

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/PRELIM.3D – 1 – [1–8/8] 28.11.2003
4:49PM

8051 Microcontrollers
An Applications-Based Introduction

David Calcutt
Fred Cowan
Hassan Parchizadeh

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

 SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Newnes is an imprint of Elsevier

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/PRELIM.3D – 2 – [1–8/8] 28.11.2003
4:49PM

Newnes
An imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Road, Burlington, MA 01803

First published 2004

Copyright � 2004, David Calcutt, Fred Cowan and Hassan Parchizadeh.
All rights reserved

The right of David Calcutt, Fred Cowan and Hassan Parchizadeh to be identified
as the authors of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether
or not transiently or incidentally to some other use of this publication) without
the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed
to the publisher

Permissions may be sought directly from Elsevier’s Science and
Technology Rights Department in Oxford, UK. Phone: (þ 44) (0) 1865 843830;
fax: (þ 44) (0) 1865 853333; e-mail: permissions@elsevier.co.uk. You may also
complete your request on-line via the Elsevier homepage
(http://www.elsevier.com), by selecting ‘Customer Support’ and then ‘Obtaining
Permissions’

British Library Cataloguing in Publication Data

Calcutt, D.
8051 microcontrollers : an applications based introduction
1. INTEL 8051 (Computer) 2. Digital control systems
I. Title II. Cowan, Frederick J. III. Parchizadeh, G. Hassan 004.1065

Library of Congress Cataloguing in Publication Data

Calcutt, D. M.
8051 microcontrollers : an applications-based introduction /David Calcutt,
Fred Cowan, Hassan Parchizadeh.
p. cm.

1. Intel 8051 (Computer) 2. Digital control systems. I. Cowan, Frederick J.
II. Parchizadeh, G. Hassan. III. Title.

QA76.8.I27C35 2003
004.165—dc22

2003066606

ISBN 0 7506 5759 6 (alk. paper)

For information on all Newnes publications
visit our website at www.newnespress.com

Typeset by Integra Software Services Pvt. Ltd, Pondicherry, India
www.integra-india.com
Printed and bound in Meppel, The Netherlands by Krips bv.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/PRELIM.3D – 3 – [1–8/8] 28.11.2003
4:49PM

Contents

Preface v
Acknowledgements vii

1 Introduction to Microcontrollers 1

1.1 Introduction 1

1.2 Microcontroller types 2

1.3 P89C66x microcontroller 4

1.4 Bits, nibbles, bytes and number conversions 7

1.5 Inside microcontrollers 10

1.6 Microcontroller programming 11

1.7 Commonly used instructions of the 8051 microcontroller 22

1.8 Microcontroller clock 22

1.9 Time delays 24

Summary 27

2 Flash Microcontroller Board 28

2.1 Introduction 28

2.2 P89C66x microcontroller 29

2.3 Programming the device 31

2.4 Flash magic 35

2.5 XAG49 microcontroller 35

Summary 37

3 Simulation Software 38

3.1 Introduction 38

3.2 Keil m Vision2 39

3.3 Raisonance IDE (RIDE) 50

Summary 64

4 P89C66x Microcontroller 66

4.1 Introduction 66

4.2 Timers 0 and 1 67

4.3 Timer 2 79

4.4 External interrupt 82

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/PRELIM.3D – 4 – [1–8/8] 28.11.2003
4:49PM

4.5 Interrupt priority 84

4.6 Programmable counter array (PCA) 86

4.7 Pulse width modulation (PWM) 88

4.8 Watchdog timer 92

4.9 Universal asynchronous receive transmit (UART) 94

4.10 Inter integrated circuit (IIC or I2C) 103

Summary 111

5 Low Pin Count (LPC) Devices 113

5.1 Introduction 113

5.2 P87LPC769 114

5.3 Analog functions 115

5.4 Analog comparators 125

5.5 P89LPC932 128

5.6 Serial peripheral interface (SPI) 129

5.7 EEPROM memory 136

Summary 141

6 The XA 16-bit Microcontroller 142

6.1 Introduction 142

6.2 XA registers 146

6.3 Watchdog timer 148

6.4 UART 152

6.5 8051 compatibility 155

6.6 Interrupts 156

Summary 168

7 Project Applications 169

7.1 Introduction 169

7.2 Project 1: speed control of a small DC motor 169

7.3 Project 2: speed control of a stepper motor 175

7.4 Project 3: single wire multiprocessor system 185

7.5 Project 4: function generator 192

Solutions to Exercises 201

Appendix

A 8051 Instruction Set 226

B Philips XA Microcontroller – XA and 8051 Instruction

Set Differences 232

C 8051 Microcontroller Structure 246

D P89C66x Microcontroller 285

E P89LPC932 Microcontroller 327

F XAG49 Microcontroller 360

G P89C66x and XAG49 Microcontroller PCB Board Layouts 401

Index 407

iv Contents

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/PRELIM.3D – 5 – [1–8/8] 28.11.2003
4:49PM

Preface

A potential reader of this text may be forgiven for initially viewing this book as
yet another text on the ubiquitous 80C51 microcontroller, a topic on which
many books have already been published. However, the authors believe their
application-based coverage using only Flash memory devices will bring home to
the reader a depth of coverage and an understanding of the versatility of the
various members of the 80C51 family, including the 16-bit devices, that have not
been seen before. Three devices in particular are described in the text with their
own chapters and relevant appendices. The devices are those available from
Philips Semiconductors although the applications, both hardware and software,
have a broader scope and could apply to other manufacturer’s devices.

The text includes a chapter on simulation, using evaluation software that can
be downloaded on to a computer. Such software allows the user to compile
their program and simply run it to achieve an objective or single step through
their program to establish how the program affects registers, timers, ports, etc.,
as the program develops. It is hoped that the reader will wish to go beyond
simulation and interface with external inputs/outputs via an actual microcon-
troller. Artwork is included, in an appendix, for a single-sided pcb that could be
used for the construction of a development board. Two different boards are
described; one board is designed for an 8-bit device while the other is for a
16-bit device, both devices being covered in the text. Information relating to the
microcontroller boards can be found in Chapter 2. The use of a Flash micro-
controller board and in-system programming techniques allows the user to
simulate and debug his/her program and refine it before downloading it to
the microcontroller. Source code could then be removed, if required, and
replaced with a new program to serve a different purpose. The use of a micro-
controller board allows an interface to the outside world and the effect of the
program stored in the microcontroller can be observed in real time i.e. to light
LEDs, cause a motor shaft to rotate, etc. For those not wishing to have their
own microprocessor board the text still offers the opportunity to simulate
programs and much can be learnt about the devices by its use.

Three members of the Philip’s 80C51 family have been utilised in the text to
explain circuit action and used as the basis for specific applications. Several

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/PRELIM.3D – 6 – [1–8/8] 28.11.2003
4:49PM

appendices complete the story with details on the 8-bit and 16-bit microcon-
troller instruction set and manufacturers’ data on the devices.

The book is intended to be read on a chapter by chapter basis for those new
to the subject and in this format would be suitable for those on degree,
including postgraduate, courses. The text would also be suitable for any reader
familiar with the devices but requiring information that takes them somewhat
deeper into the detail and applications. For such readers some of the chapters
could be omitted and particular chapters studied in more depth. Practising
engineers could find the text helpful as an aid to the development of prototype
systems prior to full-scale commercial application. Chapters dealing with spe-
cific devices have numerous examples to help reinforce key points, and there are
also numerous exercises for the reader to attempt if they so wish; answers to
these exercises can be found at the end of the book. Relevant appendices can be
used for reference where necessary.

The text assumes that readers have some experience of programming
although some information on assembly language programming can be found
in Chapter 1. Programming examples have been implemented using assembly
language and C.

The authors have attempted to show throughout the text programming
applications where relevant, and the final chapter is devoted to practical appli-
cations that the authors have found to work. Notwithstanding this, the authors
can accept no responsibility for any program that a reader might attempt and
find unsatisfactory.

It should perhaps be mentioned at this point that the Department of Electro-
nic and Computer Engineering at the University of Portsmouth is a Philips
Accredited Product Expert Centre, one of only five in England. Short courses
relevant to industry are run at the Centre on a regular basis and the Centre is
kept up to date on new developments relating to Philips Semiconductors Ltd
devices.

The authors hope that all readers of this text will find the information therein
of some use in their studies and/or as a reference text.

David M Calcutt, Frederick J Cowan and G Hassan Parchizadeh

vi Preface

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/PRELIM.3D – 7 – [1–8/8] 28.11.2003
4:49PM

Acknowledgements

The authors would like to take the opportunity to thank all those individuals
and/or companies who have contributed or helped in some way in the prepara-
tion of this text. Particular thanks must go to Philips Semiconductors Ltd* for
their encouragement and for permission to use so much information from
Philips’ sources. Thanks also are due to Keil** for the use of their evaluation
software for the 8-bit microcontrollers; to Raisonancey for the use of their
evaluation software for both 8-bit and XA 16-bit microcontrollers and to
Maximz for the use of some items from their range of devices. Our thanks also
to Andy Mondey for his assistance in the production of the Flash microcon-
troller pcb artwork.

Also the authors would like to thank their respective wives for their under-
standing and forbearance shown when the preparation of the book took time
that could have been spent with the family. Our thanks then to David’s wife
Daphne, Fred’s wife Sheila and Hassan’s wife Hoory.

Additionally Hassan would like to dedicate his contribution to this text to
the memory of his mother and would also like to express his gratitude to both
his mother and father for their encouragement and support over the years.

* Philips Semiconductors Ltd. Head Office. PO Box 218, 5600 MD Eindhoven, The Nether-
lands. www.semiconductors.philips.com
**Keil. Head Office. Keil Elektronik GmbH, Bretonischer Ring 15, D-85630, Grasbrunn,
Germany. www.keil.com
yRaisonance. Head Office. RAISONANCE, 17 Avenue Jean Kuntzmann, 38330 Montbon-
not, France. www.raisonance.com
zMaxim Integrated Products. Head Office. 120 San Gabriel Drive, Sunnyvale, CA 94086,
USA. www.maxim-ic.com

This page intentionally left blank

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 1 – [1–27/27]
28.11.2003 5:04PM

1
Introduction to Microcontrollers

1.1 Introduction

A microcontroller is a computer with most of the necessary support chips
onboard. All computers have several things in common, namely:

. A central processing unit (CPU) that ‘executes’ programs.

. Some random-access memory (RAM) where it can store data that is variable.

. Some read onlymemory (ROM)where programs to be executed can be stored.

. Input and output (I/O) devices that enable communication to be established
with the outside world i.e. connection to devices such as keyboard, mouse,
monitors and other peripherals.

There are a number of other common characteristics that define microcon-
trollers. If a computer matches a majority of these characteristics, then it can be
classified as a ‘microcontroller’. Microcontrollers may be:

. ‘Embedded’ inside some other device (often a consumer product) so that
they can control the features or actions of the product. Another name for a
microcontroller is therefore an ‘embedded controller’.

. Dedicated to one task and run one specific program. The program is stored
in ROM and generally does not change.

. A low-power device. A battery-operated microcontroller might consume as
little as 50 milliwatts.

A microcontroller may take an input from the device it is controlling and
controls the device by sending signals to different components in the device.
A microcontroller is often small and low cost. The components may be chosen
to minimise size and to be as inexpensive as possible.

The actual processor used to implement a microcontroller can vary widely. In
many products, such as microwave ovens, the demand on the CPU is fairly low

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 2 – [1–27/27]
28.11.2003 5:04PM

and price is an important consideration. In these cases, manufacturers turn to
dedicated microcontroller chips – devices that were originally designed to be
low-cost, small, low-power, embedded CPUs. The Motorola 6811 and Intel
8051 are both good examples of such chips.

A typical low-end microcontroller chip might have 1000 bytes of ROM and
20 bytes of RAM on the chip, along with eight I/O pins. In large quantities, the
cost of these chips can sometimes be just a few pence.

In this book the authors will introduce the reader to some of the Philips’ 8051
family of microcontrollers, and show their working, with applications,
throughout the book. The programming of these devices is the same and,
depending on type of device chosen, functionality of each device is determined
by the hardware devices onboard the chosen device.

1.2 Microcontroller types

The predominant family of microcontrollers are 8-bit types since this word
size has proved popular for the vast majority of tasks the devices have been
required to perform. The single byte word is regarded as sufficient for most
purposes and has the advantage of easily interfacing with the variety of IC
memories and logic circuitry currently available. The serial ASCII data is also
byte sized making data communications easily compatible with the microcon-
troller devices. Because the type of application for the microcontroller may vary
enormously most manufacturers provide a family of devices, each member of
the family capable of fitting neatly into the manufacturer’s requirements. This
avoids the use of a common device for all applications where some elements of
the device would not be used; such a device would be complex and hence
expensive. The microcontroller family would have a common instruction subset
but family members differ in the amount, and type, of memory, timer facility,
port options, etc. possessed, thus producing cost-effective devices suitable for
particular manufacturing requirements. Memory expansion is possible with off-
chip RAM and/or ROM; for some family members there is no on-chip ROM,
or the ROM is either electrically programmable ROM (EPROM) or electrically
erasable PROM (EEPROM) known as flash EEPROM which allows for the
program to be erased and rewritten many times. Additional on-chip facilities
could include analogue-to-digital conversion (ADC), digital-to-analogue con-
version (DAC) and analogue comparators. Some family members include
versions with lower pin count for more basic applications to minimise costs.
Many microcontroller manufacturers are competing in the market place and
rather than attempting to list all types the authors have restricted the text to
devices manufactured by one maker. This does not preclude the book from
being useful for applications involing other manufacturer’s devices; there is a
commonality among devices from various sources, and descriptions within the
text can, in most cases, be applied generally. The chapters that follow will deal
with microcontroller family members available from Philips Semiconductors,
and acknowledgement is due to the considerable assistance given by that

2 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 3 – [1–27/27]
28.11.2003 5:04PM

company in the production of this text. The Philips products are identified by
the numbering system:

8XCXXX

where in general, since there are exceptions, the digit following the 8 is:

0 for a ROMless device
3 for a device with ROM
7 for a device with EPROM/OTP (one time programmable)
9 for a device with FEEPROM (flash).

Following the C there may be 2 or 3 digits. Additional digits, not shown above,
would include such factors as clock speed, pin count, package code and tempera-
ture range. Philips also produces a family of 16-bit microcontrollers in the eXtended
Architecture (XA) range. For these devices Philips claims compatibility with the
80C51 at source code level with full support for the internal registers, operating
modes and 8051 instructions. Also claimed is a much higher speed of operation
than the 8051 devices. The XA products are identified by the numbering system:

PXAG3XXXX

where:

PXA is Philips 80C51 XA
G3 is the derivative name
next digit is memory option:

0 ¼ ROM less

3 ¼ ROM

5 ¼ Bond-out ðemulationÞ
7 ¼ EPROM=OTP

9 ¼ FEEPROM ðflashÞ
next digit is speed:

J ¼ 25MHz

K ¼ 30MHZ

next digit is temperature:
B ¼ 0�C toþ 70�C

F ¼ �40�C toþ 85�C
final digit is package code:

A ¼ Plastic Leaded Chip Carrier (PLCC)

B ¼ Quad Flat Pack (QFP)

etc.

The XA architecture supports:

. 16-bit fully static CPU with a 24-bit program and data address range;

. eight 16-bit CPU registers, each capable of performing all arithmetic and
logic operations as well as acting as memory pointers;

Microcontroller types 3

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 4 – [1–27/27]
28.11.2003 5:04PM

. both 8-bit and 16-bit CPU registers, each capable of performing all arith-
metic and logic operations;

. an enhanced instruction set that includes bit-intensive logic operations and
fast signed or unsigned 16� 16 multiplies and 32/16 divide;

. instruction set tailored for high-level language support;

. multitasking and real-time executives that include up to 32 vectored inter-
rupts, 16 software traps, segmented data memory and banked registers to
support context switching.

The next section of this chapter will look at a member of the Philips 80C51
family in more detail.

1.3 P89C66x microcontroller

Figure 1.1 shows a P89C664 microcontroller in a PLCC package.

Figure 1.1 Philips P89C664 PLCC package microcontroller

4 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 5 – [1–27/27]
28.11.2003 5:04PM

P means the device is manufactured by Philips Semiconductors
8 means the micro belongs to the 8-bit 8051 family
9 means Flash code (program) memory
C means CMOS technology and
664 belongs to the 66x family

where:

x ¼ 0 16KB Flash code memory, 512 bytes onboard RAM
x ¼ 2 32KB Flash code memory, 1KB onboard RAM
x ¼ 4 64KB Flash code memory, 2KB onboard RAM
x ¼ 8 64KB Flash code memory, 8KB onboard RAM

All devices belonging to this family of devices have a universal asynchronous
receive transmit (UART), which is a serial interface similar to the COM inter-
face on a PC. Figure 1.2 shows the logic symbol for the device and illustrates
the pin functions.

The P89C66x family of microcontrollers have four 8-bit ports: port 0, port 1,
port 2 and port 3.

Traditionally in the 80C51 family of microcontrollers the function of port 0
and port 2 is primarily to allow for connection to an external PROM (code
memory chip). Port 0 provides both the 8-bit data and the lower 8 bits of the
address bus, A0 to A7. Port 2 provides the upper 8 address bits, A8 to A15. All
of the flash microcontrollers referred to in this text have onboard code memory,
which can be as much as 64KB.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

01234567

01234567

Port 0

Port 3

P
or

t 2
P

ort 1

Vcc (5 V DC)
Vcc (power supply)

(Clock) xtal1

(Signal) xtal2

Figure 1.2 Logic symbol for the P89C66x family

P89C66x microcontroller 5

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 6 – [1–27/27]
28.11.2003 5:04PM

Port 0 pins are all from open-drain transistors and the port pins should
have pull-up resistors (e.g. 2.7 k� from pin to 5V DC supply) if the port is to
be used as a general-purpose interface.

Port 3 has some special function pins, e.g. pins 0 and 1 of port 3 may be used
as receive and transmit for the UART. Functions of other pins will be covered
in later chapters.

In the 80C51 family of microcontrollers the RAM is organised into 8-bit
locations.

MSB LSB

7 6 5 4 3 2 1 0

The bits are numbered 7, 6, 5, 4, 3, 2, 1, 0 where bit 7 is the most significant bit
(MSB) and bit 0 the least significant bit (LSB).

A bit (binary digit) has two values, logic 0 or logic 1. Electrically logic 0 is 0V
whereas logic 1 is the value of the microcontroller IC positive supply voltage.
Logic 1 is usually 5V but nowadays with increasing use of batteries for power
supplies logic 1 could be 3V or 1.8V.

Power depends on the square of the voltage and there is a significant saving
in power (i.e. battery lasts longer) if the microcontroller is powered by 3V or
1.8V power supplies.

The maximum number that can be stored in an 8-bit memory location is
28 � 1, which equals 255. This would occur when all the bits are equal to 1 i.e.:

MSB LSB

1 1 1 1 1 1 1 1

Binary is a base 2 number system and the electronic devices in the microcon-
troller’s logic circuits can be set to logic 0 and logic 1.

The value of each bit is:

MSB LSB

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

Example 1.1

Show that if an 8-bit register contains all logic 1s then the value stored is 255.

Solution

With all bits of the register set to logic 1 the total value stored is given by:

128þ 64þ 32þ 16þ 8þ 4þ 2þ 1 ¼ 255

Remember the sequence by recalling that the LSB is 1 and the other numbers
are successively doubled.

6 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 7 – [1–27/27]
28.11.2003 5:04PM

Exercise 1.1

What is the maximum number that can be stored in a 10-bit wide register?

1.4 Bits, nibbles, bytes and number conversions

BITS, BYTES AND NIBBLES

A bit is a single binary digit of value logic 1 or logic 0. A nibble is a group of
4 bits, e.g. 1010 is a nibble. A byte is a group of 8 bits e.g. 10100111 is a byte and
the byte is made up of two nibbles 1010 and 0111.

DECIMAL TO BINARY CONVERSION

A decimal number may be converted to binary by dividing the number by 2,
giving a quotient with a remainder of 0 or 1. The process repeats until the final
quotient is 0. The remainders with the first remainder being the least significant
digit determine the binary value. The process is best explained with an example.

Example 1.2

Express the decimal number 54 as a binary number.

Solution

54=2 ¼ 27; remainder 0

27=2 ¼ 13; remainder 1

13=2 ¼ 6; remainder 1

6=2 ¼ 3; remainder 0

3=2 ¼ 1; remainder 1

1=2 ¼ 0; remainder 1

Thus 54 decimal ¼ 110110 and in an 8-bit register the value would be 00110110. A
binary value is often expressed with a letter B following the value i.e. 00110110B.

It may be easier to use the weighted values of an 8-bit register to determine
the binary equivalent of a decimal number i.e. to break the decimal number
down to those weighted elements, which have a logic 1 level.

Example 1.3
Express the decimal number 54 as a binary number using weighted values.

Solution

54 ¼ 32þ 16þ 6

0� 128 þ 0� 64 þ 1� 32 þ 1� 16 þ 0� 8 þ 1� 4 þ 1� 2 þ 0� 1

0 0 1 1 0 1 1 0

Hence 54 decimal ¼ 00110110B.

Bits, nibbles, bytes and number conversions 7

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 8 – [1–27/27]
28.11.2003 5:04PM

Example 1.4

Express decimal 167 as a binary number.

Solution

Using the technique of Example 1.3:

167 ¼ 128þ 32þ 4þ 2þ 1 ¼ 10100111B

Exercise 1.2
Represent decimal numbers 15 and 250 in binary format.

It follows that to convert binary to decimal the reverse procedure applies i.e.
to convert the binary number 00110110 to decimal is achieved by simply adding
the weighted values of the logic 1 states. This is shown in the answer to Example
1.3 where 00110110B ¼ 54 decimal.

BINARY, HEXADECIMAL (HEX) AND DECIMAL

When working out values at the port pins, the tendency is to think in binary,
e.g. which LED to turn on, the logic level on a switch, etc.

The assembly language software tends to use hexadecimal, a base 16 number
system useful for grouping nibbles. Since childhood we have been taught to
become familiar with the base 10 decimal system. It is useful to be able to work
between the three number systems:

Binary Hex Decimal

0 0 0 0 00 00

0 0 0 1 01 01

0 0 1 0 02 02

0 0 1 1 03 03

0 1 0 0 04 04

0 1 0 1 05 05

0 1 1 0 06 06

0 1 1 1 07 07

1 0 0 0 08 08

1 0 0 1 09 09

1 0 1 0 0A 10

1 0 1 1 0B 11

1 1 0 0 0C 12

1 1 0 1 0D 13

1 1 1 0 0E 14

1 1 1 1 0F 15

8 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 9 – [1–27/27]
28.11.2003 5:04PM

Consider the following examples:

Example 1.5

Express ABCD as binary.

Solution

ABCD ¼ 1010 1011 1100 1101

Example 1.6

Express 101111000001 as a hexadecimal value.

Solution

1011 1100 0001 ¼ BC1

Example 1.7

Express 01110011110 as a hexadecimal value.

Solution

0011 1001 1110 ¼ 39E

Because in this last example the number of bits does not subdivide into groups
of four bits, the method used is to group into nibbles from the right, filling the
spaces at the front with zeros.

Example 1.8

Express decimal 71 as a hex number.

Solution

71=16 ¼ 4 remainder 7 ¼ 47 Hex; usually written as 47H

Example 1.9

Express decimal 143 as a hex number.

Solution

143=16 ¼ 8 remainder 15 ¼ 8FH

Conversion from binary to decimal can be achieved quickly by first convert-
ing the binary number to hex and then converting the hex number to decimal.
An example illustrates the process.

Example 1.10

Express 11000101B in decimal form.

Solution

Converting to hex:

11000101B ¼ C5H

Bits, nibbles, bytes and number conversions 9

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 10 – [1–27/27]
28.11.2003 5:04PM

The hex number represents a nibble of binary data and each value is to a power
of 16 with the least significant nibble equal to 160(¼1) and the next significant
nibble equal to 161(¼16). Hence the decimal number is:

ðC� 16Þ þ ð5� 1Þ ¼ ð12� 16Þ þ ð5� 1Þ ¼ 197 decimal

Check:

11000101 ¼ ð1� 128Þ þ ð1� 64Þ þ ð1� 4Þ þ ð1� 1Þ ¼ 197 decimal

Exercise 1.3

Express decimal 200 as a hex number and then as a binary number.

Exercise 1.4

Express the following binary numbers as hex and then decimal numbers.

1. 10000110
2. 10011000011

1.5 Inside microcontrollers

Microcontrollers normally contain RAM, ROM (EEPROM, EPROM,
PROM), logic circuits designed to do specific tasks (UART, I2C, SPI) and
square-wave oscillator (clock).

Built from the logic circuitry the microcontroller has two parts, the processor
core and the onboard peripherals. See Figure 1.3.

RAM locations that have special functions and support the processor core
and onboard peripheral circuitry are called special function registers (SFRs)
and are reserved areas.

The program instructions provide the primary inputs to the processor core
circuitry. See Figure 1.4.

The microcontroller program resides in the PROM (programmable ROM),
which, in the microcontrollers we are considering, uses Flash technology and is
located in the microcontroller IC.

Processor
core

Registers

Onboard
peripherals

Registers

RAM

P
or

ts

C
lo

ck

Figure 1.3 Constituent parts of a microcontroller

10 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 11 – [1–27/27]
28.11.2003 5:04PM

1.6 Microcontroller programming

The microcontroller program comprises a set of instructions written by the
program designer. There are four classes of instructions:

1. Arithmetic operations
2. Logic operations
3. Data transfer operations
4. Branch operations.

ARITHMETIC OPERATIONS

Arithmetic instructions operate on whole numbers only and support addition,
subtraction, multiplication and division.

Addition

ADD A,#66H ; add the hex number 66 to the accumulator A

This is an example of immediate addressing.
The # sign is important, if it were omitted the operation would have a

different meaning.

ADD A,66H ; add to accumulator A the contents of RAM address
; 0066H

This is an example of direct addressing.
Accumulator A is an SFR; it is an 8-bit register and its RAM address is

00E0H. A large number of instructions use accumulator A, but not all.

INC 66H ; increment (add 1) the contents of address 0066H

Exercise 1.5

Is there any difference between the following two instructions?
A) INC A B) ADD A,#1

Microcontroller
program

Instruction
decoder

Processor
core

Onboard
peripherals

Clock oscillator
circuitry

SFR RAM SFR

P
or

ts

Figure 1.4 Block diagram of a microcontroller

Microcontroller programming 11

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 12 – [1–27/27]
28.11.2003 5:04PM

Subtraction

SUBB A, #66H ; subtract hex66 from the contents of A

The extra B in the instruction implies Borrow. If the contents of A are less than
the number being subtracted then bit 7 of the program status word (PSW)
SFR will be set. (For details of the PSW and other SFRs, see Appendix C.)

DEC A ; decrement A by 1, put result into A

Exercise 1.6

Is there any difference between the following two instructions?

(1) DEC A (2) SUBB A,#1

Multiplication

MUL AB ; multiply the contents of A and B, put the answer in AB

A is the accumulator and B is another 8-bit SFR provided for use with the
instructions multiply and divide. A and B are both 8-bit registers. The product
of the multiplication process could be a 16-bit answer.

Example 1.11
A ¼ 135 decimal, B ¼ 36 decimal. What would be the value in each register
after executing the instruction MUL AB?

Solution

A� B ¼ 4860 ¼ 0001 0010 1111 1100B ¼ 12FCH
0001 0010 or 12H would be placed in A; 1111 1100 or FCH in B

Exercise 1.7

If A ¼ 2FH and B ¼ 02H, what would each register contain after execution of
the instruction MUL AB?

Division

DIV AB ; divide A by B, put quotient in A and remainder in B

Example 1.12

A ¼ 135, B ¼ 36. What would be the value in each register after execution of
the instruction DIV AB?

Solution

Decimal values are assumed if the value quoted is not followed by an H

A=B ¼ 3; remainder 27 ð27 ¼ 1BHÞ: Hence 03H in A, 1BH in B

If multiplication or division is not being used then register B, which is bit
addressable, can be used as a general-purpose register.

12 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 13 – [1–27/27]
28.11.2003 5:04PM

Exercise 1.8

If A ¼ 2FH and B ¼ 02H, what would each register contain after the execution
of the instruction DIV AB?

LOGIC OPERATIONS

The set of logic functions include:

ANL AND Logic
ORL OR Logic
XRL exclusive OR Logic
CPL Complement (i.e. switch to the opposite logic level)
RL Rotate Left (i.e. shift byte left)
RR Rotate Right (i.e. shift byte right)
SETB Set bit to logic 1
CLR Clear bit to logic 0

AND operation

The ANL instruction is useful in forcing a particular bit in a register to logic 0
whilst not altering other bits. The technique is called masking.

Suppose register 1 (R1) contains EDH (1110 1101B),

1 1 1 0 1 1 0 1

bit 1 and bit 4 are at logic 0, the rest at logic 1.

ANL R1, #7FH ; 7FH ¼ 0111 1111B, forces bit 7 to zero

1 1 1 0 1 1 0 1

AND

0 1 1 1 1 1 1 1

¼

0 1 1 0 1 1 0 1

Exercise 1.9

If A ¼ 2D, what would be the accumulator contents after execution of the
instruction ANL A, #3BH?

Microcontroller programming 13

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 14 – [1–27/27]
28.11.2003 5:04PM

ORL operation

Another aspect of masking is to use the ORL instruction to force a particular
bit to logic 1, whilst not altering other bits.

The power control (PCON) SFR in the 8051 family, is not bit addressable
and yet has a couple of bits that can send the microcontroller into idle mode or
power down mode, useful when the power source is a battery.

The contents of the PCON SFR are:

PCON

SMOD1 SMOD2 POF GPF1 GPF2 PD IDL

SMOD1 and 2 are used when setting the baud rate of the serial onboard peripheral.
POF, GPF1 and GPF2 are indictor flag bits. IDL is the idle bit; when set to 1 the
microcontroller core goes to sleep and becomes inactive. The on-chip RAM and
SFRs retain their values. PD is the Power Down bit, which also retains the on-chip
RAM and SFR values but saves the most power by stopping the oscillator clock.

ORL PCON,#02H ; enables Power Down
ORL PCON,#01H ; enables Idle mode

Either mode can be terminated by an external interrupt signal. Details of all
device SFRs are to be found in Appendix C.

Exercise 1.10

If the contents of register 0 (R0) ¼ 38H, what would the contents of that
register be after execution of the following instruction?

ORL R0,#9AH

CPL complement operation

The instructions described so far have operated on bytes (8 bits) but some
instructions operate on bits and CPL is an example.

CPL P1.7 ; complement bit 7 on Port 1

Port 1 is one of the microcontroller’s ports with 8 pins.

Port 1

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

MSB LSB

Complement has the action of the inverter logic gate as shown in Figure 1.5.

P 1.7 P 1.7

Figure 1.5 Production of the complement of pin function

14 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 15 – [1–27/27]
28.11.2003 5:04PM

Exercise 1.11

If the contents of port 0 (P0) ¼ 125, what would be the port contents after
execution of the following instruction?

CPL P0

RL, rotate left one bit, RR, rotate right one bit operations

Suppose the accumulator A contents are 0000 0001B; this is 01H.

RL A ; contents of A become 0000 0010B or 02H
RL A ; 0000 0100B or 04H
RL A ; 0000 1000B or 08H

RL three times has the effect of multiplying A by 23 i.e. by 8.
Suppose the accumulator A contents are 1000 0000B, or 128 decimal, then:

RR A ; contents of A become 0100 0000B which is 64 decimal
RR A ; A becomes 0010 0000B=32 decimal
RR A ; A becomes 0001 0000B=16 decimal
RR A ; A becomes 0000 1000B=8 decimal

RR four times has the same effect as dividing A by 24 i.e. 16.

128

16
¼ 8

Exercise 1.12

If the content of A is 128 and B is 2, what would the register contents be after
execution of the following instructions?

RR A
RL B
RR A
RR A
RL B?

SETB set bit, CLR clear bit operations

This instruction operates on a bit, setting it to logic 1.

SETB P1.7 ; set bit 7 on Port 1 to logic 1

Consider Figure 1.6 where pin 7 of port 1 is connected as shown.
SETB P1.7 puts logic 1 (e.g. 5 V) onto the inverter input and therefore its

output, the LED cathode, is at 0V causing current to flow through the LED.
The LED has a particular forward voltage Vf (refer to component specification
e.g. www.farnell.com).

Microcontroller programming 15

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 16 – [1–27/27]
28.11.2003 5:04PM

Typically Vf ¼ 2:2V and forward current If ¼ 8mA so that:

R¼ 5V�Vf

If
¼ 5� 2:2

8� 10�3
¼ 2:8� 1000

8
¼ 350�¼ 330� (preferred value)

CLR P1.7 ; clears bit 7 on port 1 to zero

CLR P1.7 puts logic 0 on the inverter gate input and therefore its output, the
LED cathode, becomes logic 1 which is 5V. This gives a voltage difference
(5V DC� cathode voltage) of 0V and the LED turns off.

The inverter gate in the above circuit provides a good current buffer
protecting the microcontroller port pin from unnecessary current loading.
In the above circuit the current flow is between the inverter gate and the 5V
DC supply.

If an inverter gate is not used to drive a LED then the control may be directly
from the port pin but this will demand a current in milliamps from the port pin.

Generally a microcontroller port pin can sink current better than it can
source current. See Figure 1.7.

CLR port_pin; will ground the LED cathode in the SINK circuit and turn it
on. This will turn the LED off in the SOURCE circuit.

5 V DC

R

LED

Cathode

Inverter
gate

P1.7

Figure 1.6 Use of an LED to indicate the state of port 1, pin 7

5 V DC

R

LED

SINK
Port pin

Port pin

R

LED

Ground

SOURCE

Figure 1.7 Arrangements to allow a port pin to SINK or SOURCE current

16 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 17 – [1–27/27]
28.11.2003 5:04PM

SETB port_pin; will put logic 1 on the LED cathode in the SINK circuit and
turn it off. This will turn the LED on in the SOURCE circuit.

Exercise 1.13

If Vcc ¼ 5V and for an LED, Vf ¼ 0:7V and the pin P0.0 of the microcon-
troller port can sink 10mA and source 50 mA.

1. How you connect the LED to the microcontroller and
2. Calculate the value of series resistor R.

Data transfer operations

This is mainly concerned with transfer of data bytes (8 bits). SETB and CLR
have just been covered; they operate on bits.

MOV operation

MOV moves bytes of data. Consider driving a seven-segment display (decimal
point dp included) where each LED is driven by the sink method. See Figure 1.8.

Each LED illuminates a segment. The seven-segment display is shown to the
right with its standard segment identification letters.

Example 1.13

Write two program lines, one to display 3, the second to display 4. In both cases
turn the decimal point off.

Solution

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

dp g f e d c b a

3 1 0 1 1 0 0 0 0 B0H

4 1 0 0 1 1 0 0 1 99H

5 V DC

R

P1.7

5 V DC

R

P1.6

5 V DC

R

P1.5

5 V DC

R

P1.4

5 V DC

R

P1.3

5 V DC

R

P1.2

5 V DC

R

P1.1

5 V DC

R

P1.0

dp g f e d c b a

a

b

c

gf

e
d

dp

Figure 1.8 Arrangement for a seven-segment LED display

Microcontroller programming 17

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 18 – [1–27/27]
28.11.2003 5:04PM

MOV P1,#B0H ; display 3
MOV P1,#99H ; display 4

Note: MOV P1,#B0H would give a syntax error. In common with a number
of cross assemblers the software would see B0H as a label because it starts with
a hex symbol; 99H would be acceptable since it starts with a number. The
correct program line should be MOV P1,#0B0H i.e. a zero must be placed in
front of the hex symbol.

The instruction MOV is used to move RAM data that is onboard the
microcontroller.

Examples

MOV 0400H,#33H ;move the number 33 hex toRAMaddress 0400 hex
MOV A,P1 ; move the contents of port 1 to accumulator A
MOV R0,P3 ; move the contents of port 3 into register R0

Note: As well as the accumulator A the microcontroller has 32 registers in
four banks of eight in the processor core. These 32 bytes are fast RAM and
should be used in preference to standard onboard RAM.

Each of the banks contain 8 registers R7, R6, R5, R4, R3, R2, R1, R0. There
are four banks: 0, 1, 2 and 3.

Bank 0 is the default bank; the other banks can be selected by two bits
(RS1,RS0) in the program status word (PSW) SFR

PSW

CY AC F0 RS1 RS0 OV F1 P

0 0 Register bank 0 (default)

0 1 Register bank 1

1 0 Register bank 2

1 1 Register bank 3

Other PSW bits are indicator flags:

CY (carry flag)
AC (auxiliary carry flag)
OV (overflow flag)
P (parity flag)
F0, F1 (general-purpose user-defined flags)

More information on the register banks and the SFRs can be found in
Appendix C. MOVX is used to move data between the microcontroller and
the external RAM. MOVC is used to move data (e.g. table data) from PROM
(also called code memory) to RAM.

18 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 19 – [1–27/27]
28.11.2003 5:04PM

Exercise 1.14

Write an instruction to select the register bank 2 of the microcontroller.

Branch operations

There are two types, unconditional and conditional branching. Unconditional
branch operations are

ACALL absolute call
LCALL long call

ACALL calls up a subroutine, the subroutine must always have RET as its last
operation. ACALL range is limited to þ127 places forward or �128 places
backward. If your program jumps further than ACALL the compiler will
report that the program is jumping out of bounds and replacement by LCALL
will solve the problem.

ACALL is two bytes long, LCALL is three bytes long.

AJMP absolute jump
LJMP long jump
SJMP short jump

Similar to ACALL and LCALL, AJMP and LJMP jump to addresses whereas
SJMP, which has a similar range to ACALL and AJMP, jumps a number of
places.

The difference could be seen in the machine code. Consider the program:

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; puts next program line at address 0040H

START: SETB P1.7 ; set pin 7 on port 1 to logic 1
CLR P1.7 ; clear pin 7 on port 1 to logic 0
AJMP START ; jump back to START label
END ; no more assembly language

The machine code can be viewed in the list file, progname.lst:

SJMP START
Shows as 803E 80 is the hex for instruction SJMP

3E is the relative jump to reach 0040H where START is; it
jumps from address 0002, the address after SJMP START,
0002þ 3E ¼ 0040H

AJMP START
Shows as 0140 01 is the hex for instruction AJMP

40 is short for address 0040

Microcontroller programming 19

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 20 – [1–27/27]
28.11.2003 5:04PM

If LJMP had been used instead of AJMP then,
LJMP START
Shows as 020040 02 is the hex for instruction LJMP

0040 is the full address

Exercise 1.15

In your own words describe the difference between ACALL and AJMP instruc-
tions.
Conditional branch operations:

JZ Jump if zero
JNZ Jump if not zero
DJNZ Decrement and jump if not zero

Consider an example (a subroutine called by ACALL):

DELAY: MOV R0,#34 ; move decimal 34 into register R0
TAKE: DJNZ R0,TAKE ; keep subtracting 1 from R0 until zero
RET ; return from subroutine

CJNE Compare and jump if not equal
Consider:

DELAY: MOV R0,#34 ; move decimal 34 into register R0
TAKE: DEC R0 ; decrement R0

CJNE R0,#12,TAKE ; compare R0 with 12 jump to TAKE if not
RET ; return when R0 equals 12

Other instructions are:

JC jump if carry is 1
JNC jump if carry is 0

JB jump if bit ¼ 1
JNB jump if bit ¼ 0

Consider a practical example of testing switched logic levels. Refer to Figure 1.9.
If the switch is not pressed the voltage on the port pin is 0V. When the switch
is pressed and held, then the port pin is connected directly to 5V. To test for
switch being pressed, the following program could be used:

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress0040H

START: JB P1.0,PULSE ; jump to PULSE if pin 0 port 1 is logic 1
CLR P1.7 ; otherwise clear pin 7 port 1 to zero
SJMP START ; go to START check switch

20 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 21 – [1–27/27]
28.11.2003 5:04PM

PULSE: SETB P1.7 ; set pin 7 on port 1 to logic 1
CLR P1.7 ; clear pin 7 on port 1 to logic 0
AJMP START ; go to START check switch
END ; no more assembly language

Also, consider the case when pressing the switch generates a logic ‘0’, as shown
in Figure 1.10.

If the switch is not pressed the voltage on the port pin is 5V. When the switch
is pressed and held, the port pin is directly connected to ground or 0V. The test
instruction could be:

CHECK: JNB P1.0,PULSE ; jump to PULSE if pin 0 port 1 is logic 0
SJMP CHECK

PULSE:

Exercise 1.16

In your own words describe the difference between JNB and JNC instructions.

+5 V DC

To micro pin

1 K

Normally logic 0

GND

Figure 1.9 Circuit to produce logic levels 0 or 1 at a port pin. Circuit normally
producing logic 0

+5 V DC

3.3 K

To micro pin

GND

Normally logic 1

Figure 1.10 Circuit to produce logic levels 0 or 1 at a port pin. Circuit normally
producing logic 1

Microcontroller programming 21

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 22 – [1–27/27]
28.11.2003 5:04PM

1.7 Commonly used instructions of the 8051 microcontroller

The P89C664 is a member of the 8051 family; it is a CISC device having well
over 100 instructions. The instructions used in this text could be the first set to
become familiar with.

MOV move a byte

SETB set or clear bits
CLR

ACALL call up a subroutine
RET

SJMP unconditional jump
AJMP

JB bit test, conditional jump
JNB

DJNZ byte test, conditional jump
CJNE

ORL OR logic, useful for forcing bits to logic 1
ANL AND logic, useful for forcing bits to logic 0

The full 8051 instruction set is shown in Appendix A.

COMMONLY USED ASSEMBLER DIRECTIVES

ORG define address
DB define bytes, useful for table data
END all assembly language programs must end with this.

1.8 Microcontroller clock

The microcontroller may be likened to a logic circuit whose logic states change
in synchronism with the microcontroller clock signal. This is a square-wave
signal as shown in Figure 1.11.

Knowledge of the microcontroller clock cycle time is useful in defining timing
events used in applications.

Example 1.14

A P89C664 microcontroller has a clock frequency of 11.0592MHz. What is the
time for each cycle?

22 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 23 – [1–27/27]
28.11.2003 5:04PM

Solution

Cyclic time ðTÞ ¼ 1

11:0592� 106
¼ 90:423 ns ðn ¼ 10�9Þ

Now let us look at the previous program:

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress0040H

START: JB P1.0,PULSE ; jump to PULSE if pin 0, port 1 is logic 1
CLR P1.7 ; otherwise clear pin 7 port 1 to zero
SJMP START ; go to START check switch

PULSE: SETB P1.7 ; set pin 7 on port 1 to logic 1
CLR P1.7 ; clear pin 7 on port 1 to logic 0
AJMP START ; go to START check switch
END ; no more assembly language

Initial inspection might lead to the conclusion that the output signal on port 1,
pin 7 is a square wave being turned on by SETB and off by CLR. Closer
inspection reveals that CLR is held for the extra duration of AJMP and JB.
Reference to Appendix A shows that:

SETB takes 6 microcontroller clock cycles
CLR takes 6 microcontroller clock cycles
AJMP takes 12 microcontroller clock cycles
JB takes 12 microcontroller clock cycles

SETB is held for 6 clock cycles and CLR is held for 30 clock cycles, not an equal
on/off waveform as Figure 1.12 shows.

If an equal on/equal off waveform is required then the NOP (No OPeration) can
be used. The NOP operation takes 6 clock cycles. The program could be modified:

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress0040H

START: JB P1.0,PULSE ; jump to PULSE if pin 0, port 1 is logic 1
CLR P1.7 ; otherwise clear pin 7, port 1 to zero
SJMP START ; go to START check switch

T

Frequency f = 1/ T

5 V

0 V

Figure 1.11 Square-wave signal at a frequency f Hz

Microcontroller clock 23

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 24 – [1–27/27]
28.11.2003 5:04PM

PULSE: SETB P1.7 ; set pin 7 on port 1 to logic 1
NOP ; hold logic 1 on pin 7, port 1
NOP
NOP
NOP
CLR P1.7 ; clear pin 7 on port 1 to logic 0
AJMP START ; go to START check switch
END ; no more assembly language

The modified waveform is shown in Figure 1.13.

The cycle time of the equal on/off waveform¼ 60 microcontroller clock cycles.
If the microcontroller had a clock frequency of 11.0592MHz then a clock cycle
period T is the reciprocal of this frequency, T ¼ 90:423ns. Therefore the cycle time
of the equal on/off signal is 60� 90:423ns¼ 5:43ms. The frequency of this signal is
1/5:43ms¼ 184kHz. The maximum signal frequency would depend on the max-
imum microcontroller clock frequency; for the P89C664 microcontroller the max-
imum clock frequency is 20MHz. Quite often there is a requirement to generate
accurate lower frequency signals and for these the basic signal must be slowed
down using a time delay.

1.9 Time delays

The NOP instruction is a simple time delay but apart from this there are two
methods of creating time delays:

. register decrement

. onboard timers.

SETB
6

SETBCLR
6

AJMP
12

JB
12

Figure 1.12 Waveform produced using specified instructions. Note that the
waveform is not a square wave (i.e. there are unequal ON and OFF periods)

SETB
6

NOP
6

NOP
6

NOP
6

NOP
6

CLR
6

AJMP
12

JB
12

SETB

Figure 1.13 Modification to the waveform of Figure 1.12 using NOP instructions to
produce a square-wave output

24 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 25 – [1–27/27]
28.11.2003 5:04PM

The use of onboard timers will be described in a later chapter; here the register
decrement method will be described.

The basic single loop program lines are:

DELAY: MOV R0,#number ; move a number into an 8-bit
; register R0

TAKE: DJNZ R0,TAKE ; keep decrementing R0 until it is
; zero

RET ; return from DELAY subroutine

MOV takes 6 clock cycles, DJNZ and RET each take 12 clock cycles. The delay
is called up from the main program using ACALL, which takes 12 clock cycles.
The delay time is (12þ 6þ (number� 12)þ 12) clock cycles. When the num-
ber is small the NOPs (total 24 cycles) should be included,

Delay time ¼ ð24þ 12þ 6þ ðnumber� 12Þ þ 12Þ clock cycles

Delay time ¼ ð54þ ð12� numberÞÞ clock cycles

Example 1.15

A P89C664 microcontroller has an 11.0592MHz crystal-controlled clock oscil-
lator. Write an assembly language program that will generate a 5 kHz square-
wave signal on pin 7 of port 1 when a switch causes pin 0 on the same port to go
to logic 1.

Solution

Clock frequency ¼ 11:0592MHz
Thus period of clock cycle ¼ ð1=11:0592MHzÞ ¼ 90:423 ns
Signal frequency ¼ 5 kHz
Therefore period of signal cycle ¼ ð1=5 kHzÞ ¼ 200 ms

The delay required is half of this value since the square wave has an equal
logic 1/logic 0 time. See Figure 1.14.

Delay ¼ 100 ms ¼ ð54þ ð12� numberÞÞ � 90:423 ns

Hence number¼ ((100 ms/90.423 ns)�54)/12¼ 88 decimal (to the nearest whole
number).

Logic 1

Logic 0

Delay Delay

Cycle time

Figure 1.14 Delay period determination for a square-wave signal

Time delays 25

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 26 – [1–27/27]
28.11.2003 5:04PM

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress0040H

START: JB P1.0,PULSE ; jump to PULSE if pin 0, port 1 is logic 1
CLR P1.7 ; otherwise clear pin 7, port 1 to zero
SJMP START ; go to START check switch

PULSE: SETB P1.7 ; set pin 7 on port 1 to logic 1
ACALL DELAY
NOP ; hold logic 1 on pin 7 port 1
NOP
NOP
NOP
CLR P1.7 ; clear pin 7 on port 1 to logic 0
ACALL DELAY
AJMP START ; go to START check switch

DELAY: MOV R0,#88
TAKE: DJNZ R0,TAKE

RET
END ; no more assembly language

The delay depended on the chosen microcontroller clock frequency and in the
example this was 11.0592MHz. This apparently unusual number gives standard
baud rate values, which will be useful later. For microcontroller clock frequen-
cies in this region the single loop register decrement method gives delays in the
region of microseconds. Generally a double loop gives delays in the region of
milliseconds and a triple loop delay gives delays in the region of seconds.

Exercise 1.17

Using the techniques above, assuming the clock frequency is 11.0592MHz, write
a program to generate a pulse of 20kHz on pin 7 of port 1 of the microcontroller.

DOUBLE LOOP DELAY

DELAY: MOV R1,#number1
INNER: MOV R0,#number2
TAKE: DJNZ R0,TAKE

DJNZ R1,INNER
RET

Approximately the time delay¼ (number 1)� (number 2)� 12 clock cycle periods.
For example, suppose number 1¼ 200 and number 2¼ 240 and 1 clock
cycle¼ 90.423 ns.

Time delay ¼ 200� 240� 12� 90:423 ns ¼ 52:1ms

The bigger the values of number 1 and number 2, the better the approximation.
The software used has simulation and the values of number 1 and number 2 can
be fine tuned to give the accurate delay during simulation.

26 Introduction to microcontrollers

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 27 – [1–27/27]
28.11.2003 5:04PM

TRIPLE LOOP DELAY

DELAY: MOV R2,#number1
OUTER: MOV R1,#number2
INNER: MOV R0,#number3
TAKE: DJNZ R0,TAKE

DJNZ R1,INNER
DJNZ R2,OUTER
RET

Approximately the delay=(number 1)� (number 2) � (number 3)�12 clock
cycle periods. Suppose number 1=40, number 2=200, number 3=240, 1 clock
cycle period=90.423 ns.

Delay ¼ ð40� 200� 240� 12� 90:423Þ ns � 2 s

Long enough to see a LED going on and off.
In later chapters the use of the microcontroller’s onboard timers will be used

to describe an alternative method of producing time delays. The timer method
will require the configuration of the timer SFRs.

The register decrement method described above is a valid alternative, easy to
implement and does not require the configuration of SFRs.

Summary

. A microcontroller is a computer with most of the necessary support chips
onboard. Microcontrollers can be embedded and are available in a variety
of forms to suit practical applications.

. Number systems, such as binary and hexadecimal, are used in microcon-
troller applications. If decimal numbers are required they can be converted
to binary and/or hexadecimal and vice versa.

. There are four classes of instructions namely: arithmetic, logical, data
transfer and branch instructions.

. The microcontroller port pins may be required to sink and source currents.

. Time delays may be achieved by using register decrement instructions or by
using onboard timer circuits.

. Using register decrement, longer delays can be achieved by the use of double
or triple loops.

Summary 27

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 28 – [28–37/10]
28.11.2003 4:50PM

2
Flash Microcontroller Board

2.1 Introduction

There are three microcontroller families covered in this book, the 8-bit
P89C66x, the 16-bit extended architecture (XA) and the low pin count (LPC)
devices. The P89C66x devices are essentially flash 8051 microcontrollers with
up-to-date features. The XA was publicised by Philips Semiconductors as the
16-bit upgrade of the 8051, and this book covers the XAG49 which is the flash
version of the basic XA microcontroller. The LPC76x devices are one time
programmable (OTP) EPROM microcontrollers; initially some ultra violet
(UV) erasable types were available but this is no longer the case. The number
7 in the device description identifies the technology as EPROM whereas the
number 9 identifies flash technology. Currently 28 pin flash LPC932 devices are
becoming available. LPC devices belong to the 8051 family and will develop to
include 8-pin dual-in-line (DIL) devices.

Philips Semiconductor engineers have produced application notes describing
the in-circuit programming of the P89C66x and XAG49 devices and included
suggested schematic circuits. Application note AN761_10 describes the techni-
que for the P89C66x devices (_10 is the revision number); AN716_2 is the
equivalent application note for the XAG49. The reader should search the
www.semiconductors.philips.com web pages for the latest revision.

The authors adapted the schematic designs, and printed circuits boards
(PCBs) were produced, one for the P89C664 and one for the XAG49. Each
design was based on the 44 pin, plastic leaded chip carrier (PLCC) package.
Full size single-sided artworks are provided in Appendix G.

The PCB artwork in Appendix G can be used, together with the schematic
circuit diagrams in this chapter to produce a microcontroller board (either for
the P89C66x device, the XAG49 device or both). The board can then be used to
verify the programs outlined in the relevant chapters as well as providing the user
with an opportunity to develop their own programs that can be downloaded
into the microcontroller. Components for the board are relatively inexpensive

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 29 – [28–37/10]
28.11.2003 4:50PM

and can be readily obtained from electronic distribution outlets. Simulation and
debugging techniques (described in Chapter 3) can then be used to evaluate the
programs prior to downloading into the microcontroller. However, should the
reader not wish to make use of a microcontroller board, the applications as
described in the relevant chapters can still be followed and understood.

At the time of writing, a similar application note is not available for the
P89LPC932 although a low cost evaluation board, the MCB900, is available
from Keil; their website is www.keil.com.

2.2 P89C66x microcontroller

The P89C66x is available in either PLCC or linear quad flat pack (LQFP)
packages; Figure 2.1 shows the PLCC version.

With reference to Figure 2.1 the following pin details apply: NIC* means no
internal connection; VSS is ground and VCC is the 5V DC supply; RST is the

6

7

1
2
3
4
5
6
7
8
9

17

18 28

29

39

1 40

PLCC

Pin PinFunction Function Pin Function

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44

NIC*

NIC*

NIC*

NIC*

P1.0/ T2

P2.0/A8
P2.1/A9

P2.7/A15

P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14

P1.1/ T2EX
P1.2/ECI
P1.3/CEX0
P1.4/CEX1
P1.5/CEX2
P1.6/SCL
P1.7/SDA
RST
P3.0 /R x D

P3.1/ T x D
P3.2/INT0
P3.3/INT1

P3.4/ T0/CEX3
P3.5/ T1/CEX4
P3.6/WR
P3.7/RD
XTAL2
XTAL1
VSS

VCC

PSEN
ALE

EA /VPP
P0.7/AD7
P0.6/AD6
P0.5/AD5
P0.4/AD4
P0.3/AD3
P0.2/AD2
P0.1/AD1
P0.0/AD0

Figure 2.1 Pin functions for the 89C66x PLCC package microcontroller

P89C66x microcontroller 29

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 30 – [28–37/10]
28.11.2003 4:50PM

reset input, refer to Figure 2.2; XTAL2 and XTAL1 are the piezo crystal pins.
11.0592 MHz was used for the authors’ board.

PSEN is program strobe enable.A switchwas used to groundPSEN for in system
programming (ISP); it was left floating when the normal program was running.

Address latch enable (ALE) was not used and was left unconnected. ALE
generates a pulse and can be viewed as a source of local interference. Setting pin 0
in the auxiliary register (AUXR) to 1 disables ALE.

On the PCB all four ports are available for general use.
On port 3 pins 0 (RxD) and 1 (TxD) connect via a MAX232 chip to a 9-pin

female D type socket. This connects to the PC for ISP but once the microcon-
troller is programmed this PC connection can be used for normal running PC
microcontroller communication. Before using the serial connection for normal
use the WinISP software, used to carry out the ISP, must be closed down.

On port 1, pins 6 (SCL) and 7 (SDA) may be used as serial connections for
the onboard I2C interface and as such are open-drain. Figure 2.2 shows 2k2
(2.2 k�) resistors connected from these pins to 5V DC.

Port 0 is shown as an address (A0–A7) and data (D0–D7) port, and port 2 is
shown as an address (A8–A15) port. These ports have been traditionally used
for connection to external PROM, data memory and other peripherals in
expanded systems.

The microcontroller board described in this book is not expanded; it uses the
onboard flash code memory and the onboard static RAM (SRAM). Ports 0 and
2 are left for general use although port 0 pins are open-drain and if used should
employ pull-up resistors.

The active low external access (EA) pin was not required and was connected
to the 5V DC (Vcc).

C2
11.0592 MHz 21

20

36

10

2

3
4
5
6
7
8
9

14
15
16
17

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

P3.6
P3.7P3.2

P3.3
P3.4
P3.5

ALE

P3.0
P3.1

PSEN

11 RxD
13 TxD

22 pF

22 pF C3

C1

XTAL

XTAL1

XTAL2

/EA

RST

5 V

SW1
+

10 uF

10 KR1
D1

1 N914

5 V

R3 2K2

2K2 R2

5 V

43
42
41
40
39
38
37
36

24
25
26
27
28
29
30
31

18
19

33
32

TxD 11
GND 10

RxD 12
9

1
C4

C6

0.1 uF

0.1 uF

3

4

5

P89C664

T1IN
T2IN

T1OUT
T2OUT

R1OUT
R2OUT

R1IN
R2IN

C1+

C2+

C2–

C1–

V+

VCC

V–

GND

14
7

13
8

2

16

6

15

GND

C5

5 V

0.1 uF
C8C7

0.1 uF

0.1 uF

5 9 4 8 3 7 2 6 1

FEMALE DB9

MAX232CPE

NORMAL

SW2

ISP

Figure 2.2 Schematic for the 89C66x microcontroller board

30 Flash microcontroller board

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 31 – [28–37/10]
28.11.2003 4:50PM

2.3 Programming the device

The authors use WinISP software to program the flash P89C664 and XAG49
devices, the software being downloaded from Philips Semiconductors web
pages. First the home page at www.semiconductors.philips.com should be
accessed and then the Microcontrollers page by selecting Products and then
Multimedia Semiconductors. Once on the Microcontrollers page Support
Tools should be selected and then Software Downloads. WinISP.zip is on this
page; it is approximately 2 MB. Selecting WinISP gives the window shown in
Figure 2.3.

As can be seen in the data buffer window a simple test program has been
loaded; it toggles (turns on and off) repeatedly pin 7 on port 1. This can easily
be checked on the microcontroller board by using an oscilloscope or logic
probe. The program is:

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 40H ; program start address

START: SETB P1.7 ; set pin 7 port 1 to logic 1
CLR P1.7 ; clear pin 7 to logic 0
SJMP START ; repeat
END ; end of assembly language

The hex version of the program is shown in the data buffer.

Figure 2.3 Philips WinISP window

Programming the device 31

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 32 – [28–37/10]
28.11.2003 4:50PM

The Philips Semiconductors flash microcontrollers come with a small moni-
tor routine already programmed into them at the top of code memory. In
Figure 2.2, switch 2 (SW2) connects PSEN to ground while the reset push-to-
make switch (SW1) is pressed and then released. This causes the microcontrol-
ler to communicate with the WinISP software on the PC. A board produced for
the P89C664 device is shown in Figure 2.4(a); it should be noted that this board
varies slightly from the design presented in Appendix G in that lettering was
formed on the upper surface of the board. The design in Appendix G is simpler
and utilises single-sided artwork with a plain upper surface. The board layout is
shown diagrammatically in Figure 2.4(b) to illustrate the ports and show the
connections to the 5V DC power supply and to the computer.

Referring to Figure 2.3, the program hex code is in the WinISP data buffer.
The reset address at 0000 can be seen. The hex code there must be for SJMP
START. The program start address at 0040 can also be seen. The hex code that
follows is that of the program.

Figure 2.4(a) The 89C66x microcontroller board

32 Flash microcontroller board

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 33 – [28–37/10]
28.11.2003 4:50PM

Test whether WinISP can communicate with the microcontroller board as
follows:

1. Turn the microcontroller board DC power supply on.
2. Ensure the switch on the microcontroller board is set to the WinISP

position (PSEN connected to ground).
3. Press and release the microcontroller board reset switch.
4. Back to the PC, CLM on the read button at the bottom of the middle Misc

window in WinISP (see Figure 2.5).
5. If the status display reads boot vector read OK then that is good and you can

proceed to the next step, if not then close thewindow and repeat. If there is still
a problem then use an oscilloscope to check the signal from the PC, through
the D connector, through the MAX232 to the RxD (see Figure 2.2) pin on the
microcontroller. If this is satisfactory then check the signal back from the TxD
pin on the microcontroller, through the MAX232 to the D connector. If using
a logic probe then remember not to use it between the MAX232 and D type
connector where the voltage levels are in the region of �10V.

Before the microcontroller can be programmed it must first be erased.
Click left mouse button (CLM) on erase blocks and a window appears as

shown in Figure 2.6. CLM on the 0 and the hatched pattern appears in the first

From DC
power supply

Serial lead
from PC

Port 1 Port 0
GND 5 V 7 6 5 4 3 2 1 0

S
erial

lead

M
A

X
232

Reset P89C664

Switch

Run WinISP

Port 3 Port 2

Ground
connection

Figure 2.4(b) Diagram of the 89C66x microcontroller board showing ports,
switches and external connections

Figure 2.5 Read button from the WinISP window

Programming the device 33

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 34 – [28–37/10]
28.11.2003 4:50PM

section. Now CLM on the ERASE! button and the hatched section should
flash. When it finishes the micro is ready to be programmed. Now CLM on the
program part button. See Figure 2.7. When there is a successful message in the
status display, the micro is programmed.

HARDWARE CHECK

1. Ensure the microcontroller board DC supply is still on.
2. On the microcontroller board move the switch to the run mode (PSEN

floating).
3. Press and release the microcontroller board reset switch, this makes the

program run from 0000H.
4. Use a logic probe or oscilloscope to check that pin 7 on port 1 is pulsing.

Figure 2.6 Block erase selection using WinISP

Figure 2.7 Program part button from the WinISP window

34 Flash microcontroller board

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 35 – [28–37/10]
28.11.2003 4:50PM

2.4 Flash magic

Flash Magic ISP software may be used in place of WinISP. It can be down-
loaded from the web page of Embedded Systems Academy (www.esacademy.com).
The authors have not used it but there have been good reports on its ease of
use. The window that is produced by the software is shown in Figure 2.8.
Again the downloaded file size is just over 2 MB. Included in the installation is
a manual.

2.5 XAG49 microcontroller

The PLCC package for the XAG49 device is shown in Figure 2.9. Comparison
between the pin functions for this device and those of the P89C664 microcon-
troller (Figure 2.1) shows that they are almost pin compatible. One difference is
pins 1 and 23, for the P89C664, they are not internally connected (NIC). On the
XAG49 device, pin 1 (VSS) is internally connected to pin 22 (VSS) and pin 23
(VDD) is internally connected to pin 44 (VDD).

Figure 2.8 Flash Magic window

XAG49 microcontroller 35

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 36 – [28–37/10]
28.11.2003 4:50PM

Another significant difference is the reset on pin 10. The reset of the P89C664 is
active high, same as all the standard 8051 devices, whereas the XA reset is active
low; check the schematic circuits. The XAG49 does not have an I2C peripheral
and so has no need for pull-up resistors on pins 6 and 7 of port 1.

The XAG49 has 20 address lines A0 to A19 and can be the 16-bit processor
in a relatively large expanded system. Most of the expansion comes through
ports 0 and 2 although 4 address lines A0 to A3 on port 1 are not multiplexed
with data lines and provide fast (burst) memory addressing. Use of bus width
(BUSW) on pin 17 in conjunction with the bus configuration register (BCR)
can be set to make the data bus width 8 bits or 16 bits. WRH and WRL may be
used to select 8-bit memory devices to work in 8-bit or 16-bit data transfer in
a similar way to the use of upper data strobe (UDS) and lower data strobe
(LDS) in a Motorola 68000 system.

The schematic for the XAG49 is shown in Figure 2.10. The circuit of
Figure 2.10 is similar to that for the P89C664 (Figure 2.2), the difference being
the reset. The full size single-sided artwork is available in Appendix G together
with the component layout. Programming the XAG49 is carried out in the
same way as for the P89C664. A test program to toggle pin 7 on port 1 could be:

6

7

1
2
3
4
5
6
7
8
9

17

18 28

29

39

1 40

PLCC

Pin FunctionPin Function Pin Function

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44

NC

NC

P2.0/A12D8
P2.1/A13D9

P2.7/A19D15

P2.2/A14D10
P2.3/A15D11
P2.4/A16D12
P2.5/A17D13

P1.0/A0/WRH
P1.1/A1
P1.2/A2
P1.3/A3
P1.4/R × D1
P1.5/T × D1
P1.6/ T2
P1.7/ T2EX
RST
P3.0 /R x D0

P3.1/ T x D0
P3.2/INT0
P3.3/INT1

P3.4/ T0
P3.5/ T1/BUSW
P3.6/WRL
P3.7/RD
XTAL2
XTAL1

VSS

VSS

VDD

VDD

PSEN
ALE

EA /VPP/ WAIT
P0.7/A11D7
P0.6/A10D6
P0.5/A9D5
P0.4/A8D4
P0.3/A7D3
P0.2/A6D2
P0.1/A5D1
P0.0/A4D0

P2.6/A18D14

Figure 2.9 Pin functions for the XAG49 PLCC package microcontroller

36 Flash microcontroller board

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH002.3D – 37 – [28–37/10]
28.11.2003 4:50PM

$INCLUDE(REGXAG49.INC) ; list of register addresses
ORG 0 ; reset address
DW 8F00H,START ; config registers, goto START
ORG 120H ; program start address

START: SETB P1.7 ; set port 1 pin 7 to logic 1
CLR P1.7 ; clear pin 7 to logic 0
JMP START ; repeat
END ; end of assembly language

Notice that the program start address is at 0120H, this means the program
hex would not appear on the front page of the WinISP data buffer and the
buffer would have to be scrolled to show the contents starting at hex address
0120H.

Summary

. A P89C66x microcontroller board can be constructed using the schematic of
Figure 2.2 and the PCB artwork of Appendix G.

. An XAG49 microcontroller board can be constructed using the schematic
of Figure 2.10 and the PCB artwork of Appendix G.

. The microcontroller device can be programmed using suitable ISP software
such as Philips’ WinISP.

. Suitable software and hardware checks can be carried out to establish that
the boards operate satisfactorily.

C2
11.0592 MHz 21

20

36

10

2

3
4
5
6
7
8
9

14
15
16
17

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

P3.6
P3.7P3.2

P3.3
P3.4
P3.5

ALE

P3.0
P3.1

PSEN

11 RxD
13 TxD

22 pF

22 pF C3

XTAL

XTAL1

XTAL2

/EA

RST

5 V

SW1
+

1 uFC1

R1 10 k

5 V

43
42
41
40
39
38
37
36

24
25
26
27
28
29
30
31

18
19

33
32

TxD 11
GND 10

RxD 12
9

1
C4

C6

0.1 uF

0.1 uF

3

4

5

MAX232CPE

T1IN
T2IN

T1OUT
T2OUT

R1OUT
R2OUT

R1IN
R2IN

C1+

C2+

C2–

C1–

V+

VCC

V–

GND

14
7

13
8

2

16

6

15

GND

C5

5 V

0.1 uF
C8C7

0.1 uF

0.1 uF

5 9 4 8 3 7 2 6 1

FEMALE DB9

NORMAL

SW2

ISP

XAG49

Figure 2.10 Schematic for the XAG49 microcontroller board

Summary 37

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 38 – [38–65/28]
28.11.2003 4:51PM

3
Simulation Software

3.1 Introduction

The program examples and corresponding simulations shown in this book were
carried out using evaluation software downloaded from:

www:keil:com

www:raisonance:com

The software from Keil supports the LPC and P89C66x microcontroller
families, and that from Raisonance supports LPC, P89C66x and XA devices.

It should be pointed out that evaluation software from these companies
support many other microcontroller devices. This book is based on P89C66x,
XAG49 and LPC microcontrollers.

The software size is code limited. For Keil software it is limited to 2 KB while
for Raisonance software it is limited to 4 KB for the 8051 and to 8 KB for the
XA. Both manufacturer’s evaluation software compile down to a reset hex
address of 0000.

The software can be used for programming in both C and assembly language.
Generally, if the first line of an assembly language program begins $INCLUDE
then the Raisonance software is being used.

Both sets of software operate within an integrated development environ-
ment (IDE); the package from Keil is called m Vision2 (micro Vision 2) and
that from Raisonance is called Raisonance IDE (RIDE). Writing of the
source program C or assembly language, syntax check, compilation to hex,
program debugging/simulation all takes place within the integrated environ-
ment.

When the debugging/simulation is satisfactorily completed the microcontrol-
ler is programmed with the .hex version of the program.

It is assumed that if the reader is going to read this chapter then he/she will
have downloaded the required software and will be following the text at the

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 39 – [38–65/28]
28.11.2003 4:51PM

same time the simulation software is being accessed. In this chapter, reference is
often made to a colour used in the simulation window, i.e. a red breakpoint,
a yellow arrow, etc. While it is appreciated that the diagrams shown in this
chapter will be in various shades of grey the colour references are apposite if the
reader is using the simulation package at the same time as reading the text. The
diagrams in the text can then be cross-checked against those of the simulation
package in glorious technicolour.

A flow diagram suitable for source program evaluation, and including the
programming of the microcontroller using Philips WinISP, as described in
Chapter 2, is shown in Figure 3.1.

3.2 Keil m Vision2

Starting with this software a window is opened as indicated in Figure 3.2.
A start is made by selecting Project from the top menu bar and then choosing

New Project. A folder can be created and a Project name chosen, in this
example the Project is called Test1. See Figure 3.3.

Clicking left mouse button (CLM) on Save generates another window which
prompts the user to select a chip vendor and then a particular microcontroller.
See Figure 3.4.

For this example a Philips P89C664 is chosen. CLM on OK, another small
window appears as shown in Figure 3.5.

The program is going to be in assembly language so CLM on No. With
reference to Figure 3.2 it can be seen that in the top of the left hand window
there is a small icon with a þ sign to the left and the description Target 1 to the
right. Moving the cursor over Target 1 and clicking right mouse button (CRM),
another window appears as shown in Figure 3.6.

Selecting Options for Target ‘Target 1’, a new window appears as shown in
Figure 3.7.

The oscillator frequency defaults to 33 MHz and requires changing to
11.0592 (it is already in MHz). Now CLM on Output, the tag to the right of
Target, as shown in Figure 3.7, the window changes and the left mouse button
should be clicked to select Create HEX File. See Figure 3.8.

CLM on OK. From the top menu bar File should be selected, followed by
New to produce a text window. Going to File again and selecting Save As
produces a small window defaulting to the Project folder. The program requires
to be saved with the same name as the project but with the extension .a51. The
program (e.g. test1.a51) and the project title should be in the same folder.

The simple assembly language program used to test the target board should
be typed into this window. Refer to Chapter 2 for the program to test the
P89C664 device. The program, shown in Figure 3.9, is one that causes pin 7 on
port 1 to toggle. The program should now be saved. The program defaults to
syntax colours, which is very helpful. This Editor characteristic and other
attributes may be changed by selecting View, from the top menu bar, and then
Options.

Keil � Vision2 39

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 40 – [38–65/28]
28.11.2003 4:51PM

Configure the
software environment

Write the source program

Syntax
errors?

Yes

No

Simulate the program

Yes Program
errors?

No

Configure ISP software

Program the micro

No
Programmed

?

Yes

Hardware test

As
expected ?

No

Yes

Stop
and
enjoy

Figure 3.1 Design flow diagram

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 41 – [38–65/28]
28.11.2003 4:51PM

Figure 3.2 Keil m Vision2 Simulation window

Figure 3.3 Window for the creation of a Project

Figure 3.4 Window for the selection of a Vendor and particular microcontroller chip

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 42 – [38–65/28]
28.11.2003 4:51PM

Figure 3.5 Window for possible use of 8051 Startup code

Figure 3.6 Window for Target operations

Figure 3.7 Window for Target options

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 43 – [38–65/28]
28.11.2003 4:51PM

Now CLM on the þ sign to the left of Target produces a subfolder Source
Group 1, as shown in Figure 3.10. CRM on Source Group 1 generates another
window shown in Figure 3.11. Choosing Add Files to Group ‘Source Group 1’
causes another window to appear which defaults to C programs. See Figure 3.12.

Figure 3.8 Creating a hex file

Figure 3.9 Text window showing test1.a51 source program

Figure 3.10 Target 1 subfolder Source Group 1

Figure 3.11 Window for Source Group 1 operations

Keil � Vision2 43

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 44 – [38–65/28]
28.11.2003 4:51PM

Changing to Asm and CLM on the program name, then CLM on Add and
then on Close produces a þ sign to the left of Source Group; CLM on this þ
sign the program file appears as shown in Figure 3.13.

CLM on the top left hand icon will Translate the program and check the
syntax. Alternatively from the top menu bar selecting Project and then Trans-
late will achieve the same result.

A report will appear in the Build window at the bottom of the screen, as
shown in Figure 3.14.

Any syntax errors would be reported at this stage. For example, putting SET
instead of SETB would report a syntax error as shown in Figure 3.15. The
syntax error is on line 4 of the program. Correcting the error and re-translating
should result in an error-free program. If this is the case, then selecting the
Build icon to the right of the Translate icon (alternatively selecting Project and
then Build) will produce the hex file. This is shown in Figure 3.16.

Figure 3.12 Window for adding files to Source Group 1

Figure 3.13 Program file test1.a51 added to Source Group 1

44 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 45 – [38–65/28]
28.11.2003 4:51PM

DEBUGGING/SIMULATION

Debug may be accessed by either CLM on the red letter d or selecting Debug
from the main menu bar and then selecting Start Debug Session. See Figure 3.17.
A register window would show on the left and a command window at the bottom
of the screen. This program toggles pin 7 on port 1 so a port 1 window would be
useful to display. The window may be selected by choosing Peripherals on the
main menu bar, then I/O Ports and then Port 1. See Figure 3.18.

Figure 3.14 Build window report showing errors and warnings as appropriate

Figure 3.15 Syntax error in the Build window

Figure 3.16 Creation of a hex file for test1.a51 program

Keil � Vision2 45

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 46 – [38–65/28]
28.11.2003 4:51PM

The port 1 window appears and there are two rows of eight ticks; the top row
represents the logic level set by the microcontroller while the lower row repre-
sents the actual level on the port pins. Ideally they should always be the same
but there are times when a bad interface might load a port pin and cause it to be
logic 0 when the microcontroller is assigning logic 1.

When debugging complex programs it is useful to single step through com-
plete loops; in this simple example the program is a simple loop. Selecting
Debug and then Step, the function key F11 can be pressed to step or the
brackets icon with the arrow into it can be used. See Figure 3.19. By repeatedly

Figure 3.17 Using the Debug facility

Figure 3.18 Selection of port 1 window

Figure 3.19 Selection of Step function

46 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 47 – [38–65/28]
28.11.2003 4:51PM

pressing and releasing key F11, the cursor and yellow arrow in the program
window allows the program to be followed step by step. The corresponding
logic levels of bit 7 in the port 1 window can be checked with the hex and
corresponding binary values of port 1.

Time delays can be measured using sec in the Sys registers, between states
and PSW. The reset value of sec is 0.00000000. See Figure 3.20. Consider a
modification to the program that puts a delay after SETB and CLR. The data
from the first Time Delay example in Chapter 1, where register R0 was loaded
with decimal 88 to establish a 5 kHz square wave, could be used. The result is
shown in Figure 3.21.

The program should then be translated before returning to Debug. There are
seven icon buttons above the Register space available for use and they are
shown in Figure 3.22.

Figure 3.20 Register window display

Figure 3.21 Modification to test1.a51 to include a time delay

Keil � Vision2 47

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 48 – [38–65/28]
28.11.2003 4:51PM

With reference to Figure 3.22, the RST icon with the red arrow is the Reset.
The icon to the right, a sheet with a blue arrow to the right, is the Run button.
The cross icon next right is the Stop button; it changes to red when the
simulated program is running. The next four sets of brackets to the right are:

1. Single stepping (alternative is key F11).
2. Single step avoiding subroutines (alternative is key F10).
3. Jumping out of subroutines when stuck in a loop.
4. Run simulation to stop at blinking cursor.

Breakpoints at suitable points in the program may be inserted by moving the
PC mouse to the beginning of a line and positioning the blinking cursor at this
point. Then moving the mouse cursor over the hand icon, shown on the top row
in Figure 3.23, and CLM positions a red breakpoint block against that line.
This has been done in Figure 3.23 alongside the line with the first ACALL
DELAY and the next line CLR P1.7.

Figure 3.22 Icons used for program control purposes

Figure 3.23 Inserting breakpoints in the program test1.a51

48 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 49 – [38–65/28]
28.11.2003 4:51PM

Resetting (RST icon) the simulation causes the yellow arrow to go to
address 0000H where SJMP START is located. At reset the contents of sec
are 0.00000000; see Figure 3.24(a). Running the simulation (sheet with blue
arrow icon or pressing function key F5) causes the program to run to
ACALL DELAY at the first breakpoint. The contents of sec will then be
as shown in Figure 3.24(b). Running the simulation once more to the
next breakpoint increases the contents of sec to the value shown in
Figure 3.24(c).

The time difference can be determined from Figure 3.24(b) and (c) i.e.

ð0:00009983 � 0:00000163Þ s ¼ 0:0000982 s ¼ 98:20 ms

For the 5 kHz square wave it should be 100 ms. Increasing R0 to decimal 89
gives a delay of 99:28 ms and increasing R0 to decimal 90 gives a delay of
100:37 ms.

Assembly language programs are written using the microcontroller registers
and the SFRs of the onboard peripherals. The microcontroller registers are
shown on the Debug/Simulation screen. See Figure 3.20.

The onboard peripheral SFR windows may be selected via Peripherals on the
top menu bar. An example is shown in Figure 3.25.

Programs written in C may also use onboard peripheral SFRs but they can
also use defined variables that do not represent an SFR. The values of these
defined variables may be checked using a Watches window; SFRs may also use
a Watches window. From the top menu bar selecting View then choosing
Watch & Call Stack window produces a window at the bottom of the PC
screen as shown in Figure 3.26.

States

Sec

PSW

0

0.00000000

0×00+

(a)

States

Sec

PSW 0×00

3

0.00000163
+

(b)

States
Sec

PSW 0×00

184
0.00009983

+

(c)

Figure 3.24 (a) Time at reset of program test1.a51. (b) Time at first breakpoint of
program test1.a51. (c) Time at second breakpoint of program test1.a51

Keil � Vision2 49

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 50 – [38–65/28]
28.11.2003 4:51PM

The time delay program written earlier using assembly language can be
written in C language. The C equivalent of the original program is shown in
the program window of Figure 3.27.

The delay variable j and the main variable pin 7 are shown in the Watch
window. To initialise j it is necessary to start by single stepping until the delay
function is executed once. The variables are entered into the Watch window
by pressing function key F2. Breakpoints have been set at the first delay () and
pin 7 ¼ 0. The delay time can be measured as before by subtracting the two
sec values.

3.3 Raisonance IDE (RIDE)

The Raisonance software can be downloaded as a separate 8051 package, a
separate XA package or as a combined 8051 þ XA package. Start by selecting
Project from the top menu bar and then selecting New. See Figure 3.28.

If using the combined 8051 þ XA package the relevant microcontroller
family should be selected. Note that the LPC microcontrollers are part of the

Figure 3.25 Selection of particular onboard peripherals

Figure 3.26 Production of a Watch window

50 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 51 – [38–65/28]
28.11.2003 4:51PM

8051 family. Choosing 80C51 and CLM on OK will produce the window shown
in Figure 3.29, which is similar to the window obtained with the Keil software.
The device manufacturer should then be selected (e.g. Philips) and the parti-
cular device selected by scrolling down the list until the required device (e.g.
P89C664) is found.

Figure 3.27 C language program to produce toggling on pin 7, port 1 with a time
delay

Raisonance IDE (RIDE) 51

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 52 – [38–65/28]
28.11.2003 4:51PM

For the explanation of the Raisonance software that follows, the XA family
has been chosen. The XA family member (e.g. XAG49) is chosen at the point of
entering the Debug/Simulation. CLM on OK will generate another window;
XA should be selected to confirm the core, then CLM on OK. Selecting File
from the top menu bar and then New results in a small window, as shown in
Figure 3.30.

Selecting Assembler Files and a blank text window appears, labelled
untitled.axa. From the top menu bar selecting Options and then choosing
Project result in the window shown in Figure 3.31.

CLM on the þ sign to the left of Environment and choosing Editor will give
an opportunity to change the values indicated. TabStop defaults to 3 and

Figure 3.28 Raisonance window for the creation of a new project

Figure 3.29 Window for Core Selection

Figure 3.30 File selection window

52 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 53 – [38–65/28]
28.11.2003 4:51PM

should be changed to 8; Offset defaults to 2 and should be changed to 0. The
result of the changes is illustrated in Figure 3.31.

To illustrate the use of the simulation software a simple assembly language
program, to toggle pin 7 of port 1, is to be used. Once the test program has been
written in the text window, File may be selected from the top menu bar and the
program saved by choosing Save As. The program is shown in the text window
of Figure 3.32.

The XA assembly language program extension must be .axa (it is .a51 for
8051). The source program should be saved in the same directory as the Project.

Figure 3.31 Options window

Figure 3.32 Test program to toggle pin 7, port 1 using the XA device

Raisonance IDE (RIDE) 53

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 54 – [38–65/28]
28.11.2003 4:51PM

The XA program has a start that is different from that of the 8051. The
explanation for this is given in Chapter 6. Another difference is that the XA
uses the instruction JMP.

When complete the Source program should be added to the Project by selecting
Project in the top menu barand thenchoosing Add node Source/Application. In the
window that appears, add the program name and CLM on Open. See Figure 3.33.

From the window illustrated in Figure 3.28 there are icons which have
frequent use. Some of these icons are shown in Figure 3.34.

The source program may be translated by CLM on the icon shown in
Figure 3.34(a) or by selecting Project from the top menu bar, then choosing
Translate; the end result can also be obtained by simultaneously pressing Alt
F9. If there are any syntax errors the information will appear at the bottom of
the screen. A typical window is shown in Figure 3.35.

To produce the Debug/Simulation file and the hex file, CLM on the icon
Make all, shown in Figure 3.34(b), which is to the right of the Translate icon.
Alternatively Project may be selected from the top menu bar, then choosing
Make all or simply press function key F9.

DEBUGGING/SIMULATION

With the Raisonance software the particular device belonging to the microcon-
troller family is chosen at the Debug/Simulation stage. Debug/Simulate is entered

Figure 3.33 Adding file test1 to the project

Figure 3.34 (a) Icon used to Translate source program. (b) Icon used to ‘Make all’.
(c) Icon used to select Debug. (d) Animation button

54 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 55 – [38–65/28]
28.11.2003 4:51PM

by CLM on the icon shown in Figure 3.34(c) or by selecting Debug on the top
menu bar, then choosing Start, when a window appears as shown in Figure 3.36.

For our purposes, the selected device is the XAG49; three other XA family
members are also shown. The XAG3 is the one time programmable (OTP)
EPROM version of the Flash XAG49. The XAC3 is the XA version having an
onboard controller area network (CAN). The XAS3 has 24 address lines, six
8-bit ports, I2C, 8 channel 8-bit ADC and a programmable counter array (PCA).

The crystal frequency might default to 11.059; the value should be changed to
11.0592. The value chosen is in MHz. CLM on OK, another window appears,
as shown in Figure 3.37. The values required have been changed to the values
shown in Figure 3.37 and CLM on OK causes the software to go into Debug/
Simulation mode.

A Watches window will appear at the bottom of the screen. If it appears too
large then CLM on the two vertical bars on the left of the Watches window and
dragging the window into the program window and then out again, should
make it smaller.

More frequently used icons are shown in Figure 3.38. Reset is the icon with
the finger pointing towards the red button.

The icon to the right of reset is Step into (fast key F7), used for single
stepping through the program. The icon to the right of this is Step over (fast

Figure 3.35 Window for display of syntax errors

Figure 3.36 Debug options window

Raisonance IDE (RIDE) 55

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 56 – [38–65/28]
28.11.2003 4:51PM

key F8), similar to Step into, but steps over (avoids) subroutines or functions.
The spectacle with the þ sign, to the right of the Step over icon, adds a variable
to the Watches window. The letter s in the red circle with the þ sign is used to
add or remove breakpoints. All of these icon controls are accessible by selecting
Debug in the top menu bar.

The Raisonance software has an animation icon shown in Figure 3.34(d).
CLM on the animation icon, then CLM on GO in the green box should result
in the blue horizontal cursor continually moving through the program.

The test program used toggles pin 7 on port 1. Port 1 can be accessed by
selecting View on the top menu bar and then choosing Hardware Peripherals
which causes a window to appear listing the XAG49 onboard peripherals as
shown in Figure 3.39.

CLM on P1 l produces the window shown in Figure 3.40.
Single stepping (continually pressing F7) should show pin 7 toggling (red for

logic 0, green for logic 1). The corresponding hex number in the LATCH
window should also change (7F when pin 7 is logic 0, FF when pin 7 is logic 1).
The LATCH window represents bit settings by the program, equivalent to the
top row of eight ticks in the Keil software. The column numbered 0 down to
7 represents the port pins, equivalent to the bottom row of eight ticks in the
Keil port window. The LATCH value can be changed by editing, using the
mouse cursor. For example it could be changed to 7E to make pin 0 ¼ logic 0.
The port pins can also be changed. Moving the cursor arrow over the second
pin down, pin 1, and CLM when the arrow cursor changes to a pointing finger
will produce a small window as shown in Figure 3.41.

Selecting Ground should cause pin 1 to change to red, logic 0, but the
LATCH value would not change.

Figure 3.37 Applications options window

Figure 3.38 Frequently used icons

56 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 57 – [38–65/28]
28.11.2003 4:51PM

To detect a pin change would require the port to be read, e.g. MOV.B R0L, P1

MOV:B means move a byteðBÞ
R0L means Register 0 Low byte

Figure 3.39 List of XAG49 onboard peripherals

Figure 3.40 test1.axa program window with program and port 1 window showing
pin logic levels

Figure 3.41 Window used to alter value of port pin

Raisonance IDE (RIDE) 57

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 58 – [38–65/28]
28.11.2003 4:51PM

The XA is a 16-bit microcontroller able to move data in bytes (8 bits) or words
(16 bits) and its registers are 16 bits (W), e.g. comprising a high byte R0H and
low byte R0L. This is dealt with in Chapter 6.

If the simulation is reset and the animation made active, then by pressing GO
the blue cursor will move through the program and pin 7 should toggle on and
off. Coming out of the simulation by CLM on the icon of Figure 3.34(c), the
program can be modified by changing the program details in the text window.
For example, Figure 3.42 shows a variation in the original program caused by
adding a time delay. This is achieved by putting a delay after SETB and CLR.

If there are no syntax errors then pressing the icon of Figure 3.34(c) will save
the program. Make all by pressing the icon of Figure 3.34(b) and returning to
Debug/Simulation mode check for syntax errors. If there are syntax errors then
they will be reported and the software will remain in Edit mode.

Moving the mouse cursor to the beginning of the first CALL DELAY line
and CLM will set a blinking cursor at this point. Now move the mouse to the
breakpoint icon, shown in Figure 3.38, and CLM will establish a red break-
point line. Another breakpoint on the next line down (CLR P1.7) can be set
using the same procedure. This is shown in Figure 3.43.

An alternative method of setting the breakpoint is to move the mouse cursor
close to the green icons on the grey left column. As the cursor moves over the
green icon, the cursor changes into the breakpoint icon. CLM when this change
occurs sets a breakpoint. The same breakpoint can be removed by repeating the
procedure over the breakpoint.

Running (GO) will take the program to the first breakpoint, where it will
change colour to a light purple. The time in a panel at the bottom right of the
screen should be noted; it will probably be zero on this first run, if not then it

Figure 3.42 Program amendment to test1.axa introducing a time delay

58 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 59 – [38–65/28]
28.11.2003 4:51PM

can be made zero with Ctrl T. See Figure 3.44(a). Running (GO) to the next
breakpoint and noting the time in the panel should give the delay time which,
for this test program, reads 0.089 ms or 89 ms. See Figure 3.44(b).

Using the P89C664, the time delay was 98:2 ms; the XAG49 microcontroller
is faster. To establish a 5 kHz square wave, a half-cycle time delay of 100 ms is
required. If decimal 88 sets a time delay of 89 ms with the XAG49, then an
intuitive value of decimal 99 could be tried to establish a delay of 100 ms. To
achieve this, the icon of Figure 3.34(a) should be pressed to come out of
simulation; the value #88 in the program should be changed to #99 and the
icon of Figure 3.34(a) pressed again to save the program. Pressing the icon
Make all will then cause a return to simulation.

Running to the first breakpoint will give a time that, if necessary, can be set
to zero by pressing Ctrl T. Running to the next breakpoint should give a time of
0:100 ms ¼ 100 ms as shown in Figure 3.44(c).

This could be checked since the Raisonance software has another, more
visual, way of measuring the time. Whilst in the Debug/Simulation mode if
View is selected from the top menu bar, then from the window that appears,
choosing Trace and then View (see Figure 3.45), a Trace window appears.

The windows, including the Watches window, can be organised and the
breakpoints removed (e.g. by moving the cursor to grey column till cursor
changes, then CLM). The result is shown in Figure 3.46.

To see the effect of variations in P1.7 logic levels with time, it is necessary
to add P1.7 into the Watches window; CLM on the Watches icon, shown in Fig-
ure 3.38, results in a blank Expression window appearing. P1.7 can be typed in,
as shown in Figure 3.47, and the OK button clicked using the left mouse button.

Figure 3.43 test1.axa program with breakpoint set

Figure 3.44 (a) Time recorded at first program breakpoint. (b) Time interval between
breakpoints. (c) Time interval between breakpoints with amended delay time

Raisonance IDE (RIDE) 59

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 60 – [38–65/28]
28.11.2003 4:51PM

Note: CLM on the radio button to the right of the Expression window, shown
in Figure 3.47, drops down a list of all valid expressions for the current program.

P1.7 will appear in the Watches window with its default state True (i.e. logic 1).
Now moving the mouse cursor onto the light grey line coming from P of P1.7
and clicking the Right mouse button (CRM), a small window appears as
shown in Figure 3.48. Choosing Add/Delete from Trace List, as shown in

Figure 3.45 Selecting Trace View

Figure 3.46 Trace window for test1.axa program

60 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 61 – [38–65/28]
28.11.2003 4:51PM

Figure 3.48, causes a small blue T in a circle to appear to the left of P1.7. See
Figure 3.49. Also a P1.7 button will appear as the last on a row in the Trace
window. CLM on this P1.7 button will cause P1.7 to also appear to the left of
the black space. See Figure 3.50.

Moving the mouse cursor into white space, above the black space, below the
row of buttons, and CRM will generate a small window: only Options is active
and this should be chosen. The window of Figure 3.51 should now appear.
Mode should be set to Continual, the Rolling trace checked to ensure it is
ticked and the maximum number of records set to 2000. CLM on OK and the
black space P1.7 disappears, CLM on the Trace P1.7 button will retrieve it.

Making sure animation is off and CLM on GO, the program should be
allowed to run for about 3 s before CLM on Stop; the Trace window should
be as shown in Figure 3.52. The time column shown in Figure 3.52 can be

Figure 3.47 Entering an expression in a Watch window

Figure 3.48 Window with option to add/delete from Trace list

Figure 3.49 Indication that P1.7 is added to Trace list

Raisonance IDE (RIDE) 61

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 62 – [38–65/28]
28.11.2003 4:51PM

widened by positioning the cursor on the line joining the t button to the dt
button, CLM, hold and dragging right. The trace shown in Figure 3.52 starts
off as logic 0 and so under P1.7 appears as FALSE. It is a binary signal, hence it
will start TRUE (logic 1) or FALSE (logic 0).

There are five sets of numbers under the time t column; their units are
minutes, seconds, ms (10�3), ms (10�6), ns (10�9). It is possible to CLM on
the Trace scroll button until P1.7 changes from FALSE to TRUE (or TRUE to
FALSE). If the cursor is positioned next to the corresponding record number
under the N column (see Figure 3.53) (161 in this example) and CLM, a blue
horizontal marker appears in the Trace text and a white vertical cursor line
appears in the Trace screen on the signal edge which changes from FALSE to
TRUE. The time reads 140 ms 428 ms 440 ns.

Scrolling the Trace to the next FALSE and again marking the position, as
shown in Figure 3.54, will give the time interval between transitions. From
Figure 3.54 the time is seen to be 140 ms 528 ms 700 ns.

Figure 3.50 Trace window for program test1.axa indicating P1.7 is on the Trace list

Figure 3.51 Trace Options window

62 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 63 – [38–65/28]
28.11.2003 4:51PM

The delay time is the difference between this value and the earlier recorded
value, i.e.

528:700 ms � 428:440 ms ¼ 100:26 ms

Multiple traces can be displayed on the Trace window. Block data such as port
values can also be shown; hex values tend to be given. See Figure 3.55.

Figure 3.52 Trace window response to test1.axa program

Figure 3.53 Establishing a transition time for program test1.axa

Raisonance IDE (RIDE) 63

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 64 – [38–65/28]
28.11.2003 4:51PM

Summary

. Software suitable for simulating and debugging programs is readily avail-
able.

. Evaluation software from Keil supports the LPC and 89C66x microcon-
troller families.

. Evaluation software from Raisonance supports the LPC, 89C66x and XA
microcontroller families.

Figure 3.54 Establishing a second transition time to give time duration of a positive
pulse for program test1.axa

Figure 3.55 A Trace response for program test1.axa showing changes on port 1 in
general and port 1, pin 7 in particular

64 Simulation software

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH003.3D – 65 – [38–65/28]
28.11.2003 4:51PM

. Both sets of software operate within IDE.

. Both sets of software support microcontroller devices from various manu-
facturers.

. The software can be used for programming in both assembly language
and C.

. Writing of the source program C or assembly language, syntax check,
compilation to hex, program debugging/simulation all takes place within
the integrated environment.

. When the debugging/simulation is satisfactorily completed, the microcon-
troller is programmed with the .hex version of the program.

Summary 65

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 66 – [66–112/47]
27.11.2003 12:34PM

4
P89C66x Microcontroller

4.1 Introduction

This device is a member of the 80C51 family able to execute one instruction in
six clock cycles, hence providing twice the speed of a conventional 80C51. A
one time programmable (OTP) configuration bit gives the user the option to
select conventional 12-clock timing. This device is a single-chip 8-bit micro-
controller manufactured in an advanced CMOS process. The instruction set is
100% executing and timing compatible with the 80C51 instruction set.
Further information on the device, including details of the SFRs, can be
found in Appendix D while details of the 80C51 Instruction set can be found
in Appendix A.
Examples used in this chapter include simulation, using software that,

unless otherwise stated, is available from Keil. Details regarding simulation
software used in this text are covered in Chapter 3. The majority of
examples in this chapter requiring programs to be written utilise assembly
language. The use of high level (C) language programs is, in the main, left
as an exercise for the reader although one example illustrating the use of a
program written in C has been included. The solutions to all exercises in
this chapter, and other chapters where relevant, can be found at the end of
the book.
There are four devices in this family of microcontrollers:

1. P89C660 16KB Flash Code Memory 512 bytes onboard RAM
2. P89C662 32KB Flash Code Memory 1KB onboard RAM
3. P89C664 64KB Flash Code Memory 2KB onboard RAM
4. P89C668 64KB Flash Code Memory 8KB onboard RAM

All the devices have four 8-bit ports and an onboard clock oscillator, the
frequency being defined by an externally connected piezo-crystal or ceramic
resonator.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 67 – [66–112/47]
27.11.2003 12:34PM

The P89C66x onboard peripherals include:

. three timers – timer 0, timer 1, timer 2

. programmable counter array (PCA)

. universal asynchronous receiver transmitter (UART)

. inter integrated circuit (I2C) interface.

4.2 Timers 0 and 1

Timers 0 and 1 are fundamentally the same and both have two 8-bit registers,
timer high (TH) byte and timer low (TL) byte. Both share the timer control
(TCON) register and the timer mode (TMOD) register. The arrangement is
shown in Figure 4.1.

The timers can be configured into one of the four modes:

Mode 0 TH and TL come together to form a 13-bit register where TH has 5 bits.
This makes the microcontroller compatible with an earlier device.

Mode 1 TH and TL come together to form a 16-bit register.
Mode 2 TL is the working 8-bit register and TH is the automatic reload

register. This mode is used to define the baud rate of the serial UART
interface.

Mode 3 TH and TL registers of both timers combine to produce three 8-bit
timers.

Details of the TMOD SFR are:

TMOD

GATE C/T M1 M0 GATE C/T M1 M0

Timer 1 Timer 0

Timer 1 Timer 0

TH1
(8 bits)

TL1
(8 bits)

TH0
(8 bits)

TL0
(8 bits)

Timer control (TCON)

Timer mode (TMOD)

Figure 4.1 Timer 0/1 arrangement for the 89C66x family

Timers 0 and 1 67

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 68 – [66–112/47]
27.11.2003 12:34PM

This register has two identical halves, the upper four bits for timer 1 and the
lower four bits for timer 0. The bits M1 and M0 set the TMOD:

M1 M0

0 0 mode 0

0 1 mode 1

1 0 mode 2

1 1 mode 3

MODE 1 16-BIT UP COUNTER

Figure 4.2 shows the timer in mode 1 with the TH and TL registers together
forming a 16-bit register. The diagram also shows that for this microcontroller
family, the timer clock is one-sixth of the microcontroller clock. The default
value of TMOD is 00H, so C/T¼ 0 and the peripheral defaults to being a timer
rather than a pulse counter. The default value of GATE is 0 and this is inverted,
so the OR output defaults to logic 1. The timer is turned on or off by TR1/0 (in
TCON register), putting TR0¼ 1 would turn timer 0 on.

In mode 1, the TH and TL registers in timer 0 or timer 1 join to form a
16-bit up counter. The counter can be loaded with a base number from which
the timer can increment upwards towards the 16-bit maximum of 65535
(FFFFH). The time taken to count from the base number to the maximum
count value is the required delay. Figure 4.3 shows the method of achieving the
required delay.

Oscillator
frequency

Divide by 6
Timer (T)

C/T = 0

C/T = 1

Counter (C)

TR1/0 (TCON)

T1/0 port pin

16 bits

THn
8 bits

TLn
8 bits

TFn

GATE (TMOD)

INT1/0 port pin

–

–

Figure 4.2 Circuit for timer 0/1 operating as a 16-bit up-counter in mode 1

68 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 69 – [66–112/47]
27.11.2003 12:34PM

Example 4.1

A 1kHz square-wave signal is to be generated from pin 7 on port 1. The
microcontroller clock frequency is 11.0592MHz.

(a) Determine the required delay time.
(b) Using timer 0 determine the base numbers that must go into TH0 and

TL0.

Solution

The required waveform is shown in Figure 4.4.

(a) One cycle time T of the required square-wave signal equals 1/frequency

T ¼ 1=1000 ¼ 1ms
Delay time ¼ T=2 ¼ 0:5ms

(b) Timer clock ¼ microclock=6
¼ 11:0592MHz=6 ¼ 1:8432MHz

Timer cycle time ¼ 1=1:8432MHz ¼ 542:54 ns
Delay count ¼ ðdelay timeÞ=ðtimer cycle timeÞ

¼ 0:5ms=542:54 ns ¼ 922 ðnearest whole numberÞ

Base number ¼ 65535� delay count
¼ 65535� 922 ¼ 64613

Base number = 65535 – Delay

65535

Base number

FFFF

Delay
count

0000

THn TLn

Mode 1 timer

0

Figure 4.3 Determination of delay count for a mode 1 timer

Timers 0 and 1 69

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 70 – [66–112/47]
27.11.2003 12:34PM

TH0 ¼ whole number of 64613=256
64613=256 ¼ 252:3945313 ¼ whole number of 252
TH0 ¼ 252 assembly language MOV TH0;#252

TL0 ¼ ðremainder of 64613=256Þ252
¼ ð0:3945313Þ256

TL0 ¼ 101 assembly language MOV TL0;#101

Base number in hexadecimal

A calculator may have hex conversion; on some Casio calculators, it is accessed
via the Mode button. The PC calculator in scientific view may be used; enter
using decimal (Dec), then select hex (Hex). Figure 4.5 shows the value of 64613
entered with Dec selected. Clicking on the Hex button would give the hexa-
decimal value of FC65.

Alternatively the decimal numbers can be converted to hex values using the
technique described in Chapter 1, e.g.:

252=16 ¼ 15:75 ¼ 15 and 0:75� 16 ¼ 12
thus 252 decimal ¼ FC in hex

101=16 ¼ 6:3125 ¼ 6 and 0:3125� 16 ¼ 5
thus 101 decimal ¼ 65 in hex

V ON ON ON ON

OFF OFF OFF OFFGND

T

Frequency (f)=1/T

= 1/ftand

Figure 4.4 Square-wave signal to be generated at port 1, pin 7

Figure 4.5 Use of the PC calculator to convert a decimal number to its hexadecimal
equivalent

70 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 71 – [66–112/47]
27.11.2003 12:34PM

Whichever method used gives 64613 decimal ¼ FC65 hex.
Loading the timer, using assembly language, can be achieved as follows:

MOV TH0,#0FCH ; 0 required before leading hex symbol
MOV TL0,#65H

The software debugger/simulator will display all numbers in hex, so it is
essential to be prepared.

Exercise 4.1

Repeat Example 4.1 to produce a 2 kHz square wave at port 1, pin 7. Assume
the clock frequency remains at the same value.

Rollover

The timer clock increments in timer clock cycles from the base number up to
the maximum value of the 16-bit register, which is FFFFH. One more incre-
ment would cause the register to rollover to 0000H and set the timer flag (TF)
to 1. The TF is a bit in the TCON SFR:

TCON

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

The four least significant bits (LSB) are concerned with the trigger profiles of
the interrupt signals INT0 and INT1. This will be examined later in the chapter.
On power-up the default values of all the TCON bits are zero and so the

timer flags TF1 and TF0 are 0. Timer 1 is turned on by making TR1¼1 and it is
turned off by making TR1¼0; the control action of timer 0 is the same using
TR0.
As soon as TR0¼1, the timer 0 mode1 TH0,TL0 registers start incrementing

upwards from their base number. Upon rollover the TF0 flag sets to 1 and this
indicates that the delay has been completed. A possible assembly language
routine for the 0.5ms delay could be:

DELAY: MOV TH0,#0FCH ; move hex FC into TH0
MOV TL0,#65H ; move hex 65 into TL0
SETB TR0 ; turn timer 0 on

FLAG: JNB TF0,FLAG ; jump to FLAG if TF0 is not bit (i.e.
; not 1)

CLR TR0 ; turn timer 0 off
CLR TF0 ; clear TF0 to zero
RET ; return from subroutine

Example 4.2

A P89C664 microcontroller having an 11.0592MHz clock is to be used to
generate a 1 kHz square-wave signal from pin 7 of port 1. Write a suitable
assembly program to achieve this.

Timers 0 and 1 71

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 72 – [66–112/47]
27.11.2003 12:34PM

Solution

Square-wave cycle time ¼ 1/1 kHz ¼ 1/1000 ¼ 1ms
Delay required of a square wave ¼ half the cycle time ¼ 0:5ms

Timer 0 clock ¼ ðmicro clockÞ=6 ¼ 11:0592MHz=6
¼ 1:8432MHz

Timer 0 clock cycle time ¼ 1=1:8432MHz ¼ 542:54 ns

Delay count ¼ ðdelay timeÞ=ðtimer clock cycle timeÞ
¼ 0:5ms=542:54 ns ¼ 922 ðto nearest whole numberÞ

Mode 1 timer base number ¼ 65535� delay count
¼ 65535� 922
¼ 64613 decimal
¼ FC65 hex

FC hex to go into TH0
65 hex to go into TL0

Program

ORG 0 ; reset address
SJMP START ; short jump over reserved area
ORG 40H ; program start address at 0040H

START: MOV TMOD,#01H ; put Timer 0 into mode 1
AGAIN: SETB P1.7 ; pin 7 port 1 to logic 1 (5volts)

ACALL DELAY ; go to 0.5ms delay
CLR P1.7 ; pin 7 port 1 to logic 0 (0volts)
ACALL DELAY ; go to 0.5ms delay
SJMP AGAIN ; repeat

DELAY: MOV TH0,#0FCH ; high byte base number into TH0
MOV TL0,#65H ; low byte base number into TL0
SETB TR0 ; turn Timer 0 on

FLAG: JNB TF0,FLAG ; repeat until rollover when TF0 ¼ 1
CLR TR0 ; turn Timer 0 off
CLR TF0 ; clear TF0 back to 0
RET ; return from delay subroutine
END ; no more assembly language after here

Simulation

If from Peripherals the following are chosen:

I=O PortsPort 1

TimerTimer 0

with breakpoints placed at the program lines:

ACALL DELAY

CLR P1:7

72 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 73 – [66–112/47]
27.11.2003 12:34PM

The simulation response will be as shown in Figure 4.6. It can be seen from
Figure 4.6 that the time to the first breakpoint is shown as 0.00000271, which is
0.00271ms. The time to the next breakpoint is 0.00050998, which is 0.50998ms.
The difference between the two values is thus:

0:50998ms� 0:00271ms ¼ 0:50727ms

The contents of TL0 could be altered to bring this difference closer to 0.5ms.
To decrease the measured delay, it would be necessary to increase the base
number in TL0: maybe by increasing 65H to 72H.

After final adjustment of TL0, it would be useful to single step through the
program cycle.
If TH0 and TL0 are loaded in turn, then TCON and TR0 will change when

timer 0 is turned on. TL0 increments as the program repeats at JNB. Moving the
mouse cursor to the TH0 window would allow the user to change the register
contents to a value of FF: similarly moving the cursor to the TL0 window
would permit its value to be altered to FC. If single stepping of the program is
continued, then TH0 and TL0 would be seen to roll over to 0000 and TF0 go to 1.
Alternatively, register values can be changed at the chevron sign in the

Command window at the bottom of the Debug page. This is illustrated in
Figure 4.7. Changes made this way have the advantage of being stored and
repeated in turn by pressing the upward cursor key on the PC keyboard.

Figure 4.6 Simulation display showing the use of breakpoints

Figure 4.7 Use of Command window to change register values

Timers 0 and 1 73

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 74 – [66–112/47]
27.11.2003 12:34PM

Example 4.3

A P89C664 microcontroller having an 11.0592MHz clock is to be used to
generate a 1 kHz square-wave signal from pin 7 of port 1. Write a C program
to achieve this.

Solution

A suitable program would be:

#include <reg66x.h>
#define on 1
#define off 0
sbit SquareWavePin ¼ P1^7; // pin 7 of port1
void delay1KHz(); // delay-on() returns nothing and

// takes nothing
main() { // start of the program

TMOD¼0x01; // timer1 : Gate¼0 CT¼0 M1¼0
// M0¼0
// timer0 : Gate¼0 CT¼0 M1¼0 M0¼1;
// mode 1

while(1) { // do for ever
SquareWavePin ¼ on; // P1.7 set to 1
delay1KHz(); // wait for on time
SquareWavePin ¼ off;// P1.7 set to 0
delay1KHz(); // wait for off time

} // while()
} // main()
void delay1KHz() {

TH0¼�(922/256); // �(3)¼�(bin:0000 0011) ¼ bin:1111
// 1100 ¼ hex : FC

TL0¼�(922 % 256);// �(154)¼�(bin:1001 1010)¼bin:
// �0110 0110¼hex:66

TR0¼on; // set TR0 of TCON to run timer0
while(!TF0); // wait for timer0 to set the Flag TF0;
TR0¼off; // stop the timer0
TF0¼off; // clear flag TF0

} // delay()

MODE 2 EIGHT-BIT UP-COUNTER

The instruction MOV TMOD,#02H would put timer 0 into mode 2 defining an
8-bit timer using TL0 as the working register and TH0 as the automatic reload
register. The circuit arrangement is shown in Figure 4.8.
In mode 2, the working register is only 8 bits wide and so the base number is

8 bits wide. When the TL register rolls over it is automatically reloaded with the
contents of the TH register, whose loaded contents remain the same, so the base
number goes into the TH register.

74 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 75 – [66–112/47]
27.11.2003 12:34PM

Example 4.4

A P89C664 microcontroller having an 11.0592MHz clock is to be used to
generate a 5 kHz square-wave signal from pin 7 of port 1. Write a suitable
program to achieve this.

Solution

Square-wave cycle time ¼ 1/5 kHz ¼ 1/5000 ¼ 0:2ms
Delay required for a square wave¼ half the cycle time ¼ 0:1ms¼ 100ms

Timer 0 clock=(micro clock)/6 ¼ 11:0592MHz/6 ¼ 1:8432MHz
Timer 0 clock cycle time¼ 1/1:8432MHz¼ 542:54 ns

Delay count ¼ (delay time)/(timer clock cycle time)
¼ 100 ms=542:54 ns ¼ 184 (to nearest whole number)

Mode 2 timer base number ¼ 225� delay count
(225=maximum value of 8-bit register)

¼ 255� 184
¼ 71 decimal
¼ 47 hex

47 hex is to go into TH0

47 hex is to go into TL0

TL0 could start with its default value of 00H since the first half cycle would not
be seen on an oscilloscope screen! The line MOV TL0,#47H can be left out of
the program since after the first half cycle TL0 will automatically be reloaded
with 47H from TH0.

Oscillator
frequency Divide by 6

Timer (T)

Counter (C)

C/ T = 0

C/ T = 1

GATE (TMOD)

INT1/0 port pin

T1/0 port pin

TR1/0 (TCON)

TLn
8 bits TFn

THn
8 bits

Figure 4.8 Circuit for timer 1/0 to operate as an 8-bit up-counter in mode 2

Timers 0 and 1 75

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 76 – [66–112/47]
27.11.2003 12:34PM

Program

ORG 0 ; reset address
SJMP START ; short jump over reserved area
ORG 40H ; program start address at 0040H

START: MOV TMOD,#02H ; put Timer 0 into mode 2
MOV TH0,#47H ; auto-reload base number into TH0

AGAIN: SETB P1.7 ; pin 7 port1 to logic 1 (5volts)
ACALL DELAY ; go to 0.5ms delay
CLR P1.7 ; pin 7 port1 to logic 0 (0volts)
ACALL DELAY ; go to 0.5ms delay
SJMP AGAIN ; repeat

DELAY: SETB TR0 ; turn Timer 0 on
FLAG: JNB TF0,FLAG ; repeat until rollover when TF0¼1

CLR TR0 ; turn Timer 0 off
CLR TF0 ; clear TF0 back to 0
RET ; return from delay subroutine
END ; no more assembly language after here

Simulation

Time taken to run to the first breakpoint ACALL is 0:00000380 ¼ 3:80 ms. TH0
is loaded with 47 hex and TL0 has its default value of 00 hex. This is shown on
the simulation response in Figure 4.9.

Clicking left mouse (CLM) on the simulation run button twice causes the
program to come back to the first breakpoint which gives a time as shown in
Figure 4.10. From Figure 4.10, the time is given as 0:00025336 s ¼ 253:36 ms.
CLM on simulation run button once more would give the time shown as:

0:00035699 s ¼ 356:99 ms

Figure 4.9 Simulation display showing the use of breakpoints

76 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 77 – [66–112/47]
27.11.2003 12:34PM

The difference is equal to 103:63 ms which is close to the 100 ms delay required
for the 5 kHz square wave. Changing 47H in TH0 to 4FH would give a closer
result.

Exercise 4.2

A P89C664 microcontroller having an 11.0592MHz clock is to be used to
generate a 5 kHz square-wave signal from pin 7 of port 1. Write a C program
to achieve this.

TIMER INTERRUPT

When an interrupt occurs the processor pauses, saves the current program
counter (PC) value into RAM designated by the stack pointer (SP) and then
jumps to the interrupt vector address. The processor then carries out the
instructions at the interrupt vector address and returns to the original program
sequence, retrieving the previous PC data. The interrupt program must end
with RETI (return from interrupt).
The P89C66x microcontroller has nine interrupts, if reset is included, as

shown in Table 4.1. It can be seen from Table 4.1 that previous assembly
language programs started from address 0040H in order to leave the interrupt
vectors as a reserved space.
Timer interrupts can be made to occur when the TF is set at rollover. This is

achieved by setting the relative bits in the interrupt enable (IE) registers.

IE0

EA EC ES1 ES0 ET1 EX1 ET0 EX0

EA Enable all and must always be set when interrupts are used. By
putting EA=0 any arrangement of interrupts can be disabled

EC PCA interrupt enable

ES1 I2C interrupt enable
ES0 UART interrupt enable
ET1 Timer 1 interrupt enable
EX1 External 1 interrupt enable
ET0 Timer 0 interrupt enable
EX0 External 0 interrupt enable

IE1

– – – – – – – ET2

ET2 Timer 2 interrupt enable (EA in IE0 must also be set)

0.00025336
0×00

Sec

PSW+

Figure 4.10 Breakpoint timing value display

Timers 0 and 1 77

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 78 – [66–112/47]
27.11.2003 12:34PM

Example 4.5

Modify the program of the previous example such that a timer 0 interrupt
causes the logic level on pin 7 port 1 to be toggled (switched to opposite logic
level) producing a square wave of frequency 5 kHz.

Solution

Program could be

ORG 0 ; reset address
SJMP START ; short jump over reserved area
ORG 0BH ; Timer 0 interrupt vector address
SJMP TASK ; go to interrupt routine
ORG 40H ; program start address at 0040H

START: MOV TMOD,#02H ; put Timer 0 into mode 2
MOV TH0,#47H ; auto-reload base number into TH0
SETB EA ; enable all
SETB ET0 ; enable Timer 0 interrupt
SETB TR0 ; turn Timer 0 on

AGAIN: SJMP AGAIN ; stay here till interrupt occurs
TASK: CPL P1.7 ; complement (i.e. toggle) pin 7 port 1

RETI ; return from interrupt routine
END ; end of assembly language

Simulation

The response is shown in Figure 4.11. The interrupt window is shown in
Figure 4.11. When in debug the Interrupt window is obtained from Peripherals on
the topmenu bar. Putting a breakpoint at the TASK label and running the program
to this point give a timing of 0:00014594 s ¼ 145:94 ms. Running the simulation
oncemore the timing increases to 0:00024631 s ¼ 246:31 ms. The difference between
this and the previous value is 100:37 ms, which is very close to the required 100 ms.

Exercise 4.3

Modify the C program of Exercise 4.2 such that a timer 0 interrupt causes the
logic level on pin 7 port 1 to be toggled (switched to opposite logic level)
producing a square wave of frequency 5 kHz.

Table 4.1 P89C66x interrupts

Source Interrupt vector address Polling priority

Reset 00H 0 (highest)

External 0 03H 1

I2C 2BH 2

Timer 0 0BH 3

External 1 13H 4

Timer 1 1BH 5

UART 23H 6

Timer 2 3BH 7

PCA 33H 8 (lowest)

78 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 79 – [66–112/47]
27.11.2003 12:34PM

4.3 Timer 2

The previous program could be viewed as the basis of a simple multitasking
system where the microcontroller performed a task of complementing pin 7
on port 1 every 100 ms. The auto-reload and automatic clearing of the Timer
Flag meant that once the timer reload register had been set up and the timer
turned on it could be left to continually interrupt every 100 ms. Because the
working register TL0 is only 8 bits wide the time duration of the interrupt
signal is small.
The P89C664 has Timer 2, which has 16-bit auto-reload giving a maximum

count of 65536 (216). Timer 2 has three operating modes:

1. capture mode
2. 16-bit auto-reload mode
3. baud rate generator mode.

Auto-reload is the default mode. Capture mode causes data in TL2 and TH2
to be transferred to the capture registers RCAP2L and RCAP2H when there is
a 1-to-0 transition on T2EX (port 1.1).
Timer 1 can be used as the serial port baud rate generator but has limita-

tions on the minimum baud rate. For example, with an oscillator frequency of

Figure 4.11 Simulation display with breakpoint used to determine timing

Timer 2 79

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 80 – [66–112/47]
27.11.2003 12:34PM

11.0592MHz the baud rate generation can only go down to the standard rate
of 4800, for lower values the oscillator frequency must be lowered. Timer 2
having 16-bit auto-reload gets over this problem. (See Section 4.9.)
The control register associated with timer 2 is T2CON.

T2CON

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

TF2 rollover or overflow flag, it must be cleared by software
TR2 turns timer 2 on (1) or off (0)
C/T2 increments TL2, TH2 by onboard timer (0) or external

negative edge on port1.0 (T2)
CP/RL2 when 1 (capture mode), when 0 (auto-reload on rollover)
EXF2 external flag set to 1 when there is a negative transition on

port 1.1 (T2EX)
EXEN2 external enable flag, when 1 allows capture or reload fol-

lowing a negative transition on T2EX
RCLK, TCLK when 1, baud rate generator mode

Example 4.6

A P89C664 microcontroller has an oscillator frequency of 11.0592MHz. Write
a program that causes timer 2 to generate an interrupt every 10ms toggling
pin 7 on port 1.

Solution

Oscillator frequency ¼ 11:0592MHz
Therefore timer clock ¼ 1:8432MHz
Timer clock cycle ¼ 542:54 ns
Delay time count ¼ 10ms/542:54 ns ¼ 18432 (nearest whole number)
Timer 2 base number ¼ 65535� 18432 ¼ 47103 decimal ¼ B7FFH

In timer 2 the reload register for TH2 is RCAP2H (capture register 2) and the
reload register for TL2 is RCAP2L. ET2 in IEN1 enables timer 2 interrupt.

IEN1

– – – – – – – ET2

The evaluation version of the assembly language software does not have timer 2
SFRs; therefore the program starts by equating (EQU) the SFR labels to their
hex addresses. This information is obtained from the microcontroller data
sheet, see Appendix D.
The program uses OR logic (ORL) to force logic 1 in the SFRs

without affecting other bits, and it also uses AND logic (ANL) to force
logic 0.

80 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 81 – [66–112/47]
27.11.2003 12:34PM

Program

RCAP2H EQU 0CBH ; sfr address ¼ CBH
RCAP2L EQU 0CAH ; sfr address ¼ CAH
IEN1 EQU 0E8H ; ser address ¼ E8H
T2CON EQU 0C8H ; sfr address ¼ C8H

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 3BH ; Timer2 interrupt address
SJMP TASK ; jump to interrupt task
ORG 40H ; program start address

START: MOV RCAP2H,#0B7H ; B7H into RCAP2H
MOV RCAP2L,#0FFH ; FFH into RCAP2L
SETB EA ; enable all interrupts
ORL IEN1,#01H ; enable Timer2(ET2) interrupt
ORL T2CON,#04H ; turn Timer2 on

AGAIN: SJMP AGAIN ; stay here till interrupt
TASK: CPL P1.7 ; toggle P1.7

ANL T2CON,#7FH ; clear Timer2 flag(TF2)
RETI ; return from interrupt
END ; end of assembly language

Simulation

The simulation response is shown in Figure 4.12. Setting the breakpoint at the
TASK label and running the simulation would initially give a large time count
in the sec register because TH2 and TL2 (T2 in the timer simulation window)
start with their default values of zero. In Figure 4.12 the sec count is seen to be
0.03556261 which is 35.56261ms. Running the simulation once more would see
the sec register change to 0.04556315 which is 45.56315ms, a difference of
approximately 10ms.

Figure 4.12 Simulation display with breakpoint used to determine timing

Timer 2 81

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 82 – [66–112/47]
27.11.2003 12:34PM

Exercise 4.4

A P89C664 microcontroller has an oscillator frequency of 11.0592MHz. Write
a C program that causes timer 2 to generate an interrupt every 10ms toggling
pin 7 on port 1.

4.4 External interrupt

Negative edge transitions on PORT 3 pins 2 (INT0) and 3 (INT1) can cause
interrupts; their interrupt vector addresses are 03H and 13H respectively. A
possible circuit arrangement is shown in Figure 4.13. Figure 4.13 shows a
switch circuit where the voltage on P3.3 (port 3 pin 3) is normally 5V. Pressing
the switch causes a negative edge transition as the voltage switches down from
5V to 0V. If the switch is pressed and held then a logic 0 level is held on P3.3.
These are the two external interrupt conditions; it can be either edge triggered
(transition logic 1 to 0) or level triggered (logic 0).

Example 4.7

A P89C664 microcontroller has an oscillator frequency of 11.0592MHz. Write
an assembly language program that complements the logic level on port 1 pin 7
when an edge triggered interrupt occurs on port 3 pin 3 (INT1).

Solution

The four least significant bits of the TCON register are used to set the external
interrupt parameters.

TCON

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

+5 V DC

3.3k

GND

Microcontroller

P3.3/INT1

Figure 4.13 Circuit arrangement to produce an interrupt on port 3, pin 3. A similar
arrangement can be used for port 3, pin 2

82 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 83 – [66–112/47]
27.11.2003 12:34PM

IT1¼1 INT1 (P3.3) interrupt activated on a negative edge transition. IE1 flag
set to 1 when there is a negative edge transition on INT1 (P3.3), cleared
automatically when servicing the interrupt. IT1¼0 INT1 (P3.3) interrupt
activated on logic 0 level. IE1 flag set to 1 when there is a logic 0 level on
INT1 (P3.3), cleared when the logic level on P3.3 goes back to logic 1.
The process for IT0 and IE0 is similar to the above.

Program

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 13H ; INT1 address vector
SJMP TASK ; jump to interrupt routine
ORG 40H ; program start address

START: SETB IT1 ; interrupt edge triggered
SETB EA ; enable all set interrupts
SETB EX1 ; enable INT1 interrupt

AGAIN: SJMP AGAIN ; stay here till interrupt
TASK: CPL P1.7 ; interrupt task

RETI ; return from interrupt
END ; no more assembly language

Simulation

The simulation response is shown in Figure 4.14. The activity of IT1 and IE1
can be seen on the Watch Window or TCON in the timer 1 window. In Figure
4.14 the simulation uses the timer 1 window. When single stepping through the
program, the position reached in Figure 4.14 is when P3.3 has just gone to logic 0.
At this point Reg in the Interrupt System window goes to 1. TCON changes
from 0x04 (SETB IT1) to 0x0C (IT1 and IE1 both set).

Figure 4.14 Simulation display showing the effect of a program on timer 1

External interrupt 83

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 84 – [66–112/47]
27.11.2003 12:34PM

Single stepping once more will cause the program cursor to go to SJMP
TASK; TCON to go back to 0x04 and Reg go back to 0. Single stepping twice
more would cause P1.7 to go to logic 0.

Exercise 4.5

A P89C664 microcontroller has an oscillator frequency of 11.0592MHz. Write
a C program that complements the logic level on port 1 pin 7 when an edge-
triggered interrupt occurs on port 3 pin 3 (INT1).

4.5 Interrupt priority

Table 4.1 shows the order in which the interrupts are polled; for example it is
seen that timer 0 interrupt is polled or checked before timer 1. The order in
which the interrupts are serviced may be set by using two interrupt priority
tables, together they give four levels of interrupt as shown in Table 4.2.

Interrupt priority (IP)

PT2 PPC PS1 PS0 PT1 PX1 PT0 PX0

IPH (high byte)

PT2H PPCH PS1H PS0H PT1H PX1H PT0H PX0H

PT2 Timer 2
PPC PCA
PS1 I2C
PS0 UART
PT1 Timer 1
PX1 External 1 (INT1)
PT0 Timer 0
PX0 External 0 (INT1)

Example 4.8

Assuming a P89C664 microcontroller is to be used, write an assembly language
program that causes timer 1 to have a higher priority than timer 0.

Table 4.2 Priority levels

IPH.x IP.x Levels order

0 0 0 (lowest)

0 1 1

1 0 2

1 1 3 (highest)

84 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 85 – [66–112/47]
27.11.2003 12:34PM

Solution

MOV IP,#0AH ; A ¼ 1010 PT1ðIP:3Þ ¼ 1 PT0 ðIP:1Þ ¼ 1
MOV IPH,#08H ; 8 ¼ 1000 PT1ðIPH:3Þ ¼ 1 PT0 ðIPH1Þ ¼ 0

Timer 0 has a priority level of 1 and timer 1 has a priority level of 3, so even if
timer 0 interrupt has not finished servicing its task, timer 1 will interrupt the task.

Program

IEN0 EQU 0A8H ; sfr address ¼ A8H
IPH EQU 0B7H ; sfr address ¼ B7H

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 0BH ; Timer 0 interrupt vector address
SJMP TASK0 ; jump to Timer 0 int task
ORG 1BH ; Timer 1 interrupt vector address
SJMP TASK1 ; jump to Timer 1 int task

START: MOV TMOD,#22H ; Timer 0 & Timer 1 in mode 2
MOV IEN0,#8AH ; EA and Timer 1&2 interrupts
MOV TH0,#0F8H ; hex F8 into TH0
MOV TH1,#0EEH ; hex EE into TH1
MOV TL0,#0F8H ; hex F8 into TL0
MOV TL1,#0EEH ; hex EE into TL1
MOV IP,#0AH ; Timer 0 priority 1 and
MOV IPH,#08H ; Timer 1 priority 3
MOV TCON,#50H ; turn Timers 0 and 1 on

AGAIN: SJMP AGAIN ; stay here till interrupt
TASK0: CPL P1.0 ; Timer 0 task, cpl P1.0

MOV R0,#55H ; trivial tasks, 55H to R0
MOV A,R0 ; register R0 to Accumulator
MOV P2,A ; Accumulator to port 2
MOV R2,#88H ; 88H to register R2
MOV A,R2 ; R2 to Accumulator
MOV P2,A ; Accumulator to port 2
CPL P1.0 ; complement P1.0
RETI ; return from Task0 interrupt

TASK1: CPL P1.1 ; complement port 1 pin 1
RETI ; return from Task1 interrupt
END ; end of assembly language

Simulation

The simulation response is shown in Figure 4.15. It may be seen from the
interrupt system window in Figure 4.15 that timer 0 has a priority (Pri) of 1 and
timer 1 has the higher priority of 3. Both timers are in 8-bit auto-reload (mode 2).
It may also be seen that pins 0 and 1 of port 1 are both at logic 0.
The simulation has been single stepped and the simulation cursor is at RETI

in the timer 1 interrupt TASK1. The timer 0 interrupt TASK0 starts off with
CPL P1.0 and finishes with the same instruction, so when TASK0 is complete
port 1 pin 0 should be showing logic 1. The simulation as shown in Figure 4.15
is at the point where the higher priority timer 1 interrupt has interrupted timer 0

Interrupt priority 85

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 86 – [66–112/47]
27.11.2003 12:34PM

TASK0 before completion, preventing it from reaching the final CPL instruc-
tion. When timer 1 interrupt has completed TASK1 the microcontroller returns
to the point at which it left timer 0 TASK0 and completes the task.

Exercise 4.6

Assuming a P89C664 microcontroller is used, write a C program that causes
timer 1 to have a higher priority than timer 0.

4.6 Programmable counter array (PCA)

The PCA has a 16-bit timer and five 16-bit capture/compare modules each of
which can be put into one of seven different configurations. Each of the five
modules has a port pin associated with it that may be an input (e.g. interrupt)
or an output (e.g. signal out). The 16-bit Timer/Counter is the time base for
each of the five modules as can be seen in Figure 4.16. Each of the five modules
has a Compare/Capture Mode register (CCAPMn) for selecting one of the
seven configurations.

CCAPMn (n ¼ 0,1,2,3,4)

– ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

ECOMn when ¼ 1, enable comparator
CAPPn when ¼ 1, capture on positive edge
CAPNn when ¼ 1, capture on negative edge

Figure 4.15 Simulation display showing the priority levels of timers 0 and 1

86 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 87 – [66–112/47]
27.11.2003 12:34PM

MATn when ¼ 1, match between counter and capture registers flags an
interrupt

TOGn when ¼ 1, port pin toggles when MATn condition occurs
PWMn when ¼ 1, pulse width modulation (PWM) mode
ECCFn when¼ 1, enables flags (CCFn) in CCON SFR to generate interrupts

Details of the module modes for the CCAPMn register are shown in
Table 4.3 for each bit of the register.

The two other SFRs associated with the PCA are the counter mode register
(CMOD) and the counter control register (CCON).

CMOD

CIDL WDTE – – – CPS1 CPS0 ECF

CIDL when=0 (PCA continues during idle mode)
when=1 (PCA gated off during idle mode)

WDTE when=0 (disables watchdog timer)
when=1 (enables watchdog timer)

16-bit
Timer/counter

Module 0

Module 1

Module 2

Module 3

Module 4

16 bits

P1.3 (CEX0)

P1.4 (CEX1)

P1.5 (CEX2)

P3.4 (CEX3)

P3.5 (CEX4)

Figure 4.16 Programmable counter array (PCA)

Table 4.3 CCAPMn module modes

X 0 0 0 0 0 0 0 No operation

X X 1 0 0 0 0 X 16-bit capture by positive edge on CEXn

X X 0 1 0 0 0 X 16-bit capture by negative edge on CEXn

X X 1 1 0 0 0 X 16-bit capture by transition on CEXn

X 1 0 0 1 0 0 X 16-bit software timer

X 1 0 0 1 1 0 X 16-bit high speed output

X 1 0 0 0 0 1 0 8-bit PWM

X 1 0 0 1 X 0 X Watchdog timer

Programmable counter array (PCA) 87

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 88 – [66–112/47]
27.11.2003 12:34PM

CPS1 CPS0
0 0 PCA time base runs at (micro oscillator frequency)/6
0 1 PCA time base runs at (micro oscillator frequency)/2
1 0 PCA time base runs at Timer 0 overflow
1 1 PCA time base runs at external clock on port 1 pin 2 (ECI)

(maximum¼micro oscillator frequency/4)

ECF¼ 1 (enables counter overflow interrupt, enables CF bit in CCON SFR)
¼ 0 (disables counter overflow interrupt)

CCON

CF CR – CCF4 CCF3 CCF2 CCF1 CCF0

CF counter overflow flag
CR when=1, PCA time base runs

when=0, PCA time base stops
CCFn interrupt flag, set by hardware when a match or capture occurs.

Cleared by software

4.7 Pulse width modulation (PWM)

The use of PWM allows a variable DC average voltage to drive small inductive
loads such as a small DC motor. The PWM frequency has to be much faster
than the movement of the application. An example of waveforms produced
using PWM is shown in Figure 4.17.
The DC average is achieved by variation of the on/off ratio in a cycle. In

Figure 4.17 the top signal has an average of (5V� 9)/10 ¼ 4:5V, while the
lower signal has an average of (5V� 6)/10 ¼ 3V.

High average

Time

Time

Lower average

Cycle time (T)

5 V

0 V

5 V

0 V

9 10

106

Figure 4.17 Waveforms showing the effect of pulse width modulation (PWM) in
varying the average DC voltage over a cycle period (T)

88 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 89 – [66–112/47]
27.11.2003 12:34PM

PULSE WIDTH MODULATION (PWM) USING THE PCA

A possible arrangement is shown in Figure 4.18. The example is taking n¼1, so
the PWM output is from port 1 pin 4 (P1.4). To configure the PCA into PWM
mode set bits ECOM1 and PWM1 in the CCAPM1 SFR to 1. The PWM is
8 bits and Figure 4.18 shows the comparison is between the low byte CL of the
PCA Timer/Counter and the low byte CCAP1L. The high byte CCAP1H is
used to automatically reload CCAP1L when it goes to zero. CCAP1L goes to
zero when CL has incremented up to its value. CCAP1H is effectively a marker
fixing the on (e.g. 5V) off (0V) ratio of the PWM signal. Because the PWM is
8 bits, the cycle time of the PWM is 256 PCA timer clock cycles.

In one PWM cycle CL increases from zero up towards the CCAP1L value
(automatically loaded fromCCAP1H). During this period, when CL < CCAP1L,
the PWM output is logic 0 (0V). When CL ¼ CCAP1L the latter momentarily
goes to zero but is immediately reloaded from CCAP1H. CL continues to increase
and for the period CL >¼ CCAP1L the PWM output is logic 1 (e.g. 5V). The
effect is illustrated in Figure 4.19.

Example 4.9

A P89C664 microcontroller has an oscillator frequency of 11.0592MHz. Write
an assembly language program that will cause the PCA to generate a PWM
signal from pin 4 of port 1 with a Mark (logic 1) Space (logic 0) ratio of 6 to 4.
The PCA timer clock frequency should be one-sixth of the microcontroller
oscillator frequency.

CCAP1H

CCAP1L

8-bit
comparator

CL < CCAP1L

CL >= CCAP1L

CL

Timer/counter

– ECOM1 CAPP1 CAPN1 MAT1 TOG1 PWM1 ECCF1

0

1

CEX1(P1.4)

Figure 4.18 Use of the PCA to produce a PWM output from port 1, pin 4

Pulse width modulation (PWM) 89

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 90 – [66–112/47]
27.11.2003 12:34PM

Solution

Ratio 6:4=6+4 periods=10 periods
8 bits=0 to 255=256 increments
Therefore one period=256/10=25.6 increments per period
Mark (logic 1)=6 periods
Hence Mark=6 �25.6=154 increments (nearest whole number)
CCAP1L (and CCAP1H)=256 ---154=102=decimal=66 hex

Since the PCA timer clock frequency¼ (micro oscillator frequency)/6, the
CMOD SFR can assume its default value of 00H. The CR bit in the CCON
SFR will have to be set to 1 to turn the PCA time base on.

PCA timer clock frequency ¼ 11:0592MHz=6 ¼ 1:8432MHz

PCA timer cycle time ¼ 1

1:8432
MHz ¼ 542:54 ns

Logic 0 is held for 102� 542:54 ns ¼ 55:3 ms
Logic 1 is held for 154� 542:54 ns ¼ 83:6 ms

Program

CCAP1H EQU 0FBH ; sfr address
CCAP1L EQU 0EBH ; sfr address
CCAPM1 EQU 0C3H ; sfr address
CCON EQU 0C0H ; sfr address

ORG 0 ; microcontroller reset address
SJMP START ; jump over reserved area
ORG 40H ; program start address

START: ORL CCAPM1,#42H ; set ECOM1 and PWM1
MOV CCAP1L,#102 ; load 6:4 count
MOV CCAP1H,#102 ; 6:4 count reload
ORL CCON,#40H ; set CR to turn PCA timer on

STAY: SJMP STAY ; stay here whilst generating PWM
END ; no more assembly language

CCAP1H

CCAP1L

CL = CCAP1L

Logic 0 Logic 1

0 255CL CL

Figure 4.19 Effect on output logic level as CL increases from 0 to 255. Transition
occurs as CL increases above the value in CCAP1L

90 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 91 – [66–112/47]
27.11.2003 12:34PM

Simulation

The simulation response is shown in Figure 4.20. The program generates the
PWM whilst it remains at the SJMP STAY line, so there is nowhere to
measure time using a breakpoint. The Raisonance software has the Trace
feature where the signals on the port pins can be displayed. Signal times can
be measured from the table above the traces.
From Figure 4.20 the trace cursor is on a leading edge, selected from the

table above by clicking the mouse on the TRUE condition at 199 ms. Scrolling
to the first FALSE after this at 282 ms gives that logic 1 is held for 83 ms, which is
quite accurate. The trace was run under animation; the chosen options were:
continual mode, rolling trace, maximum number of records ¼ 1000.

Exercise 4.7

A P89C664 micrcontroller has an oscillator frequency of 11.0592MHz. Write
a C program that will cause the PCA to generate a PWM signal from pin 4 of
port 1 with a Mark (logic 1) Space (logic 0) ratio of 2 to 8. The PCA timer clock
frequency should be one-sixth of the microcontroller oscillator frequency.

Figure 4.20 Simulation display showing the use of the Trace window

Pulse width modulation (PWM) 91

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 92 – [66–112/47]
27.11.2003 12:34PM

4.8 Watchdog timer

If it is allowed to run unchecked the watchdog timer automatically causes a
main system reset. This is particularly useful if the system is to operate in a
noisy environment where interference may cause the microcontroller-based
system to malfunction.
In the P89C66x microcontroller family the watchdog timer is available by

using module 4 of the PCA. Figure 4.21 outlines its configuration. The Watch-
dog is enabled with WDTE ¼ 1 in the CMOD register. Once turned on the
PCA Timer/Counter increments up from zero. If the 16-bit CH, CL register
ever matches the 16-bit CCAP4H CCAP4L register setting then a main system
reset occurs and the operating program runs from the beginning.

To prevent the match CCAP4H, CCAP4L are periodically changed prevent-
ing CH, CL from reaching a matching value. This is done by periodically
changing the value of the high byte CCAP4H to the current value of the
PCA timer (CH)þ (FFH).

Example 4.10
Write a simple assembly language program that toggles pin 7 of port 1 and also
incorporates the use of the watchdog timer.

Solution
CCAPM4 EQU 0C6H ; sfr address
CCAP4L EQU 0EEH ; sfr address
CCAP4H EQU 0FEH ; sfr address
CCON EQU 0C0H ; sfr address
CMOD EQU 0C1H ; sfr address
CL EQU 0E9H ; sfr address
CH EQU 0F9H ; sfr address

CIDL WDTE – – – CPS1 CPS0 ECF CMOD

CCAP4H CCAP4L

16-bit comparator

CH CL

PCA Timer/counter

 – ECOM4 CAPP4 CAPN4 MAT4 TOG4 PWM4 ECCF4 CCAPM4

Write to
CCAP4H

Write to
CCAP4L Module 4

Match
Reset

Figure 4.21 Use of module 4 of the PCA to facilitate the watchdog timer

92 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 93 – [66–112/47]
27.11.2003 12:34PM

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 40H ; program start address

START:
ORL CCON,#40H ; turn PCA timer on
ORL CMOD,#40H ; enable watchdog WDTE ¼ 1
MOV CCAPM4,#48H ; CCAPM4 to watchdog
MOV CCAP4L,#0FFH ; maximum initially into
MOV CCAP4H,#0FFH ; compare

STAY:
CPL P1.7 ; complement port 1 pin 7
MOV R0,#99H ; register decrement

LOOP: DJNZ R0,LOOP ; delay
ACALL WATCHDOG ; call watchdog refresh
SJMP STAY ; repeat complement

WATCHDOG:
MOV CCAP4L,#0 ; make CCAP4L zero
MOV A,CH ; get current CH value
ADD A,#0FFH ; add FF to CH value and
MOV CCAP4H,A ; put answer in CCAP4H
RET ; return from refresh
END ; no more assembly language

Simulation

Figure 4.22 shows the simulation response. Single stepping down to the line
after MOV CCAPM4,#48H which selects the watchdog timer gives the
response shown in the compare capture register window. Moving the mouse
cursor over the line 4 0000H watchdog timer and clicking the left mouse button
will cause all the module bits to change to mode 4.

Figure 4.22 Simulation display showing details of the compare capture register

Watchdog timer 93

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 94 – [66–112/47]
27.11.2003 12:34PM

Single stepping further will cause the program to become stuck in the delay
loop. Going to the Command window at the bottom left of the PC screen and,
at the chevron (>), typing R0 ¼ 1 and then pressing the enter key, would allow
a check on the register window.
If single stepping is continued the watchdog subroutine can be gone through

and the contents of the CH/CL and CCAP4 windows checked. Clicking the left
mouse button on simulation run should cause pin 7 in the port 1 window to
flicker on and off.
Coming out of the simulation and commenting out the line that calls up

the watchdog routine (by putting a semicolon at the beginning of it) produces
the result as shown in Figure 4.23. Recompiling the program and running the
simulation should cause the Command window to report that the system is
being continually reset. See Figure 4.24.

Exercise 4.8

Write a simple C program that toggles pin 7 of port 1 and also incorporates the
use of the watchdog timer.

4.9 Universal asynchronous receive transmit (UART)

UARTs are used for serial communication between systems; they can be either
half duplex (send or receive) or full duplex (send and receive at the same time).
Also known as an RS232 connection the microcontroller UART can provide
the connection with a PC or another microcontroller-based system. Figure 4.25
illustrates possible connection arrangements. In a minimum connection there
could be only two transmission lines, transmit (Tx) and receive (Rx) as shown
in Figure 4.26. The data is conveyed as a bit stream, either transmit or receive,
and the speed is defined by the baud rate i.e. the bits per second.
The UART has four modes of operation, 0 to 3. Modes 0 and 2 have fixed

baud rates, mode 0 is one-sixth of the oscillator frequency, and mode 2 is 1/16

Figure 4.23 Use of a semicolon to ‘comment out’ a program line

Figure 4.24 Command window indication that the system is being continually reset

94 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 95 – [66–112/47]
27.11.2003 12:34PM

or 1/32 of the oscillator frequency. For modes 1 and 3 the baud rate can be
selected, a typical range is:

75; 150; 300; 600; 1200; 2400; 4800; 9600; 19200; 38400

Modes 0 and 1 are used for connection between two devices. Modes 2 and 3 are
used for master slave multiprocessor systems, in principle there could be one
master microcontroller and up to 255 slave microcontrollers.
In mode 1 ten bits are used to specify an RS232 frame consisting of 1 start bit

(logic 0), 8 data bits and 1 stop bit (logic 1). For example the ASCII bit pattern
0100 0001 (hex 41) represents the character A and is transmitted as shown in
Figure 4.27; least significant bit (LSB) first.
The baud rate is defined by using one of the onboard timers usually timer 1 in

mode 2 and for the P89C66x microcontroller, timer 2.

PC

COMM1

Microcontroller

UART

Microcontroller

UART

Microcontroller

UARTRS 232

Cable

RS 232

Cable

Figure 4.25 Use of RS232 interface between PC and microcontroller or between
two microcontrollers

Tx 2

Rx 3
4

5
6

7GND

2 Tx
3 Rx
4 RTS
5 CTS
6 DSR
7 GND

20 DTR20

Microcontroller PC

Figure 4.26 RS 232 transmit (Tx) and receive (Rx) connections between a PC and
microcontroller

Universal asynchronous receive transmit (UART) 95

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 96 – [66–112/47]
27.11.2003 12:34PM

BAUD RATE USING TIMER 1

In timer mode 2, timer high byte (TH1) is used as the automatic reload register.
The equation is:

TH1 ¼ 256� 2
SMOD �Oscillator frequency

192� Baud rate

SMOD ¼ 0 for UART modes 0, 1, 3
SMOD ¼ 0 for UART mode 2 bit speed (oscillator frequency)/32
SMOD ¼ 1 for UART mode 2 bit speed (oscillator frequency)/16

As an indication of possible values to be loaded into TH1, using the above
equation, and assuming an oscillator frequency of 11.0592MHz and UART
mode 1, the TH1 values for baud rates of 38400, 19200, 9600, 300, 150 would be:

38400 TH1 ¼ 254:5
19200 TH1 ¼ 253 FDH

9600 TH1 ¼ 250 FAH

300 TH1 ¼ 64 40H

150 TH1 ¼ �128

The content of TH1 should be a positive, whole number. The baud rate of
38 400 gave 254.5 and the baud rate of 150 gave �128, so there are limits
using timer 1. Of course one solution would be to change the oscillator
frequency, another solution is to use timer 2. If you are using timer 2 for
something else and insist on very low baud rates it is possible to use timer 1
in mode 1 (16 bit) with the interrupt enabled and the interrupt routine
doing a software reload.

SERIAL PORT CONTROL (SCON) REGISTER

SCON

SM0 SM1 SM2 REN TB8 RB8 TI RI

START 1 0 0 0 0 0 1 0

STOP

Figure 4.27 ASCII bit pattern 01000001 (41H) for character ‘A’

96 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 97 – [66–112/47]
27.11.2003 12:34PM

SM0 SM1

0 0 mode 0

0 1 mode 1

1 0 mode 2

1 1 mode 3

SM2 when £¼ 1, enables multiprocessor operation in modes 2 and 3
REN when £¼ 1, enables serial reception
TB8 Used in multiprocessor operation in modes 2 and 3
RB8 Used in multiprocessor operation in modes 2 and 3
TI Transmit interrupt flag, set when byte transmission is completed.

Must be cleared by software

RI Receive interrupt flag, set when a byte in the serial buffer (SBUF) is
ready for retrieval. Must be cleared by software

Practical tip. Although not apparent in the device data sheet and not required
in the simulation, transmission start-up problems may occur in the hardware if
TI is not initially set to 1 by the software.

Example 4.11
A P89C664 microcontroller has an oscillator frequency of 11.0592MHz. Using
timer 1 and configuring the UART in mode 1 write an assembly language
program that transmits the ASCII character A at a baud rate of 9600.

Solution

Program

S0CON EQU 98H ; SCON sfr address
S0BUF EQU 99H ; SBUF sfr address

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 40H ; program start address

START: MOV S0CON,#42H ; serial mode 1, TI set
MOV TMOD,#20H ; timer 1 mode 2
MOV TH1,#0FAH ; baudrate 9600
MOV TL1,#0FAH ; TL1 also initially set
SETB TR1 ; turn timer 1 on

AGAIN: MOV S0BUF,#‘A’ ; ASCII of A into S0BUF
HERE: JNB TI,HERE ; stay here till TI set

CLR TI ; clear TI
SJMP AGAIN ; repeat
END ; end of assembly language

Simulation

The simulation response is shown in Figure 4.28. If a breakpoint is inserted at
CLR TI and the program kept running to this point, a string of the character A

Universal asynchronous receive transmit (UART) 97

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 98 – [66–112/47]
27.11.2003 12:34PM

will be generated in the serial window. Serial Window # 1 is obtained from
View on the top menu bar. Text is cleared from this window by moving the
cursor over the text and then right clicking the mouse.

Exercise 4.9

A P89C664 microcontroller has an oscillator frequency of 11.0592MHz. Using
timer 1 and configuring the UART in mode 1 write a C program that transmits
the ASCII character A at a baud rate of 9600.

BAUD RATE USING TIMER 2

The equation is:

RCAP2 ¼ 65536�Oscillator frequency
16� Baud rate

Example 4.12

Assuming an oscillator frequency of 11.0592MHz and UART mode 1 deter-
mine the timer 2. Capture values for baud rates of 38400, 19200, 9600, 300, 150.

Solution

38400 RCAP2 ¼ 65518 ¼ FFEEH RCAP2H ¼ 0FFH RCAP2L ¼ 0EEH
19200 RCAP2 ¼ 65500 ¼ FFDEH RCAP2H ¼ 0FFH RCAP2L ¼ 0DEH
9600 RCAP2 ¼ 65464 ¼ FFB8H RCAP2H ¼ 0FFH RCAP2L ¼ 0B8H
300 RCAP2 ¼ 63232 ¼ F700H RCAP2H ¼ 0F7H RCAP2L ¼ 00H
150 RCAP2 ¼ 60928 ¼ EE00H RCAP2H ¼ 0EEH RCAP2L ¼ 00H

Figure 4.28 Simulation display showing a string of character ‘A’ in the serial
window, using timer 1

98 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 99 – [66–112/47]
27.11.2003 12:34PM

Example 4.13

A P89C664 microcontroller has an oscillator frequency of 11.0592MHz.
Using timer 2 and configuring the UART in mode 1 write an assembly
language program that transmits the ASCII character A at a baud rate of 9600.

Solution
S0CON EQU 98H ; SCON sfr address
S0BUF EQU 99H ; SBUF sfr address
RCAP2L EQU 0CAH ; sfr address
RCAP2H EQU 0CBH ; sfr address
T2CON EQU 0C8H ; Timer 2 control sfr address

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 40H ; program start address

START: MOV S0CON,#42H ; serial mode 1, TI set
MOV RCAP2H,#0FFH ; baudrate 9600
MOV RCAP2L,#0B8H ;
ORL T2CON,#34H ; turn Timer 2 on

AGAIN: MOV S0BUF,#‘A’ ; ASCII of A into S0BUF
HERE: JNB TI,HERE ; stay here till TI set

CLR TI ; clear TI
SJMP AGAIN ; repeat
END ; end of assembly language

Simulation

The simulation response is shown in Figure 4.29. Again the simulation is run to
a breakpoint at the instruction CLR TI.

Figure 4.29 Simulation display showing a string of character ‘A’ in the serial
window, using timer 2

Universal asynchronous receive transmit (UART) 99

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 100 – [66–112/47]
27.11.2003 12:34PM

Exercise 4.10

A P89C664 microcontroller has an oscillator frequency of 11.0592MHz. Using
timer 2 and configuring the UART in mode 1 write a C program that transmits
the ASCII character A at a baud rate of 9600.

SENDING A LINE OF TEXT

Example 4.14

Write an assembly language program that repeatedly sends the line of text
‘Roses are red’.

Solution

S0BUF EQU 99H ; SBUF sfr address
S0CON EQU 98H ; SCON sfr address

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 40H ; program start address

START: MOV S0CON,#42H ; serial mode 1, TI set
MOV TMOD,#20H ; timer 1 mode 2
MOV TH1,#0FAH ; baudrate 9600
MOV TL1,#0FAH ; TL1 also initially set
SETB TR1 ; turn timer 1 on

TEXT: MOV DPTR,#MSG1 ; Data Pointer to message address
NEXTCH: MOV A,#0 ; zero the previous character

MOVC A,@A þ DPTR ; character into A
CJNE A,#7EH,TRXCH ; checking end of message, �¼ 7EH
MOV A,#0DH ; carriage return ¼ 0DH
ACALL SEND ; call up send routine
MOV A,#0AH ; line feed ¼ 0AH
ACALL SEND ; call up send routine
SJMP TEXT ; repeat line of text

TRXCH: ACALL SEND ; send text character
INC DPTR ; increment data pointer
SJMP NEXTCH ; prepare to send next character

SEND: JNB TI,SEND ; check SBUF clear to send
CLR TI ; clear TI
MOV S0BUF,A ; send contents of A
RET ; return from subroutine

MSG1: DB ‘Roses are red �’ ; text message
END ; no more assembly language

Simulation

With a breakpoint at SJMP TEXT, the simulation response is as shown in
Figure 4.30.

Exercise 4.11

Write a C program that repeatedly sends the line of text ‘Ashes to ashes, dust to
dust’.

100 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 101 – [66–112/47]
27.11.2003 12:34PM

RECEIVING A CHARACTER

Example 4.15

Write an assembly language program that receives a character into the serial
buffer (S0BUF) of the UART and writes the hex value of the character onto
port 1. The character capture process is to start as the result of the UART being
interrupted. The UART should be configured as mode 1.

Solution

The TI bit in the serial control (S0CON) can be left at its default value of zero
but the receive bit (REN) must be set.

S0CON

SM0 SM1 SM2 REN TB8 RB8 TI RI

0 1 0 1 0 0 0 0

Thus S0CON ¼ 50H. When the character byte is received RI will set but this
must be cleared by the program to enable other receive interrupts to occur. In
the simulation we should expect RB8 to set when the character byte has been
received. TB8 and RB8 are mainly used in modes 2 and 3 but in mode 1 RB8 is
set by the stop bit, which is the last bit of the 10-bit mode 1 data frame.
The interrupt enable (IEN0) register bits must be set.

IEN0

EA EC ES1 ES0 ET1 EX1 ET0 EX0

1 0 0 1 0 0 0 0

Thus IEN0 ¼ 90H. The UART interrupt vector address is at 0023H.

Program

S0BUF EQU 99H ; SBUF sfr address
S0CON EQU 98H ; SCON sfr address
IEN0 EQU 0A8H ; interrupt sfr address

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 23H ; UART interrupt address

Figure 4.30 Simulation display showing a text message displayed in the serial
window

Universal asynchronous receive transmit (UART) 101

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 102 – [66–112/47]
27.11.2003 12:34PM

SJMP RXBUF ; jump to interrupt routine
ORG 40H ; program start address

START: MOV S0CON,#50H ; mode 1, REN enabled
MOV TH1,#0FAH ; 9600 baud
MOV TMOD,#20H ; timer 1 mode 2
MOV IEN0,#90H ; UART interrupt enabled
SETB TR1 ; turn timer 1 on

STAY: SJMP STAY ; stay here, wait for interrupt

RXBUF: JNB RI,RXBUF ; check for received byte
CLR RI ; clear RI
MOV A,S0BUF ; move character from buffer to A
MOV P1,A ; hex value onto port 1
RETI ; return from interrupt
END ; no more assembly language

Simulation

The simulation response is shown in Figure 4.31. Running the simulation
would cause little activity until the character byte is entered. The character
can be entered at the command prompt at the bottom of the screen.

> sin ¼ ‘A’, see Figure 4.32.

Figure 4.31 Simulation display for a program to write a hex character on to port 1
as a result of the UART being interrupted

102 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 103 – [66–112/47]
27.11.2003 12:34PM

Exercise 4.12

Write a C program that receives a character into the serial buffer (S0BUF) of
the UART and writes the hex value of the character onto port 1. The character
capture process is to start as the result of the UART being interrupted. The
UART should be configured as mode 1.

4.10 Inter integrated circuit (IIC or I2C)

Commonly referred to as I squared C, the I2C bus or IIC bus was originally
developed as a control bus for linking microcontroller and peripheral ICs for
Philips consumer products on a PCB. The simplicity of a 2-wire bus that
combined both address and data bus functions was quickly adopted in such
diverse applications as:

. telecommunications

. automotive dashboards

. energy management systems

. test and measurement products

. medical equipment

. point of sales terminals

. security systems.

This patented Philips method of serial data transmission uses two lines, one for
a serial clock (SCL) and the other for serial data (SDA). The SDA line is
bi-directional, i.e. data can go up it or down it. There are various microcontrollers
in the Philips Semiconductors family having I2C capability; the programs in
this text are based on the P80C554. The P89C66x pin 7 on port 1 is the SDA
line and that pin 6 is the SCL line. When used for I2C these two pins configure
as open drain and it is necessary to have a pull-up resistor from each pin to 5V,
the P89C664 board used 3.3 k resistors.
There are other microcontrollers belonging to the 80C51 family that have

I2C SFRs, for example the P87LPC764. The P87LPC764 microcontroller is
designed to send and receive I2C data as bits and requires extra programming
to group them into bytes. The class of microcontrollers to which the P89C664
belongs sends and receives the data as bytes.
All I2C slave ICs have the ability to return Acknowledge (A) signals (active

low) back to the Master IC sending to them.

Figure 4.32 Entering the character byte in the Command window

Inter integrated circuit (IIC or I2C) 103

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 104 – [66–112/47]
27.11.2003 12:34PM

I2C has three modes; all 8-bit bidirectional, dependent on devices and clock
speeds:

. standard mode (up to 100 kbps (k bits per second))

. fast mode (up to 400 kbps)

. high-speed mode (up to 3.4Mbps).

There are four modes of operation:

1. master transmitter
2. master receiver
3. slave receiver
4. slave transmitter.

The master is the microcontroller while the slave is the device addressed by
the microcontroller. In a system having two microcontrollers the master at a
particular time is the one issuing the commands.
Philips manufacture a whole range of I2C slave devices, a small range is:

. memories, EEPROM and static RAM

. data converters

. LCD drivers

. I/O ports

. clock/calendars

. DTMF/tone generators

. TV decoders

. teletext decoders

. video processors

. audio processors.

The arrangement for connecting a microcontroller to I2C devices is shown in
Figure 4.33. For the purposes of explaining the I2C bus the devices shown in
Figure 4.33 will be used, i.e. the P89C664 microcontroller and the slave devices,
PCF 8582, a 256-byte CMOS EEPROM and PCF 8591, an 8-bit A/D and D/A
converter, which has 4 ADC channels.
The P89C664 has four I2C SFRs; they are:

S1CON Serial 1 Control
S1STA Serial 1 Status
S1DAT Serial 1 Data
S1ADR Serial 1 Address

The S1ADR is used only in the slave transmitter mode, which will not be
covered in this chapter. The S1DAT register is used to transmit data in
much the same way as the SBUF register was used for the RS232 UART
operation. You may recall that when data was transmitted in the UART
SBUF the program waited, via a continuous loop, until the transmit inter-
rupt (TI) bit was set. A similar method is used for the I2C bus, i.e. data is

104 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 105 – [66–112/47]
27.11.2003 12:34PM

put into S1DAT and then the program continually loops until the serial
interrupt (SI) bit is set.
Only the five most significant bits of the S1STA register are used, and these

are used to give information on the success or failure of each part of the I2C
serial transmission. Data transfer on the I2C bus takes the form as shown in
Figure 4.34.

The S1CON register is very important; it controls each part of the serial
transmission and it is worth looking at this register in some detail.

S1CON

CR2 ENS1 STA STO SI AA CR1 CR0

CR2, 1, 0 are used to define the serial clock speed as shown in Table 4.4.

SDC SCL

PCF 8582
EEPROM

A6 A5 A4 A3 A2 A1 A0 A6 A5 A4 A3 A2 A1 A0
1 0 1 0

SDA SCL
PCF8591

4 channel Mux ADC
and one DAC

1 0 0 1

Set by connecting
to 5 V or ground

Set by connecting
to 5 V or ground

NOTE: P1.7 and P1.6 on the
microcontroller are each connected
to 5 V through a resistor,
typically 3k3

P89C664

SDC
P1.7

SCL
P1.6

VCC

Pull-up
resistors

SDA
SCL

Figure 4.33 P89C664 microcontroller connected to slave devices via the I2C bus

SCL low SDA true 0 or 1

SDA

SCL

SDA

SCL

S

START condition
SCL high SDA goes low

STOP condition
SCL high SDA goes high

P

Figure 4.34 Data transfer on the I2C bus

Inter integrated circuit (IIC or I2C) 105

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 106 – [66–112/47]
27.11.2003 12:34PM

The P89C664 experiment board had a value of fOSC ¼ 11:0592MHz.

ENS1 enable serial 1
when ¼ 1 enables the I2C

STA start, used to generate starts, refer to I2C protocol later
STO stop, used to generate stops, refer to I2C protocol later
SI serial interrupt
AA assert acknowledge

These last four control bits are very important in the use of the I2C bus.

USE OF THE SI BIT

SI is usually cleared by software; SI is set when a function completes.

Example 4.16

To illustrate the effect of the SI bit consider the following assembly language
programs:

; program to send a Start (STA ¼ 1)
SETB STA ; set STA ¼ 1
CLR SI ; clear SI

LOOP: JNB SI,LOOP ; continually loop until SI ¼ 1, then
; STA will ¼ 1

; program to send a Stop (STO ¼ 1)
SETB STO ; set STO ¼ 1
CLR SI ; clear SI

LOOP: JNB SI,LOOP ; continually loop until SI ¼ 1, then
; STO will ¼ 1

; program to send data e.g.#04h
CLR STA ; clear start (STA ¼ 0)
MOV S1DAT,#04H ; put hex 4 into s1dat
CLR SI ; clear SI

LOOP: JNB SI,LOOP ; continually loop until SI ¼ 1, then
; s1dat will contain #04H

; program to set up transmission speed, send a stop, send a start,
; clear SI

Table 4.4 Serial clock rates

CR2 CR1 CR0 fosc divided by

0 0 0 128

0 0 1 112

0 1 0 96

0 1 1 80

1 0 0 480

1 0 1 60

1 1 0 30

1 1 1 48� (256� reload value Timer 1)

106 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 107 – [66–112/47]
27.11.2003 12:34PM

; this is an example of the start of a typical IIC program
; the 89C664 fOSC is 11.0592MHz, divide by 112 for clock cycle time

MOV S1CON,#45H ; set ENS1, set AA, clear SI
SETB STA ; set STArt
CLR SI ; clear SI

LOOP: JNB SI,LOOP ; continually loop till SI is set
; program to send Assert Acknowledge (AA)
; Note that AA is active low; a clear AA is sent to assert the
; acknowledge

CLR AA ; clear AA to assert acknowledge
CLR SI ; clear SI

LOOP: JNB SI,LOOP ; continually loop till SI is set

USING THE PCF8582 EEPROM

This 256-byte memory device can be written to by the microcontroller and
retain the information even though the power is turned off. It is specified to
have data retention for at least 10 years and would be very useful for battery-
powered remote sensing devices and many more applications. It is in an 8-pin
package as shown by Figure 4.35.

Pins 1, 2 and 3 are hardwired by the engineer to define the slave address of
the device. With three definable address pins it means that up to 23 or eight
8582 EEPROMs can be addressed on the I2C bus. The first four address bits are
internally configured, for the PCF8582 the address table is:

1 0 1 0 A2 A1 A0

A0

A1

A2

1

2

3

4

8

7

6

5

VDD

Vss

PTC

SCL

SDA

PCF8582

Figure 4.35 Pin-out details of the PCF 8582 EEPROM

Inter integrated circuit (IIC or I2C) 107

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 108 – [66–112/47]
27.11.2003 12:34PM

In the following examples A2, A1 and A0 are all connected to ground or 0V.
The full slave address is:

1010000X

where the least significant bit X is 0 for write data and 1 for read data. The hex
address for writing a byte is A0 and for reading a byte the address is A1.

pin 4 is ground (0V)
pin 5 is serial data SDA
pin 6 is serial clock SCL
pin 7 is programming timing control (an output and may be left uncon-
nected)
pin 8 is the 5V DC power supply

The I2C bus has only two lines and therefore there is a certain protocol
to go through in order to store or retrieve data. Each device data sheet
has a block diagram to explain the necessary protocol and for the
PCF8582 this is shown by:

S SLAVE ADDRESS 0 A WORD ADDRESS A DATA BYTE A P

Send a start
Send the slave address þ 0 for write
Send word address
Send data byte
Send a stop

Example 4.17

Write an assembly language program to write a byte to the PCF8582 EEPROM
chip.

Solution

S1CON EQU 0D8H ; sfr address
S1DAT EQU 0DAH ; sfr address

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 40H ; program start address

START: MOV S1CON,#45H ; set clock speed, set ENS1,set AA,
; clear SI

SETB S1CON.5 ; set STA
LOOP1: JNB S1CON.3,LOOP1 ; continually loop till SI ¼ 1

CLR S1CON.5 ; clear start, donot want repeated
; start

MOV S1DAT,#0A0H ; send eeprom address þ write to
S1DAT ;

CLR S1CON.3 ; clear SI

108 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 109 – [66–112/47]
27.11.2003 12:34PM

LOOP2: JNB S1CON.3,LOOP2 ; continually loop till SI ¼ 1
MOV S1DAT,#04H ; send eeprom internal address to

S1DAT ;
CLR S1CON.3 ; clear SI

LOOP3: JNB S1CON.3,LOOP3 ; continually loop till SI ¼ 1
MOV S1DAT,#66H ; send data byte to s1dat
CLR S1CON.3 ; clear SI

LOOP4: JNB S1CON.3,LOOP4 ; continually loop till SI ¼ 1
SETB S1CON.4 ; set STO ¼ 1
CLR S1CON.3 ; clear SI

LOOP5: JNB S1CON.3,LOOP5 ; loop till SI ¼ 1 and stop is set
AGAIN: SJMP AGAIN ; forever loop, a way of stopping

END ; end of assembly language

Simulation

The simulation response is shown in Figure 4.36. If the breakpoints are set
as shown and the program run to each one, the response may be checked on
the I2C Interface window. Figure 4.36 shows that the Master has just
transmitted the slave address þ Write information. The Status shows 0x20
which agrees with the data sheet information. The communication informa-
tion is available by clicking the left mouse button on the I2C Communication
button.

The result is shown in Figure 4.37. Figure 4.37 shows that the microcontrol-
ler is in Master Transmitter mode. It shows the slave address as 50! (means
50 hex). This is A0 with the least significant bit removed and the remaining bits

Figure 4.36 Simulation display showing the I2C interface hardware window

Inter integrated circuit (IIC or I2C) 109

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 110 – [66–112/47]
27.11.2003 12:34PM

A6, A5, A4, A3, A2, A1, A0 ¼ 101 0000 ¼ 50 hex. The address within the
EEPROM is 04hex and 66hex is the byte written into this address.

Exercise 4.13

Write a C program to write a byte to a PCF8582 EEPROM chip.

TO READ A BYTE OF DATA

The protocol block diagram is given below.
The last acknowledge after Data Byte and before P is sent by the microcon-
troller master.

S SLAVE
ADDRESS

0 A WORD
ADDRESS

A S SLAVE
ADDRESS

1 A DATA
BYTE

A P

The first slave address has 0 at the end for Write Word Address. The second
slave address has 1 at the end for Read Data Byte.

Send a start
Send the slave address +0 for Write
Send word address
Send a repeated start
Send the slave address +1 for Read
byte transfers to S1DAT
Master generates acknowledge
Send a Stop

Figure 4.37 Simulation display showing I2C interface communications window

110 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 111 – [66–112/47]
27.11.2003 12:34PM

Example 4.18

Write an assembly language program to read a byte from PCF8582 EEPROM
chip.

Solution

; program to read a byte
S1CON EQU 0D8H
S1DAT EQU 0DAH

ORG 0 ; reset start address
SJMP START ; jump over reserved address space
ORG 40H ; program start address

START: MOV S1CON,#45H ; set speed, ENS1, set AA, clr SI
SETB S1CON.5 ; set STArt

LOOP1: JNB S1CON.3,LOOP1 ; wait till complete
CLR S1CON.5 ; ensure no repeated start
MOV S1DAT,#0A0H ; write to slave address
CLR S1CON.3 ; clear SI

LOOP2: JNB S1CON.3,LOOP2 ; wait till complete
MOV S1DAT,#04H ; data byte stored at address 04h
CLR S1CON.3

LOOP3: JNB S1CON.3,LOOP3 ; wait till complete
SETB S1CON.5 ; generate a STArt
CLR S1CON.3

LOOP4: JNB S1CON,LOOP4 ; wait till start is complete
CLR S1CON.5 ; ensure no repeated start
MOV S1DAT,#0A1H ; send slave address to bus þ Read
CLR S1CON.3

LOOP5: JNB S1CON.3,LOOP5 ; wait till complete
CLR S1CON.2 ; master sends acknowledge, recall

; acknowledge
CLR S1CON.3 ; is active low, clr sends

; acknowledge
LOOP6: JNB S1CON.3,LOOP6 ; wait till sent

SETB S1CON.4 ; microcontroller master generates
; a stop

CLR S1CON.3
LOOP7: JNB S1CON.3,LOOP7 ; wait till stop is sent
AGAIN: SJMP AGAIN ; forever loop, a way of stopping

END ; end of assembly language

Exercise 4.14

Write a C program to read a byte from a PCF8582 EEPROM chip.

Summary

The P89C66x microcontroller:

. is a member of the 80C51 family with enhanced speed compared to the
conventional 80C51 device;

. usesFlashCodememorywith four 8-bit ports and anonboard clock oscillator;

Summary 111

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH004.3D – 112 – [66–112/47]
27.11.2003 12:34PM

. has three 16-bit timers, timer 0, 1 and 2. Timers 0 and 1 are virtually the
same and can be configured into one of four possible modes, mode 0, 1, 2
and 3. Timer 2 has three operating modes i.e. Capture, 16-bit auto-reload
and baud rate generator mode;

. has nine interrupts;

. allows negative-edge transitions or levels to generate external interrupts
with specific interrupt vector address locations;

. can operate with specified interrupt priority levels;

. has a PCA consisting of a 16-bit timer and five 16-bit Capture/Compare
modules. Each of the latter can be utilised in one of seven different config-
urations. The PCA can be used to provide a PWM signal;

. has a watchdog timer, which is available using module 4 of the PCA. The
watchdog timer if allowed to run unchecked will cause a system reset;

. has a UART facility used for serial communication. The UART has four
modes of operation, modes 0,1, 2 and 3;

. has an I2C interface for linking the device with I2C compatible peripherals
using a 2-wire bus for address and data communication.

112 P89C66x microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 113 – [113–141/29]
28.11.2003 4:53PM

5
Low Pin Count (LPC) Devices

5.1 Introduction

The P8xLPCxxx family of microcontrollers are designed for low pin count
applications with high functionality and a wide range of performance. There
are two types of LPC devices, namely P87LPC76x with EPROM/OTP code
memory ranging from 1KB to 4KB and P89LPC9xx with 4KB to 8KB of flash
memory. At the moment there are several different LPCmicrocontrollers, namely
P87LPC760, P87LPC761, P87LPC762, P87LPC764, P87LPC767, P87LPC768
and P87LPC769, all with EPROM/OTP code memory and P89LPC921,
P89LPC922, P89LPC930, P89LPC931 and P89LPC932 with flash code memory.
Table 5.1 shows some of the characteristics of eight of these devices.
Table 5.1 shows that the code memory for the P87LPC76x devices ranges

from 1KB to 4KB, while the RAM memory is 128 bytes for all devices in the
range. The I/O pin count for this group varies from 12 pins for the P87LPC760
device, 14 pins for the P87LPC761 and 18 pins for the rest of P87LPC76x series.
All the LPC range incorporates I2C and UART serial interfaces and a

Watchdog (Wd) timer. The P87LPC767, P87LPC768 and P87LPC769 devices
all contain analog to digital converter (ADC) circuitry onboard. The
P87LPC768 has pulse width modulation (PWM) while the P87LPC769 has
digital to analog converter (DAC) circuitry onboard.
The P89LPC932 has 8KB of Flash code memory, 128 bytes of RAM data

memory and special features such as the capture/compare unit (CCU) and
serial peripheral interface (SPI).
Information on details such as PWM, CCU and SPI can be found in

Appendix F, which is for the 89LPC932 device but contains data relevant to
the features of the other devices mentioned above.
In this chapter we shall concentrate on two of the above devices, namely

P87LPC769 and P89LPC932, and use some application examples to show the
working of some of the features in each device. The examples and exercises use
C language programming. It is left as an exercise for the reader if assembly

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 114 – [113–141/29]
28.11.2003 4:53PM

language programming is required. Simulation has been used for the first
example in this chapter only. Details of the simulation software, suitable for
the LPC devices and available for downloading to the user’s PC, can be found
in Chapter 3. Again, it is left as an exercise for the reader if simulation is
required in order to follow the remaining examples and exercises in this chapter.

5.2 P87LPC769

The 87LPC769 is a 20-pin single-chip microcontroller designed for LPC
applications. A member of the Philips LPC family, the 87LPC769 offers
programmable oscillator configurations for high and low speed crystals or
RC operation, wide operating voltage range, programmable port output
configurations, selectable Schmitt trigger inputs, LED drive outputs and a
built-in watchdog timer. The 87LPC769 is based on an accelerated 80C51
processor architecture that executes instructions at twice the rate of standard
80C51 devices.
Features of the LPC769 include:

. four-channel multiplexed 8-bit ADC;

. two DAC outputs;

. 4KB EPROM code memory;

. 128 byte RAM data memory;

. 32-byte customer code EPROM;

. two 16-bit counter/timers;

. two analog comparators;

. full duplex UART;

. I2C communication port;

. eight keypad interrupt inputs, plus two additional external interrupt inputs;

. four interrupt priority levels;

Table 5.1 Characteristics of 87LPC76x and 89LPC9xx devices

Part
Memory Timer/counters

I/O Serial Special A/D

number Flash EPROM RAM PWM CCU Wd pins interfaces features bits/ch

87LPC760 1 k 128 N N Y 12 I2C, UART

87LPC761 2 k 128 N N Y 14 I2C, UART

87LPC762 2 k 128 N N Y 18 I2C, UART

87LPC764 4 k 128 N N Y 18 I2C, UART

87LPC767 4 k 128 N N Y 18 I2C, UART ADC 8/4

87LPC768 4 k 128 Y N Y 18 I2C, UART ADC

PWM

8/4

87LPC769 4 k 128 N N Y 18 I2C, UART ADC

DAC

8/4

89LPC932 8 k 512

(EEPROM)

128 Y Y Y 26 I2C, UART

SPI

Analog

Com.

114 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 115 – [113–141/29]
28.11.2003 4:53PM

. watchdog timer with separate on-chip oscillator, requiring no external
components. The watchdog timeout time is selectable from 8 values;

. oscillator fail detect. The watchdog timer has a separate fully on-chip
oscillator, allowing it to perform an oscillator fail detect function;

. configurable on-chip oscillator with frequency range and RC oscillator
options (selected by user programmed EPROM bits). The RC oscillator
option allows operation with no external oscillator components;

. programmable port output configuration options: quasi-bidirectional, open
drain, push-pull, input only;

. selectable schmitt trigger port inputs;

. LED drive capability (20mA) on all port pins;

. 15 I/O pins minimum. Up to 18 I/O pins using on-chip oscillator and reset
options;

. only power and ground connections are required to operate the 87LPC769
when fully on-chip oscillator and reset options are selected.

Figure 5.1 shows the block diagram of the device while Figure 5.2 shows the
pin configuration diagram. In the section that follows we shall concentrate on
analog functions and use ADC, DAC and comparator examples to show some
of the applications of the LPC769 device.

5.3 Analog functions

The pins that are used for analog functions must have their digital outputs
(except for DAC output pins) and their digital inputs disabled. Digital outputs
are disabled by putting the port output into the input only (high impedance)
mode. This is done by configuring the appropriate bits of the port output mode
registers PxM1 and PxM2 as shown in Table 5.2.

Digital inputs of port 0 are disabled through use of port 0 digital input
disable (PT0AD) register, by setting the corresponding bit in the PT0AD.

ANALOG TO DIGITAL CONVERTER

The 87LPC769 incorporates a four channel, 8-bit ADC. The A/D inputs are
alternate functions on four port 0 pins. These are P0.3 as AD0, P0.4 as AD1,

Table 5.2 87LPC769 port output mode configurations

PxM1y PxM2y Port output mode

0 0 Quasi-bidirectional

0 1 Push-pull

1 0 Input only (high impedance)

1 1 Open drain

Analog functions 115

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 116 – [113–141/29]
28.11.2003 4:53PM

P0.5 as AD2 and P0.6 as AD3. The A/D power supply and references are
shared with the processor power pins, VDD and VSS. The ADC circuitry
consists of a 4-input analog multiplexer and an 8-bit successive approximation
ADC.
The SFR ADCON controls the ADC. Details of ADCON are:

7 6 5 4 3 2 1 0

ENADC ENDAC1 ENDAC0 ADCI ADCS RCCLK AADR1 AADR0

where the bit functions are:

ENADC When ENADC ¼ 1, the A/D is enabled and conversions may
take place. Must be set 10 ms before a conversion is started.
ENADC cannot be cleared while ADCS or ADCI is 1.

Crystal or
resonator

Configurable
oscillator

On-chip
R/C

oscillator

Power monitor
(power-on reset,
brownout reset)

DAC
output

A/D
converter

or DAC output

Analog
comparators

Watchdog timer
and oscillator

Timer 0,1

I2C

UART
Internal bus

Accelerated
80C51 CPU

4 kB
code EPROM

12 B
Data RAM

Port 2
Configurable I/Os

Port 1
Configurable I/Os

Port 0
Configurable I/Os

Key pad
interrupt

Figure 5.1 Block diagram of the 87LPC769 microcontroller

116 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 117 – [113–141/29]
28.11.2003 4:53PM

ENDAC1 When ENDAC1 ¼ 1, DAC1 is enabled to provide an analog
output voltage.

ENDAC0 When ENDAC0 ¼ 1, DAC0 is enabled to provide an analog
output voltage.

ADCI A/D conversion complete/interrupt flag. This flag is set when an
A/D conversion is completed.

ADCS A/D start. Setting this bit by software starts the conversion of the
selected A/D input. ADCS remains set while the A/D conversion
is in progress and is cleared automatically upon completion.

RCCLK When RCCLK ¼ 0, the CPU clock is used as the A/D clock.
When RCCLK ¼ 1, the internal RC oscillator is used as the
A/D clock.

AADR1, 0 These bits select the A/D channel to be converted:

AADR1 AADR0 A/D input selected

0 0 AD0 (P0.3)

0 1 AD1 (P0.4)

1 0 AD2 (P0.5)

1 1 AD3 (P0.6)

A/D conversion

The A/D must be enabled by setting the ENADC bit at least 10 ms before a
conversion is started to allow time for the A/D to stabilise. Prior to the
beginning of an A/D conversion, one analog input pin must be selected for
conversion via the AADR1 and AADR0 bits. These bits cannot be changed
while the A/D is performing a conversion. Setting the ADCS bit, which
remains set while the conversion is in progress starts an A/D conversion.

CMP2/P0.0

DAC0/P1.7

DAC1/P1.6

VSS

VDDX1/P2.1

X2CLKOUT/P2.0

SCL / TO/P12 10 11

12

13

14

15

16

17

18

19

20

9

8

7

6

5

4

3

2

1 P0.1/CIN2B

P0.2/CIN2A

P0.3/CIN1B/AD0

P0.4/CIN1A /AD1

P0.5/CMPREF/AD2

P0.6/ CMP1/AD3

P0.7/ T1

P1.0/ T×D

P1.1/ R×D

SDA/INTLD/P1.3

INT1/P1.4

RST/P1.5

Figure 5.2 Pin configuration for the 87LPC769 microcontroller

Analog functions 117

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 118 – [113–141/29]
28.11.2003 4:53PM

When the conversion is complete, the ADCS bit is cleared and the ADCI
bit is set. When ADCI is set, it will generate an interrupt if the interrupt
system is enabled; the A/D interrupt is enabled (via the EAD bit in the IE1
register), and the A/D interrupt is the highest priority pending interrupt.
When a conversion is complete, the result is contained in the register DAC0.
This value will not change until another conversion is started. Before another
A/D conversion may be started, the ADCI bit must be cleared by software.
The A/D channel selection may be changed by the same instruction that sets
ADCS to start a new conversion, but not by the same instruction that
clears ADCI.

A/D timing

The A/D may be clocked in one of two ways. The default is to use the CPU
clock as the A/D clock source. When used in this manner the A/D completes a
conversion in 31 machine cycles. The A/D may also be clocked by the on-chip
RC oscillator, even if the RC oscillator is not used as the CPU clock. This is
accomplished by setting the RCCLK bit in ADCON.

Example 5.1

Use of ADC

/**
* Chapter 5 *
* ADC application of 87LPC769 *
* April 2003 *
* *
* This program reads AD0, AD1, AD2 and AD3 one at *
* a time and stores it in the ACC for other uses *
** /
#include <REG769.H>
/**
* START of the PROGRAM *
** /
void main (void) {
unsigned char channel;

/**
* Disable P0, ADC pins digital Outputs and Inputs *
* AD3 ¼ P0:6, AD2 ¼ P0:5, AD1 ¼ P0:4, AD0 ¼ P0:3 *
** /
P0M2& ¼� 0x78; /*Set Pins for Input Only*/
P0M1j ¼ 0x78; /*POM2 ¼ 0& POM1 ¼ 1 */
PT0AD ¼ 0x78; /*Disable Digital Inputs */

/**
* Enable the A/D Converter and use the CPU clock *
* as the A/D clock. *
** /

118 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 119 – [113–141/29]
28.11.2003 4:53PM

ENADC ¼ 1; /*enable ADC, 10ms before conv:*/
RCCLK ¼ 0; /*use CPU clock*/
channel ¼ 0; /*set to the first channel*/

/**
* Perform conversions forever. *
** /
while (1) {

/**
* Update the channel number and store it in ADCON. *
** /

channel ¼ (channelþ 1)%4; /*update channel*/
ADCON& ¼� 0x03; /*clear channel no*/
ADCON j ¼ channel; /*set the channel no*/

/**
* Start a conversion and wait for it to complete. *
** /

ADCI ¼ 0; /*Clear conversion flag*/
ADCS ¼ 1; /*Start conversion */
while (ADCI¼¼0); /* Wait for conversion end */
ACC ¼ DAC0; /* send the results to Acc*/
ADCI ¼ 0; /*Clear conversion flag*/

}
}

Simulation

The Keil simulation package can be used to demonstrate the simulation of the
87LPC769 microcontroller. The Keil m Vision2 package is well suited for the
analogue functions of the LPC since there is a special ADC window available,
which shows all the internal registers related to ADC and DAC conversions
such as ADCON, DAC0 and channel select. The window also shows the bits
related to the ADC/DAC functions such as ADCS and ENDADC. The values
of the channels could also be set using analogue input channels windows. The
ADC window is shown in Figure 5.3.
As described in Chapter 3, the simulation begins by going to Project on the

top menu bar and selecting New Project. For the chip vendor and particular
device, the P87LPC769 should be chosen from the Philips directory. Details are
shown in Figure 5.4.
Figure 5.4 illustrates that information about the device, such as memory

capability (128 bytes of RAM, 4KB of on-chip programmable EPROM), etc. is
available in the window. The C file should now be added to the project and the
simulation started by clicking on the button with the red letter d as shown in
Figure 5.5.
The window for the program should appear as shown in Figure 5.6.
Next Peripherals is chosen from the top menu bar and then A/D Converter

as shown in Figure 5.7.
The ADC window, shown in Figure 5.3, should appear, allowing different

values to be set for each channel prior to simulation. See Figure 5.8.

Analog functions 119

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 120 – [113–141/29]
28.11.2003 4:53PM

Figure 5.3 Keil m Vision2 analog/digital converter window

Figure 5.4 Selection of chip vendor and device type

Figure 5.5 Icon to start/stop debug session

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 121 – [113–141/29]
28.11.2003 4:53PM

Figure 5.6 Simulation window for analog/digital converter program

Figure 5.7 Selection of analog/digital converter window

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 122 – [113–141/29]
28.11.2003 4:53PM

Placing the cursor in the AD1 window allows the value to be set to 2.5 (this
would be volts). Similarly the value for AD2 may be set to, say, 4.0 and AD3 to
5.0. The effect of these changes is shown in Figure 5.9.

Figure 5.8 Simulation window with the analog/digital converter window added

Figure 5.9 Changing the values of the analog input channels

122 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 123 – [113–141/29]
28.11.2003 4:53PM

Single stepping through the program may be achieved by pressing the appro-
priate icon from the debug menu (see Figure 5.10), or pressing key F11. Details
regarding the debug menu and other icons used for debug operations are
described in Chapter 3.

When single stepping through the program it can be seen that values in the
ADCON (A/D control register), channel (selected channel), ADCI (A/D con-
version complete/interrupt flag bit), ADCS (A/D start bit) and DAC0 (A/D
0 value) windows change as the steps progress. It should be noted that ENADC
(enable A/D) would be set only once, at the beginning of the program. The
effect is shown in Figure 5.11.
Figure 5.11 shows the values for each channel; for example channel AD0 set

originally to ‘0.0’ V, is indicated by DAC0 of 0x00 while that of AD3 set to ‘5.0’
indicates a value of 0xFF. Note that AD1 was set to ‘2.5’ V, which is indicated
by a DAC0 value of 0x80 (128).

Exercise 5.1

An 87LPC769 microcontroller is to be used to read an analog input ranging from
0V to 5V on the ADC0, and display the results on two seven-segment displays
(which are driven by display drivers), with the following interface:

P0.3 – P0.0 connected toA,B,C andDofDriver 1 (least significant digit 0.0 – 0.9)
P1.3 – P1.0 connected to A, B, C and D of Driver 2 (most significant digit 0 – 5)

Write a ‘C’ program to do this.

DAC OUTPUTS

The 87LPC769 provides a two channel, 8-bit DAC function. DAC0 is also a
part of the ADC and it should not be enabled while the A/D is active. Digital
outputs must be disabled on the DAC output pins while the corresponding
DAC is enabled, as described under Analog Functions. The DACs use the
power supply as the references, VDD as the upper reference and VSS as the lower
reference. The DAC output is generated by a tap from a resistor ladder and is
not buffered. The maximum resistance to VDD or VSS from a DAC output is
10 k�. Care must be taken with the loading of the DAC outputs in order to
avoid distortion of the output voltage. DAC accuracy is affected by noise,
generated on-chip and elsewhere in the application. Since the 87LPC769 power
pins are used for the DAC references, the power supply also affects the accuracy
of the DAC outputs.

Figure 5.10 Icon for single stepping the program

Analog functions 123

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 124 – [113–141/29]
28.11.2003 4:53PM

Example 5.2

Use of DAC

/**
* Chapter 5 *
* DAC application of 87LPC769 *
* April 2003 *
* *
* This program generates a sawtooth waveform on *
* DAC1 and DAC0 of the P87LPC769 microcontroller *
** /
#include <REG769.H>
/**

Figure 5.11 Analog/digital converter window showing values for channels AD0,
AD1, AD2 and AD3

124 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 125 – [113–141/29]
28.11.2003 4:53PM

* START of the PROGRAM *
** /
void main (void) {
unsigned int i;

/**
* Disable P1, DAC pins digital Outputs and set the *
* DAC1 ¼ P1:6, DAC0 ¼ P1:7 to Input Only (Hi z) *
** /
P1M2& ¼� 0xC0; /*Set Pins for Input Only*/
P1M1j ¼ 0xC0; /*P1M2 ¼ 0 & P1M1 ¼ 1*/

/**
* Disable the A/D Converter because of DAC0 *
* AND Enable the D/A Converters *
** /
ADCI ¼ 0; /*Clear A/D conversion complete flag*/
ADCS ¼ 0; /*Clear A/D conversion start flag*/
ENADC ¼ 0; /*Disable the A/D Converter*/
ENDAC0 ¼ 1; /*Enable DAC0*/
ENDAC1 ¼ 1; /*Enable DAC1*/

/**
* Create a sawtooth waveform on DAC0 and the opposite *
* sawtooth waveform on DAC1. *
** /
while (1) {
for (i ¼ 0; i < 255; iþþ)f
DAC0 ¼ i;
DAC1 ¼ 0xFF� i;

}
}

}

Exercise 5.2

An 87LPC769 microcontroller is to be used to generate a triangular waveform
on DAC0. Write a ‘C’ program to do this.

5.4 Analog comparators

The P87LPC769 provides two analog comparators. Because of the input and
output options the comparators can be used in a number of different config-
urations. Comparator operation is such that the output is a logical one (which
may be read in a register and/or routed to a pin) when the positive input (one
of two selectable pins) is greater than the negative input (selectable from a pin
or an internal reference voltage). Otherwise the output is a zero. Each com-
parator may be configured to cause an interrupt when the output value
changes.

Analog comparators 125

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 126 – [113–141/29]
28.11.2003 4:53PM

COMPARATOR CONFIGURATION

There are two comparator control registers, CMP1 for comparator 1 and
CMP2 for comparator 2. These control registers are identical and their bits
are as shown:

7 6 5 4 3 2 1 0

– – CEn CPn CNn OEn COn CMFn

where the bit functions are:

7, 6 Reserved for future use. Should not be set to 1 by user programs.
CEn Comparator enable. When set by software, the corresponding com-

parator function is enabled. Comparator output is stable 10 ms after
CEn is first set.

CPn Comparator positive input select. When 0, CINnA is selected as the
positive comparator input. When 1, CINnB is selected as the posi-
tive comparator input.

CNn Comparator negative input select. When 0, the comparator refer-
ence pin CMPREF is selected as the negative comparator input.
When 1, the internal comparator reference Vref is selected as the
negative comparator input.

OEn Output enable. When 1, the comparator output is connected to the
CMPn pin if the comparator is enabled (CEn ¼ 1). This output is
asynchronous to the CPU clock.

COn Comparator output, synchronised to the CPU clock to allow reading
by software. Cleared when the comparator is disabled (CEn ¼ 0).

CMFn Comparator interrupt flag. This bit is set by hardware whenever the
comparator output COn changes state. This bit will cause a hard-
ware interrupt if enabled and of sufficient priority. Cleared by soft-
ware and when the comparator is disabled (CEn ¼ 0).

The overall connections to both comparators are shown in Figure 5.12.
There are eight possible configurations for each comparator, as determined
by the control bits in the corresponding CMPn register.

Example 5.3

Comparator configuration

/**
* Chapter 5 *
* Comparator application of 87LPC769 *
* April 2003 *
* *
* This program configures CMP1 with CIN1B (P0.3) *
* as positive input and CMPREF(P0.5) as the *

126 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 127 – [113–141/29]
28.11.2003 4:53PM

* negative input. *
* CMP2 is configured with internal Vref (1.28V) as *
* negative input and CIN2A (P0.2) as positive input. *
* Both comparator outputs CMP1 (P0.6) and CMP2 *
*(P0.0) are gated to output pins. *
** /
#include <REG769.H>
/**
* START of the PROGRAM *
** /
void main (void) {
unsigned char i;

/**
* Disable P0, digital Outputs and Inputs *
* CMPREF ¼ P0:5 *
* CIN1A ¼ P0:4, CIN1B ¼ P0:3, CMP1 ¼ P0:6 *
* CIN2A ¼ P0:2, CIN2B ¼ P0:1, CMP2 ¼ P0:0 *
** /
P0M2& ¼�0x0C; /*Set Pins for Input Only*/
P0M1j ¼ 0x0C; /*POM2 ¼ 0&POM1 ¼ 1*/
PT0AD ¼ 0x0C; /*Disable Digital Inputs*/

/**
* Set CIN1B(P0.3) as þve input, CMPREF as �ve *
* input and CMP1 Out(P0.0) *
* – – CEn CPn CNn OEn COn CMFn *
* 0 0 1 1 0 1 0 0 *
** /
CMP1 ¼ 0x34;
/**

Comparator 1

Comparator 2

CP1

CO1

CN1

CP2

CN2

(P0.2) CIN2A

(P0.1) CIN2B

(P0.4) CIN1A

(P0.3) CIN1B

(P0.5) CMP REF

Vref
Change detect

Change detect

CMP2(P0.0)

Interrupt

Interrupt

CO2

OE2

OE1

CMF2

CMF1

CMP1(P0.6)

+

–

+

–

Figure 5.12 Comparator configurations of the 87LPC769 microcontroller

Analog comparators 127

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 128 – [113–141/29]
28.11.2003 4:53PM

* Set CIN2A(P0.2) as þve input, Vref as �ve *
* input and CMP2 Out(P0.6) *
* – – CEn CPn CNn OEn COn CMFn *
* 0 0 1 0 1 1 0 0 *
** /
CMP2 ¼ 0x2C;

/**
* Do nothing delay 10 ms. *
** /
for (i ¼ 0;i<¼10;iþþ)

;
while (1) /*Loop Forever */

;
}

Exercise 5.3

Configure CMP1 with CIN1A (P0.4) as a positive input and Vref (1.28V) as the
negative input and CMP2 with internal CMPREF (P0.5) as a negative input
and CIN2B (P0.1) as the positive input. Both comparator outputs CMP1 (P0.6)
and CMP2 (P0.0) are to be gated to output pins.

5.5 P89LPC932

The P89LPC932 device is based on a high performance processor architecture
that executes instructions in two to four clocks, six times the rate of standard
80C51 devices. Many system level functions have been incorporated into the
P89LPC932 in order to reduce component count, board space and system cost.
The P89C932 contains many features, some of which are summarised as

follows:

. 8KB Flash code memory with 1KB erasable sectors and 64-byte erasable
page size;

. 256-byte RAM data memory; 512-byte auxiliary on-chip RAM;

. 2-byte customer Data EEPROM on-chip allows serialisation of devices,
storage of set-up parameters, etc;

. two 16-bit counter/timers. Each timer may be configured to toggle a port
output upon timer overflow or to become a pulse width modulation (PWM)
output;

. real-time clock that can also be used as a system timer;

. capture/compare unit (CCU) provides PWM, input capture and output
compare functions;

. two analog comparators with selectable inputs and reference source;

. enhanced UART with fractional baud rate generator, break detect, framing
error detection, automatic address detection and versatile interrupt capabilities;

. 400 kHz byte-wide I2C communication port;

128 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 129 – [113–141/29]
28.11.2003 4:53PM

. SPI communication port;

. eight keypad interrupt inputs, plus two additional external interrupt inputs;

. four interrupt priority levels;

. watchdog timer with separate on-chip oscillator, requiring no external
components. The watchdog time-out time is selectable from 8 values;

. LED drive capability (20mA) on all port pins. A maximum limit is specified
for the entire chip;

. 23 I/O pins minimum (28-pin package). Up to 26 I/O pins while using
on-chip oscillator and reset options.

Figure 5.13 shows the block diagram while Figure 5.14 shows the pin con-
figuration diagram for the 89LPC932 device. In the following sections we will
concentrate on the serial peripheral interface (SPI), I2C serial communication
and EEPROM functions and use examples to show some of the applications of
the device.

5.6 Serial peripheral interface (SPI)

Together with the usual serial communication interfaces, the LPC932 device
provides another high-speed serial communication interface, called the SPI
interface. SPI is a full-duplex, synchronous communication bus with Master
and Slave operation modes. Communication of up to 3Mbit/s can be sup-
ported in either Master or Slave mode.
The SPI interface has four pins: SPICLK, MOSI, MISO and SS. SPICLK,

MOSI and MISO are typically tied together between two or more SPI devices.
Data flows from master to slave on the MOSI (master out slave in) pin and
flows from slave to master on the MISO (master in slave out) pin. The SPICLK
signal is output in the master mode and is input in the slave mode. If the SPI
system is disabled, i.e. SPEN (SPCTL:6)¼ 0 (reset value), these pins are
configured for port functions.
SS is the optional slave select pin. In a typical configuration, an SPI master

asserts one of its port pins to select one SPI device as the current slave. An SPI
slave device uses its SS pin to determine whether it is selected. The SS is ignored
if any of the following conditions are true:

. If the SPI system is disabled, i.e. SPEN (SPCTL:6)¼ 0 (reset value).

. If the SPI is configured as a master, i.e. MSTR (SPCTL:4)¼ 1, and P2.4 is
configured as an output (via the P2M1.4 and P2M2.4 SFR bits).

. If the SS pin is ignored, i.e. SSIG (SPCTL.7) bit ¼ 1, this pin is configured
for port functions.

Note that even if the SPI is configured as a master (MSTR ¼ 1), it can still be
converted to a slave by driving the SS pin low (if P2.4 is configured as input and
SSIG ¼ 0). Should this happen, the SPIF bit (SPSTAT.7) will be set. Typical
connection of a simple Master Slave is shown in Figure 5.15.

Serial peripheral interface (SPI) 129

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 130 – [113–141/29]
28.11.2003 4:53PM

SPI CONFIGURATION

The LPC932 provides three registers for SPI programming. These are SPiCon-
TroL register SPCTL, SPiSTATus register, SPSTAT and SPiDATa register
SPDAT. The details of these registers are discussed below.

8 KB code
flash Internal bus

256 byte
data RAM

512 byte
auxiliary RAM

512 byte data
EEPROM

Port 3
configurable I/Os

Port 2
configurable I/Os

Port 1
configurable I/Os

Port 0
configurable I/Os

Keypad
interrupt

Programmable
oscillator divider

Configurable
oscillator

On-chip
RC

oscillator

Power monitor
(power-on reset,
brownout reset)

UART

I2C

SPI

Real-time clock/
system timer

Timer 0
Timer 1

Watchdog timer
and oscillator

CCU (capture/
compare unit)

Analog
comparators

Crystal or
resonator

CPU
clock

High performance
LPC932 CPU

Figure 5.13 Block diagram of the 89LPC932 microcontroller

130 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 131 – [113–141/29]
28.11.2003 4:53PM

SPCTL register

7 6 5 4 3 2 1 0

SSIG SPEN DORD MSTR CPOL CPHA SPR1 SPR0

where the bit functions are:

SSIG SS IGnore. If set ¼ 1, MSTR (bit 4) decides whether the device is a
master or slave. If cleared ¼ 0, the SS pin decides whether the device is
master or slave. The SS pin can be used as a port pin.

ICB/P2.0

OCD/P2.1

KB10/CMP2/P0.0

OCC/P1.7

OCB/P1.6

VSS

XTAL1/P3.1

CLKOUT/XTAL2/P3.0

SCL/ T0/P1.2

MOSI/P2.2

MISO/P2.3

P2.7/ICA

P2.6/OCA

P0.1/CIN2B/KB11

P0.2/CIN2A/KB12

P0.3/CIN1B/KB13

P0.4/CIN1A/KB14

P0.5/CMPREF/KB15

VDD

P0.6/CMP1/KB16

P0.7/ T1/KB17

P1.0/ TXD

P1.1/RXD

P2.5/SPICLK

RST/P1.5

INT1/P1.4

SDA/INT0/P1.3

P2.4/SS

2

1

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

15

16

Figure 5.14 Pin configuration for the 89LPC932 microcontroller

Master

8-bit shift
register

SPI clock
generator

MISO

MOSI

SPICLK

Port SS

SPICLK

MOSI

MISO

Slave

8-bit shift
register

Figure 5.15 Simple master and slave connection

Serial peripheral interface (SPI) 131

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 132 – [113–141/29]
28.11.2003 4:53PM

SPEN SPI Enable. If set ¼ 1, the SPI is enabled. If cleared ¼ 0, the SPI
is disabled and all SPI pins will be port pins.

DORD SPI Data ORDer.1: The LSB of the data word is transmitted
first.

0: The MSB of the data word is transmitted first.
MSTR Master/Slave mode Select (see Table 5.3).
CPOL SPI Clock Polarity. 1: SPICLK is high when idle. The leading

edge of SPICLK is the falling edge and the trailing edge is the
rising edge.
0: SPICLK is low when idle. The leading edge of SPICLK is
the rising edge and the trailing edge is the falling edge.

CPHA SPI CLock Phase select. 1: Data is driven on the leading edge of
SPICLK and is sampled on the trailing edge.
0:Data is driven when SS is low (SSIG ¼ 0) and changes on the
trailing edge of SPICLK, and is sampled on the leading edge.
(Note: If SSIG ¼ 1, the operation is not defined.)

SPR1, SPR0 SPI Clock Rate Select

SPR1 SPR0 SPI clock rate

0 0 CCLK/4

0 1 CCLK/16

1 0 CCLK/64

1 1 CCLK/128

SPSTAT register

7 6 5 4 3 2 1 0

SPIF WCOL – – – – – –

where the bit functions are:

SPIF SPI transfer completion Flag. When a serial transfer finishes, the
SPIF bit is set and an interrupt is generated if both ESPI (IEN1.3)
bit and the EA bit are set. If SS is an input and is driven low when
SPI is in master mode, and SSIG ¼ 0, this bit will also be set. The
SPIF flag is cleared in software by writing ‘1’ to this bit.

WCOL SPI Write COLlision flag. The WCOL bit is set if the SPI data
register is written during a data transfer. The WCOL flag is cleared
in software by writing a ‘1’ to this bit. Bits 5–0 reserved for future
use. Should not be set to 1 by user program.

132 Low pin count (LPC) devices

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/C
H

0
0
5
.3

D
–

1
3
3

–
[113–141/29]

28.11.2003
4:53P

M

Table 5.3 Master and slave selection

SPEN

(SPCTL.6)

SSIG

(SPCTL.7) P2M2.4 SS Pin

MSTR

(SPCTL.4)

Master or

Slave Mode MISO MOSI SPICLK Remarks

0 X X P2:41 X SPI Disabled P2:31 P2:21 P2:51 SPI disabled. P2.2, P2.3, P2.4, P2.5 are

used as port pins.

1 0 X 0 0 Slave Output Input Input Selected as slave.

1 0 X 1 0 Slave Hi-Z Input Input Not selected. MISO is high impedance to

avoid bus contention.

1 0 0 0 1(�> 0)2 Slave Output Input Input P2.4/SS is configured as an input or

quasi-bidirectional pin. SSIG is 0.

Selected externally as slave if SS is

selected and is driven low. The MSTR bit

will be cleared to ‘0’ when SS becomes low.

1 0 0 1 1 Master Input Hi-Z Hi-Z MOSI and SPICLK are at high

impedance to avoid bus contention. Note

that the user must pull-up or pull-down

SPICLK (depending on CPOL –

SPCTL.3) to avoid a floating SPICLK.

1 0 1 X 1 Master Input Output Output MOSI and SPICLK are push-pull.

1 1 X P2:41 0 Slave Output Input Input

1 1 X P2:41 1 Master Input Output Output

1. Selected as a port function.

2. The MSTR bit changes to ‘0’ automatically when SS becomes low in input mode and SSIG is 0.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 134 – [113–141/29]
28.11.2003 4:53PM

SPDAT register

7 6 5 4 3 2 1 0

MSB LSB

EXAMPLES OF SPI ON 89LPC932

Example 5.4

SPI master

/**
* Chapter 5 *
* SPI Master application of 89LPC932 *
* April 2003 *
* *
* This program writes some data to some slave Devices. *
* Assumes, P0:0 ¼ Device0:ss pin *
* Assumes, P0:1 ¼ Device1:ss pin *
* Assumes, P0:2 ¼ Device2:ss pin *
* Assumes, P0:3 ¼ Device3:ss pin *
** /
#include <Reg932.h>
sbit Device0 ¼ P0^0;
sbit Device1 ¼ P0^1;
sbit Device2 ¼ P0^2;
sbit Device3 ¼ P0^3;
/**
* Write one byte to the SPI *
** /
void SPI_Write(unsigned char dat) {
SPDAT ¼ dat; /*write Data to SPI bus*/
while ((SPSTAT & 0x80) ¼¼ 0); /*wait completion*/
SPSTATj ¼ 0x80; /*clear SPIF by writing 1 to it*/

}
/**
* START of the PROGRAM *
** /
void main (void) {
/**
* Port 2 to quasi-bidirectional *
* MOSI ¼ P2:2, MISO ¼ P2:3, SPICLK ¼ P2:4, SS ¼ P2:5 *
** /

P2M1 ¼ 0xC3;
P2M2 ¼ 0xC3;

/**
* configure SPI *
* SS ¼ 1 MSTR determines device is master/slave *

134 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 135 – [113–141/29]
28.11.2003 4:53PM

* SPEN ¼ 1 Enable SPI *
* DORD ¼ 1 LSB of the data is transmitted first *
* MSTR ¼ 1 device is master *
* CPOL ¼ 1 SPICLK is high when idle. The leading edge of SPICLK is *
* falling edge. *
* CPHA ¼ 1 data is driven on the leading edge of SPICLK and sampled *
* on the trailing edge *
* SPR1 ¼ 0 SPI clock rate¼CCLK/4 *
* SPR0 ¼ 0 *
** /

SPCTL ¼ 0xFC;
/**
* send A, B, C and D to devices continuously *
** /
while (1) {
Device0 ¼ 0; /*select Device 0*/
SPI_Write(0� 41); /*write A to Device 0*/
Device0 ¼ 1; /*Deselect Device 0*/
Device1 ¼ 0; /*select Device 1*/
SPI_Write(0� 42); /*write B to Device 1*/
Device1 ¼ 1; /*Deselect Device 1*/
Device2 ¼ 0; /*select Device 2*/
SPI_Write(0� 43); /*write C to Device 2*/
Device2 ¼ 1; /*Deselect Device 2*/
Device3 ¼ 0; /*select Device 3*/
SPI_Write(0� 44); /*write D to Device 3*/
Device3 ¼ 1; /*Deselect Device 3*/
} /* while() */

} /* main() */

Exercise 5.4

Write a C program to write text ‘Hassan’ to a slave Device. MSB is to be
transmitted first, and clock rate to be CCLK/128. Assume P0:0 ¼
Device0:ss pin.

Example 5.5

SPI Slave

/**
* Chapter 5 *
* SPI Slave application of 89LPC932 *
* April 2003 *
* *
* This program writes some data to Master Devices. *
* Note: SS pin (P2^4) must be set to 0 for slave *
* to be active. *
** /

Serial peripheral interface (SPI) 135

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 136 – [113–141/29]
28.11.2003 4:53PM

#include <Reg932.h>
/**
* Write one byte to the SPI *
***/
void SPI_Write(unsigned char dat)
{

SPDAT ¼ dat; /*write Data to SPI bus*/
while ((SPSTAT & 0� 80) ¼¼ 0); /* wait completion */
SPSTATj ¼ 0x80; /*clear SPIF by writing 1 to it */

}
/**
* START of the PROGRAM *
** /
void main (void) {
/**
* Port 2 to quasi-bidirectional *
* MOSI ¼ P2:2, MISO ¼ P2:3, SPICLK ¼ P2:4, SS ¼ P2:5 *
** /
P2M1 ¼ 0xE3;
P2M2 ¼ 0xE3;

/**
* configure SPI *
* SS ¼ 0 MSTR determines device is master/slave *
* SPEN ¼ 1 Enable SPI *
* DORD ¼ 1 LSB of the data is transmitted first *
* MSTR ¼ 0 device is slave *
* CPOL ¼ 1 SPICLK is high when idle. The leading edge of *
* SPICLK is falling edge. *
* CPHA ¼ 1 data is driven on the leading edge of SPICLK and *
* sampled on the trailing edge. *
* SPR1 ¼ 0 SPI clock rate = CCLK/4 *
* SPR0 ¼ 0 *
** /
SPCTL ¼ 0x6C;
while (1) {

SPI_Write(‘V’); /* write A to Master */
SPI_Write(‘W’); /* write B to Master */
SPI_Write(‘X’); /* write C to Master */
SPI_Write(‘Y’); /* write D to Master */

} /* while() */
} /* main() */

5.7 EEPROM memory

The LPC932 has a 512 byte electrically erasable program read only
memory (EEPROM) that can be used to store configuration parameters.
The Data EEPROM is SFR based, byte readable, byte writeable and

136 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 137 – [113–141/29]
28.11.2003 4:53PM

erasable. The user can read, write and fill the memory via three SFRs and one
interrupt:

. Address Register (DEEADR) is used for address bits 7–0 (bit 8 is in the
DEECON register).

. Control Register (DEECON) is used for address bit 8, set-up operation
mode and status flag bit.

. Data Register (DEEDAT) is used for writing data to, or reading data from,
the Data EEPROM.

DEECON

7 6 5 4 3 2 1 0

EEIF HVERR ECTL1 ECTL0 – – – EADR8

where the bit functions are:
EEIF Data EEPROM interrupt flag. Set when a read or write

finishes. Reset by software.
HVERR Reserved for future use. Should not be set to 1 by user

program.
ECLT1, ECTL0 Operation mode selection:

ECLT1 ECLT0 Selection

0 0 Byte read/write mode

1 0 Row (64 bytes) fill

1 1 Block fill (512 bytes)

bit 3 Reserved for future use. Should not be set to 1 by user program
bit 2 Reserved for future use. Should not be set to 1 by user program
bit 1 Reserved for future use. Should not be set to 1 by user program
EADR8 Most significant address (bit 8) of the Data EEPROM.

OPERATION MODES

Byte Mode In this mode data can be read and written to one byte at a
time. Data is in the DEEDAT register and the address is in the
DEEADR register.

Row Fill In this mode the addressed row (64 bytes, with address
DEEADR.5 – 0 ignored) is filled with the DEEDAT pattern.
To erase the entire row to 00H or program the entire row to
FFH, write 00H or FFH to DEEDAT prior to row fill.

Block Fill In this mode all 512 bytes are filled with the DEEDAT pattern.
To erase the block to 00H or program the block to FFH, write
00H or FFH to DEEDAT prior to the block fill. Prior to using
this command EADR8 must be set ¼ 1.

EEPROM memory 137

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 138 – [113–141/29]
28.11.2003 4:53PM

In any mode, after the operation finishes, the hardware will set EEIF bit. An
interrupt can be enabled via the IEN1.7 bit. If IEN1.7 and the EA bits are set, it
will generate an interrupt request. The EEIF bit is cleared by software.

DATA EEPROM READ

To read a byte from EEPROM the steps shown below should be followed:

. Write to DEECON with ECTL1, ECL0 ¼ ‘00’ and correct bit 8 address to
EADR8.

. Without writing to the DEEDAT register, write address bits 7–0 to
DEEADR.

. If both the EIEE (IEN1.7) bit and the EA (IEN0.7) bit are ‘1’s, wait for
the Data EEPROM interrupt then read or poll the EEIF bit until it is set
to ‘1’. If EIEE or EA is ‘0’, the interrupt is disabled, only polling is
enabled.

. Read the Data EEPROM data from the DEEDAT SFR.

DATA EEPROM WRITE

To write a byte to EEPROM the steps shown below should be followed:

. Write to DEECON with ECTL1, ECL0 ¼ ‘00’ and correct bit 8 address to
EADR8.

. Write the data to the DEEDAT register.

. Write address bits 7–0 to DEEADR.

. If both the EIEE (IEN1.7) bit and the EA (IEN0.7) bit are ‘1’s, wait for
the Data EEPROM interrupt then read/poll the EEIF bit until it is set
to ‘1’. If EIEE or EA is ‘0’, the interrupt is disabled and only polling is
enabled. When EEIF is ‘1’, the operation is complete and data is
written.

DATA EEPROM ROW FILL

To write a row of 64 bytes to the EEPROM the following steps should be taken.

. Write to DEECON with ECTL1, ECTL0 ¼ ‘10’ and correct bit 8 address to
EADR8.

. Write the fill pattern to the DEEDAT register.

. Write address bits 7–0 to DEEADR. Note that address bits 5–0 are
ignored.

. If both the EIEE (IEN1.7) bit and the EA (IEN0.7) bit are ‘1’s, wait for the
Data EEPROM interrupt then read/poll the EEIF (DEECON.7) bit until it
is set to ‘1’. If EIEE or EA is ‘0’, the interrupt is disabled and only polling is
enabled. When EEIF is ‘1’, the operation is complete and row is filled with
the DEEDAT pattern.

138 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 139 – [113–141/29]
28.11.2003 4:53PM

DATA EEPROM BLOCK FILL

To write array of 512 bytes to the EEPROM the following steps should be
taken.

. Write to DEECON with ECTL1, ECTL0 ¼ ‘11’. Set bit EADR8 ¼ 1.

. Write the fill pattern to the DEEDAT register.

. Write any address to DEEADR. Note that the entire address is ignored in a
block fill operation.

. If both the EIEE (IEN1.7) bit and the EA (IEN0.7) bit are ‘1’s, wait
for the Data EEPROM interrupt then read/poll the EEIF (DEECON.7)
bit until it is set to ‘1’. If EIEE or EA is ‘0’, the interrupt is disabled
and only polling is enabled. When EEIF is ‘1’, the operation is
complete.

EXAMPLES OF EEPROM USING THE 89LPC932

Example 5.6

EEPROM Write

/**
* Chapter 5 *
* LPC932 EEPROM byte write applications *
* April 2003 *
* *
* This program writes some data to EEPROM memory *
** /
#include <Reg932.h>
#define dataAddress 4
/**
* Write one byte to the EEPROM *
** /
void writeByte(unsigned int adr, unsigned char dat)
{
DEECON ¼ 0b00000000; /*write byte operation*/
DEEDAT ¼ dat; /*set write data*/
DEEADR ¼ (unsigned char) adr; /*start write*/
while((DEECON & 0x80) ¼¼ 0); /*wait until completes*/

}
/**
* START of the PROGRAM *
** /
void main (void) {
unsigned char myData ¼‘H’;
writeByte(dataAddress,myData); /* write H to address 4 */
while(1);
}

EEPROM memory 139

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 140 – [113–141/29]
28.11.2003 4:53PM

Exercise 5.5

Write a C program to fill a row of 64 bytes with text ‘X’on the EEPROM on
address 0 onwards.

Exercise 5.6

Write a C program to fill a block of 512 bytes with text ‘Y’.

Example 5.7

EEPROM Read

/**
* Chapter 5 *
* LPC932 EEPROM byte Read applications *
* April 2003 *
* *
* This program writes some data to EEPROM memory *
* and then reads the same data back *
** /
#include <Reg932.h>
#define dataAddress 4

/**
* Read one byte from the EEPROM *
***/
unsigned char readByte(unsigned int adr)
{
DEECON ¼ 0x00; /*address*/
DEEADR ¼ (unsigned char) adr; /*start read*/
while((DEECON&0x80) ¼¼ 0); /*wait until completes */
return DEEDAT; /* return data read */

}
/**
* START of the PROGRAM *
***/
void main (void) {
P1 ¼ readByte(dataAddress); /*read address 4 of EEPROM*/
while(1);

}

Exercise 5.7

Write a C program to write ‘Hassan’ ‘Fred’ ‘David’ to EEPROM in location
10 hex onwards and then read this data back and send then one character at a
time to port P0.

140 Low pin count (LPC) devices

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH005.3D – 141 – [113–141/29]
28.11.2003 4:53PM

Summary

. Low pin count (LPC) devices are available:
1. in the 87LPC76x range with up to 4KB EPROM/OTP code memory
2. in the 89LPC9xx range with up to 8KB of flash code memory.

. LPC devices incorporate serial interfaces including I2C, UART and SPI,
according to type.

. LPC devices contain special features such as ADC, DAC and PWM,
according to type.

. LPC devices can use some pins for analog functions. This permits the use of
analog comparators as well as onboard ADC and DAC functions.

. Analog comparators on the 87LPC76x range have up to eight possible
configurations.

. The 89LPC932 incorporates a high-speed serial peripheral interface (SPI)
and contains three registers for SPI programming.

. The 89LPC932 has 512 bytes of EEPROM that is SFR based, byte read-
able, byte writeable and erasable. The memory can be read, written to and
filled using three SFRs and one interrupt.

Summary 141

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 142 – [142–168/27]
27.11.2003 12:36PM

6
The XA 16-bit Microcontroller

6.1 Introduction

The eXtended Architecture (XA) microcontroller was introduced by Philips
Semiconductors as the 16-bit version of their 8051 microcontroller. This
chapter describes the XAG49, which is a Flash version, having 64KB of
program memory. See Figure 6.1. As shown in Figure 6.1 the peripherals
include two UARTs, three timers 0, 1 and 2 and a Watchdog timer. More
information about the peripherals, SFRs etc., is contained in Appendix F.

It is most important to note that in the XA microcontroller, the Watchdog
timer is on by default and if its action is not required then one of the first things
to do is to program it off. Having stated this, it should be said that the current
version of the Flash programming software WinISP (windows in system pro-
gramming) disables the Watchdog during programming of the device. Never-
theless the authors think it is better to include the three programming lines that
turn off the Watchdog in case later versions or other ISP software do not
disable it.

The Watchdog is on by default for other XA family members that use
external PROMs for program memory. The three assembly language lines that
disable the Watchdog are,

MOV:B WDCON;#0

MOV:B WFEED1;#A5H

MOV:B WFEED2;#5AH

This will be covered in more detail later.
Notice the .B extension to the MOV instruction; the XA microcontroller is a

16-bit device and this describes the width of some internal registers. Data is
moved in bytes (MOV.B) or words (MOV.W); the default is word (MOV).

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 143 – [142–168/27]
27.11.2003 12:36PM

The timers 0, 1 and 2 are better organised than in the 8-bit devices. In the
P89C66x and standard 8051 microcontrollers, mode 0 of the timers 0 and 1 is
configured as a 13-bit timer so that the device could be compatible with the
earlier 8048 microcontroller. In the XA, mode 0 for timers 0 and 1 is a 16-bit
auto-reload timer/counter.

The P89C66x family has a timer 2 but it only has three modes of operation
i.e. 16-bit auto reload and counting up or down, 16-bit capture and baud rate
generator. Timer 2 in the XA has four modes of operation, the first being 16-bit
auto-reload counting up while the other three modes are the same as the
P89C66x.

Additionally, on the P89C66x the timer clock is fixed at one-sixth of the
oscillator frequency. The XA has pre-scalar bits in the system configuration
register (SCR) that give three options for timer clock of one quarter, 1/16 or
1/64 of the oscillator frequency.

The beginning of the XA assembly language program is different from that
of the 8051. The assembly language programs for the P89C664 commence
with:

ORG 0 ; reset address
SJMP START ; jump over area reserved for interrupts
ORG 40H ; program start address

START:

XA CPU core

Program
memory

bus
SFR
bus

64 KB
FLASH

2048 bytes
static RAM

Data
bus

Port 0

Port 1

Port 2

Port 3

UART 0

UART 1

Timers 0,1

Timer 2

Watchdog
timer

Figure 6.1 XA block diagram

Introduction 143

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 144 – [142–168/27]
27.11.2003 12:36PM

while assembly language programs for the XA commence with:

ORG 0 ; reset start address
DW 8F00H,START ; Define Word hex 8F00
ORG 120H ; program start address

START:

The XA has many more interrupts than the 8-bit 8051 microcontrollers and
this accounts for the higher program start address.

The action of the XA to the line DW 8F00H,START at the reset address is to
put the word, 8F00H in the above example, into the 16-bit PSW register, then
run the program from the label address (START in this example).

The program is written for compilation and simulation using the evaluation
software from www.raisonance.com. This excellent package can be down-
loaded as an 8051 and XA combination.

Example 6.1

This first program is aimed at toggling pin 7 on port 1 at a frequency of 1 kHz,
copying as far as possible the 1 kHz square-wave program written for the 8-bit
P89C664 microcontroller in Chapter 4. The XAG49 flash microcontroller in
this example has an oscillator frequency of 11.0592MHz. The timer clock
pre-scalar is at its default value of (oscillator frequency)/4.

Solution

Square-wave cycle time ¼ 1=1 kHz ¼ 1=1000 ¼ 1ms
Time delay required of a square wave ¼ half the cycle time ¼ 0:5ms

Timer 0 clock ¼ ðmicro clockÞ=4 ¼ 11:0592MHz=4 ¼ 2:7648MHz

Timer 0 clock cycle time ¼ 1=2:7648MHz ¼ 361:69 ns

Delay count ¼ (delay time)/(timer clock cycle time)
¼ 0:5ms=361:69 ns ¼ 1382 (to nearest whole number)

Mode 1 timer base number ¼ 65535� delay count

¼ 65535� 1382

¼ 64153 decimal

¼ FA99 hex

Program

$INCLUDE(REGXAG49.INC) ; list of sfr addresses
ORG 0 ; reset address
DW 8F00H,START ; define word hex8F00
ORG 120H ; program start address

START: MOV.B WDCON,#0 ; watchdog control off
MOV.B WFEED1,#0A5H ; watchdog feed1

144 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 145 – [142–168/27]
27.11.2003 12:36PM

MOV.B WFEED2,#5AH ; watchdog feed2
MOV.B TMOD,#01H ; Timer 0 into mode 1

AGAIN: SETB P1.7 ; pin 7 port 1 to logic 1
CALL DELAY ; call delay routine
CLR P1.7 ; pin 7 port 1 to logic 0
CALL DELAY ; call delay routine
JMP AGAIN ; repeat pin 7 toggling

DELAY: MOV.B TH0,#0FAH ; FAH into Timer 0 high byte
MOV.B TL0,#99H ; 99H into Timer 0 low byte
SETB TR0 ; turn Timer 0 on

FLAG: JNB TF0,FLAG ; wait till Flag sets at rollover
CLR TR0 ; turn Timer 0 off
CLR TF0 ; clear flag TF0 to zero
RET ; return from sub-routine
END ; end of assembly language

Note that, apart from MOV.B and DW 8F00H, there are a couple of
instruction changes i.e. SJMP becomes JMP and ACALL becomes CALL.

Simulation

The simulation window is shown in Figure 6.2.

Placing a breakpoint on the first CALL and another at CLR P1.7 and then
running the program to the first breakpoint will give a time interval which can
be observed at the bottom of the PC screen as shown in Figure 6.3(a).

This example shows 0.003ms, which is 3 ms. This number can be reset to zero
by pressing Ctrl T and the program run to the next breakpoint, which gives the
time shown in Figure 6.3(b). From Figure 6.3(b) the time interval is 0.501ms,
which is close to the required value of 0.5ms.

Figure 6.2 Simulation response showing the use of breakpoints

Figure 6.3(a) Simulation response showing a breakpoint time interval

Introduction 145

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 146 – [142–168/27]
27.11.2003 12:36PM

This Raisonance software is able to show digital traces in the simulation.
Using the trace window and scrolling to the first transition and then
clicking the left mouse button on the table line will produce a vertical
cursor on the trace. The effect is shown in Figure 6.4. From this figure
the table shows 82.489410ms. Scrolling to the next transition, which is
the first False in this example, gives a time of 82.991970ms. The differ-
ence is 0.50256ms. Trace options used were continual mode, maximum
records ¼ 2000.

Exercise 6.1

An XAG49 microcontroller having an 11.0592MHz clock is to be used to
generate a 1 kHz square-wave signal from pin 7 of port 1. Write a C program
to achieve this.

6.2 XA registers

The XA general registers are shown in Figure 6.5. The registers are 16-bit wide
although registers R0 to R7 may be accessed as high byte or low byte. As with
the 8051 family, registers R0 to R3 are available in four banks and these banks

Figure 6.3(b) Simulation response showing a time interval between breakpoints

Figure 6.4 Simulation response showing trace window and transition times

146 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 147 – [142–168/27]
27.11.2003 12:36PM

are selected by two bits RS0 and RS1 in the program status word high (PSWH)
byte register:

PSWH

SM TM RS1 RS0 IM3 IM2 IM1 IM0

SM ¼ 1 System mode

SM ¼ 0 User mode

The XA can be used in a multitasking system, operating in system mode (system
designer) or user mode (product user). In Figure 6.5, Register 7 (R7) is either the
system stack pointer SSP (SM¼ 1) or the user stack pointer USP (SM ¼ 0).

TM=1 Trace mode on, SM must¼ 1

TM=0 Trace mode off

Putting TM ¼ 1 causes the XA to pause after each instruction and a monitor
program could display any of theXA registers. This could be used for systemdebug.

RS1, RS0 Register bank selection, RS1, RS0 ¼ 0, 0 is default bank 0
IM3, IM2, IM1, IM0 Interrupt mask levels. 1111¼F is the highest level

The PSW low (PSWL) byte register contains arithmetic and logic unit (ALU)
information.

R 15

R 14

R 13

R 12

R 11

R 10

R 9

R 8

R6

R5

R4

R3

R2

R1

R0

Global registers
(word only)

Global registers

Banked registers

SP(R7) R7H R7L

R6L

R5L

R4L

R3L

R2L

R1L

R0L

R6H

R5H

R4H

R3H

R2H

R1H

R0H

SSP
USP

Figure 6.5 XA general registers

XA registers 147

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 148 – [142–168/27]
27.11.2003 12:36PM

PSWL

C AC – – – V N Z

C carry flag
AC auxiliary Carry flag
V overflow flag
N negative result flag
Z zero result flag

The program line in the program of Example 6.1 occurring at reset (ORG 0)

DW 8F00H; START

puts the XA in system mode (SM) and set the highest interrupt level, i.e.

8F00H¼ 1000 1111 0000 0000;1000 1111 inPSWH 0000 0000 inPSWL

PSWH

SM TM RS1 RS0 IM3 IM2 IM1 IM0

1 0 0 0 1 1 1 1

6.3 Watchdog timer

The watchdog timer protects the system by causing a main reset when the
watchdog underflows as a result of a failure of software to feed the timer prior
to it reaching its overflow count. Unusually the XA watchdog timer is on by
default and if not required it must be programmed off.

The watchdog timer has four SFRs:

WFEED1 feed part 1
WFEED2 feed part 2
WDL WatchDog auto-reLoad
WDCON WatchDog CONtrol

The watchdog timer arrangement is shown in Figure 6.6. Bit functions of the
WDCON SFR are:

WDCON

PRE2 PRE1 PRE0 – – WDRUN WDTOF –

PREn Watchdog pre-scale

WDRUN ¼ 1 (watchdog on)

¼ 0 (watchdog off)

WDTOF WatchDog TimeOut Flag

148 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 149 – [142–168/27]
27.11.2003 12:36PM

WDCON default (reset) value ¼ E4H ¼ 1110 0100. Hence watchdog on by
default. The required routine to turn it off is:

MOV:B WDCON;#0
MOV:B WFEED1;#0A5H
MOV:B WFEED2;#5AH

and this must be the very first program task.
Using the watchdog would be good industrial practice. Local electro-magnetic

interference (EMI) could freeze the circuit operation and a watchdog induced reset
would automatically restart the circuit. The watchdog time delay, tD, is given by:

tD ¼ tOSC �N� PðWþ 1Þ
where:

tOSC ¼ crystal oscillator cycle time

N ¼ main timer prescale value

P ¼ watchdog prescale value

W ¼ watchdog 8-bit WDL value

N may be set using the system control register (SCR) SFR:

SCR

– – – – PT1 PT0 CM PZ

PT1 PT0 N

0 0 4
0 1 16
1 0 64
1 1 –

Watchdog feed sequence

TCLK Prescaler 8-bit down
counter

PRE2 PRE1 PRE0 – – WORUN WOTOF – WDCON

Internal reset

MOV WFEED1.#A5H
MOV WFEED2.#5AH

WDL

Figure 6.6 XAG49 watchdog timer

Watchdog timer 149

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 150 – [142–168/27]
27.11.2003 12:36PM

N ¼ 4 is the default. P may be set using WDCON:

PRE2 PRE1 PRE0 P

0 0 0 32

0 0 1 64

0 1 0 128

0 1 1 256

1 0 0 512

1 0 1 1024

1 1 0 2048

1 1 1 4096

P ¼ 4096 is the default value.

Example 6.2

An XAG49 microcontroller system having an 11.0592MHz crystal oscillator
uses the watchdog. WDL value is 8AH, SCR is 04H and WDCON is 64H.
Determine the maximum time in which the watchdog refresh routine must be
applied.

Solution

fOSC ¼ 11:0592� 106 Hz
tOSC ¼ 1=fOSC ¼ 90:422 ns

SCR ¼ 04H ¼ 0000 0100 binary, hence N=16.
WDCON ¼ 64H ¼ 0110 0100 binary, hence P=256.
WDL ¼ 8AH ¼ (8� 16þ 10) decimal ¼ 138:
The watchdog time delay, tD ¼ 90:422� 10�9 � 16� 256(138þ 1)¼ 51:48ms:

WATCHDOG REFRESH PROGRAM ROUTINE

Using values from Example 6.2, the instructions to produce the required values
of N, P andW are:

MOV.B SCR,#04H
MOV.B WDCON,#64H
MOV.B WDL,#8AH

The following subroutine must be continually applied within 51:48ms time
periods to prevent the watchdog from resetting.

150 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 151 – [142–168/27]
27.11.2003 12:36PM

CLR EA ; disable all interrupts
MOV.B WFEED1,#0A5H
MOV.B WFEED2,#5AH
SETB EA ; enable all interrupts
RET

Example 6.3

The program of Example 6.1 is to be modified so that the watchdog is enabled
with a time-out delay of approximately 0:6ms.

Solution

tD ¼ tOSC �N � PðWþ 1Þ ¼ 90:42 ns� 4� 32ð51þ 1Þ ¼ 0:602ms

The two watchdog feed lines are written into the 0:5ms delay, so the watchdog
should never time-out.

Program

$INCLUDE(REGXAG49.INC) ; list of sfr addresses
ORG 0 ; reset address
DW 8F00H,START ; define word hex8F00
ORG 120H ; program start address

START: MOV.B WDCON,#04H ; watchdog pre-scale ¼ 32
MOV.B WDL,#51 ; watchdog auto-reload ¼ 51
MOV.B SCR,#0 ; timer clock pre-scale ¼ 4
MOV.B TMOD,#01H ; Timer0 into mode 1

AGAIN: SETB P1.7 ; pin7 port 1 to logic 1
CALL DELAY ; call delay routine
CLR P1.7 ; pin7 port 1 to logic 0
CALL DELAY ; call delay routine
JMP AGAIN ; repeat pin7 toggling

DELAY: MOV.B TH0,#0FAH ; FAH into Timer0 high byte
MOV.B TL0,#99H ; 99H into Timer0 low byte
SETB TR0 ; turn Timer0 on

FLAG: JNB TF0,FLAG ; wait till flag sets at rollover
CLR TR0 ; turn Timer0 off
CLR TF0 ; clear flag TF0 to zero
MOV.B WFEED1,#0A5H ; feed the watchdog
MOV.B WFEED2,#5AH ; feed the watchdog
RET ; return from sub-routine
END ; end of assembly language

Simulation

The simulation response is shown in Figure 6.7. In the simulation, putting a
breakpoint at MOV.B TMOD,#01H and running the program from reset, the
simulation will stop at this breakpoint. Pressing GO again, the program repeats
at the AGAIN label so that, provided the watchdog is fed in time, the simula-
tion should not stop at the breakpoint again.

Watchdog timer 151

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 152 – [142–168/27]
27.11.2003 12:36PM

Coming out of the simulation and changing WDL to #34 (0:4ms), re-
compiling and returning to the simulation shows that repeated pressing of the
GO button results in the program continually sticking at the breakpoint having
arrived there from a watchdog reset.

The counter in the watchdog simulation window is that of the WDL register
and shows it decrementing. For the watchdog delay of 0:6ms WDL starts from
33H (51 decimal) and before WDL reaches zero the 0:5ms delay ends and the
watchdog is refreshed. For the watchdog delay of 0:4ms (WDL ¼ #34 or
#22H) the 0:5ms has not completed when WDL decrements to zero and the
watchdog causes a main reset.

Exercise 6.2

Write the program for Example 6.3 using C language.

6.4 UART

The equation for the timer range value (TRV) when using the XA depends on
the timer and mode used since the timer range (TR) can be either 65536 (16-bit
timer) or 256 (8-bit timer). Timers 2 and 1 in mode 0 are 16-bit timers while
timer 1 in mode 2 is an 8-bit timer.

TRV ¼ TR�Oscillator frequency

N � 16� Baud rate

N is the timer clock pre-scaler set by bits PT1 and PT0 in the system config-
uration register (SCR); this register is shown in earlier text on the watchdog
timer. If TR ¼ 65536 then TRV is converted into hex and put into reload
registers RTL1 and RTH1 for timer 1 mode 0 and registers T2CAPL
and T2CAPH when Timer 2 is used. If TR ¼ 256 then TRV is 8 bits and is
loaded into RTL1.

Figure 6.7 Simulation response illustrating the effect of the watchdog timer

152 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 153 – [142–168/27]
27.11.2003 12:36PM

Example 6.4

(a) Timer 1 mode 2 is to be used with oscillator frequency ¼ 11:0592MHz,
N ¼ 4, baud rate ¼ 9600. Determine the value for TRV and derive the program
lines that would place the correct values in the timer registers.
(b) What would be the changes necessary to part (a) if timer 2 is used?

Solution

(a) TRV ¼ 238 and the program lines could be:

MOV.B TMOD,#20H ; timer 1 mode 2
MOV.B RTL1,#238 ; timer 1 reload TL1
MOV.B TL1,#238 ; TL1 also initially set
SETB TR1 ; turn timer 1 on

(b) If timer 2 had been used then TRV ¼ 65518 decimal ¼ FFEE hex and the
program lines could be:

MOV.B TH2,#0FFH ; FFhex into timer 2 high byte
MOV.B TL2,#0EEH ; EEhex into timer 2 low byte
MOV.B T2CAPH,#0FFH ; FFhex into timer 2 high byte capture
MOV.B T2CAPL,#0EEH ; EEhex into timer 2 low byte capture
OR.B T2CON,#34H ; enable Rx and Tx clocks and timer 2 on

T2MOD not used since timer 2 defaults to 16-bit baud rate generator.

Example 6.5
Write an assembly language program that repeatedly sends two lines of text:
‘Roses are red’
‘Violets are blue’.

Solution

A comparison can be made between this UART program and that for the
8-bit P89C664 in Chapter 4 (Example 4.14) where the requirement was to
send a single line of text. The basic program structure is modified to
send two rows of text. Of course the XA has a different start and
the watchdog is turned off and also the XA uses bytes and words. The
registers used are either word length e.g. R6 or byte length e.g. R3L (L for
low byte).

Look at the alternative to using the DPTR (data pointer):

MOVC R3L; ½R6þ �

R6 contains the message address; the above instruction moves the contents of
the address (message characters) into the low byte of R3 and increments R6
(points to the next character).

UART 153

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 154 – [142–168/27]
27.11.2003 12:36PM

Program

$INCLUDE(REGXAG49.INC) ; list of sfr addresses
ORG 0 ; reset address
DW 8F00H,START ; define PSW
ORG 120H ; program start address

START: MOV.B WDCON,#0 ; watchdog control off
MOV.B WFEED1,#0A5H ; watchdog feed1
MOV.B WFEED2,#5AH ; watchdog feed2
MOV.B S0CON,#42H ; serial mode 1, TI set
MOV.B TMOD,#20H ; timer 1 mode 2
MOV.B RTL1,#238 ; timer 1 reload TL1
MOV.B TL1,#238 ; TL1 also initially set
SETB TR1 ; turn timer 1 on

FIRST: MOV.B R4L,#1 ; message marker
TEXT1: MOV.W R6,#MSG1 ; message1 address into R6

JMP NEXTCH ; jump over message2
TEXT2: MOV.W R6,#MSG2 ; message2 address into R6
NEXTCH: MOVC.B R3L,[R6+] ; contents of R6 into R3L,

; increment R6
CJNE R3L,#7EH,NEXT ; checkforendofmessage,~¼7EH
MOV.B R3L,#0DH ; carriage return into R3L
CALL SEND ; send carriage return
MOV.B R3L,#0AH ; line feed into R3L
CALL SEND ; send line feed
DJNZ R4L,FIRST ; decrement R4L, if not zero

; message1
JMP TEXT2 ; if R4L zero message2

NEXT: CALL SEND ; send current character
JMP NEXTCH ; get next character

SEND: JNB TI,SEND ; check SBUF clear to send
CLR TI ; clear TI
MOV.B S0BUF,R3L ; send current character
RET ; return from subroutine

MSG1: DB ‘Roses are red~’ ; message1
MSG2: DB ‘Violets are blue~’ ; message2

END ; end of assembly language

Simulation

The simulation can be run with the animation button set. The animation button
is shown in Figure 6.8.

In the simulation the blue horizontal cursor moves through the program
and the message text prints out on the UART Buffer window as shown in
Figure 6.9.

Figure 6.8 Animation button

154 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 155 – [142–168/27]
27.11.2003 12:36PM

Exercise 6.3

Implement Example 6.5 in C.

6.5 8051 compatibility

The XA-G3 was the first XA on the market and was introduced as the 16-bit
version of the 8051 microcontroller and there are bits in the SCR (system
configuration register) to help the 8051 designer. The XAG49 is basically the
flash version of the XA-G3.

SCR

– – – – PT1 PT0 CM PZ

CM ¼ 1 8051 compatibility mode

PZ¼1 PageZero, forces the code anddatamemory tobe limited to 16
address lines.

When CM ¼ 1 the general-purpose registers are re-allocated. The registers
are shown in Figure 6.10. Also there is a special 8-bit PSW register that
looks like the PSW register in the P89C664:

Figure 6.9 Simulation response showing the message printed in the UART buffer
window

8051 compatibility 155

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 156 – [142–168/27]
27.11.2003 12:36PM

PSW51

C AC F0 RS1 RS0 OV F1 P

Translation software used to be available to convert 8051 programs to XA
but it was not satisfactory. The XA programs start up differently and there is
the watchdog, on by default. There is the need to use bytes (B) and words
(W) and there is double-word (D), a 32-bit instruction, used by the division
instruction.

It is the authors’ opinion that the XA is best treated as a new microcontroller
in its own right and not one that 8051 programs should be forced into. The
Flash XAG49 is a particularly useful 16-bit microcontroller having two
UARTs and a good set of timers. The default watchdog is an integral part of
the device and far more robust than that of the P89C66x family; use of a
watchdog is good practice for reliable systems.

6.6 Interrupts

The interrupt table for the 8-bit P89C66x microcontroller family showed eight
interrupts which, apart from the two external interrupts INT0, INT1,
occurred as a result of actions by the onboard peripherals. Collectively these
are described as event interrupts. There was another type of interrupt, although
it was not emphasised as such, and that is the reset. The action of operating the
reset always starts the system running again from the reset address; reset is the

Global registers

Banked registers

R7

R6

R5

R4

R3

R2

R1

R0

R3H

R7H

R6H = DPH

R5H

R4H = B

R5L

R4L = A (ACC)

R7L

R3L

R2L

R1L

R0L

R2H

R1H

R0H

SSP

R6L = DPL

USP

DPTR

Figure 6.10 XAG49 general-purpose registers

156 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 157 – [142–168/27]
27.11.2003 12:36PM

highest overriding interrupt. In XA terms, the reset is described as an exception
interrupt that is serviced immediately.

The XA has four types of interrupts:

1. exception interrupts
2. trap interrupts
3. event interrupts
4. software interrupts.

Details of exception interrupts are provided in Table 6.1.

Exception interrupts are serviced as soon as they occur since each represents
some important event or problem that must be dealt with before normal
operation can resume. Reset has a higher priority than the other exceptions
and is always serviced immediately, aborting other exceptions.

Example 6.6

The following program actually has a line:

DIVU.B R4L, # 0 (register 4 low byte is divided by zero)

It should be appreciated that the purpose of the program is to demonstrate an
exception handling routine. The divide-by-zero interrupt vector address is
0010H. When the divide-by-zero happens the program goes to a UART routine

Table 6.1 XA exception interrupts
Exception interrupts – non-maskable

Exception

interrupt

Vector

address

Arbitration ranking Service

precedence

Breakpoint 0004H–0007H 1 0

Trace 0008H–000BH 1 1

Stack Overflow 000CH–000FH 1 2

Divide-by-zero 0010H–0013H 1 3

User RETI 0014H–0017H 1 4

<reserved1> 0018H–001BH – –

<reserved2> 001CH–001FH – –

<reserved3> 0020H–0023H – –

<reserved4> 0024H–0027H – –

<reserved5> 0028H–002BH – –

<reserved6> 002CH–002FH – –

<reserved7> 0030H–0033H – –

<reserved8> 0034H–0037H – –

<reserved9> 0038H–003FH – –

NMI 009CH–009FH 1 6

Reset 0000H–0003H 0 7

(High) always serviced immediately,

aborts other exceptions

Interrupts 157

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 158 – [142–168/27]
27.11.2003 12:36PM

that could send a message to the host PC. In a small system, the message might
be sent to an alphanumeric LCD.

Solution

Program

$INCLUDE(REGXAG49.INC) ; list of sfr addresses
ORG 0 ; reset address
DW 8F00H,START ; SM ¼ 1, IM ¼ F
ORG 0010H ; divide-by-zero interrupt

; vector
DW 8A00H,TEXT ; go to message
ORG 120H ; program start address

START: MOV.B WDCON,#0 ; watchdog control off
MOV.B WFEED1,#0A5H ; watchdog feed1
MOV.B WFEED2,#5AH ; watchdog feed2
MOV.B S0CON,#42H ; serial mode 1, TI set
MOV.B TMOD,#20H ; timer 1 mode 2
MOV.B TH1,#0FAH ; baudrate 9600
MOV.B TL1,#0FAH ; TL1 also initially set
SETB TR1 ; turn timer 1 on

;Divide by zero
MOV.B R4L,#44 ; load R4L with 44
DIVU.B R4L,#0 ; divide R4L by zero

STAY: JMP STAY ; stay here after message
TEXT: MOV.W R6,#MSG1 ; message1 address into R6
NEXTCH: MOVC.B R3L,[R6+] ; contents of R6 into R3L,

; increment R6
CJNE R3L,#7EH,NEXT ; check for end of message,

; ~¼7EH
MOV.B R3L,#0DH ; carriage return into R3L
CALL SEND ; send carriage return
MOV.B R3L,#0AH ; line feed into R3L
CALL SEND ; send line
RETI ; return from interrupt

NEXT: CALL SEND ; send current character
JMP NEXTCH ; get next character

SEND: JNB TI,SEND ; check SBUF clear to send
CLR TI ; clear TI
MOV.B S0BUF,R3L ; send current character
RET ; return from subroutine

MSG1: DB ‘Divide by zero~’ ; Message1
END ; end of assembly language

Simulation

The simulation response is shown in Figure 6.11. It is useful to single step until
the exception interrupt occurs; at this rate it would be possible to see that the
SSP stacks down to 00FA. The SPs in the 8051 microcontrollers stack up.

158 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 159 – [142–168/27]
27.11.2003 12:36PM

If the simulation is then run by pressing Go (the program is also stopped with
this button), it should be possible to see in the Main Registers window that Z
(divide-by-zero) and V (overflow) in the PSW are set to 1.

Also R3L contains 0A (line feed was the last action of the message routine).
R4H contains hex 2C (the equivalent decimal is 44). R4L contains FF; this is as
big as 8 bits gets! In mathematical terms 44/0 might tend to infinity. The
message appears in the UART buffer.

Exercise 6.4

Using C language, write a program that demonstrates division-by-zero excep-
tion and, in your exception function, provide a method that sends a message to
the UART.

Recall that when event interrupts were used for the 8-bit P89C664microcontroller
the IE register had to be configured and priorities assigned. This will also be done
later for the XA event interrupts. This type of preparation is not necessary for
exception and trap interrupts since they are activated as soon as they happen.
However, exception interrupts have a higher priority than traps and reset has the
highest priority of all. Details of trap interrupts are shown in Table 6.2.

It should be noted that a trap interrupt is a type of exception interrupt. It
occurs immediately and there is no prioritising. The use of trap interrupts is
illustrated in Figure 6.12.

The XA has two operating modes, system and user (or application). This is in
common with other microcontrollers capable of sustaining and supporting real-
time multitasking systems. To manage tasks between these two modes the XA

Figure 6.11 Simulation response showing the effect on system registers of an
exception interrupt

Interrupts 159

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 160 – [142–168/27]
27.11.2003 12:36PM

has two SPs, SSP and USP. The control between the two is done using the SM
bit in the PSWH.

Trap interrupts occur in user mode programs but are serviced in the control-
ling SM program.

Example 6.7

The following program is designed to illustrate the use of a trap interrupt that
causes pin 7 of port 1 to toggle.

Table 6.2 XA trap interrupts
Traps – non-maskable

Description Vector address Arbitration ranking

Trap 0 0040–0043H 1

Trap 1 0044–0047H 1

Trap 2 0048–004BH 1

Trap 3 004C–004FH 1

Trap 4 0050–0053H 1

Trap 5 0054–0057H 1

Trap 6 0058–005BH 1

Trap 7 005C–005FH 1

Trap 8 0060–0063H 1

Trap 9 0064–0067H 1

Trap 10 0068–006BH 1

Trap 11 006C–006FH 1

Trap 12 0070–0073H 1

Trap 13 0074–0077H 1

Trap 14 0078–007BH 1

Trap 15 007C–007FH 1

User program USP

User mode (SM = 0)

T
ra

p
in

te
rr

up
t

R
E

T
I

D
ata

System mode (SM = 1)

Trap routine SSP

Figure 6.12 Use of trap interrupts

160 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 161 – [142–168/27]
27.11.2003 12:36PM

Solution

Program

$INCLUDE (REGXAG49.INC) ; sfr addresses
ORG 0 ; reset address
DW 8F00H,START ; SM ¼ 1, IM ¼ F
ORG 54H ; Trap 5 vector address
DW 8F00H,SYSTEM ; go to System routine
ORG 120H ; program start address

START:
;watchdog off

MOV.B WDCON,#0 ; watchdog control off
MOV.B WFEED1,#0A5H ; watchdog feed1
MOV.B WFEED2,#5AH ; watchdog feed2

;assign SSP(System Stack Pointer)and USP values
MOV.W R7,#0800H ; SSP ¼ 0800H
CLR SM ; SM ¼ 0 User mode
MOV.W R7,#0800H ; USP ¼ 0800H

; User mode routine runs whilst P1.0 is high
USER:

SETB P1.4 ; port 1 pin 4 to logic1
CLR P1.4 ; port 1 pin 4 to logic0
JB P1.0,USER ; test pin 0 for logic1
TRAP #05 ; activate Trap if pin 0 ¼ 0
JMP USER ; repeat User routine

;System mode routine runs when Trap 5 is executed
SYSTEM:

SETB P1.7 ; port 1 pin 7 to logic1
CLR P1.7 ; port 1 pin 7 to logic0
RETI ; return from interrupt
END ; end of assembly language

Simulation

The simulation response is shown in Figure 6.13. Selecting the Animation
button (shown in Figure 6.8) and then pressing GO causes the simulation to
continually repeat the first three lines of the user routine. Because the port pins
default to logic 1, the switch test on pin 0 is high.

Stopping the simulation and looking at the main registers would show that
register 7 (R7) is assigned to the USP; it was left there when the SP values were
assigned. Also looking in the PSW window would show that SM ¼ 0, confirm-
ing that the system is in user mode.

Moving the cursor to the LATCH space on the port 1 window and clicking
the left hand mouse button to the right of the F, the least significant byte, and
changing it to an E will cause pin 0 to go to logic 0. This would cause a colour
change from green to red.

Now continuing the simulation by single stepping until the trap instruction
executes when the program jumps to the system routine. If the main registers
are checked it will show that SM has now gone to 1 and R7 is pointing to the

Interrupts 161

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 162 – [142–168/27]
27.11.2003 12:36PM

SSP. Execution of the trap instruction has taken the microcontroller from user
mode to SM.

If single stepping is continued, pin 7 will be toggled and when RETI is
executed the microcontroller would return to user mode.

Exercise 6.5

Use a C program to demonstrate the trap events, and prove the C program
works by using simulation similar to that used in Example 6.7.

Event interrupts are illustrated in Table 6.3. Each event interrupt has seven
priorities associated with it, 9 (lowest) to 15 (highest).

Figure 6.13 Simulation response showing the effect on system registers of a trap
interrupt

Table 6.3 Event interrupts

Description

Flag

bit

Vector

address

Enable

bit

Interrupt

priority

Arbitration

ranking

External interrupt 0 IE0 0080–0083 EX0 IPA0.2 – 0 (PX0) 2

Timer 0 interrupt TF0 0084–0087 ET0 IPA0.6 – 4 (PT0) 3

External interrupt 1 IE1 0088–008B EX1 IPA1.2 – 0 (PX1) 4

Timer 1 interrupt TF1 008C–008F ET1 IPA1.6 – 4 (PT1) 5

Timer 2 interrupt TF2

(EXF2)

0090–0093 ET2 IPA2.2 – 0 (PT2) 6

Serial port 0 Rx RI.0 00A0–00A3 ERI0 IPA4.2 – 0 (PRIO) 7

Serial port 0 Tx TI.0 00A4–00A7 ETI0 IPA4.6 – 4 (PTIO) 8

Serial port 1 Rx RI.1 00A8–00AB ERI1 IPA5.2 – 0 (PRI1) 9

Serial port 1 Tx TI.1 00AC–00AF ETI1 IPA5.6 – 4 (PTI1) 10

162 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 163 – [142–168/27]
27.11.2003 12:36PM

The interrupt priority column shows three bits associated with each event
interrupt and this could imply a range 0–7 but event interrupts must be read
as having a range (8þ 1) to (8þ 7) i.e. 9–15. This is to avoid confusion with
software interrupts, explained later, which have a lower priority range of
1(lowest) to 7(highest). A value of 0 in the event interrupt priority field will
disable the interrupt.

Example 6.8

A program to illustrate the use of event interrupts will use the following
program lines:

MOV.B IPA0,# 20H ; Timer 0 priority ¼ 10ði:e: 8þ 2Þ
MOV.B IPA1,# 03H ; External interrupt 1 priority ¼ 11ði:e: 8þ 3Þ

So external 1 interrupt would have a greater priority than timer interrupt 0 even
though the latter has a higher arbitration ranking.

Solution

Program

$INCLUDE(REGXAG49.INC) ; sfr addresses
ORG 0 ; reset address
DW 8200H,START ; SM¼1,IM¼2
ORG 84H ; Timer 0 interrupt vector
DW 8A00H,TIMER ; IM¼10, go to Timer 0 int.
ORG 88H ; External1 interrupt vector
DW 8B00H,EXTNL ; IM¼11, go to Extnl1 int.
ORG 120H ; program start address

START: MOV.B WDCON,#0 ; Watchdog off
MOV.B WFEED1,#0A5H
MOV.B WFEED2,#5AH
MOV.B TMOD,#02H ; Timer 0 in mode2
MOV.B TL0,#0DDH ; hexDD into Timer 0 low byte
MOV.B RTL0,#0DDH ; hexDD into Timer 0 Reload
MOV.B IPA1,#03H ; Extn1 int. priority¼11
MOV.B IPA0,#20H ; Timer 0 int. priority¼10
MOV.B IEL,#86H ; EA and Ex1, ET0 enables
SETB TR0 ; turn Timer 0 on

STAY: JMP STAY ; stay here wait for int.
TIMER: SETB P1.7 ; Timer 0 interrupt routine

CLR P1.7 ; toggling pin 7 on port1
JMP TIMER ; repeat

EXTNL: SETB P1.4 ; External1 interrupt
CLR P1.4 ; toggling pin 4 on port1
JMP EXTNL ; repeat
END ; end of assembly language

Simulation

The simulation response is shown in Figure 6.14. Note that the first interrupt
mask (IM), third line of the program, is less than those of the event interrupts.

Interrupts 163

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 164 – [142–168/27]
27.11.2003 12:36PM

This has no effect on the reset because reset is the highest priority exception
vector.

In addition to the interrupt window, timer 0 and port 1 windows, the port 3
window is also accessed. External 1 interrupt is activated by making pin 3 of
port 3 go to logic 0. Pressing the animation button (shown in Figure 6.8) and
pressing GO will run the simulation. Quite soon the timer 0 register will over-
flow and the interrupt sequence will run, toggling pin 7 on port 1.

With the simulation it is possible to position the cursor at strategic spots and
by adjusting the cursor position the arrowhead cursor changes to a pointing
finger; clicking the left mouse button would allow the values pointed at to be
changed. While the timer 0 interrupt program is running if the mouse cursor is
moved over pin 3 of port 3 then the pin 3 voltage level can be changed to
ground and immediately the external 1 interrupt would break into the timer 0
interrupt routine and pin 4 would be toggled. If reset is pressed the program
re-runs straight to the external 1 interrupt because pin 3 on port 3 would stay
low and the interrupt is level activated.

Exercise 6.6

Write a C program to configure the timer 0 in mode 2 with interrupt priority of
10 and enable external interrupt 1 with priority of 11. Then show the effects of
these in simulation as was illustrated in Example 6.8.

Software interrupts are shown in Table 6.4. Software interrupts are similar to
event interrupts except they are activated by software writing to the appropriate
interrupt request bit in the relevant SFR. There are two SFRs:

SWR (42AH) – bit addressable

– SWR7 SWR6 SWR5 SWR4 SWR3 SWR2 SWR1

Software interrupt request

Figure 6.14 Simulation response showing the effect of an event interrupt

164 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 165 – [142–168/27]
27.11.2003 12:36PM

SWE (47AH) – NOT bit addressable

– SWE7 SWE6 SWE5 SWE4 SWE3 SWE2 SWE1

Software interrupt enable

The primary purpose of the software interrupt is to provide an organised way
in which portions of the event interrupt routine may be executed at a lower
priority level than the one at which the service routine began.

Example 6.9

In the next program a timer 0 event interrupt is set up with a priority of 9 and a
software interrupt is set upwith apriority of 1.Halfway through the event interrupt,
its priority is lowered to zero allowing the software interrupt to be activated.

The idea is that whilst the low priority software interrupt is active it could be
interrupted by other important event interrupts.

Solution

Program

$INCLUDE(REGXAG49.INC) ; sfr addresses
ORG 0 ; reset address
DW 8000H,START ; SM¼1, IM¼0
ORG 84H ; Timer 0 interrupt vector
DW 8900H,TIMER0 ; goto Timer 0 interrupt
ORG 100H ; SWR1 interrupt vector
DW 8000H,SWINT1 ; goto SWR1 interrupt
ORG 120H ; program start address

;Watchdog off
START: MOV.B WDCON,#0 ; Watchdog control off

MOV.B WFEED1,#0A5H ; Watchdog feed1
MOV.B WFEED2,#5AH ; Watchdog feed2

;intialise Timer 0
MOV.B TMOD,#02H ; Timer 0 in mode 2
MOV.B TL0,#0EEH ; TL0 loaded with hexEE
MOV.B RTL0,#0EEH ; hexEE into Reload

;initialise interrupts
MOV.B IEL,#82H ; Enable all and Timer 0

Table 6.4 XA software interrupts

Description Flag bit Vector address Enable bit Interrupt priority

Software interrupt 1 SWR1 0100–0103 SWE1 (fixed at 1)

Software interrupt 2 SWR2 0104–0107 SWE2 (fixed at 2)

Software interrupt 3 SWR3 0108–010B SWE3 (fixed at 3)

Software interrupt 4 SWR4 010C–010F SWE4 (fixed at 4)

Software interrupt 5 SWR5 0110–0113 SWE5 (fixed at 5)

Software interrupt 6 SWR6 0114–0117 SWE6 (fixed at 6)

Software interrupt 7 SWR7 0118–011B SWE7 (fixed at 7)

Interrupts 165

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 166 – [142–168/27]
27.11.2003 12:36PM

MOV.B IPA0,#10H ; Timer 0 priority ¼ 9
OR.B SWE,#01H ; SWI priority ¼ 1

; Timer 0 on
SETB TR0 ; turn Timer 0 on

STAY: JMP STAY ; stay wait for interrupts
; Timer 0 Event interrupt
TIMER 0: SETB P1.0 ; set pin 0 to 1

CLR P1.0 ; clr pin 0 to 0
MOV.B IPA0,#0 ; lower Timer 0 priority ¼ 0
SETB SWR1 ; activate SWI priority ¼ 1

; Software interrupt
SWINT1: CLR SWR1 ; to allow repeat SWI

SETB P1.1 ; set pin 1 to 1
CLR P1.1 ; clear pin 1 to 0
MOV.B IPA0,#10H ; up Timer 0 priority ¼ 9
RETI ; return from interrupt
END ; end of assembly language

Simulation

The simulation response is shown in Figure 6.15. If the interrupt, port 1 and
timer 0 windows are accessed, the animation button pressed, and the program
single stepped through, it should be possible to see timer 0 event interrupt
enabled and priority set to 9. Then the software interrupt would be enabled
with a priority of 1. The TL0 and RTL0 registers have a large number, so it

Figure 6.15 Simulation response showing the effect of a software interrupt

166 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 167 – [142–168/27]
27.11.2003 12:36PM

would not take long in single step mode to roll over and cause a timer 0 event
interrupt.

The event interrupt task is simple, pin 0 on and off. Next the event priority is
reduced to zero and this would allow the priority 1 software interrupt to
become active. Again the task is simple, pin 1 on and off, before the event
interrupt is restored to its priority level of 9.

EVENT INTERRUPT AND SOFTWARE INTERRUPT PRIORITISING

Figure 6.16 gives an example. Event priority level 10 starts off, and then a
level 12 interrupts it. When the level 12 finishes, the level 10 resumes; a level 5
software interrupt comes in but this must wait for all event interrupts to
finish. Whilst level 10 is happening, a level 8 is activated but has to wait
until level 10 finishes. Level 10 finishes and then level 8 is serviced. Only
after all the event interrupts are over can the level 5 software interrupt be
serviced.

Remember software interrupts have priority levels 1 (low) to 7 (high) whilst
event interrupts have priority levels 9 (low) to 15 (high). Level 8 disables the
event interrupt and lets the software interrupt in. Typical XA hardware is
shown in Figure 6.17.

Level 10
interrupt
occurs

Level 12
interrupt
occurs

Software
interrupt
5 issued,
return to
level 10

Level 8
interrupt
occurs,

but waits
for level

10 to
complete

Return
from level
10, level 8
interrupt
serviced

Return
from level
8, level 5
software
interrupt
serviced

Return to
level 0

12

10

8

5

0

Execution
 priority

Time

Figure 6.16 Example illustrating event and software interrupt prioritising

Interrupts 167

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH006.3D – 168 – [142–168/27]
27.11.2003 12:36PM

Summary

. The XA microcontroller is the 16-bit version of the 8051 device.

. The device has a watchdog timer which is on by default.

. The watchdog timer has a time delay that can be set, within a maximum
value, by the user.

. The XA has 16-bit registers.

. The XA has two UARTs.

. The device has four types of interrupts.

. The device has two operating modes – system and user.

Pin
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Function
VSS
P1.0/A0/ WRH
P1.1/A1
P1.2/A2
P1.3/A3
P1.4/R×D1
P1.5/ T×D1
P1.6/ T2
P1.7/ T2EX
RST
P3.0/R×D0
NC
P3.1/ T×D0
P3.2/ INT0
P3.3/ INT1
P3.4/ T0
P3.5/ T1/BUSW
P3.6/ WRL
P3.7/ RD
XTAL 2
XTAL 1
VSS

Pin
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Function
VDD
P2.0/A12D8
P2.1/A13D9
P2.2/A14D10
P2.3/A15D11
P2.4/A16D12
P2.5/ A17D13
P2.6/ A18D14
P2.7/ A19D15
PSEN
ALE
NC
EA / Vpp/ WAIT
P0.7/ A11D7
P0.6/ A10D6
P0.5/ A9D5
P0.4/ A8D4
P0.3/ A7D3
P0.2/ A6D2
P0.1/ A5D1
P0.0/ A4D0
VDD

17

7

6 1 40

39

29

18 28

PLCC

Figure 6.17 Pin functions for the XAG49 PLCC package

168 The XA 16-bit microcontroller

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 169 – [169–200/32]
28.11.2003 4:54PM

7
Project Applications

7.1 Introduction

The text for earlier chapters has concentrated on particular devices with
explanations, and relevant programs, on the use of the onboard peripherals
of the specified device. The examples presented in the earlier chapters are of
a relatively trivial nature in order to illustrate the use of timers, interrupts,
etc. This chapter will present examples of a more complex nature designed to
achieve a specific objective but using the principles outlined in the preceding
chapters. The reader is invited to develop the projects further by adding to,
or modifying, the original project. This is not offered as an exercise and no
solutions are provided since the alterations to the original project could take
different forms. The use of simulation should enable the reader to establish
whether any alteration carried out on the original project results in the
required outcome.

7.2 Project 1: speed control of a small DC motor

The requirement is to use a microcontroller to drive a DC motor in both
forward and reverse directions of shaft rotation and to implement a two-speed
(fast and slow) arrangement. Switches are to be used to produce the two speeds
and effect a reversal of shaft rotation. A possible arrangement is shown in the
block diagram of Figure 7.1, which uses a P89C664 microcontroller.
The method of speed control is by the pulse width modulation (PWM)

technique, described in Chapter 4, using the P89C664 device. Putting pin 5 on
port 1 (P1.5) to logic 0 and applying the PWM to pin 4 (P1.4) causes the motor
shaft to rotate. Holding pin 4 at logic 0 and applying the PWM to pin 5 causes
the shaft rotation to reverse. This control of forward or reverse rotation is
achieved by the bridge design of the motor drive circuit.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 170 – [169–200/32]
28.11.2003 4:54PM

If a switch is not pressed then the motor shaft remains stationary. For the
purposes of this example it is assumed that switch 1 sets a PWM ratio of 6:4 and
switch 2 sets a PWM ratio of 9:1.
From Chapter 4, the description of the PWM technique shows that a

6:4 ratio has a total of 6þ 4 periods (i.e. 10 periods in total), so a 9:1 ratio will
have the same total of 10 periods. A 6:4 ratio means 6 periods at logic 1 and 4
periods at logic 0 whereas a 9:1 ratio has 9 periods at logic 1 and 1 period at
logic 0 giving a higher average value over 10 periods. The latter arrangement
will give a higher DC value over the 10 periods and hence produce a higher speed
of shaft rotation than that produced by the former arrangement.
The capture registers CCAP1L (low) and CCAP1H (high) are both 8 bits and

therefore have 28 or 256 increments.

Increments per period ¼ 256

10
¼ 25:6

Therefore 6: 4 ¼ 154 increments at logic 1, 102 increments at logic 0. Ratio 9: 1¼
230 increments at logic 1, 26 increments at logic 0. It is assumed that the
switches are normally at logic 1 and switch to logic 0 when pressed. A possible
arrangement is shown in Figure 7.2.

P89C664 micro

Motor on

Reverse

Reverse

Speed 1

Speed 2

Motor drive
circuit

Switch 1

Switch 2

Switch 3

Motor
P1.4

P1.5

P1.1

P1.2

P1.0

Figure 7.1 Block diagram for speed control of a small DC motor using a P89C664
microcontroller

GND

Port pin

+5 V DC

3.3k

Figure 7.2 Circuit for achieving logic 1/0 levels

170 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 171 – [169–200/32]
28.11.2003 4:54PM

MOTOR DRIVE

A bridge arrangement is shown in Figure 7.3. The circuit utilises complemen-
tary pair NPN/PNP transistors T2/T3 and T4/T5. The motor takes no more
than half an ampere while the diodes greatly reduce the induced voltages caused
by quickly switching currents.

Motor off

If P1.4 and P1.5 are both held at logic 0, the collectors of T1 and T6 will both be
high. Thus T2 and T4 will be ON (conducting) while T3 and T5 will be OFF
(non-conducting) and there will be no conduction path through the motor
between the 5V supply rail and ground.

Motor on

If P1.5 is held at logic 0, the collector of T6 will be high, T4 will be ON and T5
will be OFF. If a PWM signal is applied to P1.4 then when the PWM is high at
logic 1, T1 collector will be low; so T2 will be OFF and T3 will be ON. Hence
there is a conduction path from ground through transistor T3, the motor and
through transistor T4 up to the 5V supply rail.

Motor reverse

If P1.4 is held at logic 0, then transistor T2 will be ON and T3 will be OFF. If a
PWM signal is applied to P1.5 then when PWM is high, transistor T4 will be
OFF, T5 will be ON giving a reverse conduction path through transistor T5,
the motor and transistor T2.

PROGRAM PLAN

The program is to drive the motor in one direction from pin 4 of port 1 using
the PWM method constructed from the programmable counter array (PCA).
Reverse is achieved by applying the PWM through pin 5 of port 1.

P1.4 2k7
T1

1k

T2

T3

D1

D2

DC motor
D3

D4
T5

T4

T6

1K

2K7 P1.5

VCC (e.g. 5 V DC)

Ground

Figure 7.3 A bridge drive circuit using the inputs from port pins P1.4 and P1.5 to
control the DC motor speed and direction of rotation

Project 1: speed control of a small DC motor 171

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 172 – [169–200/32]
28.11.2003 4:54PM

Two speeds are possible: fast (9:1) and slow (6:4). Reverse and the speeds are
chosen from active-low on/off switches. See Figure 7.1.
The program is forced to check the switches by the action of the active low

interrupt INT0 on pin 2 of port 3. The following program lines declare the interrupt
vector address at 0003H and point to the interrupt chosen sequence, CHECK.

ORG 03H ; external interrupt 0 address
SJMP CHECK ; jump to interrupt routine

START

CFH ¼ 1100 1111 binary and this forces pins 4 and 5 of port 1 to be zero and
so the first action of the program is to turn off the motor.
SETB IT0 Sets the interrupt to occur on a high-to-low transition (i.e.

negative edge) of a switch action on pin 2 of port 3 (INT0).
MOV IEN0,#81H Puts binary 1000 0001 into IE register IEN0 to enable

the action of INT0.

CHECK

The switches on port 1 pins 0 (REVERSE), 1 (6:4 SPEED1), 2 (9:1 SPEED2) are
normally at logic 1. When they are pressed they go to logic 0 and JNB (jump if
not bit) becomes active and sends the program to the corresponding routine.

SPEED

For SPEED1 and SPEED2, the PWM action is through pin 4 on port 1
whereas for the reverse rotations, SPEED1R and SPEED2R, the PWM action
is through pin 5 on port 1. So the action of the first two program lines of these
four subroutines is to disable the PWM action on the opposite pins.

Program

$INCLUDE (REG66x.INC) ; sfr addresses
ORG 0 ; reset address
SJMP START ; jump to start
ORG 03H ; external interrupt 0 address
SJMP CHECK ; jump to interrupt routine
ORG 40H ; program start address

START: MOV P1,#0CFH ; motor drives to zero
SETB IT0 ; interrupts on negative edge
MOV IEN0,#81H ; external int INT0 enabled

STAY: SJMP STAY ; stay here till int occurs
CHECK: JNB P1.0,REVERSE ; if selected goto reverse

JNB P1.1,SPEED1 ; goto speed1 6:4
JNB P1.2,SPEED2 ; goto speed2 9:1
SJMP CHECK ; check switches again

SPEED1: ANL CCAPM2,#0FDH ; disable PWM drive on P1.5
CLR P1.5 ; put P1.5 to logic 0

172 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 173 – [169–200/32]
28.11.2003 4:54PM

ORL CCAPM1,#42H ; set ECOM1 and PWM1 (P1.4)
MOV CCAP1L,#102 ; load 6:4 count
MOV CCAP1H,#102 ; 6:4 count reload
ORL CCON,#40H ; set CR to turn PCA timer on
RETI ; return from interrupt

SPEED2: ANL CCAPM2,#0FDH ; disable PWM drive on P1.5
CLR P1.5 ; put P1.5 to logic 0
ORL CCAPM1,#42H ; set ECOM1 and PWM1 (P1.4)
MOV CCAP1L,#26 ; load 9:1 count
MOV CCAP1H,#26 ; 9:1 count reload
ORL CCON,#40H ; set CR to turn PCA timer on
RETI ; return from interrupt

REVERSE: JNB P1.1,SPEED1R ; goto speed1 reverse
JNB P1.2,SPEED2R ; goto speed2 reverse
SJMP CHECK ; check input switches

SPEED1R: ANL CCAPM1,#0FDH ; disable PWM drive on P1.4
CLR P1.4 ; put P1.4 to logic 0
ORL CCAPM2,#42H ; set ECOM2 and PWM2 (P1.5)
MOV CCAP2L,#102 ; load 6:4 count
MOV CCAP2H,#102 ; 6:4 count reload
ORL CCON,#40H ; set CR to turn PCA timer on
RETI ; return from interrupt

SPEED2R: ANL CCAPM1,#0FDH ; disable PWM drive on P1.4
CLR P1.4 ; put P1.4 to logic 0
ORL CCAPM2,#42H ; set ECOM2 and PWM2
MOV CCAP2L,#26 ; load 9:1 count
MOV CCAP2H,#26 ; 9:1 count reload
ORL CCON,#40H ; set CR to turn PCA timer on
RETI ; return from interrupt
END ; end of assembly language

Simulation

This uses the Raisonance software (see Chapter 3 for details). With the Trace
window activated, settings used are Mode ¼ Continual, Maximum number of
records¼ 500. P1.4 and P1.5 are set in theWatches window and have Trace added
to them. Port 1 (motor drive and switches) and port 3 (active low interrupt on pin 2)
are also displayed, as are the PCA and main registers windows. See Figure 7.4.
CLM on the Animation icon (two red characters in film). Pin 1 on port 1 may be

changed to ground by moving the mouse cursor over the pin till the arrow changes
to a pointing finger, then CRM and selecting ground. CLM on GO will run the
simulation. Pins 4 and 5 should go to ground in the port andTracewindows.Whilst
the simulation is running, moving the mouse cursor over pin 2 (3rd pin down) of
port 3 and changing it to ground will cause an active low interrupt. Eventually the
Trace window should show the 6:4 PWM signal. If the trace labels do not show
then CLMon P1.4 and P1.5 buttons at the top of the trace window (see Figure 7.5).
As an exercise the reader is invited to experiment with different combinations

of the control switches. However, remember that the changed response will
only happen when pin 2 on port 3 has a high (Vcc) to low (ground) transition.
Figure 7.6 shows the simulation response at the time when the 6:4 speed on

port 1 pin 4 has changed to a reverse rotation 9:1 speed driven from port 1 pin 5.

Project 1: speed control of a small DC motor 173

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 174 – [169–200/32]
28.11.2003 4:54PM

Other registers to observe during simulation include the PC and SP both in the
main registers window. The PC contains the program address and the SP is
increased when an interrupt occurs and is restored to its default value of 07H
when the program returns from interrupt.

PROGRAM DEVELOPMENTS

1. It is possible to progressively increment the PWM ratio from a low speed
value (e.g. 10:90) up towards a higher speed value (e.g. 90:10) and to stay at
a set speed when a switch is released.

2. Dynamic breaking is sudden and can be caused by putting the motor into
reverse for a very short time (e.g. 100ms) and then turning off the PWM.

3. Where would you put a register decrement delay routine to cause a time
difference (software de-bounce) between the occurrence of the interrupt
and the testing of the control switches?

Figure 7.4 Simulation response showing project 1 program window and other
relevant windows

Figure 7.5 Simulation response showing the trace waveforms for a 6:4 PWM signal
on P1.4

174 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 175 – [169–200/32]
28.11.2003 4:54PM

7.3 Project 2: speed control of a stepper motor

The requirement is to use a microcontroller to drive a stepper motor in both
forward and reverse directions of shaft rotation and to implement a two-speed
(fast and slow) arrangement. Switches are to be used to produce the two speeds
and effect a reversal of shaft rotation. A possible arrangement is shown in the
block diagram of Figure 7.7, which uses a P89C664 microcontroller.

Figure 7.6 Simulation response showing the trace waveforms for a 9:1 PWM signal
on P1.5

P89C664 micro

Motor on

Reverse

Speed 1

Speed 2

Motor drive
circuit

Switch 1

Switch 2

Switch 3

Motor

P1.4
P1.5
P1.6
P1.7

P1.1

P1.2

P1.0

Figure 7.7 Block diagram for speed control of a stepper motor using a P89C664
microcontroller

Project 2: speed control of a stepper motor 175

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 176 – [169–200/32]
28.11.2003 4:54PM

Generally a stepper motor has four sets of coils. One end of each coil may be
connected together and then connected to DC supply. The remaining four ends
may be driven through transistors either separately or in integrated circuit form.
A four-bit code sequence continuously applied to the drive circuit from the

microcontroller port causes the motor shaft to rotate in angular steps. Cheap
(e.g. £12) stepper motors have step angles of 7.5 degrees whereas more expen-
sive (e.g. £45) motors have step angles of 1.8 degrees. Step resolution and
turning force (i.e. torque) may be improved by using a step-down gearbox.
The stepping code sequence may be obtained from the motor manufacturer

or distributor. The program in this example uses a common four-step sequence
of A 9 5 6 that, if sent continuously, would cause the motor shaft to rotate.
Figure 7.8 shows the driving signals from the port pins.

Sending the code in reverse 6 5 9 A causes the motor shaft rotation to reverse.
The rotation speed depends on the delay each step is held for. Details of a
suitable drive circuit are shown in Figure 7.9.
The transistors (TR) must be chosen to easily handle the coil current. If the

value of coil current is not given by the motor supplier then it is possible to
measure the coil resistance with a multimeter (a typical value would be
15 ohms). Dividing Vcc by the coil resistance gives a good estimate of the coil
current; double this value and select a transistor that has this current as its
maximum-rated value. In this way the transistors will not run hot. The value
of resistor R is chosen to control the input current of the transistor. The
transistor current ratio is given in component catalogues as hFE, which is device
forward current gain in common-emitter mode. In this circuit hFE is basically
the coil current divided by the input current to the transistor. Thus the tran-
sistor input current is:

input current=(coil current)=hFE

The 74LS04 logic gate comprises eight inverter buffer circuits. Using two in
series will restore the voltage level at the input to resistor R to the same value as
the output from the relevant port pin. The voltage from the 74LS04 logic gate
to turn on the transistor is 5V. The voltage input to the transistor on the other
side of the resistor is approximately 0.7V; so the voltage difference across the
resistor R is (5� 0:7)V ¼ 4:3V.

A 9 5 6 A 9 5 6 A 9 5 6 A 9 5 6

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1

0

1 1

0 0

1 1

0 0

1

0

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

P1.7

P1.6

P1.5

P1.4

Figure 7.8 Signal sequence from the port pins to cause the stepper motor to rotate

176 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 177 – [169–200/32]
28.11.2003 4:54PM

The resistor value is given by:

R ¼ ðvoltage across the resistorÞ/input current
R ¼ ð4:3� hFEÞ=ðcoil currentÞ

A logic 1 (5V) from the microcontroller port pin is applied through the two
inverter gates of the 74LS04 to the resistor R. This sets up 0.7V to the transistor
base that causes the transistor to behave as an electronic switch, turning the
device on and allowing current to flow through the coil. The logic gates act as a
buffer ensuring that the microcontroller port pin is not current loaded. The
diodes D reduce the large induced voltages caused when the current is suddenly
switched on or off.

TIMER VALUES FOR ROTATION SPEED

Consider a 7.5 degree stepper motor having a step sequence of A 9 5 6. Assume
it is desired to make the shaft rotate at 60 revolutions per minute or one
revolution every second.
360/7:5 ¼ 48 steps in a revolution and the program action will basically be

step-delay; so this means 48 delays¼ one revolution.

48 delays ¼ 1 s
1 delay ¼ ð1=48Þ s ¼ 20:833ms

D D D D

TR TR TR TR

R R R R

VCC

GND

74LS04

P1.7
P1.6

P1.5
P1.4

X4 Stepper motor coils

Figure 7.9 Suitable circuit arrangement to provide a drive for a stepper motor

Project 2: speed control of a stepper motor 177

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 178 – [169–200/32]
28.11.2003 4:54PM

Suppose the microcontroller crystal frequency is 11.0592MHz. If a P89C664
microcontroller is used the timer clock frequency is (11.0592/6)MHz.

Timer clock cycle time ¼ 6=11:0592MHz ¼ 542:54 ns
Timer increments to roll-over ¼ 20:833ms=542:54ns ¼ 38400

Timer mode 1 base number ¼ 65535� 38400 ¼ 27135 ¼ 69FF hex

Similarly for a shaft speed of 40 revolutions per minute:

1 delay=1.5/48=31.25 ms

Timer increments to roll-over ¼ 57599

Timer mode 1 base number ¼ 65535� 57599 ¼ 7936 ¼ 1F00 hex
Let us assume: speed1=40 revs per minute; timer mode 1 base =1F00H

TH0¼ 1FH
TL0¼ 00H

speed2=60 revs per minute; timer mode 1base ¼ 69FFH
TH0 ¼ 69H
TL0 ¼ 0FFH

PROGRAM PLAN

When an interrupt occurs the program jumps to the interrupt routine and the
SP is incremented. On completion of the interrupt the main program resumes
its action and the SP assumes its prior value. It is possible for interrupts to
occur within interrupt routines, these are called nested interrupts but even
nested interrupts must be orderly and the SP must assume its prior value.
The SP (default value 07H) points to an address in RAM. If it were allowed to

increase indefinitely without returning (RETI) to its prior value it would increment
into higher RAM space possibly corrupting register values including the SFRs.
In project 1 the PWM program controlling the DC motor used a negative

edge transition interrupt completing very quickly after the PWM rate was
configured. Once set up the PWM signal was continually transmitted from
the port 1 pin.
The stepper motor program is different in that the program continually

applies the stepping sequence code. This time the interrupt is level sensitive
and RETI is applied upon completion of the four-step sequence.

AT THE START

Pins 7, 6, 5, 4 of port 1 are turned off by MOV P1,#0FH so that current is not
flowing through the coils. IT0 is not SETB and assumes its default value of zero
making the external switched interrupt INT0 level sensitive. Timer 0 is set to
mode 1 by MOV TMOD,#01H making it a 16-bit timer. INT0 interrupt is
enabled with MOV IEN0,#81H.

178 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 179 – [169–200/32]
28.11.2003 4:54PM

CHECK

The three active low switches, which are also connected to pin 3.2 (INT0), are
checked.
The forward and reverse data sequences are given at the bottom of the

program opposite labels FORWARD and REVERSE. The sequences are
defined using DB (define byte). The last number in each sequence 0F0H is used
to mark the end of the stepping sequence.
This program uses the data pointer (DPTR), which is a 16-bit register.

It points to the first byte of the stepping data sequence using MOV DPTR,
#REVERSE and MOV DPTR,#FORWARD. It may be incremented to the
next byte with INC DPTR.

Program

$INCLUDE(REG66x.INC) ; sfr addresses
ORG 0 ; reset address at 0000H
SJMP START ; jump over reserved area
ORG 03H ; INT0 interrupt address
SJMP CHECK ; jump to interrupt routine
ORG 40H ; program start address

START: MOV P1,#0FH ; motor drives off
MOV TMOD,#01H ; timer 0 in mode 1
MOV IEN0,#81H ; INT0 interrupt enabled

STAY: SJMP STAY ; stay till int. level changes
CHECK: JNB P1.0,REVERS ; check for reverse

JNB P1.1,SPEED ; check for speed1
JNB P1.2,SPEED ; check for speed2
SJMP CHECK ; keep checking switches

REVERS: JB P1.0,SPEED ; jump next if rev not chosen
MOV DPTR,#REVERSE ; dptr ¼reverse data address
SJMP NEXT ; jump next if rev chosen

SPEED: MOV DPTR,#FORWARD ; dptr ¼forward data address
NEXT: MOV A,#0 ; accumulator A ¼ 0

MOVC A,@Aþ DPTR ; data at dptr address into A
CJNE A,#0F0H,NEXONE ; next data ifnotsequence end
SJMP LOOP ; sequence end so goto RETI

NEXONE: MOV P1,A ; data to Port 1
JNB P1.2,SPEED2 ; check if speed2 chosen
ACALL DELAY1 ; if not then call DELAY1
SJMP OVER ; and jump over DELAY2

SPEED2: ACALL DELAY2 ; call DELAY2 for speed2
OVER: INC DPTR ; increment data pointer

SJMP NEXT ; repeat the data port loop
LOOP: RETI ; checklevelactiveinterrupt
DELAY1: MOV TH0,#1FH ; DELAY1 high byte

MOV TL0,#00H ; DELAY1 low byte
SJMP MISS ; jump over DELAY2

DELAY2: MOV TH0,#69H ; DELAY2 high byte

Project 2: speed control of a stepper motor 179

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 180 – [169–200/32]
28.11.2003 4:54PM

MOV TL0,#0FFH ; DELAY2 low byte
MISS: SETB TR0 ; turn timer 0 on
FLAG: JNB TF0,FLAG ; stay till timer rolls over

CLR TR0 ; turn timer 0 off
CLR TF0 ; clear timer 0 flag
RET ; return from subroutine

FORWARD: DB 0A7H,97H,57H,67H,0F0H ; forward data þ stop
REVERSE: DB 67H,57H,97H,0A7H,0F0H ; reverse data þ stop

END ; end of assembly language

Simulation

Check interrupt

The port 1 and port 3 windows should be accessed; also the interrupt controller
window can be viewed by selecting View on the main menu bar and then
Hardware Peripherals. The result is shown in Figure 7.10.
As Figure 7.10 shows, a breakpoint is required on the line.

STAY: SJMP STAY

Then selecting Animation (icon, two red characters in film) and then GO
should indicate that the interrupt is enabled. Also the pins 7,6,5,4 on port
1 should go to logic 0 (see Figure 7.11).

Figure 7.10 Simulation response showing project 2 program window and other
relevant windows

180 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 181 – [169–200/32]
28.11.2003 4:54PM

Changing pin 2 on port 3 to ground activates the interrupt. Selecting GO should
then see the program continually checking the level of the active low switches.

Checking the data pointer (DPTR) contents

The interrupt window should now be cancelled and the Main Registers window
accessed by choosing View on the top menu bar and then Main Registers.
The result is shown in Figure 7.12. Pin 1 (second one down) on port 1 should be
set to ground to simulate the choice of Speed1 while pin 2 (third one down) on
port 3 should be set to ground to cause a level zero interrupt.

A breakpoint is required on the line NEXT: MOV A,#0 (this is after the line
that loads the DPTR with the FORWARD address). Another breakpoint is

Figure 7.11 Simulation response indicating the port 1 and port 3 changes

Figure 7.12 Simulation response with port 1, port 3 and main register windows and
breakpoints set

Project 2: speed control of a stepper motor 181

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 182 – [169–200/32]
28.11.2003 4:54PM

required on the line RET. This is one byte before FORWARD. It is not
possible to put a breakpoint on the FORWARD line because it does not have
an instruction; DB (define byte) is a directive.
These changes are illustrated in Figure 7.12. Also Figure 7.12 gives plenty of

information in the main registers window. As indicated:

Stack pointer (SP) default value of 07H
Accumulator A value
Values on the Ports
TH and TL (THL) values in Timers 0, 1 and 2
Program counter (PC) with current program address
Data pointer (DPTR) contents, default address is 0000H

Resetting the simulation (CLM on icon with finger pointing to red button) and,
without using Animation, CLM on GO causes the program to run to the first
breakpoint. At this point DPTR shows 0090 which is the hex address of the first
byte 0A7H on the FORWARD: line.
Pressing GO again results, after a short interval, in the program reaching the

second breakpoint. The PC should show 008F, one byte before 0090 the
address in the DPTR. At this juncture look again at the information contained
in the main registers window, which will show information set by the program.
It will not show port 1, pin 1 and port 3, pin 2 at ground because these were set
(simulated) by external hardware. It should show port 1 going to 0F because
this was the action of the first program line MOV P1,#0FH.

At reset TCON SFR assumed its default value of 00.

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

At the first breakpoint TCON is 02 showing that IE0 had set to 1, indicating
that an interrupt had occurred.
At reset the SP¼ 07 pointing to address 0007H in onboard RAM. At the first

breakpoint SP had changed to 09, pointing to address 0009H in onboard RAM
indicating that an address had been stored at locations 0007H, 0008H.
The contents of the onboard RAMmay be checked by selecting from the top

menu bar:

View� > Data dump . . .� > Data View

The result is shown in Figure 7.13. From Figure 7.13 it can be seen that the
RAM contents at specific locations are:

Location 0007 ¼ 00; location 0008 ¼ 49

0049H is the address of the program line STAY: SJMP STAY, this is the
address the program returns to when the interrupt has completed.
Pressing GO again, so that the program runs to the next breakpoint, and

checking the SP, shows that it has increased to 0B. Checking the RAM again

182 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 183 – [169–200/32]
28.11.2003 4:54PM

gives the result indicated in Figure 7.14. From Figure 7.14 it can be seen that
the RAM contents at specific locations are:

Location 0009 ¼ 00; location 000A ¼ 70

0070H is the address of SJMP OVER, the next line after the first call. Placing
a breakpoint there can check this.

Measuring the step time delay

The Animation should be off and the existing breakpoints removed. P1.0 and
P1.1 should be kept at ground. A breakpoint should be placed on either side of
the program line FLAG: JNB TF0,FLAG in the time delay routine. This is
indicated in Figure 7.15.

Pressing reset and then GO will cause the program to run to the first break-
point. The timing panel at the bottom right of the screen will have some value
as shown in Figure 7.16(a).

Figure 7.13 Window showing data stored in RAM for project 2 at specified
breakpoint

Figure 7.14 Window showing data stored in RAM for project 2 at a subsequent
specified breakpoint

Figure 7.15 Simulation window showing the breakpoints to be used for measuring
the step time delay

Project 2: speed control of a stepper motor 183

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 184 – [169–200/32]
28.11.2003 4:54PM

Pressing Ctrl T will zero the value in the timing panel as shown in Figure
7.16(b), while pressing GO will cause the program to run to the next
breakpoint when the panel should show the duration of the step time delay.
See Figure 7.16(c). By calculation the time delay was 31.250ms; as shown in
Figure 7.16(c) the simulation value is very close to the calculated value.
If now P1.1 is changed to Vcc and P1.2 to ground and the above procedure

repeated, a step time value as shown in Figure 7.17 results. From Figure 7.17
the step time delay is 20.814ms, which is close enough to the calculated value to
be acceptable.

Stepping signal patterns

First of all the existing breakpoints should be removed. The actual time
delays are too long to quickly generate signal traces, so it is suggested that
TH0 is changed to #0FFH for Delay1 and Delay2 and that TL0 is changed
to #0FAH for Delay1 and #0F2H for Delay2; the signal patterns will be the
same.
The Watches window should then be set up using View ! Watch and the

signals P1.4, P1.5, P1.6, P1.7 added; the signals should also be added to the
Trace. The Trace window should then be accessed using View ! Trace !
View and the Trace options set using View ! Trace ! Options. The Mode
should be set to Continual while the Maximum number of records should be set
to 500 and rolling trace should be ticked.
Running the Trace with Animation on should show the signals setting up.

Running without Animation and stopping after several seconds shows the
complete pattern. This is illustrated in Figure 7.18.

Figure 7.16 (a) Possible initial timing value at the first breakpoint. (b) Putting zero
in the timing panel. (c) Time to the next breakpoint giving the step time response for

a step motor speed of 40 rpm

Figure 7.17 Step time response for a step motor speed of 60 rpm

184 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 185 – [169–200/32]
28.11.2003 4:54PM

PROGRAM DEVELOPMENTS

1. Check that the program drives the stepping motor when Reverse is chosen
but Speed1 and Speed2 are not.

2. Modify the program so that reverse only occurs when one of the speeds are
chosen.

3. Assuming four switches are connected to port 2 modify the program so that
the motor shaft stops after completion of 1 to 10 complete revolutions.

7.4 Project 3: single wire multiprocessor system

Serial master/slave buses exist either as onboard peripherals or as a separate
chip set. The P89C66x microcontroller family has the I2C bus as an onboard
peripheral, the principles of which have been explained in Chapter 4 (see also
Appendix D) and an example given. The Philips LPC932 microcontroller has
the SPI bus as well as the I2C.
For I2C systems the slave device is a special chip that is able to return an

acknowledge signal. The SPI slaves can be special devices, but non-special chips
employing serial shift registers to move data in and out can also be used.
The I2C bus is a two-wire system whereas in its simple mode the number of

wires required for an SPI bus depends on the number of slave devices. This
project presents a single wire bus system where the Master and Slaves are all
microcontrollers using their UARTs in mode 3, which is multiprocessor
mode. An example having two slaves is represented by Figure 7.19. The
receive (Rx) and transmit (Tx) pins of all the microcontrollers are connected
together and data can be shifted out of the master or into it but not at the
same time.

Figure 7.18 Simulation response showing trace patterns on specified port pins for
project 2

Project 3: single wire multiprocessor system 185

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 186 – [169–200/32]
28.11.2003 4:54PM

The UART has four operation modes i.e. 0, 1, 2 and 3. Modes 0 and 1 are
used between two devices. Mode 0 is a fixed transfer rate dependent on the
microcontroller crystal frequency. Mode 1 is a variable transfer rate and can be
set at various baud rates; this example uses a baud rate of 9600 bits per second.
Modes 2 and 3 are used between a master device and multiple slave devices.
Mode 2 is the fixed transfer rate and mode 3 is the variable baud rate. In theory
there could be 256 slaves (i.e. 8-bit address) but in practice too many slave
devices would cause loading effects.
If this system uses the same microcontroller type for master and slaves then

mode 2 would be preferable to mode 3 since it would not be necessary to
program timers for baud rate generators. This example has an XA as a master
and two slave devices using the P89C664; hence mode 3 is to be used.
A communication protocol exists for data transfer between master and slave
devices as shown in Figure 7.20.
Details of the Serial Control (SCON) register are:

Serial control (SCON) register

SM0 SM1 SM2 REN TB8 RB8 TI RI

 Slave1
P89C664

microcontroller

UART

 Slave2
P89C654

microcontroller

UART

 Main
computer

Rx

Rx

Rx

Rx

Tx

Tx

Tx

Tx RxTx

UART1

Master

XAG49
microcontroller

UART0

Single wire communication

COM1

Figure 7.19 Block diagram of a single wire communication system

186 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 187 – [169–200/32]
28.11.2003 4:54PM

Mode 3 SM0 ¼ 1 SM1 ¼ 1
REN Enables serial reception
TI Transmit interrupt flag
RI Receive interrupt flag

SM2 ¼ 1 Multiprocessor (master with all slaves) communication
SM2 ¼ 0 Dual (master with addressed slave) communication

TB8 ¼ 1 Transmitted bit 8 (all slaves can be interrupted, provided SM2 ¼ 1)
TB8 ¼ 0 Only addressed slave is interrupted because its SM2 ¼ 0

RB8 ¼ 1 Transmitted bit (TB8¼ 1) is received into slave

PROGRAM PLAN

The main controlling bits are SM2 and TB8. SM2 ¼ 1 enables multiple pro-
cessor communication. Initially the master device and all the slave devices are
set up for multiple communication. When the master sets TB8 ¼ 1 it interrupts
all the slave devices.
In this first interrupt the master sends through its UART the address of the

slave it wishes to communicate with. The chosen slave acknowledges and clears
its SM2 ¼ 0. The master clears its TB8 ¼ 0. The remaining slaves continue with

Initialise
Slave 1
TB8 = 0
SM2 = 1

Initialise
Slave 2
TB8 = 0
SM2 = 1

Initialise
Master
TB8 = 0
SM2 = 1

Check
Slave 1
address

YES

Check
Slave 2
address

Send
Address
Slave 1

Send
Address
Slave 2

Acknowledge Acknowledge

TB8 = 0

TB8 = 1

TB8=0

TB8 = 1

SM2 = 0

SM2 = 0

SM2 = 1Send
Slave 1
task data

Send
Slave 2
task dataRead data Read data

SM2 = 1

Transmit
data to
Master

Transmit
data to
Master

Receive
Slave 1
data

Receive
Slave 2
data

YES
NO NO

Figure 7.20 Communication protocol for master/slave communication

Project 3: single wire multiprocessor system 187

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 188 – [169–200/32]
28.11.2003 4:54PM

SM2 ¼ 1. In this condition any further UART interrupts from the master are
only received by the chosen slave whose SM2 ¼ 0.
A slave device cannot be serially interrupted if its SM2 ¼ 1 and the Master

TB8 ¼ 0. The master now interrupts the chosen slave and sends data to it.
Figure 7.20 shows that the chosen slave may return data to the master,
although in this example it is not the case.
When communication between the master and slave is complete the slave sets

SM2 ¼ 1 and the master sets TB8 ¼ 1, resuming the condition for multiple
communication with all the slave devices. The master then seeks to address the
next slave device.
In this example both slave processors are each driving a steppermotor, themaster

sends data that alters the step hold delay and in this way varies their rotation speed.
As suggested by Figure 7.19 the system information to the master could come

from a host PC. Since the XA processor has two UARTs, one of them could be
used to communicate with the host PC whilst the second could be used to
interface with the slave processors.
It is possible in a complex system for the P89C664 slaves to communicate

with each other via their I2C connections since the I2C system is capable of
multimaster communications. In this example the slave data has been arbitra-
rily chosen and originates from the master device.

Master program

$INCLUDE(REGXAG49.INC) ; sfr addresses
ORG 0 ; reset address
DW 8F00H,START ; define word hex8F00
ORG 120H ; program start address

START: MOV.B WDCON,#0 ; watchdog control off
MOV.B WFEED1,#0A5H ; watchdog feed1
MOV.B WFEED2,#5AH ; watchdog feed2
MOV.B S0CON,#0F8H ; mode 3 multi-processor
MOV.B TMOD,#20H ; timer 1 into mode 2
MOV.B RTL1,#238 ; set for 9600 baud
MOV.B TL1,#238 ; set for 9600 baud
SETB TR1 ; turn timer 1 on

LOOP: MOV.B R4L,#01H ; slave 1 address into R4L
CALL ADDRESS ; send slave 1 address
MOV.B R4L,#33H ; slave 1 data into R4L
CALL SLVDATA ; send slave 1 data
MOV.B R4L,#02H ; slave 2 address into R4L
CALL ADDRESS ; send slave 2 address
MOV.B R4L,#66H ; slave 2 data into R4L
CALL SLVDATA ; send slave 2 data
JMP LOOP ; repeat

ADDRESS: SETB TB8 ; set to interrupt all slaves
JMP SEND ; jump to SBUF

SLVDATA: CLR TB8 ; communicate with chosen slave
SEND: MOV.B S0BUF,R4L ; address or data into UART SBUF

188 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 189 – [169–200/32]
28.11.2003 4:54PM

WAITTI: JNB TI,WAITTI ; transmit contents of SBUF
CLR TI ; clear TI to enable repeat

WAITRI: JNB RI,WAITRI ; await acknowledge from slave
CLR RI ; clear RI to enable repeat
RET ; return from transmit routine
END ; end of assembly language

Simulation

Having entered and compiled the program the simulation response is shown in
Figure 7.21. With the Animation on and CLM on GO, the simulation will run
until it tests the Receive Interrupt (RI), which is the acknowledgement back
from the slave. CLM on Stop (same icon as for GO).

Positioning the cursor on RI in the watches window and CRM will cause a
small window to appear. Choosing Evaluate will produce an Evaluate Expres-
sion window for RI. If 1 is typed into the New Value space and CLM on
Modify then RI in the watches window will change to True.
The Evaluate Expression window should be left in place to enable the

simulation to get past the RI test point. CLM on GO will continue the simula-
tion. If the S0CON register is checked when the TB8 value changes, it should
equal 1 for slave addresses and be equal to 0 for slave data.

Slave program

$INCLUDE(REG66x.INC) ; sfr addresses
ORG 0 ; reset address
SJMP START ; jump to start
ORG 23H ; UART interrupt address

Figure 7.21 Master simulation for project 3

Project 3: single wire multiprocessor system 189

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 190 – [169–200/32]
28.11.2003 4:54PM

SJMP SERIAL ; jump to interrupt
ORG 40H ; program start

START: MOV SCON,#0F0H ; mode3, SM ¼ 1
MOV IEN0,#90H ; enable UART interrupt
MOV TMOD,#21H ; timer1 mode2, timer0 mode1
MOV TH1,#0FAH ; timer1 baudrate 9600
MOV TL1,#0FAH ; TL1 also initially set
SETB TR1 ; turn timer1 on
MOV A,#0FAH ; initial accumulator value

;stepper motor
MOTOR: MOV P1,#0A7H ; step1 ¼ A

ACALL DELAY ; step hold delay
MOV P1,#97H ; step2 ¼ 9
ACALL DELAY ; step hold delay
MOV P1,#57H ; step3 ¼ 5
ACALL DELAY ; step hold delay
MOV P1,#67H ; step4 ¼ 6
ACALL DELAY ; step hold delay
SJMP MOTOR ; back to step1

;step hold delay
DELAY: MOV TH0,A ; main delay value from Master

MOV TL0,#0FFH ; LSByte delay value
SETB TR0 ; turn timer0 on

FLAG: JNB TF0,FLAG ; stay till timer0 roll-over
CLR TR0 ; turn timer0 off
CLR TF0 ; clear timer0 flag
RET ; return from delay

; UART interrupt from Master
SERIAL: CLR RI ; clear RI, set by interrupt

MOV A,SBUF ; SBUF contents into A
CJNE A,#01H,OTHER ; RETI if Master not selects#01H
CLR SM2 ; SM2 ¼ 0, leave multiproc comm

WAITRI: JNB RI,WAITRI ; next interrupt will be data
CLR RI ; clear RI, set by interrupt
MOV A,SBUF ; SBUF data into A
SETB SM2 ; SM2 ¼ 1, back to multiproc comm

OTHER: RETI ; return from interrupt
END ; no more assembly language

Simulation

The simulation response for this program is shown in Figure 7.22. The timer 0
and timer 1 windows are accessed; timer 0 for the step hold delay and timer 1
for the serial baud rate generator. In the watches window SCON, SM2, RI,
TI, A, SBUF have been inserted. The evaluate expression window has been
set up for SBUF and RI, from the Watches window. The port 1 window has
been accessed, as has the interrupt controller window, which has been
resized.

190 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 191 – [169–200/32]
28.11.2003 4:54PM

Putting the Animation on and CLM on GO will cause the simulation to put
A7H (1010 0111) onto port 1. While viewing the simulation on the PC screen
remember that green represents logic 1. The simulation will stick in the step hold
delay whilst Timer 0 increments up from FAFFH towards FFFFH and roll-over.
Halting the animation by CLM on Stop and entering 0x01 as a new value in

the SBUF evaluate expression window and then CLM on Modify will alter the
value in SBUF. This could be confirmed by checking in the watches window
that SBUF is 0x01, which is the address of the first slave. Putting 1 as a New
Value in the RI evaluate expression window and CLM onModify will cause the
Slave to interrupt when the simulation continues. In the THL0 window of
Timer 0 the number may be edited, using the PC cursor and keyboard, to
FFFA so that it is close to roll-over. See Figure 7.23.

The simulation should be continued by single stepping. Because RI is set the
slave is interrupted and the simulation cursor will jump to the interrupt vector
address at 0023H. The simulation will then jump to the UART interrupt. RI will

Figure 7.22 Slave simulation for project 3

Figure 7.23 Timer 0 window, used to alter the value in THL0

Project 3: single wire multiprocessor system 191

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 192 – [169–200/32]
28.11.2003 4:54PM

be cleared and the contents of the SBUF (the slave address) transferred to
accumulator A. The slave address is checked at the third interrupt program
line. If it is not the address sent by the master to the SBUF then the slave will
jump to RETI and leave the communication with the master. In this example
the slave program is that for address#01H.
If single stepping is continued the program should clear SM2 to 0 and the

slave should come out of multiprocessing mode and have single communication
with the master. The simulation should stick at WAITRI: awaiting the next
interrupt from the master, which will convey the step, hold delay data.
Modifying the new value in the SBUF evaluate expression window to

0x33 and then modifying the new value in the RI evaluate expression window
to 1 and continuing single stepping will cause 0x33 to be transferred from the
SBUF into accumulator A and the simulation will leave the interrupt.
The stepper motor hold delay should now have changed; the timer 0 base

number has changed to THL0 ¼ 33FF, TH0 ¼ 33H and TL0 ¼ FFH. The
value in TH0 can be changed by the master.

PROGRAM DEVELOPMENTS

1. What difference is required to write the program for slave 2?
2. How would the simulation be different?
3. Modify slave 1 program such that the slave returns data to the master. The

data could be number of revolutions completed since last communication.
4. What limitations would there be on this return data?
5. Modify the master program such that the slave data comes from a host PC

via the other XA UART.

7.5 Project 4: function generator

The requirement is to design a function generator, using the P87LPC769
microcontroller, with the minimal amount of external components, to generate
sine, square and sawtooth waveforms. The output of the circuit is not designed
to source an output current to the circuits under test and a buffer circuit is
required to enhance the current sourcing capability and also provide a low
output resistance for the function generator. A block diagram of a possible
circuit arrangement is shown in Figure 7.24.

PROGRAM PLAN

To generate the required waveforms, the P87LPC769’s DAC0 is configured as a
digital to analogue converter by disabling the ADC and enabling DAC0. This
could be achieved by clearing ADCI (A/D conversion complete flag), ADCS
(A/D conversion start flag) and ENADC (enable ADC).
The DAC0 is enabled by disabling P1 (DAC1 ¼ P1:6 and DAC0 ¼ P1:7)

pins digital output and setting them to input only (Hi Z). This achieved by

192 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 193 – [169–200/32]
28.11.2003 4:54PM

using P1M2 and P1M1 registers and setting their appropriate pin to 0 and 1
respectively. Finally the DAC0 should be enabled by setting the ENDAC0 to 1.
For the generation of the waveforms, the sine wave requires most of the

work. For this a set of 180 sine wave values, scaled to 255 (8-bit register), is
generated and is put into the DAC0 one at a time. The square wave only uses
two values of 255 (5V) and 0 (0V). In this program to generate equal time of
logic 1 and logic 0, the value of 255 is written 3 times and 0 twice. Running a
simple ‘for’ loop and inputting the values of the loop into the DAC0 generates
the sawtooth waveform.

Program

/**
* Chapter seven :PROJECT s *
* 87LPC769 Function generator *
* June 2003 *
* *
* This program generates Sine, Square and Sawtooth waves on *
* the DAC0 of the P87LPC769 microcontroller *
** /
#include <REG769.H>
sbit SineKey ¼ P0^1; /* press this key to generate Sine */

sbit SquareKey ¼ P0^2; /* press this key to generate Square */

sbit SawtoothKey ¼ P0^3; /* press this key to generate Sawtooth */

code unsigned char Sine[] ¼ f /* Sine values */
127,131,136,140,145,149,153,158,162,166,170,175,
179,183,187,191,194,198,202,205,209,212,215,218,
221,224,227,230,232,235,237,239,241,243,245,246,
248,249,250,251,252,253,253,254,254,254,254,254,

2K2 x 3

Sine

Square

Sawtooth

LPC769

P0.1

P0.2

P0.3

DAC0

+5 V

0 V

Figure 7.24 Block diagram of function generator using a P87LPC769
microcontroller

Project 4: function generator 193

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 194 – [169–200/32]
28.11.2003 4:54PM

253,253,252,251,250,249,248,246,245,243,241,239,
237,235,232,230,227,224,221,218,215,212,209,205,
202,198,194,191,187,183,179,175,170,166,162,158,
153,149,145,140,136,131,127,123,118,114,109,105,
101, 96, 92, 88, 84, 79, 75, 71, 67, 64, 60, 56,
52, 49, 45, 42, 39, 36, 33, 30, 27, 24, 22, 19,
17, 15, 13, 11, 9, 8, 6, 5, 4, 3, 2, 1,
1, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5,
6, 8, 9, 11, 13, 15, 17, 19, 22, 24, 27, 30,
33, 36, 39, 42, 45, 49, 52, 56, 60, 63, 67, 71,
75, 79, 84, 88, 92, 96, 101,105,109,114,118

};
/**
* START of the PROGRAM *
** /
void main (void) {
unsigned char i;

/**
* Disable the A/D Converter because of DAC0 AND *
* Enable the D/A Converter. *
** /

ADCI ¼ 0; /* Clear A/D conversion complete flag */
ADCS ¼ 0; /* Clear A/D conversion start flag */
ENADC ¼ 0; /* Disable the A/D Converter */

/**
* Disable P1, DAC pins digital Outputs and set the *
* DAC1 ¼ P1:6, DAC0 ¼ P1:7 to Input Only (Hi z) *
** /

P1M2 & ¼
 0xC0; /* Set Pins for Input Only */
P1M1 j ¼ 0xC0; /*P1M2 ¼ 0 & P1M1 ¼ 1*/

/**
* Enable the D/A Converter *
** /

ENDAC0 ¼ 1; /* Enable DAC0 */
/**
* Create the waveforms on DAC0 *
** /

while(1){ /* Run for ever */
while (!SquareKey) { /* if key pressed Run this */

DAC0 ¼ 255; /*-------------------------*/
DAC0 ¼ 255; /* generate 5volts, 3 times and

0volts */
DAC0 ¼ 255; /*once, since while() statement

adds */
DAC0 ¼ 0; /* to the 0volts. */
DAC0 ¼ 0; /*------------------------*/

}
while (!sawtoothKey) { /* if key pressed Run this */
for(i ¼ 0;i < 255;iþþ)
DAC0 ¼ i;

194 Project applications

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 195 – [169–200/32]
28.11.2003 4:54PM

}
while (!SineKey) { /* if key pressed Run this */

for(i ¼ 0;i < 179;iþþ)
DAC0 ¼ Sine[i];

} * while(1) */
} /* main() */
}

Simulation

The best way to simulate this program is to use Keil software since it contains a
register for DAC0. For the simulation the values of P0.1, P0.2 and P0.3 should
be set to zero for sine, square and sawtooth generation. If more than one is set
to zero, the last waveform continues to be generated. During debugging the
DAC0 window should be displayed using peripherals and then D/A from the
debug menu. Also port 0 should be displayed, so that the port pins P0.1, P0.2
and P0.3 can be set and reset.
After opening the Keil software a project should be created. A C file should be

added to the project and the project compiled. Details are shown in Figure 7.25.

Using the debugger, the DAC0 and port 0 registers should be displayed.
Initially P0.1 should be set to zero and the program stepped through. The value
of the DAC0 will change as the sine wave is generated. See Figure 7.26.
Resetting the microcontroller and setting pin P0.2 to logic zero should run

the square-wave section of the program. A value of 4.9902V can be observed
in the capture, shown in Figure 7.27, which represents logic 1.
Finally resetting the controller and set pin P0.3 to logic zero should generate

a sawtooth waveform on the DAC0 output. See Figure 7.28.

Figure 7.25 Keil m Vision2 Simulation window

Project 4: function generator 195

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/C
H

0
0
7
.3

D
–

1
9
6

–
[169–200/32]

28.11.2003
4:54P

M

Figure 7.26 Simulation window, with the DAC0 and port 0 windows added, for sine waveform generation

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/C
H

0
0
7
.3

D
–

1
9
7

–
[169–200/32]

28.11.2003
4:54P

M

Figure 7.27 Simulation window, with the DAC0 and port 0 windows added, for square-waveform generation

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/C
H

0
0
7
.3

D
–

1
9
8

–
[169–200/32]

28.11.2003
4:54P

M

Figure 7.28 Simulation window, with the DAC0 and port 0 windows added, for sawtooth waveform generation

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 199 – [169–200/32]
28.11.2003 4:54PM

Waveforms generated by the circuit and shown on an oscilloscope are shown
in Figure 7.29. The oscilloscope settings for the amplitude and timebase for
each waveform were as follows:

Sine wave: 1V/cm and 1ms/cm
Square wave: 1V/cm and 2 ms/cm
Sine wave: 1V/cm and 1ms/cm.

PROGRAM DEVELOPMENTS

1. Modify the software and hardware so that the frequency could be increased
or decreased. Use two port pins, one for increasing and one for decreasing
the frequency.

2. Use two more port pins to adjust the amplitude of the waveforms.
3. Add more waveforms of your choice to the project e.g. a triangular wave-

form.

Figure 7.29(a) Function generator output response for sine waveform generation

Project 4: function generator 199

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH007.3D – 200 – [169–200/32]
28.11.2003 4:54PM

Figure 7.29(b) Function generator output response for square-waveform generation

Figure 7.29(c) Function generator output response for sawtooth waveform
generation

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 201 – [201–225/25]
27.11.2003 12:38PM

Solutions to Exercises

Chapter 1

EXERCISE 1.1

1023

EXERCISE 1.2

15
0 � 128 þ 0 � 64 þ 0 � 32 þ 0 � 16 þ 1 � 8 þ 1 � 4 þ 1 � 2 þ 1 � 1
15 ¼ 00001111

250
1 � 128 þ 1 � 64 þ 1 � 32 þ 1 � 16 þ 1 � 8 þ 0 � 4 þ 1 � 2 þ 0 � 1
250 ¼ 11111010

EXERCISE 1.3

200
Answer 200/16 ¼ 12 remainder 8
200 ¼ C8 Hex

EXERCISE 1.4

(1) 10000110 ¼ 1000 0110
86 Hex
8 � 16 þ 6 � 1 ¼ 134 Decimal

(2) 10011000011 ¼ 0100 1100 0011
4 C3 Hex
4 � 256 þ 12 � 16 þ 3 � 1 ¼ 1219 Decimal

EXERCISE 1.5

No, there is no difference between the two instructions in terms of results. They
both add ‘1’ to the register A.

EXERCISE 1.6

No, there is no difference between the two instructions in terms of results. They
both take ‘1’ from the register A.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 202 – [201–225/25]
27.11.2003 12:38PM

EXERCISE 1.7

A ¼ 00 Hex
B ¼ 5E Hex

EXERCISE 1.8

A ¼ 17 Hex
B ¼ 01 Hex

EXERCISE 1.9

A ¼ 2D H ¼ 00101101 B & 3B H ¼ 00111011

0010 1101 And Logical
0011 1011

0010 1001
A ¼ 0010 1001 B ¼ 29 H ¼ 41 Dec

EXERCISE 1.10

R0 ¼ 38 H ¼ 00111000 B & 9A H ¼ 10011010

0011 1000 OR Logical
1001 1010

1011 1010
R0 ¼ 1011 1010 B ¼ BA H ¼ 186 Dec

EXERCISE 1.11

P0 ¼ 125 Dec ¼ 01111101 B

10000010 Complement

P0 ¼ 1000 0010 B ¼ 82 H ¼ 130 Dec

EXERCISE 1.12

A ¼ 128 Dec ¼ 10000000 B & B ¼ 2 Dec ¼ 00000010 B

RR A A ¼ 0100 0000 & B ¼ 0000 0010
RL B A ¼ 0100 0000 & B ¼ 0000 0100

202 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 203 – [201–225/25]
27.11.2003 12:38PM

RR A A ¼ 0010 0000 & B ¼ 0000 0100
RR A A ¼ 0001 0000 & B ¼ 0000 0100
RL B A ¼ 0001 0000 & B ¼ 0000 1000

Therefore A ¼ 16 Dec & B ¼ 8 Dec

EXERCISE 1.13

With reference to Figure exercise 1.13

R ¼ ð5V � VfÞ=If ¼ ð5 V � 0:7VÞ=10mA ¼ 4:3 V=10 mA ¼ 430�

EXERCISE 1.14

MOV PSW, #18H

EXERCISE 1.15

ACALL calls up a subroutine; the subroutine must always have RET as its last
operation. ACALL range is limited to þ127 places forward or �128 places
backward.

AJMP, similar to ACALL, jumps to addresses, which has a similar range but
no return from it.

EXERCISE 1.16

JNC The program jumps to a relative position in the program if carry
is 0.

JNB The program jumps to a relative position in the program if specified
bit ¼ 0.

5 V

P0.0

R

Figure exercise 1.13

Solutions to exercises 203

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 204 – [201–225/25]
27.11.2003 12:38PM

EXERCISE 1.17

Clock frequency ¼ 11:0592 MHz
Therefore clock cycle ¼ 1=11:0592 MHz ¼ 90:423 ns

Signal frequency ¼ 20 kHz
Therefore signal cycle ¼ 1=20 kHz ¼ 50 ms

Delay ¼ 25 ms ¼ ð54 þ 12 � numberÞ 90:423 ns

Therefore number ¼ ((25 ms/90:423 ns) � 54)/12 ¼ 18 decimal (to the nearest
whole number)

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; puts next program line at address

0040H
START:JB P1.0,PULSE ; jump to PULSE if pin0 port 1 is logic 1

CLR P1.7 ; otherwise clear pin7 port 1 to zero
SJMP START ; go to START check switch

PULSE:SETB P1.7 ; set pin7 on port 1 to logic 1
ACALL DELAY
NOP ; hold logic 1 on pin7 port 1
NOP
NOP
NOP
CLR P1.7 ; clear pin7 on port 1 to logic 0
ACALL DELAY
AJMP START ; go to START check switch

DELAY: MOV R0,#18
TAKE: DJNZ R0,TAKE

RET
END ; no more assembly language

Chapter 4

EXERCISE 4.1

(a) One cycle time T of the required square-wave signal equals
1/frequency.
T ¼ 1=2000 ¼ 0:5ms
Delay time ¼ T=2 ¼ 0:25 ms

(b) Timer clock ¼ micro clock/6
¼ 11:0592 MHz=6 ¼ 1:8432 MHz

Timer cycle time ¼ 1=1:8432 MHz ¼ 542:54 ns

204 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 205 – [201–225/25]
27.11.2003 12:38PM

Delay count ¼ ðDelay timeÞ=ðTimer cycle timeÞ
¼ 0:25 ms=542:54 ns ¼ 461 ðnearest whole numberÞ

Base number ¼ 65535 � Delay count
¼ 65535 � 461 ¼ 65074

TH0 ¼ whole number of 65074/256
65074/256 ¼ 254:1953125 ¼ whole number of 254
TH0 ¼ 254

TL0 ¼ ðremainder of 65074=256Þ � 256

¼ ð0:1953125Þ � 256 ¼ 50

i.e. base number ¼ 65074 decimal ¼ FE32 Hex

EXERCISE 4.2

#include <reg66x.h>
#define on 1
#define off 0
sbit SqaureWavePin ¼ P1^7; // pwm ¼ pin 7 of the PORT1
void delay5KHz(); // delay-on() returns nothing and

// takes nothing
main() { // start of the program

TMOD ¼ 0x02; // Timer1 : Gate¼ 0 CT¼ 0 M1¼ 0 M0¼ 0
// Timer0 : Gate ¼ 0 CT ¼ 0 M1 ¼ 1
// M0 ¼ 0 ; mode 2

TH0¼�184; // �(184)¼�(bin:1011 1000)¼
// bin:0100 1000¼ hex:48

TL0 ¼ �184; // load TL0 for the first cycle
while(1) { // do for ever
SquareWavePin ¼ on; // P1.7 set to 1
delay5KHz(); // wait for on time
SquareWavePin ¼ off; // P1.7 set to 0
delay5KHz(); // wait for off time

} // while()
} // main()
void delay5KHz() {
TR0 ¼ on; // set TR0 of TCON to run Timer0
while(!TF0); // wait for Timer0 to set the

// Flag TF0
TR0 ¼ off; // stop the Timer0
TF0 ¼ off; // clear flag TF0

} // delay()

EXERCISE 4.3

#include <reg66x.h>
sbit SquareWavePin ¼ P1^7;
void T0intET0() interrupt 1 using 1 { // Timer0 Interrupt Service

// Routine
SquareWavePin ¼� SquareWavePin; // toggle Output

Solutions to exercises 205

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 206 – [201–225/25]
27.11.2003 12:38PM

}
main() { // start of the program

TMOD ¼ 0x02; // Timer1 : Gate ¼ 0 CT ¼ 0
// M1 ¼ 0 M0 ¼ 0
// Timer0: Gate ¼ 0 CT ¼ 0
// M1 ¼ 1 M0 ¼ 0 ; mode2

TH0 ¼ �184; // �(184) ¼ �(bin:1011 1000)
// ¼ bin:0100 1000 ¼ hex : 48

ET0 ¼ 1; // Enable Timer0 interrupt
EA ¼ 1; // Enable All interrupt
TR0 ¼ 1; // start Timer0
while(1); // end of the program

} // main()

EXERCISE 4.4

#include <reg66x.h>
sbit SquareWavePin ¼ P1^7;
void T2intET2() interrupt 7 using 1 { // Timer 2 Interrupt Service

// Routine
SquareWavePin ¼ �SquareWavePin; // toggle Output

}
main() { // start of the program

TH2 ¼ 0xB7; // The Timer starts with
TL2 ¼ 0xFF; // correct values, first time
RCAP2H ¼ 0xB7; // B7H into RCAP2H
RCAP2L ¼ 0xFF; // FFH into RCAP2L
T2CON ¼ 0x00; // Timer 2 : TF2 ¼ 0 EXF2¼ 0

// RCLK ¼ 0
// EXEN2 ¼ 0 TR2 ¼ 0 CT2¼ 0
// CP/RL2 ¼ 0;AutoReload

ET2 ¼ 1; // Enable Timer 0 interrupt
EA ¼ 1; // Enable All interrupt
TR2 ¼ 1; // start Timer 0
while(1);

} // end of the program

EXERCISE 4.5

#include <reg66x.h>
sbit Pin1 ¼ P1^7;
void EX1intEX1() interrupt 2 using 1 { // External 1 Interrupt

// Service Routine
Pin1 ¼ �Pin1; // toggle Output

}
main() { // start of the program

IT1 ¼ 1; // set �ve edge triggered
EX1 ¼ 1; // EnablPPPXTERNAL 1

// interrupt

206 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 207 – [201–225/25]
27.11.2003 12:38PM

EA ¼ 1; // Enable All interrupt
while(1);

} // end of the program

EXERCISE 4.6

#include <reg66x.h>
sbit outT0 ¼ P1^0;
sbit outT1 ¼ P1^1;
void T0intET0() interrupt 1 using 1 { // Timer0 Interrupt

// Service Routine
outT0 ¼ �outT0; // toggle Output
ACC ¼ 0x55;
P2 ¼ ACC;
ACC ¼ 0x88;
P2 ¼ ACC;
outT0 ¼ �outT0; // toggle Output

}
void T1intET1() interrupt 3 using 3 { // Timer1 Interrupt

// Service Routine
outT1 ¼ �outT1; // toggle Output

}
main() { // start of the program

TH1 ¼ 0xEE; //
TH0 ¼ 0xF8; //
TL1 ¼ 0xEE; //
TL0 ¼ 0xF8; //
TMOD ¼ 0x22; // Gate ¼ 0 C/T ¼ 0 M1 ¼ 1

== M0 ¼ 0 both timers:
== autoreload
// Interrupt Priority (IP)

IP ¼ 0x0A; // PT2 ¼ 0 PPC ¼ 0 PS1 ¼ 0
// PS0 ¼ 0 PT1 ¼ 1 PX1 ¼ 0
// PT0 ¼ 1 PX0 ¼ 0
// IPH(High byte)

IPH ¼ 0x08; // PT2H ¼ 0 PPCH ¼ 0 PS1H ¼ 0
// PS0H ¼ 0 PT1H ¼ 1 PX1H ¼ 0
// PT0H ¼ 0 PX0H ¼ 0

ET0 ¼ 1; // Enable Timer0 interrupt
ET1 ¼ 1; // Enable Timer1 interrupt
EA ¼ 1; // Enable All interrupt
TR0 ¼ 1; // start Timer0
TR1 ¼ 1; // start Timer1
while(1);

} // end of the program

EXERCISE 4.7

Ratio2: 8 ¼ 2 þ 8 periods ¼ 10 periods
8 bits ¼ 0 to 255 ¼ 256 increments

Solutions to exercises 207

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 208 – [201–225/25]
27.11.2003 12:38PM

Therefore one period ¼ 256/10 ¼ 25:6 increments per period.
Mark (logic 1) ¼ 2 periods
Therefore ¼ 2 � 25:6 ¼ 51 increments (nearest whole number)
CCAP1L (CCAP1H) ¼ 256 � 51 ¼ 205 decimal ¼ CD, and when
CL < CCAP1L, means CEX1 ¼ 0:

Since the PCA timer clock frequency¼ (micro oscillator frequency)/6. The
CMOD SFR can assume its default value of 00H. The CR bit in the CCON
SFR will have to be set to 1 to turn the PCA time base on.

PCA timer clock frequency ¼ 11:0592 MHz=6 ¼ 1:8432 MHz
PCA timer cycle time ¼ 1=1:8432 MHz ¼ 542:54 ns
Logic 0 is held for 205 � 542:54 ns ¼ 111:22 ms
Logic 1 is held for 51 � 542:54 ns ¼ 22:69 ms

include <reg66x.h>
main() { // start of the program

CCAPM1 j¼0x42; // set ECOM1 and PWM1
CCAP1L ¼ 205; // load 2 : 8 count
CCAP1H ¼ 205; // count reload
CR ¼ 1; // turn on PCA timer in CCON
while(1);

} // end of the program

EXERCISE 4.8

#include <reg66x.h>
sbit output ¼ P1^7; // label the output pin
int i;

void updateWDT(); // prototype
main() { // start of the program

CR ¼ 1; // turn on PCA timer in CCON
CMOD ¼ 0x40; // WDT Enable
CCAPM4 ¼ 0x48; // set ECOM4 and MAT4, ie to WDT
CCAP4L ¼ 0xFF; // maximum into compare
CCAP4H ¼ 0xFF; // FFFF

while(1){
output ¼ �output;
//for(i ¼ 0;i < 99;iþþ)
//; // some delay or other tasks
updateWDT();
}

} // end of the program
void updateWDT(){
CCAP4L ¼ 0;
CCAP4H ¼ CHþ 0xFF;

}

208 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 209 – [201–225/25]
27.11.2003 12:38PM

EXERCISE 4.9

#include <reg66x.h>
main() { // start of the program

// Serial mode 1
SCON ¼ 0x42; // SM0 ¼ 0, SM1 ¼ 1, SM2 ¼ 0,

// REN ¼ 0, TB8 ¼ 0, RB8 ¼ 0,
// TI ¼ 0, RI ¼ 0
// Timer 1 in mode 2

TMOD ¼ 0x20; // T1:Gat ¼ 0, C/T ¼ 0, M1 ¼ 1,
// M0 ¼ 0, T0:G ¼ 0, C/T ¼ 0,
// M1 ¼ 0, M0 ¼ 0

TH1 ¼ 0xFA; // Baudrate ¼ 9600
TL1 ¼ 0xFA;
TR1 ¼ 1; // start Timer 1
while(1){

SBUF ¼ ‘A’; // load ‘A’ into Serial
// BUFfer

while(!TI); // wait for completion of
// transmission

TI ¼ 0; // clear transmission flag
} // while(1)

} // end of the program

EXERCISE 4.10

#include <reg66x.h>
main() { // start of the program

// Serial mode 1
SCON ¼ 0x42; // SM0 ¼ 0, SM1 ¼ 1, SM2 ¼ 0,

// REN ¼ 0, TB8 ¼ 0, RB8 ¼ 0, TI ¼ 0,
RI ¼ 0

// Timer 1 in mode 2
RCAP2H ¼ 0xFF; // Baudrate ¼ 9600
RCAP2L ¼ 0xB8;
TCLK ¼ 1; // Tx CLocK flag,forces use of T2

// in mode 1
// 3

TR2 ¼ 1; // start Timer 1
while(1){

SBUF ¼ ‘A’; // load ‘A’ into Serial BUFfer
while(!TI);// wait for completion of transmission
TI ¼ 0; // clear transmission flag

} // while(1)
} // end of the program

EXERCISE 4.11

#include <reg66x.h>
char message[]¼‘‘Ashes to Ashes, dust to dust~’’;

Solutions to exercises 209

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 210 – [201–225/25]
27.11.2003 12:38PM

int charPos;
void sendChar(char ch){ // send one character
SBUF ¼ ch; // load character into Serial

// BUFfer
while(!TI); // wait for completion of

// transmission
TI ¼ 0; // clear transmission flag

} // sendChar()
void sendMessage(){ // send a string

charPos ¼ 0; // reset to first character
while(message[charPos] !¼‘~’){
sendChar(message[charPos]);
charPosþþ; // point to the next

// character
} // while(message[charPos]

// !¼ ‘~’)
sendChar(0x0D); // send carriage return
sendChar(0x0A); // send line feed

} // sendMessage()
main() { // start of the program

// Serial mode 1
SCON ¼ 0x42; // SM0 ¼ 0, SM1 ¼ 1, SM2 ¼ 0,

// REN ¼ 0, TB8 ¼ 0, RB8 ¼ 0,
// TI ¼ 0, RI ¼ 0
// Timer 1 in mode 2

TMOD ¼ 0x20; // T1:Gat¼ 0, C/T¼ 0, M1¼ 1,
// M0¼ 0 T0:G¼ 0, CT¼ 0,
// M1¼ 0, M0¼ 0

TH1 ¼ 0xFA; // Baudrate ¼ 9600
TL1 ¼ 0xFA;
TR1 ¼ 1; // start Timer 1
while(1)

sendMessage();
} // end of the program

EXERCISE 4.12

#include <reg66x.h>
void SerialPort() interrupt 4 using 3 { // Serial port Interrupt

// Service Routine
while(!RI); // wait for interrupt flag
RI ¼ 0; // clear flag
P1 ¼ SBUF; // send data to port 1

}
main() { // start of the program

// Serial mode 1
SCON ¼ 0x50; // SM0¼ 0, SM1¼ 1, SM2¼ 0,

// REN¼ 1, TB8¼ 0, RB8¼ 0,
// TI¼ 0, RI¼ 0

210 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 211 – [201–225/25]
27.11.2003 12:38PM

// Timer 1 in mode 2
TMOD ¼ 0x20; // T1:Gat ¼ 0, C/T ¼ 0,

// M1 ¼ 1, M0 ¼ 0 T0:G ¼ 0,
// C/T ¼ 0, M1 ¼ 0, M0 ¼ 0

TH1 ¼ 0xFA; // Baudrate ¼ 9600
TL1 ¼ 0xFA;
ES0 ¼ 1; // Enable serial port

// interrupt
EA ¼ 1; // Enable All interrupt
TR1 ¼ 1; // start Timer 1
while(1);

// wait for serial interrupt
} // end of the program

EXERCISE 4.13

#include <reg66x.h>
main() { // start of the program

// IIC Serial clock speed 1/112 CR2 ¼ 0,
// CR1 ¼ 0,CR0 ¼ 1

S1CON ¼ 0x45; // CR2,ENS1 ¼ 1,STA ¼ 0, STO ¼ 0,SIO ¼ 0,
// AA ¼ 1, CR1 ¼ 0, CR0 ¼ 0

STA ¼ 1; // start IIC
while(!SI); // wait for serial interrupt
STA ¼ 0; // clear start bit, donot want repeated

// start
S1DAT ¼ 0xA0; // send EEPROM addressþwrite to S1DAT
SI ¼ 0; // clear SI bit
while(!SI); // wait for serial interrupt
S1DAT ¼ 0x04; // send EEPROM internal address
SI ¼ 0; // clear SI bit
while(!SI); // wait for serial interrupt
S1DAT ¼ 0x66; // send byte to S1DAT
SI ¼ 0; // clear SI bit
while(!SI); // wait for serial interrupt
STO ¼ 1; // stop IIC
SI ¼ 0; // clear SI bit
while(!SI); // wait for serial interrupt
while(1); // do nothing for ever

} // end of the program

EXERCISE 4.14

#include <reg66x.h>
main() { // start of the program

// IIC Serial clock speed 1/112 CR2 ¼ 0,
// CR1 ¼ 0, CR0 ¼ 1

S1CON ¼ 0x45; // CR2,ENS1 ¼ 1,STA ¼ 0,STO ¼ 0,SIO ¼ 0,
// AA ¼ 1,CR1 ¼ 0,CR0 ¼ 1

Solutions to exercises 211

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 212 – [201–225/25]
27.11.2003 12:38PM

STA ¼ 1; // start IIC
while(!SI); // wait for serial interrupt
STA ¼ 0; // clear start bit, do not want repeated

// start
S1DAT ¼ 0xA0; // write to slave address
SI ¼ 0; // clear SI bit
while(!SI); // wait till complete
S1DAT ¼ 0x04; // data byte stored at address 04 Hex
SI ¼ 0; // clear SI bit
while(!SI); // wait till complete
STA ¼ 1; // generate a STArt
SI ¼ 0; // clear SI bit
while(!SI); // wait till start complete
STA ¼ 0; // ensure no repeated start
S1DAT ¼ 0xA1; // send slave address to busþread
SI ¼ 0; // clear SI bit
while(!SI); // wait for serial interrupt
AA ¼ 0; // master sends acknowledge
SI ¼ 0; // clear SI bit
while(!SI); // wait till sent
STO ¼ 0; // master microcontroller sends a stop
SI ¼ 0; // clear SI bit
while(!SI); // wait till sent
while(1); // do nothing for ever

} // end of the program

Chapter 5

EXERCISE 5.1

/**
* Chapter 5 Exercise5.1 *
* ADC application of 87LPC769 *
* April 2003 *
* *
* This program reads AD0 and displays the results *
* on two seven segments as for example 3.7 *
** /
#include <REG769.H>
unsigned char Volts, Volts_tenth;
/**
* START of the PROGRAM *
** /
void main (void) {
unsigned char channel;

/**
* Disable P0, ADC pins digital Outputs and Inputs *
* AD3 ¼ P0:6, AD2 ¼ P0:5, AD1 ¼ P0:4, AD0 ¼ P0:3 *
** /

212 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 213 – [201–225/25]
27.11.2003 12:38PM

P0M2 & ¼ �0x40; /* Set Pin for Input Only */
P0M1j ¼ 0x40; /* POM2 ¼ 0&POM1 ¼ 1 */
PT0AD ¼ 0x40; /* Disable Digital Inputs */

/**
* Enable the A/D Converter and use the CPU clock *
* as the A/D clock. *
** /
ENADC ¼ 1; /* enable ADC, 10 ms before conv.*/
RCCLK ¼ 0; /* use CPU clock */
channel ¼ 3; /* set to the first channel */

/**
* Update the channel number and store it in ADCON. *
** /
ADCON & ¼ �0x03; /* clear channel number */
ADCON j ¼ channel; /* set the channel number */

/**
* Perform conversions forever. *
** /
while (1) {

/**
* Start a conversion and wait for it to complete. *
** /
ADCI ¼ 0; /* Clear conversion flag */
ADCS ¼ 1; /* Start conversion */
while (ADCI ¼¼ 0); /* Wait conversion end */
Volts ¼ (unsigned char) DAC0/51;
P1 ¼ Volts;
Volts_tenth ¼ (unsigned char) DAC0%51;
P0 ¼ Volts_tenth/5;
ADCI ¼ 0; /* Clear conversion flag */
}

} /* end of the program */

EXERCISE 5.2

/**
* Chapter 5 Exercise 5.2 *
* DAC application of 87LPC769 *
* April 2003 *
* *
* This program generates triangular wave on the *
* DAC0 of the P87LPC769 microcontroller *
** /
#include <REG769.H>
/**
* START of the PROGRAM *
** /

Solutions to exercises 213

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 214 – [201–225/25]
27.11.2003 12:38PM

void main (void) {
unsigned int i;

/**
* Disable P1, DAC pins digital Outputs and set the *
* DAC1 ¼ P1:6, DAC0 ¼ P1:7 to Input Only (Hi z) *
** /
P1M2 & ¼ �0xC0; /* Set Pins for Input Only */
P1M1j ¼ 0xC0; /* P1M2=0 & P1M1=1 */

/**
* Disable the A/D Converter because of DAC0 *
* AND Enable the D/A ConverterS *
** /
ADCI ¼ 0; /*Clear A/D conversion complete flag */
ADCS ¼ 0; /* Clear A/D conversion start flag */
ENADC ¼ 0; /* Disable the A/D Converter */
ENDAC0 ¼ 1; /* Enable DAC0 */

/**
* Create a sawtooth wave on DAC0 and the opposite *
* sawtooth wave on DAC1. *
** /
while (1) {
for (i ¼ 0; i < 255; iþþ)
DAC0 ¼ i;

for (i ¼ 255; i > 0; i��)
DAC0 ¼ i;

}
}

EXERCISE 5.3

/**
* Chapter 5 Exercise5.3 *
* Comparator application of 87LPC769 *
* April 2003 *
* *
* Configures CMP1 with CIN1A (P0.4) as positive *
* input and Vref(1.28V) as the negative input and *
* CMP2 is configured with internal CMPREF(P0.5) as *
* negative input and CIN2B(P0.1) as positive input. *
* Both comparator outputs CMP1(P0.6) and CMP2(P0.0) *
* are gated to output pins. *
** /
#include <REG769.H>
/**
* START of the PROGRAM *
** /
void main (void) {
unsigned char i;

/**

214 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 215 – [201–225/25]
27.11.2003 12:38PM

* Disable P0, digital Outputs and Inputs *
* CMPREF ¼ P0:5 *
* CIN1A ¼ P0:4, CIN1B ¼ P0:3, CMP1 ¼ P0:6 *
* CIN2A ¼ P0:2, CIN2B ¼ P0:1, CMP2 ¼ P0:0 *
** /
P0M2 & ¼ �0x0C; /* Set Pins for Input Only */
P0M1j ¼ 0x0C; /* POM2 ¼ 0 &POM1 ¼ 1 */
PT0AD ¼ 0x0C; /* Disable Digital Inputs */

/**
* Set CIN1A(P0.3) as þve input, Vref as �ve *
* input and CMP1 Out(P0.0) *
* – – CEn CPn CNn OEn COn CMFn *
* 0 0 1 0 1 1 0 0 *
** /
CMP1 ¼ 0x2C;

/**
* Set CIN2B(P0.2) as þve input, CMPREF as �ve *
* input and CMP2 Out(P0.6) *
* – – CEn CPn CNn OEn COn CMFn *
* 0 0 1 1 0 1 0 0 *
** /
CMP2 ¼ 0x34;

/**
* Do nothing delay 10ms *
** /
for (i ¼ 0; i <¼ 10; iþþ);
while (1){}; // Loop Forever
}

EXERCISE 5.4

/**
* Chapter 5 Exercise5.4 *
* SPI Master application of 89LPC932 *
* April 2003 *
* *
* This program writes some data to some slave *
* Devices. *
* Assumes, P0:0 ¼ Device0:ss pin *
** /
#include <Reg932.h>
sbit Device0 ¼ P0^0;
/**
* Write one byte to the SPI *
** /
void SPI_Write(unsigned char dat)
{
SPDAT ¼ dat; /* write Data to SPI bus */

Solutions to exercises 215

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 216 – [201–225/25]
27.11.2003 12:38PM

while ((SPSTAT & 0x80)¼¼ 0); /* wait completion */
SPSTATj ¼ 0x80; /* clear SPIF by writing 1 to it */

}
/**
* START of the PROGRAM *
** /
void main (void) {
/**
* Port 2 to quasi-bidirectional *
* MOSI ¼ P2:2, MISO ¼ P2:3, SPICLK ¼ P2:4, SS ¼ P2:5 *
** /
P2M1 ¼ 0xC3;
P2M2 ¼ 0xC3;

/**
* configure SPI *
* SS ¼ 1 MSTR determines device is master/slave *
* SPEN ¼ 1 Enable SPI *
* DORD ¼ 0 MSB of the data is transmitted first *
* MSTR ¼ 1 device is master *
* CPOL ¼ 1 SPICLK is high when idle. The leading *
* edge of SPICLK is falling edge. *
* CPHA ¼ 1 data is driven on the leading edge of *
* SPICLK and sampled on the trailing edge *
* SPR1 ¼ 1 SPI clock rate ¼ CCLK/128 *
* SPR0 ¼ 1 *
** /
SPCTL ¼ 0xDF;
Device0 ¼ 0; /* select Device 0 */
while (1) {
SPI_Write(‘H’); /* write H to Device 0 */
SPI_Write(‘A’); /* write A to Device 0 */
SPI_Write(‘S’); /* write S to Device 0 */
SPI_Write(‘S’); /* write S to Device 0 */
SPI_Write(‘A’); /* write A to Device 0 */
SPI_Write(‘N’); /* write N to Device 0 */
}

}

EXERCISE 5.5

/**
* Chapter 5 Exercise5.5 *
* LPC932 EEPROM byte read and write applications *
* April 2003 *
* *
* This program writes to a row of 64 bytes to *
* EEPROM memory *
** /

216 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 217 – [201–225/25]
27.11.2003 12:38PM

#include <Reg932.h>
#define dataAddress 0
/**
* Write a row of 64 bytes to the EEPROM *

** /
void writeByteRow(unsigned int adr, unsigned char dat)
{
DEECON ¼ 0x20 ; /* row of 64 bytes write */
DEEDAT ¼ dat; /* set write data */
DEEADR ¼ (unsigned char) adr; /* start write */
while((DEECON&0x80) ¼¼ 0); /* wait until complete */

}

/**
* START of the PROGRAM *

** /
void main (void) {
writeByteRow(dataAddress,‘X’); /* write to EEPROM */

}

EXERCISE 5.6

/**
* Chapter 5 Exercise5.6 *
* LPC932 EEPROM byte read and write applications *
* April 2003 *
* *
* This program writes 512 bytes to EEPROM memory *

** /
#include <Reg932.h>
#define dataAddress 0

/**
* Write one byte to the EEPROM *

** /
void writeByte(unsigned int adr, unsigned char dat)
{
DEECON ¼ 0x30; /* block write */
DEEDAT ¼ dat; /* set write data */
DEEADR ¼ (unsigned char)adr; /* Any address */
while((DEECON&0x80) ¼¼ 0); /* wait until complete */

}
/**
* START of the PROGRAM *

** /
void main (void) {
writeByte(dataAddress,‘Y’); /* write to EEPROM */

}

Solutions to exercises 217

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 218 – [201–225/25]
27.11.2003 12:38PM

EXERCISE 5.7

/**
* Chapter 5 Exercise5.7 *
* LPC932 EEPROM byte read and write applications *
* April 2003 *
* *
* This program writes some data to EEPROM memory *
* and then reads the same data back *
** /
#include <Reg932.h>
/**
* Write one byte to the EEPROM *
** /
void writeByte(unsigned int adr, unsigned char dat)
{
DEECON ¼ 0x00; /* byte read/write */
DEEDAT ¼ dat; /* set write data */
DEEADR ¼ (unsigned char) adr; /* start write */
while((DEECON&0x80) ¼¼ 0); /*wait until complete */

}
/**
* read one byte from the EEPROM *
** /
unsigned char readByte(unsigned int adr)
{
DEECON ¼ 0x00; /* byte read/write */
DEEADR ¼ (unsigned char) adr; /* start read */
while((DEECON&0x80) ¼¼ 0); /*wait until complete */
return DEEDAT; /* return data */

}
/**
* START of the PROGRAM *
** /
void main (void) {
writeByte(0x10,‘H’); /* write to EEPROM */
writeByte(0x11,‘A’); /* write to EEPROM */
writeByte(0x12,‘S’); /* write to EEPROM */
writeByte(0x13,‘S’); /* write to EEPROM */
writeByte(0x14,‘A’); /* write to EEPROM */
writeByte(0x15,‘N’); /* write to EEPROM */
writeByte(0x16,‘ ’) ; /* write to EEPROM */
writeByte(0x17,‘F’); /* write to EEPROM */
writeByte(0x18,‘R’); /* write to EEPROM */
writeByte(0x19,‘E’); /* write to EEPROM */
writeByte(0x1A,‘D’); /* write to EEPROM */
writeByte(0x1B,‘ ’) ; /* write to EEPROM */
writeByte(0x1C,‘D’); /* write to EEPROM */
writeByte(0x1D,‘A’); /* write to EEPROM */
writeByte(0x1E,‘V’); /* write to EEPROM */

218 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 219 – [201–225/25]
27.11.2003 12:38PM

writeByte(0x1F,‘I’); /* write to EEPROM */
writeByte(0x20,‘D’); /* write to EEPROM */

P0 ¼ readByte(0x10); /* read from EEPROM */
P0 ¼ readByte(0x11); /* read from EEPROM */
P0 ¼ readByte(0x12); /* read from EEPROM */
P0 ¼ readByte(0x13); /* read from EEPROM */
P0 ¼ readByte(0x14); /* read from EEPROM */
P0 ¼ readByte(0x15); /* read from EEPROM */
P0 ¼ readByte(0x16); /* read from EEPROM */
P0 ¼ readByte(0x17); /* read from EEPROM */
P0 ¼ readByte(0x18); /* read from EEPROM */
P0 ¼ readByte(0x19); /* read from EEPROM */
P0 ¼ readByte(0x1A); /* read from EEPROM */
P0 ¼ readByte(0x1B); /* read from EEPROM */
P0 ¼ readByte(0x1C); /* read from EEPROM */
P0 ¼ readByte(0x1D); /* read from EEPROM */
P0 ¼ readByte(0x1E); /* read from EEPROM */
P0 ¼ readByte(0x1F); /* read from EEPROM */
P0 ¼ readByte(0x20); /* read from EEPROM */

}

Chapter 6

EXERCISE 6.1

/**
* Chapter XA Exercise6.1 *
* Timer 0 programming Application *
* April 2003 *
* *
* This toggles P1.7 port pin at 1KHz *
** /
#include <REGXAG49.H>
sbit SquareWavePin ¼ P1^7; /* pin 7 of the port 1 */
void delay(); /* declare the delay function */

/**
* START of the PROGRAM *
** /
void main (void) {
WDCON ¼ 0; /* watchdog off */
WFEED1 ¼ 0xA5;
WFEED2 ¼ 0x5A;
TMOD ¼ 0x01; /* Timer 0 in mode 1 */
while(1) { /* do for ever */

SquareWavePin ¼ 1; /* pin 7 of port 1 set to 1 */
delay(); /* produce delay of 0.5ms */
SquareWavePin ¼ 0; /* pin 7 of port 0 set to 1 */

Solutions to exercises 219

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 220 – [201–225/25]
27.11.2003 12:38PM

delay(); /* produce delay of 0.5ms */
} /* while()*/

} /* main()*/

/**
* produce a delay of about 0.5ms *
** /
void delay(){
TH0 ¼ 0xFA; /* set the high byte */
TL0 ¼ 0x99; /* set the low byte */
TR0 ¼ 1; /* start timer 0 */
while(!TF0); /* wait for roll-over */
TR0 ¼ 0; /* stop timer 0 */
TF0 ¼ 0; /* clear flag 0 */

} /* delay()*/

EXERCISE 6.2

/**
* Chapter XA Exercise6.2 *
* WatchDog programming Application *
* April 2003 *
* *
* This toggles P1.7 port pin at 1KHz *
** /
#include <REGXAG49.H>
sbit SquareWavePin ¼ P1^7; /* pin 7 of the port 1 */
void delay(); /* declare the delay function */
/**
* START of the PROGRAM *
** /
void main (void) {
WDCON ¼ 4; /* watchdog pre-scale ¼ 32 */
WDL ¼ 51; /* watchdog auto-reload ¼ 51 */
SCR ¼ 0; /*timer clock pre-scale ¼ 4 */
TMOD ¼ 0x01; /* timer 0 in mode 1 */
while(1) { /* do for ever */

SquareWavePin ¼ 1; /* pin 7 of port 1 set to 1 */
delay(); /* produce delay of 0.5ms */
SquareWavePin ¼ 0; /* pin 7 of port 0 set to 1 */
delay(); /* produce delay of 0.5ms */

} /* while()*/
} /* main()*/

/**
* produces a delay of about 0.5ms *
** /
void delay(){
TH0 ¼ 0xFA; /* set the high byte */
TL0 ¼ 0x99; /* set the low byte */

220 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 221 – [201–225/25]
27.11.2003 12:38PM

TR0 ¼ 1; /* start timer 0 */
while(!TF0); /* wait for roll-over */
TR0 ¼ 0; /* stop timer 0 */
TF0 ¼ 0; /* clear flag 0 */
WFEED1 ¼ 0xA5; /* feed the watchdog */
WFEED2 ¼ 0x5A; /* feed the watchdog */

} /* delay()*/

EXERCISE 6.3

/**
* Chapter XA Exercise6.3 *
* UART programming application *
* April 2003 *
* *
* This sends two messages to UART continuously *
** /
#include <REGXAG49.H>
code char MessageOne[] ¼ ‘‘Roses are red ~ ’’ ;
code char MessageTwo[] ¼ ‘‘Violets are blue ~ ’’ ;
const char CR ¼ 0x0D; /* Carriage Return */
const char LF ¼ 0x0A; /* Line Feed */
void send(unsigned char ch);

/**
* START of the PROGRAM *
** /
void main (void) {
unsigned int i;
WDCON ¼ 0; /* watchdog control off */

WFEED1 ¼ 0xA5; /* feed the watchdog */
WFEED2 ¼ 0x5A; /* feed the watchdog */
SCON ¼ 0x42; /* Serial mode 1, TI set */
TMOD ¼ 0x20; /* Timer1 in mode 2 */
RTL1 ¼ 238; /* Timer1 reload set */
TL1 ¼ 238; /* TL1 also set initially */

TR1 ¼ 1; /* start Timer1 */
while(1) { /* do for ever */

i ¼ 0;
while(MessageOne[i] !¼ ‘~ ’) {
send(MessageOne[i]);
iþþ;

}
send(CR); /* send Carriage Return */
send(LF); /* send Line Feed */
i ¼ 0;
while(MessageTwo[i] !¼ ‘~ ’) {
send(MessageTwo[i]);
iþþ;

}

Solutions to exercises 221

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 222 – [201–225/25]
27.11.2003 12:38PM

send(CR); /* send Carriage Return */
send(LF); /* send Line Feed */

} /* while(1)*/
} /* main()*/
/**
* this function sends one character *
** /
void send(unsigned char ch){
while(!TI); /* wait for SBUF clear to send */
TI ¼ 0; /* clear TI */
S0BUF ¼ ch;

} /* send() */

EXERCISE 6.4

/**
* Chapter XA Exercise6.4 *
* Exception programming Application *
* April 2003 *
* *
* This sends a messages to UART when an exception *
* occurs. *
** /
#include <REGXAG49.H>
code char Message[] ¼ ‘‘Divide By Zero Exception ~ ’’ ;
const char CR ¼ 0x0D; /* Carriage Return */
const char LF ¼ 0x0A; /* Line Feed */
/**
* START of the PROGRAM *
** /
void main (void) {
WDCON ¼ 0; /* watchdog control off */
WFEED1 ¼ 0xA5; /* feed the watchdog */
WFEED2 ¼ 0x5A; /* feed the watchdog */
SCON ¼ 0x42; /* Serial mode 1, TI set */
TMOD ¼ 0x20; /* timer 1 in mode 2 */
TH1 ¼ 0xFA; /* TH1 set */
TL1 ¼ 0xFA; /* TL1 also set initially */
TR1 ¼ 1; /* start timer 1 */
while(1) { /* stay here for ever */

TL0 ¼ 44; /* divide by zero */
TL0 ¼ TL0/0;

}
} /* main() */
/**
* sends one character to the UART *
** /
void send(unsigned char ch){
while(!TI); /* wait for SBUF clear to send */

222 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 223 – [201–225/25]
27.11.2003 12:38PM

TI ¼ 0; /* clear TI */
S0BUF ¼ ch;

} /* send() */
/**
* handles divide by zero exceptions *
** /
void DivideByZero() exception 4 using 1 {
int i ¼ 0;
while(Message[i] !¼ ‘~ ’) {
send(Message[i]);
iþþ;

}
send(CR); /* send carriage return */
send(LF); /* send line feed */

} /* DivideByZero() exception */

EXERCISE 6.5

/**
* Chapter XA Exercise6.5 *
* Trap programming application *
* April 2003 *
* *
* This program continuously toggles P1.4, while P1.0 is *
* at logic 1, and calls the trap 5 to toggle P1.7 when *
* P1.0 is logic 0. *
** /
#include <REGXAG49.H>
sbit port1Pin4 ¼ P1^4;
sbit port1Pin0 ¼ P1^0;
sbit port1Pin7 ¼ P1^7;
/**
* handles trap *
** /
int myTrap5() trap 5 {

port1Pin7 ¼ 1;
port1Pin7 ¼ 0;
return 0;

}
/**
* START of the PROGRAM *
** /
void main (void) {
WDCON ¼ 0; /* watchdog control off */
WFEED1 ¼ 0xA5; /* feed the watchdog */
WFEED2 ¼ 0x5A; /* feed the watchdog */
SM ¼ 0; /* SM ¼ 0, therefore user mode */
while(1) {

Solutions to exercises 223

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 224 – [201–225/25]
27.11.2003 12:38PM

while(port1Pin0){ /* while port1 pin0 ¼ 1 */
port1Pin4 ¼ 1; /* port1, pin4 ¼ 1 */
port1Pin4 ¼ 0; /* port1, pin4 ¼ 0 */

}
myTrap5();
}

} /* main() */

EXERCISE 6.6

/**
* Chapter XA Exercise6.6 *
* Interrupt Priority programming Application *
* April 2003 *
* *
* This program changes the priority of the external 1 to one *
* higher than that of Timer0. *
** /
#include <REGXAG49.H>
sbit port1Pin4 ¼ P1^4;
sbit port1Pin7 ¼ P1^7;
/**
* Timer0 interrupt *
** /
void Timer0(void) interrupt 1 {
while(1){

port1Pin7 ¼ 1;
port1Pin7 ¼ 0;

}
}
/**
* External 1 interrupt *
** /
void EX1terna1() interrupt 2 priority 11 {
port1Pin4 ¼ 1;
port1Pin4 ¼ 0;

}
/**
* START of the PROGRAM *
** /
void main (void) {
WDCON ¼ 0; /* watchdog control off */
WFEED1 ¼ 0xA5; /* feed the watchdog */
WFEED2 ¼ 0x5A; /* feed the watchdog */
TMOD ¼ 0x02; /* Timer0 in mode 2 */
TL0 ¼ 0xDD; /* Timer0 low byte set to DD */
RTL0 ¼ 0xDD; /* Timer0 reload set to DD */
IPA1 ¼ 0x03; /* External Int: Priority ¼ 11(8þ 3)*/

224 Solutions to exercises

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/SOLUTION.3D – 225 – [201–225/25]
27.11.2003 12:38PM

IPA0 ¼ 0x20; /* Timer0 Int: Priority ¼ 10(8þ 2)*/
IEL ¼ 0x86; /* Enable EA, Ex1 and ET0 */
TR0 ¼ 1; /* start Timer0 */
while(1); /* wait here for interrupts */

} /* main() */

Solutions to exercises 225

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_A.3D – 226 – [226–231/6]
27.11.2003 12:39PM

Appendix A
8051 Instruction Set

A.1 Introduction

The instructions for the 8051 device are dependent on the clock frequency and
are completed in a number of clock cycles. The basic 8051 device operates on a
minimum 12 clock cycles per instruction basis and this is reflected in the notes
that follow each type of instruction described below. However, some members
of the 8051 family operate on a minimum of 6 clock cycles per instruction,
hence performance is twice as fast as the basic 8051 for a specified clock
frequency. Other members of the 8051 family operate on a minimum of 2 clock
cycles with a consequent increase in operating speed for a given clock fre-
quency. Details of any variation in instruction timing for a particular 8051
family member referred to in this text are given in the relevant appendix.

A.2 Notes on instruction set

Rn Registers R7–R0 of the currently selected register bank.
direct 8-bit internal data location address. This could be internal data

RAM or an SFR.
@Ri 8-bit internal data RAM location addressed indirectly through

Register Ri (R0 or Rl).
addr 16 16-bit destination address. Used by LCALL and LJMP. A branch

can be anywhere within the 64 KB program memory space.
addr 11 11-bit destination address. Used by ACALL and AJMP. The

branch would be within the same 2 KB of program memory.
bit Direct addressed bit in internal data RAM or SFR.
#data 8-bit constant included in the instruction.
#data 16 16-bit constant included in the instruction.
C* Carry bit in the PSW register.
/ Complement byte or bit.
rel Signed (two’s complement) 8-bit offset byte.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_A.3D – 227 – [226–231/6]
27.11.2003 12:39PM

A.3 Data transfer instructions

MOV A, Rn [A] < ��� [Rn]
MOV A, direct [A] < ��� [direct]
MOV A, @Ri [A] < ��� [Ri{M}]
MOV A, #data [A] < ��� data
MOV Rn, A [Rn] < ��� [A]
MOV Rn, direct [Rn] < ��� [direct]
MOV Rn, #data [Rn] < ��� data
MOV direct, A [direct] < ��� [A]
MOV direct, Rn [direct] < ��� [Rn]
MOV direct, direct [direct] < ��� [direct]
MOV direct, @Ri [direct] < ��� [Ri{M}]
MOV direct, #data [direct] < ��� data
MOV @Ri, A [Ri{M}] < ��� [A]
MOV @Ri, direct [Ri{M}] < ��� [direct]
MOV @Ri, #data [Ri{M}] < ��� data
MOV DPTR, #data 16 [DPTR] < ��� data (16-bit)
MOVC A, @A þ PC [A] < ��� [[[A] þ [PC]]fMg]
MOVC A,@A þ DPTR [A] < ��� [[[A] þ [DPTR]]fMg]
MOVX A,@Ri [A] < ��� [Ri{M}]
MOVX A, @ DPTR [A] < ��� [DPTR {M}]
MOVX @DPTR,A [DPTR{M}] < ��� [A]
PUSH direct [SP] < ��� [SP] þ 1

[SP{M}] < ��� [direct]
POP direct [direct] < ��� [SP{M}]

[SP] < ��� [SP] � 1
XCH A,Rn [A] <������> [Rn]
XCH A,direct [A] <������> [direct]
XCH A,@Ri [A] <������> [Ri{M}]
XCHD A,@Ri [A3�0] <������> [RifM3�0g]

The majority of data transfer instructions consist of 24-clock cycles. The
exceptions are:

MOV A,#data
MOV Rn,A
MOV Rn,#data
MOV direct,A
MOV @Ri,A
MOV @Ri,#data
XCH A,Rn
XCH A,direct
XCH A,@Ri
XCHD A,@Ri

which consist of 12-clock cycles.

Appendix A 227

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_A.3D – 228 – [226–231/6]
27.11.2003 12:39PM

A.4 Arithmetic instructions

ADD A,Rn [A] < ��� [A] þ [Ri]
ADD A,direct [A] < ��� [A] þ [direct]
ADD A,@Ri [A] < ��� [A] þ [RifMg]
ADD A,#data [A] < ��� [A] þ data
ADDC A,Rn [A] < ��� [A] þ [Ri] þ C�

ADDC A,direct [A] < ��� [A] þ [direct] þ C�

ADDC A,@Ri [A] < ��� [A] þ [RifMg] þ C�

ADDC A,#data [A] < ��� [A] þ data þ C�

SUBB A, Rn [A] < ��� [A] � [Rn] � C�

SUBB A, direct [A] < ��� [A] � [direct] � C�

SUBB A,@Ri [A] < ��� [A] � [RifMg] � C�

SUBB A,#data [A] < ��� [A] � data � C�

INC A [A] < ��� [A] þ 1
INC Rn [Rn] < ��� [Rn] þ 1
INC direct [direct] < ��� [direct] þ 1
INC @Ri [Ri{M}] < ��� [RifMg] þ 1
DEC A [A] < ��� [A] � 1
DEC Rn [Rn] < ��� [Rn] � 1
DEC direct [direct] < ��� [direct] � 1
DEC @Ri [Ri{M}] < ��� [RifMg] � 1
INC DPTR [DPTR] < ��� [DPTR] þ 1
MUL AB [A7�0] < ��� [A] � [B]

[B15�8] < ��� [A] � [B]
DIV AB [A15�8] < ��� [A] / [B]

fB7�0] < ��� remainder
DA A if [A3�0] >9, OR Aux C�¼1

then [A3�0] < ��� [A3�0] þ 6
if [A7�4] >9, OR Aux C�¼1
then [A7�4] < ��� [A7�4] þ 6

The majority of arithmetic instructions consist of 12-clock cycles. The excep-
tions are:

INC DPTR

which takes 24-clock cycles and:

MUL AB
DIV AB

both of which take 48-clock cycles.

A.5 Logical instructions

ANL A, Rn [A] < ��� [A] AND [Rn]
ANL A, direct [A] < ��� [A] AND [direct]

228 Appendix A

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_A.3D – 229 – [226–231/6]
27.11.2003 12:39PM

ANL A, @Ri [A] < ��� [A] AND [Ri{M}]
ANL A, #data [A] < ��� [A] AND data
ANL direct, A [direct] < ��� [direct] AND [A]
ANL direct, #data [direct] < ��� [direct] AND data
ORL A, Rn [A] < ��� [A] OR [Rn]
ORL A, direct [A] < ��� [A] OR [direct]
ORL A, @Ri [A] < ��� [A] OR [Ri{M}]
ORL A, #data [A] < ��� [A] OR data
ORL direct, A [direct] < ��� [direct] OR [A]
ORL direct, #data [direct] < ��� [direct] OR data
XRL A, Rn [A] < ��� [A] XOR [Rn]
XRL A, direct [A] < ��� [A] XOR [direct]
XRL A, @Ri [A] < ��� [A] XOR [Ri{M}]
XRL A, #data [A] < ��� [A] XOR data
XRL direct, A [direct] < ��� [direct] XOR [A]
XRL direct, #data [direct] < ��� [direct] XOR data
CLR A [A] < ��� 0
CPL A [A] < ��� [/A]
RL A [Anþ1] < ��� [An], n ¼ 0�6

[A0] < ��� [A7]
RLC A [Anþ1] < ��� [An], n ¼ 0�6

[A0] < ��� C�

C� < ��� [A7]
RRA [An] < ��� [Anþ1], n ¼ 0�6

[A7] < ��� [A0]
RRC A [An] < ��� [Anþ1], n ¼ 0�6

[A7] < ��� C�

C� < ��� [A0]
SWAP A [A3�0] <������> [A7�4]

The majority of logical instructions consist of 12-clock cycles. The excep-
tions are:

ANL direct,#data
ORL direct,#data
XRL direct,#data

which take 24-clock cycles.

A.6 Boolean variable manipulation instructions

CLR C C* < ��� 0
CLR bit bit < ��� 0
SETB C C* < ��� 1
SETB bit bit < ��� 1
CPL C C* < ��� /C*
CPL bit bit < ��� /bit

Appendix A 229

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_A.3D – 230 – [226–231/6]
27.11.2003 12:39PM

ANL C, bit C* < ��� C* AND bit
ANL C,/bit C* < ��� C* AND /bit
ORL C, bit C* < ��� C* OR bit
ORL C,/bit C* < ��� C* OR /bit
MOV C, bit C* < ��� bit
MOV C,/bit C* < ��� /bit
JC rel [PC] < ��� [PC] þ 2

if C� ¼ 1 [PC] < ��� [PC] þ rel
JNC rel [PC] < ��� [PC] þ 2

if C� ¼ 0 [PC] < ��� [PC] þ rel
JB bit, rel [PC] < ��� [PC] þ 3

if bit¼ 1 [PC] < ��� [PC] þ rel
JNB bit, rel [PC] < ��� [PC] þ 3

if bit¼ 0 [PC] < ��� [PC] þ rel
JBC bit, rel [PC] < ��� [PC] þ 3

if bit¼ 1 bit < ��� 0
[PC] < ��� [PC] þ rel

The majority of Boolean variable manipulation instructions take 24-clock
cycles. The exceptions are:

CLR C
CLR bit
SETB C
SETB bit
CPL C
CPL bit
MOV C,bit

all of which take 12-clock cycles.

A.7 Program branching instructions

ACALL addr 11 [PC] < ��� [PC] þ 2
[SP] < ��� [SP] þ 1
[SP{M}] < ��� [PC7�0]
[SP] < ��� [SP] þ 1
[SP{M}] < ��� [PC15�8]
[PC10�0] < ��� addr 11

LCALL addr 16 [PC] < ��� [PC] þ 3
[SP] < ��� [SP] þ 1
[SP]{M}] < ��� [PC7�0]
[SP] < ��� [SP] þ 1
[SP{M}] < ��� [PC15�8]
[PC15�0] < ��� addr 16

RET [PC15�8] < ��� [SP{M}]
[SP] < ��� [SP] � 1

230 Appendix A

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_A.3D – 231 – [226–231/6]
27.11.2003 12:39PM

[PC7�0] < ��� [SP{M}]
[SP] < ��� [SP] � 1

RETI [PC15�8] < ��� [SP{M}]
[SP] < ��� [SP] � 1

[PC7�0] < ��� [SP{M}]
[SP] < ��� [SP] � 1

AJMP addr 11 [PC] < ��� [PC] þ 2
[PC] < ��� addr 11

LJMP addr 16 [PC] < ��� [PC] þ 3
[PC] < ��� addr 16

SJMP rel [PC] < ��� [PC] þ 2
[PC] < ��� [PC] þ rel

JMP @ A þ DPTR [PC] < ��� [A] þ [DPTR]
JZ rel [PC] < ��� [PC] þ 2

if [A] ¼ 0 [PC] < ��� [PC] þ rel
JNZ rel [PC] < ��� [PC] þ 2

if [A] � 0 [PC] < ��� [PC] þ rel
CJNE A, direct, rel [PC] < ��� [PC] þ 3

if A <> [direct] [PC] < ��� [PC] þ rel
if A < [direct] C* < ��� 1
else C* < ��� 0

CJNE A, #data,rel [PC] < ��� [PC] þ 3
if A <> data [PC] < ��� [PC] þ rel
if A < data C* < ��� 1
else C* < ��� 0

CJNE Rn, #data, rel [PC] < ��� [PC] þ 3
if [Rn] <> data [PC] < ��� [PC] þ rel
if [Rn] < data C* < ��� 1
else C* < ��� 0

CJNE @Ri, #data, rel [PC] < ��� [PC] þ 3
if [Ri{M}] <> data

[PC] < ��� [PC] þ rel
if [Ri{M}] <> data

C* < ��� 1
else C* < ��� 0

DJNZ Rn, rel [PC] < ��� [PC] þ 2
[Rn] < ��� [Rn] � 1

if [Rn] ¼ 0 [PC] < ��� [PC] þ rel
DJNZ direct, rel [PC] < ��� [PC] þ 2

[direct] < ��� [direct] � 1
if [Rn] ¼ 0 [PC] < ��� [PC] þ rel

NOP No operation

All program branching instructions take 24-clock cycles except for:

NOP

which takes 12-clock cycles.

Appendix A 231

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 232 – [232–245/14]
27.11.2003 12:39PM

Appendix B
Philips XA Microcontroller – XA and

8051 Instruction Set Differences

B.1 Arithmetic

8051 INSTRUCTIONS

INC ADD ADDC DA DEC SUBB MUL DIV

ADDITIONAL INSTRUCTIONS FOR THE XA

ADDS

ADD Short signed value (4-bit:þ7 to�8) to destination.

Example:
ADDS Rd, #data4

[Rd] < ��� [Rd]þ data4

SUB (.b, .w)

SUBtract without borrow.

Example:
SUB Rd, Rs

[Rd] < ��� [Rd]� [Rs]

MULU (.b, .w)

MULtiply Unsigned (8� 8, 16� 16).

Example:
MULU.b Rd, Rs

[RdH] < ��� most significant byte of [Rd]� [Rs]
[RdL] < ��� least significant byte of [Rd]� [Rs]

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 233 – [232–245/14]
27.11.2003 12:39PM

Example:
MULU.w Rd, Rs

[Rdþ 1] < ��� most significant byte of [Rd]� [Rs]
[Rd] < ��� least significant byte of [Rd]� [Rs]

DIVU (.b, .w, .d)

Divide Unsigned (8/8, 16/8, 32/16).

Example:
DIVU.b Rd, Rs

[RdL] < ��� 8-bit integer portion of [Rd]/[Rs]
[RdH] < ��� 8-bit remainder of [Rd]/[Rs]

Example:
DIVU.w Rd, Rs

[RdL] < ��� 8-bit integer portion of [Rd]/[Rs]
[RdH] < ��� 8-bit remainder of [Rd]/[Rs]

Example:
DIVU.d Rd, Rs

[Rd] < ��� 16-bit integer portion of [Rd]/[Rs]
[Rdþ 1] < ��� 16-bit remainder of [Rd]/[Rs]

SEXT (.b, .w)

Sign EXTend N flag (sign bit) into destination register.

Example:
SEXT.b Rd

[Rd] < ��� FF if N ¼ 1
[Rd] < ��� 00 if N ¼ 0

Example:
SEXT.w Rd

[Rd] < ��� FFFF if N ¼ 1
[Rd] < ��� 0000 if N ¼ 0

B.2 Logical

8051 INSTRUCTIONS

CLR bit SETB bit CPL CLR RL RR RLC RRC ANL OR XOR

Appendix B 233

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 234 – [232–245/14]
27.11.2003 12:39PM

ADDITIONAL INSTRUCTIONS FOR THE XA

NEG (.b, .w)

NEGate destination register (two’s complement).

Example:
NEG Rd

[Rd] < ��� [Rd]þ 1

LSR (.b, .w, .d)

Logical Shift Right destination register, 1–31 number of bits.

Example:
LSR Rd, Rs (see Figure B.1)

ASR (.b, .w, .d)

Arithmetic Shift Right destination register, 1–31 number of bits.

Example:
ASR Rd, Rs (see Figure B.2)

ASL (.b, .w, .d)

Arithmetic Shift Left destination register, 1–31 number of bits.

Example:
ASL Rd, Rs (see Figure B.3)

NORM (.b, .w, .d)

Logically shifts left the contents of the destination register until MSB is set,
storing the number of shifts performed in the source register.

Rd

LSBMSB C0

Figure B.1

Rd

MSB LSB C

Figure B.2

C MSB LSB

Rd

0

Figure B.3

234 Appendix B

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 235 – [232–245/14]
27.11.2003 12:39PM

Example:
NORM Rd, Rs (see Figure B.4)

CMP (.b, .w)

CoMPares the source with the destination by performing a two’s complement
binary subtraction of source from destination. Some flags are affected.

Example:
CMP Rd, Rs

[Rd]� [Rs]

AND (.b, .w)

ANDs bitwisely the contents of the source to the destination.

Example:
AND Rd.Rs

[Rd] < ��� [Rd] � [Rs]

B.3 Control transfer

8051 INSTRUCTIONS (UNCONDITIONAL)

SJMP rel LJMP addrl6 AJMP addrll LCALL addrl6 ACALL addrll

ADDITIONAL INSTRUCTIONS FOR THE XA (UNCONDITIONAL)

FJMP

Far JUMP absolute causes an unconditional branch to the absolute memory
location. The target address is always forced to be EVEN.

Example:
FJMP addr24

[PC(23 – 0)] < ��� addr24
[PC(0)] < ��� 0

CALL

CALL subroutine relative branches unconditionally in the range of
þ65 534 bytes to �65 536 bytes.

Rd

MSB LSB 0

Figure B.4

Appendix B 235

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 236 – [232–245/14]
27.11.2003 12:39PM

Example:
CALL rel26

[PC] < ��� [PC]þ 3
[SP] < ��� [SP]� 4
[SP(mem)] < ��� [PC(23� 0)]
[PC] < ��� [PC]þ rell6
[PC(0)] < ��� 0

FCALL

Far CALL subroutine absolute causes an unconditional branch to an absolute
location in the 16MB of XA address.

Example:
FCALL addr24

[PC] < ��� [PC]þ 4
[SP] < ��� [SP]� 4
[SP(mem)] < ��� [PC(23� 0)]
[PC] < ��� addr24
[PC(0)] < ��� 0

BR

Unconditional BRanch subroutine causes an unconditional branch to a
location in the range of þ254 bytes to �256 bytes.

Example:
BR rel8

[PC] < ��� [PC]þ 2
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

8051 INSTRUCTIONS (CONDITIONAL)

JB JC JNC JNZ JZ JBC CJNE DJNZ

ADDITIONAL INSTRUCTIONS FOR THE XA (CONDITIONAL)

BOV

Branch if OVerflow flag is set to a location in the range of þ254 bytes to
�256 bytes.

Example:
BOV rel8

236 Appendix B

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 237 – [232–245/14]
27.11.2003 12:39PM

[PC] < ��� [PC]þ 2
If [V-flag] ¼ 1 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BNV

Branch No oVerflow, branches if overflow flag is not set, to a location in the
range of þ254 bytes to �256 bytes.

Example:
BNV rel8

[PC] < ��� [PC]þ 2
If [V-flag] ¼ 0 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BPL

Branch PLus, branch to a location in the range of þ254 bytes to �256 bytes if
N flag is not set.

Example:
BPL rel8

[PC] < ��� [PC]þ 2
If [N-flag] ¼ 0 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BCC

Branch if Carry Clear, branches to a location in the range of þ254 bytes to
�256 bytes if carry flag is not set.

Example:
BCC rel8

[PC] < ��� [PC]þ 2
If [C-flag] ¼ 0 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BCS

Branch if Carry Set, branches to a location in the range of þ254 bytes to
�256 bytes if carry flag is set.

Example:
BCS rel8

Appendix B 237

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 238 – [232–245/14]
27.11.2003 12:39PM

[PC] < ��� [PC]þ 2
If [C-flag] ¼ 1 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BEQ

Branch if EQual, branches to a location in the range of þ254 bytes to
�256 bytes if zero flag is set.

Example:
BEQ rel8

[PC] < ��� [PC] þ 2
If [Z-flag] ¼ 1 then
[PC] < ��� [PC] þ rel8
[PC(0)] < ��� 0

BNE

Branch if Not Equal, branches to a location in the range of þ254 bytes to
�256 bytes if zero flag is reset.

Example:
BNE rel8

[PC] < ��� [PC]þ 2
If [Z-flag] ¼ 0 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BG

Branch Greater, branches to a location in the range of þ254 bytes to
�256 bytes if the last ‘compare’ instruction had a destination value that was
greater than the source value in an ‘unsigned operation’.

Example:
BG rel8

[PC] < ��� [PC]þ 2
If [Z-flag] OR [C-flag] ¼ 0 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BGE

Branch Greater than or Equal to, branches to a location in the range of
þ254 bytes to �256 bytes if the last ‘compare’ instruction had a destination
value that was greater than or equal to the source value in a ‘signed
operation’.

238 Appendix B

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 239 – [232–245/14]
27.11.2003 12:39PM

Example:
BGE rel8

[PC] < ��� [PC]þ 2
If [N-flag] XOR [V-flag] ¼ 0 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BGT

Branch Greater Than, branches to a location in the range of þ254 bytes to
�256 bytes if the last ‘compare’ instruction had a destination value that was
greater than the source value in a ‘signed operation’.

Example:
BGT rel8

[PC] < ��� [PC]þ 2
If ([Z-flag] OR [N-flag]) XOR [V-flag] ¼ 0 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BLE

Branch Less than or Equal to, branches to a location in the range ofþ254 bytes
to �256 bytes if the last ‘compare’ instruction had a destination value that was
less than or equal to the source value in a ‘signed operation’.

Example:
BLE rel8

[PC] < ��� [PC]þ 2
If ([Z-flag] OR [N-flag]) XOR [V-flag] ¼ 1 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

BLT

Branch Less Than, branches to a location in the range of þ254 bytes to
�256 bytes if the last ‘compare’ instruction had a destination value that was
less than the source value in a ‘signed operation’.

Example:
BLT rel8

[PC] < ��� [PC]þ 2
If [N-flag] OR [V-flag] ¼ 1 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

Appendix B 239

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 240 – [232–245/14]
27.11.2003 12:39PM

BMI

Branch MInus, branches to a location in the range of þ254 bytes to �256 bytes
if N-flag is set.

Example:
BMI rel8

[PC] < ��� [PC] þ 2
If [N-flag] ¼ 1 then
[PC] < ��� [PC] þ rel8
[PC(0)] < ��� 0

BL

Branch Less than or equal to, branches to a location in the range of þ254 bytes
to �256 bytes if the last ‘compare’ instruction had a destination value that was
less than or equal to the source value in an ‘unsigned operation’.

Example:
BL rel8

[PC] < ��� [PC]þ 2
If [Z-flag] OR [C-flag] ¼ 1 then
[PC] < ��� [PC]þ rel8
[PC(0)] < ��� 0

B.4 Data transfer

8051 INSTRUCTIONS

MOV MOVC MOVX

ADDITIONAL INSTRUCTIONS IN THE XA

MOVS (.b, .w)

MOVe Short, moves signed value (4-bit: þ7 to �8) to destination.

Example:
MOVS Rd, # data4

[Rd] < ��� data4

LEA

Load Effective Address, adds the contents of the source register to the offset
value (8/16-bit), and stores the result into destination register.

240 Appendix B

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 241 – [232–245/14]
27.11.2003 12:39PM

Example:
LEARd, Rsþ offset8/16

[Rd] < ��� [Rs]þ offset8/16

B.5 Miscellaneous

8051 INSTRUCTIONS

POP PUSH SWAP XCHD

ADDITIONAL INSTRUCTIONS FOR THE XA

POPU

POP User multiple, pops specified registers (one or more) from the stack (from
1 to 8 times). Any combination of bytes registers in group R0L to R3H or the
group R4L to R7H may be popped in a single instruction. Also any combination
of word registers in the group R0 to R7 may be popped in a single instruction.

Example:
POPU Rlist

[Ri] < ��� [SP(mem)]
[SP] < ��� [SP]þ 2
Repeat for all selected Ri registers

PUSHU

PUSH User multiple, pushes specified registers (one or more) into the stack
(from 1 to 8 times). Any combination of bytes registers in group R0L to R3H or
the group R4L to R7H may be pushed in a single instruction. Also any
combination of word registers in the group R0 to R7 may be pushed in a single
instruction.

Example:
PUSHU Rlist

[SP] < ��� [SP]� 2
[SP(mem)] < ��� [Ri]
Repeat for all selected Ri registers

RESET

The chip is internally RESET without any external effects, when the RESET
instruction is executed.

Appendix B 241

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 242 – [232–245/14]
27.11.2003 12:39PM

Example:
RESET

[PC] < ��� vector (0) bytes 2 and 3
[PSW] < ��� vector (0) bytes 0 and 1
[SFRs] < ��� reset values into SFRs

TRAP

This causes a specified software trap. The invoked routine is determined by
branching to the specified vector entry point. The RETI, return from interrupt
instruction, is used to resume execution after the trap routine has been com-
pleted.

Example:
RESET

[PC] < ��� [PC]þ 2
[SSP] < ��� [SSP]� 6
[SSP(mem)] < ��� [PC]
[SSP(mem)] < ��� [PSW]
[PSW] < ��� trap vector
[PC(0–15)] < ��� trap vector
[PC(23–16, 0)] < ��� 0

BKPT

This causes a BreaK PoinT trap. The break point trap acts like an immediate
interrupt, using a vector call to a specific piece of code that will be executed in SM.

Example:
RESET

[PC] < ��� [PC]þ 1
[SSP] < ��� [SSP]� 6
[SSP(mem)] < ��� [PC]
[SSP(mem)] < ��� [PSW]
[PSW] < ��� bkpt vector
[PC(0–15)] < ��� bkpt vector
[PC(23–16, 0)] < ��� 0

Some examples of specific applications using the XA instructions are as
follows:

add.b r0h, r0h add.b rll, [r2] add.b rlh, [r3þ]

add.b r21, [r4þ $44] add.b r2h, [r5þ $5555] add.b r31, $066

add.b r0h,#$11 add.b [r2],#22 add.b [r3þ],#$33

add.b [r4þ $44],#$44 add.b [r5þ $5555] add.b $066,#$66

242 Appendix B

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 243 – [232–245/14]
27.11.2003 12:39PM

add.w r9, r9 add.w R10, [R0] add.w Rll, [R0þ]

add.w R12, [R0þ $0C] add.w R13, [R0þ $0DDD] add.w R14, $EE

add.w r9,#$9999 add.w[R0],#$AAAA add.w[R0þ],#$BBBB

add.w [R0þ $0C],#$CCCC add.w [R0þ $0DDD],#$0DDD add.w $EE,#$EEEE

adds.b r0h,#$1 adds.b [r2],#$2 adds.b [r3þ],#$3

adds.b [r4þ $44],#$4 adds.b [r5þ $5555],#$5 adds.b $066,#$6

adds.w r9,#�7 adds.w [R0þ],#�5 adds.w [R0þ $0C],#�4

adds.w [R0],#�6 adds.w $EE,#�2

adds.w [R0þ $0DDD],#�3

addc.b R0h,R0h addc.b R11, [R2] addc.b Rlh, [R3þ]

addc.b R21, [R4þ $44] addc.b R2h, [R5þ $5555] addc.b R31, $66

addc.w R9, r9 addc.w rl0, [r0] addc.w rll, [r0þ]

addc.w rl2, [r0þ $0C] addc.w rl3, [r0þ $0DDD] addc.w rl4, $EE

sub.b r0h, r0h sub.b rll, [r2] sub.b rlh, [r3þ]

sub.b r21, [r4þ $44] sub.b r2h, [r5þ $5555] sub.b r31, $066

sub.w r9, r9 sub.w Rl0, [R0] sub.w Rll, [R0þ]

sub.w Rl2, [R0þ $0C] sub.w Rl3, [R0þ $0DDD] sub.w R14, $EE

subb.b r0h, r0h subb.b rll, [r2] subb.b rlh, [r3þ]

subb.b r21, [r4þ $44] subb.b r2h, [r5þ $5555] subb.b r31, $066

subb.w r9, r9 subb.w Rl0, [R0] subb.w Rll, [R0þ]

subb.w Rl2, [R0þ $0C] subb.w Rl3, [R0þ $0DDD] subb.w R14, $EE

movc.b r0l, [r0þ] mov.b r0h, r0h mov.b rll, [r2]

mov.b rlh, [r3þ] mov.b r2l, [r4þ $44] mov.b r2h, [r5þ $5555]

mov.b r3l, $066 mov.b [r0þ], [r0þ] mov.b [r0], 00

mov.b 00, [R0]

movc.w R8, [R0þ] mov.w r9, r9 mov.w RI0, [R0]

mov.w Rll, [R0þ] mov.w Rl2, [R0þ $0C] mov.wRl3, [R0þ $0DDD]

mov.w R14, $EE mov.w [r0þ], [r0þ] mov.w [r0], $88

mov.w $88, [R0]

movx.b r3h, [r7] movx.w rl5, [r0]

movs.b r0h,#$1 movs.b [r2],#$2 movs.b [r3þ],#$3

movs.b [r4þ $44],#$4 movs.b [r5þ $5555],#$5 movs.b $066,#$6

movs.w r9,#�7 movs.w [R0],#�6 movs.w [R0þ],#�5

movs.w [R0þ $0C],#�4 movs.w [R0þ $0DDD],#�3 movs.w $EE,#�2

and.b r0h, r0h and.b rll, [r2] and.b rlh, [r3þ]

and.b r21, [r4þ $44] and.b r2h, [r5þ $5555] and.b r31, $066

and.w r9, r9 and.w RI0, [R0] and.w Rll, [R0þ]

and.wR12, [R0þ $0C] and.w Rl3, [R0þ $0DDD] and.w R14, $EE

Appendix B 243

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 244 – [232–245/14]
27.11.2003 12:39PM

or.b r0h, r0h or.b rll, [r2] or.b rlh, [r3þ]

or.b r21, [r4þ $44] or.b r2h, [r5þ $5555] or.b r31, $066

or.w r9, r9 or.w RI0, [R0] or.w Rll, [R0þ]

or.wR12, [R0þ $0C] or.w Rl3, [R0þ $0DDD] or.w R14, $EE

xor.b r0h, r0h xor.b r1l, [r2] xor.b r1h, [r3þ]

xor.b r2l, [r4þ $44] xor.b r2h, [r5þ $5555] xor.b r31, $066

xor.w r9, r9 xor.w RI0, [R0] xor.w Rll, [R0þ]

xor.w Rl2, [R0þ $0C] xor.w Rl3, [R0þ $0DDD] xor.w R14, $EE

rr.b r01,#00 rl.b rlh,#3 rrc.b r4h,#$7

rlc.b R4h,#7 sl.b r0h, r0h asr.b rll, rll

asl.b r0h,#1 asr.b r1l,#2 lsr.b r0l, r0l

lsr.b r0l,#0

rr.w r8,#$8 rl.w Rll,#11 rrc.w rl5,#$f

rlc.w R7,#15 asl.w R9, R01 asr.w R10, R01

asl.w R9,#9 asr.w R10,#10 lsr.w R8,R01

lsr.w R8,#8

asl.d R3, R01 asr.d R5, R01 asl.d R3,#13

asr.d R5,#14 lsr.d Rl,#12 lsr.dRl, R0l

mulu.b R0l, R0l mulu.w R4, R4 mul.w R6, R6

mulu.b R4l,#$88 mul.w R9,#$99 mul.w R9,#$99

divu.b R0h, R0h divu.w R5, R2h div.w R7, R3h

divu.b R4l,#$88 divu.w R8,#88 div.w R8,#88

divu.d R9,#$99 div.d R9,#$99 divu.dR13, R13

div.d R15,R15

clr my_bit setb my_bit mov C, my_bit

mov my_bit,C anl C, my_bit anl C,/my_bit

orl C,my_bit orl C,/my_bit

xch.w r8,[R0] xch.w R8, $88 xch.b r01, 0

xch.b R0l,[R0] xch.b R0l, R0l xch.w r8,R8

lea R0,R0þ 0 lea r0, R0þ $88

norm.b r1h,r1h norm.w R11, R0l norm.d R7, R01

fcall $443322 call $5566 call [R6]

pushu.b R71,r6h,r61,r51,r4h,r41 push.b R31,r2h,r21,rll,r0h,r01

pushu.w R15,R14,R13,R12,R11,R10,R9,R8 push.w R7,R6,R5,R4,R3,R2,R1,R0

popu.b R71,r6h,r61,r51,r4h,r41 pop.b R71,r6h,r61,r51,r4h,r41

popu.w R15,R14,R13,R12,R11,R10,R9,R8 pop.w R15,R14,R13,R12,R11,R10,R9,R8

cmp.b r0h, r0h cmp.b rl1, [r2] cmp.b rlh, [r3þ]

cmp.b r21, [r4þ $44] cmp.b r2h, [r5þ $5555] cmp.b r31, $066

244 Appendix B

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_B.3D – 245 – [232–245/14]
27.11.2003 12:39PM

cmp.w r9, r9 cmp.w R10, [R0] cmp.w R13, [R0þ $0ddd]

cmp.w R 14, $EE cmp.w Rl 1, [R0þ] cmp.w R12, [R0þ $OC]

cjne.b R1l, $22, dummy cjne.b Rlh,#$33, dummyl cjne.b [R3],#33, dummy1

cjne.w R10, $1AA, dummy1 djnz.w $1AA, dummyl cjne.wRlI,#$BBBB, dummy1

cjne.w [R0], #$BBBB, dummyl

djnz.w rl5, dummy djnz.b $222, dummyl

jz dummyl jnz dummyl jb my_bit, $ jnb my_bit,$

jbc my_bit, $

bcc dummy2 bcs dummy2 bne dummy2 beq dummy2

bnv dummy2 bov dummy2 bpl dummy2 bmi dummy2

bg dummy2 bl dummy2 bge dummy2 bit dummy2

bgt dummy2 ble dummy2 br dummy2

jmp [aþ dptr] jmp [[R0þ]] jmp [R6] fjmp $443322

jmp $5566

trap#0 trap#1 trap#2 trap#3

trap#4 trap#5 trap#6 trap#7

trap#8 trap#9 trap#10 trap#11

trap#12 trap#13 trap#14 trap#15

da r0l cpl.b r0l neg.b r0l sext r8

cpl.w r8 neg.w r8 ret reti

reset bkpt

Appendix B 245

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 246 – [246–284/39]
28.11.2003 4:56PM

Appendix C
8051 Microcontroller Structure

C.1 Introduction

There are a wide range of devices available in the 8051 family, differing in terms
of memory type and capacity, number of counter/timers, types of serial inter-
face, number of input/output ports, clock rates, frequency range, etc. However,
there is a commonality among all devices in that they have been developed from
the ‘core’ 8051 device with modifications to produce the particular attributes of
a different family member. Each member of the 8051 microcontroller family has
been designed with improved device specifications in mind and to provide the
customer with a device to suit particular user requirements.
This appendix will consider the basic 8051 architecture and hardware

arrangements in some detail. Three devices, each a member of the 8051 family,
are considered in the chapters that make up the text and each are considered in
the appendices that follow. The devices are the 8-bit 89C66x (Appendix D), the
89LPC932 (Appendix E) and the 16-bit XAG-49 (Appendix F). All are flash
memory devices from the Philips Semiconductors microcontroller range and
grateful acknowledgement is given to that company for permission to repro-
duce details of their devices.
The Philips 80C51 can be considered as the core device, and functions such as

I/O ports, timer/counters, serial interfacing and interrupts will be discussed.
Any variations that exist for a particular family member will be dealt with in
the relevant appendix that covers a particular device.
The 80C51 is available in three different package types and is basically a

40-pin device (some packages have 44 pins but only 40 are internally connected)
with the following architecture:

. 4KB� 8 ROM;

. 128� 8 RAM;

. four 8-bit I/O ports;

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 247 – [246–284/39]
28.11.2003 4:56PM

. full-duplex enhanced UART with framing error detection and automatic
address recognition;

. three 16-bit counter/timers;

. a six-source four-priority level nested interrupt structure;

. on-chip oscillator.

The arrangement for the 80C51 device is shown in the block diagram of
Figure C.1.

Variations exist according to the family member, i.e. the on-chip program
memory could be ROM or EPROM and the memory size could vary (the
80C52 has 8KB ROM while the 87C52 has 8KB EPROM). Also the on-chip
data memory size could vary (both the 80C52 and 87C52 devices have 256 bytes
of RAM).

P0.0–P0.7 P2.0–P2.7

Port 0
drivers

Port 2
drivers

RAM
RAM ADDR

register
Port 0
latch

Port 2
latch

ROM/EPROM

Stack
pointer

TMP1TMP2

ACC
B

Register

ALU

PSW

SFRs
timers

8

8

Program
address
register

Buffer

PC
Incrementer

Program
counter

DPTR’S
multiple

Port 3
latch

Port 1
latch

Port 3
drivers

Port 1
drivers

Oscillator

Timing
and

control

In
st

ru
ct

io
n

re
gi

st
er

XTAL1 XTAL2

PSEN

ALE /PROG

EA / VPP

RST

PD

VCC

VSS

16

P1.0–P1.7 P3.0–P3.7

Figure C.1 80C51 block diagram (courtesy Philips Semiconductors)

Appendix C 247

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 248 – [246–284/39]
28.11.2003 4:56PM

C.2 Pin-out diagram for the 80C51

The 80C51 microcontroller is available in a 40-pin dual-in-line (DIL) package;
the arrangement is shown in Figure C.2. Other packages are available and
although the device pin functions are the same regardless of package config-
uration, pinout numbers vary. The pinout numbers referred to in the descrip-
tion that follows are valid only for the DIL package.

A brief description of the function of each of the pins is as follows:

Supply voltage (Vcc and VSS). The device operates from a single þ5V supply
connected to pin 40 (Vcc) while pin 20 (VSS) is grounded.

Input/output (I/O) ports. 32 of the pins are arranged as four 8-bit I/O ports
P0–P3. Twenty-four of these pins are dual purpose (26 on the 80C52/80C58)
with each capable of operating as a control line or part of the data/address bus
in addition to the I/O functions. Details are as follows:

. Port 0. This is a dual-purpose port occupying pins 32 to 39 of the device. The
port is an open-drain bidirectional I/O port with Schmitt trigger inputs. Pins

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40T2/P1.0

T2EX/P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

RST

T×D/P3.1

R×D/P3.0

INT1/P3.3

INT0/P3.2

T0/P3.4

T1/P3.5

WR/P3.6

RD/P3.7

XTAL2

XTAL1

VSS

VCC

P0.0/AD0

P0.1/AD1

P0.2/AD2

P0.3/AD3

P0.4/AD4

P0.5/AD5

P0.6/AD6

P0.7/AD7

EA /VPP

ALE

PSEN

P2.7/A15

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

P2.0/A8

Dual
in-line

package

Figure C.2 80C51 pin-out layout (courtesy Philips Semiconductors)

248 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 249 – [246–284/39]
28.11.2003 4:56PM

that have 1s written to them float and can be used as high-impedance inputs.
The port may be used with external memory to provide a multiplexed address
and data bus. In this application internal pull-ups are used when emitting 1s.
The port also outputs the code bytes during EPROM programming. External
pull-ups are necessary during program verification.

. Port 1. This is a dedicated I/O port occupying pins 1 to 8 of the device. The
pins are connected via internal pull-ups and Schmitt trigger input. Pins that
have 1s written to them are pulled high by the internal pull-ups and can be
used as inputs; as inputs, pins that are externally pulled low will source
current via the internal pull-ups. The port also receives the low-order
address byte during program memory verification. Pins P1.0 and P1.1 could
also function as external inputs for the third timer/counter i.e.:

(P1.0) T2 Timer/counter 2 external count input/clockout
(P1.1) T2EX Timer/counter 2 reload/capture/direction control

. Port 2. This is a dual-purpose port occupying pins 21 to 28 of the device.
The specification is similar to that of port 1. The port may be used to
provide the high-order byte of the address bus for external program mem-
ory or external data memory that uses 16-bit addresses. When accessing
external data memory that uses 8-bit addresses, the port emits the contents
of the P2 register. Some port 2 pins receive the high-order address bits
during EPROM programming and verification.

. Port 3. This is a dual-purpose port occupying pins 10 to 17 of the device.
The specification is similar to that of port 1. These pins, in addition to the I/O
role, serve the special features of the 80C51 family; the alternate functions
are summarised below:

P3.0 RxD serial data input port
P3.1 TxD serial data output port
P3.2 INT0 external interrupt 0
P3.3 INT1 external interrupt 1
P3.4 T0 timer/counter 0 external input
P3.5 T1 timer/counter 1 external input
P3.6 WR external data memory writes strobe
P3.7 RD external data memory read strobe.

Reset (pin 9). The 80C51 is reset by holding this input high for a minimum of
two machine cycles before returning it low for normal running. An internal
resistance connects to pin 20 (VSS) allowing a power-on reset using an external
capacitor connected to pin 40 (Vcc). The device internal registers are loaded
with selected values prior to normal operation.

XTAL1 and XTAL2 (pins 19 and 18 respectively). The 80C51 on-chip oscillator
is driven, usually, from an external crystal. The XTAL1 input also provides an
input to the internal clock generator circuits.

Appendix C 249Appendix C 249Appendix C 249Appendix C 249Appendix C 249

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 250 – [246–284/39]
28.11.2003 4:56PM

PSEN (program store enable) (pin 29). This pin provides an output read strobe to
external program memory. The output is active low during the fetch stage of an
instruction. The signal is not activated during a fetch from internal memory.

ALE/PROG (address latch enable/program pulse) (pin 30). The ALE signal is an
output pulse used to latch the low byte of an address during access to external
memory. The signal rate is 1/6 the oscillator frequency and can be used as a
general-purpose clock/timing pulse for the external circuitry. The pin also
provides the program pulse input (PROG) during EPROM programming.
ALE can be disabled by setting SFR auxiliary.0. With this bit set ALE will
be active only during a MOV X instruction.

EA/Vpp (external access/programming voltage) (pin 31). This pin is either
tied high or low according to circuit requirements. If tied high the device
will execute programs from internal memory provided the address is not
higher than the last address in the internal ROM/OTP. When the EA pin
is tied low, thus disabling the internal ROM, program code is accessed
from external ROM. For a ROMless device the EA pin must be tied low
permanently and the program code accessed from external ROM could
be as much as 64KB. EPROM versions of the device also use this pin for
the supply voltage (Vpp) necessary for programming the internal EPROM.
If security bit 1 is programmed, EA will be internally latched on reset.

C.3 80C51 family hardware

The 80C51 architecture is shown in Figure C.1. Although not numbered, the
40 pins and the pin functions as described earlier for the DIL package can
be seen. The basic architecture is the same for all members of the 80C51 family
although there are differences for devices, which may have more, or less, ports,
comparators, ADC circuits, etc. Block diagrams for other relevant devices can
be seen in those appendices that cover their specification.
Reference has already been made in general terms to the 80C51 ports, timer/

counters, internal RAM and ROM/EPROM (where applicable). Specific fea-
tures include:

. 8-bit CPU with registers A (accumulator) and B

. 16-bit program counter (PC)

. 16-bit data pointer register (DPTR)

. 8-bit program status word register (PSW)

. 8-bit stack pointer (SP).

It is clear from the above that the 80C51 has a collection of 8-bit and 16-bit
registers and 8-bit memory locations. The internal memory of the 80C51 can
be shown by the programming model of Figure C.3. In fact the 80C51 has
more SFRs than shown in Figure C.3. Table C.1 lists the SFRs for the device

250 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 251 – [246–284/39]
28.11.2003 4:56PM

and shows those SFRs that are modified versions or new additions to those
shown in Figure C.3.

C.4 Memory organisation

INTERNAL RAM

The 80C51 has 128 bytes of on-chip RAM plus a number of SFRs. Including
the SFR space gives 256 addressable locations but the addressing modes for
internal RAM can accommodate 384 bytes by splitting the memory space into
three blocks viz. the lower 128, the upper 128 and the SFR space. The lower 128
bytes use address locations 00H to 7FH and these can be accessed using direct
and indirect addressing. The upper 128 bytes use address locations 80H to FFH
and may be accessed using direct addressing only; locations in this space with
addresses ending with 0H or 8H are also bit addressable. Some members of the
80C51 family have 256 bytes of on-chip RAM and the upper 128 bytes in this
case would be accessible only using the indirect addressing mode.
For the 80C51 device, the internal RAM of 128 bytes is broken down into:

. Four register banks 0 to 3, each of which contains eight registers R0 to R7.
The 32 bytes occupy addresses from 00H to 1FH. Each register can be
addressed specifically when its bank is selected or an address can identify
a particular register regardless of the bank, i.e. R2 of bank 2 can be specified
if bank 2 is selected or the same location can be specified as address 12H.
The register banks not selected can be used as general-purpose RAM. Bits 3

Register
bank 0

Register
bank 1

Register
bank 2

Register
bank 3

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

1A
1B
1C
1D
1E
1F

18
19

Bit
addressed
RAM

Special function register Internal
ROM

General
purpose
RAM

R0
R1
R2
R3
R4
R5
R6
R7

R0
R1
R2
R3
R4
R5
R6
R7

R0
R1
R2
R3
R4
R5
R6
R7

R0
R1
R2
R3
R4
R5
R6
R7

20

2F

30

3F

80
81
82
83
87
88
89
8A
8B
8C
8D

90
98

A0
99

A8
B0
B8
D0
E0
F0

000

FFF

PO

SP

DPL

DPH

PCON

TCON

TMOD

TL0

TL1

TH0

TH1

P1

SCON

SBUF

P2

IE

P3

IP

PSW

ACC

B

Figure C.3 80C51 programming model

Appendix C 251

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
C

.3
D

–
2
5
2

–
[246–284/39]

28.11.2003
4:56P

M

Table C.1 80C51/87C51/80C52/87C52 special function registers (SFRs)

Direct Bit address, symbol or alternative port function

Symbol Description address MSB LSB Reset value

ACC* Accumulator E0H E7 E6 E5 E4 E3 E2 E1 E0 00H

AUXR# Auxiliary 8EH – – – – – – – AO xxxxxxx0B

AUXR1# Auxiliary 1 A2H – – – LPEP2 WUPD 0 – DPS xxx000x0B

B* B register F0H F7 F6 F5 F4 F3 F2 F1 F0 00H

DPTR: Data pointer

(2 bytes)

DPH Data pointer

high

83H 00H

DPL Data pointer

low

82H 00H

AF AE AD AC AB AA A9 A8

IE* Interrupt

enable A8H EA – ET2 ES ET1 EX1 ET0 EX0 0x000000B

BF BE BD BC BB BA B9 B8

IP* Interrupt

priority B8H – – PT2 PS PT1 PX1 PT0 PX0 xx000000B

B7 B6 B5 B4 B3 B2 B1 B0

IPH# Interrupt

priority high B7H – – PT2H PSH PT1H PX1H PT0H PX0H xx000000B

87 86 85 84 83 82 81 80

P0* Port 0 80H AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 FFH

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
C

.3
D

–
2
5
3

–
[246–284/39]

28.11.2003
4:56P

M

97 96 95 94 93 92 91 90

P1* Port 1 90H – – – – – – T2EX T2 FFH

A7 A6 A5 A4 A3 A2 A1 A0

P2* Port 2 A0H AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 FFH

B7 B6 B5 B4 B3 B2 B1 B0

P3* Port 3 B0H RD WR T1 T0 INT1 INT0 TxD RxD FFH

PCON#1 Power

control 87H SMOD1 SMOD0 – POF GF1 GF0 PD IDL 00xx0000B

D7 D6 D5 D4 D3 D2 D1 D0

PSW* Program

status word D0H CY AC F0 RS1 RS0 OV – P 000000x0B

RACAP2H# Timer 2

capture high

CBH 00H

RACAP2L# Timer 2

capture low

CAH 00H

SADDR# Slave address A9H 00H

SADEN# Slave address

mask

B9H 00H

SBUF Serial data buffer 99H xxxxxxxxB

9F 9E 9D 9C 9B 9A 99 98

SCON* Serial

control 98H SM0/FE SM1 SM2 REN TB8 RB8 TI RI 00H

SP Stack

pointer

81H 07H

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
C

.3
D

–
2
5
4

–
[246–284/39]

28.11.2003
4:56P

M

Table C.1 Continued

Direct Bit address, symbol, or alternative port function

Symbol Description address MSB LSB Reset value

8F 8E 8D 8C 8B 8A 89 88

TCON* Timer

control 88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H

CF CE CD CC CB CA C9 C8

T2CON* Timer 2

control C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 00H

T2MOD# Timer 2

mode

control
C9H – – – – – – T2OE DCEN xxxxxx00B

TH0 Timer high 0 8CH 00H

TH1 Timer high 1 8DH 00H

TH2# Timer high 2 CDH 00H

TL0 Timer low 0 8AH 00H

TL1 Timer low 1 8BH 00H

TL2# Timer low 2 CCH 00H

TMOD Timer mode 89H GATE C/T M1 M0 GATE C/T M1 M0 00H

Note: Unused register bits that are not defined should not be set by the user’s program. If violated, the device could function incorrectly.

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

– Reserved bits.

1. Reset value depends on reset source.

2. LPEP – Low-power EPROM operation (OTP/EPROM only).

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 255 – [246–284/39]
28.11.2003 4:56PM

and 4 of the PSW register determine which bank is selected when a program
is running. Reset will cause bank 0 to be selected.

. Sixteen bytes that are bit addressable in the address range 20H to 2FH
giving 128 addressable bits. The bits have individual addresses ranging from
00H to 07H for byte address 20H, to 78H to 7FH for byte address 2FH.
Thus a bit may be addressed directly, say bit 78H, which is bit 7 of byte
address 2F.

. A general-purpose memory range from 30H to 7FH, which is addressable as
bytes.

In addition there are SFRs in the address range 80H to FFH. This address range
actually gives 128 addresses but only 32 are defined for the 80C51; the number
defined varies according to device, being much larger for some devices and less
for others. Details of the SFRs for the devices referred to in the main body of
the text can be found in Appendices D, E and F.
For the 80C51 the SFRs of the internal RAM are described in more detail as

follows:

. Accumulator. This 8-bit register, usually referred to as register A, is the
major register for data operations such as addition, subtraction, etc. and for
Boolean bit manipulation. The register is also used for data transfers
between the device and external memory, where applicable. The accumula-
tor is both bit and byte addressable with the byte address at E0H and the bit
addresses from E0H to E7H.

. B register. This 8-bit register is used for multiplication and division opera-
tions. For other instructions it can be considered another ‘scratch pad’
register. The B register is both bit and byte addressable with byte address
at F0H and bit addresses from F0H to F7H.

. Program status word (PSW). This 8-bit register at address D0H contains
program status information as shown below:

MSB LSB

CY AC F0 RS1 RS0 OV – P

D7H D6H D5H D4H D3H D2H D1H D0H

with the bit functions defined in Table C.2.

. Stack pointer (SP). This 8-bit register at address 81H is incremented before
data is stored during PUSH and CALL executions. The SP is initialised to
RAM address 07H after a reset, which causes the stack to commence at
location 08H.

. Data pointer (DP). This 16-bit register is intended to contain the two bytes
that make a 16-bit address, with the high byte (DPH) at address 83H and
the low byte (DPL) at address 82H. It may also be used as two independent
8-bit registers.

Appendix C 255

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 256 – [246–284/39]
28.11.2003 4:56PM

. Ports 0 to 3. P0, P1, P2 and P3 are the 8-bit SFR latches of ports 0, 1, 2 and
3 respectively. The addresses are 80H, 90H, A0H and B0H respectively.
Writing a ‘1’ to any bit of any of the port SFRs causes the corresponding
port output pin to go high; writing a ‘0’ causes the corresponding port
output pin to go low. When used as an input, the external state of any port
pin will be held in the port SFR.

. Serial data buffer (SBUF). This 8-bit register at address 99H is used for
serial data in both transmit and receive modes. Moving data to SBUF loads
the data ready for transmission while moving data from SBUF allows
access to received data.

. Timer registers. The 80C51 contains three 16-bit timer/counters. Timer 0
has a low byte TL0 at address 8AH and a high byte TH0 at address 8CH
while timer 1 has a low byte at address 8BH and a high byte at address
8DH. Timer 2 has a low byte at address CCH and a high byte at address
CDH. Timer 2 can operate as an event timer or event counter. An extra
SFR register, the T2CON register, at address C8H, controls this timer while
a timer 2 mode control register T2MOD is at address C9H.

. Control registers. Certain control registers are required to provide control
and status bits for the serial ports, timer/counters and the interrupt system.
The 8-bit control registers are:

TCON at address 88H
TMOD at address 89H
SCON at address 98H
IE at address A8H
IP at address B8H
The effect of the control registers will be discussed later in this appendix.

Table C.2 Program status word bit functions

Bit Symbol Function

PSW.7 CY Carry flag

PSW.6 AC Auxiliary carry flag (for BCD operations)

PSW.5 F0 Flag 0 (available for general-purpose use)

PSW.4 RS1 Register bank select control bit 1 set/cleared by

software to determine working register bank (see Note)

PSW.3 RS0 Register bank select control bit set/cleared by software

to determine working register bank (see Note)

PSW.2 OV Overflow flag

PSW.1 – User definable flag

PSW.0 P Parity flag set/cleared by hardware each instruction cycle

to indicate an odd/even number of 1 bits in the accumulator

Note: The contents of (RS1,RS0) enable the working register banks as follows: (0,0) – Bank 0

addresses 00H to 07H; (0,1) – Bank 1 addresses 08H to 0FH; (1,0) – Bank 2 addresses 10H to 17H;

(1,1) – Bank 3 addresses 18H to 1FH.

256 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 257 – [246–284/39]
28.11.2003 4:56PM

INTERNAL ROM

As can be seen from Figure C.3, the 4KB of ROM in the 80C51 occupy the
address range 0000H to 0FFFH. The ROM in a microcontroller is provided so
that the control program can be resident on-chip. If the control program can be
accommodated within the 4KB (or 8KB in the case of the 80C52 device) then
no external program memory is required; if however, the control program
needs greater memory capacity external memory can be added up to 64KB.
The PC can access program memory in the range 0000H to FFFFH so that any
program address higher than 0FFFH will have to be located in external
program memory. As stated earlier, program memory can be exclusively exter-
nal (and would have to be for the ROMless devices 80C31/80C32, etc.) by
connecting to ground the external access pin EA. The read strobe for external
program memory is PSEN (see section on pinout functions).
On reset the CPU begins operations frommemory location 0000H. Figure C.4

shows that for the 80C51 there are six interrupt sources located at memory
addresses starting at 0003H, each consisting of eight bytes (Table C.3).

For each of the interrupts the eight bytes may be sufficient to accommodate
the interrupt servicing routine but if not the programmer should provide a

002BH

001BH

0023H

0013H

000BH

0003H

0000H

8 bytesInterrupt
locations

Reset

Figure C.4 80C51 program memory and interrupt locations

Table C.3

Interrupt source Vector address

External 0 0003H

Timer 0 overflow 000BH

External 1 0013H

Timer 1 overflow 001BH

Serial port 0023H

Timer 2 overflow 002BH

Appendix C 257

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 258 – [246–284/39]
28.11.2003 4:56PM

jump to the service routine. Whether or not an interrupt is enabled depends on
the bit settings of the IE register. If no interrupts are used the programmer
could establish the program from location 0000H; but with interrupts the
programmer should enter a jump instruction from location 0000H to the
starting address of the main program. Interrupts are dealt with later in this
appendix.

EXTERNAL MEMORY

The 16-bit PC of the microcontroller will allow programmemory addresses of up
to 64KB; similarly the 16-bit DP allows data memory addresses of up to 64KB.
Both address ranges are well beyond the capability of the microcontroller on its
own but, if required, both data and programmemory can be extended beyond the
available on-chip values up to the 64KB limit. Also involved with accessing
external memory are certain control pins and input/output ports. In the sections
that follow memory extension for program and data is dealt with separately
although in practice they could occur simultaneously.

External program memory access

For the 80C51, if extra program memory is required a circuit arrangement as
shown in Figure C.5 could be used. It can be seen from Figure C.5 that ports 0
and 2 are not available for I/O functions in this configuration but are used
instead for bus functions during external memory fetches. Port 0 acts as a
multiplexed address/data bus, sending the low byte of the PC (PCL) as an
address and then waiting for the arrival of the code byte from external memory.
The signal ALE clocks the PCL byte into the address latch during the period of
time that the PCL byte is valid on port 0. The latch will hold the low address
byte stable at the input to the external memory while the multiplexed bus is
made ready to receive the code byte from the external memory. Port 2 sends the
PC high byte (PCH) directly to the external memory; the signal PSEN then
strobes the external memory allowing the code byte to be read by the micro-
controller. The timing diagram for a program fetch from external memory is
shown in Figure C.6.

80C51

P0

EA

ALE

P2

PSEN

Latch

EPROM

ADDR

OE

Figure C.5 Use of external program memory (courtesy Philips Semiconductors)

258 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 259 – [246–284/39]
28.11.2003 4:56PM

External data memory access

Up to 64KB of read/write memory may be accessed by the 80C51 with the
connections for the data and address lines the same as for program memory.
The RD output from the microcontroller connects to the output enable (OE)
pin on the RAM while the WR output line connects to the RAM write enable
(WE) pin on the RAM. A possible arrangement is shown in Figure C.7.

In this arrangement three lines of port 2 are being used to page the RAM.
Memory addresses can be one or two bytes wide. One byte addresses are often
used in conjunction with one or more other I/O lines to page the RAM as
shown in Figure C.7. Using port lines to page RAM is an economical way to
use external memory since any port lines not used for paging can be used for
normal I/O functions. A page consists of 256 bytes of RAM so that two port
lines are needed for accessing four pages and three port lines, as shown in
Figure C.7, to access eight pages (which is 2KB RAM). If two byte addresses

State 1
P1 P2

State 2
P1 P2

State 3
P1 P2

State 4
P1 P2

State 5
P1 P2

State 6
P1 P2

State 1
P1 P2

State 2
P1 P2

PCL
out

PCL
out

PCL
out

Data sampled Data sampledData sampled

PCH out PCH out PCH out

XTAL2:

ALE:

PSEN:

PO:

P2 :

Figure C.6 External memory program fetches (courtesy Philips Semiconductors)

ALE

P0

P2P3

Latch

Data

ADDR

OEWE

RAM

Page
bits

I/O

EA80C51
with
internal
ROM

RD
WR

VCC

Figure C.7 Access of external data memory (courtesy Philips Semiconductors)

Appendix C 259

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 260 – [246–284/39]
28.11.2003 4:56PM

are used the high address byte is connected via port 2 in the same way as for
accessing program memory. A typical timing diagram for a read cycle from
external memory is shown in Figure C.8.

The timing for a write cycle is similar except that the WR line pulses low, RD
stays high and data is placed on port 0 lines as an input to the microcontroller.

C.5 I/O port configurations

As described elsewhere the four ports of the 80C51 differ slightly in that ports 0 and
2may be used for address/data lines while port 3 has other functions. The structure
of a port pin circuit varies according to the port but each port pin will have a bit
latch and I/O buffer. The arrangement for a port 1 pin is shown in Figure C.9.

The bit latch, shown as a D-type flip-flop, is one bit in the ports SFR. The
latch will clock in a value from the internal bus in response to a write to latch

State 4
P1 P2

State 5
P1 P2

State 6
P1 P2

State 1
P1 P2

State 2
P1 P2

State 3
P1 P2

State 4
P1 P2

State 5
P1 P2

DPL or RI
out

Data sampled

PCH or P2
SFR

PCH or P2
SFR

XTAL2:

ALE:

RD:

PO:

P2:

Float Float

DPH or P2 SFR out

PCL out if program
memory is external

Figure C.8 External data memory read cycle (courtesy Philips Semiconductors)

Read
latch

VCC

Internal
pullup*

P1.X
latch

P1.X
pinInt. bus

Write to
latch

Read
pin

D

CL

Q

Q

Figure C.9 80C51 port 1 bit latch (courtesy Philips Semiconductors)

260 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 261 – [246–284/39]
28.11.2003 4:56PM

signal from the CPU or place its output level on the bus in response to a read
signal from the CPU. The instructions that can be used to read a port can
activate the ‘read latch’ signal or the ‘read pin’ signal. The requirement to read
a latch rather than read a pin involves instructions known as ‘read-modify-
write’. These instructions would read the latch value, possibly modify the
value and write it back to the latch. The reason for reading the latch rather than
the pin under these circumstances is to avoid misinterpreting the pin voltage level
when the pin is heavily loaded, as would be the case if driving the base of an
external transistor. Suppose, for example, the port bit is connected to an external
transistor base and a 1 is written to the bit turning the external transistor on; the
CPU reading the pin would find the base-emitter voltage level of the on transistor
and read this as 0 while reading the latch output would register the correct level 1.
Ports 1, 2 and 3 have internal pull-up resistances. If a 1 is placed on the

internal bus and the write signal applied to the D-type clock input, Q goes low
and the field-effect transistor (FET) goes off, allowing the pin value to go high
via the pull-up resistor. Conversely a 0 on the bus latched into the flip-flop will
switch the FET on and connect the output pin to ground.
For ports 1, 2 and 3, to read the signal level on the pin a 1 is written to the flip-

flop which as before switches the FET off and connects the output pin via the pull-
up resistor toVcc i.e. logic 1; this level can be pulled low by an external source. For
the output pin to go low the driving circuit must sink the current, which flows, via
the pull-up resistor from Vcc; a read signal on the lower buffer will cause the pin
signal to appear on the internal bus. The output buffers for port 1 (and ports 2
and 3) can each drive four low power Schottky (LS) TTL inputs. Port 0 has open
drain outputs and each output buffer can drive eight LS TTL inputs.
For simplicity Figure C.9 does not show the alternate functions for ports 0, 2

and 3. The alternate functions are:

port 0 – Address/data
port 2 – Address
port 3 – Alternate I/O function.

The output drivers of ports 0 and 2 are switchable using an internal control signal.
During external memory accesses, the P2 SFR remains unchanged but the P0
SFR has 1s written into it. Also if a P3 bit latch contains a 1 the output level is
controlled by an ‘alternate output function’ signal while the actual port 3 pins
level is always available to the pin’s ‘alternate input function’ if any.

C.6 Timer/counters

The 80C51 has three 16-bit timer/counter registers known as timer 0, timer 1
and timer 2. Timers 0 and 1 are up-counters and may be programmed to count
internal clock pulses (timer) or count external pulses (counter). Each counter is
divided into two 8-bit registers to give timer low and timer high bytes i.e. TL0,
TH0 and TL1, TH1.

Appendix C 261

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 262 – [246–284/39]
28.11.2003 4:56PM

TL0 is at address 8AH
TL1 is at address 8BH
TH0 is at address 8CH
TH1 is at address 8DH

None of these registers is bit addressable.
The operation of the timer/counters is controlled by the TMOD and TCON

registers of the SFRs. TMOD is the timer SFR and is in effect two identical
4-bit registers, one each for the two timers. TCON consists of control bits and
flags. Details of these two registers are shown below:

TMOD

MSB LSB

GATE C/T M1 M0 GATE C/T M1 M0

89H
--------------- TIMER 1 --------------- --------------- TIMER 0 ----------------

The bit functions are:
GATE – When set timer/counter x is enabled when INTx pin is high and TRx

(see TCON) is set. When clear timer x is enabled when TRx bit set.
C/T – When clear, timer operation (input from internal clock). When set,

counter operation (input from Tx input pin).

TheM1 andM0 bit functions depend on the bit assignment as shown in Table C.4.

Table C.4

M1 M0 Operation

0 0 8048 8-bit timer TLx serves as 5-bit prescaler

0 1 16-bit timer/counter. THx and TLx are cascaded. No prescaler

1 0 8-bit autoreload timer/counter. THx contents loaded into TLx when

it overflows

1 1 TL0 is 8-bit counter controlled by timer 0 control bits. TH0 is 8-bit

timer controlled by timer 1 control bits

1 1 Timer 1 off

The TMOD byte is not bit addressable.

TCON

MSB LSB

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

8FH 8EH 8DH 8CH 8BH 8AH 89H 88H

The eight bits of the TCON register are duplicated pairs of four as shown in
Table C.5.

262 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 263 – [246–284/39]
28.11.2003 4:56PM

Table C.5

Bit Function

TF1/0 Timer 1/0 overflow flag. Set by hardware on timer/counter overflow.

Cleared when CPU vectors to interrupt routine

TR1/0 Timer 1/0 run control bit. Set/cleared by software to turn timer/counter

on/off

IE1/0 Interrupt 1/0 edge flag. Set by hardware when external interrupt edge

detected. Cleared when interrupt processed

IT1/0 Interrupt 1/0 control bit. Set/cleared by software to specify falling edge/

low level triggered external interrupts

When the timer/counter is performing the counter function the register is
incremented in response to a falling edge transition at its external input pin
(T0 or T1). The TMOD bit C/T must be set to 1 to enable the pulses from
the Tx pin to reach the control circuit. To count a certain number of
internal or external pulses a number is put into one of the counters; the
number inserted represents the maximum count, less the desired count, plus
one. It takes two machine cycles (24 oscillator periods) to recognise a 1-to-0
transition, the maximum count rate is 1/24 of the oscillator frequency.
There are no restrictions on the duty cycle of an external input cycle but
to ensure a given level is sampled at least once before it changes it should
be held for at least one full cycle. The counter will increment from the initial
number to the maximum and then resets to zero on the last pulse, setting the
timer flag. Testing the flag state allows confirmation of the completion of the
count or, alternatively, the flag may be used to interrupt the program.
When the timer counter is performing the timer function the register is

incremented every machine cycle. Thus with 12 oscillator periods per machine
cycle the count rate is 1/12 of the oscillator frequency.
The timer/counters have four operating modes (modes 0, 1, 2 and 3), which

are determined by the status of the bits M0 and M1 in the TMOD register.
Modes 0, 1 and 2 are the same for both timer/counters but this is not the case
for mode 3. Some information has already been shown in abridged form under
the TMOD register description and is described below in more detail.

Mode 0

Setting the timer mode bits to 0 in the TMOD register provides an 8-bit counter
(THx), preceded by 5 bits of (TLx) which gives a divide-by-32 prescaler. The
pulse input is thus divided by 32 in TLx giving the oscillator frequency divided
by 384. The arrangement is shown in Figure C.10 for timer 1. The arrangement
for timer 0 is similar.
As the count rolls over from all 1s to all 0 s the timer interrupt flag TFx is set.

Figure C.10 shows that the input is passed to the timer when TRx ¼ 1 AND
GATE ¼ 0 OR INT x ¼ 1. TRx is a control bit in theTCONregisterwhileGATE
is in the TMOD register. Setting the run flag TRx does not clear the registers.

Appendix C 263

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 264 – [246–284/39]
28.11.2003 4:56PM

Mode 1

This is provided when the TMOD register mode bits M1 ¼ 0, M0 ¼ 1 and
gives the same effect as mode 0 except that the timer register runs using all 16 bits.

Mode 2

This occurs when TMOD register mode bits M1 ¼ 1, M0 ¼ 0 and configures
the timer register as an 8-bit counter (TLx) with automatic reload. The arrange-
ment is shown in Figure C.11 for timer 1. The arrangement for timer 0 is similar.

Only the register TLx is used as an 8-bit counter while THx holds a value set by
software that will be loaded into TLx every time TLx overflows. The overflow also
sets the timer flag. This facility provides an initial count value for TLx that can be
changed by software giving a predetermined time delay before overflow occurs.

Mode 3

This occurs when TMOD register mode bits M1 ¼ 1, M0 ¼ 1. Under these
conditions timer 1 is off and its count is inhibited. The control bit TR1 and
timer flag TF1 are then used by timer 0. Timer 0 has TL0 and TH0 as two
separate counters with the arrangement shown in Figure C.12.
TL0 sets timer flag TF0 whenever overflow occurs while TH0 is controlled by

TR1 and sets the timer flag TF1 whenever it overflows. Mode 3 is provided for
applications that require an extra 8-bit timer on the counter. With timer 0 in

Osc. ÷ 12

C/ T = 0

C/ T = 1

T1 Pin

TR1

Control

TL1
(5 bits)

TH1
(8 bits)

TF1 Interrupt

Gate

INT1 pin

Figure C.10 Timer/counter mode 0 configuration (courtesy Philips
Semiconductors)

Osc. ÷ 12

T1 pin

TR1

Gate

INT1 pin

C/ T = 0

C/ T = 1
Control

Reload

TH1
(8 bits)

TL1
(8 bits)

TF1 Interrupt

Figure C.11 Timer/counter mode 2 configuration (courtesy Philips
Semiconductors)

264 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 265 – [246–284/39]
28.11.2003 4:56PM

mode 3 the 80C51 can appear to have three timer/counters. When timer 0 is in
mode 3, timer 1 can be switched in and out of its own mode 3 (switching timer 1
tomode 3will hold whatever count it had reached prior to the switch) or it can be
used by the serial port as a baud rate generator or any other mode 0, 1 or 2
application not requiring an interrupt (or any other use of the TF1 flag).
Timer 2 is a 16-bit timer consisting of two 8-bit registers TH2, which is the

timer 2 high byte at address CDH, and TL2, which is the timer 2 low byte,
situated at address CCH. Timer 2 can operate as an event timer or event
counter as selected by bit C/T2 in the SFR T2CON. Other bits, which affect
timer 2 operation, are found in the SFR T2MOD. Details of the T2CON and
T2MOD registers are shown below.

T2CON

address C8H.

MSB LSB

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

7 6 5 4 3 2 1 0

Bit Symbol Function

7 TF2 Timer 2 overflow flag set by timer 2 overflow; must be cleared by

software. TF2 will not be set when either RCLK or TCLK ¼ 1.

6 EXF2 Timer 2 external flag set when either a capture or reload is caused

by a negative transition on T2EX and EXEN2 ¼ 1. When timer 2

interrupt is enabled, EXF2 ¼ 1 will cause the CPU to vector to the

timer 2 interrupt routine. EXF2 must be cleared by software.

EXF2 does not cause an interrupt in up/down counter mode

(DCEN ¼ 1).

Osc. ÷ 12 1/12 fOSC

1/12 fOSC

1/12 fOSC

T0 Pin

TR0

Gate

INTO pin

C/ T = 0

C/ T = 1
Control

Control

TL0
(8 bits)

TH0
(8 bits)

TF0

TF1

TR1

Interrupt

Interrupt

Figure C.12 Timer/counter 0 mode 3 configuration (courtesy Philips
Semiconductors)

Appendix C 265

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 266 – [246–284/39]
28.11.2003 4:56PM

5 RCLK Receive clock flag. When set, causes the serial port to use timer 2

overflow pulses for its receive clock in modes 1 and 3. RCLK ¼ 0

causes timer 1 overflow to be used for the receive clock.

4 TCLK Transmit clock flag. When set, causes the serial port to use timer 2

overflow pulses for its transmit clock in modes 1 and 3. TCLK ¼ 0

causes timer 1 overflow to be used for the transmit clock.

3 EXEN2 Timer 2 external enable flag. When set allows a capture or reload

to occur as a result of a negative transition on T2EX if timer 2

is not being used to clock the serial port. EXEN2 ¼ 0 causes timer 2

to ignore events at T2EX.

2 TR2 Start/stop control for timer 2. A logic 1 starts the timer.

1 C/T2 Timer 2 timer or counter select:

0¼ internal timer (f osc /12)

1¼ external counter (falling-edge triggered).

0 CP/RL2 Capture/reload flag. When set, captures will occur on negative

transitions at T2EX if EXEN2 ¼ 1. When cleared, auto-reloads will

occur either with timer 2 overflows or negative transitions at T2Ex

when EXEN2 ¼ 1. When either RCLK ¼ 1 or TCLK ¼ 1, this bit is

ignored and the timer is forced to auto-reload on timer 2 overflow.

T2MOD

address 0C9H.
not bit addressable.

MSB LSB

– – – – – – T2OE DCEN

7 6 5 4 3 2 1 0

Bit Symbol Function

7, 6, 5, 4, 3, 2 – Not implemented, reserved for future use. User software

should not write to reserved bits. These bits may be used

in future to invoke new features in which case the reset or

inactive value of the new bit will be 0 while its active

value will be 1. The value read from a reserved bit

is indeterminate

1 T2OE Timer 2 Output Enable bit

0 DCEN Down Count ENable bit. When set, this allows timer 2 to

be configured as an up/down counter

There are three operating modes for timer 2, namely:

1. capture
2. auto-reload (up/down counter)
3. baud rate generator.

266 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 267 – [246–284/39]
28.11.2003 4:56PM

The operating mode is selected by bits in the T2CON register as indicated in
Table C.6.

CAPTURE MODE

In the capture mode there are two options each of which may be selected by bit
EXEN2 in T2CON. If EXEN2 ¼ 0, then timer 2 is a 16-bit timer or counter (as
selected by C/T2 in T2CON) which, upon overflowing sets bit TF2, the timer 2
overflow bit. This bit can be used to generate an interrupt (by enabling the
timer 2 interrupt bit in the IE register). If EXEN2 ¼ 1, timer 2 operates as
described above, but with the added feature that a transition from 1 to 0 at
external input T2EX causes the current value in the timer 2 registers, TL2 and
TH2 to be captured into registers RCAP2L and RCAP2H respectively. In
addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and
EXF2, like TF2, can generate an interrupt which vectors to the same location
as timer 2 overflow interrupt. The timer 2 interrupt service routine can inter-
rogate TF2 and EXF2 to determine which event caused the interrupt. The
capture mode is illustrated in Figure C.13. (There is no reload value for TL2
and TH2 in this mode. Even when a capture event occurs from T2EX, the
counter keeps on counting T2EX pin transitions or fosc/12 pulses.)

AUTO-RELOAD MODE (UP OR DOWN COUNTER)

In the 16-bit auto-reload mode, timer 2 can be configured (as either a timer or
counter (C/T2 in T2CON)) then programmed to count up or down. The

Table C.6

RCLKþ TCLK CP/RL2 TR2 Mode

0 0 1 16-bit auto-reload

0 1 1 16-bit capture

1 X 1 Baud rate generator

X X 0 Off

Osc. ÷ 12

T2 pin

T2EX pin

C/ T2 = 0

C/ T2 = 1

Transition
detector

Control

TR2 Capture

TH2
(8 bits)

TL2
(8 bits)

TF2

Control

EXEN2

EXF2

RCAP2L RCAP2H

Timer 2
interrupt

Figure C.13 Timer 2 in capture mode (courtesy Philips Semiconductors)

Appendix C 267

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 268 – [246–284/39]
28.11.2003 4:56PM

counting direction is determined by bit DCEN that is located in the T2MOD
register. When reset is applied, DCEN ¼ 0 which means timer 2 will default to
counting up. If DCEN bit is set, timer 2 can count up or down depending on the
value of the T2EX pin. Figure C.14 shows timer 2 which will count up auto-
matically since DCEN ¼ 0. In this mode there are two options selected by bit
EXEN2 in T2CON register. If EXEN2 ¼ 0, then timer 2 counts up to 0FFFFH
and sets the TF2 (overflow flag) bit upon overflow. This causes the timer 2
registers to be reloaded with the 16-bit value in RCAP2L and RCAP2H. The
values in RCAP2L and RCAP2H are preset by software means. If EXEN2 ¼ 1,
then a 16-bit reload can be triggered either by an overflow or by a 1-to-0
transition at input T2EX. This transition also sets the EXF2 bit. The timer 2
interrupt, if enabled, can be generated when either TF2 or EXF2 is 1. In
Figure C.15 DCEN ¼ 1 which enables timer 2 to count up or down. This mode
allows pin T2EX to control the direction of count.When a logic 1 is applied at pin

Osc. ÷ 12
C/ T2 = 0

C/ T2 = 1
Control

Control

ReloadTR2

TL2
(8 bits)

TH2
(8 bits)

RCAP2HRCAP2L
TF2

EXF2

EXEN2

Transition
detector

T2 pin

T2EX pin

Timer 2
interrupt

Figure C.14 Timer 2 in auto-reload mode (DCEN ¼ 0) (courtesy Philips
Semiconductors)

Osc. ÷ 12 C / T2 = 0

C / T2 = 1T2 PIN
Control

TR2

RCAP2L RCAP2H

(Up counting reload value)

TL2 TH2
Overflow

Count
direction
1 = Up
0 = Down

T2EX pin

Interrupt

EXF2

FFH FFH

TF2

(Down counting reload value)

Toggle

Figure C.15 Timer 2 in auto-reload mode (DCEN ¼ 1) (courtesy Philips
Semiconductors)

268 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 269 – [246–284/39]
28.11.2003 4:56PM

T2EX timer 2 will count up. Timer 2 will overflow at 0FFFFH and set the TF2
flag, which can then generate an interrupt, if the interrupt is enabled. This timer
overflow also causes the 16-bit value in RCAP2L and RCAP2H to be reloaded
into the timer registers TL2 and TH2. When a logic 0 is applied at pin T2EX this
causes timer 2 to count down. The timer will underflow when TL2 and TH2
become equal to the value stored in RCAP2L and RCAP2H. Timer 2 underflow
sets the TF2 flag and causes 0FFFFH to be reloaded into the timer registers TL2
and TH2. The external flag EXF2 toggles when timer 2 underflows or overflows.
This EXF2 bit can be used as a 17th bit of resolution if needed. The EXF2 flag
does not generate an interrupt in this mode of operation.

BAUD RATE GENERATOR MODE

Bits TCLK and/or RCLK in T2CON (Table C.6) allow the serial port transmit
and receive baud rates to be derived from either timer 1 or timer 2. When
TCLK ¼ 0, timer 1 is used as the serial port transmit baud rate generator.
When TCLK ¼ 1, timer 2 is used as the serial port transmit baud rate gen-
erator. RCLK has the same effect for the serial port receive baud rate. With
these two bits, the serial port can have different receive and transmit baud
rates – one generated by timer 1, the other by timer 2.
Figure C.16 shows the timer 2 in baud rate generation mode. The baud rate

generation mode is like the auto-reload mode, in that a rollover in TH2 causes
the timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H
and RCAP2L, which are preset by software. The baud rates in modes 1 and 3
are determined by timer 2’s overflow rate given below:

Modes 1 and 3 baud rates ¼ timer 2 overflow rate

16

The timer can be configured for either ‘timer’ or ‘counter’ operation. In
many applications, it is configured for ‘timer’ operation (C/T2 ¼ 0). Timer
operation is different for timer 2 when it is being used as a baud rate generator.
Usually, as a timer it would increment every machine cycle (i.e. 1/12 the

oscillator frequency). As a baud rate generator, it increments every state time
(i.e. 1/2 the oscillator frequency). Thus the baud rate formula is as follows:

Modes 1 and 3 baud rates ¼ oscillator frequency

32 ½65536� ðRCAP2H; RCAP2LÞ�
Where RCAP2H, RCAP2L is the content of RCAP2H RCAP2L taken as a
16-bit unsigned integer.
The timer 2 as a baud rate generator mode shown in Figure C.16 is valid only if

RCLK and/or TCLK ¼ 1 in T2CON register. Note that a rollover in TH2 does
not set TF2, and will not generate an interrupt. Thus, the timer 2 interrupt does
not have to be disabledwhen timer 2 is in the baud rate generatormode. Also if the
EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (timer/counter
2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from

Appendix C 269

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 270 – [246–284/39]
28.11.2003 4:56PM

(RCAP2H, RCAP2L) to (TH2, TL2). Therefore when timer 2 is in use as a baud
rate generator, T2EX can be used as an additional external interrupt, if needed.
When timer 2 is in the baud rate generator mode, one should not try to read

or write TH2 and TL2. As a baud rate generator, timer 2 is incremented every
state time (fosc/2) or asynchronously from pin T2; under these conditions, a
read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be
read, but should not be written to, because a write might overlap a reload and
cause write and/or reload errors. The timer should be turned off (clear TR2)
before accessing the timer 2 or RCAP2 registers. Table C.7 shows commonly
used baud rates and how they can be obtained from timer 2.

Table C.7 Timer 2 generated commonly used baud rates

Oscillator
Timer 2

Baud rate frequency (MHz) RCAP2H RCAP2L

375 k 12 FF FF

9.6 k 12 FF D9

2.8 k 12 FF B2

2.4 k 12 FF 64

1.2 k 12 FE C8

300 12 FB 1E

110 12 F2 AF

300 6 FD 8F

110 6 F9 57

Osc. ÷ 22

÷ 2

÷ 16

÷ 16

Note: Osc. freq. is divided by 2, not 12.

C/ T2 = 0

C/ T2 = 1
Control

Control

TR2

Transition
detector

T2EX pin

T2 pin

EXEN2

Timer 2
interrupt

EXF2

Reload

RCAP2L RCAP2H

TL2
(8 bits)

TH2
(8 bits)

TX clock

RX clock

TCLK

SMOD

RCLK

Overflow

“0”

“0”

“0”

“1”

“1”

“1”

Note availability of additional external interrupt.

Figure C.16 Timer 2 in baud rate generator mode (courtesy Philips
Semiconductors)

270 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 271 – [246–284/39]
28.11.2003 4:56PM

Summary of baud rate equations

Timer 2 is in baud rate generating mode. If timer 2 is being clocked through pin
T2 (P1.0) the baud rate is:

Baud rate ¼ Timer 2 overflow rate

16

If timer 2 is being clocked internally, the baud rate is:

Oscillator frequency

32 ½65536� ðRCAP2H; RCAP2LÞ�

To obtain the reload value for RCAP2H and RCAP2L the above equation can
be rewritten as:

RCAP2H; RCAP2L ¼ 65536� ½ fosc=ð32� baud rateÞ�

Timer/counter 2 set-up

Except for the baud rate generator mode, the values given for T2CON do not
include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to
turn the timer on. See Table C.8 for set-up of timer 2 as a timer. Also see Table C.9
for set-up of timer 2 as a counter.

Programmable clock-out

A 50% duty cycle clock can be programmed to come out on P1.0. This pin,
besides being a regular I/O pin, has two alternate functions. It can be
programmed:

. to input the external clock for timer/counter 2, or

. to output a 50% duty cycle clock ranging from 61Hz to 4MHz at a 16MHz
operating frequency. To configure the timer/counter 2 as a clock generator,

Table C.8 Timer 2 as a timer

T2CON

Mode

Internal control

(see note 1)

External control

(see note 2)

16-bit auto-reload 00H 08H

16-bit capture 01H 09H

Baud rate generator receive and

transmit same baud rate

34H 36H

Receive only 24H 26H

Transmit only 14H 16H

Notes: (1) Capture/reload occurs only on timer/counter overflow; (2) Capture/reload

occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when

timer 2 is used in the baud rate generator mode.

Appendix C 271

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 272 – [246–284/39]
28.11.2003 4:56PM

bit C/T2 (in T2CON) must be cleared and bit T2OE in T2MODmust be set.
Bit TR2 (T2CON.2) also must be set to start the timer. The clock-
out frequency depends on the oscillator frequency and the reload value of
timer 2 capture registers (RCAP2H, RCAP2L) as shown:

Oscillator frequency

4 ½65536� ðRCAP2H; RCAP2LÞ�

where RCAP2H, RCAP2L is the contents of RCAP2H and RCAP2L taken as
a 16-bit unsigned integer.
In the clock-out mode timer 2 rollovers will not generate an interrupt. This is

similar to when it is used as a baud rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. Note, however,
that the baud rate and the clock-out frequency will be the same.

C.7 Serial interface

The 80C51 possesses an on-chip serial port to enable serial data transmission
between the device and external circuits. The serial port is full duplex so that it
can receive and transmit data simultaneously. The port is also buffered in
receive mode so that it can receive a second data byte before the first data byte
has been read from the register.
The serial port register is SBUF at address 99H in the SFR. SBUF is actually

two registers, one to handle receive data from the external source via RxD (P3.0)
and one to hold transmit data for outward transmission via TxD (P3.1). Writing
to SBUF loads data for transmission while reading SBUF accesses received data
in the physically separate receive register.
Register SCON at address 98H controls data communication while register

PCON at address 87H controls data rates. Details of the serial port control
(SCON) register are as follows:

MSB LSB

SM0/FE SM1 SM2 REN TB8 RB8 TI RI

9FH 9EH 9DH 9CH 9BH 9AH 99H 98H

Table C.9 Timer 2 as a counter

TMOD

Mode

Internal control

(see Note 1)

External control

(see Note 2)

16-bit 02H 0AH

Auto-reload 03H 0BH

Notes: See Notes of Table C.8.

272 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 273 – [246–284/39]
28.11.2003 4:56PM

FE Framing Error bit. The receiver sets this bit when an invalid stop bit is
detected. The FE bit is not cleared by valid frames but should be
cleared by software. The SMOD0 bit (located at PCON.6) must be set
to allow access to the FE bit.

SM0 Serial port mode bit 0 (SMOD0 must be equal to 0 to access bit SM0).
SM1 Serial port mode bit 1.

Bits SM0 and SM1 specify the serial port mode as shown in Table C.10.

SM2 Enables the automatic address recognition feature in modes 2 and 3.
If SM2 set to 1 then RI will not be set unless the received 9th data bit
RB8 is 1, indicating an address, and the received byte is a given or
broadcast address. In mode 1, if SM2¼ 1 then RI will not be activated
unless a valid stop bit was received and the received byte is a given or
broadcast address. In mode 0, SM2 should be 0.

REN Set by software to enable serial reception. Clear by software to disable
reception.

TB8 The 9th data bit that will be transmitted in modes 2 and 3. Set/clear by
software.

RB8 In modes 2 and 3, is the 9th data bit received. In Mode 1 if SM2¼ 0,
RB8 is the stop bit that was received. In Mode 0, RB8 is not used.

TI Transmit interrupt flag. Set by hardware at the end of the 8th bit time
in mode 0, or at the start of the stop bit in other modes, in any serial
transmission. Must be cleared by software.

RI Receive interrupt flag. Set by hardware at the end of the 8th bit in
mode 0, or halfway through the stop bit time in the other modes, in
any serial reception (except see SM2). Must be cleared by software.

The serial port can operate in four modes:

Mode 0. Serial data enters and leaves via RXD. Pin TXD outputs the shift
clock and this is used to synchronise data transmission/reception. Data is in the
form of 8 bits with the LSB first. The rate of transmission (baud rate) is 1/12 of
the oscillator frequency. Transmission is initiated by any instruction that uses
SBUF as a destination register. The ‘write to SBUF’ signal will also load a 1
into the 9th position of the transmit shift register. Reception is initiated by the
condition REN¼ 1 and RI¼ 0. A generalised diagram of the serial data format
is shown in Figure C.17. This format is applicable to all modes with modifica-
tion i.e. the 9th data bit is shown but is not present on modes 0 and 1.

Table C.10 Serial port mode options

SM0 SM1 Mode Description Baud rate

0 0 0 Shift register fosc/12

0 1 1 8-bit UART Variable

1 0 2 9-bit UART fosc/32 or fosc/64

1 1 3 9-bit UART Variable

Appendix C 273

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 274 – [246–284/39]
28.11.2003 4:56PM

Mode 1. Ten bits are transmitted/received through TxD/RxD respectively.
There is a start bit (low), 8 data bits (LSB first) followed by a stop bit (high).
For transmission the interrupt flag TI is set after all 10 bits have been sent.
The time for which each bit is at level 1 or 0 depends on the period set by
the baud rate frequency. For received data, reception is initiated by the
falling edge of the start bit and each bit is sampled in the centre of the
bit time interval. The data word will be entered into the SBUF register
provided:

RI ¼ 0 AND
SM2 ¼ 0 OR stop bit ¼ 1:

If RI¼ 0 then the program has read any previous data and is ready for the next
byte. The stop bit set to 1 will complete data transfer to the SBUF register
regardless of the state of SM2. For SM2¼ 0 the byte will be transferred to
SBUF regardless of the stop bit level.
On receive the start bit is discarded, the data bits are in SBUF and the stop

bit is placed in RB8 of the SCON register to indicate a data byte has been
received. Note that if RI is set at the end of reception of a data byte, it
suggests that the previously received data byte has not been read by the
program; this would cause the new data to be lost since it will not be loaded.
Transmission is again initiated by any instruction that uses SBUF as a
destination register. In this mode however the bit times are synchronised to
the divide-by-sixteen counter and not the ‘write to SBUF’ signal, as was the
case for mode 0. Reception is initiated by the detection of a high-to-low
transition at RxD.

Mode 2. Eleven bits are transmitted/received through TxD/RxD respectively.
There is a start bit (low), 8 data bits (LSB first), a programmable 9th data bit
and a stop bit (high). For transmission the 9th data bit (TB8 in SCON) can
have the value 0 or 1 or the parity bit (P in the PSW) could be moved into TB8.
On receive the 9th data bit goes into RB8 in the register SCON, while both the
start and stop bits are ignored. The conditions for received data are similar to
mode 1 i.e.:

RI ¼ 0 AND
SM2 ¼ 0 OR 9th data bit ¼ 1:

If either of these conditions is not met the received frame is irretrievably lost.

Mode 3. This is identical to mode 2 in all respects except that the baud rate is
not fixed (as it is for mode 2) but variable using timer 1 to provide the required
communication frequencies.

LSB

Serial data format

MSB PARITY

STOPSTART

Figure C.17 Generalised serial data format

274 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 275 – [246–284/39]
28.11.2003 4:56PM

ENHANCED UART

The UART operates in all of the usual modes that are described above. In
addition the UART can perform framing error detect, by looking for missing
stop bits, and automatic address recognition. The UART also fully supports
multiprocessor communication. When used for framing error detect the UART
looks for missing stop bits in the communication. A missing bit will set the FE bit
in the SCON register. The FE bit shares the SCON.7 bit with SM0, and PCON.6
(SMOD0) determines the function of SCON.7. If SMOD0 is set then SCON.7
functions as FE. The SCON.7 functions as SM0 when SMOD0 is cleared. When
used as FE, SCON.7 can only be cleared by software. Refer to Figure C.18.

AUTOMATIC ADDRESS RECOGNITION

Automatic address recognition is a feature, which allows the UART to recog-
nise certain addresses in the serial bit stream by using hardware to make the
comparisons. This feature saves a great deal of software overhead by eliminat-
ing the need for the software to examine every serial address, which passes by
the serial port. This feature is enabled by setting the SM2 bit in SCON. In the
9-bit UART modes, mode 2 and mode 3, the receive interrupt flag (RI) will be
automatically set when the received byte contains either the ‘Given’ address or
the ‘Broadcast’ address. The 9-bit mode requires that the 9th information bit is
a 1 to indicate that the received information is an address and not data.
Automatic address recognition is shown in Figure C.19.
The 8-bit mode is called mode 1. In this mode the RI flag will be set if SM2 is

enabled and the information received has a valid stop bit following the 8 address
bits and the information is either a given or broadcast address. Mode 0 is
the shift register mode and SM2 is ignored. Using the automatic address
recognition feature allows a master to selectively communicate with one or
more slaves by invoking the given slave address or addresses. All of the slaves

SM0 / FE SM1 SM2 REN TB8 RB8 TI RI

SMOD1 SMOD0 – POF GF1 GF0 PD IDL

SCON
(98H)

PCON
(87H)

Only in
mode 2, 3

Stop
bit

Data byteStart
bit

Set FE bit if stop bit is 0 (Framing error)

SM0 to UART mode control

0 : SCON.7 = SM0
1 : SCON.7 = FE

D0 D1 D3D2 D4 D5 D6 D7 D8

Figure C.18 UART framing error detection (courtesy Philips Semiconductors)

Appendix C 275

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 276 – [246–284/39]
28.11.2003 4:56PM

may be contacted by using the broadcast address. Two SFRs are used to define
the slave’s address, SADDR, and the address mask, SADEN. SADEN is used
to define which bits in the SADDR are to be used and which bits are ‘don’t
care’. The SADEN mask can be logically ANDed with the SADDR to create
the ‘Given’ address, which the master will use for addressing each of the slaves.
Use of the given address allows multiple slaves to be recognised while excluding
others. The following examples will help to illustrate the point:

Slave 0 SADDR¼ 1100 0000
SADEN ¼ 1111 1101
Given ¼ 1100 00X0

Slave 1 SADDR¼ 1100 0000
SADEN ¼ 1111 1110
Given ¼ 1100 000X

In the above example SADDR is the same and the SADEN data is used to
differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores
bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for slave 0
would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address for slave
1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be
selected at the same time by an address, which has bit 0 ¼ 0 (for slave 0) and bit
1 ¼ 0 (for slave 1). Thus, both could be addressed with 1100 0000. In a more
complex system the following could be used to select slaves 1 and 2 while
excluding slave 0:

Slave 0 SADDR¼ 1100 0000
SADEN ¼ 1111 1001
Given ¼ 1100 0XX0

Slave 1 SADDR¼ 1110 0000
SADEN ¼ 1111 1010
Given ¼ 1110 0X0X

Slave 2 SADDR¼ 1110 0000
SADEN ¼ 1111 1100
Given ¼ 1110 00XX

SM0 SM1 SM2 REN TB8 RB8 TI RI
SCON
(98H)

D0 D1 D3D2 D4 D5 D6 D7 D8

Received address D0 TO D7

Programmed address

In UART mode 2 OR mode 3 and SM2 = 1;
 Interrupt if REN = 1, RB8 = 1 and “Received address” = “Programmed address”
- When own address received, clear SM2 to receive data bytes
- When all data bytes have been received: SET SM2 to wait for next address.

Comparator

1
1

1 1 1 X
0

Figure C.19 UART multiprocessor communication, automatic address recognition
(courtesy Philips Semiconductors)

276 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 277 – [246–284/39]
28.11.2003 4:56PM

In the above example the differentiation among the three slaves is in the lower 3
address bits. Slave 0 requires that bit 0 ¼ 0 and it can be uniquely addressed by
1110 0110. Slave 1 requires that bit 1 ¼ 0 and it can be uniquely addressed by
1110 and 0101. Slave 2 requires that bit 2 ¼ 0 and its unique address is 1110
0011. To select slaves 0 and 1 and exclude slave 2 use address 1110 0100, since it
is necessary to make bit 2 ¼ 1 to exclude slave 2. Taking the logical OR of
SADDR and SADEN creates the broadcast address for each slave. Zeros in
this result are treated as don’t-cares. In most cases, interpreting the don’t-cares
as ones, the broadcast address will be FF hexadecimal.
Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H)

are loaded with 0s. This produces a given address of all ‘don’t cares’ as well as
a broadcast address of all ‘don’t cares’. This effectively disables the automatic
addressing mode and allows the microcontroller to use standard 80C51 type
UART drivers, which do not make use of this feature.

BAUD RATES

This has been described under the details of the SCON register. For mode 0 the
baud rate is fixed at oscillator frequency/12. For mode 2 the baud rate depends
on the value of the bit SMOD in the PCON SFR. If SMOD ¼ 0 (which is the
value on RESET), the baud rate is oscillator frequency/64. If SMOD ¼ 1, the
baud rate is oscillator frequency/32 i.e.: fosc/32 or fosc/64 (12 clock mode).

Baud rate ¼ 2SMOD

64
�Oscillator frequency

In the 80C51 the baud rates in modes 1 and 3 are determined by the timer 1
overflow rate and the value of SMOD as follows:

Baud rate ¼ 2SMOD

32
� Timer 1 overflow rate

The timer 1 interrupt should be disabled in this application. The timer can be
configured for timer or counter mode and if used in timer operation in the auto-
reload mode the baud rate is given by:

Baud rate ¼ 2SMOD

32
�Oscillator frequency

12� ½256� ðTH1Þ�
The oscillator frequency should be chosen to generate the required range of
baud rates. Table C.11 shows variously commonly used baud rates and how
they can be obtained from timer 1.
Applications involvingbaudratesand theuseof timer1canbe found inChapter4.

C.8 Interrupts

Whenever a computer program is running it can be forced to respond to
external conditions either by software techniques or the use of hardware signals

Appendix C 277

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 278 – [246–284/39]
28.11.2003 4:56PM

called interrupts. Software techniques involve checking flags or the status of
port pins and could take up valuable processor time, while the interrupt signals
only stop the main software program when necessary. Interrupts may be
generated internally or externally; whatever the source of the interrupt request
it causes the device to switch to an interrupt subroutine that is located at
predetermined addresses in program memory (see under Internal ROM).
There are six interrupt sources provided by the 80C51 and these are shown in

Table C.12 together with details of the polling priority assigned to each inter-
rupt source.

There are three SFRs associated with interrupts. The registers are the inter-
rupt enable (IE) at address A8H, interrupt priority (IP) at address B8H and the
interrupt priority high (IPH) that provides a four-level interrupt routine. IPH is
situated at address B7H.
Two of the interrupts are triggered by external signals via INT0 and INT1

while the remaining interrupts are generated by internal operations; timer 0,
timer 1, timer 2 and the ORed output of RI and TI. All of the bits that generate
interrupts can be set or cleared by software. Each interrupt source can be

Table C.11 Timer 1 generated commonly used baud rates

Timer 1

Baud rate fosc SMOD1 C/T Mode Reload value

Mode 0 Max; 1.67MHz 20MHz X X X X

Mode 2 Max; 625 k 20MHz 1 X X X

Mode 1.3 Max; 104.2 k 20MHz 1 0 2 FFH

19.2 k 11.059MHz 1 0 2 FDH

9.6 k 11.059MHz 0 0 2 FDH

4.8 k 11.059MHz 0 0 2 FAH

2.4 k 11.059MHz 0 0 2 F4H

1.2 k 11.059MHz 0 0 2 E8H

137.5 11.986MHz 0 0 2 1DH

110 6MHz 0 0 2 72H

110 12MHz 0 0 1 FEEBH

Table C.12 Interrupt sources and polling priority levels

Source Polling priority Request bits Hardware clear? Vector address

X0 1 IE0 N(L)1, Y(T)2 03H

T0 2 TF0 Y 0BH

X1 3 IE1 N(L)1, Y(T)2 13H

T1 4 TF1 Y 1BH

SP 5 RI, TI N 23H

T2 6 TF2, EXF2 N 2BH

Notes: 1. L= level activated; 2. T= transition activated.

278 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 279 – [246–284/39]
28.11.2003 4:56PM

enabled/disabled by the setting/clearing of a bit in the SFR IE. This register,
details of which are shown below, also has a global disable bit EA which
disables all interrupts at once.

MSB LSB

EA X ET2 ES ET1 EX1 ET0 EX0

AFH AEH ADH ACH ABH AAH A9H A8H

IE register bit functions and symbols are shown in Table C.13.

Each interrupt source can also be individually programmed to one of two
priority levels by setting/clearing a bit in SFR register IP. A low priority
interrupt can be interrupted in turn by a high priority interrupt but not by
another low priority interrupt. A high priority interrupt cannot be interrupted
by any other interrupt source. If requests of different priority level are received
simultaneously the higher priority level is serviced first. If requests of the same
priority level are received simultaneously an internal polling sequence is
invoked which determines a second priority level as shown in Table C.14.
The address given is the starting address of the relevant interrupt sub-

routine. If the routine cannot be fitted into the available 8 bytes a jump
instruction should route the routine elsewhere in memory. The interrupt will
cause the main program to stop while the interrupt is serviced, with the PC
address being saved on the stack. A RETI instruction at the end of the service
routine restores the address reached by the PC prior to the interrupt back to
the PC and resets the interrupt logic so that another interrupt, should it occur,
can be serviced.

Table C.13 IE register bit functions

Bit Symbol Function

IE.7 EA Disables ALL interrupts if EA ¼ 0: If EA ¼ 1 each interrupt

source is individually enabled/disabled by setting/clearing its

enable bit

IE.6 – Reserved

IE.5 ET2 Enables/disables the timer 2 overflow interrupt. If ET2 ¼ 0 the

timer 1 interrupt is disabled

IE.4 ES Enables/disables the serial port interrupt. If ES ¼ 0, the serial

port interrupt is disabled

IE.3 ET1 Enables/disables the timer 1 overflow interrupt. If ET1 ¼ 0

the timer 1 interrupt is disabled

IE.2 EX1 Enables/disables external interrupt 1. If EX1 ¼ 0, external

interrupt 1 is disabled

IE.1 ET0 Enables/disables the timer 0 overflow interrupt. If ET0 ¼ 0

the timer 0 interrupt is disabled

IE.0 EX0 Enables/disables external interrupt 0. If EX0 ¼ 0, external

interrupt 0 is disabled

Appendix C 279

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 280 – [246–284/39]
28.11.2003 4:56PM

Details of the IP register are:

MSB LSB

X X PT2 PS PT1 PX1 PT0 PX0

BDH BCH BBH BAH B9H B8H

IP register functions and symbols are shown in Table C.15.

Details of the IPH register are:

MSB LSB

– – PT2H PSH PT1H PX1H PT0H PX0H

B7H B6H B5H B4H B3H B2H B1H B0H

Table C.14

Priority Source Address

1 IE0 0003H

2 TF0 000BH

3 IE1 0013H

4 TF1 001BH

5 RI/TI 0023H

6 TF2/EXF2 002BH

Table C.15 IP register bit functions

Bit Symbol Function

IP.7 – Reserved

IP.6 – Reserved

IP.5 PT2 Defines timer 2 interrupt priority level. PT1 ¼ 1

programs it to the higher priority level

IP.4 PS Defines serial port interrupt priority level. PS ¼ 1

programs it to higher priority level

IP.3 PT1 Defines timer 1 interrupt priority level. PT1 ¼ 1

programs it to the higher priority level

IP.2 PX1 Defines external interrupt priority level. PX1 ¼ 1

programs it to the higher priority level

IP.1 PT0 Enables/disables timer 0 interrupt priority level.

PT0 ¼ 1 programs it to the higher priority level

IP.0 PX0 Defines the external interrupt 0 priority level. PX0 ¼ 1

programs it to the higher priority level

280 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 281 – [246–284/39]
28.11.2003 4:56PM

IPH register functions and symbols are shown in Table C.16.

The combination of the IP and IPH registers determines the four-level interrupt
structure as shown in Table C.17.

An interrupt will be serviced as long as an interrupt of equal or higher priority
is not already being serviced. If an interrupt of equal or higher level priority is
being serviced, the new interrupt will wait until the current interrupt is finished
before it is serviced. If a lower priority level interrupt is being serviced, it will be
stopped and the new interrupt serviced. When the new interrupt is finished the
lower priority level interrupt that was stopped will be completed.

Internal interrupts

When a timer/counter overflows the corresponding timer flag TF0 or TF1 is set
to 1. The flag is cleared by on-chip hardware when the service routine is
vectored. The timer 2 flags TF2 and EXF2 must be cleared by software.
The serial port interrupt is generated by the logical OR of RI (set to 1 in the

SCON register when a data byte is received) and TI (set to 1 in the SCON
register when a data byte has been transmitted). Neither flag is cleared by
hardware when vectoring to the service routine. In practice the service routine

Table C.16 IPH register bit functions

Bit Symbol Function

IPH.7 – Reserved for future use

IPH.6 – Reserved for future use

IPH.5 PT2H Timer 2 interrupt priority bit high

IPH.4 PSH Serial Port interrupt priority bit high

IPH.3 PT1H Timer 1 interrupt priority bit high

IPH.2 PX1H External interrupt 1 priority bit high

IPH.1 PT0H Timer 0 interrupt priority bit high

IPH.0 PX0H External interrupt 0 priority bit high

Note: Priority bit¼ 1 assigns higher priority while priority bit¼ 0 assigns lower priority.

Table C.17

Priority bits

IPH.x IP.x Interrupt priority level

0 0 Level 0 (lowest priority)

0 1 Level 1

1 0 Level 2

1 1 Level 3 (highest priority)

Appendix C 281

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 282 – [246–284/39]
28.11.2003 4:56PM

will have to determine whether it was RI or TI that generated the interrupt and
the bit cleared by software.

External interrupts

The external interrupts INT0 and INT1 can be level activated or transition
activated depending on the value of the bits IT0 and IT1 in the TCON register.
The interrupts are actually generated by the flags IE0 and IE1 in TCON. When
an external interrupt is generated the flag that caused it is only cleared by
hardware when the service routine is vectored only if the interrupt was transi-
tion activated. Any level-activated interrupt must be reset by the programmer
when the interrupt is serviced by the service subroutine. The low level must
be removed from the external circuit before a RETI instruction is executed
otherwise an immediate interrupt will occur after the execution of the RETI
instruction.

Reset

The reset input is the RST pin and taking this pin high for at least two machine
cycles while the oscillator is running will cause the CPU to generate an internal
reset. Reset is a form of interrupt since the action of the RST pin overrides any
software, which the 80C51 may be running at the time. Unlike other interrupts
the value of the address on the PC is not saved but is reset to 0000H. In fact the
internal reset algorithm writes 0s to all SFRs except the port latches, SP and
SBUF. The 80C51 reset values are shown in Table C.1. Internal RAM is not
affected by reset. However on power up the RAM values are indeterminate.

On-chip oscillators

The 8051 device is available in an NMOS version and a CMOS version, with
the latter having lower power consumption. In either case, although the circui-
try differs, the on-chip oscillator circuit is a positive reactance intended to
provide crystal-controlled resonance with externally connected capacitors.
The arrangement is shown in Figure C.20.

Quartz crystal
 or ceramic

resonator
C1

C2

HMOS or
CMOS

XTAL1

XTAL2

VSS

Figure C.20 80C51 on-chip oscillator (courtesy Philips Semiconductors)

282 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 283 – [246–284/39]
28.11.2003 4:56PM

The crystal specifications and capacitance values are not critical and 30 pF
can be used at any frequency with good quality crystals. Where cost is critical
ceramic resonators may be used and this case the capacitor values should be
higher, typically 47 pF. To drive the device with an external clock source it is
usual, for the CMOS device, to drive the XTAL1 input with the external clock
and leave the input XTAL2 floating. This is shown in Figure C.21.

For the NMOS device the external clock is connected to XTAL2 input and
XTAL1 is grounded. The reason for the difference is that in NMOS devices the
internal timing circuits are driven by the signal at XTAL2 whereas in the
CMOS devices they are driven by the signal at XTAL1.

Machine cycles

The oscillator formed by the crystal and associated circuit generates a pulse
train at the crystal frequency fosc. This pulse train sets the smallest interval of
time P that exists within the microcontroller. The minimum time required by
the microcontroller to complete a simple instruction, or part of a more complex
instruction, is the machine cycle. The machine cycle consists of a sequence of six
states, numbered S1 through to S6, with each state time lasting for two
oscillator periods. Thus a machine cycle takes 12 oscillator periods. Each
state is divided into a phase 1 half (P1) and a phase 2 half (P2). Figure C.22
shows the fetch/execute sequences in states and phases for various kinds of
instructions.
Normally two program fetches are generated during each machine cycle even

if the instruction being fetched does not require it. If the instruction being
executed does not need extra code bytes the CPU ignores the extra fetch and the
PC is not incremented.
Execution of a one-cycle instruction begins during state 1 of the machine

cycle with the opcode latched into the instruction register. A second fetch
occurs during S4 of the same machine cycle and execution is completed at the
end of S6 of the machine cycle.
The MOV X instructions take two machine cycles to complete and no

program fetch is generated during the second cycle of the instruction. This is
the only time that program fetches are skipped. The sequences described are the
same regardless of whether the program memory is internal or external to the
chip since execution times do not depend on the location of code memory.

External
oscillator
signal

CMOS gate

NC

80C51

XTAL 2

XTAL1

VSS

Figure C.21 Using external clock sources (courtesy Philips Semiconductors)

Appendix C 283

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_C.3D – 284 – [246–284/39]
28.11.2003 4:56PM

The above description defines the situation for those devices that operate
using 12 oscillator periods. Some devices within the 8051 family are designed to
operate on six oscillator periods while the LPC device described in Appendix E
operates on two oscillator periods and is thus six times faster in operation than
standard 8051 devices for a given clock frequency.

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6 S1

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Read opcode

Read opcode

Read opcode

Read opcode
(MOVX)

Read 2nd byte

Read next
opcode
(discard)

Read next
opcode (discard)

Read next
opcode (discard)

Read next opcode again

Read next opcode

Read next opcode again

Read next opcode again

(a) 1-byte, 1-cycle instruction, e.g., INC A

(b) 2-byte, 1-cycle instruction, e.g., ADD, #data

(c) 1-byte, 2-cycle instruction, e.g., INC DPTR

Osc.
(XTAL2)

ALE

No ALE

No
fetch

No fetch

Access external memory

ADDR DATA

(d) MOVX (1-byte, 2-cycle)

Figure C.22 80C51 family state sequences (courtesy Philips Semiconductors)

284 Appendix C

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 285 – [285–326/42]
28.11.2003 4:58PM

Appendix D
P89C66x Microcontroller

Details of this device are reproduced with kind permission of Philips Semicon-
ductors. Data regarding the device may be found on the Philips website at
www.semiconductors.philips.com. The P89C660/662/664/666 device contains
a non-volatile 16KB/32KB/64KB flash program memory (and 512B/1KB/
2KB/8KB RAM) that is both parallel programmable and serial in-system
and in-application programmable. In-system programming (ISP) allows the
user to download new code while the microcontroller sits in the application.
In-application programming (IAP) means that the microcontroller fetches new
program code and reprograms itself while in the system. This allows for remote
programming over a modem link. A default serial loader (boot loader) program
in ROM allows serial ISP of the flash memory via the UART without the need
for a loader in the flash code. For IAP, the user program erases and reprograms
the flash memory by use of standard routines contained in ROM. This device
executes one instruction in 6 clock cycles, hence providing twice the speed of
a conventional 80C51. A one-time programmable (OTP) configuration bit gives
the user the option to select conventional 12-clock timing. This device is a
single-chip 8-bit microcontroller manufactured in advanced CMOS process
and is a derivative of the 80C51 microcontroller family. The instruction set is
100% executing and timing compatible with the 80C51 instruction set. The
device also has four 8-bit I/O ports, three 16-bit timer/event counters, a multi-
source, four-priority-level, nested interrupt structure, an enhanced UART and
on-chip oscillator and timing circuits. The added features of the P89C660/662/
664/668 make it a powerful microcontroller for applications that require pulse
width modulation, high-speed I/O an up/down counting capabilities such as
motor control.

Features include:

. 80C51 central processing unit;

. on-chip flash program memory with ISP and IAP capability;

. boot ROM contains low-level flash programming routines for downloading
via the UART;

. can be programmed by the end-user application (IAP);

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 286 – [285–326/42]
28.11.2003 4:58PM

. parallel programming with 87C51 compatible hardware interface to pro-
grammer;

. six clocks per machine cycle operation (standard);

. 12 clocks per machine cycle operation (optional);

. speed up to 20MHz with 6 clock cycles per machine cycle (40MHz equiva-
lent performance); up to 33MHz with 12 clocks per machine cycle;

. fully static operation;

. RAM externally expandable to 64KB;

. four interrupt priority levels;

. eight interrupt sources;

. four 8-bit I/O ports;

. full-duplex enhanced UART

1. framing error detection
2. automatic address recognition;

. power control modes

1. clock can be stopped and resumed
2. idle mode
3. power-down mode;

. programmable clock out;

. second DPTR register;

. asynchronous port reset;

. low EMI (Inhibit ALE);

. I2C serial interface;

. programmable counter array (PCA)

1. PWM
2. capture/compare;

. well suited for IPMI applications.

The basic block diagram is shown in Figure D.1.

D.1 Pin-out diagram for the 89C66x

Packages include a 44-pin plastic leaded chip carrier (PLCC) package and a
44-pin low quad flat pack (LQFP) package. The PLCC package is illustrated
in Figure D.2. Note that although both packages have 44 pins only 40 pins in
each case are utilised since four pins have no internal connections.

A brief description of the function of each of the pins is given in the text that
follows. Note that the pin number refers to the PLCC package. The functions
of the LQFP package are the same as for the LPCC package but pin numbers
vary between the packages.
Supply voltage (Vcc and VSS). The device operates from a single supply con-

nected to pin 44 (Vcc) while pin 22 (VSS) is grounded.

286 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 287 – [285–326/42]
28.11.2003 4:58PM

Input/output (I/O) ports. Thirty-two of the pins are arranged as four 8-bit I/O
ports P0–P3 with each capable of operating as a control line or part of the
data/address bus in addition to the I/O functions. Details are as follows:

. Port 0. This is a dual-purpose port occupying pins 36 to 43 of the device.
The port is an open-drain bidirectional I/O port. Pins that have 1s written to
them float and can be used as high-impedance inputs. The port may be used
with external memory to provide a multiplexed address and data bus. In this
application internal pull-ups are used when emitting 1s.

. Port 1. This is an 8-bit bidirectional I/O port occupying pins 2 to 9 of the
device with internal pull-ups on all pins except P1.6 and P1.7, which are
open-drain. Pins that have 1s written to them are pulled high by the internal
pull-ups and can be used as inputs; as inputs, pins that are externally pulled

Accelerated 80C51 CPU
6-CLK mode (default)

12-CLK mode (optional)

16 K/32
K /64 KB

Code flash
Full-duplex

enhanced UART

Timer 0
Timer 1

Timer 2

Programmable
counter array

(PCA)

Watchdog timer

IIC
interface

0.5/1K/2K/
8KB /data RAM

Port 3
Configurable I/Os

Port 0
Configurable I/Os

Port 1
Configurable I/Os

Port 2
Configurable I/Os

OscillatorCrystal or
resonator

Figure D.1 89C66x block diagram (courtesy Philips Semiconductors)

Appendix D 287

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 288 – [285–326/42]
28.11.2003 4:58PM

low will source current via the internal pull-ups. The port pins have alter-
nate functions as follows:

(P1.0) T2 Timer/counter 2 external count input/clockout
(P1.1) T2EX Timer/counter 2 reload/capture/direction control
(P1.2) ECI External clock input to the PCA
(P1.3) CEX0 Capture/compare external I/O for PCA module 0
(P1.4) CEX1 Capture/compare external I/O for PCA module 1
(P1.5) CEX2 Capture/compare external I/O for PCA module 2
(P1.6) SCL I2C bus clock line (open drain)
(P1.7) SDA I2C bus data line (open drain)

. Port 2. This is an 8-bit bidirectional I/O port occupying pins 24 to 31 of the
device with internal pull-ups. Pins that have 1s written to them are pulled
high by the internal pull-ups and can be used as inputs; as inputs, pins that
are externally pulled low will source current via the internal pull-ups. The
port may be used to provide the high-order byte of the address bus for
external program memory or external data memory that uses 16-bit
addresses. When accessing external data memory that uses 8-bit addresses,
the port emits the contents of the P2 register.

. Port 3. This is an 8-bit bidirectional I/O occupying pin 11 and pins 13 to 19
of the device with internal pull-ups. The specification is similar to that of

6 1 40

29

397

17

PLCC

18 28

Pin Function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

NIC*

NIC*

NIC*

NIC*

P1.1/T2EX
P1.2/ECI
P1.3/CEX0
P1.4/CEX1
P1.5/CEX2
P1.6/SCL
P1.7/SDA

P3.0/R×D

P3.1/ T×D
P3.2 / INT0
P3.3 / INT1

P1.0/T2

RST

Pin Pin

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Function Function

P3.4/T0/CEX3
P3.5/T1/CEX4
P3.6/WR

P2.7/A15

P3.7/RD

P2.0/A8

P0.7/AD7
P0.6/AD6
P0.5/AD5
P0.4/AD4
P0.3/AD3
P0.2/AD2
P0.1/AD1
P0.0/AD0

P2.1/A9
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14

XTAL2
XTAL1
VSS

31
32
33
34
35
36
37
38
39
40
41
42
43
44

PSEN
ALE

VCC

*No internal connection

EA/Vpp

Figure D.2 89C66x 44-pin PLCC package (courtesy Philips Semiconductors)

288 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 289 – [285–326/42]
28.11.2003 4:58PM

port 1. These pins, in addition to the I/O role, serve the special features of
the 89C66x family; the alternate functions are summarised below:

P3.0 RxD serial data input port
P3.1 TxD serial data output port
P3.2 INT0 external interrupt 0
P3.3 INT1 external interrupt 1
P3.4 CEX3/T0 timer 0 external input; capture/compare external I/O for

PCA module 3
P3.5 CEX4/T1 timer 1 external input; capture/compare external I/O for

PCA module 4
P3.6 WR external data memory write strobe
P3.7 RD external data memory read strobe.

RESET (RST) (pin 10). The 89C66x is reset by holding this input high for a
minimum of two machine cycles before returning it low for normal running. An
internal resistance connects to pin 22 (VSS) allowing a power-on reset using an
external capacitor connected to pin 44 (Vcc).

XTAL1 and XTAL2 (pins 21 and 20 respectively). The 89C66x on-chip oscillator
is driven, usually, from an external crystal. The XTAL1 input also provides an
input to the internal clock generator circuits.

PSEN (program store enable) (pin 32). This pin provides an output read strobe
to external program memory. When executing code from the external program
memory, PSEN is activated twice each machine cycle, except that two PSEN
activations are skipped during each access to external data memory. The signal
is not activated during a fetch from internal memory.

ALE (address latch enable) (pin 33). The ALE signal is an output pulse used to
latch the low byte of an address during access to external memory. In normal
operation ALE is emitted twice every machine cycle and can be used for
external timing or clocking. Note that one ALE pulse is skipped during each
access to external data memory. ALE can be disabled by setting SFR auxili-
ary0. With this bit set ALE will be active only during a MOVX instruction.

EA/Vpp (external access/programming voltage) (pin 35). This pin is either held
high or low according to circuit requirements. If held low the device will fetch
code from external program memory locations. If held high the device executes
programs from internal memory. The value on the pin is latched when RST is
released and any subsequent changes have no effect. The pin also receives the
programming supply voltage (Vpp) during flash programming.

D.2 Memory organisation

The P89C660/662/664/668 has internal data memory that is mapped into four
separate segments: the lower 128 bytes of RAM, upper 128 bytes of RAM,

Appendix D 289

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 290 – [285–326/42]
28.11.2003 4:58PM

128 bytes SFR and 256 bytes expanded RAM (ERAM) (256 bytes for the ‘660;
768 bytes for the ‘662; 1792 bytes for the ‘664; 7936 bytes for the ‘668). The four
segments are:

1. The lower 128 bytes of RAM (addresses 00H to 7FH), which are directly
and indirectly addressable.

2. The upper 128 bytes of RAM (addresses 80H to FFH), which are indirectly
addressable only.

3. The SFRs (addresses 80H to FFH), which are directly addressable only.
4. The 256/768/1792/7936-bytes expanded RAM (ERAM, 00H – FFH/

2FFH/6FFH/1FFFH), which are indirectly accessed by move external
instruction, MOVX. and with the EXTRAM bit cleared, see AUXR (Aux-
iliary Register), Table D.1.

AUXR (AUXILIARY REGISTER)

address 8EH

The lower 128 bytes can be accessed by either direct or indirect addressing. The
upper 128 bytes can be accessed by indirect addressing only. The upper
128 bytes occupy the same address space as the SFR. That means they have
the same address, but are physically separate from SFR space. When an
instruction accesses an internal location above address 7FH, the CPU knows
whether the access is to the upper 128 bytes of data RAM, or to SFR space by
the addressing mode used in the instruction. Instructions that use direct addres-
sing access SFR space. For example:

MOV 0A0H,A accesses the SFR at location 0A0H (which is P2)

MSB LSB

– – – – – – EXTRAM AO

7 6 5 4 3 2 1 0

Table D.1 AUXR (auxiliary register)

Bit Symbol Function

7–2 – Reserved for future use

1 EXTRAM Internal/external RAM access using MOVX@Ri/@DPTR

EXTRAM Operating mode

0 Internal ERAM access using MOVX@Ri/

@DPTR

1 External data memory access

0 AO Disable/enable ALE

AO Operating mode

0 ALE is emitted at a constant rate of 1/3 the oscillator

frequency (6 clock mode, 1/6 fosc in 12 clock mode)

1 ALE is active only during off-chip memory access

The register is not bit addressable.

290 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 291 – [285–326/42]
28.11.2003 4:58PM

Instructions that use indirect addressing, access the upper 128 bytes of data
RAM. For example:

MOV @R0,A

where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than
P2 (whose address is 0A0H).

The ERAM can be accessed by indirect addressing, with EXTRAM bit
cleared and MOVX instructions. This part of memory is physically located
on-chip, logically occupies the first 256 bytes (660), 768 (662), 1792 (664); 7936
(668) of external data memory. With EXTRAM ¼ 0, the ERAM is indirectly
addressed, using the MOVX instruction in combination with any of the regis-
ters R0, R1 of the selected bank or DPTR. An access to ERAM will not affect
ports P0, P3.6 (WR#) and P3.7 (RD#). The P2 SFR is in output state during
external addressing. For example, with EXTRAM ¼ 0,

MOVX @R0,A

where R0 contains 0A0H, accesses the ERAM at address 0A0H rather than
external memory. An access to external data memory locations higher than the
ERAM will be performed with the MOVX DPTR instructions in the same way
as in the standard 80C51 (with P0 and P2 as data/address bus, and P3.6 and
P3.7 as write and read timing signals; refer to Figure D.3).

With EXTRAM ¼ 1, MOVX @Ri and MOVX @DPTR will be similar to
the standard 80C51. MOVX @ Rl will provide an 8-bit address multiplexed
with data on port 0 and any output port pins can be used to output higher order
address bits. This is to provide the external paging capability. MOVX@DPTR
will generate a 16-bit address. Port 2 outputs the high-order eight address bits
(the contents of DPH) while port 0 multiplexes the low-order eight address bits
(the contents of DPL) with data: MOVX @RI and MOVX @DPTR will
generate either read or write signals on P3.6 (WR) and P3.7 (RD). The SP
may be located anywhere in the 256 bytes RAM (lower and upper RAM)
internal data memory. The stack may not be located in the ERAM.

FF/2FF/6FF/1FFF

ERAM
256, 768,

1792 or 7936
bytes

000

FF FF

80 80

00

Upper
128 bytes

internal RAM

Lower
128 bytes

Internal RAM

Special
function
register

External
data

memory

FFFF

00 0000

Figure D.3 89C66x internal/external data memory address spaces (courtesy Philips
Semiconductors)

Appendix D 291

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 292 – [285–326/42]
28.11.2003 4:58PM

FLASH EPROM MEMORY

The P89C660/662/664/668 flash memory augments EPROM functionality with
in-circuit electrical erasure and programming. The flash can be read and written as
bytes. The chip erase operation will erase the entire program memory. The block
erase function can erase any flash byte block; ISP and standard parallel program-
ming are both available. On-chip erase and write timing generation contribute to a
user-friendly programming interface. The P89C66x flash reliably stores memory
contents even after 10000 erase and program cycles. The cell is designed to
optimise the erase and programming mechanisms. In addition, the combination
of advanced tunnel oxide processing and low internal electric fields for erase and
programming operations, produces reliable cycling. The P89C66x uses aþ5V Vpp

supply to perform the program/erase algorithms.

ISP and IAP

. Flash EPROM internal program memory with block erase.

. Internal 1KB fixed boot ROM, containing low-level ISP routines and a default
serial loader. User program can call these routines to perform IAP. The Boot
ROM can be turned off to provide access to the full 64KB of flash memory.

. Boot vector allows user provided Flash loader code to reside anywhere in
the Flash memory space. This configuration provides flexibility to the user.

. Default loader in boot ROM allows programming via the serial port with-
out the need for a user provided loader.

. Up to 64KB of external program memory if the internal program memory
is disabled (EA ¼ 0).

. Programming and erase voltage þ5V (þ12V tolerant).

. Read/Programming/Erase using ISP/IAP:

1. Byte programming (20 ms)
2. Typical quick erase times:

Block erase (8KB or 16KB) in 10 s.
Full erase (64KB) in 20 s.

. ISP

. Programmable security for the code in the flash

. 10 000 minimum erase/program cycles for each byte

. 10-year minimum data retention

Flash organisation

The P89C660/662/664/668 contains 16KB/32KB/64KB of flash program mem-
ory. This memory is organised as five separate blocks. The first two blocks are
8KB in size, filling the program memory space from address 0 through 3FFF
hex. The final three blocks are 16KB in size and occupy addresses from
4000 through FFFF hex. Figure D.4 illustrates the flash memory configurations.

292 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 293 – [285–326/42]
28.11.2003 4:58PM

Flash programming and erasure

There are three methods of erasing or programming of the flash memory that
may be used. First, the flash may be programmed or erased in the end-user
application by calling low-level routines through a common entry point in the
boot ROM. The end-user application, though, must be executing code from a
different block than the block that is being erased or programmed. Second, the
on-chip ISP boot loader may be invoked. This ISP boot loader will, in turn, call
low-level routines through the same common entry point in the boot ROM that
can be used by the end-user application. Third, the flash may be programmed
or erased using the parallel method by using a commercially available EPROM
programmer. The parallel programming method used by these devices is similar
to that used by EPROM 87C51, but it is not identical, and the commercially
available programmer will need to have support for these devices.

BOOT ROM

When the microcontroller programs its own flash memory, all of the low-level
details are handled by code that is permanently contained in a 1KB ‘Boot
ROM’ that is separate from the flash memory. A user program simply calls the
common entry point with appropriate parameters in the boot ROM to accom-
plish the desired operation. Boot ROM operations include things like: erase
block, program byte, verify byte, program security lock bit, etc. The boot
ROM overlays the program memory space at the top of the address space from

89C664/89C668

FFFF

C000

8000

4000

2000

0000

89C662

89C660

Program
address

Block 4
16 KB

Block 3
16 KB

Block 1
8 KB

Block 2
16 KB

Block 0
8 KB

Boot ROM
FFFF

FC00
(1 KB)

Figure D.4 Flash memory configurations (courtesy Philips Semiconductors)

Appendix D 293

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 294 – [285–326/42]
28.11.2003 4:58PM

FC00 to FFFF hex, when it is enabled. The boot ROM may be turned off so
that the upper 1KB of flash program memory is accessible for execution.

D.3 Special function registers (SFRs)

Details of the SFRs in the 89C66x family are shown in Table D.2. Appendix C
deals with many of the SFRs that are common to the 80C51 and the 89C66x
family and if necessary reference should be made to Appendix C if an SFR is
not covered in detail in this appendix.

D.4 Timer/counters

Information regarding timers 0, 1 and 2 is discussed fully in Appendix C for the
standard 80C51 device and the detail is no different for the 89C66x family.
However, because the 89C66x devices can operate in the 6-clock mode, allow-
ance should be made for this where relevant in the timer/counter section of
Appendix C. For example, Figure C.13 of Appendix C shows timer 2 in capture
mode, with the oscillator frequency shown as being divided by 12. This is
correct for the 80C51 device and for the 89C66x device in 12-clock mode. For
the 89C66x device in 6-clock mode the oscillator frequency is divided by 6.

Similarly, Table C.7 of Appendix C shows timer 2 generated commonly used
baud rates. The baud rate shown in the Table for the 80C51 device is the same for
the 89C66x device in 12-clock mode but the value is doubled for the 89C66x
device 6-clock mode i.e. 375 k becomes 750k, etc. Finally the formula for timer
2 baud rate when the timer is being clocked internally is shown in Appendix C as:

Oscillator frequency

32 ½65536� ðRCAP2H; RCAP2LÞ�

which can be written, more generally, as:

Oscillator frequency

n ½65536� ðRCAP2H; RCAP2LÞ�

where n ¼ 16 in 6-clock mode and n ¼ 32 in 12-clock mode. (RCAP2H,
RCAP2L) is the content of RCAP2H RCAP2L taken as a 16-bit unsigned
integer.

To obtain the reload value for RCAP2H and RCAP2L, the above equation
can be rewritten as:

RCAP2H; RCAP2L ¼ 65536� ½ fosc=ðn� baud rateÞ�

where n has the same values as indicated above and fosc ¼ oscillator frequency.
There is a 16-bit timer/counter used in the 89C66x that is not present in the
standard 80C51 device. This is the programmable counter array (PCA) and its
details follow.

294 Appendix D

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
D

.3
D

–
2
9
5

–
[285–326/42]

28.11.2003
4:58P

M

Table D.2 89C66x special function registers (courtesy Philips Semiconductors)

Direct Bit address, symbol, or alternative port function Reset

Symbol Description address MSB LSB value

ACC* Accumulator E0H E7 E6 E5 E4 E3 E2 E1 E0 00H

AUXR# Auxillary
8EH – – – – – – EXTRAM AO xxxxxx10B

AUXR1# Auxillary 1
A2H – – ENBOOT – GF2 0 – DPS xxxxx0x0B

B* B register F0H F7 F6 F5 F4 F3 F2 F1 F0 00H

CCAP0H# Module 0 capture high FAH xxxxxxxxB

CCAP1H# Module 1 capture high FBH xxxxxxxxB

CCAP2H# Module 2 capture high FCH xxxxxxxxB

CCAP3H# Module 3 capture high FDH xxxxxxxxB

CCAP4H# Module 4 capture high FEH xxxxxxxxB

CCAP0L# Module 0 capture low EAH xxxxxxxxB

CCAP1L# Module 1 capture low EBH xxxxxxxxB

CCAP2L# Module 2 capture low ECH xxxxxxxxB

CCAP3L# Module 3 capture low EDH xxxxxxxxB

CCAP4L# Module 4 capture low EEH xxxxxxxxB

CCAPM0# Module 0 mode
C2H – ECOM CAPP CAPN MAT TOG PWM ECCF x0000000B

CCAPM1# Module 1 mode
C3H – ECOM CAPP CAPN MAT TOG PWM ECCF x0000000B

CCAPM2# Module 2 mode
C4H – ECOM CAPP CAPN MAT TOG PWM ECCF x0000000B

CCAPM3# Module 3 mode
C5H – ECOM CAPP CAPN MAT TOG PWM ECCF x0000000B

CCAPM4# Module 4 mode C6H – ECOM CAPP CAPN MAT TOG PWM ECCF x0000000B
C7 C6 C5 C4 C3 C2 C1 C0

CCON*# PCA counter control C0H CF CR – CCF4 CCF3 CCF2 CCF1 CCF0 00x00000B

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
D

.3
D

–
2
9
6

–
[285–326/42]

28.11.2003
4:58P

M

Table D.2 Continued

Direct Bit address, symbol, or alternative port function Reset

Symbol Description address MSB LSB value

CH# PCA counter high F9H 00H

CL# PCA counter low E9H 00H

CMOD# PCA counter mode C1H CIDL WDTE – – – CPS1 CPS0 ECF 00xxx000B
DPTR: Data pointer (2 bytes)

DPH Data pointer high 83H 00H

DPL Data pointer low 82H 00H

AF AE AD AC AB AA A9 A8

IEN0* Interrupt enable 0 A8H EA EC ES1 ES0 ET1 EX1 ET0 EX0 00H

IEN1* Interrupt enable 1 E8 – – – – – – – ET2 xxxxxxx0B

BF BE BD BC BB BA B9 B8
IP* Interrupt priority B8H PT2 PPC PS1 PS0 PT1 PX1 PT0 PX0 x0000000B

IPH* Interrupt priority high B7H PT2H PPCH PS1H PS0H PT1H PX1H PT0H PX0H x0000000B

87 86 85 84 83 82 81 80

P0* Port 0 80H AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 FFH

97 96 95 94 93 92 91 90

P1* Port 1 90H SDA SCL CEX2 CEX1 CEX0 ECI T2EX T2 FFH

A7 A6 A5 A4 A3 A2 A1 A0

P2* Port 2 A0H AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 FFH

B7 B6 B5 B4 B3 B2 B1 B0

P3* Port 3 B0H RD WR T1/CEX4 T0/CEX3 INT1 INT0 TxD RxD FFH

PCON#1 Power control 87H SMOD1 SMOD0 – POF GF1 GF0 PD IDL 00xxx000B

D7 D6 D5 D4 D3 D2 D1 D0

PSW* Program status word D0H CY AC F0 RS1 RS0 OV F1 P 00000000B

RCAP2H# Timer 2 capture high CBH 00H

RCAP2L# Timer 2 capture low CAH 00H

SADDR# Slave address A9H 00H

SADEN# Slave address mask B9H 00H

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
D

.3
D

–
2
9
7

–
[285–326/42]

28.11.2003
4:58P

M

S0BUF Serial data buffer 99H xxxxxxxxB

9F 9E 9D 9C 9B 9A 99 98

S0CON* Serial control 98H SM0/FE SM1 SM2 REN TB8 RB8 TI RI 00H

SP Stack pointer 81H 07H

S1DAT# Serial 1 data DAH 00H

S1ADR# Serial 1 address DBH Slave address GC 00H

S1STA# Serial 1 status D9H SC4 SC3 SC2 SC1 SC0 0 0 0 F8H

DF DE DD DC DB DA D9 D8

S1CON*# Serial 1 control D8H CR2 ENS1 STA ST0 SI AA CR1 CR0 00000000B

8F 8E 8D 8C 8B 8A 89 88

TCON* Timer control 88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H

CF CE CD CC CB CA C9 C8

T2CON* Timer 2 control C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 00H

T2MOD# Timer 2 mode control C9H – – – – – – T2OE DCEN xxxxxx00B

TH0 Timer high 0 8CH 00H

TH1 Timer high 1 8DH 00H

TH2# Timer high 2 CDH 00H

TL0 Timer low 0 8AH 00H

TL1 Timer low 1 8BH 00H

TL2# Timer low 2 CCH 00H

TMOD Timer mode 89H GATE C/T M1 M0 GATE C/T M1 M0 00H

WDTRST Watchdog timer reset A6H

* SFRs are bit addressable.
SFRs are modified from or added to the 80C51 SFRs.
– Reserved bits.
1. Reset value depends on reset source.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 298 – [285–326/42]
28.11.2003 4:58PM

PROGRAMMABLE COUNTER ARRAY (PCA)

The programmable counter array available on the 89C66x is a special 16-bit
timer that has five 16-bit capture/compare modules associated with it. Each of
the modules can be programmed to operate in one of four modes: rising and/or
falling edge capture, software timer, high-speed output, or pulse width mod-
ulator. Each module has a pin associated with it in port 1. Module 0 is
connected to P1.3 (CEXO), module 1 to P1.4 (CEX1), etc. The basic PCA
configuration is shown in Figure D.5.

The PCA timer is a common time base for all five modules and can be
programmed to run at: 1/6 the oscillator frequency; 1/2 the oscillator fre-
quency; the timer 0 overflow; or the input on the ECI pin (P1.2). The timer
count source is determined from the CPS1 and CPS0 bits in the CMOD SFR as
shown in Table D.3.

CMOD

address C1H

In the CMOD SFR, there are three additional bits associated with the
PCA. They are CIDL which allows the PCA to stop during idle mode,
WDTE which enables or disables the watchdog function on module 4, and
ECF which, when set, causes an interrupt and the PCA overflow flag CF (in
the CCON SFR) to be set when the PCA timer overflows. These functions
are shown in Figure D.6.

The watchdog timer function is implemented in module 4 (see Figure
D.12). The CCON SFR contains the run control bit for the PCA, and the
flags for the PCA timer (CF) and each module. Details of the CCON SFR
are shown in Table D.4.

16 bits

16 bits

Module 0

Module 1

Module 2

Module 3

Module 4

PCA Timer/counter

Time base for PCA modules

Module functions:
16-bit capture
16-bit timer
16-bit high speed output
8-bit PWM
Watchdog timer (module 4 Only)

P1.3/CEX0

P1.4/CEX1

P1.5/CEX2

P3.4/CEX3

P3.5/CEX4

Figure D.5 Programmable counter array (PCA) (courtesy Philips Semiconductors)

MSB LSB

CIDL WDTE – – – CPS1 CPS0 ECF

7 6 5 4 3 2 1 0

298 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 299 – [285–326/42]
28.11.2003 4:58PM

CCON

address 0C0H
bit addressable

Table D.3 PCA counter mode register (CMOD)

Bit Symbol Function

7 CIDL Counter idle control. CIDL ¼ 0 programs the PCA counter to

continue functioning during idle mode. CIDL ¼ 1 programs it

to be gated off during idle

6 WDTE Watchdog timer enable. WDTE ¼ 0 disables watchdog timer

function on PCA Module 4. WDTE ¼ 1 enables it

5, 4, 3 – Reserved for future use

2 CPS1 PCA count pulse select bit 1

1 CPS0 PCA count pulse select bit 0

CPS1 CPSO Selected PCA input

0 0 Internal clock. 1/6 oscillator frequency (6 clock mode);

1/12 oscillator frequency (12 clock mode)

0 1 Internal clock. 1/2 oscillator frequency (6 clock mode);

1/4 oscillator frequency (12 clock mode)

1 0 Timer 0 overflow

1 1 External clock at ECI pin (P1.2) (maximum rate¼
1/4 oscillator frequency in 6-clock mode, 1/8 oscillator

frequency in 12-clock mode)

0 ECF PCA Enable Counter Overflow Interrupt. ECF ¼ 1 enables CF

bit in CCON to generate an interrupt. ECF ¼ 0 disables that

function of CF.

OSC/6 (6 clock mode)
or

OSC/12 (12 clock mode)
OSC/2 (6 clock mode)

or
OSC/4 (12 clock mode)

Timer 0 overflow

External input
(P1.2/ECI)

IDLE

CIDL WDTE

00
01
10
11

Decode

CF CR CCF4 CCF3 CCF2 CCF1 CCF0

CPS1 CPS0 ECF CMOD
(C1H)

CCON
(C0H)

CH CL

To PCA
modules

Overflow
Interrupt

16-bit up counter

Figure D.6 PCA timer/counter (courtesy Philips Semiconductors)

MSB LSB

CF CR – CCF4 CCF3 CCF2 CCF1 CCF0

7 6 5 4 3 2 1 0

Appendix D 299

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 300 – [285–326/42]
28.11.2003 4:58PM

To run the PCA the CRbit (CCON.6) must be set by software. The PCA is shut
off by clearing this bit. The CF bit (CCON.7) is set when the PCA counter
overflows and an interrupt will be generated if the ECF bit in the CMOD
register is set. The CF bit can only be cleared by software. Bits 0 through 4 of
the CCON register are the flags for the modules (bit 0 for module 0, bit 1 for
module 1, etc.) and are set by hardware when either a match or a capture
occurs. These flags also can only be cleared by software. The PCA interrupt
system is shown in Figure D.7.

Table D.4 PCA counter control register (CCON)

Bit Symbol Function

7 CF PCA counter overflow flag. Set by hardware when the counter rolls

over. CF flags an interrupt if bit ECF in CMOD is set. CF may be

set either by hardware or software but can only be cleared by

software

6 CR PCA counter run control bit. Set by software to turn the PCA

counter on. Must be cleared by software to turn the PCA counter off

5 – Reserved for future use

4 CCF4 PCA module 4 interrupt flag. Set by hardware when a match or

capture occurs. Must be cleared by software

3 CCF3 PCA module 3 interrupt flag. Set by hardware when a match or

capture occurs. Must be cleared by software

2 CCF2 PCA module 2 interrupt flag. Set by hardware when a match or

capture occurs. Must be cleared by software

1 CCF1 PCA module 1 interrupt flag. Set by hardware when a match or

capture occurs. Must be cleared by software

0 CCF0 PCA module 0 interrupt flag. Set by hardware when a match or

capture occurs. Must be cleared by software

PCA timer/counter

Module 0

Module 1

Module 2

Module 3

Module 4

CMOD.0 ECF CCAPMn.0 ECCFn

CF CR CCF4 CCF3 CCF2 CCF1 CCF0
CCON
(C0H)

IE.6
EC

IE.7
EA To

interrupt
priority
decoder

Figure D.7 PCA interrupt system (courtesy Philips Semiconductors)

300 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 301 – [285–326/42]
28.11.2003 4:58PM

Each module in the PCA has a SFR associated with it. These registers are:
CCAPM0 for module 0, CCAPM1 for module 1, etc. Details are shown in
Table D.5.

CCAPMN

address: CCAPM0 0C2H
CCAPM1 0C3H
CCAPM2 0C4H
CCAPM3 0C5H
CCAPM4 0C6H

not bit addressable

The registers contain the bits that control the mode that each module will
operate in. The ECCF bit (CCAPMn.0 where n ¼ 0,1,2,3 or 4 depending on the
module) enables the CCF flag in the CCON SFR to generate an interrupt when
a match or compare occurs in the associated module. PWM (CCAPMn.1)
enables the pulse width modulation mode. The TOG bit (CCAPMn.2), when
set, causes the CEX output associated with the module to toggle when there is
a match between the PCA counter and the module’s capture/compare register.
The match bit MAT (CCAPMn.3), when set, will cause the CCFn bit in the
CCON register to be set when there is a match between the PCA counter and
the module’s capture/compare register.

MSB LSB

– ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

7 6 5 4 3 2 1 0

Table D.5 PCA modules compare/capture registers (CCAPMn)

Bit Symbol Function

7 – Reserved for future use

6 ECOMn Enable comparator. ECOMn ¼ 1 enables the comparator function

5 CAPPn Capture positive. CAPPn ¼ 1 enables positive edge capture

4 CAPNn Capture negative. CAPNn ¼ 1 enables negative edge capture

3 MATn Match. When MATn ¼ 1, a match of the PCA counter with this

module’s compare/capture register causes the CCFn bit in CCON

to be set, flagging an interrupt

2 TOGn Toggle. When TOGn ¼ 1, a match of the PCA counter with this

module’s compare/capture register causes the CEXn pin to toggle

1 PWMn Pulse width modulation. PWMn ¼ 1 enables the CEXn pin to be

used as a pulse width modulated output

0 ECCFn Enable CCF interrupt. Enables compare/capture flag CCFn in the

CCON register to generate an interrupt

Appendix D 301

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 302 – [285–326/42]
28.11.2003 4:58PM

The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine
the edge that a capture input will be active on. The CAPN bit enables the
negative edge, and the CAPP bit enables the positive edge. If both bits are set,
both edges will be enabled and a capture will occur for either transition.
The last bit ECOM (CCAPMn.6), when set, enables the comparator function.
Table D.6 shows the CCAPMn settings for the various PCA functions.

There are two additional registers associated with each of the PCA modules.
They are CCAPnH and CCAPnL and these are the registers that store the 16-bit
count when a capture occurs or a compare should occur. When a module is used
in the PWMmode these registers are used to control the duty cycle of the output.

PCA CAPTURE MODE

To use one of the PCA modules in the capture mode, either one or both of the
CCAPM bits, CAPN and CAPP, for that module must be set. The external
CEX input for the module (on port 1) is sampled for a transition. When a valid
transition occurs, the PCA hardware loads the value of the PCA counter
registers (CH and CL) into the module’s capture registers (CCAPnL and
CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn
bit in the CCAPMn SFR are set, then an interrupt will be generated. Figure D.8
shows the PCA capture mode.

16-BIT SOFTWARE TIMER MODE

The PCA modules can be used as software timers by setting both the ECOM
and MAT bits in the modules CCAPMn register. The PCA timer will be

Table D.6 PCA module modes (CCAPMn register)

– ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn Module function

X 0 0 0 0 0 0 0 No operation

X X 1 0 0 0 0 X 16-bit capture by a

positive-edge

trigger on CEXn

X X 0 1 0 0 0 X 16-bit capture by a

negative-edge

trigger on CEXn

X X 1 1 0 0 0 X 16-bit capture by a

transition on CEXn

X 1 0 0 1 0 0 X 16-bit software timer

X 1 0 0 1 1 0 X 16-bit high speed

output

X 1 0 0 0 0 1 0 8-bit PWM

X 1 0 0 1 X 0 X Watchdog timer

302 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 303 – [285–326/42]
28.11.2003 4:58PM

compared to the module’s capture registers, and when a match occurs, an
interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn
SFR) bits for the module are both set, see Figure D.9.

HIGH SPEED OUTPUT MODE

In this mode, the CEX output (on port 1) associated with the PCA module will
toggle each time a match occurs between the PCA counter and the module’s
capture registers. To activate this mode, the TOG, MAT and ECOM bits in the
module’s CCAPMn SFR must be set, see Figure D.10.

PULSE WIDTH MODULATOR MODE

All of the PCA modules can be used as PWM outputs. Figure D.11 shows the
PWM function. The frequency of the output depends on the source for the
PCA timer. All the modules will have the same frequency of output because
they all share the PCA timer. The duty cycle of each module is independently

CF CR –

–

CCF4 CCF3 CCF2 CCF0C/F1
CCON
(0C0H)

CEXn
CAPTURE

(TO CCFn)

PCA interrupt
PCA timer/counter

CH CL

CCAPnH CCAPnL

CCAPMn, n = 0 to 4
(C2H – C6H)

ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

0 0 0 0

Figure D.8 PCA capture mode (courtesy Philips Semiconductors)

CF CR –

–

CCF4 CCF3 CCF2 CCF0CCF1
CCON
(C0H)

(TO CCFn)
PCA interrupt

PCA timer/counter

CH CL

CCAPnH CCAPnL

CCAPMn, n = 0 to 4
(C2H – C6H)

ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

0 000

16-bit comparator Match

Write to
CCAPnH

Write to
CCAPnL

Reset

Enable
0 1

Figure D.9 PCA compare mode (courtesy Philips Semiconductors)

Appendix D 303

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 304 – [285–326/42]
28.11.2003 4:58PM

variable by using the module’s capture register CCAPLn. When the value of the
PCA CL SFR is less than the value in the module’s CCAPLn SFR, the output
will be low. When it is equal to or greater than, the output will be high. When
CL overflows from FFH to 00H, CCAPLn is reloaded with the value in
CCAPHn; this allows PWM update without glitches. The PWM and ECOM
bits in the module’s CCAPMn register must be set to enable the PWM mode.

PCA WATCHDOG TIMER

An onboard watchdog timer is available with the PCA to improve the relia-
bility of the system without increasing chip count. Watchdog timers are useful

CF CR –

–

CCF4 CCF3 CCF2 CCF0C/F1
CCON
(0C0H)

(TO CCFn)
PCA interrupt

PCA timer/counter

CH CL

CCAPnH CCAPnL

CCAPMn, n = 0 to 4
(C2H – C6H)

ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

1 000

16-bit comparator Match

Write to
CCAPnH

Write to
CCAPnL

Reset

Enable
0 1

Toggle

CEXn

Figure D.10 PCA high-speed output mode (courtesy Philips Semiconductors)

–

PCA timer/counter

CL

CCAPnH

CCAPnL

CCAPMn, n = 0 to 4
(C2H – C6H)

ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

0 0 000

8-bit
 comparator

Enable

0

1

CEXn

Overflow

CL >= CCAPnL

CL < CCAPnL

Figure D.11 PCA PWM mode (courtesy Philips Semiconductors)

304 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 305 – [285–326/42]
28.11.2003 4:58PM

for systems that are susceptible to noise, power glitches or electrostatic dis-
charge. Module 4 is the only PCA module that can be programmed as a
watchdog. However, this module can still be used for other modes, if the
watchdog is not needed. Figure D.12 shows a diagram of how the watchdog
works.

The user pre-loads a 16-bit value in the compare registers. Just like the other
compare modes, this 16-bit value is compared to the PCA timer value. If a
match is allowed to occur, an internal reset will be generated. This will not
cause the RST pin to be driven high. In order to hold off the reset, the user has
three options:

1. Periodically change the compare value, so it will never match the PCA timer.
2. Periodically change the PCA timer value, so it will never match the com-

pare values.
3. Disable the watchdog by clearing the WDTE bit before a match occurs and

then re-enable it.

The first two options are more reliable because the watchdog timer is
never disabled as in option #3. If the PC ever goes astray, a match will
eventually occur and cause an internal reset. The second option is also not
recommended if other PCA modules are being used. The PCA timer is the
time base for all modules; changing the time base for other modules would not
be a good idea. Thus, in most applications the first solution is the best option.
The watchdog timer requires initialising using a suitable WATCHDOG
routine. Module 4 can be configured in either compare mode, and the WDTE
bit in CMOD must also be set. The user’s software must periodically change
(CCAP4H,CCAP4L) to keep a match from occurring with the PCA timer
(CH,CL). The WATCHDOG routine should not be part of an interrupt

CIDL WDTE – – – CPS1 CPS0 ECF
Write to
CCA4L Reset

Write to
CCAP4H

Enable

CCAP4H CCAP4L Module 4

Match
16-bit comparator Reset

CMOD
(C1H)

CH CL

PCA timer/counter

– ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn CCAPM4
(C6H)

0 0 1 X 0 X

1 0

Figure D.12 PCA watchdog timer m (module 4 only) (courtesy Philips
Semiconductors)

Appendix D 305

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 306 – [285–326/42]
28.11.2003 4:58PM

service routine, because if the PC goes astray and gets stuck in an infinite
loop, interrupts will still be serviced and the watchdog will keep getting
reset. Thus, the purpose of the watchdog would be defeated. Instead, this
subroutine should be called from the main program within 216 count of the
PCA timer.

D.5 Serial interface

The 89C66x device has two serial ports, which can operate independently of
each other. The ports are SIO0, which is a full duplex UART port identical to
the 80C51, and SIO1, which is used for the I2C bus.
SIO0. This port operates in the same way as the 80C51 serial port and also

uses timer 1 as a baud rate generator.
SIO1. The I2C bus operates with two lines, SDA (serial data line) and SCL

(serial clock line) in order to transfer data between the microcontroller and
other devices connected to the bus. For this port to be enabled, the output
latches of P1.6 (the SCL line) and P1.7 (the SDA line) must be set to logic 1.

FULL-DUPLEX ENHANCED UART

Standard UART operation

A full-duplex serial port can transmit and receive simultaneously. It is also
receive buffered, meaning it can commence reception of a second byte before a
previously received byte has been read from the register. (However, if the first
byte still has not been read by the time reception of the second byte is complete,
one of the bytes will be lost.) The serial port receive and transmit registers are
both accessed at SFR SBUF. Writing to SBUF loads the transmit register, and
reading SBUF accesses a physically separate receive register. The serial port can
operate in four modes:
Mode 0. Serial data enters and exits through RxD. TxD outputs the shift

clock. Eight bits are transmitted/received (LSB first). The baud rate is fixed at
1/12 the oscillator frequency in 12-clock mode or 1/6 the oscillator frequency in
6-clock mode.
Mode 1. Ten bits are transmitted (through TxD) or received (through RxD);

a start bit (0), 8 data bits (LSB first) and a stop bit (1). On receive, the stop bit
goes into RB8 in SFR SCON. The baud rate is variable.
Mode 2. Eleven bits are transmitted (through TxD) or received (through

RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and
a stop bit (1). On transmit, the 9th data bit (TB8 in SCON) can be assigned the
value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved
into TB8. On receive, the 9th data bit goes into RB8 in SFR SCON, while the
stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 the
oscillator frequency in 12-clock mode or 1/16 or 1/32 the oscillator frequency in
6-clock mode.

306 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 307 – [285–326/42]
28.11.2003 4:58PM

Mode 3. Eleven bits are transmitted (through TxD) or received (through
RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and a
stop bit (1). In fact, mode 3 is the same as mode 2 in all respects except baud
rate. The baud rate in mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF
as a destination register. Reception is initiated in mode 0 by the condition
RI ¼ 0 and REN ¼ 1. Reception is initiated in the other modes by the incom-
ing start bit if REN ¼ 1.

MULTIPROCESSOR COMMUNICATIONS

Modes 2 and 3 have a special provision for multiprocessor communications. In
these modes, 9 data bits are received. The 9th bit goes into RB8. Then comes
a stop bit. The port can be programmed such that when the stop bit is received,
the serial port interrupt will be activated only if RB8 ¼ 1. This feature is
enabled by setting bit SM2 in SCON. A way to use this feature in multi-
processor systems is as follows.

When the master processor wants to transmit a block of data to one of
several slaves, it first sends out an address byte, which identifies the target slave.
An address byte differs from a data byte in that the 9th bit is 1 in an address
byte and 0 in a data byte. With SM2 ¼ 1, no slave will be interrupted by a data
byte. An address byte, however, will interrupt all slaves, so that each slave can
examine the received byte and see if it is being addressed. The addressed slave
will clear its SM2 bit and prepare to receive the data bytes that will be coming.
The slaves that were not being addressed leave their SM2s set and go on about
their business, ignoring the coming data bytes.

SM2 has no effect in mode 0. In mode 1, it can be used to check the validity
of the stop bit. In a mode 1 reception, if SM2 ¼ 1, the receive interrupt will not
be activated unless a valid stop bit is received.

SERIAL PORT CONTROL REGISTER

The serial port control and status register is the SFR S0CON. This register
contains not only the mode selection bits, but also the 9th data bit for transmit
and receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).
Register S0CON at address 98H controls data communication while register
PCON at address 87H controls data rates.

S0CON

address 98H
bit addressable

MSB LSB

SM0/FE SM1 SM2 REN TB8 RB8 TI RI

7 6 5 4 3 2 1 0

Appendix D 307

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 308 – [285–326/42]
28.11.2003 4:58PM

Bits SM0 and SM1 specify the serial port mode as shown in Table D.7

SM2 Enables the multiprocessor feature in modes 2 and 3. In modes 2 or 3,
if SM2 is set to 1 then RI will not be activated if the received 9th data
bit RB8 is 0, indicating an address and the received byte is a given or
broadcast address. In mode 1, if SM2 ¼ 1 then RI will not be acti-
vated if a valid stop bit was not received. In mode 0, SM2 should be 0

REN Set by software to enable serial reception. Clear by software to
disable reception

TB8 The 9th data bit that will be transmitted in modes 2 and 3. Set/clear
by software

RB8 In modes 2 and 3, is the 9th data bit received
In mode 1 if SM2 ¼ 0, RB8 is the stop bit that was received
In mode 0, RB8 is not used

TI Transmit interrupt flag. Set by hardware at the end of the 8th bit time
in mode 0, or at the start of the stop bit in other modes, in any serial
transmission. Must be cleared by software

RI Receive interrupt flag. Set by hardware at the end of the 8th bit in
mode 0, or halfway through the stop bit time in the other modes, in
any serial reception (except see SM2). Must be cleared by software.

BAUD RATES

The baud rate in mode 0 is fixed i.e. mode 0 baud rate¼ oscillator frequency/
12 (12-clock mode) or /6 (6-clock mode). The baud rate in mode 2 depends

Bit Symbol Function

7 FE Framing error bit. This bit is set by the receiver when an invalid

stop bit is detected. The FE bit is not cleared by valid frames but

should be cleared by software. The SMOD0 bit (located at

PCON.6) must be set to allow access to the FE bit

7 SM0 Serial port mode bit 0

6 SM1 Serial port mode bit 1

Table D.7 Serial port mode options

SM0 SM1 Mode Description Baud rate

0 0 0 Shift register fosc/12 (12-clock mode)

fosc/6 (6-clock mode)

0 1 1 8-bit UART Variable

1 0 2 9-bit UART fosc/32 or fosc/64 (12-clock mode)

fosc/32 or fosc/16 (6-clock mode)

1 1 3 9-bit UART Variable

308 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 309 – [285–326/42]
28.11.2003 4:58PM

on the value of bit SMOD in SFR PCON. If SMOD ¼ 0 (which is the value
on reset), and the port pins in 12-clock mode, the baud rate is 1/64 the
oscillator frequency. If SMOD ¼ 1, the baud rate is 1/32 the oscillator
frequency. In 6-clock mode, the baud rate is 1/32 or 1/16 the oscillator
frequency, respectively.

Mode 2 baud rate=baud rate ¼ 2SMOD

n
�oscillator frequency

where n ¼ 64 in 12-clock mode, 32 in 6-clock mode.
The baud rates in modes 1 and 3 are determined by the timer 1 or timer 2

overflow rate.

Using timer 1 to generate baud rates. When timer 1 is used as the baud rate
generator (T2CON:5 ¼ 0, T2CON:4 ¼ 0), the baud rates in modes 1 and 3 are
determined by the timer 1 overflow rate and the value of SMOD as follows:

baud rate ¼ 2SMOD

n
� (timer 1 overflow rate)

where n ¼ 32 in 12-clock mode, 16 in 6-clock mode.
The timer 1 interrupt should be disabled in this application. The timer itself

can be configured for either ‘timer’ or ‘counter’ operation, and in any of its
3 running modes. In the most typical applications, it is configured for ‘timer’
operation, in the auto-reload mode (high nibble of TMOD ¼ 0010B). In that
case the baud rate is given by the formula:

baud rate ¼ 2SMOD

n
� oscillator frequency

12½1256� ðTH1Þ�

where n ¼ 32 in 12-clock mode, 16 in 6-clock mode.
Very low baud rates with timer 1 can be achieved by leaving the timer

1 interrupt enabled, and configuring the timer to run as a 16-bit timer (high
nibble of TMOD ¼ 0001B), and using the timer 1 interrupt to do a 16-bit
software reload. Table D.8 lists various commonly used baud rates and how
they can be obtained from timer 1.

ENHANCED UART

The UART operates in all of the usual modes that are described above. In
addition the UART can perform framing error detect, by looking for missing
stop bits, and automatic address recognition. The UART also fully supports
multiprocessor communication. When used for framing error detect the UART
looks for missing stop bits in the communication. A missing bit will set the FE
bit in the S0CON register. The FE bit shares the S0CON.7 bit with SM0 and
the function of S0CON.7 is determined by PCON.6 (SMOD0). If SMOD0 is
set then S0CON.7 functions as FE. S0CON.7 functions as SM0 when SMOD0

Appendix D 309

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 310 – [285–326/42]
28.11.2003 4:58PM

is cleared. When used as FE S0CON.7 can only be cleared by software. Refer to
Figure D.13.

AUTOMATIC ADDRESS RECOGNITION

Automatic address recognition is a feature, which allows the UART to recog-
nise certain addresses in the serial bit stream by using hardware to make the
comparisons. This feature saves a great deal of software overhead by eliminat-
ing the need for the software to examine every serial address, which passes by
the serial port. This feature is enabled by setting the SM2 bit in S0CON. In the
9-bit UART modes, modes 2 and 3, the receive interrupt flag (RI) will be

Start
bit

D0 D1 D2 D3 D4 D5 D6 D7 D8

Data byte Only in
Mode 2, 3

Stop
Bit

Set FE bit if stop bit is 0 (framing error)

SM0 To UART mode control

SM0/FE SM1 SM2 REN TB8 RB8 TI RI

SMOD1 SMOD0 – POF LVF GF0 GF1 IDL

SOCON
(98H)

PCON
(87H)

0 : SOCON.7 = SM0
1 : SOCON.7 = FE

Figure D.13 UART framing error detection (courtesy Philips Semiconductors)

Table D.8 Timer 1 generated commonly used baud rates

Baud rate Timer 1

Mode

12-clock

mode

6-clock

mode fosc SMOD C/T Mode Reload value

Mode 0 max 1.67MHz 3.34MHz 20MHz X X X X

Mode 2 max 625 k 1250 k 20MHz 1 X X X

Mode 1,3 max 104.2 k 208.4 k 20MHz 1 0 2 FFH

19.2 k 38.4 k 11.059MHz 1 0 2 FDH

9.6 k 19.2 k 11.059MHz 0 0 2 FDH

4.8 k 9.6 k 11.059MHz 0 0 2 FAH

2.4 k 4.8 k 11.059MHz 0 0 2 F4H

1.2 k 2.4 k 11.059MHz 0 0 2 E8H

137.5 275 11.059MHz 0 0 2 1DH

110 220 6MHz 0 0 2 72H

110 220 6MHz 0 0 1 FEEBH

310 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 311 – [285–326/42]
28.11.2003 4:58PM

automatically set when the received byte contains either the ‘Given’ address or
the ‘Broadcast’ address. The 9-bit mode requires that the 9th information bit is
1 to indicate that the received information is an address and not data. Auto-
matic address recognition is shown in Figure D.14.

The 8-bit mode is called mode 1. In this mode the RI flag will be set if SM2
is enabled and the information received has a valid stop bit following the
8 address bits and the information is either a given or broadcast address. Mode
0 is the shift register mode and SM2 is ignored.

Using the automatic address recognition feature allows a master to selec-
tively communicate with one or more slaves by invoking the given slave address
or addresses. All of the slaves may be contacted by using the broadcast address.
Two SFRs are used to define the slave’s address, SADDR and the address
mask, SADEN. SADEN is used to define which bits in the SADDR are to be
used and which bits are ‘don’t care’. The SADEN mask can be logically
ANDed with the SADDR to create the ‘Given’ address which the master will
use for addressing each of the slaves. Use of the given address allows multiple
slaves to be recognised while excluding others. The following examples will help
to illustrate the point:

Slave 0 SADDR ¼ 1100 0000
SADEN ¼ 1111 1101
Given ¼ 1100 00X0

Slave 1 SADDR ¼ 1100 0000
SADEN ¼ 1111 1110
Given ¼ 1100 000X

In the above example SADDR is the same and the SADEN data is used to
differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores
bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for
slave 0 would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address

D0 D1 D2 D3 D4 D5 D6 D7 D8

SM0 SM1 SM2 REN TB8 RB8 TI RI

Received address D0 to D7
Programmed address

In UART mode 2 or mode 3 and SM2 = 1:
 Interrupt if REN = 1, RB8 = 1 and ‘Received address’ = ‘Programmed address’
– When own address received, clear SM2 to receive data bytes
– When all data bytes have been received: set SM2 to wait for next address

Comparator

SOCON
(98H)

1 1
1

1 1 X
0

Figure D.14 UART multiprocessor communication, automatic address recognition
(courtesy Philips Semiconductors)

Appendix D 311

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 312 – [285–326/42]
28.11.2003 4:58PM

for slave 1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves
can be selected at the same time by an address that has bit 0¼ 0 (for slave 0) and
bit 1¼ 0 (for slave 1). Thus, both could be addressed with 1100 0000. In a more
complex system the following could be used to select slaves 1 and 2 while
excluding slave 0:

Slave 0 SADDR ¼ 1100 0000
SADEN ¼ 1111 1001
Given ¼ 1100 0XX0

Slave 1 SADDR ¼ 1110 0000
SADEN ¼ 1111 1010
Given ¼ 1110 0X0X

Slave 2 SADDR ¼ 1110 0000
SADEN ¼ 1111 1100
Given ¼ 1110 00XX

In the above example the differentiation among the three slaves is in the
lower 3 address bits. Slave 0 requires that bit 0 ¼ 0 and it can be uniquely
addressed by 1110 0110. Slave 1 requires that bit 1 ¼ 0 and it can be uniquely
addressed by 1110 and 0101. Slave 2 requires that bit 2 ¼ 0 and its unique
address is 1110 0011. To select slaves 0 and 1 and exclude slave 2 use address
1110 0100, since it is necessary to make bit 2 ¼ 1 to exclude slave 2.

The broadcast address for each slave is created by taking the logical OR of
SADDRand SADEN. Zeros in this result are treated as don’t-cares. Inmost cases,
interpreting the don’t-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H)
are loaded with 0s. This produces a given address of all ‘don’t cares’ as well as a
broadcast address of all ‘don’t cares’. This effectively disables the automatic
addressing mode and allows the microcontroller to use standard 80C51 type
UART drivers that do not make use of this feature.

I2C SERIAL COMMUNICATION

The P89C660/662/664/668 PC pins are alternate functions to port pins P1.6 and
P1.7. Because of this, P1.6 and P1.7 on these ports do not have a pull-up
structure as found on the 80C51. Therefore P1.6 and P1.7 have open drain
outputs on the P89C660/662/664/668. The I2C bus uses two wires (SDA and
SCL) to transfer information between devices connected to the bus. The main
features of the bus are:

. bidirectional data transfer between masters and slaves;

. multimaster bus (no central master);

. arbitration between simultaneously transmitting masters without corrup-
tion of serial data on the bus;

. serial clock synchronisation allows devices with different bit rates to com-
municate via one serial bus;

312 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 313 – [285–326/42]
28.11.2003 4:58PM

. serial clock synchronisation can be used as a handshake mechanism to
suspend and resume serial transfer;

. the I2C bus may be used for test and diagnostic purposes.

The output latches of P1.6 and P1.7 must be set to logic 1 in order to enable
SIO1. The P89C66x on-chip I2C logic provides a serial interface that meets the
I2C bus specification and supports all transfer modes (other than the low-speed
mode) from and to the I2C bus. The SIO1 logic handles bytes transfer auton-
omously. It also keeps track of serial transfers, and a status register (S1STA)
reflects the status of SIO1 and the I2C bus. The CPU interfaces to the I2C logic
via the following four SFRs: S1CON (SIO1 control register), S1STA (SIO1
status register), S1DAT (SIO1 data register) and S1ADR (SIO1 slave address
register). The SIO1 logic interfaces to the external I2C bus via two port 1 pins:
P1.6/SCL (serial clock line) and P1.7/SDA (serial data line). A typical PC bus
configuration is shown in Figure D.15.

Figure D.16 shows how a data transfer is accomplished on the bus. Depend-
ing on the state of the direction bit (R/W), two types of data transfers are
possible on the I2C bus:

1. Data transfer from a master transmitter to a slave receiver. The first byte
transmitted by the master is the slave address. Next follows a number of
data bytes. The slave returns an acknowledge bit after each received byte.

2. Data transfer from a slave transmitter to a master receiver. The first byte (the
slave address) is transmitted by themaster. The slave then returns an acknowl-
edge bit. Next follows the data bytes transmitted by the slave to the master.
The master returns an acknowledge bit after all received bytes other than the
last byte. At the end of the last received byte, a ‘not acknowledge’ is returned.

The master device generates all of the serial clock pulses and the START and
STOP conditions. A transfer is ended with a STOP condition or with a repeated

Rp Rp

VDD

IIC bus

P1.7/SDA P1.6/SCL

P89C66x
Other device with

IIC interface
Other device with

IIC interface

SDA

SCL

Figure D.15 Typical I2C bus configuration (courtesy Philips Semiconductors)

Appendix D 313

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 314 – [285–326/42]
28.11.2003 4:58PM

START condition. Since a repeated START condition is also the beginning of
the next serial transfer, the PC bus will not be released.

MODES OF OPERATION

The on-chip SIO1 logic may operate in the following four modes:

1. Master transmitter mode. Pins P1.6 and P1.7 are outputs (serial data on
P1.7 (SDA) and serial clock on P1.6 (SCL)). The first byte transmitted
contains the address of the slave receiving device (7 bits) and the data
direction bit, which in this case is logic 0 (data direction bit R/W deter-
mines data direction and is logic 1 for read and logic 0 for write). Serial
data is transmitted 8 bits at a time and after each byte an acknowledge bit
is received. START and STOP conditions are also output to indicate the
beginning and end of a serial transfer.

2. Master receiver mode. Similar to 1 above except that P1.6 (SCL) and P1.7
(SDA) are inputs and the data direction bit is logic 1 (for read). Serial data
is received through SDA while SCL outputs the serial clock. Serial data is
received a byte at a time and after each byte an acknowledge bit is
transmitted. START and STOP conditions are also output to indicate the
beginning and end of a serial transfer.

3. Slave receiver mode. Serial data and serial clock are received through pins
P1.7 (SDA) and P1.6 (SCL) respectively. After each byte is received an
acknowledge bit is transmitted. START and STOP are recognised as the
beginning and end respectively of the serial transfer. Recognition of the
address is performed by hardware after reception of the slave address and
direction bit.

4. Slave transmitter mode. The first byte is received and handled as in the slave
receiver mode. However, in this mode, the direction bit will show that the
direction of data transfer is reversed. As before serial data is through P1.7
(SDA) and serial clock through P1.6 (SCL). START and STOP conditions
are also output to indicate the beginning and end of a serial transfer.

Stop
condition

Repeated
start

condition

Acknowledgement
signal from receiver

Acknowledgement
signal from receiver Clock line held low while

interrupts are serviced

R/W
direction

bit

Slave address

MSB

S

Start
condition

1 2 7 8 9 1 2 3–8 9
ACKACK P/S

Repeated if more bytes
are transferred

SDA

SCL

Figure D.16 Data transfer on the I2C bus (courtesy Philips Semiconductors)

314 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 315 – [285–326/42]
28.11.2003 4:58PM

SIO1 can operate as a master or a slave. As a slave the SIO1 hardware looks
for its own slave address and the general call address and if one of these
addresses is detected, an interrupt is requested. If the microcontroller wishes
to become the master, the hardware waits until the bus is free before the master
mode is entered in order not to interrupt a possible slave action. If bus
arbitration is lost in the master mode, SIO1 switches to the slave mode imme-
diately and can detect its own slave address in the same serial transfer.

SIO1 IMPLEMENTATION AND OPERATION

Figure D.17 shows how the on-chip I2C bus interface is implemented, and the
following text describes the individual blocks.

P1.7/SDA

P1.6/SDA

Input
filter

Input
filter

Output
stage

Output
stage

S1DAT
Shift register

Comparator

Address register

8

ACK

8

Timing
&

control
logic

fOSC/4

Interrupt

In
te

rn
al

 b
us

S1ADR

Arbitration &
sync. logic

8

8

Serial clock
generator

Timer 1
overflow

S1CON Control register

P1.6

P1.7

Status
decoder

Status register

Status bits

S1STA

Figure D.17 I2C bus serial interface block diagram (courtesy Philips
Semiconductors)

Appendix D 315

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 316 – [285–326/42]
28.11.2003 4:58PM

INPUT FILTERS AND OUTPUT STAGES

The input filters have I2C compatible input levels. If the input voltage is less
than 1.5 V, the input logic level is interpreted as 0; if the input voltage is greater
than 3.0V, the input logic level is interpreted as 1. Input signals are synchro-
nised with the internal clock (fosc/4), and spikes shorter than three oscillator
periods are filtered out.

The output stages consist of open drain transistors that can sink 3mA at
VOUT < 0�4V. These open drain outputs do not have damping diodes to VDD;
thus, if the device is connected to the I2C bus and VDD is switched off, the I2C
bus is not affected.

ADDRESS REGISTER, S1ADR

This 8-bit SFR may be loaded with the 7-bit slave address (7 most significant
bits) to which SIO1 will respond when programmed as a slave transmitter or
receiver. The LSB (GC) is used to enable general call address (00H) recognition.

COMPARATOR

The comparator compares the received 7-bit slave address with its own slave
address (7 most significant bits in S1ADR). It also compares the first received
8-bit byte with the general call address (00H). If equality is found, the appropriate
status bits are set and an interrupt is requested.

SHIFT REGISTER, S1DAT

This 8-bit SFR contains a byte of serial data to be transmitted or a byte that has
just been received. Data in S1DAT is always shifted from right to left; the first
bit to be transmitted is the MSB (bit 7) and, after a byte has been received, the
first bit of received data is located at the MSB of S1DAT. While data is being
shifted out, data on the bus is simultaneously being shifted in; S1DAT always
contains the last byte present on the bus. Thus, in the event of lost arbitration,
the transition from master transmitter to slave receiver is made with the correct
data in S1DAT.

ARBITRATION AND SYNCHRONISATION LOGIC

In the master transmitter mode, the arbitration logic checks that every
transmitted logic 1 actually appears as a logic 1 on the I2C bus. If another
device on the bus overrules a logic 1 and pulls the SDA line low, arbitration
is lost, and SIO1 immediately changes from master transmitter to slave
receiver. SIO1 will continue to output clock pulses (on SCL) until transmis-
sion of the current serial byte is complete. Arbitration may also be lost in
the master receiver mode. Loss of arbitration in this mode can only occur

316 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 317 – [285–326/42]
28.11.2003 4:58PM

while SIO1 is returning a ‘not acknowledge’ (logic 1) to the bus. Arbitration
is lost when another device on the bus pulls this signal low. Since this
can occur only at the end of a serial byte, SIO1 generates no further clock
pulses.

The synchronisation logic will synchronise the serial clock generator with the
clock pulses on the SCL line from another device. If two or more master devices
generate clock pulses, the ‘mark’ duration is determined by the device that
generates the shortest ‘marks’, and the ‘space’ duration is determined by the
device that generates the longest ‘spaces’. A slave may stretch the space dura-
tion to slow down the bus master. The space duration may also be stretched for
handshaking purposes. This can be done after each bit or after a complete byte
transfer. SIO1 will stretch the SCL space duration after a byte has been
transmitted or received and the acknowledge bit has been transferred. The
serial interrupt flag (SI) is set, and the stretching continues until the serial
interrupt flag is cleared.

SERIAL CLOCK GENERATOR

This programmable clock pulse generator provides the SCL clock pulses when
SIO1 is in the master transmitter or master receiver mode. It is switched off
when SIO1 is in a slave mode. The programmable output clock frequencies are:
fosc /120, fosc /9600 (12-clock mode) or fosc /60, fosc /4800 (6-clock mode) and the
timer 1 overflow rate divided by eight. The output clock pulses have a 50% duty
cycle unless the clock generator is synchronised with other SCL clock sources as
described above.

TIMING AND CONTROL

The timing and control logic generates the timing and control signals for serial
byte handling. This logic block provides the shift pulses for S1DAT, enables the
comparator, generates and detects start and stop conditions, receives and
transmits acknowledge bits, controls the master and slave modes, contains
interrupt request logic, and monitors the I2C bus status.

CONTROL REGISTER, S1CON

This 7-bit SFR is used by the microcontroller to control the following SIO1
functions; start and restart of a serial transfer, termination of a serial transfer,
bit rate, address recognition and acknowledgement.

STATUS DECODER AND STATUS REGISTER

The status decoder takes all of the internal status bits and compresses them into
a 5-bit code. This code is unique for each I2C bus status. The 5-bit code may be
used to generate vector addresses for fast processing of the various service
routines. Each service routine processes a particular bus status. There are

Appendix D 317

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 318 – [285–326/42]
28.11.2003 4:58PM

26 possible bus states if all four modes of SIO1 are used. The 5-bit status code is
latched into the five most significant bits of the status register when the serial
interrupt flag is set (by hardware) and remains stable until the interrupt flag is
cleared by software. The three least significant bits of the status register are
always zero. If the status code is used as a vector to service routines, then the
routines are displaced by eight address locations. Eight bytes of code are
sufficient for most of the service routines.

THE FOUR SIO1 SPECIAL FUNCTION REGISTERS

The microcontroller interfaces to SIO1 via four SFRs. These four SFRs
(S1ADR, S1DAT, S1CON and S1STA) are described individually in the fol-
lowing sections. The address of each of the SFRs together with their reset
values can be seen in Table D.2.

The address register, S1ADR

The CPU can read from and write to this 8-bit, directly addressable SFR.
S1ADR is not affected by the SIO1 hardware. The contents of this register
are irrelevant when SIO1 is in a master mode. In the slave modes, the seven
most significant bits must be loaded with the microcontroller’s own slave
address, and, if the least significant bit is set, the general call address (00H) is
recognised; otherwise it is ignored.

X X X X X X X GC

7 6 5 4 3 2 1 0

<--------------------------- Own slave address -------------------------- >

The most significant bit corresponds to the first bit received from the I2C bus
after a start condition. A logic 1 in S1ADR corresponds to a high level on the
I2C bus, and a logic 0 corresponds to a low level on the bus.

The data register, S1DAT

SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0

7 6 5 4 3 2 1 0

<--------------------------------------- Shift direction --------------------------------------

S1DAT contains a byte of serial data to be transmitted or a byte that has
just been received. The CPU can read from and write to this 8-bit, directly
addressable SPR while it is not in the process of shifting a byte. This occurs
when SIO1 is in a defined state and the serial interrupt flag is set. Data in

318 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 319 – [285–326/42]
28.11.2003 4:58PM

S1DAT remains stable as long as SI is set. Data in S1DAT is always shifted
from right to left: the first bit to be transmitted is the MSB (bit 7), and, after
a byte has been received, the first bit of received data is located at the MSB
of S1DAT. While data is being shifted out, data on the bus is simultaneously
being shifted in. S1DAT always contains the last data byte present on the
bus. Thus, in the event of lost arbitration, the transition from master
transmitter to slave receiver is made with the correct data in S1DAT.

SD7–SD0 are the 8 bits to be transmitted or just received. A logic 1 in
S1DAT corresponds to a high level on the I2C bus, and a logic 0 corresponds
to a low level on the bus. Serial data shifts through S1DAT from right to left.
Figure D.18 shows how data in S1DAT is serially transferred to and from the
SDA line.

S1DAT and the ACK flag form a 9-bit shift register which shifts in or shifts
out an 8-bit byte, followed by an acknowledge bit. The ACK flag is controlled
by the SIO1 hardware and cannot be accessed by the CPU. Serial data is shifted
through the ACK flag into S1DAT on the rising edges of serial clock pulses on
the SCL line. When a byte has been shifted into S1DAT the serial data is
available in S1DAT and the acknowledge bit is returned by the control logic
during the ninth clock pulse. Serial data is shifted out from S1DAT via a buffer
(BSD7) on the falling edges of clock pulses on the SCL line. When the CPU
writes to S1DAT BSD7 is loaded with the content of S1DAT.7, which is the
first bit to be transmitted to the SDA line (see Figure D.19). After nine serial
clock pulses, the 8 bits in S1DAT will have been transmitted to the SDA line,
and the acknowledge bit will be present in ACK. Note that the eight trans-
mitted bits are shifted back into S1DAT.

The control register, S1CON

The CPU can read from and write to this 8-bit, directly addressable SFR. Two
bits are affected by the SIO1 hardware: the SI bit is set when a serial interrupt is
requested, and the STO bit is cleared when a STOP condition is present on the
I2C bus. The STO bit is also cleared when ENS1¼0.

Internal bus

8SDA

SCL
Shift pulses

BSD7 S1DAT ACK

Figure D.18 Serial input/output configuration (courtesy Philips Semiconductors)

Appendix D 319

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 320 – [285–326/42]
28.11.2003 4:58PM

CR2 ENS1 STA STO SI AA CR1 CR0

7 6 5 4 3 2 1 0

ENS1, the SIO1 Enable Bit

ENS1¼0. When ENS1 is 0, the SDA and SCL outputs are in a high impedance
state. SDA and SCL input signals are ignored, SIO1 is in the ‘not addressed’
slave state, and the STO bit in S1CON is forced to 0. No other bits are affected.
P1.6 and PI .7 may be used as open drain I/O ports.

ENS1¼1. When ENS1 is 1, SIO1 is enabled. The P1.6 and P1.7 port latches
must be set to logic 1. ENS1 should not be used to temporarily release SIO1
from the I2C bus since, when ENS1 is reset, the I2C bus status is lost. The AA
flag should be used instead.

In the description that follows, it is assumed that ENS1¼ 1.

The ‘START’ Flag STA

STA ¼ 1. When the STA bit is set to enter a master mode, the SIO1 hardware
checks the status of the I2C bus and generates a START condition if the bus is
free. If the bus is not free, then SIO1 waits for a STOP condition (which will
free the bus) and generates a START condition after a delay of half a clock
period of the internal serial clock generator. If STA is set while SIO1 is already
in a master mode and one or more bytes are transmitted or received, SIO1
transmits a repeated START condition. STA may be set at any time. STA may
also be set when SIO1 is an addressed slave.

D7 D6 D5 D4 D3 D2 D1 D0 ASDA

SCL

Shift ACK & S1DAT

ACK

S1DAT

Shift BSD7

BSD7

Loaded by the CPU

(1) Valid data in SIDAT
(2) Shifting data in S1DAT and ACK
(3) High level on SDA

Shift out

Shift in

(3)D0D1D2D3D4D5D6D7

(1) (2)

(2) (2) (2) (2) (2) (2) (2) (2) A

(2) (2) (2) (2) (2) (2) (2) (1)

Figure D.19 Shift-in and shift-out timing (courtesy Philips Semiconductors)

320 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 321 – [285–326/42]
28.11.2003 4:58PM

STA¼0. When the STA bit is reset, no START condition or repeated
START condition will be generated.

The STOP Flag STO

STO¼1. When the STO bit is set while SIO1 is in a master mode, a STOP
condition is transmitted to the I2C bus. When the STOP condition is detected
on the bus, the SIO1 hardware clears the STO flag. In a slave mode, the STO
flag may be set to recover from an error condition. In this case, no STOP
condition is transmitted to the I2C bus. However, the SIO1 hardware behaves as
if a STOP condition has been received and switches to the defined ‘not addressed’
slave receiver mode. The STO flag is automatically cleared by hardware.

If theSTAandSTObits areboth set, theSTOPcondition is transmitted to the I2C
bus if SIO1 is in a master mode (in a Slave mode SIO1 generates an internal STOP
condition which is not transmitted). SIO1 then transmits a START condition.

STO¼0. When the STO bit is reset, no STOP condition will be generated.

The serial interrupt flag, SI

SI¼1. When the SI flag is set, then, if the EA and ES1 (interrupt enable
register) bits are also set, a serial interrupt is requested. SI is set by hardware
when one of 25 of the 26 possible SIO1 states is entered. The only state that
does not cause SI to be set is state F8H, which indicates that no relevant state
information is available. While SI is set the low period of the serial clock on
the SCL line is stretched, and the serial transfer is suspended. A high level on
the SCL line is unaffected by the serial interrupt flag. SI must be reset by
software.

SI¼0. When the SI flag is reset, no serial interrupt is requested, and there is
no stretching of the serial clock on the SCL line.

The assert acknowledge flag, AA

AA ¼ 1. If the AA flag is set, an acknowledge (low level to SDA) will be
returned during the acknowledge clock pulse on the SCL line when:

1. the ‘own slave address’ has been received;
2. the general call address has been received while the general call bit (GC) in

S1ADR is set;
3. a data byte has been received while SIO1 is in the master receiver mode;
4. a data byte has been receivedwhile SIO1 is in the addressed slave receivermode.

AA¼0. If the AA flag is reset, a not acknowledge (high level to SDA) will be
returned during the acknowledge clock pulse on SCL when:

1. a data byte has been received while SIO1 is in the master receiver mode;
2. a data byte has been receivedwhile SIO1 is in the addressed slave receivermode.

When SIO1 is in the addressed slave transmitter mode, state C8H will be
entered after the last serial data is transmitted.

Appendix D 321

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 322 – [285–326/42]
28.11.2003 4:58PM

When Sl is cleared, SIO1 leaves state C8H, enters the not addressed slave
receiver mode, and the SDA line remains at a high level. In state C8H, the
AA flag can be set again for future address recognition. When SIO1 is in
the not addressed slave mode, its own slave address and the general call
address are ignored. Consequently, no acknowledge is returned, and a serial
interrupt is not requested. Thus, SIO1 can be temporarily released from the
I2C bus while the bus status is monitored. While SIO1 is released from the
bus, START and STOP conditions are detected, and serial data is shifted
in. Address recognition can be resumed at any time by setting the AA flag.
If the AA flag is set when the part’s own slave address or the general call
address has been partly received, the address will be recognised at the end
of the byte transmission.

The clock rate bits CR0, CR1 and CR2

These three bits determine the serial clock frequency when SIO1 is in a master
mode. The various serial rates are shown in Table D.9.

A 12.5kHz bit rate may be used by devices that interface to the I2C bus via
standard I/O port lines which are software driven and slow. 100kHz is usually the
maximumbit rate andcanbederived froma16MHz,12MHzora6MHzoscillator.
Avariablebit rate (0.5 kHz to62.5kHz)mayalsobeused if timer1 isnot required for
any other purpose while SIO1 is in a master mode. The frequencies shown in Table
D.9 are unimportant when SIO1 is in a slave mode. In the slave modes, SIO1 will
automatically synchronise with any clock frequency up to 100kHz.

The status register, S1STA

S1STA is an 8-bit read-only SFR. The three least significant bits are always
zero. The five most significant bits contain the status code. There are 26
possible status codes. When S1STA contains F8H, no relevant state informa-
tion is available and no serial interrupt is requested. All other S1STA values
correspond to defined SIO1 states. When each of these states is entered, a serial
interrupt is requested (SI ¼ 1). A valid status code is present in S1STA one
machine cycle after SI is set by hardware and is still present one machine cycle
after SI has been reset by software.

D.6 Interrupt priority structure

The P89C660/662/664/668 has an 8-source four-level interrupt structure (see
Table D.10). There are four SFRs associated with the four-level interrupt. They
are the IEN0, IP, IPH and IEN1 registers. Details of these registers are shown
in Tables D.11, D.12, D.13 and D.14 respectively. The IPH (interrupt priority
high) register makes the four-level interrupt structure possible. The SFR
addresses and their reset values are shown in Table D.2. The function of the
IPH SFR, when combined with the IP SFR, determines the priority of each
interrupt. The priority of each interrupt is determined as shown in Table D.15.

322 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 323 – [285–326/42]
28.11.2003 4:58PM

Table D.9 Serial clock rates

6-clock mode Bit frequency (kHz) at fosc

CR2 CR1 CR0 3MHz 6MHz 8MHz 12MHz2 15MHz2 fosc divided by

0 0 0 23 47 62.5 94 1171 128

0 0 1 27 54 71 1071 1341 112

0 1 0 31 63 83.3 1251 1561 96

0 1 1 37 75 100 1501 1881 80

1 0 0 6.25 12.5 17 25 31 480

1 0 1 50 100 1331 2001 2501 60

1 1 0 100 200 2671 4001 5001 30

1 1 1 0.24<62.5

0<255

0.49<62.5

0<254

0.65<55.6

0<253

0.98<50.0

0<251

1.22<52.1

0<250

48� (256�
(reload value timer1))

Reload value timer 1

in mode 2

12-clock mode Bit frequency (kHz) at fosc

CR2 CR1 CR0 6MHz 12MHz 16MHz 24MHz2 30MHz2 fosc divided by

0 0 0 23 47 62.5 94 1171 256

0 0 1 27 54 71 1071 1341 224

0 1 0 31 63 83.3 1251 1561 192

0 1 1 37 75 100 1501 1881 160

1 0 0 6.25 12.5 17 25 31 960

1 0 1 50 100 1331 2001 2501 120

1 1 0 100 200 2671 4001 5001 60

1 1 1 0.24<62.5

0<255

0.49<62.5

0<254

0.65<55.6

0<253

0.98<50.0

0<251

1.22<52.1

0<250

96� (256�
(reload value timer 1))

Reload value timer 1

in mode 2

1. These frequencies exceed the upper limit of 100 kHz of the I2C-bus specification and cannot be
used in an I2C-bus application.
2. At fosc ¼ 12MHz/15MHz the maximum I2C bus rate of 100 kHz cannot be realised due to the
fixed divider rates.
3. At fosc ¼ 24MHz/30MHz the maximum I2C bus rate of 100 kHz cannot be realised due to the
fixed divider rates.

Table D.10 Interrupt table

Source

Polling

priority Request bits Hardware clear? Vector address

X0 1 IE0 N(L)1Y(T)2 03H

S101(I2C) 2 – N 2BH

T0 3 TP0 Y 0BH

X1 4 IE1 N(L) Y(T) 13H

T1 5 TF1 Y 1BH

SP 6 Rl.,TI N 23H

T2 7 TF2, EXF2 N 3BH

PCA 8 CF, CCFn n ¼ 0�4 N 33H

Notes: 1. L=Level activated; 2. T=Transition activated.

Appendix D 323

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 324 – [285–326/42]
28.11.2003 4:58PM

Table D.11 Details of the IEN0 register

MSB LSB

EA EC ES1 ES0 ET1 EX1 ET0 EX0

7 6 5 4 3 2 1 0

Enable Bit ¼ 1 enables the interrupt
Enable Bit ¼ 0 disables it.

Bit Symbol Function

7 EA Global disable bit. If EA ¼ 0, all interrupts are disabled.

If EA ¼ 1, each interrupt can be individually enabled or

disabled by setting or clearing its enable bit

6 EC PCA interrupt enable bit

5 ES1 I2C interrupt enable bit

4 ESO Serial port interrupt enable bit

3 ET1 Timer 1 interrupt enable bit

2 EX1 External interrupt 1 enable bit

1 ET0 Timer 0 Interrupt enable bit

0 EX0 External interrupt 0 enable bit

Table D.12 Details of the IP register

MSB LSB

PT2 PPC PS1 PS0 PT1 PX1 PT0 PX0

7 6 5 4 3 2 1 0

Priority Bit ¼ 1 assigns high priority
Priority Bit ¼ 0 assigns low priority

Bit Symbol Function

7 PT2 Timer 2 interrupt priority bit

6 PPC PCA interrupt priority bit

5 PS1 Serial 1/01 (I2C) interrupt priority bit

4 PSO Serial port interrupt priority bit

3 PT1 Timer 1 interrupt priority bit

2 PX1 External interrupt 1 priority bit

1 PTO Timer 0 interrupt priority bit

324 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 325 – [285–326/42]
28.11.2003 4:58PM

The priority scheme for servicing the interrupts is the same as that for the
80C51, except that there are four interrupt levels rather than two (as on the
80C51). An interrupt will be serviced as long as an interrupt of equal or higher

Table D.13 Details of the IPH register

MSB LSB

PT2H PPCH PS1H PS0H PT1H PX1H PT0H PX0H

7 6 5 4 3 2 1 0

Priority bit ¼ 1 assigns higher priority
Priority bit ¼ 0 assigns lower priority

Bit Symbol Function

7 PT2H Timer 2 interrupt priority bit high

6 PPCH PCA interrupt priority bit

5 PS1H Serial I/O (I2C) interrupt priority bit high

4 PS0H Serial port interrupt priority bit high

3 PT1H Timer 1 interrupt priority bit high

2 PX1H External interrupt 1 priority bit high

1 PT0H Timer 0 interrupt priority bit high

0 PX0H External interrupt 0 priority bit high

Table D.14 Details of the IEN1 register

MSB LSB

– – – – – – – ET2

7 6 5 4 3 2 1 0

Enable Bit ¼ 1 enables the interrupt
Enable Bit ¼ 0 disables the Interrupt

Bit Symbol Function

7 –

6 –

5 –

4 –

3 –

2 –

1 –

0 ET2 Timer 2 interrupt enable bit

Appendix D 325

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_D.3D – 326 – [285–326/42]
28.11.2003 4:58PM

priority is not already being serviced. If an interrupt of equal or higher level
priority is being serviced, the new interrupt will wait until it is finished before
being serviced. If a lower priority level interrupt is being serviced, it will be
stopped and the new interrupt serviced. When the new interrupt is finished, the
lower priority level interrupt that was stopped will be completed.

Table D.15 89C66x interrupt priority
levels

Priority bits

IPH.x IP.x Interrupt priority level

0 0 Level 0 (lowest priority)

0 1 Level 1

1 0 Level 2

1 1 Level 3 (highest priority)

326 Appendix D

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 327 – [327–359/33]
27.11.2003 12:55PM

Appendix E
P89LPC932 Microcontroller

Details of this device are reproduced with kind permission of Philips Semicon-
ductors. Data regarding the device may be found on the Philips website at
www.semiconductors.philips.com. This device is a development of the 80C51
device and offers high-integration with low cost; additionally operation is at an
improved speed compared to 80C51 devices operating at the same frequency.
Features include a low pincount and a 2.4V to 3.6V operating range for VDD.
The basic block diagram is shown in Figure E.1.

The LPC932 uses an enhanced 80C51 CPU which runs at 6 times the speed of
standard 80C51 devices. A machine code consists of two CPU clock cycles and
most instructions execute in one or two machine cycles.

Other device features include:

. Two 16-bit counter/timers with each timer able to be configured to toggle a
port output or to become a PWM (pulse width modulation) output.

. CCU (capture/compare unit), which provides PWM, input capture and
output compare functions.

. Two analogue comparators with selectable inputs and reference sources.

. UART with fractional baud rate generator, framing error detection, versa-
tile interrupt capabilities, etc.

. I2C and SPI communication ports.

. Four interrupt priority levels.

. Watchdog timer with separate on-chip oscillator, requiring no external
components. The watchdog timeout is selectable from 8 values.

. LED drive capability of 20mA on all port pins, subject to a maximum limit
for the entire chip.

. A minimum of 23 I/O pins. If using on-chip oscillator and reset options this
may be increased to 26 I/O pins.

. Serial flash programming allows simple in-circuit production coding.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 328 – [327–359/33]
27.11.2003 12:55PM

Packages include a 28-pin TSSOP package and a 28-pin PLCC package. The
latter package is illustrated in Figure E.2.

E.1 Device pin functions

SUPPLY VOLTAGE (VDD AND VSS)

The device operates from a single supply connected to pin 21 (VDD) while pin 7
(VSS) is grounded.

High performance
LPC932 CPU

8 KB code
flash

256 byte
data RAM

512 byte
auxiliary RAM

512 byte data
EEPROM

Port 3
configurable I/Os

Port 2
configurable I/Os

Port 1
configurable I/Os

Port 0
configurable I/Os

Keypad
interrupt

Programmable
oscillator divider

CPU
clock

Configurable
oscillator

On-chip
RC

oscillator

Internal bus
UART

I2C

SPI

Real-time clock /
system timer

Timer 0
Timer1

Watchdog timer
and oscillator

CCU (capture/
compare unit)

Analog
comparators

Power monitor
(power-on reset,
brownout reset)

Crystal or
resonator

Figure E.1 LPC932 block diagram (courtesy Philips Semiconductors)

328 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 329 – [327–359/33]
27.11.2003 12:55PM

INPUT/OUTPUT (I/O) PORTS

Details are as follows:

Port 0. This is an 8-bit I/O port with user configurable output type. During
reset port 0 latches are configured in the input only mode with the internal pull-
up disabled. The operation of the port pins as inputs or outputs depends on the
port configuration selected. The keypad interrupt feature operates with port 0
pins. Special functions of port 0 pins are as follows:

Pin number Input/output Function

3 O Comparator 2 output (CMP2)

I Keyboard input 0 (KBI0)

26 I Comparator 2 positive input B (CIN2B)

I Keyboard input 1 (KBI1)

25 I Comparator 2 positive input A (CIN2A)

I Keyboard input 2 (KBI2)

24 I Comparator 1 positive input B (CIN1B)

I Keyboard input 3 (KBI3)

23 I Comparator 2 positive input A (CIN2A)

I Keyboard input 4 (KBI4)

OCB/P1.6

RST/P1.5

VSS

XTAL1/P3.1

CLKOUT/XTAL2/P3.0

INT1/P1.4

SDA/INT0/P1.3

S
C

L
/ T

0/
P

1.
2

M
O

S
I/P

2.
2

M
IS

O
/P

2.
3

P
2.

4/
S

S

P
1.

0/
T

X
D

P
1.

1/
R

X
D

P
2.

5/
S

P
IC

LK

P0.2/CIN2A/KB12

P0.3/CIN1B/KB13

P0.4/CIN1A /KB14

P0.5/CMPREF/KB15

P0.6/CMP1/KB16

P0.7/ T1/KB17

VDD

O
C

C
/P

1.
7

K
B

10
/C

M
P

2/
P

0.
0

O
C

D
/P

2.
1

IC
B

/P
2.

0

P
2.

7/
IC

A

P
2.

6/
O

C
A

P
0.

1/
C

IN
2B

/K
B

I1

4
12 13 14 15 16 17 18

3 2 1 28 27 26

25

24

23

22

21

20

19

5

6

7

8

9

10

11

Figure E.2 PLCC 28-pin package (courtesy Philips Semiconductors)

Appendix E 329

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 330 – [327–359/33]
27.11.2003 12:55PM

22 I Comparator reference (negative) input

I Keyboard input 5 (KBI5)

20 O Comparator 1 output (CMP1)

I Keyboard input 6 (KBI6)

19 I/O Timer/counter 1 external count input or

overflow output

I Keyboard input 7 (KBI7)

Pin numbers 3, 26, 25, 24, 23, 22, 20 and 19 also function for port 0 as bit 0,
bit 1, bit 2, bit 3, bit 4, bit 5, bit 6 and bit 7 respectively. In this case each pin is
an I/O pin.
Port 1. This is an 8-bit I/O port with user configurable output type (except

for three pins, noted below). During reset port 1 latches are configured in the
input only mode with the internal pull-up disabled. The operation of the port
pins as inputs or outputs depends on the port configuration selected. P1.2 and
P1.3 are open-drain when used as outputs while P1.5 is input only. Special
functions of port 1 pins are as follows:

Pin number Input/output Function

18 O Transmitter output for the serial port (TxD)

17 I Receiver input for the serial port (RxD)

12 I�O Timer/counter 0 external count input or

overflow output (open-drain when used

as outputs)

I�O I2C serial clock input/output (SCL)

11 I External interrupt 0 input (INT0)

10 I External interrupt 1 input (INT1)

6 I External reset during power-on or if selected via

UCFG1. When functioning as a reset input a low

on this pin resets the microcontroller, causing I/O

ports and peripherals to take on their default

states, and the processor begins execution at

address 0. Also used during a power-on sequence

to force ISP mode.

5 O Output compare B (OCB)

4 O Output compare C (OCC)

Pin numbers 18, 17, 12, 5, and 4 also function for port 1 as bit 0, bit 1, bit 2, bit
6 and bit 7 respectively. In this case each pin is an I/O pin. Pin numbers 11, 10
and 6 also function for port 1 as input pins for bit 3, bit 4 and bit 5 respectively.
Port 2. This is an 8-bit I/O port with user configurable output type. During

reset port 2 latches are configured in the input only mode with the internal pull-
up disabled. The operation of the port pins as inputs or outputs depends on the
port configuration selected. Special functions of port 2 pins are as follows:

330 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 331 – [327–359/33]
27.11.2003 12:55PM

Pin number Input/output Function

1 I Input capture B (ICB)

2 O Output compare D (OCD)

13 I/O SPI master out slave in. When configured as

master, this pin is output; when configured as

slave, this pin is input (MOSI)

14 I/O SPI master in slave out. When configured as

master, this pin is input; when configured as

slave, this pin is output (MISO)

15 I SPI slave select (SS)

16 I/O SPI clock. When configured as

master, this pin is output; when configured as

slave, this pin is input (SPICLK)

27 O Output compare A (OCA)

28 I Input capture A (ICA)

Pin numbers 1, 2, 13, 14, 15, 16, 27 and 28 also function for port 2 as bit 0, bit 1,
bit 2, bit 3, bit 4, bit 5, bit 6 and bit 7 respectively. In this case each pin is an I/O pin.
Port 3. This is a 2-bit I/O port with user configurable output type. During

reset port 3 latches are configured in the input only mode with the internal pull-
up disabled. The operation of the port pins as inputs or outputs depends on the
port configuration selected. Special functions of port 3 pins are as follows:

Pin number Input/output Function

9 O Output from the oscillator amplifier (when a crystal

oscillator option is selected via the FLASH

configuration) (XTAL2)

O CPU clock divided by 2 when enabled via SFR bit

(ENCLK – TRIM.6). It can be used if the CPU clock

is the internal RC oscillator, watchdog oscillator or

external clock input, except when XTAL1/XTAL2 is

used to generate clock source for the real-time

clock/system timer (CLKOUT)

8 I input to the oscillator circuit and internal clock

generator circuits (when selected via the FLASH

configuration). It can be a port pin if internal RC

oscillator or watchdog oscillator is used as the CPU

clock source, AND if XTAL1/XTAL2 are not used to

generate the clock for the Real-Time clock/system

timer (XTAL1)

Pin numbers 9 and 8 also function for port 3 as bit 0 and bit 1 respectively. In
this case each pin is an I/O pin. The device has SFRs as shown in Table E.1.

Appendix E 331

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
E

.3
D

–
3
3
2

–
[327–359/33]

27.11.2003
12:55P

M

Table E.1 Special function registers (courtesy Philips Semiconductors)

SFR Bit functions and addresses Reset value

Name Description address MSB LSB Hex Binary

E7 E6 E5 E4 E3 E2 E1 E0

ACC* Accumulator E0H 00H 00000000

AUXR1# Auxiliary function

register

A2H
CLKLP EBRR ENT1 ENT0 SRST 0 – DPS 00H1 000000x0

F7 F6 F5 F4 F3 F2 F1 F0

B* B register F0H 00H 00000000

BRGR0#§ Baud rate generator

rate low

BEH 00H 00000000

BRGR1#§ Baud rate generator

rate high

BFH 00H 00000000

BRGCON# Baud rate generator

control

BDH
– – – – – – SBRGS BRGEN 00H%xxxxxx00

CCCRA# Capture compare A

control register
EAH ICECA2 ICECA1 ICECA0 ICESA ICNFA FCOA OCMA1 OCMA0 00H 00000000

CCCRB# Capture compare B

control register
EBH ICECB2 ICECB1 ICECB0 ICESB ICNFB FCOB OCMB1 OCMB0 00H 00000000

CCCRC# Capture compare C

control register
ECH – – – – – FCOC OCMC1 OCMC0 00H xxxxx000

CCCRD# Capture compare D

control register
EDH – – – – – FCOD OCMD1 OCMD0 00H xxxxx000

CMP1# Comparator 1 control

register
ACH – – CE1 CP1 CN1 OE1 CO1 CMF1 00H1 xx000000

CMP2# Comparator 2 control

register
ADH – – CE2 CP2 CN2 OE2 CO2 CMF2 00H1 xx000000

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
E

.3
D

–
3
3
3

–
[327–359/33]

27.11.2003
12:55P

M

DEECON# Data EEPROM control

register
F1H EEIF HVERR ECTL1 ECTL0 – – – EADR8 0EH 00001110

DEEDAT# Data EEPROM data

register

F2H 00H 00000000

DEEADR# Data EEPROM

address register

F3H 00H 00000000

DIVM# CPU clock divide-by-M

control

95H 00H 00000000

DPTR Data pointer (2 bytes)

DPH Data pointer high 83H 00H 00000000

DPL Data pointer low 82H 00H 00000000

12ADR# I2C slave address

register
DBH 12ADR.6 12ADR.5 12ADR.4 12ADR.3 12ADR.2 12ADR.1 12ADR.0 GC 00H 00000000

DF DE DD DC DB DA D9 D8

12CON*# I2C control register D8H – 12EN STA STO SI AA – CRSEL 00H x00000x0
12DAT# I2C data register DAH

12SCLH# Serial clock generator/

SCL duty cycle

register high

DDH 00H 00000000

12SCLL# Serial clock generator/

SCL duty cycle

register low

DCH 00H 00000000

12STAT# I2C status register D9H STA.4 STA.3 STA.2 STA.1 STA.0 0 0 0 F8H 11111000

ICRAH# Input capture A register

high

ABH 00H

ICRAL# Input capture A register

low

AAH 00H 00000000

ICRBH# Input capture B register

high

AFH 00H 00000000

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
E

.3
D

–
3
3
4

–
[327–359/33]

27.11.2003
12:55P

M

Table E.1 Continued

SFR Bit functions and addresses Reset value

Name Description address MSB LSB Hex Binary

ICRBL# Input capture B register

low

AEH 00H 00000000

AF AE AD AC AB AA A9 A8

IEN0* Interrupt enable 0 A8H EA EWDRT EBO ES/ESR ET1 EX1 ET0 EX0 00H 00000000

EF EE ED EC EB EA E9 E8

IEN1*# Interrupt enable 1 E8H EIEE EST – ECCU ESPI EC EKBI EI2C 00H1 00x00000

BF BE BD BC BB BA B9 B8

IP0* Interrupt priority 0 B8H – PWDRT PBO PS/PSR PT1 PX1 PT0 PX0 00H1 x0000000

IP0H# Interrupt priority 0 high B7H
–

PWDRT

H
PBOH PSH/PSRH PT1H PX1H PT0H PX0H 00H1 x0000000

FF FE FD FC FB FA F9 F8

IP1*# Interrupt priority 1 F8H PIEE PST – PCCU PSPI PC PKBI PI2C 00H1 00x00000

IP1H# Interrupt priority 1 high F7H PIEEH PSTH – PCCUH PSPIH PCH PKBIH PI2CH 00H1 00x00000

KBCON# Keypad control register 94H – – – – – – PATN_SEL KBIF 00H1 xxxxxx00

KBMASK# Keypad interrupt mask

register

86H 00H 00000000

KBPATN# Keypad pattern register 93H FFH 11111111

OCRAH# Output compare A

register high

EFH 00H 00000000

OCRAL# Output compare A

register low

EEH 00H 00000000

OCRBH# Output compare B

register high

FBH 00H 00000000

OCRBL# Output compare B

register low

FAH 00H 00000000

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
E

.3
D

–
3
3
5

–
[327–359/33]

27.11.2003
12:55P

M

OCRCH# Output compare C

register high

FDH 00H 00000000

OCRCL# Output compare C

register low

FCH 00H 00000000

OCRDH# Output compare D

register high

FFH 00H 00000000

OCRDL# Output compare D

register low

FEH 00H 00000000

87 86 85 84 83 82 81 80

P0* Port 0 80H T1/KB7
CMP1/

KB6

CMPREF/

KB5

CIN1A/

KB4

CIN1B/

KB3

CIN2A/

KB2

CIN2B/

KB1

CMP2/

KB0
Note 1

97 96 95 94 93 92 91 90

P1* Port 1 90H OCC OCB RST INT1
INT0/

SDA
T0/SCL RxD TxD Note 1

A7 A6 A5 A4 A3 A2 A1 A0

P2* Port 2 A0H ICA OCA SPICLK SS MISO MOSI OCD ICB Note 1

B7 B6 B5 B4 B3 B2 B1 B0

P3* Port 3 B0H – – – – – – XTAL1 XTAL2 Note 1

POM1# Port 0 output mode 1 84H (POM1.7) (POM1.6) (POM1.5) (POM1.4) (POM1.3) (POM1.2) (POM1.1) (POM1.0) FFH 11111111

POM2# Port 0 output mode 2 85H (POM2.7) (POM2.6) (POM2.5) (POM2.4) (POM2.3) (POM2.2) (POM2.1) (POM2.0) 00H 00000000

P1M1# Port 1 output mode 1 91H (P1M1.7) (P1M1.6) – (P1M1.4) (P1M1.3) (P1M1.2) (P1M1.1) (P1M1.0) D3H1 11x1xx11

P1M2# Port 1 output mode 2 92H (P1M2.7) (P1M2.6) – (P1M2.4) (P1M2.3) (P1M2.2) (P1M2.1) (P1M2.0) 00H1 00x0xx00

P2M1# Port 2 output mode 1 A4H (P2M1.7) (P2M1.6) (P2M1.5) (P2M1.4) (P2M1.3) (P2M1.2) (P2M1.1) (P2M1.0) FFH 11111111

P2M2# Port 2 output mode 2 A5H (P2M2.7) (P2M2.6) (P2M2.5) (P2M2.4) (P2M2.3) (P2M2.2) (P2M2.1) (P2M2.0) 00H 00000000

P3M1# Port 3 output mode 1 B1H – – – – – – (P3M1.1) (P3M1.0) 03H1 xxxxxx11

P3M2# Port 3 output mode 2 B2H – – – – – – (P3M2.1) (P3M2.0) 00H1 xxxxxx00

PCON# Power control register 87H SMOD1 SMOD0 BOPD BOI GF1 GF0 PMOD1 PMOD0 00H 00000000
PCONA# Power control register A B5H RTCPD DEEPD VCPD 12PD SPPD SPD CCUPD 00H1 00000000

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
E

.3
D

–
3
3
6

–
[327–359/33]

27.11.2003
12:55P

M

Table E.1 Continued

SFR Bit functions and addresses Reset value

Name Description address MSB LSB Hex Binary

D7 D6 D5 D4 D3 D2 D1 D0

PSW* Program status word D0H CY AC F0 RS1 RS0 OV F1 P 00H 00000000

PT0AD# Port 0 digital input

disable
F6H – – PT0AD.5 PT0AD.4 PT0AD.3 PT0AD.2 PT0AD.1 – 00H xx00000x

RSTSRC# Reset source register DFH – – BOF POF R BK R WD R SF R EX Note 2

RTCCON# Real-time clock control D1H RTCF RTCS1 RTCS0 – – – ERTC RTCEN 60H1:5 011xxx00

RTCH# Real-time clock register

high

D2H 00H5 00000000

RTCL# Real-time clock register

low

D3H 00H5 00000000

SADDR# Serial port address

register

A9H 00H 00000000

SADEN# Serial port address

enable

B9H 00H 00000000

SBUF# Serial port data buffer

register

99H xxH xxxxxxxx

9F 9E 9D 9C 9B 9A 99 98

SCON* Serial port control 98H SM0/FE SM1 SM2 REN TB8 RB8 TI RI 00H 00000000

SSTAT# Serial port extended

status register
BAH DBMOD INTLO CIDIS DBISEL FE BR OE STINT 00H 00000000

SP Stack pointer 81H 07H 00000111

SPCTL# SPI control register E2H SSIG SPEN DORD MSTR CPOL CPHA SPR1 SPR0 04H 00000100

SPSTAT# SPI status register E1H SPIF WCOL – – – – – – 00H 00xxxxxx

SPDAT# SPI data register E3H 00H 00000000

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
E

.3
D

–
3
3
7

–
[327–359/33]

27.11.2003
12:55P

M

TAMOD# Timer 0 and 1 auxiliary

mode
8FH – – – T1M2 – – – T0M2 00H xxx0xxx0

8F 8E 8D 8C 8B 8A 89 88

TCON* Timer 0 and 1 control 88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H 00000000

TCR20*# CCU control register 0 C8H PLEEN HLTRN HLTEN ALTCD ALTAB TDIR2 TMOD21 TMOD20 00H 00000000

TCR21# CCU control register 1 F9H TCOU2 – – – PLLDV.3 PLLDV.2 PLLDV.1 PLLDV.0 00H 0xxx0000

TH0 Timer 0 high 8CH 00H 00000000

TH1 Timer 1 high 8DH 00H 00000000

TH2# CCU timer high CDH 00H 00000000

TICR2# CCU interrupt control

register
C9H TOIE2 TOCIE2D TOCIE2C TOCIE2B TOCIE2A – TICIE2B TICIE2A 00H 00000x00

TIFR2# CCU interrupt flag

register
E9H TOIF2 TOCF2D TOCF2C TOCF2B TOCF2A – TICF2B TICF2A 00H 00000x00

TISE2# CCU interrupt status

encode register
DEH – – – – – ENCINT.2 ENCINT.1 ENCINT.0 00H xxxxx000

TL0 Timer 0 low 8AH 00H 00000000

TL1 Timer 1 low 8BH 00H 00000000

TL2# CCU timer low CCH 00H 00000000

TMOD Timer 0 and 1 mode 89H T1GATE T1C/T T1M1 T1M0 T0GATE T0C/T T0M1 T0M0 00H 00000000

TOR2H# CCU reload register

high

CFH 00H 00000000

TOR2L# CCU reload register

low

CEH 00H 00000000

TPCR2H# Prescaler control

register high
CBH – – – – – – TPCR2H.1 TPCR2H.0 00H xxxxxx00

TPCR2L# Prescaler control

register low
CAH TPCR2L.7 TPCR2L.6 TPCR2L.5 TPCR2L.4 TPCR2L.3 TPCR2L.2 TPCR2L.1 TPCR2L.0 00H 00000000

TRIM# Internal oscillator trim

register
96H – ENCLK TRIM.5 TRIM.4 TRIM.3 TRIM.2 TRIM.1 TRIM.0 Notes 4,5

WDCON# Watchdog control

register
A7H PRE2 PRE1 PRE0 – – WDRUN WDTOF WDCLK Notes 3,5

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
E

.3
D

–
3
3
8

–
[327–359/33]

27.11.2003
12:55P

M

Table E.1 Continued

SFR Bit functions and addresses Reset value

Name Description address MSB LSB Hex Binary

WDL# Watchdog load C1H FFH 11111111

WFEED1# Watchdog feed 1 C2H

WFEED2# Watchdog feed 2 C3H

Notes:

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

~ Reserved bits, must be written with 0 s.

§ BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is ‘0’. If any of them is written if BRGEN ¼ 1, result is unpredictable.

Unimplemented bits in SFRs (labeled ‘�’) are X (unknown) at all times. Unless otherwise specified, ones should not be written to these bits since they

may be used for other purposes in future derivatives. The reset values shown for these bits are ‘0’s although they are unknown when read.

1. All ports are in input only (high impendance) state after power-up.

2. The RSTSRC register reflects the cause of the LPC932 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF-the

power-on reset value is xx110000.

3. After reset, the value is 111001x1, i.e., PRE2-PRE0 are all 1, WDRUN ¼ 1 and WDCLK ¼ 1. WDTOF bit is 1 after watchdog reset and is 0 after

power-on reset. Other resets will not affect WDTOF.

4. On power-on reset, TRIM SFR is initialised with a factory preprogrammed value. Other resets will not cause initialisation of the TRIM register.

5. The only reset source that affects these SFRs is power-on reset.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 339 – [327–359/33]
27.11.2003 12:55PM

E.2 Memory organisation

The LPC932 memory map is shown in Figure E.3. The various LPC932
memory spaces are as follows:

. DATA 128 bytes of internal data memory space (00H–7FH) accessed via
direct or indirect addressing, using instructions other than MOVX and
MOVC. All or part of the stack may be in this area.

. IDATA (indirect data) 256 bytes of internal data memory space
(00H–FFH) accessed via indirect addressing using instructions other than
MOVX and MOVC. All or part of the stack may be in this area. This area
includes the DATA area and the 128 bytes immediately above it.

. SFR (special function registers) Selected CPU registers and peripheral con-
trol and status registers, accessible only via direct addressing.

. XDATA (‘External’ data or auxiliary RAM) Duplicates the 80C51 64KB
memory space addressed via the MOVX instruction using the DPTR, R0

ISP code (512B)

Sector 7

Sector 6

Sector 5

Sector 4

Sector 3

Sector 2

Sector 1

Sector 0

IAP boot flash
FFEFH
FF00H

1FFFH
1E00H

1C00H
1BFFH

1800H
17FFH

1400H
13FFH

1000H
0FFFH

0C00H
OBFFH

0800H
07FFH

0400H
03FFH

0000H

XDATA

AUX
RAM

(512B)

01FFH

0000H

Special function
registers

(directly addressable)

IDATA (incl. DATA)
128 bytes on-chip

data memory (stack and
indirect addr.)

DATA
128 bytes on-chip

data memory (stack,
direct and indir_addr.)

4 reg. banks R0−R7

FFH

80H
7FH

00H

Data memory
(DATA, IDATA)

Data
EEPROM

(512B)

(Access via
SFRs)

Figure E.3 LPC932 memory map (courtesy Philips Semiconductors)

Appendix E 339

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 340 – [327–359/33]
27.11.2003 12:55PM

or R1. All or part of this space could be implemented on-chip. The LPC932
has 512 bytes of on-chip XDATA memory.

. CODE 64KB of code memory space, accessed as part of program execution
and via the MOVC instruction. The LPC932 has 8KB of on-chip code
memory.

The LPC932 also has 512 bytes of on-chip data EEPROM that is SFR based,
byte readable, byte writeable and erasable (via row fill and sector fill). The user
can read, write and fill the memory via SFRs and one interrupt. This data
EEPROM provides 100 000 minimum erase/program cycles for each byte.

. Byte mode: In this mode, data can be read and written one byte at a time.

. Row fill: In this mode, the addressed row (64 bytes) is filled with a single
value. The entire row can be erased by writing 00H.

. Sector fill: In this mode, all 512 bytes are filled with a single value. Writing
00H can erase the entire sector.

After the operation finishes, the hardware will set the EEIF bit, which if
enabled will generate an interrupt. The flag is cleared by software.

DATA RAM ARRANGEMENT

The 768 bytes of on-chip RAM organised as shown in Table E.2.

FLASH PROGRAM MEMORY

The LPC932 flash memory provides in-circuit electrical erasure and program-
ming. The flash can be read and written as bytes. The sector and page erase
functions can erase any flash sector (1KB) or page (64 bytes). The chip erase
operation will erase the entire program memory. In-system programming and
standard parallel programming are both available. On-chip erase and write
timing generation contribute to a user-friendly programming interface. The
LPC932 flash reliably stores memory contents even after 10 000 erase and
program cycles. The cell is designed to optimise the erase and programming
mechanisms. The LPC932 uses VDD as the supply voltage to perform the
program/erase algorithms.

Table E.2 On-chip data memory usages (courtesy Philips Semiconductors)

Type Data RAM Size (bytes)

DATA Memory that can be addressed directly and

indirectly

128

IDATA Memory that can be addressed indirectly 256

XDATA Auxiliary (‘external data’) on-chip memory that is

accessed using the MOVX instructions

512

340 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 341 – [327–359/33]
27.11.2003 12:55PM

Features:

. Internal fixed boot ROM, containing low-level in-application programming
(IAP) routines.

. User programs can call these routines to perform IAP.

. Default loader providing ISP via the serial port, located in upper end of user
program memory.

. Boot vector allows user provided flash loader code to reside anywhere in the
flash memory space, providing flexibility to the user.

. Programming and erase over the full operating voltage range.

. Read/programming/erase using ISP/IAP.

. Any flash program/erase operation in 2ms.

. Parallel programming with industry-standard commercial programmers.

. Programmable security for the code in the flash for each sector.

. 10 000 minimum erase/program cycles for each byte.

. 10-year minimum data retention.

E.3 I/O ports

The LPC932 has four I/O ports: port 0, port 1, port 2 and port 3. Ports 0,1 and
2 are 8-bit ports and port 3 is a 2-bit port. The exact number of pins available
for I/O depends upon the clock and reset options chosen. Table E.3 shows the
number of I/O pins available depending on the clock source.

PORT CONFIGURATIONS

All but three I/O port pins on the LPC932 may be configured by software to
one of four types on a bit-by-bit basis. These are: quasi-bidirectional (standard

Table E.3 Number of I/O pins available for the LPC932 28-pin package (courtesy
Philips Semiconductors)

Clock source Reset option Number of I/O pins

On-chip

oscillator or

watchdog

No external reset (except during power-up) 26

oscillator External RST pin supported 25

External clock

input

No external reset (except during power-up)

External RST pin supported

25

24

Low/medium/

high speed

oscillator

(external

crystal or

resonator)

No external reset (except during power-up)

External RST pin supported

24

23

Appendix E 341

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 342 – [327–359/33]
27.11.2003 12:55PM

80C51 port outputs), push-pull, open drain and input-only. Two configuration
registers for each port select the output type for each port pin.

. P1.5 (RST) can only be an input and cannot be configured.

. P1.2 (SCL/T0) and P1.3 (SDA/INT0) may only be configured to be either
input-only or open drain.

Quasi-bidirectional output configuration

Quasi-bidirectional output type can be used as both an input and output
without the need to reconfigure the port. This is possible because when the
port outputs a logic HIGH, it is weakly driven, allowing an external device to
pull the pin LOW.When the pin is driven LOW, it is driven strongly and able to
sink a fairly large current. These features are somewhat similar to an open drain
output except that there are three pull-up transistors in the quasi-bidirectional
output that serve different purposes. LPC932 is a 3V device, but the pins are
5V-tolerant. In quasi-bidirectional mode, if a user applies 5V on the pin, there
will be a current flowing from the pin to VDD, causing extra power consump-
tion. Therefore, applying 5V in quasi-bidirectional mode is discouraged.
A quasi-bidirectional port pin has a Schmitt-triggered input that also has a glitch
suppression circuit.

Open drain output configuration

The open drain output configuration turns off all pull-ups and only drives
the pull-down transistor of the port driver when the port latch contains a
logic 0. To be used as a logic output, a port configured in this manner must
have an external pull-up, typically a resistor tied to VDD. An open drain
port pin has a Schmitt-triggered input that also has a glitch suppression
circuit.

Input-only configuration

The input-only port configuration has no output drivers. It is a Schmitt-
triggered input that also has a glitch suppression circuit.

Push-pull output configuration

The push-pull output configuration has the same pull-down structure as both
the open drain and the quasi-bidirectional output modes, but provides a con-
tinuous strong pull-up when the port latch contains a logic 1. The push-pull
mode may be used when more source current is needed from a port output.
A push-pull port pin has a Schmitt-triggered input that also has a glitch suppres-
sion circuit.

342 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 343 – [327–359/33]
27.11.2003 12:55PM

PORT 0 ANALOG FUNCTIONS

The LPC932 incorporates two analog comparators. In order to give the best
analog function performance and to minimise power consumption, pins that
are being used for analog functions must have the digital outputs and digital
inputs disabled. Digital outputs are disabled by putting the port output into the
input-only (high impedance) mode as described earlier. Digital inputs on port 0
may be disabled through the use of the PT0AD register, bits 1:5. On any reset,
PT0AD1.5 defaults to 0s to enable digital functions.

ADDITIONAL PORT FEATURES

After power-up, all pins are in input-only mode. After power-up, all I/O pins
except P1.5, may be configured by software. Pin P1.5 is input only. Pins P1.2
and P1.3 are configurable for either input-only or open drain. Every output on
the LPC932 has been designed to sink typical LED drive current. However,
there is a maximum total output current for all ports, which must not be
exceeded. All ports pins that can function as an output have slew rate con-
trolled outputs to limit noise generated by quickly switching output signals.
The slew rate is factory-set to approximately 10 ns rise and fall times.

E.4 Timers/counters 0 and 1

The LPC932 has two general-purpose counter/timers which are upward com-
patible with the standard 80C51 timer 0 and timer 1. Both can be configured to
operate either as timers or event counter. An option to automatically toggle the
T0 and/or T1 pins upon timer overflow has been added. In the ‘Timer’ function,
the register is incremented every machine cycle. In the ‘Counter’ function, the
register is incremented in response to a 1-to-0 transition at its corresponding
external input pin, T0 or T1. In this function, the external input is sampled once
during every machine cycle. Timers 0 and 1 have five operating modes (modes
0, 1, 2, 3 and 6). Modes 0,1, 2 and 6 are the same for both timers/counters.
Mode 3 is different.
Mode 0. Putting either timer into mode 0 makes it look like an 8048 timer,

which is an 8-bit counter with a divide-by-32 prescaler. In this mode, the timer
register is configured as a 13-bit register. Mode 0 operation is the same for timer 0
and timer 1.
Mode 1. This mode is the same as mode 0, except that all 16 bits of the timer

register are used.
Mode 2. Configures the timer register as an 8-bit counter with automatic

reload. Mode 2 operation is the same for timer 0 and timer 1.
Mode 3.When timer 1 is in mode 3 it is stopped. Timer 0 in mode 3 forms two

separate 8-bit counters and is provided for applications that require an extra
8-bit timer. When timer 1 is in mode 3 it can still be used by the serial port as
a baud rate generator.

Appendix E 343

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 344 – [327–359/33]
27.11.2003 12:55PM

Mode 6. In this mode, the corresponding timer can be changed to a PWM
with a full period of 256 timer clocks.

TIMER OVERFLOW TOGGLE OUTPUT

Timers 0 and 1 can be configured to automatically toggle a port output when-
ever a timer overflow occurs. The same device pins that are used for the T0 and
T1 count inputs are also used for the timer toggle outputs. The port outputs will
be a logic 1 prior to the first timer overflow when this mode is turned on.

REAL-TIME CLOCK/SYSTEM TIMER

The LPC932 has a simple real-time clock that allows a user to continue running
an accurate timer while the rest of the device is powered down. The real-time
clock can be a wake-up or an interrupt source. The real-time clock is a 23-bit
down counter comprised of a 7-bit prescaler and a 16-bit loadable down
counter. When it reaches all 0s, the counter will be reloaded again and the
RTCF flag will be set. The clock source for this counter can be either the CPU
clock (CCLK) or the XTAL oscillator, provided that the XTAL oscillator is
not being used as the CPU clock. If the XTAL oscillator is used as the CPU
clock, then the RTC will use CCLK as its clock source. Only power-on reset
will reset the real-time clock and its associated SFRs to the default state.

E.5 Capture/compare unit (CCU)

This unit features:

. a 16-bit timer with 16-bit reload on overflow;

. selectable dock, with prescaler to divide clock source by any integral num-
ber between 1 and 1024;

. 4 compare/PWM outputs with selectable polarity;

. symmetrical/asymmetrical PWM selection;

. 2 capture inputs with event counter and digital noise rejection filter;

. 7 interrupts with common interrupt vector (one overflow, 2Xcapture,
4Xcompare);

. safe 16-bit read/write via shadow registers.

CCU CLOCK (CCUCLK)

The CCU runs on the CCUCLK, which is either PCLK in basic timer mode, or
the output of a phase-locked loop (PLL). The PLL is designed to use a clock
source between 0.5MHz and 1MHz that is multiplied by 32 to produce a
CCUCLK between 16MHz and 32MHz in PWM mode (asymmetrical or
symmetrical). The PLL contains a 4-bit divider to help divide PCLK into a
frequency between 0.5MHz and 1MHz.

344 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 345 – [327–359/33]
27.11.2003 12:55PM

CCU CLOCK PRESCALING

This CCUCLK can be further divided down by a prescaler. The prescaler is
implemented as a 10-bit free-running counter with programmable reload at
overflow.

BASIC TIMER OPERATION

The timer is a free-running up/down counter with a direction control bit. If the
timer counting direction is changedwhile the counter is running, the count sequence
will be reversed. The timer can bewritten or read at any time.When a reload occurs,
the CCU timer overflow interrupt flag will be set, and an interrupt generated if
enabled. The 16-bit CCU timer may also be used as an 8-bit up/down timer.

OUTPUT COMPARE

There are four output compare channels A, B, C and D. Each output compare
channel needs to be enabled in order to operate and the user will have to set the
associated I/O pin to the desired output mode to connect the pin. When
the contents of the timer matches that of a capture compare control register,
the timer output compare interrupt flag – TOCFx becomes set. An interrupt
will occur if enabled.

INPUT CAPTURE

Input capture is always enabled. Each time a capture event occurs on one of the
two input capture pins, the contents of the timer are transferred to the corres-
ponding 16-bit input capture register. The capture event can be programmed to
be either rising or falling edge triggered. A simple noise filter can be enabled on
the input capture by enabling the input capture noise filter bit. If set, the
capture logic needs to see four consecutive samples of the same value in order
to recognise an edge as a capture event. An event counter can be set to delay a
capture by a number of capture events.

PWM OPERATION

PWM operation has two main modes, symmetrical and asymmetrical. In
asymmetrical PWM operation the CCU timer operates in down-counting mode
regardless of the direction control bit. In symmetrical mode, the timer counts
up/down alternately. The main difference from basic timer operation is the
operation of the compare module, which in PWM mode is used for PWM
waveform generation. As with basic timer operation, when the PWM (com-
pare) pins are connected to the compare logic, their logic state remains
unchanged. However, since bit FCO is used to hold the halt value, only a
compare event can change the state of the pin. An example of symmetrical
PWM waveform generation is shown in Figure E.4.

Appendix E 345

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 346 – [327–359/33]
27.11.2003 12:55PM

Alternating output mode

In asymmetrical mode, the user can set up PWM channels A/B and C/D as
alternating pairs for bridge drive control. In this mode the output of these
PWM channels is alternately gated on every counter cycle.

PLL OPERATION

The PWM module features a phase locked loop that can be used to generate a
CCUCLK frequency between 16MHz and 32MHz. At this frequency the
PWM module provides ultrasonic PWM frequency with 10-bit resolution
provided that the crystal frequency is 1MHz or higher. The PLL is fed an
input signal of 0.5 – 1MHz and generates an output signal of 32 times the input
frequency. This signal is used to clock the timer. The user will have to set a
divider that scales PCLK by a factor of 1–16. This divider is found in the SFR
register TCR21. The PLL frequency can be expressed as follows:

PLL frequency ¼ PCLK

N þ 1

where N is the value of PLLDV3:0. Since N ranges in 0–15, the CCLK
frequency can be in the range of PCLK to PCLK/16.

WATCHDOG TIMER

The watchdog timer causes a system reset when it underflows as a result of a
failure to feed the timer prior to the timer reaching its terminal count. It
consists of a programmable 12-bit prescaler and an 8-bit down counter. The
down counter is decremented by a tap taken from the prescaler. The clock
source for the prescaler is either the PCLK or the nominal 40 kHz watchdog
oscillator. The watchdog timer can only be reset by a power-on reset. When the

TOR2

Compare value

Timer value

0

Non-inverted

Inverted

Figure E.4 Symmetrical PWM waveform (courtesy Philips Semiconductors)

346 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 347 – [327–359/33]
27.11.2003 12:55PM

watchdog feature is disabled, it can be used as an interval timer and may
generate an interrupt. Figure E.5 shows the watchdog timer in watchdog mode.
Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the
watchdog clock and the CPU is powered down, the watchdog is disabled. The
watchdog timer has a timeout period that ranges from a few microseconds to
a few seconds.

E.6 Serial interface

UART

The LPC932 has an enhanced UART that is compatible with the conventional
80C51 UART except that Timer 2 overflow cannot be used as a baud rate
source. The LPC932 does include an independent baud rate generator. The
baud rate can be selected from the oscillator (divided by a constant), timer 1
overflow or the independent baud rate generator. In addition to the baud rate
generation, enhancements over the standard 80C51 UART include framing
error detection, automatic address recognition, selectable double buffering
and several interrupt options. The UART can be operated in four modes: shift
register, 8-bit UART, 9-bit UART and CPU clock/32 or CPU clock/16.
Mode 0. Serial data enters and exits through RxD. TxD outputs the shift

clock. Eight bits are transmitted or received, LSB first. The baud rate is fixed at
1/16 of the CPU clock frequency.
Mode 1. Ten bits are transmitted (through TxD) or received (through RxD):

a start bit (logical 0), 8 data bits (LSB first) and a stop bit (logical 1). When data
is received, the stop bit is stored in RB8 in SFR SCON. The baud rate is
variable and is determined by the timer 1 overflow rate or the baud rate
generator.

PRE2 PRE1 PRE0 WDRUN WDTOF WDCLK WDCON (A7H)

Shadow
register for
WDCON

Watchdog reset can also be caused
by an invalid feed sequence, or by
writing to WDCON not immediately
followed by a feed sequence

RESET

WDL (C!H)

32 Prescaler

MOV WFEED1,#0A5H
MOV WFEED2,#05AH

Watchdog
oscillator

PCLK

Control register

8-bit down
counter

Figure E.5 Watchdog timer in watchdog mode (WDTE ¼ 1) (courtesy Philips
Semiconductors)

Appendix E 347

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 348 – [327–359/33]
27.11.2003 12:55PM

Mode 2. Eleven bits are transmitted (through TxD) or received (through
RxD): start bit (logical 0), 8 data bits (LSB first), a programmable 9th data bit
and a stop bit (logical 1). When data is transmitted, the 9th data bit (TB8 in
SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in
the PSW) could be moved into TB8. When data is received, the 9th data bit
goes into RB8 in SFR SCON, while the stop bit is not saved. The baud rate is
programmable to either 1/16 or 1/32 of the CPU dock frequency, as determined
by the SMOD1 bit in PCON.
Mode 3. Eleven bits are transmitted (through TxD) or received (through

RxD): a start bit (logical 0), 8 data bits (LSB first), a programmable 9th data bit
and a stop bit (logical 1). In fact, mode 3 is the same as mode 2 in all respects
except baud rate. The baud rate in mode 3 is variable and is determined by the
timer 1 overflow rate or the baud rate generator.

SFR space

The UART SFRs are at the locations shown in Table E.4.

Baud rate generator and selection

The LPC932 enhancedUARThas an independent baud rate generator. The baud
rate is determined by a baud rate preprogrammed into the BRGR1 and BRGR0
SFRs, which together form a 16-bit baud rate divisor value that works in a similar
manner as timer 1. If the baud rate generator is used, timer 1 can be used for other
timing functions. The UART can use either timer 1 or the baud rate generator
output (see Figure E.6). Note that timer T1 is further divided by 2 if the SMOD1
bit (PCON.7) is set. The independent baud rate generator uses OSCCLK.

Framing error

Framing error is reported in the status register (SSTAT). In addition, if
SMOD0 (PCON.6) is 1, framing errors can be made available in SCON.7

Table E.4 SFR locations for UARTs (courtesy Philips Semiconductors)

Register Description SFR location

PCON Power control 87H

SCON Serial port (UART) control 98H

SBUF Serial port (UART) data buffer 99H

SADDR Serial port (UART) address A9H

SADEN Serial port (UART) address enable B9H

SSTAT Serial port (UART) status BAH

BRGR1 Baud rate generator rate high byte BFH

BRGRO Baud rate generator rate low byte BEH

BRGCON Baud rate generator control BDH

348 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 349 – [327–359/33]
27.11.2003 12:55PM

respectively. If SMOD0 is 0, SCON.7 is SM0. It is recommended that SM0 and
SM1 (SCON.7-6) are set up when SMOD0 is ‘0’.

Break detect

Break detect is reported in the status register (SSTAT). A break is detected
when 11 consecutive bits are sensed low. The break detect can be used to reset
the device and force the device into ISP mode.

Double buffering

The UART has a transmit double buffer that allows buffering of the next
character to be written to SBUF while the first character is being transmitted.
Double buffering allows transmission of a string of characters with only one
stop bit between any two characters, as long as the next character is written
between the start bit and the stop bit of the previous character. Double buffer-
ing can be disabled. If disabled (DBMOB, i.e. SSTAT.7¼ 0), the UART is
compatible with the conventional 80C51 UART. If enabled, the UART allows
writing to SnBUF while the previous data is being shifted out. Double buffering
is only allowed in modes 1, 2 and 3. When operated in mode 0, double buffering
must be disabled (DBMOD ¼ 0).

Transmit interrupts with double buffering enabled (Modes 1, 2 and 3)

Unlike the conventional UART, in double buffering mode, the Tx interrupt is
generated when the double buffer is ready to receive new data.

The 9th bit (Bit 8) in double buffering (Modes 1, 2 and 3)

If double buffering is disabled TB8 can be written before or after SBUF is
written, as long as TB8 is updated some time before that bit is shifted out. TB8
must not be changed until the bit is shifted out, as indicated by the Tx interrupt.
If double buffering is enabled, TB8 MUST be updated before SBUF is written,
as TB8 will be double-buffered together with SBUF data.

+2

Timer 1 overflow
(PCLK-based)

Baud rate generator
(PCLK-based)

SMOD1 = 1

SMOD1 = 0

SBRGS = 0

SBRGS = 1

Baud rate modes 1 and 3

Figure E.6 Baud rate sources for UART (modes 1, 3) (courtesy Philips
Semiconductors)

Appendix E 349

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 350 – [327–359/33]
27.11.2003 12:55PM

I2C SERIAL INTERFACE

The I2C bus uses two wires (SDA and SCL) to transfer information between
devices connected to the bus and has the following features:

. bidirectional data transfer between masters and slaves;

. multimaster bus (no central master);

. arbitration between simultaneously transmitting masters without corrup-
tion of serial data on the bus;

. serial dock synchronisation allows devices with different bit rates to com-
municate via one serial bus;

. serial clock synchronisation can be used as a handshake mechanism to
suspend and resume serial transfer;

. the I2C bus may be used for test and diagnostic purposes.

A typical I2C bus configuration is shown in Figure E.7. The LPC932 device
provides a byte-oriented I2C interface that supports data transfers up to
400 kHz.

SERIAL PERIPHERAL INTERFACE (SPI)

The LPC932 device provides another high-speed serial communication interface –
the SPI interface. SPI is a full-duplex, high-speed, synchronous communication
bus with two operation modes: master mode and slave mode. Up to 3 Mbit/s
can be supported in either master or slave mode. It has a transfer completion
flag and write collision flag protection.

The SPI interface has four pins; SPICLK, MOSI, MISO and SS.

. SPICLK, MOSI and MISO are typically tied together between two or more
SPI devices. Data flows from master to slave on MOSI (master out slave in)
pin and flows from slave to master on MISO (master in slave out) pin. The

I2C-bus

RP RP

P1.3/SDA P1.2/SCL

LPC932

Other device with I2C

interface

Other device with I2C

interface

SDA

SCL

Figure E.7 I2C bus configuration (courtesy Philips Semiconductors)

350 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 351 – [327–359/33]
27.11.2003 12:55PM

SPICLK signal is output in the master mode and is input in the slave mode.
If the SPI system is disabled, i.e. SPEN (SPCTL:6) ¼ 0 (reset value), these
pins are configured for port functions.

. SS is the optional slave select pin. In a typical configuration, an SPI master
asserts one of its port pins to select one SPI device as the current slave. An
SPI slave device uses its SS pin to determine whether it is selected. Typical
connections are shown in Figure E.8(a)–(c).

E.7 Interrupts

The LPC932 uses a four-priority level interrupt structure. This allows great
flexibility in controlling the handling of the LPC932’s 15 interrupt sources.
Each interrupt source can be individually enabled or disabled by setting or
clearing a bit in the IE registers IEN0 or IEN1. The IEN0 register also contains
a global enable bit, EA, which enables all interrupts. Each interrupt source can
be individually programmed to one of four priority levels by setting or clearing
bits in the interrupt priority registers IP0, IP0H, IP1 and IP1H. An interrupt
service routine in progress can be interrupted by a higher priority interrupt, but
not by another interrupt of the same or lower priority. The highest priority
interrupt service cannot be interrupted by any other interrupt source. If two

Master

8-bit shift
register

8-bit shift
register

SPI clock
generator

MISO

MOSI MOSI

SPICLK SPICLK

Port

Slave

MISO

SS

Figure E.8(a) SPI single master, single slave configuration (courtesy Philips
Semiconductors)

Master

8-bit shift
register

8-bit shift
register

SPI clock
generator

SPI clock
generator

MISO

MOSI MOSI

SPICLK SPICLK

Slave

MISO

SSSS

Figure E.8(b) SPI dual device configuration, where either device can be master or
slave (courtesy Philips Semiconductors)

Appendix E 351

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 352 – [327–359/33]
27.11.2003 12:55PM

requests of different priority levels are received simultaneously, the request of
higher priority level is serviced. If requests of the same priority level are pending
at the start of an instruction cycle, an internal polling sequence determines
which request is serviced. This is called the arbitration ranking. The arbitration
ranking is only used for pending requests of the same priority level. Table E.5
summarises the interrupt sources, flag bits, vector addresses, enable bits, prior-
ity bits, arbitration ranking and whether each interrupt may wake up the CPU
from a power down mode.

Interrupt priority structure

There are four SFRs associated with the four interrupt levels: IP0, IP0H, IP1,
IP1H. Every interrupt has two bits in IPx and IPxH (x¼ 0,1) and can therefore
be assigned to one of four levels, as shown in Table E.6.

External interrupt inputs

The LPC932 has two external interrupt inputs in addition to the keypad
interrupt function. The two interrupt inputs are identical to those present on
the standard 80C51 microcontrollers. These external interrupts can be pro-
grammed to be level triggered or edge triggered by clearing or setting bit IT1
or IT0 in register TCON. If ITn ¼ 0, external interrupt n is triggered by a low
level detected at the INTn pin. If ITn ¼ 1, external interrupt n is edge triggered.

Master

8-bit shift
register

8-bit shift
register

8-bit shift
register

SPI clock
generator

MISO

MOSI

SPICLK

MISO

MOSI

SPICLK

MISO

MOSI

SPICLK

Port

Port

Slave

Slave

SS

SS

Figure E.8(c) SPI single master, multiple slaves configuration (courtesy Philips
Semiconductors)

352 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 353 – [327–359/33]
27.11.2003 12:55PM

Table E.5 Summary of interrupts (courtesy Philips Semiconductors)

Description

Interrupt

flag bit(s)

Vector

address

Interrupt

enable bit(s)

Interrupt

priority

Arbitration

ranking

Power

down

wakeup

External

interrupt 0

IE0 0003H EX0 (IEN0.0) IP0H.0,IP0.0 1 (highest) Yes

Timer 0

interrupt

TF0 000BH ET0 (IEN0.1) IP0H.1,IP0.1 4 No

External

interrupt 1

IE1 0013H EX1 (IEN0.2) IP0H.2,IP0.2 7 Yes

Timer 1

interrupt

TF1 001BH ET1 (IEN0.3) IP0H.3,IP0.3 10 No

Serial port

Tx/Rx1:4
TI & RI 0023H ES/ESR

(IEN0.4)

IP0H.4,IP0.4 13 No

Serial port

Rx1:4
RI

Brownout

detect

BOF 002BH EB0

(IEN0.5)

IP0H.5,IP0.5 2 Yes

Watchdog

timer/real-

time clock

WDOVF/

RTCF

0053H EWDRT

(IEN0.6)

IP0H.6,IP0.6 3 Yes

I2C interrupt SI 0033H EI2C

(IEN1.0)

IP1H.0,IP1.0 5 No

KBI interrupt KBIF 003BH EKBI

(IEN1.1)

IP1H.1,IP1.1 8 Yes

Comparators

1/2 interrupt

CMF1/

CMF2

0043H EC (IEN1.2) IP1H.2,IP1.2 11 Yes

SPI interrupt SPIF 004BH ESPI

(IEN1.3)

IP1H.3,IP1.3 14 No

Capture/

compare

unit2

See Note 2 005BH ECCU

(IEN1.4)

IP1H.4,IP1.4 6 No

Reserved 0063H (EN1.5) IP1H.5,IP1.5 9 Yes

Serial port Tx3 TI 006BH EST

(IEN1.6)

IP1H.6,IP1.6 12 No

Data

EEPROM

write

completed

EEPROM 0073H IIEE

(IEN1.7)

IP1H.7,IP1.7 15 (lowest) No

Notes:

1. SSTAT:5 ¼ 0 selects combined serial port (UART) Tx and Rx interrupt; SSTAT:5 ¼ 1 selects

serial port Rx interrupt only (Tx interrupt will be different, see Note 3 below).

2. CCU interrupt has multiple sources. Any source in the TIFR2 SFR can cause a CCU interrupt.

3. This interrupt is used as serial port (UART) Tx interrupt if and only if SSTAT:5 ¼ 1, and is

disabled otherwise.

4. If SSTAT:O ¼ 1, the following serial port additional flag bits can cause this interrupt: FE, BR, OE.

Appendix E 353

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 354 – [327–359/33]
27.11.2003 12:55PM

In this mode if consecutive samples of the INTn pin show a high level in one
cycle and a low level in the next cycle, interrupt request flag IEn in TCON is set,
causing an interrupt request. Since the external interrupt pins are sampled once
each machine cycle, an input high or low level should be held for at least one
machine cycle to ensure proper sampling. If the external interrupt is edge
triggered, the external source has to hold the request pin high for at least one
machine cycle, and then hold it low for at least one machine cycle. This is to
ensure that the transition is detected and that interrupt request flag IEn is set.
IEn is automatically cleared by the CPU when the service routine is called. If
the external interrupt is level triggered, the external source must hold the
request active until the requested interrupt is generated. If the external interrupt
is still asserted when the interrupt service routine is completed, another inter-
rupt will be generated. It is not necessary to clear the interrupt flag IEn when
the interrupt is level sensitive, it simply tracks the input pin level. If an external
interrupt is enabled when the LPC932 is put into power down or idle mode, the
interrupt occurrence will cause the processor to wake up and resume operation.

External interrupt pin glitch suppression

Most of the LPC932 pins have glitch suppression circuits to reject short glitches.
However, pins SDA/INT0/P1.3 and SCL/T0/P1.2 do not have the glitch suppres-
sion circuits. Therefore, INT1 has glitch suppression while INT0 does not.

Keypad interrupt (KBI)

The Keypad interrupt function is intended primarily to allow a single interrupt
to be generated when port 0 is equal to or not equal to a certain pattern. This
function can be used for bus address recognition or keypad recognition. The
user can configure the port via SFRs for different tasks. The keypad interrupt
mask register (KBMASK) is used to define which input pins connected to port
0 can trigger the interrupt. The keypad pattern register (KBPATN) is used to
define a pattern that is compared to the value of port 0. The keypad interrupt
flag (KBIF) in the keypad interrupt control register (KBCON) is set when the
condition is matched while the keypad interrupt function is active. An interrupt
will be generated if enabled. The PATN_SEL bit in the keypad interrupt

Table E.6 Interrupt priority level (courtesy Philips Semiconductors)

Priority bits

IPxH IPx Interrupt priority level

0 0 Level 0 (lowest priority)

0 1 Level 1

1 0 Level 2

1 1 Level 3 (highest priority)

354 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 355 – [327–359/33]
27.11.2003 12:55PM

control register (KBCON) is used to define equal or not-equal for the comparison.
In order to use the keypad interrupt as an original KBI function the user needs to
set KBPATN ¼ 0FFH and PATN_SEL¼ 1 (not equal), then any key connected
to port 0 which is enabled by the KBMASK register will cause the hardware to set
KBIF and generate an interrupt if it has been enabled. The interrupt may be used
to wake up the CPU from idle or power down modes. This feature is particularly
useful in handheld, battery-powered systems that need to carefully manage power
consumption yet also need to be convenient to use. In order to set the flag and
cause an interrupt, the pattern on port 0 must be held longer than 6 CCLKs.

E.8 Analog comparators

Two analog comparators are provided on the LPC932. Input and output
options allow use of the comparators in a number of different configurations.
Comparator operation is such that the output is a logical one (which may be
read in a register and/or routed to a pin) when the positive input (one of two
selectable pins) is greater than the negative input (selectable from a pin or an
internal reference voltage). Otherwise the output is a zero. Each comparator
may be configured to cause an interrupt when the output value changes.

Comparator configuration

Each comparator has a control register, CMP1 for comparator 1 and CMP2 for
comparator 2. The control registers are identical. The overall connections to
both comparators are shown in Figure E.9.

There are eight possible configurations for each comparator, as determined by
the control bits in the corresponding CMPn register: CPn, CNn and OEn. When

+

–

+

–

(P0.4) CIN1A

(P0.3) CIN1B

(P0.2) CIN2A

(P0.1) CIN2B

(P0.5) CMPREF

Vref

CP1

CN1

CO1

OE1

CP2

CN2

CO2

OE2

Comparator 1

Comparator 2

Change detect

Change detect

CMP2 (P0.0)

CMF2

CMF1

CMP1 (P0.6)

EC

Interrupt

Figure E.9 Comparator input and output connections (courtesy Philips
Semiconductors)

Appendix E 355

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 356 – [327–359/33]
27.11.2003 12:55PM

each comparator is first enabled, the comparator output and interrupt flag are not
guaranteed to be stable for 10 ms. The corresponding comparator interrupt should
not be enabled during that time, and the comparator interrupt flag must be cleared
before the interrupt is enabled in order to prevent an immediate interrupt service.

CMPn (Comparator control registers (CMP1 and CMP2))

Address: ACh for CMP1, ADh for CMP2

7 6 5 4 3 2 1 0

– – CEn CPn CNn OEn COn CMFn

Not bit addressable
Reset source(s): any reset
Reset value: xx000000B

Bit Symbol Function

CMPn.7, 6 – Reserved for future use. Should not be set to 1 by user programs

CMPn.5 CEn Comparator enable. When set, the corresponding comparator

function is enabled. Comparator output is stable 10 ms after
CEn is set

CMPn.4 CPn Comparator positive input select. When 0, CINnA is selected

as the positive comparator input. When 1, CINnB is

selected as the positive comparator input

CMPn.3 CNn Comparator negative input select. When 0, the comparator

reference pin CMPREF is selected as the negative

comparator input. When 1, the internal comparator

reference, Vref, is selected as the negative comparator input

CMPn.2 OEn Output enable. When 1, the comparator output is connected

to the CMPn pin if the comparator is enabled (CEn¼1).

This output is asynchronous to the CPU clock

CMPn.1 COn Comparator output, synchronised to the CPU clock to allow

reading by software

CMPn.0 CMFn Comparator interrupt flag. This bit is set by hardware

whenever the comparator output COn changes state.

This bit will cause a hardware interrupt if enabled.

Cleared by software

Internal reference voltage

An internal reference voltage, Vref, may supply a default reference when a
single comparator input pin is used.

Comparator interrupt

Each comparator has an interrupt flag CMFn contained in its configuration
register. This flag is set whenever the comparator output changes state. The flag

356 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 357 – [327–359/33]
27.11.2003 12:55PM

may be polled by software or may be used to generate an interrupt. The two
comparators use one common interrupt vector. The interrupt will be generated
when the IE bit EC in the IEN1 register is set and the interrupt system is
enabled via the EA bit in the IEN0 register. If both comparators enable
interrupts, after entering the interrupt service routine, the user will need to read
the flags to determine which comparator caused the interrupt.

Comparators and power reduction modes

Either or both comparators may remain enabled when power down or idle
mode is activated, but both comparators are disabled automatically in total
power down mode. If a comparator interrupt is enabled (except in total power
down mode), a change of the comparator output state will generate an interrupt
and wake up the processor. If the comparator output to a pin is enabled, the pin
should be configured in the push-pull mode in order to obtain fast switching
times while in power down mode. The reason is that with the oscillator stopped,
the temporary strong pull-up that normally occurs during switching on a quasi-
bidirectional port pin does not take place. Comparators consume power in
power down and idle modes, as well as in the normal operating mode. This
should be taken into consideration when system power consumption is an issue.
To minimise power consumption, the user can power down the comparators by
disabling the comparators and setting PCONA.5 to ‘1’, or simply putting the
device in total power down mode.

E.9 Clocks

Clock definitions

The LPC932 device has several internal clocks defined as:

. OSCCLK – Input to the DIVM clock divider. OSCCLK is selected from
one of four clock sources and can also be optionally divided to a slower
frequency.

Note: fosc is defined as the OSCCLK frequency.

. CCLK – CPU clock; output of the clock divider. There are two CCLK
cycles per machine cycle, and most instructions are executed in one to two
machine cycles (two or four CCLK cycles).

. RCCLK – The internal 7.373MHz RC oscillator output.

. PCLK – Clock for the various peripheral devices and is CCLK/2.

CPU clock (OSCCLK)

The LPC932 provides several user-selectable oscillator options in generating
the CPU clock. This allows optimisation for a range of needs from high

Appendix E 357

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 358 – [327–359/33]
27.11.2003 12:55PM

precision to lowest possible cost. These options are configured when the
FLASH is programmed and include an on-chip watchdog oscillator, an
on-chip RC oscillator, an oscillator using an external crystal, or an external
clock source. The crystal oscillator can be optimised for low, medium or high
frequency crystals covering a range from 20 kHz to 12MHz.
Low speed oscillator option. This option supports an external crystal in the

range of 20 kHz to 100 kHz. Ceramic resonators are also supported in this
configuration.
Medium speed oscillator option. This option supports an external crystal in

the range of 100 kHz to 4MHz. Ceramic resonators are also supported in this
configuration.
High speed oscillator option. This option supports an external crystal in the

range of 4MHz to 12MHz. Ceramic resonators are also supported in this
configuration.

Figure E.10 shows the connections for a crystal oscillator.

Clock output

The LPC932 supports a user selectable dock output function on the XTAL2/
CLKOUT pin when crystal oscillator is not being used. This condition occurs if
another clock source has been selected (on-chip RC oscillator, watchdog oscil-
lator, external clock input on X1) and if the real-time clock is not using the
crystal oscillator as its clock source. This allows external devices to synchronise
to the LPC932. This output is enabled by the ENCLK bit in the TRIM register.
The frequency of this clock output is half that of the CCLK. If the clock output
is not needed in idle mode, it may be turned off prior to entering idle, saving
additional power.
On-chip RC oscillator option. The LPC932 has a 6-bit TRIM register that can

be used to tune the frequency of the RC oscillator. During reset, the TRIM
value is initialised to a factory preprogrammed value to adjust the oscillator
frequency to 7.373MHz, �2:5%. End user applications can write to the trim
register to adjust the on-chip RC oscillator to other frequencies.

*

Quartz crystal or
ceramic resonator

The oscillator must be configured in
one of the following modes:
 –Low frequency crystal
 –Medium frequency crystal
 –High frequency crystal

*A series resistor may be required to limit
crystal drive levels.This is especially
important for low frequency crystals.

LPC 932

XTAL1

XTAL2

Figure E.10 Using the crystal oscillator (courtesy Philips Semiconductors)

358 Appendix E

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_E.3D – 359 – [327–359/33]
27.11.2003 12:55PM

TRIM register

7 6 5 4 3 2 1 0

– ENCLK TRIM.5 TRIM.4 TRIM.3 TRIM.2 TRIM.1 TRIM.O

Address: 96H
Not bit addressable
Reset source(s): power-up only
Reset value: on power-up reset, ENCLK ¼ 0 and TRIM.5-0 are loaded with
the factory programmed value.

Bit Symbol Function

TRIM.7 – Reserved

TRIM.6 ENCLK When ENCLK ¼ 1, CCLK/2 is output on the XTAL2 pin

(P3.0) provided that the crystal oscillator is not being used.

When ENCLK ¼ 0, no clock output is enabled

TRIM.5 – 0 Trim value

Note: On reset, the TRIM SFR is initialised with a factory preprogrammed
value. When setting or clearing the ENCLK bit, the user should retain the
contents of bits 5:0 of the TRIM register. This can be done by reading the
contents of the TRIM register (into the ACC for example), modifying bit 6 and
writing this result back into the TRIM register. Alternatively, the ‘ANL direct’
or ‘ORL direct’ instructions can be used to clear or set bit 6 of the TRIM
register.

Watchdog oscillator option. The watchdog has a separate oscillator, which
has a frequency of 400 kHz. This oscillator can be used to save power when
a high clock frequency is not needed.
External clock input option. In this configuration, the processor clock is

derived from an external source driving the XTAL1/P3.1 pin. The rate may
be from 0Hz up to 12MHz. The XTAL2/P3.0 pin may be used as a standard
port pin or a clock output.

Appendix E 359

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 360 – [360–400/41]
28.11.2003 5:01PM

Appendix F
XAG49 Microcontroller

F.1 Introduction

Details of this device are reproduced with kind permission of Philips Semicon-
ductors. Data regarding the device may be found on the Philips website at
www.semiconductors.philips.com.

GENERAL DESCRIPTION

The XAG49 is a member of Philips’ 80C51 XA (extended architecture) family of
high performance 16-bit single-chip microcontrollers. The XA range offers com-
patibility with the 80C51, giving the user enhanced performance with increased
memory capacity. The XAG49 contains 64KB of flash program memory, and
provides three general purpose timers/counters, a watchdog timer, dual UARTs
and four general-purpose I/O ports with programmable output configurations.
A default serial loader program in the boot ROM allows ISP of the flash memory
without the need for a loader in the flash code. User programs may erase and
reprogram the flash memory at will through the use of standard routines
contained in the boot ROM (in-application programming).

FEATURES

. 64KB of on-chip flash program memory with ISP capability;

. five flash blocks; two 8KB blocks and three 16KB blocks;

. nearly identical to XA-G3, except for double the program andRAMmemories;

. single supply voltage ISP of the flash memory (Vpp ¼ VDD or Vpp ¼ 12V if
desired);

. boot ROM contains low-level flash programming routines for in-application
programming and a default serial loader using the UART;

. 2048 bytes of on-chip data RAM;

. supports off-chip program and data addressing up to 1MB (20 address lines);

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 361 – [360–400/41]
28.11.2003 5:01PM

. three standard counter/timers with enhanced features (same as XA-G3 T0,
T1 and T2). All timers have a toggle output capability;

. watchdog timer;

. two enhanced UARTs with independent baud rates;

. seven software interrupts;

. four 8-bit I/O ports, with four programmable output configurations for each
pin;

. 30MHz operating frequency at 5V;

. power saving operating modes: idle and power down. Wake-Up from
power down via an external interrupt is supported;

. 44-pin PLCC and 44-pin LQFP packages.

The basic block diagram is shown in Figure F.1.

F.2 Pin-out diagram for the XAG49

Packages include a 44-pin PLCC package and a 44-pin low quad flat pack
(LQFP) package. The PLCC package is illustrated in Figure F.2. Note that
although both packages have 44 pins only 42 pins in each case are utilised since
2 pins have no internal connections (NC).

XA CPU core

Program
memory

bus
SFR
bus

64 KB
FLASH

2048 bytes
static RAM

Port 0

Port 1

Port 2

Port 3

UART 0

UART 1

Timer 0, 1

Timer 2

Watchdog
timer

Data
bus

Figure F.1 XAG49 block diagram (courtesy Philips Semiconductors)

Appendix F 361

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 362 – [360–400/41]
28.11.2003 5:01PM

A brief description of the function of each of the pins, as applicable to the
PLCC package, is as follows:

SUPPLY VOLTAGE (VDD and VSS)

The device operates from a single þ5V supply connected to pins 23 and
44 (VDD) while pins 1 and 22 (VSS) are grounded.

INPUT/OUTPUT (I/O) PORTS

Thirty-two of the pins are arranged as four 8-bit I/O ports P0–P3. These pins
are dual purpose with each capable of operating as a control line or part of the

Pin
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Function
VSS
P1.0/A0/ WRH
P1.1/A1
P1.2/A2
P1.3/A3
P1.4/RXD1
P1.5/ TXD1
P1.6/ T2
P1.7/ T2EX
RST
P3.0/RXD0
NC
P3.1/ TXD0
P3.2/ INT0
P3.3/ INT1
P3.4/ T0
P3.5/ T1/BUSW
P3.6/ WRL
P3.7/ RD
XTAL2
XTAL1
VSS

Pin
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Function
VDD
P2.0/A12D8
P2.1/A13D9
P2.2/A14D10
P2.3/A15D11
P2.4/A16D12
P2.5/ A17D13
P2.6/ A18D14
P2.7/ A19D15
PSEN
ALE
NC
EA / Vpp/ WAIT
P0.7/ A11D7
P0.6/ A10D6
P0.5/ A9D5
P0.4/ A8D4
P0.3/ A7D3
P0.2/ A6D2
P0.1/ A5D1
P0.0/ A4D0
VDD

17

7

6 1 40

39

29

18 28

PLCC

Figure F.2 XAG49 PLCC package pin-out layout (courtesy Philips
Semiconductors)

362 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 363 – [360–400/41]
28.11.2003 5:01PM

data/address bus in addition to the I/O functions. Each port operates as an
8-bit I/O port with a user-configurable output type. Port latches have 1s written
to them and are configured in the quasi-bidirectional mode during reset.
Operation of the port pins as inputs or outputs depends on the selected port
configuration. Each port pin may be configured independently. Details of each
port are as follows:

. Port 0 (pins 36 to 43). When the external program/data bus is used, the
port becomes the multiplexed low data/instruction byte and address lines
4 to 11.

. Port 1 (pins 2 to 9). The port pins also serve special functions as follows:

P1.0 A0/WRH Address bit 0 of the external address bus when the
external data bus is configured for an 8-bit width.
When the external data bus is configured for 16-bit
width, this pin becomes the high byte write strobe

P1.1 A1 Address bit 1 of the external address bus
P1.2 A2 Address bit 2 of the external address bus
P1.3 A3 Address bit 3 of the external address bus
P1.4 RxD1 Receiver input for serial port 1
P1.5 TxD1 Transmitter output for serial port 1
P1.6 T2 Timer/counter 2 external count input/clockout
P1.7 T2EX Timer/counter 2 reload/capture/direction control

. Port 2 (pins 24 to 31). When the external program/data bus is used in 8-bit
mode the number of address lines that appear on the port is user program-
mable; when used in 16-bit mode the port becomes the multiplexed low
data/instruction byte and address lines 12 to 19.

. Port 3 (pins 11 and pins 13 to 19). These pins, in addition to the I/O role,
serve the special functions summarised below:

P3.0 RxD0 Receiver serial data input port
P3.1 TxD0 Transmitter serial data output port
P3.2 INT0 External interrupt 0 input
P3.3 INT1 External interrupt 1 input
P3.4 T0 Timer/counter 0 external input, or timer 0 overflow

output
P3.5 T1/BUSW Timer/counter 1 external input, or timer 1 overflow

output. The value on this pin is latched as the external
reset input is released and defines the default external
data bus width (BUSW) where 0=8-bit bus and
1=16-bit bus

P3.6 WRL External data memory low byte write strobe
P3.7 RD External data memory read strobe

Appendix F 363

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 364 – [360–400/41]
28.11.2003 5:01PM

RST (RESET) (PIN 10)

When this input goes low the microcontroller is reset, causing the I/O ports and
peripherals to assume their default values. The processor also begins execution
at the address contained in the reset vector.

XTAL1 AND XTAL2 (PINS 21 AND 20 RESPECTIVELY)

The XTAL1 input provides an input to the inverting amplifier used in the
oscillator circuit and an input to the internal clock generator circuits. The
XTAL2 pin provides an output from the oscillator amplifier.

PSEN (PROGRAM STORE ENABLE) (PIN 32)

This pin provides an output read strobe to external program memory. The
output is active low during the fetch stage of an instruction. The signal is not
activated during a fetch from internal memory.

ALE (ADDRESS LATCH ENABLE) (PIN 33)

A high ALE signal is an output pulse used to latch the address portion of the
multiplexed address/data bus. The signal only occurs when it is needed in order
to process a bus cycle.

EA/WAIT/VPP (EXTERNAL ACCESS/WAIT/PROGRAMMING
VOLTAGE) (PIN 35)

The EA input determines whether the internal program memory of the micro-
controller is used for code execution. The value on the EA pin is latched as the
external reset input is released and applies during later execution. When latched
as a 0, external program memory is used exclusively; when latched as a 1,
internal program memory will be used up to its limit, with external program
memory used above that point. After reset is released this pin takes on the
function of bus Wait input. If wait is asserted high during any external bus
access, the cycle will be extended until Wait is released. During EPROM
programming this pin is also the programming supply voltage input.

F.3 Memory organisation

INTRODUCTION

The memory space of XA is configured such that code and data memory
(including SFRs) are organised in separate address spaces. The XA architecture
supports 16MB (24-bit address) of both code and data space. The size and type
of memory are specific to an XA derivative. The XAG49 has only 20 address

364 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 365 – [360–400/41]
28.11.2003 5:01PM

lines with a limit of 1MB of memory. The XA supports different types of both
code and data memory e.g. code memory could be EPROM, EEPROM, OTP
ROM, Flash and Masked ROM whereas data memory could be RAM,
EEPROM or Flash. The XAG49 has flash code memory and RAM data
memory.

THE XA REGISTER FILE

The XA architecture is optimised for arithmetic, logical and address-computation
operations on the contents of one or more registers in the XA register file. The
register file (see Figure F.3) allows access to eight words of data at any one time;
the eight words are also addressable as 16 bytes.

The bottom four word registers are ‘banked’. That is, there are four groups
of registers, any one of which may occupy the bottom four words of the register
file at any one time. This feature may be used to minimise the time required for
context switching during interrupt service, and to provide more register space
for complicated algorithms. For some instructions – 32-bit shifts, multiplies
and divides – adjacent pairs of word registers are referenced as double words.
The upper four words of the register file are not banked. The topmost word
register is the SP, while any other word register may be used as a general-
purpose pointer to data memory. The entire register file is bit addressable.
That is, any bit in the register file (except the three unselected banks of the
bottom four words) may be operated on by bit manipulation instructions.

Global registers

Banked registers

R7

R6

R5

R4

R3

R2

R1

R0

R3H

R7H

R6H

R5H

R4H

R5L

R4L

R7L

R3L

R2L

R1L

R0L

R2H

R1H

R0H

System stack pointer

R6L

User stack
pointer

Figure F.3 XA register file diagram (courtesy Philips Semiconductors)

Appendix F 365

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 366 – [360–400/41]
28.11.2003 5:01PM

The XA instruction encoding allows for future expansion of the register file by
the addition of eight word registers. If implemented, these additional registers
will be word data registers only and cannot be used as pointers or addressed as
bytes. The overall XA register file structure provides a superset of the 80C51
register structure.

There are two stack pointers, one for user mode and another for SM. At any
given instant only one stack pointer is accessible and its value is in R7. When
PSW.SM is 0, user mode is active and the USP is accessible via R7. When
PSW.SM is 1, the XA is operating in SM, and SSP is in SP (R7). (Note that all
interrupts save stack frames on the system stack, using the SSP, regardless of
the current operating mode.) There are four distinct instances of registers R0
through R3. At any given time, only one set of the four banks is active,
referenced as R0 throughR3, and the contents of the other banks are inaccessible.
This allows high-speed context-switching, for example, for interrupt service
routines. PSW bits RS1 and RS0 select the active register bank:

RS1 RS0 Visible register bank

0 0 Bank 0

0 1 Bank 1

1 0 Bank 2

1 1 Bank 3

BIT ACCESS TO REGISTERS

The XA registers are all bit addressable. Figure F.4 shows how bit addresses
overlie the basic register file map. In general, absolute bit references as given in
this map are unnecessary.

XA software development tools provide symbolic access to bits in registers.
For example, bit 7 may be designated as ‘R0.7’ with no ambiguity. Bit refer-
ences to banked registers R0 through R3 access the currently accessible register
bank, as set by PSW bits RS1, RS0 and the currently selected stack pointer
USP or SSP. The unselected registers are inaccessible.

THE XA MEMORY SPACES

The XA divides physical memory into program and data memory spaces.
Twenty-four address bits, corresponding to a 16MB address space, are defined
in the XA architecture. In any given XA implementation, fewer than all
24 address bits may actually be used, and there is provision for a small-memory
mode which uses only 16-bit addresses. Code and data memory may be on-chip
or external, depending on the XA variant and the user implementation.
Whether a specific region is on-chip or external does not, in general, affect
access to the memory. As mentioned earlier the XAG49 utilises only 20 address
lines with a 1MB address space.

366 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 367 – [360–400/41]
28.11.2003 5:01PM

DATA MEMORY

The XA architecture supports a 16MB data memory space with a full 24-bit
address. Some derivative parts may implement fewer address lines for a smaller
range. The data space beginning at address 0 is normally on-chip and extends to
the limit of the RAM size of a particular XA derivative. For addresses above
that on a derivative, the XA will automatically roll over to external data
memory. Data memory in the XA is divided into 64KB segments (Figure F.5)
to provide an intrinsic protection mechanism for multi-tasking systems and to
improve performance.

Segment registers provide the upper eight address bits needed to obtain a
complete 24-bit address in applications that require large data memories. The
XA provides two segment registers used to access data memory, the data
segment register (DS) and the extra segment register (ES). Each pointer register
is associated with one of the segment registers via the segment select (SSEL)
register. Pointer registers retain this association until it is changed under
program control. Address generation using the segment select register is shown
in Figure F.6.

A 0 in the SSEL bit corresponding to the pointer register selects DS (default
on RESET) and 1 selects the ES. For example, when R3 contains a pointer
value, the full 24-bit address is formed by concatenating DS or ES, as deter-
mined by the state of SSEL bit 3, as the most significant 8 bits. As a conse-
quence of segmented addressing, the XA data memory space may be viewed as
256 segments of 64KB each.

FF FE FD FC FB FA F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

EF EE ED EC EB EA E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

R15

R14

R7

R6

R5

R4

R3

R2

R1

R0

7F

6F

5F

4F

3F

2F

1F

0F 0E 0D

1E 1D

2E 2D 2C

1C

0C

2B

1B

0B

2A

1A

0A

3E

7E

6E

5E

4E

7D

6D

5D

4D

3D

7C

6C

5C

4C

3C

7B

6B

5B

4B

3B

7A

6A

5A

4A

3A

79

69

59

49

39

29

19

09

28

18

08

27

17

07

26

16

06

25

15

05

24

14

04

23

13

03

22

12

02

21

11

01

20

10

00

38 37 36 35 34 33 32 31 30

58

48

57

47

56

46 45

55 54 53 52 51 50

78

68

77

67

76

66

75

65

74

64

73

63

72

62

71

61

70

60

44 43 42 41 40

RnLRnH

Figure F.4 XA bit address to registers (courtesy Philips Semiconductors)

Appendix F 367

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 368 – [360–400/41]
28.11.2003 5:01PM

The XA provides flexible data addressing modes. Most arithmetic, logic and
data movement instructions support the following modes of addressing data
memory:
Direct. The first 1KB of data on each segment may be accessed by an address

contained within the instruction.
Indirect. A complete 24-bit data memory address is formed by an 8-bit

segment register concatenated with 16 bits from a pointer register.
Indirect with offset. An 8-bit or 16-bit signed offset contained within the

instruction is added to the contents of a pointer register, then concatenated with

Segment 0
Segment 1

(Segment n)

Segment 255

64 KB

Figure F.5 XA data memory segments (courtesy Philips Semiconductors)

ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG R0SEGSSEL

8-bit segment
identifierDS

ES

Segment
registers

Complete
24-bit memory
address

16-bit segment offsetR3

0

1

Figure F.6 Use of segment registers for XA address generation (courtesy Philips
Semiconductors)

368 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 369 – [360–400/41]
28.11.2003 5:01PM

an 8-bit segment register to produce a complete address. This mode allows access
into a data structure when a pointer register contains the starting address of the
structure. It also allows subroutines to access parameters passed on the stack.
Indirect with auto-increment. The address is formed in the same manner as

plain indirect, but the pointer register contents are automatically incremented
following the operation.

Data movement instructions and some special purpose instructions also
have additional data addressing modes. The XA data memory addressing
scheme provides for upward compatibility with the 80C51. The memory map
for the XAG49 is shown in Figure F.7.

CODE MEMORY

The XA is a Harvard architecture device, meaning that the code and data
spaces are separate. The XA provides a continuous, unsegmented linear code
space that may be as large as 16 megabytes. In XA derivatives with on-chip
ROM or EPROM code memory, the on-chip space always begins at code
address 0 and extends to the limit of the on-chip code memory. Above that,
code will be fetched from off-chip. Most XA derivatives will support an
external bus for off-chip data and code memory, and may also be used in a

Data segment 0 Other data segments

FFFFFH

Data memory
(indirectly addressed,

off-chip)

Data memory
(indirectly addressed,

on-chip)

Data memory
(indirectly addressed,

off-chip)

Data memory
(directly and indirectly
addressable, on-chip)

Data memory
(directly and indirectly
addressable, off-chip)

Bit-addressable
data area

Bit-addressable
data area

Data memory
(directly and indirectly
addressable, on-chip)

Data memory
(directly and indirectly
addressable, off-chip)

0800H
07FFH

0400H

0040H

03FFH

003FH

0020H
001FH

0000H

Directly addressed data
(1 KB per segment)

FFFFFH

0400H

03FFH

0040H
003FH

0020H
001FH

0000H

2 KB
on-chip data

memory
(RAM)

Figure F.7 XAG49 data memory map (courtesy Philips Semiconductors)

Appendix F 369

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 370 – [360–400/41]
28.11.2003 5:01PM

ROM-less mode with no code memory used on-chip. In some cases, code
memory may be addressed as data. Special instructions provide access to
the entire code space via pointers. Either a special segment register (CS or code
segment) or the upper 8 bits of the PC may be used to identify the portion of
code memory referenced by the pointer. The arrangement for the XAG49
device is shown in Figure F.8.

FLASH EPROM MEMORY

The XAG49 flash memory augments EPROM functionality with in-circuit
electrical erasure and programming. The flash can be read and written as bytes.
The chip erase operation will erase the entire program memory. The block erase
function can erase any single flash block. In-circuit programming and standard
parallel programming are both available. On-chip erase and write timing gen-
eration contribute to a user-friendly programming interface. The XAG49 flash
reliably stores memory contents even after 10 000 erase and program cycles. The
cell is designed to optimise the erase and programming mechanisms. In addi-
tion, the combination of advanced tunnel oxide processing and low internal
electric fields for erase and programming operations produces reliable
cycling. For ISP, the XAG49 can use a single þ5V power supply. Faster ISP
may be obtained, if required, through the use of a þ12V Vpp supply. Parallel
programming (using separate programming hardware) uses a þ12V Vpp

supply.

FFFFFH

Up to 1 MB
total code
memory

64 KB
on-chip

code memory

1000H

FFFFH

0000H

2 KB boot ROM
FFFFH

F800H

Note: The boot ROM replaces the top 2 KB of Flash memory when it is enabled.

Figure F.8 XAG49 program memory map (courtesy Philips Semiconductors)

370 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 371 – [360–400/41]
28.11.2003 5:01PM

Features

. Flash EPROM internal program memory with single voltage programming
and block erase capability.

. Internal 2KB fixed boot ROM, containing low-level programming routines
and a default loader. The boot ROM can be turned off to provide access to
the full 64KB flash memory.

. Boot vector allows user provided flash loader code to reside anywhere in the
flash memory space. This configuration provides flexibility to the user.

. Default loader in boot ROM allows programming via the serial port with-
out the need for a user provided loader.

. Up to 1MB external program memory if the internal program memory is
disabled (EA ¼ 0) .

. Programming and erase voltage: Vpp ¼ VDD (5V power supply), or 12V
�5% for ISP. Using 12V Vpp for ISP improves programming and erase time.

. Read/programming/erase in ISP:

1. Byte-wise read (60 ns access time).
2. Byte programming (3–4min for 64KB flash, depending on clock

frequency).

. In-circuit programming via user-selected method, typically RS232 or paral-
lel I/O port interface.

. Programmable security for the code in the flash.

. 10 000 minimum erase/program cycles each byte over operating tempera-
ture range.

. 10-year minimum data retention.

Flash memory organisation

The XAG49 contains 64KB of flash program memory. This memory is organ-
ised as five separate blocks. The first two blocks are 8KB in size, filling the
program memory space from address 0 through 3FFF hex. The final three
blocks are 16KB in size and occupy addresses from 4000 through FFFF hex.
Figure F.9 shows the flash memory configuration.

Flash programming and erasure

The XAG49 flash microcontroller supports a number of programming possi-
bilities for the on-chip flash memory. The flash memory may be programmed in
a parallel fashion on standard programming equipment in a manner similar to an
EPROMmicrocontroller. The XAG49microcontroller is able to program its own
flash memory while the application code is running. Also, a default loader built
into a boot ROM allows programming blank devices serially through the UART.

Using any of these types of programming, any of the individual blocks may
be erased separately, or the entire chip may be erased. Programming of the flash
memory is accomplished one byte at a time.

Appendix F 371

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 372 – [360–400/41]
28.11.2003 5:01PM

BOOT ROM

When the microcontroller programs its own flash memory, all of the low level
details are handled by code that is permanently contained in a 2KB ‘Boot
ROM’ that is separate from the flash memory. A user program simply calls the
entry point with the appropriate parameters to accomplish the desired oper-
ation. Boot ROM operations include things like: erase block, program byte,
verify byte program security lock bit, etc. The boot ROM overlays the program
memory space at the top of the address space from F800 to FFFF hex, when it
is enabled by setting the ENBOOT bit at AUXR1.7. The boot ROM may be
turned off so that the upper 2KB of flash program memory are accessible for
execution.

ENBOOT AND PWR.VLD

Setting the ENBOOT bit in the AUXR register enables the boot ROM and
activates the on-chip Vpp generator if Vpp is connected to VDD rather than 12V
externally. The PWR_VLD flag indicates that Vpp is available for programming
and erase operations. This flag should be checked prior to calling the boot
ROM for programming and erase services. When ENBOOT is set, it typically
takes 5 ms for the internal programming voltage to be ready.

The ENBOOT bit will automatically be set if the status byte is non-zero
during reset, or when PSEN is low, ALE is high and EA is high at the falling

FFFF

Block 4
16 KB

Block 3
16 KB

Block 2
16 KB

Block 1
8 KB

Block 0
8 KB

C000

8000

4000

2000

0000

Boot ROM
FFFF

F800

Program
address

Figure F.9 XAG49 flash memory configuration (courtesy Philips Semiconductors)

372 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 373 – [360–400/41]
28.11.2003 5:01PM

edge of reset. Otherwise, ENBOOT will be cleared during reset. When pro-
gramming functions are not needed, ENBOOT may be cleared. This enables
access to the 2KB of flash code memory that is overlaid by the boot ROM,
allowing a full 64KB of flash code memory.

F.4 Special function registers

Special function registers (SFRs) provide a means for the XA to access core
registers, internal control registers, peripheral devices and I/O ports. Any SFR
may be accessed by a program at any time without regard to any pointer or
segment. An SFR address is always contained entirely within an instruction.
The core registers that are accessed as SFRs include PCON, SCR, SSEL,
PSWH, PSWL, CS, ES and DS. Communication with these registers as well
as on-chip peripheral devices is via the dedicated SFR bus, which is shown in
Figure F.1.

SFR ADDRESS SPACE

The total SFR space is 1KB in size. This is further divided into two 512 byte
regions. The lower half is assigned to on-chip SFRs, while the second half is
reserved for off-chip SFRs. This provides a means to add off-chip I/O devices
mapped into the XA as SFRs. Off-chip SFR access is not implemented on all
XA derivatives. On-chip SFRs are implemented as needed to provide control
for peripherals or access to CPU features and functions. Each XA derivative
may have a different number of SFRs implemented because each has a different
set of peripheral functions. Many SFR addresses will be unused on any parti-
cular XA derivative.

The first 64 bytes of on-chip SFR space are bit addressable. Any CPU or
peripheral register that allows bit access will be allocated an address within that
range. The complete list of SFRs available for the XAG49 device is illustrated
in Table F.1.
I/O port output configuration. Each I/O port pin can be user configured to

one of four output types. The types are:

. quasi-bidirectional (essentially the same as standard 80C51 family
I/O ports)

. open-drain

. push-pull

. off (high impedance).

The default configuration after reset is quasi-bidirectional. However, in the
ROMIess mode (the EA pin is low at reset), the port pins that comprise the
external data bus will default to push–pull outputs. I/O port output config-
urations are determined by the settings in port configuration SFRs. There are
two SFRs for each port, called PnCFGA and PnCFGB, where ‘n’ is the port

Appendix F 373

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
F

.3
D

–
3
7
4

–
[360–400/41]

28.11.2003
5:01P

M

Table F.1 XAG49 special function registers (courtesy Philips Semiconductors)
Special function registers

Name Description

SFR

address MSB Bit functions and addresses LSB

Reset

value

AUXR Auxiliary function

register 44C ENBOOT FMIDLE PWR_VLD – – – – –

BCR Bus configuration

register 46A – – – WAITD BUSD BC2 BC1 BC0 Note 1

BTRH Bus timing register

high byte 469 DW1 DW0 DWA1 DWA0 DR1 DR0 DRA1 DRA0 FF

BTRL Bus timing register

low byte 468 WM1 WM0 ALEW – CR1 CR0 CRA1 CRA0
EF

CS Code segment 443 00

DS Data segment 441 00

ES Extra segment 442 00

33F 33E 33D 33C 33B 33A 339 338

IEH* Interrupt enable

high byte 427 – – – – ETI1 ERI1 ETI0 ERI0 00

337 336 335 334 333 332 331 330

IEL* Interrupt enable

low byte 426 EA – – ET2 ET1 EX1 ET0 EX0 00

IPA0 Interrupt priority 0 4A0 – PT0 – PX0 00

IPA1 Interrupt priority 1 4A1 – PT1 – PX1 00

IPA2 Interrupt priority 2 4A2 – – – PT2 00

IPA4 Interrupt priority 4 4A4 – PTI0 – PRI0 00

IPA5 Interrupt priority 5 4A5 – PTI1 – PRI1 00

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
F

.3
D

–
3
7
5

–
[360–400/41]

28.11.2003
5:01P

M

387 386 385 384 383 382 381 380

P0* Port 0 430 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 FF

38F 38E 38D 38C 38B 38A 389 388

P1* Port 1 431 T2EX T2 TxD1 RxD1 A3 A2 A1 WRH FF

397 396 395 394 393 392 391 390

P2* Port 2 432 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 FF

39F 39E 39D 39C 39B 39A 399 398

P3* Port 3 433 RD WR T1 T0 INT1 INT0 TxD0 RxD0 FF

P0CFGA Port 0

configuration A 470 Note 5

P1CFGA Port 1

configuration A 471 Note 5

P2CFGA Port 2

configuration A 472 Note 5

P3CFGA Port 3

configuration A 473 Note 5

P0CFGB Port 0

configuration B 4F0 Note 5

P1CFGB Port 1

configuration B 4F1 Note 5

P2CFGB Port 2

configuration B 4F2 Note 5

P3CFGB Port 3

configuration B 4F3 Note 5

227 226 225 224 223 222 221 220

PCON* Power control

register 404 – – – – – – PD IDL 00

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
F

.3
D

–
3
7
6

–
[360–400/41]

28.11.2003
5:01P

M

Table F.1 Continued

Name Description

SFR

address MSB

Bit functions and addresses
LSB

Reset

value

20F 20E 20D 20C 20B 20A 209 208

PSWH* Program status

word (high byte) 401 SM TM RS1 RS0 IM3 IM2 IM1 IM0 Note 2

207 206 205 204 203 202 201 200

PSWL* Program status

word (low byte) 400 C AC – – – V N Z Note 2

217 216 215 214 213 212 211 210

PSW51* 80C51 compatible

PSW 402 C AC F0 RS1 RS0 V F1 P Note 3

RTH0 Timer 0 extended

reload, high byte

455 00

RTH1 Timer 1 extended

reload, high byte

457 00

RTL0 Timer 0 extended

reload, low byte

454 00

RTL1 Timer 1 extended

reload, low byte

456 00

307 306 305 304 303 302 301 300

S0CON* Serial port 0

control register 420 SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00

30F 30E 30D 30C 30B 30A 309 308

S0STAT* Serial port 0

extended status 421 – – – – FE0 BR0 OE0 STINT0 00

S0BUF Serial port 0

buffer register

460
x

S0ADDR Serial port 0

address register

461 00

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
F

.3
D

–
3
7
7

–
[360–400/41]

28.11.2003
5:01P

M

S0ADEN Serial port 0

address enable

register

462 00

327 326 325 324 323 322 321 320

S1CON* Serial port 1

control register 424 SM0_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 00

32F 32E 32D 32C 32B 32A 329 328

S1STAT* Serial port 1

extended status 425 – – – – FE1 BR1 OE1 STINT1 00

S1BUF Serial port 1

buffer register

464 x

S1ADDR Serial port 1

address register

465 00

S1ADEN Serial port 1

address enable

register

466 00

SCR System

configuration

register
440 – – – – PT1 PT0 CM PZ 00

21F 21E 21D 21C 21B 21A 219 218

SSEL* Segment selection

register 403 ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG R0SEG 00

SWE Software interrupt

enable 47A – SWE7 SWE6 SWE5 SWE4 SWE3 SWE2 SWE1 00

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
F

.3
D

–
3
7
8

–
[360–400/41]

28.11.2003
5:01P

M

Table F.1 Continued

Name Description

SFR

address MSB

Bit functions and addresses

LSB

Reset

value

357 356 355 354 353 352 351 350

SWR* Software interrupt

request 42A – SWR7 SWR6 SWR5 SWR4 SWR3 SWR2 SWR1 00

2C7 2C6 2C5 2C4 2C3 2C2 2C1 2C0

T2CON* Timer 2 control

register 418 TF2 EXF2 RCLK0 TCLK0 EXEN2 TR2 C/T2 CP/RL2 00

2CF 2CE 2CD 2CC 2CB 2CA 2C9 2C8

T2MOD* Timer 2 mode

control 419 – – RCLK1 TCLK1 – – T2OE DCEN 00

TH2 Timer 2 high byte 459 00

TL2 Timer 2 low byte 458 00

T2CAPH Timer 2 capture

register, high byte

45B 00

T2CAPL Timer 2 capture

register, low byte

45A 00

287 286 285 284 283 282 281 280

TCON* Timer 0 and 1

control register 410 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00

TH0 Timer 0 high byte 451 00

TH1 Timer 1 high byte 453 00

TL0 Timer 0 low byte 450 00

TL1 Timer 1 low byte 452 00

TMOD Timer 0 and 1 mode

control 45C GATE C/T M1 M0 GATE C/T M1 M0 00

28F 28E 28D 28C 28B 28A 289 288

TSTAT* Timer 0 and 1

extended status 411 – – – – – T1OE – T0OE 00

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
F

.3
D

–
3
7
9

–
[360–400/41]

28.11.2003
5:01P

M

2FF 2FE 2FD 2FC 2FB 2FA 2F9 2F8

WDCON* Watchdog control

register 41F PRE2 PRE1 PRE0 – – WDRUN WDTOF – Note 6

WDL Watchdog timer

reload

45F 00

WFEED1 Watchdog feed 1 45D x

WFEED2 Watchdog feed 2 45E x

Notes:

* SFRs are bit addressable.

1. At reset, the BCR register is loaded with the binary value 0000 0a11, where ‘‘a’’ is the value on the BUSW pin. This defaults the address bus size to 20 bits since the XA-G49 has only

20 address lines.

2. SFR is loaded from the reset vector.

3. All bits except F1, F0 and P are loaded from the reset vector. Those bits are all 0.

4. Unimplemented bits in SFRs are X (unknown) at all times. Ones should not be written to these bits since they may be used for other purposes in future XA derivatives. The reset

value shown for these bits is 0.

5. Port configurations default to quasi-bidirectional when the XA begins execution from internal code memory after reset, based on the condition found on the EA pin. Thus all

PnCFGA registers will contain FF and PnCFGB registers will contain 00. When the XA begins execution using external code memory, the default configuration for pins that are

associated with the external bus will be push-pull. The PnCFGA and PnCFGB register contents will reflect this difference.

6. The WDCON reset value is E6 for a Watchdog reset, E4 for all other reset causes.

7. The XA-G49 implements an 8-bit SFR bus, as stated in Chapter 8 of the XA User Guide. All SFR accesses must be 8-bit operations. Attempts to write 16 bits to an SFR will

actually write only the lower 8 bits. Sixteen-bit SFR reads will return undefined data in the upper byte.

8. The AUXR reset value is typically 00H. If the Boot Loader is activated at reset because the Flash status byte is non-zero or because the Boot Vector has been forced (by PSEN ¼ 0,

ALE ¼ 1, EA ¼ 1 at reset), the AUXR reset value will be 1x00 0000B. Bit 6 will be a 1 if the on-chip Vpp generator is running and ready, otherwise it will be a 0.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 380 – [360–400/41]
28.11.2003 5:01PM

number. One bit in each of the two SFRs relates to the output setting for the
corresponding port pin, allowing any combination of the two output types to
be mixed on those port pins. For example, the output type of port 1 pin 3 is
controlled by the setting of bit 3 in the SFRs P1CFGA and P1CFGB. Table F.2
shows the configuration register settings for the four port output types.

F.5 Timer/counters

The XA has two standard 16-bit enhanced timer/counters: timer 0 and timer 1.
Additionally, it has a third 16-bit up/down timer/counter, T2. A central timing
generator in the XA core provides the time-base for all XA timers and counters.
The timer/event counters can perform the following functions:

. measure time intervals and pulse duration

. count external events

. generate interrupt requests

. generate PWM or timed output waveforms.

All of the timer/counters (timers 0, 1 and 2) can be independently programmed
to operate either as timers or event counters via the C/T bit in the TnCON register.
All timers count up unless otherwise stated. These timers may be dynamically read
during program execution. The base clock rate of all of the timers is user pro-
grammable. This applies to timers T0, T1 and T2 when running in timer mode (as
opposed to counter mode) and the watchdog timer. The clock driving the timers is
called TCLK and is determined by the setting of two bits (PT1, PT0) in the system
configuration register (SCR). Details of the SCR register are shown in Table F.3.

The frequency of TCLK may be selected to be the oscillator input divided by
4 (fosc/4), the oscillator input divided by 16 (fosc/16), or the oscillator input divided
by 64 (fosc/64). This gives a range of possibilities for the XA timer functions,
including baud rate generation, timer 2 capture. Note that this single rate setting
applies to all of the timers. When timers T0, T1 or T2 are used in the counter mode,
the register will increment whenever a falling edge (high to low transition) is
detected on the external input pin corresponding to the timer clock. These inputs
are sampled once every two oscillator cycles, so it can take as many as four
oscillator cycles to detect a transition. Thus the maximum count rate that can be

Table F.2 Port configuration register settings

PnCFGB PnCFGA Port output mode

0 0 Open drain

0 1 Quasi-bidirectional

1 0 Off (high impedance)

1 1 Push–Pull

Note: Mode changes may cause glitches to occur during

transitions. When modifying both registers, WRITE

instructions should be carried out consecutively.

380 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 381 – [360–400/41]
28.11.2003 5:01PM

supported is fosc/4. The duty cycle of the timer clock inputs is not important, but any
high or low state on the timer clock input pins must be present for two oscillator
cycles before it is guaranteed to be ‘seen’ by the timer logic.

TIMER 0 AND TIMER 1

The ‘timer’ or ‘counter’ function is selected by control bits C/T in the SFR
TMOD. These two timer/counters have four operating modes, which are
selected by bit-pairs (M1, M0) in the TMOD register. Timer modes 1, 2 and
3 in XA are kept identical to the 80C51 timer modes for code compatibility.
Only the mode 0 is replaced in the XA by a more powerful 16-bit auto-reload
mode. This will give the XA timers a much larger range when used as time
bases. The recommended M1, M0 settings for the different modes are shown in
Table F.4.

Table F.3 SCR register bit functions

SCR.

address 440H
not bit addressable

MSB LSB

– – – – PT1 PT0 CM PZ

7 6 5 4 3 2 1 0

Bit Symbol Function

7, 6, 5, 4 – Reserved for future use

3, 2 PT1, PT0 Sets operating conditions as follows:

PT1 PT0 Prescaler selection

0 0 fosc/4

0 1 fosc/16

1 0 fosc/64

1 1 reserved

1 CM Compatibility mode allows the XA to execute most translated

80C51 code on the XA. The XA register file must copy the

80C51 mapping to data memory and mimic the 80C51

indirect addressing scheme

0 PZ Page zero mode forces all program and data addresses to

16-bits only. This saves stack space and speeds up execution

but limits memory access to 64KB

Table F.4 TMOD register bit functions

TMOD.

address 45CH
not bit addressable

Appendix F 381

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 382 – [360–400/41]
28.11.2003 5:01PM

Mode 0

For timers T0 or T1 the 13-bit count mode on the 80C51 (current mode 0)
has been replaced in the XA with a new enhanced 16-bit auto-reload mode.
Four additional 8-bit data registers (two per timer: RTHn and RTLn) are
created to hold the auto-reload values. In this mode, the TH overflow will set
the TF flag in the TCON register and cause both the TL and TH counters to be
loaded from the RTL and RTH registers respectively.

These new SFRs will also be used to hold the TL reload data in the 8-bit
auto-reload mode (mode 2) instead of TH. The overflow rate for timer 0 or
timer 1 in mode 0 may be calculated as follows:

Timer_rate ¼ fosc

N�ð65536� Timer_reload_valueÞ
where N ¼ the TCLK prescaler value: 4 (default), 16, or 64.
Mode l

Mode 1 is the 16-bit non-auto-reload mode.
Mode 2

Mode 2 configures the timer register as an 8-bit counter (TLn) with auto-
matic reload. Overflow from TLn not only sets TFn, but also reloads TLn with
the contents of RTLn, which is preset by software. The reload leaves THn
unchanged. Mode 2 operation is the same for timer/counter 0. The overflow
rate for timer 0 or timer 1 in mode 2 may be calculated as follows:

Timer_rate ¼ fosc

Nð256� Timer_Reload_valueÞ
where N ¼ the TCLK prescaler value: 4, 16 or 64.

MSB LSB

GATE C/T M1 M0 GATE C/T M1 M0

--------------- TIMER 1 --------------- --------------- TIMER 0 ----------------

The bit functions are:

GATE When set timer/counter x is enabled when INTx pin is high and TRx
(see TCON) is set. When clear timer x is enabled when TRx bit set

C/T When clear, timer operation (input from internal clock)
When set, counter operation (input from Tx input pin)

The M1 and M0 bit functions depend on the bit assignment as shown below:

M1 M0 Operation

0 0 16-bit auto-reload timer/counter

0 1 16-bit non-auto-reload timer/counter

1 0 8-bit auto-reload timer/counter

1 1 Dual 8-bit timer mode (timer 0 only)

382 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 383 – [360–400/41]
28.11.2003 5:01PM

Mode 3

Timer 1 in mode 3 simply holds its count. The effect is the same as setting
TR1 ¼ 0. Timer 0 in mode 3 establishes TL0 and TH0 as two separate counters.
TL0 uses the timer 0 control bits: C/T, GATE, TR0, INT0 and TF0. TH0 is
locked into a timer function and takes over the use of TR1 and TFI from timer 1.
Thus, TH0 now controls the ‘timer 1’ interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer. When
timer 0 is in mode 3, timer 1 can be turned on and off by switching it out of and
into its own mode 3, or can still be used by the serial port as a baud rate
generator, or in fact, in any application not requiring an interrupt. Details of
the TCON register are shown in Table F.5.

NEW TIMER-OVERFLOW TOGGLE OUTPUT

In the XA, the timer module now has two outputs, which toggle on overflow from
the individual timers. The same device pins that are used for the T0 and T1 count

Table F.5 TCON register bit functions

TCON.

address 410H
bit addressable

MSB LSB

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

7 6 5 4 3 2 1 0

Bit Symbol Function

7 TF1 Timer 1 overflow flag. Set by hardware on timer/counter overflow.

This flag will not be set if T1OE (TSTAT.2) is set

Cleared by hardware when processor vectors to interrupt routine, or

by clearing the bit in software

6 TR1 Timer 1 run control bit. Set/cleared by software to turn counter/timer

1 on/off

5 TF0 Timer 0 overflow flag. Set by hardware on timer/counter overflow.

This flag will not be set if T0OE (TSTAT.0) is set. Cleared by

hardware when processor vectors to interrupt routine, or by clearing

the bit in software

4 TR0 Timer 0 run control bit. Set/cleared by software to turn counter/timer

0 on/off

3 IE1 Interrupt 1 edge flag. Set by hardware when external interrupt edge

detected. Cleared when interrupt processed

2 IT1 Interrupt 1 type control bit. Set/cleared by software to specify falling

edge/low-level triggered external interrupts

1 IE0 Interrupt 0 edge flag. Set by hardware when external interrupt edge

detected. Cleared when interrupt processed

0 IT0 Interrupt 0 type control bit. Set/cleared by software to specify falling

edge/low-level triggered external interrupts

Appendix F 383

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 384 – [360–400/41]
28.11.2003 5:01PM

inputs are also used for the new overflow outputs. An SFR bit (TnOE in the
TSTAT register) is associated with each counter and indicates whether port-SFR
data or the overflow signal is output to the pin. These outputs could be used in
applications for generating variable duty cycle PWM outputs (changing the auto-
reload register values). Also, variable frequency (fosc/8 to fosc/8,388,608) outputs
could be achieved by adjusting the prescaler along with the auto-reload register
values. With a 30.0MHz oscillator, this range would be 3.58Hz to 3.75MHz.
Details of the SFR register TSTAT are shown in Table F.6.

TIMER T2

Timer 2 in the XA is a 16-bit timer/counter, which can operate as either a timer
or as an event counter. This is selected by C/T2 in the SFR T2CON. Upon timer
T2 overflow/underflow, the TF2 flag is set, which may be used to generate an
interrupt. It can be operated in one of three operating modes: auto-reload (up or
down counting), capture or as the baud rate generator (for either or both UARTs
via SFRs T2MOD and T2CON). These modes are shown in Table F.7. Details of
the T2MOD and T2CON registers are shown in Tables F.8 and F.9 respectively.

Table F.6 TSTAT register bit functions

TSTAT

address 411H
bit addressable

MSB LSB

– – – – – T1OE – T0OE

7 6 5 4 3 2 1 0

Bit Symbol Function

2 T1OE When 0, this bit allows the T1 pin to clock timer 1 when in the counter mode.

When 1, T1 acts as an output and toggles at every timer 1 overflow

0 T0OE When 0, this bit allows the T0 pin to clock timer 0 when in the counter mode.

When 1, T0 acts as an output and toggles at every timer 0 overflow

Table F.7 Timer 2 operating modes

TR2 CP/RL2 RCLKþ TCLK DCEN Mode

0 X X X Timer off (stopped)

1 0 0 0 16-bit auto-reload, counting up

1 0 0 1 16-bit auto-reload, counting up/down

depending on T2EX pin

1 1 0 X 16-bit capture

X 1 X Baud rate generator

384 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 385 – [360–400/41]
28.11.2003 5:01PM

Table F.8 Details of the T2MOD register bit functions

T2MOD

address 419H
bit addressable

MSB LSB

– – RCLK1 TCLK1 – – T2OE DCEN

7 6 5 4 3 2 1 0

Bit Symbol Function

7, 6, 3, 2 – Not implemented, reserved for future use

5 RCLK1 Receive clock flag

4 TCLK1 Transmit clock flag. RCLK1 and TCLK1 are used to select

timer 2 overflow rate as a clock source for UART 1 instead

of timer 1

1 T2OE Timer 2 output enable bit

0 DCEN Down count enable bit. When set, this allows timer 2 to be

configured as an up/down counter

Table F.9 Details of the T2CON register bit functions

T2CON

address 418H
bit addressable

MSB LSB

TF2 EXF2 RCLK0 TCLK0 EXEN2 TR2 C/T2 CP/RL2

7 6 5 4 3 2 1 0

Bit Symbol Function

7 TF2 Timer 2 overflow flag set by hardware on timer/counter overflow.

Must be cleared by software. TF2 will not be set when RCLK0,

TCLK0, RCLK1, TCLK1 or T2OE ¼ 1

6 EXF2 Timer 2 external flag set when either a capture or reload is caused

by a negative transition on T2EX and EXEN2 ¼ 1. This flag will

cause a timer 2 interrupt when this interrupt is enabled. EXF2 is

cleared by software

5 RCLK0 Receive clock flag

4 TCLK0 Transmit clock flag. RCLK0 and TCLK0 are used to select timer 2

overflow rate as a clock source for UART0 instead of timer 1

3 EXEN2 Timer 2 external enable flag. Allows a capture or reload to occur

as a result of a negative transition on T2EX

2 TR2 Start/stop control for timer 2. A logic 1 starts the timer

Appendix F 385

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 386 – [360–400/41]
28.11.2003 5:01PM

CAPTURE MODE

In the capture mode there are two options which are selected by bit EXEN2 in
T2CON. If EXEN2 ¼ 0, then timer 2 is a 16-bit timer or counter, which upon
overflowing sets bit TF2, the timer 2 overflow bit. This will cause an interrupt when
the timer 2 interrupt is enabled. If EXEN2 ¼ 1, then timer 2 still does the above, but
with the added feature that a 1-to-0 transition at external input T2EX causes the
current value in the timer 2 registers, TL2 and TH2, to be captured into registers
RCAP2L andRCAP2H, respectively. In addition, the transition at T2EXcauses bit
EXF2 in T2CON to be set. This will cause an interrupt in the same fashion as TF2
when the timer 2 interrupt is enabled. The capturemode is illustrated inFigure F.10.

AUTO-RELOAD MODE (UP/DOWN COUNTER)

In the auto-reload mode, the timer registers are loaded with the 16-bit value in
T2CAPH and T2CAPL when the count overflows. T2CAPH and T2CAPL are
initialised by software. If the EXEN2 bit in T2CON is set, the timer registers
will also be reloaded and the EXF2 flag set when a 1-to-0 transition occurs at
input T2EX. The auto-reload mode is shown in Figure F.11.

In this mode, timer 2 can be configured to count up or down. This is done by
setting or clearing the bit DCEN (down counter enable) in the T2MOD SFR
(seeTableF.7).TheT2EXpin thencontrols thecountdirection.WhenT2EXishigh,
the count is in theupdirection;whenT2EX is low, the count is in the downdirection.

Figure F.11 shows timer 2, which will count up automatically, since
DCEN ¼ 0. In this mode there are two options selected by bit EXEN2 in the
T2CON register. If EXEN2 ¼ 0, then timer 2 counts up to FFFFH and sets the
TF2 (overflow flag) bit upon overflow. This causes the timer 2 registers to be
reloadedwith the 16-bit value in T2CAPL andT2CAPH,whose values are preset
by software. If EXEN2 ¼ 1, a 16-bit reload can be triggered either by an overflow
or by a 1-to-0 transition at input T2EX. This transition also sets the EXF2 bit. If
enabled, either TF2 or EXF2 bit can generate the timer 2 interrupt.

In Figure F.12, DCEN ¼ 1; this enables the timer 2 to count up or down. In
this mode, the logic level of T2EX pin controls the direction of count. When a
logic 1 is applied at pin T2EX, the timer 2 will count up. The timer 2 will

Table F.9 Continued

Bit Symbol Function

1 C/T2 Timer 2 timer or counter select:

0 ¼ internal timer

1 ¼ external event counter (falling-edge triggered).

0 CP/RL2 Capture/reload flag. If CP/RL2 and EXEN2 ¼ 1 captures will occur

on negative transitions of T2EX. If CP/RL2 ¼ 0, EXEN2 ¼ 1

auto-reloads occur with either timer 2 overflows or negative

transitions at T2EX. If RCLK or TCLK ¼ 1 the timer is set to

auto-reload on timer 2 overflow, this bit has no effect

386 Appendix F

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
F

.3
D

–
3
8
7

–
[360–400/41]

28.11.2003
5:01P

M

TCLK C/T2 = 0

C/T2 = 1

T2EX pin

T2 pin

Transition
detector

Control

EXEN2

Control

TR2 Capture

TL2
(8 bits)

Timer 2
interrupt

TH2
(8 bits) TF2

EXF2

T2CAPL T2CAPH

Figure F.10 Timer 2 in capture mode (courtesy Philips Semiconductors)

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 388 – [360–400/41]
28.11.2003 5:01PM

overflow at FFFFH and set the TF2 flag, which can then generate an interrupt
if enabled. This timer overflow also causes the 16-bit value in T2CAPL and
T2CAPH to be reloaded into the timer registers TL2 and TH2, respectively.

A logic 0 at pin T2EX causes timer 2 to count down. When counting down,
the timer value is compared to the 16-bit value contained in T2CAPH and
T2CAPL. When the value is equal, the timer register is loaded with FFFF hex.
The underflow also sets the TF2 flag, which can generate an interrupt if
enabled. The external flag EXF2 toggles when timer 2 underflows or overflows.
This EXF2 bit can be used as a 17th bit of resolution, if needed; the EXF2 flag
does not generate an interrupt in this mode. As the baud rate generator, timer
T2 is incremented by TCLK.

BAUD RATE GENERATOR MODE

By setting the TCLKn and/or RCLKn in T2CON or T2MOD, the timer 2 can
be chosen as the baud rate generator for either or both UARTs. The baud rates
for transmit and receive can be simultaneously different.

Programmable clock-out

A 50% duty cycle clock can be programmed to come out on pin P1.6. This pin,
besides being a regular I/O pin, has two alternative functions. It can be
programmed:

1. to input the external clock for timer/counter 2 or
2. to output a 50% duty cycle clock ranging from 3.58Hz to 3.75MHz at a

30MHz operating frequency.

To configure the timer/counter 2 as a clock generator, bit C/T2 (in T2CON)
must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also
must be set to start the timer. The clock-out frequency depends on the oscillator

TCLK C/T2 = 0

C/T2 = 1

T2EX Pin

T2 Pin

Transition
detector

Control

EXEN2

Control

TR2
Reload

TL2
(8 bits)

Timer 2
interrupt

TH2
(8 bits)

TF2

EXF2

T2CAPL T2CAPH

Figure F.11 Timer 2 in auto-reload mode (DCEN ¼ 0) (courtesy Philips
Semiconductors)

388 Appendix F

//IN
T

E
G

R
A

S/E
LS/P

A
G

IN
A

T
IO

N
/E

LSE
V

IE
R

U
K

/M
A

B
/3B

2/FIN
A

LS_03-11-03/A
P

P
_
F

.3
D

–
3
8
9

–
[360–400/41]

28.11.2003
5:01P

M

TCLK

T2 PIN

C/T2 = 0

C/T2 = 1

TR2

Control

TL2 TH2

FFHFFH

T2CAPL T2CAPH

(Up counting reload value) T2EX PIN

Count
direction
1 = up
0 = down

TF2 Interrupt

Toggle

EXF2

Overflow

(Down counting reload value)

Figure F.12 Timer 2 auto-reload mode (DCEN ¼1) (courtesy Philips Semiconductors)

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 390 – [360–400/41]
28.11.2003 5:01PM

frequency and the reload value of timer 2 capture registers (TCAP2H,
TCAP2L) as shown in this equation:

TCLK

2ð65536� TCAP2H; TCAP2LÞ

In the clock-out mode timer 2 roll-overs will not generate an interrupt. This is
similar to when it is used as a baud-rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. Note, however,
that the baud-rate will be 1/8 of the clock-out frequency.

WATCHDOG TIMER

The watchdog timer subsystem protects the system from incorrect code execu-
tion by causing a system reset when the watchdog timer underflows as a result
of a failure of software to feed the timer prior to the timer reaching its terminal
count. It is important to note that the watchdog timer is running after any type
of reset and must be turned off by user software if the application does not use
the watchdog function.

Watchdog function

The watchdog consists of a programmable prescaler and the main timer.
The prescaler derives its clock from the TCLK source that also drives timers
0, 1 and 2. The watchdog timer subsystem consists of a programmable 13-bit
prescaler and an 8 bit main timer. The main timer is clocked (decremented) by a
tap taken from one of the top 8 bits of the prescaler as shown in Figure F.13.

The clock source for the prescaler is the same as TCLK (same as the clock
source for the timers). Thus the main counter can be clocked as often as once
every 32 TCLKs (see Table F.10).

Prescaler

MOV WFEED1, #A5H
MOV WFEED2, #5AH

PRE2 PRE1 PRE0 WDRUN WDTOF WDCON

Internal reset8-bit down
counter

– – –

TCLK

Watchdog feed sequence
WDL

Figure F.13 XAG49 watchdog timer arrangement (courtesy Philips
Semiconductors)

390 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 391 – [360–400/41]
28.11.2003 5:01PM

The watchdog generates an underflow signal (and is auto-loaded from WDL)
when the watchdog is at count 0 and the clock to decrement the watchdog
occurs. The watchdog is 8 bits wide and the auto-load value can range from 0 to
FFH. (The auto-load value of 0 is permissible since the prescaler is cleared
upon auto-load.) This leads to the following user design equations:

tmin ¼ tosc � 4� 32 ðW ¼ 0;N¼ 4Þ
tmax ¼ tosc � 64� 4096� 256 ðW ¼ 255; N¼ 64Þ
tD ¼ tosc �N�P�ðW þ 1Þ

where tosc is the oscillator period, N is the selected prescaler tap value,W is the
main counter auto-load value, P is the prescaler value from Table F.10, tmin is
the minimum watchdog time-out value (when the auto-load value is 0), tmax is
the maximum time-out value (when the auto-load value is FFH), tD is the
design time-out value.

The watchdog timer is not directly loadable by the user. Instead, the value to
be loaded into the main timer is held in an autoload register. In order to cause
the main timer to be loaded with the appropriate value, a special sequence of
software action must take place. This operation is referred to as feeding the
watchdog timer. To feed the watchdog, two instructions must be sequentially
executed successfully. No intervening SFR accesses are allowed, so interrupts
should be disabled before feeding the watchdog. The instructions should move
A5H to the WFEED1 register and then 5AH to the WFEED2 register. If
WFEED1 is correctly loaded and WFEED2 is not correctly loaded, then an
immediate watchdog reset will occur. The program sequence to feed the watch-
dog timer or cause new WDCON settings to take effect is as follows:

clr ea ; disable global interrupts.
mov.b wfeedl,#A5H ; do watchdog feed part 1
mov.b wfeed2,#5AH ; do watchdog feed part 2
setb ea ; re-enable global interrupts

Table F.10 Prescaler select values in WDCON

PRE2 PRE1 PRE0 Divisor

0 0 0 32

0 0 1 64

0 1 0 128

0 1 1 256

1 0 0 512

1 0 1 1024

1 1 0 2048

1 1 1 4096

Appendix F 391

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 392 – [360–400/41]
28.11.2003 5:01PM

This sequence assumes that the XA interrupt system is enabled and there is a
possibility of an interrupt request occurring during the feed sequence. If an
interrupt were allowed to be serviced and the service routine contained any
SFR access, it would trigger a watchdog reset. If it is known that no interrupt
could occur during the feed sequence, the instructions to disable and re-enable
interrupts may be removed.

The software must be written so that a feed operation takes place every
tD seconds from the last feed operation. Some tradeoffs may need to be made.
It is not advisable to include feed operations in minor loops or in subroutines
unless the feed operation is a specific subroutine. To turn the watchdog timer
completely off, the following code sequence should be used:

mov.b wdcon,#0 ; set WD control register to clear WDRUN
mov.b wfeed1,#A5H ; do watchdog feed part 1
mov.b wfeed2,#5AH ; do watchdog feed part 2

This sequence assumes that the watchdog timer is being turned off at the
beginning of initialisation code and that the XA interrupt system has not yet
been enabled. If the watchdog timer is to be turned off at a point when
interrupts may be enabled, instructions to disable and re-enable interrupts
should be added to this sequence.

Watchdog control register (WDCON)

The reset values of the WDCON and WDL registers will be such that the
watchdog timer has a timeout period of 4� 4096� tosc and the watchdog is
running. WDCON can be written by software but the changes only take effect
after executing a valid watchdog feed sequence.

Watchdog detailed operation

When external RESET is applied, the following takes place:

. watchdog run control bit set to ON (1)

. auto-load register WDL set to 00 (min. count)

. watchdog time-out flag cleared

. prescaler is cleared

. prescaler tap set to the highest divide

. auto-load takes place.

When coming out of a hardware reset, the software should load the auto-
load register and then feed the watchdog (cause an auto-load). If the watchdog
is running and happens to underflow at the time the external RESET is applied,
the watchdog time-out flag will be cleared.

392 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 393 – [360–400/41]
28.11.2003 5:01PM

When the watchdog underflows, the following action takes place (see
Figure F.13):

. autoload takes place

. watchdog time-out flag is set

. watchdog run bit unchanged

. autoload (WDL) register unchanged

. prescaler tap unchanged

. all other device action same as external reset.

Note that if the watchdog underflows, the PC will be loaded from the reset
vector as in the case of an internal reset. The watchdog time-out flag can be
examined to determine if the watchdog has caused the reset condition. The
watchdog time-out flag bit can be cleared by software. The watchdog control
register (WDCON) bit definitions are shown in Table F.11.

F.6 UARTS

The XAG49 includes two UART ports that are compatible with the enhanced
UART used on the 8xC51FB. Baud rate selection is somewhat different due to
the clocking scheme used for the XA timers. Some other enhancements have
been made to UART operation. The first is that there are separate interrupt
vectors for eachUART’s transmit and receive functions. TheUART transmitter
has been double buffered, allowing packed transmission of data with no gaps
between bytes and less critical interrupt service routine timing. A break detect
function has been added to the UART. This operates independently of the
UART itself and provides a start-of-break status bit that the program may test.
Finally, an overrun error flag has been added to detect missed characters in the
received data stream. The double-buffered UART transmitter may require some
software changes in code written for the original XAG49 single-bufferedUART.

Each UART baud rate is determined by either a fixed division of the
oscillator (in UART modes 0 and 2) or by the timer 1 or timer 2 overflow rate
(in UART modes 1 and 3). Timer 1 defaults to clock both UART0 and

Table F.11 WDCON register bit definitions

Bit Symbol Function

7 PRE2 Prescaler select 2, reset to 1

6 PRE1 Prescaler select 1, reset to 1

5 PREO Prescaler select 0, reset to 1

4 –

3 –

2 WDRUN Watchdog run control bit, reset to 1

1 WDTOF Timeout flag

0 –

Appendix F 393

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 394 – [360–400/41]
28.11.2003 5:01PM

UART1. Timer 2 can be programmed to clock either UART0 through T2CON
(via bits R0CLK and T0CLK) or UART1 through T2MOD (via bits R1CLK
and T1CLK). In this case, the UART not clocked by T2 could use T1 as the
clock source. The serial port receive and transmit registers are both accessed at
SFR SnBUF. Writing to SnBUF loads the transmit register, and reading
SnBUF accesses a physically separate receive register.

The serial port can operate in four modes:
Mode 0. Serial I/O expansion mode. Serial data enters and exits through

RxDn. TxDn outputs the shift clock. 8 bits are transmitted/received (LSB first).
(The baud rate is fixed at 1/16 the oscillator frequency.)
Mode 1. Standard 8-bit UART mode. Ten bits are transmitted (through

TxDn) or received (through RxDn): a start bit (0), 8 data bits (LSB first) and
a stop bit (1). On receive the stop bit goes into RB8 in SFR SnCON. The baud
rate is variable.
Mode 2. Fixed rate 9-bit UART mode. Eleven bits are transmitted (through

TxD) or received (through RxD): start bit (0), 8 data bits (LSB first), a
programmable 9th data bit and a stop bit (1). On transmit, the 9th data bit
(TB8_n in SnCON) can be assigned the value of 0 or 1. Or, for example, the
parity bit (P, in the PSW) could be moved into TB8_n. On receive, the 9th data
bit goes into RB8_n in SFR SnCON, while the stop bit is ignored. The baud
rate is programmable to 1/32 of the oscillator frequency.
Mode 3. Standard 9-bit UART mode. Eleven bits are transmitted (through

TxDn) or received (through RxDn): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit and a stop bit (1). In fact, mode 3 is the same as
mode 2 in all respects except baud rate. The baud rate in mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses
SnBUF as a destination register. Reception is initiated in mode 0 by the
condition RI_n¼ 0 and REN_n¼ 1. Reception is initiated in the other modes
by the incoming start bit if REN_n¼ 1.

Serial port control register

The serial port control and status register is the SFR SnCON, shown in
Table F.12. This register contains not only the mode selection bits, but also the
9th data bit for transmit and receive (TB8_n and RB8_n) and the serial port
interrupt bits (Tl_n and Rl_n).

TI flag

In order to allow easy use of the double-buffered UART transmitter feature,
the TI_n flag is set by the UART hardware under two conditions. The first
condition is the completion of any byte transmission. This occurs at the end of
the stop bit in modes 1, 2 or 3, or at the end of the eighth data bit in mode 0.
The second condition is when SnBUF is written while the UART transmitter is
idle. In this case, the TI_n flag is set in order to indicate that the second UART
transmitter buffer is still available.

394 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 395 – [360–400/41]
28.11.2003 5:01PM

Typically, UART transmitters generate one interrupt per byte transmitted.
In the case of the XA UART, one additional interrupt is generated as defined
by the stated conditions for setting the TI_n flag. This additional interrupt
does not occur if double buffering is bypassed as explained below. Note that if
a character-oriented approach is used to transmit data through the UART,
there could be a second interrupt for each character transmitted, depending

Table F.12 SnCON register bit functions

SnCON

address: S0CON 420H
S1CON 424H

bit addressable

MSB LSB

SM0 SM1 SM2 REN TB8 RB8 TI RI

7 6 5 4 3 2 1 0

Bit Symbol Function

7, 6 SM0, SM1 Specify the serial port mode as follows:

SM0 SM1 Mode Description Baud rate

0 0 0 shift register fosc/16

0 1 1 8-bit UART variable

1 0 2 9-bit UART fosc/32

1 1 3 9-bit UART variable

5 SM2 Enables the multiprocessor communication feature in

modes 2 and 3. In mode 2 or 3, if SM2 is set to 1, then

RI will not be activated if the received ninth data bit (RB8)

is 0. In mode 1, if SM2¼ 1 then RI will not be activated

if a valid stop bit was not received. In mode 0, SM2

should be 0

4 REN Set by software to enable reception. Clear by software to

disable reception

3 TB8 The ninth data bit that will be transmitted in modes 2 and 3.

Set or cleared by software as desired. The TB8 bit is not

double buffered

2 RB8 This is the ninth data bit received in modes 2 and 3. In mode 1,

if SM2¼ 0, RB8 is the stop bit that was received. In mode 0,

RB8 is not used

1 TI Transmit interrupt flag. Set when another byte may be written

to the UART transmitter. Must be cleared by software

0 RI Receiver interrupt flag. Set by hardware at the end of the eighth

bit time in mode 0, or at the end of the stop bit time in the

other modes (except, see SM2). Must be cleared by software

Appendix F 395

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 396 – [360–400/41]
28.11.2003 5:01PM

on the timing of the writes to SBUF. For this reason, it is generally better to
bypass double buffering when the UART transmitter is used in character-
oriented mode. This is also true if the UART is polled rather than interrupt
driven, and when transmission is character oriented rather than message or
string oriented. The interrupt occurs at the end of the last byte transmitted
when the UART becomes idle. Among other things, this allows a program to
determine when a message has been transmitted completely. The interrupt
service routine should handle this additional interrupt. The recommended
method of using the double buffering in the application program is to have
the interrupt service routine handle a single byte for each interrupt occur-
rence. In this manner the program essentially does not require any special
considerations for double buffering. Unless higher priority interrupts cause
delays in the servicing of the UART transmitter interrupt, the double buffer-
ing will result in transmitted bytes being tightly packed with no intervening
gaps.

9-bit mode

Note that the ninth data bit (TB8) is not double buffered and care must be
taken to ensure that the TB8 bit contains the intended data at the point where it
is transmitted. Double buffering of the UART transmitter may be bypassed as
a simple means of synchronising TB8 to the rest of the data stream.

Bypassing double buffering

The UART transmitter may be used as if it is single buffered. The recom-
mended UART transmitter interrupt service routine (ISR) technique to
bypass double buffering first clears the Tl_n flag upon entry into the ISR, as
in standard practice. This clears the interrupt that activated the ISR. Sec-
ondly, the Tl_n flag is cleared immediately following each write to SnBUF.
This clears the interrupt flag that would otherwise direct the program to write
to the second transmitter buffer. If there is any possibility that a higher
priority interrupt might become active between the write to SnBUF and the
clearing of the Tl_n flag, the interrupt system may have to be temporarily
disabled during that sequence by clearing, then setting the EA bit in the IEL
register.

Clocking scheme/baud rate generation

The XA UARTS clock rates are determined by either a fixed division (modes 0
and 2) of the oscillator clock or by the timer 1 or timer 2 overflow rate (modes 1
and 3). The clock for the UARTs in XA runs at 16x the baud rate. If the timers
are used as the source for baud clock, then since maximum speed of timers/
baud clock is fosc/4, the maximum baud rate is timer overflow divided by 16 i.e.
fosc/64. In mode 0, it is fixed at fosc/16. In mode 2, however, the fixed rate
is fosc/32.

396 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 397 – [360–400/41]
28.11.2003 5:01PM

The prescaler for timers 0, 1 and 2 is controlled by bits PT1 and PT0 in the
SCR register (see Table F.3).
Baud rate for UART mode 0:

Baud rate ¼ fosc
16

Baud rate calculation for UART modes 1 and 3:

Baud rate ¼ Timer rate

16

Timer rate ¼ fosc

NðTimer range� Timer reload valueÞ

where N ¼ the TCLK prescaler value: 4, 16 or 64 and timer range is equal to
256 for timer 1 in mode 2 and 65536 for timer 1 in mode 0 and timer 2 in count
up mode.
The timer reload value may be calculated as follows:

Timer reload value=Timer range� fosc

Baud rate�N � 16

� �

Notes:

1. The maximum baud rate for a UART in mode 1 or 3 is fosc/64.
2. The lowest possible baud rate (for a given oscillator frequency andN value)

may be found by using a timer reload value of 0.
3. The timer reload value may never be larger than the timer range.
4. If a timer reload value calculation gives a negative or fractional result, the baud

rate requested is not possible at the given oscillator frequency and N value.

Baud rate for UART mode 2:

Baud rate ¼ fosc
32

Using timer 2 to generate baud rates

Timer T2 is a 16-bit up/down counter in XA. As a baud rate generator, timer 2
is selected as a clock source for either/both UART0 and UART1 transmitters
and/or receivers by setting TCLKn and/or RCLKn in T2CON and T2MOD.
As the baud rate generator, T2 is incremented as fosc/N where N ¼ 4, 16 or 64
depending on TCLK as programmed in the SCR bits PT1 and PT0. So, if T2 is
the source of one UART, the other UART could be clocked by either T1
overflow or fixed clock, and the UARTs could run independently with different
baud rates. Details of the T2MOD and T2CON registers can be found in
Tables F.8 and F.9 respectively.

Appendix F 397

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 398 – [360–400/41]
28.11.2003 5:01PM

F.7 Interrupt scheme

There are separate interrupt vectors for each UART’S transmit and receive
functions and these are shown in Table F.13.

ERROR HANDLING, STATUS FLAGS AND BREAK DETECT

The UARTs in XA have error flags as shown in the serial port extended status
register SnSTAT which is described in Table F.14.

MULTIPROCESSOR COMMUNICATIONS AND AUTOMATIC
ADDRESS RECOGNITION

This is discussed fully in Appendix D and will not be repeated here.

INTERRUPTS

The XAG49 supports 38 vectored interrupt sources. These include 9 maskable
event interrupts, 7 exception interrupts, 16 trap interrupts and 7 software inter-
rupts. The maskable interrupts each have 8 priority levels and may be globally
and/or individually enabled or disabled. The XA defines four types of interrupts:

1. Exception interrupts – These are system level errors and other very import-
ant occurrences, which include stack overflow, divide-by-0 and reset.

2. Event interrupts – These are peripheral interrupts from devices such as
UARTs, timers and external interrupt inputs.

3. Software interrupts – These are equivalent of hardware interrupt, but are
requested only under software control.

4. Trap interrupts – These are TRAP instructions, generally used to call
system services in a multi-tasking system.

Exception interrupts, software interrupts and trap interrupts are generally
standard for XA derivatives while event interrupts tend to be different on
different XA derivatives.

Table F.13 Vector locations for UARTs in XA

Vector address Interrupt source Arbitration

A0H–A3H UART 0 receiver 7

A4H–A7H UART 0 transmitter 8

A8H–ABH UART 1 receiver 9

ACH–AFH UART 1 transmitter 10

Note: The transmit and receive vectors could contain the same ISR address to

work like an 80C51 interrupt scheme.

398 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 399 – [360–400/41]
28.11.2003 5:01PM

The XAG49 supports a total of 9 maskable event interrupt sources (for the
various XA peripherals), 7 software interrupts, 5 exception interrupts (plus reset)
and 16 traps. The maskable event interrupts share a global interrupt disable bit
(the EA bit in the IEL register) and each also has a separate individual IE bit
(in the IEL or IEH registers). Only three bits of the IPA register values are used
on the XAG49. Each event interrupt can be set to occur at one of 8 priority levels
via bits in the interrupt priority (IP) registers, IPA0 through IPA5. The value 0 in
the IPA field gives the interrupt priority 0, in effect disabling the interrupt.
A value of 1 gives the interrupt a priority of 9; the value 2 gives priority 10, etc.
The result is the same as if all four bits were used and the top bit set for all
values except 0. Details of the priority scheme may be found in the XA user
guide.

The complete interrupt vector list for the XAG49, including all 4 interrupt
types, is shown in Table F.15. The table includes the address of the vector for

Table F.14 SnSTAT register bit functions

SnSTAT.

address S0STAT 421H
S1STAT 425H

not bit addressable.

MSB LSB

– – – – FEn BRn OEn STINTn

7 6 5 4 3 2 1 0

Bit Symbol Function

7, 6, 5, 4 – Not implemented, reserved for future use

3 FEn Framing error flag is set when the receiver fails to see a valid

STOP bit at the end of the frame. Cleared by software

2 BRn Break detect flag is set if a character is received with all bits,

including STOP bit, being logic 0. Thus it gives a ‘start of

break detect’ on bit 8 for mode 1 and bit 9 for modes 2

and 3. The break detect feature operates independently of

the UARTs and provides the START of break detect status

bit that a user program may poll. Cleared by software

1 OEn Overrun error flag is set if a new character is received in the

receiver buffer while it is still full (before the software has

read the previous character from the buffer) i.e. when bit 8

of a new byte is received while RI in SnCON is still set.

Cleared by software

0 STINTn This flag must be set to enable any of the above status flags

to generate a receive interrupt (Rin). The only way it can be

cleared is by a software write to this register

Appendix F 399

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_F.3D – 400 – [360–400/41]
28.11.2003 5:01PM

each interrupt, the related priority register bits (if any), and the arbitration
ranking for that interrupt source. The arbitration ranking determines the order
in which interrupts are processed if more than one interrupt of the same priority
occurs simultaneously.

Table F.15 XA interrupt vectors
Exception/traps precedence

Description Vector address Arbitration ranking

Reset (h/w, watchdog, s/w) 0000–0003 0 (high)

Breakpoint (h/w trap 1) 0004–0007 1

Trace (h/w trap 2) 0008–000B 1

Stack Overflow (h/w trap 3) 000C–000F 1

Divide by 0 (h/w trap 4) 0010–0013 1

User RETI (h/w trap 5) 0014–0017 1

TRAP 0-15 (software) 0040–007F 1

Event interrupts

Description Flag

bit

Vector

address

Enable bit Interrupt

priority

Arbitration

ranking

External interrupt 0 IE0 0080–0083 EX0 IPA0.2 – 0(PX0) 2

Timer 0 interrupt TF0 0084–0087 ET0 IPA0.6 – 4(PT0) 3

External interrupt 1 IE1 0088–008B EX1 IPA1.2 – 0(PX1) 4

Timer 1 interrupt TF1 008C–008F ET1 IPA1.6 – 4(PT1) 5

Timer 2 interrupt TF2

(EXF2)

0090–0093 ET2 IPA2.2 – 0(PT2) 6

Serial port 0 Rx RI.0 00A0 – 00A3 ERI0 IPA4.2 – 0(PRI0) 7

Serial port 0 Tx Tl.0 00A4 – 00A7 ETI0 IPA4.6 – 4(PTI0) 8

Serial port 1 Rx RI.1 00A8 – 00AB ERI1 IPA5,2 – 0(PRI1) 9

Serial port 1 Tx TI.1 00AC– 00AF ETI1 IPA5.6 – 4(PTI1) 10

Software interrupts

Description Flag bit Vector address Enable bit Interrupt priority

Software interrupt 1 SWR1 0100–0103 SWE1 (fixed at 1)

Software interrupt 2 SWR2 0104–0107 SWE2 (fixed at 2)

Software interrupt 3 SWR3 0108–010B SWE3 (fixed at 3)

Software interrupt 4 SWR4 010C–010F SWE4 (fixed at 4)

Software interrupt 5 SWR5 0110–0113 SWE5 (fixed at 5)

Software interrupt 6 SWR6 0114–0117 SWE6 (fixed at 6)

Software interrupt 7 SWR7 0118–011B SWE7 (fixed at 7)

400 Appendix F

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_G.3D – 401 – [401–406/6]
28.11.2003 5:02PM

Appendix G
P89C66x and XAG49

Microcontroller PCB Board Layouts

Details are given in the introduction to Chapter 2 regarding application notes,
produced by Philips Semiconductor engineers, which describe the in-circuit
programming of the P89C66x and XAG49 devices; the data included suggested
schematic circuits.

The authors adapted the schematic designs to produce PCBs suitable for
the P89C664 and XAG49 devices. Each design was based on the 44 pin
PLCC package. The schematic circuit diagrams are shown in Chapter 2. Com-
parison of the schematic circuit diagram for each device shows many simila-
rities but some differences. For example the reset of the P89C664 is active
high, same as all the standard 8051 devices, whereas the XA reset is active
low; also the XAG49 does not have an I2C peripheral and so has no need
for pull-up resistors on pins 6 and 7 of port 1.

This appendix includes a full-size PCB board layout for both the
P89C66x and the XAG49 devices that could be used to produce boards
similar to those used by the authors. The design utilises single-sided
copper faced PCB material that is readily available from electronic
retailers.

G.1 P89C66x board

The artwork for the connection pads and wiring is shown in Figure G.1
while Figure G.2 shows the arrangement for the layout of the compon-
ents required to complete the circuit. The numbering of the components
in Figure G.2 matches the numbering in the schematic circuit diagram
of Chapter 2. The latter diagram also indicates the values required for
the passive components.

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_G.3D – 402 – [401–406/6]
28.11.2003 5:02PM

G.2 XAG49 board

The artwork for the connection pads and wiring is shown in Figure G.3 while
Figure G.4 shows the arrangement for the layout of the components required to
complete the circuit. The numbering of the components in G.2 matches the
numbering in the schematic circuit diagram of Chapter 2. The latter diagram
also indicates the values required for the passive components.

Figure G.1 Full-size single-sided artwork for the P89C66x microcontroller board

402 Appendix G

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_G.3D – 403 – [401–406/6]
28.11.2003 5:02PM

+

+

+

+

2

1 IC
1

X
T

1

C2

C1

C3

S
W

1

C
01

C
02

C
04

C
03

S
W

3

P

C
8

R
2 01

R1

IC2

SK1

TP2

TP3

C4

C5 C6

C7

R
3

Figure G.2 Component layout for the P89C66x microcontroller board

Appendix G 403

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_G.3D – 404 – [401–406/6]
28.11.2003 5:02PM

Figure G.3 Full-size single-sided artwork for the XAG49 microcontroller board

404 Appendix G

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/APP_G.3D – 405 – [401–406/6]
28.11.2003 5:02PM

+

+

+

+

2

1
IC

1

X
T

1

C2

C1

C3
S

W
1

C
01

C
02

C
04

C
03

S
W

3

P

C
8

R1

IC2

SK1

TP2

TP3

C4

C5 C6

C7

Figure G.4 Component layout for the XAG49 microcontroller board

Appendix G 405

This page intentionally left blank

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/INDEX.3D – 407 – [407–408/2]
28.11.2003 5:02PM

Index

ADC 2, 115

Analog comparators 125, 355

Analog functions 115

Analog to Digital converter

(see ADC)

Animation icon 56, 154

ASCII 2, 95

Assembler files 52

Assembly language 38, 66

Auto-reload mode 384

Automatic address recognition 308

Automatic reload 74, 79

Baud rate 79, 96, 277, 306

Baud rate generator mode 388

Binary 8

Bits 7

Breakpoints 48, 56, 145, 180

Build window 44

Burst memory addressing 38

Bytes 7

C language 38, 66

C programs 49

Capture mode 79, 386

Clock 10, 22, 66, 357

Command window 73

CPU 3

Crystal frequency 55

Current sink 16

Current source 16

DAC 2, 123

Debugging/simulation 38, 45, 54

Digital to Analog converter (see DAC)

Evaluation software (see under Simulation):

Keil 38, 39

Raisonance 38, 50

Extended Architecture (see XA)

External interrupt 82

Flash Magic 34

Flow diagram 39

Full duplex 94

Half duplex 94

Hardware peripherals 56

Hexadecimal (hex) 8

I2C 10, 55, 67, 103, 310, 353

Instruction operations:

arithmetic 11

branch 11, 19

data transfer 11, 17

logical 11, 13

Instruction set (8051) 226

Instruction set (XA and 8051 differences) 232

In-system programming (ISP) 285

Interrupt enable 77

Interrupt priority 84, 167

Interrupt vector address 77

Interrupts 156, 277, 351, 398

Latch window 56

LED 15

Light Emitting Diode (see LED)

Machine code 19

Machine cycle 118

Memory 249, 287, 339, 366

Memory type:

EEPROM 2, 10, 107, 136

EPROM 2, 10

PROM 5, 10

RAM 2, 10

ROM 2, 10

Microcontroller Board:

P89C66x 28

XAG49 28

Microcontroller types 2

8051: 246

Baud rate 277

//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/INDEX.3D – 408 – [407–408/2]
28.11.2003 5:02PM

Hardware 246

I/O port configurations 258

Interrupts 277

Memory organisation 251

Pin-out diagram 248

Serial interface 272

SFRs 250

Timer/counter 261

P87LPC769: 114

Analog comparators 125

Analog functions 115

P89C66x: 4, 66, 285

I2C 103, 310

Interrupt priority structure 84, 322

Interrupts 77

Memory organisation 289

Pin-out diagram 286

Serial interface 306

SFRs 294

Timer 2 79, 263

Timers 0 and 1 67, 294

UART 94, 306

Watchdog timer 92, 304

P89LPC932: 128, 327

Analog comparators 355

Capture/compare unit (CCU) 344

EEPROM memory 136

I/O ports 341

Interrupts 351

Memory organisation 339

Pin functions 129, 328

Serial interface 347

Serial peripheral interface (SPI) 129

SFRs 331

Timer/counters 343

Watchdog timer 148, 390

XAG49: 37, 52, 142, 360

8051 compatibility 155

Interrupts 156, 398

Memory organisation 364

Pin-out diagram 361

Registers 146

SFRs 373

Timer/counters 380

UART 152, 393

Multiprocessor communications 307

Multiprocessor systems 95

Multitasking 79

Negative-edge transitions 82

Nibbles 7

Packages:

dual-in-line (dil) 248

Linear quad flat pack (LQFP) 3,

286, 361

Plastic leaded chip carrier (PLCC) 3, 36, 168,

328, 361

PCA 55, 67, 86, 92, 171, 298

PCB (printed circuit board) 28, 401

Programmable Counter Array (see PCA)

Projects:

Function generator 192

Single wire multiprocessor system 185

Speed control of a small DC motor 169

Speed control of a stepper motor 175

Pulse Width Modulation (see PWM)

PWM 88, 169

Reset 38

Rollover 71

RS232 94

Serial Clock (SCL) line 103

Serial Data (SDA) line 103

Serial Peripheral Interface (see SPI)

SFRs 49, 87, 250, 294, 331, 373

Simulation:

Keil 72, 76, 78, 81, 83, 85, 93, 97, 99, 102, 109,

119, 195

Raisonance 91, 146, 151, 154, 158, 161, 163,

166, 173, 180, 189

Single stepping 48, 123

Special Function Registers (see SFRs)

SPI 10, 129, 350

Syntax error 44

System mode 147

Time delay 24, 47

Timer interrupt 77

Timers (see under Microcontroller types)

Trace 59

Trace mode 147

Translate 44

UART 5, 94, 185, 393

User mode 147

Watchdog timer 92, 148, 390

Watches window 55, 190

WinISP 31

XA 3

408 Index

