
1√
2

[

1
i

]

. (4.24)

It is easy to verify that a superposition of right and left circular light leads to
linear polarization:

1√
2

[

1
−i

]

+
1√
2

[

1
i

]

=
√
2

[

1
0

]

. (4.25)

It is also easy to verify that the left- and right-handed polarizations are mu-
tually orthogonal in the sense that their scalar product ER · E∗

L vanishes:

ER ·E∗
L =

1√
2

[

1
−i

]

· 1√
2

[

1
−i

]

=
1

2
(1 + i2) = 0. (4.26)

Analogous relations hold for any orthogonally polarized light pair.

4.2.2 Measurement of Stokes parameters

It is now clear that pure polarization states do not exist. Nor do the purely
unpolarized states exist. There is always some residual polarization due to
reflection and scattering. It thus follows that Stokes parameters must be ex-
pressed in terms of mean intensities. To phrase it differently, Stokes parameters
must be described in terms of partially polarized light.

Let the two orthogonal components be given by

E(r)
x = Ax cos(ωt+ φx), (4.27)

E(r)
y = Ay cos(ωt+ φy), (4.28)

where Ax, φx, Ay and φy are slowly varying functions of time and the super-
script r denotes the real field components. Defining the phase difference δ as
δ = φx − φy , the Stokes parameters can be written as

s0 = 〈A2
x〉+ 〈A2

y〉, (4.29)

s1 = 〈A2
x〉 − 〈A2

y〉, (4.30)

s2 = 2〈AxAy cos δ〉, (4.31)

s3 = 2〈AxAy sin δ〉. (4.32)
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The various Stokes parameters can be measured in terms of various intensities.
In the following we show how this can be done. We use the complex notations

Ex = Ax exp[−i(ωt+ φx)], (4.33)

Ey = Ay exp[−i(ωt+ φy)]. (4.34)

Let a retardation plate producing retardation φ and a polarizer be put in the
path of the beam. Let the principal direction of the polarizer be at an angle
θ with the x-axis. The projection of the E-field on the principal direction can
be written as

E(θ, φ) = Ex cos θ + Eye
−iφ sin θ. (4.35)

The intensity of light described by the amplitude above can be expressed as

I(θ, φ) = 〈EE∗〉 = 〈ExE∗
x〉 cos2 θ + 〈EyE∗

y 〉 sin2 θ
+ (〈ExE∗

y〉eiφ + 〈EyE∗
x〉e−iφ) cos θ sin θ, (4.36)

or

I = Ix cos
2 θ + Iy sin

2 θ

+ (〈AxAy〉e−i(δ−φ) + 〈AyAx〉e+i(δ−φ)) cos θ sin θ,
= Ix cos

2 θ + Iy sin
2 θ + 〈AxAy〉 cos(δ − φ) sin 2θ. (4.37)

Here Ix,y = 〈A2
x,y〉. It is clear from Eq. (4.37) that a set of six measurements

yielding I(0, 0), I(π/2, 0), I(π/4, 0), I(3π/4, 0), I(π/4, π/2) and I(3π/4, π/2)
is adequate to determine the Stokes parameters, since

s0 = I(0, 0) + I(π/2, 0), (4.38)

s1 = I(0, 0)− I(π/2, 0), (4.39)

s2 = I(π/4, 0)− I(3π/4, 0), (4.40)

s3 = I(π/4, π/2)− I(3π/4, π/2). (4.41)

When any of the parameters s1, s2 or s3 has a nonzero value, the light is
polarized (at least partially) and

√

s21 + s22 + s23 describes the intensity of the
polarized portion of the beam, while the unpolarized portion is given by s0 −
√

s21 + s22 + s23. Thus the degree of polarization is given by

P =

√

s21 + s22 + s23
s0

. (4.42)

It is obvious that for a partially polarized light, P ≤ 1.

4.3 Anisotropy and birefringence

Light propagation through crystalline media is often associated with in-
teresting physical effects. One of them is double refraction or birefringence.
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Birefringence occurs when light entering a uniaxial (with one optic axis) crys-
tal splits into two beams. These two beams have mutually orthogonal po-
larization, usually referred to as the ordinary and the extraordinary waves.
The ordinary wave behaves just like a wave in an isotropic medium, while the
extraordinary wave has some peculiar characteristics. Most important is the
dependence of the magnitude of the refractive index on the direction of prop-
agation of light. Note that the ordinary wave has the same refractive index
in all directions. Along one direction both the waves have the same refractive
index. This particular direction is identified as the optic axis of the crystal.
There can be uniaxial or biaxial crystals depending on whether there exists
one or two optic axes.

It is clear that the dependence of the refractive index increases due to
the anisotropic nature of the crystal through which the light propagates. It
was mentioned earlier that all the information about the optical properties of
the material is carried by a pair of physical quantities, namely, the dielectric
permittivity ε and the magnetic permeability µ. For a nonmagnetic medium,
the anisotropic nature of the dielectric function ε reflects the directional de-
pendence. In particular ε is a second-rank tensor (denoted by ε̄ below) with
3 × 3 elements, while it is a scalar for an isotropic medium. In general for
an anisotropic nonmagnetic medium, the relation between D and E can be
written as

D = ε̄E. (4.43)

In terms of components

Dx = εxxEx + εxyEy + εxzEz , (4.44)

Dy = εyxEx + εyyEy + εyzEz, (4.45)

Dz = εzxEx + εzyEy + εzzEz. (4.46)

Thus fields along y can cause induction along the x direction, provided εxy
is nonzero. Note that in an isotropic medium, Ey can lead to induction only
along the y direction. By means of coordinate transformation, the 3×3 matrix
εij can be diagonalized.

4.3.1 Birefringence in crystals like calcite

Calcite (CaCO3) can be found in nature as large crystals, which can be
made into a cube, pressed slightly along one great diagonal. It can also be pol-
ished along the crystal faces. Objects seen through this cube form two images,
which explains the origin of the name: double refraction or birefringence. If a
narrow beam is directed along the normal to a natural face of the crystal, two
beams exit from the opposite side parallel to the incident beam. The ordinary
beam passes along the direction of the incident beam while the extraordinary
beam is shifted with respect to the direction of the original beam. To put it
differently, the angle of refraction of the extraordinary beam is not zero. A
rotation of the crystal about the axis of the incident beam, the spot due to
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the extraordinary beam rotates in a circular path about the same axis. For
unpolarized light the two spots from ordinary and extraordinary beams have
the same intensity. Since the two rays have mutually orthogonal polarization,
an analyzer placed after the crystal can filter them out. The rotation of the
analyzer results in a periodic decrease in the ordinary ray intensity and an
increase of the same for the extraordinary wave. This can be understood from
a different angle. Let a plane polarized light be incident on the crystal having
optic axis along OO′ perpendicular to k. Let the incident field vector oscillate
along AA′, which makes an angle α with the normal to the optic axis BB′.
The ordinary wave E oscillates along BB′, while that of the extraordinary
wave oscillates along OO′. Thus amplitudes of oscillations in the ordinary and
extraordinary waves are given by

(E0)o = (E0)inc cosα, (4.47)

(E0)e = (E0)inc sinα. (4.48)

For intensities we have

Io = Iinc cos
2 α, (4.49)

Ie = Iinc sin
2 α. (4.50)

Hence

Ie
Io

= tan2 α, (4.51)

Iinc = Io + Ie. (4.52)

It is clear from the above equations that the ratio of intensities vary in a
periodic fashion, and in the region of overlap of the spots, the intensity is
constant. In the literature this is often referred to as Malus’ law.

4.3.2 Polarizers based on birefringence: Nicol and Wollaston
prisms

The Nicol prism is cut from a calcite crystal as shown in Fig. 4.2. This crys-
tal is split into two and joined using glue with refractive index nglue = 1.549,

FIGURE 4.2: Schematics of a Nicol prism.
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O1’

O1

O2’

O2

FIGURE 4.3: Schematics of a Wollaston prism.

which is in between the ordinary and extraordinary refractive indices no = 1.66
and ne = 1.49. For the specified geometry, the ordinary wave undergoes to-
tal internal reflection while the extraordinary ray passes through. The two
outgoing waves are linearly polarized with mutually orthogonal polarization.

The Wollaston prism gives rise to two orthogonally polarized light beams
as shown in Fig. 4.3. It is made of two triangular prisms glued along the
hypotenuse in such a way that its optic axes O1O

′
1 and O2O

′
2 are orthogonal to

each other. Both ordinary and extraordinary rays travel in the same direction
in the first prism. An extraordinary wave leaving the first prism travels in
the second as an ordinary wave and vice versa. The refractive index of the
initially extraordinary beam in the second prism is higher and hence it bends
upward, closer to the normal to the interface, while the second beam (initially
ordinary) sees a higher to lower refractive index and bends downward, away
from the normal.

4.3.3 Retardation plates

Consider a thin plate of a uniaxial material. Assume the material to be cut
in such a way that the optic axis is parallel to the surfaces of the plate. Let
a plane polarized monochromatic wave be incident on the plate normally. Let
also the direction of oscillation of the field vector E make some angle with the
optic axis. Then Ex (the projection onto the normal to the optic axis) and Ey
(the projection along the optic axis) determine the ordinary and extraordinary
components within the plate. Both propagate in the same direction albeit with
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different phase velocities since ne 6= no. At the input face both are in phase,
while the phase difference at the output face of a crystal with width h is given
by

δ = k0(ne − no)h, (4.53)

where k0 = ω/c = 2π/λ is the vacuum wave-vector magnitude. In general this
will lead to elliptic polarization. In particular, for Ex = Ey (when the angle is
45◦) and δ = π/2, the superposition of the orthogonal components will lead
to circular polarization. For example, for a negative crystal, when ne < no,
the phase of the ordinary wave is retarded by δ with respect to that of the
extraordinary ray. The field at the output face can be written as

E(t) = x̂
E0√
2
cos(ωt) + ŷ

E0√
2
cos(ωt+ δ). (4.54)

For
δ = (2m+ 1)π/2 or h(ne − no) = (2m+ 1)λ/4, (4.55)

the tip of the vector E undergoes a rotation in a circular path and for this
case, the total field can be written as

E(t) = x̂
E0√
2
cos(ωt)− ŷ

E0√
2
sin(ωt). (4.56)

It is clear that a retardation plate, also called a λ/4 plate, converts linear
polarization to circular polarization under certain conditions (Eq. (4.55)). We
can devise a matrix tool based on Jones vectors in order to calculate the
conversion between various states of polarization.

4.4 Artificial birefringence

There are several artificial ways by which an otherwise isotropic transpar-
ent medium can be rendered anisotropic. We discuss here two of them based
on stress-induced anisotropy and the Kerr effect.

4.4.1 Stress-induced anisotropy

A transparent plate of plastic material or glass exerted to a mechanical
force of compression (rarefaction) along a given direction can lead to induced
anisotropy. The nature of the anisotropic material is uniaxial, with the optic
axis coinciding with the direction of the force. A typical setup and the neces-
sary optics to analyze the structure is shown in Fig. 4.4. The polarizer and the
analyzer are crossed and the principal axis of the polarizer is at 45◦ with the
optic axis (direction of force). Using this setup, we can measure ∆n = ne−n0,
which turns out to be proportional to F . Thus similar setups can be used for
pressure sensing.
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F

R
AP

FIGURE 4.4: Schematics for observing artificial mechanical anisotropy. P -
polarizer, A-analyzer, R-retarder plate (λ/4 plate).

4.4.2 Kerr effect

Under the action of an electric field, some liquids like nitrobenzene exhibit
induced anisotropy. Like in mechanically induced anisotropy, here also the
optic axis lies along the direction of the applied field. The liquid is kept in
a cell in between the plates of a capacitor and a similar detection setup is
used. An empirical law shows that the phase difference δ resulting from the
difference of the refractive indices ∆n = ne− n0 is proportional to the square
of the electric field amplitude E2. In fact, it can be written as

δ = βdE2, (4.57)

where β depends on the characteristics of the liquid and d is the thickness of
the liquid layer between the capacitor plates. The glass cell used for the obser-
vation of the Kerr effect is called a Kerr cell. Kerr cells can be very effective
for laser light modulation because of the short time response of nitrobenzene
(∼ 10−9 sec). An arrangement like in Fig. 4.4 without the retarder can be used
for such purposes. In the absence of the electric field, light will be blocked by
the system since the polarizer and the analyzer are crossed and incident light
is polarized along the principal axis of the polarizer (at 45◦ with the optic
axis). The applied electric field creates elliptical polarization that cannot be
blocked by the analyzer.

4.5 Optical activity and rotation of plane of polarization

Materials that can rotate the plane of polarization of incident plane po-
larized light are said to be optically active. Such materials can be crystalline
as well as amorphous. The classical example of the setup leading to rotation
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Left

Right Right
LCP

RCP

FIGURE 4.5: Fresnel prism.

of the plane of polarization is as follows. A uniaxial material like quartz, with
the optic axis along the direction of propagation, is placed between a polar-
izer and a crossed analyzer. In absence of the quartz crystal, light is blocked
by the polarizer-analyzer system. Insertion of the quartz leads to some finite
transmission. A rotation of the analyzer by an angle φ again extinguishes
transmission. This implies that after exiting the quartz crystal, the polariza-
tion plane has undergone a rotation by an angle φ. Experiments show that
different samples of quartz exhibit different types of rotation, either clockwise
(right-handed) or counterclockwise (left-handed). One type happens to be the
mirror image of the other. Experiment also shows that φ = αd with α ∼ 1/λ2.
For example, for d = 1 mm, φyellow = 20◦ and φviolet = 50◦. Thus there is a
significant dependence of optical activity on the wavelength.

Optical activity is also observed in some materials like sugar, nicotine,
camphor, etc. In this case φ = αdc′, where α ∼ 1/λ2 is the rotation constant,
d is the length of the cell and c′ is the concentration. Similar experiments form
the foundation of how to determine the concentration of the optically active
materials. It has many chemical and biological applications. The explanation
of the rotation of plane of polarization in optically active media was first given
by Fresnel, who first showed the similarity between double refraction and op-
tical activity. The explanation is based on the fact that any linearly polarized
light can be thought of as a superposition of left and right circular waves as
in Fig. 4.6. Fresnel further assumed that in an optically active medium, the
right and left waves propagate with different velocities. On this basis all the
optically active media can be divided in two classes, namely, right (vR > vL)
and left (vR < vL). For experimental demonstration of the validity of this
assumption, Fresnel prepared a special prism as in Fig. 4.5. The inequality
nR < nL holds for the first and third prisms, while for the second nR > nL.
The angle of refraction of the RCP is smaller than that of LCP when the wave
leaves the first prism. While passing through the second prism the RCP com-
ponent is refracted to a higher degree than the LCP and the angle between
the two directions increases. Finally, the spatial separation between the rays
increases after passing the last prism.

We now explain the rotation of plane of polarization. Due to different
velocities of the right and left components, the time taken to traverse the
same length of the material will be different for these components. Hence the
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)b()a(

FIGURE 4.6: Explanation of the rotation of plane of polarization. The
dashed line gives the direction of oscillation of the electric field. (a) and (b)
represent the polarizations at the input and the output faces, respectively.

angle spanned by the right component will be different from that of the left
component. The symmetry direction is then given by the arithmetic average
of these two angles (see the dashed line in Fig. 4.6). Thus the angle of rotation
will be given by

φ = φR − φR + φL
2

=
φR − φL

2
. (4.58)

The right and left circular components for a plane polarized light at the input
face of the uniaxial material can be written as

ER = E0(x̂− iŷ)ei(kRz−ωt), (4.59)

EL = E0(x̂+ iŷ)ei(kLz−ωt). (4.60)

Note that in the above equations we have incorporated Fresnel’s postulate
that inside the material the right and left circular waves have different wave
vectors or different velocities. At the output face of the slab with thickness h,
the x and y components of the electric field can be written as

Ex = 2E0 exp

[

i

(

kR + kL
2

h− ωt

)]

cos

(

kR − kL
2

h

)

, (4.61)

Ey = −2E0 exp

[

i

(

kR + kL
2

h− ωt

)]

sin

(

kR − kL
2

h

)

, (4.62)

so that
Ey
Ex

= − tan

(

kR − kL
2

h

)

. (4.63)

It is clear that this ratio is a real number and hence for arbitrary thickness
of the slab, light remains linearly polarized. The direction of E now makes an

© 2016 Taylor & Francis Group, LLC

  



Elements of polarization, anisotropy and birefringence 67

angle φ with the x-axis, which is given by

φ = −kR − kL
2

h = −k0
nR − nL

2
h = −ω

c

nR − nL
2

h. (4.64)

For a right (left) material, the rotation is in the clockwise (counterclockwise)
direction.
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Material properties can be determined from the real-time response of the
system. For example, for a dielectric, the dipoles constituting the medium
take finite time to respond to the quickly oscillating radiation (∼ 1015 Hz
in optical domain) passing through the dielectric. We present a brief sketch
of the linear response function theory in order to understand the frequency
dependence of the dielectric function ǫ(ω). We discuss this for ǫ(ω), while
similar arguments can be developed for magnetic response. While the details
were worked out for the Lorentz model of the dielectric in Section 2.3.1, here we
develop the response for metals (known as the Drude model). In dealing with
the susceptibilities, we pay due attention to causality and its manifestation in
the form of Kramers-Kronig relations.

Most of our attention is focused on some of the properties of composite
materials, which are formed by two or more constituents. It so happens that
the effective dielectric and material properties of the composites can turn out
to be better than those of the constituents. There are several such examples
from linear and nonlinear optics [9, 10], where the composites are engineered
to have the desired optical response or to have larger nonlinear effective sus-
ceptibilities. Our goal will be to understand the mechanism of how the prop-
erties of the composites can be manipulated. There can be different kinds of
composites from a geometrical viewpoint. For example, we can talk about
metallic/dielectric sub-wavelength layers stacked together or we can have
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heterostructures with tiny metal (dielectric) inclusions embedded in a (metal)
dielectric host. Of late such nano-composites are very much in focus because
of their interesting properties and wide application potentials. We first look at
the two-component layered composites to highlight the remarkable possibili-
ties with such structures. Indeed, in Section 5.4 we show that a metal-dielectric
composite can exhibit extremely large anisotropy though both the constituents
are isotropic in nature. We then use the local field modification to obtain the
effective dielectric function of the heterostructures. Note that some of these
issues have been discussed in detail in textbooks [3] or in monographs [11].
We follow these sources to arrive at the Clausius-Mossotti relation and the
effective dielectric function for two or multi-component heterogeneous media.
Special attention is paid to metal inclusion in a dielectric host since this is
used to a large extent for many other problems in other chapters. The interest
in such metal nano-composites stems from the fact that they can support lo-
calized plasmon resonances. The excitation of the localized plasmons can lead
to large local fields that are needed for low-threshold optical processes (see
Chapter 10 and Section 10.2.3 for more details and applications).

5.1 Linear response theory and dielectric response

5.1.1 Time domain picture

Consider the propagation of light through a medium. In case of a dielec-
tric, the medium can be thought of as a collection of charged particles, namely,
electrons and positively charged cores. Under the action of the applied elec-
tromagnetic field, the positive charges move along the field, while the negative
ones move in the other direction. In conductors some of the charged particles
are free to move around. In dielectric materials the charges are bound to-
gether, though there is a certain flexibility of movement, resulting in induced
dipole moments. Light at optical frequencies (∼ 1015 Hz) interacting with
matter leads to a very interesting situation. The electric component makes
the elementary dipoles oscillate. The effect of optical magnetic fields is orders
of magnitude smaller and we neglect that in our considerations. The positively
charged nucleus (ion core) is heavier and thus in the visible–UV region what
really matters is the motion of the electrons. A very important aspect emerges
when we probe the response of the medium to the incident light that has a
very high frequency. No realistic medium can react instantaneously to such
fast oscillations and the response of the medium in real time can be described
in the framework of a linear response theory.
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The dielectric response embodied by polarization P(t) in optics is not
instantaneous and can depend on the cause E(t) at any previous times:

P(t) = ǫ0

∫ ∞

0

¯̄R(τ) ·E(t− τ)dτ, (5.1)

where ¯̄R(τ) is the linear polarization response function, which is a second-rank
tensor with the property

¯̄R(τ) = 0, for τ < 0. (5.2)

The vanishing of the response function for negative arguments (Eq. (5.2)) is
the statement of causality. Indeed, for negative τ (= −|τ |), a field E(t + |τ |)
at a later time causes a polarization at an earlier time P(t). Fulfillment of
Eq. (5.2) is necessary in order to ensure that such violation of causality does
not happen. In writing Eq. (5.1) we have assumed that the response is local
in space, meaning thereby that whatever happens at r is not affected by the
fields at any other nearby point. Note that generalization to nonlocality in
space can lead to spatial dispersion, which we do not discuss here. The time
invariance principle was applied to arrive at Eq. (5.1). This principle stresses
the importance of the duration of the physical process, irrespective of whether
it took place in the remote past, now or in future. It is another way of saying
that physical laws remain invariant in time. Mathematically, it leads to the
fact that the linear response function ¯̄R is a function of only one argument τ .
In component notation

Pi(t) = ǫ0
∑

j

∫

Rij(τ)Ej(t− τ) dτ. (5.3)

Eq. (5.3) is linear and hence the principle of superposition remains valid. The
theory can be extended to nonlinear response of the medium for intense fields
and the related issues fall in the domain of nonlinear optics.

5.1.2 Frequency domain picture

We now move from time domain to frequency domain description by means
of the Fourier transformations

EEE(ω) =
∫ ∞

−∞
E(t)eiωt dt, (5.4)

E(t) =
1

2π

∫ ∞

−∞
EEE(ω)e−iωt dω. (5.5)

© 2016 Taylor & Francis Group, LLC

  



72 Wave Optics: Basic Concepts and Contemporary Trends

Similar integrals can be written for all other dynamical variables like P(t) and
D(t). Substituting Eq. (5.5) in Eq. (5.1), we get

P(t) = ǫ0

∫ ∞

0

dτ ¯̄R(τ) ·
[∫ ∞

−∞

dω

2π
E(ω)e−iω(t−τ)

]

, (5.6)

= ǫ0

∫ ∞

−∞

{∫ ∞

0

¯̄R(τ)eiωτdτ

}

· E(ω) e−iωt
dω

2π
. (5.7)

We introduce the linear electric susceptibility ¯̄χχχe(ω) as

¯̄χχχe(ω) =

∫ ∞

0

¯̄R(τ)eiωτdτ, (5.8)

and using Eq. (5.8), P(t) can be written as

P(t) = ǫ0

∫ ∞

−∞
¯̄χχχe(ω) ·E(ω) e−iωt

dω

2π
. (5.9)

In component form Eqs. (5.8) and (5.9) can be written as

Pi(t) = ǫ0
∑

j

∫ ∞

−∞
χij(ω)Ej(ω)e−iωt

dω

2π
, (5.10)

χij(ω) =

∫ ∞

0

Rij(τ) e
iωτ dτ. (5.11)

In Eq. (5.11) we have dropped the subscript e (for the electric susceptibility)
for χij . In contrast to standard Fourier transform where ω is treated as a
real variable, we take ω in the complex plane, making use of the analytic
continuation. Choice of ω in the upper half complex plane (Im ω > 0), along
with the condition R(τ) = 0 for τ < 0, ensures the convergence of Eq. (5.11).
Thus ¯̄χχχe(ω) is an analytic function in the upper half complex plane, which is
another way to express causality albeit in the frequency domain. For a detailed
treatment, readers are referred to Butcher and Cotter [12].

5.2 Kramers-Kronig relations

The analytic properties of ¯̄χχχe(ω) lead to a fundamental relation in op-
tics, namely, the Kramers-Kronig relations. A complex frequency-dependent
susceptibility implies that the medium has dispersion and absorption, both
depending on frequency. These two important properties are not completely
independent of each other. In fact, one can be expressed as a principal value
integral depending on the other. In what follows, we show this by exploiting
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FIGURE 5.1: Contour C for evaluating the integral in Eq. (5.14).

the properties of complex analytic functions. In order to avoid notational com-
plexity, we will adhere to a scalar susceptibility. Consider the integral given
by

I = P

∫ ∞

−∞

χ(ω′)

ω′ − ω
dω′, (5.12)

where P denotes the principal value integral as follows:

P

∫ ∞

−∞

χ(ω′)

ω′ − ω
dω′ = lim

δ→0

[

∫ ω−δ

−∞

χ(ω′)

ω′ − ω
dω′ +

∫ +∞

ω+δ

χ(ω′)

ω′ − ω
dω′
]

. (5.13)

We integrate in the complex plane along the contour shown in Fig. 5.1:
∫

C

χ(ω′)

ω′ − ω
dω′. (5.14)

In Eq. (5.14), C = CR + Cδ + P , where CR (Cδ) is the part of the contour
from the larger (smaller) arc of radius R (δ) and P gives the part of the
contour along the real axis excluding the singular point ω′ = ω. The complex

susceptibility χ(ω) is analytic with
∫

C
χ(ω′)
ω′−ωdω

′ = 0 and it is easily shown that
∫

CR

χ(ω′)
ω′−ωdω

′ → 0 as R → ∞ because of the finite response of the system for
a finite input. We are left with

0 = P

∫ ∞

−∞

χ(ω′)

ω′ − ω
dω′ − iπχ(ω). (5.15)

In writing Eq. (5.15), we have taken lim δ → 0 and used the residue theorem.
From Eq. (5.15) we arrive at

χ(ω) = χ′ + iχ′′ =
−i
π

P

∫ ∞

−∞

χ(ω′)

ω′ − ω
dω′, (5.16)
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where χ′ (χ′′) is the real (imaginary) part of χ. Separating the real and the
imaginary parts, we have

χ′(ω) =
1

π
P

∫ ∞

−∞

χ′′(ω′)

ω′ − ω
dω′, (5.17)

χ′′(ω) =
−1

π
P

∫ ∞

−∞

χ′(ω′)

ω′ − ω
dω′. (5.18)

Note that integration includes the negative frequency components of χ(ω),
which has no transparent physical meaning. We invoke another important
physical concept, namely, the reality principle in terms of the response func-
tion. It says that ¯̄R must be real in order to ensure real P(t) for a real cause
E(t). Taking the complex conjugate of Eq. (5.8) (in scalar form),

χ∗(ω) =

∫ ∞

0

R(τ)e−iω
∗τdτ. (5.19)

A comparison of Eq. (5.19) with Eq. (5.8) establishes the relation

χ∗(ω) = χ(−ω∗). (5.20)

Further, for real ω we have

χ∗(ω) = χ(−ω), (5.21)

and for real and imaginary parts we have

χ′(ω) = χ′(−ω), χ′′(ω) = −χ′′(−ω). (5.22)

Thus, reality of the response and the frequency leads to the even and odd
character of the dispersion (χ′(ω)) and the absorption (χ′′(ω)), respectively.

Using Eq. (5.22) in the Kramers-Kronig relations, we can easily arrive at
the following:

χ′(ω) =
1

π
P

∫ ∞

−∞

χ′′(ω′)(ω′ + ω)

ω′2 − ω2
dω′, (5.23)

=
1

π
P

[∫ ∞

−∞

ω′ χ′′(ω′)

ω′2 − ω2
dω′ +

∫ ∞

−∞

ω χ′′(ω′)

ω′2 − ω2
dω′
]

, (5.24)

=
2

π
P

∫ ∞

0

ω′ χ′′(ω′)

ω′2 − ω2
dω′. (5.25)

The second integral in Eq. (5.24) equates to zero since the integrand is an odd
function. In the same way we can derive the following relation for χ′′(ω):

χ′′(ω) = −2ω

π
P

∫ ∞

0

χ′(ω′)

ω′2 − ω2
dω′. (5.26)

It is clear from Eqs. (5.25) and (5.26) that dispersion and absorption, em-
bodied by real and imaginary parts of the susceptibility, respectively, are not
independent of each other. Since measuring absorption is easier than measur-
ing dispersion, we make use of these relations to obtain the refractive index
at a given frequency from the absorption data over a range of frequencies.
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5.3 Dispersion in metals: Drude model

As mentioned earlier, electrons are free to move around in metals, and
accordingly, the term proportional to the restoring force mω2

0x in Eq. (2.35)
can be dropped. Thus for the displacement we have the equation of motion

ẍ+ 2γẋ = − e

m
E0e

−iωt. (5.27)

Proceeding as before we have

x(t) =
e

m

E0e
−iωt

ω(ω + 2iγ)
, (5.28)

P (t) = −Nex(t) = −Ne
2

m

E0e
−iωt

ω(ω + 2iγ)
= ǫ0χeE(t). (5.29)

From Eq. (5.29) it follows that

χe = −
ω2
p

ω(ω + 2iγ)
, (5.30)

ǫ(ω) = 1−
ω2
p

ω(ω + 2iγ)
, (5.31)

where ω2
p = Ne2

mǫ0
as before. Eq. (5.27) considers all the electrons to be free.

But in reality it is not so and some electrons are bound to the lattice sites. In
fact, the interband transitions due to these electrons give the shining yellow
color of gold near 450 nm, since the bound electrons have resonance occurring
at around 450 nm that eats away all the green light and reflects the yellow
light (see for example, Shalaev [11]). These corrections can be introduced
through ǫ∞, which sums up all the contributions from interband transitions,
and Eq. (5.31) can be rewritten as

ǫ(ω) = ǫ∞ −
ω2
p

ω2 + (2γ)2
+ i

2γω2
p

ω(ω2 + (2γ)2)
. (5.32)

It is clear from Eq. (5.32) that for lower frequencies metals can possess large
and negative values of Re ǫ(ω), and this leads to the possibility of surface and
localized modes at metal/dielectric interfaces (see Chapter 10).

A great deal of research has gone into the experimental studies of dispersion
and the absorption in noble metals. They are tabulated in different sources
[13, 14]. In fact, there can be significant differences in the effects using different
data sources. One of the most valuable sources is the work of Johnson and
Christie [13]. A nice comparison has been made by J. Dionne et al. [15, 16].
The results for ǫ′ and ǫ′′ (ǫ = ǫ′ + iǫ′′) for the real and imaginary parts are
presented in Fig. 5.2 using the interpolated Johnson and Christie data [13].
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FIGURE 5.2: Complex dielectric functions of silver and gold as a function
of wavelength. The solid line in (a) [(b)] depicts the real part and (c)[(d)]
corresponds to the imaginary part of dielectric function of silver (gold) after
interpolation [13]. The dash-dot line in each panel corresponds to a dielectric
function calculated using the Drude model with ǫ∞ = 5 [ǫ∞ = 9], 2γ = 0.021
eV [2γ = 0.0072 eV] and ωp = 9.2 eV [ωp = 9.1 eV] for silver [gold].

5.4 Planar composites and motivation for metal-
dielectric structures

Consider the planar composite medium shown in Fig. 5.3, which consists of
two nonmagnetic components with dielectric constants ε1 and ε2 and volume
fractions f1 and f2, respectively, with f1 + f2 = 1. We assume each layer to
be thin enough for quasi-statics to hold. We consider two representative field
orientations that are parallel to the layers denoted by subscript ||, and perpen-
dicular to the layers denoted by subscript ⊥. Note that both the constituent
media satisfy the usual material relation D = εE. For parallel orientation of
the field, we have

E1 = E2 = E||, (5.33)

f1ε1E1 + f2ε2E2 = ε||E||. (5.34)

Note that Eq. (5.33) reflects the continuity of the tangential components of the
field at each interface, while Eq. (5.34) represents the approximation whereby
the parallel component of the induction vector D|| (= ε||E||) is taken as the
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FIGURE 5.3: Schematic view of the layered medium with two components
with volume fractions f1 and f2, each with sub-wavelength widths (d1, d2 ≪
λ).

weighted average of similar components of D in media 1 and 2. For perpen-
dicular orientation of the field, the normal to the surface component of D
is continuous across the interface, while E for the effective medium is to be
approximated by the weighted average. This leads to the equations

ε1E1 = ε2E2 = ε⊥E⊥, (5.35)

f1E1 + f2E2 = E⊥. (5.36)

It may be noted that the field subscripts 1 and 2 in Eqs. (5.33)–(5.36) refer
to the two adjacent layers. Eqs. (5.33)–(5.36) easily lead to the expression for
the effective dielectric function of the composite for parallel and perpendicular
excitation:

ε|| = f1ε1 + f2ε2, (5.37)

1

ε⊥
=
f1
ε1

+
f2
ε2
. (5.38)

Eqs. (5.37) and (5.38) reveal the remarkable possibilities for metal-dielectric
composites. Since metals have a large negative real part of dielectric function
in visible/IR range [13] with significant dispersion, we can have a very small
effective ε|| with a much larger ε⊥. A simple two-parameter (λ, f1) tuning is
enough to reach such a regime, leading to a highly anisotropic material out
of isotropic constituents. The significance of structured materials that brings
the boundary conditions into play is easily seen from this simple example.
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5.5 Metal-dielectric composites

We now discuss the linear dielectric properties of a composite medium
constituting a host and some inclusions. For the sake of simplicity, we mostly
deal with only a two-component system with two constituent materials, which
are homogeneous and isotropic. This can be generalized to a multicomponent
system very easily. We assume the average size of inclusions to be much smaller
than the wavelength of light for quasi-static approximation to hold. We use
the mean field approximation to calculate the effective dielectric response of
the composite. The local field EL on the dipole is given by

EL = E0 +Ed +ES +En, (5.39)

with E0 as the applied electric field and Ed as the depolarizing field due to
the charges induced on the surface of the sphere. The superposition E0 +Ed
gives the homogenous macroscopic (Maxwell) field averaged over the entire
volume of the material. In terms of the macroscopic polarization P the field
Ed can be given by

Ed = −P

ǫ0
. (5.40)

In Eq. (5.39) ES is the field due to the charges induced on the Lorentz sphere
(of radius R) and En is the field caused by other dipoles inside the sphere.
The field ES can be evaluated following Ref. [3], and is given by

ES =
P

3ǫ0
. (5.41)

If now we choose the homogenous medium to have cubic crystal structure,
then the contribution from En goes to zero due to inherent symmetry of the
lattice structure. Thus for the local field we have

EL = E+
P

3ǫ0
. (5.42)

The single molecule polarizability α can be related to the macroscopic polar-
ization P as follows:

P = NαEL = Nα

(

E+
P

3ǫ0

)

, (5.43)

where N denotes the average number of molecules per unit volume. Using
Eq. (5.43), D can be written as

D = ǫ0

(

1 +
Nα/ǫ0

1− Nα
3ǫ0

)

E = ǫ0ǫrE. (5.44)
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Rewriting the relative permeability of the medium ǫr in terms of α yields the
famous Clausius-Mossotti relation as

Nα

3ǫ0
=
ǫr − 1

ǫr + 2
, (5.45)

leading to the expression for α as

α =
3ǫ0
N

(

ǫr − 1

ǫr + 2

)

. (5.46)

Eq. (5.45) relates the microscopic quantity α to a macroscopic property ǫ. We
will now extend this to spherical particle inclusions of relative permittivity ǫ1
embedded in a host medium with relative permittivity ǫh. Let the effective
dielectric function of the composite be denoted by ǫeff . The Clausius-Mossotti
relation then reduces to

Nα

3ǫhǫ0
=

ǫeff − ǫh
ǫeff + 2ǫh

, (5.47)

and the polarizability α takes the form

α = 3ǫ0ǫh
f

N

ǫ1 − ǫh
ǫ1 + 2ǫh

, (5.48)

with f as the volume fraction of the inclusion. Note that 1/N in Eq. (5.48)
is now replaced by f/N to account for the volume occupied by the inclusion.
Replacing α in Eq. (5.48), we get

ǫeff − ǫh
ǫeff + 2ǫh

= f
ǫ1 − ǫh
ǫ1 + 2ǫh

. (5.49)

The medium ǫeff is then given by

ǫeff = ǫh
1 + 2f

(

ǫ1−ǫh
ǫ1+2ǫh

)

1− f
(

ǫ1−ǫh
ǫ1+2ǫh

) . (5.50)

5.5.1 Maxwell-Garnett theory

For small f , Eq. (5.50) can be approximated by

ǫeff = ǫh + 3fǫh
ǫ1 − ǫh
ǫ1 + 2ǫh

+O(f2). (5.51)

This is known as the Maxwell-Garnett (MG) formula. The same formula can
be derived using a different method that is consistent with Eq. (5.51) for
f ≪ 1 [9]. When ǫ1 +2ǫh = 0 we have resonance, which is possible only when
one of the components is a metal, since metals can have a large negative real
part of the dielectric function (e.g., Re(ǫ1) < 0). Such resonances are known
as localized plasmon resonances. Note that ǫeff given by the MG formula
cannot predict the percolation threshold, which is overcome in Bruggeman
theory, discussed next.
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5.5.2 Bruggeman theory for multicomponent composite
medium

We will now derive the effective dielectric function for the n-component
composite medium. Let ǫj denote the dielectric functions of the j-th compo-
nent with volume fraction fj in a host with dielectric function ǫh. Eq. (5.47)
gets modified as

ǫeff − ǫh
ǫeff + 2ǫh

=
N1α1

3ǫ0ǫh
+
N2α2

3ǫ0ǫh
+ · · ·+ Njαj

3ǫ0ǫh
+ · · ·+ Nnαn

3ǫ0ǫh
, (5.52)

where αj , (j = 1, 2, · · · , n) is given by

αj =
3ǫ0ǫh
Nj

fj

(

ǫj − ǫh
ǫj + 2ǫh

)

, (5.53)

and Nj denotes the average number of molecules of the j-th species per unit
volume. After substituting αj in Eq. (5.52), we have

ǫeff − ǫh
ǫeff + 2ǫh

= f1
ǫ1 − ǫh
ǫ1 + 2ǫh

+ f2
ǫ2 − ǫh
ǫ2 + 2ǫh

+ · · ·+ fj
ǫj − ǫh
ǫj + 2ǫh

+ · · ·+ fn
ǫn − ǫh
ǫn + 2ǫh

.

(5.54)
For an n-component effective composite medium, we have

f1 + f2 + · · ·+ fj + · · ·+ fn = 1, (5.55)

and ǫh cannot be distinguished from the effective ǫeff (ǫeff = ǫh); the left-
hand side of Eq. (5.54) reduces to zero and we arrive at the Bruggeman formula

n
∑

j=1

fj
ǫj − ǫeff
ǫj + 2ǫeff

= 0, with
n
∑

j=1

fj = 1. (5.56)

Note that the derivation for the n-component system presented here does
not differentiate the inclusion and host as in the Maxwell-Garnett formula.
The present approach treats both inclusions and host on an equal footing.
The effective medium dielectric function ǫeff for a two-component (n = 2)
composite simplifies to

f1
ǫ1 − ǫeff
ǫ1 + 2ǫeff

+ f2
ǫ2 − ǫeff
ǫ2 + 2ǫeff

= 0, with f1 = 1− f2. (5.57)

Eq. (5.57) represents a quadratic equation in ǫeff having roots

ǫeff =
1

4
{(3f1 − 1) ǫ1 + (3f2 − 1) ǫ2

±
√

[(3f1 − 1) ǫ1 + (3f2 − 1) ǫ2]
2
+ 8ǫ1ǫ2}. (5.58)
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FIGURE 5.4: [(a), (b) and (c)] Real and [(d), (e) and (f)] imaginary parts of
ǫeff as function of λ for a gold-silica composite evaluated using the Bruggeman
(solid curve) and the Maxwell-Garnett (dash-dot) formula for three different
volume fractions of gold inclusions, namely, f = 0.005 [(a) and (d)], f = 0.04
[(b) and (e)] and f = 0.2 [(c) and (f)]. The dielectric function of gold is taken
from Johnson and Christie [13], while εh = 2.25.

The proper sign in Eq. (5.58) is to be chosen such that Im (ǫeff ) > 0 to ensure
causality.

We now compare the estimates of ǫeff as predicted by the Maxwell-Garnett
(MG) and Bruggeman formulas. As mentioned earlier, MG formula is valid
only for lower values of f , as can be seen from Fig. 5.4. Fig. 5.4 shows the real
and imaginary parts of ǫeff as a function of wavelength λ for different values
of volume fraction of gold inclusions in silica. The solid (dash-dot) curve in
Fig. 5.4 corresponds to the MG (Bruggeman) formula. It is evident that for
lower values of f (for example, f = 0.005), both the formulas match very well,
but for higher values of f they differ drastically. Thus due attention is to be
paid when dealing with higher values of f of the metal inclusions since ǫeff
can be completely different as estimated by the two approaches. Throughout
the derivation we have considered the inclusions to be spherical, but this can
be generalized to other geometries in a straightforward manner. In a similar
vein, anisotropic character of the inclusions can be incorporated.

5.6 Metamaterials and negative index materials

It has been stressed now and again that all the material properties are
contained in the dielectric permittivity ǫ and the permeability µ in the context
of electromagnetics and optics. Recall that ǫ and µ are related to corresponding
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FIGURE 5.5: Characterization of materials based on the electric (ǫ) and
magnetic (µ) response.

electric and magnetic susceptibilities through

ǫ = ǫ0(1 + χe) = ǫ0ǫr, (5.59)

µ = µ0(1 + χm) = µ0µr. (5.60)

Thus electric and magnetic properties of the medium are determined by the
relative permittivity and permeability ǫr and µr, respectively. In 1968 Victor
Veselago, in a seminal paper, posed a very interesting problem [17]: Does
the standard electromagnetics hold when both ǫr and µr are simultaneously
negative? It was shown by Veselago that there is no conceptual problem when
both ǫr and µr are simultaneously negative over a certain frequency range.
Of course, such materials do not occur in nature and, if at all, they are to
be engineered and fabricated. Such materials were named as negative index
materials (NIM) or left-handed materials, since we have to pick the negative
sign for n (n = −√

ǫrµr) and k, E and H in such materials from a left-
handed triplet. In contrast, for standard materials we pick the positive sign
for the square root, and we have a right-handed triplet for k, E and H (see
Eqs. (2.25)–(2.28) in Section 2.2). Ignoring the imaginary part of ǫ and µ,
the material parameter domain can be split into four quadrants as shown
in Fig. 5.5. It is clear from Fig. 5.5 that quadrants II and IV correspond
to metal-like behavior. Parameters corresponding to II, meanwhile, are for
standard metals and doped semiconductors at low frequencies. Quadrant IV
corresponds to ‘magnetic’ metals like some ferrites. Clearly I corresponds to
most dielectric materials and III refers to negative index materials. The left-
handed triplet character for NIMs leads to yet another counterintuitive result
regarding the antiparallel nature of the phase velocity and the Poynting vector.
Indeed, S = 1

µ0
E×H is antiparallel to k.

It is now clear that NIMs can lead to a host of unexpected and counterintu-
itive phenomena. For example, there can be negative refraction leading to the
bending of the refracted ray on the same side of the normal. A few other effects
are the negative Doppler effect, the anomalous Cherenkov effect, lensing, etc.
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In the context of lensing, a real breakthrough was the theoretical paper by Sir
Pendry. He showed that a thin slab of NIM can act as a perfect lens since it
can focus not only the propagating waves but also the evanescent waves [18].
Such a perfect lens can offer superresolution beating the diffraction limit. In
contrast, a standard lens can focus only the propagating part and thus cannot
override the Rayleigh criterion. On the design front, the key suggestions again
come from Sir Pendry and his coworkers [19, 20]. Designing materials with
negative ǫ is not difficult, since we know that metals possess large negative ǫ
at low frequencies. The job was to reduce the plasma frequency. With a ‘di-
lute’ metal in the form of array of wires, this was achieved in 1996 [19]. After
about three years, in 1999, Sir Pendry theoretically showed how to achieve a
magnetic material from nonmagnetic constituents [20]. Split-ring resonators
(SRR) emerged as the core units in the artificial magnetic materials that could
offer µ < 0. A realization of the clever arrangement of wires and SRRs led to
the first implementation of NIMs in the microwave range [21]. Fishnet struc-
tures emerged as the likely candidates to push the frequency range to near-IR
and visible [22], since there were enormous difficulties (both conceptual and
practical) in scaling down the SRRs to the optical domain.

The major difficulties in metamaterials (the Greek word meta means ‘be-
yond,’ these are materials beyond what is available in nature) and especially
in NIM research have been the losses in such materials. In fact, some of them
exploit the material resonances, which are associated with large losses. Most
of the theoretical predictions on the prefect lensing, etc. assume low or no
losses in the structure. It has been shown theoretically that inclusion of losses
can wash out the sub-wavelength features, and it is difficult to achieve super-
resolution even with the parameters of the best NIM structures available to
date [23]. Several schemes to overcome the devastating effects of losses have
been proposed and most efforts have not yet achieved a ‘perfect’ metamaterial
at optical frequencies.

Volumes have been written on such engineered materials and excellent
reviews and monographs exist [11, 24, 25, 26]. In fact, one of the first meta-
materials was conceived by Sir J. C. Bose, when he showed that a twisted
medium can affect the polarization of light [27]. Here we introduced the read-
ers to this fascinating area of engineered materials or metamaterials. Such
metamaterials hold the key to many practical problems like perfect lensing,
superresolution, invisibility cloaks, etc. Some of these effects are discussed
briefly in Chapter 14.
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In Chapter 4 it was noted that the experiments carried out by Fresnel and
Young led to the discovery of transverse character of light that could satisfacto-
rily describe the phenomenon of interference using polarized light. The basic
definition of state of polarization of light via the polarization ellipse of the
transverse EM field was briefly introduced in Chapter 4. When such polarized
light passes through any anisotropic medium, its polarization state is trans-
formed depending upon medium characteristics. The variations in the state
of polarization of a wave thus enable us to characterize the system under con-
sideration. A number of mathematical formalisms have been developed over
the years to deal with the propagation of polarized light and its interaction
with optical systems. Among these, the Jones calculus and the Stokes-Mueller
calculus have been the most widely used. The former is a field-based model
that assumes coherent addition of the phase and amplitude of EM waves,
and the latter is an intensity-based model that instead utilizes the incoherent
addition of wave intensities. In this chapter we define the various states of
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polarization of light waves and discuss the interaction of such polarized light
with material media using the Jones and Stokes-Mueller calculus. We also
briefly introduce the concepts of polarimetric measurements and touch upon
representative applications of experimental polarimetry.

6.1 State of polarization of light waves

As introduced in Chapter 4, the classical concept of polarized light repre-
sents the state of polarization of a transverse electromagnetic (EM) wave by
the evolution of transverse electric field vector E as a function of time at a
given point of the space. If the vector extremity describes a stationary curve
in their temporal evolution, the wave is polarized. Accordingly, the shape of
the curve traced out by the E vector defines the polarization state of the
wave in question. On the other hand, if the vector extremity follows random
paths during the observation or measurement time, it is unpolarized. In the
corresponding quantum mechanical description, it is assumed that each in-
dividual photon (energy quanta) is polarized, and its associated state vector
corresponds to one of the classical polarization states. When a large num-
ber of photons are considered, their collective behavior is consistent with the
classical limit (the wave solution to Maxwell’s equations). In the case when
all of the photons exhibit the same polarization, the light is said to be com-
pletely polarized. On the other hand, when there are photons of different
polarizations but with a distribution favoring one particular state, the light
is partially polarized, and when the photons are uniformly distributed over all
possible polarization states, the light is said to be unpolarized. Nevertheless,
the quantum polarization state vector for the photon is analogous to the Jones
vector (described subsequently) in its classical description. Thus the quantum
mechanical view of polarization and the corresponding classical formalisms
are mutually consistent.

6.1.1 Jones vector representation of pure polarization states

In the classical description, the electric field vector of any transverse EM
plane monochromatic wave of frequency ω, propagating along the z direction,
can be expressed in terms of the two orthogonal components (x and y; note
that other orthonormal coordinates are possible) in the right-handed Cartesian
coordinate system as [28, 29, 30, 31, 32]

E(z, t) =

[

E0x cos(kz − ωt− δx)
E0y cos(kz − ωt− δy)

]

, (6.1)

with
k = (n′ + in′′)

ω

c
. (6.2)
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which is the modulus of the propagation vector k, c is the speed of light in
vacuum, and n′ and n′′ are the real and imaginary parts of the refractive
index, which determine the speed of light and the absorption in the medium,
respectively.

The polarization of the wave is defined by the shape of the trajectory de-
scribed by E in the xy plane. This shape depends on the ratio of the amplitudes
tan ν and the phase difference δ, defined as

tan ν =
E0y

E0x
; δ = δy − δx. (6.3)

This trajectory is in general elliptical and is represented in Fig. 6.1. Besides
the parameters defined above, the ellipse can also be described by the ori-
entation (azimuth) α of its major axis and its ellipticity ǫ, which is positive
(negative) for left- (right-) handedness. The ellipticity ǫ varies between the
two limits of zero (linearly polarized light) and ±45◦ (circularly polarized
light), representing the two limits of generally elliptical polarization. R. Clark

FIGURE 6.1: The polarization ellipse of a wave propagating in the z direc-
tion. Here E0x and E0y are the amplitudes of the x and y field oscillations;
their ratio is given by tan ν. The parameter α is the azimuth of the major
axis of the ellipse and ǫ is its ellipticity. ǫ is positive or negative for left- or
right-handed polarization states, respectively.
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Jones represented (between 1941 and 1947) the polarization state of a quasi-
monochromatic transverse plane wave by a two-dimensional column matrix or
a vector whose elements are complex amplitudes of the field vector along the
two orthogonal directions, known as the Jones vector [33]. Accordingly, the
Jones vector is defined as

E =

(

Ex
Ey

)

=

(

E0x exp(−iδx)
E0y exp(−iδy)

)

. (6.4)

Depending on the relative amplitudes and phases of the two orthogonal com-
ponents of the electric field in Eq. (6.4), the Jones vectors corresponding to
the different pure polarization states are listed in Table 6.1 (with H, V, P
and M, for linear polarizations along the horizontal, vertical, +45◦and −45◦

directions, respectively and L and R for left and right circular polarizations).
The intensity of a fully polarized wave characterized by the Jones vector

is given by

I = Ix + Iy =
1

2
(E2

0x + E2
0y) =

1

2
(E ·E∗), (6.5)

where E∗ is the conjugate of E.
Experimentally, one can determine the azimuth α of a linearly polar-

ized light beam propagating along the z direction by observing its extinction
through a linear analyzer set perpendicular to α. This type of characterization
may also be extended to elliptically polarized beams as illustrated in Fig. 6.2.

To determine the ellipticity ǫ, a quarter-wave plate (QWP) is inserted in
the beam path with its slow axis oriented at the azimuth α. Due to the 90◦

phase shift introduced by the QWP, the initial elliptical polarization state is
transformed into a linear one, oriented at α + ǫ from the x reference axis.
Then, a linear analyzer with its pass axis oriented at ǫ from the fast axis
of the QWP will lead to complete extinction of the beam. In practice, the
extinction is achieved by a trial-and-error procedure, and the azimuth α and
the ellipticity ǫ are eventually determined from the angular settings of the
quarter-wave plate and the analyzer when maximum extinction is obtained.

Note that this vectorial description of polarization state enables the matrix
treatment for describing the polarizing transfer of light in its interaction with
any medium. An optical element, like a retardation plate or a partial polarizer,
is therefore represented by a 2× 2 matrix, whose four elements are generally
complex. This can be represented as [33]

E′ = JE,
(

E′
x

E′
y

)

=

(

J11 J12
J21 J22

)(

Ex
Ey

)

, (6.6)

where J is a 2 × 2 complex matrix, known as the Jones matrix of the inter-
acting medium, and E and E′ are the input and the output Jones vectors of
light, respectively. Applying the associative properties of matrices, the matrix
operator equivalent to a combination of several optical elements can then be
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TABLE 6.1: Usual polarization states: Jones vectors, azimuths, ellipticities and shapes of the ellipses.

State H V P M L R Elliptical

E

(

1
0

) (

0
1

)

1√
2

(

1
1

)

1√
2

(

1
−1

)

1√
2

(

1
i

)

1√
2

(

1
−i

) (

cosα cos ǫ − i sinα sin ǫ
sinα cos ǫ+ i cosα sin ǫ

)

α 0 90◦ +45◦ −45◦ Undefined Undefined α

ǫ 0 0 0 0 +45◦ −45◦ ǫ

Shape
of the −→ ↑ ր տ 	 � ↓
ellipse
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FIGURE 6.2: Extinction method for the analysis of arbitrary elliptical po-
larizations. The input elliptical polarization is transformed into a linear po-
larization state (LP) by inserting a quarter-wave plate with its slow axis s
oriented at azimuth α. Complete extinction is then observed by setting a lin-
ear analyzer LA at perpendicular orientation to LP. The ellipticity ǫ is then
measured as the angle between the analyzer axis for extinction and the fast
axis f of the quarter-wave plate.

easily determined. It is the result of the multiplication of the matrices of each
optical element, in the same order as that of light passing through. Hence,
the Jones vector of an optical wave that emerges from a system of n optical
systems can be written as

J = JnJn−1 . . . J2J1. (6.7)

We shall address the Jones matrices corresponding to various polarization
transforming interactions of medium in subsequent sections.

While theoretically interesting, the Jones formalism is limited in that it
can only describe pure polarization states (completely polarized waves), and
it is thus ill-suited for applications in which it is necessary to consider par-
tial polarization or depolarizing interactions (polarization loss). Yet, quasi-
monochromatic radiation is not necessarily completely polarized and many of
the naturally occurring optical materials tend to be depolarizing. Such general
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cases can be better addressed by the coherency matrix and the Stokes-Mueller
formalisms, as we describe next.

6.1.2 Partially polarized states

The previous subsection dealt with completely polarized waves. In such
an idealized situation, the transverse components of the optical field (Ex and
Ey) describe a perfect polarization ellipse (or some special form of an ellipse,
such as a circle or a straight line, depending upon the relative amplitudes
and phases) in the xy (transverse) plane. Note that the time scale at which
the light vector traces out an instantaneous ellipse is of the order of 10−15

seconds. This period of time is clearly too short to allow us to follow the
tracing of the ellipse. This fact, therefore, immediately prevents us from ever
observing the polarization ellipse. More important, such a description is only
applicable for light that is completely polarized, waves for which transverse
components of the field amplitudes Eox, Eoy and the associated phases δx
and δy can be considered as constant during the measurement time. Yet,
in nature, light is very often unpolarized or partially polarized. Thus, the
polarization ellipse is an idealization of the true behavior of light; it is only
correct at any given instant of time. These limitations force us to consider an
alternative description of polarized light in which only observed average values
or measured quantities (‘intensities’ rather than instantaneous field) enter.

Before we invoke mathematical formulation of partial polarization states
via the measurable intensities (time average of the square of the amplitude),
it might be useful to gain some qualitative idea on the phenomenon of partial
polarization (or depolarization) from practical extinction measurements. For
example, if we try the extinction method to characterize natural light directly
coming from a source, such as the sun or a light bulb, the detected intensity
can be independent of the settings of the quarter-wave plate and the analyzer.
We can thus conclude that the light coming from the sun or the light bulb is
totally depolarized. In other cases—for example, the light coming from a bulb
but reflected from a floor en route to the observer—the intensity detected
through the quarter-wave plate and the analyzer may vary between Imin and
Imax. This provides an experimental definition of the degree of polarization
(DOP ) of the light beam, :

DOP =
Imax − Imin
Imax + Imin

. (6.8)

For totally polarized states, Imin vanishes leading to DOP = 1. At the other
extreme, for totally unpolarized light, Imin = Imax and DOP = 0. For par-
tially polarized states, on the other hand, theDOP may take any intermediate
values between zero and one. For such partially polarized states, the motion
of the electric field in the xy plane is no longer a perfect ellipse, but rather
a somewhat disordered one. In case of a totally random motion of the elec-
tric vector E, in the extinction procedure the analyzer would detect the same
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FIGURE 6.3: Scattering of a linearly polarized coherent light beam by static
samples. Top: single scattering from an optically thin sample. The state of
polarization of the speckle spots remains the same as that of the incident
beam. Bottom: multiple scattering by an optically thick sample. The state
of polarization varies considerably from speckle to speckle.

constant intensity. What is implicitly assumed in this description is that the
light polarization may be defined at any instant, but may vary over time
scales much shorter than the integration time of the detector. As a result, this
detector takes the temporal averages of the intensities, which is sequentially
generated by different totally polarized states. We note here that that the av-
eraging of intensities (i.e., the incoherent sum) of polarized contributions is
not necessarily temporal (it may be spatial as well, as illustrated below).

Consider the scattering experiments shown in Fig. 6.3. In one case (top
panel) the object is optically thin and the laser undergoes single scattering
by the rough surface. In the other case, the object is optically thick leading
to strong multiple scattering effect. In both cases, the incident laser beam
is spatially coherent, and the scattering objects are static (we ignore for the
moment any possible thermal/Brownian motions). It is well known that in
these conditions we can observe a speckle pattern in the screen due to the
interferences (at each point of the screen) of many scattered waves having
random (but static) amplitudes and relative phases.

The major difference between single and multiple scattering regimes is that
for the former, the polarization of all scattered waves is the same as that of
the incident wave, while the polarization states become random in the case
of multiple scattering. Consequently, as outlined in Fig. 6.3, all the speckles
feature the same polarization as the incident laser for single scattering, while
in the other case, each speckle is still fully polarized, but this polarization
varies randomly from one speckle to the next.
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To summarize, true depolarization requires that the detected signal is the
sum of intensities due to various polarized contributions with different state
of polarization. The summing may take place temporally, spatially or even
spectrally, and it depends not only on the sample itself but also on the char-
acteristics of the illumination beam and of the detection system.

In 1852 Sir George Gabriel Stokes discovered that the polarization behavior
could be represented in terms of observables [34]. He found that any state of
polarized light could be completely described by four measurable quantities
now known as the Stokes polarization parameters. As we saw earlier, the
amplitude of the optical field cannot be observed; rather, the quantity that
can be observed is the intensity, which is derived by taking a time average
of the square of the amplitude. This suggests that if we take a time average
of the unobserved polarization ellipse, we will be led to the observables of
the polarization ellipse. As we shall show shortly, these observables of the
polarization ellipse (measured as four sets of intensity values) are exactly
the Stokes polarization parameters. Importantly, these Stokes parameters can
encompass any polarization state of light, whether it is natural, totally or
partially polarized (and can thus deal with both polarizing and depolarizing
optical interactions). Before we address that, we shall introduce the concept
of the coherency matrix, which deals with the time-averaged description of the
transverse field components (amplitudes and phases). The definition of degree
of polarization (DOP ) will be introduced via this so-called coherency matrix
formalism and it will be shown that the four measurable Stokes polarization
parameters actually follow from combinations of the various elements of the
coherency matrix.

6.1.3 Concept of 2× 2 coherency matrix

The coherency matrix (also called the matrix of polarization in the liter-
ature) includes partial polarization effects by taking the temporal average of
the direct product of the Jones vector by its Hermitian conjugate. In this way,
the 2× 2 coherency matrix φ is defined as [30, 35, 36, 37]

φ =
〈

E⊗E†〉 =

[

〈ExE∗
x〉 〈ExE∗

y 〉
〈EyE∗

x〉 〈EyE∗
y〉

]

=

[

φxx φxy
φyx φyy

]

, (6.9)

where 〈· · · 〉 denotes temporal (ensemble) average, ⊗ denotes the tensorial or
Kronecker product, E∗ is the conjugate of E and E† is the transpose conjugate
of the Jones vector E. The two defining properties of the coherency matrix are
its Hermiticity (φ = φ†, by its definition) and non-negativity (φ ≥ 0): every
2 × 2 matrix obeying these two conditions is a valid coherency matrix and
represents some physically realizable polarization state. The non-negativity
condition for this 2× 2 matrix can also be written as

trφ > 0 and detφ ≥ 0. (6.10)
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It is pertinent to note that the trace of the coherency matrix (trφ) represents
an experimentally measurable quantity, the total intensity of light that cor-
responds to the addition of the two orthogonal component intensities. As it
will be discussed shortly (in context with the Stokes parameters), this corre-
sponds to the sum of intensities measured using two orthogonal orientations
of a polarizer. Thus, the first non-negativity condition of the coherency ma-
trix (trφ > 0) directly follows from the non-negativity of total intensity. The
second condition (detφ ≥ 0), on the other hand, follows from the limiting
condition of degree of polarization (0 ≤ DOP ≤ 1). This can be understood
by noting that the off-diagonal elements of φ are defined by taking the time
average over the product of a field component with the conjugate of its trans-
verse component. The quantity detφ therefore represents the fluctuations in
the phases of the field components. As we can easily see, for a perfectly co-
herent source (where the phases of the transverse field components and their
difference can be considered as a constant over a finite measurement time),
the determinant of the coherency matrix should vanish (detφ = 0). This cor-
responds to the fully polarized light (the ideal situation that we discussed
in context with the Jones formalism and polarization ellipse). For partially
coherent (or incoherent) sources, on the other hand, detφ > 0, representing
partially (mixed) polarized states or even completely unpolarized states. In
fact, the quantity detφ (its square root, rather, as we shall show later) is a
quantitative measure of the unpolarized intensity component of any partially
polarized light (the natural intensity component that is independent of the
polarizer/wave plate orientation in the experiment described in the begin-
ning to define the partial polarization states). This definition of the state of
polarization via the coherency matrix thus enables us to relate the DOP of
light to the coherence characteristics of the source. It follows that the coher-
ence property of the source itself limits the maximum achievable polarization
(DOP = 1 can only be produced by an idealized perfectly coherent source).
The definition of DOP can in fact be invoked from the coherency matrix
using the ratio of determinant of φ (representing the completely unpolarized
component of intensity) and the trace of φ (representing the total intensity)
as

DOP =
Ipol
Itot

=

√

1− 4det(φ)

[Tr(φ)]2
. (6.11)

Here, Ipol is the polarized fraction of the intensity and Itot is the total in-
tensity. As we can observe now, the empirical definition of DOP (Eq. 6.8),
which was introduced rather naively in context to the experiment discussed
in the previous section, is consistent with the definition of DOP from the
coherency matrix. It is clear that fully polarized light corresponds to detφ = 0
(DOP = 1) and partially polarized or mixed polarization states correspond
to detφ > 0 (DOP < 1). The physical significance of these and other rel-
evant issues dealing with DOP will become more apparent when we dis-
cuss (in the following section) the relationship between the coherency matrix
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elements and the experimentally measurable Stokes polarization parameters.
In passing, we note that for polarization preserving (nondepolarizing) inter-
actions, the transformation of φ(φ→ φ′) (the changes in polarization state of
light represented by coherency matrix transformation) can be represented by
the action of the Jones matrix J as φ′ = JφJ†, implying Jones systems map
pure states (detφ = 0) into pure states. Depolarizing transformation involving
mixed (partial) polarization states (detφ > 0), on the other hand, is handled
by Stokes-Mueller formalism, as discussed subsequently in Section 6.2.3.

6.1.4 Stokes parameters: Intensity-based representation of
polarization states

Following the presentation above, polarized states are not characterized in
terms of well-determined field amplitudes, but rather by intensities (the time
average of the square of the field amplitudes). These measurable intensities
are grouped in a 4 × 1 vector (four row, single-column array) known as the
Stokes vector S, which is sufficient to characterize any polarization state of
light (pure, partial or unpolarized). These are defined as [30, 34, 35, 36]

S =









I
Q
U
V









=









〈ExE∗
x〉+ 〈EyE∗

y〉
〈ExE∗

x〉 − 〈EyE∗
y〉

〈ExE∗
y 〉+ 〈EyE∗

x〉
i
(

〈EyE∗
x〉 − 〈ExE∗

y〉
)









=









〈E2
0x + E2

0y〉
〈E2

0x − E2
0y〉

〈2E0xE0ycosδ〉
〈2E0xE0ysinδ〉









, (6.12)

where once again, 〈· · · 〉 denotes temporal average and the electric field com-
ponents (E0x and E0y) and the corresponding phase difference δ(= δy − δx)
are also temporally averaged over the measurement time. As apparent, these
four Stokes parameters are real experimental quantities (intensities) typically
measured with conventional square-law photo-detectors, usually in energy-
like dimensions. I is the total detected light intensity that corresponds to the
addition of the two orthogonal component intensities; Q is the difference in in-
tensity between horizontal and vertical polarization states; U is the difference
between the intensities of linear +45◦ and +45◦(135◦) polarization states; and
V is the difference between intensities of right circular and left circular polar-
ization states (note that if a difference was replaced by a sum in any of these
pairs, total intensity I would result). Thus these parameters can be directly
determined by the following six intensity measurements (I) performed with
ideal polarizers: IH , horizontal linear polarizer (0◦); IV , vertical linear polar-
izer (90◦); IP , 45◦ linear polarizer; IM , 135◦ (−45◦) linear polarizer; IR, right
circular polarizer, and IL, left circular polarizer.

S =









I
Q
U
V









=









IH + IV
IH − IV
IP + IM
IR − IL









. (6.13)
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TABLE 6.2: Normalized Stokes vectors for usual totally polarized states (of
Table 6.1)

State H V P M R L Elliptical

S







1
1
0
0













1
−1
0
0













1
0
1
0













1
0
−1
0













1
0
0
1













1
0
0
−1













1
cos 2α cos 2ǫ
sin 2α cos 2ǫ
− sin 2ǫ







Also note that S is not a vector in the geometric space; rather, this array of
intensity values represent a directional vector in the polarization state space
(the Poincaré sphere, described subsequently). For totally polarized states
defined by Jones vectors of the form given by Eq. (6.4), the corresponding
Stokes vectors are

S =









E2
0x + E2

0y

E2
0x − E2

0y

2E0xE0y cos δ
2E0xE0y sin δ









. (6.14)

Usually, Stokes vectors are represented in intensity normalized form (normal-
ized by the first element I). The normalized Stokes vectors for fully polarized
states are listed in Table 6.2. At the other extreme, for totally unpolarized
states, Q = U = V = 0, which corresponds to the fact that no matter how
the analyzer is oriented, for such states the transmitted intensity is always the
same, equal to one-half of the total intensity.

Using this formalism, the following polarization parameters of any light
beam are defined:

• net degree of polarization

DOP =

√

(Q2 + U2 + V 2)

I
, (6.15)

• degree of linear polarization

DOP =

√

(Q2 + U2)

I
, (6.16)

• degree of circular polarization

DOP =
V

I
. (6.17)
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Note that the degree of polarization of light should not exceed unity. This
therefore imposes the following restriction on the Stokes parameters,

I ≥
√

Q2 + U2 + V 2, (6.18)

where the equality and the inequality signs correspond to completely and
partially polarized states, respectively. It is worth noting that this restriction
ofDOP actually originates from the non-negativity condition of the coherency
matrix (Eq. (6.10)), which implies the physical realizability of any polarization
state. Moreover, the definition of DOP (Eq. (6.15)) is also commensurate with
the definition based on the coherency matrix elements (Eq. (6.11)). In order
to understand this, we relate the Stokes vector elements with the elements of
the coherency matrix (Eq. (6.9)) as

S =









I
Q
U
V









=









〈ExE∗
x〉+ 〈EyE∗

y 〉
〈ExE∗

x〉 − 〈EyE∗
y 〉

〈ExE∗
y〉+ 〈EyE∗

x〉
i
(

〈EyE∗
x〉 − 〈ExE∗

y〉
)









=









φxx + φyy
φxx − φyy
φxy + φyx
i(φyx − φxy)









. (6.19)

In the literature, the coherency matrix is also sometimes written as a 4 × 1
vector (four row, single-column array, analogous to the Stokes vector) and is
denoted as the coherency vector L. Thus, S and L are related by the 4 × 4
matrix A as

S = A









φxx
φxy
φyx
φyy









= AL, A =









1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0









. (6.20)

We are now in a position to inspect the non-negativity condition of 2 × 2
coherency matrix and the corresponding definition of DOP via the co-
herency matrix elements. By performing simple algebraic manipulations using
Eq. (6.20), we can see that the determinant of the coherency matrix can be
written in terms of the Stokes parameters as

detφ =
1

4

[

I2 − (Q2 + U2 + V 2)
]

. (6.21)

Thus, the non-negativity condition of coherency matrix is equivalent to the
condition that the DOP should not exceed unity (Eq. (6.18)). Moreover, the
quantity (Q2 + U2 + V 2)1/2 signifies polarized component of the detected
intensity (as each of the quantities, Q, U and V are differences in intensities
between orthogonal polarizations). Thus, either in Eq. (6.11) or in Eq. (6.15),
the degree of polarization is defined as the ratio of the polarized component
of the detected intensity (Ipol) to the total detected intensity (Itot). It thus
follows, as we noted earlier, the determinant of the coherency matrix (the
quantity detφ) is an absolute measure of the unpolarized intensity of any
partially polarized light:

detφ =
1

4

[

I2tot − I2pol
]

. (6.22)
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6.1.5 The Poincaré sphere representation of Stokes polariza-
tion parameters

The Poincaré sphere is a very convenient geometrical representation of
all possible polarization states. The intensity-normalized Stokes parameters
(q, u and v) are used as coordinate axes to form the Poincaré sphere. The
intensity-normalized form of Stokes vector is [30]

ST = I

(

1,
Q

I
,
U

I
,
V

I

)

= I(1, q, u, v) = I(1, sT ). (6.23)

This is illustrated in Fig. 6.4. In this space, the DOP is nothing else but the
distance of the representative point from origin. Thus the physical realizabil-
ity condition given by Eq. (6.18) implies that all acceptable Stokes vectors
are represented by points located within the unit radius sphere, the Poincaré
sphere. Totally polarized states are found at the surface of the sphere (point
A) while partially polarized states are inside (point B). The other spherical co-
ordinates, the points ‘latitude’ and ‘longitude,’ are nothing else but twice the
azimuth α and ellipticity ǫ, as shown by the last column of Table 6.2 for totally
polarized states. It is clear that in this geometric representation, the equato-
rial circle of the sphere represents the set of linear polarization states (with
zero ellipticity); the poles are the points of ellipticity ∓1 representing right
(north pole) and left (south pole) circular polarization states, respectively;
the north hemisphere and the south hemisphere correspond to right-handed
and left-handed elliptical polarizations, respectively. This geometrical repre-
sentation provides simple and intuitive descriptions of many aspects of the
interactions between polarized light and samples and/or instruments. As we
shall discuss subsequently, any type of polarization transformation introduced
by interaction with a medium can be conveniently described by a characteristic
trajectory in the Poincaré sphere.

6.1.6 Decomposition of mixed polarization states

The Stokes formalism enables us to express the incoherent superposition
of two light waves. The Stokes vector S of a partially polarized wave can be
decomposed into a completely polarized part and an unpolarized part; this
type of decomposition is unique [30, 37].

S =









I
Q
U
V









=









I −
√

Q2 + U2 + V 2

0
0
0









+









√

Q2 + U2 + V 2

Q
U
V









(6.24)

(Partially polarized wave = Unpolarized wave + Completely polarized wave.)
While the above decomposition of the Stokes vector in Eq. (6.24) is relatively
easy to implement, analogous decomposition of the coherency matrix is much
more important in conceptual and practical grounds, as we discuss here. The
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FIGURE 6.4: Geometrical representation of Stokes vectors within the
Poincaré sphere. Any given polarization state is represented by a point whose
Cartesian coordinates are the intensity-normalized coordinates (q, u, v). The
radial coordinate is the DOP , and the ‘longitude’ and ‘latitude’ are, respec-
tively, 2α and 2ǫ. Totally polarized states are found at the surface of the unit
radius sphere, while partially polarized states are inside (e.g., points A and
B, respectively). Linearly polarized states, among which are the H , V , P and
M states, are on the ‘equator’ while the L and R circular states are found at
the ‘poles.’

coherency matrix of a partially polarized wave can indeed be decomposed
into incoherent superposition of two independent completely polarized waves.
Here, we briefly outline the steps of such a decomposition, which leads to the
useful concept of polarization entropy related to the degree of polarization of
a wave. Since the coherency matrix is Hermitian by construction, a unitary
matrix can always be found permitting its diagonalization. The diagonalized
coherency matrix can be written in the form

φ =

[

λ1 0
0 λ2

]

. (6.25)

The two eigenvalues, λ1 and λ2, of the diagonalized coherency can be obtained
from the solution of the characteristic equation as

λ1 =
1

2
trφ

[

1 +

[

1− 4det(φ)

[Trφ]2

]1/2
]

λ2 =
1

2
trφ

[

1−
[

1− 4det(φ)

[Trφ]2

]1/2
]

.

(6.26)
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It is clear that the two constituent completely polarized waves of the coherency
matrix are polarized in the direction corresponding to the eigenvectors associ-
ated to λ1 and λ2, respectively, and the resulting decomposition can be written
as

1

λ1 + λ2
φ =

1

λ1 + λ2

[

λ1 0
0 0

]

+
1

λ1 + λ2

[

0 0
0 λ2

]

. (6.27)

Eq. (6.27) leads to the probabilistic interpretation of λ1 and λ2, which con-
sequently leads to the concept of entropy in the study of partial polarization.
Note that entropy ζ of a given system describes the degree of disorder of the
system and is usually defined as

ζ =

N
∑

i=1

pi log pi =
λi

∑N
i=1 λj

. (6.28)

Considering the condition (λ1+λ2) = constant = C, we can obtain conditions
for minimum and maximum values for entropy ζ with Eq. (6.29):

ζmin =0, when λj = C, λi = 0 (i 6= j; i, j = 1, 2),

ζmax =1, when λj = C/2, for any i = 1, 2. (6.29)

The minimum and maximum values for entropy ζmin = 0 and ζmax = 1
correspond to completely polarized waves (having a single eigenvalue of the
diagonalized coherency matrix) and completely unpolarized waves (having two
equal eigenvalues), respectively. The concept of entropy is thus directly related
to the degree of polarization of the wave. For any completely polarized input
wave, any depolarizing interactions with the medium thus leads to entropy
production, and accordingly, the depolarization property of the medium can
be quantified by the entropy of the output polarization state (which can be
obtained from the decomposition of the coherency matrix above).

Having used the Jones vector, coherency matrix and Stokes vector formal-
ism to describe the state of polarization of light waves, we now turn to the
more interesting problem of transformation (or even loss) of polarization of
light waves in their interaction with any material medium. In the following
section, we define the various medium polarimetry characteristics and their
mathematical representation through Jones matrix and Mueller matrix for-
malisms.

6.2 Interaction of polarized light with material media

As we discussed in Section 6.1.1 (in the context of Jones vector repre-
sentations of pure polarization states of light), a vectorial description of the
polarization state enables the matrix treatment to describe the polarizing
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transfer of light in its interaction with any medium. This is true for either the
Jones vector (representing completely polarized states) or the Stokes vector
(representing both complete and partial polarization states). As it is clear
now, the interactions that only transform a pure polarization state into an-
other pure polarization state (polarization-preserving interactions keeping the
degree of polarization unity) can be tackled using the Jones formalism [33]. In
contrast, the Stokes-Mueller formalism can deal with both the polarization-
preserving and depolarizing interactions (which lead to loss of polarization,
leading to reduction in DOP ) [34, 38]. In this section, we shall address both
these formalisms. First, we shall introduce the fundamental medium polari-
metric characteristics, and then these medium polarization properties will be
represented via their characteristic transformation matrices, namely, the Jones
matrix (2 × 2 field transformation matrix) and the Mueller matrix (4 × 4
intensity-based Stokes vector transformation matrix). On the way, we shall
establish useful relationships between the Jones and Mueller matrices (for
polarization-preserving interactions).

6.2.1 Basic medium polarimetry characteristics

The three basic medium polarization properties are retardance, diattenua-
tion and depolarization. The first two effects represent polarization-preserving
interaction and can accordingly be modeled using both Jones and Stokes-
Mueller formalisms. The third one, on the other hand, leads to loss of polar-
ization and thus cannot be handled using Jones formalism.

The two polarization effects retardance and diattenuation arise from dif-
ferences in the refractive indices for different polarization states, and they
are often described in terms of ordinary and extraordinary axes and indices.
Differences in the real parts of refractive indices result in linear and circu-
lar birefringence (retardance), whereas differences in the imaginary parts can
cause linear and circular dichroism (which manifests itself as diattenuation,
described below) [30, 31, 32]. Mathematically, retardance and birefringence
are related simply via R = k.L.∆n, where R is the retardance, k is the wave
vector of the light, L is the pathlength in the medium and ∆n is the differ-
ence in the real parts of the refractive index known as birefringence. Linear
retardance, denoted δ, is therefore the relative phase shift between orthogonal
linear polarization components (between vertical and horizontal, or between
+45◦ and −45◦) upon propagation through any medium. The different types
of wave plates (half-wave plate, quarter-wave plate, etc.) made of anisotropic
materials are examples of perfect linear retarders. Usually, a linear retarder
converts input linearly polarized light into elliptically polarized light by intro-
ducing phase difference between orthogonal linear polarization components.
The output state of polarization depends upon the magnitude of linear re-
tardance and orientation angle (θ) of the principal axis of the retarder with
respect to the input linear polarization direction. Analogously, circular re-
tardance (δC) arises from phase differences between right circularly polarized
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(RCP) and left circularly polarized (LCP) states. Such effects are usually in-
troduced by asymmetric chiral structures, and they are manifested as rotation
of input linear polarization (δC = 2 × optical rotation ψ).

The diattenuation (D) of an optical element is a measure of the differential
attenuation of orthogonal polarization states for both linear and circular po-
larization. This is analogous to dichroism, which is the differential absorption
of two orthogonal polarization states (linear or circular); however, diattenu-
ation is more general, since the differential attenuation need not be caused
by absorption alone, rather, it can be the result of various other effects (e.g.,
scattering, reflection, refraction, etc.). Linear diattenuation is defined as dif-
ferential attenuation of two orthogonal linear polarization states and circular
diattenuation is defined as differential attenuation of RCP and LCP states.
Like linear retardance, polarization transformation by a linear diattenuator
also depends upon the magnitude of diattenuation and the orientation angle
(θ) of the principal axis of the diattenuator. The simplest form of a diat-
tenuator is the ideal polarizer that transforms incident unpolarized light to
completely polarized light (D = 1 for ideal polarizer), although often with a
significant reduction in the overall intensity.

If an incident state is completely polarized and the exiting state after in-
teraction with the sample has a degree of polarization less than unity, then
the sample possesses the depolarization property. Depolarization is usually en-
countered due to multiple scattering of photons (although randomly oriented
uniaxial birefringent domains can also depolarize light); incoherent addition
of amplitudes and phases of the scattered field results in scrambling of the
output polarization state.

6.2.2 Relationship between Jones and Mueller matrices

In Section 1.1, we defined the 2 × 2 Jones (Eq. (6.6)) to represent the
polarization transfer function of a medium in its interaction with completely
polarized light. The Jones matrix J is generally complex and contains eight
independent parameters (real and imaginary parts of each of the four matrix
elements), or seven parameters if the absolute phase is excluded. The polariz-
ing interactions of any medium are contained in the elements of this matrix J ;
the medium polarization characteristics associated with alterations of relative
amplitudes and phases (of orthogonal polarization states) are encoded in the
real and imaginary parts of the elements, respectively. As we noted, matrix
algebra enables us to compute the Jones matrix of an optical system formed
by a series of elements through sequential multiplication of the individual ma-
trices of these elements. Moreover, rotation (by an angle α) of any optical
element can also be conveniently modeled by the rotational transformation of
Jones matrices (J → J ′) via the usual coordinate rotation matrix R(α):

R(α) =

[

cos(α) sin(α)
− sin(α) cos(α)

]

, J ′ = R−1(α)JR(α). (6.30)
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Analogous to the Jones matrix, a 4 × 4 matrix M known as the Mueller
matrix (developed by Hans Mueller in the 1940s) describes the transformation
of the Stokes vector (polarization state) in its interaction with a medium
[36, 37, 39]:

S0 =MSi, (6.31)









Io
Qo
Uo
Vo









=









m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

















Ii
Qi
Ui
Vi









,

with Si and So being the Stokes vectors of the input and the output light,
respectively. The 4×4 real Mueller matrixM has at most sixteen independent
parameters (or fifteen if the absolute intensity is excluded), including depo-
larization information. All the medium polarization properties are encoded
in the various elements of the Mueller matrix, which can thus be thought
of as the complete optical polarization fingerprint of a sample. Similar to
the Jones formalism, matrix properties allow us to determine the resultant
Mueller matrix equivalent to a system formed by a series of optical elements
through sequential multiplication of the individual Mueller matrices of the
elements.

The fundamental requirement real Mueller matrices must meet is that
they map physical incident Stokes vectors into physically realizable resultant
Stokes vectors (satisfying Eq. (6.18)). Similarly, a Mueller matrix cannot out-
put a state with negative flux. In fact, conditions for physical realizability of
Mueller matrices have been studied extensively in the literature, and many
necessary conditions have been derived [39, 40, 41, 42, 43]; this is outside the
scope of this book. We note below the other important necessary condition
for physical realizability of a Mueller matrix (Eq. (6.32)), and we refer the
reader to references [30, 39, 40, 41, 42, 43] for a more detailed account of the
necessary and sufficient conditions that any 4 × 4 real matrix should satisfy
to qualify as a Mueller matrix of any physical system.

tr(MMT ) =
4
∑

i,j=1

mij ≤ 4m2
11, (6.32)

where MT is the transpose of matrix M and the indices i, j = 1, 2, 3, 4 denote
its rows and columns, respectively. Here the equality and the inequality signs
correspond to nondepolarizing and depolarizing systems, respectively.

Relationships between the Jones formalism and the Stokes-Mueller formal-
ism are worth a brief mention here. For the special case of a nondepolarizing
linear optical system (a deterministic system, satisfying the equality in Eqs.
(6.10) and (6.32)), a one-to-one correspondence between the real 4×4 Mueller
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matrix M and the complex 2 × 2 Jones matrix J can be derived via the co-
herency matrix formalism. Such a relationship can be obtained by using the
following set of equations describing the transformation of the input Jones
vector (Ei), coherency vector (Li, defined in Eq. (6.20)) and Stokes vector
(Si).

E0 = JEi, L0 =WLi, S0 =MSi. (6.33)

Here, Eo, Lo and So are the output Jones, coherency and Stokes vectors,
respectively, after medium interaction. The Jones and Mueller matrices J and
M have been defined earlier. The matrixW is a 4×4 matrix that describes the
transformation of the coherency vector in its interaction with the medium and
is known as the Wolf matrix. Using Eqs. (6.9) and (6.20) and by performing
simple algebraic manipulations, we can show that the Wolf matrixW and the
Mueller matrix M are related to the Jones matrix J as

W = J ⊗ J∗, M = A · (J ⊗ J∗) ·A−1. (6.34)

Here, A is the 4 × 4 matrix defined in Eq. (6.20), relating the Stokes vector
and the coherency vector.

Thus every Jones matrix (that can only describe a special case of a non-
depolarizing optical system) can be transformed into an equivalent Mueller
matrix (and a Wolf matrix); however, the converse is not necessarily true.
The resulting nondepolarizing Mueller matrix contains seven independent pa-
rameters and is accordingly termed a Mueller-Jones matrix. The examples of
such Mueller-Jones matrices are the matrices for retardance (both linear and
circular) and diattenuation (linear and circular) effects. We show below an
interesting example of transforming the Jones matrix to the Mueller-Jones
matrix. Consider the rotational transformation of Jones matrices (J → J ′)
via the usual coordinate rotation matrix R(α) (Eq. (6.30)). Apparently, R(α)
represents coordinate rotation of the electric field vector. This warrants that
analogous rotational transformation should also exist for Mueller-Jones matri-
ces. Employing Eq. (6.34), we can determine the analogous rotational trans-
formation of the Mueller-Jones matrix (M →M ′) as

M ′ = T−1(α)MT (α), T (α) =









1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1









, (6.35)

where the rotation matrix T (α) implies rotation of the Stokes vector in the
polarization state space (i.e., in the Poincaré sphere; see Fig. 6.4) rather than
in the coordinate space. This also implies that a rotation of the field vector
by an angle α leads to a rotation of 2α of the Stokes vector (around the v-axis
describing circular polarization) in the Poincaré sphere.
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We conclude this section by once again noting, while both the Jones
and the Stokes-Mueller formalisms describe polarization change using ma-
trix/vector equations, the latter provides a framework with which partial po-
larization states can be handled and depolarizing materials can be described.
Since in nature, light is often partially polarized (or unpolarized) and in most
practical situations, loss of polarization is unavoidable, the Stokes-Mueller for-
malism has been used in most practical polarimetry applications. In contrast,
the use of the Jones formalism has been limited as a complementary theo-
retical approach to the Mueller matrix calculus, or to studies in clear media,
specular reflections and thin films where polarization loss is not an issue.

6.2.3 Jones matrices for nondepolarizing interactions: Ex-
amples and parametric representation

We now provide explicit expressions for the Jones matrices corresponding
to the two polarization preserving effects, retardance (linear and circular) and
diattenuation (linear and circular), and we briefly discuss the resulting effect
on the state of polarization introduced by these transformations.

Retardance (birefringence) : Linear retardance originates from the dif-
ference in the real part of the refractive index between two orthogonal linear
polarization states and accordingly leads to a difference in phase between
these states while propagating through an ‘anisotropic’ medium exhibiting
this effect. The Jones matrix for this effect can be written as [28, 30, 33];

JLR =

[

eiφx 0
0 eiφy

]

. (6.36)

Here, φx and φy are the respective phases of the two orthogonal linear polar-
ization states (x - and y-polarized, respectively; corresponding Jones vectors
are noted as H and V states in Table 6.1). The resulting magnitude of linear
retardance is

δ =
2π

λ
(ny − nx)L,

where nx and ny are the real part of the refractive indices for x - and y-
polarized light, respectively; L is the pathlength. Note that this diagonal form
of the Jones matrix (JLR in Eq. (6.36)) is obtained for an anisotropic medium
whose principal axis is oriented along the laboratory x/y direction. In general,
JLR may have off-diagonal elements based on the orientation angle (θ) of the
principal axis with respect to the laboratory x-/y-axes. As noted in Eq. (6.30),
the general form of the Jones matrix for the arbitrary orientation angle θ can
be obtained using rotational transformation as

JLR(δ, θ) = R−1(θ)JLRR(θ) (6.37)

=

(

eiφx cos2 θ + eiφy sin2 θ (eiφx − eiφy ) cos θ sin θ
(eiφx − eiφy ) cos θ sin θ eiφx sin2 θ + eiφy cos2 θ

)

,
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where R(θ) is the rotation matrix of Eq. (6.30).
For example, the Jones matrix of a quarter-waveplate (δ = π/2) with its

principal axis aligned along the laboratory x-axis (θ = 0◦) is
(

1 0
0 i

)

.

The state of polarization of light emerging from such a medium exhibiting
linear birefringence obviously depends upon the input polarization state, the
magnitude of retardance δ and orientation angle of the principal axis θ. For
example, if input +45◦ linearly polarized light characterized by Jones vec-

tor 1√
2

[

1 1
]T

) is incident on the above quarter-waveplate, the output

polarization state will be left circularly polarized (LCP) with Jones vector
1√
2

[

1 i
]T

).

Analogously, circular retardance (δC) originates from the difference in the
real part of the refractive index (nL − nR) between two orthogonal circular
polarization states (LCP/RCP) and is manifested as the rotation of the plane
of polarization (optical rotation ψ; δC = 2ψ) :

δC =
2π

λ
(nL − nR)L.

The Jones matrix corresponding to this effect is a pure rotation matrix:

JCR(ψ) =

[

cos(ψ) sin(ψ)
− sinψ cos(ψ)

]

. (6.38)

Diattenuation (dichroism) : As previously mentioned diattenuation arises
due to differential attenuation of orthogonal polarization states (for both linear
and circular) and originates from the differences in the imaginary part of the
refractive index for orthogonal polarization states. The Jones matrix for linear
diattenuation effect can be written as [28, 30, 33]

JLD =
1√

a2 + b2

[

a 0
0 b

]

. (6.39)

Here, a and b are real numbers because they are related to the amplitudes of
the two orthogonal linear polarization states (x - and y-polarized, respectively).
The magnitude of linear diattenuation (−1 ≤ D ≤ +1) can be written as

D =
a2 − b2

a2 + b2
.

Note that like the linear retarder, the Jones matrix of a linear diattenuator
also depends upon the magnitude of diattenuation D and the orientation
angle (θ) of the principal axis of the diattenuator, and the general form of the
diattenuator oriented at an angle θ can be obtained as

JLD(d, θ) = R−1(θ)JLDR(θ). (6.40)
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An example of a perfect diattenuator matrix is that of a linear polarizer (mag-
nitude of diattenuation D = ±1):

JLD(D = ±1, θ) =

(

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

)

⇒
(

1 0
0 0

)

. (6.41)

Apparently, light emerging from a perfect linear diattenuator is always lin-
early polarized along the direction of the principal axis of the diattenuator,
irrespective of the polarization state of the incident light.

6.2.4 Standard Mueller matrices for basic interactions (diat-
tenuation, retardance, depolarization): Examples and
parametric representation

Having defined the Jones matrices for the various polarization-preserving
interactions, we now turn to the corresponding representation using Mueller
matrices. We must note that although both the Jones and the Stokes-Mueller
approaches rely on linear algebra and matrix formalisms, they differ in many
aspects. Specifically, the Stokes-Mueller formalism has certain advantages.
First of all, it can encompass any polarization state of light, whether it is
natural, totally or partially polarized (can thus deal with both polarizing and
depolarizing optical systems). Second, the Stokes vectors and Mueller matrices
can be measured with relative ease using intensity-measuring conventional
(square-law detector) instruments, including most polarimeters, radiometers
and spectrometers.

We also note that in the conventional Mueller matrix representation of the
retardance and diattenuation effects, the optical elements exhibiting these two
effects are often referred to as the homogeneous retarder and the homogenous
diattenuator. In this convention, polarimetric elements are called homogeneous
if they exhibit two fully polarized orthogonal eigenstates, i.e., two polarization
states that are transmitted without alteration and that do not interfere with
each other. In practice, such light states are linearly polarized along two per-
pendicular directions, or circularly polarized and rotating in opposite senses.
The normalized Stokes vectors S1 and S2 of such orthogonal states are of the
form

S1
T = (1, sT ),S2

T = (1,−sT ), (6.42)

with ‖ s ‖= 1 as these states are fully polarized. Orthogonal states are thus
found on the surface of the Poincaré sphere at diametrically opposed positions.
For any homogeneous polarimetric element, there are thus two (and only two)
such states that are left invariant on the Poincaré sphere.

Homogeneous retarders : The elements exhibiting the retardance ef-
fects are characterized by two orthogonal eigenpolarization states, each of
which is transmitted without modification. The corresponding orthogonal
Stokes eigenvectors are of the form given by Eq. (6.42). Homogenous retarders
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transmit both eigenstates with the same intensity coefficients, but different
phases. This phase difference is the scalar retardation δ, as we defined earlier
in context with Jones matrix representation. A pure retarder can be described
geometrically as rotation in the space of Stokes vectors. Mathematically, the
Mueller matrix MR of the retarder can be written as [44, 45, 46]

MR =

(

1 0T

0 mR

)

, (6.43)

where 0 represents the null vector and the 3× 3 submatrix, mR, is a rotation
matrix in the Poincaré (q,u,v) space. The action of a retarder on an arbitrary
incident Stokes vector S is a rotation of its representative point on the Poincaré
sphere, described by mR. Moreover, the axis of this rotation is defined by the
two diametrically opposed points representing the two eigenpolarizations, and
the rotation angle is the retardation δ.

For linear retarders with eigenstates linearly polarized along θ and θ+90◦

azimuths, the form of the Mueller matrix (MLR(τ, δ, θ)) can be obtained by
applying the transformation of Eq. (6.34) on the Jones matrix of a retarder
(Eq. 6.37) [44, 45, 46]

τ









1 0 0 0
0 cos2 2θ + sin2 2θ cos δ cos 2θ sin 2θ(1− cos δ) − sin 2θ sin δ

0 cos 2θ sin 2θ(1− cos δ) sin2 2θ + cos2 2θ cos δ cos 2θ sin δ

0 sin 2θ sin δ − cos 2θ sin δ cos δ









, (6.44)

where τ is the intensity transmission for incident unpolarized light, and can
be taken to be unity if the optical material is nonabsorbing (lossless).

A straightforward calculation indeed shows that two fully polarized or-
thogonal eigenstates (linearly polarized states with azimuths θ and θ + 90◦)
are transmitted unchanged:

MLR(τ, δ, θ)









1
± cos 2θ
± sin 2θ

0









= τ









1
± cos 2θ
± sin 2θ

0









. (6.45)

An example of a Mueller matrix of a homogeneous linear retarder is that of a
quarter-wave plate (with θ = 0◦)









1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0









.

As noted before, the Mueller matrix of the quarter wave plate above for its
principal axis oriented at any arbitrary angle θ can easily be determined using
the rotational transformation of Eq. (6.35) (yielding Eq. (6.44) with δ = π/2).
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We now consider circular retarders, i.e., elements for which the eigenpo-
larizations are the opposite circular polarization states. The Mueller matrices
of such elements are of the form [44, 45, 46]

MCR(ψ) = τ









1 0 0 0
0 cos 2ψ sin 2ψ 0
0 − sin 2ψ cos 2ψ 0
0 0 0 1









. (6.46)

When a linearly polarized wave interacts with a circular retarder, its polariza-
tion remains linear, but it is rotated by an angle ψ (known as optical rotation).
The effect may also be interpreted as a rotation of the incident linearly polar-
ized Stokes vector S in the Poincaré sphere by an amount equal to the circular
retardance (δC = 2ψ).

Finally, we point out that the scalar retardation of any homogeneous re-
tarder (linear or circular) can be determined from the general Mueller matrix
MR of a retarder as

δ, ψ = cos−1

(

Tr(MR)

2
− 1

)

. (6.47)

The formula above is valid for media exhibiting both linear retardance δ and
circular retardance (optical rotation ψ). We can readily verify this from the
Mueller matrix of the combined effect by multiplying individual matrices for
the linear and circular retarder (in either order). The total retardance in such
case can be obtained employing Eq. (6.47) on the Mueller matrix representing
the combined effects.
Homogeneous diattenuators : For a diattenuating system, the output in-
tensity depends on the input polarization state. If we consider an intensity
normalized input Stokes vector S such that

Sin
T = (1, sT ), with ‖ s ‖= DOP ≤ 1, (6.48)

which corresponds to arbitrary polarizations at constant intensity (normalized
to unity), then the output intensity (i.e., the first component of Sout) is simply
given by

Iout = m11(1 +D · s). (6.49)

This output intensity reaches its maximum (minimum) value Imax ( Imin)
when the scalar product D · s is maximum (minimum) under the constraint
‖ s ‖= DOP ≤ 1, i.e., when s = ± D

‖D‖ . We thus obtain:

Smax
T =

(

1,
DT

‖ D ‖

)

and Imax = m11(1+ ‖ D ‖),

Smin
T =

(

1,− DT

‖ D ‖

)

and Imin = m11(1− ‖ D ‖), (6.50)
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from which we immediately obtain the scalar diattenuation D :

D =
Imax − Imin
Imax + Imin

=‖ D ‖ . (6.51)

The diattenuator vector D thus defines both the scalar diattenuation D and
the polarization states transmitted with the highest (or the lowest) intensity.
Note that the two polarization states giving these extremal intensity trans-
mission values are totally polarized, and they are located at diametrically
opposite positions on the Poincaré sphere.

The elements of the Mueller matrix of a diattenuator are uniquely deter-
mined by their diattenuation vector D. Their (totally polarized) eigenpolar-
ization states corresponding, respectively, to maximum and minimum trans-
missions are given by Eqs. (6.50). The corresponding Mueller matrix is then
given by

MD = τ

(

1 DT

D md

)

, where mD =
√

1−D2I3 + (1−
√

1−D2)DDT .

(6.52)
Once again, τ is the intensity transmission for incident unpolarized light.
Diattenuation may occur due to reflection and/or refraction at an interface,
or to propagation in anisotropic or chiral materials. Anisotropy may introduce
linear dichroism. For any propagation direction, the imaginary part of the
wave vector (corresponding to the imaginary part of the refractive index n′′)
may take two different values, n′′

L and n′′
H ; the former, corresponding to the

lowest absorption, is valid for a wave linearly polarized at azimuth θ and the
latter for the orthogonal polarization, at θ+90◦. The linear (scalar) dichroism
is then defined as

∆n′′ = n′′
H − n′′

L > 0. (6.53)

For a parallel slab of thickness L, the intensity transmissions for the two
eigenpolarizations are, respectively,

Tmax = exp(−2n′′
LL), Tmin = exp(−2n′′

HL), (6.54)

yielding a scalar diattenuation

D =
Tmax − Tmin
Tmax + Tmin

= sinh(∆n′′L), (6.55)

where ∆n′′L is the dichroism integrated over the slab thickness L.
Chiral media (e.g., a biological fluid such as glucose) can also exhibit

dichroism, but usually it is circular dichroism. The formulas above are still
valid, but in this case the eigenpolarizations for which the absorption coeffi-
cients are well defined are left and right circular ones.

© 2016 Taylor & Francis Group, LLC

  



More on polarized light 111

The Mueller matrix for a linear diattenuator (MLD(τ,D, θ)) can be written
in the following symmetric form [44, 45, 46];

τ

2









1 D cos 2θ D sin 2θ 0

D cos 2θ cos2 2θ +
√

1−D2 sin2 2θ
(

1−
√

1−D2
)

cos 2θ sin 2θ 0

D sin 2θ
(

1−
√

1−D2
)

cos 2θ sin 2θ sin2 2θ +
√

1−D2 cos2 2θ 0

0 0 0
√

1−D2









,

(6.56)

implying that the maximum and minimum intensity transmittances are ob-
tained for linearly polarized states with azimuths θ and θ + 90◦. It can be eas-
ily checked that these eigenpolarization states are unchanged byMLD(τ,D, θ)
but are transmitted with intensity factors τ

2 (1±D).

Similarly, for circular diattenuators, the general form of the Mueller matrix
is

MCD(τ,D) =
τ

2









1 0 0 D

0
√
1−D2 0 0

0 0
√
1−D2 0

D 0 0 1









, (6.57)

and of course in this case there is no need to define any partial azimuth θ.
Depolarizers: A depolarizer is an object that reduces the degree of polariza-
tion of the incoming light. The simplest depolarizers are those for which the
Mueller matrix M∆ is diagonal [44, 45, 46];

M∆ = τ









1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c









, (6.58)

with absolute values of a, b and c smaller than unity. If so, any incident Stokes
vector Si of the form

Si
T = I(1, q, u, v)

is transformed into
Sout

T = τI(1, aq, bu, cv),

which gives the output degree of polarization

DOPout =
√

a2q2 + b2u2 + c2v2 ≤
√

q2 + u2 + v2 = DOPin. (6.59)

In the geometrical representation, the action of a depolarizer defined in
Eq. (6.58) is to pull the representative point of the incoming Stokes vector
toward the origin. As a result, the Poincaré sphere is transformed into an
ellipsoid limited by the segments [−a, a], [−b, b] and [−c, c] along the q, u,v-
axes.

As discussed previously, depolarization occurs due to incoherent addition
of intensities of polarized states with different polarizations. Depolarization
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may occur due to multiple scattering in the first place, together with spatially
varying, randomly oriented birefringent domains. However, these effects alone
are not sufficient to cause real depolarization but would give rise to a speckle
pattern with DOP = 1 everywhere but with different polarizations from one
point to another. True depolarization occurs if this speckle pattern is blurred
by the motion of the scattering sample, the lack of spatial coherence of the
illumination beam, the sample motion, and the like.

In the most general case, the Mueller matrix of a depolarizer,M∆, is given
in compact notation as

M∆ =

(

1 0T

0 m∆

)

, (6.60)

where m∆ is a 3× 3 real symmetric matrix. This matrix can be diagonalized
to recover the form given by Eq. (6.58) where the eigenvalues a, b, c are real
numbers varying between −1 and 1. Thus the Mueller matrix of the most
general depolarizer depends on six parameters (as can be seen from the very
definition of the m∆ matrix as a 3 × 3 symmetric matrix, or by the fact that
the diagonalization process involves not only the three eigenvalues but also the
basis formed by the eigenvectors of m∆). General depolarizers are thus rather
complex mathematical objects, this complexity being related to situations
like multiple scattering in anisotropic media. Here we will not discuss the
properties of general depolarizers any further, and in the following section we
will only consider depolarizers of the form given by Eq. (6.58). We thus define
the depolarizing power of such samples as

∆ = 1− 1

3
(| a | + | b | + | c |), (6.61)

which can be further separated in depolarizing powers for linear and circular
polarizations as

∆L = 1− 1

2
(| a | + | b |) and ∆C = 1− | c | . (6.62)

Another widely used approach of defining depolarization property of a sample
using Mueller matrix M uses the following definition of the depolarization
index Pd:

Pd =

√

∑4
i=1

∑4
j=1M

2
ij −M2

11

3M2
11

=

√

Tr(MTM)−M2
11

3M2
11

. (6.63)

As a final remark, the depolarization powers ∆ defined in Eq. (6.61) vary
from zero, for nondepolarizing samples, to one for totally depolarizing ones,
while the opposite holds for the general depolarization index Pd defined in
Eq. (6.63).

To summarize, thus far in this chapter we have discussed mathematical
formalisms to deal with the state of polarization of light and interaction of
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polarized light with material media. Specifically, the two most widely used
formalisms, namely, the Jones calculus and the Stokes-Mueller calculus, have
been discussed. As previously noted, the former is a field-based model and is
limited to describing pure polarization states (a completely polarized wave)
and polarization-preserving (nondepolarizing) interactions only. The latter, on
the other hand, is an intensity-based model and is more encompassing in the
sense that it provides a framework with which partial polarization states can
be handled and depolarizing interactions can also be modeled. Caution must,
however, be exercised while implementing these formalisms either for practical
purposes of polarimetric measurements or for conceptual reasons for polari-
metric modeling. It may be worthwhile to spend a few words on the validity
regime of such algebra. Note that both the Jones vector (in the field-based
representation) and the Stokes vector (in the intensity-based representation)
deal with a two-dimensional electromagnetic field, and are applicable when the
light wave is completely transverse in nature (plane electromagnetic waves or
more generally to uniformly polarized elementary beams). Note that even for
paraxial beam-like fields, the spatial mode (distribution of field) and polar-
ization are not always separable (unlike plane waves or elementary beams)
and accordingly, we need different algebra to describe such inhomogeneous
polarization. This so-called classical entanglement between polarization and
spatial mode is handled by defining the beam coherency polarization ma-
trix (a variant of the 2 × 2 coherency matrix incorporating simultaneously
both the field polarization and its spatial distribution) [47]. In other gen-
eral cases involving three-dimensional fields (as encountered in tight focusing,
scattering and the near field), the two-dimensional polarimetry formalisms
have been extended via the definition of the 3 × 3 coherency matrix and the
generalized nine-element Stokes vector [48]. Moreover, there is other emerg-
ing ‘un-conventional’ polarization algebra involving vector beams, geometric
phases (Pancharatnam-Berry phase) arising from spin-orbit interactions of
light, radial and azimuthal polarization of light beams and so forth [49, 50].
Some of these issues related to advanced topics in polarization optics are dis-
cussed in Chapter 11. For now, we restrict our discussion to the conventional
polarization algebra. In the following, we briefly introduce the concepts of
polarimetric measurements (based on conventional polarization algebra), and
we touch upon representative applications of experimental polarimetry.

6.3 Experimental polarimetry and representative
applications

Polarimeters can be regarded as optical instruments used for the determi-
nation of polarization characteristics of light and the sample. Based on this
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definition, experimental polarimetry systems can be broadly classified into two
categories:

1. The light-measuring polarimeters, and

2. The sample-measuring polarimeters.

The light-measuring polarimeters (Stokes polarimeters) determine the polar-
ization state of a light beam by measuring the four Stokes parameters (Stokes

vector
[

I Q U V
]T

). In contrast, the sample measuring polarimeters
(Mueller matrix polarimeters) aim to determine the complete 4 × 4 Mueller
matrix of the sample. A variety of experimental schemes have been developed
to maximize measurement sensitivity and to measure the Stokes vector of a
beam upon interacting with the sample in question, and/or the Mueller matrix
of the sample itself. Here, in this section, we briefly discuss some of the com-
mon strategies employed in these polarimeters. For a detailed account of these,
we refer the reader to the relevant literature available [39, 44, 51, 52, 53, 54, 55].

6.3.1 Stokes vector (light-measuring) polarimeters

As discussed in Section 6.1.4, the Stokes parameters corresponding to a
beam of light can be determined by performing six intensity measurements
(I) through linear and circular polarizers (IH , IV , IP , IM , IR, IL). According
to Eq. (6.13), these intensity measurements are IH , horizontal linear polar-
izer (0◦); IV , vertical linear polarizer (90◦); IP , 45◦ linear polarizer; IM , 135◦

(−45◦) linear polarizer; IR, right circular polarizer; and IL, left circular polar-
izer. A schematic of the experimental setup for this classical method is shown
in Fig. 6.5. For Stokes parameters measurement, we are only concerned about
the polarization state analyzer (PSA) part of the setup shown in Fig. 6.5.
The polarization state generator (PSG) is used to generate one particular in-
cident polarization state (either linear or circular). As shown in the figure,
the PSA usually comprises a linear polarizer (P2) and a wave plate (WP2)
for performing the required six intensity measurements. In this case, the wave
plate is a quarter-wave retarder. Note that the four intensity measurements
involving linear polarization states (IH , IV , IP , IM ) are performed by remov-
ing the quarter wave plate, whereas the quarter-wave plate is inserted for the
two remaining intensity measurements involving circular polarization states
(IR, IL). By exploiting the property that IH + IV = IP + IM = IR + IL, it
is possible to determine the Stokes parameters of a beam with only four in-
tensity measurements. Briefly, in this approach, a circular polarizer (the PSA
here) is designed consisting of a linear polarizer whose transmission axis is
set at +45◦ with respect to the horizontal direction, followed by a quarter-
wave plate with its fast axis parallel to the horizontal direction. Three sets
of intensity measurements (denoted by Icir(α), where α is the angle of the
combined polarizer’s fast axis above the horizontal) are performed by varying
the angle (α) of the circular polarizer with respect to the horizontal axis at
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FIGURE 6.5: A schematic of the experimental Stokes polarimeter setup; P1,
P2 linear polarizers; QWP1, QWP2, removable quarter-wave plates; and L1.
L2 lenses, respectively.

α = 0◦, 45◦and 90◦. The combined polarizer is then flipped to the other side
and the final intensity measurement [IL(α)] is made by setting α to 0◦. The
Stokes parameters can be inferred from these intensity measurements by

S =









I
Q
U
V









=









Icir(0
◦) + Icir(90

◦)
I − 2Icir(45

◦)
Icir(0

◦)− Icir(90
◦)

−I + 2Ilin(0
◦)









. (6.64)

Although this method has been widely employed to measure Stokes pa-
rameters of light transmitted (or reflected) from nonscattering media, for po-
larimetric measurements in strongly depolarizing scattering media, a more
sensitive detection schemes is desirable. This follows because multiple scat-
tering in a turbid medium leads to depolarization of light, creating a large
depolarized source of noise that hinders the detection of the small remaining
information-carrying polarization signal. One possible method for improving
the sensitivity of the measurement procedure is the use of polarization modula-
tion with synchronous detection. Various experimental strategies based on po-
larization modulation and synchronous detection scheme have therefore been
developed. Generally in this approach, the polarization state analyzer con-
tains a polarization modulator, a rapidly changing (with time) polarization
element. The output of PSA is thus a rapidly fluctuating intensity (oscillating
at a frequency of ωp = 2πfp, set by the modulator) on which the polarization
information is coded. The polarization information is then extracted by syn-
chronously detecting the time-varying signal at the fundamental modulation
frequency and its different harmonics. Various types of resonant devices like
the electro-optical modulator, the magneto-optical modulator and the pho-
toelastic modulator (PEM) have been employed for polarization modulation.
Among these, the PEMs have been the most widely used. The synchronous
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detection of the modulated signal can be conveniently done by using a lock-in
amplifier.

6.3.2 Mueller matrix (sample-measuring) polarimeter

As noted previously, the sample-measuring polarimeters measure the com-
plete 4 × 4 Mueller matrix of the sample. For Mueller matrix measure-
ments also, both dc measurements (involving sequential measurement) and
modulation-based measurement procedures have been employed. The former
approach involves sequential measurements with different combinations of
source polarizers and detection analyzers. Because a general 4 × 4 Mueller
matrix has sixteen independent elements, at least sixteen measurements are
required for the construction of a Mueller matrix. The process for constructing
of Mueller matrix from sixteen such combinations of intensity measurements
are listed in Table 6.3. In Table 6.3, the first and the second letters (H, V, P,
R) in the intensity measurements correspond to incident and detection polar-
ization states, respectively. Note that methods involving a greater number of
polarization measurements such as thirty-six polarization measurements and
forty-nine polarization measurements have also been explored for the con-
struction of a Mueller matrix. As the number of the measurements increases,
the accuracy also increases because in the methods with lesser measurements,
error in the measurements of one element of the Mueller matrix propagates to
cause further errors in other elements (which are indirectly obtained). In gen-
eral, with some additional measurements and analysis, the Stokes polarimeter
shown in Fig. 6.5 can be used to measure the Mueller matrix of a sample by
sequentially cycling the input polarization between four states using the PSG
unit (e.g., linear polarization at 0◦, 45◦, 90◦ and right circular polarization)
and by measuring the output Stokes vector for each respective input states
using the PSA unit. The elements of the resulting four measured Stokes vec-
tors (sixteen values) can be algebraically manipulated to solve for the sample
Mueller matrix

M(i, j) =









1
2 (IH + IV )

1
2 (IH − IV ) IP −M(1, 1) IR −M(1, 1)

1
2 (QH +QV )

1
2 (QH −QV ) QP −M(2, 1) QR −M(2, 1)

1
2 (UH + UV )

1
2 (UH − UV ) UP −M(3, 1) UR −M(3, 1)

1
2 (VH + VV )

1
2 (VH − VV ) VP −M(4, 1) VR −M(4, 1)









.

(6.65)
Here, the four input states are denoted with the subscripts H(0◦),
P (45◦), V (90◦) and R (right circularly polarized; left circular incident can
be used as well, resulting only in a sign change). The indices i, j = 1, 2, 3, 4
denote rows and columns, respectively.

Various polarization modulation schemes have also been employed for si-
multaneous determination of all the sixteen Mueller matrix elements. As for
the case of Stokes polarimeters, here also various optical elements like liquid
crystal variable retarders, photoelastic modulators (PEM), etc., have been
used for modulating either the polarization state of light that is incident on
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TABLE 6.3: Construction of the Mueller matrix from sixteen combinations of intensity measurements. The first and second
letters in the intensity measurements correspond to incident and detection polarization states, respectively. The different
polarization states are H = Horizontal, V = Vertical, P = +45◦ and R = Right circular polarization.

M11 = HH +HV + V H + V V M12 = HH +HV − V H − V V M13 = 2PH + 2PV −M11 M14 = 2RH + 2RV −M11

M21 = HH −HV + V H − V V M22 = HH −HV − V H + V V M23 = 2PH − 2PV −M21 M24 = 2RH + 2RV −M21

M31 = 2HP + 2V P −M11 M32 = 2HP − 2V P −M21 M33 = 4PP − 2PH − 2PV −M31 M34 = 4RP − 2RH − 2RV −M31

M41 = 2HR + 2V R −M11 M42 = 2HR − 2V R −M21 M43 = 4PR − 2PH − 2PV −M41 M44 = 4RR − 2RH − 2RV −M41
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FIGURE 6.6: A schematic of the dual rotating retarder Mueller matrix
polarimeter: P1, P2 linear polarizers; WP1, WP2, rotating wave plates with
linear retardations δ1 and δ2 and rotation speeds ω1 and ω2, respectively.

the sample (by keeping the polarization modulator between the source and the
sample) or the sample-emerging light (by placing the polarization modulator
between the sample and the detector) or both.

Among the various modulation-based Mueller matrix polarimeters, the
dual rotating retarder polarimeter has been the most widely used. A schematic
of the setup is shown in Fig. 6.6. In this approach, the polarization of the
sample-incident light is modulated by passing a beam through a fixed linear
polarizer, followed by a wave plate (with retardation δ1) rotating at an angu-
lar velocity of ω1. This beam is then incident on the sample, and the resulting
light is directed through the analyzing optics, which consist of another rotat-
ing wave plate (with retardation δ2, rotating synchronously at angular velocity
ω2) and a linear polarizer, which is held fixed. The rotation of the two wave
plates results in a periodic variation in the measured intensity, which can be
analyzed by multiplying the Mueller matrices corresponding to the elements
in the optical path (i.e., the polarizers, wave plates and the sample). In the
most common configurations, the axes of the polarizers are set parallel, the
wave plates are both chosen to have a quarter-wave retardance (δ1 = δ2 = π

2 )
and their angular velocities are set at a 5 : 1 ratio (5ω1 = ω2). It has been
shown that this ratio of angular velocities allows for the recovery of all sixteen
Mueller matrix elements from the amplitudes and phases of the twelve fre-
quencies in the detected intensity signal. In order to compute these elements,
the detected signal is Fourier analyzed, and the elements of the Mueller matrix
can be inferred from the resulting coefficients. A more generalized version of
this measurement scheme could use arbitrary values of retardation and polar-
izer orientations, as well as a different ratio of angular velocities, in order to
determine prioritized Mueller matrix elements with greater precision and/or
higher signal-to-noise ratio (SNR).

While the modulation-based approaches yield the desired high sensitiv-
ity (capable of detecting very weak polarization retaining signal transmit-
ted/backscattered from depolarizing turbid medium), these are poorly suited
for applications involving large-area imaging. Yet, in many applications spa-
tial maps of the polarization parameters (depolarization, diattenuation and
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retardance) are extremely useful. Therefore, several nonmodulation-based ap-
proaches have also been developed for such imaging applications. One such
method involves liquid crystal variable retarders, which enables the measure-
ment of Mueller matrices to have high sensitivity and precision. Such a po-
larimeter is comprised of a polarization state generator (PSG) unit, a polar-
ization state analyzer (PSA) unit and an imaging camera for spatially resolved
signal detection. The PSG, which polarizes the light incident on the sample,
is composed of a linear polarizer (P1) and two liquid crystal variable retarders
(LC1 and LC2), with adjustable retardances of δ1, δ2, respectively, whose
birefringent axes are aligned at angles θ1, θ2, respectively, with the axis of
the linear polarizer. The liquid crystal variable retarders are transmissive op-
tical elements whose retardance (birefringence) levels can be electronically
controlled by applying appropriate voltages across a liquid crystal cell (uni-
axial birefringent layers formed using anisotropic liquid crystal molecules). A
schematic of the liquid crystal variable retarder imaging polarimeter is shown
in Fig. 6.7.

In a widely used configuration under this scheme, the angles θ1 and θ2
are chosen to be 45◦ and 0◦, respectively. The Stokes vector generated from
this arrangement can once again be determined by sequential multiplication
of Mueller matrices of the polarizer and the LC retarders;

Sin =
[

1 cos δ1 sin δ1 sin δ2 sin δ1 cos δ2
]T
. (6.66)

FIGURE 6.7: A liquid crystal variable retarder imaging polarimeter, where
P1 and P2 are linear polarizers and LC1 − LC4 are liquid crystal variable re-
tarders. Together, P1, LC1 (having a retardance of δ1 and an orientation angle
θ1) and LC2 (having a retardance of δ2 and an orientation angle θ2) comprise
the polarization state generator (PSG). Likewise, LC3 (having a retardance
of δ2 and an orientation angle θ2), LC4 (having a retardance of δ1 and an
orientation angle θ1) and P2 collectively form the polarization state analyzer
(PSA). While the schematic above depicts transmission measurements, other
detection geometries are possible using this measurement scheme.
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Clearly, any possible polarization state on the Poincaré sphere can be gener-
ated with proper choices of δ1 and δ2. The system’s PSA consists of a similar
arrangement of liquid crystal variable retarders (LC3 and LC4) and a linear
polarizer but positioned in the reverse order with respect to the incoming
light. It is followed by a detector, which, for imaging applications, is a CCD
camera.

The PSG unit can be used to generate four unique Stokes vectors, which
can be grouped into a 4 × 4 generator matrix W , where the ith column of
W corresponds to the polarization state. Similarly, after sample interactions,
the PSA results can be described by a 4 × 4 analyzer matrix A. The Stokes
vectors of the light to be analyzed are projected onto the four basis states,
given by the rows of A. The sixteen intensity measurements required for the
construction of a full Mueller matrix are grouped into the measurement matrix
Mi, which can be related to PSA/PSG matrices and W and A, as well as the
sample Mueller matrix M by

Mi = AMW. (6.67)

The sample Mueller matrix can be represented as a sixteen-element column
vector Mvec, which can be related to the corresponding 16× 1 intensity mea-
surement vector Mvec

i as
Mvec
i = QMvec, (6.68)

where Q is the 16× 16 matrix given by the Krönecker product of A with the
transpose of W :

Q = A⊗WT . (6.69)

Once the exact forms of the system W and A matrices are known, all the
sixteen elements of the sample Mueller matrix (Mvec, written in column vec-
tor form) can be determined from the sixteen measurements (Mvec

i ) using
Eq. (6.68). The 4 × 4 sample Mueller matrix can then be obtained by rear-
ranging the elements of Mvec.

Based on this approach, several measurements schemes are possible. In
fact, the choice of the values for retardance δ1 and δ2, the orientation angles
of the retarders with respect to the polarizers (analyzers), can be optimized to
minimize the noise in the resulting Mueller matrix M . Further, this approach
also allows for calibration and determination of the exact forms of the system
PSG and PSA matrices.

In this section, we briefly reviewed the basic principles and schemes of
polarimetric instrumentation, and we outlined the most widely used practical
implementations. These may take a variety of forms, depending on the se-
lected optical systems (imaging or nonimaging) and the way the polarization
is encoded and detected. There still remain many outstanding challenges in
experimental polarimetry. These include development of novel schemes, sys-
tem optimization, error calibration/analysis for achieving desirable sensitivity
and accuracy for performing robust polarimetric measurements in applications
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involving high numerical aperture polarimetry (quantitative polarization mi-
croscopy), spectroscopic and imaging polarimetry, turbid medium polarimetry
and so forth. Nevertheless, the availability of so many possibilities (the way
the polarization is encoded and detected) is very valuable in practice, as it
allows us to ‘tailor’ the polarimetric system for the specific needs of the en-
visioned application. Therefore, a considerable amount of current research is
directed toward developing/optimizing polarization schemes for specific appli-
cations. Interpretation of polarimetric data and development of appropriate
inverse analysis methods for the characterization of complex systems exhibit-
ing simultaneous several polarization effects is another area where considerable
research is still ongoing. These are, however, beyond the scope of this book.
Finally, we conclude this section by noting that polarimetric instruments (ei-
ther to measure the Stokes vector of a beam upon interacting with the sample
in question, and/or the Mueller matrix of the sample itself) have long being
pursued for numerous practical applications in various branches of science and
technology. Remote sensing in meteorology and astronomy, characterization
of thin films, quantification of protein properties in solutions, testing purity
of pharmaceutical drugs, optical stress analysis of structures, crystallography
of biochemical complexes and biological tissue characterization/diagnosis are
just a few examples of their diverse uses.
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Optical interference corresponds to the interaction of two or more electro-
magnetic waves yielding a resultant irradiance that is different from the sum
of the component irradiances. We will divide interferometric devices into two
broad categories, namely, (i) wavefront splitting and (ii) amplitude splitting.
In the first case, portions of the primary wavefront are used either directly
as sources of secondary radiation or by means of other optical elements used
to produce virtual sources of secondary radiation. The radiation from the
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secondary sources are brought together to interfere. In the case of amplitude
splitting, the primary wave is divided into two segments, which travel different
paths and interfere.

7.1 A general approach to interference

Since electromagnetic waves are essentially represented by vector fields, we
need to generalize the superposition principle in the context of scalar waves to
vector waves. In this section we consider the superposition of two vector waves
in order to bring out the essential prerequisites and effects of interference. In
accordance with the superposition principle, the field E at a point in space
arising out of the interaction of two waves E1 and E2 is given by

E = E1 +E2. (7.1)

The optical disturbance varies at a very rapid rate, rendering the amplitude
an impractical quantity to detect. On the contrary, the irradiance I can be
measured by a variety of sensors or detectors. The study of interference is
therefore in terms of the experimental detection of the variation of irradiance.
For the sake of simplicity, we consider two point sources S1 and S2 far away
from the point of observation P , such that the wavefronts can be considered to
be planar. Considering only linearly polarized light, we can write the following
expressions for the two fields:

E1(r, t) = E01 cos(k1 · r− ωt+ φ1), (7.2)

E2(r, t) = E02 cos(k2 · r− ωt+ φ2), (7.3)

where φ1 and φ2 are the constant phases. The irradiance at P is given by

I = εv〈E2〉, (7.4)

where the angular brackets imply time averaging. Henceforth we will drop the
coefficient in Eq. (7.4) and write irradiance as

I = 〈E2〉. (7.5)

The square of the resultant field can be written as

E2 = E2
1 +E2

2 + 2E1 · E2. (7.6)

Thus taking the average we have

I = I1 + I2 + I12, (7.7)
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where
I = 〈E2〉, I1,2 = 〈E2

1,2〉 and I12 = 2〈E1 ·E2〉. (7.8)

The last term is known as the interference term. In the absence of the inter-
ference term (or in the absence of interference), the resultant intensity is just
the sum of the component intensities. Using the expressions of the fields given
by Eqs. (7.2) and (7.3), the interference term (without the factor 2) can be
written as

E1 · E2 =E01 ·E02 cos(k1 · r+ φ1 − ωt) cos(k2 · r+ φ2 − ωt),

=E01 ·E02[cos(k1 · r+ φ1) cos(ωt) + sin(k1 · r+ φ1) sin(ωt)],

× [cos(k2 · r+ φ2) cos(ωt) + sin(k2 · r+ φ2) sin(ωt)]. (7.9)

Keeping in mind the following relations

〈cos2 ωt〉 = 1/2, 〈sin2 ωt〉 = 1/2, 〈sinωt cosωt〉 = 0, (7.10)

we have

〈E1 · E2〉 =
1

2
E01 · E02 cos(k1 · r− k2 · r+ φ1 − φ2). (7.11)

The interference term is then given by

I12 = E01 · E02 cos δ, (7.12)

where the phase difference δ is given by

δ = k1 · r− k2 · r+ φ1 − φ2. (7.13)

A standard situation corresponds to the case when both the fields have the
same linear polarization. In that case, by noting that

I1 = 〈E2
1〉 =

1

2
E2

01, I2 = 〈E2
2〉 =

1

2
E2

02, (7.14)

Eq. (7.12) can be written in a more meaningful form:

I12 = 2
√

I1I2 cos δ. (7.15)

For total irradiance we have

I = I1 + I2 + 2
√

I1I2 cos δ. (7.16)

Thus depending on the value of the phase difference, the total irradiance can
be more, equal to or less than I1 + I2. Total constructive interference takes
place when δ = 0,±2π,±4π, · · · . We say that the disturbances are in phase.
A maximum irradiance occurs for cos δ = 1:

Imax = I1 + I2 + 2
√

I1I2. (7.17)
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For 0 < cos δ < 1, the waves are out of phase, resulting in I1 + I2 < I < Imax,
which means constructive interference. At δ = π/2 cos δ = 0, the disturbances
are 90◦ out of phase, and I1+ I2 = I. For −1 < cos δ < 0, we have destructive
interference, resulting in I1 + I2 > I > Imin, where the minimum intensity is
given by

Imin = I1 + I2 − 2
√

I1I2. (7.18)

The minimum intensity occurs for odd multiples of π, i.e., for δ = ±π,±3π, . . ..
An interesting particular case corresponds to the case when both the wave
amplitudes are the same, i.e., E01 = E02. In that case we have I1 = I2 = I0
and

I = 2I0(1 + cos δ) = 4I0 cos
2 δ

2
. (7.19)

It follows from Eq. (7.19) that Imin = 0 and Imax = 4I0. In fact, one can
define the visibility of an interference pattern V as

V =
Imax − Imin
Imax + Imin

. (7.20)

It is clear that V changes between 0 and 1. For the case corresponding to Eq.
(7.19), the visibility is unity.

7.1.1 Conditions for interference

In order to have a stable interference pattern, we need to have very nearly
the same frequencies. A large frequency difference would result in a rapidly
varying phase, which would lead to a null-averaged value for I12 during the
detection interval. Nevertheless, if the two sources emit white light, the com-
ponent red will still interfere with reds and the blue with blues. A great many
similar slightly displaced overlapping monochromatic patterns will generate
one total white light pattern. It may not be as sharp, as in the case of quasi-
monochromatic light. But white light will produce observable interference.

Clearer patterns emerge when the interfering waves have the same or
nearly the same amplitudes. The central portions of the dark and light fringes
then correspond to complete destructive and constructive interference, yield-
ing maximum contrast.

For an observable fringe pattern, there may be an initial phase difference
between the two waves. What is important is that this initial phase difference
must remain constant. Such sources that may or may not be in step but always
go together are coherent [56].

7.1.2 Temporal and spatial coherence

Coherence plays a very important role in any interference and diffraction
phenomena. It is related to the phase correlations between two distinct points
in space at the same time or two different moments of time at the same point.
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The former defines the spatial coherence while the latter gives the temporal
coherence. Consider two points P1 and P2 on the same wavefront emitted by a
source at time t0. Let E1(t = t0) and E2(t = t0) be the corresponding electric
fields. By definition of the wavefront, the phase difference between these two
fields is zero. If the phase difference remains zero at any time t, we say that
there is perfect spatial coherence between these two points. If this happens
for any two points in the wavefront, the wave has perfect spatial coherence.
In practice for any given P1, the point P2 must be within some area around
P1 within which there are some good phase correlations. In this case we say
that the wave is partially coherent and for any P we can define the suitably
introduced coherence area S(P ). Analogous notions can be defined in the time
domain for temporal coherence. Temporal coherence mostly depends on the
monochromaticity of the wave. Partially coherent light will always have a finite
spectral width. For a detailed discussion on coherence phenomena, readers are
referred to Section 9.2.1 of Ref. [8] and the textbook by Emil Wolf [56].

7.2 Interferometers based on wavefront splitting

It is clear that it is extremely difficult to have two thermal coherent sources.
Only modern-day lasers are coherent. Young came up with the brilliant idea
of picking a thermal source and using two portions of the same wavefront as
the two secondary sources. Since the two secondary sources are on the same
wavefront, they are coherent.

7.2.1 Young’s double slit interferometer

The schematics of the interferometer are shown in Fig. 7.1. Though the
original experiment used pin holes, the modern-day version involves the use

S a

S2

S1

s

r1

r2

θ

y

FIGURE 7.1: Schematics of Young’s double slit interferometer.
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of slits, giving rise to cylindrical waves. A primary wavefront is split into two
secondary sources by slits S1 and S2. Interference between the waves coming
from two slits is expected whenever the optical path difference is less than the
coherence length Lc = c∆τ . The path difference r1 − r2 can be expressed as

r1 − r2 = a sin θ ≈ aθ. (7.21)

In writing the approximate equality, we used the fact that the point of obser-
vation P is far away from the slits so that sin θ ≈ θ. Using the relation

θ ≈ y

s
, (7.22)

we have
r1 − r2 ≈ ay

s
. (7.23)

Interference maxima occur for

2π

λ
(r1 − r2) = 2mπ, (7.24)

or for
r1 − r2 = mλ. (7.25)

Thus for the location of the bright m-th fringe we have

ym =
smλ

a
. (7.26)

Using Eq. (7.22), this occurs at

θm =
mλ

a
. (7.27)

The spacing between the fringes is given by

∆y =
sλ

a
. (7.28)

Thus the fringes are broader for larger wavelengths: red ones will be broader
than the blue ones. Using the expressions for the phase difference δ = k(r1 −
r2), for intensity variation we have the expression

I = 4I0 cos
2 k(r1 − r2)

2
= 4I0 cos

2
(πay

sλ

)

. (7.29)

The results above hold for slits with infinite length. For slits with finite length,
due to diffraction effects, the intensity will fall off on both sides of y = 0.
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FIGURE 7.2: Schematics of the Fresnel double mirror arrangement.

7.2.2 Fresnel double mirror

The schematics of the interferometer are shown in Fig. 7.2. Two plane
front silver mirrors at a small angle are used to create the two virtual sources
S1 and S2. Denoting the distance of S1 from point of observation P by r1 and
the same from S2 by r2, we will have interference maxima at r1 − r2 = mλ.
Thus all the results derived for the case of the double slit experiment will hold
here also. The smaller the inclination of the second mirror from the first one,
the smaller will be the distance a between the secondary sources.

7.2.3 Fresnel biprism

The schematics of the interferometer are shown in Fig. 7.3. Here a cylin-
drical wavefront from a single slit S impinges on both prisms. The top portion
bends downward while the bottom portion is bent upward, creating the two
sources S1 and S2. In the region of overlap we have interference. The two
virual sources are separated by a, which is determined by the prism acute
angle α and the separation d of the plane of the sources from the plane of the
prism, as follows:

a = 2d(n− 1)α, (7.30)

where n is the refractive index of the prism material.
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FIGURE 7.3: Schematics of the Fresnel biprism.
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FIGURE 7.4: Schematics of Lloyd’s mirror interferometer.

7.2.4 Lloyd’s mirror

The schematics of the interferometer are shown in Fig. 7.4. This is perhaps
the simplest interferometer with a flat mirror, from which a portion of the
wavefront coming from slit S is reflected. Another portion proceeds directly
from the slit. Let a be the distance between the slit and the image S1. Fringe
spacing is again sλ/a. The distinguishing feature of this device is the fact that
at glancing angle θi ∼ π/2, the reflected beam undergoes a phase shift of ±π.
Hence the phase difference now is given by

δ = k(r1 − r2)± π, (7.31)

and the irradiance becomes

I = 4I0 sin
2
(πay

sλ

)

. (7.32)

Thus the fringe pattern of Lloyd’s mirror is complementary to that of Young’s
interferometer in the sense that the intensity maxima of one will correspond
to the minima of the other.
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7.3 Interferometers based on amplitude splitting

When a light beam is incident on a beam-splitter, it splits into two parts.
One part is transmitted while the other is reflected. Both the beams have
lower amplitude than the incident one. In a sense the amplitude has been
split. If these two beams can be brought together, interference can result if
the original cohence is not destroyed. In other words if the path difference
is less than the coherence length, the detector will see the phase correlation
and stable fringe patterns can emerge. We restrict ourselves to the case when
indeed the path difference is less than the coherence length.

7.3.1 Double beam interference in dielectric films

A film is be said to be thin if its thickness is of the order of the wavelength.
Rather spectacular colors of such thin films arise in oil slicks and soap bubbles.
With the advent of vacuum-coating technology, manufacturing such films has
been rendered possible. There are many diverse applications of such films.
Here we investigate the ones based on interference effects in such films.

7.3.2 Fringes of equal inclination

Consider a thin dielectric film of thickness d with very low absorption
with refractive index nt embedded in a medium with refractive index ni. We
also assume the amplitude reflection coefficient to be very low so that only
the first two reflected beams need to be considered. Both are assumed to have
undergone only one reflection at the top and bottom interfaces, respectively. It
is clear that the film serves as an amplitude splitter. The reflected amplitudes
E1r and E1r can be considered as coming from the two virtual sources behind
the film. The optical path difference Λ between the reflected beams can be
written as

Λ = nt(AB +BC)− niAD. (7.33)

Since

AB = BC =
d

cos θt
, (7.34)

Λ =
2ntd

cos θt
− niAD. (7.35)

Note that

AD = AC sin θi = AC
nt
ni

sin θt = 2d tan θt
nt
ni

sin θt, (7.36)

and hence

Λ =
2ntd

cos θt
(1− sin2 θt) = 2ntd cos θt. (7.37)
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FIGURE 7.5: Explaining fringes of equal inclination.

The phase difference associated with this path difference is k0Λ. Noting that
there will be an additional phase accumulation in reflection from at least one
interface by ±π irrespective of the fact that the refractive index of the film
is lower or higher than that of its environment, the phase difference can be
written as

δ =
4πnt
λ

d cos θt ± π (7.38)

or

δ =
4πd

λ
(n2
t − n2

i sin
2 θi)

1/2 ± π. (7.39)

We choose the negative sign in Eq. (7.38) to make it look simpler. Interference
maxima will occur at δ = 2mπ, which can be rewritten as

d cos θt = (2m+ 1)
λt
4
, (7.40)

where λt = λ/nt. The same conditions correspond to minima in the transmit-
ted light. Interference minima in reflection (maxima in transmission) occur
for δ = (2m± 1)π and for such cases

d cos θt = 2m
λt
4
. (7.41)

A comment regarding the refractive indices is in order. If the refractive indices
are in increasing or decreasing order, the additional phase shift of ±π would
not be there and the formulas for the maxima and minima would be inter-
changed. Since the phase difference is mainly controlled by θ, such fringes are
generally referred to as fringes of equal inclination.

7.3.3 Fringes of equal width

In contrast to the dominating role of θ, a whole class of fringes exists for
which the optical thickness of the film plays the most important part. These
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FIGURE 7.6: Explaining fringes of equal thickness.

are referred to as the fringes of equal width. Each fringe is the locus of all points
in the film for which the optical thickness is a constant. These fringes are quite
useful to determine the surface features. The surface under study can be put
in contact with an optical flat (not having a deviation of more than λ/4). The
air gap between the two generates a thin film interference pattern. For flat
test surfaces, the fringe will be a series of straight, equally spaced bands. This
indicates a wedge-shaped air film. When viewed at nearly normal incidence
as in Fig. 7.6, the contours from a nonuniform film are known as Fizeau
fringes. For a thin wedge of small angle α, the path difference between the
two reflected rays can be given by Λ = 2ntd cos θt, and d can be approximated
by d ≈ xα. For small values of θi, the condition for interference maximum can
be written as

(m+ 1/2)λ = 2ntdm = 2ntαxm. (7.42)

This yields

xm =

(

m+ 1/2

2α

)

λt, (7.43)

where λt = λ/nt is the wavelength in the film. Thus maxima occur at distances
from the apex at λt/4α, 3λt/4α, etc. The separation between the bright fringes
is given by

∆x = λt/2α. (7.44)

Note that the difference in film thickness for adjacent maxima is given by λt/2.
Since the beam reflected by the lower surface traverses the thickness twice,
adjacent maxima differ in the optical path by λt. In terms of the thickness,
the location of maxima is given by

dm = (m+ 1/2)
λt
2
. (7.45)
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Traversing the film twice gives a phase shift of π, which when added with
additional π phase shift under reflection puts the two rays back in phase.
Hence the interference maxima result.

7.3.4 Newton’s rings

Two pieces of glass slides, when pressed at a point illuminated by normally
incident light, can exhibit concentric fringe patterns. These patterns are known
as Newton’s rings. These can be studied systematically by the arrangement
shown in Fig. 7.7. On top of a glass optical flat, we place a lens. The system is
illuminated with normally incident quasi-monochromatic light. The amount
of uniformity of the circular pattern is a measure of how perfect the lens is.
Let R be the radius of curvature of the convex lens. The relation between the
distance x and the film thickness d is given by

x2 = R2 − (R− d)2 = 2Rd− d2. (7.46)

Since d≪ R, Eq. (7.46) can be rewritten as

x2 = 2Rd. (7.47)

Considering only the first two reflected beams, the m-th order interference
maximum occurs at

2ntdm = (m+ 1/2)λ. (7.48)

The radius of the m-th bright ring is then given by

xm = [(m+ 1/2)λtR]
1/2. (7.49)

S

L

F

P

BS

R

d
x

FIGURE 7.7: Setup for observing Newton’s rings.
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The radius of the m-th dark ring will be

xm = [mλtR]
1/2. (7.50)

If there are no dust particles at the center between the lens and the optical
flat and the contact is good, then we will have a minimum of intensity at the
center (at x = 0) since d = 0 at that point.

7.3.5 Mirrored interferometers: Michelson interferometer

A variety of amplitude-splitting interferometers are based on multiple mir-
rors and beam-splitters. Perhaps the best known is the Michelson interferom-
eter. The arrangement of the interferometer is shown in Fig. 7.8. An incident
beam is split into two by means of a beam-splitter BS. Both the transmitted
and the reflected beams are reflected back onto the beam-splitter by mirrors
M ′ and M ′′. A compensator C is placed in the path of the transmitted beam
in order to compensate for the additional path traversed by the reflected beam
in passing through the BS (since it gets reflected by the bottom surface). In
order to understand how the fringes are formed, it is better to refer to the
equivalent diagram shown in Fig. 7.9. An observer at location D will simul-
taneously see the two mirrors and the source. Let the mirror separation be d.
Thus interference will be observed from light coming from two virtual sources
S′ and S′′ separated by 2d. Optical path difference between the two rays
coming from S′ and S′′ is given by 2d cos θ and the condition for interference

S

D

CBS

M’

M’’

FIGURE 7.8: Michelson interferometer.
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FIGURE 7.9: Equivalent diagram for Michelson interferometer.

maxima can be written as

2d cos θm = mλ, (7.51)

where m is an integer. An observer will see a circular fringe pattern. Because
of the small aperture of the eye, the observer may not see the whole pattern
without the use of a large lens.

It is important to note that the path difference 2d cos θ must be less than
the coherence length. This has important implications for sources to be used
for Michelson interferometry. For example, for laser sources with large coher-
ence length, d can be as large as 10 cm, while for mercury and other natural
sources, the path difference must be very nearly zero. Out of the concentric
rings, a particular one corresponds to a given value of order m. As the mirror
separation decreases, so does the angle θm, and the ring shrinks toward the
center. The highest-order one disappears when d is decreased by λ/2. The
central dark fringe occurs for θm = 0, and for it we have

2d = m0λ. (7.52)

For example, for d = 10 cm and for λ = 500 nm, the largest-order fringe
is realized with m = 400,000. For a fixed value of d, the next dark fringes
occur at

2d cos θ1 = (m0 − 1)λ,

2d cos θ2 = (m0 − 2)λ,

...

2d cos θp = (m0 − p)λ. (7.53)

Combining the last equation with Eq. (7.52), we have

2d(1− cos θp) = pλ. (7.54)
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For small θp we can use the approximation cos θp ≈ 1 − θ2p/2, which reduces
Eq. (7.54) to

θp = (pλ/d)
1/2

. (7.55)

The Michelson interferometer can be used for precise and accurate measure-
ment of distances. This is based on the following fact. As the movable mirror
is displaced by λ/2, each fringe moves to the position previously occupied
by the adjacent fringe. We need to count the number of fringes N that have
moved through a reference point (say, a crosshair in a microscope objective)
in order to determine the displacement ∆d of the mirror:

∆d = Nλ/2. (7.56)

7.4 Multiple beam interference

Upto now have we considered the interference of two coherent beams.
There are many cases where interference takes place with participation of
more than two coherent beams. For example, for a glass slide and for signifi-
cant reflections from the surfaces, we need to add up all the reflected rays. If
the glass plate is slightly silvered on both sides, it will lead to multiple reflec-
tions from both the surfaces. For the time being we will consider transparent
dielectrics only to avoid the complications of phase changes at the silvered

E0
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Er4

Et1

Et2

Et3

d

FIGURE 7.10: Multiple beam interference.
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surfaces. Again, the path difference Λ between the adjacent rays is given by
Λ = 2ntd cos θ. Initially, we look at the particular case when the slab has
specific λ/4 or λ/2 thickness, and later we look at the general case.

We first consider the case when the path difference Λ = mλ (λ/2 thick-
ness). In this case, the second, third and all higher-order reflected waves will
be in phase, but they will be π out of phase with the first reflected wave. Total
reflected amplitude is obtained by adding the reflected amplitudes Er1, Er2,
etc., as follows:

Er = Er1 + Er2 + Er3 + · · · ,
= E0r − (E0rtt

′ + E0r
3tt′ + E0r

5tt′ + · · · ),
= E0r − E0rtt

′(1 + r2 + r4 + · · · ),

= E0r − E0
rtt′

1− r2
= 0, (7.57)

where r, r′ and t, t′ are the external and internal reflection and transmission
coefficients, respectively. In writing the last row of Eq. (7.57), we used the fact
that

r′ = −r, tt′ = 1− r2. (7.58)

We thus have an interference minimum corresponding to this case.
For Λ = (m+1/2)λ, the first two rays are in phase while all other consec-

utive pairs are π out of phase. Hence we have

Er = E0r + (E0rtt
′ − E0r

3tt′ + E0r
5tt′ − ...),

= E0r + E0rtt
′(1 − r2 + r4 − ...),

= E0r + E0
rtt′

1 + r2
=

2r

1 + r2
E0. (7.59)

The corresponding irradiance is proportional to E2
r/2, and hence

Ir =
4r2

(1 + r2)2
I0, (7.60)

where I0 is the incident irradiance. This case corresponds to the intensity
maximum in the reflected light. Since reflection and transmission are comple-
mentary, this would correspond to the minima in transmitted light. We now
present the rigorous treatment when the phase difference can be arbitrary. We
write the reflected fields as

Er1 = E0r exp[−i(ωt)],
Er2 = E0tt

′r′ exp[−i(ωt+ δ)],

Er3 = E0tt
′r′3 exp[−i(ωt+ 2δ)],

...

ENr = E0tt
′r′(2N−3) exp[−i(ωt+ (N − 1)δ)]. (7.61)
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Hence the total reflected field is given by

Er = Er1 + Er2 + Er3 + ...,

= E0e
−iωt [r + tt′r′e−iδ(1 + r′2e−iδ + (r′2e−iδ)2 + ...)

]

,

= E0e
−iωt

[

r +
tt′r′e−iδ

1− r′2e−iδ

]

,

= E0e
−iωt

[

r(1 − e−iδ)

1− r2e−iδ

]

. (7.62)

In the equations above, we used the fact that r′ = −r. The expression for
reflected irradiance becomes

Ir =
E2

0r
2(1− e−iδ)(1− eiδ)

2(1− r2e−iδ)(1 − r2eiδ)
(7.63)

or
Ir
Ii

=
2r2(1− cos δ)

(1 + r4)− 2r2 cos δ
. (7.64)

For the transmitted rays we have

Et1 = E0tt
′ exp[−i(ωt)],

Et2 = E0tt
′r′2 exp[−i(ωt+ δ)],

Et3 = E0tt
′r′4 exp[−i(ωt+ 2δ)],

...

EtN = E0tt
′r′(2N−2) exp[−i(ωt+ (N − 1)δ)]. (7.65)

Hence the total transmitted field is given by

Et = Et1 + Et2 + Et3 + · · · ,

= E0e
−iωt

[

tt′

1− r2e−iδ

]

. (7.66)

The expression for reflected irradiance is given by

It =
Ii(tt

′)2

(1 + r4)− 2r2 cos δ
. (7.67)

Finally, introducing the finesse coefficient F = [2r/(1− r2)]2, the expressions
for both the reflected and transmitted irradiances can be written as

Ir = Ii
F sin2 δ/2

1 + F sin2 δ/2
, (7.68)

It = Ii
1

1 + F sin2 δ/2
. (7.69)
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FIGURE 7.11: Transmission resonances. The curves from top to bottom are
for F =1, 10 and 100, respectively.

It is clear from the above equations that Ir + It = Ii for lossless systems. The
minima and maxima of transmission are observed at δ = (2m+1)π and 2mπ,
respectively, and they are given by

It min = Ii
(1− r2)2

(1 + r2)2
, It max = Ii. (7.70)

It is clear from Eq. (7.69) that transmission resonances (usually referred to
as Airy resonances) are evenly spaced with frequency spacing given by ∆f =
c/(2ntd). The corresponding curves for three different values of F are shown
in Fig. 7.11. The half-width at half-maximum δ1/2 can be found from the
condition

1

1 + F sin2 δ1/2/2
=

1

2
, (7.71)

which yields

δ1/2 =
2√
F

(7.72)

so that the full-width at half-maximum (FWHM) is γ = 4/
√
F . The finesse

of the resonator F is defined by

F =
2π

γ
=
π
√
F

2
. (7.73)

Typical finesse for such resonators is about 30 in the visible range.

7.4.1 Fabry-Pérot interferometer

A Fabry-Pérot interferometer consists of two parallel mirrors. Usually two
glass plates with silvered internal surfaces are used. The outer faces are in the
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form of wedges so that light reflected from those faces need not be accounted
for. The working principle is the same as that of a dielectric slab described
above. If the gap between the mirrors can be varied, it is referred to as an
interferometer, while a fixed-gap system with some transparent material inside
is called an etalon. The latter is used to resolve the spectral lines in standard
spectroscopic devices.

7.5 Diffraction

Deviation of light from rectilinear propagation due to obstacles is usually
referred to as diffraction. The phenomenon of diffraction is one of the manifes-
tations of the wave character of light. It is thus characteristic of not only light
but also of other waves, like sound waves. The segments of wavefront that
propagate beyond the obstacle interfere, causing the particular fringe pattern
referred to as the diffraction pattern. In fact, there is no physical distinction
between the two phenomena of interference and diffraction. It is customary to
call it interference if only a few rays interfere, while in the case of many rays
it is called diffraction. Even then, in the context of superposition of multiple
beams, it is referred to as interference, while in the context of an array of
coherent sources containing the same physics, it is referred to as diffraction.

Let us first look again at the Huygens-Fresnel principle. The basis of the
Huygens-Fresnel principle was the Huygens principle, which states: Each point
of the wavefront acts as the source of secondary wavelets. At any later time,
the shape of the wavefront is the envelope of the secondary wavelets. It is
clear that the Huygens principle can explain the bending of light but not the
intricate diffraction pattern, since it has no reference to the wavelength of light.
The difficulty was resolved by Fresnel, who added the important concept of
interference: Every unobstructed point of the wavefront at any given moment
serves as a source of secondary wavelets (with the same frequency as that of
the primary one). The amplitude of the optical field at any point beyond is the
superposition of these wavelets (with consideration of their amplitudes and
phases).

Let us now apply the principle in a situation like in Fig. 7.12, where we
have an opaque screen with an opening. The aperture is illuminated with plane
waves. Each unobstructed point of the incoming plane wave acts as a coher-
ent secondary source. The maximum optical path difference corresponding to
|AP − BP | is Λmax ≤ AB. The equality holds for the point of observation
P on the screen. When λ > AB, it follows that λ ≥ Λmax. Since the waves
initially were in phase, they interfere constructively (to varying degrees), irre-
spective of where P is. Thus, if the wavelength is large compared to the linear
dimension of the aperture, the waves will spread out at large angles into the
region beyond the obstruction. In the opposite case, when λ < AB, the area

© 2016 Taylor & Francis Group, LLC

  



142 Wave Optics: Basic Concepts and Contemporary Trends

S

P

A

B

FIGURE 7.12: Plane wave incident on an aperture.

where λ > Λmax is limited to a small region directly in front of the opening.
It is here only that all wavelets will interfere constructively. The idealized
geometric shadow corresponds to the case when λ→ 0.

7.5.1 Fresnel and Fraunhofer diffraction

Consider again an opaque screen with a small aperture, illuminated by a
plane wave. We can distinguish three distinct regimes so far as the distances
of the screen from the source and the point of observation are concerned.

1. The plane of observation is very close to the screen. An image of the
aperture is projected onto the screen. There may be some slight fringing
effect at the edges.

2. The observation screen is moved farther apart. The image of the aper-
ture, though recognizable, becomes structured as fringes at the edge
become more prominent. This is a Fresnel or near-field diffraction.

3. At large distances, the produced pattern spreads out significantly with
no resemblance of the image with the aperture. This is a Fraunhofer or
far-field diffraction. If we could decrease the wavelength at this stage, the
pattern would revert to Fresnel diffraction. If the wavelength could be
reduced to zero, then the fringes would vanish, leading to the geometrical
shadow.

The plane wave in Fig. 7.12 can be thought of as coming from a point source
very far apart. If the point source is moved to the aperture, the spherical waves
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would impinge on the aperture, and a Fresnel pattern would exist even at a
large distance of the aperture from the observation plane. It is important to
note that as long as both incoming and outgoing waves approach being planar
(differing therefrom by a small fraction of a wavelength) over the extent of the
aperture, Fraunhofer diffraction holds. On the contrary, when the aperture is
too close to the source or the observation plane, which results in a curvature
of the phase front, Fresnel diffraction prevails. We can write a practical rule
of thumb for the region where Fraunhofer diffraction takes place:

R >
a2

λ
, (7.74)

whereR is the smallest of the two distances of the aperture from the source and
from the point of observation, and a is the linear dimension of the aperture. For
R → ∞, finite size effects of the aperture are of little consequence. Effectively,
this can be achieved by putting two lenses before and after the aperture. In the
remainder part of this section, we concentrate on the Fraunhofer diffraction
from various sources.

7.5.2 N coherent oscillators

Consider a linear array ofN identical oscillators with the same initial phase
angle. Also consider a far-off observation point P (Fig. 7.13). If the spatial
extent of the oscillators is small, the wave amplitudes arriving at P would be
the same, having traveled almost the same distance:

E0(r1) = E0(r2) = E0(r3) = .. = E0(rN−1) = E0(rN ). (7.75)

r1

r2

r3

r4

rN

d

P

FIGURE 7.13: An array of N equispaced coherent sources.
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Then the sum of the interfering wavelets at P is given by the real part of

E = E0(r)e
i(kr1−ωt) + E0(r)e

i(kr2−ωt)) + · · ·+ E0(r)e
i(krN−ωt), (7.76)

= E0(r)e
i(kr1−ωt)

[

1 + eik(r2−r1) + · · ·+ eik(rN−r1)
]

. (7.77)

In terms of the phase difference between the adjacent sources δ given by

δ = kΛ = kd sin θ, (7.78)

the total field can be written as

E = E0(r)e
i(kr1−ωt) [1 + (eiδ) + (eiδ)2 + ...+ (eiδ)N−1

]

, (7.79)

= E0(r)e
i(kr1−ωt)

(

eiδN − 1

eiδ − 1

)

. (7.80)

The last term in the brackets in Eq. (7.80) can be simplified to

(

eiδN − 1

eiδ − 1

)

= ei
δ
2 (N−1) sin

(

δN
2

)

sin δ
2

. (7.81)

Thus the final expression for the amplitude can be written as

E = E0(r)e
−iωt ei[kr1+(N−1) δ

2 ]
sin
(

δN
2

)

sin δ
2

. (7.82)

Denoting the distance from the center of the array to P by R, where

R = r1 +
N − 1

2
d sin θ, (7.83)

Eq. (7.82) can be rewritten as

E = E0(r)e
i(kR−ωt) sin

(

δN
2

)

sin δ
2

. (7.84)

The corresponding flux density is given by

I = I0
sin2

(

δN
2

)

sin2 δ2
= I0

sin2
(

Nkd sin θ
2

)

sin2
(

kd sin θ
2

) . (7.85)

Here the numerator undergoes rapid oscillation while the denominator varies
slowly. The combined expression yields sharp principal peaks separated by
small subsidiary maxima. Principal maxima occur at θm, satisfying

δ = 2mπ, m = 0, ± 1, ± 2 · · · (7.86)

or for
d sin θm = mλ, m = 0, ± 1, ± 2 · · · . (7.87)
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Note that the ratio of the squares of the sines in Eq. (7.85) → N2 at principal
maxima, and hence the corresponding irradiance is given by N2I0. This hap-
pens since all the oscillators are in phase. There are maxima in the direction
perpendicular to the array for m = 0 and θ0 = 0, π. As θ increases I falls off
to zero at Nδ/2 = π at the first minimum. Note also that if d < λ, only the
principal maximum corresponding to m = 0 or the zeroth order exists.

7.5.3 Continuous distribution of sources on a line

Consider an idealized line source along the y-axis with width ≪ λ as shown
in Fig. 7.14. Let D be the entire length of the source. Each point on the source
emits a spherical wavefront,

E =
E0
r

exp[i(kr − ωt)]. (7.88)

This case is distinct from the previous one since the sources are weak, their
number N is very large and their spacing is vanishingly small. Let the length
of the source be divided into M equal segments ∆y. Each of these segments
will have ∆yN/D sources. Pick a segment ∆yi (i = 1 − M) at a distance ri
from P . The contribution to the field amplitude from the i-th segment is

Ei =
E0
ri

exp[i(kri − ωt)]∆yiN/D. (7.89)

Transition to a continuous distribution corresponds to the limit N → ∞.
Defining a source strength per unit length El as the limit of E0N/D asN → ∞,
we can write the expression of the net field at P due to all M segments as

E =

M
∑

i=1

El
ri

exp[i(kri − ωt)]∆yi. (7.90)

Let the point of observation be far off, i.e., R ≫ D. Then r(y) never devi-
ates appreciably from the midpoint value R. Thus El/R is essentially constant.

y

x

P
R

D/2

-D/2
z

r1

FIGURE 7.14: Single slit.
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The field dE due to a length dy of continuous sources can be written as

dE =
El
R

exp[i(kr(y)− ωt)]dy. (7.91)

Note that phase is much more sensitive to a change in y, and r(y) can be
approximated by

r(y) ≈ R− y sin θ. (7.92)

The total field can be obtained by integration of Eq. (7.91):

E =
El
R
ei(kR−ωt)

∫ D/2

−D/2
e−iky sin θdy. (7.93)

This finally yields

E =
ElD
R

sinβ

β
ei(kR−ωt). (7.94)

The corresponding intensity is given by

I(θ) = I0

(

sinβ

β

)2

. (7.95)

The variable β in Eqs. (7.94) and (7.95) is given by

β = (kD/2) sin θ = (πD/λ) sin θ. (7.96)

It is clear that I(θ) = I0, for β = 0, and this corresponds to the principal
maximum. Note that there is symmetry about the y-axis and this expression
holds for θ measured in any plane containing this axis.

Two important points must be noted.

• When D ≫ λ, β can be large and the intensity falls off sharply as θ
deviates from zero. The phase as per Eq. (7.94) is equivalent to that of
a point source located at the center of the array at a distance R from
P . Thus a long line of coherent sources is equivalent to a point emitter
radiating predominantly in the forward direction. Its emission resembles
a circular wave in the xz plane.

• When D ≪ λ, β can be small, resulting in I(θ) = I0 since for this
case sin(β)/β ≈ 1. Irradiance is constant for all θ and the line source
resembles a point source emitting a spherical wave.

7.5.4 Fraunhofer diffraction from a single slit

We can now discuss the diffraction pattern from a single slit based on the
understanding of a line source. Let the slit have a width b, which is much less
than its length l. The arrangement is shown in Fig. 7.15. The width can be
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z
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FIGURE 7.15: Diffraction from multiple slits.

several hundred of wavelengths. Usually the length is a few centimeters. The
aperture can be thought of as a collection of long differential strips (dz × l).
Each strip can be replaced by a point source on the z-axis emitting a circular
wave in the xz plane. There will be very little diffraction parallel to the strips.
Thus the problem is reduced to one of finding the field in the xz plane due to
an infinite number of point sources over the width of the slit b. Thus for the
intensity we have Eq. (7.95) with β given by Eq. (7.96) with D replaced by b,
i.e.,

I(θ) = I0

(

sinβ

β

)2

, β = (kb/2) sin θ = (πb/λ) sin θ. (7.97)

Extrema of I(θ) occur at values of β determined by the equation

dI

dβ
= I0

2 sinβ(β cosβ − sinβ)

β3
= 0. (7.98)

Minima occur for β = ±π,±2π,±3π, · · · . When β = tanβ, subsidiary maxima
occur in between two consecutive minima.

There is a simple way to understand the diffraction pattern. The expression
θ = 0 corresponds to maximum and all rays are in phase. When b sin θ1 = λ,
a ray from the center of the slit is π out of phase from the ray from the top.
Another ray slightly below the middle will be out of phase with the one slightly
below the top. Thus all the pairs will cancel out and for sin θ1 = λ/b there
will be perfect cancellation leading to the zero minimum. The same happens
when b sin θ1 = 2λ and so on. The general zeros occur at b sin θm = mλ.

7.5.5 Diffraction from a regular array of N slits

Consider N identical long parallel slits each of width b and center-to-center
separation d (see Fig. 7.15). The flux distribution for this case can be written
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as

I(θ) = I0

(

sinβ

β

)2(
sinNα

α

)2

. (7.99)

In Eq. (7.99) I0 is the intensity along θ = 0 emitted by any of the slits and

I(0) = N2I0. (7.100)

Eq. (7.100) implies that waves arriving at P are all in phase for θ = 0. If the
width of each slit were to shrink to zero, one would recover the expression for
an array of coherent sources. Principal maxima occur at α = 0, ±π ±2π · · · ,
when (sinNα)/(sinα) = N . Since α = (ka/2) sin θ, this condition reduces to

a sin θm = mλ, m = 0,±1,±2, · · · . (7.101)

Minima occur whenever

α = ± π

N
,±2π

N
· · · ± (N − 1)π

N
, ± (N + 1)π

N
, · · · . (7.102)

Between consecutive maxima, there will be N − 1 minima. Between each pair
of minima, there will be a subsidiary maximum. The subsidiary maxima are
located approximately at points where sinNα has maximum value:

α = ± 3π

2N
,± 5π

2N
· · · . (7.103)

The pattern above is modulated by a single slit diffraction envelope. The
pattern is shown in Fig. 7.16 for b = 25λ, a = 4b and N = 4. The top panel

shows the variation of ( sin(β)β )2 and the middle one that of ( sin(Nα)sin(α) )2, while

the bottom panel shows the whole pattern modulated by the pattern of a
single slit.

7.5.6 Fresnel diffraction

As discussed earlier Fresnel diffraction holds when the source or the obser-
vation point is close to the aperture. In that case we need to deviate from the
plane wavefront approximation as in Fraunhofer diffraction. The experimental
situation here is somewhat simpler since one can avoid the collimating optics.
However, the mathematical description is much more complex and one has to
resort to several approximations.

7.5.7 Mathematical statement of Huygens-Fresnel principle

Consider the diffraction schematics shown in Fig. 7.17, where the spherical
wavefronts from a point source are incident on an aperture, which is not so
far from the observation point P. Let the distances from an elemental area da
on the aperture be at a distance r′ from the source and r from the observer.
Compared to the Fraunhofer diffraction, the case under study has several
distinguishing features:
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FIGURE 7.16: The diffraction pattern for a grating with b = 25λ, a = 4b
and N = 4. (a) shows the variation due to a single slit, (b) that of N coherent
sources, while (c) shows the whole pattern due to the grating.

1. Since the approaching waves at the aperture and the observation points
are no longer plane, both r and r′ enter the relevant diffraction formulas.

2. Since the the direction from various points O on the aperture to a given
field point P may no longer be considered approximately constant, the
dependence of amplitude on the direction of Huygens wavelets needs be
considered. This correction is achieved by the so-called obliquity factor.

Let the contribution to the disturbance at P due to the elemental area da
be given by

dEP =

(

dE0

r

)

eikr, (7.104)

where the amplitude is proportional to the area da, i.e., dE0 ∼ ELda. Since
the amplitude EL arises due to the point source at S, we have

EL =

(

Es
r′

)

eikr
′

. (7.105)
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S

P

O

FIGURE 7.17: The schematics of Fresnel diffraction.

Combining Eqs. (7.104) and (7.105), except for a constant we have

dEP =

(

Es
rr′

)

eik(r+r
′)da. (7.106)

Thus the field at P due to the entire aperture can be written as

EP = Es

∫ ∫ (

1

rr′

)

eik(r+r
′)da. (7.107)

Eq. (7.107) is incomplete on two counts: (i) it does not incorporate the obliq-
uity factor F (θ), and (ii) it does not have the π/2 phase change of the diffracted
wave with respect to the incoming wave. After incorporating these changes
the formula now reads

EP =
−ikEs
2π

∫ ∫

F (θ)

(

eik(r+r
′)

rr′

)

da, (7.108)

where −i = exp(−iπ/2) accounts for the phase shift and F (θ) is given by

F (θ) =
1 + cos(θ)

2
. (7.109)

Eq. (7.109) holds still under the approximation λ < b < r, r′. The integration
is to be performed over a closed surface, including the aperture. Kirchhoff’s
approximations amount to the fact that the wave function and the derivative
vanish right behind the opaque part of the screen. The vector field E is ap-
proximated by a scalar having the same value at the aperture as in the case
of its absence.

7.6 Scalar diffraction theory

We first present a qualitative comparison of the scalar theory of diffraction
and the rigorous vector theory in order to have a feel for the domain of valid-
ity of the scalar theory. For a monochromatic electromagnetic field in a linear
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medium, the vector fields E or H satisfy the vector Helmholtz equations. Fur-
ther, for a homogeneous isotropic medium, any of the Cartesian components
of the electric or the magnetic field satisfy the same Helmholtz equation,
albeit for the scalar component, However, for light propagating through a
step-index medium (interface between two dielectric media) or any localized
or distributed inhomogeneity (as in diffraction problems), the situation is not
so simple. The assumptions isotropic and homogeneous break down and there
is mixing of the various components of E and H, and even coupling between
them via the boundary conditions. In such cases, if the mixing and couplings
are strong, the rigorous theory must incorporate the inherent vector character
of the fields. In fact, a comparison of the rigorous vector theory with the scalar
counterpart reveals ripples (in the step-index example) in both amplitude and
phase in the rigorous treatment, while they are absent in the scalar theory [57].
The differences are noticeable only in the immediate vicinity of the interface.
In the case of apertures, in typical diffraction problems the differences show
up near the edge of the apertures. After several wavelengths away from the in-
homogeneity both the rigorous and the scalar approximation produce similar
results and the mixing effects can be ignored. Diffraction from sub-wavelength
structures thus may need full vectorial treatment (see Chapter 14). Except for
such cases, a scalar theory is a widely accepted tool for diffraction problems.
The scalar theory starts with Green’s second identity and leads to Kirchhoff’s
integral theorem. Applied to a specific problem of diffraction from an open
aperture in an otherwise opaque screen, this leads to the Fresnel-Kirchhoff
diffraction integral. As we go along we will briefly mention the limitations of
Kirchhoff’s approximation in the boundary conditions, which led to Bethe’s
theory [58] and the recent developments on extraordinary transmission (see
Chapter 14).

7.6.1 Helmholtz-Kirchhoff integral theorem

Consider a volume V enclosed by a surface S (see Fig. 7.18). Let the scalar
field U satisfy the Helmholtz equation in V . the Kirchhoff integral relates the
field at a point P to the value of the field and its first derivative on the
boundary. In order to arrive at the integral theorem we invoke the second
Green’s identity, applicable to two functions U and G, which are continuous
along with their first and second derivatives in V as well as on S. Green’s
second identity can be written as

∫∫∫

V

(U∇2G−G∇2U)dV = −
∫∫

S

(

U
∂G

∂n
−G

∂U

∂n

)

da, (7.110)

where ∂F
∂n = ∇F · n is the directional derivative along unit inward normal

n. In the context of diffraction problems it is more convenient to use the in-
ward normal, though a standard form of Green’s identity involves the outward
normal [31]. Let G also satisfy the Helmholtz equation so that for both the
functions similar relations hold: ∇2G = −k2G and ∇2U = −k2U . Thus the
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FIGURE 7.18: Schematics of the domain of integration for the derivation
of the Helmholtz-Kirchhoff integral theorem.

integrand on the left-hand side of Eq. (7.110) reduces to zero and we have
∫∫

S

(

U
∂G

∂n
−G

∂U

∂n

)

da = 0. (7.111)

Let the auxiliary Green’s function G (sometimes referred to as the point func-
tion) be given by

G(x, y, z) =
eiks

s
, (7.112)

where s is the distance from point P to (x, y, z). The field given by Eq. (7.112)
represents a spherical wave emanating from a point source at P and thus has
a singularity at P (s = 0). The closed surface in Eq. (7.111) must exclude
any singularity. To this end we exclude a spherical region with surface S′ with
center at P and with radius ǫ (see Fig. 7.18). The integration in Eq. (7.111)
can now be performed on S ∪ S′, where the enclosed volume does not have
any singularity. We get
∫∫

S

(

U
∂G

∂n
−G

∂U

∂n

)

da = −
∫∫

S′

(

U
∂

∂n

(

eiks

s

)

− eiks

s

∂U

∂n

)

da′. (7.113)

Since n is the outward normal to S′ and s is along the same direction, the
directional derivative ∂

∂n can be replaced by ∂
∂s , and for the directional deriva-

tive of the auxiliary Green’s function we have

∂G

∂n
=

∂

∂s

(

eiks

s

)

=
eiks

s

(

ik − 1

s

)

. (7.114)
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In order to evaluate the integral on the right-hand side of Eq. (7.113), we
replace the surface element da′ by the element of the solid angle dΩ and
rewrite it in the form

−
∫∫

Ω

(

U

(

ik − 1

ǫ

)(

eikǫ

ǫ

)

− eikǫ

ǫ

∂U

∂s

)

ǫ2dΩ. (7.115)

Finally, taking the limit ǫ→ 0 on the right-hand side of Eq. (7.115), we have
finite contribution only from the second term, reducing the integral over S′ to
4πU(P ). Thus Eq. (7.113) reduces to

U(P ) =
1

4π

∫∫

S

(

U
∂

∂n

(

eiks

s

)

− eiks

s

∂U

∂n

)

da. (7.116)

It is clear from Eq. (7.116) that a knowledge of the field and its first derivative
on the surface is adequate for its evaluation at an interior point.

7.6.2 Fresnel-Kirchhoff diffraction integral

Consider now a typical diffraction scenario as depicted in Fig. 7.19. A point
source is placed at P0 and let the observation point be at P . The source and
the observation points are separated by an opaque screen B with an opening
(aperture) A. Let the distance between an arbitrary point PA on the aperture
to the observer (source) be denoted by s (r). We assume the linear dimension
of the opening to be larger than the wavelength λ, though much smaller than
both r and s (see Chapter 14 for near and far-field definitions). Let the closed
surface be formed by the part of a spherical surface SR with center at P with

SB

SA
P0

SR

R

P
s

r

n
PA

θnr

θns

FIGURE 7.19: Schematics of the domain of integration for the derivation
of the Fresnel-Kirchhoff diffraction integral.
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a large radius R, opaque screen SB and the opening SA. Thus the Kirchhoff
integral given by Eq. (7.116) can be broken up as follows:

∫∫

S

=

∫∫

SA

+

∫∫

SB

+

∫∫

SR

. (7.117)

It can be shown that for sufficiently large R, the contribution from SR is neg-
ligible [31]. In order to evaluate the contributions from SA and SB, Kirchhoff
made the following approximations.

• On the opaque screen SB, both the function and its derivatives vanish:

U = 0,
∂U

∂n
= 0. (7.118)

• On the opening SA, both the function and its derivatives are the same
as created by the source, as if no screen were there:

U = Ui,
∂U

∂n
=
∂Ui
∂n

, (7.119)

where Ui is the field produced by the source at PA in absence of any obstacles.
There are several mathematical and physical inconsistencies in Kirchhoff

approximations in the context of realistic systems. The mathematical incon-
sistency stems from the fact that in standard boundary value problems, we use
the Dirichlet or the Neumann boundary conditions but not both in general.
Kirchhoff’s approximations given by Eq. (7.118) lead to the mathematical
conclusion that the field must be zero everywhere in space. Rayleigh showed
that either U = 0 or ∂U

∂n = 0 is enough to derive another integral, namely, the
Rayleigh-Sommerfield diffraction integral [31]. Moreover, in reality most of the
opaque screens in diffraction optics are made of metals with finite thickness
and conductivity. Such screens, along with the holes, can support surface plas-
mons and localized plasmons. Also as discussed earlier, scalar theory can break
down in the near vicinity of the aperture. A deeper understanding of these
limitations led to the recently discovered area of extraordinary transmission
(see Chapter 14).

Referring back to Fig. 7.19 and assuming an amplitude A for the spherical
wave, we have

Ui = A
eikr

r
,

∂Ui
∂n

= A
eikr

r

(

ik − 1

r

)

cos θnr. (7.120)

For the auxiliary Green’s function we have similar expressions:

G =
eiks

s
,

∂G

∂n
= A

eiks

s

(

ik − 1

s

)

cos θns. (7.121)

In Eqs. (7.120) and (7.121), θnr (θns) is the angle between the inward normal
and r (s). In view of the boundary conditions given by Eq. (7.118), there is
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no contribution from SB. Further, in the limit kr ≫ 1, ks≫ 1, the field at P
can be written as

U(P ) = − iA
2λ

∫∫

SA

eik(r+s)

rs
(cos θnr − cos θns))da. (7.122)

Eq. (7.122) is known as the Fresnel-Kirchhoff diffraction integral.
For symmetric (with respect to the aperture) illumination when cos θnr =

0, Eq. (7.122) simplifies to

U(P ) = − iA
2λ

eikr0

r0

∫∫

SA

eiks

s
(1 + cosχ))da, (7.123)

where χ = π− θns and r0 is the radius of the spherical wavefront reaching the
aperture. In Eq. (7.123) we can easily see the manifestation of the Huygens-
Fresnel principle (see Eq. (7.108)) by recognizing the obliquity/inclination
factor F (χ) given by Eq. (7.109). We can further distinguish between the
Fraunhofer and Fresnel regimes of diffraction, which are covered extensively
in the standard optics literature [31]. We covered the scalar theory mainly in
order to understand the inconsistencies in the Kirchhoff diffraction theory.

7.7 Rayleigh criterion

In different parts of the book, we touch upon the notion of resolution and
its limits in order to explore how to beat these limits. In the context of the far-
field patterns, Rayleigh proposed a criterion that now bears his name. Let us
understand the Rayleigh criterion in the context of diffraction from a single
slit, though it is applicable to many other situations and instruments. The
normalized intensity pattern for a slit (see also Eq. (7.97)) is given by

I(β)

I0
=

(

sinβ

β

)2

. (7.124)

According to Rayleigh the two lines with equal intensity λ0±∆λ0/2 separated
by ∆λ0 are resolved if the principal intensity peak of one corresponds to the
first intensity minimum of the other. Translating ∆λ0 into ∆β, this implies
that ∆β = π as shown in Fig. 7.20. The solid lines show the individual in-
tensity patterns due to the two lines, while the dash-dotted curve shows the
superposition. Note that for the resultant intensity, the ratio of the midpoint
intensity to the peak value is given by 0.811. We also define the resolving
power of an instrument by the ratio λ0/∆λ0.

Note that the Rayleigh criterion, based on formulas like Eq. (7.97), holds
for the far-field and propagating waves, where interference is the dominant
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FIGURE 7.20: Single slit diffraction pattern for the explanation of the
Rayleigh criterion.

physical process. The natural length-scale for such processes is the wavelength
of light. It is thus not difficult to figure out that in the near-field we can
possibly beat the Rayleigh limit in order to resolve sub-wavelength structures.
These will correspond to nanostructures with visible light to probe them.
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In our daily lives, we are accustomed to the formation of a shadow when an
object is illuminated with light. From a broad perspective, our experience
with the shadow of an object confirms our basic understanding of light as
having rectilinear propagation. A closer inspection of the boundary between
the illuminated and the shadow region reveals that the transition from one to
another is never abrupt. A more detailed investigation reveals the oscillatory
nature (in space) of the light-shadow boundary, which is a consequence of the
wave nature of the light giving rise to diffraction, studied in Chapter 7. In our
daily lives, we are mostly concerned about the visual appeal of objects much
larger than the wavelength of light used to probe them. We thus consider a
regime of optics to explain our daily experiences with objects around us and
some devices we often use (telescopes, binoculars, camera, etc.). In reality
many of these devices were developed long before a satisfactory understanding
of wave and physical optics.

Geometrical optics deals with the limiting case when λ → 0, and it can
explain most of the optical phenomena in terms of geometrical constructions.
In the first part of this chapter we will focus on some aspects of geometric
optics or ray optics, particularly paraxial rays. We start with the derivation of
the ray trajectories from the first principles, i.e., from the Helmholtz equation.
We then consider the propagation of paraxial rays through typical optical
elements and how this can be described by a 2×2 ABCD matrix formulation.
We apply this formulation to derive criteria for the stable propagation of rays.
In the second part of the chapter we consider optical beams, which are the
solution of the paraxial wave equation. We show how the propagation of the
beam can be described by the same ABCD matrices developed for rays. We
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define a complex beam parameter, the evolution of which can be described by
a linear fractional transform (Möbius transformation), which is well known in
standard complex analysis.

8.1 Eikonal equation and rays

We start from the scalar wave equation for a monochromatic wave leading
to the Helmholtz equation

[∇2 + k2]E(r) = 0, k = k0n(r) = ωn(r)/c. (8.1)

Eq. (8.1) is a generalization for a typical isotropic inhomogeneous medium,
where n could be a function of the space coordinates. We seek a solution of
the form

E(r) = A(r)eik0S(r), (8.2)

where A and S in Eq. (8.2) are assumed to be smooth functions of their argu-
ment. Using Eq. (8.2) we calculate the partial derivatives, say, with respect to
x in order to arrive at the expression of ∇2E and thus for the left-hand side
of Eq. (8.1):

∂E

∂x
=

[

∂A

∂x
+ ik0

∂S
∂x

A

]

eik0S , (8.3)

∂2E

∂2x
=

[

∂2A

∂x2
−Ak20

(

∂S
∂x

)2

+ i

(

2k0
∂S
∂x

∂A

∂x
+Ak0

∂2S
∂x2

)]

eik0S , (8.4)

[

∇2 + k2
]

E =
[(

∇2A+Ak2 −Ak20 |∇S|2
)

+ ik0
(

A∇2S + 2∇A · ∇S
)

]

eik0S . (8.5)

Separating the real and imaginary parts of Eq. (8.5), we have

n2 − |∇S|2 + 1

k20

∇2A

A
= 0, (8.6)

A∇2S + 2∇A · ∇S = 0. (8.7)

The limit of geometrical optics corresponds to λ→ 0 and k0 → ∞. Assuming
vanishingly small wavelength, we rewrite Eq. (8.6):

n2 − |∇S|2 = 0. (8.8)
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FIGURE 8.1: Schematics of ray propagation with the unit vector ŝ along
the direction of propagation.

This is known as the eikonal equation, and S is called the eikonal. The geomet-
rical rays are thus defined as the normals (∇S) to the surface S(r) =constant.
Further, Eq. (8.8) implies that the magnitude of ∇S/n is unity and we can
introduce a unit vector ŝ, normal to the wavefront surface S as

∇S
n

= ŝ. (8.9)

Let us now relate ŝ to a given ray as shown in Fig. 8.1. Consider the point P
on the ray whose position is given by r(s), a function of arc length s measured
along the ray. It is clear from the figure that dr/ds = ŝ; combining this with
Eq. (8.9) we have

∇S = n
dr

ds
. (8.10)

Following Born and Wolf [31] we derive the trajectory of rays as follows.
Differentiating both sides of Eq. (8.10) with respect to s gives us

d

ds

(

n
dr

ds

)

=
d

ds
∇S, (8.11a)

=

(

dr

ds
· ∇
)

∇S, (8.11b)

=

(

1

n
∇S · ∇

)

∇S, (8.11c)

=

(

1

2n
∇(|∇S|2)

)

, (8.11d)

=

(

1

2n
∇(n2)

)

, (8.11e)

= ∇n. (8.11f)
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In writing Eq. (8.11c) and Eq. (8.11e), we have made use of Eq. (8.10) and
Eq. (8.8), respectively. Hence from Eq. (8.11f) we have

d

ds

(

n
dr

ds

)

= ∇n, (8.12)

which governs the propagation of rays.
In life we are quite used to rectilinear propagation of rays. Such rectilinear

propagation takes place in a homogenous medium (n = constant), and the
corresponding trajectory can be derived from Eq. (8.12) by setting ∇n = 0.
We then have

d2r

ds2
= 0, (8.13)

whose solution corresponds to a straight line (with a, b as arbitrary con-
stants):

r = sa+ b. (8.14)

The rectilinear propagation in a homogeneous medium can be shown from a
different angle from Eq. (8.9). In fact, S can be expressed as

S = n(αx + βy + γz), (8.15)

with α, β, γ giving the direction cosines of the ray satisfying α2+β2+γ2 = 1.
Eq. (8.15) represents a plane and the rays are aligned along straight lines
perpendicular to this surface. It is clear that S defined by Eq. (8.15) satisfies

∇S
n

=
(

αî+ βĵ+ γk̂
)

= ŝ (8.16)

and thus represents rectilinear propagation. We now focus our attention on
Eq. (8.7) in order to get insight into the physical interpretation of S in the
context of energy propagation. To that goal we parametrize S and A and treat
them as functions of s. Thus, for example, ∇A · ŝ = ∂A

∂s and Eq. (8.7) can be
written as

A∇2S + 2n
∂A

∂s
= 0. (8.17)

Eq. (8.17) gives the physical basis of this definition of a ray. These would
be the trajectories normal to the wavefront surface (the equiphase surface).
Integration of Eq. (8.17) leads to

A(s) = A0 exp

[

−
∫ s

0

∇2S
2n

ds

]

, (8.18)

where A0 is the amplitude at the initial point s = 0. Eq. (8.18) clearly implies
that in order to get a ray trajectory, it is sufficient to know it at any arbitrary
point on that ray. But geometric optics is inadequate to predict the behavior
of any adjacent ray, though it can give the change in the amplitude along
a separate ray. Thus in geometrical optics, optical fields along one ray are
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independent of the same along another ray. In order to draw a parallel with
the hydrodynamics of incompressible fluid, we multiply Eq. (8.7) by A yielding

A2∇ · (nŝ) + 2A∇A · (nŝ) = 0. (8.19)

In writing Eq. (8.19) we have made use of the relation∇2S = ∇·∇S = ∇·(nŝ).
In compact form Eq. (8.19) reads as

∇ · (nA2ŝ) = ∇ · J = 0, (8.20)

where we introduced the current density J = nA2ŝ. Eq. (8.20) represents the
well-known continuity equation for a stationary incompressible fluid. In our
case J gives the light flux density. It is proportional to the (time)-averaged
Poynting vector 〈S〉 given by [31]

〈S〉 = v〈w〉ŝ, (8.21)

where v, 〈w〉 are velocity and the time-averaged energy density, respectively.
Thus light flows along the narrow light tubes formed by rays.

8.2 Ray propagation through linear optical elements

As discussed earlier ray propagation in a homogeneous isotropic medium
is rectilinear. With respect to a given axis of the optical system, the ray can
be characterized by two parameters, namely, the distance r of the ray from
the optical axis and its slope r′ = dr

dz (see Fig. 8.2).

R(z) =

(

r(z)
r′(z)

)

. (8.22)

According to some literature, instead of the slope r′(z), the reduced slope
defined by

r′(z) = n0(z)
dr(z)

dz
(8.23)

is used with n0(z) as the refractive index of the medium. Throughout this
chapter we use only the ordinary slope and not the reduced slope. Further-
more, we consider only paraxial rays for which the angle θ between the ray and

FIGURE 8.2: Schematics of ray parameters (distance and slope) at z.
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the axis is small enough so that tan θ ∼ sin θ ∼ θ. We now describe a method
to evaluate the changes in R(z) for passage through linear optical elements.
Let the initial ray state vector (before it enters the optical element) be given
by R1 and the ray state after it by R2. Using a 2× 2 matrix to characterize
the optical element/elements, R1 and R2 can be related as

R2 =MR1, M =

(

A B
C D

)

. (8.24)

Matrix M is known as the ABCD matrix for the particular optical ele-
ment/elements. For non-lossy elements, we further have det(M) = AD −
BC = 1. ABCD matrix elements for several linear optical elements are given
in Table 8.1. They are also listed in many other standard textbooks [59, 60].

TABLE 8.1: ABCD matrices for typical optical elements.

Homogeneous medium of length d
and refractive index n

(

1 d
n

0 1

)

Dielectric interface with n1(n2) as
the entry (exit) medium refractive
index

(

1 0
0 n1

n2

)

Spherical mirror of radius R

(

1 0
− 2
R 1

)

Spherical dielectric interface of ra-
dius R(R > 0) with n1(n2) as the
entry (exit) medium refractive in-
dex

(

1 0
−n2−n1

n1R
n1

n2

)

Thin lens of focal length f(f > 0)

(

1 0
− 1
f 1

)
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1 2 3 n-1 n

FIGURE 8.3: Ray propagation through a sequence of optical elements, each
represented by circles.

8.2.1 Sequence of optical elements

Consider the sequence of optical elements arranged one after the other
as shown in Fig. 8.3. The ABCD matrix for this system can be evaluated as
follows. The relation between the ray states before and after n optical elements
is given by

Rn+1 =MnRn =MnMn−1Rn−1 =MtotalR0, (8.25)

where Mtotal is the ABCD matrix for the entire system

Mtotal =MnMn−1 · · ·M2M1. (8.26)

Proper attention is to be paid to the order in which the product of matrices
is taken in Eq. (8.26), as the matrix product is not commutative in general.
Note also that det(Mtotal) = 1 since the product of unimodular matrices is
again unimodular.

8.2.2 Propagation in a periodic system: An eigenvalue
problem

Consider a periodic system of linear optical elements, each represented by
its own ABCD matrix. We pose a general eigenvalue problem to find the
stability of the ray propagation. Ray propagation is understood to be stable
if r is finite for any z along the axis. On the contrary, diverging r implies an
unstable system where the ray is no longer confined near the axis. Let the
ABCD matrix for one period be denoted by M . We show below that the
eigenvalues of M determine the character of ray propagation and whether the
ray is confined near the z-axis. The eigenvalue problem can be stated as [59]

MR = λR, (8.27)

where the eigenvalue λ satisfies the algebraic equation

λ2 − 2mλ+AD −BC = 0, (8.28)

with m = A+D
2 . As our system is loss-free, we have AD − BC = 1. Solving

for λ yields

λ± = m±
√

m2 − 1. (8.29)

Let R± represent the eigenvectors corresponding to λ±, which are orthogonal
(for distinct roots). Any ray R0 at the input and Rn after passage through n
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periods can be written as the linear combination of R±:

R0 = c+R+ + c−R−, (8.30)

Rn = c+λ
n
+R+ + c−λ

n
−R−. (8.31)

Eq. (8.31) is obtained by the n-fold application of M on Eq. (8.30). It is now
clear why the evolution of the ray will depend on the nature of λ± (as λn±
signifies converging or diverging solutions as n → ∞). Based on the value of
m, two cases are possible, namely, m2 ≥ 1, and m2 < 1 (see Eq. (8.29)). We
now consider these two cases separately and draw necessary conclusions.

• Case (a)

m2 ≤ 1, or − 1 ≤
(

A+D

2

)

≤ 1. (8.32)

We replace m by cos θ since |m| ≤ 1. Eigenvalues λ± now take the form

λ± = cos θ ± i
√

1− cos2 θ = e±iθ. (8.33)

The eigenvector Rn in Eq. (8.31) can be written as

Rn = c+e
inθR+ + c−e

−inθR−, (8.34a)

= c+ (cosnθ + i sinnθ)R+ + c− (cosnθ − i sinnθ)R−, (8.34b)

= a0 cosnθ + b0 sinnθ, (8.34c)

with a0 = c+R++c−R− and b0 = i(c+R+−c−R−). It can be seen from
Eq. (8.34c) that the ray state oscillates about the axis and, as mentioned
earlier, this kind of system is called a geometrically stable system.

• Case (b)

|m| > 1,

∣

∣

∣

∣

A+D

2

∣

∣

∣

∣

> 1. (8.35)

As before we parametrize m by cosh θ (θ 6= 0). Eq. (8.29) can be rewrit-
ten as

λ± = cosh θ ±
√

cosh2 θ − 1 = e±θ. (8.36)

Let the eigenvectors corresponding to λ± be R̃±. The ray state after n
periods R̃n, in terms of the new basis vectors, can be written as

R̃n = c+e
nθR̃+ + c−e

−nθR̃−, (8.37a)

= c+ (coshnθ + sinhnθ) R̃+ + c− (coshnθ − sinhnθ) R̃−, (8.37b)

= ã0 coshnθ + b̃0 sinhnθ, (8.37c)

with ã0 = c+R̃++ c−R̃− and b̃0 = (c+R̃+− c−R̃−). The ray state after
traversing n periods grows exponentially as given by Eq. (8.37c). As a
consequence such systems are referred to as unstable systems.
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(a)

(b)

d

d d z

R2R1

f2f1

FIGURE 8.4: Schematics of (a) a spherical mirror cavity and (b) its equiv-
alent lens waveguide.

We now present an example to understand the stability of rays in a res-
onator. Consider the system shown in Fig. 8.4(a) consisting of two mirrors
(having radii R1 and R2) separated by a distance d. This system is periodic
since the rays in the cavity can retrace their path, being bounced by the mir-
rors repeatedly. We evaluate the conditions under which the ray propagation
is stable. Noting the equivalence of a thin lens and a spherical mirror, the
system can be modeled by a periodic arrangement of lenses (also known as a
lens waveguide) as shown in Fig. 8.4(b) with the focal lengths f1 = R1/2 and
f2 = R2/2. The ABCD matrix for one period (see Fig. 8.4(b)) is given by

M =

(

1 d
0 1

)(

1 0
− 2
R2

1

)(

1 d
0 1

)(

1 0
− 2
R1

1

)

, (8.38)

=





(

1− 2d
R1

)(

1− 2d
R2

)

− 2d
R1

d
(

2− 2d
R2

)

− 2
R2

(

1− 2d
R1

)

− 2
R1

1− 2d
R2



 . (8.39)

In writing Eq. (8.39) we have made use of Eq. (8.26) and Table (8.1). For the
half-trace of the ABCD matrix we have

A+D

2
= 2

(

1− d

R1

)(

1− d

R2

)

− 1, (8.40)

and using Eq. (8.32) we find that the resonator will be stable if

0 ≤
(

1− d

R1

)(

1− d

R2

)

≤ 1 or (8.41)

0 ≤ g1g2 ≤ 1, (8.42)

where g1,2 = (1 − d/R1,2).
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8.3 Beam characteristics

In this section we focus on optical beams in a homogeneous medium and
then consider propagation of such beams through different optical elements.
Since a beam is localized near an axis, we make the paraxial wave approx-
imation to obtain one particular solution of the problem in the form of a
fundamental Gaussian beam. Note that the paraxial wave equation allows
for higher-order Gaussian beam modes (Hermite-Gaussian or the Lagurre-
Gaussian) depending on the spatial symmetry of the problem.

8.3.1 Paraxial wave equation and its solutions

Assuming predominant propagation along the z-axis, we use the ansatz

E(x, y, z, t) = U(x, y, z)ei(kz−ωt) + c.c, (8.43)

where U(x, y, z) is assumed to be a slowly varying function of z, since we
filtered out the quickly oscillating part (eikz). Substituting this ansatz in the
wave equation leads to

∂2U
∂x2

+
∂2U
∂y2

+
∂2U
∂z2

+ 2ik
∂U
∂z

= 0. (8.44)

SVEA (see Section 1.5.4) implies

∣

∣

∣

∣

∂2U
∂z2

∣

∣

∣

∣

≪
∣

∣

∣

∣

k
∂U
∂z

∣

∣

∣

∣

≪
∣

∣k2U
∣

∣ (8.45)

and simplifies Eq. (8.44) as

∆⊥U + 2ik
∂U
∂z

= 0, (8.46)

where ∆⊥ denotes the transverse Laplacian and Eq. (8.46) is known as the
paraxial wave equation. We seek a solution of the form

U = A(z) exp

(

ik
x2 + y2

2q(z)

)

. (8.47)

Substituting Eq. (8.47) in Eq. (8.46), we have

A(z)k2

q2(z)

(

dq

dz
− 1

)

(x2 + y2) + 2ik

(

A(z)

q(z)
+
dA(z)

dz

)

= 0. (8.48)
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Separating the real and imaginary parts and demanding a nontrivial solution,
we arrive at the following set of coupled equations:

dq(z)

dz
= 1, (8.49)

dA(z)

dz
= −A(z)

q(z)
, (8.50)

whose solutions are

q(z) = q0 + z, (8.51)

A(z)

A(0)
=

q0
q(z)

. (8.52)

In writing Eqs. (8.51) and (8.52), we assumed that at z = 0, A(z) = A0 and
q(z) = q0. The complex function q can be related to the relevant physical
beam parameters as

1

q(z)
=

1

R(z)
+ i

λ

πw2(z)
, (8.53)

where R(z), w(z) are the real functions of z. The physical meaning of R and w
will be transparent after we derive the expression of the fundamental Gaussian
beam. We measure z from z = 0 where R → ∞. We show below that this
amounts to saying that the beam wavefront is planar at z = 0. Similarly we
have also assumed that w(z) at z = 0 is given by w0. We can introduce the
so-called Rayleigh range zR as

zR = iq0 =
πw2

0

λ
. (8.54)

With this definition we find that q(z) can be written as

1

q(z)
=

1

z − izR
=
z + izR
z2 + z2R

. (8.55)

Now comparing the real and imaginary parts of Eq. (8.53) and Eq. (8.55), we
find that

R(z) = z

[

1 +
(zR
z

)2
]

, (8.56)

w2(z) = w2
0

[

1 +

(

z

zR

)2
]

. (8.57)

Similarly, we also find that

A(z)

A(0)
=

q0
q0 + z

=
1− i(z/zR)

1 + (z/zR)2
, (8.58)
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which can be rewritten as

A(z)

A(0)
=

√

1

1 + (z/zR)2
eiψ =

w0

w(z)
eiψ, (8.59)

where

ψ = − tan−1

(

z

zR

)

(8.60)

is known as the Guoy phase. Substituting Eqs. (8.56)–(8.59) in Eq. (8.47), we
get

U(x, y, z) = U0
w0

w(z)
eiψ
[

exp

(

ik
x2 + y2

2R(z)

)]

exp

(

−x
2 + y2

w2(z)

)

, (8.61)

where U0 is the normalization factor. This is known as the fundamental mode
and labeled by TEM00. Eqs. (8.56) and (8.57) in Eq. (8.61) provide a clear
physical meaning to R(z) and w(z) as the radius of curvature of the phase
front and the beam spot size w(z) at z, with w(0) = w0 being the beam waist.
In fact, the knowledge of the complex beam parameter q(z) at any z makes it
possible to recognize all the physical parameters (R,w, ψ) of the fundamental
Gaussian beam. As mentioned earlier there are infinite solutions to paraxial
equations. When solved in Cartesian coordinates, any general TEMmn is given
by [59, 60]

Umn(x, y, z) =
(

1

π2n+m−1n!m!

)1/2
w0

w(z)
×
[

Hm

(√
2x

w(z)

)

Hn

(√
2y

w(z)

)

exp

(

ik
x2 + y2

2R(z)
+ i(n+m+ 1)ψ(z)

)]

exp

(

−x
2 + y2

w2(z)

)

,

(8.62)

where Hn,m are the Hermite polynomials. Degeneracy of the modes with the
same m + n value is clear from Eq. (8.62). In the cylindrical basis we have
the Laguerre-Gaussian modes, which can have vortex character with angular
momentum (see Chapter 12).

8.3.2 ABCD matrix formulation for fundamental Gaussian
beam

The passage of a beam through optical elements can again be derived
using the 2× 2 matrix formulation, as with rays. We now propagate the com-
plex beam parameter. The input and output beam parameters (q2 and q1,
respectively) are related by the following linear fractional transform:

q2 =
Aq1 +B

Cq1 +D
, (8.63)
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and for a sequence of optical elements, we must take the matrix product in
reverse order, as in Eq. (8.26). The proof of Eq. (8.63) can be found in Ref. [59];
we do not include it here.

8.3.3 Stability of beam propagation

In the case of rays, stability implied that rays were confined to the axis.
The corresponding eigenvalue problem in Eq. (8.27) had complex eigenvalues
assuring oscillations about the axis. In the case of beams, a similar picture
holds, albeit with necessary changes. For a stable cavity, the beam (to be
precise, the complex beam parameter) has to replicate itself after each period,
requiring the following equation to be valid:

q =
Aq +B

Cq +D
. (8.64)

Eq. (8.64) represents a quadratic equation for q. It is easier to deal with 1/q,
whose roots are given by

1

q
=
D −A

2B
± 1

B

√

(

A+D

2

)2

− 1. (8.65)

In order to qualify as a Gaussian beam with a finite spot size, 1/q must be
complex, requiring

m2 =

(

A+D

2

)2

≤ 1, (8.66)

leading to
1

q
=
D −A

2B
± i

|B|
√

1−m2. (8.67)

We thus arrive at the same stability condition for beams as for rays (compare
with Eq. (8.32)). Eq. (8.67) easily leads to the stable beam parameters R and
w as per Eq. (8.53).
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Often in optics we must deal with layered media when the optical properties
change only in one specific direction (say, along the z-axis), while in any plane
transverse to this direction, the optical properties are invariant. Such media
with dielectric and magnetic responses given by ε(z) and µ(z) as functions
of only z are also referred to as stratified media. There are many examples
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of such media. The most useful one refers to the optical interference coatings
that are essential for most optical instruments. Reflection and transmission
through these structures can be handled in terms of simple 2 × 2 matrices
when the constituent layers are homogeneous and isotropic. In the case of an
anisotropic layered medium, we can develop a 4 × 4 matrix formulation for
uniaxial materials [61, 62]. In this chapter we deal with isotropic homogeneous
layers and develop the characteristics matrix formalism to obtain the refection
and transmission coefficients (see also Ref. [31]). We discuss how the dispersion
in such structures can be engineered to lead to slow and fast light [7]. We apply
the technique to investigate the modes of a structure. We probe the effects
of finite temporal width of a pulse leading to the Wigner delay [63]. The
space equivalent of Wigner delay, also known as the Goos-Hänchen shift [64],
for a spatially finite beam is then discussed. Finally, we show how someone
using such structures can realize perfect transmission and coherent perfect
absorption. We will define all the necessary notions and concepts as we go
along.

9.1 Characteristics matrix approach

Characteristic matrices relate the tangential field components at two inter-
faces of the medium. We consider a stratified medium consisting of isotropic
homogeneous media, as shown in Fig. 9.1. We obtain the matrix for a partic-
ular j-th layer with width dj occupying the space between planes z = zj and
z = zj+1. Let the material properties, namely, the relative dielectric permittiv-
ity εrj and permeability µrj , be given. Since our focus is mostly on plasmonic
phenomena, we present results for the TM - or p-polarized monochromatic
plane waves (with only nonvanishing components Hy, Ex and Ez), while the
case for the TE- or s-polarization can be worked out in an analogous manner.

x

y

z

ε1 ε2 εj εN

µ1 µ2 µj µN

d1 d2 dj dN

θf

θi

εi

µi

εf

µf

Ar

Ain

At

FIGURE 9.1: Schematic of a layered structure.
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The medium stratification leads to forward and backward propagating waves
and thus the magnetic field Hy can be written as a superposition of forward
and backward waves:

Hjy = [Aj+e
ikjz(z−zj) +Aj−e

−ikjz(z−zj)]eikxxe−iωt, (9.1)

while the expression for the corresponding tangential component of the electric
field Ejx from Maxwell’s equation (see Eq. (2.28)) is given by

√
ε0Ejx = [pjz

√
µ0(Aj+e

ikjz(z−zj) −Aj−e
−ikjz(z−zj))]eikxxe−iωt. (9.2)

In Eqs. (9.1) and (9.2), Aj± are the forward and backward wave amplitudes,
while kjz and pjz are expressed through the x-component of the propagation
constant kx:

kjz =
√

k20n
2
j − k2x, kx = k0ni sin θi, pjz =

kjz
k0εrj

, (9.3)

where k0 = ω/c, nj =
√
εrjµrj and ni =

√
εriµri (medium of incidence).

In order to ensure causality, the square root computed in Eq. (9.3) is chosen
such that the imaginary part of the z component of the wave vector is positive.
Writing Eqs. (9.1) and (9.2) in terms of a matrix,

(√
µ0Hjy√
ǫ0Ejx

)

=

(

eikjzz e−ikjzz

pjze
ikjzz −pjze−ikjzz

)(√
µ0Aj+√
µ0Aj−

)

, (9.4)

and relating the tangential components of the fields at the left and right faces
of the j-th layer, we can relate the corresponding tangential field components
by the matrix relation:

(

Hy

Ex

)

j

=Mj

(

Hy

Ex

)

j+1

, (9.5)

where we have used the notation

Ējx =
√
ǫ0Ejx, H̄jy =

√
µ0Hjy. (9.6)

Henceforth, we drop the overbars in fields like in Eq. (9.5). The subscript j
in Eq. 9.5 refers to the interface z = zj and the characteristic matrix Mj is
given by [31]

Mj =

(

cos(kjzdj) −(i/pjz) sin(kjzdj)
−ipjz sin(kjzdj) cos(kjzdj)

)

. (9.7)

For incidence of TE-polarized (s-polarized) light, the characteristics matrix
remains the same except that now pjz = kjz/(k0µrj). For a layered medium
with N layers, as in Fig. 9.1, the total characteristic matrix is given by

Mtotal =M1M2....MN . (9.8)
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Using the total characteristic matrix given by Eq. (9.8), we can relate the
tangential components of electric and magnetic fields at the extreme ends of
the layered structure as

(

Hy

Ex

)

z=0

=Mtotal

(

Hy

Ex

)

z=dN

. (9.9)

Later, the characteristics matrix was generalized to Kerr nonlinear stratified
media and applied to explore various nonlinear optical effects and photon
localization in nonlinear systems [65].

9.2 Amplitude reflection, transmission coefficients and
dispersion relation

In this section we present the results for the reflection and transmission
features of a layered structure (see Fig. 9.1). Let the structure be illuminated
by a TM -polarized plane monochromatic wave at an angle θi. Then from
Eqs. (9.1) and (9.2) we can write the magnetic and electric fields at z = 0 (at
the left-most interface) as

(

Hy

Ex

)

z=0

=

(

1 1
piz −piz

)(√
µ0Ain√
µ0Ar

)

, (9.10)

where piz = (
√

k20n
2
i − k2x)/k0εri is the normalized z component of the wave

vector.Ain and Ar are the incident and the reflected amplitudes in the medium
of incidence, respectively. We can also write the analogous expression for the
fields in the final medium as

(

Hy

Ex

)

z=dN

=

(

1
pfz

)√
µ0At, (9.11)

with pfz = (
√

k20n
2
f − k2x)/k0εrf as the scaled z component of the wave vector

and At is the normalized transmitted amplitude in the final medium. Substi-
tuting Eqs. (9.10) and (9.11) into Eq. (9.9), we get

(

1 1
pzi −pzi

)(

Ain
Ar

)

=Mtotal

(

1
pzf

)

At. (9.12)

Calculation of the amplitude reflection r and transmission t coefficients is then
straightforward:

r =
Ar
Ain

=
(m11 +m12pf )pi − (m21 +m22pf )

(m11 +m12pf )pi + (m21 +m22pf )
, (9.13)

t =
At
Ain

=
2pi

(m11 +m12pf )pi + (m21 +m22pf )
, (9.14)
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where mij (i, j = 1, 2) are the elements of the total characteristic matrix of
the structure (see Eq. (9.7)), and we have suppressed z from the subscripts of
p. This result is also valid for the TE-polarized light with suitable expression
for pjz . The intensity reflection (R) and transmission (T ) of the structure are
given by

R = |r|2 , and T =
pf
pi

|t|2 , (9.15)

respectively, and the factor pf/pi in T comes from the conservation of light
flux across the interface. Note that a common denominator figures in the ex-
pressions of both the reflection and transmission coefficients (Eqs. (9.13) and
(9.14)). The zeros of the denominator bear the information about the char-
acteristic frequencies (eigenfrequencies) of the system. Physically, this corre-
sponds to the situation when with no input, finite excitations can be sustained
in the system. Such specific disturbances with well-defined spatial profiles are
referred to as the modes of the structure. The corresponding equation (also
known as the dispersion relation) can be written as [65]

D = (m11 +m12pf)pi + (m21 +m22pf ) = 0. (9.16)

In the context of waveguiding and plasmonic structures, similar dispersion
relation plays a very important role since it carries all the information about
the modes of the structure. For given system parameters, such equations allow
for complex solutions for the eigenfrequencies. The real part of the frequency
gives the location of the modes, and the imaginary part defines the lifetime of
the specific modes. We can thus define the corresponding quality factors (Q-
factor). Usually the excitation of high-Qmodes are accompanied by large local
field enhancements and they have been exploited for various low threshold op-
tical processes. In most of the cases, Eq. (9.16) is transcendental in nature and
it cannot be solved analytically. We have to revert to a graphical or numerical
scheme to obtain the distinct branches for the modes. A detailed analysis of
the dispersion equation for generic cases will be presented in Chapter 10.

9.3 Periodic media with discrete and continuous
variation of refractive index

Periodic structures occupy a very important place in optics because of
their various possible applications. For example, interference coatings (anti-
reflective) are used in antiglare screens and in optical instrumentation to in-
crease the light throughput. We may distinguish two broad classes of systems,
one with discrete variation of the refractive index, like in the layered me-
dia discussed above. The other refers to a continuous variation of the refrac-
tive index—for example, a sinusoidal variation along the axis of the optical
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system. In the first case, in each layer we have forward and backward propagat-
ing waves resulting from multiple reflections from each interface, while in the
medium with harmonic variation, local inhomogeneity is responsible for the
generation of the backward waves. Thus such systems are often referred to as
having a distributed feedback. Note that in an infinite homogeneous medium,
the forward and backward waves are completely decoupled. The inhomogene-
ity leads to the coupling in both the discrete and the continuous cases. In
the case of weak coupling, we can develop a perturbative approach, which is
known in the literature as the coupled mode theory, where we retain only the
lowest order of scattered waves. More about such systems will be discussed
in dealing with the distributed feedback (DFB) systems. However, the case
of the discrete variation (layered medium) can be dealt with exactly. In both
cases we show the emergence of the band gaps. We calculate the reflection
and transmission coefficients for a finite-length periodic medium assuming all
the materials to be non-magnetic and non-lossy. The changes for magnetic
materials or finite losses can be implemented in a straightforward way.

9.3.1 Discrete variation of refractive index

Consider a periodic layered system like in Fig. 9.1. Let each period consist
of two layers with refractive indices na, nb and widths da and db, respectively.
For simplicity we restrict ourselves to the case of wave propagation along
the z-axis of the periodic system. Denoting the period of the structure by Λ
(Λ = da + db) and imposing the periodic boundary conditions, we can relate
the output after one period in terms of the input:

(eiµΛI)

(

Hy

Ex

)

z=0

=Mab

(

Hy

Ex

)

z=Λ

, (9.17)

with
Mab =MaMb. (9.18)

The matrix Ma (Mb) denotes the characteristic matrix for an ‘a’ (‘b’) type
layer. In writing Eq. (9.17) we made use of the Floquet-Bloch theorem. The
fields at the output and input faces are the same except for an overall phase
accumulation given by the Bloch wave vector µ (see Ref. [61]). Eq. (9.17)
represents a homogeneous system and allows for nontrivial solutions if and
only if

∣

∣

∣

∣

A− eiµΛ B
C D − eiµΛ

∣

∣

∣

∣

= 0, (9.19)
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where A, B, C and D are the elements of the characteristic matrix for one
period Mab:

A =cos ζa cos ζb −
pb
pa

sin ζa sin ζb, (9.20)

B =−
(

i

pa
sin ζb cos ζa +

i

pb
sin ζa cos ζb

)

, (9.21)

C =− (ipa sin ζa cos ζb + ipb sin ζb cos ζa), (9.22)

D =cos ζa cos ζb −
pa
pb

sin ζa sin ζb, (9.23)

with ζa/k0 = nada (ζb/k0 = kbdb) as the optical width and pa = na (pb = nb),
respectively. The approach and notations we follow here are analogous to the
ABCD matrix approach for a lens waveguide system [61]. Eq. (9.19) can be
rewritten as

ei2µΛ − (A+D)eiµΛ +AD −BC = 0. (9.24)

We assume all the layers to be lossless, implying that the characteristic matrix
of each layer and also their product matrices are unimodular (i.e., det(Mi) = 1,
with i = a, b, ab). Based on this assumption, Eq. (9.24) can be reduced to

ei2µΛ − (A+D)eiµΛ + 1 = 0, (9.25)

where we have set AD −BC = 1. The roots of Eq. (9.25) are given by

e±iµΛ =
A+D

2
±

√

(

A+D

2

)2

− 1. (9.26)

The sum of these two roots gives us

eiµΛ + e−iµΛ

2
= cosµΛ =

A+D

2
. (9.27)

Making use of Eqs. (9.20), (9.23) and (9.27), we arrive at the dispersion rela-
tion for the periodic structure as

cosµΛ = cos ζa cos ζb −
1

2

(

nb
na

+
na
nb

)

sin ζa sin ζb. (9.28)

We choose the optical pathlengths of the two layers to be same so that ζa =
ζb = ζ and Eq. (9.28) simplifies to

cosµΛ = 1− (na + nb)
2

2nanb
sin2 ζ. (9.29)

The character of wave propagation in the periodic medium is governed by the
character of the Bloch wave vector µ. The inequality | cosµΛ| ≤ 1 corresponds
to real µ, and we have a propagating solution in the structure. In contrast
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FIGURE 9.2: Right-hand side of Eq. (9.29) as a function of ζ for two different
values of C, namely, C = 1.2 (dashed) and C = 1.8 (solid). The dash-dotted
lines represent the maximum and minimum of cosµΛ for real arguments.

| cosµΛ| > 1 would mean a complex µ and corresponding damped waves. We
thus have propagating solutions if

−1 ≤ 1− (na + nb)
2

2nanb
sin2 ζ ≤ 1, (9.30)

or if

0 ≤ (C + 1)2

4C
sin2 ζ ≤ 1, (9.31)

where C = na/nb is the refractive index contrast between the two constituent
media. We assume that na > nb so that C > 1. The band gap occurs in
the region where the inequality Eq. (9.31) is violated. The stop gap for two
values of C is shown in Fig. 9.2, where we have plotted the right-hand side of
Eq. (9.29) as a function of ζ. As can be seen from Fig. (9.2), the stop gap is
centered at ζ = (2m+1)π/2 and its width is proportional to the contrast. With
increasing contrast the band gap broadens. This can be easily seen from the
following estimate. For low contrast (C ≈ 1) the range of ζ (in the principal
domain) corresponding to a stop gap is given by

π

2
− ∆ζ

2
< ζ <

π

2
+

∆ζ

2
, (9.32)

where ∆ζ is the width of the band gap. It can be shown that ∆ζ varies as

∆ζ =
δC

C
, (9.33)

with δC = |C − 1|.

© 2016 Taylor & Francis Group, LLC

  



Optical waves in stratified media 179

9.3.2 Continuous variation of refractive index: DFB
structures

Consider the continuous periodic variation of refractive index along the
direction of propagation z as

n(z) = n0(1 + n1 cosKz), with K = 2π/Λ, (9.34)

where n0 is the background refractive index and n1 is the modulation ampli-
tude while Λ denotes the period. We consider the medium to be nonmagnetic
and lossless. Further, the periodic variation is assumed to be a small pertur-
bation to the background (i.e., n1 ≪ 1). The dielectric function can then be
expressed as

ǫ(z) = n2
0 + 2n0n1 cosKz, (9.35)

where we have ignored the term containing n2
1. The solution to the Helmholtz

equation can be written as a superposition of forward and backward propa-
gating waves given by

E(z) = A+(z)e
ikz +A−(z)e

−ikz , k = (ω/c)n0, (9.36)

with A+(z) (A−(z)) as a forward-propagating (backward-propagating) slowly
varying wave amplitude. Note that in absence of modulation both these am-
plitudes are constants, and the inhomogeneity due to modulation scatters the
forward waves into the backward ones. In principle all the scattering events
will lead to the spatial harmonics ks:

ks = k +mK, m = 0,±1,±2 · · · , (9.37)

with m being the order of the spatial harmonic. These waves exchange en-
ergy among themselves as they propagate through the medium. However, for
small modulation, significant contribution comes from only the lower-order
harmonics. In the spirit of coupled mode theory, we retain only the lowest-
order spatial harmonics. Substituting Eq. (9.36) in the Helmholtz equation,
we obtain

[

d2A+

dz2
eikz +

d2A−
dz2

e−ikz
]

+
n0

n1

[

A−e
ikze−i(Kz+2kz) +A+e

−ikzei(Kz+2kz)
]

+

[

2ik
∂A+

∂z
+
n0

n1
k2A−e

i(Kz−2kz)

]

eikz

−
[

2ik
∂A−
∂z

− n0

n1
k2A+e

−i(Kz−2kz)

]

e−ikz = 0. (9.38)

The slowly varying envelopes A± satisfy the conditions |d
2A±

dz2 |≪k|dA±

dz |≪
k2|A±|, and we can neglect the terms in the first square brackets in Eq. (9.38).
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The scattering event that is of interest to us corresponds to 2k = K, and we
can rule out the other higher-order events in the second square brackets. Col-
lecting the coefficients of eikz and e−ikz in Eq. (9.38), we arrive at the coupled
mode equations

dA+

dz
=iβA−e

−iδz , (9.39)

dA−
dz

=− iβA+e
iδz , (9.40)

where
β =

ωn1

2c
, δ = 2

ω

c
n0 −K. (9.41)

Under the transformation
(

A+(z)
A−(z)

)

= V(z)

(

Ā+(z)
Ā−(z)

)

, where V(z) =

(

e−iδz/2 0

0 eiδz/2

)

,

(9.42)
Eqs. (9.39) and (9.40) can be written in terms of transformed variables as

d

dz

(

Ā+(z)
Ā−(z)

)

= iµM

(

Ā+(z)
Ā−(z)

)

, (9.43)

where

M =
1

µ

(

δ/2 β
−β −δ/2

)

, µ2 = −β2 + δ2/4. (9.44)

The solution to Eq. (9.43) is given by

(

Ā+(z)
Ā−(z)

)

= exp (iµMz)

(

Ā+(0)
Ā−(0)

)

. (9.45)

It is worth noting that if −β2 + δ2/4 < 0 in Eq. (9.44), then µ will be purely
imaginary (taking only the positive root in order to ensure causality); the
waves inside the medium will be evanescent. This means that the forward
propagating wave becomes evanescent by giving its energy to the backward
propagating wave, resulting in reflection. The interval in which µ becomes
imaginary corresponds to the the optical stopgap. For clarity we have plotted
real and imaginary parts of µ in Fig. 9.3. It is clear that near the band edge
there is considerable dispersion, while inside the gap the Bloch vector becomes
purely imaginary. Note also that the gap width is proportional to the coupling
strength β (∆δ = 4β). Noting that M2 = I (I = identity matrix), we have

exp(iµMz) = I

(

1− (µz)2

2!
+

(µz)4

4!
− · · ·

)

+ iM

(

µz − (µz)3

3!
+

(µz)5

5!
− · · ·

)

,

= I cos(µz) + iM sin(µz). (9.46)
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FIGURE 9.3: Re(µ) and Im(µ) as a function of δ/2 for β = 0.25.

Rewriting the solution (Eq. (9.45)) in terms of A±(z), we have

(

A+(z)
A−(z)

)

= V(z) exp(iµMz)V−1(0)

(

A+(0)
A−(0)

)

= U(z)

(

A+(0)
A−(0)

)

. (9.47)

Matrix U(z) gives the spatial evolution of the amplitudes inside the periodic
medium. The elements of matrix U(L) are given by

A =

(

cos(µL) +
iδ

2µ
sin(µL)

)

e−iδL/2, (9.48)

B =
iβ

µ
sin(µL)e−iδL/2, (9.49)

C =
−iβ
µ

sin(µL)eiδL/2, (9.50)

D =

(

cos(µL) +
iδ

2µ
sin(µL)

)

eiδL/2. (9.51)

The ABCD matrix represents the same spirit as in the case of a lens guide or
a discrete periodic structure. Like in the earlier cases, we have AD−BC = 1
for a lossless system. For a finite segment of such a medium, we can define the
amplitude reflection coefficient as

r =
A−(0)

A+(0)
= −C

D
(9.52)
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and the amplitude transmission coefficient as

t =
A+(L)

A+(0)
=
AD − BC

D
=

1

D
. (9.53)

Thus, the expressions for reflection and transmission turn out to be

r =
iβ sinh(sL)

s cosh(sL)− i δ2 sinh(sL)
, (9.54)

t =
se−iδL/2

s cosh(sL)− i δ2 sinh(sL)
. (9.55)

In Eqs. (9.54) and (9.55) we replaced µ by is in order to make contact with
known expressions in the literature [66]. The magnitude of the amplitude
reflection coefficient r attains its maximum value at δ = 0, implying K =
2k; this is exactly Bragg’s condition for reflection from the periodic medium.
Considering the ambient media to be same and homogeneous, the intensity
reflection and transmission coefficients are given by

R = |r|2, T = |t|2. (9.56)

9.4 Quasi-periodic media and self-similarity

A quasi-periodic system is in between periodic and a random system. There
has been a great deal of interest in quasi-periodic (QP) media in the context
of weak photon localization. We won’t deal with photon localization as such
since that goes beyond the scope of this book. Interested readers can find
the details in Refs. [67, 68]. Nevertheless, we present results for reflection
and transmission for the QP system. Though there are many examples of
QP systems, we pick a Fibonacci multilayer as our system. Any (j + 1)-th
generation (Sj+1) of a Fibonacci system can be grown from two previous
generations starting from two basic ones, say ‘A’ and ‘B,’ as follows:

S0 =A, S1 = B, (9.57)

Sj+1 =Sj−1Sj . (9.58)

Thus, S2 = AB, S3 = BAB, S4 = ABBAB and so on. The number of
elements in each generation Sj+1 is given by the Fibonacci number Fj+1,
which is obtained iteratively starting from F0 = 1 and F1 = 1 by the relation

Fj+1 = Fj−1 + Fj . (9.59)

Thus, S9 and S12 would have 55 and 233 layers, respectively. An optical Fi-
bonacci multilayer can be grown by stacking two different dielectric slabs
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FIGURE 9.4: Transmission through the Fibonacci structure for (a) and (c)
S9 (with 55 layers) and (b) and (d) S12 (with 233 layers) as a function of ζ/π
with na = 1.5, nb = 2.5.

arranged in a Fibonacci sequence. The two slabs can be characterized by their
refractive indices (na and nb) and widths (da and db). For simplicity we assume
that both the slab materials are nonmagnetic and have the same optical width
so that (k0nada = k0nbdb = ζ). This structure is assumed to be surrounded
by a material of refractive index nf = ni = 2.5. In order to evaluate the reflec-
tion and transmission from such structures, we make use of the characteristic
matrix method developed in Section 9.1. The transmission as a function of
ζ is shown in Fig. 9.4 for both S9 and S12. The top panels in Fig. 9.4 show
the transmission properties of two generations, namely, S9 and S12, whereas
the bottom panel shows the magnified versions corresponding to them. It is
clear from Fig. 9.4(b) and Fig. 9.4(d) that the transmission properties look
very similar, and this is referred to as self-similarity. Interested readers can
find the rigorous mathematical treatment of the multifractal nature and self-
similarity aspects in Ref. [67]. The quasi-periodicity has been investigated in
a variety of other structures in the past.

9.5 Analogy between quantum and optical systems

In this section we draw an analogy between optical and quantum systems
in the context of one-dimensional scattering. The analogy has been known for
a very long time (see, for example, [69, 63]) and holds since both the quantum
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and the optical systems both share common physical ground. Indeed, in view
of the inherent wave nature and the deciding role of interference phenomena,
both quantum mechanics and optics share a lot of features in common. For
example, we encounter propagating and evanescent waves in both areas. In
fact, evanescent waves and tunneling have been some of the central issues since
they are encountered in the passage of a quantum particle through a barrier
(Fig. 9.5(a)). The same phenomenon is there in the tiny air wedge between
two prisms in a frustrated total internal reflection geometry (Fig. 9.5b). This
analogy has been explored in detail by Kay and Moses in their quest for
reflectionless potentials [69]. One of the very first experiments on classical
tunneling using microwaves was carried out by an Indian, Sir Jagdish Chandra
Bose, more than a century ago [70, 71]. In what follows, we probe this analogy
in one-dimensional systems. We start with the time-independent Schrödinger
equation given by [72, 73]

d2ψ

dz2
+

2m

~2
(E − V )ψ = 0, (9.60)

where ψ is the wave function of the electron, m is mass of the electron, V
is the potential energy and E is the total energy. On the other hand, in an
inhomogeneous, isotropic medium under scalar approximation, the Helmholtz
equation is given as

d2E
dz2

+
n2ω2

c2
E = 0, (9.61)

where E represents scalar amplitude of the electric field and n is the refrac-
tive index of the medium. This analogy is complete if we make the following
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FIGURE 9.5: Analogy between electron and photon tunneling. (a) Electron
tunneling through a potential barrier with energy less than the barrier height.
(b) Double prism system with light incident at angle θ > θc = sin−1(1/n).
(c) Resonant tunneling and (d) its equivalent optical system.
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correspondence:

n⇔ [2m (E − V )]
1
2 c

~ω
. (9.62)

A more detailed scenario for oblique incidence, which can accommodate
evanescent waves, will be presented later in the context of reflectionless po-
tentials of Kay and Moses in Section 9.6. The correspondence of Eq. (9.62)
allows us to extend the results developed for quantum systems to optical ones
and vice versa. Advantages following from this parallel are enormous, since
experiments difficult in solid state systems (involving, for example, electron
tunneling) can be performed in a much simpler equivalent optical setup. Note
also that the optical experiment will be less error-prone since the photons are
noninteracting while electrons are not due to Coulomb interaction. It must
also be mentioned that there are considerable difficulties in obtaining electron
beams with precise control over the flux density in space and time. The typ-
ical transit times in the tunneling of an electron wave packet is of the order
of 10−15–10−18 sec, which requires sophisticated technology to measure such
short time scales [74]. Such problems do not exist in optics since the advent
of modern lasers and precision detectors. Two broad classes of systems can be
identified for studying tunneling phenomena in optical systems, namely, in the
absence and in the presence of resonant modes. Both these classes are referred
to as the frustrated total internal reflection (FTIR) geometries in optics. The
simplest of the first category (see Fig. 9.5(b)) has been discussed above. The
same system will be probed later for the saturation of phases leading to the
Hartman effect (see Section 9.5.3). Systems of the second class are generally
used for exciting guided and surface modes. In fact, without the excitation of
the modes, the reflection from the system is close to unity because of total in-
ternal reflection. The excitation of the modes can mediate finite transmission
through the structure leading to narrow dip/dips in the reflection profile for
specific angles of incidence beyond the critical angle. At these specific angles
of incidence, energy is transferred to the guided/surface modes from the inci-
dent waves and hence the nomenclature of the frustrated (attenuated) total
reflection. Such structures (see Fig. 9.5(d)) are also referred to as resonant
tunneling geometry, since it mimics the situation of a well enclosed between
two barriers as in Fig. 9.5(c). Finite transfer is possible only via the excitation
of the quasi-bound states of the well.

9.5.1 Wigner delay: Fast and slow light

In a seminal paper in 1955, Eugene P. Wigner addressed a very important
question: how much time a wave packet spends in passing through a sequence
of wells and barriers [63]. The time taken was later labeled as the Wigner
phase time τ as opposed to the equal time τf taken by the packet in absence
of the potential. Wigner’s derivation was based on bichromatic light. In this
section, we generalize the derivation of Wigner to the case of a temporal pulse
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centered around the carrier frequency ωc. Let the incident pulse be given by

EI(z, t) = F (t)ei(βz−ωct), (9.63)

where the Fourier decomposition of the temporal profile at z = 0 is written as

F (t) =

∫

A(ω)e−i(ω−ωc)tdω. (9.64)

Let t̃(ω) be the complex transmission coefficient of the medium given in terms
of the real amplitude and phase as follows:

t̃(ω) = |t̃(ω)|eiφT (ω). (9.65)

Using Eqs. (9.63)–(9.65), the transmitted pulse (in the region z > L) can be
written as

ET (z, t) = ei(βz−ωct)

∫

A(ω)|t̃(ω)|eiφT (ω)e−i(ω−ωc)tdω. (9.66)

The temporal shift of the transmitted pulse depends on φT , which bears the
signature of the dispersion of the medium. In order to estimate the temporal
shift of the pulse, we use the stationary phase approximation. The essence of
this approximation is that the phase of the transfer function φt(ω) is assumed
to have a weak dependence on ω so that we can expand φT in a Taylor series
around ωc and ignore the higher-order derivatives retaining only the lowest-
order terms:

φt(ω) = φT (ωc) +
∂φT
∂ω

∣

∣

∣

∣

ωc

(ω − ωc) + · · · . (9.67)

On substituting the expansion above in Eq. (9.66) and retaining only terms
up to the first order, we get

ET (z, t) = ei(βz−ωct+φT (ωc))

∫

A(ω)|t̃(ω)|e
−i

(

t− ∂φT
∂ω

∣

∣

∣

ωc

)

(ω−ωc)
dω. (9.68)

Assuming a flat (or slowly varying) amplitude response (|t̃(ω)| ∼ constant)
over the spectral spread of A(ω), Eq. (9.68) reduces to

ET (z, t) = |t̃(ωc)|F
(

t− ∂φT
∂ω

∣

∣

∣

∣

ωc

)

exp i(βz − ωct+ φT (ωc)). (9.69)

Thus, the transmitted pulse arrives at the output end (i.e., z = L) at

τt =
∂φT
∂ω

∣

∣

∣

∣

ωc

. (9.70)

Similarly, the reflected pulse will be delayed/advanced by

τr =
∂φR
∂ω

∣

∣

∣

∣

ωc

, (9.71)

where φR is the phase of the reflection coefficient.
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9.5.2 Goos-Hänchen shift

The derivation for the Goos-Hänchen shift is quite analogous, except that
the incident field is now assumed to be a monochromatic beam with a spread
of wave vectors around (α0, β), where α0 and β are the x and z components
of the wave vector. The interface between the two dielectrics is assumed to be
the plane z = 0. Thus the incident field can be written as

EI(x, t) = ei(α0x+βz−ω0t)

∫

A(α)ei(α−α0)xdα. (9.72)

As mentioned above, the divergence of the Fourier components is so small that
A(α) is sharply peaked around α0 with the corresponding angle of incidence θ0
greater than the critical angle θc. Thus, the total internal reflection condition
is assumed to be valid for all Fourier components and the reflected pulse can
then be written as

ER(x, t) = ei(α0x−βz−ωt)
∫

A (α) ei(α−α0)x+iφR(α)dα, (9.73)

where φR(α) is the phase of the complex reflection coefficient. An expansion
of φR(α) around α0 just like in Eq. (9.67) reduces Eq. (9.73) to

ER(x, t) = ei(α0x−βz−ωt+φR(α0))

∫

A (α) e
i(α−α0)

(

x+
∂φR
∂α

∣

∣

∣

α0

)

dα. (9.74)

With a definition of the incident beam profile at z = 0 as

F (x) =

∫

A(α)ei(α−α0)xdα, (9.75)

the reflected beam takes the final form given by

ER = F

(

x+
∂φR
∂α

∣

∣

∣

∣

α0

)

ei(α0x−βz−ωt)+iφR(α0), (9.76)

which implies a longitudinal displacement of the beam by an amount

dGH = − ∂φR
∂α

∣

∣

∣

∣

α0.

. (9.77)

9.5.3 Hartman effect

In barrier-crossing problems a very important issue is the time spent by
the wave packet in the barrier region. The very first quantitative assessment
in this regard was carried out by Hartman [75]. The theory was based on
the time-dependent Schrödinger equation and Hartman calculated the transit
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time of Gaussian wave packets through a rectangular barrier. The transit time
turned out to be longer than equal time (vacuum time) for thin barriers, while
it exhibited saturation with increasing barrier width. For the latter, the transit
time was shown to be less than the equal time. This effect of saturation of
phase time for sufficient barrier width came to be known as the Hartman effect.
The first-ever experimental demonstration of the Hartman effect was carried
out by Enders and Nimtz [76] in the microwave domain. Phase saturation
(which is linked with transit time saturation) was nicely noted in a remarkable
experiment by Carniglia and Mandel [77]. Their theory was based on multiple
reflections in the low index air gap in a frustrated total internal reflection
setup (see Fig. 9.5(b)). A detailed analysis of related physics can be found in
the thesis of Manga Rao [78]. Here in Section 9.5.4, we derive the same results
using the characteristics matrix approach. A large body of literature exists on
the Hartman effect and its generalizations in periodic structures [79, 66, 80].
In view of the widespread interest in the photonic bandgap structures, we
follow Winful [66] to present a brief derivation of the Hartman effect for DFB
structures in Section 9.5.5.

9.5.4 Precursor to Hartman effect: Saturation of phase shift
in optical barrier tunneling

Let a plane monochromatic TM -wave be incident on the dielectric-air
interface at an angle θ as shown in Fig. 9.5(b). Using the characteristic matrix
approach of Section 9.1, the complex amplitude transmission coefficient is
given by (see also Eq. (9.14))

t̃ =
2
n cos θ

(cos ζ − i
npz

cos θ sin ζ) cos θn − ipz sin ζ + cos ζ cos θ
n

. (9.78)

Recall that the z component of the wave vector kz = k0pz, pz = (1 −
n2 sin2 θ)1/2 and ζ = kzd. Eq. (9.78) can be rewritten as

t̃ =
1

cos ζ − i
(

cos2 θ + n2(1− n2 sin2 θ)
)

sin ζ
2n cos θ(1−n2 sin2 θ)1/2

. (9.79)

For propagating waves in the air gap, kz is real, and using Eq. (9.79), we can
calculate the phase shift in the transmitted light as follows:

φt = tan−1

[

cos2 θ + n2(1− n2 sin2 θ)

2n cos θ(1 − n2 sin2 θ)1/2
tan ζ

]

. (9.80)

For angles of incidence θ > θc, kz is purely imaginary, leading to evanescent
waves in the air gap. The phase shift can then be written as

φt = tan−1

[

cos2 θ + n2(n2 sin2 θ − 1)

2n cos θ(n2 sin2 θ − 1)1/2
tanh ζ

]

. (9.81)
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It follows from Eq. (9.81) that for a larger width of the air gap, the phase
saturates to

φt = tan−1

[

cos2 θ + n2(n2 sin2 θ − 1)

2n cos θ(n2 sin2 θ − 1)1/2

]

. (9.82)

Similarly, for a TE-polarized incident wave, Eq. (9.82) reads as

φt = tan−1

[

(n2 cos 2θ + 1)

2n cos θ(n2 sin2 θ − 1)1/2

]

. (9.83)

9.5.5 Hartman effect in distributed feedback structures

As mentioned earlier, the Hartman effect leads to the saturation of phase
time for sufficiently wide barriers. The effect was analyzed in great detail by
Winful [66] in the context of distributed feedback structures. In order to have
a valid coupled mode approach, low modulation depths were assumed. The
major aim of the study was to identify the physical origin of the Hartman
effect. It was shown that the energy in the barrier region was stored approxi-
mately within an attenuation length. The link between the stored energy and
the phase time was explored and energy localization led to the independence
of the phase time on the barrier width. Another plausible explanation is the
evanescent nature of the waves, which implies that there is no accumulation
of phase. In what follows, we recall the essential steps of the work of Winful
[66] to demonstrate the transit time saturation.

Consider a system with a periodically modulated refractive index given by
Eq. (9.34); the reflection and transmission coefficients are given by Eqs. (9.54)
and (9.55), respectively. From Eqs. (9.54) and (9.55), the corresponding phases
are given by

φr = tan−1

(

−s coth (sL)
δ/2

)

. (9.84)

The overall phase factor eiδL/2 can be absorbed in the transmission amplitude
and we can obtain the phase of the transmission coefficient as

φt = tan−1

(

δ/2 tanh (sL)

s

)

. (9.85)

Eqs. (9.84) and (9.85) yield the relation φr = φt+
π

2
. Note that the same rela-

tion can be derived from a more general consideration of a stratified medium
(see Section 9.8.2). It needs to be mentioned that for a lossless symmetric
structure, the phase times for reflection and transmission coincide. The phase
time, for example, for transmission can be derived from Eq. (9.85) as follows:

τ tp =
2n0

c

dφt
dδ

=
n0

c

L
(

s2 + δ2 tanh2(sL)
)

{

[

δ2 tanh2(sL)− δ2
]

+
β2 tanh(sL)

sL

}

.

(9.86)
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For long Bragg grating, i.e., in the limit of L → ∞, the transmission phase

time Eq. (9.86) becomes τ tp =
n0

cs
, which is independent of the length of the

grating L.

9.6 Optical reflectionless potentials and perfect
transmission

In this section we look at a very interesting application of stratified
medium. We show that certain given refractive index profiles can lead to total
transmission with no backscattered light. The basic idea originated from the
notion of reflectionless potentials proposed by Kay and Moses in a seminal
paper in 1956 [69]. The question posed by Kay and Moses was the follow-
ing: Can we design a potential for the Eq. (9.60) such that the wave function
Ψ(z, E) satisfies the conditions

Ψ(z, E) ∼ei
√
Ez as z → −∞, (9.87)

Ψ(z, E) ∼tei
√
Ez as z → +∞, (9.88)

meaning thereby that for all E there is no reflected wave. It was shown that it
is possible and such potential V (z) satisfies certain specific conditions (see the
box on the Kay-Moses theorems). We now present the Kay-Moses prescription
for constructing such a potential.

9.6.1 Construction of the Kay-Moses potential

Consider the N parameter family, each with two positive constants Aj and
κj (j = 1 · · ·N), and construct the linear set of equations for fj(z) as follows:

N
∑

j=1

Mijfj(z) = Aie
κiz , Mij = δij +

Aie
(κi+κj)z

κi + κj
. (9.89)

Then, the reflectionless potential is given by

V (z) = −2
d2

dz2
[logD], (9.90)

where D is the determinant of the N ×N matrix (Mij). The solution of the
scattering problem with potential given by Eq. (9.90) can be written as [69]

Ψ(z, E) =



1 +

N
∑

j=1

fj(z)e
iκjz

κj + i
√
E



 ei
√
Ez. (9.91)
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Several important theorems were proved in the seminal work of Kay and
Moses:

Kay-Moses theorems on reflectionless potentials

1. The function given by Eq. (9.91) satisfies the Schrödinger equation with
potential in Eq. (9.90).

2. V (z) is negative for all finite z.

3. V (z) as in Eq. (9.90) are the only ones for which there is no reflection.

The general form of Eq. (9.90) and the solution Eq. (9.91) may appear to
be too complicated. Hence we illustrate with the simplest possible example of
a one-parameter family of two constants, A1 and κ1. Eq. (9.89) then leads to

D(z) = 1 +
A1

2κ1
e2κ1z, V (z) =

4κ1A1e
2κ1z

(

1 + A1

2κ1
e2κ1z

)2 . (9.92)

Further demanding that the potential V (z) has a minimum at z = 0, we have
A1 = 2κ1, and

V (z) = −2κ21sech(κ1z). (9.93)

The potential given by Eq. (9.93) is known in the literature as the modi-
fied Poschl-Teller potential [81, 82] and has been studied in great detail. The
corresponding solution is given by

Ψ(z) =
i
√
E − κ1 tanh(κ1z)

i
√
E + κ1

ei
√
Ez, (9.94)

which evidently obeys the conditions given by Eqs. (9.87) and (9.88).

9.6.2 Optical realization of reflectionless potentials

Realization of reflectionless potentials in optics [83, 84] has certain diffi-
culties associated with the polarization of light. As discussed earlier the sta-
tionary wave equation for TE, and TM waves are different. Recall that the
TE (TM) wave has only one nonvanishing electric (magnetic) field compo-
nent perpendicular to the plane of incidence. For a general case of oblique (to
z-axis) incidence, the equation for the nonvanishing component of the electric

field ~E = (0, Eeikxx, 0) for TE waves can be written as

d2E
dz2

+ (k20ǫ(z)− k2x)E = 0, (9.95)
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where ǫ(z) gives the dielectric function variation along the direction of strati-
fication. Here kx = k0

√
ǫs sin θ with ǫs and θ as the dielectric constant of the

substrate/cladding and the angle of incidence. An analogous equation for the

TM waves with ~H = (0,Heikxx, 0) is given by

d2H
dz2

− dH
dz

d ln ǫ(z)

dz
+ (k20ǫ(z)− k2x)H = 0. (9.96)

We can easily draw a parallel of Eq. (9.95) with the stationary Schrödinger
equation (Eq. (9.60)) by defining

V (z) = k20(ǫs − ǫ(z)), E = k20ǫs cos
2 θ. (9.97)

However, it is impossible to simultaneously map Eq. (9.96) to the stationary
Schrödinger equation. Thus, we cannot have a reflectionless refractive index
profile for both TM and TE waves simultaneously. Eq. (9.97) can be rewritten
to yield the relation between the dielectric function profile and the reflection-
less potential:

ǫ(z) = n2(z) = n2
s −

V (z)

k0
, ǫs = n2

s. (9.98)

Note that the design of the profile depends on k0 = 2π/λ, which in turn
depends on the wavelength. Thus for a given λc, the profile can be generated
and it works well for all wavelengths smaller that λc for TE waves. It is rather
fortunate that the profile generated for the TE waves also works for TM waves
as well.

For the example of a one-parameter family, the reflectionless profile is
given by

n2(z) = n2
s +

2κ sech2(κz)

k20
, (9.99)

where we have suppressed the subscript of κ. Note that the ideal potential
(profile) extends from −∞ to +∞. In reality any profile is bound to be finite,
resulting in n(z) differing from ns only on a finite support. Any deviation
from an infinite extent potential has its effect even for TE-polarization; it
is no longer purely transmitting over the whole range of angles of incidence.
The features above are illustrated in Fig. 9.6. For a given profile, calculation
can be performed by making a finite subdivision of profile and considering
the refractive index to be constant over each subdivision (see Fig. 9.6(a)).We
can invoke the characteristic matrix method for evaluating the reflection and
transmission for the whole structure. Results for R as a function of θ are shown
in Fig. 9.6(b) for different levels of truncation. It is clear that, the greater the
truncation, the greater the loss of perfect antireflection feature. In order to
highlight the remarkable conceptual differences from the standard approaches
of λ/4 antireflection coating, we have shown the angle dependence for one
standard λ/4 plate in Fig. 9.6(d). Recall that coating based on the λ/4 plates
usually works for narrow angular intervals and they usually have spectrally
narrow bands. The wavelength dependence is shown in Fig. 9.7. It is clear
from Fig. 9.7 that up to the design wavelength, the profile works very well.

© 2016 Taylor & Francis Group, LLC

  



Optical waves in stratified media 193

−1.5 −1 −0.5 0 0.5 1 1.5
1.4

1.55

1.7

1.85

1.95

z [µm]

n

0 15 30 45 60 75 90
0

0.05

0.1

0.15

0.2

θ (deg)

R

0 15 30 45 60 75 90
0

0.05

0.1

0.15

0.2

R
θ (deg)

−2 −1 0 1 2
0.5

1

1.5

n

z [µm]

T E
T M

T E
T M

(a)

(b)

(c)

(d)

FIGURE 9.6: (a) Refractive index profile (see Eq. (9.98)) for reflectionless
potential given in Eq. (9.93) with κ = 5.5 and ns = 1.4. (b) Intensity reflection
coefficientR as a function of θ at λ = 1060 nm for two truncations of the profile
shown in (a), namely, d = 1 µm (solid curve), d = 0.45 µm (dashed curve) for
TE-polarization and the dash-dot curve in (b) is for TM -polarization with
d = 1 µm. (c) Refractive index profile for a λ/4 plate with n1 = 1, n2 = 1.2649,
n3 = 1.6 and d = 1.531 µm. (d) Intensity reflection coefficient R as a function
θ at λ = 1550 nm for the profile shown in (c).
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FIGURE 9.7: R as function of λ from the profile shown in Fig. 9.6(a) with
design wavelength λc = 1060 µm and θ = 0 for two truncations, namely,
d = 1 µm (solid curve) and d = 0.45 µm (dashed curve).
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9.7 Critical coupling (CC) and coherent perfect
absorption (CPA)

In this section we reveal yet another interesting application of a stratified
medium. This stems from the ability of specific systems to support construc-
tive and destructive interferences to enhance or inhibit effective absorption
under coherent illumination. Usually any interference phenomenon depends
crucially on the relative phases of the interfering waves. In addition to this,
it was highlighted only very recently that the amplitudes of the interfering
waves play a very distinctive role in optimizing the interference process [85].
Note that similar ideas were known quite some time ago [86]. For example, two
waves with equal amplitudes with a relative phase of π can kill each other due
to destructive interference. On the other hand, the two interfering waves in
phase can lead to superscattering (SS). The interfering waves can be generated
with a single wave or with two incident coherent waves. The possible simpli-
fied scenarios for perfect destructive interference or superscattering are shown
in Figs. 9.8(a) and 9.8(b). The first (second) is referred to as critical coupling
(coherent perfect absorption) configuration. In the first case, we have a thin
absorbing layer and a spacer layer on top of a perfect reflector. The perfect re-
flector prohibits light from passing through. If the reflected waves from all the
interfaces happen to satisfy the conditions for destructive interference, then we
will end up with null scattering from the structure. For simplicity we assumed
the absorbing layer to be thin enough to be represented by a single interface.
We thus have a system that neither transmits nor reflects; we say that the
incident light has been critically coupled to the system, whereby all the inci-
dent light energy has been transferred to the absorbing layer. Critical coupling
was first proposed by Yariv [87] and verified in a coupled fiber-microsphere
system by Vahala’s group [88]. There has been generalization of the scheme

P
er

fe
ct

 R
ef

le
ct

o
r

S
p

ac
er

 l
ay

er

Absorbing

medium

A
b

so
rb

in
g

m
ed

iu
m

tb

rf

tf

rb

)b()a(

FIGURE 9.8: General schematics of (a) CC and (b) CPA.
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(in Fig. 9.8(a)) to oblique incidence [89], where TE and TM results differ as
expected. Analogous scenarios can be realized in the context of the system
shown in Fig. 9.8(b), where an absorbing slab is illuminated from both sides.
In this case, say, on the left, we have reflected light rf due to incidence from
the left and also the light tb due to transmission from the right. The condition
for perfect destructive interference is given by

|rf | = |tb|, ∆ϕ = (2m+ 1)π, (9.100)

where m is an integer and ∆ϕ is the phase difference between the two inter-
fering waves. On the right side of the structure, the same interference ensures
that there is no scattered wave and that all the incident light is absorbed by
the system. A different phase relation, namely, ∆ϕ = 2mπ, ensures superscat-
tering since now we have constructive interference. These results have been
verified experimentally with a thin Si wafer [85]. In what follows, we present
some of the results pertaining to CC and CPA.

9.7.1 Critical coupling

Consider the structure shown in Fig 9.9(a) comprising a thin absorbing
layer separated from a DFB structure by a spacer layer. A metal (silver)
dielectric composite (see Section 5.5) is used as the material for the absorbing
layer and its effective dielectric function is estimated by the Maxwell-Garnett
formula. The parameters of the system are chosen as follows: ǫi = 1, ǫh = 2.25,
f = 0.06, d1 = 10 nm, ǫ2 = 2.6244, d2 = 161 nm, N = 12, ǫa = 4.84, da = 46.6
nm, ǫb = 2.25, db = 68.3 nm and ǫf = 2.25. The results for intensity reflection
R, transmission T and total scattering R + T are shown in Fig. 9.9(b). It is
clear from the figure that at λ ∼ 410 nm both R and T are zero, leading to
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FIGURE 9.9: (a) Schematics and illumination of the critical coupling struc-
ture. (b) R, T, R+T from the structure shown in Fig 9.9(a) as a function of
the wavelength λ for normal incidence.
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FIGURE 9.10: Schematics of CPA under oblique incidence.

null scattering (R+T = 0). For incident coherent light at this wavelength, all
the light is absorbed in the thin absorbing layer.

9.7.2 Coherent perfect absorption

The general oblique incidence scenario for CPA is shown in Fig. 9.10. For
the absorbing layer we used a Bruggeman metal (gold) dielectric composite in
order to have a larger range of volume fraction of the metal inclusions. The
results for |rf | and |tb| and the phase difference between the interfering waves
∆ϕ (in units of π) along with the absolute value of the scattered amplitude
(in log scale) are shown in Fig. 9.11. As can be seen from the figure, we have
a CPA dip when the conditions of Eq. (9.100) are satisfied.

9.8 Nonreciprocity in reflection from stratified media

Reciprocity or the lack of it in scattering has intrigued physicists for sev-
eral decades [90]. A given one-dimensional system is said to exhibit reciprocity
if the scattering is insensitive to whether it is excited from the left or from the
right. The issues involved are not only fundamental in nature, but they can
also lead to many interesting applications. The most important aspect is their
generality irrespective of the branch of physics. At various stages, we have
stressed the equivalence of one-dimensional optical and quantum mechani-
cal systems. Thus, theorems and conjectures derived for such optical systems
can be applied to quantum systems and vice versa. In view of the interest-
ing physics involved and a lack of proper understanding of the underlying
physical principles behind the nonreciprocity, Agarwal and Dutta Gupta [91]
studied the most general physical principles responsible for the nonreciprocity
in reflection from stratified media. The findings were motivated by a beautiful
experiment by Armitage et al. involving quantum wells in one compartment

© 2016 Taylor & Francis Group, LLC

  



Optical waves in stratified media 197

550 560 570 580 590 600 610 620 630 640 650
0

0.5

1

550 560 570 580 590 600 610 620 630 640 650
−1

0

1

550 560 570 580 590 600 610 620 630 640 650

−5

0

λ [nm]

|r|
|t |

lo
g

1
0
|r
f+
t b

|2
∆

ϕ
| r

f 
| ,

 |t
b

 |

(a)

(b)

(c)

FIGURE 9.11: CPA in a composite layer. (a) Graph of |rf | and |tb|, (b)
the phase difference between the interfering waves ∆ϕ (in units of π) and (c)
the log of the absolute value of the scattered amplitude |rf + tb| as functions
of λ. Parameters used in the calculations are as follows: ǫi = 1, ǫh = 2.25,
f = 0.004 d = 18.43 µm and θ = 45◦.

of a coupled cavity systems [92]. We discuss the model system for their ex-
periment after we learn about the dispersion relations and their method of
analysis in the next chapter. Analogous derivation was carried out for a quan-
tum system by Ahmed [93]. In this section we follow Ref. [91] to derive the
general reciprocity relations for both transmitted and reflected light.

9.8.1 General reciprocity relations for an arbitrary linear
stratified medium

Consider a stratified medium embedded in a vacuum occupying −l ≤ z ≤
l and having a scalar complex dielectric function ε(z) (see Fig. 9.12). The
solution for fields of the Helmholtz equation for incidence from left EL and
right ER can be written as

EL =ELie
ik0z + ELre

−ik0z , z ≤ −l,
=ELte

ik0z, z ≥ l,

ER =ERie
−ik0z + ERre

ik0z, z ≥ l,

=ERte
−ik0z, z ≤ −l, (9.101)
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FIGURE 9.12: Schematics of the illumination geometry of the stratified
medium with dielectric function ε(z).

where k0 is the vacuum wave vector and subscripts i, r, t refer to the incident,
reflected and the transmitted waves, respectively. Fields EL and ER satisfy
the condition

∫ l

−l

(

E∗
R

d2EL
dz2

− EL
d2E∗

R

dz2

)

dz + k20

∫ l

−l
ELE

∗
R(ε− ε∗)dz = 0, (9.102)

which can be easily obtained from the corresponding Helmholtz equations for
EL and E∗

R. Substitution of Eq. (9.101) into Eq. (9.102) leads to the following:

ELtE
∗
Rr + E∗

RtELr + k0

∫

EL(z)E
∗
R(z) [Im ε(z)]dz = 0. (9.103)

For identical fields EL = ER = E, Eq. (9.102), after integration by parts,
reduces to a simpler form:

(

E∗ dE

dz
− E

dE∗

dz

)l

−l
+ 2ik20

∫

|E|2Im ε(z)dz = 0. (9.104)

Like in Eq. (9.101), writing E as

E =Eie
ik0z + Ere

−ik0z, z ≤ −l,
=Ete

ik0z, z ≥ l, (9.105)

and substituting it into Eq. (9.104), we can recover the standard optical the-
orem

|Et|2 + |Er|2 + k0

∫

|E(z)|2 Im ε(z)dz = |Ei|2. (9.106)

In order to get the reciprocity relations for the transmitted amplitudes, we
combine the Helmholtz equations for EL and ER in the form

∫ l

−l

(

ER
d2EL
dz2

− EL
d2ER
dz2

)

dz = 0, (9.107)

which after integration by parts can be simplified to

(

ER
dEL
dz

− EL
dER
dz

)l

−l
= 0. (9.108)
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Making use of Eq. (9.101) in Eq. (9.108), we can obtain the simple relation

ERiELt = ELiERt. (9.109)

Henceforth we will assume the incident fields from left and right to be the
same, having unity amplitudes (ELi = ERi = 1), which simplifies Eq. (9.109)
further, leading to the reciprocity of the transmitted fields ELt = ERt. Note
that the derivation of Eq. (9.109) never had any reference to the explicit form
of the absorption present in the medium and Eq. (9.109) is valid for arbi-
trary lossy stratified medium. Thus, in linear systems transmission is always
reciprocal (though in nonlinear systems such a reciprocal relation does not
hold). Equality of the incident fields simplifies Eq. (9.103) and all the main
reciprocity relations can be summarized as follows:

ELt = ERt, (9.110)

E∗
Rr

E∗
Rt

+
ELr
ELt

+
k0

ELtE∗
Rt

∫

EL(z)E
∗
R(z) Im ε(z)dz = 0. (9.111)

We now look at the effect of absorption and spatial symmetry. In absence of
absorption (Im(ε) = 0), Eqs. (9.111) and (9.106) simplify drastically to

ELt = ERt,
E∗
Rr

E∗
Rt

+
ELr
ELt

= 0, |ELt|2 + |ELr|2 = 1. (9.112)

Eq. (9.112) easily leads to the important result

|ERr|2 = |ELr|2, though ERr 6= ELr. (9.113)

Eq. (9.113) implies that there may not be reciprocity in reflected amplitudes
since they can differ in phase. Spatial symmetry plays an important role here.
In order to highlight the effects of spatial symmetry, we refer back to the
system with absorption. Consider a medium with the property ε(z) = ε(−z).
Then, if E(z) is a solution of the Helmholtz equation, so is E(−z). Let the
incident fields also be symmetric, i.e., Ei(z) = Ei(−z). The total field E(z)
would then satisfy E(z) = E(−z) everywhere, while for the total fields we
have the expressions

E(z) =eik0z + ELre
−ik0z + ERte

−ik0z, z ≤ −l,
=e−ik0z + ERre

ik0z + ELte
ik0z, z ≥ l. (9.114)

The symmetry requirement E(z) = E(−z) then implies

ELr + ERt = ERr + ELt. (9.115)

Combined with the relation Eq. (9.110), it leads to the reciprocity of the
reflected amplitudes

ELr = ERr . (9.116)

© 2016 Taylor & Francis Group, LLC

  



200 Wave Optics: Basic Concepts and Contemporary Trends

Thus spatial symmetry, combined with the identical incident fields from both
sides, ensures the reciprocity of the reflected amplitudes irrespective of the
absorption in the system. In lossless structures the intensity reflection is recip-
rocal (Eq. (9.113)), while broken spatial symmetry can lead to nonreciprocity
of phases in the reflected waves.

9.8.2 Nonreciprocity in phases in reflected light

In a general scattering event, the quantity of interest is the complex scat-
tered amplitude. In one-dimensional systems as in our case, the situation
is simple, namely, we need to extract information about the ‘forward’ scat-
tered (or the transmitted ) and the ‘backward’ (reflected) amplitudes. Since
a complex amplitude involves two real quantities (amplitude and phase), we
can ask whether both of them satisfy reciprocity. In absence of absorption
(Im(ε(z)) = 0), assuming a dependence Er,t ∼ |Er,t|eiφr,t , Eqs. (9.110) and
(9.111) can be reduced to the relations [78]

|ELr| = |ERr|, (9.117)

2φt = φLr + φRr + π, (9.118)

with the consequence that

τt =
(τLr + τRr)

2
. (9.119)

Thus, for a lossless structure lacking inversion symmetry, there is no nonre-
ciprocal effect in the intensity reflection coefficient, while studies of the pulse
delays can easily reveal the asymmetry of the structure. For example (for
vanishingly small transmission delay τt), if the reflected pulse acquires a de-
lay (meaning subluminal reflection) for incidence from the left, the same will
be superluminal for incidence from the other side. This feature, albeit for a
specific system, was noted neatly by Longhi [79]. In addition to the general
proof for an arbitrary stratified medium given above, we go one step further
to look at a cavity in the presence of absorbers. We show that the change in
dispersion resulting from the atom-cavity coupling can result in superluminal
propagation for incidence from both sides, indicating (as expected) violation
of Eq. (9.119).

The nonreciprocity in the phases can be captured in typical pulse reflection
experiments. Recall that the delay/advancements of the reflected/transmitted
pulse is given by the frequency derivative of the phase (Wigner phase time)
of corresponding reflection/transmission coefficient. Thus, nonreciprocity in
phase will translate into nonreciprocity of the phase times, and consequently
in different delays of the pulse.

It is always a good practice to keep in mind the limitations of the Wigner
phase time. Recall that it was derived under the stationary phase approxima-
tion, whereby phase was supposed to be a slowly varying function of frequency.
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In resonant structures phase can undergo a jump of π at resonance, and this
approximation can prove to be a poor one. It is thus necessary to complement
the predictions of the Wigner approach with explicit calculation of the pulse
shapes. Since the systems under consideration are linear, we can adopt an
approach similar to the one used in filter theory in RF electronics. We start
with the Fourier decomposition of the incident pulse into the spectral com-
ponents; each component is multiplied by the corresponding transfer function
(in our case t(ω) or r(ω) for the transmitted and reflected light, respectively)
to obtain the output spectrum. After the inverse Fourier transform of the
output spectrum, we obtain the output pulse shape. For most of our pulse
calculations, we use a Gaussian input pulse with the carrier frequency ωc as
follows:

E(z, t) = A0e
−(t/σ)2 ei(kz−ωct), A0 = 1. (9.120)

9.9 Pulse transmission and reflection from a symmetric
and asymmetric Fabry-Pérot cavities

We present results for symmetric and asymmetric Fabry-Pérot (FP) cav-
ities with or without resonant absorbers with distributed feedback (DFB)
mirrors. The DFB mirrors are used so as to lead to high mirror reflections.
We first show how the phase symmetry is intact in symmetric systems. In the
context of the symmetric cavity, we also focus on resonant atom field coupling
to demonstrate normal mode splitting (also known as vacuum field Rabi split-
ting [94, 95]) and its ability to control group velocity [78, 96]. The resonant
absorbers are modeled by a dielectric function ε(ω) given by

ε(ω) = ε0 +
ω2
p

ω2
0 − ω2 − 2iγω

. (9.121)

In Eq. (9.121), the plasma frequency ωp can be related to the number density
and the dipole matrix elements of the atoms (or excitons in case of quantum
wells). We then consider the asymmetric cavity in order to bring out the details
of the nonreciprocity aspects in reflection. The nonreciprocity is demonstrated
convincingly by the reflected pulse shapes and delays for both the directions
for an input Gaussian pulse. We show that broken inversion symmetry alone
is not adequate to lead to nonreciprocity in reflected amplitudes, while it is
sufficient to lead to different phases for incidence from opposite directions. It
is essential for the system to be lossy in order to lead to nonreciprocity in
reflected amplitudes.

© 2016 Taylor & Francis Group, LLC

  



202 Wave Optics: Basic Concepts and Contemporary Trends

9.9.1 Symmetric FP cavity with resonant absorbers

Consider the structure shown in Fig. 9.13(a). The DFB mirrors are formed
with 13 λ/4 layers of alternate high (na = 2.4) and low (nb = 1.3) index
materials, and they offer an intensity reflection coefficient ∼ 0.99850. For a
length of the cavity d = 6.35µm, one of the cavity resonances occurs at
fc = ωc/2π = 7.0866× 1014 Hz, resulting in a quality factor Q ∼ 2.24× 105.
Note that the frequency fc has been chosen carefully so as to be the central
frequency of the bandgap of the DFB structure. All the cavity and pulse
features (e.g., cavity resonances, pulse spectral width, etc.) are to be well
accommodated within the band gap so as to have high reflection over the whole
spectral range of the pulse. Let the cavity be filled with resonant absorber
atoms. We calculate the reflection and transmission coefficients as well as their
delays for input Gaussian pulse from both ends. For transmitted (reflected)
pulse, the output (input) face of the structure is taken as the reference plane.
Thus, a transmitted pulse is said to be subluminal (superluminal) if τt− τf is

positive (negative). Here τt =
∂φt

∂ω , τf = d
c with φt and d representing the phase

of the transmission coefficient and total length of the system, respectively. On
the other hand, a reflected pulse is subluminal if τr is positive (τr =

∂φr

∂ω , φr-
phase of the amplitude reflection coefficient). The results for the intensity
transmission coefficient T , the phase time difference τt − τf and the group
index ng as functions of detuning δ (= (ω−ωc)/2π, ωc = ω0) for transmitted
light are shown in Fig. 9.14. As mentioned above, the resonant interaction

Forward
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(b)

ε (ω)

ε (ω)

13 Layers 13 Layers

13 Layers 11 Layers

d

d

na nb nanb nanb nanb

nanb nanb na nanbnb

FIGURE 9.13: Schematic view of the (a) symmetric and (b) asymmetric
FP cavity. In (a) all the DFB mirrors have 13 alternating high and low index
(na=2.4, nb=1.3, respectively) λ/4 layers. In (b) the left (right) mirror has 13
(11) layers. The length of each cavity is d = 6.35µm. ‘Forward’ and ‘backward’
directions imply incidence of the pulse from left or right.

© 2016 Taylor & Francis Group, LLC

  



Optical waves in stratified media 203

−20 −15 −10 −5 0 5 10 15 20

−50

0

50

100

−20 −15 −10 −5 0 5 10 15 20
−1000

0

2000

4000

δ [GHz]

n
g

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

T
0

12

2
0

0

1

1

2

2

22

2

τ T
- 

τ f
 
[p

s]
(a)

(b)

(c)

FIGURE 9.14: (a) Intensity transmission coefficient T of symmetric Fabry-
Pérot cavity of Fig. 9.13(a), (b) delay/advancement τt−τf , (c) group index ng
as functions of detuning δ. The curves with labels 0, 1 and 2 are for ω2

p/ω
2
0 =

0.0, 0.08× 10−9 and 1.5 × 10−9, respectively, with 2γ/ω0 = 1.0 × 10−5. The
other parameters are as in Fig. 9.13(a).

between the atoms and the cavity leads to the vacuum field Rabi splittings
[94, 95], studied in detail for a cavity with metallic mirrors [96]. An increase in
the atomic density leads to an increase in the superluminality of a pulse (tuned
at δ = 0) to ng = −1533. This increase is mediated by the presence of resonant
atoms. For pulses tuned at one of the side bands of the split resonances, the
increase in the group index can be as large as ng = 2240. It is thus clear
that the cavity can enhance the control over the manipulation of the group
velocities. The same control is possible also for reflected pulses (not shown).
In contrast to the transmitted pulse, the reflected pulse is superluminal at the
side bands of the split resonances. It is thus clear that due to the inherent
symmetry of the structure, there is no ground to expect any nonreciprocity. In
other words, the system does not distinguish between whether it is illuminated
from the left or from the right. The situation changes drastically when the
inversion symmetry is broken. In the next section, we consider one such case.

9.9.2 Asymmetric FP cavity

It is now well understood that transmission is reciprocal irrespective
of whether the structure under consideration lacks any spatial symmetry.
The reciprocity of transmission is insensitive to the presence or absence of
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absorption as well. As stressed earlier the scenario can be quite different for
reflection.

Consider the FP cavity shown in Fig. 9.13(b), which is identical to that in
Fig. 9.13(a), except that the right DFB mirror has one period less. Henceforth,
we label incidence from left (right) as ‘forward’ (‘backward’) directions. The
asymmetry leads to a drop of the transmission coefficient from unity (at reso-
nance) resulting in a lower quality factor Q ∼ 9.92× 104. The reduced quality
factor reflects in lower extremal values of phase time τt − τf and group index
ng for the transmitted pulse. The reflection coefficient (see Fig. 9.15(a)) of
an empty asymmetric cavity at resonance is nonzero and finite (curve marked
by 0). Note that this curve is the same (see Eq. 9.117) for both forward and
backward directions. In contrast, phase times (see Fig. 9.15(b)) are not identi-
cal for forward (curve marked by 0) and backward (marked by 0′) directions.
In the empty cavity the reflected pulse for forward (backward) incidence is
superluminal (subluminal). When atoms are introduced in the cavity, the de-
generacy in the reflection coefficient for forward and backward directions is
lifted, leading to a more pronounced dip in the backward reflection coeffi-
cients for larger densities. This translates into highly superluminal reflection
(see Fig. 9.15(b), curve marked by 1′). Note that for forward incidence, the
pulse tuned at the side band is also superluminal (curve 2 in Fig. 9.15(b)).

In order to demonstrate these features, we present the reflected pulse pro-
files for an incident Gaussian profile given by Eq. (9.120) [78]. Results are
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FIGURE 9.15: (a) Forward (solid line) and backward (dashed line) intensity
reflection coefficient R, (b) corresponding phase time τR as functions of de-
tuning δ. The curves with labels (0, 0′), (1, 1′) and (2, 2′) are for ω2

p/ω
2
0 = 0.0,

0.08 × 10−9 and 1.5 × 10−9, respectively. The other parameters are as in
Fig. 9.13(b).
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FIGURE 9.16: Reflected pulse shape |AR| for forward (solid line) and back-
ward (dashed line) incidence as compared to the reference (input) pulse (dot-
ted line) with τ = 650 ps. (a), (b) and (c) are for (ωp/ω0)

2= 0.0, 0.08× 10−9

and 1.5× 10−9, respectively. The corresponding detuning values are shown on
the panels. The left panel highlights the relative strength while the right one
(normalized to the peak values) highlights the delay/advancement.

shown in Fig 9.16 for different cases, namely, when the pulse is tuned at the
resonance of the empty cavity (i.e., δ = 0) or at one of the side bands, say, at
the right one, at δ = 1.5 GHz and the other at δ = 13.25 GHz. In Fig 9.16,
we have also plotted the incident pulse profile for reference. The left panels
in Fig 9.16 show the actual pulse shapes for reference (dotted line), forward
(solid line) and backward (dashed line) incidence. The right panels show the
same, albeit with peak normalization so that we can easily read out the de-
lay/advancement. The top to bottom rows are for ω2

p/ω
2
0 = 0.0, 0.08 × 10−9

and 1.5 × 10−9, respectively. Apart from the opposite delay behavior noted
earlier for a pulse tuned at δ = 0 for lower densities of atoms, the interest-
ing feature of the narrowing of the pulse can be seen from the right panel of
Fig. 9.16(b). Thus, along with slowing down, we can also temporally squeeze
the reflected pulse for backward incidence. The reflected pulse for the input
tuned at the side band can be highly superluminal again in backward inci-
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dence (Fig. 9.16(c)). However, due to the sharpness of the spectral feature of
the side band, there may be distortion at the trailing edge of the pulse.

It must be noted that Eqs. (9.110) and (9.111) and Eqs. (9.117) and (9.118)
hold for each frequency component and thus the nonreciprocity in phases as
depicted by Eq. (9.118) may be probed in a continuous wave (CW) experi-
ment as well. The reflected fields for CW inputs from both ends can be made
to interfere, leading to an interference term proportional to cos(φ1R − φ2R).
The emergence of the interference pattern will be the direct evidence of the
asymmetry of the phases. It is also important to note that the atomic damp-
ing has a major role to play in determining the delay response. In order to
demonstrate this, let us consider a situation (an atomic density) identical to
that of curve 2, 2′ of Fig. 9.15, except that 2γ/ω0 was decreased tenfold to
1.0 × 10−6. The results are shown in Fig. 9.17. It is clear from Fig. 9.17(b)
that the pulse tuned at the side band will exhibit superluminality (sublumi-
nality) for incidence from the left (right). Note that for the previous value of
2γ/ω0 for both cases, pulse reflection was superluminal. These features are
demonstrated clearly in terms of reflection of single and twin-hump pulses in
Figs. 9.18(a) and 9.18(b), respectively. The twin-hump input was made of a
superposition of two closely spaced Gaussians as follows:

A(t) = e
− (t− σsep)

2

σ2 + e
− (t+ σsep)

2

σ2 , (9.122)
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FIGURE 9.17: (a) Intensity reflection coefficient R, for forward incidence
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1.5× 10−9. The other parameters are the same as in Fig 9.13(b).
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FIGURE 9.18: Reflected pulse shape |AR| for forward (solid line) and back-
ward (dashed line) incidence as compared to the reference pulse (dotted line)
for (a) single Gaussian with σ = 1 ns, and (b) twin Gaussian with σ = 0.8
ns and σsep = 0.8 ns. The left panels highlight the relative strength while the
right ones (normalized to the peak values) highlight the delay/advancement.
The corresponding detuning values are shown on the panels. (c) Transmitted
pulse shape |AT | (solid line) as compared to the reference (dotted line) with
σ = 0.8 ns and σsep = 0.8 ns. Here the reference pulse is normalized to the
peak value of the transmitted pulse.

where 2σsep gives approximately the distance between the two peaks. For
sake of completeness, we present the transmission of the twin-hump pulse at
δ = 0 where the transmission is highly superluminal. The latter is shown in
Fig. 9.18(c). The almost distortionless propagation of the twin-hump pulse
both in reflection and transmission may shed light on yet another issue as
regards the true mechanism of superluminal transit [97].
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Plasmonics opens up the gateway to the sub-wavelength world with its in-
herent ability to beat the Rayleigh limit. What is truly amazing is the fact
that most of the related effects can be understood with an undergraduate
background in classical optics, and all of it was around for so many years. In-
deed, the past two decades have been an eye-opener, with novel effects arising
from classical Maxwellian optics. Superlensing and superresolution, invisibility
cloaks and extraordinary transmission are just a few examples. We now under-
stand a large variety of effects under the banner of plasmonics with potential
applications ranging from enhanced photovoltaics to imaging and surface-
enhanced spectroscopy to the precision spectroscopy of single molecules. In
fact, there are many more unexplored areas.

In this chapter we focus mostly on the basic entity, namely, the surface
plasmons (SPs). Even today the best possible source to learn about surface
plasmons is Raether’s monograph [98]. We will try to show how the SP, being
the analog of guided modes of an equivalent dielectric structure, is so very
different from them. We will avoid a detailed discussion of the free electron
model or the bulk plasmons of noble metals. We discussed them briefly in
Section 5.3, and besides, we can find a nice description of related topics in the
monograph by Maier [99]. The same monograph also presents highlights of
all the important applications (see part II of Ref. [99]). Nevertheless, we will
focus on the physics that opens up the possibilities for all such applications.
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In standard textbooks or monographs, the surface plasmons and related
phenomena are introduced starting from a single metal-dielectric interface.
We then move on to two or more interfaces yielding coupled plasmons and
gap plasmons. We will adopt a different approach starting from a general
layered media and looking at certain specific examples. We will try to highlight
the similarities and differences between the guided and the surface modes.
We start with a multilayered metal-dielectric stratified medium in order to
have a general framework encompassing a wide spectrum of effects. We show
how the characteristics of the modes can be calculated through the poles
of the reflection/transmission coefficients, which is the same as solving the
dispersion relation. We specialize to a simpler case study, where we look at the
modes of a general symmetric layered medium. We show how the symmetry
simplifies the equations and at the outset distinguishes the symmetric and
antisymmetric modes. We then consider various limiting cases yielding the
well-known results for waveguide modes, surface plasmons (both long- and
short-range) and the gap plasmon modes. While most of this can be carried out
in the framework of a textbook, we have borrowed a few results from our earlier
research articles involving not-so-simple numerical calculations (multibranch
dispersion curves). The corresponding codes will be presented in the Appendix
so that interested students can reproduce the results.

We start with the results for the amplitude reflection and transmission
coefficients and the dispersion relation presented in Section 9.2. Recall that
we defined the modes of the structure through the poles of these coefficients.
We take a particular case of a symmetric structure [100], which enables us
to arrive at the dispersion relations of the symmetric and the antisymmetric
modes. By taking suitable limits we show that these dispersion relations are
identical to the standard forms well known in the literature. We solve the
dispersion relations for simple cases of planar waveguides and coupled plas-
mons. We show that while waveguide dispersion can be calculated easily by
‘cheating,’ the same is not possible for the coupled plasmons. In order to high-
light the near-field or the sub-wavelength capabilities of plasmonics, we then
consider a gap plasmon (GP) guide where a sub-wavelength dielectric layer
is enclosed in between two semi-infinite/finite metal layers. The fundamental
plasmonic mode can propagate in this guide while any TE mode is prohib-
ited by the Rayleigh criterion. In this context we demonstrate an avoided
crossing phenomenon, which is often encountered in optical and solid state
systems. We also show how such guides in resonant tunneling geometry can
lead to slow light. We then move on to a coupled waveguide structure mod-
eling the experiment of Armitage et al. [92], first to show the nonreciprocity
discussed in Section 9.8 and then to present a demonstration of how to ana-
lyze the roots of the corresponding dispersion relation [78]. A few more details
about the surface plasmons and coupled surface plasmons are then discussed,
concentrating mainly on how to excite them. Of course, methods discussed
here are not exhaustive, but they serve the purpose of highlighting the role of
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momentum matching. A brief comparison is made with the quasi phase match-
ing in nonlinear optics.

10.1 Case study: A symmetric (2N + 1)-layer structure

Consider the TM modes (with nonvanishing components Hy, Ex and Ez)
for the symmetric system shown in Fig. 10.1, comprising 2N + 1 layers with
any j-th layer characterized by relative dielectric function εj(ω) and width
dj . The middle layer is assumed to have a width d0 and dielectric function
ε0 (this latter symbol is not to be confused with vacuum dielectric permittiv-
ity). The bounding media are assumed to be air. Like before we restrict our
attention only to the TM -polarized waves. Keeping in mind the symmetry of
the structure about the plane z = 0, we write the magnetic and electric field
components in the central layer as

H0y =A0(e
ik0zz ± e−ik0zz), (10.1)

E0x =p0zA0(e
ik0zz ∓ e−ik0zz), (10.2)

where k0z =
√

k20ε− k2x and p0z = k0z
k0ε

. Hereafter the upper (lower) sign in
Eqs. (10.1) and (10.2) will refer to the symmetric (antisymmetric) magnetic
modes. Note that symmetry is being judged by the symmetry of the magnetic
field distribution across the layers. Making use of the characteristic matrices,
we can then relate the tangential field components at the center, i.e., at z = 0
and at z = zN , which in terms of amplitudes yields the relation

(

1 ±1
p0z ∓p0z

)(

A0

A0

)

=MT

(

1
ptz

)

At. (10.3)

. . . . . . 

FIGURE 10.1: Schematic view of the symmetric layered medium, where
only the right half is shown.
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In Eq. (10.3) the subscript t refers to the corresponding quantities in the
embedding medium and MT is given by

MT =M0(d0/2)M1(d1) · · ·Mj(dj) · · ·MN(dN ). (10.4)

Referring to the different signs in Eq. (10.3) and demanding the nontriviality
of the constant amplitudes, we obtain the dispersion relation for the symmetric
and the antisymmetric modes. For the symmetric mode we have

m21 +m22ptz = 0, (10.5)

(m11 +m12ptz)At = 2A0, (10.6)

while for the antisymmetric mode we obtain

m11 +m12ptz = 0, (10.7)

(m21 +m22ptz)At = 2p0zA0. (10.8)

It is clear that Eqs. (10.5) and (10.7) give the corresponding dispersion rela-
tions while Eqs. (10.6) and (10.8) define the amplitudes for the mode functions.

10.1.1 Typical example: Modes of a symmetric waveguide

As an example, we first consider the case of a symmetric planar waveguide,
whereby a slab of dielectric constant εd and width d0 is embedded in a dielec-
tric medium with dielectric constant εt (see Fig. 10.1 with dj = 0, j = 1−N).
For guided modes, waves need to be evanescent outside the film. We thus
rewrite ktz as

ktz = i
√

k2x − k20εt = ik̄tz. (10.9)

Eqs. (10.5) and (10.7) can then be reduced to the well-known dispersion re-
lations for the symmetric and antisymmetric transverse magnetic modes of a

d0 (µm)
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FIGURE 10.2: Transverse magnetic (TM) modes of a symmetric dielectric
wave guide for parameters λ = 1.55 µm, εd = 2.085 and εt = 1.0.
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planar guide [101]:

εdk̄tz − εtk0z tan(k0zd0/2) = 0, (10.10)

εdk̄tz + εtk0z cot(k0zd0/2) = 0. (10.11)

10.1.2 Coherent perfect absorption as antiguiding

Up to now we have studied the relations for waveguiding modes of a struc-
ture by demanding finite evanescent output from the structure for null input.
An obvious question arises. Is it possible to have null output from the struc-
ture for some finite input? CPA (see Section 9.7) corresponds exactly to one
such situation, where we require null scattering from the structure for finite
input. We now exploit the symmetry principles and show that the nontrivial
solutions of CPA can only be either symmetric or antisymmetric. We use this
information to find the sufficient condition for CPA.

For CPA we require null scattering: Ai− = 0 and Af+ = 0 (see Fig. 10.3)
with Ai+ = Af− 6= 0. It immediately follows that the incident field inten-
sities must be the same (|Ai+|2 = |Af−|2) for having CPA. This implies
that the forward (A0+) and backward (A0−) propagating amplitudes in the
cavity be the same (A0+ = ±A0−). The problem then reduces to the sym-
metric and antisymmetric solutions as before. For symmetric solutions we
have A0+ = A0− = A0 and Ai+ = Af− = Ain. The analogous relations
for the antisymmetric solutions are given by A0− = −A0+ = −A0 and
Ai− = −Af+ = −Ain. Consider a case, as before, with only the central
slab (d0, ε0) and ambient media the same on both sides. Now relating the
amplitudes at z = 0 to z = d0/2 gives us

(

1 ±1
p0z ∓p0z

)(

A0

A0

)

=Md0/2

(

1
−ptz

)

Ain, (10.12)

withMd0/2 as the characteristic matrix for the half slab. In writing Eq. (10.12)
we have set Ai− = Af+ = 0 and used the symmetry relations. Compar-

Ai-

Ai+ Af-

Af+

FIGURE 10.3: Schematic view of the incident and scattered amplitudes in
CPA configuration.
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ing Eq. (10.3) with Eq. (10.12) reveals CPA as an antiguiding phenomenon
forming the opposite end of the same scattering problem. Eq. (10.12) can be
simplified for symmetric and antisymmetric solutions as [102]

ptz + ip0z tan(k0zd0/2) = 0, (10.13)

ptz − ip0z cot(k0zd0/2) = 0, (10.14)

respectively. The relation given by Eqs. (10.13) and (10.14) is the sufficient
condition for CPA and the roots of these transcendental relations give the
location and the characteristics of the CPA dips. Note that these relations are
in general valid for both TE- and TM -polarizations.

10.1.3 Relevant example: Surface plasmons and coupled
surface plasmons

Consider a single metal film with width d0 and dielectric function εm
embedded in a dielectric (with constant εt) (see Fig. 10.1 with dj = 0, j =
1 − N). For surface modes to exist at both the interfaces, waves in all the
media need to be evanescent. We thus rewrite the z components of the wave
vectors as

k0z = i
√

k2x − k20εm = ik̄0z, ktz = i
√

k2x − k20εt = ik̄tz. (10.15)

Substituting Eqs. (10.15) into Eqs. (10.5) and (10.7) and recalling the struc-
ture of the characteristic matrix (Eq. 9.7), we can rewrite the dispersion equa-
tions for the symmetric and the antisymmetric modes, respectively, as

εmktz + εtk0z tanh(x) = 0, (10.16)

εmktz + εtk0z coth(x) = 0, (10.17)

where x = k̄0zd0
2 = k0zd0

2i . It is easy to see that Eqs. (10.16) and (10.17)
coincide with Eq. (A.20) of Raether’s monograph [98]. The case of a single
metal-dielectric interface can easily be recovered by taking the limit d0 → ∞
leading to identical values for tanh and coth (=1) for large arguments. Both
the equations then reduce to the same form:

εmktz + εtk0z = 0. (10.18)

Eq. (10.18) can easily be reduced to the standard dispersion relation for surface
plasmons:

kx = k0

√

εtεm
εt + εm

. (10.19)

We now comment on the decay characteristics of the coupled modes. As can
be seen from Fig. 10.4, the antisymmetric (symmetric) modes have a much
smaller (larger) decay and thus can propagate a longer (shorter) distance.
Therefore, the antisymmetric (symmetric) modes are often referred to as long-
range or LR (short-range or SR) modes.
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FIGURE 10.4: (a) Real and (b) imaginary parts of the normalized propaga-
tion constant kx/k0 for the coupled modes. The parameters are λ = 1.55 µm,
εm = −132 + 12.6i (gold) and εt = 1.0.

10.1.4 Gap plasmons and avoided crossings

We now restrict our attention to a symmetric metal-clad waveguide with
dielectric core thickness d0, and metal claddings with width d1. After solving
the dispersion equations for complex kx, the complete spatial dependence of
the mode functions can be obtained. For example, for the symmetric modes
in the various regions, we have

• for |z| ≤ d0/2,
H0y(x, z) = 2A0 cos(k0zz)e

ikxx, (10.20)

• for d0/2 < |z| ≤ d0/2 + d1,

H1y(x, z) = (A1+e
ik1z(z−d0/2) +A1−e

−ik1z(z−d0/2))eikxx, (10.21)

• for |z| > d0/2 + d1,

Hty(x, z) = Ate
iktz(z−(d0/2+d1))eikxx. (10.22)

The corresponding equations for the electric field components can be obtained
by using Eqs. (10.20)–(10.22) in Maxwell’s equations. The constant At in
Eq. (10.22) is evaluated using Eq. (10.6), while A1± in Eq. (10.21) is given by
the solution of the following matrix equation:

(

A1+

A1−

)

=

(

eik1zd1 e−ik1zd1

p1ze
ik1zd1 −p1ze−ik1zd1

)−1(
1
ptz

)

At. (10.23)

© 2016 Taylor & Francis Group, LLC

  



216 Wave Optics: Basic Concepts and Contemporary Trends

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d0 (µm)

TM1 TM2 TM3

TM0

n
ef
f

FIGURE 10.5: Solution of the dispersion relation for neff as functions of the
core thickness d0. The thick lines are for the semi-infinite metal claddings on
the silica guide, the dotted lines are for the bare silica guide. The dashed lines
are for the metal cladding thickness d1 = 0.01 µm while the thin lines are for
d1 = 0.03 µm. The parameters are λ = 1.55 µm, ε0 = 2.085, ε1 = −132+12.6i
and εt = 1.0. The leaky and the higher-order branches are not shown. Adapted
from Ref. [100].

The arbitrary constant A0 is fixed by normalization of the modes. With the
field profiles known, we can also calculate the time-averaged Poynting vec-
tor, giving the power flow along the guide. We do not present the details of
the calculation here and refer the reader to Ref. [100] for technical details.
We present the results and the related physics here. For numerical calcula-
tions the following parameters were chosen: λ = 1.55 µm, ε0 = 2.085 (silica),
ε1 = −132 + 12.6i (gold) [103], εt = 1.0 (air). We varied d0 and d1. The re-
sults for the roots of the dispersion relation are presented in Fig. 10.5, where
we have plotted the effective index neff = kx/k0 as functions of d0. We pre-
sented the results for both the symmetric and antisymmetric modes as well as
the plasmon and oscillating modes. Note that a gap plasmon guide can sup-
port modes with fields localized near the metal dielectric interface (plasmonic
modes with evanescent field dependence in the core). It can also support the
usual oscillatory dielectric guide modes with propagating waves in the core.
We label the modes as plasmon (or oscillatory) depending on whether the
magnetic field distribution inside the silica guide is expressible as a superpo-
sition of hyperbolic sine and cosine (or sines and cosines). For reference we
have plotted the cases for (a) the bare silica guide with outside medium as air
(dotted lines) and (b) the silica guide with semi-infinite metal claddings on
both sides (thick lines) [103]. A comparison of the two cases reveals that with
metal cladding we can realize very low effective indices (close to zero) with
the oscillatory modes, while the plasmon mode offers very large values. In
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contrast, the guided mode indices for the silica guide are limited in the range
between air and silica refractive indices (i.e., between 1 and

√
2.085 = 1.44).

In the case of the gap plasmon guide, we have the familiar splitting due to the
coupling of the two interface plasmons. The uppermost branch (TM0 plas-
mon) corresponds to the symmetric while the lower one corresponds to the
antisymmetric oscillatory mode TM1. Oscillatory modes from left to right are
labeled by an increasing integer. It is clear from Fig. 10.5 that for semi-infinite
metal claddings, there is a cutoff thickness for the oscillatory modes. For ex-
ample, for d < 0.5 µm, there are no oscillatory modes with the realization
of a single-mode operation with just the TM0 plasmon mode. However, the
scenario changes drastically if we restricts the widths of the metal cladding.
For example, for d1 = 0.01 µm, the antisymmetric oscillatory mode exists,
which has a lower cutoff (see the dashed line). For a slightly larger thickness
of the metal films, namely, d1 = 0.03 µm, the behavior almost coincides with
the results for the guide with semi-infinite metal claddings. The losses asso-
ciated with the modes can be studied by looking at the imaginary parts of
the roots of the dispersion relation. Mode cutoff is determined by the sudden
changes in the losses from small to large values as we reduce the gap width d0.
We also have the avoided crossing phenomenon like in coupled cavity-exciton
systems (see Section 10.4). This may lead to the possibility of coupling of the
surface plasmons on the two sides of the thin cladding layer when the metal
cladding thickness is very small. In other words, the surface plasmon on the
metal/air interface can interact with the same on the other metal/silica inter-
face. From a somewhat different angle, this phenomenon can be viewed as the
crossing of the dispersion branches of an air/silica/air guide with that of the
metal/silica/metal guide. The resulting level repulsion for finite width metal
cladding is shown in Fig. 10.6. Indeed, the limiting cases are the bare silica
guide and the gap plasmon guide with semi-infinite metal claddings. The case
with finite and very low thickness of the metal cladding is in between and
has the avoided crossing features. As expected, the avoided crossing effect is
stronger for the lower thickness of the metal cladding. Note also that the value
of the effective refractive indices for the modes corresponding to the part of
the lower branches in Fig. 10.5 is less than unity. Thus these modes are leaky.

10.2 Excitation schemes for overcoming momentum
mismatch

Bound modes like the surface and the guided modes localized in the film
or near the interface are characterized by an effective index (=kx/k0) larger
than the refractive index of the medium of incidence. Thus such modes can
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FIGURE 10.6: Avoided crossing phenomenon with the TM2 mode. The
solid (dashed) line is for d1 = 0.01 µm (d1 = 0.03 µm). Other parameters are
as in Fig. 10.5. Adapted from Ref. [100].

not be excited just by shining a laser beam on the film or the interface, even
for grazing incidence. For plane wave incidence at an angle θi, we can never
satisfy k0 sin(θi) = kx = kg/sp. In order to excite them, we have to compensate
for the momentum mismatch. The mismatch can be overcome by a high index
prism in attenuated total reflection (ATR) geometry or by periodic engravings
on the surface. Such schemes are now widely used and are referred to as the
prism and the grating coupling, respectively. Note that a rough surface can
also couple the incident light to the relevant mode.

10.2.1 Prism coupling: Otto, Kretschmann and Sarid
geometries

In ATR geometry we load the guiding film or the metal-dielectric interface
with a high-index prism with dielectric constant εp, after a spacer layer, and
we operate at angles larger than the critical angle. Thus the waves in the
spacer layer are evanescent and we can satisfy the momentum matching as

k0
√
εp sin(θi) = kg,sp. (10.24)

In the absence of the excitation of any modes, the reflectivity would be unity
due to total internal reflection. For specific angles of incidence corresponding
to Eq. (10.24), the modes can be excited, leaving sharp dips in reflection. This
signifies the channeling of the energy from the incident wave to the specified
mode, resulting in a corresponding drop in the reflected light. There can be
variations of the ATR geometry (Fig. 10.7). The Otto geometry has a low
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FIGURE 10.7: (a) Otto, (b) Kretschmann and (c) Sarid geometries for ATR.

index spacer layer between the high-index prism and the metal film, whereas
in the Kretschmann configuration the metal film is deposited on the base
of the high-index prism [98]. A different geometry that can support coupled
surface plasmons in very thin metal films was suggested by Sarid [104]. In the
Sarid geometry, we can excite both the symmetrical short-range (SR) and the
antisymmetrical long-range (LR) surface plasmons.

10.2.2 Grating coupling: Analogy to quasi phase matching

In this scheme the incident light falls on a grating with grating vector K
(= 2π/Λ, Λ grating period). The period can be chosen such that one of the
diffraction orders, namely, the m-th order matches the guided/surface mode

kg/sp = k0 sin(θ) +mK, m = ±1,±2, · · · . (10.25)

Momentum matching the +1 diffraction order is shown in Fig. 10.8(b). The
dips for the coupled plasmon modes of a free-standing metal film (see
Fig. 10.8(a)) are shown in Fig. 10.9 [105, 106]. The results for the specu-
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FIGURE 10.8: Schematics of grating coupling. (a) Corrugated film.
(b) Wave vectors for different diffracted orders.
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FIGURE 10.9: Reflected intensity as a function of angle of incidence for a
corrugated silver film. The parameters are λ = 633 nm, εm = −18.0 + 0.51i,
εt = 1.0, d = 150 nm in (1) and d = 50 nm in (2), a = 8 nm and Λ = 1.893 µm.

lar intensity reflection for a silver film of corrugation amplitude a are shown
in Fig. 10.9, which clearly shows the splitting for lower film thicknesses.

There is an interesting example where such grating-assisted momentum
compensation is employed in nonlinear optics. For example, for efficient second
harmonic generation, the momentum mismatch ∆k defined as ∆k = 2kω−k2ω
is compensated by the m-th order of the domain reversal grating

∆k = mK, (10.26)

and for a first-order process, the domain reversal period is chosen as Λ =
2π/∆k, which is just double the coherence length beyond which synchronized
propagation of fundamental and second harmonic is not possible.

10.2.3 Local field enhancements: Applications

A close inspection of the expressions of the reflection and transmission
amplitudes [Eqs. (9.13) and (9.14)] and a mere appreciation of the fact that
modes correspond to poles of these coefficients [see Eq. (9.16)] immediately
lead to the understanding of the remarkable potentials of these modes. ‘Di-
verging’ r and t imply dramatic enhancements of the local fields, which opens
up a host of applications. The narrower the mode resonance (lower decay),
the tighter it is bound to the surface and the larger the enhancement. In the
context of Kretschmann geometry, large transmitted amplitude does not vi-
olate any energy conservation, since the transmitted wave is evanescent and
does not carry any energy.

The long-range surface plasmons (LRSP) have the added advantage of
large local field enhancements associated with them [65]. Various nonlinear
optical phenomena exploiting narrow LRSP modes were demonstrated by
Sarid’s group and others [107, 108]. Optical bistability with surface plasmons
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at a metal nonlinear dielectric interface was demonstrated by many (see refer-
ences in [65]). Exact results for optical bistability with surface plasmons in a
layered structure on a nonlinear substrate were reported [109] using Leung’s
solutions [110].

There have been other notable applications of the local field enhancement
effect in surface enhanced Raman processes, in high-resolution spectroscopy,
single-molecule spectroscopy and many other areas. As mentioned previously,
a detailed description of all such applications is far beyond the scope of this
book.

10.3 Resonant tunneling through gap plasmon guide and
slow light

We have discussed the general resonant tunneling structure in Section 9.5,
and here we show how a gap plasmon guide can mimic such a situation. Con-
sider a gap plasmon guide (discussed in Section 10.1.4) enclosed between two
high-index prisms so that the dielectric core can form the ‘well.’ Waves can be
evanescent or propagating in the central dielectric layer depending on which
modes are excited. For plane wave incidence at an arbitrary angle, very little
will be transmitted. There can be significant transmission only via the res-
onant states. As mentioned earlier, this is referred to as resonant tunneling.
One such case is shown in Fig. 10.10(a) for a multimode gap plasmon guide.
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FIGURE 10.10: (a) Intensity transmission coefficient T and the (b) Wigner
delay τ as functions of the angle of incidence θ for d0 = 3.0 µm, d1 = 0.03 µm,
εt = 6.145. The other parameters are as in Fig. 10.5. Adapted from Ref. [100].
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Different peaks correspond to the different modes. In order to determine the
delay characteristics of the structure, we extracted the phase of the transmis-
sion coefficient. Recall that the frequency derivative of the phase of amplitude
transmission gives the Wigner delay through the structure (see Section 9.5.1).
Fig. 10.10(b) clearly shows how light is slowed down when these modes are
excited.

Often in the literature, the results for delayed/advanced pulses are pre-
sented either in terms of the Wigner phase time τ or in terms of the group
index ng. It is thus useful to relate them for a segment of length d by the
simple relation

τ = d/vg = (d/c)ng. (10.27)

10.4 Nonreciprocity in reflection from coupled
microcavities with quantum wells

The work of Armitage et al. [92] was mentioned frequently in the context
of nonreciprocity in reflection. In fact, it served as a stimulus for many later
theoretical works for the understanding of such nonreciprocity. The system
of Armitage et al. consisted of two identical coupled cavities with distributed
feedback (DFB) mirrors (see Fig. 10.11). One of the cavities (say, the left
one) contained three quantum well (QW) layers. The middle DFB structure
was made of fewer layers so that considerable coupling between the adjacent

DFB DFB DFB 

0

QW 

Forward

incidence 

FIGURE 10.11: Schematic view of the coupled cavity system. The quantum
well is replaced by resonant absorbers with dielectric function ǫ(ω) filling the
left cavity.
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cavities could be achieved. Under resonance conditions (i.e., QW exciton fre-
quency coinciding with the cavity frequency) they observed that the coupled
cavity system behaved differently for illumination from the left and from the
right. In the frequency response of the reflected light, two (three) dips were
observed when the system was illuminated from the left (right). An intuitive
argument based on three coupled oscillators was used in order to explain the
absence of one dip for the forward illumination (henceforth, the illumination
from the left with the QW in the first cavity will be labeled as forward). How-
ever, this explanation is inadequate and suffers from the fact that unavoidable
losses near the exciton resonance were totally neglected. In fact, inclusion of
absorption in their model accounts for the appearance of the third dip. Later,
they came up with a more rigorous analysis [111] and also with additional
experimental results whereby excitons were included in both the cavities.

Here we show that a simple model (where the excitons are replaced by
resonant absorbers filling the cavity) can capture the essential physics of non-
reciprocity [78]. We analyze the coupling-induced mode splittings in the dual
cavity system by means of a detailed study of the underlying dispersion equa-
tion. We clearly demonstrate the avoided level crossing phenomena in the
dispersion for the cavity, the excitonic branches and the exchange of decay
behavior. As mentioned above, we use a model similar to the one used in Sec-
tion 9.9 and use Eq. (9.121) to serve as the macroscopic dielectric function
filling the left cavity. From the point of view of cavity quantum electrodynam-
ics, we would like to know what the eigenfrequencies of the resonantly coupled
exciton-dual cavity system are. How does these eigenfrequencies react to the
change in system parameters? In other words, how many distinct branches
do the dispersion relation have? How do the roots of the dispersion relation
behave as we change the experimental condition—say, angle of incidence? Is
it possible to observe more than three dips in the frequency response as re-
ported in the experiment? We show that all these questions can be addressed
by means of the model above. There can be additional branches that can, in
principle, lead to additional dips in the frequency scan of the reflection coeffi-
cient. We also present a detailed study of the decay behavior of the modes. We
show that as we scan through the resonance angle, pairs of modes exchange
their decay characteristics.

Consider the structure shown in Fig. 10.11 consisting of two cavities cou-
pled through a DFB structure with the end faces made of DFB mirrors. Let the
left cavity be occupied by a medium doped with resonant absorbers leading to
a frequency dependent dielectric function given by Eq. (9.121). Let the right
cavity contain a homogeneous nondispersive medium with dielectric constant
given by ε0. Thus, in absence of doping (ωp = 0), both the cavities are identical
with degenerate resonance frequencies. Under coupling, there will be a normal
mode splitting, resulting in a doublet in the reflection/transmission coefficient.
Let the coupled cavity system be illuminated by a plane wave incident from
the left at an angle θ. In the presence of doping, reflected or transmitted light
will bear the additional signature of the resonant atoms. We have chosen the
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individual cavities to be λ cavities with a width such that they are at reso-
nance with the atomic frequency for θ = 30◦. In what follows we present the
numerical results. In all our calculations, we have taken the following system
parameters: λ = 0.85 µm, 2γ = 0.001 µm−1. Reflection coefficient R as a func-
tion of frequency for ω2

p = 0.01 and 0.05 µm−2 and for different values of the
angle of incidence was calculated. The results for ω2

p = 0.01 µm−2 are shown
in Fig. 10.12. The left (right) panel shows the results for forward (backward)
illumination, while the dashed curve in each panel is for the undoped cavity.
It is clear from Fig. 10.12 that with an increase in the angle of incidence,
the resonances shift to the right, sweeping over the atomic spectral feature.
As observed in the experiment for the resonant case (θ = 30◦) we see quite
different features in reflection for forward and backward cases. We have two
(three) prominent dips in forward (backward) illumination. We do not show
the case for ω2

p = 0.05 µm−2. Since the atom-photon coupling in this case is
stronger, we end up with larger splittings. Moreover, the fourth dip also shows
up slightly away from the resonance. Next we study the reflection coefficient
for a fixed angle of incidence (say, θ = 30◦) for varying atom-photon coupling
ω2
p (not shown). From a two-dip feature in absence of doping, the response

evolves to a three-dip feature bearing the signature of the atom-field coupling.
In order to have a better understanding of the spectral response of the re-

flection coefficient, we need to look into the roots of the dispersion equation.
The dispersion equation for the multilayered medium is given by Eq. (9.16).
Recall that the dispersion relation Eq. (9.16) is obtained by setting the de-
nominator of the reflection and the transmission coefficient to zero. The roots
of Eq. (9.16) for frequencies are complex in general. The real part of the roots
gives the location of the mode while the imaginary part gives the width or the
decay rate associated with the mode. The results for the roots of the disper-
sion equation are shown in Fig. 10.13. The top (bottom) panel shows the real
(imaginary) part of the roots as functions of angle of incidence. The dashed
curves in Fig. 10.13 show the roots for the coupled cavity in absence of the
dopant atoms. It is worth noting that the bare coupled cavities without the
dopant atoms are sensitive to the angle of incidence, while the branch for the
atomic dispersion does not have any angle dependence. There is a level cross-
ing phenomenon of the bare systems. In a coupled atom dual cavity system,
we observe the avoided level crossing signatures. There cannot be any physical
crossing in a coupled system since it would then imply different group veloci-
ties at the point of intersection. It is clear from Fig. 10.13 that there are five
branches of the dispersion curves, implying thereby that in general five dis-
tinct roots are possible. For convenience of future discussions, we have labeled
the modes by tags from 1 to 5. An important question is whether all these
roots can be resolved or not. For overlapping resonances it may be difficult to
resolve the roots. In fact, close to the resonance (θ = 30◦) the branches 2, 3
and 4 are so close that it may be really difficult to distinguish them because of
the individual widths of the modes. In that case we would observe three dips
due to the branches 1, (2,3,4) and 5. However, away from the resonance angle,
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FIGURE 10.12: Reflection coefficient R as a function of frequency for var-
ious angles of incidence. Left (right) panels are for forward (backward) illu-
mination. Dashed lines give the results for empty coupled cavities. Adapted
from Ref. [78].
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FIGURE 10.13: Roots of the dispersion relation for (a) real and (b) imagi-
nary parts. Dashed lines give the results for empty coupled cavities. Adapted
from Ref. [78].

when the spacing between the modes increases, it may be possible to see more
than three dips in reflection. We demonstrate this in Fig. 10.14 where the top
(bottom) curve shows the resonance dips for θ = 45◦ (θ = 10◦). The solid
(dashed) curve gives the result for the forward (backward) case. It is also
interesting to note from Fig. 10.13 (bottom curve) that in passing through
the resonance angle, the mode pair 2, 4 exchange their decay behavior. For
angles less than the resonance angle, mode 2 is less lossy than mode 4, while
for angles beyond the resonance angle, mode 2 is characterized by a higher
loss. These features can be easily read from a comparison of the widths of
the dips due to the 2-nd and 4-th modes in Fig. 10.14 for the two different
angles. There is a similar exchange of decay behaviour, but somewhat less in
magnitude, between the mode pairs 1 and 5.
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FIGURE 10.14: Reflectivity R for illumination from left (solid) and from
right (dashed) for two angles of incidence with the quantum well in the left
cavity. (a) θ = 45◦ (b) θ = 10◦. Adapted from Ref. [78].
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In this chapter we discuss the resonances of small particles. Our focus will be
on spherical and cylindrical particles where we can develop a detailed analyt-
ical approach. The resonances of such small particles have a great influence
on their scattering properties. They also play an important part in modifying
the density of states nearby and thus play a dominant role in determining
the radiation characteristics of atoms and molecules near them. Moreover,
since the excitation of these resonances are always associated with large local
field enhancements, they find major applications in nonlinear optics for low
threshold phenomena as well as in developing novel types of sensors with high
resolution.

In order to have some preliminary ideas of the origin of these resonances,
consider a microsphere of radius a with relative refractive index m (with re-
spect to the ambient medium). Let a ray inside the microsphere hit the in-
terface at an angle larger than the critical angle for total internal reflection.
The ray can never escape the sphere since it bounces off the surface due to
total internal reflection. This may result in a mode of the sphere, provided
that the principal quantum number n associated with this mode satisfies the
inequality

x ≤ n ≤ mx, x =
2πa

λ
. (11.1)

Here x is referred to as the size parameter. The left (right) inequality in
Eq. (11.1) reflects the fact that the optical path along the inner (outer) pe-
riphery of the sphere (inside and outside) has to be an integer multiple of
the wavelength λ (the sphere is assumed to be in a vacuum). Ray optics or
eikonal approximation, especially for large spheres (x ≫ 1) and plane wave
illumination, can reveal many of the features of these modes, referred to as
the whispering gallery modes. The nomenclature owes its origin to an acoustic
phenomenon in the gallery of St. Paul’s Cathedral in London. A person whis-
pering near the wall can be clearly heard by another standing at the opposite
end of the diameter of the gallery, but not by another at the center. The
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limitations of the ray approach are also evident. A complete analysis valid for
all parameter ranges calls for an exact Lorenz-Mie theory. We briefly recall
the important steps of the Lorenz-Mie theory [32]. The goal is to reveal the
role and importance of the Mie coefficients, which pop up now and again in
many problems ranging from simple scattering to QED applications.

11.1 Elements of Mie theory and the whispering gallery
modes

Let a microsphere of radius a be illuminated by an x-polarized plane wave
propagating along the z direction. The spherical symmetry of the scatterer
dictates the decomposition of all the fields in the vector spherical harmonicsM
and N (see Appendix B). Because of the nonstandard choice of the basis, even
the simple (in Cartesian geometry) incident plane wave Ei looks complicated:

Ei =

∞
∑

n=1

En(M
(1)
o 1n − iN

(1)
e 1n), En =

inE0(2n+ 1)

n(n+ 1)
, (11.2)

where E0 is the incident field amplitude. The internal E1 and scattered fields
Es can also be expressed in terms of the vector spherical harmonics as follows:

E1 =
∞
∑

n=1

En(cnM
(1)
o 1n − idnN

(1)
e 1n), (11.3)

Es =

∞
∑

n=1

En(ianN
(3)
e 1n − bnM

(3)
o 1n). (11.4)

Taking the curl of Eqs. (11.3) and (11.4) leads to the corresponding mag-
netic fields. All the fields (incident, internal and scattered) need to fulfill the
boundary conditions

(Ei +Es −E1)× er =0, (11.5)

(Hi +Hs −H1)× er =0, (11.6)

where er is the unit outward normal to the surface of the sphere. Eqs. (11.5)
and (11.6) can be solved for extracting the Mie coefficients an, bn for the
scattered light:

an =[(Dn(mx)/m+ n/x)ψn(x)− ψn−1(x)]/A, (11.7)

bn =[(mDn(mx) + n/x)ψn(x) − ψn−1(x)]/B. (11.8)

A and B in Eqs. (11.7) and (11.8) are given by

A =(Dn(mx)/m+ n/x)ξn(x) − ξn−1(x), (11.9)

B =(mDn(mx) + n/x)ξn(x)− ξn−1(x). (11.10)
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Here ψn and ξn are the Ricatti-Bessel functions and Dn(x) =
d
dx lnψ(x) is the

logarithmic derivative. All these functions can be evaluated recursively using
a downward scheme, which is more stable numerically. As in any scattering
problem, the zeros of A (B) herald the excitation of the transverse magnetic
(electric) or the TM (TE) modes. Here the word transverse is used to denote
the absence of the radial component of the corresponding field. Thus, for
example, TE would mean Er = 0. The dispersion relation for the modes is
given by

A = 0, for TM or a-modes (11.11)

B = 0, for TE or b-modes. (11.12)

In general Eqs. (11.11) and (11.12) allow complex solutions for the size
parameter x. The corresponding real part localizes the mode on the fre-
quency/wavelength axis and the imaginary part gives the width of the res-
onances. In other words they carry information about how lossy the modes
are. In general WGMs are extremely narrow resonances with quality factors
109 in the visible domain, which is practically impossible to achieve in stan-
dard Fabry-Pérot cavities. The roots of Eqs. (11.11) and (11.12) can be labeled
by the polarization type and by two integers n and l, where n (l) gives the
mode number (order number). The mode number n gives the number of half-
waves along the grand perimeter of the sphere while the order number l gives
the number of peaks in the radial intensity distribution.

The whispering gallery character of the modes can be easily seen from
the radial dependence of the internal fields. For example, for TE modes the
radial component of the electric field is zero and the other two eeeθ, and eeeφ
components inside the sphere are given by

eeeθ : cos(φ)πn(cos(θ))jn(k1r), (11.13)

eeeφ : − sin(φ)τn(cos(θ))jn(k1r), (11.14)

where k1 is the wave vector in the sphere, πn and τn are the angle-dependent
functions, and they can be expressed in terms of the associated Legendre
function of order 1 as follows:

πn =
P 1
n

sin(θ)
, (11.15)

τn =
dP 1

n

dθ
. (11.16)

The radial intensity distribution for a resonant TE mode (given by j2n) has
peaks near the inner edge of the sphere and is nearly zero at the center, which
explains the whispering gallery character of these modes. Similar results hold
for magnetic fields for TM modes. The often-used experimentally measur-
able quantity is the extinction coefficient Qext, which is a measure of both
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absorption and scattering and can be written as follows:

Qext =
2

k2a2

∞
∑

n=1

(2n+ 1)Re(an + bn). (11.17)

It is clear from Eq. (11.17) that resonances in extinction lead to corresponding
enhancements in the internal field coefficients cn and dn since they have the
same resonant denominator. Thus excitation of the modes leads to significant
local field enhancements near the periphery of the sphere.

Several important features of the WGMs identify them as potential can-
didates for diverse applications ranging from nonlinear optics to lasing and
cavity QED.

• Extra high quality factor. The modes with large n and low l are char-
acterized by extra high quality factors. A quality factor of 1010 in the
visible range has been reported experimentally [112].

• Large local field enhancement. As mentioned earlier, due to the poles
of the field coefficients, there can be significant enhancements of local
fields. This is of great importance for nonlinear optical applications. In
fact, many low threshold nonlinear optical phenomena and lasing have
been reported [113].

• Low mode volume. In many applications, such as cavity QED, not only
the temporal confinement of light (long-lived modes due to large qual-
ity factors) but also the spatial confinement (localization) play a very
important role. The radial distribution is confined mostly in the region
a/m ≤ r ≤ a. The localization of the field near the rim of the micro-
sphere leads to low mode volumes leading to large atom-field coupling.

11.1.1 Excitation and characterization of the WGMs

In the early days, the WGMs were excited basically by coupling in the radi-
ation using a prism coupler, much like in waveguide geometries. The evanes-
cent wave in the gap between the prism and the sphere results from total
internal reflection of the incident wave off the base of the prism. For proper
angles of incidence and the frequency of the incident radiation, incident light
can couple selectively to some of the WGMs. Recent techniques use the evanes-
cent field of single-mode optical fibers. Generally the fiber is mounted on a
flat substrate and side-polished to expose the field of the propagating mode.
Coupling efficiency is higher if the microsphere is embedded in a liquid that
is index-matched to the fiber cladding. The analysis of the fiber-microsphere
system requires an extension of the standard Lorenz-Mie theory for plane wave
illumination and is referred to as the generalized Lorenz-Mie theory. In essence
the fiber-microsphere system has a direct relevance to the problem of off-axis
excitation of the sphere by a Gaussian beam. It turns out that a resonant
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FIGURE 11.1: Extinction coefficient Qext as a function of size parameter x
for a water droplet with refractive index 1.33.

off-axis Gaussian beam excites the WGMs of a microsphere more efficiently
than does a plane wave.

11.2 Typical example for a water droplet

A typical extinction feature for a water droplet is shown in Fig. 11.1, where
each peak is labeled by the corresponding mode index. The high Q modes
are supported on the ripple structure of the microspheres. The polarization
(a- or b-mode) and the quantum numbers associated with each mode can be
identified by suppressing the term with given n in Eq. (11.17). Subsequently,
looking at the peaks of the radial intensity pattern, l can be identified. Fig. 11.2
shows the radial field profile (jn) for two TE modes, namely, b256 and b161, for
a water droplet that demonstrates the localization of the fields near the rim
of the microsphere.

11.3 Broken spatial symmetry and its consequences

Up to now we have been discussing the case of perfect spheres. A great
deal of research was devoted to the case when the spheres are deformed [114].
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FIGURE 11.2: Radial field profile (jn) for two TE modes, namely, b256 (solid
line) and b161 (dashed line), for a water droplet with refractive index 1.33.

For deformed spheres a third quantum number, namely, m̃ (not to be con-
fused with the relative refractive index) comes into play. A perfect sphere has
all the m-modes degenerate with (2n+ 1)-fold degeneracy. For axisymmetric
deformation (e.g., for prolate or oblate spheroids) the degeneracy is partially
lifted, leading to distinct frequencies for m̃ values. The plus (minus) refers
to the counterclockwise (clockwise) modes. Note that in perfect spheres or
spheres with axisymmetric deformation, the degeneracy of the clockwise and
counterclockwise modes (also known as Kramers degeneracy) are still present.
There have been many experiments demonstrating broken Kramers degener-
acy in diverse physical systems. These include a figure-eight ring laser, spheres
with impurities, coupled sphere/disc-fiber systems, etc. The broken degener-
acy manifests itself in the normal mode splittings. The splitting resulting from
the lifting of Kramers degeneracy can be explained in terms of a simple model
of coupled oscillators depicting the counter-propagating modes. In a very re-
cent experiment, such normal mode splittings have been exploited to count
the nanoparticles deposited on a micro toroid [115]. It is clear that in a perfect
sphere, modes differing in |m̃| will be degenerate since great circles inclined
at different angles are the same. The latter does not hold in prolate or oblate
spheroids. Thus axisymmetric deformation of a sphere can lift the |m| de-
generacy. Usually the mode with n = |m̃| is referred to as the fundamental
mode and it corresponds to motion close to the equatorial plane at an angle
θ ∼ 1/

√
n. Assuming the deformed sphere as an ellipsoid of rotation with a

profile given by

r(θ) = r0(1 +
ε

3
(3 cos2 θ − 1)), (11.18)
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we can estimate the azimuthal mode spacing to be [116]

∆ωazimuthal = |ωnlm̃+1 − ωnlm̃| ∼ ωnlm̃ε
|m̃|+ 1/2

n2
, (11.19)

where ε is the eccentricity given by ε = (rp − re)/r0 and where rp and re are
the polar and equatorial radii, respectively. Eq. (11.19) clearly reveals that
the spacings decrease with a decrease in |m̃|. The previously mentioned mode
splitting due to axisymmetric deformation was studied in yet another beautiful
experiment by Haroche’s group [117]. The axisymmetric deformation of the
dielectric sphere was introduced by the fiber stem, serving the dual purpose
of holding and exciting the sphere. The intensity variation with respect to
changing the polar angle θ (about the equator) was mapped by a molten fiber
tip. This tip was moved on the surface and the radiation collected was sent
to the detector. Asymptotic analysis (for large n and |m̃| ∼ n) revealed that
the mode intensity pattern is proportional to

Hn−|m̃|(n
1/2 cos θ) sin|m̃|(θ)eim̃φ. (11.20)

It follows from Eq. (11.20) that there will be n− |m̃|+1 lobes in the angular
pattern for the nlm̃-th mode. The (polar) angular intensity distribution is
centered about θ = π and extends up to θ = π ± cos−1(m̃/n). It was thus
possible to assign quantum number |m̃| to a given mode by looking at the
intensity profile.

11.4 Nanoparticles and quasi-static approximation

In the preceding sections of this chapter, we have briefly outlined the math-
ematical framework of the Lorenz-Mie theory for scattering of EM waves by
spherical particles. The solution of the scattering problem yielded an expres-
sion for the scattered field (Es) via the so-called Mie coefficients an and bn.
As mentioned in Section 11.1, for a given n, two distinct types of modes were
identified, one for which there is no radial magnetic field component (trans-
verse magnetic TM or a-modes), and another for which there is no radial
electric field component (transverse electric TE or b-modes). The condition
for excitation of these normal modes was given in Eqs. (11.11) and (11.12)—if
for a particular value of size parameter x, the denominator of the an (bn) co-
efficient approaches a very small value (or tends to vanish), the corresponding
mode dominates. The corresponding roots of Eqs. (11.11) and (11.12) were
accordingly labeled by the polarization type and by two integers, n and l,
where n(l) represents the mode number (order number). These normal modes
of the sphere were identified as the whispering gallery modes (WGMs). Selec-
tive excitation of these modes leads to huge enhancement of the local field near
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the periphery of the sphere. It was subsequently illustrated that large-sized
dielectric spheres (radius a≫ λ, large value of size parameter x) typically ex-
hibit extremely high quality factor of these modes. In this section, we turn to
the other regime of the scattering problem, i.e., scattering by small particles
(small compared to wavelength a ≪ λ, x ≪ 1), and we discuss the normal
modes of sub-wavelength metal particles in this context. These so-called local-
ized surface plasmon modes of small metallic particles have evoked intensive
investigations in the recent past. Detailed accounts of localized plasmons and
their various intriguing properties and manifestations are beyond the scope of
this book. Here, we shall briefly introduce the concepts of the normal modes
of sub-wavelength metal particles and leave the interested reader with ap-
propriate references dealing with relevant development in the growing field
of localized plasmon resonance (sometimes referred to as particle plasmons).
We shall begin with the Lorenz-Mie theory and show that in the small par-
ticle limit, the exact solution of the scattering problem converges to a much
simpler one based on the so-called quasi-static approximation (QSA). This
approximation, simple yet intuitive, helps us acquire useful insights into the
normal modes of the sub-wavelength metallic particles. So far, in this chap-
ter, we have dealt with only one set of optical parameters of the scattering
particle, namely, the refractive index (n1 and nm, the refractive index of the
scattering particle and surrounding medium, respectively, or m the relative
refractive index = n1/nm). Here, wherever necessary, we shall also use the
other corresponding set of optical properties, namely, the dielectric permittiv-
ity (ǫ1 and ǫm of the scatterer and surrounding medium, respectively). As we
know, these two sets of quantities are not independent and are connected via
standard relations. Nevertheless, the use of the dielectric constant would help
us identify useful connections between electrostatics and scattering by small
sub-wavelength particles, as we discuss subsequently.

Recall the expressions for the internal and the scattered fields given in
Eqs. (11.3) and (11.4) via the an and bn Mie coefficients. The expressions for
the fields in the limit of small size parameters (x ≪ 1) can be obtained by
expanding the various functions (the Ricatti-Bessel functions) in the scattering
coefficients an and bn and by retaining only the first few terms. If we retain
terms up to the order of x5, the first three coefficients (a1, b1 and a2) of the
expansion would only contribute [32]

a1 = − i2x
3

3

m2 − 1

m2 + 2
− i2x5

5

(m2 − 2)(m2 − 1)

(m2 + 2)2
,

b1 = − ix
5

45
(m2 − 1), a2 = − ix

5

15

m2 − 1

2m2 + 3
. (11.21)

The contributions of a2- and b1-modes are much weaker than the a1-mode
(|b1| < |a2| ≪ |a1|) in the limit of vanishingly small x and |m|x ≪ 1 (for
example, if we consider a scattering particle with radius a = 20 nm and
λ = 600 nm, the magnitudes of a2 and b1 are two orders weaker than the a1
mode). Thus, for such nanoparticles, for the moment, we would keep terms
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up to the order of x3, wherein the only significant mode is the a1-mode (the
lowest-order TM mode). Within this small particle limit, we shall first try to
get some physical insight into this a1 scattering mode and subsequently we
would also inspect the other lower-order modes (a2 and b1, according to the
hierarchy). With this assumption, the expressions for the scattering, absorp-
tion and extinction efficiencies can be obtained using the framework of Mie
theory:

Qsca =
8

3
x4
∣

∣

∣

∣

m2 − 1

m2 + 2

∣

∣

∣

∣

2

, Qabs = 4xIm

(

m2 − 1

m2 + 2

)

, Qext = Qsca +Qabs.

(11.22)
If we now replace the relative refractive index m in the expressions for the
absorption and scattering efficiencies by the corresponding relative dielectric
permittivity, we obtain the very familiar quantity ǫ1−ǫm

ǫ1+2ǫm
. This appears in

the problem of a sphere in a uniform static electric field and is related to the
dipolar polarizability of a sphere (see Eq. (5.45) of Chapter 5). This suggests a
connection between the scattering by small particles and electrostatics. Let us
now briefly examine the reason for this connection. The problem of a sphere
(radius a) in a uniform static electric field can be solved by using the Laplace
equation for the potential ∇2φ = 0 (let us assume the field is applied along

the z direction ~E = E0ẑ). From the solution of this equation in spherical polar
coordinates (with appropriate boundary conditions), the expressions for the
potential at any point (r, θ, φ) inside (Φ1) and outside (Φ2) the sphere can be
obtained as [3]

Φ1 = − 3ǫm
ǫ1 + 2ǫm

E0r cos θ,

Φ2 = −E0r cos θ + a3E0
ǫ1 − ǫm
ǫ1 + 2ǫm

cos θ

r2
. (11.23)

Apparently, the potential is independent of the azimuthal angle φ due to the
azimuthal symmetry of the problem. The field outside the sphere can now be
interpreted as a superposition of the incident field and the field due to an ideal
dipole kept at the origin with dipole moment

p = 4πǫma
3 ǫ1 − ǫm
ǫ1 + 2ǫm

E0, (11.24)

where

p = ǫmαE0,

α = 4πa3
ǫ1 − ǫm
ǫ1 + 2ǫm

. (11.25)

Here, α is the dipolar polarizability of the sphere. It follows that a sphere in
a uniform static electric field is equivalent to an ideal dipole. We now turn to
the problem of scattering an incident plane EM wave by a sphere. Unlike the
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electrostatic case, the incident field varies in time and space. For the moment,
we would assume that replacing the sphere by an ideal dipole is valid for
plane wave as well. For an incident x-polarized field, propagating along the
z direction with E = E0 exp(ikz − iωt)x̂, an ideal dipole located at z = 0
would oscillate with the frequency of the applied field with dipole moment
p = ǫmαE0 exp(−iωt)x̂. The electric field due to this oscillating dipole in the
far field (kr ≫ 1) can be written as [3]

Es =
eikr

−ikr
ik3

4πǫm
er × (er × p). (11.26)

We can perform a few simple algebraic steps and show that the expression for
the electric field due to the oscillating dipole is identical to that obtained from
the Lorenz-Mie theory (Eq. (11.4) with the far-field approximation kr ≫ 1),
retaining only the lowest-order TM (a1) scattering mode (which was used
to obtain the absorption and scattering efficiencies for the sub-wavelength
scatterer in Eq. (11.22). In fact, using this approximation of replacing the
sphere by an ideal dipole, we obtain the same expressions for the absorption
and scattering efficiencies as that of Eq. (11.22) (derived from the Lorenz-Mie
theory in the limit of small-size parameter):

Qabs =
kIm(α)

πa2
= 4xIm

(

ǫ1 − ǫm
ǫ1 + 2ǫm

)

,

Qsca =
1

6π

k4 |α|2
πa2

=
8

3
x4
∣

∣

∣

∣

ǫ1 − ǫm
ǫ1 + 2ǫm

∣

∣

∣

∣

2

. (11.27)

This approximation of replacing the spherical scatterer by an ideal oscillat-
ing dipole amounts to the quasi-static approximation mentioned earlier. The
reason why this approximation holds for describing the scattering of plane
wave by spherical particle with small-size parameter (x ≪ 1 and |m|x ≪ 1)
can be understood from the following simple argument. For an incident plane
wave, the amplitude variation inside the sphere is E = E0 exp(ikz); when
x = ka≪ 1, the field is almost uniform throughout the sphere. Further, note
that the characteristic time of changing of the field is τ = 1/ω. The time
required for the signal to propagate across the sphere is τ∗ = an1/c. It is
apparent that every point inside the sphere would respond simultaneously (in
phase) provided τ∗ ≪ τ or if 2πan1/λ≪ 1. Thus, when the conditions x≪ 1
and |m|x≪ 1 are satisfied, the sphere can be treated as an ideal dipole with
its moment given by the electrostatic theory.

Having described the scattering problem of small particles in the quasi-
static limit, we are now in a position to find out the condition of the resonance
of the normal modes of the small particles. It follows from Eq. (11.27) that
resonant enhancement of both scattering and absorption is possible under the
condition ǫ1 = −2ǫm. Note that the dielectric permittivity of the scattering
particle may have both real and imaginary parts (ǫ1 = ǫ′ + iǫ′′) and the con-
dition for resonance is ideally satisfied when ǫ′ = −2ǫm with ǫ′′ = 0. This
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is known as the Fröhlich condition. If the surrounding medium is a dielectric
(ǫm is positive; if we further assume for the sake of simplicity that it is nearly
nonabsorptive, then ǫm is real), the resonance condition is then satisfied at fre-
quencies where the real part of the dielectric permittivity ǫ′ of the scattering
particle is negative. We know that the real part of the dielectric permittivity
for metals assumes negative values at optical frequencies (e.g., gold and sil-
ver have negative values for ǫ′ in the entire visible wavelength range). Thus
sub-wavelength metallic particles can exhibit this kind of resonance behav-
ior, known as localized plasmon resonance. In the limit of vanishingly small
size parameters (as we have considered so far in this section), where only the
first-order (n = 1) TM scattering (a1) mode contributes, the corresponding
resonance is interpreted as the dipolar plasmon resonance, as the condition of
resonance directly follows from the condition of resonant enhancement of the
dipolar polarizability. Note that the same condition of resonance could also be
directly obtained from the vanishing of the denominator of the Mie coefficients
an in Eq. (11.9), under the approximation of vanishing size parameter x→ 0
(and finite |m|). Once again, using series expansion of the spherical Bessel
functions in Eq. (11.9) and with a bit of algebra, the resonance condition can
be obtained as m2 = −n+1

n . For the lowest-order mode (n = 1), this is iden-
tical to the condition for resonance of the dipolar polarizability ǫ1 = −2ǫm.
It may be worth noting that this lowest-order (dipolar) TM mode has almost
uniform field distribution throughout the sphere and is sometimes referred to
as the mode of uniform polarization.

The condition for resonance discussed above is strictly valid in the limit of
vanishingly small-size parameter x. Here, we shall briefly address the effect of
the finite size of particles on the localized plasmon modes. If the size parameter
x increases to an extent that we are still within the quasi-static limit x < 1,
the condition for resonance of the a1-mode changes from the ideal condition of
the resonance of the dipolar polarizability. In fact, the condition for resonance
can still be obtained by retaining a few more terms in the expansions of the
spherical Bessel functions in the Mie coefficient a1 (Eqs. (11.7) and (11.21)).
An approximate condition for the resonance of the a1-mode (correct to terms
of order x2) can be obtained as

ǫ1 = −
(

2 +
12

5
x2
)

ǫm. (11.28)

It is known that for most metals, the real part of the dielectric permittiv-
ity assumes more negative values as we approach higher wavelengths (ǫ is
an increasing function of frequency). Therefore, the wavelength at which the
Fröhlich condition is satisfied shifts toward longer wavelengths (as compared
to the ideal resonance condition of the dipolar mode ǫ1 = −2ǫm) as we in-
corporate finite size effects. Thus the first observable effect of increasing size
is the shift of the dipolar plasmon resonance to higher wavelengths (lower
frequencies). As noted before with Eq. (11.21), with increasing value of x the
other lower-order modes (TM a2-mode and TE b1-mode, according to the
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(a) (b)

FIGURE 11.3: (a) The wavelength variation of the real and imaginary parts
(ǫ′ and ǫ′′) of the dielectric permittivity of silver (Ag). The wavelengths cor-
responding to ideal dipolar and quadrupolar plasmon resonances are marked
(the surrounding medium is taken to be water). (b) The Mie theory com-
puted wavelength variation of scattering efficiencies(Qsca) for Ag nanospheres
of three different radii (a = 10 nm, 50 nm and 500 nm). The scattering effi-
ciency for the 10 nm sphere is scaled-up fifteen times (×15) in order to show in
the same scale. The wavelengths corresponding to the dipolar plasmon reso-
nance (shown for the 10 nm spheres) and quadrupolar plasmon resonance (for
the 50 nm spheres) are marked. With increasing size, the dipolar resonance
broadens and shifts toward longer wavelengths. For the largest-sized sphere
shown here (a = 500 nm), QSA is no longer valid and it is associated with
significant broadening; contributions from higher-order plasmon modes and
considerable radiative damping. For this figure, the surrounding medium is
taken to be water and the values for ǫ′ and ǫ′′ are used from (a).

hierarchy) also start contributing to the scattering process. Specifically, the
contribution of the a2-mode becomes more prominent with increasing x. We
note that the condition of resonance for the a2-mode can be obtained from
Eq. (11.21) as ǫ1 = − 3

2ǫm. This condition is identical to the resonance condi-
tion of electrostatic quadrupolar polarizability.

Thus, in the quasi-static limit, plasmon resonance associated with the a2-
mode can be identified as the quadrupolar plasmon resonance. Clearly, the
resonance condition for the quadrupolar plasmon mode is satisfied at lower
wavelengths (higher frequencies) than the corresponding ideal dipolar plas-
mon modes. These are illustrated in Fig. 11.3. Here, as an example, we have
shown the wavelength variation of the real and imaginary parts (ǫ′ and ǫ′′)
of the dielectric permittivity of silver (Ag) (Fig. 11.3(a)). The wavelengths
corresponding to the resonances of ideal dipolar and quadrupolar plasmon
modes are marked (the surrounding medium is taken to be water). Fig. 11.3(b)
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illustrates the finite size effect on the resulting plasmon resonance behavior,
where the wavelength dependence of scattering efficiency Qsca is shown for Ag
nanospheres of three different radii (note, similar behavior is also observed for
absorption and extinction efficiencies, which are not shown here). As discussed
above, increasing size of the metal nanosphere is associated with the shift of
the dipolar resonance toward longer wavelengths and subsequent broadening
of the resonance peak. The broadening of the resonance peak is a manifes-
tation of stronger radiative damping with increasing size of the scatterer. As
expected, this is also associated with the appearance of a quadrupolar reso-
nance peak. These behaviors may still be interpreted within the framework
of the quasi-static approximation. Finally, when the size becomes too large
(x ≫ 1), the resonance behavior can no longer be described and interpreted
using the quasi-static approximation. For such large sizes, the quasi-static
approximation breaks down because (i) different volume elements within the
sphere do not respond in phase (the retardation effect sets in) and (ii) it can
no longer be assumed that each region within the sphere is only exposed to
the incident field alone (the depolarization field becomes significant). Accurate
description of the scattering process and the resonance behavior would neces-
sitate the use of the Lorenz-Mie theory. Nevertheless, the resulting effects are
contribution of higher-order normal scattering modes, significant broadening
and radiative damping of the plasmon modes.

So far, we have restricted our discussion to sub-wavelength metallic
spheres. It appears that within the small particle limit, the basic physics
of localized surface plasmon resonance can be described adequately using the
quasi-static approximation, and the resonance conditions can be determined
using the resonance conditions of dipolar and quadrupolar polarizabilities.
For conceptual and practical reasons, extension of the quasi-static approxima-
tion for other nonspherical particles, such as cylinders, disks, rods, ellipsoids,
etc., is warranted. The resonance conditions can accordingly be determined
from the condition of resonance of the polarizabilities along the different axes,
within the quasi-static approximation. For example, if we consider an axially
symmetric particle, such as an ellipsoid, it exhibits three different polarizabil-
ities along the three major (minor) axes. Accordingly, an ellipsoidal metal
particle would exhibit three different plasmon resonances at different wave-
lengths. In Fig. 11.4 we provide an illustrative example of plasmon resonances
of spheroidal silver nanoparticles. A spheroid is an important special class of
ellipsoids. For prolate (oblate) spheroids, the two major (minor) axes are of
equal size, leading to two different polarizabilities along the major and the
minor axes, respectively. The examples of oblate spheroids shown in Fig. 11.4
thus exhibit two plasmon resonance peaks. These two peaks are due to the
plasmon resonances corresponding to the longitudinal and the transverse dipo-
lar polarizabilities. The weaker peak at around 365 nm and the stronger peak
at around 440 nm (e.g., for an aspect ratio e = 1.5) can be identified due to
the surface plasmon resonance along the short axis (transverse) and the long
axis (longitudinal) of the oblate spheroid, respectively. The relative intensities
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FIGURE 11.4: The scattering efficiency (Qsca) as a function of wavelength
for spheroidal (oblate) Ag nanoparticles of varying aspect ratios (e = 1.25−
2.0). (Note that values of e > 1 correspond to oblate spheroids as shown here.
Aspect ratios e < 1, on the other hand, correspond to prolate spheroids, not
shown here.) The radius of equal surface area sphere is a = 20 nm (fixed).
The surrounding medium is once again taken to be water and the values used
for ǫ′ and ǫ′′ are from Fig. 11.3(a).

of the two bands and their spectral positions are controlled by the relative
strength of the two orthogonal dipolar plasmon polarizabilities. Since this in
turn is decided by the aspect ratio, with its increasing value, the two reso-
nance peaks start moving apart (the transverse and the longitudinal we get
blue- and red-shifted, respectively, as is apparent from the figure).

To conclude this section, we have briefly addressed the normal scatter-
ing modes of sub-wavelength particles under the quasi-static approximation.
In this context, we have discussed the localized surface plasmon resonances
of metal nanoparticles, with illustrative examples of the simplest form of
nanoparticles (e.g., spheres and spheroids). A number of interesting and intri-
cate optical effects associated with such localized plasmon resonances (in more
complex nanostructures such as symmetric and symmetry-breaking nanopar-
ticle arrays, clusters and so forth) have been observed in the recent past and
are being actively pursued for both fundamental interests and numerous prac-
tical applications. Interested readers are referred to the monograph by S. A.
Maier’s monograph [99] for a more detailed account of these.
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The term spin-orbit interaction refers to the interaction and coupling of the
spin and orbital degree of freedom of spinning particles such as electrons or
other quantum particles. The universal nature of such interaction has led to
its manifestation in diverse fields of physics, ranging from atomic, condensed
matter to optical systems. In optics, the angular momentum (AM) of light
is related to the circular (elliptical) polarization of light waves or the helical
phase fronts (vortex) of optical beams. In classical electromagnetic descrip-
tion, the former is associated with the rotation of the electric field vector
around the propagation axis and is referred to as the spin angular momen-
tum (SAM); the latter is associated with rotation of the phase structure of a
light beam and is known as orbital angular momentum (OAM). From a fun-
damental point of view, coupling and interconversion between the spin and
orbital AM degrees of freedom of light are thus expected under certain circum-
stances, and accordingly the evolution of polarized light in a trajectory should
mimic the SOI effect of a massless spin 1 particle (photon) (that is the SOI
effects exhibited by spin 1

2 electrons while evolving under an external field).
In this chapter, we address this issue and show that this effect can indeed be
observed in a variety of light-matter interactions, e.g., by the tight focusing
of fundamental or higher-order Gaussian beams, reflection/refraction of finite
beams at dielectric interfaces, high numerical aperture imaging, scattering
from micro-/nanosystems, propagation in gradient index media and so forth.
We shall briefly address the various interesting manifestations of SOI, discuss
corresponding mathematical frameworks (based on wave optics treatment) for
describing SOI and provide illustrative examples of the resulting effects and
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discuss their potential implications. In this regard, we shall define SAM and
OAM of light through classical electromagnetic (EM) wave optics formalism
and introduce the concept of geometrical phase of light (the spin redirection
Berry phase and Pancharatnam Berry phase), which is intimately related to
the SOI of light.

12.1 Spin and orbital angular momentum of light

It is well known from Maxwell’s theory that electromagnetic radiation car-
ries both energy and momentum. The momentum may have both linear and
angular contributions. The fact that light carries a linear momentum equiv-
alent to ~k per photon (k = 2π

λ is the wave vector) and that it can exert
radiation pressure on atoms and matter was experimentally demonstrated
long ago. Bethe, on the other hand, made the first experimental observation
of the angular momentum of light and demonstrated that circularly polarized
light could exert a mechanical torque on a birefringent plate by transfer of
angular momentum [118, 119, 120]. In his celebrated experiment, a circularly
polarized light beam was generated using a combination of a linear polar-
izer and a quarter-waveplate and was then made incident on a half-waveplate
suspended by a fine quartz fiber. The half-waveplate transformed left circu-
lar polarization to right circular polarization and consequently transferred
2~ angular momentum per photon to the birefringent plate. The mechanical
torque exerted on the half-waveplate by a circularly polarized light beam thus
balances the flip of the angular momentum of light. The measured torque in-
deed agreed in sign and magnitude with that predicted by both the wave and
quantum theories of light, in which the angular momentum associated with
left/right circular polarization is described as the ±~ spin of individual pho-
tons and is accordingly termed the spin angular momentum (SAM) of light.
For an idealized circularly polarized wave (with frequency ω), SAM is given
by Jz = N~ and the energy by W = N~ω, where N is the total number
of photons. Thus the angular momentum to energy ratio is Jz

W = 1
ω . This

definition can be made more generalized to include elliptically polarized light
characterized by −1 ≤ σ ≤ +1 (σ = ±1 for left/right circularly polarized
light, respectively, and σ = 0 for linearly polarized light), yielding an angular
momentum-to-energy ratio Jz

W = σ
ω .

It was not recognized until the early 1990s that in addition to SAM, light
beams can also carry orbital angular momentum (OAM). In 1992, Allen et al.,
by a straightforward calculation, theoretically demonstrated that light beams
with helical phase fronts characterized by a phase dependence in the trans-
verse plane as ∼ exp(ilφ) (where φ is the azimuthal angle and l can be any
integer value, positive or negative) carry an OAM of l~ per photon [121]. This
type of beam has a phase dislocation on the beam axis and is often referred
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to as an optical vortex. In general, any beam with inclined phase fronts may
carry OAM about the beam propagation axis, which is perfectly discernible
and profoundly different in nature from SAM, being related to helical wave-
fronts rather than to polarization. The Laguerre-Gaussian (LG) laser mode
is an example of an OAM-carrying beam and these so-called vortex beams
can nowadays be readily generated in a standard optics laboratory. From an
analogy of quantum mechanics and paraxial wave optics, it is easily recogniz-
able that LG modes having an azimuthal angular dependence of amplitude
as ∼ exp(ilφ) are eigenmodes of the angular momentum operator and accord-
ingly carry l~ OAM per photon. In what follows, we show that the definitions
of SAM and OAM of light also follow from purely classical (EM) wave optics
treatments, and we subsequently discuss some of the salient features of such
angular momentum-carrying light beams.

Let us consider a monochromatic (with frequency ω) EM wave propagat-
ing along a direction z, where x and y are the other two axes in Cartesian
coordinates. The local densities of the linear momentum (p) and angular mo-
mentum (j ) for such an EM wave can be calculated from the electric field E
and the magnetic field B of the wave as [119]

p = ǫ0E×B and j = r× p = ǫ0r× (E×B). (12.1)

The total linear (P) and angular (J ) momentum of the field is then given by

P =

∫

ǫ0 (E×B)dr and J =

∫

ǫ0 r× (E×B)dr. (12.2)

In atomic physics, we expect that J = L+ S, where the first term is identified
with the orbital angular momentum L and the second with the spin S. But
the important questions that arise here are (i) whether such a physically un-
ambiguous separation of SAM and OAM is possible for any arbitrary optical
vector (EM) field and (ii) whether they are separately physically observable.
In other words, is it possible to single out some general prescriptions for the
evaluation (and observation) of the angular momentum of a field from the
phase and amplitude structure of the vector field? To answer these questions,
a deeper insight into the definition of the angular momentum is necessary.
If we consider a purely transverse plane EM wave (as we often tend to do
while describing polarization and other properties of light) propagating in the
z direction with the vibrations of the electric and magnetic fields contained
in the xy plane, we end up in a seemingly paradoxical situation. For such
an idealized transverse plane EM wave, the linear momentum (and Poynting
vector E × B) is along the propagation (z) direction and there cannot be a
component of angular momentum r× (E×B) in the same direction. At the
most fundamental level, in order to have a component of angular momentum
(of any form) along the propagation direction z, we need to have components
of electric and/or magnetic fields in the z direction. Thus even if circularly
polarized a plane wave cannot carry any angular momentum. This contradicts
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the results of Bethe’s celebrated experiment and what we stated at the begin-
ning of this section. The resolution of this seemingly paradoxical situation lies
in the fact that a plane wave is purely an idealization that cannot be applied
in the real world. Real optical beams are limited in spatial extent either by the
beams themselves or by the finite extent of the measurement system used to
detect them, and this leads to a nonzero longitudinal component of the field
(an EM field is not purely transverse in such a situation). This longitudinal
component of the field arises from the radial gradient of the field that occurs
at the edge of the beam or the measurement system, which eventually leads to
a value of angular momentum of ±~ per photon (for left/right circular polar-
ization) when integrated over the cross-section of the entire beam. The origin
of OAM for a finite optical beam having an azimuthal angular dependence
of amplitude in the transverse plane as ∼ exp(ilφ) can also be understood in
an analogous fashion. Such beams have helical phase fronts, with the number
of intertwined helices and the handedness depending on the magnitude and
the sign of l. An EM field transverse to these phase fronts has longitudinal
components. The Poynting vector, which is parallel to the surface normal of
these phase fronts, has an azimuthal component around the beam and ac-
cordingly an angular momentum along the beam propagation direction. The
arguments above can be put forward in a formal manner using the wave equa-
tion in paraxial approximation, which is quite conveniently used to model the
distribution of the field amplitudes of laser modes and its propagation.

Paraxial approximation of wave equations describes the propagation of
light beams whose transverse dimensions are much smaller than the charac-
teristic longitudinal distance over which the field changes its magnitude. In
this approximation, the beam waist w0 (transverse dimension of the beam) is
assumed to be much smaller than the diffraction length ld = kw2

0 . The gen-
eral form of an electric field in Cartesian coordinates for the simplest paraxial
waves (propagating along the z direction) can be written as

E(x, y, z) = F(x, y, z) exp(ikz). (12.3)

Here, F(x,y, z) is the slowly varying spatial envelope. The small parameter
(w0/ld) can be used as an expansion parameter, and under paraxial approxi-
mation, the derivative of F with respect to z is negligible when compared to
the transverse derivatives. Accordingly, the field F satisfies the paraxial wave
equation

2ik
∂

∂z
F = −

(

∂2

∂x2
+

∂2

∂y2

)

F. (12.4)

This equation describes the propagation of the wave in the z direction for a
given input field distribution. Both the polarization (linear, circular or ellip-
tical) and the phase structure of the beam are encoded in F. We also note
that the longitudinal (z) component of the field is smaller than the transverse
component by a factor w0/ld.

The z component of the angular momentum density jz (defined in
Eq. (12.1)) can now be determined for the paraxial EM wave defined in Eqs.
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(12.3) and (12.4). By eliminating the magnetic field B from Eq. (12.1) us-
ing Maxwell’s equation iωB = ∇ × E,∇ · E = 0 and by performing simple
algebraic manipulations, the expression for the z component of the angular
momentum density can be obtained as [121, 122]

jz(x, y, z) =
[ωǫ0
2i

E∗(r̂ ×∇)E
]

z
+
[ωǫ0
2i

E∗ × E
]

z

=
ωǫ0
2i

[

F ∗
k

(

x
∂

∂y
− y

∂

∂x

)

Fk

]

k=x,y

+
ωǫ0
2i

(F ∗
xFy − F ∗

y Fx).
(12.5)

This expression for the angular momentum density answers the first question
that we posed, ‘whether such a physically unambiguous separation of SAM
and OAM is possible for any arbitrary optical vector (EM) field.’ A careful
look at the equation reveals that the first term of the equation is related to the
transverse distribution of the field (amplitude and phase) and the second term
to the polarization of the field. The first term may therefore be identified as the
OAM density. The second term, on the other hand, is directly proportional
to the circularly polarized field component of the wave (the fourth Stokes
vector element V as defined in Eq. (6.12) in Chapter 6) and vanishes for
a linearly polarized wave. This therefore reflects the SAM density of the EM
wave. The angular momentum density jz can easily be evaluated for circularly
polarized paraxial beams with helical phase fronts (the so-called vortex beams
like the circularly polarized LG modes), whose transverse field can be written
in cylindrically symmetric form as

F(r, φ) = u(r) exp(ilφ)F̂. (12.6)

In order to do so, we recognize
(

x ∂
∂y − y ∂

∂x = ∂
∂φ

)

and represent the normal-

ized form of the quantity i(F ∗
yFx − F ∗

xFy) by wave helicity σ(−1 ≤ σ ≤ 1),

jz(r, φ) = (σ + l)ωǫ0|u(r)|2 = (σ + l)ǫ0ω
2|u(r)|2. (12.7)

The energy density of the paraxial beam above can be written as

w = cǫ0(E×B)z = cωkǫ0|u(r)|2 = ǫ0ω
2|u(r)|2.

Thus, the ratio of angular momentum density to energy density of the field
becomes

jz
w

=
σ + l

ω
. (12.8)

The ratio of the total angular momentum carried by the beam to the energy
per unit length (Jz/W ) can also be worked out by integrating over the xy
plane, which would also yield the same value as above. These results are in
agreement to what was stated at the beginning that circularly (or elliptically)
polarized vortex beams carry ±σ~ SAM per photon (σ = ±1 for left/right
circular and σ < 1 for elliptical polarization) and l~ OAM per photon.

© 2016 Taylor & Francis Group, LLC

  



248 Wave Optics: Basic Concepts and Contemporary Trends

It is pertinent to note here that for the cylindrically symmetric paraxial
beam treated above, the symmetry of the radial and azimuthal components
about the axis ensures that integration over the beam profile leaves only the z
component of the angular momentum (the transverse component of the angu-
lar momentum vanishes). Caution must be exercised however, in generalizing
this treatment (based on paraxial approximation) for unambiguous separation
of SAM and OAM for any arbitrary optical vector (EM) field. This seemingly
clear separation of SAM and OAM is particularly complicated in the presence
of tight focusing (or similar highly nonparaxial fields), and we need to use a
more sophisticated treatment incorporating the three-dimensional nature of
the vector field. We refer the reader to the relevant literature on this topic.

Both the types of angular momentum described above (SAM arising from
circular polarization and OAM arising from helical phase front) do not depend
upon the lateral position of the axis (choice of the calculation axis), and they
are accordingly ‘intrinsic’ per se. They may also have an extrinsic contribution
of the angular momentum, which depends upon the choice of the origin and the
calculation axis. This extrinsic angular momentum cannot have a contribution
from SAM (which is purely intrinsic in nature), but it can have a contribution
of extrinsic OAM. As defined above, when integrated over the beam profile,
the total angular momentum in the z direction is given by [123]

Jz =

∫

ǫ0r× (E×B)dxdy. (12.9)

If the axis is laterally displaced by r0 = (r0x, r0y), the change in the z com-
ponent of the angular momentum would be

∆Jz = r0xǫ0

∫

(E×B)ydxdy + r0yǫ0

∫

(E×B)xdxdy. (12.10)

The angular momentum is said to be intrinsic if ∆Jz vanishes for all values
of r0x and r0y. This can be satisfied if z is chosen in such a way that the total
transverse momenta vanish:

∫

(E×B)ydxdy = 0 and

∫

(E×B)xdxdy = 0. (12.11)

Apparently, for the cylindrically symmetric paraxial beams (e.g., the LG
beams having any value of l), the total transverse momenta are exactly zero,
and accordingly the OAM associated with such beams is intrinsic. Breaking
the symmetry of the beam (e.g., by truncating using apertures), on the other
hand, would lead to finite values of the transverse momenta and nonzero ∆Jz
values, and the corresponding OAM can be termed extrinsic.

Note that even for such truncated beams, the SAM remains ±σ~ per pho-
ton, irrespective of the choice of the calculation axis, and so it can be treated
as intrinsic. We shall stop here with this brief definition of the intrinsic and
extrinsic angular momenta and their physical origins. As we shall see later,
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FIGURE 12.1: (a) Rotation of the electric field vector around the propa-
gation axis for light with left (L) and right (R) circular polarization. This is
connected to the SAM of light. (b) Rotation of the phase front for a phase
front having l = 0 (no OAM-carrying) and for l = 1 (OAM-carrying) light
beam.

the generation of the extrinsic OAM has an important role in the spin-orbit
interaction of light and the resulting polarization-dependent shift of the beam
trajectory or the beam’s center of gravity (an effect known as the Spin Hall
effect of light).

Now we turn to the other important question that we posed in the begin-
ning, ‘whether the angular momenta are separately physically observable.’ To
answer this question, we take a step back and look at the distinctive origin
of the two different forms of angular momentum (SAM and OAM) based on
simple geometrical arguments. SAM is related to the circular polarization,
i.e., to the rotation of the electric field vector about the axis of propagation
(Fig. 12.1(a)). OAM, on the other hand, is related to the rotation of the phase
structure (inclination of the phase front) of the light beam (Fig. 12.1(b)) [124].
The fact that circularly polarized light should carry SAM of ±~ per photon
follows from the following geometric argument. A circular path of circumfer-
ence λ has a radius of λ/2π and a linear momentum of ~k directed around
this circle yields an angular momentum of ~. Similarly, the quantization of
OAM in units of ~ can also be understood by noting that the inclination
of the phase front and hence the Poynting vector at radius r, with respect
to the beam propagation axis, is lλ/2πr. This results in an azimuthal com-
ponent of the linear momentum of light as ~klλ

2πr per photon. This quantity,
when multiplied with the radius vector, yields an angular momentum of l~
per photon. With this geometrical concept discerning the nature of the two
different angular momenta of light, we now briefly look at their mechanical
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FIGURE 12.2: (a) Torque applied to a birefringent half-waveplate as input
left circularly polarized light is converted into outgoing right circularly po-
larized light. The angular momentum balance demands a transfer of SAM of
2~ per photon to the waveplate, leading to rotation of the plate. (b) In an
analogous experiment proposed by Allen et al., the transfer of OAM to a π
mode converter that consists of two cylindrical lenses. The π mode converter
converts l = +1 LG mode to l = −1 LG mode, thereby transferring OAM of
2~ per photon to the mode converter.

equivalence, i.e., how or whether the mechanical effects they produce are dif-
ferent and separately observable when an AM-carrying light beam interacts
with any physical object. As previously discussed, Bethe demonstrated the
mechanical equivalence of SAM by observing the transfer of SAM from light
to a birefringent crystal waveplate, leading to a torque exerted on the wave-
plate. This mechanical torque exerted on the half-waveplate (which converts
left circular polarization to right circular polarization) by the incident cir-
cularly polarized light beam was shown to balance the flip of the SAM of
light, resulting from the conservation of the angular momentum at the face
of the birefringent plate (see Fig. 12.2(a)). An analogous experiment was also
proposed by Allen et al. [121], where the OAM present within the Laguerre-
Gaussian (LG) laser mode would cause the rotation of a π mode converter (see
Fig. 12.2(b)). Note that this π mode converter in the OAM basis resembles
the role of a half-waveplate in the SAM basis, in that this converts l = +1
mode to l = −1 mode (just like half-waveplate converts σ = +1 → −1). Such
a π mode converter can be made by using a pair of cylindrical lenses kept at
2f distance away (f is the focal length), or alternatively a Dove prism may
also act as a π mode converter (transforming any mode into its mirror image)
[122, 124]. Even though such an experiment has actually not been performed
(since this has proved to be too technically demanding), from a conceptual
point of view, transfer of OAM to the π mode converter in the form of me-
chanical torque (thereby balancing the flip of OAM) is warranted. The first
experimental observation of the existence of OAM as a mechanical property
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was made in optical tweezers [125]. Optical tweezers uses the gradient force
of tightly focused laser beams to trap microscopic dielectric particles in three
dimensions within a surrounding fluid (described in detail in Chapter 13). In
this experiment, microscopic absorptive particles trapped by optical tweezers
were transferred to the OAM carried by a LG beam, which resulted in the
rotation of the particle at several hertz. This rotation was correctly attributed
to the transfer of OAM from light to matter. In fact, for an on-axis trapped
particle, it was demonstrated that the rotation speed of the particle can be
increased or reduced by combining SAM with OAM (circularly polarized LG
beam with σ = ±1, l = ±1 or more). In other words, the SAM can be added
or subtracted from the OAM component consistent with the statement that
the total AM component of light beam is (l+ σ)~. In an off-axis trap, on the
other hand, the particle behaves differently. It responds to OAM by orbiting
about the axis and also spins about its own axis because of SAM. Finally,
the AM corresponding to these distinctive properties seems to exhibit differ-
ent mechanical features. SAM plays important roles in birefringent materials,
driving the rotation of the local optical axis, while OAM can set in motion,
along trajectories circulating around the beam axis, the molecule center of
mass or elemental volumes in inhomogeneous macroscopic bodies. A detailed
account of the transfer of AM to yield mechanical motion (by exerting torque)
of microscopic particles in optical tweezers is provided in Chapter 13.

Finally, we end this section with a brief mention of the various experi-
mental methods for generating angular momentum-carrying light beams. As
discussed in some detail in Chapter 6 (on polarization), the SAM-carrying
beam can be conveniently generated or converted using appropriate combina-
tions of linear polarizers and birefringent wave plates (e.g., a linear polarizer
and a quarter-wave plate with its axis making an angle 45◦ with respect to the
axis of the polarizer can be used to generate left or right circularly polarized
light). In recent years several methods have been developed to generate an
OAM-carrying beam or to convert the OAM of any light beam. A detailed
discussion on these various techniques is not within the scope of this book.
Here, we just briefly identify the adopted methods and leave the reader with
appropriate references for further reading on this subject. The helical phase
front, having an azimuthal angular dependence of amplitude in the transverse
plane as ∼ exp(ilφ), can be directly imparted on a laser beam by using a spiral
phase plate. A spiral phase plate has an optical thickness d, given by d = λlφ

2π .
Upon transmission, a plane wave input beam is transformed into a helically
phased beam characterized by an azimuthal phase structure exp(ilφ). Alter-
natively, this can be achieved using diffractive optical elements, such as ‘forked
gratings’ (which gives rise to first-order diffracted spots with annular inten-
sity cross-sections, a natural consequence of the exp(ilφ) phase structure) or
computer-generated holograms. The astigmatic mode converters consisting of
a pair of cylindrical lenses (as previously mentioned) are also frequently used to
generate OAM-carrying beams or for OAM conversion. When a pair of cylin-
drical lenses is kept at 2f distance away, they act as π mode converters; when
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they are kept at
√
2f distance away, they act as π/2 mode converters. The

π/2 mode converter in the OAM basis plays the role of a quarter-waveplate
in the SAM basis, and accordingly it can convert Hermite-Gaussian (HG)
laser modes into LG modes (carrying OAM). The Pancharatnam-Berry opti-
cal elements (such as the q-plate) exploits the spin-orbit interaction of light to
generate the desired OAM state (this is discussed subsequently in the context
of spin-orbit interactions of light in inhomogeneous anisotropic medium). It
may be pertinent to note here, despite the various sophisticated approaches
that have been developed to generate helically phased beams, they are not
unique features in optical settings and are in fact quite ubiquitous. This fol-
lows from the fact that while interference of two plane waves yields sinusoidal
fringes, interference between three or more plane waves leads to points with
perfect destructive interference, around which the phase advances or retards
by 2π. These are the phase singularities characteristic of OAM and can easily
be observed in optical speckles. Of course, over the extent of the speckle pat-
tern, there are equal numbers of clockwise and counterclockwise singularities,
leading overall OAM to be zero.

Having introduced the concept of spin and orbital angular momentum
of light, we now turn to the interaction and interconversion (known as SOI)
between them in various light-matter interactions, which is of course the focus
of this chapter.

12.2 Spin-orbit interaction (SOI) of light

Spin-orbit interaction (SOI) is a well-known phenomenon in quantum
physics. It describes a weak coupling between the spin and orbital angular
momentum of quantum particles, such as electrons. This is usually interpreted
as an electromagnetic interaction of the moving magnetic moment of the elec-
tron with an external electric field. In the quantum mechanical description,
SOI of electrons is described (and included) as a relativistic correction to the
Schrödinger equation in the presence of an external field, which eventually
leads to a spin-dependent term in the Hamiltonian. Without going into the
quantum mechanical details of the relativistic corrections to the Schrödinger
equation here, we briefly illustrate the effect in the framework of classical
electrodynamics, where the vectors of the electromagnetic field depend on the
reference system. In a reference system that moves with velocity v relative to
an external electric field E, we find a magnetic field

B = −1

c
v ×E =

1

mc
E× P , (12.12)

where m is the mass of the electron and P is the momentum. The moving
electron thus experiences a magnetic field in its rest frame that arises from
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the Lorentz transformation of the static (external) electric field. This field in
turn interacts with the electron spin. The energy of the electron in this field,
due to its magnetic moment µ, is

−µ ·B = − e

mc
S ·B = − e

m2c2
S · (E× P), (12.13)

where e is the electron charge and its spin is S = ~

2σ.
In case of centrally symmetric electrical fields, such as the one for orbital

motion of an electron in an electric field of an atomic nucleus, we have

E = −1

e

r

r

dV

dr
, (12.14)

where V is the potential given by V = Ze2

4πǫ0r
and Ze is the charge of the

atomic nucleus.
The additional energy of the electron in Eq. (12.13) can therefore be writ-

ten as

− e

m2c2
S · (E× P) =

1

m2c2
1

r

dV

dr
(S · L), (12.15)

where we have used the orbital angular momentum L = r×P . This additional
spin-dependent energy term is referred to as the spin-orbit energy, as it results
from an interaction of the spin with the magnetic field that is experienced by
the moving electron. This spin-dependent correction term in the Hamiltonian
(which also follows from a more rigorous quantum mechanical treatment on
relativistic generalization of Schrödinger’s equation and Dirac’s equation for
electronic systems dealing with electron spin and its relativistic behavior)
results in the splitting of the energy levels of doubly degenerated bands (for
spin-up and spin-down electrons).

The universal nature of this effect dealing with coupling of spin and orbital
degrees of freedom of spinning particles leads to its manifestation in diverse
fields of physics and at different scales, ranging from stellar objects to funda-
mental particles. The SOI effects observed in various other fields of physics
(atomic, condensed matter physics, etc.) are beyond the scope of this book,
and we are only interested in its manifestation in the optical domain. As dis-
cussed in the preceding section, both classical light and quantum photons pos-
sess SAM (intrinsic) and OAM (intrinsic + extrinsic); a coupling between the
spin and orbital AM degrees of freedom of light should therefore be expected
under certain circumstances. The evolution of polarized light in trajectory
(which may be set by a number of processes involving light-matter interac-
tion, e.g., propagation through inhomogeneous isotropic/anisotropic media)
may thus mimic the evolution of a massless spin 1 particle (photon) in an ex-
ternal scalar field. We clarify here that by ‘inhomogeneous isotropic medium’
we mean media having spatially varying refractive indices (continuously or
discretely varying) but exhibiting no birefringence effects; ‘inhomogeneous
anisotropic medium’ on the other hand, refers to media exhibiting spatially
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varying birefringence effects (spatial variation of birefringence or the orien-
tation axis of anisotropy). As we will describe, the SOI effect can indeed be
produced by a variety of light-matter interactions, e.g., by a tight focusing
of light beams, reflection/refraction at dielectric interfaces, high numerical
aperture imaging, scattering from micro-/nanosystems, propagation through
inhomogeneous anisotropic media and so forth. This has led to the observation
of a number of tiny (typically sub-wavelength), interesting and intricate effects
associated with the SAM and OAM of optical fields. Studies on the SOI of
light and its various interesting manifestations are thus currently attracting
growing attention owing to both fundamental interests and potential nano-
optical applications [126, 127, 128]. In the following, we shall briefly address
the various interesting manifestations of SOI, discuss mathematical frame-
works (based on wave optics treatment) for treating SOI, provide illustrative
examples of the resulting effects and discuss their potential implications. We
note here that the SOI of light has an inherent geometrical origin and is thus
intimately related to the generation of geometric phase of light. It is thus im-
perative that we define the geometrical phase of light and discuss its role in
SOI.

According to the division of SAM and OAM in terms of their intrinsic and
extrinsic nature (as described in the preceding section, while SAM is purely
intrinsic, OAM can either be intrinsic or extrinsic), the resulting interactions
may also be broadly classified in the following three categories [129]:

• Interaction between SAM and intrinsic OAM of light, dealing with inter-
conversion between SAM and intrinsic OAM of light beam. This phe-
nomenon leads to the generation of spin-induced optical vortices (char-
acterized by helical phase fronts) and usually occurs in cylindrically or
spherically symmetric systems. Examples of such systems are propaga-
tion of light through inhomogeneous anisotropic media (space-variant
anisotropies), the tight focusing of fundamental or higher-order Gaus-
sian beams, and scattering from micro-/nanosystems. The associated
effect can be described as the effect of a trajectory of light on the polar-
ization state, and the generation of spin-dependent vortices in this case
can be related to the generation of azimuthal geometric phase.

• Interaction between SAM and extrinsic OAM of light, dealing with the
reverse effect of polarization (spin) on the trajectory of light (extrinsic
OAM). This effect is manifested as a spin-dependent shift of the trajec-
tory of the light beam and is usually associated with the breaking of the
symmetry (observed, e.g., in reflection/refraction in inhomogeneous me-
dia, in asymmetric focusing or scattering). The resulting effect is known
as the Spin Hall effect of light.

• Interaction between intrinsic OAM and extrinsic OAM, dealing with
intrinsic OAM-dependent shift of the beam trajectory. This phenomenon
is similar to (b) and is observed in similar systems but for higher-order
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beams (carrying intrinsic OAM), accordingly known as the Orbital Hall
effect of light. This effect may also be termed the Orbit-orbit interaction
(OOI) of light.

As we discuss below, generation of geometric phases and subsequent conser-
vation of total angular momentum of light is inherent to all the optical SOI
phenomena. Before we proceed further on defining the geometric phase of
light, we note two important features of geometric phases in the context of
SOI of light. First, generation of the azimuthal geometric phase (for spheri-
cally or cylindrically symmetric systems) is the origin of the spin-to-orbital
angular momentum conversion (and the subsequent generation of spin-induced
vortices). When we deal with finite beams (such as the fundamental or higher-
order Gaussian beams, which have a spread in k vector space), the different
k vectors of the beam acquire slightly different geometrical phases. The re-
sulting k gradient of the geometric phase eventually leads to the polarization
(the intrinsic SAM) or the intrinsic OAM-dependent shift in the trajectory of
the beam (or the center of gravity of the beam). Next, it is this second effect
that is analogous to the splitting of the energy levels of doubly degenerated
bands for spin-up and spin-down electrons, as a consequence of SOI (the spin-
orbit energy in Eq. (12.15)). Here, the SOI (or OOI) of light increases the
degeneracy in the spatial modes (spatial distribution) between the opposite
circular polarization (intrinsic SAM) or the optical vortex (intrinsic OAM)
states. This can also be treated as the dynamical manifestation of geometric
phases.

12.3 Geometric phase of light

It is well known that the propagation of light is associated with a phase
factor that depends upon the optical path length (Θd = 2π

λ × optical path).
This phase factor is termed the ‘dynamical phase,’ and it is responsible for
most of the observable interference effects. The ‘geometric phase,’ on the other
hand (as its name suggests), is independent of the optical pathlength and is
determined solely by the geometry, or more specifically by the topology of
the evolution of the electromagnetic wave. This phase is intimately connected
to the change in the polarization state of the EM wave when it undergoes
evolution in an inhomogeneous isotropic/anisotropic medium. There are two
types of geometric phase:

• The spin redirection Berry phase: This arises from a parallel transport
of the wave field under continuous variation of the direction of prop-
agation of the wave. In this case, the wave vector k (representing the
direction of propagation of the wave) changes smoothly (adiabatically)
so that in the local reference frame attached to the wave, the state of
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polarization of the wave does not change. In this so-called ‘adiabatic
evolution’ of the k vector imparted by slowly varying changes in the
local environment (e.g., the refractive index gradient in a smoothly in-
homogeneous medium), when the wave completes a full cyclic evolution
(in the k-space), it acquires an additional phase factor independent of
the pathlength. This is manifested as a change in the direction of the
polarization (rotation of the polarization vector or the polarization el-
lipse) of the wave when observed from a global reference frame. This
topological phase factor was originally discovered by Berry in the 1980s
in the context of the quantum interference effect [130, 131]. It was sub-
sequently shown by a series of papers that this phase factor is universal
and can be observed for classical polarized light also in its evolution in
curved trajectory (set by refractive index variation).

• Pancharatnam-Berry phase: This arises for a wave propagating in a
fixed direction (fixed k vector) but undergoing a continuous change in
the state of polarization while propagating through an anisotropic (bire-
fringent) medium [131]. When the wave completes a full cyclic evolution
in the polarization state space (closed loop in the Poincaré sphere, de-
fined in Section 6.1.5 of Chapter 6), it acquires an additional geometrical
phase factor. This geometric phase related to the continuous and cyclic
evolution of the polarization state of light was discovered by Pancharat-
nam in the 1950s.

In the following section, we briefly address the origin of the geometric phase
factors and their manifestations, with selected examples.

12.3.1 Spin redirection Berry phase

As noted before, this type of the geometric phase is associated with the adi-
abatic evolution of the wave-vector k, when the wave propagates in a curved
trajectory set by the spatial variation of the local optical parameters (refrac-
tive index) [126, 128]. A convenient example of this is the propagation of the
polarized wave in a helically wound circular wave guide (optical fiber, shown
in Fig. 12.3(a)). The condition for perfect adiabatic evolution requires (i) that
there be no sharp kink (in the scale of wavelength) in the fiber so that the he-
licity of the wave (handedness of the circular/elliptical polarization) does not
change locally as it propagates, and (ii) that the medium have no birefringence
(anisotropy) effect that can cause local changes in the state of polarization of
light. In the example shown in Fig. 12.3(a), the laboratory coordinate frame is
represented by Cartesian coordinates (X,Y, Z) and the local coordinate frame
attached to the ray is shown by (v, w, t). The corresponding direction of the
polarization vector is denoted by the vector e. In the general case of elliptically
polarized light, the direction of e corresponds to the orientation of the major
axis of the ellipse. As is apparent from Fig. 12.3(a), when the wave propagates
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FIGURE 12.3: (a) Propagation of polarized light in a helical wound circu-
lar waveguide (optical fiber). The laboratory reference frame is represented
by (X,Y, Z) Cartesian coordinates, the local reference frame attached to the
ray is shown by (v, w, t), and the corresponding direction of the polarization
vector (or orientation of the polarization ellipse) is denoted by the vector e.
One full cyclic evolution of the polarized wave leads to a rotation of the polar-
ization vector by an angle Θ. (b) Representation of one full cyclic evolution in
momentum space (wave-vector k space). The spherical angles of the k sphere
are represented as (θ, φ); θ is the angle between the local waveguide axis and
the axis of the helix (z-axis) (the pitch angle of the helix) and φ is the az-
imuthal angle. The closed loop at the k-sphere corresponding to one full cyclic
evolution subtends a solid angle Θ at the center of the sphere.

through the helical waveguide, the local coordinate frame (v, w, t) undergoes
continuous rotation; so does the polarization vector e. Therefore, in the local
coordinate frame attached with the ray, the polarization does not change. It is
convenient to represent such adiabatic evolution processes of polarized waves
in the momentum space (k space), where the direction of propagation of the
wave is represented by the three Cartesian components of the wave vector
(kx, ky, kz) in the k sphere (which is the parameter space here with kx, ky, kz
as the three axes, shown in Fig. 12.3(b)). The spherical angles of the k sphere
are represented as (θ, φ), and accordingly the direction of the wave momentum
with respect to the laboratory coordinate frame (X,Y, Z) can be represented
as

(kx, ky, kz) = k(sin θ cosφ, sin θ sinφ, cos θ). (12.16)

Note that θ is the angle between the local waveguide axis and the axis of the
helix (z-axis) (i.e., the pitch angle of the helix) and φ is the azimuthal angle
related to the winding of the helix (one full winding period corresponds to
φ = 2π). One full cyclic evolution of the k vector (closed loop at the k sphere)
corresponds to one period of the trajectory of the helically wound optical
fiber. As apparent from Fig. 12.3(a), in one full cyclic evolution, although the
polarization vector e (orientation of the polarization ellipse) never changes its
direction in the local frame (attached to the ray), in the global laboratory
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frame (X,Y, Z), it is rotated by an angle Θ. The corresponding closed loop
at the k sphere is shown in Fig. 12.3(b). The surface spanned over the closed
loop is observed to subtend a solid angle (area enclosed by the projection of
the loop onto the k sphere) at the center of the sphere, which is exactly equal
to Θ. This solid angle can be calculated as

Θ =

∫ θ

0

sin θdθ

∫ 2π

0

dφ = 2π(1− cos θ). (12.17)

Let’s now try to interpret the observed rotation of the polarization in terms of
the geometric phase of light. For simplicity, we assume that the input light is
linearly polarized, in principle; this can also be generalized for any arbitrary
elliptically polarized wave. The rotation Θ of the linear polarization vector
due to one full cyclic evolution of the wave in the helical waveguide can be
interpreted as an ‘optical rotation’ effect. As we have seen in Chapter 6 (Sec-
tion 6.2.3), that optical rotation is a manifestation of the circular birefringence
effect (which arises from a phase difference between orthogonal circular po-
larization states). However, the waveguide has no local intrinsic anisotropies
or circular birefringence. The observed circular birefringence thus appears to
be a geometrical effect. This can be understood in a simple way if we consider
linearly polarized light to be superposition of equal amplitude of left (L) and
right (R) circular polarization. We may write the input linear polarization
state (say, oriented along the x-axis of the laboratory coordinate) as

|x〉 = 1√
2
(|L〉+ |R〉) . (12.18)

The state of linear polarization of the wave after one fully cyclic evolution
(rotated by an angle Θ) is given by

|xout〉 =
1√
2
(exp(iΘ)|L〉+ exp(−iΘ)|R〉) . (12.19)

It appears from Eq. (12.19) that while propagating through the helical wave
guide, the constituent left and right circular polarization modes of the linearly
polarized wave have acquired equal and opposite phases (±Θ), which do not
originate from any intrinsic anisotropies and are thus purely geometric in
nature. This is the so-called spin redirection Berry phase. As is apparent from
Eq. (12.17), for one full cyclic evolution (due to continuous change in the
trajectory of the polarized light wave), the spin redirection Berry phase is
determined by the solid angle subtended by the closed loop in the k sphere
(in the momentum domain representation).

The spin redirection Berry phase may also be directly measured in the
following interference experiment. A circularly polarized (either left or right)
laser beam is coupled to an optical fiber, which in turn couples equal amounts
of light into two helically wound optical fibers. Each of these fibers has N
number of turns but in the opposite sense (right and left helix), which are
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adjusted to have equal optical pathlengths. These two oppositely wound he-
lical fibers constitute the two arms of the interferometer. The fibers are then
once again brought together and coupled to another single output optical
fiber. The interference is observed at the output optical fiber using a detec-
tor. As apparent from Eq. (12.17), circularly polarized light while propagating
through the two arms acquire equal and opposite amounts of geometric phases
(Θ = ±2πN(1− cos θ)) (the factor N arises due to N number of cyclic evolu-
tions). The resultant intensity pattern would therefore be

I = I0 cos
2[2πN(1− cos θ)]. (12.20)

The resultant output intensity after the interference would thus be determined
by the pitch angle of the helix (θ) and the number of turns N .

12.3.2 Pancharatnam-Berry phase

The Pancharatnam-Berry phase arises when a polarized wave undergoes
continuous change in the state of polarization, keeping the direction of propa-
gation fixed (fixed k vector). An additional geometrical phase factor is intro-
duced when the wave completes a full cyclic evolution in the polarization state
space (in the Poincaré sphere) [131, 132, 133]. Clearly, such a situation may
arise when polarized light propagates through homogeneous/inhomogeneous
anisotropic (birefringent) medium. In order to illustrate this, in Fig. 12.4(a)
we show a Michelson interferometer arrangement for observing the Pancharat-
nam phase [133].

Consider linearly polarized (say, a polarization axis oriented along the x-
axis of the laboratory coordinate) light from a laser is divided into two equal
beams by a 45◦, 50 : 50 beam-splitter. Beam 1 travels to a perpendicular
mirror M1 and is reflected back. Beam 2 first travels through a quarter-wave
plate QP1, whose optical axis is fixed at (θ1 = π/4) relative to the incident
x-polarization. This converts the linearly polarized light into right circularly
polarized, which then passes through another quarter waveplate, QP2, whose
optical axis makes and angle θ2 =

(

3π
4 + β

)

with the x-axis. The light emerging
from QP2 strikes the perpendicular mirror M2, from which it is reflected
and made to retrace its path. The beam-splitter BS combines portions of the
returning light from arms 1 and 2 and gives rise to an interference pattern in
arm 3 that allows the phase difference between the two return beams to be
determined. In this system, the presence of geometrical phase can be inferred
by keeping the lengths of the two arms fixed (thus keeping the dynamical phase
difference fixed between two arms) and by changing the orientation angle θ2 of
the second quarter-wave plate QP2. Changes in geometrical phase associated
with polarization evolution in arm 2 of the interferometer will be manifested
as shift of the interference phase (fringe shifts). In order to understand the
Pancharatnam-Berry phase resulting from polarization transformations in arm
2 of the interferometer, we model each of the polarizing interactions using
Jones matrices (following Section 6.2.3 of Chapter 6). The first quarter-wave
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FIGURE 12.4: (a) Schematic of the Michelson interference experiment for
observation of Pancharatnam-Berry phase. (b) The evolution of the state of
polarization of light in arm 2 of the Michelson interferometer (Fig. 12.4(a)) is
shown in the Poincaré sphere (shown for incident x-polarized light). Equatorial
points A and A′ represent x and y linear polarization, respectively, the polar
points R and L represent right and left circular polarization respectively. The
action of QP1 and QP2 are shown by trajectories AR and RB. After reflection,
the polarization state evolves in similar manner but in the opposite sense,
represented by trajectories BL and LA. The closed loop corresponding to full
cyclic evolution of polarization state (ARBLA) subtends a solid angle 4β, and
the corresponding geometric phase is half of this solid angle (2β).

plate (oriented at π/4 with respect to the x-axis) transforms the incident x-

polarized light (represented by Jones vector
[

1 0
]T

) into right circularly
polarized (RCP) light:

[

1 + i 1− i
1− i 1 + i

] [

1
0

]

=

[

1
−i

]

exp(iφ1). (12.21)

Here, we have used the Jones matrix of a quarter-wave plate oriented at an
angle π/4 (orientation angle θ1 = π/4, retardance δ = π/2 in Eq. (6.37). As is
apparent from Eq. (6.37), the phase factor φ1 here is related to the thickness
and refractive index of the birefringent waveplate and is therefore a dynamic
one. The resulting RCP light passes through the second quarter-wave plate
(QWP2 oriented at θ2 =

(

3π
4 + β

)

)) to yield linearly polarized light:

[

cos2 θ2 + i sin2 θ2 (i − 1) sin θ2 cos θ2
(i − 1) sin θ2 cos θ2 sin2 θ2 + i cos2 θ2

] [

1
−i

]

=

[

cosβ
sinβ

]

e(iφ2)×e(−iβ).
(12.22)

It is important to note that the polarized light acquires an additional phase
factor exp(−iβ) depending upon the orientation angle (θ2 is related to β with
a constant factor) of the wave plate in addition to the dynamical phase factors

© 2016 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19330-13&iName=master.img-193.jpg&w=298&h=138


Spin-orbit interaction of light 261

(φ1 and φ2). The linearly polarized light then gets reflected from the mirror
and undergoes similar evolution through the two quarter-wave plates. The
action of QP2 (which is now oriented at an angle π/4 with respect to the
direction of linear polarization of the reflected wave) will convert the linearly
polarized light into a left circularly polarized light (LCP, when represented in
the same reference frame) and will introduce another phase factor exp(−iβ)
in addition to the dynamical phase factor. Finally, when the LCP light passes

through QP1, it will be converted back to x-polarized light
[

1 0
]T

. Thus,
in this process, the input x-polarized wave completes a full cyclic evolution in
the polarization state space. During this evolution, it acquires a total dynamic
phase

φd = 4× 2π

λ
× (ne + no)

2
d, (12.23)

where ne and no are the refractive indices of the slow and fast components in
the quarter-wave plates and d is the thickness of the wave plate so that the
retardance δ = 2π

λ (ne − no)d = π
2 . Importantly, in addition to this dynam-

ical phase, the polarized wave acquires a geometric phase factor exp(−2iβ)
(geometric phase of 2β), which is independent of the optical pathlength and
is only determined by the orientation angle of the second quarter-wave plate
(thus it depends upon how the polarization state has evolved during the cyclic
process).

The evolution of the geometric phase can be conveniently represented by
the polarization transformations in the Poincaré sphere (defined in Section
6.1.5 of Chapter 6). The trajectory of the polarization evolution for this par-
ticular experimental configuration is shown in Fig. 12.4(b). The four basic
interactions in arm 2 of the interferometer can be represented by the follow-
ing transformations in the Poincaré sphere:

1. The incident x-polarized light (noted by position A in the equator region
of the sphere) transforms to RCP light (represented by point R in the
north pole) by passing through QP1 (trajectory shown by AR).

2. The action of QP2 brings back the state to linear polarization, repre-
sented by point B in the equator region (trajectory RB). After reflecting
back from the mirror, the polarization state evolves in a similar manner
but in the opposite sense.

3. The action of QP2 on the polarization state of the reflected light takes
it to L in the south pole (LCP).

4. QP1 then brings the state of polarization to the initial linear polarization
(A, representing x-polarization).

Thus the state of polarization performs a closed loop in the Poincaré sphere.
As shown by the geometry of the Poincaré sphere in Fig. 12.4(b) (and corre-
sponding analogy of the k-sphere shown in Fig. 12.3(b) for the case of spin
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redirection Berry phase), the solid angle subtended by this closed loop (AR-
BLA) at the center of the sphere is given by 4β. The corresponding geometric
phase will be half of this solid angle and will thus be equal to 2β. The origin of
this 1

2 factor in the case of Poincaré sphere representation (as compared to the
k sphere) can be understood by noting that the rotation of the polarization
ellipse (or polarization vector) by an angle φ in the real space corresponds to
2φ rotation in the Poincaré sphere (see Eq. (6.46) and subsequent discussion
in Chapter 6). We note here that the closed loop shown in Fig. 12.4(b) is
for input x-polarized light. In the case of input y-polarized light, the evolu-
tion would also be cyclic but given by the reflection of the loop through the
origin. The two loops are traversed in opposite senses, and hence they sub-
tend at equal and opposite solid angles at the origin. Thus, input x- and y-
polarizations would acquire the Pancharatnam-Berry phase of ∓2β.

We now briefly touch upon an interesting effect associated with dynamical
manifestation of the Pancharatnam-Berry phase in context with the polariza-
tion evolution in anisotropic medium. We now consider the same experiment
as above, however, in our experiment the second quarter-wave plate (QP2) is
uniformly rotated with an angular velocity Ω = dθ2

dt . The segment RAL (of the
closed loop ARBLA shown in Fig. 12.4(b)) remains unchanged under this ro-
tation, whereas the segment RBL continuously rotates about the axis RL with
an angular velocity of 2Ω. This will make the geometric phase evolve with time
as β(t) = β(0)∓ 2Ωt, where the ∓ signs are for input x- and y-polarizations,
respectively. This linear time variation of the geometric phase therefore con-
tributes to a shift in the frequency. If the input light has a frequency ω, the
frequency of the output light (after making the round trip) would become
ω′ = ω ± 2Ω, for input x- (plus) and y- (minus) polarizations, respectively.
Note that the plus and minus signs in the frequency shift are relative and de-
pend upon the convention (how the positive or negative phases are defined).
It is also important to note that this effect may also be observed with a single
rotating half-wave plate (whose retardation is given by δ = 2π

λ (ne−no)d = π).
The half-wave plate transforms input RCP light to LCP light (σ = −1 → +1),
and the corresponding evolution of the polarization state in the half-wave plate
can be represented in the Poincaré sphere as shown in Fig. 12.5(a). Note, we
may reach to LCP (south pole) from RCP (north pole) using different paths
on the sphere, which is determined by the orientation angle of the wave plate
(θ) with respect to the laboratory polarization axis (say, the x-axis). The dif-
ference in geometric phases between two such paths is half of the solid angle
enclosed by the loop formed by these two trajectories (shown by the shaded re-
gion in Fig. 12.5(a)). If the wave plate is rotated with uniform angular velocity
Ω = dθ

dt , akin to the previous case, the geometric phase would evolve with time
as ≈ ∓2Ωt. However, unlike the previous case, here ∓ signs are for input right
and left circular polarizations, respectively. This would accordingly lead to a
shift of the frequency of the input wave ω′ = ω ± 2Ω, for input right (plus)
and left (minus) polarizations, respectively. This is the so-called rotational
Doppler shift for the SAM-carrying light beam (displayed in Fig. 12.5(b)). As
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FIGURE 12.5: Dynamical manifestation of the Pancharatnam-Berry phase
for a rotating half-wave plate. (a) The half-wave plate converts incident RCP
light to LCP light (σ = −1 → +1). The trajectory depends upon the orienta-
tion angle of the optical axis of the wave plate with respect to the laboratory
axis (say, the x-axis). Two different trajectories corresponding to two orien-
tations (at two different instances) of the rotating wave plate are shown. The
difference in geometric phases between two such paths is half of the solid angle
enclosed by the loop formed by these two trajectories, shown by the shaded
region. (b) The evolving geometrical phase leads to equal and opposite shifts
in the frequency for input right and left circularly polarized light. Here, Ω is
the angular velocity of the rotating wave plate.

we shall discuss later (in context with the spin-orbit interaction of light in
inhomogeneous anisotropic medium), this effect is closely related to SOI and
the polarization-dependent shift in the trajectory of a beam (or the center of
gravity of a beam).

12.3.3 Geometric phase associated with mode
transformation

The geometric phases discussed earlier (spin redirection Berry phase and
Pancharatnam-Berry phase) are associated with the polarization state of light
(or SAM). From a conceptual point of view, it is expected that analogous
geometric phases should also be observed for beam-carrying intrinsic OAM
(where the role of SAM is played by intrinsic OAM) [128]. As we now know
that the intrinsic OAM of light is associated with the mode structure of a
light beam (transverse distribution of the field amplitude and phase), mode
transformation should also lead to the generation of both the variants of the
geometric phase. One deals with the geometry of the path in the configuration
space (continuous variation of the direction of propagation of the wave and
the wave-vector k, like the helical trajectory described earlier), leading to a
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change in the global orientation of the mode structure of the beam. Waves
propagate in a fixed direction (fixed k vector) but undergo a continuous mode
transformation (the geometry of the path can be represented in the mode
space as was done in the polarization state space for SAM-carrying beams).
This can be understood from the following analogy of SAM and OAM [134].

As we have previously discussed, the Laguerre-Gaussian (LG) laser modes
have a helical phase front characterized by transverse field distribution ≈
exp(ilφ) (where φ is the azimuthal angle) and accordingly carry OAM. In
fact, the LG modes follow from the solutions to the paraxial wave equation
in cylindrical coordinates, and a general LG mode (LGlp) is characterized
by radial and azimuthal indices p and l, respectively, carrying l~ OAM per
photon. The Hermite-Gauss (HG) modes, on the other hand, are solutions to
the paraxial wave equation in rectangular coordinates (represented by HGnm)
and do not carry OAM as such. The order of these modes is generally given
by N = 2p+ |l| = n+m. We note that, for modes with order N = 1, in phase
superposition of left-handed (l = +1, p = 0) and right-handed (l = −1, p =
0) helical LG modes form an HG mode with indices m = 1, n = 0(HG10).
Similarly, the HG01 mode can be obtained by superposition of left and right
LG modes with a phase difference of π between them:

HG10 = LG+1
0 + LG−1

0 HG01 = LG+1
0 − LG−1

0 . (12.24)

Conversely, the first-order LG modes may also be obtained by superposition
of orthogonal HG modes:

LG+1
0 = HG10 + iHG01 LG−1

0 = HG10 − iHG01. (12.25)

This set of equations provides the basis for an analogy between Jones vector
representation of linear and circular polarization states and those of the first-
order HG and LG modes. If we represent the states of the HG10 and HG01

modes as [1, 0]T and [0, 1]T (the equivalent representation of horizontal and
vertical linear polarization states), the corresponding orthogonal LG modes
(with l = ±1) can be represented as 1√

2
[1,±i]T (equivalent representation of

left and right circular polarization). In fact, we can decompose any arbitrarily
oriented HG mode (determined by the orientation of the phase structure and
intensity distribution) and LG modes using the basis of the HG10 and HG01

modes, just like any arbitrarily oriented linear polarization state and circular
(elliptical) polarization states can be decomposed using horizontal and vertical
linear polarization basis. This yields a one-to-one correspondence between the
first-order modes with the polarization state of light, as shown in Fig. 12.6(a).
The corresponding analogy between the Poincaré sphere representation of the
polarization states and the mode states in the sphere of the first-order modes
(the orbital Poincaré sphere) is shown in Fig. 12.6(b). In the orbital Poincaré
sphere of the first-order modes, the poles correspond to right- and left-handed
LG modes (l = ∓1, north and south poles), and the equator region corresponds
to HG modes oriented at different angles.
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FIGURE 12.6: (a) Decomposition of the polarization states (±45◦ linear and
left/right circular polarizations) using the horizontal and vertical linear po-
larization basis states (left panel). The corresponding decomposition of ±45◦

oriented HG modes and the left- and right-handed LG modes (l = ±1) us-
ing the HG10 and HG01 modes. Note that the orientation of the lobes in
an HG mode corresponds to the direction of the linear polarization vector
(e.g., HG10 horizontal orientation of the lobes → horizontal linear polariza-
tion). (b) Analogy between the polarization Poincaré sphere (left panel) and
orbital Poincaré sphere of first-order modes (right panel). Linear and circular
polarization states are shown in the polarization Poincaré sphere, while their
analogous HG and LG modes are shown in the orbital Poincaré sphere.

From this analogy it is apparent that both the variants of the geometric
phase (spin redirection Berry phase and Pancharatnam-Berry phase) associ-
ated with the polarization state of light should be manifested in the case of
the evolution of mode structure in curved trajectory of a light beam or for
continuous mode transformation (a change of the OAM state of the beam).
As in the case of the spin redirection Berry phase (Fig. 12.3(a)), let us now
consider the propagation of an HG laser mode through a helically wound cir-
cular waveguide (shown in Fig. 12.7). Here also, for one full cyclic evolution
of the k vector (corresponding to one period of the trajectory of the helically
wound optical fiber), although mode structure does not change in the local
coordinate frame attached with the beam, in the global laboratory frame it
is rotated by an angle Θ. The corresponding closed loop at the k sphere and
the solid angle subtended by this at the center of the k sphere can also be
shown to be equal to Θ (similar to Eq. (12.17)). If we consider the evolution
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FIGURE 12.7: Propagation of an HG laser mode through a helically wound
circular waveguide. One full cyclic evolution of the k vector (corresponding
to one period of the trajectory of the helically wound optical fiber) leads to a
rotation of the mode structure by an angle Θ.

of the HG10 mode (as an example), the output rotated (by an angle Θ) mode
structure after one full cyclic evolution may also be interpreted as

|HGout〉 =
1√
2

(

exp(iΘ)|LG+1
0 〉+ exp(−iΘ)|LG−1

0 〉
)

. (12.26)

Apparently, while propagating through the helical waveguide, the constituent
left- (l = +1) and right-handed (l = −1) LG modes of the HG10 mode acquire
equal and opposite phases (±Θ), which is the geometric phase. In an analogy
with polarization, this may be termed the OAM redirection Berry phase. The
other variant of the geometric phase arises when the laser beam propagates in
a fixed direction (fixed k vector) but undergoes a continuous mode transfor-
mation (the Pancharatnam-Berry equivalent geometric phase for mode trans-
formation). This type of geometric phase can be observed using a Michelson
interferometer arrangement similar to that of the Pancharatnam phase associ-
ated with polarization transformation (Fig. 12.4(a)). The polarization states
of light in this experiment have to be replaced by the corresponding mode
states (according to Fig. 12.6(a)). We may start with an HG10 mode (in place
of the horizontal linear polarization), which is then split into the two arms
of the interferometer using a beam-splitter. Beam 1 once again travels to a
perpendicular mirror M1 and is reflected back. Beam 2 undergoes continuous
mode transformations in the second arm of the interferometer. As we have
previously discussed, when a pair of cylindrical lenses is kept at 2f distance
away with their focal lines parallel, they act as π/2 mode converter. The di-
rection of the focal lines of the cylindrical lenses is referred to as the principal
axis of the converter. The π/2 mode converter in the OAM basis plays the
role of a quarter-wave plate in the SAM basis, and accordingly it can convert
HG laser modes into LG modes (carrying OAM) when the principal axis of
the converter is kept at an angle ±45◦ with respect to the axis of the HG
mode. Thus in this experiment, the two quarter-wave plates (QP1 and QP2
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of Fig. 12.4(a)) may be replaced by two π/2 mode converters. The orientation
of the principal axis of the first mode converter can be fixed at 45◦, whereas
the orientation of the second mode converter may be changed to observe the
resulting geometric phase associated with the mode transformation (which
would be manifested in the interferogram). The trajectory of the mode trans-
formation and the evolution of the OAM state here can be represented in the
orbital Poincaré sphere of first-order modes (Fig. 12.6(b)) in a similar fash-
ion to what was done for polarization evolution in the polarization Poincaré
sphere (Fig. 12.4(b)) (in order to avoid repetition, the corresponding repre-
sentation in the orbital Poincaré sphere is not shown here). The corresponding
geometric phase associated with mode transformation would also be half of
the solid angle enclosed by the closed loop in the center of the orbital Poincaré
sphere (the solid angle = 4β and the geometric phase = 2β, where β is the
orientation of the principal axis of the second π/2 mode converter).

Having described the various types of geometric phases, we are now in a
position to discuss spin-orbit interaction of light. In what follows, we describe
three specific cases of SOI with illustrative examples: SOI in inhomogeneous
anisotropic media, in scattering and in tight focusing of a fundamental Gaus-
sian beam. We shall outline the mathematical framework for describing SOI
and discuss the role of geometric phases in the resulting SOI.

12.4 Spin-orbit interaction of light in inhomogeneous
anisotropic medium

Thus far, we have seen that when a polarized light beam propagates
through an anisotropic medium (either birefringent or dichroic), its state of
polarization changes. This aspect was dealt with in some detail in Chapter 6,
where it was discussed that the two of the important anisotropic properties
of the medium, linear birefringence (retardance) and linear dichroism (diat-
tenuation) arise from the differences in the real and imaginary parts of the
refractive indices for different polarization states, respectively (described in
terms of ordinary and extraordinary axes and indices). Propagation of po-
larized light through such a medium generally leads to change in the SAM
of light. For example, when circularly polarized light propagates through a
half-wave plate (linear retardance δ = π), it results in the flipping of the SAM
(σ = +1 → −1), which is balanced by the transfer of angular momentum to
the birefringent plate (see Fig. 12.2). On the other hand, continuous evolution
of the state of the polarization of light in such an anisotropic medium leads to
the generation of geometric phase (Pancharatnam-Berry phase, discussed in
Section 12.2). We note here that the kind of anisotropic media discussed so far
are assumed to be homogenous per se. By the term homogeneous anisotropic
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medium, we mean that the anisotropic media (it may be either birefringent or
dichroic) are associated with an axis of anisotropy and that the orientation of
the anisotropy axis is the same across the transverse dimension of a light beam
(examples are a homogeneous wave plate and a polarizer). In this section, we
address the interaction of polarized light with the inhomogeneous anisotropic
medium, i.e., a medium having a spatially varying axis of anisotropy [127].
Recall the Michelson interferometer experiment shown in Fig. 12.4, where it
was demonstrated that the evolution of Pancharatnam-Berry phase is deter-
mined by the orientation of the anisotropy axis of the waveplate (the trajec-
tory in the Poincaré sphere is decided by this). Conceptually, it may thus be
reasonable to anticipate spatially varying anisotropy (across the transverse
dimension of a light beam) should lead to a space-variant geometric phase,
which should eventually lead to the generation of OAM. We shall illustrate
here that indeed, in rotationally symmetric geometries such space-varying
anisotropy leads to the generation of input spin-dependent OAM of light and
that under certain circumstances, the SAM variation of light may be entirely
converted into intrinsic OAM. Under the circumstances, there would be no net
angular momentum transfer to the material and the total angular momentum
conservation is maintained by ‘spin-to-orbital angular momentum conversion.’
Such interconversion between SAM and intrinsic OAM of light beams in in-
homogeneous anisotropic media can be conveniently dealt with using Jones
and Stokes-Mueller polarization algebra. However, before we do so, we shall
address this issue using elementary treatment on evolving geometric phases
in such inhomogeneous anisotropic medium.

Recall the discussion of a dynamical manifestation of Pancharatnam-Berry
phase in the context of polarization evolution in anisotropic media (Fig. 12.5).
It was shown that a rotating half-wave plate (a homogenous retarder with
a magnitude of linear retardance δ = π) leads to a time-varying geometric
phase. If the wave plate is rotating with angular velocity Ω = dθ

dt (θ is the
orientation of the anisotropy axis of the wave plate), then the time-varying
geometric phase is given by Φg(t) = 2Ωt. Note that a half-wave plate converts
input SAM σ = +1 → −1. In the general case, for an arbitrary anisotropic
medium (any retarder/waveplate with magnitude of retardance δ or even a
diattenuator/polarizer with magnitude of diattenuation D), the time varying
geometric phase can be written as [128]

Φg(t) = (S − S0)Ωt,

d

dt
Φg(t) = (S − S0)Ω,

Φg(t) =

∫

(S − S0)Ωdt, (12.27)

where S0 and S are the input and the output SAM of the light beam, re-
spectively (for a given SAM input, the output state is determined by the
magnitude of the anisotropy of the medium). For example, S0 = +1, S = −1
for a half-wave plate (δ = π); and S0 = +1, S = 0 for a quarter-wave plate
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(δ = π/2) or for a polarizer (D = 1). It was also shown that such evolving
geometric phases dynamically manifest as a shift of the frequency (ω) of light
as

∆ω = (S − S0)Ω. (12.28)

In this case, we considered temporal evolution of the coordinate frame (the
rate of rotation Ω of the orientation of the anisotropy axis of the medium, in
rad/s). Similar evolution and dynamical manifestation of the geometric phase
are also warranted if we consider spatial rotation, with respect to a chosen
spatial coordinate ξ, in a plane transverse to the propagation direction of the
beam:

dt → dξ; Ω → Ωξ,

Ωξ =
dθ

dξ
. (12.29)

Here, Ωξ (in units of rad/length) is the rate of spatial rotation of the orien-
tation axis (for an inhomogeneous anisotropic medium) in a plane transverse
to the propagation direction of the beam. In such a case, the geometric phase
can be written in an analogous fashion as

Φg(ξ) =

∫

(S − S0)Ωξdξ. (12.30)

For simplicity, let us now consider cylindrically symmetric geometry, with the
radius vector and azimuthal angle in a plane transverse to the propagation
direction of the beam (z) given by (r, φ). The spatial rotation rate Ωξ(ξ → φ)
can thus be written as

Ωξ =
dθ

dξ
=

d

dφ
θ(φ). (12.31)

Here, we have considered that the orientation axis of the anisotropic medium
changes uniformly as a function of the azimuthal angle φ. Uniform spatial rota-
tion rate can be achieved by setting the azimuthal variation of the orientation
axis as θ(φ) = qφ+ θ0 (where q and θ0 are constants), so that

Ωξ =
d

dφ
θ(φ) = q. (12.32)

It immediately follows from Eq. (12.30) and (12.32) that

Φg(φ) = qφ(S − S0). (12.33)

The generation of such an azimuthal geometric phase would imprint helical
phase front exp(iqφ(S−S0)) on an input non-OAM-carrying beam and would
lead to the generation of OAM. The magnitude of the generated OAM (l)
would depend upon the parameter q and change in the SAM (S − S0). This
is therefore a manifestation of spin-orbit interaction (SOI): The interaction
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between SAM and intrinsic OAM of light, dealing with interconversion between
SAM and intrinsic OAM.

If we consider the case of a half-wave plate with its anisotropy axis changing
direction in the transverse plane as θ(φ) = qφ + θ0, the azimuthal geometric
phase is Φg(φ) = ±2qφ (± corresponds to input circular polarization state,
positive for input left circular and negative for input right circular polarization
state). For q = 1, it leads to perfect conversion and angular momentum balance
between SAM and OAM so that no net angular momentum is transferred to
the wave plate:

(σ = ±1, l = 0) ⇒ (σ = ∓1, l = ±2). (12.34)

In the case of an inhomogeneous quarter-wave plate (linear retardance δ =
π/2) or inhomogeneous linear polarizer (linear diattenuator with diattenu-
ation D = 1) with varying anisotropy axis θ(φ) = qφ + θ0, the azimuthal
geometric phase would be Φg(φ) = qφ, because |S − S0| = 1 (a quarter-wave
plate converts linearly polarized light to circular polarization or vice versa; a
linear polarizer, on the other hand, can convert input circular polarization to
linear polarization). For a value of q = 1, the resulting spin-to-orbital angular
momentum conversion can be written as

(σ = ±1, l = 0) ⇒ (σ = 0, l = ±1). (12.35)

Note that finite light beams (such as the fundamental or higher-order Gaussian
beams) are associated with the transverse component of momentum (having
a spread in the wave-vector k space); in addition to a component of the wave
vector along the propagation direction (kz), they also possess a component of
k in the transverse (xy) plane (k⊥ = kx and ky). The geometric phase given
by Eq. (12.33) acquired by the beam while propagating through the inhomo-
geneous anisotropic medium may thus be assigned to the central wave-vector
of the beam. The different constituent k vectors of the beam in fact acquire
slightly different geometrical phases. This should therefore manifest as an in-
put SAM-dependent splitting of the wave-vector distribution in the transverse
plane (∆k⊥) of the beam. This may also be put forward using the analogy be-
tween the temporal and the spatial rotation of the wave plate. As we discussed,
the temporal rotation of the homogeneous wave plate leads to an evolving ge-
ometric phase, which eventually manifest is as a shift of the frequency (∆ω)
of the light as per Eq. (12.28). In the case of the inhomogeneous anisotropic
medium having a spatial rotation rate Ωξ of the anisotropy axis, this would
be manifested as a shift in the transverse spatial frequency distribution of the
beam (∆k⊥) (spatial frequency replacing the temporal frequency);

dt→ dξ; Ω → Ωξ; ∆ω → ∆k,

∆k⊥ = (S − S0)Ωξ = q(S − S0). (12.36)

Thus, the spin-orbit interaction (spin-to-orbit AM interconversion) is accom-
panied by a fine polarization-dependent splitting of the transverse momentum
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distribution. Note that in this particular cylindrically symmetric case, the
splitting is radial, which does not cause a shift of the overall center of grav-
ity (intensity barycenter) of the beam. However, this polarization-dependent
splitting of the beam’s spatial frequency distribution may be enhanced signif-
icantly by breaking the symmetry of the system, which eventually leads to a
polarization-dependent shift of the center of gravity of the beam. This effect is
analogous to the fine structure energy level splitting of the spin-up and spin-
down electron as a consequence of SOI (the spin-orbit energy of Eq. (12.15)).
Here, the SOI of light lifts the degeneracy in the spatial modes (intensity
distribution) of opposite SAM (circular polarization) states.

We mentioned earlier that the spin-to-orbit AM conversion in inhomo-
geneous anisotropic medium may also be dealt with adequately using con-
ventional Jones matrix algebra, which we address now. As an example, we
consider the case of the inhomogeneous half-wave plate with a magnitude of
linear retardance δ = π and a spatially varying orientation angle given by
θ(φ) = qφ + θ0. Using Eq. (6.37) of Chapter 6, the Jones matrix for this
birefringent medium can be written as

J =

[

cos θ − sin θ
sin θ cos θ

] [

1 0
0 −1

] [

cos θ sin θ
− sin θ cos θ

]

=

[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]

.

(12.37)
Let us now consider a left circularly polarized plane wave (the plane wave is
an idealization corresponding to the central wave-vector of a Gaussian beam)
that is represented by Jones vector Ein = [1, i]T and is incident on the inho-
mogeneous half-wave plate. The output field emerging from the medium can
be written as

Eout = JEin = exp(2iθ)

[

1
−i

]

= exp(2iqφ)× exp(2iθ0)

[

1
−i

]

. (12.38)

The emerging wave is thus uniformly right circularly polarized (as we would
expect for a half-waveplate), but in addition to that, it acquires an azimuthal
phase factor exp(2iqφ). This conforms with the azimuthal geometric phase
derived in Eq. (12.33). For q = 1, it leads to the same spin-to-orbit AM
conversion as described in Eq. (12.34).

Similarly, spin-to-orbit AM conversion for an inhomogeneous quarter-wave
plate (δ = π/2) or for an inhomogeneous linear polarizer with varying orien-
tation of axis θ(φ) = qφ+ θ0 can be obtained using their corresponding Jones
matrices as

Eout = Jqwp

[

1
i

]

= e(iqφ)e(iθ0)
[

cos(qφ+ θ0 − π
4 )

sin(qφ + θ0 − π
4 )

]

,

Eout = J

[

1
i

]

= e(iqφ) × e(iθ0)
[

cos(qφ+ θ0)
sin(qφ + θ0)

]

. (12.39)

In both cases, for input left circular polarization state, the output state be-
comes inhomogeneously linearly polarized (orientation of the polarization vec-
tor depends upon the azimuthal angle φ) and acquires azimuthal phase factor
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exp(iqφ). In the specific case when (q = 1, θ0 = 0), the output beam acquires
a phase vortex (OAM) with l = +1. The output polarization state for the
inhomogeneous polarizer becomes radially polarized (the linear polarization
vector is directed along the radial direction at all points of space, given by the
Jones vector [cosφ, sinφ]T ). The corresponding state for the inhomogeneous
quarter-wave plate is neither radial nor azimuthal polarization (Jones vector
[cos(φ − π/4, sin(φ − π

4 ))]
T (it becomes azimuthally polarized, with the po-

larization vector directed perpendicular to the radial direction, given by the
Jones vector [sinφ, cosφ]T when θ0 is −π/4). Nevertheless, none of the inho-
mogeneous linear polarization states above (either radial or azimuthal) carries
any SAM. Accordingly, the spin-to-orbit AM conversion is in agreement with
Eq. (12.35).

The inhomogeneous anisotropic media (inhomogeneous retarder and po-
larizer) described earlier achieves spin-to-orbit AM conversion by generat-
ing space (azimuthal) varying Pancharatnam-Berry geometric phase. These
are accordingly known as space variant Pancharatnam-Berry optical ele-
ments (sometimes termed vortex retarders/q-plate and vortex polarizers)
[127]. These types of optical elements are therefore used for generating in-
put spin (circular polarization) dependent optical vortices, and for generat-
ing radially and azimuthally polarized light beams. The resulting OAM state
(the vortex charge l) and the radial/azimuthal polarization states can be con-
trolled by tuning the two parameters (q and θ0). For practical purposes, these
are fabricated either by using patterned liquid crystal cells or by using nano-
structured sub-wavelength gratings. Figure 12.8(a) shows illustrative examples
of such structured inhomogeneous anisotropic optical elements with varying
orientation of the anisotropy axis (determined by the q and θ0 parameters).
Fig. 12.8(b) illustrates of spin-induced vortex generation for an inhomogeneous
half-wave plate having a q-parameter value of unity.

12.5 Spin-orbit interaction of light in scattering

The spin-to-orbit AM conversion described in the preceding section deals
with SOI due to interaction of paraxial light with inhomogeneous anisotropic
media having certain azimuthal symmetries. The SOI effect may also be pro-
duced by nonparaxial optical fields in locally isotropic media, e.g., in scattering
from micro-/nanosystems or by tight focusing of fundamental or higher-order
Gaussian beams.

While SOI in anisotropic paraxial systems is produced by the azimuthal
Pancharatnam-Berry phase, which is an extrinsic phenomenon that, produced
in nonparaxial fields (scattering and focusing), owes its origin primarily to
the intrinsic properties of light, the geometrical transformations of the field
and the resulting geometric Berry phase. Nevertheless, as we have previously
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FIGURE 12.8: (a) Examples of inhomogeneous anisotropic optical elements
with varying orientation of the anisotropy axis given by θ(φ) = qφ+ θ0). The
(q, θ0) parameters for these are (q = 1/2, θ0 = 0), (q = 1, θ0 = 0) and (q =
1, θ0 = π/2), respectively. If we use half-wave plates (retardance δ = π) with
these inhomogeneity parameters, we can generate OAM with charge l = ±2.
In the case of the second and the third wave plates, there would be perfect
spin-to-orbit AM conversion with no net AM transferred to the wave plate.
(b) Pictorial illustration of the corresponding spin-to-orbit AM conversion.

noted, SOI in either of these systems (paraxial and nonparaxial) occurs in
cylindrically or spherically symmetric systems. Here, we shall address the SOI
effect produced by scattering [128, 135].

In order to study the SOI of light mediated by the scattering process,
we begin with the simplest case, that of scattering of incident plane wave
by a spherical scatterer. Generalization of this approach for other regular-
shaped scattering particles (rotationally symmetric particle shapes such as
spheroids, rods, etc.) and for scattering of finite light beams (where many con-
stituent plane waves with different wave vectors k need to be considered) is
warranted. Consider the Cartesian coordinate system with the incident plane
wave propagating in the z direction, the two orthogonal axes x and y rep-
resenting the polarization axes in the laboratory reference frame (schematics
shown in Fig. 12.9). The scattered electric field (Es) can be related to the
incident field (Ei) in the laboratory frame by the transfer function (J) as

Es ≈ Tz(−φ)Ty(−θ)S(θ)Tz(φ)Ei = JEi,

J =





Eα + Eβ cos 2φ Eβ sin 2φ Eγ cosφ
Eβ sin 2φ Eα − Eβ cos 2φ Eγ sinφ
−Eγ cosφ −Eγ sinφ Eα + Eβ



 , (12.40)

© 2016 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19330-13&iName=master.img-325.jpg&w=209&h=166


274 Wave Optics: Basic Concepts and Contemporary Trends

FIGURE 12.9: The scattering geometry showing the laboratory frame
(x, y, z) and the scattering frame (r, θ, φ).

where θ is the scattering angle and φ is the azimuthal angle. The transfor-
mation matrices Ta(ψ) represent geometrical rotational transformation about
the a-axis by an angle ψ. The transformation matrix Tz(φ) transforms the
laboratory frame field vector of the incident wave to the scattering plane. The
inverse transformation matrices T−1

z (φ) and T−1
y (θ) transform the field vector

of the scattered wave from the scattering coordinate (r, θ, φ) to the laboratory
coordinate (see Fig. 12.9). The matrix S(θ) (defined in the scattering plane)
includes the effect of the scattering in its elements; S2(θ) and S1(θ) are scat-

tered field polarized parallel and perpendicular to the scattering plane (θ̂, φ̂),
respectively.

The scattered field descriptors, Eα(θ), Eβ(θ) and Eγ(θ), are related to the
elements of S(θ) as

Eα = S2 cos θ + S1; Eβ = S2 cos θ − S1; Eγ = −S2 sin θ. (12.41)

Here, the expressions for the amplitude scattering matrix elements S2(θ) and
S1(θ) for a spherical scatterer can be obtained from the Mie theory solution
(discussed in Chapter 11) as

S1 =

∞
∑

n=1

(2n+ 1)

n(n+ 1)
(anπn + bnτn), S2 =

∞
∑

n=1

(2n+ 1)

n(n+ 1)
(anτn + bnπn), (12.42)

where an and bn are the coefficients of the normal scattering modes (TM
(electric) and TE (magnetic) modes, respectively) and τn, πn are the cor-
responding angle (θ) dependent functions (see Chapter 11). For small scat-
terers (with a dimension much smaller than the wavelength of light, radius
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a << λ), scattering is primarily dominated by the lowest-order TM mode
(electric dipolar a1 mode). The corresponding expressions for S2(θ) and S1(θ)

can be given as S2 = 3
2a1 cos θ and S1 = 3

2a1 with a1 = −i 2x3

3

(

m2−1
m2+1

)

. Here,

x is known as the size parameter of scatterer (x = 2π
λ anmedium) and m is

the ratio of the refractive index of the scatterer to that of the surrounding
medium (m = ns

nmedium
).

The phenomenon of SOI in scattering can immediately be understood by

applying the Jones vector
[

1 i 0
]T

of incident left circularly polarized
(LCP) light on the system Jones matrix J . The resulting field can be decom-
posed into three uniform polarization components as

Eα





1
i
0



+ Eβ exp(i2φ)





1
−i
0



− Eγ





0
0
1



 . (12.43)

As is obvious, the second (transverse) component of Eq. (12.43) represents
flipping of helicity (reversal of spin σ = +1 → −1) and subsequent generation
of the phase vortex-carrying orbital angular momentum l = +2. Similarly,
the third (longitudinal) component represents conversion of the circular to
the linear polarization state (σ = +1 → 0) and is accordingly associated
with the generation of orbital angular momentum l = +1. It appears from
Eq. (12.43) that the amplitude and relative phases of the scattered field de-
scriptors Eα, Eβ , Eγ (and consequently the scattering matrix elements S2(θ)
and S1(θ)) play important roles in the resulting spin-orbit interactions.

Since in a typical experiment (e.g., Fig. 12.9), we detect the scattered far
field picked up by the analyzing optics and detectors usually in the xy plane, it
suffices to consider only the transverse field components henceforth. The corre-
sponding transfer function (see the first two rows and columns of Eq. (12.40))
is the conventional 2 × 2 Jones matrix. In order to interpret the SOI via the
conventional polarization parameters (namely, the diattenuation and retar-
dance parameters defined in Chapter 6), we now derive the Mueller matrix
corresponding to this Jones matrix. Note that diattenuation and retardance
are conventionally defined as differential attenuation of orthogonal polariza-
tions and the phase shift between orthogonal polarization states, respectively.
These two polarization effects thus deal with the amplitude and the phase
parts of the scattered field, respectively. The Mueller matrix corresponding to
the 2× 2 Jones matrix (see the first two rows and columns of Eq. (12.40)) can
be derived using the standard relationship connecting the two (see Eq. 6.34 of
Chapter 6). The resulting matrix is a diattenuating retarder Mueller matrix
characterized by diattenuation D(θ), retardance δ(θ) and orientation angle of
the axes of the diattenuating retarder φ (azimuthal angle), the elements of

© 2016 Taylor & Francis Group, LLC

  



276 Wave Optics: Basic Concepts and Contemporary Trends

which are Mij (i-row, j-column):

M11 = 1;M12 =M21 = D cos 2φ;M13 =M31 = D sin 2φ;

M14 =M41 = 0;M22 = cos2 2φ+ x cos δ sin2 2φ;

M23 =M32 = sin 2φ cos 2φ− x cos δ sin 2φ cos 2φ;

M24 = −M42 = −x sin δ sin 2φ;M33 = sin2 2φ+ x cos δ cos2 2φ;

M34 = −M43 = x sin δ cos 2φ;M44 = x cos δ; (12.44)

x = |
√

1−D2|.

Here, D and δ are related to the scattering matrix elements as

D(θ) =

{ |S2(θ)|2 cos2 θ − |S1(θ)|2
|S2(θ)|2 cos2 θ + |S1(θ)|2

}

, δ(θ) = tan−1

[

Im(S∗
2 (θ)S1(θ))

Re(S∗
2(θ)S1(θ))

]

.

(12.45)
Eq. (12.44) is a Mueller matrix of an azimuthal diattenuating retarder, and
thus in principle it can exhibit all the different types of spin-to-orbit AM
conversion as exhibited by the vortex retarder (inhomogeneous quarter- and
half-wave plate) and/or the vortex polarizer (diattenuator) discussed in the
previous section (inhomogeneous anisotropic medium). The nature of SOI in
scattering (whether it would act like a vortex retarder or a vortex polarizer or
a mixture of both) is crucially determined by the scattering matrix elements
S2(θ) and S1(θ) because these parameters determine the magnitude of the
scattering-induced diattenuation D and retardance δ parameters. Since S2(θ)
and S1(θ)) of a scattering particle can be tuned by selecting a suitable wave-
length, size and shape, various interesting regimes of SOI can be realized by
clever manipulation of the diattenuation and retardance polarimetry param-
eters of scattering. In the following, we provide examples of three pure cases
of scattering-mediated SOI effects depending upon the different natures of
SAM-to-OAM conversion and the resulting evolution of the geometric phases
[135].

Case 1: D = 0, δ = π,↔ Eα = 0 or S2 cos θ = −S1; Geometric phase
vortex formation by SAM flipping

The Mueller matrix for this case represents generation of geometric phase
vortex with topological charge l = ±2 (similar to the case of the vortex
half-wave plate described in the previous section). For any incident circu-
lar polarization state (e.g., LCP), the resulting SOI is (σ = +1, l = 0) ⇒
(σ = −1, l = 2). Subsequent flipping of SAM is evident from the matrix
element M44 = −1. For incident horizontal linear polarization (Stokes vec-

tor Si =
[

1 1 0 0
]T

), on the other hand, the output state becomes

S0 =MSi =
[

1 cos 4φ sin 4φ 0
]T

, which does not contain any spin per
se but implies rotation of the initial linear state acquiring phase vortices with
opposite topological charges (l = ±2).
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Note, however, the condition (S2 cos θ = −S1) cannot be fulfilled for sin-
gle scattering from dielectric Rayleigh scatterers (radius a << λ) either for
forward or backscattering angles. This can be recognized by noting that for
such scatterers (where scattering is contributed solely by the lowest-order
TM electric dipolar a1 mode), the amplitude-scattering matrix elements are
(S2 ∼ a1 cos θ and S1 ∼ a1). Although in the single backscattering (θ = π)
from Rayleigh scatterers, the overall helicity flips, there is no reversal of the
z component of the spin angular momentum (helicity flipping is associated
with reversal in the direction, +z → −z), and thus it is not associated with
acquisition of the phase vortex (or generation of OAM). In contrast, this can
be observed in backscattering from a random medium. In this case, the inci-
dent polarized light suffers a series of forward scattering events to eventually
emerge through the backward direction of the random medium. The helicity is
preserved throughout the multiple scattering trajectory (adiabatic evolution of
polarization through helicity preserving forward scattering paths); thus while
emerging through the backscattering direction (+z → −z), there is a complete
reversal of the z component of the spin angular momentum (σ = +1 → −1, or
vice versa). The resulting scattered fields accordingly acquire phase vortices
(l = +2).

Case 2: D = ±1, δ = 0,↔ Eα = ±Eβ or S2 = 0/S1 = 0; SAM to OAM
conversion by pure diattenuation effect of scattering

The corresponding Mueller matrix is a pure azimuthal diattenuator matrix
signifying complete conversion of SAM to OAM (σ = ±1 → 0, l = ±1). As

evident, for the input RCP state (Si =
[

1 0 0 1
]T

), the output is an

azimuthal linear polarization state: So =
[

1 cos 2φ sin 2φ 0
]T

, carrying
no SAM. The angular momentum of the scattered light is thus entirely OAM.

This effect can be observed even for Rayleigh scattering from dielectric
particles. The required condition is fulfilled for a Rayleigh scatterer at a scat-
tering angle θ = 90◦, where the amplitude scattering matrix element S2 van-
ishes. For incident circularly polarized light, the scattered light at θ = 90◦

becomes completely linearly polarized, which carries no SAM. Accordingly, at
this angle, the angular momentum is entirely carried by the OAM. In the case
of larger-sized Mie scatterers (a ≥ λ), on the other hand, such a complete
conversion of SAM to OAM may occur at several narrow ranges of scattering
angle θ, depending upon the size parameter of the scatterer.

Case 3: D = 0, δ = π/2,↔ Eα = iEβ or S2 cos θ = −iS1; SAM to OAM
conversion by pure retardance effect of scattering

The resulting Mueller matrix assumes the form of a pure retarder matrix
(similar to the azimuthal quarter-wave plate discussed in the previous sec-
tion). For the input horizontal linear polarization state, the output state is

So =
[

1 0.5× (1 + cos 4φ 0.5× sin 4φ sin 2φ
]T

, implying generation of
the azimuthal angle φ−separated lobes of opposite circular polarization states
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(σ = ±1). For the input RCP state, on the other hand, the SAM-to-OAM con-

version is similar to the previous effect: So =
[

1 − sin 2φ cos 2φ 0
]T

,
implying complete SAM-to-OAM conversion and subsequent generation of
phase vortex (σ = −1 → σ = 0, l = −1).

The condition for this type of SOI can be fulfilled for scatterers where
the scattering process is contributed by more than one scattering mode. For
example, this arises for larger-sized dielectric scatterers (a ≥ λ), where in ad-
dition to the lowest-order TM mode (the a1 electric dipole mode, which is the
dominant mode for Rayleigh scatterers with a << λ), the other higher-order
modes (e.g., the a2 electric quadrupolar TM mode, b1 magnetic dipole TE
mode and so forth) contribute to the scattering process. Finally, It has been
demonstrated that all the three pure cases of SOI can be realized exploiting
the resonance effect in scattering, for example, by clever manipulation of the
localized plasmon resonance modes in metal nanoparticles/nanostructures. A
detailed discussion of this aspect is beyond the scope of this book.

Before we conclude this section, the nature of the geometric phase pro-
duced by the scattering process is worth a brief mention. Note that the ge-
ometric phases associated with the SOI by diattenuation and retardance ef-
fects of scattering can neither be treated as the pure spin redirection Berry
phase nor the pure Pancharatnam-Berry phase. This follows because, in this
case, both the polarization state and the propagation direction of the wave
changes (due to scattering-induced diattenuation and retardance effects and
subsequent evolution in different scattering trajectories). Nevertheless, the re-
sulting geometric phase for such space-varying polarization can be determined
from the general definition of geometric phase. It should also be noted that
although the three pure cases of SOI have been discussed, in the general case
(D 6= 0, δ 6= 0), all three effects may manifest, the strength of each one being
determined by the magnitudes of D and δ. As evident from the general scat-
tering Mueller matrix of Eq. (12.44), the Case 1 type SOI will take place for
δ > π/2 (the negative value of M44), and the other two effects may take place
for any values of D and δ.

12.6 Spin-orbit interaction of light in tight focusing of
Gaussian beam

Spin-orbit interaction of light by tight focusing of fundamental or higher-
order Gaussian beams may also be described in a way similar to that of scat-
tering, where the geometric transformations of the field vector (as a result
of focusing) is responsible for the observed effects. The SOI effects in tight
focusing can be described using the so-called Debye-Wolf theory of focusing
(also referred to as the angular spectrum method) with a spherical lens. The
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FIGURE 12.10: The geometry of tight focusing showing the Cartesian coor-
dinates (x, y, z) at a point P in the object space. The corresponding spherical
polar coordinates (r, θ, φ) are also shown.

geometry of tight focusing is shown in Fig. 12.10 [128, 136]. With the incident
field at the entrance pupil of the figure, Ein(r) is assumed to be paraxial and
propagating along the z direction, so that we can neglect the z component
of the incident field (the input polarization is conveniently described by two
component Jones vectors corresponding to the transverse fields).

It is convenient to introduce spherical polar coordinates (r, θ, φ)(r > 0, 0 ≤
θ ≤ π, 0 ≤ φ ≤ 2π), with the polar axis θ = 0 along the z direction, and with
azimuth φ = 0 containing the electric field vector in the object space. Af-
ter refraction, the partial rays converge at the focal point (P) and have the
nonparaxial k vectors. The lens performs a sort of Fourier transform, translat-
ing the initial real-space distribution Ein(r) into the momentum distribution
Ep(k) in the image space. Thus the expressions for the real-space field dis-
tribution at any point P (x, y, z) in the image region can be written in the
angular spectrum form (see Chapter 14) as

Ep(x, y, z) ≈
∫ ∫

Ep(kx, ky)e
i(kxx+kyy+kzz)dkxdky . (12.46)

Here, the angular spectrum integral is based on the fact that the real-space
electric field near the focal point is determined by the interference of the con-
stituent partial plane waves having different k vectors. Here, the components
kx, ky, kz along a ray in the image space and the coordinates (x, y, z) of the
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point P (shown in Figure 12.10) in the image region can be expressed as

kx = k sin θ cosφ, ky = k sin θ sinφ, kz = k cos θ,

x = rp sin θp cosφp, y = rp sin θp sinφp, z = rp cos θp, (12.47)

so that the term in the exponent of the integral (12.46) can be written as

kxx+ kyy + kzz = krp cos ν,

cos ν = cos θ cos θp + sin θ sin θp cos (φ− φp) . (12.48)

Here, the set of spherical polar coordinates (rp, θp, φp) is defined with respect
to the origin at the focal point. Equipped with this set of equations relating
the real-space field Ep(x, y, z) and the momentum space field Ep(k) at the
focal region (point P ), we now consider the evolution of the polarization as-
sociated with each partial wave (characterized by a constituent k due to the
focusing transformation). In the case of pure focusing (with no other effects,
e.g., refraction/reflection due to the presence of any interface in between), the
partial waves do not change their polarization state in the local basis attached
to the ray, and the electric fields experience pure meridional rotations by the
refraction angle θ together with the k vector. As previously discussed, such
an evolution of the polarization state is referred to as an adiabatic evolution.
Accordingly, the geometric phase associated with this polarization evolution
can be treated as a pure spin redirection Berry phase. The resulting focused
field spectrum for a partial wave Ep(θ, φ) can be related to the input field
(Ein(θ, φ)) (when represented in terms of the angles θ, φ) using the purely
geometrical rotational transformation

Ep =AEin,

A =





cosφ − sinφ 0
sinφ cosφ 0
0 0 1









cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









cosφ sinφ 0
−sinφ cosφ 0

0 0 1





=





a− b cos 2φ −b sin 2φ c cosφ
−b sin 2φ a+ b cos 2φ c sinφ
−c cosφ −c sinφ a− b



 . (12.49)

Here, the coefficients a, b and c for the case of pure focusing are given by

a =
1

2
(1 + cos θ) , b =

1

2
(1− cos θ) , c = sin θ.

The polarization distribution of the real-space electric field near the focal
point can then be related to the input field by considering interference of all
the constituent partial plane waves (using Eq. (12.46) as

Ep (x, y, z) ≈
∫ θm

0

∫ 2π

0

Ep (θ, φ) e
ikrp cos νdθdφ, (12.50)
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where the limit of the θ integral (θm) is set by the numerical aperture of the
focusing lens. This integral can be evaluated using Eq. (12.48) and Eq. (12.50)
and by performing a few simple algebraic steps. The resulting Cartesian com-
ponents (x, y, z-polarizations) field at the focal point P (with corresponding
representation in spherical polar coordinates rp, θp, φp) can be related to the
input polarization of the field as





Ex
Ey
Ez





p

=





I0 + I2 cos 2φp I2 sin 2φp 2iI1 cosφp
I2 sin 2φp I0 − I2 cos 2φp 2iI1 sinφp

−2iI1 cosφp −2iI1 sinφp I0 + I2









Ex
Ey
Ez





in

,

(12.51)
where the coefficients I0, I2 and I1 are the diffraction integrals originating
from the integration of Eq. (12.50) and are given as

I0 ≈
∫ θm

θ

Ein
√
cos θ(1 + cos θ)J0(krp sin θ sin θp)e

ikrp cos θ cos θp sin θ dθ,

I1 ≈
∫ θm

θ

Ein
√
cos θJ1(krp sin θ sin θp)e

ikrp cos θ cos θp sin2 θ dθ,

I2 ≈
∫ θm

θ

Ein
√
cos θ(1− cos θ)J2(krp sin θ sin θp)e

ikrp cos θ cos θp sin θ dθ.

(12.52)

Here, Jn is the Bessel function of the first kind and order n.

Apparently, the polarization transformation matrix of Eq. (12.51) resem-
bles the corresponding transformation matrix for scattering (Eq. (12.40). Thus
the focusing process would also mediate similar types of spin-to-orbit AM con-
version. For example, for input left circularly polarized light, the resulting field
at the focal region may also be decomposed into three components: the first
component has the same helicity as that of the incident circular polariza-
tion, the second component has opposite helicity and is associated with an
orbital angular momentum component of l = +2 and the third component
(the z-polarization component) is linearly polarized, carrying an orbital angu-
lar momentum of l = 1. The associated coefficients I2 and I1 of the transverse
(second term) and the longitudinal (third term) field components thus deter-
mine the strength of the spin-orbit angular momentum conversion. We once
again note here that the spin-to-orbit AM conversion described above for the
case of pure focusing arises due to adiabatic evolution of polarization during
focusing and generation of the spin redirection geometric Berry phase. The
presence of any interface near the focal point can also be dealt with in a sim-
ilar way, but we then have to incorporate the local polarization changes in
the local basis attached to the ray (due to refraction/reflection). The corre-
sponding effect may be incorporated by introducing the Fresnel transmission
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(reflection) matrix within the polarization transformation given in Eq. (12.49):

Ep(θ, φ) = AEin(θ, φ),

A
t
r = Tz(−φ)Ty(−θ)FTz(φ). (12.53)

As previously defined, Ta(ψ) represents geometrical rotational transformation
about the a-axis by an angle ψ. The matrix F is the Fresnel polarization trans-
formation matrix, which describes the amplitude transmission (reflection) co-
efficients for p- (parallel to the plane of incidence) and s-(perpendicular to the
plane of incidence) polarization states, respectively, Tp (Rp) and Ts (Rs). For
example, in the case of transmission,

F =





Tp 0 0
0 Ts 0
0 0 Tp



 . (12.54)

The final polarization transfer function (Eq. (12.51)) will of course remain
similar but the coefficients I0, I1 and I2 will now be modified to include the
transmission (reflection) coefficients:

I0 ≈
∫ θm

θ

Ein
√
cos θ(Ts + Tp cos θ)J0(krp sin θ sin θp)e

ikrp cos θ cos θp sin θ dθ,

I1 ≈
∫ θm

θ

Ein
√
cos θJ1(krp sin θ sin θp)e

ikrp cos θ cos θpTp sin
2 θ dθ,

I2 ≈
∫ θm

θ

Ein
√
cos θ(Ts − Tp cos θ)J2(krp sin θ sin θp)e

ikrp cos θ cos θp sin θ dθ.

(12.55)

A comparison of Eq. (12.40) for SOI in scattering indicates that in the case of
focusing the role of the scattering matrix elements S2(θ) and S1(θ) (with the
scattered field polarized parallel and perpendicular to the scattering plane) is
played here by the Fresnel transmission (reflection) coefficients Tp (Rp) and
Ts (Rs), respectively. In other words, the role scattering plane is played by
the plane of incidence (for planar interface) in the case of focusing through
reflecting/refracting planar interfaces. We note here that in the case of a mul-
tilayered (stratified) medium, the Fresnel transmission (reflection) coefficients
are generally complex (as in the case of scattering where S2(θ) and S1(θ)
may be complex, depending upon the nature and the number of contributing
scattering modes). Thus with suitable choice of the multilayered or stratified
medium, we may in principle realize all the various interesting regimes of SOI
in the case of focusing of light through such a medium.

To summarize, in this chapter we have introduced the concept of angu-
lar momentum of light and defined both its variants, namely, the spin and
orbital angular momentum via classical wave optics treatment. It has been
shown that under certain circumstances, the spin and orbital degrees of free-
dom of a light beam may get coupled. The resulting spin-orbit interaction of
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light is manifested as (i) the interconversion between SAM and the intrinsic
OAM of a light beam, which occurs due to the evolution of azimuthal geo-
metric phase, which this eventually leads to the generation of spin-induced
optical vortices (characterized by helical phase fronts), and (ii) the reverse
effect of polarization (spin) on the trajectory of a light beam, which deals
with the interaction between SAM and the extrinsic OAM of light. This effect
is manifested as a spin-dependent shift of the trajectory of the light beam
[137, 138]. It has been shown that the former effect arises usually in cylindri-
cally or spherically symmetric systems, such as in scattering, in tight focusing
and for propagation through inhomogeneous (having azimuthal symmetry)
anisotropic media. In contrast, the latter effect is associated with the break-
ing of the symmetry of the system and the generation of extrinsic OAM. Each
of the aforementioned effects have been dealt with using the appropriate math-
ematical framework and illustrated with selected examples. The various kinds
of geometric phases and their roles in the SOI process have also been dis-
cussed. Finally, as discussed in this chapter, classical light captures all of the
basic features of interaction and coupling between spin and orbital degrees of
freedom of relativistic spinning particles in external fields. The relative purity
and simplicity of optical systems (as compared to condensed matter and high-
energy physics) enables us to observe the fundamental effects associated with
SOI with relative ease and extrapolate results to a range of physical systems
where such observations are impossible. In addition to the fundamental inter-
ests, the SOI of light are also finding potential nano-optical applications, in
developing novel sensors, nanoprobes and so forth, exploiting the tiny optical
effects associated with SOI.
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13.1 Basic theory

Light possesses momentum. When treated as a wave, the momentum is
often manifested as a radiation pressure; that was first asserted by Maxwell in
1862. In the particle treatment that is introduced by the de Broglie relation,
we calculate the momentum of a single photon to be ~k. In this chapter, we
will study how light can be used to exert forces on microparticles so as to
provide a means of confining and manipulating them. These effects can be
analyzed by considering the ray or wave picture of light, and the quantum
picture need not be invoked.

13.2 Force and torque on a dipole

The first thing to understand is how light can interact with matter. Light
is essentially an electric field (of course the magnetic field is also there, but it
is much weaker in magnitude), and from the multipole expansion of charges,
we know that it is the dipole component that the electric field interacts with
to exchange energy. Thus, the initial step is to understand the force that an
electric field can exert on a dipole.

13.2.1 Force and torque on a dipole in a uniform electric
field

Figure 13.1 shows a dipole having dipole moment p = qL, where L is the
separation between charges +q an −q constituting the dipole. If the dipole
is placed in a uniform electric field E, the net force on the dipole about the
center point O is F+ + F− = qE − qE = 0. However, since the direction of
the forces F+ and F− is opposite, it is clear that there would be a nonzero
moment of the forces about O. This moment, or torque is given by

T =
L

2
× F+ + (

−L

2
)× F−,

=
L

2
× qE+ (

−L

2
)× (−q)E,

= qL×E,

= p×E. (13.1)

The torque T results in the dipole being aligned in the direction of the electric
field E.
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FIGURE 13.1: Forces on a dipole in a uniform electric field. The net force
is zero, but there exists a torque around the center point O.

13.2.2 Force and torque on a dipole in a nonuniform electric
field

In this case, where the electric field is dependent on r and is not the same
everywhere in space, the situation is very different. The net force on the dipole,
where the two charges are separated by distance L, is then

F = F+ + F−,

= qE(r + L)− qE(r), (13.2)

so that

Fx =q [E(x + Lx, y + Ly, z + Lz)− Ex(x, y, z)] ,

=q

[

Ex + Lx
∂Ex
∂x

+ Ly
∂Ex
∂y

+ Lz
∂Ex
∂z

+ ...− Ex

]

,

=(p.∇)Ex. (13.3)

Adding all components, we finally have

F = (p.∇)E. (13.4)

In order to calculate the torque, we use again

T =
L

2
× F+ + (

−L

2
)× F−,

= q
L

2
× [E(r + L) +E(r)] ,

= q
L

2
× [E(r + L) +E(r) +E(r) −E(r)] ,

= q
L

2
× [E(r + L)−E(r) + 2E(r)] ,

=
L

2
× (p.∇)E(r) + p×E(r), (13.5)
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where we have used Eq.( 13.4) in the last step. Thus, generally, the torque

T =
r

2
× (p.∇)E+ p×E. (13.6)

13.2.3 Potential energy of a dipole placed in an electric field

For electrical charges, the potential energy may be understood as the work
required to move the charges from infinity to a particular position. For a
dipole, this translates to no work when the two equal and opposite charges
are placed at the center of the dipole (point O in Fig. 13.1), or when they are
moved normal to the field, since the force is perpendicular to the direction
of the field. Work is done, however, when the dipole is rotated with respect
to the field. Thus, if the dipole oriented at an angle φ with respect to the
field E is rotated by an angle dφ, the work done is obviously dW = T dφ,
where T is the torque induced on the dipole due to the field. From Eq. (13.1),
T = pE sinφ, so that the potential energy changed as the dipole is rotated
from an initial angle φi to a final angle φf is given by

Uf − Ui =

∫ φf

φi

T dφ,

=

∫ φf

φi

pE sinφ dφ,

=pE (cosφf − cosφi). (13.7)

We choose the initial angle φi to be 90◦ and the initial energy Ui to be zero.
This implies that Eq. (13.7) can be written as

Uf = U = −pE cosφ,

or U = −p.E. (13.8)

13.3 Exerting controlled forces on particles using light:
Optical trapping

As we saw earlier, light can exert forces and torques on dipoles. For macro-
scopic matter this is manifested in the form of radiation pressure, which for
the case of the sun is around 1361W/m2 on the earth. The effects of the force
emanating from this radiation pressure are nontrivial, and must be taken
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into account while setting the trajectory of spacecrafts. However, quite un-
derstandably, the momentum of light would be of maximum consequence to
small particles. A simple calculation shows that if light having 1 watt of power
is incident on a particle of radius around a wavelength of light (say 600 nm),
the particle would feel a recoil force of around 1,000 dynes, assuming that it
is a perfect mirror and reflects all the light incident upon it. More important,
the acceleration of the particle is extremely high—close to 105 g, where g
is the acceleration due to gravity. In 1969, Arthur Ashkin realized that this
force could actually be used directly to manipulate particles and even confine
them using focused laser beams. This led to the first series of experiments
in optical micromanipulation, where Ashkin demonstrated that even with a
mildly focused laser beam, transparent latex microspheres dispersed in water
could be made to assemble near the beam axis where the intensity was highest
[139]. The microparticles could also be translated by moving the laser beam.
In 1986, Askin and co-workers once again demonstrated that making a tighter
focus could actually trap single microparticles, and a new tool in studying
light matter interactions was born [140]. Ashkin proceeded to name this tool
‘optical tweezers’—where the focused laser beam (Gaussian) performed the
optical equivalent of mechanical tweezers to achieve similar manipulation of
micro-objects.

13.3.1 Gradient and scattering forces

13.3.1.1 Ray optics picture

Fig. 13.2 describes the forces exerted by a focused Gaussian beam on a
single dielectric spherical object whose diameter is much greater than the
wavelength of light (λ) so that a ray optics treatment of the process is permis-
sible. The particle is shown to be slightly off-axis in the transverse direction
with respect to the beam. We consider a pair of rays symmetrically distributed
about the center of the particle. Since a Gaussian beam (the intensity distri-
bution of which we have dealt with in detail in the previous chapters) has the
highest intensity at the center with a rapidly falling intensity radially outward

(remember that I(r) = I0 exp(− r2

2w2 ) where I0 and w are the peak intensity
and beam waist radius, respectively), a ray emanating from near the center
of the beam has a higher intensity associated with it (ray 1, in bold), while
that from the low-intensity fringe of the beam is much weaker in intensity (ray
2). The rays get refracted by the dielectric sphere in a direction toward the
center of the sphere. This is because we assume that the sphere is placed in
a medium that has a lower refractive index compared to it. The sphere thus
changes the momentum of light so that by Newton’s third law, the light exerts
an equal and opposite momentum on the sphere. If we consider all pairs of
such symmetric rays, we see that the net force can be resolved in terms of a
scattering force Fscatt in the longitudinal direction (in the direction of the light
beam), and a gradient force Fgrad in the transverse direction toward the region
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FIGURE 13.2: Ray optics analysis of the forces exerted by a focused Gaus-
sian beam on a transparent particle of diameter >> λ, where λ is the wave-
length of light. The net gradient force Fgrad is directed toward the center of
the beam, while the scattering force Fscatt is in the direction of the beam. The
refractive index of the sphere is higher than that of the medium.

of high intensity of the beam. For particles on the beam axis, F1 = F2 and
the particle feels no net force. Now, the tighter the beam focus, the higher
is the gradient force—and the particle feels a strong restoring force toward
the center of the beam. The scattering force is dependent on the difference
of refractive index of the microparticle from its environment, and for most
dielectric objects, it is weaker than the gradient force. The interplay of the
two force components, however, results in the equilibrium position of the par-
ticle to be shifted slightly from the center of the trap in the direction of the
beam. A ray optics–based calculation elaborated in Ref. [141] gives analytical
expressions for the longitudinal component Fscatt and the transverse Fgrad as

Fscatt =
nmP

c

(

1 + Rcos(2α)− T2[cos(2α− 2β) + Rcos(2α)]

1 + R2 + 2Rcos(2β)

)

, (13.9)

and

Fgrad =
nmP

c
(Rsin(2α)− T2[sin(2α− 2β) + Rsin(2α)]

1 + R2 + 2Rcos(2β)
), (13.10)

where R is the Fresnel reflection and T the Fresnel transmission coefficient, α
the angle of incidence and nm the refractive index of the surrounding medium,
while β is the angle of refraction.
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13.3.1.2 Rayleigh regime: Dipole picture

For particles that are much smaller than the wavelength of light, the theory
is very different, and we are not allowed to invoke the ray optics picture.
However, in this regime, we can consider the particle to be a point dipole and
then use the results of Section 13.2 to calculate the forces applied on it due to
the electric and magnetic fields of light. Thus, let us consider the force F on a
point charge q placed at x1 and moving with a velocity v1 in an electric field
E and magnetic field B, which is nothing other than the well-known Lorentz
force written as

F = q

(

E1 +
dx1

dt
×B

)

. (13.11)

For a dipole, this translates to

F = (p · ∇)E+
dp

dt
×B. (13.12)

This equation can be generalized for a particle having macroscopic polarization
P so that we have

F = (P · ∇)E+
dP

dt
×B. (13.13)

Here we make an important assumption that the particle has no permanent
electric dipole moment but one induced by light due to its polarizability α(ω)
(which is of course a function of the light frequency ω and is complex). The
polarization induced can then be related to the electric field as P = α(ω)E .
Using this in Eq. (13.13), we get

F = α

(

(E · ∇)E+
dE

dt
×B

)

. (13.14)

We now use a well-known vector identity

(E · ∇)E = ∇((E)
2
/2)−E×∇×E, (13.15)

so that, using the Maxwell’s relation,

∇×E = −dB
dt
, (13.16)

we obtain

F = α

(

1

2
∇(E2) +

d(E×B)

dt

)

. (13.17)

The last term is essentially the time derivative of the Poynting vector or energy
flow. Now, since the sampling frequencies used to study particle motion in
optical tweezers are typically ∼ 104 Hz, the time average of the time derivative
of the Poynting vector becomes zero, considering that the frequency of light
is ∼ 1014 Hz. Thus, just the first term in Eq. (13.17) remains, and we have

〈F〉 = Re
〈α

2
∇(E2)

〉

. (13.18)
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Now we can write the complex electric field asE = E0e
−iφ, whereE0 is the real

amplitude and φ a phase factor. Then (E)2 = E2
0e

−2iφ, so that representing
the complex polarizability α = α′+iα′′ and taking the time average, we obtain

〈F〉 = α′

4
∇E2

0 +
α′′

2
E2

0∇ φ. (13.19)

This is the mathematical form of the time-averaged total mechanical force
exerted by the trapping laser on a particle. The first term, also called the
gradient force, is proportional to the gradient of intensity and the real or
dispersive component of the polarizability of the particle, while the scattering
force depends on the phase gradient of the field and imaginary or dissipative
component of the polarizability. The latter is a consequence of the radiation
pressure and is a measure of the momentum transfer between the field and
the particle. On the other hand, the gradient force exerts a pulling force on a
particle toward the region of light where the intensity is maximum. In fact, for
a fundamental Gaussian (TEM00) laser beam, an evaluation of the derivative
term of Eq. (13.18) reveals that F = −kr, with k being a constant (that we will
later identify as the trap stiffness). The force is therefore linear and directed
toward the region of intensity maximum, at which point it is zero (since the
derivative is zero at the maxima). The negative sign implies that the force is
restoring in nature, so that any particle will reach a position of equilibrium
at the beam center (intensity maximum) and will experience a force pulling it
back if it moves away from the center. Thus we have an ‘optical trap’ at the
center of the beam. It is also clear that the magnitude of the restoring force
will be increased if the intensity gradient is high. This can be achieved in two
ways: (i) by increasing the laser power, which increases the intensity gradient
linearly since I ∼ P/r2, where P is the laser power and r the beam waist
radius, and (ii) by tightly focusing the laser beam, which increases the gradient
quadratically, as apparent from the expression of I. It is for this reason that
optical tweezers are typically developed around microscope objective lenses
having high numerical aperture, so that very small laser spot sizes (less than
the wavelength of the trapping laser) can be achieved, and large intensity
gradients can be created to exert commensurately high restoring forces on a
trapped particle.

In order to understand the physical origin of the scattering force, we write

the electric field as E(r) = E0(r) cos(ωt− φ(r)), so that with
∂B

∂t
= −∇×E,

we have
E2
0 ∇φ = 2ω 〈E×B〉 , E2

0 = 2
〈

|E|2
〉

. (13.20)

On substitution in Eq. (13.19), we obtain the following expression for the total
force:

〈F 〉 = α′

2
∇|E2|+ 2ωα′′ 〈E×B〉 . (13.21)

Thus it is apparent that the scattering force is proportional to the time average
of the Poynting vector or the field momentum.
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This treatment is for point dipoles. In reality, we actually deal with parti-
cles that have finite radii (less than the wavelength of light for nanoparticles),
and the treatment has to be thus modified. We need to consider higher-order
multipoles, and a treatment can be developed similar to Mie scattering (see
Chapter 11). In that case, the gradient force can be written as

〈F 〉 = Q(r)
ǫ2m 〈P 〉
c

, (13.22)

where 〈P 〉 is the incident power and Q(r) is the trapping efficiency that is
closely related to the polarizability α which for a sphere is identical within
the quasi-static limit to the electrostatic field of a dipole placed in the center
of the sphere. Thus, α is given by

α = 4πn2
mǫ0a

3m
2 − 1

m2 + 2
, m =

n1

nm
, (13.23)

where nm (n1) is the refractive index of the medium (particle), ǫ0 is the
dielectric constant of vacuum and a the radius of the particle. Eq. (13.23)
shows that the gradient force increases as the cube of the particle radius,
which implies that smaller particles are more difficult to trap.

We now consider the scattering force, the magnitude of which for a sphere
having a ≪ λ would obviously depend on the scattering cross-section (dis-
cussed in Chapter 11), so that we can write

Fscatt = n0 〈P 〉Cscatt/c, (13.24)

where n0 is the refractive index of the medium, and Cscatt is the scattering
cross-section that depends on the real component of the complex polarizability
α given as Cscatt=k

4|α|2/4π, k being the wave-vector of the incident light. The
scattering force is thus proportional to |α|2, implying a dependence of a6 from
Eq. (13.23).

Finally, there is a third force that needs to be considered, especially when
dealing with nontransparent objects such as metallic micro/nanoparticles.
This is the absorption force that arises from the complex component of α
that was identified in Eq. (13.19) with the scattering or dissipative force for
point dipoles. For finite-sized particles, we associate this force with the ab-
sorptive force that can be represented as (see Chapter 11)

Fabs = n1 〈P 〉Cabs/c, (13.25)

where Cabs is the absorption cross-section given as Cabs=k α
′′ with α′′ being

the complex component of the polarizability. This force is of particular signif-
icance in the trapping of metals near the plasmon resonance where absorption
is very high, leading to large heating in the vicinity of the particle such that
trapping becomes increasingly difficult due to increased kinetic energy of the
particle. It is also obvious that the recoil the particle experiences when ab-
sorbing from the trapping laser is in the direction of beam propagation, and
therefore it attempts to kick the particle out of the trap akin to scattering
forces.
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13.4 Dynamics of trapped particles

In the previous section, we saw that a focused Gaussian beam behaves
like an optical trap for microparticles since it exerts a finite restoring force
on them when they attempt to leave the center or region of highest intensity
of the beam. Since the force is conservative and linear in nature, it must be

derived from a potential of the form V (r) =
1

2
kr2, which is parabolic in nature.

Thus, the potential is well shaped in nature, just as in the case of a harmonic
oscillator. If a particle comes in the vicinity of the potential well having kinetic
energy greater than the well depth, it will not fall into the well — or in other
words, it will not be trapped. Thus it is unlikely that particles moving about
in air in room temperature (calculate the kinetic energy for particles of mass
around 10−12, assuming the average velocity of the particles to be the velocity
of sound) can be easily trapped just by a focused Gaussian beam. The situation
would be much improved if the medium is a viscous fluid instead of air, so that
the viscosity of the fluid acts as a frictional force and slows down the particles
enough to lower their kinetic energy to be smaller than the potential depth of
the trap. Thus most trapping experiments are performed in viscous fluids, of
which water is the most common, owing to its low absorption at most visible
and near-IR wavelengths, and the value of its viscous drag coefficient is just
about perfect to allow particles to diffuse about slowly. Once trapped inside
the potential well, the particle feels no restoring force due to the light at the
trap center but would still execute Brownian motion (it’s still in a fluid after
all!). Let us now study the dynamics of Brownian motion more carefully.

13.4.1 Langevin equation

A small particle of density similar to the fluid it is immersed in executes
random or Brownian motion inside the fluid. The size of the particle is of
course much larger than the atoms and molecules that make up the fluid.
While Robert Brown observed Brownian motion for the first time in pollen
grains immersed in water, it was Einstein who related the macroscopic and
microscopic properties of matter with his famous equation

D =
kBT

6πηa
, (13.26)

where D is the diffusion constant, a is the radius of the particle, η the coef-
ficient of viscosity, kB the Boltzmann constant and T the temperature. Note

that kB =
R

NA
, where R is the universal gas constant, and NA is Avogadro’s

number. Now, the motion of objects in such a particle-fluid system has three
distinct time scales: τa, τb, and τv. Of these, τa has the shortest duration,
being the time scale associated with the fluid atomic and molecular motion
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and the resulting collisions with the particle, and is typically of the order of
picoseconds or even smaller. Next, τb is the time scale for the ballistic Brow-
nian motion of the particle inside the fluid, which is the time scale at which
the inertia of the particle is damped out due to collisions occurring as a result

of rapid density fluctuations of the fluid. We have τb =
m

γ
, with γ = 6πaη,

where m is the particle mass. Typical orders of magnitude of τb vary from
nanoseconds to tens of microseconds for particles in water. Finally, τv is the
diffusion time for the particle to a distance equal to its own radius inside the

viscous fluid, and its value is given by τv =
a2

D
. Thus, τv is limited by the

friction (viscosity) of the fluid and can be really slow for highly viscous flu-
ids (on the order of seconds or even minutes). Hence, in terms of duration,
τa ≪ τb ≪ τv.

We now consider in detail the motion of the particles. Even for random
motion, the particles must obey Newton’s equation (assuming motion in a
single dimension)

m
dv(t)

dt
= F (t), (13.27)

where m is the mass, v(t) is the instantaneous velocity, and F (t) the instanta-
neous force on the particle at time t, which arises due to interaction with the
medium. Thus if the particle positions are exactly known as a function of time,
the force would also be completely determined so that the motion would not
really be random. However, in a fluid, while it can be expected that the dom-
inant force would be the viscous force given by F (t) = −6πaηv(t) = −γv(t),
there would also be a stochastic or random force ζ(t) whose origin would be
the random density fluctuations of the fluid. Thus, the equations of motion
would be

dx(t)

dt
= v(t),

dv(t)

dt
= − γ

m
v(t) +

ζ(t)

m
, (13.28)

Note that if we neglect the stochastic term in Eq. (13.28), the solution for
velocity would simply be v(t) = v(0) exp(−t/τ), where the time constant

τ =
m

γ
. This implies that at infinite time, v(t) would actually decay to zero,

i.e., the Brownian motion would stop altogether. This is unphysical, since we
know that according to the equipartition theorem, at equilibrium,

〈

v2(t)
〉

fin
=
kBT

m
, (13.29)

and is not zero—as Eq. (13.28) would suggest for the equilibrium velocity
〈

v2(t)
〉

fin
without the stochastic term. Thus, it is clear that the stochastic

term is indeed imperative to describe a physical origin of the Brownian mo-
tion. With a little intuition, we understand that the stochastic force originates
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from random collisions of the Brownian particle with the molecules of the sur-
rounding medium, so that the average of the force would be zero. The average
is what in statistical mechanics is known as the ensemble average, where we
have several realizations of the force in different independent manifestations
of the system. Note that the ensemble average of the second moment would be
nonzero. However, for pure Brownian motion, there cannot be any correlation
between collisions at time intervals dt1 and dt2. This is because the atomic
time scale is of the order of ps, so that even by assuming dt to be of the order
of µs, there would be 106 collisions of the particle with the atoms during this
time interval, so that any correlation or memory effect of forces at different
time scales vanish due to the large number of collisions. Thus, we may finally
represent the effects of the force as

〈ζ(t)〉ζ = 0, and 〈ζ(t1)ζ(t2)〉ζ = gδ(t1 − t2). (13.30)

Here, 〈...〉ζ denotes ensemble average, and g is the measure of the strength of
the fluctuating force. However, this does not imply that there exists a unique

solution for
dv

dt
, or even that

dv

dt
exists at all points. We thus need to delve

into the problem more deeply and impose conditions on ζ(t) such that at least

local solutions of
dv

dt
exist. We thus write the solution of Eq. (13.28) as

v(t) = exp

(−t
τa

)

v(0) +
1

m

∫ t

0

exp
−(t− s)

τa
ζ(s)ds. (13.31)

We now need to ensure that the integral in Eq. (13.31) exists. For this, we
rewrite Eq. (13.28) as

dv(t) = − γ

m
v(t)dt +

1

m
dU(t), (13.32)

where dU(t) = ζ(t)dt.
Integrating Eq. (13.32) between 0 and t, we obtain

v(t)− v(0) =
γ

m

∫ t

0

v(s)ds+
1

m
[U(t)− U(0)] , (13.33)

=
γ

m
[x(t)− x(0)] +

1

m
[U(t)− U(0)] . (13.34)

If we now discretize U(t) into small time intervals that are very close to each
other, we may write

U(t)− U(0) =
n
∑

k=1

[U(tk)− U(tk−1)] . (13.35)

U(t) is a continuous Markov process and the continuity follows from
Eq. (13.32), so that

U(t) = U(0) +

∫ t

0

ζ(s)ds, (13.36)
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where the integral should be a continuous function of its upper limit. The
Markovian nature is also understandable since the particle undergoes ∼ 1012

collisions per second with the atoms and molecules of the fluid, so that even
with the time intervals tk−tk−1 being very small (a few tens of microseconds),
there is a very large number of collisions. Thus, the correlations in time only
exist for the two intermediate steps (tk, tk+1), while those that occurred earlier
than tk are of no consequence—a typical property of Markovian processes.
This implies that U(tk) depends only on U(tk+1), and all the differential
increments are independent of each other; they are also stationary, having zero
mean. Thus, we can apply the central limit theorem to U(t), which implies
that U(t) has a Gaussian nature with zero mean and a standard deviation of
1. Finally, we rewrite Eq. (13.32) as

v(t) = exp

(−t
τa

)

v(0) +
1

m

∫ t

0

exp
−(t− s)

τa
dU(s). (13.37)

This is thus the solution of the Langevin equation for pure Brownian noise,
also known as the Ornstein-Uhlenbeck process.

13.5 Brownian motion in a harmonic potential: The op-
tical trap

The optical trap created by a focused Gaussian beam acts as a harmonic
potential, which constrains the motion of Brownian particles that are intro-
duced inside it. In such a case, Eq. (13.28) is modified to

dx(t)

dt
= v(t),

dv(t)

dt
= − γ

m
v(t)− ω2x(t) +

ζ(t)

m
), (13.38)

where ω2 =
κ

m
, κ being the spring constant or stiffness of the trap (recall

the discussion earlier), while ζ(t) is of course the Gaussian noise we discussed
in the previous section, which has the properties 〈ζ(t) = 0〉 and 〈ζ(t)ζ(t′)〉 =
δ(t − t′). Now, tinert ≡ m/γ0 is the characteristic time for loss of kinetic
energy via friction. Since tinert ≪ experimental time resolution (around tens
of microseconds corresponding to typical sampling rates of tens of kHz), the
inertial term can be dropped. This simplifies Eq. (13.38) considerably so that
we now have

ẋ(t) + 2πfcx(t) = (2D)1/2η(t). (13.39)

Here, we have introduced the diffusion constant D using Einstein’s equation

D =
kBT

γ0
and the corner frequency fc =

κ

2πγ0
. As we shall see shortly, fc
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is one of the most important parameters used to characterize an optical trap.
To solve Eq. (13.39), it makes sense to work in the Fourier domain. Now, in
an experiment, we measure the particle displacement x(t) for a time interval

tm, so that going into the Fourier domain, we have xk =
∫ Tm

−Tm
dt ei2πfk x(t),

where fk = k/Tm, η(k) is the Fourier transform of η(t), k being an integer. A
solution for Eq. (13.39) can now be obtained in the Fourier domain as

x̃k =
(2D)1/2ζ̃k
2π(fc − ifk)

. (13.40)

Here, in Fourier transforming ẋt, we ignore the contributions from the ends
of the integration limits (known as ‘leakage’ terms) in the partial integra-
tion, since the power spectral density that we will now consider is smoothly
behaving without any discontinuities. We turn our attention to the real and
imaginary components of ζ̃k, which would follow a Gaussian distribution of
uncorrelated random variables since the process ζ(t) is Gaussian. Then |ζk|2
would form a series of uncorrelated exponentially distributed variables that
are nonnegative. Thus, the experimentally measured power spectral density
would be written as

Pk =
|x̃k|2
Tm

=
D/(2π2Tm)ζ̃2k

f2
c + f2

k

. (13.41)

We finally have the time-averaged experimental power spectrum as

P expk = 〈Pk〉 =
|x̃k|2
Tm

=
D/(2π2Tm)ζ̃

2
k

f2
c + f2

k

. (13.42)

As can be observed from Eq. (13.42), the power spectrum is clearly a
Lorentzian. A Lorentzian fit would thus yield the coefficients fc and D, which
could be related to the trap stiffness and diffusion coefficient of the trapped
particle, respectively. The former helps in characterizing the trap, while the
latter serves as a consistency check and also helps in understanding local ef-
fects that can affect diffusion at the microscopic level.

The knowledge of corner frequency gives quantitative values for the stiff-
ness of the optical trap for a particular bead diameter, which now enables
us to set a limit for the minimum measurable displacement of a bead having
a certain diameter for a particular averaging time [142, 143]. This is the so-
called thermal limit, which is basically decided by the extent of the Brownian
motion of the bead at a given trap stiffness over an averaging time tav. From
Ref. [142], this is given by

∆smin =
1

κ

√

kBT 6πβa

tav
, (13.43)

where ∆smin is the thermal resolution limit.
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13.5.1 Generalized Langevin equation: The effect of hydro-
dynamic mass

While the viscous medium results in very fast damping of the inertial term
so that it is dropped from Eq. (13.38), a careful look at the problem yields
something more interesting. In fact, there does appear an inertial term if we
consider the solution of the Navier-Stokes equation for a sphere in a harmonic
potential inside an incompressible, viscous fluid that has a very low Reynold’s
number [144]:

F = −γ0
(

1 +
a

δ

)

ẋ−
(

3πρa2δ +
2

3
πρa3

)

ẍ. (13.44)

In this equation, ρ is the density of the fluid, whereas δ is the penetration
depth which is basically an estimate of the exponential decay of the fluid’s
velocity field with change in distance from the sphere executing harmonic
oscillations. Thus, we observe that the total frictional force actually leads to
an effect of inertia represented by the coefficient of ẍ in Eq. (13.44) — but
this is basically due to the fluid entrained due to the sphere motion, while the
coefficient of ẋ acts as usual as the dissipating or damping term. Thus, this
effect would be more pronounced if the volume of the fluid entrained would
be larger, which implies that it would be more pronounced as the size of the
particle (radius) increases. After some manipulation, we can then write down
the generalized Langevin equation [145] in Fourier space for a sphere trapped
in a harmonic potential well in an incompressible fluid as

m(−i2πf)2 + [γs(f)(−i2πf) + κ] x̃(f) = [2kBT Re(γs)]
1/2

ζ̃(f), (13.45)

γs(f) =
F

−i2πfx̃(f) =γs

(

1 + (1 − i)
a

δ
+−i2a

2

9δ2

)

.

Note that the Ornstein-Uhlenbeck equation is recovered as f → 0. However,
the experimentally measured time-averaged power spectrum is modified to
[146]

P hydrok =
D/(2π2)

[

1 + (f/fν)
2
]

(fc − f3/2/f
1/2
ν − f2/fm)2 + (f + f3/2/f

1/2
ν )2

, (13.46)

where
fν = ν/πa2, (13.47)

ν being the kinematic viscosity of the fluid, and

fm = γ0/2πm
∗ = 3fν/2, (13.48)

with m∗ = m+ 2πρa3/3 = 3m/2, m∗ being the effective hydrodynamic mass
of the sphere. We can conceptually understand fν as the frequency at which
the penetration depth of the flow pattern produced by the oscillatory motion
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FIGURE 13.3: Typical power spectra of a trapped (a) 1 µm diameter bead,
(b) 3 µm and (c) 16 µm bead. All spectra were fit to hydrodynamically correct
power spectra (Eq. (13.46), black lines) as well as Lorentzians (dotted lines).

of the sphere equals the radius of the sphere. This term of course has no mass
dependence, unlike fm, which is the friction-mediated time constant of the
sphere and depends entirely on the inertia of the sphere.

As mentioned earlier, the effects of the hydrodynamic corrections are
clearly seen in the case of larger microparticles. Figure 13.3 demonstrates
this for polystyrene beads having diameters 1, 3 and 16 µm. Clearly, as the
bead size increases, the power spectrum deviates from the Lorentzian to that
of the hydrodynamically corrected spectrum given in Eq. (13.46).

13.5.2 Experimental configurations

Optical tweezers require a large intensity gradient to trap and manipu-
late particles, which necessitates the use of a lens having small focal length

(remember that w =
λf

πd
, with w, f and d being the spot size radius, lens

focal length and beam diameter, respectively) — something that is possible
only with microscope objective lenses. It is for this reason that most optical
tweezers are developed around microscopes. For a microscope objective, the
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minimum spot size w = 1.22
λ

NA
, where NA is the numerical aperture of the

objective lens. Now, NA = n sin θ, with n being the refractive index of the
medium in contact with the lens aperture, while θ is the angle that the re-
fracted ray subtends with the lens axis. Thus, to obtain sub-wavelength focal
spot sizes, we need NA > 1, so that typically oil-immersion objective lenses
with oil of refractive index ∼ 1.5 in contact with the lens are used. The highest
NA available in objective lenses presently is around 1.5.

13.5.2.1 Typical setups: Upright versus inverted microscopes

Microscopes can be both upright and inverted, the difference being that
in the former, the objective lens is placed above the microscope stage bearing
the sample chamber, whereas in the latter it is placed below the chamber. For
upright microscopes, detection is performed using forward scattered light after
it passes through the objective, while for inverted microscopes, backscattered
light is typically employed for detection. However, for forward scattering, one
may face issues of saturating the detector, since a large portion of light incident
on the detector comes directly from the laser source without being scattered
from the source. The situation is not the same for backscattered detection,
where the technique known as back focal plane interferometry is used, wherein
the scattered light from the sample and unscattered light from other regions
is superposed on the detector to study particle dynamics. Often, inverted
microscopes are preferred since they facilitate backscattered detection, and
they can also be used to detect the forward scattered light by appropriate
optical arrangements.

13.5.2.2 Lasers and choice of wavelength

From the force equations it is clear that the gradient force that is respon-
sible for trapping has dependence on the intensity of the laser beam only and
very little dependence on wavelength. Thus light of any wavelength can be
used to trap microparticles, but the most commonly used wavelength is at
1064 nm, since this is a bio-friendly wavelength and causes limited damage to
cells due to the low energy associated with it.

13.5.2.3 Detectors: Cameras versus quadrant photo diodes

Video cameras are commonly used to track particle motion, but these are
both expensive and require complex image-analysis software to track particle
motion. In fact, most cameras are also limited in bandwidth, with their cost
increasing almost exponentially with increasing bandwidth. Thus photodi-
odes, which detect light scattering, are also commonly used to track particles,
and provide a much cheaper and user-friendly means of studying fast dynam-
ics. Note that a special type of photodiode, called a quadrant photodiode
(QPD), is employed since we are interested in the displacement of the bead.
A schematic of a QPD is shown in Fig. 13.4. It has four quadrants, and each
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Rotational motion: (A+C) - (B+D)

(b)

A B

D C

A B

D C

Translational motion: (A+D) - (B+C)

(a)

FIGURE 13.4: (a) Method to measure translation of a sphere; (b) Method
to measure rotation of a rod-shaped particle.

quadrant gives an independent output, so that to measure horizontal displace-
ment of a spherical particle, we perform an operation (A+D)− (B+C), i.e.,
the difference of the sum of the vertical quadrants, while for vertical displace-
ment we measure (A + B) − (C + D), i.e., the difference of the sum of the
horizontal components. It has been recently shown that QPDs can be used to
measure rotation rates of asymmetric particles where the difference of the sum
of the diagonal components ((A + C) − (B +D)) yields the rate of rotation
of such objects [147].

13.6 Trap calibration and measurements

One of the biggest advantages of optical tweezers is that they facilitate the
application of controlled forces on particles. In fact, most of the applications in
biology are based on this utility (which we shall discuss later), but the bottom
line is that we need to measure the force applied by the focused beam, as well
as the displacement of the trapped particle under the action of this force.
Both the quantities are somewhat related as we saw in the previous sections,
since the measurement of the displacement or Brownian motion of the particle
leads to the measurement of the spring constant of the trap. However, there
are several different procedures used to achieve this and calibrate optical traps,
which we shall now study.

13.6.1 Power spectrum method

We discussed this method extensively in the previous section. As men-
tioned there, the Brownian noise of the particle is measured using detectors
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(QPDs or cameras), and a power spectral analysis of the noise yields the trap
stiffness by fitting a Lorentzian to the data and extracting the fit param-
eters (corner frequency fc and diffusion coefficient D). However, while the
parameters are measured, there is an issue about the consistency check of the
parameter D, with known values of this constant for single particles existing
only for spherical particles for which the Stokes drag is exactly known for a
particular fluid. The measurement of D by this method becomes rather dif-
ficult to verify for nonspherical particles where the Stokes drag is difficult to
calculate theoretically. The estimate of the corner frequency by this method,
however, is rather reliable and widely performed by the optical tweezers com-
munity. A rather simple method to calibrate the trap is to vary the power of
the trapping laser, so that the gradient force and thus the trap stiffness varies
linearly as is seen from Eq. (13.22), and proceed to measure a linear response
of the corner frequency. For measurement of the Brownian noise or displace-
ment of a trapped particle, a separate detection laser is typically employed,
since otherwise the calibration by varying trapping laser power would be a
hindrance for detection, with the power on the detector also varying propor-
tionately. However, care has to be taken that the intensity of the detection
laser is low and that it itself does not apply a force on the trapped particle.

13.6.2 Calibration from time series of measured Brownian
noise

While the power spectrum method works in the frequency domain, infor-
mation about trap stiffness can be obtained by the measured time series of the
Brownian noise itself. One of the ways is by equating the variance of the noise
to the energy per degree of freedom, i.e., by using the equipartition theorem

1

2
kBT =

1

2
κ
〈

x2
〉

, (13.49)

where T is the absolute temperature, and x the displacement from equilib-
rium. The advantage of this equipartition theorem method is that it does not
explicitly depend upon the viscous drag of the medium, so that the shape of
the particle, its position with respect to nearby surfaces and the viscosity of
the medium need not be known to measure the trap stiffness. The method is
also susceptible to drifts in the particle position due to external perturbations
(temperature, etc.), since any added noise and drift in position measurement
serves only to increase the overall variance, effectively reducing the estimate
of the trap stiffness.

The second approach for using the time series of the noise for calibration
directly is by considering the fact that the probability distribution for the
displacement of a particle trapped in a potential well is given as

P (x) = A exp(−U(x)

kBT
) = A exp(− κx2

2kBT
), (13.50)
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where U(x) is the potential energy. When the potential is harmonic, this
probability distribution is a Gaussian parametrized by the trap stiffness κ.
Thus, a Gaussian fit to a time histogram of the measured variance yields the
spring constant directly.

13.6.3 Viscous drag method

This method is very different from the previous methods, and uses the fluid
properties to characterize the trapped particle. Thus, the particle is subjected
to an external force, which may be achieved by perturbing the particle directly,
or the fluid surrounding it. The former is achieved by applying a sinusoidal
driving force to the particle, while for the latter the microscope stage holding
the sample chamber with the particle may be subjected to a periodic force.
When a sinusoidal driving force of amplitude A0 and frequency ω is applied
to the trapped particle, the response of the particle is given as

x(t) =
A0ω

√

ω2
0 + ω2

exp(−i(ωt− φ)),

φ = −tan−1(f0/f), (13.51)

where f0 is the characteristic roll-off frequency and φ the phase delay. The
trap stiffness may be determined by measuring either amplitude or phase in
Eq. (13.51). Drag force measurements are slower compared to the thermal
motion of the particles so that the bandwidth limitations of the detector are
not as stringent.

13.7 Some uses of optical tweezers

Optical tweezers have a wide spectra of applications in different areas of
science, all of which cannot be given due justice in this chapter. We can only
highlight the most important studies and applications of tweezers in brief.
We start by categorizing the research using optical tweezers into three main
areas, namely, in photonic force microscopy, the study of interactions between
mesoscopic matter as well as between light and matter, and the induction and
study of exotic dynamics in mesoscopic systems.

13.7.1 Photonic force microscopy

As has been extensively described previously, optical tweezers are all about
applying controlled forces on microscopic matter using light. Just as a micro-
cantilever measures very tiny forces in an atomic force microscope (AFM),
a micron-sized optically trapped object can be used to probe forces at even
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femto-Newton levels. This can be understood from the fact that the displace-
ment of the particle in the presence of the trap and other external perturba-
tions can be measured very accurately using the detectors described earlier,
and the information about the force applied onto a trapped bead is actu-
ally contained in its displacement. This is indeed the basis of photonic force
microscopy (PFM) using optical tweezers, and it has been used in diverse
applications, including imaging surface topographies to nanometer precision
[149], colloidal physics [150] and especially biophysics [151].

To understand PFM, we revert to some classic studies in biology, which
is the area that has the largest number of applications for optical tweezers.
PFM has yielded a wealth of information in single molecule biophysics (for an
excellent review consult Ref. [151]), especially in molecular motors (molecular
motors are simply enzymes that move), such as kinesin and myosin, including
translocation rates, pauses and step sizes. Moreover, the application of force
via optical traps allows the motors’ motion to be measured as a function
of applied stress, which helps us better understand the different mechanisms
that work in the movement of these molecular motors. In addition, diverse
experiments have also been performed on single DNA and RNA, including
information on structure and unfolding dynamics.

What is the magnitude of the displacements we are talking about? Typi-
cally, a single step size of a molecular motor is in the few nanometer regime,
ranging from 8 nm for kinesin [152] and 5.5 nm for myosin [153]. This is,
however, much higher than the atomic scale step sizes of proteins along DNA,
which is around 0.34 nm. Optical tweezers have been employed to measure
even at this level of precision; single base-pair stepping of RNA polymerase
along DNA was measured to be 3.7 ± 0.6 Å [154]. The forces exerted by
molecular motors also vary between 1 and 100 pN—a range that is perfectly
within the range of forces that can be applied by optical tweezers.

We will now describe the methods by which such ultra-high precision mea-
surements are performed. To do experiments on proteins, the first requirement
is to develop a protein assay—that is, have an assembly of proteins on cover
slips or even beads anchored on a cover slip. A typical single protein assay, and
a schematic of the pioneering experiment in this direction [155], is shown in
Fig. 13.5. In this experiment, a single molecule of RNA polymerase (RNAP),
whose function is to copy information from DNA to RNA, is fixed or an-
chored to the surface, and it is then bound to a single DNA molecule as we
can see in Fig. 13.5. The opposite end of the DNA is attached to a micron-
sized polystyrene bead. Thus, the bead is ‘tethered’ to the surface by the DNA
molecule. Many such tethered beads are prepared, and then one of them is
trapped by the optical tweezers to subsequently carry out experiments. The
main measurement is the displacement of the bead under tension due to the
trap and the DNA tethered to it, and this displacement is measured by a de-
tection laser. However, we need to carefully understand how the measurement
of the displacement of the bead ∆xb would be related to the extension of the
DNA xDNA. Remember that the aim of the experiment was to measure the
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FIGURE 13.5: (a) Schematic to measure the motion of RNAP along DNA
by a surface tethering experiment. Surface-anchored RNAPs are shown by
gray pillars (not to scale). (b) A passive optical force clamp. Two traps next
to each other have two trapped beads. Trap 1 has lower stiffness than Trap
2. A DNA molecule is attached to both beads. (c) Measurement of the force-
displacement curve for Trap 1. The force is measured in Trap 2 as a function of
displacement in Trap 1 (black diamonds) and fit to the derivative of a Gaussian
(solid line). The open circles show an independent measurement of the force-
displacement curve based on the drag force on an untethered bead, which is
obtained by moving the microscope stage and sample at predetermined rates
while measuring the displacement from the trap center. Data reproduced from
Ref. [148].

movement of RNAP along the DNA. Thus, when the enzyme moves, the ex-
tension of the DNA is modified, changing xDNA, but the motion of the bead
is actually attenuated by the stiffness of the DNA (kDNA). Thus, this is like
a double spring system in series (the DNA itself is like a spring, and the trap
of course acts as a Hookean spring)—the stiffness kDNA being much smaller
than the stiffness of the trap ktrap. Then, we can write, considering that the
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DNA is not a linear spring,

kDNA =
∂F (xDNA)

∂xDNA
|F=Ftrap , (13.52)

and the bead displacement would need to incorporate the compliance due to
the DNA and can be written as

∆xb =
kDNA

(ktrap + kDNA)
∆xDNA. (13.53)

Thus, when the trap is very stiff, there is virtually no change in displacement
of the bead due to the extension of the DNA. It is thus a challenge to main-
tain an optimum value of ktrap in order to get good signal-to-noise in bead
displacement due to DNA extension. However, one of the main challenges of
such displacement measurements is the Brownian motion of the bead itself,
which from Eq. (13.43) is seen to be inversely proportional to trap stiffness.
Of course Brownian noise can be reduced by averaging, but too much averag-
ing also seriously limits the bandwidth of the measurement and can actually
prevent us from detecting the natural dynamics of proteins (if the averaging
time scale is longer than the protein time scales). This presents something of
a dilemma — do we sacrifice sensitivity in order to reduce Brownian noise?

The best solution to this problem was devised in Ref. [148], in what was
named an optical force clamp. The schematics of a passive force clamp is shown
in Fig. 13.5(b). In the figure, we see a double trap, basically two traps adjacent
to each other. The laser intensity is less in one trap compared to the other,
which makes the stiffness of Trap 1 less than that of Trap 2. We have a bead
trapped in each trap, with a DNA molecule tethered to both. The task is to
measure the dynamics of the DNA with high precision. From Eq. (13.53) it is
clear that the highest sensitivity in measuring ∆xDNA is to make it equal to
∆xb so that the only motion of the trapped bead is due to that of the DNA.
This implies making ktrap = 0 (see Eq. (13.53)). This is what is achieved in
a passive force clamp. Remember that the trapping force is proportional to
the gradient of the intensity, so for a Gaussian intensity profile, the nature of
the force would be like the derivative of a Gaussian as shown in Fig. 13.53(b).
Thus the force varies linearly about the center, but there is a region near
the turning point of the derivative, where the force is constant, and where
the stiffness (which is like the derivative of the force) is zero. This is where
the probe bead is placed, by a constant force applied by the bead in Trap 2.
The latter bead is kept in the linear region of the force curve, and a feedback
mechanism is applied to keep it in the same location of the force curve. This
feedback mechanism is experimentally challenging and essentially consists of
a fast measurement of the bead’s Brownian motion, and then characterization
of the trap stiffness by the power spectrum method. Any change in the trap
stiffness represented by the corner frequency obtained by fitting a Lorentzian
to the power spectrum of the bead in Trap 2 is immediately compensated
by adjusting the intensity of the laser beam or the position of the trap by a
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scanning mirror or an acousto-optic deflector. In fact, this feedback system is
an active force clamp, which maintains a constant trap stiffness or position of
the bead with respect to the beam center. The real innovation of the system
is the force clamp implemented on the bead in Trap 1, where a constant force
with zero stiffness is maintained by adjusting the bead in Trap 2 with the DNA
as a tether. To calibrate the force clamp, we measure the force in Trap 2 due
to displacement of the bead in Trap 1 as shown in Fig. 13.5(c). The stiffness
is constant for small displacements and agrees well with that measured for
an untethered bead of the same size using the viscous drag method. What is
interesting is the region of the curve where the force is constant for increasing
displacements—meaning zero stiffness. This is the region of the force clamp
that is around a distance of 240 nm from the trap center. Farther from that the
stiffness is negative, meaning that the force approaches zero. The measured
force-displacement relation also fits well to the derivative of a Gaussian, as is
expected (shown in the solid grey line in Fig. 13.5(c)). Finally, with such a
careful and innovative measurement method, Abbondonzieri et al. [154] were
able to measure the step size of RNAP to be 3.7 ± 0.6 Å.

13.7.2 Study of interactions

Optical tweezers offer the possibilities of measuring interactions at different
levels—namely, between different independently trapped objects, between a
trapped object and its surroundings and finally between a trapped object and
light itself, which is nothing but the study of light matter interactions at the
microscopic scale. We will briefly discuss two types of interactions that are
studied: optical binding and hydrodynamic interactions.

13.7.2.1 Optical binding

Optical binding refers to the interaction of optically trapped particles,
which causes a reorientation of the stable equilibrium position of the particles
due to a change in the intensity distribution of the electric field in their vicinity.
The change in the intensity distribution is basically due to scattering by the
particles of the light that is incident on them. Thus, if you consider a particle
trapped in an intensity maxima, it will also scatter light according to its
scattering cross-section. Now, a second particle that comes into the optical
trap experiences an intensity distribution due to the trapping laser and that
due to scattering off the first particle. Thus, the optical potential that it
encounters is slightly modified from that due to just the trapping laser. The
modified potential also leads to a small force between the particles known
as the ‘binding’ force, that may be both attractive and repulsive. The force
is very weak though, and is usually of the order of 1–2 pN. This, however,
results in a rearrangement of the spatial distribution of the particles with the
interparticle distances even greater than those possible due to electrostatic
interactions arising from any surface charges present.
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Now, optical binding can either be in the longitudinal direction to the
trapping beam or the transverse direction. Transverse optical binding can be
achieved by the use of interference patterns projected on the trapping plane
of the optical tweezers, so that an optical lattice was formed in that region
resulting in the formation of ordered colloidal crystals with a lattice structure
mimicking that of the optical lattice. The experiment was redesigned by a
single beam shaped like a narrow ribbon so that a similar assembly of particles
in the direction transverse to the beam was obtained, and a careful analysis
of the experiment revealed the existence of clear potential minima separated
by around a single laser wavelength. Longitudinal optical binding is most
commonly achieved by the use of counterpropagating beams with the beam
foci separated in a way so as to push particles longitudinally to a location
between the beam foci due to the resultant scattering force. Note that the
distribution was solely due to the scattering force alone since the beams were
from different lasers and produced no interference patterns. A comprehensive
review of optical binding and its associated physics can be found in Ref. [156].

13.7.2.2 Hydrodynamic interactions

A comparatively recent application of optical tweezers has been in the
study of hydrodynamic interactions at the microscopic scale, or in other words,
interactions between particles mediated by the properties of the fluid sur-
rounding them. For example, the coupled pendulum is a very well-studied
system in classical mechanics. But what would happen if the coupled pendu-
lum were immersed in water, which has a much higher viscosity than air? In
fact, it is not just the viscosity that plays the role of a frictional or dissipa-
tive force, it is also the fact that liquids flow, and the flow may cause very
interesting couplings between two spring-mass systems. Optical tweezers are
essentially a spring that is made of light, to which a micro-object is attached.
Of course, the natural frequency of the system is completely damped out by
the viscous fluid surrounding it, but interesting consequences do arise if we
have two such systems adjacent to each other. These consequences are basi-
cally expressed in correlations between the movements of these particles. In
fact, careful studies of such correlations have even led to the understanding of
synchronous motion of flagella that are responsible for the mobility of motile
living cells. In fact, such flagella can even be modeled as chains of spherical
particles attached to a larger particle representing the cell body [157]. While
these are more complex studies, the study of hydrodynamic interactions starts
from measurements of the motion of a spherical test bead placed in the veloc-
ity field of another bead moving either spontaneously due to Brownian motion
or in controlled ways by external forces [55]. These studies can then be ex-
tended to more complex shapes of microparticles as well as in diverse fluids
(viscous, visco-elastic, etc.). Thus, hydrodynamic interactions have a crucial
role to play in the understanding of biophysical phenomena, as well as fluid
dynamics at the microscopic level.
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13.7.3 Rotational dynamics in particles induced by optical
tweezers

Until now we have been dealing only with fundamental Gaussian beams to
trap particles. Fundamental Gaussian beams do not possess any intrinsic an-
gular momentum, either spin or orbital. However, it is possible to impart spin
angular momentum to a fundamental Gaussian beam by passing it through
a circular polarizer or quarter-wave plate (there is an extensive discussion on
quarter-wave plates in Chapter 6). The beam thus becomes circularly polar-
ized, which signifies that it has a spin angular momentum ~ or −~ depending
on whether the beam is left or right circularly polarized. When a circularly
polarized light is incident on a birefringent particle, there is exchange of an-
gular momentum, which causes the particle to spin along its axis. This was
first demonstrated in Bethe’s classic 1936 experiment where he showed that
a quartz plate suspended by a fine string actually underwent a small twist
when circular polarized light passed through it, demonstrating the exchange
of angular momentum. Thus, trapped birefringent particles may be imparted
spin by coupling a circularly polarized fundamental trapping beam. The rate
of rotation is directly proportional to the intensity of the beam and the degree
of ellipticity of the beam.

From the solutions of the Helmholtz equation, we also know that while
the TEM00 beam is the fundamental solution and has a Gaussian intensity
distribution, higher-order solutions often have a singularity at the center. This
is especially true of the Laguerre-Gaussian class of solutions, which are ob-
tained by writing the Helmholtz equation in cylindrical polar coordinates.
Even the LG1

0 has an annular intensity distribution with a central minimum.
More importantly, LG beam modes have intrinsic angular momentum, or or-
bital angular momentum, which is dealt with at length in Chapter 12. Thus,
when such a beam is coupled into the trap, it results in the trapping of parti-
cles in a ring-like distribution in accordance with the intensity profile, with the
particles also revolving around the beam axis due to the intrinsic orbital angu-
lar momentum of the beam. A good review of optical tweezers using angular
momentum carrying beams is found in Ref. [158].

13.7.4 Nanoparticle trapping and holographic tweezers

We end this chapter with a brief discussion on two of the most recent
developments in optical tweezers: trapping nanoparticles and multiparticle
trapping using holographic tweezers.

13.7.4.1 Nano-tweezers for nanoparticle trapping

The smaller the particle, the more difficult it is to trap. This happens for
two reasons. From Eqs. (13.22) and (13.23), we see that the magnitude of the
gradient force scales is a3, where a is the diameter of the particle, so that the
gradient force reduces for small particles. The value of the diffusivity from
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Einstein’s equation (inversely proportional to a) increases, and the Stokesian
drag (proportional to a) reduces, so that the probability of nanoparticles ei-
ther escaping the trap entirely or jumping out of it due to large amplitude of
stochastic Brownian motion kicks is high. In his seminal paper in 1986 [140],
Ashkin laid down a rule of thumb that the depth of the optical potential re-
quired for stable trapping should be ∼ 10 kBT , where the thermal energy kBT ,
given by the potential energy 1

2kx
2, would be higher for particles having large

values of x2. Thus, the well depth should be much higher for nanoparticles
compared to micron-sized ones to obtain stable trapping.

Increasing the well depth means increasing the intensity gradient, which
can be achieved by either increasing laser power or reducing the spot size.
Diffraction prevents reduction of the spot size lower than the wavelength of
the laser, while we cannot increase laser powers beyond a certain limit with-
out running into several issues (maintaining the fundamental Gaussian mode,
intensity stability, and so on). So how do we increase the gradient force? The
answer has been found rather recently, after the development of the field of
plasmonics, with which has come the widespread use of evanescent waves. We
learned in Chapter 3 that evanescent waves decay within the spatial extent
of less than a wavelength in the axial direction, which means that we can
actually have spatial confinement of the field within distances far less than
those allowed by the diffraction limit. This obviously means much higher in-
tensities, and understandably turns out to be the obvious solution for having
stable traps for nanoparticles.

A host of techniques have been developed for plasmonics-based nano-
tweezers to facilitate nanoparticle trapping. Most of them involve the exciting
of surface plasmon polaritons (SPPs) or local plasmon polaritons (LPPs).
Since SPPs cannot be coupled to propagating light, they are typically excited
by illuminating a gold-dielectric interface in the total internal reflection (TIR)
condition for a glass prism having higher refractive index than the dielectric,
so that at the surface of the metal, light can be evanescently coupled to SPPs
to create intensity distributions much higher than the incident intensity. LPPs
can be coupled to propagating light, and they are excited by developing metal
structures much smaller than the wavelength of light. Due to their definite
dimensions, LPPs have a fixed frequency range of operation for the trapping
laser but are really effective in producing very large intensities in their vicin-
ity. A common configuration is to develop gap antennas, or two gold nanorods
separated by a few wavelengths, so that nanometric particles are trapped in
the middle. Using such an antenna, 10 nm particles have been trapped recently
[159]. An elaborate review of plasmonic traps can be found in Ref. [160].

13.7.4.2 Holographic tweezers

As the name suggests, holographic tweezers are constructed by projecting
a hologram in the trapping plane. The advantage of such tweezers is the possi-
bility of creating an array of three-dimensional traps with a single laser beam
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that is incident on a hologram generally created by a computer on a spatial
light modulator (SLM). An SLM is essentially a liquid crystal display where
the gray levels of all pixels can be addressed by giving adjustable individual
voltages. Thus, a lattice of particles can be created and also manipulated indi-
vidually by addressing each trap separately. Holographic tweezers offer great
flexibility and maneuverability to the field of optical trapping, and they are
very useful in the study of interactions between the trapped particles, which
has deep implications in the understanding of biological processes and hydro-
dynamics. They also involve the most sophisticated optics technologies in the
field of optical tweezers with adaptive optics in the form of SLMs at the heart
of their functionality. Ref. [161] is an excellent review of holographic tweezers.
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This chapter is devoted to a few of the interesting effects that have drawn
the attention of researchers in the past fifteen year. There are many counter-
intuitive findings that triggered a second look at some of the seemingly well-
understood phenomena like imaging and diffraction. We focus on two main
effects, namely, the perfect imaging and extraordinary transmission. Note that
there have been many other interesting effects like invisibility cloaks, metasur-
faces and Fano resonances in nanostructures. The research has been extended
to quantum effects in metal-dielectric nanostructures, leading to the birth of
nonlinear and quantum plasmonics. We do not cite references on any of these
topics since a Google search will reveal the enormous progress that has been
made in most of these areas.

14.1 Near-field vs. far-field and resolution

In this section we try to highlight the advantages of near-field measure-
ments over far-field ones in the context of resolution. Let us assume that two
point sources are set apart by a small separation d, as shown in Fig. 14.1.
We want to resolve this distance by measuring the optical signal at a point
P at a distance r from the midpoint between these two sources (the origin).
Assuming that both the sources emit spherical waves, the time taken by the
optical disturbance τ∓ to reach P is given by

τ∓ =
k

ω
|r± d/2|, (14.1)
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FIGURE 14.1: Schematics of the two point source system.

where the ‘−’ (‘+’) sign refers to the left (right) source. Thus the amplitude
of each wave with amplitude A0 reaching point P would be

E∓(P ) = A0
e−iω(t−τ∓)

|r± d/2| = A0
e−iωt+ik|r±d/2|

|r± d/2| , (14.2)

E(P ) = E+ + E−, (14.3)

so that the total disturbance at P is a superposition of both. Let us now
distinguish between the far- and near-fields. The inequality kr ≫ kd implies
a far-field situation (a point of observation is far from the object) while the
object (e.g., a set of two sources) may be of sub-wavelength dimensions (kd≪
1) or otherwise. In contrast, the near-field situation holds when kd . kr ≪ 1
for a small object. For far-field region for large (kr ≫ kd ≫ 1) or small
(kr ≫ 1 ≫ kd) objects Eq. (14.3) with Eq. (14.2) can be simplified to

E(P ) =
ei(kr−ωt)

r
(2 cos(kd(r̂ · d̂)/2)). (14.4)

In writing Eq. (14.4) we neglected higher-order terms in d/r. The phase dif-
ference between the waves can be made zero by choosing a point r0 (r0 ≫ d)

on a large sphere such that r̂0 · d̂ = 0. The closest local minimum will occur
at r satisfying

kd|r̂ · d̂/2| = π/2. (14.5)

Measuring two successive local minima in the interference easily leads to the
size of the object:

d =
π

k|r̂ · d̂|
. (14.6)

However, for small objects (ka ≪ 1) the phase difference between two points
is practically zero and far-field measurements are unable to resolve d. The
situation is quite different in the near-field since spatial k-dependent phase
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does not affect the total field, which can be written as follows:

E(P ) = A0e
−iωt

(

1

|r+ d/2| +
1

|r− d/2|

)

. (14.7)

Again, for a chosen r̂0 with r̂0 · d̂ = 0, we can find d as

d =
2
√

4− r20 |A0|2
|A0|

. (14.8)

Thus the information about the object is contained in the k-dependent phase
in the far-field and the k-independent field magnitude in the near-field.

14.2 Angular spectrum decomposition and evanescent
waves

The discussion in the previous section did not have any reference to evanes-
cent waves. In this section we highlight the role of evanescent waves in near-
field imaging and superresolution. Let a monochromatic wave field at a point
r be given by E(r). Assume that the wave is propagating predominantly along
the z direction. Decomposition of this wave in terms of the spatial harmonics
is referred to as the angular spectrum representation [162] and is given by the
two-dimensional Fourier transform

E(x, y; z) =

∫

dkx

∫

dky EEE(kx, ky; z)ei(kxx+kyy), (14.9)

where both the integrations are on the whole real axis. The spatial harmonic
amplitude EEE(kx, ky; z) is given by the transform

EEE(kx, ky; z) =
1

4π2

∫

dx

∫

dy E(x, y; z)e−i(kxx+kyy). (14.10)

Substituting Eq. (14.9) in the Helmholtz equation and starting from the field
defined at z = 0, we obtain the propagation equation for the spatial harmonic
as follows:

EEE(kx, ky; z) = EEE(kx, ky; 0)e±ikzz, kz = ±
√

k2 − (k2x + k2y). (14.11)

We have to choose the proper sign for the square root so that Im(kz) ≥ 0 to
ensure causality. Thus the angular spectrum decomposition given by Eq. (14.9)
reduces to

E(x, y; z) =

∫

dkx

∫

dky EEE(kx, ky; 0)ei(kxx+kyy)e±ikzz . (14.12)
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FIGURE 14.2: Propagating and evanescent waves in the kxky plane.

The ± sign in Eq. (14.12) relates to the forward and backward propagating
waves. Analogous results hold for the magnetic field H. The amplitudes of the
spatial harmonics must obey k · EEE = k · HHH = 0 in order to satisfy Maxwell’s
divergence equations for E and H. The propagation characteristics of a spatial
harmonic depends on the transverse spatial frequencies kx and ky , namely, on
how they compare with the magnitude of the wave vector k in the medium.
We have propagating (evanescent) waves for k2x + k2y 6 k2 (k2x + k2y > k2),
i.e., inside (outside) the circle of radius k in the kxky plane (see Fig. 14.2).
Thus the propagating harmonics occupy a small parameter space in the trans-
verse k plane while most of the space is dominated by the evanescent waves.
Moreover, the angular spectrum decomposition amounts to a superposition
of plane waves and evanescent waves. Eq. (14.12) reveals another important
aspect of field propagation. In particular, the spatial harmonics at z = 0 and
at z can be related by a propagator t(kx, ky, z) = e±ikzz and Eq. (14.11) can
be rewritten as

EEE(kx, ky; z) = t(kx, ky, z)EEE(kx, ky; 0). (14.13)

In the standard optics literature, such propagators are also known as the
transfer functions. The transfer functions for a stratified medium or for a se-
quence of optical elements can be written as a product of transfer functions of
individual elements as discussed in Sections 9.1 and 9.2. The transfer function
is oscillating for propagating spatial harmonics while they imply attenuation
for evanescent components. Thus if the image plane is sufficiently separated
from the object plane (at z = 0), the contribution from the evanescent waves
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can be ignored and the integration in Eq. (14.12) can be performed within
the circle as in Fig. 14.2. As a consequence the information contained in the
higher spatial harmonics is lost. Only structures with a lateral dimension d
larger than 1/k can be resolved. For small objects with d 6 1/k, we need to
retain as many spatial harmonics as possible going beyond the circle, which
necessitates the near-field measurements. The larger the transverse spatial
frequency, the stronger is the attenuation and the corresponding fields are
more localized to the object plane. In this sense the sub-wavelength resolu-
tion necessarily means the inclusion of evanescent waves with larger spatial
frequencies.

One of the major discoveries of the last decade was the possibility of am-
plifying the evanescent waves by a negative index material slab, leading to
perfect imaging [18]. Usually a standard lens focuses only the propagating part
of the angular spectrum, while the information contained in the evanescent
waves is completely lost. A Pendry lens with idealized system parameters,
as in the case of a Veselago lens, does focus both the propagating and the
evanescent parts of the spectrum irrespective of the value of the transverse
wave vector components. In order to have a simplified picture, we look at a
two-dimensional version assuming infinite extent in the y direction. Assuming
a three-component stratified optical system with transfer functions given by
t1, t2, t3, the magnetic field for TM polarised light at the image plane can be
written as

Hy(x, z = d1 + d2 + d3) =

∫

dkxt1(kx, d1)t2(kx, d2)t3(kx, d3)Hy(kx, 0)e
ikxx,

(14.14)
where di (i = 1−3) is the spatial extent of the i-th layer along the z direction.
Veselago and Pendry lensing at an elementary level has been discussed nicely
in Ref. [163]. We briefly recount the arguments in the following section.

14.2.1 Transfer function for a dielectric slab

Consider a dielectric slab with dielectric function and magnetic perme-
ability ε2 and µ2 and width d2 embedded in vacuum (see Fig. 14.3). Let
the object and the image planes be at z = 0 and z = z3 = d1 + d2 + d3.
For a TM -polarized plane monochromatic wave with k = (kx, k0z) and with
k2x + k20z = ω2ε0µ0 = k20 , the propagation from z = 0 to z = z1 = d1 would
result in a phase factor of eik0zd1 . Similar arguments hold for propagation in
layer 3 from z = z2 to z = z3. Thus the transfer functions t1 and t3 of layers
1 and 3 are given, respectively, by

t1 = eik0zd1 , t3 = eik0zd3 . (14.15)

The transfer function for the second layer can be obtained using the results
of Section 9.2. Let mij , i, j = 1, 2 denote the elements of the characteristic
matrix for the slab of width d2. The transfer function for this slab is given by
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ε0
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FIGURE 14.3: Schematics of the dielectric slab embedded in vacuum.

t2 =
2p0z

(m11 +m12p0z)p0z + (m21 +m22p0z)
, (14.16)

where p0z = k0z/ε0 and the expressions for mij were calculated in Section
9.2. In order to reveal the exponential propagation factors, Eq. (14.16) can be
recast in the form

t2 =
4ζ

(1 + ζ)2e−ik2zd2 − (1− ζ)2eik2zd2
, (14.17)

where k2z =
√

ω2ε2µ2 − k2x and ζ = ε0k2z
ε2k0z

for TM waves. The total transfer
function t for propagation from z = 0 to z = z3 (to be used in Eq. (14.14)) is
the product of the individual transfer functions

t = t1t2t3. (14.18)

For perfect imaging we need to have a flat transfer function irrespective of the
value of the argument kx, which ensures the participation of all the spatial
harmonics at equal footing in forming the image. Such is the case for a Veselago
lens [17] for propagating waves as well as for a Pendry lens [18] for evanescent
waves in the near-field.

14.3 Negative index materials and Pendry lensing

In his seminal paper Veselago discussed far-field imaging with a slab of
NIM albeit with the idealized parameters ε2 = ε0εr and µ2 = µ0µr with
εr = −1 and µr = −1 [17]. See Fig. 14.4(a), which is a modified version of
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Fig. 14.3 with d1 = d3 = d/2 and d2 = d. For such a system, k2z = k0z and
ε2 = −ε0, and ζ reduces to

ζ =
ε0k2z
ε2k0z

= −1. (14.19)

Thus for propagating waves using Eq. (14.19), we have

t1 = eik0zd/2, t2 = e−ik0zd, t3 = eik0zd/2, (14.20)

so that the product equals unity. Indeed for such idealized parameters, all
propagating waves can be imaged perfectly by a Veselago lens. It is not dif-
ficult to understand Veselago imaging since we know that Snell’s laws hold
at an interface between a standard medium and a NIM, resulting in negative
refraction. An angle of incidence θ would result in a refracted ray at an angle
−θ for the given set of parameters above, and the object placed at z = 0
would image in the center of the NIM slab and also at a distance of d/2 after
the slab (see Fig. 14.4(a)).

Sir Pendry’s seminal contribution was his the suggestion that the same
system can be used for amplification of evanescent waves, resulting in perfect
imaging. Indeed, for an incident evanescent field with k outside the circle in

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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z (µm)

d/2 d/2
d

(a)

(b)

εr = 1

µr = 1

εr = 1

µr = 1

εr = -1

µr = -1

FIGURE 14.4: Focusing of (a) propagating and (b) evanescent waves. The
former (latter) is referred to as Veselago (Pendry) lensing.

© 2016 Taylor & Francis Group, LLC

  



320 Wave Optics: Basic Concepts and Contemporary Trends

Fig. 14.2, the propagators in Eq. (14.20) can be rewritten as

t1 = e−κ0zd/2, t2 = eκ0zd, t3 = e−κ0zd/2, (14.21)

where κ0z =
√

k2x − k20 = −ik0z. Again the total transfer function t = t1t2t3 =
1, and it is flat even for evanescent waves. The field emerging from z = 0 can
be imaged at z = z3 = 2d (see Fig. 14.4(b)).

14.4 Imaging through an absorption-compensated slab
of metamaterial

In reality the situation is much more involved. Losses in the electric and
magnetic response play a crucial role in limiting the resolution of a Pendry
lens. A detailed analysis of the effects of losses (due to finite imaginary parts
in ε and µ) on the total transfer function and how it leads to the cutoff
wavelength is presented in Ref. [163]. The existence of the cutoff wavelength
is due to deviation from the idealized parameters of a Pendry lens. In light
of the cutoff, not all the spatial harmonics are transferred to the image plane
and this results in the loss of resolution. The resolution limit has a logarithmic
dependence on the NIM losses [164]. There has been a realization of similar
lensing with a thin silver slab in the near-field, now referred to as a poor
man’s perfect lens [18, 165]. Recently there have been efforts to compensate
for the losses in plasmonic structures by suitable implementation of a gain
mechanism [166]. In what follows we show theoretically that even such gain
mechanisms may not be adequate to render some of the best experimentally
reported metamaterials suitable for perfect imaging if the compensation is not
perfect [23].

Most of the experimentally reported metamaterials are highly anisotropic.
For theoretical calculations we assume metamaterial to be homogeneous and
isotropic. The values for the permittivity (ǫ) and permeability (µ) are taken
from experimental work [167]. Further, for the magnetic permeability, µ is
fitted to a theoretical model corresponding to a Lorentz-type response. Special
attention is paid to the magnetic response since magnetic losses form the
dominant mechanism of losses at higher frequencies. For a material with built-
in gain, the magnetic response can be written as

µ(λ) = µ∞ +
σ1

1− (λ1/λ)2 − i(λ1/λ)γ1
+

fσ2
1− (λ2/λ)2 − i(λ2/λ)γ2

. (14.22)

The last term in Eq. (14.22) gives the contribution of the gain material (with
σ2 < 0), while the rest is the usual Lorentzian response [168]. The param-
eter f is a measure of doping concentration such that for f = 0 we recover
Dolling’s material. The parameters µ∞ = 0.6, σ1 = 4.425γ1, γ1 = 0.028 and
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FIGURE 14.5: (a) Permittivity ǫ, (b) permeability µ and (c) refractive index
n as functions of λ. The dashed (solid) curves correspond to the NIM without
(with) doping. The right panels give expanded views of the left panels around
λ0 = 1.436333 µm. Adapted from Ref. [23].

λ1 = 1.459 µm are chosen to fit the experimental data of Dolling et al. The pa-
rameters for the active material are taken to be σ2 = −0.0054292, γ2 = 0.0028
and λ2 = 1.43642 µm such that at f = 1, the metamaterial is absorption-
compensated at the working wavelength λ0 ≈ 1.436 µm (see Fig. 14.5). In
other words the metamaterial becomes transparent at the free-space working
wavelength λ0.

Let us now probe whether near-perfect imaging can be achieved by such an
absorption-compensated NIM slab (with configuration as in Fig. 14.3) with
the exception that now we have refractive index-matched ambient medium
(ε0, µ0 replaced by ε1, µ1). In order to probe the superresolution features, let
us image two adjacent Gaussians with subwavelength widths. Let the trans-
verse field distribution corresponding to the superposition of the Gaussians
of width λ0/10 and peaks separated by λ0/5 (at the working wavelength
λ0 ≈ 1.4363 µm) define our object. We can calculate the image-plane distri-
bution using the standard Fourier technique and using the transfer functions
and the spatial harmonics. In order to reveal the effects of loss compensation
by the gain medium, it is useful to compare the cases f = 1 (full absorption-
compensation), f = 0.95 (partial compensation) and f = 0 (experimental
NIM as is). The image-plane intensity distribution in the transverse plane is
shown in Fig. 14.6. Although the partially bleached NIM shows a maximum
transmission of about 1.5%, the peaks are indistinguishable (see dash-dotted
curve in Fig. 14.6). For the experimental material (without doping) the image

© 2016 Taylor & Francis Group, LLC

  



322 Wave Optics: Basic Concepts and Contemporary Trends

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

In
te

n
si

ty

x (µm)

FIGURE 14.6: Effect of loss on imaging. Images obtained at the perfect
image plane for f = 1 (dashed), 0.95 (dash-dotted) and 0 (dotted) compared
with the object (solid). Parameters are for an absorption-compensated NIM
slab and refractive index matched ambient medium: Re(ǫ2(λ0)) = −1.61,
Re(µ2(λ0)) = −1.48, µ1 = 1, ǫ1 = ǫ2µ2/µ1. Here λ0 ≈ 1.4363 µm and d2 =
2n2λ0, d1 = d3 = n1/(2n2). Note that for f = 0 the curve is flat and near
zero. Adapted from Ref. [23].

intensity is near zero. Thus using a loss-compensated NIM should make the
current metamaterials usable for much-improved superresolution applications.
The future of metamaterials research and their application potentials depend
on the development of new technologies to develop such transparent (at least
at selected wavelengths) metamaterials.

14.5 Extraordinary transmission

Diffraction of light through small holes or an array of holes in an otherwise

opaque screen has been one of the central problems of optics for ages. Any

standard textbook deals with diffraction in the framework of Kirchhoff’s scalar

diffraction theory . However, such a scalar theory [31] or its vector extension [4]
has some severe drawbacks in defining the boundary conditions. The shortfall

was scrutinized in a seminal paper by Hans Bethe [58]. The following excerpt

from Ref. [58] details the major drawbacks of the Kirchhoff theory.
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“The available theoretical methods are entirely inadequate
for the treatment of our problem. In the usual Kirchhoff
method, the diffracted field is expressed in terms of the inci-
dent field in the hole. However, the Kirchhoff solution does
not satisfy the boundary conditions, viz., it does not give
zero tangential component of the electric field on the screen.
In most textbooks, the pious hope is expressed that Kirch-
hoff’s method will give at least the first term of a convergent
series. This is probably true for the diffraction by an open-
ing, large compared with the wave-length, because then the
diffracted field will be relatively small on the screen, thus
“almost” fulfilling the boundary conditions. But it is cer-
tainly not true for a small hole; in fact, our exact solution
of the problem will turn out to be entirely different from
Kirchhoff’s.”

Recall that Kirchhoff’s method consists of putting the scalar field φ and its
normal derivative ∂φ

∂z to be zero on the screen (at z = 0) everywhere (at an
arbitrary x and y) at the opening and replacing φ by the field of the incident
field at the opening (aperture). For a tiny hole satisfying a ≪ λ, Bethe ob-
tained the first approximation result for the normalized-to-area transmission
T as

T ≈ 64

27π2

(

2πa

λ

)4

. (14.23)

As can be seen from Eq. (14.22), The transmission falls off rapidly with reduc-
ing aperture radius a compared to the wavelength λ. Thus there will be negli-
gible transmission from tiny sub-wavelength holes. Both Kirchhoff and Bethe’s
theories are not adequate to deal with systems where the sub-wavelength aper-
ture is close to the wavelength. A lot of interesting physics takes place when
a/λ is not too small and there can be excitation of the localized plasmons
and surface plasmons in the metal screen-aperture system. It was a major
breakthrough when Ebbesen reported totally counterintuitive extraordinary
transmission (EOT) through a regular array of sub-wavelength holes [169].
Let us now focus on the prerequisites for EOT, which makes it so very differ-
ent from the standard scenario of diffraction. The basic structure where EOT
shows up is a two-dimensional periodic array of sub-wavelength holes perfo-
rated on an optically thick metal film. The diffraction of light through such
a structure is associated with peaks and dips in the transmission spectra. In
view of several excellent reviews on EOT both at basic and advanced levels
[170, 171, 172], we focus here on the qualitative picture. Note that most of the
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FIGURE 14.7: Transmission spectrum of hole arrays for the triangular hole
array (hole diameter 170 nm, period 520 nm) shown in inset. The data are for
normal incidence of collimated white light. The ratio I/I0 on the right vertical
axis is the absolute transmission of the array and η on the left axis represents
the normalized to the area (occupied by the holes) transmission. Reprinted by
permission from Macmillan Publishers Ltd: [Nature] [170], copyright (2007).

quantitative analysis depends heavily on computationally intensive methods
like FDTD, which is beyond the scope of this book.

It is now commonly accepted that EOT occurs when normalized-to-area
transmission is more than unity. The link between the EOT phenomena and
the excitation of the surface plasmons and localized plasmons is now well
established. The periodicity in the plane of the metal screen with the holes can
provide for the missing momentum mismatch (see Section 10.2) and thus SPs
can be excited on both the faces of the metal screen. Moreover, the tiny holes
can support the localized plasmon resonances along with guided-along-the-
hole modes for specific polarizations. Thus the spectral features arising in the
transmission spectra are due to these excitations. Some of these resonances
do not show up in the limit of vanishingly small a/λ and infinitely thin,
perfectly conducting screen, and thus are missed in Bethe’s theory. According
to Ebbesen best results in the visible domain for transmission are obtained
using noble metals with 150–300 nm holes in films not thicker than 200–300
nm.

Two broad classes of systems have been thoroughly investigated for EOT.
The first class has a single hole surrounded by periodic grooves on both sides
of the film (for best results), referred to as Ebbesen’s bull’s eye [173]. The
momentum mismatch is compensated by the periodicity of the grooves. The
resulting antenna action leads to intense fields near the aperture at the input
face due to coupling of the incident light into SPs at a specific wavelength.
EOT is mediated when light at the exit face can couple with the modes of the
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periodic grooves. The modes can then couple with the free space light, which
can interfere with the light traveling directly through the hole. Surprisingly
narrow spectral features were reported for a hole diameter of 300 nm and a
groove period of 650 nm. The beam divergence was shown to be less than a few
degrees. Thus for an incident colliemated beam, the output light can be highly
collimated, with counterintuitive focusing. Recall that in standard diffraction
theory, the narrower the hole, the larger the beam’s angular divergence.

The second class refers to a two-dimensional periodic array of holes in
the metal screen [170]. EOT here can be understood as a consequence of a
three-step process. At step one, the incident light excites the SPs on the front
surface. Step two consists of the transmission through the holes to the second
surface, while step three consists of re-emission from the exit surface. The
peak occurs when the surface supports the standing surface plasmon waves.

In the first approximation, an estimate of the wavelength λm where the
peak occurs can be made by looking at the momentum-matching condition
for a two-dimensional grating as in the Fig. 14.7 inset. For normal incidence
the (i, j)-th resonance peak location is given by

λm =
Λ

√

4
3 (i

2 + ij + j2)

√

εmε

εm + ε
, (14.24)

where Λ is the grating period and εm (ε) is the dielectric function of the
metal (dielectric). Note that Eq. 14.24 does not incorporate the effect of holes
and the associated losses and hence the results predicted by Eq. (14.24) are
blue-shifted from the observed data (see Fig. 14.7).

© 2016 Taylor & Francis Group, LLC

  



Appendix A

Elements of complex numbers

A.1 Complex number algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
A.1.1 Example problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

A.2 Harmonic motion and complex representation . . . . . . . . . . . . . . . . . . 328
A.3 Demonstration of the usefulness of complex representation . . . . . 329

A.3.1 Superposition of two or more waves . . . . . . . . . . . . . . . . . . . . . 330
A.3.1.1 Two waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
A.3.1.2 More than two waves . . . . . . . . . . . . . . . . . . . . . . . . . 331

A.3.2 Forced damped oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
A.3.2.1 Usual method with real variables . . . . . . . . . . . . 332
A.3.2.2 Method with complex amplitudes . . . . . . . . . . . . 332

A.1 Complex number algebra

Let the imaginary unit number be i. This satisfies

i2 = −1 , (i3 = −i , i4 = 1). (A.1)

Let an arbitrary complex number be z = x + iy. We define the operations of
complex conjugation, addition, multiplication and division as follows:

• Complex conjugation: Complex conjugate z∗ of z is defined as

z∗ = x− iy, (A.2)

x = (z + z∗)/2 , y =
z − z∗

2i
. (A.3)

• Addition: Let z1 = x1 + iy1, z2 = x2 + iy2

z1 + z2 = (x1 + x2) + i(y1 + y2). (A.4)

• Multiplication:

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1). (A.5)

327

© 2016 Taylor & Francis Group, LLC



328 Wave Optics: Basic Concepts and Contemporary Trends

• Division:

z1/z2 =
z1z

∗
2

z2z∗2
= (x1x2 + y1y2)/A

2
2 + i(x2y1 − x1y2)/A

2
2 , A2

2 = x22 + y22 .

(A.6)

A few other important aspects of complex numbers are listed below:

• Polar representation:

z = Aeiα ; A =
√

x2 + y2 , tan(α) =
y

x
, x = A cos(α), y = A sin(α).

(A.7)

• Euler’s formula and applications:

exp(iα) = cos(α) + i sin(α), (A.8)

sin(α) =
eiα − e−iα

2i
, (A.9)

cos(α) =
eiα + e−iα

2
. (A.10)

• Products and ratio: Let z1 = A1e
iα1 and z2 = A2e

iα2 . Then

z1z2 = A1A2e
i(α1+α2), (A.11)

z1
z2

=
A1

A2
ei(α1−α2). (A.12)

• Roots: If zn = Aeiα = Aei(α+q2π), then

z = A(1/n)ei(α/n+q2π/n), q = 0, 1, 2, · · · (n− 1). (A.13)

A.1.1 Example problems

1. Determine the amplitude and phase angles of (a) z1 = 1 + i
√
3,

(b) z2 =
√
3+ i, (c) z1+ z2, (d) z1z2 and (e) z1/z2. In each case indicate

the location of these quantities in the complex plane.

2. Show that the amplitude and phase of
∫ b

0
exp(iβ)dβ are b sin(b/2)/(b/2)

and b/2, respectively.

A.2 Harmonic motion and complex representation

The usefulness of complex numbers in the description and analysis of oscil-
lations and waves are linked to Euler’s formula. We can express the harmonic
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FIGURE A.1: Representation of an oscillation on a complex plane.

function as the real part of a complex exponential function. Consider the
displacement of a harmonic oscillator

ξ(t) = ξ0(ω) cos(ωt− α(ω)), (A.14)

where we have assumed that the amplitude as well as the phase angle can,
in general, be functions of ω. We can express this function as the real part
of the complex number z = ξ0 exp [i(ωt− α)] or its complex conjugate z∗ =
ξ0 exp [−i(ωt− α)]. We use the latter option (see Fig. A.1)

ξ(t) = ξ0 cos(ωt− α) = Re{ξ0 exp[−i(ωt− α)]}, (A.15)

= Re{ξ(ω) exp[−iωt]}, (A.16)

ξ(ω) = ξ0 exp(iα). (A.17)

Here we have introduced the complex displacement amplitude ξ(ω). The ve-
locity u(t) and acceleration a(t) are also harmonic functions and can be rep-
resented by their corresponding complex amplitudes.

u(t) =
dξ

dt
= Re{(−iω)ξ(ω)e−iωt} = Re{(u(ω)e−iωt} (A.18)

a(t) =
d2ξ

dt2
= Re{(−iω)2ξ(ω)e−iωt} = Re{(a(ω)e−iωt}, (A.19)

u(ω) = (−iω)ξ(ω), (A.20)

a(ω) = (−iω)u(ω) = (−iω)2ξ(ω) = −ω2ξ(ω). (A.21)
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A.3 Demonstration of the usefulness of complex repre-
sentation

In this section we show how the calculations can be simplified with the
complex notation. To this end we consider (a) the superposition of two or
more waves and (b) the forced oscillation of a damped harmonic oscillator
(relevant physics was discussed in Section 1.4).

A.3.1 Superposition of two or more waves

A.3.1.1 Two waves

Consider two sine wave displacements at the same point in space having
the same frequency, but with different amplitudes and phases:

E1(x, t) = A1 cos(ωt− kx+ φ1) = Re{Z1e
−i(ωt−kx)}, (A.22)

E2(x, t) = A2 cos(ωt− kx+ φ2) = Re{Z2e
−i(ωt−kx)}, (A.23)

where
Z1 = A1e

−iφ1 , Z2 = A2e
−iφ2 . (A.24)

The resultant field is given by

E0(x, t) = E1(x, t) + E2(x, t) =Re{Z1e
−iθ + Z2e

−iθ}
=Re{(Z1 + Z2)e

−iθ}, (A.25)

where θ = ωt − kx. The complex number Z0 = Z1 + Z2 can be obtained in
the complex plane as the vector sum of Z1 and Z2. The resultant real field is
given by

E0(x, t) =Re{Z0e
−iθ}, (A.26)

=A0 cos(ωt− kx+ φ0), (A.27)

Z0 =A0e
−iφ0 . (A.28)

The law of cosines can be applied to obtain

|Z0|2 = A2
0 = A2

1 +A2
2 + 2A1A2 cos(φ2 − φ1). (A.29)

We can also obtain this algebraically:

|Z0|2 = Z0Z
∗
0 = (Z1 + Z2)(Z

∗
1 + Z∗

2 ),

= Z1Z
∗
1 + Z2Z

∗
2 + Z1Z

∗
2 + Z∗

1Z2,

= A2
1 +A2

2 +A1A2(e
−i(φ1−φ2) + ei(φ1−φ2)). (A.30)
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In order to obtain φ0, take the real and imaginary parts of the equation

Z0 = A0e
−iφ0 = Z1 + Z2 = A1e

−iφ1 +A2e
−iφ2 (A.31)

to get

A0 cosφ0 =A1 cosφ1 +A2 cosφ2, (A.32)

A0 sinφ0 =A1 sinφ1 +A2 sinφ2. (A.33)

which can be used to calculate A0 and φ0.

A.3.1.2 More than two waves

We now generalize this concept to N sine waves. Consider

E(x, t) =

N
∑

j=1

Aj cos(ωt− kx+ φj),

=

N
∑

j=1

Re
[

Aje
−i(θ+φj)

]

,

=

N
∑

j=1

Re
(

Aje
−iφj e−iθ

)

,

=Re









N
∑

j=1

Aje
−iφj



 e−iθ



 ,

=Re









N
∑

j=1

Zj



 e−iθ



 = Re
[

Z0e
−iθ] ,

=A0 cos(ωt− kx+ φ0). (A.34)

In Eq. (A.34) Z0 = A0e
−iφ0 .

A2
0 =

∑

j

∑

j′

ZjZ
∗
j′ ,

=
∑

j

|Zj |2 +
∑

j<j′

(ZjZ
∗
j′ + Z∗

jZj′),

=
∑

j

|Aj |2 +
∑

j<j′

2AjAj′ cos(φj − φj′ ). (A.35)

Thus Eqs. (A.32) and (A.33) generalize to

A0 cosφ0 =
∑

j

Aj cosφj , (A.36)

A0 sinφ0 =
∑

j

Aj sinφj . (A.37)
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A.3.2 Forced damped oscillator

Consider the equation for the displacement for a forced damped oscillator

Mξ̈ +Rξ̇ +Kξ = F0 cos(ωt). (A.38)

A.3.2.1 Usual method with real variables

The displacement must be harmonic with the same frequency as the driving
force, and we assume it to have the form

ξ(t) = ξ0 cos(ωt− α). (A.39)

Then the equation of motion becomes

(K − ω2M)ξ0 cos(ωt− α)−Rωξ0 sin(ωt− α) = F0 cos(ωt). (A.40)

Next, use

cos(ωt− α) = cos(ωt) cos(α) + sin(ωt) sin(α), (A.41)

sin(ωt− α) = sin(ωt) cos(α)− cos(ωt) sin(α), (A.42)

in Eq. (A.40) and collect terms proportional to cos(ωt) and sin(ωt) on the
left- and right-hand sides to obtain

[(K − ω2M) cos(α)+Rω sin(α)]ξ0 cos(ωt) + [(K − ω2M) sin(α)

−Rω cos(α)]ξ0 sin(ωt) = F0 cos(ωt). (A.43)

Since Eq. (A.43) is to be satisfied at all t, we get

(K − ω2M) cos(α) +Rω sin(α) = F0/ξ0, (A.44)

(K − ω2M) sin(α)−Rω cos(α) = 0. (A.45)

Eq. (A.45) leads to the value of tan(α), while Eq.(A.44) leads to the solution
for the other unknown ξ0:

tan(α) =
Rω

(K − ω2M)
, (A.46)

ξ0 =
F0

√

(K − ω2M)2 + (Rω)2
. (A.47)

A.3.2.2 Method with complex amplitudes

In complex notation with ξ(t) = Re{ξ(ω) exp(−iωt)}, Eq.(A.38) reads as

(−ω2M − iωR+K)ξ(ω) = F (ω), (A.48)
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which can be easily solved for ξ(ω) yielding

ξ(ω) = ξ0 exp(iα) =
F (ω)

(K − ω2M − iωR)
, (A.49)

leading to Eqs. (A.46) and (A.47).
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Appendix B

Vector spherical harmonics

The vector spherical harmonics are given by

M



e
o





mn

=∓ m

sin θ
zn(kr)P

m
n (cos θ)

(

sin
cos

)

mφeeeθ

− zn(kr)
∂Pmn
∂θ

(

cos
sin

)

mφeeeφ, (B.1)

N



e
o





mn

=
n(n+ 1)

kr
zn(kr)P

m
n (cos θ)

(

cos
sin

)

mφeeer

+
1

kr
[krzn(kr)]

′
[

∂Pmn
∂θ

(

cos
sin

)

mφeeeθ

∓ m

sin θ
Pmn (cos θ)

(

sin
cos

)

mφeeeφ

]

. (B.2)

Here the primes denote the derivatives with respect to the arguments and zn
represents the spherical Bessel or Hankel function. We append the superscript
1 (3) if the radial dependence is given by the spherical Bessel function jn(kr)

(the spherical Hankel function h
(1)
n (kr)). Finally, Pmn represents the associated

Legendre function.
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Appendix C

MATLAB R© case studies

C.1 Stratified media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
C.1.1 Main codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
C.1.2 Function statement of reftran.m . . . . . . . . . . . . . . . . . . . . . . . . 338
C.1.3 Input/Output variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

C.2 Reflectionless potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
C.2.1 Main codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
C.2.2 Function statement of KMsystem.m . . . . . . . . . . . . . . . . . . . . 339

C.3 Nonreciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
C.3.1 Subprograms needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Most of the MATLAB R© codes used in Chapter 9 are presented in the CD for
this book. We now describe the organization of the CD and the instructions to
be followed for running the codes. The CD contains five main folders, namely,
C1, C2, C3, Essential and Misc. The folders C1,C2 and C3 contain the
codes described in Sections C.1, C.2 and C.3, respectively, of Appendix C,
and the folder Essential contains all the essential supporting files needed
to compile the main codes. In order to compile any code, all the contents of
Essential has to be copied to the folder of interest, or else the path to it have
to be added by addpath. Misc contains all the other miscellaneous codes that
can be used to reproduce most of the plots shown in Chapter 9. In Misc the
name of the folder is associated with the figure number of Chapter 9.

C.1 Stratified media

The code can evaluate the reflection and the transmission coefficients from
a stratified medium with isotropic and homogeneous constituent layers. The
code is applicable to both continuous and discrete layered media. The code is
also applicable to negative index materials, though we have to exercise caution
since it has not been tested thoroughly. The first example in the current section
is for discrete systems and all the results pertaining to other cases in the text
have been obtained using this code. It may be noted that the results for the
reflectionless refractive index profiles have been obtained using the same code.
This is given in Section C.2.
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C.1.1 Main codes

TABLE C.1:

Filename Purpose
Main function reftran.m Evaluates the reflection and transmission

for N isotropic slabs for given λ and θ
calling program 1 angscan.m as a function of θ
calling program 2 lamscan.m as a function of λ

C.1.2 Function statement of reftran.m

function [r,t]=reftran(lam,thdeg,pol,epsi,mui,epsf,muf,d,eps,mu)

Subprograms needed: charac.m, chartotal.m, pz.m

C.1.3 Input/Output variables

Input variable Description

lam wavelength λ (in units of µm)

thdeg angle of incidence (0 ≤ θ < 90◦)
pol pol = 0 (pol = 1) corresponds to TE (TM)

epsi relative permitivity of medium of incidence (ǫi/ǫ0)
mui relative permeability of medium of incidence (µi/µ0)

epsf relative permitivity of final medium (ǫf/ǫ0)

muf relative permeability of final medium (ǫf/ǫ0)

d array of the widths: d = [d1 d2 · · · dN ]

eps relative permitivity array: eps = [ǫ1/ǫ0 ǫ2/ǫ0 · · · ǫN/ǫ0]
mu relative permeability array: mu = [µ1/µ0 µ2/µ0 · · · µN/µ0]

Output variable Description
r r = Ar/Ain
t t = At/Ain

C.2 Reflectionless potentials

This code evaluates the refractive index profile based on Kay-Moses pre-
scriptions for arbitrary family of parameters (i.e., Ai, κi). For a reflectionless
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refractive index profile, we discretize the profile and use the characteristic ma-
trix code to evaluate the scattering. To illustrate this we consider the case of
one parameter family presented in Section 9.6 (see Eq. (9.93) and the descrip-
tion therein).

C.2.1 Main codes

TABLE C.2:

Filename Purpose
Main function KMsystem.m Evaluates the matrix Mij (see Eq. 9.89)

calling program 1 angscan.m Evaluates scattering as a function of θ
calling proram 2 lamscan.m Evaluates scattering as a function of λ

C.2.2 Function statement of KMsystem.m

function [m,c]=kaysystem(n,k,a,z)

TABLE C.3:

Input variable Description

n size of the parameter family
k array of κi: k=[κ1, · · · , κn, ]
a array of Ai: a=[A1, · · · , A2]

z spatial coordinate at which Mij is evaluated

TABLE C.4:

Output variable Description

m matrix Mij at a specific z

c RHS of Eq. (9.89) at a specific z

From this continuous version of the profile, we then obtain the discrete
version of the refractive index profile, and we make use of reftan.m to evaluate
the scattering, i.e., reflection and transmission. We can obtain Figs. 9.6 and
9.7 by compiling the codes angscan.m and lamscan.m, respectively.
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C.3 Nonreciprocity

Codes highlight the nonreciprocity in reflection from the layered medium.
These codes are all based on the ones developed for stratified media (see
Section C.1).

TABLE C.5:

Filename Purpose
calling program 1 delay.m Evaluates reflection and Wigner

delay/advancement in reflection
calling program 2 pulse.m Evaluates the changes undergone

by pulse when reflected/transmitted
through layered media, verifying the
delay/advancement from Wigner time

C.3.1 Subprograms needed

absorber.m, which evaluates the dielectric response of the resonant ab-
sorbers [see Eq. (9.121)].

We can obtain Figs. 9.15 and 9.16 by compiling the codes delay.m and
pulse.m, respectively.
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