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Preface

This is an introductory textbook of nuclear physics for upper undergraduate stu-
dents. The book is based on lectures given at British, American and Indian Univer-
sities over several years.

The idea of writing a text book on this subject was born some forty years ago.
It is attempted to survey the major developments in nuclear physics during the past
100 years. In Rutherford’s time and early 1950’s, only a few Elementary particles
were known and the existence of the neutrino was taken for granted. The develop-
ment of the subject is so fascinating that we were inclined to present the historical
facts in chronological order.

The prerequisites for the use of this book are the elements of quantum me-
chanics comprising Schrodinger’s equation and applications, Born’s approximation,
the golden rule, differential equations and Vector Calculus. Basic concepts are ex-
plained with line diagrams wherever required. An attempt is made to strike a balance
between theory and experiment. Theoretical predictions are compared with latest
observations to show agreement or discrepancies with the theory.

The subject matter is developed in each chapter with the necessary mathemat-
ical details. Feynman diagrams are used extensively to explain the fundamental
interactions. The subjects of various chapters are so much intimately connected
that the logical sequential presentation of various topics became a vexing prob-
lem. For example, from the point of view of introducing quarks, the logical
sequence would be strong, electromagnetic, weak and electroweak interactions,
but from the point of view of introducing Feynman’s diagrams, the desirable
sequence would be electromagnetic, weak, electroweak and strong interactions,
which is why one finds some variance in sequences for particle physics in vari-
ous textbooks. The only remedy is to make cross references to the chapters which
were previously studied and to those in which the relevant material is antici-
pated.

The size of the book did not allow to also include applied nuclear physics and
cosmic rays. At the end of each chapter, a set of questions is given. A large number
of worked examples is additionally presented. A comparable number of unworked
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problems with answers helps the student to test the understanding. The examples and
problems are not necessarily of plug-in type but are given to explain the underlying
physics. Useful appendices are provided at the end of the book.

Anwar KamalMurphy, TX, USA

Note: These two volumes are the last books by my father Dr. Ahmad Kamal, the
work he had conceived as his dream project and indeed his scientific masterpiece.
Unfortunately, he passed away before he could see his manuscript in print. While
we have tried our best to bring the publishing process to as satisfactory conclusion
as possible, we regret any errors you may discover, in particular, that some of the
references could not be as completely specifically cited as would otherwise be the
case. We trust that these errors however do not compromise the quality or standard
of the content of the text.

Suraiya Kamal
Daughter of Dr. Ahmad Kamal
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natas Akmanavičius, Ms. Adelheid Duhm and Ms. Elke Sauer for their constant
encouragement, patience, cooperation, and for bringing the book to its current form.

This project would not be complete without the constant support and encourage-
ment of Mrs. Maryam Kamal, wife of Dr. Ahmad Kamal. Her determination kept us
all moving to get these books done. My sincere thanks is due to the family, friends
and well-wishers of the author who helped and prayed for the completion of these
books.

Suraiya Kamal
Daughter of Dr. Ahmad Kamal

ix



Contents

1 Passage of Charged Particles Through Matter . . . . . . . . . . . . 1
1.1 Various Types of Processes . . . . . . . . . . . . . . . . . . . . 1
1.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Laboratory (Lab) System (LS) and Centre of Mass
System (CM) . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.2 Total Linear Momentum in the CM System Is Zero . . . 2
1.2.3 Relation Between Velocities in the LS and CMS . . . . 3
1.2.4 Relation Between the Angles in LS and CMS . . . . . . 4
1.2.5 Recoil Angle . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.6 Limits on the Scattering Angle θ . . . . . . . . . . . . . 6
1.2.7 Limits on the Recoil Angle ϕ . . . . . . . . . . . . . . . 7
1.2.8 Scattering in Three Dimensions . . . . . . . . . . . . . 8
1.2.9 Scattering Cross-Section . . . . . . . . . . . . . . . . . 9
1.2.10 Relation Between Differential Scattering Cross-Sections 10
1.2.11 Kinematics of Elastic Collisions . . . . . . . . . . . . . 11
1.2.12 To Derive an Expression for the Recoil Velocity v2

as a Function of ϕ . . . . . . . . . . . . . . . . . . . . . 12
1.2.13 Available Energy in the Lab System and CM System . . 12

1.3 Rutherford Scattering . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Derivation of Scattering Formula . . . . . . . . . . . . . 20
1.3.2 Darwin’s Formula . . . . . . . . . . . . . . . . . . . . . 27
1.3.3 Mott’s Formula . . . . . . . . . . . . . . . . . . . . . . 28
1.3.4 Cross-Section for Scattering in the Angular Interval θ ′

and θ ′′ . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.5 Probability of Scattering . . . . . . . . . . . . . . . . . 28
1.3.6 Rutherford Scattering in the LS and CM System . . . . 29
1.3.7 Validity of Classical Description of Scattering . . . . . . 31
1.3.8 Coulomb Scattering with a Shielded Potential Under

Born’s Approximation . . . . . . . . . . . . . . . . . . 32
1.3.9 Discussion of Rutherford’s Formula . . . . . . . . . . . 33

xi



xii Contents

1.3.10 The Scattering of α Particles and the Nuclear Theory
of Atom . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4 Multiple Scattering . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.1 Mean Scattering Angle . . . . . . . . . . . . . . . . . . 40
1.4.2 Choice of b(max) and b(min) . . . . . . . . . . . . . . 43
1.4.3 Mean Square Projected Angle and the Mean Square

Displacement . . . . . . . . . . . . . . . . . . . . . . . 44
1.5 Theory of Ionization . . . . . . . . . . . . . . . . . . . . . . . . 46

1.5.1 Bohr’s Formula . . . . . . . . . . . . . . . . . . . . . . 46
1.5.2 Range-Energy-Relation . . . . . . . . . . . . . . . . . . 50
1.5.3 Energy Loss to Electrons and Nuclei . . . . . . . . . . . 58
1.5.4 Energy Loss of Heavy Fragments . . . . . . . . . . . . 58
1.5.5 Energy Loss of Electrons . . . . . . . . . . . . . . . . . 60

1.6 Delta Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.6.1 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . 60
1.6.2 Angular Distribution . . . . . . . . . . . . . . . . . . . 61
1.6.3 Delta Ray Density . . . . . . . . . . . . . . . . . . . . 62

1.7 Straggling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.7.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.7.2 Energy Straggling . . . . . . . . . . . . . . . . . . . . . 64
1.7.3 Range Straggling . . . . . . . . . . . . . . . . . . . . . 65

1.8 Cerenkov Radiation . . . . . . . . . . . . . . . . . . . . . . . . 68
1.9 Identification of Charged Particles . . . . . . . . . . . . . . . . . 72

1.9.1 (a) Momentum and Velocity . . . . . . . . . . . . . . . 72
1.9.2 (b) Momentum Times Velocity (pβ) and Velocity . . . . 72
1.9.3 Energy and Velocity . . . . . . . . . . . . . . . . . . . 72
1.9.4 Simultaneous Measurement of dE/dx and E . . . . . . 72
1.9.5 Energy and Emission Angle . . . . . . . . . . . . . . . 73

1.10 Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.11 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2 Passage of Radiation Through Matter . . . . . . . . . . . . . . . . 83
2.1 Kinds of Interaction . . . . . . . . . . . . . . . . . . . . . . . . 83
2.2 The Compton Effect . . . . . . . . . . . . . . . . . . . . . . . . 84

2.2.1 Shift in Wavelength . . . . . . . . . . . . . . . . . . . . 84
2.2.2 Shift in Frequency . . . . . . . . . . . . . . . . . . . . 85
2.2.3 Angular Relation . . . . . . . . . . . . . . . . . . . . . 86
2.2.4 Differential Cross-Section . . . . . . . . . . . . . . . . 86
2.2.5 Spectrum of Scattered Radiation . . . . . . . . . . . . . 87
2.2.6 Compton Attenuation Coefficients . . . . . . . . . . . . 88

2.3 Photoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . 90
2.3.1 Measurement of Photon Energy . . . . . . . . . . . . . 94

2.4 Pair-Production . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Contents xiii

2.4.1 Angular Distribution of Pair Electrons . . . . . . . . . . 96
2.4.2 Energy Distribution of Pair Electrons . . . . . . . . . . 96
2.4.3 Total Pair-Production Cross-Section per Nucleus . . . . 96

2.5 Nuclear Resonance Fluorescence . . . . . . . . . . . . . . . . . 99
2.5.1 Restoring Mechanisms . . . . . . . . . . . . . . . . . . 101
2.5.2 Mechanical Motion (Ultra Centrifuge) . . . . . . . . . . 101
2.5.3 Thermal Motion . . . . . . . . . . . . . . . . . . . . . 102
2.5.4 Preceding β or γ Emission . . . . . . . . . . . . . . . . 102

2.6 Mossbauer Effect . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.6.1 Elementary Theory . . . . . . . . . . . . . . . . . . . . 105
2.6.2 Importance of Mossbauer Effect . . . . . . . . . . . . . 107
2.6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . 108

2.7 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3 Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.1 Natural Radioactivity . . . . . . . . . . . . . . . . . . . . . . . 125

3.1.1 The Radioactive Decay Law . . . . . . . . . . . . . . . 125
3.1.2 Mean Life and Half-Life . . . . . . . . . . . . . . . . . 126
3.1.3 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.1.4 Units of Radioactivity . . . . . . . . . . . . . . . . . . 127
3.1.5 Unit of Exposure and Unit of Dose . . . . . . . . . . . . 127
3.1.6 Determination of Half-Life Time . . . . . . . . . . . . . 132
3.1.7 Law of Successive Disintegration . . . . . . . . . . . . 133
3.1.8 Age of the Earth . . . . . . . . . . . . . . . . . . . . . 138
3.1.9 Radiocarbon Dating . . . . . . . . . . . . . . . . . . . 141

3.2 α Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.2.1 Potential Barrier Problem . . . . . . . . . . . . . . . . . 146
3.2.2 Barrier of an Arbitrary Shape . . . . . . . . . . . . . . . 149
3.2.3 Determination of Nuclear Radius . . . . . . . . . . . . 151
3.2.4 Geiger Nuttall Law . . . . . . . . . . . . . . . . . . . . 151
3.2.5 Success of Gamow’s Theory . . . . . . . . . . . . . . . 152
3.2.6 Fine Structure of α Spectrum . . . . . . . . . . . . . . . 152
3.2.7 Angular Momentum and Parity in α-Decay . . . . . . . 153

3.3 β-Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.3.1 Fermi’s Theory . . . . . . . . . . . . . . . . . . . . . . 158
3.3.2 Selection Rules . . . . . . . . . . . . . . . . . . . . . . 166

3.4 Range-Energy Relation . . . . . . . . . . . . . . . . . . . . . . 170
3.4.1 Double β Decay . . . . . . . . . . . . . . . . . . . . . 170

3.5 Electron Capture . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.5.1 Decay Constant . . . . . . . . . . . . . . . . . . . . . . 178
3.5.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . 181

3.6 Gamma Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
3.6.1 Multipole Order of Radiation . . . . . . . . . . . . . . . 181



xiv Contents

3.6.2 Selection Rules for γ -Emission (or Absorption) . . . . . 182
3.6.3 γ -Ray Emission Probability . . . . . . . . . . . . . . . 182
3.6.4 Internal Conversion . . . . . . . . . . . . . . . . . . . . 183
3.6.5 Isomers . . . . . . . . . . . . . . . . . . . . . . . . . . 186
3.6.6 Angular Correlation of Successive Radiation . . . . . . 186

3.7 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
3.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

4 General Properties of Nuclei . . . . . . . . . . . . . . . . . . . . . . 197
4.1 Nuclear Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

4.1.1 Scattering of α Particles . . . . . . . . . . . . . . . . . 197
4.1.2 Coulomb Energy Term in Weisacker’s Mass Formula . . 199
4.1.3 β Transition Energies in Mirror Nuclei . . . . . . . . . 199
4.1.4 High Energy Electron Scattering . . . . . . . . . . . . . 200
4.1.5 Mesic Atoms . . . . . . . . . . . . . . . . . . . . . . . 215
4.1.6 Half Lifetimes of α Emitters . . . . . . . . . . . . . . . 221
4.1.7 High Energy Neutron Scattering . . . . . . . . . . . . . 222

4.2 Constituents of the Atomic Nucleus . . . . . . . . . . . . . . . . 222
4.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.4 Atomic Mass Unit . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.5 Nuclear Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.6 Mass Defect, Packing Fraction and Binding Energy . . . . . . . 224
4.7 Mass and Energy Equivalence . . . . . . . . . . . . . . . . . . . 226
4.8 Nuclear Instability . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.9 Stability Against β Decay . . . . . . . . . . . . . . . . . . . . . 229
4.10 Stability Against Neutron and α Decay and Fission . . . . . . . . 230
4.11 Charge Independence of Nuclear Forces . . . . . . . . . . . . . 230

4.11.1 Iso-spin . . . . . . . . . . . . . . . . . . . . . . . . . . 231
4.12 Ground and Excited States of Nuclei . . . . . . . . . . . . . . . 234

4.12.1 Nuclear Spin . . . . . . . . . . . . . . . . . . . . . . . 235
4.12.2 Nuclear Parity . . . . . . . . . . . . . . . . . . . . . . . 236

4.13 Determination of Nuclear Spin . . . . . . . . . . . . . . . . . . 237
4.13.1 Nuclear Spin from Statistics . . . . . . . . . . . . . . . 237
4.13.2 Nuclear Spin from Hyperfine Structure . . . . . . . . . 239
4.13.3 Nuclear Spin from Zeeman Effect . . . . . . . . . . . . 242

4.14 Nuclear Magnetic Dipole Moment . . . . . . . . . . . . . . . . 242
4.14.1 Magnetic Moment of the Neutron . . . . . . . . . . . . 247

4.15 Electric Quadrupole Moment . . . . . . . . . . . . . . . . . . . 248
4.16 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4.17 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



Contents xv

5 The Nuclear Two-Body Problem . . . . . . . . . . . . . . . . . . . 263
5.1 Deuteron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

5.1.1 Binding Energy of Deuteron . . . . . . . . . . . . . . . 263
5.1.2 The Ground State of Deuteron . . . . . . . . . . . . . . 264
5.1.3 The Probability that the Neutron and Proton Are Found

Outside the Range of Nuclear Forces . . . . . . . . . . . 268
5.1.4 Excited States of Deuteron . . . . . . . . . . . . . . . . 270
5.1.5 Root Mean Square Radius . . . . . . . . . . . . . . . . 271
5.1.6 The Inclusion of Hard Core Potential in the Square Well 272
5.1.7 Use of the Exponential Wave Function in the Solution

of a Square Well Potential Problem . . . . . . . . . . . 275
5.1.8 Magnetic Dipole Moment of Deuteron . . . . . . . . . . 277
5.1.9 Tensor Force . . . . . . . . . . . . . . . . . . . . . . . 279
5.1.10 Constants of Motion for the Two-Body System . . . . . 282
5.1.11 Quadrupole Moment . . . . . . . . . . . . . . . . . . . 286

5.2 Nucleon-Nucleon Scattering: Phase Shift Analysis . . . . . . . . 291
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 291
5.2.2 Neutron-Proton Scattering . . . . . . . . . . . . . . . . 292
5.2.3 Phase-Shift Analysis . . . . . . . . . . . . . . . . . . . 293
5.2.4 Physical Interpretation of Partial Waves and Phase-Shifts 298
5.2.5 Integral Expression for Phase Shift . . . . . . . . . . . . 300
5.2.6 Angular Distribution of Scattered Neutrons at Low

Energies . . . . . . . . . . . . . . . . . . . . . . . . . . 303
5.2.7 Optical Theorem . . . . . . . . . . . . . . . . . . . . . 305
5.2.8 Total Cross Section . . . . . . . . . . . . . . . . . . . . 306
5.2.9 Comparison of Experimental Cross-Sections

with the Theory and Evidence for Spin Dependence
of Nuclear Forces . . . . . . . . . . . . . . . . . . . . . 308

5.2.10 Finite Range Correction . . . . . . . . . . . . . . . . . 310
5.2.11 Evidence for Neutron Spin (1/2) . . . . . . . . . . . . . 311
5.2.12 Scattering Length . . . . . . . . . . . . . . . . . . . . . 312

5.3 Effective Range Theory . . . . . . . . . . . . . . . . . . . . . . 313
5.3.1 Triplet Scattering . . . . . . . . . . . . . . . . . . . . . 317
5.3.2 Singlet Scattering . . . . . . . . . . . . . . . . . . . . . 318
5.3.3 Nature of the Singlet and Triplet States . . . . . . . . . 321
5.3.4 Cross-Sections for Protons Bound in Molecules . . . . . 322

5.4 Proton-Proton Scattering; Low Energy . . . . . . . . . . . . . . 323
5.5 High Energy Nucleon-Nucleon Scattering . . . . . . . . . . . . 330

5.5.1 Polarization . . . . . . . . . . . . . . . . . . . . . . . . 331
5.5.2 Mechanism of Polarization . . . . . . . . . . . . . . . . 334

5.6 Properties of the Nucleon-Nucleon Force . . . . . . . . . . . . . 336
5.6.1 Exchange Forces . . . . . . . . . . . . . . . . . . . . . 336
5.6.2 Effect of Exchange Forces . . . . . . . . . . . . . . . . 337
5.6.3 Exchange Forces and Saturation . . . . . . . . . . . . . 339

5.7 Yukawa’s Theory . . . . . . . . . . . . . . . . . . . . . . . . . 341



xvi Contents

5.8 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
5.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

6 Nuclear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
6.1 Need for a Model . . . . . . . . . . . . . . . . . . . . . . . . . 353
6.2 Type of Nuclear Models . . . . . . . . . . . . . . . . . . . . . . 353
6.3 Fermi Gas Model . . . . . . . . . . . . . . . . . . . . . . . . . 354

6.3.1 Fermi Energy . . . . . . . . . . . . . . . . . . . . . . . 356
6.3.2 Asymmetric Term (δ) in the Mass Formula . . . . . . . 358
6.3.3 Odd-Even Term in the Mass Formula . . . . . . . . . . 359
6.3.4 Threshold for Particle Production in Complex Nuclei . . 359
6.3.5 Application to Neutron Stars . . . . . . . . . . . . . . . 360
6.3.6 Energy Levels of Individual Nucleons . . . . . . . . . . 361

6.4 Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
6.4.1 Magic Numbers . . . . . . . . . . . . . . . . . . . . . . 364
6.4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 365
6.4.3 LS Coupling . . . . . . . . . . . . . . . . . . . . . . . 368
6.4.4 Predictions of the Shell Model . . . . . . . . . . . . . . 371
6.4.5 Magnetic Moments . . . . . . . . . . . . . . . . . . . . 373
6.4.6 Schmidt Lines . . . . . . . . . . . . . . . . . . . . . . 375
6.4.7 Parity of Nuclei . . . . . . . . . . . . . . . . . . . . . . 377
6.4.8 Nuclear Isomerism . . . . . . . . . . . . . . . . . . . . 377
6.4.9 Criticism of the Shell Model . . . . . . . . . . . . . . . 379

6.5 The Liquid Drop Model . . . . . . . . . . . . . . . . . . . . . . 380
6.5.1 Semi-Empirical Mass Formula . . . . . . . . . . . . . . 381
6.5.2 Nuclear Instability Against β Emission . . . . . . . . . 383
6.5.3 Instability Against Neutron Decay . . . . . . . . . . . . 385
6.5.4 Instability Against Alpha Decay . . . . . . . . . . . . . 385
6.5.5 Fission and Fusion . . . . . . . . . . . . . . . . . . . . 385
6.5.6 Defects of Liquid Drop Model . . . . . . . . . . . . . . 395
6.5.7 Criticism of Liquid Drop Model . . . . . . . . . . . . . 397

6.6 The Collective Model or Unified Model . . . . . . . . . . . . . . 398
6.6.1 Rotational States . . . . . . . . . . . . . . . . . . . . . 398
6.6.2 Vibrational States . . . . . . . . . . . . . . . . . . . . . 399
6.6.3 Electric Quadrupole Moments . . . . . . . . . . . . . . 399
6.6.4 Shortcomings of the Shell Model . . . . . . . . . . . . . 400
6.6.5 General Theory of Deformed Nuclei . . . . . . . . . . . 401
6.6.6 Rotational Model . . . . . . . . . . . . . . . . . . . . . 403
6.6.7 Vibrational Model . . . . . . . . . . . . . . . . . . . . 408
6.6.8 Collective Oscillations . . . . . . . . . . . . . . . . . . 409
6.6.9 Giant Resonances . . . . . . . . . . . . . . . . . . . . . 412
6.6.10 Nilsson Model . . . . . . . . . . . . . . . . . . . . . . 413

6.7 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
6.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423



Contents xvii

7 Nuclear Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
7.1 Types of Reactions . . . . . . . . . . . . . . . . . . . . . . . . . 425
7.2 Energy and Mass Balance . . . . . . . . . . . . . . . . . . . . . 427
7.3 Conservation Laws for Nuclear Reactions . . . . . . . . . . . . . 428

7.3.1 Quantities that Are not Conserved . . . . . . . . . . . . 429
7.4 Cross-Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
7.5 Exoergic and Endoergic Reactions . . . . . . . . . . . . . . . . 431

7.5.1 Exoergic Reactions (Q-Value is Positive) . . . . . . . . 433
7.5.2 Endoergic Reactions (Q-Value is Negative) . . . . . . . 434

7.6 Behaviour of Cross-Sections near Threshold . . . . . . . . . . . 436
7.7 Inverse Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 438
7.8 Qualitative Features of Nuclear Reactions . . . . . . . . . . . . . 440
7.9 Reaction Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 441
7.10 Nuclear Reactions via Compound Nucleus Formation . . . . . . 442

7.10.1 Resonances in the Formation of the Compound Nucleus 444
7.10.2 Width of Resonance Levels . . . . . . . . . . . . . . . . 445
7.10.3 Experimental Verification of the Compound Nucleus

Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 446
7.10.4 Energy Level Density . . . . . . . . . . . . . . . . . . . 446

7.11 Partial Wave Analysis of Nuclear Reactions . . . . . . . . . . . 448
7.12 Slow Neutron Resonances and the Breit-Wigner Theory . . . . . 452

7.12.1 Resonance Absorption and the 1/ν Law . . . . . . . . . 456
7.12.2 Elastic Scattering . . . . . . . . . . . . . . . . . . . . . 459

7.13 Optical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
7.14 Direct Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 465

7.14.1 Inelastic Scattering . . . . . . . . . . . . . . . . . . . . 466
7.14.2 Charge-Exchange Reactions . . . . . . . . . . . . . . . 467
7.14.3 Nucleon Transfer Reactions . . . . . . . . . . . . . . . 468
7.14.4 Break-up Reactions . . . . . . . . . . . . . . . . . . . . 472
7.14.5 Knock-out Reactions . . . . . . . . . . . . . . . . . . . 473

7.15 Comparison of Compound Nucleus Reactions and Direct Reactions 474
7.16 Pre-equilibrium Reactions . . . . . . . . . . . . . . . . . . . . . 474
7.17 Heavy-Ion Reactions . . . . . . . . . . . . . . . . . . . . . . . . 477

7.17.1 Characteristics of Heavy Ion Reactions . . . . . . . . . 477
7.17.2 Types of Interactions . . . . . . . . . . . . . . . . . . . 478
7.17.3 Distant Collisions . . . . . . . . . . . . . . . . . . . . . 479
7.17.4 Deep Inelastic Collisions . . . . . . . . . . . . . . . . . 482

7.18 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
7.18.1 Quark-Gluon Plasma . . . . . . . . . . . . . . . . . . . 488

7.19 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
7.20 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501



xviii Contents

8 Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
8.1 Nuclear Fission Reactor . . . . . . . . . . . . . . . . . . . . . . 503
8.2 The Thermal Reactor . . . . . . . . . . . . . . . . . . . . . . . 504

8.2.1 Moderation of Neutrons . . . . . . . . . . . . . . . . . 504
8.2.2 The Average Energy Decrement . . . . . . . . . . . . . 507
8.2.3 Forward Scattering . . . . . . . . . . . . . . . . . . . . 509

8.3 Thermal Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . 510
8.4 Scattering Mean Free Path (M.F.P.) . . . . . . . . . . . . . . . . 513

8.4.1 Transport Mean Free Path . . . . . . . . . . . . . . . . 514
8.4.2 The Mean Square Distance of Scattering . . . . . . . . . 515

8.5 Slowing-Down Density . . . . . . . . . . . . . . . . . . . . . . 515
8.5.1 Slowing-Down Time . . . . . . . . . . . . . . . . . . . 517

8.6 Resonance Escape Probability . . . . . . . . . . . . . . . . . . . 518
8.6.1 The Effective Resonance Integral . . . . . . . . . . . . 520

8.7 Diffusion of Neutrons . . . . . . . . . . . . . . . . . . . . . . . 521
8.7.1 Leakage of Neutrons . . . . . . . . . . . . . . . . . . . 523
8.7.2 The Diffusion Equation for Thermal Neutrons . . . . . . 524
8.7.3 Extrapolation Distance . . . . . . . . . . . . . . . . . . 525
8.7.4 Diffusion Length . . . . . . . . . . . . . . . . . . . . . 529
8.7.5 Relationship Between 〈r2〉 and L2 for a Point Source . . 529
8.7.6 Experimental Measurement of Diffusion Length . . . . 531
8.7.7 The Albedo . . . . . . . . . . . . . . . . . . . . . . . . 531
8.7.8 Determination of Diffusion Length

from the ‘Exponential’ Pile . . . . . . . . . . . . . . . . 532
8.8 Elementary Theory of the Chain-Reacting Pile . . . . . . . . . . 534

8.8.1 Life History of Neutrons and Four-Factor Formula . . . 535
8.8.2 Fast-Fission Factor (ε) . . . . . . . . . . . . . . . . . . 538
8.8.3 Resonance Absorption . . . . . . . . . . . . . . . . . . 539

8.9 Neutron Leakage and Critical Size . . . . . . . . . . . . . . . . 542
8.10 The Critical Dimension of a Reactor . . . . . . . . . . . . . . . 543

8.10.1 One Group Theory . . . . . . . . . . . . . . . . . . . . 543
8.11 Reactor with a Reflector . . . . . . . . . . . . . . . . . . . . . . 548
8.12 Multigroup Theory . . . . . . . . . . . . . . . . . . . . . . . . . 549

8.12.1 Experimental Measurement of Critical Size . . . . . . . 550
8.13 Fast Neutron Diffusion and the Fermi Age Equation . . . . . . . 551

8.13.1 Correction for Neutron Capture . . . . . . . . . . . . . 554
8.13.2 Application of Diffusion Equation to a Thermal Reactor 555
8.13.3 Critical Equation and Reactor Buckling . . . . . . . . . 557
8.13.4 The Non-leakage Factors . . . . . . . . . . . . . . . . . 558
8.13.5 Criticality of Large Thermal Reactors . . . . . . . . . . 560
8.13.6 The Diffusion Length for a Fuel-Moderator Mixture . . 560
8.13.7 k∞ for a Heterogeneous Reactor . . . . . . . . . . . . . 561
8.13.8 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

8.14 The Chain Reaction Requirements . . . . . . . . . . . . . . . . 566
8.15 The Reactor Period . . . . . . . . . . . . . . . . . . . . . . . . 569



Contents xix

8.15.1 Thermal Lifetime and Generation Time . . . . . . . . . 569
8.16 Effect of Delayed Neutrons . . . . . . . . . . . . . . . . . . . . 571
8.17 Classification of Reactors . . . . . . . . . . . . . . . . . . . . . 572

8.17.1 Homogeneous Reactor . . . . . . . . . . . . . . . . . . 572
8.17.2 Heterogeneous Reactors . . . . . . . . . . . . . . . . . 573
8.17.3 Fast Reactors . . . . . . . . . . . . . . . . . . . . . . . 575
8.17.4 Breeder Reactors . . . . . . . . . . . . . . . . . . . . . 576
8.17.5 Thermal Breeders . . . . . . . . . . . . . . . . . . . . . 577
8.17.6 Fast Breeders . . . . . . . . . . . . . . . . . . . . . . . 578
8.17.7 Doubling Time . . . . . . . . . . . . . . . . . . . . . . 578

8.18 Other Types of Reactors . . . . . . . . . . . . . . . . . . . . . . 578
8.18.1 Power Reactors . . . . . . . . . . . . . . . . . . . . . . 578
8.18.2 The Pressurized Water Reactor . . . . . . . . . . . . . . 579
8.18.3 The Boiling Water Reactor . . . . . . . . . . . . . . . . 579
8.18.4 The Gas-Cooled Natural-Uranium-Graphite Reactor . . 579
8.18.5 The Homogeneous Reactor . . . . . . . . . . . . . . . . 579
8.18.6 Research Reactors . . . . . . . . . . . . . . . . . . . . 580
8.18.7 The Water Boiler . . . . . . . . . . . . . . . . . . . . . 580
8.18.8 The Swimming Pool Reactor . . . . . . . . . . . . . . . 581
8.18.9 The Tank-Type Reactor . . . . . . . . . . . . . . . . . . 581
8.18.10 The Graphite-Moderated Natural Uranium Reactor . . . 581

8.19 Variation of Reactivity . . . . . . . . . . . . . . . . . . . . . . . 581
8.19.1 Fuel Depletion and Fuel Production . . . . . . . . . . . 581
8.19.2 Effect of Fission Products Accumulation . . . . . . . . 582
8.19.3 Temperature Effects . . . . . . . . . . . . . . . . . . . 582
8.19.4 Temperature Coefficient and Reactor Stability . . . . . . 583

8.20 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
8.20.1 Fusion Reactions . . . . . . . . . . . . . . . . . . . . . 584
8.20.2 Three Important Fusion Reactions . . . . . . . . . . . . 586
8.20.3 Reaction Rate . . . . . . . . . . . . . . . . . . . . . . . 587
8.20.4 Power Density . . . . . . . . . . . . . . . . . . . . . . 588
8.20.5 Thermonuclear Reactions in the Laboratory . . . . . . . 590
8.20.6 The D–T Reaction . . . . . . . . . . . . . . . . . . . . 591
8.20.7 Energy Losses . . . . . . . . . . . . . . . . . . . . . . 591
8.20.8 Lawson Criterion . . . . . . . . . . . . . . . . . . . . . 592
8.20.9 Ignition Temperature . . . . . . . . . . . . . . . . . . . 593
8.20.10 Controlled Fusion Reactions . . . . . . . . . . . . . . . 593
8.20.11 Confinement . . . . . . . . . . . . . . . . . . . . . . . 594
8.20.12 Containment of a Plasma . . . . . . . . . . . . . . . . . 594
8.20.13 Plasma Diagnostics . . . . . . . . . . . . . . . . . . . . 597

8.21 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
8.22 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609



Chapter 1
Passage of Charged Particles Through Matter

1.1 Various Types of Processes

When charged particles pass through matter, the following processes may take
place:

(1) Inelastic collisions with the bound electrons of the atoms of the medium, in
which case the particle energy is spent in the excitation or ionization of atoms
and molecules. The energy losses of this kind of collisions are called ioniza-
tion losses (collision losses) to distinguish them from radiation losses that are
concerned with the generation of bremsstrahlung.

(2) Inelastic collisions with nuclei, leading to the production of bremsstrahlung
quanta, to the excitation of nuclear levels, or to the nuclear reactions.

(3) Elastic collisions with nuclei, in which part of the kinetic energy of the inci-
dent particle is transferred to the recoil nuclei. However, the total kinetic en-
ergy of the colliding particles remains unchanged. A particular type of elastic
scattering is the Rutherford scattering which results from the interaction of a
charged particle with the Coulomb field of the target nucleus in single encoun-
ters. When thick materials are used, cumulative single scatterings give rise to
the phenomenon of multiple scattering.

(4) Elastic collisions with bound electrons.
(5) Cerenkov effect, i.e. emission of light by charged particles passing through mat-

ter with a velocity exceeding the velocity of light waves in the given medium.

1.2 Kinematics

1.2.1 Laboratory (Lab) System (LS) and Centre of Mass
System (CM)

In order to describe the motion of particles in the collision problem one must choose
a definite frame of reference (co-ordinate system). Two frames of reference are im-
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2 1 Passage of Charged Particles Through Matter

Fig. 1.1 The position vectors
m1 and m2 and their centre of
mass is shown

portant, one is the lab system (LS) and the other one is centre of mass system (CMS).
In the lab system, the observer who is at rest in the lab views the collision process.
In the CM system the centre of mass is at rest initially and always. Observations
are usually made in the lab system but theoretical calculations are made in the CM
system. It is of great interest to find out how various quantities like velocity, angle
of scattering, etc. are related in these two systems. It is easier to perform calcula-
tions in the CM system rather than in the lab system. For, the great merit of CM
system is that the total linear momentum of particles is always zero so that in the
two-body process particles move directly towards each other before the collision
and they recede in the opposite direction after the collision.

The collision process in the CM system may be visualized as the one in which
a particle of reduced mass μ = m1m2/(m1 + m2) moving with initial velocity u1
collides with a fixed scattering centre. Here, u1 is the initial velocity of m1 moving
towards the target particle of mass m2 at rest.

1.2.2 Total Linear Momentum in the CM System Is Zero

In Fig. 1.1, the position of the centre of mass of two particles m1 and m2 is shown
by C. The position of masses m1 and m2 are indicated by the position vectors r1
and r2 and that of the centre of mass by R. By definition

R = m1r1 +m2r2

M
or

MR = m1r1 +m2r2

Differentiating with respect to time

MṘ =m1ṙ +m2ṙ or

Mvc =m1u1 +m2u2

where u1 and u2 are the initial velocities of particles 1 and 2, respectively and vc is
the CM velocity. Since m2 is initially at rest, u2 = 0, and the centre of mass which
is located atM =m1 +m2, must move in the lab system towards m2 with velocity

vc = m1u1

m1 +m2
(1.1)
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Fig. 1.2 Collision in the LS and CMS are shown

In the lab system, let m1 move from left to right with initial velocity u1, m2 being
initially at rest as in Fig. 1.2. As m2 is initially at rest, its initial velocity in the
CMS must be just equal to vc in magnitude but oppositely directed. Denoting the
velocities in the CMS by asterisk (∗) we get

u∗
2 = vc = m1u1

m1 +m2
(1.2)

u∗
2 = −vc (1.3)

The initial velocity of m1 in the CMS is reduced by an amount equal to vc

u∗
1 = u1 − vc
u∗

1 = u1 − m1u1

m1 +m2
= m2u1

m1 +m2

where we have used (1.2). Total initial linear momentum ofm1 andm2 in the CMS is

P ∗ = P ∗
1 + P ∗

2 =m1u
∗
1 +m1u

∗
2 = m1m2u

∗
1

m1 +m2
− m2m1u

∗
1

m1 +m2
= 0 (1.4)

where we have used (1.2), (1.3) and (1.4). Thus total linear momentum of particles
in the CMS is zero before the collision and by conservation of momentum, this must
be so after the collision.

1.2.3 Relation Between Velocities in the LS and CMS

Lab system CM system

m1 : u1, u∗
1 = m2u1

m1 +m2
(1.5)

m2 : u2 = 0, u∗
2 = m1u1

m1 +m2
(1.6)

For elastic collisions, both momentum and kinetic energy must be conserved. This
implies that the respective velocities of the particles before and after the collisions
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in the CMS must be equal

u∗
1 = v∗

1; u∗
2 = v∗

2 (1.7)

v∗
1 = m2u1

m1 +m2
(1.8)

Observe that in both the LS and CMS, the relative velocity of the two particles is
equal to u1. We know

u(rel)= u∗
1 + u∗

2 = m2u1

m1 +m2
+ m1u1

m1 +m2
= u1

Using (1.2) and (1.8),
vc

v∗
1

= m1

m2
= γ. (1.9)

It is seen that if m1 <m2, then vc < v∗
1 and if m1 >m2, vc > v∗

1 .

1.2.4 Relation Between the Angles in LS and CMS

Figure 1.3 shows the scattering and recoil angles in the LS and CMS.
The lab velocity v1 of m1 after the collision is obtained by combining vectorially

its velocity v∗
1 in the CMS and the CM velocity vc (Fig. 1.4)

v1 = v∗
1 + vc

Let m1 be scattered at an angle θ as seen in the LS, its corresponding angle in the
CMS being θ∗. In the velocity triangle (Fig. 1.4) resolving the velocities along the
x-axis and y-axis, we get

v1 sin θ = v∗
1 sin θ∗ (1.10)

v1 cos θ = v∗
1 cos θ∗ + vc (1.11)

Dividing (1.10) by (1.11)

tan θ = v∗
1 sin θ∗

v∗
1 cos θ∗ + vc = sin θ∗

cos θ∗ + vc/v∗
1

= sin θ∗

cos θ∗ +m1/m2
(1.12)

where we have used (1.9).

Special cases

(i) m1 �m2; θ � θ∗. Here vc → 0 and the CMS is reduced to the LS.
Example: α-gold nucleus scattering.

(ii) m1 
m2; θ � 0◦.
Example: nucleus-electron scattering.

(iii) m1 =m2; tan θ = sin θ∗
cos θ∗+1 = tan 1

2θ
∗ so that θ = 1

2θ
∗.

Example: proton-proton scattering.
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Fig. 1.3 Relation between the angles in LS and CMS

Fig. 1.4 Velocity triangle for
the scattered particle

1.2.5 Recoil Angle

Let m2 recoil with velocity v2 at an angle φ with the incident direction in the LS.
Let its velocity be v∗

2 at angle φ∗ in the CMS. From the velocity triangle in Fig. 1.5,
we get

v2 sinφ = v∗
2 sinφ∗ (1.13)

v2 cosφ = v∗
2 cosφ∗ + vc (1.14)

Dividing (1.13) by (1.14)

tanφ = v∗
2 sinφ∗

v∗
2 cosφ∗ + vc

but by (1.1), (1.6) and (1.7), v∗
2 = vc

∴ tanφ = sinφ∗

cosφ∗ + 1
= tan

φ∗

2
or

φ = φ∗/2 (regardless of the ratio m1/m2) (1.15)
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Fig. 1.5 Velocity triangle for
the recoil particle

1.2.6 Limits on the Scattering Angle θ

Case (i) m2 >m1, or γ < 1; i.e. v∗
1 > vc.

In Fig. 1.6, the circle is drawn with O as the centre and radius OP = v∗
1 . A is

a point within the circle such that AO = vc, and the line AOB represents the in-
cident direction. As before, the lab velocity of m1 is v1 which is obtained by com-
pounding v∗

1 and vc vectorially. The lab angle θ = angle PAO and the CM angle
θ∗ = angle POB . As the point P moves counterclockwise on the circumference,
θ∗ increases and so does θ . When P approaches P ′, θ∗ = θ = π . Thus, θ increases
monotonically from 0 to π , and in this case there is no restriction on the scatter-
ing angle in the LS. In other words, m1 can be scattered in completely backward
direction.

Case (ii) m2 =m1, or γ = 1; i.e. v∗
1 = vc.

Here A lies on the circumference of the circle (Fig. 1.7). As θ∗ increases, θ also
increases. But when P approaches A, PA becomes tangential at A and so θ → π

2 .
θ varies from 0 to π . Thus, in this case m1can be scattered up to a maximum an-
gle of π/2 but not beyond. In other words, backward scattering in the LS is not
permissible.

Case (iii) m2 <m1, or γ > 1, i.e. v∗
1 < vc.

Here A lies outside the circle (Fig. 1.8). There are two positions P and P l for
which the same scattering angle θ is obtained for two different values of θ∗. As P
moves back on the circumference, θ increases. The maximum angle θm is reached
when AP becomes tangent to the circle (Fig. 1.9). In that case

sin θm = OP

AO
= v∗

1

vc
= m2

m1
or

θm = sin−1(m2/m1)

Thus, there is a limitation on the scattering angle when m2 < m1. θ first increases
from 0 to a maximum value sin−1(1/γ ) which is less than π/2, as θ∗ increases from
0 to cos−1(−1/γ ). θ then decreases to 0 as θ∗ further increases to π . At a given
angle θ between 0 and sin−1(1/γ ), there will be two groups of particles associated
with different velocities corresponding to the two values of θ∗.
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Fig. 1.6 Limits on the
scattering angle for m2 >m1,
θ max = π

Fig. 1.7 Limits on the
scattering angle θ for
m1 =m2, θ max = π/2

Fig. 1.8 Limits on the
scattering angle θ . For
m2 <m1,
θ(max)= sin−1(m2

m1
)

Fig. 1.9 θmax is reached
when AP is a tangent to the
circle

1.2.7 Limits on the Recoil Angle φ

Since v∗
2 = vc (always), φ = 1

2φ
∗ by (1.15). Since the maximum angle of φ∗ is π ,

the maximum angle φm is 1
2π . In other words, the target particle cannot recoil in the

backward hemisphere.
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Fig. 1.10 Azimuth angle β is
measured with respect to the
positive axis in the xy plane
⊥ to the direction of
incidence

Fig. 1.11 Element of solid
angle dΩ = ds/r2

1.2.8 Scattering in Three Dimensions

Since scattering is described under central forces, a particle which is incident on a
target particle and initially moves in a certain plane would be necessarily confined
to this plane after the scattering because of the conservation of angular momentum.
Thus, a single scattering event is completely described in two dimensions. However,
in practice one is concerned with a flux of particles incident say along the z-axis on
a target material. Since various particles proceed in different planes, the scattering
on the whole will be in three dimensions. In order to fix the orientation of the plane
of scattering, we need to introduce the azimuth angle β which is measured with
respect to the positive x-axis in the xy plane, Fig. 1.10. We must also consider the
element of solid angle into which the particles are scattered. This is illustrated in
Fig. 1.11.

Let dA denote an element of surface area and connect all points on the boundary
of dA to O so as to form a cone. Let ds be the area of that portion of a sphere
with O as the centre and radius r which is cut out by this cone. The solid angle
subtended by dA at O is defined as dΩ = ds/r2 and is numerically equal to the
area cut out by a sphere with centreO and unit radius. From Fig. 1.12, it is seen that
ds = r2 sin θdθdβ so that dΩ = sin θdθdβ = 2π sin θdθ , where we have integrated
over dβ . When the scattering is independent of the azimuth angle then the area
subtended at O is due to the entire circular strip, ds = 2πr2 sin θdθ as in Fig. 1.13,
so that the element of solid angle dΩ = 2π sin θdθ . Observe that the maximum
solid angle is 4π since it is given by the entire surface area of a sphere (4πr2)
divided by r2.
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Fig. 1.12 Elements of solid
angle for a general case

Fig. 1.13 Element of solid
angle for an azimuthal
symmetry

1.2.9 Scattering Cross-Section

In order to describe the angular distribution of particles scattered by target particles
which are initially stationary, the concept of cross-section is introduced. Let a uni-
form parallel flux of N0 particles be incident per unit area normal to the direction
per unit time on a group of n scattering centres. Let N particles be scattered per unit
time into a small solid angle dΩ centred towards a direction which has polar angle
θ and azimuth angle β with respect to the incident direction as polar axis. N will
be proportional to N0, n and dΩ provided the flux is small enough to ensure that
the incident particles do not interfere with one another, that there is no appreciable
decrease in the number of scattering centres on account of their being knocked out
due to collisions and that the incident particles are far enough apart so that each
collision is made only by one of them.

The number of incident particles that emerge per unit time in dΩ can be written
as:

N = nN0σ(θ,β)dΩ (1.16)

where the proportionality factor σ(θ,β) is called the differential scattering cross-
section. The quantity σ(θ,β) is a measure of the probability of scattering in a given
direction (θ,β), per unit solid angle from the given nucleus.
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The integral of σ(θ,β) over the sphere is called the total scattering cross-section

σ =
∫
σ(θ,β)dΩ (1.17)

σ has the dimension of area. The unit of σ is a Barn (b). 1 b = 10−24 cm2. The unit
of σ(θ,β) is Barn/Steradian, where Steradian (sr) is the unit of solid angle. σ(θ,β)
is also written as dσ(θ,β)/dΩ .

Compared to the scattering in two dimensions the only additional parameter
which has been introduced to describe scattering in three dimensions is known as
the azimuth angle β .

1.2.10 Relation Between Differential Scattering Cross-Sections

The relation between the differential cross-section in the laboratory and the centre-
of-mass co-ordinate systems can be obtained from their definition which implies that
the number of particles scattered into the element of solid angle dΩ about θ , β is the
same as are scattered into dΩ∗ about θ∗, β∗. In polar co-ordinates dΩ = sin θdθdβ
and dΩ∗ = sin∗ dθ∗dβ∗

σ(θ,β) sin θdθdβ = σ (θ∗, β∗) sin θ∗dθ∗dβ∗

but

β = β∗

∴ σ(θ) = σ (θ∗) sin∗ dθ∗

sin θdθ
(1.18)

Differentiating (1.12)

sec2 θdθ = |1 + γ cos θ∗|dθ∗

(cos θ∗ + γ )2 (1.19)

Using (1.12) and the identity, sec2 θ = 1 + tan2 θ (1.19) is easily reduced to the
form:

dθ∗

dθ
= [1 + 2γ cos θ∗ + γ 2]

|1 + γ cos θ∗| (1.20)

Also

tan θ = sin θ

cos θ
= sin θ∗

cos θ∗ + γ (1.12)

whence

sin θ∗

sin θ
= cos θ∗ + γ

cos θ
(1.21)
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Also

1

cos θ
= sec θ =

√
1 + tan2 θ (1.22)

Using (1.12) in (1.22) and re-arranging them we get

cos θ∗ + γ
cos θ

=
√

1 + 2γ cos θ∗ + γ 2 = sin θ∗

sin θ
(1.23)

Using (1.20) and (1.23) in (1.18)

σ(θ)= (1 + γ 2 + 2γ cos θ∗)3/2σ(θ∗)
|1 + γ cos θ∗| (1.24)

It must be pointed out that the total cross-section is the same for both lab and CM
systems, since the occurrence of total number of collisions is independent of the
mode of description of the process.

1.2.11 Kinematics of Elastic Collisions

We have to obtain an expression for velocity v1 as a function of scattering angle θ .
From the velocity triangle (Fig. 1.14)

v∗2
1 = v2

c − 2v1vc cos θ + v2
1 (1.25)

Substituting for vc and v∗
1 from (1.1) and (1.8), (1.25) becomes

v2
1 − 2m1u1 cos θv1

m1 +m2
+ u2

1
(m1 −m2)

m1 +m2
= 0

This is a quadratic equation in v1 whose solutions are found to be

v1 = m1u1

m1 +m2

[
cos θ ±

√
m2

2

m2
1

− sin2 θ

]
(1.26)

For the special case, m1 =m2, (1.26) simplifies to:

v1 = u1 cos θ

so that the ratio of kinetic energy T1 and T0 of the scattered and incident particle
becomes

T1

T0
= v2

1

u2
1

= cos2 θ

with the restriction, θ ≤ 90◦, as pointed out earlier.
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Fig. 1.14 Velocity triangle
for the scattered particle

Fig. 1.15 Velocity triangle
for recoil particle

1.2.12 To Derive an Expression for the Recoil Velocity v2
as a Function of φ

From the velocity triangle (Fig. 1.15)

v∗2
2 = v2

c + v2
2 − 2vcv2 cosφ

Since

v∗
2 = vc
v2 = 2vc cosφ = 2m1u1

m1 +m2
cosφ (1.27)

where we have used (1.1).
The ratio of kinetic energy of the recoil particle and original kinetic energy of the

incident particle is:

T2

T0
= m2v

2
2

m1u
2
1

= 4m1m2

(m1 +m2)2
cos2 φ (1.28)

For the special case m1 =m2

T2

T0
= cos2 φ (1.29)

1.2.13 Available Energy in the Lab System and CM System

Assuming that the target particle is at rest before the collision, total kinetic energy
in the lab system is

T = T0, with T0 = 1

2
m1u

2
1 (1.30)
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In the CM system, m1 has kinetic energy

T ∗
1 = 1

2
m1
(
u∗

1

)2 = 1

2
m1

[
m2u1

m1 +m2

]2

where we have used (1.4).
In the CM system, m2 has kinetic energy:

T ∗
2 = 1

2
m2
(
u∗

2

)2 = 1

2
m2

[
m1u1

m1 +m2

]2

where we have used (1.2).
Total kinetic energy available in the CM system is:

T ∗ = T ∗
1 + T ∗

2 = 1

2

m1m2

m1 +m2
u2

1 = 1

2
μu2

1 (1.31)

where μ is the reduced mass.
Formula (1.31) shows that the two-body problem is reduced to a one-body prob-

lem by imagining that a particle of mass μ=m1m2/(m1 +m2) is directed towards
a scattering centre, with the velocity u1. Using (1.30) in (1.31)

T ∗ = m2T0

m1 +m2

where T ∗ < T0.
Thus less energy of motion is available in the CM system. It can easily be shown

that the difference in energy in the lab and CM systems is associated with the motion
of CM system

�T = T0 − T ∗ = 1

2
m1u

2
1 − 1

2

m1m2

m1 +m2
u2

1 = 1

2

m2
1u

2
1

(m1 +m2)
= 1

2
(m1 +m2)v

2
c

(1.32)
where we have used (1.1).

Formula (1.32) shows that the difference of energy goes into the motion of CM
of mass (m1 +m2) with velocity vc. We conclude that in the CM system energy that
is available is always less than that in the lab system, for some energy must go into
the motion of CM system.

For the special case m1 =m2

T ∗ = 1

4
m1u

2
1 = 1

2
T0

This fact has a bearing on production thresholds, i.e. minimum energy that is to
be provided in order to produce particles. Consider, for example, the case of pion
production in proton-proton collisions. The rest mass of pion is only 140 MeV/c2.
However, this much energy must be available in the CM system. This means that in
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the lab system, the incident proton must have double this energy viz, 280 MeV in
order to produce a pion. Relativistic calculations actually give a value of 290 MeV.

These considerations are also important in the invention of a new class of high
energy accelerators in recent years, in which colliding beams of particles are used;
i.e. one beam travels in one direction and is intercepted by another beam of similar
or dissimilar particles of the same energy moving in the opposite direction. In this
case, the CM system is realized in the laboratory itself and lot of energy is made
available.

Example 1.1 If a particle of mass m collides elastically with one of massM at rest,
and if the former is scattered at an angle θ and the latter recoils at an angle φ with
respect to the line of motion of the incident particle, then show that

tan θ = sin 2φ
m
M

− cos 2φ

Hence, show that

m

M
= sin(2φ + θ)

sin θ

Solution

tan θ = sin θ∗

cos θ∗ +m/M but θ∗ = π − φ∗ = π − 2φ

∴ sin θ∗ = sin(π − 2φ)= sin 2φ

cos θ∗ = cos(π − 2φ)= − cos 2φ

∴ tan θ = sin θ

cos θ
= sin 2φ

m/M − cos 2φ

Re-arranging the above we get

m

M
sin θ = sin θ cos 2φ + cos θ sin 2φ = sin(θ + 2φ)

m/M = sin(2φ + θ)
sin θ

Example 1.2 A particle makes an elastic collision with another particle of identical
mass, initially at rest. Prove that after scattering, the lab angle between the outgoing
particles is 90°.

Solution

First Method
We use the lab system. Let the particle of massm, momentum P and kinetic energy
T move along the x-axis. After collision the particles have momenta P1 and P2 at
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Fig. 1.16 Elastic collision in
LS for m1 =m2

angles θ and φ as in Fig. 1.16. Conservation of momentum along the direction of
incidence (x-axis) gives

P = P1 cos θ + P2 cosφ (1)

Conservation of momentum along the perpendicular direction (y-axis) yields

P2 sinφ − P1 sin θ = 0 or

0 = P1 sin θ − P2 sinφ (2)

Squaring and adding (1) and (2) and simplifying we get

P 2 = P 2
1 + P 2

2 + 2P1P2 cos(θ + φ) (3)

Energy conservation gives:

P 2

2m
= P 2

1

2m
+ P 2

2

2m
or (4)

P 2 = P 2
1 + P 2

2 (5)

Using (5) in (3):

2P1P2 cos(θ + φ)= 0

Since P1 �= 0; P2 �= 0; cos(θ + φ)= 0 or θ + φ = 90◦.
Second Method (Vector Method)

Momentum of conservation demands that (Fig. 1.17)

P 1 + P 2 = P

Taking the scalar product

P · P = (P 1 + P 2) · (P 1 + P 2)

P · P = P 1 · P 1 + P 2 · P 2 + P 1 · P 2 + P 2 · P 1

P 2 = P 2
1 + P 2

2 + 2P 1 · P 2 (6)
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Fig. 1.17 Momentum
triangle for the elastic
collision

since the scalar product of a vector by itself is the square of the magnitude of the
vectors and the order of scalar product is immaterial.
In view of energy conservation, i.e. with the aid of (5), we find

2P1P2 = 0 or 2P1P2 cosα = 0

where α is the angle between the vectors P1 and P2

∴ α = 90◦

Third Method
Because of the conservation of momentum, P1, P2, and P form a closed triangle.
Their magnitudes are indicated in Fig. 1.17. Because of energy conservation we
further have the relation:

P 2
1 + P 2

2 = P 2

i.e. the triangle must be a right angle triangle. Hence, α = 90◦.
Fourth Method

We use the following formula for transformation of angles between LS and the
CMS. Set m

M
= 1 in (1.12)

tan θ = sin θ∗

1 + cos θ∗ = tan
θ∗

2

∴ θ = θ∗

2

But θ∗ = π − φ∗ and φ∗ = 2φ, always

φ∗ = 2θ = π − 2φ whence θ + φ = π

2

Example 1.3 Show that if a particle of mass m is scattered by a particle of mass
M initially at rest, then the angle between the final directions of motion in the lab
system is:

π

2
+ 1

2
θ − 1

2
sin−1

(
m

M
sin θ

)
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Hence, show that for particles of equal masses, the angle between final directions of
motion is always 90°.

Solution From Example 1.1 we get

m

M
= sin(2φ + θ)

sin θ
or

m

M
sin θ = sin

[
π − (2φ + θ)]

sin−1 m

M
sin θ = [

π − (2φ + θ)]

φ + θ

2
= π

2
− 1

2
sin−1 m

M
sin θ

The angle between the final directions of motion is

α = φ + θ = π

2
+ 1

2
θ − 1

2
sin−1 m

M
sin θ

For m/M = 1, α reduces to 1
2π .

Example 1.4 At low energies, neutron-proton scattering is isotropic in the C-
system. If K is neutron lab energy and σ the total cross section, show that in the
lab, the proton energy distribution is

dσp/dKp = const = σ/K0

Solution In Fig. 1.18, ABC is the momentum triangle. Since the angle between
the scattered neutron and recoil proton must be a right angle

PP = P0 cosφ

KP = P 2
P /2mP and K0 = P 2

0 /2mn

but, mp �mn =m
KP /K0 = P 2

P /P
2
0 = cos2 φ or KP =K0 cos2 φ

dKp = −2K0 cosφ sinφdφ = −K0 sin 2φdφ

but, φ = φ∗/2 and dφ = dφ∗/2

dKp = −1

2
K0 sinφ∗dφ∗

Isotropy requires that dσp/dΩ∗ = σ/4π
dσp

dKp
= − dσp

dΩ∗
dΩ∗

dKp
= σ

4π

2π sinφ∗dφ∗
1
2K0 sinφ∗dφ∗ = σ

K0
= const
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Fig. 1.18 Momentum
triangle for n–p scattering

Negative sign is introduced in the last equation because as φ∗ increases Kp de-
creases.

Example 1.5 A beam of particles of mass m is elastically scattered by target parti-
cles of massM initially at rest. If the angular distribution is spherically symmetrical
in the centre of mass system, what is it forM in the lab system?

Solution

σ(φ∗) = σ

4π
= const

σ(φ) = sinφ∗dφ∗

sinφdφ
σ
(
φ∗)

but

φ∗ = 2φ and dφ∗ = 2dφ

σ(φ) = sin 2φ2dφ

sinφdφ

σ

4π
= σ

π
cosφ

It may be recalled that φ is limited to 90°, i.e. the target particles can recoil only in
the forward hemisphere in the lab system. It is instructive to note that

∫
σ(φ)dΩ =

∫ 1
2π

0

σ

π
cosφ2π sinφdφ

= 2σ
∫ 1

0
sinφd(sinφ)= σ (as it should)

Example 1.6 Small balls of negligible radii are projected against an infinitely heavy
sphere of radius R. Assuming the balls are elastically scattered and bounce off in
such a way that the angle of reflection (r) is equal to the angle of incidence (i).
Prove that the scattering is isotropic, i.e. σ(φ) is independent of θ and that the total
cross-section is equal to πR2.

Solution Let b be the impact parameter (perpendicular distance of the line of flight
from the central axis). The angle of incidence and reflection are measured with
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Fig. 1.19 Scattering of a
small ball off a heavy sphere

respect to the normal at the point of scattering (Fig. 1.19)

σ(θ)= − bdb

sin θdθ
(1)

See Eq. (1.56).
From the geometry of Fig. 1.19

θ = π − (i + r)= π − 2i (2)

sin θ = sin(π − 2i)= sin 2i = 2 sin i cos i (3)

since

r = i, and dθ = −2di (4)

but

b=R sin i (5)

Hence

db=R cos idi (6)

using (2), (4), (5) and (6) in (1) and cancelling various factors; we get σ(θ)=R2/4.
The right hand side of σ(θ) is independent of θ , the scattering angle. Hence, the

scattering is isotropic, i.e. equally in all directions.
The total cross-section is given by

σ =
∫
σ(θ)dΩ =

∫ π

0

R2

4
2π sin θdθ = πR2

Observe that the total cross-section σ has the dimension of area, and in the above
example it is equal to the projected area of the sphere. It is, therefore, called geo-
metrical cross-section. Formula (5) shows that if b = O (head-on collision), i = 0
and from (2), θ = 180◦. Thus, in this case the ball bounces in the opposite direction.
Again, when b = R, i = 90◦ and θ = 0◦ (glancing collision). Thus, the ball having
hit the edge of the sphere, does not suffer any deviation and continues its flight in
the incident direction. Of course, if b > R, the ball goes undeviated and there is no
scattering. The above example shows the concept of σ(θ) and σ .
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1.3 Rutherford Scattering

1.3.1 Derivation of Scattering Formula

Here we are concerned with the scattering (deflection) of point charged particles by
a massive centre of electric force. The force is assumed to be central, i.e. directed
along the line joining the centres of the colliding particles. Rutherford supposed that
all the positive charge and hence practically all the mass of the atom is concentrated
in a core or nucleus whose volume is very much less than that of the atom. Outside
the nucleus is a relatively empty space only occupied by a few electrons. Suppose,
an alpha particle is fired against the atom, then it is permitted to penetrate close to
the nucleus and owing to the electrical interaction with the nucleus it may suffer a
large angle deflection and recede from the nucleus and the effect of widely dispersed
electrons can be neglected.

A particle of charge +ze (for alpha particle, z = 2) at a distance r from the
nucleus of charge +Ze (Z being the atomic number) experiences a repulsive force
zZe2/r2 (Coulomb’s inverse square law) and the corresponding potential energy
will be zZe2/r . When the incident (incoming) particle is at a very large distance,
the potential energy will be zero, and the energy is entirely kinetic due to the motion
of the particle.

Let the particle of charge +ze and mass m be incident from a very large dis-
tance from the nucleus (for example at a point A, Fig. 1.20), with velocity v0. In
the absence of forces between the nucleus (henceforth called target nucleus) at
F and the incident particle, the particle would have continued to move along the
straight line AOB . Let FQ be perpendicular on AOB . Then b = FQ is called
impact parameter. Since the target nucleus is considered infinitely heavy, it does
not move during the encounter. The analysis will therefore be made in the lab sys-
tem. The force is repulsive and central. We shall prove that under the influence of
Coulomb’s force, the trajectory is a hyperbola with the external focus F at the nu-
cleus.

It is convenient to introduce the polar co-ordinates r , θ . The radial distance r
is measured from the focus F and the angle θ with the x-axis, which is arbitrarily
chosen. When the particle is near the nucleus, it will be deviated from the rectilinear
trajectory under the action of electrical forces and its typical position at some instant
would be at some point P with co-ordinates (r, θ ) and velocity v. Since the force
is repulsive, v < v0. After the complete encounter, the particle is deflected through
angle θ0 and would recede to a remote distance beyond which it would continue
along the straight path OD, and at a distant point like D. It would again have the
original speed v0, as the potential energy again approaches zero.

If the original path of the incident particle lies in a plane (here plane of paper)
then because angular momentum is conserved, the particle would continue its path
in the same plane throughout.

The conservation of energy gives:

1

2
mv2

0 = 1

2
mv2 + zZe2/r (1.33)



1.3 Rutherford Scattering 21

Fig. 1.20 Geometry of Rutherford scattering

In polar co-ordinates, the components of velocity along and perpendicular to r are
ṙ and rθ̇ , respectively, so that

v2 = (ṙ)2 + (rθ̇ )2 (1.34)

where dot means differentiation with respect to time. Eliminating v between (1.33)
and (1.34) and re-arranging we get:

1 = 2zZe2

mv2
0r

+ 1

v2
0

[
(ṙ)2 + (rθ̇ )2] (1.35)

Also in the absence of external forces, angular momentum must be conserved. Take
the angular momentum about an axis passing through the nucleus and perpendicular
to the plane. Initially the momentum mv0 is in the direction AB and the perpendic-
ular distance FQ is b. Therefore, the initial angular momentum = (mv0)b. At the
point P , the component of velocity perpendicular to FP is rθ̇ , and the distance
FP = r . Hence, the angular momentum at P is m(rθ̇)r .

Conservation of angular momentum gives,

mv0b=mr2θ̇ or (1.36)

θ̇ = v0b/r
2 (1.37a)

Also

ṙ = dr

dθ
θ̇ = v0b

r2

dr

dθ
(1.37b)

Using (1.37a) and (1.37b) in (1.35) and dividing by b2, we find:

1

b2
= 2zZe2

mv2
0b

2r
+ 1

r4

(
dr

dθ

)2

+ 1

r2
(1.38)
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It is desirable to have a change of variable, i.e.

u = 1

r
(1.39)

dr

dθ
= dr

du

du

dθ
= − 1

u2

du

dθ
(1.40)

Also, it is convenient to call

R0 = 2zZe2

mv2
0

= zZe2

T0
(1.41)

Here T0 is the initial kinetic energy of the incident particle. R0 is the distance of
closest approach for the head-on collision (b = 0). At the distance R0, the particle
momentarily comes to rest (v = 0) before it makes a sharp U-turn. Using (1.39),
(1.40) and (1.41) in (1.38) and re-arranging, we get:

(
du

dθ

)2

= 1

b2
− u2 − R0

b2
u (1.42)

Above differential equation can be solved easily if it is differentiated once with
respect to θ , and bearing in mind that b is a constant for a given encounter,

2
d2u

dθ2

du

dθ
= −2u

du

dθ
− R0

b2

du

dθ

Cancelling the common factor du/dθ and re-arranging we get:

d2u

dθ2
+ u+ R0

2b2
= 0 (1.43)

This has the obvious solution

u=A cos(θ − δ)− R0

2b2
(1.44)

where A and δ are the constants of integration. We may choose δ = 0 to make the
trajectory symmetrical about the x-axis. Call

g = 2b2/R0 (1.45)

with δ = 0, we find from (1.44)

1

u
= r = g

gA cos θ − 1
(1.46)

This may be compared with the equation for a conic

r = a(ε2 − 1)

ε cos θ − 1
(1.47)
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where ε is the eccentricity and ‘a’ is the semi-major axis. We therefore, identify

g = a(ε2 − 1
)

(1.48)

ε = gA (1.49)

Using (1.44) and (1.45) in (1.42) and simplifying

A2 = 1

g2
+ 1

b2
(1.50)

Eliminating A between (1.49) and (1.50) and using (1.48) we can find ε

ε =
√

1 + 4b2

R2
0

=
√

1 + 4b2T 2
0

z2Z2e4
(1.51)

where we have used (1.41).
It is seen from the above formula that ε > 1 even if the charge is negative and the

eccentricity is same in both the cases. The orbit is always a hyperbola and never an
ellipse. For a repulsive Coulomb force (positively charged incident particle) the orbit
is a hyperbola with the target nucleus at the external focus F , whereas for attractive
Coulomb force (negatively charged incident particle) the orbit is a hyperbola with
the target nucleus at the inner focus F ′.

As r → ∞, the denominator of the right hand side of (1.47) becomes zero, and
the limiting angle α is given by:

cosα = 1

ε
or

cotα = 1√
ε2 − 1

(1.52)

Observe that α is very nearly equal to half of the angle subtended between the
asymtotes, since the angle contained between the radius vector r and the x-axis is
almost equal to α when r → ∞. The scattering angle θ0 is equal to angle BOD and
is given by θ0 = π − 2α or, α = π

2 − θ0
2 . Hence

tan
θ0

2
= cotα = 1√

ε2 − 1
= R0

2b
(1.53)

where we have used (1.52) and (1.51).
Formula (1.53) can be derived by a shorter method by assuming that the trajec-

tory is a hyperbola and by considering the velocity v at the point C which is at
distance ‘a’ from the centre of the nucleus (Fig. 1.20); v being perpendicular to ‘a’.
Energy conservation gives:

1

2
mv2

0 = 1

2
mv2 + zZe2

a
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which yields
(
v

v0

)2

= 1 − R0

a
(i)

Angular momentum conservation gives

mv0b=mva or

v

v0
= b

a
(ii)

Using (ii) in (i), we find

b2 = a(a −R0) (iii)

From the properties of hyperbola, we know

a = b cot
α

2
(iv)

Eliminating ‘a’ between (iii) and (iv)

R0

b
= cot2 α2 − 1

cot α2
= 2 cotα

cotα = tan
θ0

2
= R0

2b

Equation (1.53) shows that smaller the impact parameter b, larger is the scattering
angle θ0, and vice versa. Physically a larger value of b implies a weaker force and
so a smaller deflection is to be expected.

In particular, b = ∞, implies θ0 = 0 and b = 0 implies θ0, = π . Figure 1.21
shows three typical scattering events. They are:

(a) with a large b,
(b) with a moderate value of b, and
(c) for a very small value of b.

Eliminating g between (1.45) and (1.48)

a = 2b2

R0(ε2 − 1)
= R0

2
(1.54)

where we have used (1.51).
For a particular value of b, the closest distance of approach will be FC which is

given by putting θ = 0 in (1.47)

r(min)= a(ε+ 1)= R0

2

[
1 +

√
1 + 4b2

R2
0

]
(1.55)
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Fig. 1.21 Rutherford scattering for three different parameters b

Considering various scattering events with different b, r(min) will take on the least
value for b = 0, i.e. for the head-on collision and in this case r(min) = R0. Thus
the significance of R0 given by (1.41) is that it represents the least distance of the
closest approach. It is also called Collision diameter. This result also follows from
very simple considerations. As the positively charged particle approaches the target
nucleus, due to the Coulomb’s repulsion, it loses kinetic energy and when it is clos-
est to the nucleus in a head-on collision, it would lose all its kinetic energy. Putting
v = 0 in (1.33) we get

r(min)= 2zZe2

mv2
0

=R0

We can find the numerical value of R0 in the scattering of 5 MeV alpha particles
(typical alpha energy from the radioactive sources) from a gold foil

T0 = 5 MeV = 5 × 1.6 × 10−13 J = S × 10−13 J

e = 1.6 × 10−19 Coul

z = 2, Z = 79

For S.I. units, formula (1.41) becomes: R0 = zZe2

4πε0T0
.

For numerical calculations, R0 (fm)= 1.44zZ
T0 (MeV) = 1.44×2×79

5 = 45.5 fm.

This value may be compared with the radius of gold nucleus which is 8 fm,
a value which is smaller than the minimum distance of closest approach. This then
ensures that the alpha particle of 5 MeV stays well outside the gold nucleus in any
type of encounter including the head-on collision and that the inverse square law
would be valid for all the orbits. For much greater energy, in close encounters, alpha
particles may be able to penetrate the target nucleus itself in which case the inverse
square law would no longer be valid, and other complications would be introduced
into which we shall not enter at the moment.

From (1.53) it is obvious that given the impact parameter b, the scattering angle
θ0 can be determined. But, in practice, it is impossible to know the value of b. How-
ever, we can compute the expected angular distribution from the entire range of b’s.
Consider a uniform beam of particles fired against the target material. The beam in-
tensity I is defined as the number of particles crossing unit area normal to the beam
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Fig. 1.22 Particles passing
through the ring of radii b and
b+ db are scattered in the
angular interval θ0 + dθ0
and θ0

direction per second. Near the centre of force a beam particle bends around and as
it escapes from the field of force it once again describes a straight line. Because
the force is central, one can expect an azimuthal symmetry in scattering about an
axis along the beam direction. Assuming that the scattering is independent of β the
element of solid angle becomes dΩ = 2π sin θ0dθ0. Consider a uniform beam of
particles of same energy directed towards a force centre, with impact parameters b
and b + db. Such particles are seen to pass through a ring of radii b and b + db,
the ring being perpendicular to the beam direction and symmetrical about an axis
passing through the nucleus, and has an area of 2πbdb. Now, particles of given en-
ergy and impact parameter have a unique angle of deflection determined by formula
(1.53). Therefore, particles passing through this ring must be scattered into the solid
angle lying between θ0 and θ0 + dθ0 (Fig. 1.22). Since the number of particles must
be conserved

2πbdbI = −2π sin θ0dθ0Iσ (θ0) or

σ(θ0)= − bdb

sin θ0dθ0
(1.56)

The negative sign is introduced in (1.56) due to the fact that an increase in b implies
a decrease in θ0. Rewriting (1.53)

b= R0

2
cot
θ0

2
(1.57)

Hence

db= −R0

4
cosec2 θ0

2
dθ0 (1.58)

Using (1.57) and (1.58) in (1.56) and noting that sin θ0 = 2 sin θ02 · cos θ02 , we get
after simplification:

σ(θ0) = R2
0

16 sin4 θ0
2

= 1

16

[
zZe2

T0

]2 1

sin4 θ0
2
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Fig. 1.23 Differential
cross-section (in arbitrary
units) as a function of
scattering angle θ in the LS

σ(θ) = 1

4

[
zZe2

mv2
0

]2 1

sin4 θ0
2

(Rutherford’s scattering formula) (1.59)

This is the famous Rutherford’s scattering formula. Henceforth, the suffix 0 is
dropped off in θ0. The expected differential cross-section as a function of scat-
tering angle given by (1.59) is shown in Fig. 1.23. Observe that the differential
cross-section falls off rapidly with increasing angle, the scattering thus being pre-
dominantly in the forward direction.

Formula (1.59) also shows that σ(θ) will be greater for targets and incident par-
ticles of higher atomic number and that it will be more important for low energy
particles.

For the purpose of numerical calculations (1.59) can be written in the form:

σ(θ)= 1.295

(
zZ

T

)2 1

sin4 θ/2
Mb/sr (1.60)

where T is in MeV.

1.3.2 Darwin’s Formula

Rutherford’s formula which takes into account the recoil of the nucleus is due to
Darwin (see Example 1.18)

σ(θ)=
(
zZe2

mv2

)2 1

sin4 θ

[cos θ ± (1 − γ 2 sin2 θ)1/2]2

(1 − γ 2 sin2 θ)1/2
(1.61)

whereM is the mass of the target nucleus and m is the mass of the incident particle,
and γ = m/M . If γ < 1, the positive sign should be used only before the square
root. If γ > 1 the expression should be calculated for positive and negative signs
and the results are added to obtain γ (θ). For γ = 1

σ(θ)=
[
zZe2

T

]2 cos θ

sin4 θ
(1.62)
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1.3.3 Mott’s Formula

If the scattered and the scattering particles are identical (Indistinguishable particles),
the quantum mechanical exchange effects must be taken into account. The scattering
formula due to Mott is

σ(θ) = z2Z2e4 cos θ

T 2

{
1

sin4 θ
+ 1

cos4 θ

[+2

−1

][
1

sin2 θ cos2 θ

cosγ 2Z2e2

�v
ln tg2θ

]}

(1.63)

where h is Planck’s constant. +2 is put infront of the square brackets if the particles
have zero spin, and −1, if their spin is 1

2 .

1.3.4 Cross-Section for Scattering in the Angular Interval θ ′
and θ ′′

The cross-section σ(θ ′, θ ′) per nucleus for scattering between angle θ ′ and θ ′′ is
given by:

σ
(
θ ′, θ ′′)=

∫ θ ′′

θ ′
σ(θ)dΩ = 2π

∫ θ ′′

θ ′
sin θσ (θ)dθ = 2πR2

0

16

∫ θ ′′

θ ′
sin θdθ

sin4 θ/2

where (1.59) has been used. As sin θ = 2 sin θ2 cos θ2

σ
(
θ ′, θ ′′)= π

4
R2

0

∫ θ ′′

θ ′
cosec2(θ/2) cot(θ/2)dθ

= π

2
R2

0

∫ θ ′′

θ ′′
cot(θ/2)d cot(θ/2)

σ
(
θ ′, θ ′′)= 1

4
πR2

0

(
cot2 θ ′/2 − cot2 θ ′′/2

)
(1.64)

In particular, σ(90◦,180◦) the cross-section for scattering for angles greater than
90° is given by setting θ ′ = 90◦ and θ ′′ = 180◦ in (1.64)

σ
(
90◦,180◦)= πR2

0

4
= π

4

(
zZe2

T0

)2

(1.65)

1.3.5 Probability of Scattering

Consider a box of face area 1 cm2 and length λ cm, so that its volume becomes
λ cm3. Let a beam of particles be incident on its face. By definition λ is such a
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Fig. 1.24 A box of face area
1 cm2 and length λ cm
containing n atoms is exposed
to a beam of particles

length that on an average the particle suffers the given type of scattering, i.e. λ is the
mean-free-path. If there are n number of atoms per cm3, the number of atoms inside
the box of volume λ cm3 will then the equal to λn. The cross-section arising from all
these atoms will then be equal to λnσ(θ ′, θ ′′). Imagine all the atoms inside the box
to be pushed on the rear surface of the box (Fig. 1.24). The total area corresponding
to the cross-section of all the atoms must be such as to completely fill up area of
1 cm2 since our assumption demands that on an average one scattering of the given
type will occur when the incident particle passes through λ cm

∴ λnσ
(
θ ′θ ′′) = 1 or

nσ
(
θ ′, σ ′′) = 1

λ

If the foil is only t cm thick, then the probability of scattering between θ ′ and θ ′′
will be:

P = t/λ= ntσ (θ, θ ′′) (1.66)

1.3.6 Rutherford Scattering in the LS and CM System

So far, we have considered the scattering of particles from massive target nuclei so
that the recoil of the latter can be neglected altogether. However, if a light target
be considered then the target nucleus would necessarily recoil due to the collision
and the analysis of the collision is rendered fairly complicated when done in the
lab system. Figure 1.25 shows for definiteness the elastic scattering of an α-particle
(m1 = 4) with a carbon nucleus (m2 = 12) originally stationary seen in the lab sys-
tem. The α particle moves with velocity u1, and makes an impact parameter b. Since
m2 is assumed to be stationary, the relative velocity of approach is also u1.

The centre of mass (indicated by CM in the diagram) moves with constant ve-
locity vc = m1u1/(m1 + m2), before, during and after the collision, which is al-
ways directed parallel to the incident direction of m1. In the chosen example, vc is
one-fourth of the initial velocity of the α particle. We have seen that the analytical
relationships which connect the scattering angle θ and φ with the impact parameter
b and with the charges, masses and velocities of m1 and m2 are too complicated
to be of any general use. Observe that after the collision the initial direction of m2
is away from that of m1. This is a simple consequence of Coulomb’s repulsion be-
tween the two nuclei. It must be pointed out that the trajectories are no longer simple
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Fig. 1.25 Scattering of α
particles with a carbon
nucleus in the LS

Fig. 1.26 Scattering of α
particles with a carbon
nucleus in the CMS

hyperbolas in the lab system. In the CM system, no distinction is made between the
projectile and the target particles, see Fig. 1.26. The relative velocity of the particles
is, v(rel) = u∗

1 + u∗
2 = (u1 − uc)+ uc = u1, which is identical with that in the lab

system.
There is complete symmetry in the scattering of the particles in the CM sys-

tem. Both the particles approach each other with equal and opposite momentum
before the collision and recede with equal and opposite momentum after the colli-
sion. In the event of elastic scattering, the respective speeds of the particles remain
unaltered before and after the collision. Both are deflected through the same angle
measured with their respective original direction. Their centre of mass remains at
rest throughout the collision. Each of the particles describes a hyperbola. The colli-
sion diameter, impact parameter and eccentricity of the orbit are the same for both
the particles, Fig. 1.27. In our example, α particle traverses its hyperbolic path r1
about the centre of mass, while the carbon nucleus also traverses a similar path,
r2 = r1m1/m2 = r1/3, on the other side of the centre of mass. The line joining the
positions of the two particles passes through the centre of mass at all times. The
angular momentum about the centre of mass evaluated in the CM system (Fig. 1.27)
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Fig. 1.27 Angular
momentum about the centre
of mass in the CMS

is

J = m1(u1 − vc) r1b

r1 + r2 + m2vcr2b

r1 + r2 = m1u1r1b

r1 + r2 + vcb

r1 + r2 (m2r2 −m1r1)

= m1u1r1b

r1 + r2
Since m1r1 =m2r2

r1

r1 + r2 = m2

m1 +m2

J = m1u1
bm2

m1 +m2
= μu1b

where μ is the reduced mass. The angular momentum J of this system of two par-
ticles is a constant of their motion since no external torques act on the system. The
angular momentum taken about the centre of their mass has the same value both in
the lab system and CM system since these two systems differ only in regard to the
translation velocity of the centre of mass (vc in the lab system and zero in the CM
system).

1.3.7 Validity of Classical Description of Scattering

We must be able to form a wave packet which is narrower than the distance of the
closest approach, otherwise there is no way to make sure that the particle expe-
riences a definitely predictable force from which the deflection can be calculated
classically. To obtain a rough estimate of the validity of the classical description,
we can safely assume that the distance of closest approach is of the same order
of magnitude as the impact parameter b. In order to form a wave packet that is
smaller than b, it is of course necessary that one uses a range of wavelengths of
the order of b or smaller. Thus the first requirement is that the momentum of the
incident particles be considerably larger than p = �/b. Moreover, in defining the
position of this packet will make the momentum of the particle uncertain by a quan-
tity much greater than δp = �/b. This uncertainty will cause the angle of deflection
to be made uncertain by a quantity much greater than δθ = δp/p. In order that the
classical description be applicable, the above uncertainty ought to be a great deal
smaller than the deflection itself; otherwise the entire calculation of the deflection
by classical method will be meaningless. This requirement is, however, equivalent
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to the requirement that the uncertainty in the momentum be much smaller than the
net momentum, �p, transferred during the collision, or that

δp/�p = �/b�p� 1 (1.67)

Now, for elastic scattering, for small angles

�p = 2p sin(θ/2)� pθ (1.68)

Also from (1.53)

θ = zZe2/T b (1.69)

Combining (1.68) and (1.69) and noting that p/T = 2/v, the condition is,

2zZe2/�v
 1 or 2zZ/137β
 1 (1.70)

For 5 MeV α and gold nucleus (Z = 79) as the target, β = 0.05, and the left hand
side of (1.67) becomes 46, a value which is much greater than unity, so that classical
description of scattering is fully valid.

1.3.8 Coulomb Scattering with a Shielded Potential Under Born’s
Approximation

It is always an abstraction to assume that the Coulomb force continues to be un-
modified out to arbitrarily large distance. Thus the Coulomb force resulting from
distances of the order of a few atomic radii is screened or shielded by the atomic
electrons. The resulting shape of the potential may be approximated by the shielded
Coulomb potential of the form

V = zZe2

r
exp(−r/r0) (1.71)

The exponential factor causes the force to become negligible when the factor r/r0
is much greater than unity. According to the Born approximation, the expression for
the differential cross-section is given by

σ(θ)= 4π2m2

h4

[
V (p− p0)

]2 (1.72)

where the momentum transfer is

|p− p0| = 2p sin(θ/2) (1.73)

and

V (p− p0)= zZe2
∫

exp
[
i(p− p0)

] · r�exp(−r/r0)dr
r

= 4πzZe2

|p−p0
�2 |2 + 1

r2
0

(1.74)
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Fig. 1.28 Rutherford
scattering with a shielded
potential

Letting r0 → ∞, and combining (1.72), (1.73) and (1.74), we get exactly the same
expression as (1.59), i.e. Rutherford scattering law. Thus, classical mechanics and
quantum mechanics give the same result for the Rutherford scattering.

The general appearance of the cross-section for a shielded Coulomb force as a
function of angle is shown in Fig. 1.28. The curve rises steeply with decreasing θ ,
as is characteristic of the Rutherford cross-section, until

sin
θ0

2
∼= �

2pr0

For angles smaller than θ0, the rise of σ(θ) is comparatively small. Thus, θ0, may be
regarded as a sort of minimum angle, below which Rutherford scattering ceases, as
a result of the shielding effects. With a shielded Coulomb potential, θ0 will approach
zero with increasing b much more rapidly, as soon as b goes beyond the shielding
radius. In fact, shortly beyond the shielding radius, the entire scattering effect can
be neglected. The minimum angle below which the cross-section ceases to increase
is given by setting b = r0 in Eq. (1.69) adapted for small angle approximation,
θ(min)= zZe2/T r0.

1.3.9 Discussion of Rutherford’s Formula

The formula fails for indistinguishable particles and also for relativistic particles.
The derivation ignores spin interaction. Formula (1.59) predicts pronounced scatter-
ing in the forward direction, i.e. small angle scattering is favoured. Spin interaction,
however, affects only the large angle scattering. Screening effect of electrons has
been ignored which tends to reduce the effective charge of the nucleus. This effect
is small for small impact parameters (large θ ) and will clearly manifest itself in
heavy atoms in which K electrons are very close to the nucleus.

Rutherford’s formula is valid only for single scattering. It is, therefore, necessary
to use thin foils; otherwise, multiple scattering will result from the superposition
of successive single scatterings. Scattering due to orbital electrons may be ignored
since maximum angle of scattering will be typically <10−4 radians.

If the mass of the incident particle cannot be neglected in comparison with the
mass of the target nucleus, then (1.59) is still valid provided the energy T now refers
to the centre of mass system, and similarly the angle.
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The total cross-section σ is given by

σ = 2π
∫ π

0
σ(θ) sin θdθ (1.75)

By inserting (1.59) in (1.75), it is seen that σ → ∞. This is the direct consequence
of the long range character of Coulomb forces. But physically, at ranges (impact
parameters) comparable with the atomic radii, the force field is effectively cut-off,
leading to a finite cross-section. In other words, divergence in σ which results at
θ = 0 does not occur in practice, since infinite impact parameters are not effective
owing to the shielding of the nucleus by the orbital electrons.

1.3.10 The Scattering of α Particles and the Nuclear Theory
of Atom

The experiments of Geiger and Marsden suggested that if alphas passed through thin
foils of platinum then about 1 in 8000 suffered a deflection larger than 90°. From
the then existing Thompson’s theory of atom (protons and electrons uniformly dis-
tributed in the atom), it appeared that the electric fields are weak, much too weak to
give rise to such deflections. It was conjectured that a cumulative effect of a large
number of small angle scatters might result in a large deflection. But it was not possi-
ble to explain deflections of this magnitude. To explain this result, Rutherford postu-
lated that positive charge is concentrated in a very small volume called the nucleus.
It was then shown that all the wide angle scatters could be explained due to the exis-
tence of the nucleus alone, and that the screening effect due to the orbital electrons
could be ignored. Rutherford used the scintillation method to count the scattered
alphas, and an excellent agreement was made with the theory. The results were so
satisfactory that Rutherford used his formula to verify the atomic numbers of some
of the elements that were already known from Mosley’s work on X-ray spectra of el-
ements, and an extraordinary agreement was obtained. The dependence of scattering
on energy and angle left no doubt as to the validity of Coulomb law of force, the dis-
tance of closest approach being 70 to 140 fm (1 fermi = 10−13 cm). For alpha scat-
tering against gold foils, the scattering was well represented by the Coulomb law of
force when the closest distance of approach was 32 fm. It was, therefore, concluded
that the radius of gold nucleus is not greater than this value (actual value being
about 8 fm). Thus, any departure from Rutherford’s law of scattering is an indica-
tion that the incident particle is coming into contact with the target nucleus. Careful
experiments can, therefore, give reasonably good estimates of nuclear sizes. For
the range of energies considered (alphas from radioactive substances), no departure
from Coulomb inverse square law of forces was observed, for very close distance
of collision. The alpha scattering was found to be strictly governed by the Ruther-
ford scattering law for targets ranging from copper to uranium. In the mean time,
Blacket obtained an independent verification from Wilson chamber photographs by
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determining the angular distribution at various energies. But experiments with light
elements revealed serious departure from the Rutherford scattering law at large an-
gles. Observe that R0 (minimum distance of approach) is proportional to Z (charge

of the target nucleus) while the nuclear radii are roughly proportional to Z
1
3 for

light and medium elements. The latter, therefore, decreases much slower than the
former. Consequently, alphas could penetrate the nuclei of light elements. It was
also observed that when alphas of larger energies were employed, a more rapid de-
parture from the Rutherford law of scattering was approached, the observed number
being greater than the predicted number. These results confirmed the general result
that when the particles approach close to the nucleus the simple Coulomb law is no
longer obeyed and that no known law concerning the electrical forces could explain
the observed scattering. Explanation in terms of magnetic interaction between the
alpha particle and the nucleus was ruled out since it was already known that alpha
particle has zero spin, and therefore does not have any magnetic moment. Further,
the validity of the classical formula of Rutherford could not be questioned since
quantum mechanics also gives precisely the same result. The only answer to the
anamolous scattering was to postulate the existence of strong short range attractive
nuclear forces. For large b the angle θ will be given by pure Coulomb forces. As b
decreases θ would increase, but not so rapidly as in the pure Coulomb field. This
has the consequence of more particles to be scattered at small angles and fewer at
large angles. As b decreases further, the attractive nuclear forces may more than
compensate for the repulsive Coulomb forces. The angle of scattering may there-
fore decrease rather than increase, and in this case there will be a maximum angle
of scattering. For very small values of b, the particles may get scattered at random
and in some cases may get captured.

Example 1.7 If σg is the geometrical cross-section for uncharged particles for hit-
ting a nucleus, show that for positively charged particles, the cross-section will de-
crease by the factor (1 − R0

R
), where R0 = zZe2/4πε0K0R = radius of the nucleus,

σg = πR2 and K0 is the kinetic energy.

Solution When the charged particle just grazes the nucleus

r(min)=R = 1

2
R0

[
1 +

√
1 + 4b2

R2
0

]
(1.55)

whence we obtain b2 =R2 −RR0.
Denoting the cross-section by σ = πb2, it follows that σ/σg = πb2/πR2 = 1 −

R0/R.

Example 1.8 Alphas of 8.3 MeV bombard an aluminum foil. The scattered alphas
are observed at an angle of 60°. Calculate the minimum distance of approach in this
case.
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Solution T0 = 8.3 MeV; z= 2, Z = 13

R0

2b
= tan

θ

2
= tan

60

2
= tan 30◦ = 1√

3
(1)

r(min)= R0

2

[
1 +

√
1 + 4b2

R2
0

]
(2)

Using (1) in (2)

r(min) = 3R0/2

R0 = 1.44zZ

T0
= 1.44 × 2 × 13

8.3
= 4.51 fm

r(min) = 1.5 × 4.51 = 6.76 fm

Example 1.9 Find the probability of scattering of alpha particles of energy 5 MeV
through an angle greater than 90° in their passage through a foil of gold of thick-
ness 4 × 10−5 cm. Given, Avogadro’s number N0 = 6 × 1023; A = 196; Z = 79;
electronic charge e = 1.6 × 1019 C; 1/4πε0 = 9 × 109 N m2/C2, density of gold =
19.3 g/cm3.

Solution

N = Number of atoms/cm3 = (number of atoms/g)
(
g/cm3)

= 6 × 1023 × 19.3

196
= 5.91 × 1022

σ
(
90◦,180◦) = π

4

[
1.44zZ

T0

]2

= π

4

[
1.44 × 2 × 79

5

]2

= 1625 fm2 = 16.25 × 10−24 cm2

If λ is the mean-free-path, 1
λ

=Nσ = 5.91 × 1022 × 16.25 × 10−24 = 0.961 cm−1.
Required probability p = t/λ= 4×10−5 ×0.961 = 3.84×10−5. In other words,

one alpha in 1/(3.84 × 10−5) or 26000, gets scattered at an angle greater than 90°.

Example 1.10 If the radius of gold nucleus (Z = 79), is 8 × 10−15 m, what is the
minimum energy that the a particle should have to just reach it? Give your answer
in MeV.

Solution Set

R = R0 = 8 fm

T = 1.44zZ

R0
= 1.44 × 2 × 79

8
= 28.44 MeV
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Example 1.11 The following counting rates (in arbitrary units) were obtained when
a particles were scattered through 180° from a thin gold (Z = 79) target. Deduce a
value for the radius of a gold nucleus from these results.

Energy of α particle
(MeV)

8 12 18 22 26 27 30 34

Counting rate 30300 13400 6000 4000 2800 33 4 0.4

Solution Since at a given angle, the counting rate is inversely proportional to the
square of energy, we can calculate the expected counting rate for various energies,
assuming that at 8 MeV (lowest energy) the counting rate N8 is in agreement with
the expected value. In the table below are displayed the calculated counting rates
with the aid of the formula, N =N8(8/T )2, where T is in MeV.

T in MeV 8 12 18 22 26 27 30 34

N (cal) 30300 13100 5990 4010 2867 2667 2157 1679
N (obs) 30300 13400 6000 4000 2800 33 4 0.4

Comparison between the calculated and observed counting rates indicates that de-
parture from Rutherford scattering begins at 26 MeV. Since scattering angle is
θ = 180◦, we are concerned with head-on collisions. Hence

R0 = 1.44zZ

T0
= 1.44 × 2 × 79

26
= 8.75 fm

Hence, the radius of the gold nucleus is 8.75 fm.

Example 1.12 (a) If a gold foil is bombarded by 5.4 MeV a particles, determine the
distance of closest approach (b) what is the deflection of the alpha particle when the
impact parameter is equal to this distance?

Solution

(a) Distance of closest approach

R0 = 1.44zZ

T0
= 1.44 × 2 × 79

5.4
= 42.1 fm

(b)

tan
θ

2
= R0

2b
= R0

2R0
= 1

2

θ = 53◦8′
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Example 1.13 To what minimum distance will an alpha particle of energy 0.4 MeV
approach a stationary Li7 nucleus in the case of a head-on collision? Take the nuclear
recoil into account.

Solution We work out in the CM system. Equating the potential energy at the
closest distance of approach R0 to the initial K.E.

1.44zZ

R0
= 1

2
μv2 = 1

2

m1m2v
2

(m1 +m2)
= T0m2

m1 +m2
or

R0 = 1.44zZ

T0

(
1 + m1

m2

)
= 1.44 × 2 × 3

0.4

(
1 + 4

7

)
= 33.9 fm

Example 1.14 A narrow beam of alpha particles with kinetic energy T = 600 keV
falls normally on a golden foil incorporating n = 1.1 × 1019 nuclei/cm2. Find the
fraction of alpha particles scattered through the angles θ < θ0 = 20◦.

Solution Given nt = 1.1 × 1019 nuclei/cm2

�N/N = 1 − π

4
R2

0 cot2
θ

2
· nt = 1 − π

4

(
1.44zZ

T0

)2

cot2
θ

2
· nt

= 1 − π

4

(
1.44 × 2 × 79

0.6

)2

cot2
20

2
× 1.1 × 1019 × 10−26 = 0.6

The factor 10−26 has been introduced to convert fm2 into cm2.

Example 1.15 A narrow beam of protons with kinetic energy T = 1.4 MeV falls
normally on a brass foil whose mass thickness ρt = 1.5 mg/cm2. The weight ratio
of copper and zinc in the foil is equal to 7 : 3, respectively. Find the fraction of the
protons scattered through the angles exceeding θ = 30◦.

Solution

�N

N
= π

4

10−26

T 2
× 1.442

(
0.7Z2

1

M1
+ 0.3Z2

2

M2

)
ρtN0 cot2

θ

2

where Z1 and Z2 are the atomic numbers of copper and zinc, M1 and M2 are their
molar masses, N0 is the Avagadro’s number. The factor 10−26 is introduced to ex-
press fm2 as cm2

�N

N
= (1.44)2

(1.4)2

[
0.7 × 292

63.55
+ 0.3 × 302

65.38

]
× 1.5 × 10−3 × 6 × 1023

× (3.732)2 × 10−26

= 1.4 × 10−3
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Example 1.16 Find the effective cross-section of a uranium nucleus corresponding
to the scattering of alpha particles with kinetic energy T = 1.5 MeV through the
angles exceeding θ = 60◦.

Solution

σ(θ,π) = π

4

(
1.44zZ

T

)2

cot2
θ

2
= π

4

(
1.44 × 2 × 92

1.5

)2

cot2 30◦

= 73480 fm2 = 735 b

Example 1.17 The effective cross-section of a gold nucleus corresponding to the
scattering of monoergic alpha particles within angular interval from 90° to 180°
is equal to �σ = 0.5 kb. Find (a) the energy of alpha particles (b) the differential
cross-section of scattering σ(θ) (kb/sr) corresponding to the angle θ = 60◦.

Solution

(a)

σ
(
90◦,180◦)= π

4

(
1.44zZ

T

)2

T =
√
π × 1.44zZ

2 × √
σ(90�,180�)

=
√
π × 1.44 × 2 × 79

2 × √
5 × 104

= 0.9 MeV

(b)

dσ

dΩ
= 1.295

(
zZ

T

)2 1

sin4 θ
2

= 1.295

(
2 × 79

0.9

)2 1

sin4 6
2

= 0.638 × 106 mb/sr = 0.64 kb/sr

Example 1.18 Derive Darwin’s formula for scattering (modified Rutherford’s for-
mula which takes into account the recoil of the nucleus).

Solution

σ(θ)= (1 + γ 2 + 2γ cos θ∗) 3
2

|1 + γ cos θ∗| σ
(
θ∗) (1)

Now, Rutherford’s formula for CMS is

σ
(
θ∗)= 1

4

(
zZe2

μv2

)2 1

sin4 θ∗
2

(2)
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Also

sin4 θ
∗

2
= 1

4

sin4 θ∗

(1 + cos θ∗)2
and (3)

μ= mM

m+M = m

1 + γ (4)

where M and m are the target and incident particle masses respectively and γ =
m/M

tan θ = sin θ∗

γ + cos θ∗ (5)

Squaring (5) and expressing it as a quadratic equation and solving it we get

cos θ∗ = γ sin2 θ ± cos θ
√

1 − γ 2 sin2 θ (6)

combining (1), (2), (3), (4) and (6), and after some algebraic manipulations we get

σ(θ)=
(
zZe2

mv2

)2 1

sin4 θ

[cos θ ±
√

1 − γ 2 sin2 θ ]2

√
1 − γ 2 sin2 θ

(7)

This is Darwin’s formula. For m�M , γ → 0 and (7) reduces to the usual Ruther-
ford formula.

1.4 Multiple Scattering

1.4.1 Mean Scattering Angle

A charged particle in passing through a thick medium is scattered through an an-
gle θ . The observed scattering may be the result of cumulative effect of a number of
small deflections produced by different atomic nuclei in the matter traversed, or it
may be a single deflection through an angle θ produced by a single nucleus. The first
type of scattering is called multiple or plural, according to the number of contribut-
ing collisions is large or small. The second type is referred to as single scattering.
Which process is mainly operative depends on the nature and velocity of the scat-
tered particle, the matter traversed and the scattering angle. In the simple treatment,
it is assumed that Θ is distributed about Θ = 0, according to the Gaussian law, i.e.
the probability for scattering in the angular interval Θ and Θ + dΘ is

P(Θ)dΘ = const · exp
(−KΘ2)dΘ (1.76)
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Fig. 1.29 Multiple scattering
Θi resulting from the
superposition of single
scatterings, θ1, θ2, . . . , θi

where K is a constant. The single scattering is governed by the Rutherford law of
scattering, which for small angles has the form

P(θ)dθ = const · dθ
θ3

(1.77)

Let θi be the deflection in the ith collision. Let there be q collisions in a traversal of
t cm. Since small angles are vectors (Fig. 1.29)

Θq =
q∑
i=1

θi

Take the dot product

Θ2
q =

q∑
i=1

θ2
i +

q∑
i �=j
θiθj

In averaging over many traversals, θj is positive as many times as it is negative; and
the second summation drops off. Thus

〈
Θ2
q

〉=
q∑
i=1

θ2
1

Since statistically, the individual events do not differ, θ2
i = θ2 we can therefore write

〈
Θ2〉= q〈θ2〉 (1.78)

Now, Rutherford scattering for small angles can be written as

σ(θ)= 4

(
zZe2

pv

)2 1

θ4
(1.79)

The probability for the particle to be scattered into solid angle dΩ = 2π sin θdθ , is
given by σ(θ)2πθdθ for small θ . Let there be N atoms/cm3

〈
θ2〉=

∫ θmax
θmin

θ2f (θ)dθ∫ θmax
θmin

f (θ)dθ
=
∫
θ2f (b)db∫
f (b)db

=
∫ bmax
bmin

4z2Z2e4

p2v2b2 2πNtdb∫
2πbdbNt
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since tan θ2 = zZe2

Mbv2 and for small θ

θ2 = 4z2Z2e4

p2v2b2
(1.80)

The denominator is nothing but q . We, therefore, find after substituting (1.79)
in (1.80)

〈
Θ2〉= q〈θ2〉= 8πNt

(
zZe2

pv

)2

ln
θ(max)

θ(min)
(1.81)

We have assumed that the particle is sufficiently energetic so that the velocity does
not change over the considered traversal. We also ignore the scattering off the elec-
trons, since it is unimportant. Observe that scattering off the nuclei is proportional
to Z2, whilst for electrons, it is proportional to Z. In hydrogen, the scattering off
electrons, however, will be important. We shall now consider the limits θ(max) and
θ(min). Nuclear scattering at large distance is reduced by the electrostatic shielding
of the nucleus by its electrons. The electrostatic shielding reduces the scattering of
distant particles but it does not reduce the energy loss. Thus, a primary particle trav-
elling at a distance such that the fields of electrons and nuclei compensate each other
almost completely is still capable of transferring energy to the atom. The physical
reason why screening reduces scattering much more than the energy transfer is as
follows. A fast particle passing near an atom transfers a certain amount of momen-
tum to each electron and also to the nucleus. The angle of scattering is, however,
determined by the transverse component of the total recoil. Due to the opposite sign
of charge, the electrons recoil in the opposite direction to the nucleus and if the fast
particle passes at a sufficient distance, the transverse components of the recoiling
electrons cancel the transverse components of the nuclear recoil and thus no scatter-
ing results. The total energy transfer is equal to

Z∑
i=1

p2
i

2me
+ P 2

nuc

2Mnuc
(1.82)

The energy transfer to any of the electrons or to the nucleus is positive and is not
affected by the presence of other particles except for the small effects of the binding
forces. In other words, a particle passing near an atom suffers Z+ 1 collisions with
the constituents of the atom and loses energy to everyone of them. The Z+ 1 angles
of scattering, however, tend to compensate each other and therefore the scattering
is reduced strongly by shielding. Now by (1.81), the root mean square multiple
scattering angle is given by

√〈
Θ2

〉=
√

8πZ2z2e4Nt

p2v2
ln
b(max)

b(min)
=K

√
tze

pv
(1.83)
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where

K =
√

8πNZ2e2 ln
b(max)

b(min)
(1.84)

is called the scattering constant.

1.4.2 Choice of b(max) and b(min)

We may choose

b(max)= ao

Z1/3
(1.85)

where a0 is the Bohr radius. This is justified by Fermi-Thomas model of the atom,
since the right hand side of (1.85) represents the radius of the atom.

The limit on b(min) is dictated by the finite size of the nucleus. Thus, b(min) is
greater than 1.3 × 10−13A1/3 cm. An alternative criterion would be to avoid count-
ing deflections withΘ > 1 radian. A rough criterion is provided by restricting the in-
dividual single scatterings to θ < 1. Now for small scattering angles, formula (1.53)
reduces to

θ = 2zZe2

mv2b
(1.86)

Putting θ = 1 radian and p =mv, we obtain the rough criterion

b(min)= 2zZe2

pv
(1.87)

Fortunately, the results are insensitive to the choice of b(max) and b(min)

b(max)

b(min)
� Atomic dimension

Nuclear dimension
= 10−8 cm

10−12 cm
= 104, and so ln 104 � 10

Thus,
√〈Θ〉2 is very insensitive to the logarithmic term in (1.83) which is of the

order of 10. The main dependence comes from the factors outside the logarithmic
term. Further, in view of (1.87) the scattering constant K is a slow varying function
of the particle velocity. Observe that

√〈Θ〉2 is directly proportional to the charge of
the scattering nuclei, and the charge of the incident particles, inversely proportional
to the energy of the incident particles and directly proportional to the square root of
the thickness of the absorber.
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1.4.3 Mean Square Projected Angle and the Mean Square
Displacement

Consider a charged particle traversing an absorber of thickness t . Assume that the
collisions take place at depths X1,X2, . . . , resulting in deflections θ1, θ2, . . . . The
azimuth of the deflection will change after each collision, the subsequent azimuths
being φ1, φ2, . . . , the projected angle of deflection is given by

ΘP =
q∑
i=1

θi cosφi

We have to average over the parameters of the single collisions. Since the azimuths
can be taken as independent, we have

〈cosφi cosφj 〉 = 1

2
δij (1.88)

where δij is the Kronecker delta. Hence

〈
Θ2
P

〉= 1

2
q
〈
θ2〉= 1

2

〈
Θ2〉 (1.89)

Observe that the most probable value of Θ or ΘP is zero. However, 〈Θ〉 and 〈Θ2〉
are necessarily positive, whereas 〈ΘP 〉 is zero.

Similarly the mean square projected displacement is equal to half the mean
square unprojected displacement

〈
y2〉= 1

2

〈
r2〉

Now, y =∑q

i=1Xiθi cosφi

∴ y2 =
∑
i �=j
xixj θiθj cosφi cosφj

Since x and φ are independent, using relation (1.88)

〈
y2〉= 1

2

∑
i

〈
x2
i

〉〈
θ2〉

Now

〈
x2
i

〉 = 〈
X2〉= 1

t

∫ t

0
x2dx = t2

3

〈
y2〉 = t2

6
q; 〈

θ2〉= t2

6

〈
Θ2〉 (1.90)
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Fig. 1.30 Angular distribution of electrons scattered from AU at 15.7 MeV. Solid lines indicate the
distribution expected from the Moliere theory for small-and large-angle multiple scattering, with
an extrapolation in the transition region: dashed lines, the distributions according to the Gaussian
and single scattering theories. The ordinate scale gives the logarithm of the fraction of the beam
scattered within 9.696 × 10−3 sr (Birkhoff)

Also

〈
r2〉= t2

3

〈
Θ2〉 (1.91)

Expressions (1.90) and (1.91) are of great interest in the cosmic ray shower theory
and experiments. Figure 1.30 shows the contribution from multiple scattering (Gaus-
sian) at small angles and single scattering (Rutherford) at large angles. Kamal, Rao
and Rao (Fig. 1.31) have compared the experimental distributions of D the average
of ‘Second differences’ of 17.2 GeV/c beam tracks in photographic emulsions for
cell lengths t = 4, 6, 8, 10, 20, and 30 mm and compared with Moliere’s theory.
The quantity D is related to the projected angular deflection and is obtained from
the y-coordinates of the track; Di = yi+1 − 2yi + yi−1, where yi is the ith coordi-
nate of the track at constant x-intervals called cell length t . In order to avoid very
large scattering angles, a 4D cut-off is usually employed, a procedure in which all
deflections larger than four times the mean second difference are eliminated. This is
also indicated in the figure. Moliere’s probability function (Gaussian function plus
the single scattering tail) for the second differences was computed from the work of
Scott. A good agreement was found between theory and observations.

In conclusion, we may point out that Rutherford used extremely thin foils for
his classical experiments on alpha scattering in order to avoid the contribution of
multiple scattering.

From (1.83) it is clear that the determination of root-mean-square angle permits
one to estimate the energy of the particle.

Protons and electrons of the same energy will have the same root-mean-square
angle of scattering, but their ionization would be different since their velocities
would be different. Thus joint measurements of multiple scattering and ionization
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Fig. 1.31 Multiple scattering
distribution for various cell
lengths, (a) 4 mm; (b) 6 mm;
(c) 8 mm; (d) 10 mm;
(e) 20 mm; (f) 30 mm
Moliere’s Gaussian function
plus single scattering tail [2]

permit us to estimate the mass of the particle and identify it. This method is partic-
ularly suitable for particles which are not too energetic and at the same time are not
brought to rest within the stack of emulsions.

The existence of multiple scattering can create problems in the curvature mea-
surements of tracks in a cloud chamber. In certain cases the multiple scattering may
be so severe that spurious curvatures are observed even in the absence of magnetic
fields. In the case of bubble chambers, curvature measurements under magentic
fields are rendered difficult when a heavy liquid like xenon is used. It is also im-
plied that curvature measurement in photographic emulsions under pulsed magnetic
fields are limited owing to severe multiple scattering by the heavy nuclei of silver
and bromine.

The phenomenon of multiple scattering leads to an interesting observation in
cosmic ray showers. Owing to multiple scattering in air, the electrons in the shower
undergo lateral displacement from the original path through several meters as they
traverse down the atmospheric depth (see expressions (1.90) and (1.91)).

1.5 Theory of Ionization

1.5.1 Bohr’s Formula

Charged particles in their passage through a medium lose their energy mostly
through excitation of atoms and ionization (collision) processes. The collision pro-
cess is only one of several mechanisms by which charged particles may lose energy.
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In the case of electrons it constitutes the most important source of energy loss only
for relatively small energies. At energies of the order of 10 to 100 MeV, radiation
losses overtake the collision losses, depending on the Z of the absorber. For muons,
collision losses remain dominant up to energies of the order of 100 or 1000 MeV.
For protons, radiation losses are never significant, but the occurrence of nuclear col-
lisions overshadows the collision losses at energies of the order of 1000 MeV or
greater. Energy loss by the emission of Cerenkov radiation is negligible except at
very high energies. Thus, in general, collision losses represent the most important
source of energy loss only for energies smaller than a certain value that depends on
the nature of the particles.

Most of the electrons ejected in ionization processes have energies very small
compared with the energy of the primary particle. Nevertheless, they are able to
produce several ion pairs before coming to rest. The total specific ionization con-
sists of two parts (i) primary specific ionization which is defined as the average
number of ion pairs produced per g cm−2 (ii) secondary specific ionization which
refers to the average number of ion pairs per g cm−2 by all the secondary elec-
trons and tertiary electrons and radiation. The total ionization implies the sum of (i)
and (ii). The total ionization is roughly three times the primary ionization. When
the primary particle is absorbed its energy is dissipated in exciting the atoms and
in producing secondary electrons partly by collisions and partly by radiation. The
secondary electrons radiation will excite more atoms and produce tertiary electrons
and photons and so on. It is clear that an electron will continue to lose its energy in
elastic collisions as long as its energy is in excess of the lowest excitation potential
of the atoms and the photons will be absorbed as long as their energy is greater than
the threshold energy for minimum ionization potential. In the event an atom gets
into an excited state by an inelastic collision with an electron or by the absorption
of a photon it immediately loses the excitation energy by the emission of photons
or Auger electrons. The fraction of the initial energy that is used in producing ion-
ization is not appreciably affected by the nature of the primary particle nor by its
energy as most of the ionization and excitation processes are caused by electrons of
low energy. The classical ionization formula is originally due to N. Bohr. The basic
assumptions made in the derivation are (i) electrons are free (ii) the incident particle
remains undeviated throughout its motion.

The velocity acquired by the electron in an elastic collision is given by (1.27),

v2 = 2vc cosφ = 2vm1 cos 1
2φ

∗

m1 +m2

where v = u1. Since m2 �m1, v2 � 2v cos 1
2φ

∗.
The energy imparted to the electron is

T = 1

2
mv2

2 = 2mv2 cos2 1

2
φ∗ (1.92)
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Fig. 1.32 Atoms lying
within impact parameters b
and b+ db

Since

φ∗ = π − θ∗, cos2 1

2
φ∗ = 1

1 + cot2 1
2θ

∗

But scattering angle in the CMS is related to the impact parameter by cot 1
2θ

∗ =
2b/R0. Hence,

T = 2z2e4

mv2[R2
0/4 + b2] (1.93)

where we have used the fact that R0 = 2zZe2/μv2 and the Z = −1 for target elec-
tron, and μ=m, since the incident particle is considered much more massive than
the electron. Let there be n electron/cm3 of the medium consider a differential ele-
ment of length dx along the path of the incident particle. The number of electrons
situated between the impact parameters b and b+ bd over a length dx is given by
2πbdbndx (Fig. 1.32). The energy imparted to electrons for this range of b’s is
given by multiplying this number of electrons by T give by (1.93); but this is equal
to the energy lost by the primary particle by traversing the element of length dx. We
can, therefore, write:

−dE/dx =
∫ b(max)

0

4πnz2e4bdb

mv2[b2 +R2
0/4] = 4πnz2e4

mv2
ln

[
2b(max)

R0

]
(1.94)

The underlying assumption that electrons are free is only approximately correct.
Actually they are bound to the atoms and can be considered free only if the colli-
sion time is short compared with the period of revolution. On the other hand, if the
collision time is long compared with the period of revolution, the electrons do not
absorb any energy at all. Let b(max) represent the impact parameter for which the
collision time τ = 1/ν, where ν is the orbital frequency of the electron

Impulse =
∫
Fdt = momentum acquired by the electron (1.95)

or

ze2τ

b2(max)
=√

2mT (max)=
√

4z2e4/v2b2(max) (1.96)

Hence

b(max) = v/2ν (1.97)
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−dE/dx = 4πnz2e4

mv2
ln

[
mv3

2ν/ze2

]
(Bohr’s formula) (1.98)

The negative sign implies that as x increases, E decreases. The quantity −dE/dx
is called the linear stopping power and is defined as amount of energy lost per unit
length in the absorber. When x is measured in g/cm2, then this quantity is called the
mass stopping power.

Bohr’s classical formula is valid provided the particle velocity is larger than the
orbital electron velocity. The value of b(max) given in Bohr’s classical formula cor-
responds to such low energy transfers that they are far less than the ionization poten-
tial and are therefore incompatible with the acceptable theory of atomic structure.
For this reason, the classical theory predicts too great energy loss by high velocity
particles.

A quantum mechanical formula which is more exact is due to H.A. Bethe:

−dE/dx = 4πz2e4n

mv2

[
ln

2mv2

I
− ln

(
1 − β2)− β2

]
(1.99)

where B = v
c

, I = mean ionization potential of the atoms of the medium; I =KZ,
K = 13.5 volts. The derivation assumes that the particle is a point charge, and that
the spin and magnetic moment are disregarded. Observe that the quantity −dE/dx
which represents ionization loss per unit length, is a function of velocity of the
particle and its charge but is independent of its mass. Bohr’s formula (1.98) is
not applicable for incident electrons for two reasons: (a) the derivation assumes
that the incident particle is undeflected during the collision which is not correct
for an electron; (b) for identical particles exchange phenomenon must be consid-
ered.

The last two terms in the bracket of (1.99) almost cancel out at low velocities
(small β). Since the logarithmic term is quite a slow varying function of velocity,
the main variation of −dE/dx comes from the factor 1/v2. At very low velocities,
the energy loss must go down because of the capture of the electrons by the incident
particle. This is not considered in the quantum mechanical formula which can be
relied on up to 5 MeV α’s or 1.3 MeV protons. As the velocity of the incident
particle decreases to very low values, various complicated effects enter the energy
loss mechanism. When the incident velocity becomes comparable with the K-shell
electron velocity, energy transfer to the K-shell electrons becomes difficult. The
electrons effective for energy loss are those with velocities smaller than v = √

I/2m.
At low energies, the charge transfer process becomes more important than ionization
process. The atom or the ion formed by capturing an electron may lose the electron.
When the particle velocity is significantly greater than Bohr’s orbital velocity for the
K-shell electron, the electron loss dominates over electron capture. This corresponds
to 25 keV proton energy or 400 keV α energy.

At higher velocities, the terms lnv2 and ln(1 − β2) in the square brackets of
(1.99) become important. The ionization vs velocity curve (Fig. 1.33) passes through
a broad minimum as β→ 1. The origin of the rise of ionization is due to the Lorentz
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Fig. 1.33 The curve BCD gives the 1/v2 dependence. At relativistic energies v changes little
and CD is asymptotic to v = c. At relativistic energies, the log term in v2/(1 − β2) changes, and
increases as v → c, giving the rise at the curve from C to E. At very low energies (region AB)
Eq. (1.99) breaks down because the particle has velocity comparable to that of the orbital electrons
in the absorber, and the efficiency of energy exchange is much lower. The particle itself captures
electrons and spends part of its time reduced change

contraction of Coulomb field of the incident particle which makes possible the en-
ergy transfer to the electrons at greater distance from the particle path. At exceed-
ingly high velocities, however, the ‘density effect’ limits the energy transfer. This is
also called the polarizability effect. In the derivation of (1.99), the atoms have been
considered isolated. This is justifiable so long the medium is a gas. In a condensed
medium, the atoms may still be considered as isolated in close collisions, but when
the impact parameter is larger than the atomic distances, the screening of the elec-
tric field due to the simultaneous movement of the electrons of the neighbouring
atoms becomes important and this has the consequence of lessening the magnitude
of −dE/dx. At ultra-relativistic velocities, the curve, therefore, gets saturated to a
plateau value called the Fermi plateau (in Fig. 1.33). It may be pointed out that in
a cloud chamber the plateau may be higher by 50 percent compared to the trough
whilst in photographic emulsions it may be higher only by about 10 percent. This is
because the density effect in the former is much less than in the latter.

1.5.2 Range-Energy-Relation

When other types of energy losses are negligible compared with the collision loss,
fluctuation in the energy loss are small and in a given material all particles of a given
energy have almost the same fixed range. The range is defined as the total distance
traversed by the particle along its track till its velocity becomes zero. In principle it
should be possible to integrate (1.99) and obtain a relation between the range and
the energy of the particle. There are two difficulties with this procedure, first the
integration is cumbersome, second at very low velocities the phenomenon of elec-
tron capture and the uncertainties in the ionization potential render the calculations
exceedingly doubtful. In practice, one uses an empirical relation of the form:

E =Kz2nMl−nRn (1.100)
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where E is the kinetic energy of the particle corresponding to the range R. M is
the mass of the particle in terms of proton mass. K and n are empirical constants
that depend on the nature of the absorber. The form of (1.100) ensures that the
quantity dE/dR = z2f (v) and �= f (M), as desired. Since −dE/dx = z2f (v),
dx = −dE/z2f (v)=Mf ′(v)dv/z2, where f (v) and f ′(v) are some functions of
velocity of the particle. Therefore

R =
∫ R

0
dx = M

z2

∫ v

0
f ′(v)dv = M

z2
f ′′(v) (1.101)

where f ′(v) is still another function of velocity.
Consider two particles of massesM1 andM2 having charges z1 and z2. Let their

initial velocities be the same, and their ranges R1, and R2, respectively. It follows
from (1.101) that the expected ratio of their ranges would be

R1

R2
= M1z

2
2

M2z
2
1

(1.102)

In particular, if the ranges of two tracks of singly charged particles from the point
of equal ionization (equal velocity) are known then

R1

R2
= M1

M2
(1.103)

This technique was employed for the mass determination of π meson in the his-
torical experiment of Powell, Occhialini and Lattes, using photographic emulsions.
Comparison was made with proton tracks having the same initial ionization.

Example 1.19 The range of a low energy proton is 1500 µm in nuclear emulsions.
A second particle whose initial ionization is same as the initial ionization of proton
has a range of 228 µm. What is the mass of this particle? (The rate at which a
singly ionized particle loses energy E by ionization along its range is given by
dE/dR =K/(βc)2 MeV µm−1 where βc is the velocity of the particle, and K is a
constant depending only on emulsions; the mass of proton is 1837 mass of electron.)

Solution Using (1.103)

M2 = R2

R1
M1 = 228 × 1837

1500
= 279me

The particle is identified as π meson (pion).

Example 1.20 α particles and deuterons are accelerated in a cyclotron under identi-
cal conditions. The extracted beam of particles is passed through an absorber. Show
that the expected range of deuterons is twice that of α particles.
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Solution The condition for a circular orbit in a magnetic field (induction B) is

Bzev =mv2/r

Since B and r are same for both d and α

vd = Bzer

md
and vα = B(2e)r

mα

Since mα = 2md , it follows that vd = vα .
From (1.102)

Rd

Rα
= md

mα

22

12
= 2

Example 1.21 α-particles have an initial energy of 8.5 MeV and a range in standard
air of 8.3 cm. Find their energy loss per cm in standard air at a point 4 cm distant
from a thin source.

Solution The range-energy-relation is

E =Kz2nM1−nRn (1)

dE

dR
= nKz2nM1−nRn−1 = nE

R
(2)

Let E1 = 8.5 MeV and R1 = 8.3 cm. On moving away 4 cm from the source R2 =
8.3–4.0 = 4.3 cm. Let the corresponding energy be E2

dE2/dR = nE2/R2 (3)

dE1/dR = nE1/R1 (4)

Therefore
dE2/dR

dE1/dR
= E2R1

E1R2
(5)

Also

dE2/dR

dE1/dR
= 1/v2

2

1/v2
1

= v2
1

v2
2

= E1

E2
(6)

From (5) and (6)

E1

E2
=
√
R1

R2
=
√

8.3

4.3
(7)

Using (1)

E1

E2
=
(
R1

R2

)n
(8)
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Comparing (7) and (8), n= 1
2 . From (8) or (7)

E2 = E1(R2/R1)
1
2 = 8.5

√
4.3

8.3
= 6.12 MeV

dE2

dR
= nE2

R2
= 0.5 × 6.12

4.3
= 0.71 MeV/cm

1.5.2.1 Range in Air—Geiger’s Rule

If we ignore the logarithmic term in the formula for −dE/dx, then dE/dx ∝ 1/v2

or R ∝ v4 for the low energy region. A better approximation is provided by the
formula

R = const · v3 (Geiger’s rule)

This formula is valid for 4–10 MeV α particles. At higher energy the exponent
changes. A Formula which gives the range of α’s in air at 15 °C and atmospheric
pressure is

R = 0.32 (MeV)3/2 cm (alphas in air)

This formula is correct to about 10 per cent in the low energy region but breaks down
for relativistic velocities. Figure 1.34 shows the range energy curves for protons and
Fig. 1.35 for alpha particles in air at 15 °C and 760 mm pressure.

1.5.2.2 The Bragg-Kleeman Rule

This rule permits one to convert the range R1, in medium 1 of known density ρ1
and atomic weight A1 to range R2 in medium 2 of known density ρ2 and atomic
weight A2

R2

R1
= ρ1

ρ2

√
A2√
A1

(Bragg-Kleeman rule) (1.104)

This rule is correct to within 15 per cent. As an example, for air
√
A1 = 3.81

and ρ1 = 1.226 × 10−4 g/cm3 at 15 °C, 76 cm of Hg. Then R2 = 3.2 × 10−4 ×√
A2R(air)/ρ2. For aluminum A2 = 27 and ρ2 = 2.7, so that in aluminum the range

of α-particles and protons (1–10 MeV) is about 1/1600 of the range in air.

Example 1.22 Compare the stopping power of a 3 MeV proton and a 6 MeV
deuteron in the same medium.

Solution

vp =
√

2E

m
=
√

2 × 3

1
= √

6, and vd =
√

2 × 6

2
= √

6
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Fig. 1.34 Range-energy
relation for protons in air at
15 °C, 760 mm pressure up to
11.8 MeV

Since the velocities are same and also both proton and deuteron are singly charged
particles, their stopping powers are the same.

Example 1.23 Show that the specific ionization of a 320 MeV α particle is approx-
imately equal to that of a 20 MeV proton.

Solution

−dE
dx

∝ z2

v2
or ∝ Mz2

E
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Fig. 1.35 Range-energy
relation for alpha-particles in
air at 15 °C, 760 mm pressure
up to 15 MeV

for ∝’s, −dE
dx

∝ 4 × 22

320
= 1

20

for p’s, −dE
dx

∝ 1 × 12

20
= 1

20

Thus the specific ionization is same.

Example 1.24 If the range is multiplied by density, equivalent thickness in g/cm2 is
obtained. Calculate the thickness of aluminum that is equivalent in stopping power
of 1 cm of air. Given the relative stopping power for aluminum S = 1700 and its
density = 2.7 g/cm3.
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Solution

R(Al) = R(air)

S
= 1

1700
cm

R(Al) = 2.7

1700
g/cm2 = 1.59 × 10−3 g/cm2

Example 1.25 Calculate the minimum energy an α particle can have and still be
counted with a GM counter if the counter window is made of stainless steel (A≈ 56)
with 2 mg/cm2 thickness.

Solution For steel

Rs (cm)=Rs
(
g/cm2)/ρs = 2 × 10−3/ρs

Equivalent range for air

Ra = Rsρs
√
Aa

ρa
√
As

= 2 × 10−3 × √
14.5

1.226 × 10−3 × √
56

= 0.83 cm

E =
(
R

0.32

)2/3

=
(

0.83

0.32

)2/3

= 1.89 MeV

α’s of energy greater than 1.89 MeV will be counted.

Example 1.26 Calculate the range of 4 MeV α particles in air of 760 mm of Hg
pressure and 15 °C temperature.

Solution Use the formula

R = 0.32(E)
3
2 cm = 0.32(4)

3
2 = 2.56 cm

Example 1.27 Calculate the range in aluminum of a 5 MeV a particle if the relative
stopping power of Aluminum is 1700.

Solution Relative stopping power S =R(air)/R(Al). But,

R(air) = 0.32(5)
3
2 = 3.578 cm

R(Al) = 3.578 cm

1700
= 21 µm

Example 1.28 The range of 5 MeV a’s in air at NTP is 3.8 cm. Estimate the range
of 10 MeV a’s using Geiger-Nuttal law.
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Solution According to Geiger’s rule, R ∝ v3, or R ∝E 3
2

R2

R1
=
(
E2

E1

)3/2

=
(

10

5

)3/2

= 2
√

2

R2 = 2
√

2R1 = (2√
2)(3.8)= 10.75 cm

Example 1.29 Mean ranges of a particles in air under standard conditions is defined
by the formula R (cm)= 0.98 × 10−27v3

0 , where v0 (cm/s) is the initial velocity of
an alpha particle. Using this formula, find an α-particle with initial kinetic energy
7.0 MeV (a) its mean range (b) the average number of ion pairs formed by the given
a-particle over the whole path as well as over its first half, assuming the ion pair
formation energy to be equal to 34 eV.

Solution

(a)

v0 =
√

2T

m
= c

√
2T

mc2
= c

√
2 × 7

3726
= 0.061c

R = 0.98 × 10−27 × (
3 × 1010 × 0.061

)3 = 6 cm

(b) (i) Total number of ion pairs = 7×106

34 = 2.06 × 105

(ii) For R = 3 cm range, 3 = 0.98 × 10−27v3
0 , or v0 = 1.45 × 109 cm/s. Corre-

sponding energy at mid path is

E = 1

2
Mv2 = 1

2
Mc2(v/c)2 = 1

2
× 3726 × (0.048)2 = 4.39 MeV

Energy lost in the first half of the path, �E = 7.0–4.39 = 2.61 MeV.
Number of ion pairs over the first half of the path = 2.61

34 × 106 = 7.67 × 104.

Example 1.30 Assuming that 14C and 14N nuclei are both accelerated to an energy
of 40 MeV and are then allowed to pass through a thin foil. If the 14C nuclei lose
2 MeV, how much energy will the 14N nuclei lose?

Solution

−dE
dx

∝ z2

v2
or ∝Z2M

E

As M
E

is the same for the nuclei

(−dE/dx)N = z2
N

z2
C

(−dE/dx)C = 72 × 2

62
= 2.72 MeV
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Example 1.31 Protons and deuterons have the same kinetic energy when they enter
a thin sheet of material. How are their energy losses related?

Solution

−dE
dx

∝ z2

v2
or ∝ M

E

as both P and d have the same z. Also both have same energy E. Therefore,
(− dE

dx
)d = 2( dE

dx
)p .

Example 1.32 If protons and deuterons lose the same amount of energy when they
enter a thin sheet of material, how are their energies related?

Solution
(

−dE
dx

)
∝ M

E

Mp

Ep
= Md

Ed

Ed = Md

Mp
Ep = 2

1
Ep = 2Ep

1.5.3 Energy Loss to Electrons and Nuclei

For fast charged particles the energy loss results more from electron collisions than
nuclear collisions. The latter affect stopping mainly for relatively low velocities and
large charges of incident particles. For helium ions of energy larger than 0.5 MeV,
even in heavy materials like silver and gold, the nuclear collisions do not account
for more than 0.5 per cent of the total energy losses. For heavy ions with relatively
low velocities, the contribution of nuclear collisions becomes increasingly important
with charge. However, in this case too the collisions with electrons is the dominant
process for the energy loss. Thus, for example, in the case of quadruply ionized
carbon and oxygen ions in metals, nuclear collisions contribute only to the extent of
a few per cent of the energy loss.

1.5.4 Energy Loss of Heavy Fragments

Heavy ions such as 12C, 16O, 40A, 85Kr are slowed down predominantly by ion-
ization in much the same way as alpha particles. The only difference is that z is
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replaced by zeff = f (β)z, where f (β) is an increasing function of velocity reach-
ing its limiting value of 1 for β = 2z/137. At very low incident particle veloc-
ities various complicated effects enter the energy loss mechanism. When the ve-
locity approaches that of K-shell electron, energy transfer to K-electrons becomes
difficult. The energy at which the energy loss attains maximum value is given
by E(max) ∼= 1

2Mc
2(1/137)2Z2/3, where M is the mass of the incident particle,

Z being the atomic number of the target. At velocities (v) less than Bohr’s or-
bital velocity (u) for K-electron, the incident particle tends to capture an electron
(s) from the atom, resulting in the decrease of the effective charge of the incident
particle. This is called ‘pick-up’ process. It may also lose the captured electron.
The pick-up process becomes a highly probable process for velocity v ≈ u, where
u= zc/137 = 0.22 × 109 cm/s for protons (Ep = 25 keV) and = 0.44 × 109 cm/s
for alphas (Eα = 400 keV). Towards the end of the range, as the velocity decreases,
the stopping power increases reaching the maximum value for β = 0.037 for carbon
and 0.059 for argon-40 ions, which correspond to 8 and 65 MeV energy respec-
tively. At lower energy the stopping power decreases as the ions are further slowed
down, since the decrease of nuclear charge overcompensates the opposing effect of
diminishing velocity. This phenomenon is beautifully demonstrated by the thinning
down of very heavy ion tracks just before they are arrested in photographic emul-
sions. The extreme case is furnished by the fission fragments. Their effective charge
is large reaching about 20e at the beginning of the range, and nuclear collisions
are an important source of energy loss. If a fragment of atomic number z crosses a
medium of atomic number Z and nuclear mass m2, the specific energy loss is

−dE
dx

∝ z2Z2

m2v2
(nuclear) (1.105)

whereas the loss to electrons is

−dE
dx

∝ z2
eff

Z

mv2
(electronic) (1.106)

Equation (1.105) applies to close nuclear collisions where the entire charges of the
fragments and the target are effective. In the case of electronic collisions, only the
net charge zeff of the fragment is effective, since it carries with it certain number of
electrons, and further the target electrons have unit charge. The factor Z in (1.106)
arises from the presence of Z electrons/nucleus. The two energy losses may be com-
parable, but only a few nuclear collisions are responsible for the nuclear component
of energy loss whilst in the electronic collisions, the loss is uniformly distributed
along the path. The peculiar branches observed in the cloud chamber photographs
of fission fragments have their origin in nuclear collisions. The concentration of
nuclear energy loss in a limited number of events leads to the enormous spread of
ranges of fission fragments of the same energy, a phenomenon called ‘straggling’.

It is of interest to point out that heavy ions in passing through crystalline solids
lose energy differently depending on the orientation of the trajectory with respect to
the axes of a single crystal. For example, 40 keV 85Kr ions are found to penetrate
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the face centred cubic lattice of aluminum crystals for about 4000 Å in the direction
perpendicular to the (101) face but only 1500 Å in the direction perpendicular to the
(111) face. This is because the number of atoms encountered in these two cases is
not same.

1.5.5 Energy Loss of Electrons

It was pointed out that in the case of heavy ions, ionization is the dominant mode of
energy loss. However, for electrons, the energy loss is complicated due to an addi-
tional mechanism of loss through radiation, a phenomenon called Bremsstrahlung.
At low energies (E < 2mc2) the ionization loss dominates over that due to radia-
tion. The problem of energy loss of electrons by ionization follows similar to that of
heavy ions, but the treatment differs in two important respects. They are the identity
of particles which participate in the collisions, and secondly their reduced mass.

The formula for non-relativistic electrons is:

−dE
dx

= 4πe4n

mv2

[
ln
mv2

2I
− 1

2
ln 2 + 1

2

]
(1.107)

Except for small differences in the terms within the square brackets, formula
(1.107) bears a striking resemblance to (1.99). We, therefore, conclude that the non-
relativistic electrons lose their energy by ionization at the same rate as the protons.

The relativistic formula for electrons is

−dE
dx

= 4πe4n

mc2

[
ln

2mc2

I
+ 3

2
lnγ + 1

16

]
(1.108)

and that for protons

−dE
dx

= 4πe4n

mc2

[
ln

2mc2

I
+ 2 lnγ − 1

]
(1.109)

where γ = 1/
√

1 − β2 is the Lorentz factor. At equal velocities, formulae (1.108)
and (1.109) agree within 10 per cent.

1.6 Delta Rays

1.6.1 Energy Spectrum

In the collision of a charged particle with an atom, one or more electrons are ejected.
The more energetic ones of these are called Delta rays and are responsible for the
secondary ionization, i.e. the production of further ions due to the collision of delta
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rays with the atoms of the medium. In what follows we shall be concerned with
delta rays of energy larger than the ionization potential of the atoms of the medium.
The binding energy of the electron is, therefore, ignored and the collision between
the incident particle and the electrons is considered as approximately elastic. From
(1.27) the kinetic energy of the ejected electron (m2 �m1)

W = 2mv2 cos2 φ (1.110)

where m=m2 is the electron mass, φ is the angle of emission of electron, and v is
the velocity of the incident particle. The maximum energy, W(max)= 2mv2 (non-
relativistically). Now, for the recoil particle (electron) φ = 1

2φ
∗ and φ∗ = π − θ∗,

and so

cos2 φ = sin2 1

2
θ∗ (1.111)

W = 2mv2 sin2 1

2
θ∗ (1.112)

dW = mv2 sin θ∗dθ∗ (1.113)

But Rutherford’s formula for scattering in the CMS is

σ
(
θ∗)= dσ

dΩ∗ = 1

4

z2e4

μ2v4 sin4 1
2θ

∗ (1.114)

where we have putZ = −1. Since the electron mass is negligible compared to that of
the incident particle, μ∼=m. Also, the element of solid angle dΩ∗ = 2π sin θ∗dθ∗.
Therefore,

dσ = 2π sin θ∗dθ∗z2e4

4m2v4 sin4 1
2θ

∗ (1.115)

Using (1.112) and (1.113) in (1.115)

dσ

dW
= 2πz2e4

mv2W 2
(differential energy spectrum) (1.116)

This gives us the cross-section for finding the delta rays of energy W per unit of
energy interval.

1.6.2 Angular Distribution

Using the relations (1.111) and (1.115) and the expression for the element of solid
angle in the lab system dΩ = 2π sinφdφ, we obtain the differential cross-section
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for the delta rays in the LS:

σ(φ)= z2e4

m2v4 cos3 φ
(1.117)

where we have used the relations φ = 1
2φ

∗ = 1
2π − 1

2θ
∗. It follows that most of the

delta rays are emitted at large angles with correspondingly small energy. Note that
φ(max)= 90◦ for which W = 0. The fact that the delta rays can be emitted only in
the forward hemisphere implies that one can find the direction of the primary.

1.6.3 Delta Ray Density

For a 5 MeV proton W(max) = 2mv2 = 4Tm/M = 4 × 0.51 × 5/940 MeV =
10.85 keV. From (1.116), it is evident that the number of delta rays per cm of path is
inversely proportional to the primary energy; also it is greater for heavy primaries.
The observation of delta ray per cm density is very useful in establishing the charge
of heavy nuclei in cosmic radiation. The total number of δ-rays/cm with energy
>W1, is given by integrating (1.116) between the limits 2mv2 corresponding to the
maximum energy of delta rays and some arbitrarily lower value W1, and multiply-
ing the result by N , the number of electrons per cm3. This follows from the fact that
n(T , v), the number of δ-rays ejected in 1 cm = 1/λ=Σ =Nσ . We thus have:

n(T , v)= 2πNe4z2

mv2

(
1

W1
− 1

2mv2

)
(1.118)

Below the lower limit W1, the δ-rays are not recorded. Clearly, n(T , v) is an ar-
bitrary quantity as it depends on the choice of W1. It follows that for particles of
identical velocities but of different charges, n(T , v) varies as z2 and the distribu-
tions of the values of n(T , v) along the tracks of the particles would, apart from
statistical fluctuations, be similar in form. It is also seen that at a velocity less than
vc = √

(w1/2m) the primary would not produce δ-rays with energy > w1. Above
the critical value, the density would increase at a rate which depends on the variation
of the velocity of the particle along the track. The maximum value is attained for
v = √

(w1/m) which is simply obtained by maximizing n with respect to v. After
this, it varies approximately as 1/v2, as the second term in the brackets becomes
practically constant. The resulting distribution would thus increase to a maximum
and then slowly decrease (Fig. 1.36). The maximum value n(max) for a given par-
ticle of z2 may be compared with that obtained from similar observations on the
tracks of particles of known charge z1. Thus, the unknown charge z2 may easily be
obtained from the following condition:

n2/n1 = z2
2/z

2
1 (1.119)

It may be pointed out that this condition is also fulfilled for relativistic particles. It is
also possible to determine the mass of the primary particle by measuring the emis-
sion angle and the energy of the delta ray caused by the particle whose momentum
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Fig. 1.36 Variation of δ-ray
density with range for nuclei
of charges 2 to 26

p =Mv is known. We can rewrite (1.110)

W = 2mv2 cos2 φ = 2mp2

M2
cos2 φ (1.120)

From the measurement of W , φ and p, the mass M of the primary particle can
be deduced. This method is specially suited when the conventional methods do not
permit the particles to be identified. For example, in bubble chambers, this method
is commonly employed for the estimation of contamination of pions or muons in
kaon or antiproton beams.

1.7 Straggling

1.7.1 Theory

Identical charged particles, having the same initial velocity, do not have exactly the
same ranges. In other words, for a given energy loss the path length fluctuates. This
phenomenon is called Range straggling. Also, for a given path length the ioniza-
tion loss and therefore the energy loss fluctuate. This is called Energy straggling.
There is an intimate relation between the two. The observed ranges of individual
particles from any mono-energetic source will show a substantially normal distri-
bution about the mean range. The standard deviation of this distribution is of the
order of 1 per cent for a few MeV alphas in any absorber. The distribution is due to
the statistical fluctuations in the individual collisions between the charged particle
and atomic electrons, which are finite in number. The nuclear collisions, fewer in
number, which may cause substantial loss of energy specially towards the end of
the ranges, contribute to the short range tail of the distribution. For small energies,
however, this will be a small contribution and the distribution may be taken as ap-
proximately symmetrical. The harder collisions account for most of the straggling
and because very hard collisions are few in number, the actual distribution is some
what asymmetric, with a longer tail in the direction of short ranges and with a mean
range slightly shorter than the modal range.
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1.7.2 Energy Straggling

The energy straggling is produced when an initially mono-energetic beam of parti-
cles traverses a given thickness of the absorber. Let Ax be the number of collisions
per unit path length in which an energy between W , and W + dW is transfered.
Then, from (1.116) we have

Ax = 2πNz2e4W

mv2W 2
x

(1.121)

where N is the number of electrons/cm3. The energy transfer in a distance �r is
given by

�E =
∑
x

AxWx�r (1.122)

�E/�r =
∑
x

AxWx (1.123)

When the number of collisions is large, we may use integration rather than summa-
tion

dE

dr
= 2πNz2e4

mv2

∫ W(max)

W(min)

dW

Wx
(1.124)

The statistical fluctuations in energy loss �E arise from fluctuations about the av-
erage number of collisions Ax�r . We assume that the collisions are randomly dis-
tributed and that the S.D. is given by

√
Ax�r . The S.D. of the energy loss is then

Wx
√
Ax�r . The variance for all types of collisions is then given by the summation

of the individual variances

σ 2 =�r
∑
x

W 2
x Ax = 2πNz2e4�r

mv2

∫ W(max)

W(min)
dW

= 2πNZ2e4�r

mv2

[
W(max)−W(min)

]

where we have replaced the summation by integration. SinceW(min)�W(max)=
2mv2

σ 2 = 4πNz2e4�r (1.125)

If it is assumed that the actual energy loss has a Gaussian distribution around the
average value E0, the use of expression (1.125) for the S.D. in energy loss leads to

P(E)dE = dE√
8π2z2e4Nt

exp−
[
(E −E0)

2

8πNz2e4t

]
(1.126)

where t is the absorber thickness.



1.7 Straggling 65

Fig. 1.37 Energy distribution of an ‘unobstructed’ electron beam and the calculated and experi-
mental distributions of electrons that have passed through 0.86 g cm−2 of aluminum. (1) Landau
theory without density correction; (2) Landau theory with Fermi density correction; (3) experi-
ment; (4) incident beam [1]

In the case of fission fragments large energy losses in individual nuclear colli-
sions give rise to a tail on the side of higher energy losses of the distribution. The
straggling effects are much more important for electrons than for heavy particles,
because an electron may lose even half its energy in a single elastic collision, where
as a heavy particle may lose only a fraction of its energy. Radiation losses add further
to the electron straggling. Thus electron straggling reaches values of the order of 0.2
of the total energy loss. Figure 1.37 shows the energy distribution of electrons before
they have entered the absorber and after they have traversed 0.86 g/cm2 thickness
of aluminium.

1.7.3 Range Straggling

The fluctuations in range and energy loss are related. Denoting the S.D. of energy
and range by σE and σR respectively, we can use the formula for the propagation of
errors and write:

σ 2
R = (dR/dE)2σ 2

E (1.127)

Using (1.125), we get

σ 2
R = (dR/dE)24πNz2e4dR (1.128)

Writing dR = (dR/dE)dE, we get the result:

σ 2
R = 4πNz2e4

∫ E0

0

(
dE

dR

)−3

dE (1.129)

This relation is not applicable to heavy ions and fission fragments that undergo
excessive straggling owing to the occurrence of single nuclear collisions. Assuming
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Fig. 1.38 Measured ranges
of muons from π–μ decay in
emulsions of standard
composition

that the ranges of individual particles are distributed about the mean range in a
Gaussian way, the probability that the individual range falls between R and R+ dR
is

P(R)dR = dR

σR
√

2π
exp−[(R −R)2/2σ 2

R

]
(1.130)

For α particles from Polonium, E0 = 5.3 MeV, R = 3.84 cm in air, the correspond-
ing σR = 0.036 cm and the ratio σR/R = 0.9 %. Figure 1.38 shows the histogram of
ranges of μmesons produced in the decay of π+ mesons at rest. Since the π mesons
decay by a two-body process, μ+ is produced with unique energy (4.27 MeV). The
mean range in photographic emulsions is found to be 600 µm. The S.D. of the range
distribution is found to be, σR = 2.7 µm; this gives σR/R = 0.045, or 4.5 percent.

1.7.3.1 The Range Straggling Parameter

This is related to S.D. by

α0 = √
2σR (1.131)

Several common types of particle detectors measure the integrated number of parti-
cles. The particles that are still present in the collimated beam having ranges equal
or greater than R is given by

n= n0 −
∫ R

−∞
dn

where dn/n0 is given by the normal distribution

dn

n0
= 1

α
√
π

exp
[−(R −R)2/α2]dR (1.132)

dn is the actual range between R and R + dR, n0 is the total number of particles
initially present, and α is the half width of the range distribution at 1/e of the max-
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Fig. 1.39 The extrapolated
number-distance range Rn
exceeds the mean range R by
0.886α, where α is the
range-straggling parameter

imum. Although the normal distribution is non-integrable, its value can be found
from standard tables.

The number-distance curve, n/n0 against R, is indicated in Fig. 1.39. Its slope
(dn/n0)/dR at the mean range R = R is 1/α

√
π . As the central portion of the

number-distance curve is approximately linear, it can be extrapolated to cut the
range axis at R = Rn. This is called extrapolated range. From Fig. 1.39, we find
the relation between Rn and R

1
2

Rn −R = 1

α
√
π

(1.133)

whence the mean range, in term of the measured extrapolated range Rn and strag-
gling parameter a, is

R =Rn − 1

2

√
πa =Rn − 0.886α (1.134)

1.7.3.2 Deduction of Ranges Parameter

For particles of charge ze and mass M but the same initial velocity v0 as alpha-
particles

σR =
[

4πNz2e4
∫ E0

0

(
dE

dR

)−3

dE

]1/2

dE

dR
= z2f (v0)N, since

dE

dR
= 2πz2e4N

mv2

∫ w(max)

w(min)

dw

w

dE = d(Mv2)=Mvdv and σR =
√
M

Nz2
f (v0, I )

R = Mf ′(v0, I )

Nz2
(1.135)
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σR

R
= 1√

M
f ′′(v0, I ) (1.136)

where f , f ′, f ′′ are complicated functions of the initial velocity v0, mean excitation
and ionization potential I . The function f ′′ and hence σR/R are independent of N
and of z but is found to decrease slowly with increasing I .

For particles of massM having the same initial velocity v0 as the α particles,

(α0/R)M

(α0/R)α particle
=
√

4

M
(1.137)

It follows that protons will have about twice the range straggling parameter of α-
particles which have the same initial velocity and hence about the same range.

1.8 Cerenkov Radiation

Electromagnetic radiation is emitted when a charged particle passes through a
medium in which its velocity v = βc exceeds the phase velocity c/μ, where μ is the
refractive index of the medium. This observation was discovered by Cerenkov and
was explained theoretically by Frank and Tamm. The effect was first observed in the
experiments of Cerenkov who was investigating the glow in pure liquids caused by
γ rays from radium. Vavilov and Cerenkov showed that the radiation is not due to
luminescence (emission from excited atoms and molecules of the medium) but due
to the passage of knock-on electrons produced in Compton scattering of γ rays. The
radiation is instantaneous and possesses a sharply pronounced spatial symmetry.

When relativistic charged particles are incident on a transparent dielectric, the
velocity of the particle is substantially unchanged except for the ionization and ra-
diation losses. On the other hand, the electric field due to the charge of the particle
and the magnetic field produced by the moving charge are propagated through the
medium with velocity of only c/μ. The resulting electromagnetic radiation is can-
celled in all directions if βμ< 1; however, if βμ> 1, constructive interference can
take place in one direction defined by angle θ (Fig. 1.40). When βc > c/μ, i.e. the
particle velocity exceeds the velocity of light in the medium it is as if the particle
runs away from its own slower electromagnetic field, resulting in the emission of
all frequencies for which βμ > 1. The resulting radiation called Cerenkov radia-
tion is emitted on a conical surface BDA of half angle a0. Figure 1.40 gives the
Huyghens’ construction for the electromagnetic waves emitted by the particle along
its path. The particle is at A at t = 0; and at a later time it moves on to D such that
AD = βct . The front of the electromagnetic wave lies on the surface of the cone of
half angle α. Consequently the corresponding rays of light make an angle θ with the
path of the particle. The axis of the cone coincides with the direction of the incident
particle and the half angle of the cone is determined by:

sinα = cos θ = (c/μ)t

βct
= 1

βμ
(1.138)



1.8 Cerenkov Radiation 69

Fig. 1.40 Huyghens’
construction for
electromagnetic waves
emitted by a moving charged
particle

This follows from the condition that the optical difference in the path of the waves
emitted by the moving particle at various points of its trajectory is equal to zero.
The light is polarized with its electric vector in the plane of the conical surface
and radially directed along DB . The conical distribution of the Cerenkov radiation
has a natural half width of the order of a few degrees. This is attributed to the oc-
currence of successive changes in particle velocity when photons are emitted. The
phenomenon is analogous to the V-shaped shock wave observed in acoustics when
a projectile or an aeroplane travels with supersonic velocity. Apart from (1.138),
there are two other conditions that must be fulfilled to achieve coherence. These
are (i) pathlength of the particle in the medium must be large compared with the
wavelength of the radiation, otherwise diffraction effects become dominant and (ii)
velocity of the particle must remain constant during its passage through the medium.

For a medium of a given refractive index μ, there is a threshold velocity
β(min) = 1/μ, below which no radiation is emitted. At this critical velocity, the
direction of radiation coincides with that of the particle. For glass (μ = 1.5),
β(min) = 0.667, corresponding to 200 keV electrons or 320 MeV protons. As the
refractive index decreases, the threshold velocity increases. For an ultra-relativistic
particle, for which β � 1, there is a maximum angle of emission given by θ(max)=
cos−1(1/μ).

Fermi showed that Cerenkov radiation results from small energy transfers to dis-
tant atoms due to the fast moving charged particles which is subsequently emitted as
a coherent radiation. Thus the emission of Cerenkov radiation is a particular form of
energy loss in extremely soft collisions. The classical theory of Cerenkov effect is
originally due to Frank and Tamm and is justified by the quantum theory. Since the
radiation in question is believed to be the result of the interaction with the medium
as a whole and not due to the interaction of particles with individual atoms, the
medium is considered as continuous and is characterized by the macroscopic pa-
rameter, the dielectric constant or by the refractive index. It is shown that the rate of
energy loss per unit path length is given by:

−dE
dx

= 4π2z2e2

c2

∫
βμ>1

[
1 − 1

β2μ2

]
νdν ergs/cm (1.139)

where ze is the charge of the particle and ν is the frequency of the emitted radi-
ation. The integration is to be carried over all frequencies for which βμ > 1. For
glass or Lucite, the energy loss by Cerenkov radiation is of the order of 1 keV/cm,
a value which is much less than that incurred in ionization or radiation. Nonetheless
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the radiation is readily detected as a large number of photons are produced in the
visible region. Formula (1.139) shows that the Cerenkov radiation is independent
of the rest mass of the moving particle and depends only on the particle’s charge
and velocity, apart from the refractive index of the medium. The mean number of
photons of frequency ν and ν + dν in the visible region per cm is calculated in Ex-
ample 1.35, under the assumption that μ is independent of ν in the considered range
of frequencies. Hence

N(ν)dν = 4π2z2e2

hc2

(
1 − 1

μ2β2

)
dν = 2πz2dν sin2 θ

137c
(1.140)

The radiation has continuous spectrum, with components of all frequencies for
which the refractive indices are higher than 1/β . Equation (1.139) shows via the
term νdν which is proportional to dλ/λ3 that the energy per wavelength interval dλ
is proportional to 1/λ3. Also, (1.140) shows through the term dυ that the number
of quanta per cm per wavelength interval is proportional to 1/λ2. It follows that
shorter wavelengths are preferred and the Cerenkov radiation appears visually as
bluish white.

The density effect is closely connected with the phenomenon of Cerenkov effect.
It was first pointed out by Bohr that the intricate relationship between the density
effect and the Cerenkov effect is such that the entire contribution to the most prob-
able energy loss from the minimum out to the beginning of the Fermi plateau in the
ionization curve is due to Cerenkov effect.

Example 1.33 Pions and muons each of 160 MeV/c momentum pass through a
transparent material. Find the range of the index of refraction of this material over
which the muons alone give Cerenkov light. Assume mπc2 = 140 MeV, mμc2 =
106 MeV.

Solution Momentum, p =mβγ c. Therefore, β√
1−β2

= cp

mc2

Pions:
cp

mπc2
= 160

140
= 8

7
= β√

1 − β2

βπ = 0.7525; μπ = 1

βπ
= 1

0.7525
= 1.33

Muons:
cp

mμc2
= 160

106
= β√

1 − β2

βμ = 0.8336; μμ = 1

βμ
= 1

0.8336
= 1.2

Therefore, the range of the index of refraction of the material over which the muons
alone give Cerenkov light is 1.2–1.33.
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Example 1.34 A beam of protons moves through a material whose refractive index
is 1.6. Cerenkov light is emitted at an angle of 15° to the beam. Find the kinetic
energy of the proton in MeV.

Solution

β = 1

μ cos θ
= 1

1.6 cos 15◦ = 0.647

γ = 1√
1 − β2

= 1√
1 − (0.647)2

= 1.31

K.E. = (γ − 1)mc2 = (1.31 − 1)× 938 = 292 MeV

Example 1.35 The rate of loss of energy by production of Cerenkov radiation is
given by the relation

−dW/dl = z2e2

c2

∫ (
1 − 1

β2μ2

)
ωdω erg cm−1

where βc is the velocity of the of charge ze, μ is the refractive index of the medium
and ω/2π is the frequency of radiation. Estimate the number of photons emitted
in the visible region, per cm of track, by a particle having β = 0.8 passing through
glass (μ= 1.5). The fine structure constant α = e2/�c= 1/137.

Solution For electron, z= −1 and since ω = 2πν, the given expression becomes
upon integration between the frequencies ν1 and ν2

−dW/dl = 4π2e2

c2

(
1 − 1

β2μ2

)
(ν2

2 − ν2
1)

2

where we have assumed that μ is independent of ν.
Calling the average photon energy as hν = 1

2h(ν1 + ν2), the average number of
quanta emitted per cm is

N = 1

hν

(−dνc
dl

)
= 4π2e2

hc2

(
1 − 1

β2μ2

)
(ν2 − ν1)

= 2π

137

(
1 − 1

β2μ2

)(
1

λ2
− 1

λ1

)

where λ = c/ν is the vacuum wavelength and μ is the average refractive index
over the wavelength interval from λ2 = 4000 Å to λ1 = 8000 Å and βμ = 0.8 ×
1.5 = 1.2.

N = 2π

137

(
1 − 1

1.22

)(
1

4000 × 10−8
− 1

8000 × 10−8

)
= 175 photons
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1.9 Identification of Charged Particles

In numerous investigations in nuclear physics and particle physics it is necessary
to determine the nature and energy of charged particles. In order to identify a par-
ticle, its charge and mass must be determined. The charge may be determined by
δ-ray density or width measurements in photographic emulsions or pulse height in
scintillation counters or proportional counters or solid state detectors.

Assuming that the charge is known, the mass of the particle can be determined
from the simultaneous measurements of at least two dynamical quantities such
as momentum and velocity, momentum times velocity and −dE/dX, −dE/dX
and E.

1.9.1 (a) Momentum and Velocity

Momentum can be determined from curvature measurement in a cloud chamber or
in a bubble chamber with low Z liquid with known magnetic field or in photographic
emulsions with pulsed magnetic field.

Velocity may be estimated by the estimation of ionization through drop density
in a cloud chamber, bubble density in a bubble chamber, grain density, blob density
or mean gap length in photographic emulsions or by Cerenkov counters or time-of-
flight method.

1.9.2 (b) Momentum Times Velocity (pβ) and Velocity

The product pβ is determined from the mean scattering angle in emulsions for en-
ergetic particles. The velocity is measured as in Sect. 1.9.1.

1.9.3 Energy and Velocity

Energy may be determined from range measurements for low energy particles and
velocity as in Sect. 1.9.1.

1.9.4 Simultaneous Measurement of dE/dx and E

This method is widely used in the study of nuclear reactions using solid state de-
tectors, since for non-relativistic particles the product EdE/dx is proportional to
z2M . A simultaneous measurement of E and dE/dx and their product permits the
separation of the particles according to their masses in a wide range of energy vari-
ations.
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1.9.5 Energy and Emission Angle

Energy and emission angle measurement of knock-on electron (δ-ray) together with
the momentum measurement of the beam particles.

This method is very useful in case the conventional methods are not available.
The method is explained in Sect. 1.6.3.

1.10 Bremsstrahlung

In their passage through matter, electrons lose energy in two ways (i) ionization
(which was referred to in Sect. 1.5.1) and (ii) radiation or Bremsstrahlung. The elec-
trons undergo radiative collisions mainly with the atomic nuclei of the medium. In
the vicinity of the nucleus of charge Ze, the incident particle of charge ze and mass
m undergoes acceleration which is proportional to zZ/m. According to electro-
dynamics, a charged particle undergoing acceleration emits radiation. This is called
Bremsstrahlung or braking radiation whose spectrum has the form dE/E where E
is the photon energy. The photon energy spectrum extends from low energy to the
maximum value equal to the particle energy, with the low energy photons being
preferably emitted (see Fig. 1.41 for typical energy spectrum). The radiation inten-
sity is proportional to z2Z2/m2. This then means that under identical conditions,
radiation losses are 3 × 106 times as much for electron as for a proton. The total
average energy loss per path length dx integrated over all frequencies is given by

−(dE)rad = 4Z(Z + 1)

137
NEr2

e ln
183

Z1/3
dx (1.141)

where N is the number of nuclei per cm3, E is the energy of electron and re =
e2/mc2 is the classical electron radius.

Since an electron may lose appreciable energy in a single collision, the actual
energy loss may vary significantly from the average value given by (1.141). This also
implies that the range straggling of electrons would be so great that the definition of
mean range would hardly be meaningful. If we define the radiation length X0 by

1

X0
= 4Z(Z + 1)

137
r2
e N ln

183

Z1/3
(1.142)

we can write from (1.141)

dE

dx
= − E

X0
(1.143)

Integrating (1.143), we find the average energy of a beam of electrons of initial
energy E0 after traversing a thickness x of medium by the expression

〈E〉 =E0 exp(−x/X0) (1.144)
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Fig. 1.41 Energy distribution of the radiation emitted by an electron. Ordinate intensity of radi-
ation (quantum energy times number of quanta) per unit frequency interval. Abscissa, energy of
emitted quantum as a fraction of the energy of the emitting electron. The numbers on the curves
indicate the energy of the electron in units of mc2. Solid curves for lead, including effect of screen-
ing. Dotted curves are without screening, valid for all Z [3]

For x =X0, 〈E〉 =E0/e, where e is the exponential. This suggests that the radiation
length X0 may be simply defined as that thickness of the medium which reduces the
beam energy by a factor of e. Since the thickness x can be measured in cm or g/cm2

(which is obtained by multiplying the thickness in cm by the density of the medium)
X0, is expressed in corresponding units. At low electron energies (E � mc2), the
electrons lose their energy predominantly through excitation and ionization, and
radiation loss is unimportant. The energy loss by ionization and excitation is pro-
portional to Z and is practically constant at high energies as it increases only loga-
rithmically with energy. On the other hand, radiation losses are proportional to Z2

and increase linearly with energy. Thus, the radiation loss predominates at high en-
ergies. It is apparent that at some energy Ec, called the critical energy, Erad =Eion.
It can be shown that roughly

(dE/dx)rad

(dE/dx)ion
= EX

600
(1.145)

so that Ec (in MeV)= 600/x. The radiation lengths X0 and the critical energy Ec,
for some of the materials are shown in Table 1.1. Observe thatX0, decreases rapidly
with increasing Z.

1.11 Questions

1.1 Why in Rutherford scattering the presence of orbital electrons in the target
atom is ignored?

1.2 The total cross-section for Rutherford scattering is infinite. What is the physical
reason?
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Table 1.1 Radiation lengths
and critical energy in
different elements

Element Z X0 (g cm−2) Ec (MeV)

Hydrogen 1 58 340

Carbon 6 42.5 103

Air 7.2 36.5 83

Aluminium 11 23.9 47

Iron 26 13.8 24

Lead 82 5.8 6.9

1.3 Why in the famous a-scattering experiment thin foils were used for the target?

1.4 If the incident electron enters the nucleus, would the Coulomb’s inverse square
law between the charges be still valid? If not, how would it be modified for a nucleus
in which the charge is uniformly distributed?

1.5 Why does the ionization fall off for very low particle velocity?

1.6 The inverse square velocity law for ionization would suggest that the rate of
energy loss is greater at low speeds, since the time spent by the incident particle in
the vicinity of the electron is longer. Is this reasonable? In the same manner would
a slow moving heavenly object raise larger tides on approaching close to the earth
compared to a fast moving one?

1.7 What is the physical origin of the rise in the −dE/dx curve beyond the mini-
mum?

1.8 At relativistic velocities, the −dE/dx curve saturates to a plateau. What is the
origin of the plateau?

1.9 In the cloud chamber studies of ionization, the plateau-to-trough ratio for the
−dE/dx curve might be as large as 1.5, but in photographic emulsions it is no more
than 1.1. Explain.

1.10 How does the percentage straggling compare for 3H and 3He nuclei of the
same initial velocity?

1.11 A cloud chamber photograph shows an alpha track which after certain dis-
tance gets thinned down and then disappears. It again re-appears before it stops.
What is happening?

1.12 The range of a proton of few MeV is a measure of its initial energy. The energy
thus estimated would be close to the actual value within few per cent. However, in
the case of electrons of similar energy, the energy thus estimated can hardly be
reliable. Explain.
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1.13 The tracks of fission fragments often leave peculiar branches before coming
to a rest. Explain.

1.14 A water cooled nuclear reactor appears bluish. What could be the origin of
this colour?

1.15 A charged particle moves swiftly with uniform velocity in a vacuum. Would
it radiate?

1.16 What is the dominant mechanism for energy loss for electrons of energy
(a) <1 MeV, (b) 200–500 MeV?

1.12 Problems

1.1 Show that in an elastic collision, the ratio of the kinetic energy K ′/K can be
expressed through α =M/m and y = cos θ as

K ′

K
= (1 + α)−2[2y2 + α2 − 1 + 2y

√
a2 + y2 − 1

]

1.2 A body of mass M rests on a smooth table. Another of mass m moving with
a velocity u collides with it. Both are perfectly elastic and smooth and no rotations
are set up by the collision. The body M is driven in a direction at an angle φ to the
previous line of motion of the body m. Show that its velocity is

2mu

M +m cosφ

1.3 A nucleus A of mass 2m moving with velocity u collides inelastically with
the nucleus B of mass 10m. After the collision, the nucleus A travels at 90° with
the incident direction, while B proceeds at an angle 37° with the incident direction.
(a) Find the speeds of A and B after the collision. (b) What fraction of the initial
kinetic energy is gained or lost due to the collision?
[Ans. (a) vA = 3u/4; vB = u

4 ; (b) 1/8]

1.4 A beam of alphas gets scattered from a hydrogen target. What is the maximum
angle of scattering?
[Ans. approximately 15°]

1.5 An alpha particle fired into a cloud chamber undergoes an elastic collision with
a nucleus of the gas used to fill the chamber. The collision is recorded photograph-
ically as a forked track. Measurements from the photograph show that the collision
deviated the alpha-particle at 60° and that the struck nucleus recoiled at an angle of
30° with the direction of motion of the incident alpha-particle. Assuming that the
struck nucleus is initially at rest, calculate:
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(a) The mass number of the gas used to fill the chamber.
(b) The ratio of the velocity of projection of the struck nucleus to the velocity of

the incident alpha particle.

[Ans. (a) 4; (b)
√

3]

1.6 A particle of mass m makes an elastic collision with a proton, initially at rest.
The proton is projected at an angle 22.1° whilst the incident particle is scattered
through an angle 5.6° with the incident direction. Estimate m in atomic mass units.
[Ans. 7.8]

1.7 Consider an elastic collision between an incident particle having mass m and a
target particle of massM such thatm>M . Show that the largest possible scattering
angle θ(max) in the lab system is given by: sin θ(max) =M/m; and that this cor-
responds to C-system angle cos θ∗(max) = −M/m. Also show that the maximum
recoil angle φ(max) is given by sinφ(max)= √

(m−M)/2m. Calculate the angle
θ(max)+φ(max) for elastic collisions between the incident deuterons and the target
protons.
[Ans. 60°]

1.8 A billiard ball moving at a speed of 2.5 m/s makes a glancing collision with
another identical ball initially at rest. After the collision, one ball is observed to
move with a speed 2 m/s at an angle 37° with the original direction of motion. Find
the speed of the other ball and the angle at which it moves. What is the nature of the
collision?
[Ans. 1.5 m/s, 53°, elastic]

1.9 If a particle of mass m moving with kinetic energy K0 makes elastic collision
with a target particle of mass M initially at rest, such that the scattered particle is
deflected at an angle θ in the lab system and has θ∗ in the centre of mass system and
has a kinetic energy K in the lab system, show that:

K

K0
= 1

(M +m)2
[
m cos θ +M cos

(
θ∗ − θ)]2

1.10 A particle of massm and initially of velocity umakes an elastic collision with
a particle of mass M initially at rest. After the collision m is deflected through lab
angle 90° with speed u/

√
3. The particle M recoils with speed v at a lab angle φ

with the incident direction. Find (a) M/m, (b) v/u, (c) φ, (d) θ∗, (e) φ∗.
[Ans. (a) 2, (b) 1/

√
3, (c) 30°, (d) 120°, (e) 60°]

1.11 A deuteron of velocity u strikes another deuteron (twice the mass of pro-
ton) initially at rest. As a result of the collision, a proton is produced which moves
off at 45° with respect to the direction of incidence. The other product of this re-
arrangement collision is triton (three times the mass of proton). Assuming that this
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collision may be approximated to an elastic collision, calculate the speed and direc-
tion of triton in the lab and CM system.
[Ans. 0.48 u, 34° in the lab system and u/2

√
3, 111° in the CM system]

1.12 An α-particle from a radioactive source collides with a stationary proton and
continues with a deflection of 13.9°. Find the direction in which the proton moves.
[Ans. 30°]

1.13 When α-particles of kinetic energy 30 MeV pass through a gas, they are
found to be elastically scattered at angles up to 30° but not beyond. Explain this,
and identify the gas. In what way, if any, does the limiting angle vary with energy?
[Ans. Deuterium, does not vary]

1.14 A perfectly smooth sphere of mass m, moving with velocity v collides elas-
tically with a similar but initially stationary sphere of mass m2 (m1 > m2) and is
deflected through an angle θL. Describe how this collision would appear in the cen-
tre of mass frame of reference and show that the relation between θL and the angle
of deflection θM , in the centre of mass frame is

tan θL = sin θM
[M1/M2 + cos θM ]

Also show that θL cannot be greater than about 19.5° ifM1/M2 = 3.

1.15 Show that the maximum velocity that can be imparted to a proton at rest by a
non-relativistic alpha particles is 1.6 times the velocity of the incident alpha particle.

1.16 Show that for low energy p–p scattering σ(θ)= 4σ(θ∗) where the differen-
tial cross-sections σ(θ) and σ(θ∗) refer to the Lab and CMS, respectively.

1.17 (a) Compute the distance of closest approach in collisions between α-particles
of energy 8.9 MeV and nuclei of 208

82 Pb.
(b) How is this distance related to the radius of lead nucleus?
(c) What is the deflection of the α-particle when the impact parameter is equal to

this distance?
[Ans. (a) 26.5 fm, (b) 7.7 fm, (c) 53°]

1.18 A beam of α-particles of kinetic energy 4.5 MeV passes through a thin foil
of 9

4Be. The number of alphas scattered between 60° and 90° and between 90° and
120° is measured. What would be the ratio of these numbers?
[Ans. 3]

1.19 If the probability of α-particles of energy 8 MeV to be scattered through an
angle greater than θ on passing through a thin foil is 10−3 what is it for 4 MeV
protons passing through the same foil?
[Ans. 10−3]
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1.20 What α-particle energy would be necessary in order to explore the field of
force within a radius of 10−12 cm of the centre of nucleus of atomic number 80,
assuming classical mechanics to be adequate?
[Ans. 30 MeV]

1.21 In an elastic collision with a heavy nucleus, when the impact parameter b is
just equal to the collision radius 1

2R0, what is the value of the scattering angle θ∗ in
the CMS?
[Ans. 90°]

1.22 In the elastic scattering of deuterons of 5.9 MeV from 208
82 Pb, the differential

cross-section is observed to deviate from Rutherford’s classical prediction at 52°.
Use the simplest classical model to calculate the closest distance of approach d
to which this angle of scattering corresponds. You are given that for an angle of
scattering θ , d is given by 1

2d0(1 + cosec 1
2θ), where d0 is the value of d in a head-

on collision.
[Ans. 32.8 fm]

1.23 20000,1 MeV α-particles are incident normally on a 0.004 mm thick copper
plate. Using the small angle approximation, calculate the number of α-particles scat-
tered in the angular range 5°–10°. Assume the copper nuclei to act as point charges
and neglect nuclear forces. Density of 66.6

29 Cu = 8.9 g cm−3; Avagadro’s number

= 6 × 1023 (g molecule), e= 1.6 × 10−19 C; 1 eV = 1.6 × 10−19 J.
[Ans. 7894]

1.24 Given that the angle of scattering is 2 tan−1(a/2b), where ‘a’ is the least
possible distance of approach, and b is the impact parameter. Calculate what fraction
of a beam of 1.0 MeV deuterons will be scattered through more than 90° by a foil
of thickness 10−5 cm of a metal of density 5 g cm−3 atomic weight 100 and atomic
number 50.
[Ans. 1.22 × 10−5]

1.25 Show that the differential cross-section for the recoil nucleus in the lab system
is given by

σ(φ)= (
zZe2/2T

)2 1

cos3 φ

1.26 An electron of energy 10 keV approaches a bare nucleus (Z = 20) with an
impact parameter corresponding to an orbital angular momentum �. Sketch the form
of the potential energy curve for the electron trajectory and calculate the distance
from the nucleus at which this has a minimum (take �= 10−34 J s, e= 1.6×10−19 C
and m= 10−30 kg).
[Ans. 0.19 Å]
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1.27 A beam of protons of 5 MeV kinetic energy traverses a gold foil. One particle
in 5 × 106 is scattered so as to hit a surface 0.5 cm2 in area at a distance 10 cm from
the foil and in a direction making an angle of 60° with the initial direction of the
beam. What is the thickness of the foil?
[Ans. 0.0066 µm]

1.28 A narrow beam of protons with velocity v = 6 × 106 m/s falls normally on a
silver foil of thickness t = 1.0 µm. Find the probability of the protons to be scattered
into the backward hemisphere (θ > 90◦).
[Ans. 0.006]

1.29 A narrow beam of alpha particles with K.E. 0.5 MeV falls normally on a
golden foil whose thickness is 1.5 mg/cm2. The beam intensity is 5 × 105 particles
per sec. Find the number of alpha particles scattered by the foil during the time
interval of 30 minutes into angular interval 59–61°.
[Ans. 1.6 × 106]

1.30 A narrow beam of alpha particles falls normally on a silver foil behind which
a counter is set to register the scattered particles. On substitution of platinum foil of
the same mass thickness for the silver foil, the number of alpha particles registered
per unit time increases 1.52 times. Find the atomic number of platinum, assuming
the atomic number of silver and the atomic masses of both platinum and silver to be
known.
[Ans. 78]

1.31 A narrow beam of alpha particles with kinetic energy 1.0 MeV falls normally
on a platinum foil which is 1.0 µm thick. The scattered particles are observed at an
angle of 60° to the incident beam direction by means of a counter with a circular
sensitive area 1.0 cm2 located at a distance 10 cm from the scattering section of
the foil. What fraction of scattered alpha particles enters the counter? Assume the
density of platinum as 21.5 g/cm3.
[Ans. 3.33 × 10−5]

1.32 Singly charged particles of masses m1 and m2 enter a medium with the same
velocity. Show that the ratio of their ranges R1/R2 =m1/m2.

1.33 Show that a deuteron of energy E has twice the range of a protons of energy
E/2.

1.34 If the mean range of 8 MeV proton in a medium in 0.30 mm, calculate the
mean range of 16 MeV deuterons and 32 MeV α-particles.

1.35 An alpha particle moving with velocity 2 × 109 cm/sec, loses energy
0.066 MeV/mm by ionization in air and has range 7.86 cm in air. (a) Find the rate of
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loss of energy per mm in air for proton and deuteron moving with the same initial
velocity as alpha particle. (b) Find the range of proton and deuteron.
[Ans. (a) 0.0165 MeV/mm for both, (b) 7.86 cm, 15.72 cm]

1.36 Estimate by the Bragg-Kleeman rule the mean range of 12 MeV deuterons in
cobalt, if their mean range in air at 15 °C, 760 mm Hg is 93 cm. Assume the density
of cobalt to be 8.6 g/cm3.
[Ans. 0.0266 cm]

1.37 Show that the range of α-particles and protons of energy 1 to 10 MeV in
aluminium is 1/1600 of the range in air at 15 °C, 760 mm of Hg.

1.38 Show that the straggling of a beam of 4He is smaller than that of 3He of equal
range.

1.39 Compute the energy loss and the approximate number of quanta of visible
light (λ= 4000 to 7000 Å) as Cerenkov radiation by a 20 MeV electron in traversing
1 cm of Lucite. Assume the chemical composition of Lucite to be (C5H8O2), and
the refractive index μ= 1.5.
[Ans. 660 eV/cm, 270 quanta/cm]

1.40 Show that the order of magnitude of the ratio of the rate of loss of kinetic
energy by radiation for a 10 MeV deuteron and a 10 MeV electron passing through
lead is 10−5.

1.41 Compute the energy loss and the approximate number of quanta of visible
light (λ= 4000 to 7000 Å) as Cerenkov radiation by a 20 MeV electron in traversing
1 cm of Lucite. Assume the chemical composition of Lucite to be (C5H8O2), and
the refractive index μ= 1.5.

1.42 Extensive air showers in cosmic rays consist of a ‘soft’ component of elec-
trons and photons, and a ‘hard’ component of muons. Suppose at the sea level the
central core of a shower consists of a narrow vertical beam of muons of energy
100 GeV which penetrate the interior of the earth. Assuming that the ionization loss
in rock is constant at 2 MeV g−1 cm2, and the rock density is 3.0 g cm−3, find the
depth of the rock through which the muons can penetrate.
[Ans. 160 m]
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Chapter 2
Passage of Radiation Through Matter

2.1 Kinds of Interaction

Electromagnetic radiation, in its passage through matter, interacts in a variety of
ways. The type of interaction depends on (1) photon energy, (2) Z of the material
and (3) particle or field with which the photon interacts.

There is a basic difference between the energy loss of photons and that of charged
particles. The charged particles lose their energy mainly due to ionization, leaving
constant range at a given energy. However, photons lose their energy by a one shot
process. This leads to a truly exponential attenuation.

There are a number of processes through which photon can interact with matter.
Fano has classified them systematically.

Kinds of interaction Effects of interaction

(a) Interaction with atomic electrons (x) Complete absorption
(b) Interaction with nucleus (y) Elastic scattering (coherent)
(c) Interaction with the electric field
surrounding nuclei or electrons

(z) Inelastic scattering (incoherent)
surrounding nuclei or electrons

(d) Interaction with the nuclear field

There are 12 ways in which the two columns can be combined. Thus, in principle
there are 12 different processes by which photons can be absorbed or scattered. Of
these, three major processes are found to be important. They are the Compton effect
(az), Photo electric effect (ax) and Pair production (cx). The minor effects are as
follows:

Rayleigh scattering (ay)
It occurs with tightly bound electrons. It is coherent and follows the 1/λ4 law.
For large hν and small z, Rayleigh scattering is negligible in comparison to the
Compton scattering.

Thomson scattering by the nucleus (by)
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Nuclear resonance scattering (bz)
It involves the absorption of incident photon by a nucleus and its re-emission. Un-
like the atomic case the resonant absorption and scattering are difficult to achieve.
The details are given in Sect. 2.5. The breakthrough came with the discovery of
Mossbauer effect.

Del Bruck scattering (cy)
This is a minor effect which involves nuclear potential scattering through virtual
electron pair formation in the field of the nucleus.

Photodisintegration of nuclei (bx)
Examples are the reactions of 9Be(γ,n)8Be and 2H(γ,n)p. The cross-sections are
small in comparison to the Compton effect.

Meson production (dx)

γ + p→ n+ π+

The threshold for photomesic production is 150 MeV. The cross-sections, how-
ever, are less by two orders of magnitude compared to meson production in NN
collisions, and lesser still in comparison with the pair production.

2.2 The Compton Effect

The process of photon scattering by a free electron with reduced frequency is known
as Compton scattering, named after Compton [2]. The effect can be explained by the
quantum theory.

Here, the incident photon of energy hν0 and momentum hν0/c collides elasti-
cally with an electron assumed to be stationary. As a result of the collision, the
photon is scattered at some angle θ with reduced energy hν and momentum hν/c

and the electron recoils at an angle φ with kinetic energy T and momentum p. The
incident photon, the scattered photon and the recoil electron are coplanar in order to
conserve momentum.

2.2.1 Shift in Wavelength

Energy conservation gives

T = hν0 − hν (2.1)

Taking x-axis as the incident direction, momentum conservation along x- and y-axis
gives (Fig. 2.1)

hν0

c
= hν

c
cos θ + pe cosφ (2.2)

0 = hν

c
sin θ − pe sinφ (2.3)
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Fig. 2.1 The Compton effect

Also, momentum and kinetic energy of an electron are relativistically related

c2p2
e = T 2 + 2Tmc2 (2.4)

where mc2 = 511 keV is the rest mass energy of electron. The angle φ can be
eliminated between (2.2) and (2.3). Using (2.1) and (2.4) in the resulting equation
after some simplification we obtain the change in wavelength

�λ= λ− λ0 = h

mc
(1 − cos θ)= 2h

mc
sin2 θ

2
(2.5)

Formula (2.5) shows that the shift in wavelength in Compton scattering in a given
direction is independent of the incident energy

The quantity

λc = h

mc
= 2.43 × 10−12 m (2.6)

is known as the Compton wavelength. Maximum shift in wavelength occurs for
θ = 180◦, that is, when the photon is scattered completely in the backward direction

(�λ)max = 2h

mc
= 2λc (2.7)

2.2.2 Shift in Frequency

Using the relations

λ0 = c

ν0
and λ= c

ν

In (2.5) the frequency of the scattered photon with α = hν0/mc
2 can be calculated.

The parameter α measures the photon energy in terms of electron’s rest mass energy.

ν = ν0

1 + α(1 − cos θ)
(2.8)
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and the change in frequency

�ν = ν0 − ν = ν0α(1 − cos θ)

1 + α(1 − cos θ)
(2.9)

Formula (2.9) shows that the shift in frequency (or energy) of the photon in a given
direction is strongly dependent on the incident energy. From (2.9) we find that the
energy imparted to the electron is

K = hν0 − hν = αhν0(1 − cos θ)

1 + α(1 − cos θ)
(2.10)

Maximum fractional loss of energy is obtained for θ = 180◦ in (2.10)

�Emax

E0
= 2α

1 + 2α
(2.11)

When the incident energy is small (α � 1), the photon energy is not appreciably
changed in the scattering process whereas for high energies (α 
 1), the photon
can lose nearly all its energy to the electron. In the high energy limit, the energy of
the photon which is scattered completely backward (θ = 180◦), approaches a value
of (1/2)mc2 = 0.25 MeV. In this case, the electron recoils in the extreme forward
direction (φ = 0◦), and receives the maximum kinetic energy which is given by

Kmax = 2αhν0

1 + 2α
(2.12)

When photons of fixed energy are used, the electrons have a continuous energy
spectrum ranging from zero to the maximum given by (2.12).

2.2.3 Angular Relation

The scattering angle θ and the recoil angle φ are related to each other. Eliminating
pe in (2.2) and (2.3) using (2.8), we get,

cotφ = (1 + α) tan
θ

2
(2.13)

A small θ implies large φ and vice versa. The photon can be scattered at all angles
(0 < θ < 180◦). But the electron can recoil only in the forward hemisphere (0◦ <
φ < 90◦).

2.2.4 Differential Cross-Section

Applying Dirac’s relativistic theory of the electron, Klein and Nishina [9] obtained
a formula for the differential cross-section for Compton scattering. The differential
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Fig. 2.2 The Compton-
scattering cross-section for
various incident energies. The
polar plot shows the intensity
of the scattered radiation as a
function of the scattering
angle θ [5]

scattering cross-section per electron for unpolarized radiation is given by

dσ

dΩ
= r2

0

2

(
ν

ν0

)2(
ν0

ν
+ ν

ν0
− sin2 θ

)
(2.14)

where ν is given by (2.8), r0 = e2/4πε0mc
2, is the classical electron radius and

dΩ = 2π sin θdθ is the solid angle in which photons of energy hν0 are scattered.
Figure 2.2 is a polar plot of (2.14). Observe the tremendous increase m the fraction
of backward scattered photons as α increases.

2.2.5 Spectrum of Scattered Radiation

Figure 2.3 shows the spectrum of radiation scattered at 90° from a carbon target,
when irradiated by monochromatic X-rays of wavelength λ0 = 0.707 A. The spec-
trum of scattered X-rays shows the unmodified line p and the modified or shifted
line s, as observed by Compton.

The presence of the unmodified line in Fig. 2.3 can be explained as follows: in
deriving formula (2.5) for the wavelength shift, it was assumed that the incident
photon collides with a free electron. However, it is possible that at energy not much
greater than the binding energy of the electron, the electron may appear bound in
some of the scattering events. In such cases, the target mass m will not be that of the
electron but that of the atom as a whole. If we substitute the mass of the atom which
is much larger than that of the electron as m in (2.5), we find �λ to be negligibly
small. This is analogous to the scattering of a gas molecule against a rigid wall in
which there is no loss of energy.

At very low frequencies, the scattered photon has the same frequency as that of
the incident radiation. This corresponds to scattering from bound electron, known as
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Fig. 2.3 Spectrum of
scattered radiation

Thompson scattering, and is explained by classical electrodynamics. At frequencies
corresponding to energies higher than the binding energy of the electron, Compton
scattering starts showing up (scattering from free electron), but scattered radiation
of the same wavelength as that of the incident radiation is also present. At higher
frequencies (hν0 
 B), Compton scattering dominates and is readily observed. We
can thus understand why Compton scattering does not take place with visible light
from ordinary materials. It may be pointed out that the Compton shift in wavelength
does not depend on the Z of the material.

In deriving various formulae, we have assumed that initially the electron is at
rest. However, it will be in motion. Depending on the component of its velocity in
the incident direction of the photon, the wavelength shift of the scattered photon will
vary. This will, therefore, result in the broadening of the maximum as in Fig. 2.3.
This effect will be more important at smaller frequencies. As ν0 increases further,
Compton line tends to become narrower, specially at large angles. Eventually, in
any direction of scattering other than that of the incident direction, the unmodified
line becomes weaker and the modified line becomes fairly sharp as one would get
for scattering off a free electron.

Total Cross-Section The total collision cross-section is obtained by integrating
(2.14) over all permissible values of θ . Tables and graphs of the differential and
average cross-sections for Compton collisions have been given by Davisson and
Evans [4].

2.2.6 Compton Attenuation Coefficients

If we have a thin absorbing foil with N atoms/cm3, each with Z electrons/atom then

μ=NZσc (2.15)
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Fig. 2.4 (a) Photon mass attenuation coefficients equal to the linear attenuation. (b) Coefficients
divided by the density (to suppress effects simply due to the number of electrons in the material
for the three processes in Al and Pb)

The quantity μ, which has the unit of cm−1 is called the linear scattering coefficient.
Observe that μ is identical to the macroscopic cross-section Σ . If μ be divided by
the density of the absorber, then μ/ρ is called mass-attenuation coefficient (μm).

In their passage through a medium, the law of attenuation is

n= n0e
−μx (2.16)

where n0 is the initial number of photons and n is the number of surviving photons
after traversing a distance x. If x is expressed in cm, then the linear attenuation
coefficient μ is in cm−1. If the distance x is in g/cm2, then we are concerned with
μm, the mass attenuation coefficient.

The electronic cross-section will be independent of Z as it is assumed that hν0
is much in excess of the binding energy of the electrons. The Compton scattering
cross-section per electron as calculated by Klein and Nishina is given as

σc = πr2
0

{[
1 − 2(α + 1)

α2

]
ln(2α + 1)+ 1

2
+ 4

α
− 1

2(2α + 1)2

}
(2.17)

As before, r0 is electron radius and α = hν0/mc
2.

The total cross-section for an atom is found by multiplying σc by Z. The contri-
bution to the total γ -ray absorption coefficient from the Compton effect, as calcu-
lated from (2.17) is given in Fig. 2.4. It is seen that σc decreases monotonically as
hν0 increases.
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Values of the σ may be obtained for any other elementary material, of density ρ,
atomic weight A, and atomic number Z from the value for either lead or aluminium,
by using the simple relation

σ2 = σ1
ρ2

ρ1

A1

A2

Z2

Z1
(2.18)

where the subscripts 1 refer to the element whose σ is known and subscripts 2 refer
to the element whose σ is to be determined.

In Compton scattering, a part of the energy of the interacting photons appears as
scattered radiation. In many cases it is convenient to divide the total Klein-Nishina
cross-section into two parts. The first part takes into consideration the energy ab-
sorbed by the recoil electrons and is thus a true absorption cross-section, while
the second part takes into consideration the energy contained in the scattered pho-
tons. The cross-sections so defined are called Klein-Nishina absorption and Klein-
Nishina scattering. Since pair production and photoelectric effect are true processes,
by subtracting the cross-section for Klein-Nishina scattering from the total macro-
scopic cross-section for a material, we obtain a cross-section based only on the
energy removal from the gamma beam.

Energy Distribution of Compton Electrons and Photons In certain situations,
the energy spectrum of Compton electrons is important. It can be shown that

dσ

dT
= dσ

dΩ

2π

α2mc2

[
(1 + α)2 − α2 cos2 φ

(1 + α)2 − α(2 + α) cos2 φ

]2

(2.19)

where dσ/dΩ is given by Eq. (2.14), and α = hν0/mc
2.

Figure 2.5 shows the number-energy spectrum of Compton electrons by incident
photons of energy hν0 = 0.51, 1.2, and 2.76 MeV. The number-energy spectrum of
scattered photons can be deduced from Fig. 2.5 because hν = hν0 − T .

2.3 Photoelectric Effect

At energies below 0.1 MeV, the predominant mode of photon interaction in medium
and high-Z elements is known as the photoelectric effect. It can be shown that the
photoelectric effect cannot take place with a free electron (see Example 2.10) be-
cause energy and momentum cannot be conserved simultaneously. However, total
absorption of photon can take place if the electron is bound to an atom or a metal.
In that case the momentum can be balanced by the residual atom. The more tightly
the electron is bound, the larger is the absorption cross-section. About 80 % of the
photoelectric absorption processes occur in the K-shell, provided the incident pho-
ton energy hν exceeds the K-shell binding energy. In this process a photon interacts
with an atom in such a way that its total energy is absorbed and concentrated on
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Fig. 2.5 Energy spectrum of
electrons recoiling after
Compton scattering for
various energies of the
incident photon. The sharp
maximum electron recoil
energy is known as the
Compton edge [10]

one electron which is thereby expelled. The kinetic energy of the emitted electron
equals the photon energy minus the binding energy

T = hν −Be (2.20)

where Be is the binding energy of the ejected electron. The remaining energy ap-
pears as X-rays and Auger electrons in the process of filling of the vacancy in the
inner shell. The photoelectric interaction is illustrated in Fig. 2.6.

The theoretical treatment of photoelectric effect is complicated by the fact that
Dirac’s relativistic equation must be applied to a bound electron which does not
yield exact solutions.

Whenever the energy of the photon is high enough, the probability of expelling
a K-electron is higher than it is for any of the other electrons. At a photon energy
equal to the K-electron binding energy, there is a sharp step in the cross-section for
photoelectric emission. Similar jumps occur for L- and M-shells, Fig. 2.7.

For example, the binding energy of a K-shell electron in Pb is 88 keV. Incident
photons of energy less than 88 keV cannot liberate K-shell photo-electron although
they can liberate higher shell electrons that are less tightly bound. When the photon
energy increases just above 88 keV, the probability for photo-electron emission sud-
denly increases. This process is known as absorption edge or K-edge. For energies
above the K-absorption edge [6], gives the following cross-section formula for the
K-electron emission

σph(K) = 32π
√

2Z5

3(137)4

(
mc2

hν

)7/2

(2.21)
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Fig. 2.6 Photoelectric
interaction

Fig. 2.7 Photoelectric
cross-section in Pb. The
discrete jumps correspond to
the binding energies of
various electron shells; the
K-electron binding energy, in
Pb for example, is 88 keV. To
convert the cross-section to
the linear absorption
coefficient μ in cm−1,
multiply by 0.033

The above formula applies for photon energy much smaller than the rest energy
of an electron (hν � mc2). Because of Z5 dependence, photoelectric absorption
becomes significant for heavy elements like tungsten or lead. For fixed values of
hν, the cross-section is empirically given by

σph � const ·Zn (2.22)

The exponent n is found to increase from about 4.0 to 4.6 as hν increases from 0.1
to 3 MeV, as in Fig. 2.8.

Formula (2.21) shows a dependence of (hν)−7/2 for low energy photons. How-
ever, at high energies, the dependence on hν is not so drastic. With the increasing
energy, the exponent of 7/2 in formula (2.21) decreases until it reaches unity at very
high energies.

The linear attenuation coefficient μph for the photoelectric effect is given by

μph = σphN (2.23)
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Fig. 2.8 Approximate
variation of the photoelectric
cross-section σph (cm2/atom)
with Zn for various values
of n (Rasmussen)

Fig. 2.9 Directional
distribution of photoelectrons
per unit solid angle for
energies as marked. The
curves are not normalized
with respect to each other.
Solid curves are calculated
from Sauter’s relativistic
formula; dashed curve from
Fischer’s non-relativistic
formula (Davisson and
Evans)

where N is the number of atoms per cm3 and σph is the atomic cross-section in cm2

per atom. The mass absorption is obtained by dividing μ by density ρ.
Assuming σph for one element, the corresponding value for the other element

can be found out by the relation

σph(2)= σph(1)ρ2

ρ1

A1

A2

(
Z2

Z1

)n
(2.24)

where ρ is density, A is atomic weight, Z is atomic number and n is obtained from
Fig. 2.8.

Angular Distribution of Photoelectrons At low photon energies, the photoelec-
trons tend to be emitted in the direction of the electric vector of the incident radi-
ation, and hence are at right angles to the direction of incidence. As the energy is
increased, the angular distribution is pushed forward. Figure 2.9 shows theoretical
curves for the number/unit solid angle at various photon energies.

Forward Momentum of Recoil Atom For hν much in excess of binding energy
of the electron, the photo-electron will have nearly the same energy as the incident
photon. However, because of the finite mass of the electron, its momentum will be
much greater than the momentum of the incident photon. This increased momentum
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coupled with the predominantly forward angular distribution of the photoelectrons
implies that the residual atom must recoil on an average in the backward hemisphere.

2.3.1 Measurement of Photon Energy

The sharpness of the absorption edges lends to the determination of the estimation
wavelength of γ -rays of low energy. The K-edges vary for different elements. The
approximate energy is given by Moseley’s law

E = 13.6
(Z − σ)2
n2

eV (2.25)

where n= 1 for the K-series and n= 2 for the L-series etc. The screening constant
σ has an approximate value of 3 for the K-shell and 5 for the L-shell. The X-ray
wavelengths can be bracketed in small intervals by measuring the absorption in
elements with adjacent values of Z and determining between which two K-edges
or L-edges, the unknown photon energy lies. This is accomplished by observing the
sudden change in absorption with change of K-edge location.

2.4 Pair-Production

At incident photon energies greater than 2mc2 (1.02 MeV), the pair-production pro-
cess becomes increasingly important. In this process the proton is completely ab-
sorbed and a positron-electron is produced, the total energy being equal to hν.

hν = (
T− +mc2)+ (

T+ +mc2) (2.26)

where T− and T+ are the kinetic energy of the electron and the positron, respectively,
and mc2 = 0.511 MeV is the rest energy of the electron or the positron. The process
can occur only in the field of a nucleus and to some degree in the field of an electron.
The presence of a particle is necessary for the conservation of momentum. The
process is schematically depicted in Fig. 2.10.

Figure 2.11 gives the energy level diagram of the electron as derived from Dirac’s
relativistic theory. Dirac’s equations also give negative energies for the electron,
and he further assumed that all these negative energy states are filled and so are
not observable. They are not observable because this would imply a possibility of
changing their state of motion. This is not possible because of Pauli’s principle, the
sea of negative states is already filled. The only possibility for the change of state is
to cross the barrier of width 2mc2 so that the electron enters the domain of empty
positive energy states and becomes a free particle with positive energy. The hole
produced in the negative state left by the electron is observable as a positron. In the
pair-production process, the energy needed to cross the barrier is supplied by the
photon as shown in Fig. 2.11.
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Fig. 2.10 Schematic
depiction of conservation
of momentum process

Fig. 2.11 Energy level
diagram of electron from
Dirac’s theory

The same figure also indicates the Bremsstrahlung process in which one electron
falls down to a lower energy by the emission of a photon.

The pair-production and Bremsstrahlung are intimately connected and are
similar, except that the former is concerned with absorption process while the
latter is concerned with the emission process. Mathematically, the theories of
the two processes are nearly identical. There are similarities in various for-
mulae as well. For example, the cross-sections for both these processes are
of the order of (Z2/137)(e2/mc2)2. Compare (2.27) with formula (1.142) for
Bremsstrahlung.

Pair-production takes place in the field of a nucleus. No change of state of the
nucleus or its atomic electrons is involved, except that the nucleus absorbs some
of the momentum of the photon. Pair-production cannot take place in free space
because energy and momentum cannot be conserved simultaneously. Suppose, the
process takes place in vacuum. The maximum total momentum of the produced pair
will occur when the particles move in the same direction with the same velocity. For
energy E, the momentum is given by
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P =
√(

E

c

)2

− (
2mc2

)2
<
E

c

The photon has momentum P = E/c, which is larger than the pair with the same
total energy. Thus, it is necessary that the atomic nucleus be present to balance the
momentum.

2.4.1 Angular Distribution of Pair Electrons

At high energies the angular distribution of positron and electron is mainly forward.
For T 
 mc2, the mean angle between the electron or positron with the incident
direction of photon is of the order of mc2/T . At incident photon energies of the
order of 2mc2, the angular distribution is much more complicated and the tendency
for projection in the forward direction is less obvious.

2.4.2 Energy Distribution of Pair Electrons

The differential cross-section dσ/dT+ cm2 per nucleus, for the creation of a
positron of kinetic energy T+ and an electron of kinetic energy hν − 2mc2 − T+,
can be written as

dσ

dT+
= σ0Z

2P

hν − 2mc2
(2.27)

where

σ0 = 1

137

(
e2

mc2

)2

= 5.8 × 10−28 cm2/nucleus (2.28)

and the dimensionless quantity P is a complicated function of hν and Z, which
varies between 0 for hν < 2mc2 and about 20 for hν = ∞ for all values of Z.
Figure 2.12 shows the variation of P with the fraction of the total kinetic energy of
both the pair electrons that are carried by the positron T+/(hν − 2mc2).

2.4.3 Total Pair-Production Cross-Section per Nucleus

The total nuclear pair-production is calculated by integrating the differential cross-
section, Eq. (2.27), over all possible energies.

σP =
∫
dσ = σ0Z

2
∫ hν−2mc2

0

PdT+
hν − 2mc2

(2.29)
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Fig. 2.12 Differential
pair-production cross-section,
expressed as the
dimensionless function P of
Eq. (2.27). The curves
calculated from the equations
of Bethe and Heitler,
including screening
corrections for photon
energies above 10m0c

2

(Davisson and Evans)

σP = σ0Z
2P (2.30)

where P is the mean value of P in Fig. 2.12. Analytical integration of (2.29) is
possible only for relativistic cases. When screening of atomic electrons is neglected,
that is, the interaction is considered in the field of a bare nucleus, Bethe and Heitler
give the formula

σp = σ0Z
2
(

28

9
ln

2hν

mc2
− 218

27

)
(2.31)

for mc2 � hν � 137mc2Z−1/3 (that is about 16 MeV for Pb). It is observed that
σpair increases approximately logarithmically with hν. At high energies (hν ≥
20 MeV) an appreciable contribution to pair-production may come from points out-
side the K-shell of Pb. For complete screening

σp = σ0Z
2
[

28

9
ln
(
183Z−1/3)− 2

27

]
(2.32)

for hν 
 137mc2Z−1/3. Formula (2.31) shows that at high energies, say 10 GeV,
the pair-production cross-section depends only on the screen and is independent of
γ -ray energy.

Pair-Production Linear Attenuation Coefficient The linear attenuation μP for
pair-production is simply given by

μP = σPN cm−1 (2.33)
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Fig. 2.13 The three γ -ray
interactions processes and
three regions of dominance

whereN is the number of atoms per cm3. For Pb,N = 3.3×1022 atoms/cm3. Values
of μp , for any other element can be obtained from the formula

μp = μp(Pb)
207.2

11.35

ρ

A

(
Z

82

)2

(2.34)

where ρ is the density (11.35 g/cm3 for Pb), A is the atomic weight (207.2 for
Pb), and Z is the atomic number (82 for Pb). Note that pair-production attenua-
tion is most important in heavy elements and at high photon energies. For exam-
ple, in Pb the pair-production attenuation exceeds that for Compton scattering at
hν > 4.75 MeV (Fig. 2.4(b)). Also, pair-production is only one of the three major
processes whose cross-section increases with increasing energy. Due to this fact the
total attenuation coefficient, μ= μph + μc + μp , in heavy elements goes through
a minimum. This gives rise to double-valued energy for the same μ, Fig. 2.4(b). In
light elements such as aluminium, the solution will be single-valued (Fig. 2.4(a)).
This is because the rise in σP is more than offset by the decrease in σc. In the case
of copper, these two effects cancel over a wide range of photon energies so that one
obtains a fairly flat curve with μ= 0.28 cm−1 = const for hν ≥ 6 MeV.

Figure 2.13 shows the relative importance of the three major processes for γ -ray
interaction. The lines indicate the values of Z and hν for which the two neighbour-
ing effects are just equal.

Note that pair-production can also take place in the field of an electron, although
to a lesser degree. When the recoil is absorbed by an electron, the threshold required
by the conservation of energy and momentum in the laboratory system is 4mc2 (see
Example 2.12).

In this case two electrons and a positron acquire appreciable momentum leaving
three tracks in the forward direction. Such events in which the triplets, also known
as tridents, are formed and are recorded in photographic emulsions, cloud chambers
or bubble chambers.
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2.5 Nuclear Resonance Fluorescence

In atomic physics resonance absorption occurs while using the source and the
medium of the same material. A familiar example is the sodium absorption spec-
trum. However, in nuclei, the absorption does not occur in such a straight forward
fashion. The centre of the emitted γ -radiation, which is a narrow band, does not
coincide with the centre of absorption line because of the recoil energy losses in
emission and absorption processes. The incident radiation is thus off resonance
and excitation is only possible if the natural width of the level is large compared
with the recoil energy loss. For most atomic transitions, this last condition is ful-
filled. However, in the case of nuclei, the recoil energy losses effectively pre-
vent the observation of resonance fluorescence when the same isotope is used as
the source of radiation and the scattering as the absorbing material. All the at-
tempts to observe this effect had failed for the inability to find wide γ -ray lines,
until in (1951) Moon made a successful effort by creating special source condi-
tions.

Resonant scattering of light is a well-known phenomenon which is observed
when the energy of the incident photon coincides with the difference between the
excitation level and the ground state level of the scattering atom. The incident pho-
ton can originate either from an atom of the same kind as the scattering atom or
from a continuous spectrum in which case resonant scattering gives rise to absorp-
tion lines. Consider the general case of a γ -ray that is scattered by a nucleus of the
same kind as that from which it is emitted. Conservation of energy and momentum
demand that

hν +ER = E0 (2.35)
√

2MER = hν

c
(2.36)

where hν and ER are the energy of the emitted photon and the recoil nucleus, re-
spectively, E0 is the transition energy and M is the mass of the nucleus. Combin-
ing (2.35) and (2.36) we have

ER = (hν)2

2Mc2
= E2

r

2Mc2
(2.37)

where Er = hν

Er =E0 − E2
r

2Mc2
(2.38)

Since the recoil loss occurs both at the emission and absorption processes, total
energy displacement amounts to

�E = E2
r

Mc2
(2.39)
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Fig. 2.14 Shift of gamma ray energy in downward and upward direction during emission and
absorption processes

If this energy difference is large compared to the width of the level, the system is
off the resonance and the cross-section for resonance scattering becomes extremely
small. The width of a level Γ can be calculated from the lifetime τ by means of the
uncertainty principle.

Γ τ � � (2.40)

Consider for example the 2.7D decay of 198Au, following the β decay to 198Hg
from which single γ -ray of energy 412 keV is emitted. If the γ -ray is allowed to
fall on the atom of 198Hg in the ground state, there is a possibility for its absorption
and excitation to the 412 excited state. Note that the nuclear recoil affects both the
emission and the absorption processes. Hence the total energy shift is 2ER . The
412 keV excited state of 198Hg has a mean lifetime of 32 ps corresponding to a
width of 2 × 10−5 eV.

The recoil energy ER is E2
r

2Mc2 = 0.46 eV. The width of the Doppler broadening
due to thermal motion is given by

�= 2
√

ln 2Er

√
2kT

Mc2
(2.41)

where T is Kelvin temperature and k is Boltzmann constant.
Figure 2.14 shows the shift of 4.12 keV γ -ray energy from 198Hg by 0.46 eV

downward in the emission process and by 0.46 eV upward in the absorption process.
Because of thermal broadening due to Doppler effect (0.36 eV) there is a small
overlap (shaded region) between the emission and absorption lines, hence a small
probability of resonant excitation.
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2.5.1 Restoring Mechanisms

There are various techniques for overcoming the energy difference 2ER between
the source and absorber transitions. All of them depend on Doppler broadening.
Doppler’s formula is

ν = ν0

(
1 + v

c
cos θ∗

)
(2.42)

Put θ∗ = 0◦ for forward emission. Then

�ν = ν − νc = ν0
v

c
or

h�ν =�E = hν0
v

c
=E0

v

c

Compensation requires that

E0
v

c
= 2ER � E2

0

Mc2

v = E0

Mc
(2.43)

2.5.2 Mechanical Motion (Ultra Centrifuge)

Mechanical motion was first proposed by Moon in 1950 as a mechanism for restor-
ing resonance. The energy shift is compensated by the Doppler effect if the emitting
nucleus moves toward the scatterer with velocity v = Er/Mc. The experiment was
done by attaching the source to the tip of a rotor in a centrifuge spinning at 500–
3000 revolutions per second. The apparatus used by Moon (1950) is schematically
shown in Fig. 2.15 and the results for the absorption cross-section as a function of
source velocity as well as the rotor’s speed are indicated in Fig. 2.16. The emission
and absorption lines overlap for a source speed of about 670 m/s.

Moon derived an expression for the effective cross-section of resonant scattering
taking into account the mechanical velocity of the γ -ray source and the thermal ve-
locities in the source and the scatterer. The curve is fitted for a quadrupole transition
between the ground state of spin 1 and an excited level of spin 2 having a width of
2 × 10−5 eV. The intrinsic width corresponds to a half lifetime of 2.2 × 1011 s. The
measurement of the σ for resonant scattering is thus a direct determination of the
level width Γ and an indirect way of finding the mean lifetime τ which is related to
Γ by the uncertainty principle. This method of determining mean lives provides an
important technique which is useful for measuring delays longer than 10−10 s.
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Fig. 2.15 Schematic drawing
of the apparatus used by
Moon

Fig. 2.16 Rotor data from [3]

2.5.3 Thermal Motion

If no mechanical motion is applied, an increased temperature of the source or of the
scatterer or of both will result in a broadened energy distribution which increases
the probability for two nuclei having the appropriate relative velocities for compen-
sating the recoil.

2.5.4 Preceding β or γ Emission

Kuhn had pointed out that the resonance condition might be restored by a preceding
β or γ emission. A nucleus emitting a β particle obtains a recoil velocity in the
opposite direction and if the subsequent emission of the γ -ray takes place in such a
short time that the nucleus has not lost its velocity, the energy may be compensated
by Doppler effect. The resonance condition is that the emitting nucleus approaches
the scatterer with velocity v =E0/Mc.
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By measuring coincidences between the β-particles and the scattered γ -rays one
might expect to find an increase in counting rate when the beta particles are mea-
sured at such an angle that the recoiling nucleus has the appropriate velocity com-
ponent toward the scatterer. Similar arguments apply to γ –γ coincidence.

This technique has been used by Burgov and others to observe the nuclear reso-
nance fluorescence in 24Mg and to measure the lifetime of 1.38 MeV γ -ray emitted
in the decay of 24Na. The 1.38 MeV γ -ray scattered all around from the magnesium
bar was detected by the NaI crystal in prompt coincidence with 2.76 MeV γ -ray.
At 120° the number of 1.38 MeV γ -rays scattered into NaI crystal in coincidence
with 2.76 MeV ray was 2 or 3 times larger than at other angles. For a photon of en-
ergy E, the cross-section for resonance fluorescence, that is for the case where the
direct γ -transitions to the ground state is the only mode of de-excitation, is given
for an isolated level by Bethe and Placzek [1]

σ0(E)= πλ̄2 (2J1 + 1)

2(2J0 + 1)

π2

[(E −Er)2 + Γ 2

4 ]
(2.44)

where J1 and J0 are the total angular momenta of the excited state, and the ground
state, respectively. Er is the resonance energy, λ̄ the corresponding wavelength di-
vided by 2π and Γ the natural width of the level. The factor 2 arises due to the two
independent polarizations of photons. Taking into account the spins of the ground
and the first excited states and the thermal Doppler width, the level width was cal-
culated to be 7 × 10−4 eV corresponding a lifetime of 0.95 × 10−12 s.

2.6 Mossbauer Effect

In 1956 and 1957, R.L. Mossbauer was studying the scattering of γ -rays for his
graduation work. He used the metals of 191O and 191Ir as the source and absorber,
respectively, both cooled to a low temperature. Mossbauer measured the transmis-
sion of 191Ir 129 keV γ -rays through a crystalline natural iridium absorber. His
source was 191Os which beta decays with a half life of 16 days to an isomeric state
of 191Ir (T1/2 = 5.6 s). A 42 keV γ -ray is emitted and the iridium nucleus is left in
its first excited state (129 keV) which has a lifetime of 1.4 × 10−10 s (Fig. 2.17).

The apparatus used by Mossbauer is shown schematically in Fig. 2.18. Moss-
bauer measured the transmission of 191Ir keV γ -rays through a natural iridium ab-
sorber. He kept both the source and the absorber at 88 K but had the source mounted
on a turn table so that the relative velocity of the source and the absorber could be
controlled. Figure 2.19 shows the variation of transmission with the turn table speed.
The most startling fact which Mossbauer obtained was the turn table effect.

The absorption peak is centred at zero relative speed of the source with respect
to the absorber. The half width is about 1 cm (Fig. 2.19). When the abscissa is
converted to energy units corresponding to the Doppler shift in the γ -ray energy
�E = vE/c, the points can be fitted within statistical errors by a Breit-Wigner curve
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Fig. 2.17 Decay scheme of
191Os

Fig. 2.18 Experimental
arrangement: A, cryostat of
absorber; S, rotating cryostat
with source; D, scintillation
detector;M , region in which
the source is seen from
D [11]

Fig. 2.19 Fluorescent
absorption in 191Ir as a
function of the relative
velocity between source and
absorber. The upper scale on
the abscissa shows the
Doppler energy that
corresponds to the velocity on
the lower scale.
T = 88 ◦K [11]

of width (9.2 ± 1.2)× 10−6 eV (Chap. 7). This is interpreted to be twice the natural
width of the 129 keV level, the factor 2 arising because the observed absorption is
the result of folding an emission spectrum together with the absorption spectrum
each of which has a width Γ .

The other observation of Mossbauer is the temperature effect. Here, he had both
the source and absorber at rest with the absorber at fixed temperature of 88 °K and
the source temperature varied from 88 °K to above room temperature. He measured
the transmission of the 129 keV γ -rays through the absorber as a function of the
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Fig. 2.20 Variation of
absorption cross-section with
source temperature

source temperature. The rise in cross-section with decreasing temperature (contrary
to the experiments described earlier under Sect. 2.5) is interpreted as being caused
by the increase in the probability of no recoil emission as the temperature is lowered,
Fig. 2.20.

Mossbauer effect was lost when powder source and absorber were used. In the
early experiments, failure to achieve nuclear resonance was due to the nuclear recoil
which had the inevitable effect of broadening the natural width of γ -ray lines that
is making the indeterminacy in the energy of narrow γ -rays much larger than that
required by the uncertainty principle. In all these methods, though resonance fluo-
rescence is realized, the peak is fairly broad caused by thermal motion and above
all by the fact that they cannot restore the natural widths of the lines from their re-
coil broadened state. The line width is of great importance in deciding whether a
particular experiment can be successfully undertaken because it is useless to have
Γ larger than�E. One should therefore choose isomers of sufficiently long time so
that Γ may be very small (�E
 Γ ).

2.6.1 Elementary Theory

If the nuclei are rigidly nailed to a crystal, one could immediately understand the
disappearance of a measurable recoil energy. For, if the whole crystal were forced to
recoil together with the emitting or absorbing nucleus the recoil energy for a given
momentum transfer would be decreased by a factor equal to the number of atoms
in the crystal. Since a crystal as small as a cubic micron in volume contains about
1010 atoms, the recoil loss would be negligible. The fact is however that atoms are
not nailed to a crystal to which they belong. Instead they are arranged in a lattice
which is vibrating. The energy of vibration, which is macroscopically described by
the temperature, is not fixed but the energy put into the system will go into lattice
vibration of the crystal. An essential feature of the picture is that the energy states of
the lattice are quantized, energy can be transferred only in discrete amounts called
phonons. The degree of Mossbauer effect will thus eventually be dependent on the
choice of crystals and the temperature since the modes of vibrations are to be charac-
terized. 57Fe is a very useful isotope as room temperature can be used. To understand
the problem of nuclear recoil in the crystal, three cases must be distinguished:
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1. If the free-atom recoil energy is large compared to the binding energy of the atom
in the solid, the atom will be dislodged from its lattice site. The minimum energy
required to displace an atom is known from radiation damage investigations and
is 15–30 eV. Under these circumstances the free-atom analysis is applicable.

2. If the free-atom recoil energy is larger than the characteristic energy of the lattice
vibrations (the phonon energy) but less than the displacement energy, the atom
will remain in its site and will dissipate its recoil energy by heating the lattice.

3. If the recoil energy is less than the phonon energy, a new effect arises because
the lattice is a quantized system which cannot be excited in an arbitrary fashion.
This effect is responsible for the unexpected increase in the scattering of γ -rays
at low temperature first observed by Mossbauer.

This phenomenon is most readily understood in the case of an Einstein solid, that
is one characterized by 3N vibrational modes (where N is the number of atoms in
the solid) each having the same frequency ω. At a given instant, the solid may be
characterized by the quantum numbers of its oscillators. The only possible changes
in its state are an increase or decrease in one or more of the quantum numbers. These
correspond to the absorption or emission of quanta of energy �ω which in real solids
is characteristically of the order of 10−2 eV. The recoil-free fraction f of the decays
produce no change in the quantum state of the lattice. In the remaining 1 − f , an
energy �ω is transferred. The processes with �n= −1 and 2 may be neglected.

The emission of a γ -ray is now accompanied by the transfer of integral multi-
ples of this phonon energy (0,±�ω,±2�ω + · · · ) to the lattice. The depth of the
resonance is determined by the fraction (f ) of the nuclei in the lattice that emits (or
absorbs) energy with no recoil. The calculation of the recoil-free fraction (f ) de-
pends on the recoil energy that exceeds the lattice binding energy. At low energies
and temperatures, the primary way in which a solid can absorb energy is through lat-
tice vibrations called phonons. These vibrations occur at a spectrum of frequencies,
from zero up to a maximum ωmax. In the improved theory due to Debye, the en-
ergy corresponding to the highest vibrational frequency is expressed in terms of the
corresponding temperature called the Debye temperature θD through �ωmax = kθD ,
where k is the Boltzmann constant. For typical materials, �ωmax ∼ 0.01 eV and
θD ∼ 1000 K. The recoilless fraction is

f = exp
[−k〈x2〉] (2.45)

where 〈x2〉 is the mean-square vibrational amplitude of the emitting nucleus, k =
(2π/λ), λ being the wavelength of the emitting nucleus. The mean square amplitude
is calculated by using the Bose-Einstein distribution and the recoilless fraction is
given by

f = exp

{−3

2

�
2ω2/2mc2

kθD

[
1 + 4

(
T

θD

)2 ∫ θD/T

0

xdx

ex − 1

]}

� exp

{−3

2

�
2ω2

2mc2

kθD

[
1 + 2

3

(
πT

θD

)2]}
(T � θD) (2.46)
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Fig. 2.21 Fraction of
recoilless transitions in iron
or rhenium as a function of
the temperature [12]

The first term is independent of the temperature and shows that even at absolute
zero, the fraction of recoilless decays is large only if the recoil energy of the free
nucleus is small compared with kθD . The probability of recoilless decay decreases
with increasing temperature and it is negligible for temperatures large compared
with θD (Fig. 2.21). Similar effects occur in the absorption process.

Note that for Fe, θD ∼ 400 K, Er = 14.4 keV, ER = 0.002 eV and f = 0.92,
while for Ir, f � 0.1. It is therefore not surprising that in Mossbauer’s original
experiment Ir showed the effect of only 1 % while Fe shows a much larger effect.
What is more is that Fe can be used at the room temperature.

2.6.2 Importance of Mossbauer Effect

The importance of the effect lies in the line width of γ -rays. When the lattice is ex-
cited in the γ emission process, the effective line width is of the order of the phonon
energies. When the lattice is not excited, the widths of the nuclear levels involved in
the transitions alone determine the line width of the zero-phonon component. Ac-
cording to uncertainty principle, a nuclear lifetime of 10−7 s corresponds to a width
of ∼10−8 eV which is six orders of magnitude smaller than that obtained when
the lattice is excited. More importantly, this line width is smaller than the charac-
teristic values for the magnetic dipole and electric quadrupole interactions of nuclei
with their surrounding electrons. It was widely recognized that these effects could in
principle be observed and studied through Mossbauer effect. A measure of accuracy
is given by the ratio of the line width to the total energy of the γ -ray. For an energy
of 100 keV and the lifetime ∼10−7 s, the fractional line width is 10−13 eV. This is
equivalent to the statement that the energy of the γ -ray is defined to within one part
in 1013 which makes it the most accurately defined electromagnetic radiation avail-
able for physical experiments. Isotopes with suitable lifetime and energy in the first
excited state may be used. 57Fe is the favourite choice for Mossbauer spectroscopy.
It has been used in more experiments than all other isotopes to date. Figure 2.22
shows the decay scheme of 57Co into 57Fe. For the ratio τ/Er = 3.1 × 10−13 and
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Fig. 2.22 Decay scheme
57Co

for 67Zn, 5.2 × 10−16, electromagnetic radiation with comparable stability and line
width has not yet been obtained by other means. Even the gas laser which is the best
source of narrow-line infrared and visible radiation has not reached the stability and
resolution of 57Fe.

2.6.3 Applications

2.6.3.1 Gravitational Red Shift

The gravitational red shift may be thought of most directly as the change in the
energy of a photon as it moves from one region of space to another differing gravi-
tational potential. Consider the energy content of a photon moving in a gravitational
field. The magnitude of the expected shift can be obtained from a simple argument
based only on the energy conservation and the relativistic mass-energy equivalence.
Now, the photon carries an inertial and hence also a gravitational mass, given by the
expression hν/c2, v being the associated frequency. Consequently, its passage from
a point where the gravitational potential is equal to φ1 to a print where the potential
is φ2 would entail an expenditure of work given by hν/c2 times the potential differ-
ence (φ2 − φ1). This would result in an equivalent decrease in the energy content of
the photon and hence its frequency

�E = E

c2
(φ2 − φ1) (2.47)

A level difference of H cm near the surface of earth would result in the fractional
shift of

�ν

ν
� gH

c2
= 1.09 × 10−18 H (2.48)

Over a path of 20 m, the expected shift amounts to 2 ×10−15. In the original experi-
ment of Pound and Rebka [13], 57Fe was used (from a 1-Ci source of 57Co), and the
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14.4 eV photons were permitted to travel 22.5 m up the tower of the Jefferson physi-
cal laboratory at Harvard to observe the small shift (∼10−2 of the width of the reso-
nance). Pound and Rebeka concentrated on the portions of the sides of the resonance
curve with the largest slope. The systematic errors were reduced by monitoring the
temperature of the source and absorber. This is necessary because the temperature
difference between source and absorber would cause unequal temperature broaden-
ing, thereby shifting the peak. The source and the absorber were periodically inter-
changed to allow the photons to travel in the opposite direction. After four months
of experimentation they obtained the result �E/E = (4.902 ± 0.041)× 10−15, in
close agreement with the expected value of 4.905 × 10−15 for the 45 m round trip.
This constitutes one of the most precise tests of the General Theory of Relativity.

2.6.3.2 Atomic Motion

Information about atomic motion and lattice vibration can in fact be obtained from
the recoil free γ -ray line which depends upon the ratio of the mean square vibra-
tional amplitude 〈x2〉 of the emitting or scattering atom to the square of the wave-
length λ of the scattered radiation. In the equation

f = e−k2〈x2〉 = e−4π2〈x2/λ2〉 (2.49)

〈x2〉 is the mean-square amplitude of the vibration in the direction of emission of the
γ -ray averaged over an interval equal to the lifetime of the nuclear levels involved
in the γ -ray emission process. From (2.49) we note that if 〈x2〉 is not bounded,
the recoil-free fraction will vanish. In the light of this conclusion it is clear that the
Mossbauer effect can not take place in a liquid where the molecular motion is not
restricted. That this is essentially correct has been demonstrated in experiments in
which the recoil-free process in 119Sn was studied in metallic tin both below and
above the melting point. The liquid phase measurements above the melting point
failed to show any resonant effect. Note however that 〈x2〉 must be averaged over
a nuclear lifetime. It is conceivable that it may remain sufficiently small in viscous
liquids to allow detection of recoilless events. This has been confirmed in the case of
a solution of a salt of 57Fe in glycerene. Further, note that (2.49) gives no indication
what crystal structure is required for recoil- free emission. It is not surprising that
Mossbauer effect is readily observed in glasses. This has been demonstrated, for
example, with 57Fe in fused quartz and silicate glass.

Equation (2.46) can be written as

f = e−[ ER
kθD

( 3
2 + π2T 2

θ2
D

)]
(2.50)

In the limit of low temperatures, f depends only on the ratio of the free atom recoil
energy to the Debye temperature

F = e−(
3ER
2kθD

) = e−(
3
4

E2
r

Mc2kθD
)

(2.51)
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Characteristic values for f are 0.91 for the 14.4 keV γ -ray of 57Fe and 0.06 for the
129 keV γ -ray of 191Ir.

A simple calculation shows why the Mossbauer effect is limited to low energy
γ -rays. For example, for a nucleus of mass number 100 in a lattice with a Debye
temperature of 400 K (2.51) becomes

f = e−( E(keV)
64 )2 (2.52)

which drops off to low values when E
 64. To date, Mossbauer effect has not been
observed for γ -rays energy greater than 150 keV.

2.6.3.3 Hyperfine Structure

The splitting of nuclear levels of 57Fe both in the ground state and the excited state
has been studied. The splitting occurs due to the interaction of the electromagnetic
field at the nucleus with the magnetic moment of the nucleus. For a nuclear spin I ,
a level whose magnetic moment is μ will in an internal magnetic field H be split
into 2I + 1 sublevels separated in energy by g = μH/I . The ground level is known
to have spin 1/2 and excited level 3/2. At zero relative velocity between the source
and absorber, the six emission components should match perfectly the six absorp-
tion components yielding maximum resonance absorption as if there had been no
hyperfine splitting. As the source is moved with increasing velocity v, the emission
components all receive an additional energy (v/c)E0; they now cease to overlap
with the components in the absorber and fluorescence is destroyed. If now the ve-
locity of the source is increased further, a situation will arise in which the energies
of source of the emission and absorption will again match resulting in additional
fluorescence pips.

For example, if v is such that the energy increment of some of the components
is equal to g, the hyperfine energy splitting in the excited states, then the γ -rays
resulting from transition labeled I will have correct energy to excite transition 2 in
the absorber, 2 will match 3, 4 will match 5 and 5 will match 6. But 3 and 6 are
not reasonably absorbed. Similarly, if the source components are given a Doppler
energy equal to E0, then the splitting of the ground state line 2 will match 4, 3 with 5
(Fig. 2.23 and the corresponding Mossbauer spectra is shown in Fig. 2.24). In this
manner all the pips are scanned out. We have thus v = (cμH/IE0), where E0 =
14.4 keV, I = 3/2. The field in iron is expected to be about 105 gauss. From this the
value of μ of (3/2) state is calculated to be −0.15 nuclear magneton. Alternatively,
if the magnetic moment value be known from magnetic resonance experiments, the
field can be known. The unexpectedly small magnetic moments are of interest in
solid state physics.

Further, the temperature dependence of the internal magnetic field has been in-
vestigated. Results show that the field at the nucleus decreases by 3 % when the
temperature is raised from 80 to 300 K and that the plot of the field against tempera-
ture follows the classical magnetization curve for iron, heading toward zero at curie
temperature.
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Fig. 2.23 Hyperfine
structure or 57Fe

2.6.3.4 Isomer Shift

The nucleus is surrounded and penetrated by electronic charge with which it in-
teracts electrostatically. A change in the s-electron density will result in an altered
Coulombic interaction which manifests itself as shift of the nuclear levels. This is
called ‘Isomer shift’ since the effect depends on the difference in the nuclear radii
of the ground (gd) and isomeric excited (ex) states. This electrostatic shift of a nu-
clear level is readily computed from the following model: the nucleus is assumed to
be a uniformly charged sphere whose radius is R and the electronic charge density
ρ is assumed to be uniform over nuclear dimensions. To simplify the calculation,
the difference between the electrostatic interaction of a hypothetical point nucleus
and one of actual radius R, both having the same charge is computed. For the point
nucleus, the electrostatic potential

Vpt = Ze

r
(2.53)

For the finite one, the potential V is

V = ze

R

(
3

2
− r2

2R2

)
for r ≤R

= ze

r
for r ≥R

(2.54)

The energy difference δE is given by the integral

δE =
∫ ∞

0
ρ(V − Vpt )4πr2dr

= 4πρze

R

∫ R

0

(
3

2
− r2

2R2
− R

r

)
r2dr

= −2π

5
zeρR2 = 2π

5
ze2

∣∣ψ(0)∣∣2R2 (2.55)
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Fig. 2.24 Six individual components are seen for the magnetic dipole transitions in 57Fe with
�mJ = 0 or ±1 [14]

where −e|ψ(0)|2 is an alternate expression for the electronic charge density ρ. The
expression relates the electrostatic energy of the nucleus to its radius which will
in general be different for each nuclear state of excitation or energy level. Obser-
vations, however, are made not on the location of individual nuclear levels but on
γ -rays resulting from transitions between two such levels. The energy of the γ -ray
represents the difference in electrostatic energy of the nucleus in two different states
of excitation which in the present model differ only in nuclear radius. The expression
for the change in the energy of the γ -ray due to the nuclear electrostatic interaction
is therefore the difference of two terms as in (2.55) written for the nucleus in the
ground and excited states

δEex − δEgd = 2π

5
ze2

∣∣ψ(0)∣∣2(Rex2 −Rgd2

)
(2.56)

If the Mossbauer emitter and absorber are immersed in different materials, with
ψe(0) for the emitter and ψa(0) for the absorber, then a difference between the
energy of the line absorbed and emitted can be measured by the Doppler shift. Let
E0 be the photon energy in the absence of isomeric effect. We can then write

Ee = E0 + 2
π

5
ze2

∣∣ψe(0)∣∣2[Rex2 −Rgd2

]
(2.57)

Ea = E0 + 2π

5
ze2

∣∣ψa(0)∣∣2[R2
ex −R2

gd

]
(2.58)

The isomer shift (I.S.)=Ea −Ec

I.S.= 2π

5
ze2[∣∣ψa(0)∣∣2 − ∣∣ψe(0)∣∣2][Rex2 −Rgd2

]
(2.59)
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Fig. 2.25 Mossbauer
absorption spectra to show
the isomeric effect

As Rex is expected to be only slightly different from Rgd , (2.59) can be written as

I.S.= 4π

5
ze2R2

(
δR

R

){∣∣ψa(0)∣∣2 − ∣∣ψe(0)∣∣2} (2.60)

The factor in braces is calculated theoretically. Figure 2.25 shows the Mossbauer
absorption spectra of the 77 keV gamma rays of 197Au measured at 4.2 K with
sources of dilute impurities of 197Au in V, Ru, W, and Pt [7].

The isomeric effect on the Mossbauer spectrum is to shift the centre of the reso-
nance away from zero velocity.

2.6.3.5 Other Applications

Other applications of Mossbauer effect include effects due to accelerated systems,
polarization of γ -rays, the lattice properties such as the Debye-Waller factor, spe-
cific heats impurities and imperfections, low temperatures, nuclear orientation, su-
perconductivity, recoilless Rayleigh scattering, the quadrupole coupling; the Fe con-
tent in hemoglobin etc.
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Example 2.1 The 129 keV γ ray transition in 191Ir was used in a Mossbauer ex-
periment in which a line shift equivalent to the full width at half maximum (Γ ) was
observed for a source speed of 10 mm s−1. What is the value of Γ and the mean
lifetime of the excited state in 191Ir?

Solution

�Er

Er
= v

c

Put �Er = Γ . Then

Γ = v

c
Er = 1 cm × (129 keV)

(3 × 1010)
= 4.3 × 10−6

Γ = �

�Er
= �

Γ
= 1.05 × 10−34

1.6 × 10−19 × 4.3 × 10−6

= 1.5 × 10−10 s

Example 2.2 A linear accelerator produces a beam of excited carbon atoms of
kinetic energy 160 MeV. Light emitted on de-excitation is viewed at right angles to
the beam and has a wavelength λ′. If λ is the wavelength emitted by a stationary
atom, what is the value of (λ′ − λ)/λ? (Take the rest energies of both protons and
neutrons to be 1000 MeV.)

Solution

ν = ν′γ (1 − β cos θ)= ν′γ
(
∵ θ = 90◦)

λ′ = γ λ
(λ′ − λ)
λ

= λ′

λ
− 1 = γ − 1 = T

Mc2
= 160

16 × 1000
= 0.01

Example 2.3 A 60 keV x-ray photon strikes the electron initially at rest and the
photon is scattered through an angle of 60°. What is the recoil velocity of the elec-
tron?

Solution

hν = hν0

1 + α(1 − cos θ)
= 60

1 + 60
511 (1 − cos 60◦)

= 56.67 keV

T (electron) = 60.00 − 56.67 = 3.33 keV
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v

c
=
√

2T

mc2
=
√

2 × 3.33

511
= 0.114

v = 0.114 × 3 × 108 = 3.42 × 107 m/s

Example 2.4 The wavelength of the photoelectric threshold for silver is 3250 ×
10−10 m. Determine the velocity of electrons ejected from a silver surface by ultra-
violet light of wavelength 2500 × 10−10 m.

Solution

T = hν − hν0

hν = 1241

250 nm
= 4.964 eV

hν0 = 1241

325.0 nm
= 3.818 eV

T = 4.964 − 3.818 = 1.146 eV

v = c
√

2T

mc2
= 3 × 108

√
2 × 1.146

511 × 103
= 6.35 × 105 m/s

Example 2.5 Mossbauer found the width, at half of maximum absorption, of the
191Ir 129 keV level, in terms of the velocity spread of the source to be 1.51 cm/s.
(a) What is the level width in eV? (b) What is the half-life of the excited state?

Solution

h�ν = E0
v

c
= 129 × 103 × 1.51

3 × 1010

= 6.494 × 10−6 eV

Level width = 1/2(measured width)= 3.25 × 10−6 eV

T1/2 = 0.693τ = 0.693 × �

�E
= 0.693 × 1.05 × 10−27

3.25 × 10−6 × 1.6 × 10−12

= 1.4 × 10−10 s

Example 2.6 In an experiment, it is necessary to cut down the γ intensity of one
MeV γ -rays to 1 %. If water is used as shielding, calculate the length of wa-
ter column to be used to achieve this, neglect multiple scattering. σH = 0.211 b,
σ0 = 0.169 b/atom, Avagadro number = 6.025 × 1023.
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Solution

μ = (2σH + 16σ0)
ρ

A
Nav

= (
2 × 0.211 × 10−24 + 16 × 0.169 × 10−24) 1

18
× 6.025 × 1023

= 0.1046 cm−1

I = I0e−μx

X = 1

μ
ln
I0

I
= 1

0.1046
× ln 100

= 44 cm

Example 2.7 A collimated beam of 1.6 MeV gamma rays strikes a thin tantalum
foil. Electrons of 0.6 MeV energy are observed to emerge from the foil. Are these
due to the photoelectric effect, Compton scattering or pair-production? Assume that
any electron produced in the initial interaction with the material of the tantalum foil
do not undergo a second interaction.

Solution Since the threshold energy for e+e− production is 1.02 MeV, the com-
bined kinetic energy of e+ and e− will be (1.6–1.02) or 0.58 MeV. The observed
electrons of 0.6 MeV cannot be due to this process.

The K-shell ionization potential for silver is under 100 keV. The ejected electrons
due to photoelectric effect must have little less than 1.6 MeV. So, photoelectric effect
is also ruled out.

In Compton scattering the electron can take up kinetic energy between zero and

Tmax = hν0
1+(1/2α) = 1.38 MeV, since hν0 = 1.6 MeV and α = 1.6/0.511. Thus, the

electrons are due to Compton scattering.

Example 2.8 Gamma ray photons when incident upon a piece of uranium, eject
photoelectrons from its K-shell. The momentum measured yields a value of Br =
4.8 × 10−3 Weber/m. The binding energy of a K electron in uranium is B =
115.59 keV. Determine

(a) The kinetic energy of the photoelectrons.
(b) The energy of the gamma ray photons.

Solution

p = 300 Br MeV/c

= 300 × 4.8 × 10−3 = 1.44 MeV/c

E2 = (T +m)2 = p2 +m2

∴ T = (
p2 +m2)1/2 −m
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Putting p = 1.44 and m= 0.511.

(a) Kinetic energy of the photoelectrons, T = 1.017 MeV
(b) The energy of the gamma ray photons,

Er = T +B = 1.017 + 0.115 = 1.132 MeV

Example 2.9 Ultraviolet light of wavelength λ from a mercury arc falls upon a
silver photocathode. Find λ if the threshold wavelength for silver is 325 nm, and the
stopping potential is 1.07 V.

Solution

hν = hν0 +W
1241

λ
= 1241

325
+ 1.07 = 4.888 eV

∴ λ = 1241

4.888
= 253.8 nm

Example 2.10 Show that photoelectric effect cannot take place with a free electron.

Solution Suppose that photoelectric effect takes place with a free electron.
If hν is the photon energy, K is the kinetic energy carried by the electron and p

is the electron momentum then

K = hν (energy conservation)

cp =
√
K2 + 2mc2K = hν (momentum conservation)

Eliminating K

2mc2hν = 0

Neither mc2 nor hν is zero. Hence we get an absurd result. We conclude that in
photoelectric effect with a free electron, both energy and momentum cannot be con-
served simultaneously.

Example 2.11 In Compton scattering process, the incident X-ray radiation is scat-
tered at an angle of 60°. If the wavelength of the scattered radiation is 0.200 A, find
the wavelength of the incident radiation.

Solution

�λ = λ− λ0 = h

mc
(1 − cos θ)

λ0 = λ− h

mc
(1 − cos θ)

= 0.200 − 0.024
(
1 − cos 60◦)

= 1.188 A
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Example 2.12 Show that the minimum photon energy for the production of
positron-electron pairs in the field of a free electron is 4mc2.

Solution Use the invariance of E2 − P 2 (see [8], Appendix A) and natural units
(c= 1). There will be 2e− and 1e+ in the final state.

(Eγ +m)2 −E2
γ = (3m)2

Eγ = 4mc2

Example 2.13 Estimate the thickness of lead (density 11.3 g cm−3) required to
absorb 99 % of gamma rays of energy 1 MeV. The absorption cross-section for
gamma rays of 1 MeV in lead (A= 207) is 20 b/atom.

Solution

I = I0e−μx

μx = ln
I0

I
= ln

100

1.0
= 4.6

μ = σ Navρ
A

= 20 × 10−24 × 6 × 1023 × 11.3

207
= 6.55 cm−1

x = 4.6

6.55
= 0.7 cm = 7 mm

Example 2.14 An X-ray absorption survey of a specimen of silver shows a sharp
absorption edge at the expected λkα value for silver of 0.0485 nm and a smaller edge
at 0.0424 nm due to an impurity. If the atomic number of silver is 47, identify the
impurity as being 44Rh, 45Rh, 46Pd, 48Cd, 49In or 50Sn.

Solution

λK(Ag) = 0.0424 nm

EK(Ag) = 1241

0.0424
= 25.588 × 103 eV

As the screening constant is only approximate, we shall evaluate it

25.588 × 103 = 13.6(47 − σ)2
σ = 3.6

For the impurity x

EK(x) = 13.6(50 − 3.6)2

= 29.28 keV
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The wavelength of 0.0424 nm corresponds to E = 29.27 keV. Hence the impurity
is 50Sn.

2.7 Questions

2.1 Discuss the conditions necessary to observe resonance fluorescence.

2.2 Compare the resonance fluorescence of an atomic system with that of a nu-
cleus emitting γ -rays in a transition to the ground state. Why is the former easily
observable whereas the latter is not?

2.3 Explain the Mossbauer effect with reference to Mossbauer’s experiments.

2.4 Explain, giving two examples, how observations of this effect can provide in-
formation about the properties of nuclear states and the environment of the emitting
or absorbing nucleus in a solid.

2.5 Why is it expected that resonant absorption should decrease at low tempera-
tures and why does it increase in the case of the 129 keV gamma radiation from
191Ir?

2.6 Describe how the Mossbauer effect can be used for nuclear hyperfine mea-
surements and also outline its use to verify the effect of gravity on electromagnetic
radiation.

2.7 Given a source of 85 keV γ radiation, what absorbers would you use to bracket
this energy and serve to determine it?
[Ans. 80Hg, 81Ti, 82Pb, 83Bi, 84Po]

2.8 When photoelectric effect takes place in a metal, the photoelectrons will have
a wide range of energies, from zero to maximum. Why?

2.9 At incident photon energy slightly above the electron binding energy, there will
be two lines in the scattered photons. Explain.

2.10 Point out the dependence of μ on hν and Z.

2.11 Indicate on a diagram the relative importance of the three major interactions
of γ -rays.

2.12 Which process is similar to the pair-production?
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2.13 What is the significance of the fine structure constant appearing in the formula
for pair-production cross-section?

2.14 Why photoelectric effect cannot take place with a free electron?

2.15 Why cannot pair-production occur in a vaccum?

2.16 When the photoelectric effect takes place in the nuclear field, the nucleus on
an average recoils in the backward hemisphere. Why?

2.17 What is the major difference in the energy loss of charged particles and γ -
rays?

2.18 Enumerate the similarities between pair-production and Bremsstrahlung.

2.19 What are tridents?

2.20 Under what conditions can one obtain analytical formulae for pair-production
cross-section?

2.21 Consider the graphs for total cross-sections (μ), for photons in light and heavy
elements at various energies. In heavy element like Pb, there can be the same value
of μ for different photon energies; for example, in Pb, μ = 0.5 cm−1 for 2.0 and
5.5 MeV. However, in light elements like Aluminium, μ will have single-valued
energies. Why?

2.22 If a photon interacts with an atomic electron and is completely absorbed, what
is the phenomenon called?

2.23 If a photon interacts with a nucleus and undergoes incoherent scattering, what
is the phenomenon called?

2.24 If a high energy photon interacts with the electric field surrounding nuclei or
electrons and is completely absorbed, what is the phenomenon called?

2.8 Problems

2.1 Show that the energy Eγ of γ -ray emitted from a nucleus of massM following
a transition from a state of energy Ei to one of energy Ef is approximately given
by

Eγ ��E − (�E)2

2Mc2

where �E =Ef −Ei .
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2.2 Calculate the angular velocity of a mechanical rotor that is able to produce
resonant absorption of a γ -ray of a given energy emitted from a source placed on its
tip at a distance r from the rotation axis.
[Ans. ω=E0/Mcr]

2.3 Assume that all the 137Cs atoms in a sample move with the same root mean
square velocity at a temperature of 15 °C. Calculate the spread in energy of 661 keV
internal conversion line of 137Cs due to thermal motion.
[Ans. 666 keV ± 0.5 eV]

2.4 The Compton electrons ejected from a thin converter in the direction of
γ -radiation have a momentum of Br = 0.02 Weber/m. Find the energy of the in-
cident radiation.
[Ans. 5.75 MeV]

2.5 A metal surface is illuminated with light of different wavelengths and the cor-
responding stopping potentials of the photoelectrons V are found to be as follows:

λ (nm) 600 550 500 450 400 350
V (volts) 0.15 0.33 0.63 0.83 1.26 1.71

Calculate the Planck’s constant, the Work function and the threshold wavelength.
[Ans. 6.5 × 10−34 J s, 1.9 V, 650 nm]

2.6 Calculate the maximum wavelength of photon to produce an electron-positron
pair.
[Ans. 0.02425 Å]

2.7 Calculate the wavelength of γ -rays emitted in the annihilation of an electron-
positron pair at rest.
[Ans. 2.429 p.m.]

2.8 A 4 cm diameter and 1 cm thick NaI is used to detect 660 keV gamma ray
emitted by a 100 µc point source of 137Cs placed on its axis at a distance of one metre
from its surface. Calculate separately the number of photoelectrons and Compton
electrons released in the crystal given that the linear absorption coefficients for the
photo and Compton processes are 0.03 and 0.24 per cm, respectively. What is the
number of 660 keV gamma rays that pass through the crystal without interacting?
(1 curie = 3.7 × 1010 dis. per s.)
[Ans. 10, 78, 282 s−1]

2.9 For Aluminium, and a photon energy of 0.06 MeV, atomic absorption cross-
section due to the Compton effect is 8.1 × 10−24 cm2 and due to the photo-effect
is 4.0 × 10−21 cm2. Calculate how much the intensity of a given beam is reduced
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by a 3.7 g cm−2 of aluminium and state the ratio of the intensities absorbed due to
Compton effect and photo-effect.
[Ans. 0.24]

2.10 Calculate the maximum change in the wavelength of Compton scattered radi-
ation.
[Ans. 0.048 A]

2.11 γ -rays of energy 660 keV from a radioactive source of cesium-137 are elasti-
cally scattered from free electrons. Calculate the energy of the scattered photons at
(a) 60°, (b) 120° and (c) 180°.
[Ans. (a) 401 keV, (b) 225 keV, (c) 184 keV]

2.12 A 30 keV X-ray photon strikes an electron, initially at rest and the photon is
scattered through an angle of 60°. What is the recoil velocity of the electron?
[Ans. 1.73 × 107 m/s]

2.13 The photoelectric thresholds of sodium and zinc occur at wavelengths of 5390
and 2926 A, respectively. Calculate their contact P.D.
[Ans. 2.3, 4.24 V]

2.14 Calculate the wavelength of a γ -ray whose energy is equal to the rest-mass
energy of the proton.
[Ans. 1.323 fm]

2.15 A photon incident upon a hydrogen atom ejects an electron from the first
excited state. If the kinetic energy of the ejected electron was 12.7 eV, calculate the
energy of the photon. What energy would have been imparted to an electron in the
ground state?
[Ans. 16.1, 2.5 eV]

2.16 Ultraviolet light of wavelengths, 800 and 700 A, when allowed to fall on
hydrogen atoms in their ground state, are found to liberate electrons with kinetic
energy 1.8 and 4.0 eV, respectively. Find the value of Planck’s constant.
[Ans. 6.57 × 10−34 J s]

2.17 Show that the energy imparted to the electron in Compton scattering is given
by

T = hν0
2α cos2 φ

(1 + α)2 − α2 cos2 φ
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Chapter 3
Radioactivity

3.1 Natural Radioactivity

Definition Radioactivity is defined as the spontaneous disintegration of a nucleus.
Natural Radioactivity may manifest itself through one of the following processes:
(a) α-decay, (b) β-decay, (c) orbital electron capture, (d) γ -decay. Artificial Ra-
dioactivity may include decay via proton, neutron or fission.

3.1.1 The Radioactive Decay Law

The probability for a radioactive nucleus not to decay at time t is given by

P(t)= exp(−λt)

This gives the probability for the radioactive nucleus to survive at time t . If N0 is
the number of atoms at t = 0 and N the number of atoms at time t , then

P(t)= N

N0

N =N0 exp(−λt) (3.1)

Thus, the decay law for a radioactive substance is an exponential one. Figure 3.1
shows the variation of fraction N/N0 with time. Also, the decay rate is given by

dN

dt
= −λN0 exp(−λt)= −Nλ (3.2)

where we have used (3.1).
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Fig. 3.1 The fraction of
atoms N/N0 as a function of
time t

3.1.2 Mean Life and Half-Life

Mean life is the average life time τav . We can find mean life from the following
equation:

τav =
∫∞

0 t exp(−λt)dt∫∞
0 exp(−λt)dt = 1/λ2

1/λ
= 1

λ
= τ (3.3)

On putting t = τ = 1/λ in (3.1), we get N/N0 = 1/e = 0.37. Thus, in a time equal
to τ , the radioactive atoms are reduced to 37 per cent of the original number.

Another useful parameter is the half-life time T1/2. It is that time in which the
number of atoms is reduced to half. Putting N/N0 = 1

2 in (3.1), for t = T1/2

N/N0 = 1

2
= exp(−λT1/2) or

T1/2 = ln 2

λ
= 0.693τ

Clearly, τ > T1/2. The values for τ and T1/2 are marked on a typical decay curve as
in Fig. 3.1.

3.1.3 Activity

The activity (A) of a sample is defined as the number of disintegrations per unit
time. Therefore

A=
∣∣∣∣dNdt

∣∣∣∣=Nλ (3.4)

Specific activity is defined as disintegration rate per unit mass of radioactive sub-
stance. A given type of radioactive nucleus may exhibit competitive decay modes,
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say e− capture and β+ emission. As the probabilities are additive, the total decay
constant λ is given by:

λ= λ1 + λ2 + · · · (3.5)

so that for a mixture of activities

1

τ
= 1

τ1
+ 1

τ2
+ · · · (3.6)

Probability of decay of nucleus during time 0 to t is

N0 −N
N0

= [
1 − exp(−λt)] (3.7)

3.1.4 Units of Radioactivity

(a) Curie (Ci)
Curie is measured as 3.7 × 1010 disintegrations per second. Originally, this

number was supposed to represent the number of decays observed for 1 gram of
radium. 1 mCi = 10−3 Ci and 1 µCi = 10−6 Ci.

(b) Becquerel (Bq)
Becquerel is the SI unit of radioactivity which has replaced Curie. 1 Ci =

3.7 × 1010 Bq.
(c) Rutherford (R)

Rutherford is measured as 106 disintegrations per second.
(d) Roentgen

Roentgen is a unit of Radioactivity applied to X-rays and γ -rays. It is the
dose which produces 2.08 × 109 ion pairs of air.

3.1.5 Unit of Exposure and Unit of Dose

The absolute absorbed dose (D) of radiation is the quotient of �E by �m, where
�E is the energy imparted by ionizing radiation to the matter in a volume element
and �m is the mass of the matter in the volume element Therefore

D =�E/�m
The special unit of absorbed dose is the rad

1 rad = 100 ergs g−1

The SI unit for absorbed dose is Gray which means one joule of absorbed energy
per 1 kg of material. 1 Gy = 100 rad. In practice a quoted absorbed dose may refer
to the whole body average or an average over some particular organ of the body.
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The exposure (X) is the quotient of �Q by �m, where �Q is the sum of the
electrical charges on all the ions of one sign produced in air when all the electrons
liberated by photons in volume element of air whose mass is �m are completely
stopped in air

X = �Q

�m

The special unit of exposure is the roentgen (R)

1 R = 2.58 × 10−4 Coulomb kg−1

The roentgen is equivalent to the production of

2.58 × 10−4

1.6 × 10−19
= 1.61 × 1015 ion pairs kg−1

Since an energy of about 34.5 eV is required to produce 1 ion pair in air, the energy
deposited due to exposure of 1 R will be

1.61 × 1015 × 34.5 = 5.6 × 1016 eV kg−1

A more common value for roentgen is

1 R = 5.6 × 1016 × 10−3 × 1.6 × 10−12 = 89 erg g−1

The radiation damage to living tissue is not simply proportional to the absolute
absorbed dose, but it depends on several other factors, radiation type being one
of them. For example, for the same number of Grays, radiation damage is by far
greater for α-particles than γ -rays. From the point of view of medicine different
types of radiation have been given relative biological effectiveness (RBE) factors.
These RBE factors are dimensionless numbers.

The equivalent dose is a measure for the effect of radiation on the human body.
It is defined as:

Dq = qD
where q is a quality factor for the biological effect of different types of radiations on
human tissue. The unit of equivalent dose is the Rem (Roentgen equivalent man),
1 Rem = q · 1 rad. The quality factors (RBE) are approximately q = 1 for X-rays,
γ -rays and β-particles, q = 10 for neutrons and protons, q = 20 for α-particles.
Moreover, the RBE factors depend on the particle energy as well.

The Sievert is a unit combining the RBE factor with the absolute absorbed dose.
The dose equivalent in the Sv equals the dose in Gy multiplied by the appropriate
RBE factor. The SI unit is defined as 1 Sievert (Sv) = 100 Rem. The dose in Sv
indicates the potential harm to living tissue. A dose of 900 rad is certainly fatal.
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3.1.5.1 Levels of Radiation and Radiation Hazards

There are three principal natural sources that cause hazards of ionizing radiation.
They are:

(a) Cosmic rays
(b) Radioactive nuclei contained in the body
(c) Radioactive elements present in the rocks and soil

The secondary cosmic rays (e+, e−, γ -rays, neutrons and muons) produced in the
collisions of high energy primary cosmic rays (90 per cent protons) account for a
dose of about 0.25 mSv (millisv) per year for the human body at sea level. The actual
dose depends on the latitude and increases with altitude. At a height of 4000 m the
dose would increase to 2 mSv per year. The most significant radioactive nuclide
in the body is 40K. This isotope of potassium has a long mean life of 1.8 × 109

years and constitutes 0.0117 percent of natural potassium. It can undergo all the
three types of β-decay. But the most common mode (89 percent) is β− decay with
Emax = 1.32 MeV, the remaining 11 per cent decays are mainly via electron capture
to an excited state of 40Ar which subsequently decays by emitting a 1.46 MeV γ -ray.
From these decays the body receives a dose of 0.17 mSv per year. Other radioactive
nuclei in the body contribute similarly.

The γ -radiation arising from the decay products of radioactive elements, mainly
uranium and thorium deposits in rocks and ground, contribute to a dose between
0.2 and 0.4 mSv per year. However, in the neighbourhood of granite rocks, the dose
may be several times greater. A greater hazard is caused by the inhalation of the
radioactive gases of isotopes 222Rn and 220Rn. These are the decay products of ura-
nium and thorium and being gases can diffuse into air and finally enter human body.
Further, 222Rn and 220Rn give rise to a chain of α-emitters that are solids. The dose
received varies widely, depending on the building materials, subsoil, ventilation, etc.
The equivalent whole body dose averages about 1.0 mSv per year.

The total natural background thus averages out to 2 mSv per year. Apart from this
radiation hazards in hospitals using X-rays, the radioactive fall-out from nuclear
weapons, or for that matter in areas near nuclear reactors or accelerators further
increase the radiation hazards. In US, maximum permissible dose at present is set at
50 mSv per year.

Gray and Sievert are very large units from the point of view of biological damage.
Whole body dose of about 5 Gy may cause death in 50 per cent of cases. Even much
weaker doses may result in cancer in many bodies.

Example 3.1 What fraction of the radioactive cobalt nuclei, whose half-life is
71.3 days, decays during a month?

Solution

Fraction = 1 − exp(−λt)= 1 − exp(−0.693t/T1/2)

= 1 − exp(−0.693 × 30/71.3)= 1 − e−0.29168 = 0.254
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Example 3.2 How many beta-particles are emitted during one hour by 1.0 µg of
24Na radionuclide whose half-life time is 15 hours?

Solution
∣∣∣∣dNdt

∣∣∣∣=Nλ= 6 × 1023

24
× 10−6 × 0.693

15
= 1.155 × 1015β particles per hour

Example 3.3 The activity of a certain preparation decreases 2.5 times after 7.0 days.
Find its half-life time.

Solution

N

N0
= 1

2.5
= exp(−λ× 7)

T = 0.693

λ
= 0.693

ln 2.5
× 7 = 5.3 D

Example 3.4 Initially the activity of a certain nuclide totalled to be 650 particles
per minute. What will be the activity of the preparation after half its half-life time?

Solution

650 =
∣∣∣∣dN0

dt

∣∣∣∣=N0λ

∣∣∣∣dNdt
∣∣∣∣ = Nλ=

∣∣∣∣dN0

dt

∣∣∣∣ exp(−λt)

= 650 exp(−0.693t/T1/2)= 650e−0.693×0.5

= 455 particles/min

Example 3.5 To investigate the beta-decay of 23Mg radionuclide, a counter was
activated at time t = 0. It registered N1 beta-particles by time t1 = 2.0 s, and by
time t2 = 3t1, the number of registered beta-particles was 2.66 times greater. Find
the mean life time of the given nuclei.

Solution

N = N0
[
1 − exp(−λt)]

N1 = N0
[
1 − exp(−λt1)

]=N0
[
1 − exp(−2λ)

]
N2 = 2.66N1 =N0

[
1 − exp(λt2)

]=N0
[
1 − exp(−6λ)

]
N2

N1
= 2.66 = 1 − exp(−6λ)

1 − exp(−2λ)
= 1 − x3

1 − x = 1 + x + x2

where x = exp(−2λ)= 0.885, whence, λ= 0.061 and τ = 16 s.
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Example 3.6 Calculate the time required for 20 % of a sample of thorium to disin-
tegrate (T1/2 of thorium = 1.4 × 1010 y).

Solution Decay constant

λ= 0.693

T1/2
= 0.693

1.4 × 1010
= 0.495 × 10−10 y−1

Since N =N0 exp(−λt)

exp(−λt)= N

N0
= 8

10
or

λt = ln(10/8)= 0.223

Thus

t = 0.223

λ
= 0.223

0.495 × 10−10
= 4.5 × 109 y

Example 3.7 Calculate the activity of 1 µg of Th X(T(1/2) = 3.64 D).

Solution Number of Th X atoms in 1 µg is

N = NA ×M
m

= 6 × 1023 × 1.0 × 10−6

224
= 2.678 × 1015

λ = 0.693

T1/2
= 0.693

3.64 × 86400
= 2.2 × 10−6

A =
∣∣∣∣dNdt

∣∣∣∣=Nλ= (
2.678 × 1015)(2.2 × 10−6)= 5.89 × 109/s

= 5.89

3.7
× 109

1010
Ci = 0.159 Ci

Example 3.8 A dose of 3.5 mCi of 32
15P is administered intravenously to a patient

whose blood volume is 3.5 litres. At the end of one hour it is assumed that the
Phosphorous is uniformly distributed. What would be the count rate per millilitre of
withdrawn blood if the counter had an efficiency of only 10 %. (a) 1 hour after the
injection and (b) 28 days after the injection (T1/2 of 32

15P is 14 days).

Solution Dose per millilitre = 3.5
3500 mCi. Therefore, number of disintegrations =

3.5
3500 × 3.7 × 107 per second
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(a) Assuming no significant decay after 1 hour, disintegrations counted = 1
10 ×

3.5
3500 × 3.7 × 107 = 3.7 × 103 per second.

(b) After 28 days, activity = 1
4 ×3.5 mCi. Therefore, disintegrations counted = 925

per second.

Example 3.9 In a laboratory experiment, silver-foil strips are placed near a neutron
source. The capture of neutrons by 107Ag produces 108Ag, which is radioactive and
decays by β-decay with a half-life of 2.4 min. How long should the foil be irradiated
to obtain a maximum activity?

Solution The production of 108Ag is governed by the relation, N = N0[1 −
exp(−t/τ )]. When t = 4τ , the ratio N

N0
= 0.98.

Therefore, after four mean life times, the number of radioactive 108Ag nuclei will
be about 98 % of the maximum value. Thus, there is not much gain in irradiating
the silver foil longer than four mean life times, i.e.

= 4 × T1/2

0.693
= 4 × 2.4

0.693
= 14 min

3.1.6 Determination of Half-Life Time

3.1.6.1 Short Lived Source

Determine the decay rate dN0
dt

at t = 0 and dN1
dt

at t = t1.

To get an accurate result, t1 should be large enough so that dN0
dt

and dN1
dt

are
significantly different but small enough so that t1 is not comparable with the half-
life time. Now

dN0

dt
= −λN0

dN1

dt
= −λN1 = −λN0 exp(−λt1)= dN0

dt
exp(−λt1)

It follows that

T1/2 = 0.693

λ
= 0.693t1

log dN0
dt

− log dN1
dt

If several measurements be taken at known time and a graph be plotted as logdN/dt
against t then a straight line is obtained whose slope gives λ.
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3.1.6.2 Long Lived Source

Let the substance weighW grams. If the atomic (molecular) weight is A, then num-
ber of atoms

N = 6.03 × 1023 ×W/A
The actual decay rate dN/dt can be found out after applying solid angle correction
for geometrical losses

λ= 1

N

dN

dt

whence, T1/2 can be found out.

3.1.7 Law of Successive Disintegration

Let a radioactive substance A decay into B and B into C, with decay constants λA
and λB , respectively. It is required to investigate the variation of B with time t

A
λA−→ B

λB−→ C

The rate of decay of parent substance A is given by

dNA

dt
= −λANA (3.8)

Substance A decays according to the law expressed in the equation −dNA =
λANAdt . For every atom of substance A that disintegrates, an atom of substance
B is formed. Here the number of atoms of substance B varies for two reasons. It de-
creases because substance B decays, but it increases because the decay of substance
A furnishes new atoms of substance B .

The net change of the daughter is given by

dNB

dt
= λANA − λBNB (3.9)

The first term on the right hand side represents the rate of increase of B (notice the
positive sign) and the second term the rate of decrease (notice the negative sign).
Here NA and NB are the number of atoms of A and B , respectively at time t .

Solution of (3.8) is

NA =N0
A exp(−λAt) (3.10)

Solution of (3.9) is

NB =A exp(−λAt)+B exp(−λBt) (3.11)



134 3 Radioactivity

where A and B above are the constants, we can find out the constants by the use
of initial conditions. At t = 0, the initial amount of daughter is zero, i.e. N0

B = 0.
Using this condition in (3.11) gives B = −A and (3.11) becomes

NB =A[exp(−λAt)− exp(−λBt)
]

(3.12)

Also

dNB

dt
= −λAA exp(−λAt)+ λBA exp(−λBt)

but at t = 0

dN0
B

dt
= λAN0

A = −λAA+ λBA or

A = λAN
0
A

λB − λA (3.13)

Using (3.13) in (3.12) we get

NB = λAN
0
A

λB − λA
[
exp(−λAt)− exp(−λBt)

]
(3.14)

3.1.7.1 Transient Equilibrium

Case (i) λA < λB Here parent amount varies considerably with time and the half-
life of parent and daughter are comparable. In such a case the daughter first reaches
the maximum and then decreases at a decay rate of the longer lived of the two.
The time in which the daughter reaches the maximum may be obtained as follows:
Differentiating NB , with respect to t in (3.14) and setting dNB

dt
= 0

λAN
0
A

λB − λA
[
λB exp(−λBt)− λA exp(−λAt)

]= 0 or

tmax = 1

(λB − λA) ln(λB/λA) (3.15)

After this time, the daughter will have the decay rate dependent on the relative values
of λA and λB .

It follows from (3.14) that exp(−λBt) will tend to zero faster than exp(−λAt),
so that (3.14) reduces to

NB = N0
AλA

λB − λA exp(−λAt)= NAλA

λB − λA or

NB

NA
= λA

λB − λA (3.16)
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Fig. 3.2 Growth and decay
of daughter. Also, atoms
showing the phenomenon of
transient equilibrium

Thus, NB/NA is a constant fraction. This means that after considerable time the
daughter would decay at the rate of the parent. This is called transient equilibrium.

As an example, consider the decay of 224Ra with T1/2 = 3.64 D which forms
220Rn with T1/2 = 54.5 s. Starting with pure 224Ra sample, the activity due to 220Rn
would increase for several minutes and would then decrease steadily with a 3.64 day
224Ra period (Fig. 3.2). It is easily shown that parent and daughter have the same
activity at t = tmax (see Example 3.10).

The beginning of the curve up to tmax is determined by the shorter life time,
i.e. λB . But, after this the curve is essentially determined by the longer of the two.

Example 3.10 Show that when

λA < λB, at t = tmax, AA =AB

Solution At t = tmax
dNB
dt

= 0. Hence, from (3.9)

λANA = λBNB that is, AA =AB

3.1.7.2 Secular Equilibrium

Case (ii) λA � λB Here parent activity does not vary with time. Equation (3.14)
reduces to

NB �N0
A

λA

λB

[
1 − exp(−λBt)

]
(3.17)

After a time t long compared with T1/2(B), a condition is reached for which
exp(−λBt) tends to zero and consequently the amount of the daughter present is
practically constant having the value

NB =N0
A

λA

λB
(3.18)
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Fig. 3.3 Growth of radon
atoms with time when
λA � λB , secular equilibrium
is reached

In that case, the daughter is said to be in secular or permanent equilibrium with the
parent. Since the amount of parent is nearly constant

N0
A =NA

NB

NA
= λA

λB
= T1/2(B)

T1/2(A)

(3.19)

Under these conditions the daughter breaks up as fast as it is formed. For exam-
ple, in the decay of 226Ra (T1/2 = 1620 y) into Rn (5.5 D) a secular equilibrium is
established, as in Fig. 3.3. When the equilibrium condition is reached and the en-
tire amount of radon is separated from radium then the separated radon will decay
according to the exponential law exp(−λBt).

To sum up secular equilibrium can be established when T1/2(A)
 T1/2(B) and
transient equilibrium can be reached if T1/2(A)� T1/2(B).

Case (iii) λA � λB In this case, after some time the parent disappears much be-
fore the daughter begins to decay at a rate determined by its decay constant. Here
also the rate of growth of the daughter is determined by the shorter T1/2 and the
decay by the longer T1/2. Formula (3.14) is valid for λA > λB as well.

3.1.7.3 Growth of the Grand Daughter Product

Consider the following decay scheme

A
λA−→ B

λB−→ C
λC−→

for successive transformations. For the grand daughter C, the net change of atoms
is given similar to (3.9)

dNC

dt
= λBNB − λCNC (3.20)
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The system of differential equations (3.2), (3.9) and (3.20) can be solved

NA = A exp(−λAt) (3.21)

NB = B exp(−λAt)+C exp(−λBt) (3.22)

NC = D exp(−λAt)+ F exp(−λBt)+G exp(−λCt) (3.23)

The constants, A, B , . . . are determined from the initial conditions. Let NA =N0
A,

NB = 0, NC = 0 at t = 0. This gives us:

A=N0
A (3.24)

B +C = 0 or C = −B (3.25)

D + F +G= 0 (3.26)

Differentiating (3.22) and substituting in (3.9)

(λAA+ λAB − λBB) exp(−λAt)= 0

If this equation is to be valid for all values of t , then the first bracket must vanish.
Therefore

B = AλA

λB − λA (3.27)

Differentiating (3.23) and using (3.24) and (3.27) and remembering at t = 0, NB =
NC = 0, we get

λAD+ λBF + λCG= 0 (3.28)

Differentiating (3.23) and combining with (3.20) and using the values of NB and
NC from (3.22) and (3.23)

exp(−λAt)(−DλA −BλB +DλC)+ exp(−λBt)(−FλB + FλC −CλB)= 0
(3.29)

In order that Eq. (3.29) be valid, the coefficients of the exponentials must vanish
separately

D = BλB

λC − λA = N0
AλAλB

(λC − λA)(λB − λA) (3.30)

F = −CλB
λB − λC = N0

AλAλB

(λB − λC)(λB − λA) (3.31)

Using (3.26), (3.30) and (3.31)

G= N0
AλAλB

(λC − λB)(λC − λA) (3.32)
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Using (3.30), (3.31) and (3.32), in (3.23)

NC(t) = N0
AλAλB

[
exp(−λAt)

(λC − λA)(λB − λA) + exp(−λBt)
(λC − λB)(λA − λB)

+ exp(−λCt)
(λB − λC)(λA − λC)

]
(3.33)

The method of solution of the general case of n products has been given in a sym-
metrical form by Bateman. Equation (3.33) has frequent applications as in the chain
disintegration in natural radioactivity. It may so happen that one of the members of
a radioactive series may have half-life time considerably longer than the succeed-
ing decay products as for uranium ore. Let λA � λB or λC . Then t is long enough
(t 
 1/λ), the second and third terms in (3.33) are clearly unimportant and (3.33)
reduce to

NC(t)

N0
A

= λA

λC
(3.34)

Thus, the condition for secular equilibrium is reached.

3.1.8 Age of the Earth

Standard methods for the estimation of the age of earth are as follows:

(a) concentration of salt in sea water
(b) the rate of recession of moon from the earth
(c) sedimentation of rocks
(d) the radioactivity method

In natural radioactivity there are four possible series of chain decays:

(a) Radium series represented by 4n+ 2, starting with 238U (T1/2 = 4.56 × 109 y)
and ending up in 206Pb.

(b) Actinium series represented by 4n+3, starting with 235U (T1/2 = 0.71×109 y)
and ending up in 207Pb.

(c) Radio thorium series, represented by 4n, starting with 232Th (T1/2 = 1.39 ×
1010 y) and ending up in 208Pb.

(d) Neptunium series, represented by 4n + 1, starting with 237Np and ending up
with 209Bi does not exist as the members of this series have all half-lives much
shorter than the age of earth.

In all the four cases n is a positive integer whose value assigns the mass number of
various members of the series. Notice that ordinary lead 204Pb is not a product of
radioactive decay.

It must be pointed out that as no half-value period in the existing series is greater
than 0.1 per cent of the parent, we can consider that shortly (compared with 109 y)
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after the disintegration of the radioactive atom it becomes directly an isotope of lead
without incurring any serious error.

Uranium and Thorium are widely distributed in ordinary rocks in minute quan-
tities and are found occasionally in concentrated deposits in radioactive minerals.
Both ultimately decay to lead isotopes.

The age of radioactive minerals can be estimated from the knowledge of ura-
nium and thorium contents, the isotopic composition of lead, and the decay con-
stants using (a) the thorium/lead-208 ratio or (b) uranium/lead-206 ratio, or (c) lead-
207/lead-206 ratio.

Nier’s method involves (a) an accurate determination of the present-day abun-
dance ratio of the uranium isotopes 235 and 238 using mass spectrographs, (b) de-
termination of relative abundance of lead isotopes in the mineral whose age t is to
be estimated and (c) use of the measured decay constants of the two isotopes of
uranium.

As the life times of 235U and 238U are different, we expect the ratio 206Pb/207Pb
to be quite different from uranium isotope ratio at the beginning. Assuming that
there are no losses of intervening radioactive products, specially radon which is a
gas, we can write the balance equations:

206N + 238N = 238
0N (3.35)

238N = 238
0N exp(−λ238t) (3.36)

Combining (3.35) and (3.36)

206N = 238N
[
exp(λ238t)− 1

]
(3.37)

Similarly

207N = 235N
[
exp(λ235t)− 1

]
(3.38)

where 206N , 207N , 238N , 235N are the number of atoms after the lapse of time t .
Equations (3.37) and (3.38) can be used separately for the determination of t . Alter-
natively, we can make use of the ratio of (3.37) and (3.38)

206N

207N
=

238N

235N

[exp(λ238t)− 1]
[exp(λ235t)− 1] (3.39)

Using the values, 235N/238N = 1/139, λ235 = 9.72 × 10−10 y−1, λ238 = 1.52 ×
10−10 y−1, 206N/207N = 25 was estimated to be about 2.2 × 109 y. Accepted age
of the earth was 3 × 109y, derived from various sampling and by different methods.

Results would be modified by taking into account the 206Pb atoms which were
already present in the sample when the element was formed (primeval abundance).
The modified equation would be:

206N − 206
0N = 238N

[
exp(λ238t)− 1

]
(3.40)
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There will be a certain primeval abundance ratio among the four lead isotopes,
Pb204,206,207,208. Only the amount of 204Pb does not change with time as it alone
is not created by radioactive processes. It may be taken as a measure of the original
lead in the sample examined. Obviously

204N = 204
0N

We can then rewrite (3.39)

206N

204N
−

206
0N

204
0N

=
238N

204N

[
exp(λ238t)− 1

]
(3.41)

Corresponding relations can be written for N207 and N208. Typical values for the
ratio 206N/204N are 15–18.

The ratio 206
0N/204

0N is found by assuming that the lead found in iron meteorites
has the same proportion for the four isotopes in the primeval lead, and no alteration
in these proportions is possible owing to the extreme smallness of uranium content
in these meteorites. Using the ratio 206

0N/204
0N ∼ 9.4, t is found to be 4.5 × 109 y.

Astronomical observations from recession of galaxies give t ∼ 3.8 × 109 y (time
being measured from the moment all the galaxies were together).

Example 3.11 The present-day abundance ratio of the two isotopes of uranium,
238U and 235U is 137.8 : 1. Assuming that the abundance ratio could never have
been greater than unity, calculate the maximum possible age of the earth. Half-lives
of 238U and 235U are 4.5 × 109 y and 7.13 × 108 y respectively.

Solution If N(238) and N0(238) refer to present and original numbers of 238U
nuclei involved, then

N(238)=N0(238) exp(−λ8t)

where λ8 is the decay constant of 238U and t is measured from t = 0, i.e. t is the age
of the earth. If T8 refers to the half-life of 238U, then

N(238)

N0(238)
= exp(−0.693t/T8)

Similarly for 235U

N(235)

N0(235)
= exp(−0.693t/T5)

Therefore

N(238)

N0(238)

N0(235)

N(235)
= exp

[
0.693t

(
1

T5
− 1

T8

)]

Assuming N0(235)/N0(238)= 1, the maximum value when t = tmax, log(137.8)=
0.4343 × 0.693 × 1.18 × 10−9 × tmax or, tmax = 6 × 109 y.
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Example 3.12 In the radioactive series stemming from 238U, intermediate nuclei
have negligible mean lives on geological time scale, so that 238U may be assumed
to decay directly to 206Pb with a mean life of 6.48 × 109 y. Similarly, 235U decays
to 207Pb with a mean life of 1.03 × 109 y. In a certain sample of uranium-bearing
rock the proportions of atoms of 238U, 235U, 206Pb and 207Pb were found to be in
the ratio of 1000 : 7.19 : 79.7 : 4.85. The sample had negligible amount of 208Pb.
Estimate the age of the rock.

Solution That the sample contained negligible amount of 208Pb implies that all
the lead was formed from the decay of uranium. Suppose that when the sample of
rock was formed T years ago, it contained no lead but N1 atoms of 238U and N2
atoms of 235U whose mean lives are τ1 and τ2 respectively. The rock would now
contain N1 exp(−T/τ1) atoms of 238U. Since each decayed 238U becomes 206Pb
the rock now contains N1(1 − exp(− T

τ1
)) atoms of 206Pb. Therefore, from the given

abundances

N1(1 − exp(−T/τ1)
N1 exp(−T/τ1) = 79.7

1000
= 0.0797

T = ln(1.0797)× 6.48 × 109 y = 4.97 × 108 y

Similarly, for 235U and 207Pb, one can obtain T = 5.31 × 108 y, the agreement
between the two values being reasonably good.

3.1.9 Radiocarbon Dating

14C is an isotope of carbon which is radioactive and has half-life of 5570 years. It de-
cays through the scheme, 14C → N14 +β− +ve. The study of 14C content in certain
substances provides reliable information about the ages of articles of archaeological
interest.

3.1.9.1 Production of 14C-Theory

The incidence of high energy primary cosmic rays, mainly protons, on the top of
atmosphere causes occasional spallation of nitrogen or oxygen nuclei. This nuclear
break-up produces energetic neutrons amongst other fragments. Fast neutrons get
slowed down through successive elastic or inelastic collisions with the nuclei of
the components of air. The neutron induced reactions with 14N produce important
isotopes 3H and 14C through

n+ 14N → 12C + 3H (i)

n+ 14N → 12C + 1H (ii)
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The cross-section for reaction (ii) to occur is as high as 1.7 barns at thermal energy,
while the corresponding reaction with 16O is only 0.1 per cent of this value.

The reaction n + 14N → 11B + 4He is dominant at energies above 1 MeV but
even at the most favoured energies, attains cross-sections of only 10 per cent of that
of nitrogen for thermal energies. Reaction (ii) is so much more probable that the
yield of radiocarbon will be nearly equal to the total number of neutrons generated
by the cosmic rays and retained on earth.

If we assume that the cosmic ray intensity has remained constant over the last
20000 or 30000 years with usual daily and annual fluctuations, then the rate of dis-
integration of 14C will be equal to its rate of formation. Once the radiocarbon atoms
are introduced into the air, at a height of some 5 or 6 miles, it seems certain that
within a few minutes or hours the carbon atoms would have been burned to car-
bon dioxide molecules. Radiocarbon dioxide thus formed will be inhaled by plants
along with ordinary CO2. Consequently, all plants will be rendered radioactive and
since animals live off the plants, all animals will be rendered radioactive by the cos-
mic radiation. The time for radiocarbon in air to disperse is not in excess of 500 to
1000 years. Since this time is short compared to the life time of 14C, the distribu-
tion of 14C is uniform over all latitudes and longitudes notwithstanding, the fact that
the cosmic ray neutron component varies by a factor of 3.5 between equatorial and
polar regions.

There are some 8.3 g of carbon in exchange equilibrium with the atmospheric
CO2, for each cm2 of the earth’s surface on the average and since there are some
2.6 14C atoms formed/cm2/s, we can expect a specific radioactivity of 2.6/8.3 dis-
integrations/s/g or 18.8/min/g. This number, which is in agreement with the experi-
mentally observed value of 16.1, gives credence to the theoretical picture discussed
above. Living matter yields 15.3 disintegrations/min/g.

If the cosmic ray intensity has remained substantially constant during 20000 to
30000 years, and if the carbon reservoir has not changed appreciably in this time,
then we expect a complete balance between the rate of disintegration of radiocarbon
atoms and the rate of assimilation of new radiocarbon atoms for all living material.
Thus, for example, in a tree or any other living organism radiocarbon assimilated
from food would just balance the losses due to its decay in the tissues. However,
when the living organism dies, the assimilation processes abruptly come to an end
and the disintegration process alone remains.

If I is the specific activity of the dead organism and t is its age in years then

I = 15.3e−0.693t/5570 (3.42)

Here, t is time (years) elapsed since its death.

3.1.9.2 Suitable Materials for Carbon Dating

Suitable materials for carbon dating must be such that the original carbon atoms
must be preserved and should not be replaced by other atoms due to chemical
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changes. Organic materials usually made of macromolecules, such as cellulose and
charcoal, are suitable candidates. The recommended materials for carbon dating are
charcoal or charred organic materials, such as heavily burned bone, well preserved
wood, well preserved shell, antler and similar hairy structures.

3.1.9.3 Technique

The sample is first cleaned and tested with hydrochloric acid or calcium carbonate.
This is followed by controlled combustion of the sample, if the sample is organic, to
form carbon dioxide, or the addition of hydrochloric acid if the sample is shell, and
then purified of radon and other impurities by precipitation method. The resultant
CO2 is reduced to carbon. The metal and its oxide are removed by acid treatment.
The carbon which is highly porous is transferred inside the counter. As the maxi-
mum energy of β-particles is only 155 keV, the end window of a GM counter would
stop most of the particles to be counted. The main difficulty is the small counting
rate of β-particles from the material against the background of cosmic radiation
and stray radioactivity. The γ -rays (soft component of cosmic rays) background is
largely reduced by shielding the instrument with a thick wall of steel and by sur-
rounding the screen-wall counter in anti-coincidence with a tray of Geiger counters,
the μ-meson (hard component) background is substantially reduced. It is then pos-
sible to measure the radiocarbon radiation to about 1 per cent error in 48 hours in
a typical experiment. This corresponds to an error of 80 years. This is the main er-
ror. The method is suitable for ages ranging from 2000–20000 y. Other detection
techniques employed are proportional counters and scintillation counters.

3.1.9.4 Applications

The method has been found invaluable in archaeology, history and life sciences.
Ages can be estimated with only one gram of the substance. Some examples may
be cited.

A wood from the tomb of Pharaoh, believed to be 5600 years old, was shown to
be in agreement from the specific activity within ±400 y. From the analysis of a
piece of charcoal found in a cave in France, it was shown that it was 15500 years
old.

Villagers existed in Mexico about 7000 years ago and this may be the date which
marks the transition of early American nomads to the life of a farmer and village
dwellers. The age of a giant redwood tree felled in 1874 was determined to be 2710
years old, which more or less agreed with the age of 2905 years determined by the
number of rings.

Previously botanists had believed that seeds over 200 years old cannot germinate.
When a lake in Manchuria had dried up, lotus plants found in the mud were found
to be 1000 years old. This set the date for drying up of the lake. These lotus seeds,
however, germinated and within four months the first seedling blossomed into a
lotus.
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Example 3.13 Determine the age of ancient wooden, items if it is known that the
specific activity of 14C nuclide in the same sample amounts to 3/5 of that in lately
felled trees. The half life of 14C nuclei is 5570 years.

Solution

∣∣∣∣dNdt
∣∣∣∣ =

∣∣∣∣dN0

dt

∣∣∣∣ exp(−λt)

| dN
dt

|
| dN0
dt

| = 3

5
= e−0.693t/5570

Hence, t = 4180 years.

Example 3.14 The carbon isotope 14C is produced in nuclear reactions of cosmic
rays in the atmosphere. It is β-unstable. It is found that a gram of carbon extracted
from the atmosphere, gives on average 15.3 such radioactive decays per minute.
What is the proportion of 14C isotope in the carbon? (Mean life of 14C is 8270 years
and mass of carbon is 12.00 u.)

Solution Suppose there are N nuclei of 14C in the sample. Then the mean number
of decays per second is

∣∣∣∣dNdt
∣∣∣∣=Nλ or N = 1

λ

∣∣∣∣dNdt
∣∣∣∣

Hence, N = 15.3
60 × 8270 × 3.15 × 107 = 6.65 × 1010. The mass of carbon is

12.00 u = 12.00×1.66×10−24 g = 1.994×10−23 g. Therefore, one gram of carbon
contains

1

1.994 × 10−23
= 5.015 × 1022 atoms

Hence, the proportion of 14C in one gram of the sample is

= 6.65 × 1010

5.015 × 1022
= 1.326 × 10−12

Example 3.15 A total of 16.0 radioactive disintegrations per minute per gram are
measured from a sample of living wood. The counter used for measuring the sample
is only 5 % efficient. A sample of 8 g of carbon taken from archaeological sample
of wood register 9 counts per minute. The background count of 5 per minute is also
observed. Calculate the age of the sample (T1/2 of 14C = 5730 y).
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Fig. 3.4 Plot of potential
energy between α particle and
residual nucleus as a function
of distance of separation r

Solution Count rate for archaeological specimen = 9.0 − 5.0 = 4.0 counts per
minute. Hence, number of disintegrations

= 4 × 100

5
= 80 counts per min per 8 g

= 10 counts per min per g

But, A = A0 exp(−λt), or 2.303 log(A0/A) = λt = 0.693t
T1/2

. By the problem, A0 =
16.0, A= 10 and T1/2 = 5730. Therefore, age of the sample is

t = 2.303 log(A0/A)× 5730

0.693
= 3887 y

3.2 α Decay

It is known that α-energy from radioactive nuclei have much smaller energy than
the potential barrier height with respect to the ground level. For example, the decay
of 238U → 234Th +α. Figure 3.4 shows the curve of potential energy V (r) between
an α-particle and the residual nucleus as a function of distance of separation r .

At large distances from the nucleus α is repelled electrically and will have a
potential energy V (r)= 2Ze2/r , where 2e is the charge of α and Ze is that of the
residual nucleus. When α reaches the nucleus, the repulsion is rapidly overbalanced
due to the attractive nuclear forces.

The Coulomb potential is extended inward to a radius R and then arbitrarily cut
off for mathematical simplicity. We can calculate the potential barrier height for the
decay of 238U

V (R)= 1.44zZ

R
= 1.44 × 2 × 90

8
= 32.4 MeV
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This is a lot more than the observed kinetic energy of α’s, E = 5 MeV from the
decay of 238U nuclei. Classically α’s must have energy at least equal to the barrier
height of 32.4 MeV. If α energy E is much less to cross over the repulsive barrier,
then according to classical physics α remains trapped inside the nucleus. This was
an outstanding paradox. This paradox was solved by Gamow, Gurney and Condon
in 1928 by invoking for quantum mechanics. Because of its wave properties, α has
a small probability of leaking through the barrier. An optical analogue is the trans-
mission of light between two parallel glass plates facing each other. When the air
gap is large, then for angles of incidence greater than the critical angle, no light is
transmitted from one glass to the other. However, if the glass plates are brought so
close that the air gap is not more than a few wavelengths, then it is observed that
the light is able to get into the other plate even for incident angles greater than the
critical angle.

3.2.1 Potential Barrier Problem

Consider a stream of particles of energy E < V (region I). The incoming particles
can be considered as a wave along positive x-axis (Fig. 3.5) with a plane wave func-
tion A exp(ik1x). Here, k2

1 = 2mE/�2. Part of the beam is reflected at the wall. This
wave is represented by the wave function A exp(−ik1x) along the negative x-axis.

In region III we expect only an outgoing wave of the form D exp(ik3x). But
k3 = k1. In region II we must have a linear combination of exp(k2x) and exp(−k2x).
Schrodinger’s equation is:

d2u

dx2
+ 2m

�2
(E − V )u= 0 (3.43)

Region I (x < 0); V = 0
As V = 0, Eq. (3.43) reduces to

d2u

dx2
+ k2

1u= 0 (3.44)

The solution is thus

u1 =A exp(ik1x)+B exp(−ik1x) (3.45)

Region II (0< x < a), V = V0
Equation (3.43) becomes

d2u2

dx2
− 2m

h2
(V0 −E)u2 = 0 or (3.46)

d2u2

dx2
− k2

2u2 = 0 (3.47)
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Fig. 3.5 Penetration through
a rectangular barrier

with

k2
2 = 2m

�2
(V0 −E) (3.48)

u2 = C exp(k2x)+D exp(−k2x) (3.49)

For thin barriers both the exponentials are admissible. Here, for mathematical sim-
plicity we will assume the case of a thick barrier for which we set C = 0, so that
(3.49) becomes

u2 =D exp(−k2x) (3.50)

Region III (x > a)
The solution of (3.43) is

u3 = F exp(ik1x) (3.51)

A, B , C, D and F are the amplitudes.

Since k3 = k1. There is no wave proceeding in the opposite direction in region III.
For this reason the term exp(−ik3x) is absent.

Continuity conditions for the wave functions require that the amplitude and the
first derivatives of the wave functions at the boundary be equal. At x = 0, u1(0)=
u2(0) and u′

1(0)= u′
2(0). These lead to

A+B = C (3.52)

ik1(A−B) = −k2C (3.53)

Solving (3.52) and (3.53)

2A= C
[

1 − k2

ik1

]
(3.54)

at

x = a, u3(a)= u2(a)

F exp(ik1a)= C exp(−k2a) or

F = C exp(−ik1a) exp(−k2a) (3.55)



148 3 Radioactivity

Relative probability of finding the particle transmitted, called transmission coeffi-
cient, is given by

T = |F |2
|A|2 = |C|2 exp(−2k2a)= 4k2

1 exp(−2kaa)

k2
1 + k2

2

(3.56)

where we have used (3.55). Using (3.42) and (3.48) in (3.56) we get

T = 4E

V0
exp(−2k2a) (3.57)

If we do not put the amplitude C = 0 and carry out the analysis as above, the fol-
lowing expressions without this approximation would result, the transmission coef-
ficient being given by

T = |F |2
|A|2 = 4k2

1k
2
2

(k2
1 + k2

2)
2 sinh2k2a + 4k2

1k
2
2

(3.58)

The probability of reflection, called reflection coefficient, is given by

R = |B|2
|A|2 = (k2

1 + k2)
2 sinh2k2a

(k2
1 + k2

2)
2 sinh2k2a + 4k2

1k
2
2

(3.59)

Notice that T + R = 1, as it should be. There are two interesting situations in
which these formulae become easier to understand. Consider the purely formal limit
in which h→ 0. The quantity � is a physical constant, but we can consider it as a
mathematical variable in order to examine the classical limit of the formulae (3.58)
and (3.59). As � → 0, kl and k2 approach infinity and T → 0 and R→ 1, which is
of course the expected behaviour of a classical particle for E < V0.

The other interesting limit occurs when the transmission is small. This happens
when the barrier width is large, and k2a 
 1 or (V0 − E)
 �

2/2ma2. This limit
also corresponds to having many wavelengths inside the barrier. Then the term (k2

1 +
k2

2) exp(2k2a) dominates the denominator of (3.58) and the transmission coefficient
becomes approximately

T � 16k2
1k

2
2 exp(−2k2a)

(k2
1 + k2

2)
2

or

T = 16E

V0

[
1 − E

V0

]
exp

[−2a

�

√
2m(V0 −E)

]
(3.60)

where we have used (3.42) and (3.48). The expression 16(E/V0)[1 − (E/V0)] is of
the order of unity. Notice that the transmission coefficient is sensitive to the barrier
width, energy change and mass of the particle.
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Fig. 3.6 Penetration through
barrier of arbitrary shape

3.2.2 Barrier of an Arbitrary Shape

The order of magnitude of the transparency of an arbitrarily shaped barrier can be
calculated by finding the average ‘height’ and treating it as a rectangular barrier
(Fig. 3.6). The transparency given by (3.60) can be approximated to

T � exp

{
−2

∫ b

a

√
2m

�2

[
V (x)−E]dx

}
(3.61)

where a = R and b define the boundaries of the barrier which is to be crossed. It is
assumed that when an α-particle is within the nucleus, it behaves like a free particle
moving back and forth hitting the barrier.

Probability of escape/s = (Rate of hitting the barrier) × (Transparency)

P = f T = λ= 1

τ

f = v(inside nucleus)/R
(3.62)

where R = a = nuclear radius

f � 107 m/s

10−14 m
= 1021/s (3.63)

Combining (3.61), (3.62) and (3.63), we get

λ= 1

τ
� 1021e−G (3.64)

where

G= 2
∫ b

a

√
2μ

�2

[
V (r)−E]dr (3.65)

This is called Gamow’s factor. Here, we have used the reduced mass μ, rather than
m for the mass of the α-particle for greater accuracy.
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For the α decay

V (r)= zZe2

r
(3.66)

with z= 2.
The upper limit of the barrier is obtained by setting the kinetic energy E equal to

the potential energy when it just leaves the barrier. Hence

1

2
μv2 =E = zZe2

b
or b= zZe2

E
(3.67)

Using (3.66) and (3.67) in (3.65), we get

G=
√

8μzZe2

�2

∫ b

R

√
1

r
− 1

b
dr (3.68)

The integral can be easily evaluated by the substitution, r = b cos2 θ . Thus, the in-
tegral becomes

I = b cos−1
√
R/b

∫
(cos 2θ − 1)dθ = √

b

(
cos−1 R

b
−
√
R

b
− R2

b2

)

G=
√

8μzZe2b

�2

[
cos−1

√
R

b
−
√
R

b
− R2

b2

] (3.69)

For

b
R, cos−1

√
R

b
−
√
R

b
− R2

b2
� π

2
−
√
R

b
· · · −

√
R

b
=
√
π

2
− 2

√
R

b

An approximate expression for G is

G= 2πzZe2

�v
− 4

�

√
2μzZe2R (3.70)

The first term is larger than the second one by the factor (π4 )
√
b/R and is therefore

the dominant term. The first term of (3.70) is sometimes called Gamow exponent
and the corresponding approximate value of the barrier transparency for s waves
(l = 0) through very high spherical barriers is called the Gamow factor.

T � exp

(
−2πzZe2

�v

)
= exp

[−(2πZz/137β)
]

(3.71)

where we have used the value of the fine structure constant e2/�c= 1/137, and β =
v/c, c being the velocity of light. Expression (3.71) indicates that nuclear barrier
will be quite impenetrable if 2zZ/137β 
 1 and again this inequality represents
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Fig. 3.7 Plot of logλ vs
logx for three naturally
occurring series

the domain in which classical theory can be expected to be valid. Further, (3.70)
shows that emission of α-particles with small velocity, i.e. small energy will be
inhibited. Also, the larger the Z (as in the case of fission fragments) the smaller is
the barrier transparency.

3.2.3 Determination of Nuclear Radius

If the mean life time and the kinetic energy of an α emitter and Z be known, the nu-
clear radius R can be found out from (3.70) and (3.64). The values of r0 are obtained
from the formula R = r0A1/3. The value of r0 thus deduced is found to be 1.48 fm,
which is higher by about 20 per cent obtained by other methods. The corrected ra-
dius of the daughter nucleus will be actually slightly smaller than R because of the
finite radius of an α, particle. Thus, the effective radius of r0 will be slightly less. It
may be pointed out that larger the value of R, other things being equal, the thinner
is the barrier width and hence the greater is the barrier transparency.

3.2.4 Geiger Nuttall Law

From the study of α emitters, Geiger and Nuttall discovered that members of natu-
rally occurring radioactive series (e.g., Ra, Th, Ac) were found to fall along straight
lines when logλ is plotted against logx (here x = range) for each series, see Fig. 3.7.
Therefore

logλ= k logx + c (3.72)

where k and c are the constants.
Geiger also showed that

x = const · v3 = const ·E 3
2 (3.73)
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so that

logλ= const · logE + const or

logλ+ const · log(1/E)= const (3.74)

i.e. smaller the mean life time, the larger is the α energy.
Now Gamow’s formula is

λ= const · exp(const/
√
E)

Here, Z is assumed to vary by small amount and absorbed in the constant. Therefore

logλ+ (const/
√
E)= const (3.75)

There is some resemblance between (3.74) and (3.75).

3.2.5 Success of Gamow’s Theory

Because of the factor of v in the exponential in Gamow’s formula (3.70), the mean
life time varies enormously even for small variations in α energies. For example, it
is known experimentally that α’s from 232Th with half life 1.4 × 1010 y gives α’s of
5 MeV energy while Th C′ of half life 0.3 µs gives α’s of 8 MeV. Thus, a 50 per cent
change in energy (E) corresponds to a change of 24 orders of magnitude in half life
times. The explanation of the enormous inverse variation of life times with α energy
is the brilliant success of Gamow’s theory.

The above considerations are valid for transmission of s-waves (l = 0) through
barrier. Fortunately, a large number of α emitters do enjoy this property. These are
the nuclei which have even Z and even A. This will also be true for the daughter
nucleus. These nuclei are universally known to have zero angular momentum. From
the conservation of angular momentum, it follows that α’s would carry s-waves. If
l �= 0, the solution of the modified equation becomes complicated. In general l �= 0
has the effect of increasing the barrier height and thereby increasing the mean life
time.

3.2.6 Fine Structure of α Spectrum

In a given type of α decay, α particle and the daughter nucleus carry unique energy
as it is a two-body decay so that momentum and energy are shared uniquely. Most of
the α transitions tend to go predominantly to the ground level of the decay product
as the transition energy is the greatest. Transitions to excited level of the decay
product, usually but not always, constitute a small fraction of the total transitions
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Fig. 3.8 Transitions which
give rise to long range and
short range α’s

and are confined to low lying excited levels. As the transitions take place to distinct
groups of energy levels of the daughter nucleus, the resulting spectrum has a fine
structure. In the event the decay of a nucleus by β emission or K-capture leaves the
product in an excited state, and the product is an alpha emitter with a very short life
time, the additional excitation energy may be carried away in the α decay process
rather than by γ emission, resulting in a long range α. On the other hand, if the α
emitter is in the ground state or low lying excited state decays to a highly excited
level, much less transition energy will be available, resulting in a short range α
(Fig. 3.8).

3.2.7 Angular Momentum and Parity in α-Decay

In an α decay for the transitions between the initial nuclear state with spin Ii , to the
final nuclear state with spin If , the angular momentum of α-particle can range from
Ii+If to |Ii−If |. Since α-particle has spin zero, the angular momentum carried by
α-particle is purely orbital (lα). The α-particle wave function is represented by Ylm
(spherical harmonics), and l = lα . Thus the parity change associated with α emission
is (−1). This leads to the parity selection rule. Conservation of parity requires that
if the initial and final states have the same parity, then lα must be even. If parities
are different then lα must be odd.

As an example, Fig. 3.9 shows α-decay of 242Cm to different excited states of
238Pu characterized by the quantum numbers 0+, 2+, 4+, 6+, 8+, . . . for the ground
state rotational band. The transitions from 0+ state of 242Cm to the enumerated
states of 238Pu viz. 0+, 2+, 4+ are allowed by the parity rule. It must be pointed out
that the transition rates are quite different.

The intensity depends on the wave functions of the initial and final states and also
depends on the angular momentum lα. Centrifugal potential barrier l(l+1)�2/2mr2

has the consequence of raising the thickness of Coulomb’s barrier which is to be
penetrated. Further, α decay involves different Q values. In this example, for the
decay to the ground state, Q is 6.216 MeV. For excited states, the Q value is low-
ered by an amount equal to the excitation energy. The decay to 2+state has less
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Fig. 3.9 α decay of 242Cm to
different excited states 238Pu.
The intensity of each α decay
is also indicated

intensity than the decay to the Pu ground state 0+. This is because the centrifugal
potential raises the barrier by about 0.5 MeV and also the excitation energy lowers
Q by 0.044 MeV. The decay intensity rapidly decreases as we go up the band to
8+ state (Fig. 3.9). Once we go up above the ground-state band the intensities drop
off to exceedingly low values (∼10−7 of the total intensity). This results for the
mismatch between the initial and final wave functions that are in contrast with the
paired vibrationless 0+ ground state.

Certain types of transitions are absolutely forbidden by parity conservation, for
example the 2-states at 0.986 MeV, the 3+ state at 1.070 MeV and the 4− state
at 1.083 MeV Thus, a 0 → 3 decay must have la = 3 which must give a change in
parity between the initial and final states. Hence, 0+ → 3− is possible, but 0+ → 3+
is forbidden.

Example 3.16 The a particles emitted in the decays of 226
88Ra and 226

90Th have en-
ergies 4.9 and 6.5 MeV, respectively. Ignoring the difference in their nuclear radii,
find the ratio of their half-life times.

Solution Using (3.71), λ= 1/τ = 1021 exp(−2πzZ/137β) with E1 = 4.9 MeV

β1 =
√

2E1

Mc2
=
√

2 × 4.9

3727
= 0.05174

E2 = 6.5 MeV

β2 =
√

2 × 6.5

3727
= 0.05906

T1/2(1)

T1/2(2)
= τ1

τ2
= exp( 2πz

137
Z1
β1
)

exp( 2πz
137

Z2
β2
)
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Putting z= 2 for α-particle, z1 = 86 and z2 = 88 for the daughter nuclei, we get

τ1

τ2
= exp

4π

137

[
86

0.05174
− 88

0.05906

]
= e15.78 = 7.13 × 106

Example 3.17 If two α-emitting nuclei, with the same mass number, one with
Z = 82 and the other with Z = 84 had the same decay constant, and if the first
emitted α-particles of energy 5.0 MeV, estimate the energy of α-particles emitted
by the second.

Solution

λ1 = 1021 exp
(−2πzZ1e

2/�v1
)

λ2 = 1021 exp
(−2πzZ2e

2/�v2
)

as

λ1 = λ2

Z1√
E1

= Z2√
E2

E2 = E1

[
Z2

Z1

]2

= 5.3

[
82

84

]2

= 5.05 MeV

Example 3.18 In the α-decay 8
4Be → α + α, the kinetic energy released is

0.094 MeV. Estimate the mean life of 8
4Be (r0 = 1.1 fm, τ0 = 7 × 10−23 s and

mα = 3728.43 MeV. τ0 is the mean lifetime without the Gamow factor).

Solution

1

τ
= 1

τ0
e−G

By (3.70)

G = 2πzZ

137β

[
1 − 4

π

√
R

b

]

b = zZe2

4πε0
= 1.44 × 2 × 2

0.094
= 61.27 fm

β =
√

2E

μc2
=
√

2 × 0.094

0.5 × 3727
= 0.01

R = 2r0A
1/3 = 2 × 1.1 × 41/3 = 3.49 fm
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G = 2π × 2 × 2

137 × 0.01

(
1 − 4

π

√
3.49

61.27

)
= 12.74

τ = τ0eG = 7 × 10−23e12.74 = 2.4 × 10−17 s

Example 3.19 Calculate the energy to be imparted to an α-particle to force it into
the nucleus of 208

82Pb (r0 = 1.2 fm).

Solution The energy required to force an α-particle into a nucleus of charge

Ze is equal to the maximum height of the potential barrier, i.e. Zze2

4πε0R
, where

R = radius of the α-particle + radius of the nucleus, i.e. R = r0[A1/3
α + A1/3

nuc] =
1.2 × 10−15[41/3 + 2081/3] = 9.01 fm. Hence, the energy required is

E = 1.44 × 2 × 82

9.01
MeV = 26.2 MeV

Example 3.20 Radium, Polonium and Ra C are all members of the same radioactive
series. Given that the range in air at S.T.P. of the α-particles from Radium (half-life
1622 years) is 3.36 cm, whereas from Ra C′ (half-life time 3.3×10−9 s) the range is
6.97 cm. Calculate the half-life of Polonium for which the α-particle range at S.T.P.
is 3.85 cm assuming the Geiger Nuttall rule.

Solution Using (3.72)

logλ= k logx + c
log

0.693

T
= k logx + c

K logx + logT = log 0.693 − c= C′ (i)

K log 3.36 + log(1622 × 365)= C′ (ii)

K log 6.97 + log
(
3.3 × 10−9/86400

)= C′ (iii)

Solving (ii) and (iii), K = 60.57, C′ = 37.65. Use the values of K , C′, and x =
3.85 cm in (i) to find

T = 155 D

3.3 β-Decay

It was known that β spectrum is not discrete but continuous. There was an appar-
ent loss of energy. In many cases γ -rays were not detected. This was explained by
Pauli [3] by postulating the existence of neutrino, (ν)—a neutral, massless particle
of spin 1/2. A neutrino was assumed to accompany the β decay but could not be de-
tected owing to its extremely feeble interaction with nuclear matter. The decay being
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Fig. 3.10 β-ray spectrum

a three-body process accounts for the continuous nature of the spectrum (Fig. 3.10).
N(E) is the number of particles at β particle energy Eβ .

Energy conservation gives:

Eβ +Eν +EN =Q= const (3.76)

where Eβ , Eν and EN , are the energies of β particle neutrino and residual nucleus
respectively.

Momentum conservation gives

−→
P + −→

Pν + −→
PN = 0 (3.77)

Now there are variety of ways in which β particle is emitted such that (3.76) and
(3.77) are satisfied. The angle between any two particles is not the same. This leads
to a variety of configurations. The phenomenon is considered as the decay of one of
the nucleons of the nucleus

n→ p→ β− + νe
p→ n+ β+ + νe

The converted nucleon is lodged within the nucleus as the product nucleus recoils.
Here we have introduced the suffix e for the neutrino as it accompanies the β-decay
to distinguish it from other two types of neutrinos which will be considered in [2],
Chaps. 3 and 4. Further, it was found that the anti-neutrino νe is different from νe .
Typical examples of β decay are

3
1H → 3

2He + β− + νe
27
14Si → 27

13Al + β+ + νe

Notice that in the presence of ν, angular momentum is also conserved.
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3.3.1 Fermi’s Theory

(a) The Coulomb interaction between the β particle and the residual nucleus is
neglected. Later, this effect is incorporated in theory. Coulomb interaction is
negligible for light nuclei (Z ≤ 10) and for sufficiently high β particle energy.

(b) The recoil energy (ER) of the nucleus is neglected.
The recoil energy is negligible in all cases since the mass of the nucleus

is much larger than the mass of electron. Since neutrino is assumed to have
zero rest mass, and when it carries negligible energy, maximum total energy, of
electron Emax �Q

Pe(max) =
√
E2

max −me
2

(3.78)

Also, the recoil energy of the nucleus ER is given by

ER = P 2
N(max)

2AM
= P 2

e(max)

2AM
(3.79)

as PN � Pe, andM is the mass of nucleon. Combining (3.78) and (3.79) we get

ER � m2
e

2AM

[
E2 max

m2
e

− 1

]
or (3.80)

ER

Emax
= me

2AM

[
Emax

me
− me

Emax

]
(3.81)

In a typical case, A� 20, Tmax = 0.3 MeV or Emax = 0.8 MeV, nucleon mass
M = 940 MeV and electron mass me = 0.51 MeV. The bracket in (3.81) is of
the order of unity and ER/Emax ∼ 1.3×10−5. Thus ER is negligible. Similarly,
it can be shown that when Eβ has minimum value, Eν has maximum value and
once again ER is negligible. This is also true for intermediate cases.

3.3.1.1 β-Ray Spectrum

Fermi used quantum mechanical time dependent perturbation theory for the β emis-
sion analogous to photon emission. Here the particles to be considered are β− and
ν only. Thus

Eβ +Eν =Q=E0 (3.82)

As the level of parent nucleus is not sharp, E0 is not strictly constant. According
to perturbation theory, the probability per unit time for the emission of β particle is
given by:

λ= 2π

�
|Hif |2 dn

dE0
(3.83)
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where Hif is the matrix element given by:

Hif =
∫
Ψ ∗
f HΨidτ (3.84)

Ψi and Ψf are initial and final wave functions of the complete system, dτ is the
volume element and H is the operator that describes the weak interaction energy
between two parts of the system. dn/dE0 is the density of final states.

3.3.1.2 Statistical Factor

We postulate that the probability of disintegration leading to a specific accessible
volume of phase-space is directly proportional to that volume. Consider the β parti-
cle with momentum Pβ suddenly appearing at a certain point in phase-space defined
by certain Cartesian space coordinates and certain momentum coordinates. Let the
particle be restricted to a volume V in actual space with momentum lying between
Pβ and Pβ +�Pβ with an unspecified direction

The volume in phase-space = (V )(4πP 2
β dPβ

)

Number of cells, i.e. number of electron states = 4πP 2
β dPβV/h

3

Hence, the number of electron states/unit momentum interval

dn

dPβ
= 4πP 2

βV

h3
(3.85)

Number of neutrino states with neutrino momentum between Pν and Pν + dPν

= (V )(4πP
2
ν dPν)

h3
(3.86)

Combining (3.85) and (3.86), total number of states is given by:

dn= (4πVP 2dP )

(h3)

(4πVP 2
ν dPν)

(h3)
(3.87)

Here, we have dropped the subscript β .
Number of states/unit energy of electron is given by:

dn

dE0
= 16π2V 2

h6
P 2
ν P

2dPν
dP

dE0

Pν is determined not only by momentum conservation (being 3 body decay), but
also by energy conservation (nuclear recoil energy being negligible). From (3.82)
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Eν = E0 −Eβ (3.88)

Pν = Eν

c
= E0 −Eβ

c
(3.89)

Holding β energy and momentum constant

dPν = dEν

c
= dE

c
(3.90)

Using (3.89) and (3.90) in (3.87) we obtain

dn

dE0
= 16π2V 2(E0 −E)2P 2dP

h6c3
(3.91)

3.3.1.3 Matrix Element

Hif =
∫
Ψ ∗
f HΨidτ (3.92)

Fermi put H = g. The quantity g is called the coupling constant whose value shows
the strength of interaction

Hif = g
∫
Ψ ∗
fNΨ

∗
β Ψ

∗
ν ΨiNdτ (3.93)

In a typical β decay, the wavelengths of β or ν are substantially longer (by an
order of magnitude) than nuclear dimensions. We can then approximate their wave
functions to those of plane waves

Ψβ(r) = V −1/2 exp(iKβ · r)= V −1/2[1 + iKβ · r + · · · ] (3.94)

Ψν(r) = V −1/2 exp(iKv · r)= V −1/2[1 + iKν · r + · · · ] (3.95)

where V −1/2 is the normalization constant. Replacing the above values at the centre,
(r → 0)

Ψ ∗
β (0) = V −1/2

Ψ ∗
ν (0) = V −1/2 (3.96)

|Hif |2 = g2|Mif |2
V 2

where

|Mif |nucleus =
∫
Ψ ∗
fNΨiNdτ (3.97)

and nuclear wave functions are also normalized. Mif is called the nuclear matrix
element or overlap integral.
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Fig. 3.11 β-rays momentum
spectrum

Using (3.91), (3.93) and (3.97) in (3.83), the differential energy spectrum is given
by

I (P )dP = g2|Mif |2(E0 −E)2P 2dP

2π3�7c3
(3.98)

This gives us the number of β particles/sec in the momentum interval P and P+dP ,
(Fig. 3.11), neglecting coulomb interaction. The spectrum is written in the following
form

I (P )dP =KP 2(Emax −E)2dP (3.99)

where K is constant.
For small momentum, I (P ) ∝ P 2 since the term (Emax − E)2 is not very sen-

sitive at small P , i.e. small E; and for large momenta, i.e. E near Emax, I (P ) ∝
(Emax −E)2; I (P ) vanishes at both ends.

3.3.1.4 Coulomb Interaction

Coulomb interaction between the β particles and the residual nucleus has the con-
sequence of distorting the energy spectrum. If the distortion of the wave function
by the Coulomb field of the nucleus is taken into account, a factor F(Z,E) must be
included in (3.98). Non-relativistic expression for F(Z,E) is

F(Z,E)= 2πη

1 − exp(−2πη)
(3.100)

where

η = Ze2

�ν
for electrons

= −Ze
2

�ν
for positrons
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Fig. 3.12 Typical β-ray
spectra for β− and β+ with
the inclusion of the factor
F(z,E) and without (z= 0)

If η� 1 (small Z and large ν, but nonrelativistic) F(Z,E)→ 1.
Qualitatively, the shift in the curves is due to the Coulomb attraction and repul-

sion for electrons and positrons respectively (Fig. 3.12).

3.3.1.5 Kurie Plot

It is difficult to determine experimentally the point at which the curve reaches the
horizontal axis, because the curve makes a tangent to the axis at P = Pmax. A greater
accurate determination of Emax is given by the Kurie plot. Including F(Z,P ) in
(3.99), we get

I (P )= (Emax −E)2p2F(Z,P )

Here, F(Z,P ) includes the constants and the dependence of nuclear charge Z for
the daughter nucleus. Rewriting last equation we obtain

Emax −E =
√

I (p)

P 2F(z,p)
(3.101)

Now the plot of the radical against energy should be a straight line whose intercept
with the horizontal axis can be reliably determined (Fig. 3.13). Very thin sources
should be used, otherwise due to self absorption and back scattering of β particles,
Kurie plots would necessarily deviate from a + straight line.

3.3.1.6 The Mass of Neutrino

In Fermi’s theory, if we treat neutrino with a finite mass, then the resulting Kurie
plot would show deviation at large β energy. Taking into account the finite mass of
neutrino mν , (3.101) is modified as

I (P )dPF(z,P )∝ P 2(E0 −E)2
√

1 −
(
mνc2

E0 −E
)2

dP (3.102)
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Fig. 3.13 Kurie plot

Fig. 3.14 Kurie plot showing
kink (dotted portion of curve)
for mν �= 0

If mν = 0, Fermi-Kurie plot is a straight line and intersects the energy E axis at
Eβ =E0 given by Eq. (3.101). Ifmν �= 0, this plot becomes curved at the maximum
end of the energy and intersects the E axis vertically at E = E0 −mνc2. A deter-
mination of the distance between the intersections of extrapolated Fermi-Kurie plot
for mν = 0 and experimental curve on the energy E axis furnishes a value for the
mass of the neutrino.

Figure 3.14 shows a Kurie plot for mν �= 0, which departs from a straight line.
One can set an upper limit on neutrino’s mass. Observations made with the tritium
spectra (super-allowed transition with Tmax = 18 keV) show that mν < 15 eV.

3.3.1.7 Comparative Half-Lives

λP = I (P )dP is the probability per unit time that an electron will be emitted in the
momentum interval P and P + dP . The probability per unit time that an electron
will be emitted with any momentum within limits is just the total disintegration
constant and is given by
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λ= 1

τ
= 0.693

T1/2
=
∫ P(max)

0
I (P )dP

= g2|Mif |2
2π3�7c3

∫ p(max)

0
F(Z,P )P 2(Emax −E)2dP (3.103)

Put Emax
mc2 = ε0, E

mc2 = ε, and use the relativistic equation

c2P 2 =E2 −m2c4 = (
ε2 − 1

)
m2c4

so that

P =
√
ε2 − 1mc (3.104)

dP = εmcdε√
ε2 − 1

(3.105)

Emax −E = (ε0 − ε)mc2 (3.106)

Use (3.104), (3.105) and (3.106) in (3.103)

F(Z, ε0)=
∫ ε0

1
F(Z, ε)(ε0 − ε)2

√
ε2 − 1dε (3.107)

Using (3.107) in (3.103), we get

F(Z, ε0)T1/2 = 2π3
�

7

m5c4g2
× 0.693

|Mif |2 (3.108)

The value of the coupling constant is 0.9 × 10−4 MeV fm3 or 1.4 × 10−49 erg cm3.
The product f T1/2 or simply f t is called the comparative half-life. Formula (3.108)
shows that f t ∝ |Mif |−2. Assuming that g is known, and that transition is ‘al-
lowed’, we can use f t value to find Mif , the nuclear Matrix element. Since f t
is a large value, smaller is Mif . The value of Mif is uncertain, but is of the order
of unity for ‘allowed’ transitions. Formula (3.108) shows that f t = const if |Mif |2
is unchanged. The distribution of f t values for β emitters on the logarithmic scale
shows that for values of f t ∼ 103 transitions are allowed since matrix element is
large enough and for those for which f t is higher, they are forbidden (Fig. 3.15).
Clearly there is no significant grouping. Since f t ∝ 1/|Mif |2 the matrix elements
should be of the same size for allowed decays and successively smaller for forbid-
den decays of increasing order. It is expected that the experimental f t values fall
into groups according to the allowed and first, second, etc. forbidden transitions, so
that the f t value of a given β emitter would at once give its order of forbiddeness.
But in practice there is no visible clustering of f t values in various groups except
for ‘super allowed’ transitions. The reason for lack of grouping is that the f t value
for the given decay depends not only on the degree of forbiddeness, but also on the
form of the nuclear wave functions that are not same for different decays.
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Fig. 3.15 logf t distribution
for various β emitters

Fig. 3.16 Sargent diagram

3.3.1.8 Sargent Diagrams

In 1933, Sargent found that the plot of logλ versus logEmax for naturally occur-
ring β emitters splits up into two straight lines, called Sargent diagram (Fig. 3.16).
This was an empirical rule analogous to Geiger-Nuttall Rule in α decay. The upper
curve represents allowed transitions (shorter life times) and the lower one represents
the forbidden transitions (longer life times). Theory explains the Sargent diagrams.
Rewriting (3.108) we get

λ= g2m5c4|Mif |2f (Z, ε0)

2π3�7
(3.109)

with

f (Z, ε0)�
∫ εO

1
ε(ε0 − ε)2

√
ε2 − 1dε

There is only one limiting case for which the integral can be evaluated analytically.
To this end set Z = 0, so that F(Z, ε)→ 1. This result would be valid for low Z
and large ε0. Thus

f (0, ε0)�
∫ εO

1
ε(ε0−ε)2

√
ε2 − 1dε
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If ε0 
 1

f (0, ε0)�
∫ εO

1
ε2(ε0 − ε)2dε

where we have approximated
√
ε2 − 1 to ε. Ignoring the contribution from the lower

limit

(ε0 
 1), f (0, ε0)� ε5
0

30
(fifth power law) (3.110)

This relation is valid for ε0 
 5.
For ε0 � 0.5

f (0, ε0)= 2

105
ε7

0 (3.111)

Combining (3.111) with (3.110), we conclude that logλ vs logEmax is a straight
line.

Example 3.21 Determine the half-life time of β emitter 6He whose end point en-
ergy is 3.5 MeV and |Mif |2 = 6. Take g = 0.9 × 10−43 MeV cm3.

Solution Combining (3.109) and (3.110), we obtain

λ = m5c4g2|Mif |2
60π3�7

ε5
0

= g2(mc2)5c|Mif |2
60π3(�c)7

ε5
0

ε0 = Emax +mc2

mc2
= 3.5 + 0.511

0.511
= 7.849

�c = 1.97 × 10−11 MeV cm

λ = (0.9)2 × 10−86 × (0.511)5 × 3 × 1010 × 6 × (7.849)5

60π3(1.97)7 × 10−77
= 0.707

T1/2 = 0.693

λ
= 0.693

0.707
= 0.98 s

The experimental value is 0.81 s.

3.3.2 Selection Rules

β transitions are classified as

(a) allowed or super-allowed transitions
(b) forbidden transitions
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The allowed or super-allowed transitions are characterized by small f t values, and
hence relatively short life times, with nuclear spin change, �I = 0, ±1 and without
parity change. Forbidden transitions are characterized by greater values of f t and
therefore longer life times, with larger change in nuclear spin �I = ±2, ±3 etc.,
depending on the degree of forbidness in the transitions with or without change in
nuclear parity. The quantum numbers whose changes in a transition are governed by
selection rules are total angular momentum and parity. As the life times ultimately
depend on the matrix element |Mif | which connects the initial and final state, the
selection rules are governed by its value.

It has been pointed out that the plane wave functions for electron and neutrino
can be expanded by a series of terms (formulae (3.94) and (3.95)). In the series
expansion successive terms are of the order of 1/10 compared to previous terms,
R/λ being ∼ 1/10, (R/λ)2 ∼ 1/100 and so on. The selection rules for a given order
of transition, i.e. for a given term in the expansion give the necessary conditions on
the change of the quantum numbers specifying the state of the nucleus so that the
term of a given order in the complete matrix element be non-zero. Clearly, different
orders in the expansion of the matrix element require different selection rules. This
is because different orders correspond to even and odd power of r , which is a polar
vector (vector of odd parity).

As far as spin is concerned in the β decay, two leptons of spin 1
2 each are emitted.

The spin orientations of these leptons may be parallel or anti-parallel. The electron
and neutrino can be emitted in a singlet state (spins anti-parallel) or in a triplet state
(spins parallel).

3.3.2.1 Allowed Transitions

When plane waves are expanded in series it is only the l = 0 term that carries the full
amplitude of the plane wave at the origin (nucleus). This gives rise to the allowed
transitions. Both electron and neutrino have the orbital angular momentum l = 0, so
that the total orbital angular momentum becomes L= 0. If the particles are emitted
in the singlet state, then the total angular momentum J = 0 and in the triplet state
J = 1. Of the several possible forms for the matrix element in β-decay, two may be
mentioned.

3.3.2.2 Fermi Rule

In the Fermi matrix element, the operator connecting the initial and final nuclear
states is a unit operator which is a scalar. Thus,

MF =
∫
Ψ ∗
fNΨiNdτ

Therefore, no change in spin or parity is involved.
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Fermi’s selection rule requires �I = 0 (i.e. Ji = Jf ) and the leptons are emitted
in the singlet state

�I = 0
Ii = 0
�π = 0

→ If = 0 allowed

⎫⎬
⎭ Fermi rule

An example of pure Fermi transition is

14O → 14N∗ + β+ + νe[
0+] → [

0+]

where the bracket refers to Jπ value.

3.3.2.3 Gamow-Teller (G-T) Rule

The Gamow-Teller nuclear matrix elementMGT is a tensor and has the form

MF =
∫
Ψ ∗
fNσΨiNdτ

where σ is the generalization of Pauli’s spin matrices and is a pseudo-vector (axial
vector) which does not change sign under space reflection. Hence, the initial and
final states have the same parity. In the G-T selection rule, the leptons are emitted in
the triplet state. Consequently

with
�I = 0,±1
Ii = 0
�π = 0

→ If = 0 forbidden

⎫⎬
⎭ G-T rule

The transition with Ii = 0 → If = 0 is forbidden because this is not possible for the
triplet state. An example of pure G-T transition is

6He
(
0+)→ 6Li

(
1+)+ β− + ν

Following are the examples of mixed G-T and Fermi transitions:

(a) n( 1
2
+
)→ p( 1

2
+
)+ β− + ν

(b) 3H( 1
2
+
)→ 3He( 1

2
+
)+ β− + ν

The two types of decay (Fermi and G-T) are observed to proceed with approximately
but not exactly at the same rate.
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3.3.2.4 Super-allowed Transitions

These transitions occur between a pair of mirror nuclei for which the nuclear wave
functions are nearly identical. This leads to a large value for the overlap integral. The
logf t values for such transitions are small, being in the range of 3 to 3.7. These are
characterized by

�I = 0,±1 and �π = 0

The decays n→ p and 3H → 3He are examples of super-allowed transitions.

3.3.2.5 Forbidden Transitions

It has been pointed out that for the allowed transitions the first term in the series for
the plane waves expansion is considered. In the event the first term is zero, higher
order terms corresponding to l �= 0 may be considered. However, the higher orbital
angular momentum waves have progressively smaller amplitudes inside the nuclear
volume. Hence, the overlap integral is very small when the leptons are emitted with
orbital angular momentum other than zero. The effect is to render the life-times of
these forbidden transitions much larger on an average compared to those of allowed
transitions. Another reason for occurrence of forbidden transitions is the relativistic
effect in the nuclear wave functions. These cause a departure from a straight line in
the Kurie plot. If the ordinary Kurie plot is not a straight line then the transition is
not allowed. The converse, however, is not always true. Special types of forbidden
transitions may give rise to straight Kurie plots.

If the transition is caused by the second term in the plane wave expansion leptons
are emitted in a wave with L= 1 and changing parity. In that case the selection rules
become

�I = 0,±1 (except 0 → 0)
�π = yes

}
Fermi rule

�I = ±2,±1,0
�π = yes

}
G-T rule

Similar selection rules apply for higher order forbidden transitions. Table 3.1 shows
the characteristics of allowed as well as forbidden transitions with examples. The
selection rules for parity are reminiscent of those used in optical atomic transitions.
The expression eirk is expanded in powers of r/λ. In optical emission R/λ∼ 10−3

where R is the atomic size. The transition probability depends on the square of the
matrix element.

∫
Ψ ∗
f (electric moment) Ψidτ , in case it is a dipole transition, Ψf

and Ψi must be of opposite parity as dipole moment is a polar vector which changes
its sign under space inversion. If the first term (dipole) is zero, transition may still
proceed via quadrupole radiation but with lesser probability (R2/λ2)∼ 10−6. This
is the famous Laporte rule which states that for dipole transitions, odd (or even)
terms of initial state combine with even (or odd) terms of the final state.
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Table 3.1 Characteristics of allowed and forbidden transitions

Type of transition �I �π logf t Example

Super allowed 0,±1 No 3–3.7 3H( 1
2

+
)→ 3He( 1

2
+
)

Allowed 0,±1 No 4–6 6He(0+)→ 6Li(1+)
First forbidden ±2 Yes 6–9 39Ar( 7

2
−
)→ 39K( 3

2
+
)

Second forbidden ±3 No 10–13 22Na(3+)→ 22Ne(0+)
Third forbidden ±4 Yes 15–18 40K(4−)→ 40Ca(0+)
Fourth forbidden ±4 No 19–23 115In( 9

2
+
)→ 115Sn( 1

2
+
)

After the discovery of non-conservation of parity in weak interactions, such as
β-decay, it was shown that all existing data on β-decay are in excellent agreement
with the combination of the vector and axial vector interactions—this is the V –A
theory and that Fermi’s theory of β decay is basically correct.

3.4 Range-Energy Relation

Although the β rays have a continuous energy spectrum, it is still possible to find a
relation between Emax, the maximum energy of the spectrum and the correspond-
ing range R. A relation frequently used for a rapid determination of E(MeV) in
aluminum is due to Feather

R
(
g cm−2)=

{
0.542E − 0.133 for 0.8<E < 3 MeV

0.407E1.38 for 0.15<E < 0.8 MeV
(3.112)

Also, the intensity of β particles from the β decay is found to decrease exponentially
with absorption thickness d

I = I0 exp(−μd) (3.113)

where μ (cm2/g) is the absorption coefficient.

3.4.1 Double β Decay

It is pointed out in Chap. 6 that for given even A nuclei there exist several isobars
which are β stable as the even-odd nuclei on the lower parabola cannot β decay into
the adjacent nuclei on the upper parabola since the mass on the latter is heavier. On
the other hand, nuclei on the lower parabola are separated by two units of charge
and they cannot be transformed into one another by β decay. However, the heavier
may decay into the lighter one by a second order process. This process is called
double β decay. This comes about due to simultaneous β decay of two neutrons or
two protons of the same nucleus.
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Fig. 3.17 Mass spectrum of
the A= 76 isobars

All the potential double beta emitters are even-even nuclei which due to the pair-
ing interaction, have energetically lower ground states than adjacent odd-odd nuclei.
Most of the ββ decay involve 0+ → 0+ transitions. In certain cases transitions to
the first excited state 2+ and a number of other excited states of daughter nucleus
are energetically possible.

Figure 3.17 shows the mass spectrum (A = 76) of isobars. It is observed that
for 76Ge both the β− and β+ or EC decay are energetically forbidden. The only
allowed decay mode is the β−β− decay to 76Se. In all, there are about 36 potential
ββ emitters.

3.4.1.1 Various Decay Modes

There are two possibilities for the β−β− decay mode

(Z,A)→ (Z + 2,A)+ 2e− + 2νe (2νββ) (3.114)

(Z,A)→ (Z + 2,A)+ 2e− Neutrinoless process (0νββ) (3.115)

In (3.114) lepton number is conserved, i.e.�L= 0 ([2], Chap. 3). It may be thought
of as two consecutive simple β transitions in which the intermediate states are vir-
tual. This process is allowed in the standard model of the electro-weak interaction
independent of the nature of ν.

Search of double β decay whose expected half-lives are too long (1020 y or more)
are confronted with serious difficulties. The muon and neutron components in cos-
mic radiation and radioactive impurities are reduced by making experiments deep
underground.

The first convincing evidence for the double β decay mode 2νββ was provided
in 1967 by Kirsten in his studies of 82Se, 128Te and 130Te samples using geochem-
ical experiments. But the 2νββ decay mode from 82Se was observed directly from
counter experiments comparatively recently (1987). The emitted electrons have con-
tinuous energy spectrum since it is a four-body decay. Process (3.114) is possible if
the parent nucleus is heavier than the product nucleus which differs by two units in
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the nuclear charge, i.e.

m(Z,A) > (Z + 2,A) (3.116)

The simple β decay will be forbidden if the following condition on the masses is
imposed, i.e.

m(Z,A) <m(Z + 1,A) (3.117)

The neutrinoless double beta decay (0νββ) violates the conservation of lepton num-
ber (�L= 2) and is forbidden in the standard model. While 2ν mode is confirmed
experimentally, neutrinoless double beta decay has not been detected. In the 2νββ
decay the kinetic energy is distributed over two electrons and two neutrinos. On
the other hand 0νββ decay is a two body process, the two electrons in the final
state share the available energy uniquely. The total (sum) energy spectrum peaks at
Qββ so that this process is easy to distinguish than 2ν mode. In the neutrinoless ββ
decay, only two electrons occur in the final state and the phase space as well as the
number of final state is larger by 106 compared to 2νββ mode. Also, the 0νββ mode
is possible only if (i) mν �= 0, (ii) ν = ν (Majorana particle). The study of double β
decay is of great interest in Grand Unification theories ([2], Chap. 8).

3.4.1.2 Theoretical Values for the Half-Lives

The 2νββ half-lives are directly related to the nuclear matrix elements and no free
particles are involved. Comparison of the predicted decay rates with the experi-
mental values provides a sensitive test for various nuclear structure models. Double
beta-decay, 2νββ follows from the square of the rate of single-beta decay for the
light nuclei. Therefore

λββ ∼ mec
2

�

(
G2|MGT |2

2π3

)2( ε5
0

30

)2

T1/2(ββ)= ln 2

λββ
∼ 3 × 1027ε−10

0

(3.118)

Thus, for 76Ge, Qββ = 2.04 MeV, ε0 = 3.99, T1/2(ββ)= 2.9 × 1021 y.
The 2ν mode of ββ decay is equivalent to two consecutive G-T transitions. Ac-

cording to the G-T rule the intermediate states can only be 1+ states since all po-
tential ββ emitters are even-even nuclei with ground state spin 0+. The half-lives
range from 1018 years to 1025 years.

Other decay modes involve β+β+, the Q-value being 4mec2 which is less than
that for double electron capture. That is why electron capture or β+ emission is
generally more favoured than β+β+ decay.

Example 3.22 The maximum energy Emax of the electrons emitted in the decay of
the isotope 14C is 0.156 MeV. If the number of electrons with energy between E
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and E + dE is assumed to have the approximate (non relativistic) form:

n(E)dE ∝ √
E(Emax −E)2dE

Find the rate of evolution of heat by a source of 14C emitting 3.7 × 107 electrons
per sec.

Solution The mean energy of electrons:

〈E〉 =
∫ Emax

0 En(E)dE∫ Emm
0 n(E)dE

Given n(E)dE =K√
E(Emax −E)2dE where K = const

〈E〉 = K
∫ Emax

0 E
√
E(Emax −E)2dE

K
∫ Emax

0

√
E(Emax −E)2dE

= Emax

3

Heat evolved/sec = (mean energy) (no. of electrons/s)

= 0.156 × 3.7 × 107

3
MeV/s = 1.92 × 106 MeV/s

Example 3.23 A radioactive species has a maximum energy of β-rays of 3.5 MeV.
Calculate the momentum of the neutrinos accompanying those β particles that have
half the possible momentum.

Solution Total energy of β particle:

E = T +mc2 = 3.5 + 0.511 = 4.011 MeV

Using the relativistic equation Pmax = √
E2 −m2 = √

(4.011)2 − (0.511)2 =
3.978 MeV/c. Half of this value is 1.989 MeV/c. Corresponding total energy of
β particles

=
√
(Pmax/2)2 +m2

=
√
(1989)2 + (0511)2 = 2.053 MeV

Energy of neutrinos accompanying these β particles is (4.011 − 2.053) =
1.958 MeV. The corresponding momentum of neutrinos is also 1.958 MeV/c as
neutrino has zero rest mass.

Example 3.24 In the Kurie plot of the decay of the neutron, the end point energy of
β particles is 0.79 MeV in the free decay of neutron, calculate the threshold energy
for the inverse reaction:

ν + p→ n+ e+
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Solution The threshold energy required in the CMS will be 0.79 + 0.511 =
1.301 MeV. Use the relativistic invariance of (E2 − P 2) for the threshold calcu-
lations

(T +mp)2 − T 2 = (mn +me)2
Put mp = 938.28 MeV, mn = 939.573 MeV, me = 0.511 MeV, T = 1.8 MeV.

Example 3.25 108
47Ag with J π = 1+ is β-unstable and has a mean life of about

3.4 min. It has an excited state of 109 keV with J π = 6+, which is an isomeric state
with mean life of 180 years. How can the excited state of a nucleus be more stable
than the ground state?

Solution Transitions from the isomeric state J π = 6+ involve a large change in
the value of J . Such transitions are forbidden and hence the excited state has a
longer mean life.

Example 3.26 Calculate the f t value for the decay 31
16S → 31

15P + e+ + ν, for which
T1/2 = 2.6 s, E0 = 4.94 MeV and F(Z,E) = F(15,4.94) = 1830. In the simple
shell model, this decay involves a 2s1/2 proton changing to a 2s1/2, neutron. Com-
pare this f t value with that of a free neutron (1015 s). Why do the two values differ?

Solution f t = 1830 × 2.6 = 4758 s. In the simple shell model the ls neutron and
proton have identical spatial wave functions if Coulomb distortions are ignored. The
spin states are similar to those of a free neutron and free proton. Thus, the predicted
f t value is expected to be the same as for the free neutron decay. Since Z = 15, the
Coulomb distortions cannot be neglected, hence the discrepancy.

Example 3.27 The maximum energy of a β− spectrum is 1.77 MeV. Find the range
of β particles in aluminium.

Solution

R = 0.542E − 0.133

= 0.542 × 1.77 − 0.133 g/cm2 = 0.826 g/cm2 = 0.826

2.7
cm = 0.306 cm

Example 3.28 β-particles (Emax = 1.7 MeV) from 32P are counted by a G.M.
counter with a wall thickness of 20 mgl cm2. Calculate the fraction of particles that
are absorbed while passing through the window. Assume μ= 10.87 cm2/g.

Solution Fraction of the particles absorbed f = 1 − exp(−μd)
μd = 20 × 10−3 × 10.87 = 0.2174

f = 1 − e−0.2174 = 0.2
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Example 3.29 88
36Kr decays to 88

37Rb with the emission of β-rays with a maximum
energy of 2.4 MeV. The track of a particular electron from this nuclear process has
a curvature in a field of 103 Gauss of 6.1 cm. Determine

(a) the energy of this electron in eV and that of the associated neutrino
(b) the maximum possible kinetic energy of the recoiling nucleus

Solution

(a) Momentum

p = 300Hr = (300)
(
103)(6.1)

= 1.83 × 106 eV/c

= 1.83 MeV/c

Use the relativistic equation

E =
√
p2 +m2 =

√
(1.83)2 + (0.511)2 = 1.90 MeV

Kinetic energy of the electron T = 1.9−0.511 = 1.389 MeV = 1.389×106 eV.
Energy associated with neutrino = 2.4 − 1.389 = 1.011 MeV, where we have
neglected the energy of the recoiling nucleus.

(b) The maximum Kinetic energy will be carried by the nucleus when it recoils
opposite to the β-particle and ν is emitted in the same direction

Momentum conservation gives PN = Pβν =
√
T 2 + 2Tm (i)

Energy conservation gives TN + T =Q= 2.4 MeV (ii)

Eliminating T between (i) and (ii) and using P 2
N = T 2

N +2MNTN , we find TN =
50.2 eV.

Example 3.30 In an experiment to determine the maximum energy of the spectrum
of 116

49In, the following results are obtained with aluminium as the absorber after
correcting for background:

Cpm 15000 5000 2000 300 70 30 20 19 18

Absorber thickness
mg/cm2

0 50 100 200 250 300 400 500 600

Plot these data on a suitable graph and analyze the curve. Calculate the β-energy
from the expression Emax = 1.9R + 0.29 MeV, where R is the range of the β-
particles in aluminium in units of g/cm2.
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Fig. 3.18 Log of counting
rate (CPM) versus absorber
thickness

Solution The counting rate (CPM) versus absorber thickness (mg/cm2) is plot-
ted on log-linear scale, see Fig. 3.18. Up to 300 mg/cm2 thickness, a straight line
(curve I) can be passed. Another straight line (curve II) represents the γ -ray back-
ground. The curve II can be extrapolated to zero thickness and its contribution can be
subtracted from curve I and a new curve may be drawn for the true absorption of β-
particles. However, the γ -ray counting rate is so small that such a procedure is found
unnecessary. The curve I, when extrapolated, cuts the range axis at 475 mg/cm2. Us-
ing this value of R in the given formula we obtain

Emax = (1.9)(0.475)+ 0.29 = 1.19 MeV

Example 3.31 The nuclide 15
8O undergoes β+ decay to its mirror nuclide 15

7N.
Assuming that the mass difference is entirely due to the Coulomb energy, and that
both nuclides have a radius of 3.45 fermis, calculate the maximum kinetic energy of
β+.

The observed half-life t1/2 for this decay is 124 s. By inserting this in the expres-
sion for the half-life derived from Fermi theory of β decay

F(Z,T )× t1/2 = 2π3(ln 2)�7

m5
eG

2c4|Mif |2
Make an estimate of the weak interaction constant G taking the factor f (Z,T ) to
be given by Z = 7 by the empirical form

log10 f (7, T )= 0.6 + 4.5 log10 T
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where T is the maximum kinetic energy of β+ in MeV. The nuclear wave functions
for the mirror pair may be assumed identical.

Solution

0.6e2

4πε0R
= 0.6 × 1.44 × 15

3.45
= 3.75

T =�Ec −me − (mn −mp)= 3.75 − 0.51 − 1.3

= 1.94 MeV

log10 f (7, T )= 0.6 + 4.5 log10 T

log10 f (7,1.94)= 0.6 + 4.5 log10 1.94 = 1.895

∴ f (1.94)= 78.5

G2 = 2π3(ln 2)�7

m5
ec

4|Mif |2f (Z,T )× t1/2

As the transition is super allowed,Mif = 1

G2 = 2π3(0.693)(�c)7

(mec2)5f (Z,T )× t1/2 × c
�c = 197.7 MeV fm, c= 3 × 1023 fm s−1

t1/2 = 124 s, f = 78.5

c = 3 × 1023 fm/s

G = 0.7 × 10−4 MeV fm3

Example 3.32 If the β-ray spectrum is represented by

n(E)dE ∝ √
E(Emax −E)2dE

show that the most intense energy occurs at E =Emax/5.

Solution Maximizing the expression
√
E(Emax −E)2 and seting the resulting ex-

pression to zero, we obtain

1

2
√
E
(Emax −E)2 − 2

√
E(Emax −E)= 0

whence we get the desired result.
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3.5 Electron Capture

Introduction It is a radioactive decay process in which an inner orbital electron
of an atom, usually a K-shell electron, is captured by the nucleus indicated as

e− + p→ n+ ν
One of the protons captures an electron and gets converted into a neutron which
is lodged within the nucleus. A neutrino accompanies the neutron emission. The
available energy is shared between the neutrino and the resulting nucleus where the
neutrino is carrying almost the entire energy. The above process may be considered
as the inverse process of β+ decay

P → n+ β+ + ν
An example of electron capture is e− + Be7 → Li7 + ν.

The criteria for electron capture process are as follows:

(a) If it is energetically possible, the condition is

[
M(A,Z)−M(A,Z − I )]c2 =�c2 ≥ Bk (3.119)

where Bk is the binding energy of K-shell electron.
If �c2 < Bk but > BL, K-electrons cannot be captured but L-electrons can

be.
(b) If the electron wave function is non-zero at the nucleus, the s1/2 state for the

K-shell and 2s1/2 state for the L-shell are the only important states for electron
capture as only l = 0 particles have finite wave functions at the origin (nucleus).
Contribution from LII and LIII is quite small due to finite extension of the nu-
cleus and relativistic effects.

3.5.1 Decay Constant

The theory for the determination of decay constant proceeds along similar lines as
in β-decay. We use the formula from perturbation theory Eq. (3.83)

λ= 2π |Hif |2dN
�dE

where the statistical factor refers to the density of ν states only.
If E0 is the energy released in electron capture

Eν =E0 −EB (3.120)
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where E0 results from the mass difference +mc2, as the electron is consumed.

dN = V 4πPν2dpν

�3
(3.121)

But

Pν = Eν

c
and dPν = dEν

c
(3.122)

Using (3.120) and (3.122) in (3.121), we get

dN

dEν
= V 4πE2

ν

�3c3
= V (E0 −EB)2

2π2�3c3
(3.123)

We will be concerned here with the K-capture only. The matrix element

Hif =
∫
Ψ ∗
fHΨidτ =

∫
Ψ ∗
f nΨν∗gΨiNΨedτ

Calling the nuclear matrix element

Mif =
∫
Ψ ∗
fNΨiNdτ (3.124)

and using the K-shell electron wave function ΨK(0) at the origin, i.e. Ψe = ΨK(0)
the neutrino wave function Ψν(0)= 1√

V
through plane wave approximation, we can

write

Hif = g√
V
Mif ΨK(0) (3.125)

Now

ΨK(r) = 1√
π

[
Z

a0

]3/2

exp(−Zr/a0)

ΨK(0) = 1√
π

[
Zme2

�

]3/2

(3.126)

since

a0 = �
2

me2
(3.127)

Using (3.123), (3.125), (3.126) in (3.83) and multiplying the resulting expression
by a factor 2 to account for two K-shell electrons, we get

λK = 2g2Z3m3e6|Mif |2(ε0 − εB)2
π2�10c3

(3.128)
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Fig. 3.19 Plot of
log(λK/λβ+ ) vs ε0 for
various Z

with εB = 1
2 (αZ)

2 and α = fine structure constant. As the nuclear matrix element
for electron capture is the same as for β+ decay, we can find the branching ratio
λK/λβ+ which is independent ofMif .

Combining (3.109) with (3.128) and neglecting the binding energy of electron,
we get

λK

λβ+
= 4π3z3e6E2

o

�3c7m2f (Z, ε0−)
= 4π

[
Z

137

]3 ε2
0

f (Z, ε0)
(3.129)

where we have used e2/�c= 1/137 and E0/mc
2 = ε0. Now, for low Z and large ε0

as in Eq. (3.110)

f (0, ε0)∼ ε5
0

30
From (3.124) and (3.110)

λK

λβ+
= 120π

[
Z

137

]3 1

ε3
0

(3.130)

Figure 3.19 is a plot of the branching ratio λK/λβ+ (on the logarithmic scale) vs the
energy ε0 for various values of Z. In the range of ε0 where only electron capture is
possible, the branching ratio zooms to infinity. Formula (3.130) shows that for light
elements and reasonably large end point energies, K-capture is less probable than
for positron emission. As ε0 approaches the positron threshold or as Z increases,
the K-capture becomes more probable. Experimental confirmation of the theory of
electron capture relies mainly on measurements of the ratio λK/λβ+ . The relative
probability of L-capture to K-capture is directly related to the relative probability
density at the nucleus of the L- and K-electrons. The experimental ratio of L- to
K-capture for 37A is 0.087 which is in agreement with the ratio 0.082.

The rate of electron capture depends to a small extent on the chemical environ-
ment in which the nucleus is placed, as the electron wave function is slightly modi-
fied if the atom is in a compound. This effect will be the largest for light elements.
A difference of about 0.08 per cent has been observed between the decay rate of 7Be
in BeF2 and in Be metal. As the threshold difference between the electron capture
process and positron emission is (2mc2 −EB ), a nuclide which is unstable against
positron emission will also decay by K-capture. If a nuclide is sufficiently heavy, all
the three processes, β−, β+ and K-capture may occur, as in 36Cl and 76As.
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3.5.2 Detection

Neutrino is unobserved for all practical purposes and the nuclear recoil is also too
small to be detected. Electron capture is detected by observing atomic process fol-
lowing the consumption of K-shell or L-shell electron, by observing the K-lines and
L-lines in the X-ray spectrum. Alternatively, the competitive process of the Auger
electron emission (invariably from L-shell) may be observed. They result when an-
other electron from the same shell falls to fill a vacancy in the K-shell and receives
enough kinetic energy to be ejected. Obviously, the Auger electrons are of discrete
energy and can be conveniently observed experimentally.

3.6 Gamma Decay

Gamma decay of an excited nucleus may occur competitively with α or β decay. The
half-lives, however, are usually small. This is the reason why pure γ -ray emitters
(except isomers) are not to be found. Ellis and Meitner [1] discovered that nuclei
have quantized energy levels, similar to atoms, but with much larger spacing. The γ
decay occurs due to radioactive transition between various nuclear levels, resulting
in the emission of γ -rays of discrete energy.

3.6.1 Multipole Order of Radiation

The quantum theory of radiation considers the radiation source as an oscillating
electric or magnetic moment. The complicated spatial distribution of the corre-
sponding electric charges and currents is represented by spherical harmonies. The
multipole order of γ radiation is 2l , where l is the angular momentum carried by
radiation. l = 1 corresponds to dipole radiation, l = 2 to quadrupole radiation, l = 3
to octupole radiation, etc. One consequence of the transverse nature of e.m. wave
is that the order l = 0 is absent. For multipole order two different waves are pos-
sible (i) electric (ii) magnetic multipole radiation. For each value of l, electric and
magnetic waves have the same angular momentum but different parity

Parity of electric multipole = (−1)l

Parity of magnetic multipole = −(−1)l

Consider a pair of energy levels of a nucleus with spin IA and IB . The angular
momentum carried by the radiation is given by the change in nuclear spin. Thus,

l = |IA − IB | (3.131)

where l is non-zero. We can then write

�l = |IA − IB | ≤ l ≤ IA + IB (3.132)
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In practice l = �I . The competitive case is l = �I + 1. If IA �= 0 and IB = 0 or
IA = 0 and IB �= 0, then 1 =�I is only possible. This is the case for transitions to
the ground level of even-Z and even-N nuclei for which the ground level has spin
zero.

The transition IA = 0 → IB = 0, is absolutely forbidden.

3.6.2 Selection Rules for γ -Emission (or Absorption)

Transition probability P = ∫
Ψ ∗
B (electric moment) ΨAdτ . For electric dipole, the

relevent moment is the dipole moment ΣeiXi , whose parity is −1

P =
∫
Ψ ∗
B(ΣeiXi)ΨAdτ ; �π = Yes (3.133)

For quadrupole moment, ΣeiX2
i has parity +1

P =
∫
Ψ ∗
B

(
ΣeiX

2
i

)
ΨAdτ ; �π = No (3.134)

The value of a definite integral cannot possibly change by the reflection of coor-
dinates through the origin, i.e. parity operation. The integrand must be positive if
P �= 0. On the other hand, if the integrand changes its sign then P = 0. Thus

if ΨA = even, ΨB
(
or Ψ ∗

B

)= odd

if ΨA = odd, ΨB
(
or Ψ ∗

B

)= even

i.e. parity of final state of the nucleus must be opposite to the initial state.
Conservation of parity in the system as a whole (nucleus + quantum of radiation)

then requires that for electric dipole radiation. The photon must have odd parity with
respect to the system, in the process of emission or absorption.

Similar reasoning shows that for both electric quadrupole and magnetic radiation,
the emission is possible if the parity of final state is the same as that of initial state.
Table 3.2 gives the Selection Rules for γ radiation.

3.6.3 γ -Ray Emission Probability

It can be shown that the decay constant is given by the expression:

λγ = 1

τel
= S × 2πν

137

(
R

λ

)2l

(3.135)
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Table 3.2 Selection rules for
γ radiation Type of radiation Symbol l �π

Electric dipole E1 1 Yes

Magnetic dipole M1 1 No

Electric quadrupole E2 2 No

Magnetic quadrupole M2 2 Yes

Electric octupole E3 3 Yes

Magnetic octupole M3 3 No

Electric 2l-pole El l No: for l even
Yes: for l odd

Magnetic 2l-pole Ml l Yes: for l even
No: for l odd

Fig. 3.20 Plot of T1/2 vs Eγ
for light and heavy γ -ray
emitters

where R is the nuclear radius and S is the statistical factor given by

S = 2(2l + 1)

l[1 × 3 × 5 × · · · × (2l + 1)]2

(
3

l + 3

)2

(3.136)

S decreases considerably with the increase in l. Figure 3.20 shows graphs of T1/2
vs Eγ , the γ -ray energy for light and heavy nuclei. Lighter nuclei have greater life
times for γ -decay.

3.6.4 Internal Conversion

As the 0 → 0 radiative transitions are absolutely forbidden, they may be replaced
by the internal process which results in the ejection of a bound atomic electron from
the same atom. The energy transfer is caused by a direct interaction between the
bound atomic electron and the same multipole field which would have resulted in
the photon emission. The energy carried by the ejected electron Ei is given by

Ei =W −Bi (3.137)
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Fig. 3.21 Conversion
electron spectrum

where W is the transition energy and Bi is the binding energy. Observe the similar-
ity of (3.137) with Einstein’s photoelectric effect equation. Following the ejection of
electron, the atom emits the characteristic X-rays or Auger electrons with energy Bi .
Figure 3.21 shows a typical conversion electron spectrum. The mechanism for inter-
nal conversion process is believed to be the direct interaction with nuclear volume
and not due to the absorption of photon by atomic electron (internal photoelectric
effect) as 0 → 0 transition cannot emit a photon.

3.6.4.1 Internal Conversion Coefficient

If λγ = probability/unit time for photon emission by radiative multipole transition
and λe = probability/unit time that the same multipole field would take to transfer
its energyW to any bound electron in its own atom, then the total internal coefficient
α is defined as

α = λe

λγ
= Ne

Nγ
(3.138)

with

0 ≤ α ≤ ∞ (3.139)

where Ne is the number of conversion electrons and Nγ is the number of photons
emitted in the same time interval in the same sample. Total transition probability λ
is defined as

λ= λγ + λe= λγ (1 + α) (3.140)

and the total number of nuclei transforming is Nγ +Ne. Also

α = αK + αL + αM (3.141)

where αK refers to both the K-shell electrons and, αL to all the L-electrons etc.
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Fig. 3.22 Plot of αK
against W

3.6.4.2 K-Shell Conversion Coefficient

The theory gives

(αK)e1 � l

l + 1
Z3
(

1

137

)4(2mc2

W

)l+5/2

(3.142)

for two electrons, with the condition

mc2 
W 
 BK (3.143)

(αK)mag � Z3
(

1

137

)4(2mc2

W

)l+3/2

(3.144)

αK increases with l and hence with increasing spin change �I in nuclear transi-
tion. It increases strongly as Z increases and as W decreases. Usually, (αK)mag >
(αK)elec . Figure 3.22 shows the variation of αK with W .

3.6.4.3 L-Shell Conversion Coefficient

IfW >BK , then αK > αL, as K-shell electrons have a greater probability for being
near the nucleus.

(a) The ratio αK/aL decreases as �I increases.
(b) As l =�I increases, the decrease in the ratio aK/αL is more pronounced for

electric 2l-pole transition than for magnetic 2l-pole transitions. Thus, for the
sameW , Z and �I (

αK

αL

)
el

<

(
αK

αL

)
mag

Experimental values for αK/αL range between 10 (for large W , small �I ,
small Z) and 0.1 (for small W , large �I , large Z).
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Fig. 3.23 Abundance of
isomers at various mass
numbers

3.6.4.4 Pair Internal Conversion

When W > 2mc2 for the forbidden 0 → 0 transitions, the available energy may
be converted into e+, e− pair production, a process which competes with the or-
dinary internal conversion. The pair conversion coefficient is almost independent
of Z, actually decreasing slightly with increasing Z. The e+, e− pair is produced
within the nuclear volume as there is no multifold field outside. The angle between
the produced e+ and e− is small. The energy is also similar, but due to Coulomb
interaction, the energy of e+ is pushed out and that of e− is pulled in.

3.6.5 Isomers

Certain nuclides are capable of existing in excited state for sufficiently long time
to be observed. Such nuclides are called isomers. Their half-lives range from 1 s
to 8 months. The phenomenon of isomerism is frequently found in odd A nuclides
(odd Z or odd N ). Figure 3.23 shows the abundance of isomers at various mass
numbers and the isomers clustering into various groups. The existence of islands of
isomers is explained within the frame-work of the shell model of nucleus (Chap. 6).

3.6.6 Angular Correlation of Successive Radiation

When γ -rays are emitted from radioactive transitions between two specific levels
of identical nuclei, their angular distributions will be isotropic in the lab system. As
the atomic nuclei are oriented at random, there is no preferred direction of emis-

sion for the photon from the individual transition IA
γ−→ IB . The same result holds

good for α,β and conversion electron emission. If the transition IA
γ1−→ IB is fol-

lowed by a second transition IB
γ2−→ IC , the individual radiations from the second

transitions are γ1, γ2 also isotropic. However, in two successive cascade transitions,

IA
γ1−→ IB

γ2−→ IC , there is usually angular correlation between the direction of emis-
sion of two successive photons γ1 and γ2, which are emitted from the same nucleus.
Similar angular correlations may arise for other pairs of successive radiations like
α–γ , β–γ , β–e−, γ –e−, . . . (where e− refers to conversion electron).
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The angular correlation arises because the direction of first radiation is related to
the orientation of the angular momentum IB of the intermediate level. This orien-
tation is expressible in terms of magnetic angular momentum quantum number mB
with respect to some fixed direction, say that of first radiation. If IB is not zero and
if the intermediate level has a short life time so that IB persists in orientation, the
direction of emission of the second radiation will be related to the direction of IB
and hence of that to the first radiation.

3.6.6.1 γ –γ Angular Correlation

The theory of γ –γ angular correlation can be applied to any γ –γ cascade in-
volving arbitrary multipole orders notwithstanding the mathematical complications
introduced in the calculations. Using group theoretical methods Yang first ob-
tained the form of the general angular function. For the generalized γ –γ cascade
IA(l1)IB(l2)IC , the angular correlation function W(θ) for the angle θ between the
successive γ -rays takes the form

W(θ)dΩ =
K=l∑
K=0

A2KP2K(cos θ)dΩ (3.145)

where A2K are the coefficients that depend on l1, and l2 and P2K(cos θ) are the
even Legendre polynomials. One can also express (3.145) as a power series in even
powers of cos θ and normalized to W(90)= 1 as follows. Therefore

W(θ)dΩ = 1 +
l∑

K=1

a2K
(
cos2K θ

)
(3.146)

where the coefficients a2, a4, . . . are the functions of angular momenta IA, IB , IC ,
l1 and l2 but not the relative parity of the levels.

Equations (3.145) and (3.146) are quite general and with appropriate values of
a2, a4, . . . apply to all two-step cascades, α–γ , β–γ , γ –γ , γ –e−, e−–e−, i.e. . . . as
well as to nuclear scattering and nuclear reactions.

Derivations of Eqs. (3.145) and (3.146) are based on the following assumptions:

(a) The magnetic sublevels mA, of the initial level IA are equally populated. This is
usually true for ordinary radioactive sources at room temperature.

(b) Each nuclear level IA, IB , and IC must be single level with well defined parity
and angular momentum, otherwise overlap of broad nuclear levels at high ex-
citation energies may produce interference effects and introduce odd powers of
cos θ in W(θ).

(c) Each of the radiation l1 and 12 must correspond to a pure multipole. Otherwise
radiations of opposite parity may produce interference effects and introduce odd
powers of cos(θ).

(d) Equation (3.146) is valid for detectors that are insensitive to plane of polariza-
tion of radiation.
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Table 3.3 Angular
correlation coefficients a2
and a4

γ –γ cascades
IA(l1)IB(l2)Ic

W(θ)dΩ = (1 + a2 cos2 θ + a4 cos4 θ)dΩ

a2 a4

0(1)1(1)0 1 0

1(1)1(1)0 −1/3 0

1(2)1(1)0 −1/3 0

2(1)1(1)0 −1/3 0

3(2)1(1)0 −3/29 0

0(2)2(2)0 −3 +4

1(1)2(2)0 −1/3 0

2(1)2(2)0 +3/7 0

2(2)2(2)0 −15/13 +16/13

3(1)2(2)0 −3/29 0

4(2)2(2)0 +1/8 +1/24

Fig. 3.24 The angular
distribution of γ2 is measured
relative to the direction of γ1

(e) The half-life of intermediate level IB , must be short enough to permit the orien-
tation of IB , to be retained.

3.6.6.2 γ –γ Angular Correlation Coefficients

In Table 3.3 are given the angular correlation coefficients a2 and a4 for some dipole
and quadrupole γ –γ cascades of interest, for the special case IC = 0 appropriate for
even −Z even N nuclei.

3.6.6.3 Experimental

γ -rays (γ1) arising from the source are accepted by the fixed detector D1 (scin-
tillation counter). The second ray γ2 is accepted by the second movable detector
(scintillation counter D2). The counting rate ratio between D1 and D2 is measured
in coincidence at different angles θ between the γ1 and γ2 rays (Fig. 3.24).

As an example, consider the decay of 60Co which emits two γ -rays in cascade
(Fig. 3.25).
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Fig. 3.25 Decay scheme
60Co → 60Ni

Fig. 3.26 Coincidence
counting rate proportional to
W(θ) for the γ –γ cascade in
60Ni following the β decay of
60Co.The curve can be fitted
for the angular correlation
distribution for 4(2)2(2)0
cascade (data from Brady and
Deutch)

Figure 3.26 shows the measured dependence of coincidence rate on θ for the
γ –γ cascade in 60Ni, and is seen to be in agreement with the quadrupole transitions
4(2)2(2)0. The observation fixes the angular momenta of the excited levels at 1.33
and 2.5 MeV in 60Ni as IB = 2 and IA = 4.

3.7 Questions

3.1 Explain how the unstable Radon which has only a half-life of 3.8 D can occur
naturally?

3.2 The unit of radioactivity 1μc= 3.7 × 104 disintegrationsls. What is the signif-
icance of this number?

3.3 From which naturally occurring radioactive series is the isotope 204Pb pro-
duced?

3.4 Radioactive series represented by 4n+ 1 does not exist. Why?

3.5 Neutron or proton emission does not occur in natural radioactivity. Why?



190 3 Radioactivity

3.6 In the uranium radioactive series, the initial nucleus is 238
92U and the final nu-

cleus is 206
82Pb. What is the number of α-particles and β-particles emitted when the

uranium nucleus decays to lead?

3.7 A radioactive nuclide is capable of decaying via three competitive decay
modes, β− decay with half-life T −, β+ decay with half life T + and electron capture
with Te. If the observed half-life irrespective of decay is T , write down the equation
to show how T is related to T −, T + and Te.

3.8 In α-emitters of short life times what happens to the potential barrier width?

3.9 Why α-spectrum is discrete but β-spectrum continuous?

3.10 Give two examples of potential barrier penetration in areas other than α-decay.

3.11 What is the significance of two straight lines in the Sargent diagram?

3.12 In a β-decay, the electron is emitted eastward with momentum of 3 units and
the daughter nucleus recoils southward with a momentum of 4 units. Indicate on a
diagram the magnitude and direction in which the neutrino is emitted.

3.13 210Po decays by alpha emission with half-life of 138 D into 206Pb which is
stable. Draw a rough graph to indicate the rate of formation of 206Pb with time.

3.14 Classify the following β-transitions as Fermi or G-T or both.

(i) 3H → 3He
(ii) 6He → 6Li

(iii) 14O → 14N
(iv) 60Co → 60Ni

3.15 Classify the following as super-allowed, allowed or forbidden transitions:
14O → 14N∗, with f t = 3103 s.

3.16 How can the mass of neutrino be estimated from the study of β spectrum?

3.17 The radioactive nuclide of 64Cu can decay either by β− emission or β+ emis-
sion. The lower side of energy spectrum shows fewer positrons than electrons. Ex-
plain.

3.18 In a given type of β− decay, the β− spectrum looks as shown in Fig. 3.27.
How does The υ-spectrum look like for the same decay scheme?

3.19 What quantities are not conserved if it is assumed that free neutron decays
through the scheme n→ p+ β−?
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Fig. 3.27 β-decay energy
spectrum

Fig. 3.28 The direction of
decay products in the β-decay

3.20 In the β-decay, should the decay products, β-particle, neutrino and the resid-
ual nucleus be coplanar?

3.21 Is the β-decay shown in Fig. 3.28 feasible? If not, why?

3.22 Show that Fermi’s factor F(Z,E) given by the expression (3.100) reduces to
unity for small Z and large v.

3.23 Explain qualitatively why in high Z atoms, e− capture is more probable
than β+ decay.

3.24 Explain qualitatively why in the decay by electron capture, K-capture is more
probable than L-capture.

3.25 State Laporte rule for radiation transitions in atoms.

3.26 When 0 → 0 radiative transition can not take place, an altemative process of
internal conversion is possible. Can one call this process photoelectric effect?

3.27 Explain why pair intemal conversion cannot take place outside the nuclear
volume.

3.28 A sample of radioactive substance has mass m, decay constant λ and molec-
ular weight M . If Avogadro’s number is NA, show that the activity of the sample is
λmNA
M

.
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3.29 If A1 is the activity of a sample of radioactive substance at time t1, and A2 at
time t2 then show that A2 =A1 exp(t1 − t2)/T .

3.30 What fraction of initial number of radioactive nuclei in a sample will decay
during one mean life?

3.31 What will be the half-life of radioactive nuclei in a sample if three-fourths
decay in 3/4 s?

3.32 A fraction f1 of a radioactive sample decays in one mean life and a fraction
f2 decays in one half-life. Is f1 < f2 or f1 = f2 or f1 > f2?

3.8 Problems

3.1 The disintegration rate of a radioactive source was measured at intervals of
four minutes. The rate was found to be (in arbitrary units) 18.59, 13.27, 10.68, 9.34,
8.55, 8.03, 7.63, 7.30, 6.99, 6.71. and 6.44. Assuming that the source contained only
one or two types of radio nucleus, calculate the disintegration constant involved.
[Ans. 0.26 min−1, 0.03 min−1]

3.2 100 millicuries of radon which emits 5.5 MeV α-particles are contained
in a glass capillary tube which is 5 cm long with intemal and external diam-
eters 2 mm and 6 mm respectively. Neglecting the end effects and assuming
that the inside of the tube is uniformly irradicated by the α-particles which are
stopped at the surface, calculate the temperature difference between the walls of
a tube when steady thermal conditions have been reached. Thermal conductiv-
ity of glass = 0.025Cal cm−2 s−1 C−1. Curie = 3.7 × 1010 disintegrations per sec
J = 4.18 joule cal−1.
[Ans. 4.5 × 10−3 ◦C]

3.3 Radium being a member of the uranium series occurs in uranium ores. If the
half-lives of uranium and radium are 4.5 × 109 and 1620 years respectively, calcu-
late the relative proportions of these elements in a uranium ore which has attained
equilibrium and from which none of the radioactive products have escaped.
[Ans. 2.78 × 106 : 1]

3.4 A sealed box was stated to have contained an alloy composed of equal parts
by weight of two metals A and B . These metals are radioactive with half-lives of
12 years and 18 years respectively. When the container was opened it was found to
contain 0.53 kg of A and 2.20 kg of B . Deduce the age of the alloy.
[Ans. 73.94 y]

3.5 Determine the amount of 210
84Po necessary to provide a source of α-particles of

5 milli curies strength. Half-life of Polonium = 138 D.
[Ans. 1.11 µg]
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3.6 A radioactive substance of half-life 100 days which emits β-particles of aver-
age energy 5 × 10−7 ergs is used to drive a thermoelectric cell. Assuming the cell
to have an efficiency 10 %, calculate the amount (in gram-molecules) of radioactive
substance required to generate 5 watts of electricity.
[Ans. 0.02]

3.7 The radioactive isotope, 14
6C does not occur naturally but it is found at constant

rate by the action of cosmic rays on the atmosphere. It is taken up by plants and
animals and deposited in the body structure along with natural Carbon, but this
process stops at death. The charcoal from the fire pit of an ancient camp has an
activity due to 14

6C of 12.9 disintegrations per minute, per gram of Carbon. If the
percentage of 14

6C compared with normal carbon in living trees is 1.35 × 10−10 %,
the decay constant is 3.92 × 10−10 s−1 and the atomic weight = 12.00, what is the
age of the campsite?
[Ans. 1676 y]

3.8 Consider the decay scheme RaE
β−→ RaF

β−→ RaG (stable). A freshly purified
sample of RaE weighs 2 × 10−10 g at time t = 0. If the sample is undisturbed,
calculate the time at which the greatest number of atoms of RaF will be present and
find this number. Derive any necessary formula. (Half-life of RaE(210

83Bi)= 5.0 D;
Half life of RaF(210

84Po)= 138 D.)
[Ans. 24.8 D; 1.836 × 1010]

3.9 It is found that a solution containing 1 g of the α-emitter radium (226Ra) never
accumulates more than 6.4×10−6 g of its daughter element radon which has a half-
life of 3.825 days. Explain how the half life of radium may be deduced from this
information and calculate its value.
[Ans. 1637 y]

3.10 An atom of 6
2He is 0.067 % heavier than another atom 6

3Li. What is the maxi-
mum energy of the β-particles emitted by 6

2He?
[Ans. 3.74 MeV]

3.11 A parent nuclide decays with decay constant λ1 into a daughter of decay
constant λ2 and hence to a stable nuclide. The decays are recorded by detecting
equipment which cannot discriminate between the emitted particles. Show that when
λ1 = 2λ2, the activity indicated by the detector at a time t is 2λ2N0 exp(−λ2t),
where N0 is the number of parent atoms present at time t = 0. Comment on the
implications of this result.

3.12 Derive an expression for the activity at time t of a nuclide A, given that
the members of nuclei of A and B at t = 0 are N0 and 0, respectively. Show that
under the condition of secular equilibrium, the total activity of A and B is given
by λANA[2 − exp(−λBt)], where λA and λB are the radioactive constants for the
nuclides, and NA is the number of nuclei A at time t .
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3.13 Find the mean-life of 55Co radionuclide if its activity is known to decrease
4.0 % per hour. The decay product is non-radioactive.
[Ans. 24.5 h]

3.14 A radioactive specimen emitting β-rays of 2.6 MeV maximum energy is
investigated in a sample with a β-ray spectrometer, using a magnetic field of
0.2 weber/m2. The maximum blackening occurs at a distance of 7.5 cm from the
line source. Calculate the energy of the most abundant β-particles and the corre-
sponding momentum of the neutrinos.
[Ans. 1.796 MeV; 2.25 MeV/c]

3.15 What proportion of 235U was present in a rock formed 3000 × 106 y ago,
given that the present proportion of 235U to 238U is 1/140?
[Ans. 1/12]

3.16 A source consisting of 1 µg of 242Pu is spread thinly over a plate of an ion-
ization chamber. α-particle pulses are observed at the rate of 80 per second, and
spontaneous fission pulses at the rate of 3 per hour. Calculate the half life of 242Pu
and the partial decay constants for the two modes of decay.
[Ans. 6.8 × 105 y; 3.23 × 10−14 s−1, 3.36 × 10−19 s−1]

3.17 Samarium emits low-energy α particles at the rate of 90 particles/g s for the
element. If Sm-47 (abundance 15 %) is responsible for this activity, calculate its
half-life.
[Ans. 4.68 × 1011 y]

3.18 The charcoal in an ancient fire pit shows a beta activity of 25.8 disintegrations
per minute per g due to 14C. If the specific activity of 14C in the contemporary
charcoal from wood of living trees is 30.6 disintegrations per minute per g, estimate
the age of the charcoal sample. (Mean life time of 14C against beta decay = 8035
years.)
[Ans. 1366 y]

3.19 Given the decay scheme A
λA−→ B

λB−→ C (stable), find the number of atoms
of B at any time t , if at time t = 0 the population in the states A, B and C is
respectively, A0, 0 and 0. Show that the time for the maximum activity of B is given
by t (max)= √

τAτB where τA and τB are the mean life times of radioactive samples
A and B , respectively.

3.20 Estimate the amount of cobalt-60 (Z = 27) in grams, corresponding to an
activity of 1 Curie. (Half-life of Cobalt-60 is 5.3 years.)
[Ans. 8.87 × 10−4 g]

3.21 Show that if λA = λB = λ Eq. (3.13) reduces to NB = λNOA t exp(−λt) and
Eq. (3.14) to tmax = 1

λ
.
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3.22 Find the amount of heat generated by 5.3 MeV α’s from 1 mg of 210Po in
time equal to mean life time.
[Ans. 1.53 × 106 J]

3.23 If the half-lives of Uranium 235 and 238 are 8.8 × 108 and 4.5 × 109 y,
calculate the total number of α-particles emitted per second from one gram of nat-
ural Uranium. Both isotopes emit α-particles and the abundance of Uranium 235 is
0.7 %. Assume the atomic weight of Uranium to be 238.
[Ans. 7.53 × 104 s−1]

3.24 90Sn decays to 90Yn by β-decay with a half-life of 28 years. 90Yn decays by
β decay to 90Zn with a half-life of 64 hours. A pure sample of 90Sn is allowed to
decay. What is its composition after (a) one hour, (b) after ten years?
[Ans. (a) 3.54 × 10s : 1, (b) 3832 : 1]

3.25 Estimate the transmission coefficient for a rectangular potential barrier of
width 10−12 cm and height 10 cm for an α-particle of 5 MeV energy.
[Ans. 1.275 × 10−8]

3.26 194
79Au is β-unstable and has a mean life of 56 hours. One mode of decay is

194
79Au → 194

78Pt +β+ + ν+ 1.5 MeV. The positron is created inside the nucleus and
must tunnel through the Coulomb barrier to escape. Applying Gamow’s theory of
α-decay, show that the barrier factor suppresses the decay rate by a factor of about
4–5 in the case of positron of energy 1 MeV.

3.27 The half-lives of isotopes classified as α-emitters range from 0.3 × 10−6 s
(212

84Po with disintegration energy 8.95 MeV) to 0.16 × 1024 s (142
58Ce with disinte-

gration energy 1.45 MeV). What deductions can you make from these figures about
the heights and thickness of the potential barriers in the two cases? Assuming that
the potential outside the nucleus is given by the Coulomb law, calculate a value for
the radius of the nucleus 212

84Po.

3.28 A certain preparation includes two β-active components with different half-
lives. Using the following data on log (activity) vs time (t)

t (hours) 0 1 2 3 5 7 10 14 20

logA 4.10 3.60 3.10 2.60 2.06 1.82 1.60 1.32 0.90

(i) find the half-lives of both the components and (ii) the ratio of radioactive nuclei
of these components at the time t = 0.
[Ans. (i) 4.3 h, 1.116 h, (ii) 12.2 h]

3.29 A thin foil of certain stable isotope is irradiated by thermal neutrons falling
normally on its surface. Due to capture of neutrons a radio-nuclide with decay con-
stant λ appears. Find the law for accumulation of that nuclide N(t) per unit area
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of the foil’s surface. The neutron flux density is J , the number of nuclei per unit
area of the foil’s surface is n, and the effective cross-section for the formation of
radioactive nuclei is σ .
[Ans. N(t)= 1 − exp(−λt) Jnσ

λ
]

3.30 The isotope 226Th(Z = 90) is α-radioactive with a half-life of 30 min. The
energy of the emitted α-particle is 6.5 MeV. Comment on these data in the light of
the uncertainty principle assuming that the radius of the nucleus of 226Th is 8.5 fm.

3.31 A cyclotron produced radioactive sample is a mixture of 64Cu (half-life time
= 12.8 h) and normal copper. The sample mass and activity are 100 mg and 28 mCi
respectively. What is the ratio of the number of stable to the radioactive copper
atoms in the sample?
[Ans. 1.37 × 107: l]

3.32 The following results are obtained for the absorption of 1.5 MeV β-rays by
aluminium.

Absorber density (mg cm−2) 1200 1100 1000 800 600 400 200 100

Counts/minute 22 22 24 25 64 320 1430 2730

The background count was 18 counts per minute. Estimate the range of 1.5 MeV
β-rays in aluminium if the counter paralysis time was 400 µS.
[Ans. 800 mg cm−2]
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Chapter 4
General Properties of Nuclei

4.1 Nuclear Sizes

From the alpha scattering experiments of Geiger and Marsden, Rutherford con-
cluded that the nuclear sizes are smaller than atoms by a factor of 104, that is the
nuclear size is of the order of 10−12 cm. It is important to know about nuclear radii
as they enter the nuclear reactions quite frequently. Nuclear radii have been deter-
mined by a variety of experiments, on the basis of constant density model. The
nuclear radius R is defined by

R = r0A1/3 (4.1)

where r0 is a constant and A is the mass number (the number of neutrons and pro-
tons). The value of r0 depends on the type of phenomenon studied. r0 obtained in
those experiments in which nuclear forces are effective, is termed as nuclear radius
and that in which electromagnetic forces are involved is known as electromagnetic
radius. The value of r0 ranges from 1.1–1.5 fm.

Various methods that are available for the determination of nuclear radii are based
on the study of:

(a) Rutherford scattering with α’s of energy 20 to 36 MeV
(b) Coulomb energy term in Weisacker’s formula
(c) β-transition energies of mirror nuclei
(d) High energy electron scattering
(e) X-ray energy from mesic atoms
(f) Half life times of α emitters
(g) High energy neutron scattering

4.1.1 Scattering of α Particles

If the α particles penetrate the target nucleus then the Rutherford scattering law
breaks down for three reasons: (a) The Coulomb’s potential no longer conforms to
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that of a point charge when the incident particle penetrates the nucleus; (b) Nu-
clear scattering is superimposed on the Coulomb scattering; (c) Incident particle
approaches close enough to induce nuclear reactions. The resultant scattering is the
so called anomalous scattering. At fixed bombarding energy, the small angle scat-
tering will be adequately described by Rutherford’s scattering formula, since the
impact parameters would be so large that the particles would stay well outside the
nucleus. However, as the scattering angle is progressively increased then at some
scattering angle θ ′ the Rutherford scattering law will break down, the experimental
differential cross sections being in disagreement with the theoretical values for all
angles θ > θ ′. The angle θ ′, therefore, signifies that the particles have just started
grazing the nuclear boundary, in order that the particles be able to approach the nu-
clear boundary in the classical sense, it is necessary that their kinetic energy be at
least equal to z1z2e

2/4πε0R. By Eq. (1.55)

r(min)= R0

2

[
1 +

√
1 + 4b2/R2

0

]
(4.2)

with

R0 = z1z2e
2

4πε0T0
= 1.44z1z2

T0 (MeV)
fm (4.3)

The impact parameter b is related to the scattering angle θ ′ by

tan
θ ′

2
= R0

2b
(4.4)

Combining Eqs. (4.2) and (4.4)

R = r(min)= R0

2

(
1 + cosec

θ ′

2

)
(4.5)

SinceR0 is known, the determination of θ ′ yields the values of R, the nuclear radius.
Alternatively, observations on scattering may be made at a fixed angle by varying the
bombarding energy. The energy at which Rutherford scattering starts breaking down
is an indication that the incident particles are just grazing the nuclear boundary.
Example 1.11 illustrates how the method works for α scattering on the gold nuclei
at θ = 180◦, the value of R refers to the sum of radii of gold nucleus and α particle.
If we subtract a value of ∼1.6 fm for the radius of α particle, then the actual radius
of gold nucleus is deduced as 7.15 fm. Assuming the validity of the constant density
model for the nucleus, R = r0A1/3, we obtain

r0 = 7.15

(197)1/3
= 1.22 fm
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4.1.2 Coulomb Energy Term in Weisacker’s Mass Formula

The Coulomb energy term which occurs in Weisacker’s semi-empirical mass for-
mula (Chap. 6) has the form, acZ2/A1/3 with

ac = 3

5
· e2

4πε0r0
= 3

5
× 1.44

r0
(4.6)

Inserting the best value of 0.714 MeV for ac, r0 is found to be 1.21 fm.

4.1.3 β Transition Energies in Mirror Nuclei

Assuming that the nuclear charge is uniformly distributed in the nucleus, the
Coulomb energy is shown to be (Chap. 6)

Ec = 3Z2e2

20πε0R
=
(

3

5

)
1.44Z2

R
(4.7)

for continuous charge distribution.
If protons are regarded as point charges then in (4.7) Z2 must be replaced by

Z(Z− 1) as a given proton cannot interact with itself. Consequently (4.7) becomes

Ec = 0.864
Z(Z − 1)

R
MeV (4.8)

for discrete distribution.
Consider β transitions between the mirror nuclei of charge (Z + 1)e and Ze.

The dominant contribution to the transition energy comes from the Coulomb energy
difference and neutron and proton mass difference. It is only in the case of mirror
nuclei that nuclear binding energy is substantially the same between the parent and
the product. The difference in Coulomb energy

�Ec = 3

5
× 1.44

R

[
Z(Z + 1)−Z(Z − 1)

]

= 1.728
Z

R
(4.9)

In a radioactive decay, when a pair of mirror nuclides are involved, energy conser-
vation gives

(MZ+1 −MZ)c2 =�Ec − (Mn −Mp)c2 (4.10)

Combining (4.1) and (4.10)

R = 1.728Z

(MZ+1 −MZ +Mn −Mp)c2
(4.11)
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Example 4.1 27Si and 27Al are mirror nuclei. The former is a positron emitter with
Emax = 3.48 MeV. Determine r0.

Solution

27Si → 27Al + β+ + ν

�Ec = 3

20πε0

e2

R

[
Z2 − (Z − 1)2

]= 3e2(2Z − 1)

20πεR
= 0.6 × 1.44

A2/3

r0(
∵ 2Z − 1 =A and R = r0A1.3)

Emax +mec2 =�Ec − (mn −mp)c2

Taking (mn − mp)c2 = 1.29 MeV, mec2 = 0.51 MeV and A = 27, we find r0 =
1.47 fm.

4.1.4 High Energy Electron Scattering

At low energies, electrons are scattered by a nucleus which may be treated as a point
charge. However the Rutherford formula or its relativistic generalization, the Mott
formula will satisfactorily describe the scattering

σM(θ)= dσ

dΩ
=
(
Ze2

2mc2

)2(1 − β2

β4

)
1

sin4 θ
2

(
1 − β2 sin2 θ

2

)
(4.12)

where mc2 is the electron rest mass energy, β = (v/c), and Z is the nuclear charge.
However, at high energies the electrons can no longer be regarded as scattered

from a point charge nucleus. Electrons of 20 MeV have the rationalized de Broglie
wavelength � ∼ 10 fm, and at 200 MeV it is 1 fm. Thus, the scattering must be
treated by an extended charge of the nucleus. Finite size effects start showing up
for E0 > 20 MeV, since the rationalized de Broglie wavelength of electrons be-
comes comparable with the nuclear sizes. Diffraction effects set in similar to those
encountered in optics when the photon wavelength is comparable with the size of
the obstacle. In contrast, low energy electrons will not reveal any nuclear structure.
In the other extreme, very high energy electrons are likely to be scattered from indi-
vidual protons in the nucleus corresponding to inelastic scattering by the nucleus as
a whole. Therefore, electrons of energies of the order of 100 MeV or so would he
suitable for exploring the details of nuclear structure.

The interaction of electrons with the nucleus is almost entirely electromagnetic,
the scattering being free from complications arising due to nuclear forces. Also the
electron-neutron interaction is believed to be very weak, of the order of few kilo
volts. Moderately high energy electrons elastically scattered from target nuclei, are
expected to provide the same type of information about nuclear charge distribution
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Fig. 4.1 Elastic collision in
the lab system

as the X-ray diffraction studies yield about the electron distribution in molecules.
There is no simple formula for the scattering due to arbitrary charge distribution
of the nucleus. Under an assumed charge distribution or the equivalent electrostatic
potential, expressions for the differential cross sections can be derived which can
be matched with the observed values. The expressions which involve form factors
contain all the information concerning the detailed nuclear structure similar to the
structure factors in X-ray diffraction scattering.

4.1.4.1 Kinematics of Elastic Scattering

Figure 4.1 shows the essential features at an elastic collision in lab system. Let the
electron of mass m, energy E0 and momentum p0 suffer an elastic collision with
target nucleus of massM initially at rest. After the collision, the electron is scattered
at angle θ , and proceeds with momentum p and energy E, the nucleons recoils with
momentum PN and receives energyW . Assume that the electrons are relativistic so
that we may approximate

E0 = cp0; E = cp (4.13)

Conservation of momentum gives

PN = �s = p0 − p (4.14)

Conservation of energy gives

W =E0 −E =�E = c(p0 − p) (4.15)
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Since M 
m, it is a sufficiently good approximation to consider the recoil energy
as non-relativistic

�
2s2 = P 2

N = 2MW = 2Mc(p0 − p) (4.16)

From Fig. 4.1

�
2s2 = P 2

N = p2 + p2
0 − 2pp0 cos θ = 2Mc(p0 − p) (4.17)

2Mc(p0 − p)= 4pp0 sin2 θ

2
+ (p0 − p)2 or

2Mc(p0 − p)− W 2

c2
= 4pp0 sin2 θ

2
(4.18)

Since the recoil energy will be small compared to the rest mass energy of the target
nucleus, we expect the second term on the left side will be quite small compared to
the first one. With negligible error, we can unite

Mc(p0 − p)= 2pp0 sin2 θ

2
or

p = p0

1 + 2E0
Mc2 sin2 θ

2

(4.19)

We introduce the quantity �q , the four momentum transfer

q2 = s2 −
(
�E

�c

)2

= 1

�2
|p0 − p|2 − 1

�2
(p0 − p)2

= 4pp0

�2
sin2 θ

2
(4.20)

Using (4.19) in (4.20), gives

|q| =
2p0
�

sin θ2√
1 + 2E0

Mc2 sin2 θ
2

(4.21)

From (4.16), (4.18) and (4.21)

|s|
|q| =

√
1 + (p0 − p)2

4pp0 sin2 θ
2

(4.22)

The difference in s and q is greater, the larger is the angle of scattering. Even for
1 GeV incident electrons scattered against proton, |q| and |s| differ almost by 25 per-
cent for θ = π . With heavier targets and smaller incident energies the difference is
still smaller. Of the two quantities, s and q , the latter is more fundamental in that it
appears as an invariant in the form factors.
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It will be useful to derive a formula which connects the differential cross sections
in the lab and C-system

γC = γ +M/m√
1 + 2γ M

m
+ M2

m2

(4.23)

(see [9], Appendix A), where γC and γ are the Lorentz factors for the C-system and
the incident electron in the lab system. Since

M

m

 γ

γC � m

M
γ + 1 � 1

Use the transformation of longitudinal momentum

p cos θ = γC
(
p∗ cos θ∗ + βcu∗)� p∗ cos θ∗ + βcu∗ (4.24)

Differentiate:

−p sin θdθ + cos θdp = −p∗ sin θ∗dθ∗ (4.25)

where p∗ and u∗ are constant. Further

p

(
1 + 2E0

Mc2
sin2 θ

2

)
= p0

Differentiate holding E0 and p0 as constants, and simplify using the approximation
E0 � p0

dp = − p2

Mc
sin θdθ (4.26)

Substitute (4.26) in (4.25)

p sin θdθ

(
1 + p

Mc
cos θ

)
= p∗ sin θ∗dθ∗ (4.27)

But p�Mc

p sin θdθ � p∗ sin θ∗dθ∗ or (4.28)

sin θ∗dθ∗

sin θdθ
= p

p∗ (4.29)

Also

γ ∗ = γ + m
M√

1 + 2m
M
γ + m2

M2

� γ (4.30)

∴ p∗ � p0
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Fig. 4.2 Born’s
approximation

Now (
dσ

dΩ

)
lab

=
(
dσ

dΩ

)
cm

sin θ∗dθ∗

sin θdθ
=
(
dσ

dΩ

)
cm

p

p0
(4.31)

Using, (4.19), we find

(
dσ

dΩ

)
lab

= 1

1 + 2E0
Mc2 sin2 θ

2

(
dσ

dΩ

)
cm

(4.32)

4.1.4.2 Born’s Approximation

The scattering problem is considered in the momentum representation. The scat-
tering potential is regarded as something which causes transitions from one state
in momentum space to another. The entire potential energy of interaction between
the colliding particles is regarded as a perturbation and carry the calculation only
to first order. The Born approximation is best applied when the kinetic energy of
the colliding particles is large in comparison with the interaction energy. It therefore
supplements the method of partial waves (Chap. 5) which is most useful when the
bombarding energy is small. Born’s approximation gives the scattering amplitude

f (θ)= −2μ

�2

∫ ∞

0
V (r)

r sinqrdr

q
(4.33)

The differential cross-section is given by

dσ

dΩ
= ∣∣f (θ)∣∣2 = 4μ2

�4

∣∣∣∣
∫ ∞

0

V (r)r sinqrdr

q

∣∣∣∣
2

(4.34)

where μ is the reduced mass, V (r) is the scattering potential and as shown in
Fig. 4.2,

q�= 2k� sin
θ

2
(4.35)

What we have is Rutherford scattering (which is true for point charge nucleus) mod-
ified partly by relativistic and spin effects, and partly by the finite size of the nucleus,
there is no simple scattering formula for an arbitrary charge distribution in the nu-
cleus. Starting with various assumed charge distribution or electrostatic potential,
one can calculate the scattering differential cross-section for a given Z and energy
and match the calculated and observed angular distributions.
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4.1.4.3 Form Factors

Consider the scattering amplitude as given by Born’s approximation (4.35)

f (θ)= − 2μ

q�2

∫ ∞

0
V (r) sin(qr)rdr (4.36)

Integrate by parts to obtain,

∫ ∞

0
V (r) sinqrrdr = V (r)

[
1

q2
sinqr − r

q
cosqr

]∞

0

−
∫ ∞

0

dV

dr

(
1

q2
sinqr − r

q
cosqr

)
dr (4.37)

The first term on the right side vanishes at both ends since V (∞)= 0

∴
∫ ∞

0
V (r) sinqrrdr = − 1

q2

∫ ∞

0

dV

dr
sinqrdr + 1

q

∫ ∞

0

dV

dr
r cosqrdr

(4.38)
Evaluate the second integral on the right side, again by parts to obtain

1

q

∫ ∞

0

dV

dr
r cosqrdr = 1

q

[
dV

dr

(
r

q
sinqr + cosqr

q2

)]∞

0

− 1

q

∫ ∞

0

(
r

q
sinqr + cosqr

q2

)
d2V

dr2
dr (4.39)

The term 1
q2 r

dV
dr

sinqr|∞0 vanishes at both the limits since we can expect

( dV
dr
)r=∞ = 0. Further, integrate by parts to obtain

1

q3

∫
cosqr

d2V

dr2
dr = 1

q3
cosqr

dV

dr

∣∣∣∣
∞

0
+ 1

q2

∫ ∞

0

dV

dr
sinqrdr (4.40)

1

q

∫ ∞

0

dV

dr
r cosqrdr = 1

q3

dV

dr
cosqr

∣∣∣∣
∞

0
− 1

q2

∫ ∞

0

d2V

dr2
r sinqrdr

− 1

q3

dV

dr
cosqr

∣∣∣∣
∞

0
− 1

q2

∫ ∞

0

dV

d
r sinqrdr (4.41)

The first and third terms on the right side cancel out. Therefore, (4.38) becomes

∫ ∞

0
V (r) sinqrdr = − 1

q2

∫ (
d2V

dr2
+ 2dV

rdr

)
sinqrrdr (4.42)
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Now, for spherically symmetric potential

∇2V = d2V

dr2
+ 2dV

rdr
(4.43)

Also by Poisson’s equation

∇2V = −4πze2ρ (4.44)

where ρ = ρ0/Ze is the charge density and Ze is the nuclear charge. Combining
(4.36), (4.42), (4.43) and (4.44)

f (θ)= −8πμZe2

q3�2

∫ ∞

0
ρ(r) sin(qr)rdr (4.45)

The quantity

F(q)= 4π

q

∫ ∞

0
ρ(r) sin(qr)rdr (4.46)

is called the form factor. We can then write

dσ

dΩ
=
(

2μZe2

q2�2

)2∣∣F(q)∣∣2 (4.47)

But

q2
�

2 = 4k2
�

2 sin2 θ

2
= 4μ2ν2 sin2 θ

2
(4.48)

dσ

dΩ
=
(

Ze2

2μν2 sin2 θ
2

)2∣∣F(q)∣∣2 (4.49)

(
dσ

dΩ

)
finite size

=
(
dσ

dΩ

)
point charge

∣∣F(q)∣∣2 (4.50)

Since the quantity F 2 multiplies the point charge cross-section in analogy with
X-ray diffraction, it is called form factor or structure factor.

4.1.4.4 Scattering from the Shielded Coulomb Potential for a Point Charge
Nucleus

V = Z1Z2e
2

r
e−r/r0 (4.51)

where r0 is the shielding radius and is of the order of atomic dimension. For dis-
tances r 
 r0, the potential dies off rapidly. Setting 1/r0 = a, and inserting (4.51)
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Fig. 4.3 Plot showing the
general appearance of the
cross-section

in (4.45)

f (θ)= −2μZ1Z2e
2

�2q

∫ ∞

0
e−ar sinqrdr (4.52)

The value of the particular integral is known to be equal to q/(q2 + a2). We there-
fore, obtain

f (θ) = − 2μZ1Z2e
2

�2[q2 + a2] and (4.53)

dσ

dΩ
= ∣∣f (θ)∣∣2 = 4μ2(Z1Z2e

2)2

�4[4k2 sin2 θ
2 + 1

r2
0
]2

(4.54)

Figure 4.3 shows the general appearance of the cross section. With decreasing θ ,
the curve rises which is reminiscent of Rutherford scattering. However for angles
smaller then θ0, where

sin
θ0

2
� 1

2kr0
(4.55)

the curve tends to flatten out. This is because when q � a, the angular dependence
of the cross-section contained is the denominator of (4.54) is damped out. The angle
θ0 may be considered as the limiting angle below which Rutherford scattering ceases
because of the shielding by the electron cloud.

We can derive Rutherford scattering formula by setting a = 0. This amounts
to extending the screening radius r0 to ∞. In other words, the scattering takes
place with bare nucleus. In the limit a→ 0, the shielded potential (Z1Z2e

2/r)e−ar
reduces to the ordinary Coulomb potential Z1Z2e

2/r corresponding to the point
charge nucleus. Formula (4.54) then reduces to

dσ

dΩ
= 1

4

μ2(Z1Z2e
2)2

�4k4 sin4 θ
2

= 1

4

(
Z1Z2e

2

μν2

)2 1

sin4 θ
2

(Rutherford formula) (4.56)

where we have used k�= μν. This is identical with the Rutherford formula obtained
classically.
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4.1.4.5 Electron Scattering from an Extended Nucleus of Radius R
with Constant Charge Density

V (r) = −Ze
2

R

(
3

2
− r2

2R2

)
; 0< r < R (4.57)

= −Ze
2

r
e−ar ; R < r <∞ (4.58)

Inside the nucleus the electron sees the potential as given by (4.57) while outside
it sees the shielded potential due to point charge nucleus as given by (4.58). Insert
(4.57) and (4.58) in (4.33) to obtain

f (θ)= 2μZe2

q�2

[
1

2R

∫ R

0

(
3 − r2

R2

)
r sinqrdr +

∫ ∞

R

sinqre−ardr
]

(4.59)

The second integral in (4.59) can be evaluated as follows

∫ ∞

R

sinqre−ardr =
∫ ∞

0
sinqre−ardr −

∫ R

0
sinqre−ardr

(Lima→ 0)

= q

q2 + a2
−
∫ R

0
sinqre−ardr

= 1

q
−
∫ R

0
sinqrdr

= 1

q
cosqR (4.60)

The first integral in (4.59) can be easily evaluated, we finally obtain

f (θ)= 2μZe2

q2�2
× 3

q2R2

[
sinqR

qR
− cosqR

]
(4.61)

∴
(
dσ

dΩ

)
f inite size

=
(
dσ

dΩ

)
point charge

∣∣F(q)∣∣2 (4.62)

where

F(q)= 3

q2R2

[
sinqR

qR
− cosqR

]
(4.63)

The cross-section no longer falls off smoothly. In fact it exhibits sharp maxima and
minima. The minima occur whenever the form factor F(q) vanishes, that is when
the condition

tanqR = qR (4.64)
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is satisfied. The maxima and minima are expected to be defined because of the sharp
boundary of the charge distribution. An analogous situation exists in optics. If the
obstacles have sharp edges then the maxima or minima in the diffraction pattern will
be sharp. On the other hand if the refractive index changes slowly as in the case of
a diffuse boundary, then the maxima and minima tend to be washed out. Likewise,
for electron scattering from smoothly varying charge distributions, e.g. Gaussian or
exponential type, the cross section falls off more or less monotonically.

For small momentum transfer, (small incident energy or small scattering angle)
it is readily seen that scattering is almost entirely given by the point charge nucleus.
In the limit qR→ 0, the form Factor (4.63) reduces to unity

F(q) = 3

q2R2

(
sinqR

qR
− cosqR

)

(LimqR→ 0)

= 3

q2R2

(
1

3
q2R2 − 1

30
q4R4 + · · ·

)

= 1 − q2R2

10
+ · · · (4.65)

Conversely, the finite size effects begin to show up when qR ∼ 1, i.e.
2kR sin(θ/2) ∼ 1 or p sin(θ/2) � (�/2R). For small angles, this limit becomes,
θ ∼ 1

kR
= λ̄/R. When |k| becomes large enough so that |k|R � 1, i.e. when the in-

cident wave is so short that it oscillates several times as it crosses the region in which
the potential is strong then the scattered wave sensitively depends or the details of
the shape of the potential. On the other hand, at smaller energies or smaller scat-
tering angles, the scattering is almost entirely independent of the nature of charge
distribution.

The limiting value of F(q), Eq. (4.65), also follows directly from (4.46). For
small momentum qr < qR < 1, sinqr → qr

F (q) = 4π

q

∫ ∞

0
ρ(r) sin(qr)rdr

(Limqr → 0)

= 4π
∫
ρ(r)

sinqr

qr
r2dr

=
∫
p(r)4πr2dr

= 1

Ze

∫
ρ04πr2dr

= 1 (by definition) (4.66)
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4.1.4.6 Mean Square Radius

For a given charge distribution ρ(r), the mean square radius is defined by

〈
r2〉=

∫ ∞

0
r2ρ(r)4πr2dr (4.67)

For a homogeneous charge distribution the charge density ρ0(r) is constant and is
given by

ρ0 = 3Ze

4πR3
(4.68)

where R is the nuclear radius. Since ρ(r)= ρ0
Ze

r2 = 4πρ0

Ze

∫ R

0
r4dr = 3

5
R2 (homogeneous charge distribution) (4.69)

4.1.4.7 Geometric Interpretation of the Form Factor

We can expand the sine function in (4.46) and integrate term by term to obtain,

F(q) = 4π

q

∫ ∞

0
ρ(r)

[
qr − q3r3

3! + q5r5

5! + · · ·
]
rdr

=
∫ ∞

0
ρ(r)4πr2dr − q2

6

∫ ∞

0
r2ρ(r)4πr2dr + q4

120

∫ ∞

0
r4ρ(r)4πr2dr

(4.70)

or

F = 1 − q2

6

〈
r2〉+ q4

120
+ 〈
r4〉+ · · · (4.71)

We conclude that in the approximation quadratic in q2 the scattering results provide
information only on nuclear size since the second term gives the mean square radius
of the charge distribution. The shape of the distribution is determined by higher
moments, the third and higher terms, which are important only for high momentum
transfers.

4.1.4.8 Form Factors and Their Fourier Transforms

Scattering experiments determine the form factors. However, it is possible to invert
the procedure and obtain the charge distribution from the experimental form factors,
by using the Fourier transform. Now, F(q) is given by

F(q)= 4π

q

∫ ∞

0
ρ(r) sin(qr)rdr (4.72)
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Set

F(q) = qF(q)

4π
(4.73)

f (r) = rρ(r) (4.74)

Therefore

F(q)=
∫ ∞

0
f (r) sinqrdr (4.75)

then the Fourier transform of F(q) is

f (r)= 2

π

∫ ∞

0
F(q) sin(qr)qdq (4.76)

Use (4.73) and (4.74) in (4.76) to obtain,

ρ(r)= 1

2π2r

∫ ∞

0
F(q) sin(qr)qdq (4.77)

The pair of expressions (4.72) and (4.77) are transforms of each other. Given the
form factor F(q), we can deduce the charge distribution and vice versa. As an ex-
ample consider the form factor of the type

F(q)=Ae−cq2
(4.78)

where A and c are the constants. Insert (4.78) in (4.77) and integrate by parts to
obtain

ρ(r)= A

8(πc)3/2
e−r2/4c (4.79)

The normalization condition ∫ ∞

0
ρ(r)4πr2dr = 1

yields, A = 1. Further, the mean square radius is given by inserting (4.79) with
A= 1, in (4.67) to find 〈

r2〉= 6c (4.80)

In Table 4.1 are listed some of the important charge distributions and the cor-
responding form factors. Also, included are the values of the mean square radius.
Figure 4.4 shows the charge distributions as well as curves for the form factors. For
the uniform distribution with a sharp boundary, the quantity F 2 becomes zero when-
ever the condition qR = 4.5,7.7 etc. is satisfied. For similar distributions with not
too diffuse boundary, the zeroes will still be present, but F 2 would decrease much
more rapidly at wide angles. Should the F 2 values decrease abruptly for large scat-
tering angles, this would suggest that the associated charge distribution has a long
tail.
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Table 4.1 Charge distributions and the corresponding form factors

Model Charge distribution,
ρ(r)

Form factor, F(q)
Radius, 〈r2〉

Mean square

1. Uniform 3
4πR3 ; r < R 3

q2R2 [ sinqR
qR

− cosqR] 3
5R

2 (4.81)

2. Exponential a3e−ar
8π 0; r > R a4

(a2+a2)2
12
a2 (4.82)

3. Gaussian 1
π3/2b3 e

−r2/b2
e−

q2b2

4 3
2b

2 (4.83)

4. Harmonic oscillator
(shell model)

2
π3/2

1
a3

0 (2+3)α

× (1 + αr2

a2
0
)e−r2/a2

0

where α = 1
3 (Z − 2)

[1 − αq2a2
0

2(2+3α) ]e
−q2a2

0
4 3

2a
2
0
(2+5α)
(2+3α) (4.84)

5. Fermi (Wood-Saxon)
t = 4.4b,
c= 1.07A1/3 ×
10−13 cm where the skin
thickness is t

ρ(0)

1+e r−cb
– – (4.85)

Fig. 4.4 Relation between the radial charge distribution and the corresponding form factor on
Born approximation
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Fig. 4.5 Nuclear charge
density as a function of
distance from the center of
the nucleus found by electron
scattering methods. Ordinate
unit: 1019 C cm−3 [8]

4.1.4.9 Differential Cross-Section

For electron scattering we set Z1 = −1, Z2 = Z. Listed below is the scattering
formula in the order of increasing accuracy.

All nuclei except the light ones exhibit oscillating form factor and the half den-
sity radius is c. Figure 4.4 shows form factors for typical charge distributions with
examples.

A practical procedure is to assume a model for the charge distribution and fit the
calculated cross sections with the observed ones, for example, Uniform, Exponen-
tial, Gaussian, Yukawa, Wine bottle, Fermi type, Harmonic well, etc. But the choice
is usually narrowed down to two or three types of distributions. It turns out that
data on light elements, such as 4He, 12C, 16O can be fitted well with the assumption
of Gaussian or Harmonic well distribution. Figure 4.5 shows the theoretical curves
based on Born approximation. It is seen that except in the regions of diffraction
minima, the Born approximation applied to low Z elements gives surprisingly good
accuracy. For, 4He the charge distribution can be described well by the function

ρ(r)= 1

(
√
πb)3

e−r2/b2
(Gaussian) (4.86)
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Fig. 4.6 Fermi model

The data for 12C and 16O are in agreement with the Harmonic well, with the two
parameter charge distribution

ρ(r)= 2

π
3
2 a3

0(2 + 3α)

(
1 + αr2

a2
0

)
e−r2/a2

0 (Harmonic well) (4.87)

Note that for 4He, sinceZ = 2, α is zero, and the Harmonic well reduces to Gaussian
charge distribution.

Medium and heavy nuclei are well represented by the Fermi model (Fig. 4.6)

ρ(r)= ρ(0)

1 + e r−cb
(4.88)

where c is the half density radius, i.e. the distance from the centre of the nucleus at
which charge density falls to half the value, and is given by the relation

c= 1.07 ×A1/3 × 10−13 cm (4.89)

The parameter b is given by

t = 4.4b (4.90)

where t , the skin thickness is defined as the distance through which the charge den-
sity falls from 90 to 10 % of the value at the centre (see Fig. 4.6). It is found that t is
almost constant at a value of about 2.4 fm. The central charge density ρ(0) is given
in units of 1019 Coulomb per cm3. It reaches maximum in proton, and falls down to
relatively smaller values in heavier elements.

From the form (4.88) we conclude that it is as if the heavier nuclei could be
manufactured from the lighter ones simply by stuffing more nucleons in the centre
of the nucleus and pushing the thickness outward.

Prior to the high energy electron scattering experiments, it was assumed that the
charge is uniformly distributed throughout the nucleus. Results based on the study
of α decay, neutron scattering, mirror nuclei etc indicated a value of r0 between
1.4 and 1.5 fm. However, electron scattering experiments favour the tapering charge
distribution (Fermi) for the heavy nuclei, and Harmonic well or Gaussian for the
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light nuclei, and are in complete disagreement with the constant density model.
Since the nuclear boundary can no longer be assumed to be sharp, the concept of
nuclear radius must be modified. We have seen that for heavy nuclei, two parameters
c and t are necessary in order to specify the entire shape of the distribution. In other
words, electron scattering experiments provide information not only on the nuclear
sizes but also on the detailed shape of distributions. One can still talk about the
nucleus radius r0 corresponding to an equivalent radius of a spherical nucleus with
uniform charge distribution. We can equate the mean square radius for the actual
charge distribution to that of equivalent uniform charge distribution

〈
r2〉= a2 = a2

eq = 3

5
R2 (4.91)

where we have used (4.69). It follows that

r0 =
√

5

3
aA−1/3 (4.92)

When r0 is calculated from (4.92), it is seen that r0 is no longer a constant but is
a variable, its value ranging from 1.3 or 1.35 fm for light nuclei, to about 1.2 fm
for heavy nuclei. The accepted value of r0 is therefore about 20 % smaller than
that derived from the older methods. The redetermination of r0 based on the study
of mirror nuclei is found to be in good agreement with the present value. Further
the value of r0 deduced from experiments on the absorption and diffraction of high
energy negative pions (0.6–1.4 GeV) in complex nuclei are also consistent with
these results.

Electron scattering experiments are particularly suited for comparing the differ-
ence in charge distribution in the neighbouring nuclei, e.g in the pair 58

28Ni and 60
28Ni

or 58Ni and 56Fe. The comparisons are based on the measurement of elastic cross-
section for the two nuclei at the same angle. Since the ratio of the cross-sections can
be determined more reliably than the individual cross sections and because the the-
oretical ratio of the cross sections depend only slightly on the exact analytical form
of the charge distribution, the method has distinct merits. From such experiments,
it has been possible to conclude that in the pairs 58Ni and 6Ni and 56Fe and 58Ni
the charge distribution is vastly different. Thus, two extra neutrons in 6Ni have a
noticeable influence of the closed shell proton structure in Nickel.

Most of the nuclei studied are spherical in that they possess low values of quadru-
ple moments. Ellipsoidal nuclei are expected to give smooth scattering cross sec-
tions, because their random orientations tend to reduce the angular dependence of
scattering, and further their extension along the axis amounts to an increase in skin
thickness, leading to the smearing of the diffraction pattern.

4.1.5 Mesic Atoms

In passing through a condensed medium a μ− meson (muon) rapidly loses its energy
through excitation and ionization. When the energy is degraded to thermal level the
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muon due to the Coulomb attraction of a nucleus will be captured in a Bohr orbit
of a large principal quantum number to form a mesic atom, then by either radiative
or non-radiative (Auger) transitions, the muon cascades down to lower orbits and
finally reaches the K-shell in an estimated time of 10−13 to 10−14 s [3]. According
to the calculations of Wheeler, the transition probabilities per unit time for radiative
transitions, 2s → 2p and 2s→ 1s go as Z4, while for Auger transitions, 2s → 1s,
they are independent of Z. For low Z, Auger transitions from the 2s level dominate
while for high Z, radiative transitions are more important. The ultimate fate of the
muon is decided by the competition between the natural β-decay and nuclear cap-
ture (μ− + p→ n+ ν). Because of its weak nuclear interaction the muon will be
able to reach the K-shell with appreciable probability in all but the heavy elements.
In vacuum the μ− have mean decay times of 2.2 µs. However in the presence of
nuclear matter, this value is substantially altered. It is shown that the mean life-
time for nuclear capture goes as Z−4 for low Z elements and becomes saturated at
around 7 × 10−8 s for Z = 82. Therefore in light elements, the radioactive decay
of μ− strongly competes with nuclear captures, while in heavy elements nuclear
capture is the dominant process. In contrast, the π− meson owing to its strong inter-
action with nuclear matter will rarely reach the K-shell except in very light elements
(Z ≤ 9).

The most outstanding peculiarity of the mesic atom is that the orbits for a given
principal quantum number are shrunk by a factor approximately equal to the ratio of
meson mass to the electron mass as compared to the ordinary atom. Consequently
an appreciable part of the wave function corresponding to the lowest levels lies
within the nucleus itself for intermediate atomic numbers. For a nucleus withZ = 47
(silver) the K-shell orbit of the muon already grazes the nuclear surface (assuming
r0 = 1.2 fm). If for simplicity, we assume a uniform charge distribution for the
nucleus then the muon experiences a simple harmonic oscillator potential which is
quite different from that of a point charge nucleus. This leads to a shift in energy
levels for the low lying orbits by an amount that depends on the nuclear radius.
Because of the small magnitude of nuclear interaction compared with the Coulomb
force, exact calculations for the energy levels are still possible. On the other hand, in
light nuclei and for higher orbits the mesic orbits will be outside the range of nuclear
forces, and therefore the energy levels of the mesic atom are hydrogen-like to a very
good approximation. In this case Dirac’s theory which is applicable to muon allows
the energy levels to be calculated with sufficient accuracy.

The other peculiarity of the mesic atoms is that the radiative transitions between
various levels yield X-rays or even γ rays rather than ordinary photons. The mea-
surements of transition energies for the low lying orbits in heavy elements (for ex-
ample, 2p→ 1s transitions) which are sensitive to the nuclear radius allow r0 to be
determined. On the other hand corresponding measurements in light nuclei which
depend on the mass of the μ− meson but are independent of the nuclear radius yield
a fairly accurate mass determination of the meson.
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4.1.5.1 Energy Levels

Treating the nucleus as a point charge, Bohr’s simple theory gives

En = −μc2(Zα)2

2n2
(4.93)

rn = �

μe2

n2

Z
(4.94)

vn = αcZ

n
(4.95)

whereEn is the energy of the level characterised by the principle quantum number n,
rn is the radius of the corresponding orbit, and vn the classical orbital velocity, α =
1/137.04 is the fine structure constant, and μ=Amμ/(mμ+A) is the reduced mass
of the meson-nucleus system. The dependence of En and rn on μ is clearly borne
out by the formulae (4.93) and (4.94), Further, vn is independent of μ. Relativistic
effects for mesons will be as important as for electron.

For pions (π mesons) with zero spin, the Klein-Gordon’s relativistic equation is
appropriate; it has the solution

En,l = −μc
2

2n2
(Zα)2

{
1 + (Zα)2

n2

(
n

l + 1
2

− 3

4

)
· · ·

}

(Klein-Gordon relativistic) (4.96)

where higher order terms involving (Zα) have been neglected. The formula gives
the fine structure which arises due to the relativistic splitting of the states of different
l for a given n.

For μ mesons solution of Dirac’s equation for spin (1/2) particles gives the ex-
pression for the energy levels

En,j = −μc
2

2n2
(Zα)2

{
1 + (Zα)2

n2

(
n

j + 1
2

− 3

4

)
· · ·

}
(Dirac relativistic) (4.97)

Formula (4.97) has the same form as (4.96) on replacing j with l. Thus spin splitting
goes as Z4 and is therefore, small for low atomic numbers. The relative splitting for
the levels j = l + 1/2 and j = l − 1/2 is the same as that for the electron.

The transition energy �E = E2 − E1, as calculated by Bohr’s formula (4.93)
for the μ mesic atom of lead is equal to 14.25 MeV. The more accurate formula
(4.97) based on Dirac’s theory predicts for the transition 2p1/2 → 1s, a value
of 15.39 MeV. The splitting of 2p state into 2p3/2 and 2p1/2 is calculated as
0.425 MeV for the lead μ mesic atom. Formula (4.97) predicts that the 2p level
is higher than the 2s level, since in the former E is less negative than in the latter.
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Fig. 4.7 Variation of
Coulomb potential with the
radial distance

4.1.5.2 Nuclear Size Effects

The finite size effects are most readily seen if it is assumed that the orbit is com-
pletely immersed within the nucleus, so that the meson spends negligible time out-
side. Under the assumption of uniform charge distribution, the potential is that of
harmonic oscillator and is given by

V (r)= −Ze
2

2R

(
3 − r2

R2

)
; r ≤R

= −Ze
2

r
; r > R (4.98)

Figure 4.7 shows the variation of the Coulomb potential with the radial distance r .
Assuming, R = 1.2 × 10−13A1/3, for lead the potential at the surface is V (R) =
−16.6 MeV, and that at the centre is V (0) = −25 MeV. The potential resulting
from the finite extension of the nucleus not only grossly alters the energy levels but
also leads to the interchange of 2s and 2p levels. In other words the 2p level lies
below the 2s level. Because of the inversion of levels, radiation transitions do take
place from 2p to 1s level, further, the 2s level will be metastable.

The Coulomb force is given by

F = −dV
dr

= −Ze
2

R3
r; r ≤R (4.99)

Balancing the electric force and the centripetal force

Ze2r

R3
= μv2

r
(4.100)

Bohr’s condition for the quantization of angular momentum gives the relation

μvr = n� (4.101)

Combining (4.100) and (4.101), we find

r4
n = n2h2R3

μZe2
(4.102)
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v4 = n2
�

2Ze2

μ3R3
(4.103)

The total energy is given by

En = T + V = 1

2
μv2 − Ze2

2R

(
3 − r2

R2

)
(4.104)

Inserting the values of r2 and v2 from (4.102) and (4.103)

En = −3

2

Ze2

R
+ n�e

R3/2

√
Z

μ
(4.105)

Therefore, the transition energy for successive levels for the case μ meson orbits
lying inside the nucleus is given by

�E = �e

R3/2

√
Z

μ
(4.106)

Formula (4.106) clearly shows that the transition energies are sensitively depen-
dent on the nuclear radius. For lead mesic atom, with the choice of R = 1.2 ×
10−13A1/3 cm we find �E = 10.1 MeV, a value which is much smaller than that
given by Bohr’s formula or Dirac’s theory, for the point charge nucleus.

From (4.94) and (4.102), the ratio

rn(finite size)

rn(point charge)
=
(
μRZe2

n2�2

)3/4

(4.107)

which reduce to 2

47n
3
2

for A = 2Z, r0 = 1.2 × 10−3 cm. Note that for Z > 47 for

K-shell, the above ratio is larger than unity, but for higher orbits it is less than unity.
The reason is that for finite size. rn ∝ √

n, but for point charge nucleus rn ∝ n2.
It can be shown that the ratio of absorption probabilities from the 2p and 1s

states

(Pabs)2p

(Pabs)1s
= 2 × 10−11Z2.67 (4.108)

for the μ mesic atom with R = 1.2A1/3 fm. We therefore conclude that the capture
takes place almost exclusively from the 1s state.

4.1.5.3 Finite Size Effects on Energy Levels—Quantum Mechanical
Treatment

The finite extension of the nucleus modifies the Coulomb potential as compared to
that for a point charge. This leads to a shift in energy levels which in case of light
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nuclei can be calculated by applying the first order perturbation theory. The energy
shift �ER can be written as

�ER = −
∫
ψ∗δVψdτ (4.109)

where ψ is the unperturbed wave function and

δV = V − Vp (4.110)

Vp = −Ze
2

r
(point charge) (4.111)

V = −Ze
2

2R

(
3 − r2

R2

)
(uniform charge distribution) (4.112)

The sign convention in (4.109) is that negative �ER implies an increase in binding
energy and hence a larger transition energy to a given level. The correction term
ER due to finite size effect is unimportant for all but 1s level. For the 1s level, the
hydrogen-like wave function is

ψ0 = 1√
πa3

0

e−r/a0 (4.113)

Combining (4.109) and (4.113), we find

�ER =
∫ R

0
4πr2dr

e−2r/a0

πa3
0

{
−Ze

2

R

(
3 − r2

R2

)
+ Ze2

r

}
(4.114)

As a0 
 R, we may set the exponential to unity as a good approximation. Then a
direct integration yields

�ER = 2

5

Ze2R2

a3
0

(4.115)

Now, according to Bohr’s formula, the total energy of the 1s level (binding energy)
is given by

EB = Ze2

2a0
(4.116)

The relative shift is therefore given by

�ER

EB
= 4

5

(
R

a0

)2

(4.117)

For (Z = 10), the relative shift amounts to ∼0.5 % only. The above formula is valid
for the 1s state for Z ≤ 10. Similer calculations for 2p state give the relative shift
of 10−6 which is negligible.
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Table 4.2 Results for the
2p3/2 and 1s energy levels
for the nuclear radius
R = 1.3 × 10−13A1/3

Z R = 0 R = 1.3 × 10−13A1/3

1s 2p3/2 1s 2p3/2

22 1.392 0.346 1.282 0.346

51 7.707 1.874 5.22 1.81

82 22.328 4.914 10.11 4.63

For heavier elements (Z > 10) the energy shift of the ls level rapidly becomes
large and the first order corrections are no longer adequate. It becomes necessary
to solve the wave equation exactly with a suitable potential inside and outside the
nucleus. The calculations have to be done numerically and have been carried out for
a variety of elements by Fitch and Rainwater [4]. In Table 4.2 are included their re-
sults for the 2p3/2 and 1s energy levels for the nuclear radius R = 1.3 × 10−13A1/3.
The calculations refer to μ meson with mass 210me. Also for comparison are given
the values by the Dirac equation neglecting the nuclear size (R = 0).

The 2p doublet splitting (2p1/2 − 2p3/2) caused by the magnetic moment of μ
meson can be roughly estimated by the formula

�E = 3�2

4μ2c2

1

r

dV

dr
(4.118)

which is applicable to an ideally heavy nucleus. We find,

1

r

dV

dr
= Ze2

R3
(4.119)

�E = 3�2Ze2

4μ2c2R3

= 3

4
× 1
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A

)
h3

r3
0μ

2c
(4.120)

For lead μ mesic atom, insert (Z/A) = (82/208) and μc2 = 106 MeV to obtain
�E ∼ 0.87 MeV. This value is considerably larger than the corresponding result
for the point charge nucleus.

By comparing the observed and calculated transition energies, Fitch and Rain
water concluded that data are consistent only with r0 ∼ 1.3 fm.

4.1.6 Half Lifetimes of α Emitters

If the half lifetime of the α emitter and the α energy be known then the nuclear
radius can be found out from Eq. (3.70) which involves the Gamow factor. The
value of R thus determined will be the sum of the radii of the daughter nucleus and
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α particle. After the correction for the finite radius of α particle, the value of r0 is
found to be little less than 1.48 fm, in agreement with values obtained from constant
density model.

4.1.7 High Energy Neutron Scattering

High energy neutron cross-sections can be used to estimate nuclear radii. When a
neutron beam is incident on target nuclei each nucleus would cast a shadow in the
manner of an opaque disk intercepting a beam of light. This shadow results from the
interference of waves scattered from the edge of the opaque sphere (Chap. 5).

It can be shown that exactly the same amount of incident energy is diffracted as
is absorbed by the opaque sphere. For fast neutrons with λ̄� R this diffraction of
“shadow scattering” corresponds to a small angle elastic-scattering for which the
cross-section σsc is the same as σabs where

σsc � (R + λ̄)2 (4.121)

Then the total nuclear cross-section σt is

σt = σabs + σsc � 2π(R + λ̄)2 (4.122)

which is double the effective geometrical area of the nucleus. When the measured
total attenuations cross-sections are used in (4.122), the value of R is obtained. On
the constant-density model R = r0A1/3, whence a value of r0 = 1.4 fm is obtained.

4.2 Constituents of the Atomic Nucleus

An atomic nucleus contains Z protons and N neutrons in a small space of size
10−12 cm. Z electrons orbit around the nucleus at distance of the order of 10−8 cm.
The total positive charge of the nucleus is compensated for by an equal negative
charge of electrons so that the atom as a whole appears neutral. There are three
reasons which exclude the electrons to stay inside the nucleus.

(a) Suppose the electrons were to be contained inside a nucleus, then their de
Broglie wavelength must be equal to the dimension of the nucleus and the min-
imum momentum corresponding to this wavelength would be p = h/λ. This is
found to be equal to 120 MeV/c when we set λ= 10−12 cm. This implies a ki-
netic energy of about 120 MeV—a value which is unreasonably large. With the
discovery of neutron (1932), it was natural to assume that protons and neutrons
were actually the constituents of the nucleus and electrons do not exist inside
the nucleus. With this assumption, for a de Broglie wavelength λ = 10−12 cm
momentum of the neutron would still be 120 MeV/c, but the corresponding ki-
netic energy would be only 8 MeV—a value which is reasonably low as it is
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comparable with the binding energy of the particle. Same conclusion is reached
from the uncertainty principle.

(b) The nuclear spin (intrinsic angular momentum) arises from the angular momen-
tum of its constituents. The spins of the constituents may be parallel or antipar-
allel to each other. The spin of each of the particles-proton, neutron and electron,
is (1/2)�, where � = Planck’s constant divided by 2π . Consider the example of
nitrogen nucleus under the proton-electron hypothesis. It will have 14 protons
and 7 electrons, the total number of particles being 21, i.e. an odd number. The
spin of the nitrogen nucleus from odd number of particles is expected to be an
odd multiple of (1/2)�. But experiments had revealed that the spin of the nitro-
gen nucleus is �, i.e. an even integral multiple of �/2. On the other hand, under
the proton-neutron hypothesis this difficulty is removed at once. As the nitro-
gen nucleus will contain 7 protons and 7 neutrons, total number of particles is
even, so that the spin of the nucleus will be an even integral multiple of �/2 (in
agreement with experiment).

(c) If electrons were inside the nucleus, then one could not explain long lifetimes
of beta emitters.

4.3 Definitions

Nuclide is a nuclear species.
Nucleon (N ) When proton and neutron are not to be distinguished, they are jointly

called nucleon.
Atomic number (Z) is the total number of protons in a nucleus. It is also equal to

total number of electrons in a neutral atom.
Mass number (A) is the total number of protons (p) and neutrons (N) in a nucleus.
A= Z +N . In a nucleus X, the values of Z and A are specified by writing them
as subscripts and superscripts, respectively AZX.

Isotopes are atoms with the same Z but different A, e.g. [16
8O, 17

8O]; [1
1H, 2

1H, 3
1H].

Chemically, isotopes of a given atom are indistinguishable. Isotopes may be stable
or unstable against radioactive decay.

Isobars are atoms with the same A but different Z, e.g. [3
2He, 3

1H]; [14
7N, 14

6C].
Isotones are the atoms with the same N but different Z, e.g. [16

8O, 14
6C].

Isomers are atoms with the same Z and same A but are capable of existing in differ-
ent nuclear energy states for sufficiently long time to be observed, e.g. 80

35Br (4.5 hr)
and 80

35Br (18 min).
The 18 min lifetime is associated with beta activity while 4.5 h lifetime goes into
the regime of delayed gamma emission. Isomers are metastable excited levels.
More than hundred examples of them are known. Gamma emission is usually asso-
ciated with short mean lifetimes, 10−10 s or less. In the case of isomers, the gamma
activity can range from 10−10 s to few years. It exists only because direct gamma
emission is not possible.
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Isodiaphes are characterised by constant difference of neutron and proton number,
e.g. [12

6C, 14
7N, 16

8O].
In α decay, the parent and product are isodiaphes.

Mirror nuclei are a pair of nuclei, in which proton and neutron numbers are inter-
changed, e.g. [27

13Al, 27
14Si], [3

1H, 3
2He].

4.4 Atomic Mass Unit

Atomic masses are measured accurately by mass spectrographs. Formerly, atomic
mass (weight) was referred to the hydrogen atom and later to the oxygen-16 iso-
tope. Since 1960, the atomic mass unit (amu) has been defined as one-twelfth of
the mass of carbon-12 atom. The new standard was chosen because carbon has only
two stable isotopes and their proportions are constant in the naturally occurring car-
bon. Further, the fact that carbon-12 forms numerous compounds is an advantage in
modern mass spectroscopic work. 1 amu = 1.66×10−24 g. On the carbon scale, the
masses of electron, proton and neutron are me = 0.000548 amu, mp = 1.0073 amu,
mn = 1.0087 amu respectively.

4.5 Nuclear Force

In a nucleus, the nucleons are held together by nuclear force. The characteristics of
nuclear force are:

(a) They are attractive.
(b) They have short range, of the order of 1 fermi, i.e. their sphere of influence

is limited to very small distances. Nuclear forces are said to have saturation
property. This behaviour is in marked contrast with other types of fundamental
forces like Coulomb forces and gravitational forces which obey inverse square
law and are therefore of long range.

(c) At small distance, of the order of a fermi, nuclear forces are stronger by a factor
100 than electric forces, by a factor 1012 than the weak force such as the one
associated with beta decay of a radioactive nucleus and by a factor 1036 than the
gravitational force.

(d) They are charge independent, i.e. the nuclear force between proton and proton
is identical with that between a proton and neutron or a neutron and a neutron,
p–p = p–n= n–n.

(e) Nuclear forces are spin dependent, i.e. they depend on the orientation of the
nuclear spins.

4.6 Mass Defect, Packing Fraction and Binding Energy

The mass of an atom is nearly, but not exactly, integral multiple of mass of hydrogen
atom. The departure from the integral number is due to two reasons:
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Fig. 4.8 Binding energy per
nucleon as a function of mass
number A for stable and long
lived nuclei

(a) Nuclei contain both protons and neutrons and neutron is slightly heavier than
proton.

(b) The mass of a nucleus is not equal to the sum of the masses of neutrons and
protons, but is actually smaller by a few tenths of a per cent. We may write

M(nucleus)= Zmp + (A−Z)mn −Δ (4.123)

where � is called the mass defect. The quantity Δ arises because some energy
is required to break the nucleus into its constituents. In effect, it represents the
binding energy B =Δmc2 for the nucleus. Another quantity which is frequently
used is the separation energy. It is the nuclear analogue of the first ionization
potential of atom.

The quantity (M −A)/A is called the packing fraction. By definition, this quan-
tity is zero for C12. For other nuclei it can be either positive or negative. The heavier
is the nucleus, the larger will be the binding energy since more nucleons are in-
volved. A related quantity of interest is the binding energy per nucleon defined by
f = B/A. Figure 4.8 shows the variation of f with the mass number A. For small
values of A, there are some irregular fluctuations in f , after which it slowly in-
creases up to A = 50, then it settles down practically to a constant value around
8.5 MeV up to A = 150. Beyond this, it decreases to a value of 7.4 MeV for
uranium-238. It follows that the total binding energy of a nucleus is roughly pro-
portional to A. This is a direct consequence of the short range character of nuclear
forces. Each nucleon added increases the total binding energy by an equal amount.
We can then assume the nuclear density, i.e. the number of nucleons in a given
volume to be independent of the size of nucleus

A ∝ (4/3)πR3, or

R = r0A1/3 (4.124)

where A is the mass number, R the nuclear radius and r0 = 1.3 fm, a constant. For
the gold nucleus R = 1.3 × (198)1/3 � 8 fm. We can qualitatively understand the
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Fig. 4.9 Mass excess
(Δ=M −A) and
packing-fraction
P = (M −A)/A based on
mass-spectrographic and
nuclear data for beta-stable
nuclei. The smooth curves are
based upon the mass formula.
Ordinates are in millimass
units [5]

f –A curve given in Fig. 4.8. While the nucleons are held by short range attrac-
tive forces, protons repel one another by Coulomb’s long range forces. Although
the electrostatic forces are generally weaker than the nuclear forces by two or-
ders of magnitude, they become quite important in heavy nuclei as the repulsive
Coulomb forces which are proportional to Z2 tend to counteract the attractive nu-
clear forces which are only linearly proportional to A. This effect becomes clearly
important in heavy nuclei and has the effect of reducing the binding energy per
nucleon.

For very low values ofA, a smaller value of f arises due to surface tension effect.
The nucleons at the surface are less strongly bound than those in the interior. The
number of nucleons; lying on the surface of a nucleus of radius R, is proportional
to surface area 4πR2, while number of nucleons in a nucleus is proportional to
the nuclear volume (4/3)πR3. Hence the fraction of nucleons on the surface is
proportional to 4πR2/(4/3)πR3, or 1/R. The smaller is the nucleus, the greater
will be the fraction of nucleons at the surface. This then explains the lowering of f
for very low mass numbers.

The packing fraction P is defined as

P = M −A
A

where M −A is the mass excess, P can be positive, zero or negative. Note that P
has a minimum value of about −8 × 10−4 in the vicinity of iron, cobalt and nickel
(Fig. 4.9). This corresponds to maximum value of binding energy per nucleon (f ).
Fluctuations in f for small A are attributed to shell structure of nuclei.

4.7 Mass and Energy Equivalence

According to Einstein, the energy equivalent to mass m is given by E = mc2. In
nuclear physics the basic mass unit is amu, the atomic mass unit which is 1/12 of
the rest mass of carbon-12 atom
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E = m0c
2 = (

1.66 × 10−27 kg
)× (

3 × 108 m/s
)2

= 1.49 × 10−10 J = (
1.49 × 10−10/1.6 × 10−13) MeV = 931 MeV

1 amu = (1/12)C12 mass = 1.66 × 10−27 kg = 1.49 × 10−10 J = 931 MeV/c2

Thus, a unit of energy may be considered as a unit of mass. It is usual to express
the masses of fundamental particle in MeV. For example, the mass of electron is
0.51 MeV and that of proton is 938 MeV (actually MeV/c2).

The mass energy equivalence was first verified in the experiment of Cockroft
and Walton, which was concerned with the nuclear reaction induced with protons
accelerated to 300 keV

7
3Li + 1

1H → 4
2He + 4

2He
7.0160 amu 1.0078 amu 4.0026 amu 4.0026 amu

Total mass of initial particles = 8.0238 amu

Total mass of final particles = 8.0052 amu

(Total initial mass)− (Total final mass)

= (8.0238 − 8.0052) amu

= 0.0186 amu

= (0.0186 amu)× (931 MeV/amu)= 17.3 MeV

If the kinetic energy of 300 or 0.3 MeV of the bombarding protons be added, we
find the total energy released as 17.6 MeV. From the range measurements in air,
each alpha particle was found to have energy equal to 8.6 MeV so that the energy
carried by the two particles is 17.2 MeV, which is in agreement with the calculated
value (within experimental errors).

Observe that the masses used in the above problem are atomic masses rather than
nuclear masses. But this does not affect the result since the total number of electrons
are identical for the initial as well as the final products, and the ionisation potential
of electrons is too small to be of any consequence. In nuclear reactions, what is
conserved is not mass alone but mass + energy. On the other hand, in chemical
reactions the energies absorbed or evolved are so small that the conservation of
mass alone is sufficiently accurate.

4.8 Nuclear Instability

Stable nuclei contain only a certain combination of protons and neutrons. Fig-
ure 4.10 is the plot of N (neutron number) versus Z (proton number). In light stable
nuclei Z = N = A/2, e.g. 4

2He, 12
6C, 16

8O are stable. But in heavy nuclei there is
significant departure from the N = Z line, stable nuclei having neutron excess.

There are two opposite tendencies in a nucleus. First, the tendency is for N to
be equal to Z, which is due to the application of Pauli’s principle to protons and
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Fig. 4.10 Chart of all
beta-stable nuclei in a ZN
plane

neutrons. In analogy with the electrons in an atom, nucleons in a nucleus can occupy
certain discrete energy levels. Owing to Pauli’s principle, not more than two protons
or neutrons can occupy the given energy state. Various energy levels are filled up in
sequence, to give rise to maximum stability for the nucleus. Thus, in absence of the
Pauli’s principle, a stable nucleus should have contained neutrons only.

The second tendency for neutrons to exceed protons is due to the repulsive
Coulomb forces between various protons, which tend to weaken the nuclear bind-
ing. In order to compensate for this effect, which is more important in heavy nuclei,
a nucleus must be supplied with extra neutrons. The binding energy is maximised in
light and medium elements for N = Z. As A increases, the neutron number N ex-
ceeds the proton number to overcome coulomb repulsion. Those nuclei which have
proton number in excess of that corresponding to the stability curve, tend to lose
their charge by emitting positrons. Effectively one of the protons becomes a neutron
through

p→ n+ β+ + νe (4.125)

Alternatively, the proton captures an orbital electron of the atom, usually the K-shell
electron and transforms itself into a neutron through

p+ e− → n+ νe (4.126)

In both the cases, the neutron remains lodged within the resulting nucleus. On the
other hand, those nuclei which have neutrons in excess of the number corresponding
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to the stability curve tend to gain positive charge by β-decay. This is accomplished
through the process

n→ p+ β− + νe (4.127)

Thus, the unstable nuclei transform via β decay along lines of constant A, i.e.
diagonally towards the centre of region of stability. Here ν is the antiparticle of ν.

4.9 Stability Against β Decay

The criterion that a nuclide (Z,A) is stable against negative beta decay is

M(Z,A)=MNuc + (Z,A)+ZM(e)≤MNuc(Z + 1,A)+ZM(e)+M(β)
(4.128)

whereMNuc refers to the mass of the nucleus alone,M(e) to the mass of an atomic
electron andM(β) to the mass of β particle. Since the negative β particle is an elec-
tron, the right-hand side represents M(Z + 1,A), the atomic mass. The condition
for the stability against β decay is

M(Z,A)≤M(Z + 1,A) (4.129)

whereM is the atomic mass.
For the β+ decay, the corresponding condition for stability is

M(Z + 1,A)≤M(Z,A)+ 2M(e) (4.130)

In the right-hand side, the mass of electron appears twice because one electron will
be less in the daughter atom and also positron mass which is equal to electron mass
must be provided.

A third type of β process occurs in the decay by the capture of an atomic electron
by the nucleus, accompanied by neutrino emission. Considering that the neutrino
may have zero energy, the condition for stability becomes

M(Z + 1,A)≤M(Z,A) (4.131)

In all the three expressions for the stability of nucleus in the beta process, the change
in the binding energy of atomic electrons has been ignored. This is justifiable, since
the binding energy of electrons is quite small to affect the results. The corresponding
equations for the Q of the decays are

Qβ− = [
M(Z,A)−M(Z + 1,A)

]
c2 = Tmax + Tγ = T0 (4.132)

Qβ+ = [
M(Z + 1,A)−M(Z,A)]c2 = 2mec

2 + Tmax + Tγ
= 2mec

2 + T0 (4.133)

QEc = [
M(Z + 1,A)−M(Z,A)]c2 = Tν + Tγ = T0 (4.134)
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In case γ -rays accompany β− and β+ decays and precede the electron capture, T0
is the total kinetic energy of the decay products. Note that in (4.131) me does not
appear on the left hand side. This becomes quite obvious when we consider nuclear
masses rather than atomic masses, as was alone for β− decay in Eq. (4.128)

[
(Z + 1)M ′ +me

]
c2 = ZM ′c2 +mνc2 + Tν + TM ′ + Tγ = ZM ′c2 + Tν + Tγ

(as mν = 0 and TM ′ = nuclear mass)

Add Z electrons to both the sides. Then nuclear masses are converted into atomic
masses as in (4.128).

4.10 Stability Against Neutron and α Decay and Fission

The criterion for the stability of a nucleus, against disintegration via neutron emis-
sion is that the binding energy of the neutron in the nucleus shall be positive. The
binding energy of a neutron in a nucleus

B(n)= [
M(A− 1,Z)+M(n)−M(A,Z)]c2 (4.135)

This quantity is found to be positive for the stable elements, indicating thereby the
stability against spontaneous emission of neutron. Same conclusions hold good for
proton emission. However, in the case of fission fragments (nuclei of the fission
products) which are invariably rich in neutrons, decay can occur via neutron emis-
sion. Fission is a special type of nuclear disintegration in which a nucleus is split up
into two large fragments and sometimes three.

The binding energy of α particle in a nucleus is

B(α)− [
M(A− 4,Z− 2)+M(α)−M(A,Z)]c2 (4.136)

This quantity becomes negative in the middle of the periodic table long before the
natural α emitters are reached. The intervening elements are stable against α decay
only because the α energies are so small that their lifetimes are prohibitively long
(Gieger-Nuttal law). The periodic table ends beyond Z = 92 because of the increas-
ingly negative values of the binding energy for α particles and fission fragments.

4.11 Charge Independence of Nuclear Forces

It is found that in low-energy nucleon-nucleon scattering experiments the n–p and
p–p nuclear forces are virtually identical (Chap. 5).This aspect is also evident in
the properties of mirror nuclei, such a 3H, 3He; 7Li, 7Be; 27Al, 27Si, etc. which are
obtained from the other by transforming all neutrons into protons, and vice versa.
Owing to difference in proton number the Coulomb forces in the mirror nuclei are
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Fig. 4.11 Excited energy
levels for the mirror pair Li7

and Be7. The crosshatched
areas represent broad levels

necessarily different. When corrected for electrostatic energy, the nuclei have the
same mass. For the mirror nuclei with atomic number Z + 1 and Z

�M = 3e2

5R

[
(Z + 1)2 −Z2]= 3e2(2Z + 1)

5r0A1/3
(4.137)

where R is the nuclear radius. After correcting for the coulomb forces, the energy
levels of mirror nuclei bear a remarkable similarity, Fig. 4.11. The similarity of the
energy levels in mirror nuclei of the type N = Z± 1 shows the equality of n–n and
p–p forces. This is the principle of charge symmetry which says nothing about the
n–p force. The study of energy levels in even A nuclei with neighbours differing by
one unit of Z gives evidence for the equality of n–n, n–p, p–p forces, that is the
principle of charge independence which is much more stringent than the principle
of charge symmetry. Examples for this equality are provided in Figs. 4.12 and 4.13
for (14O, 14N, 14C) and (6He, 6Li, 6Be). The correspondence between levels is clear
and the differences in energy are mainly explained by Coulomb effects. Thus, the
experiments or N–N scattering and the similarity of energy levels in the isobaric
triads strongly support the principle of charge independence, enunciated by Heisen-
berg et al. [7]. However, the charge independence is only approximate as it does not
take into account electromagnetic effects or the neutron-proton mass difference. The
principle of charge independence was later generalized to pions by Kemmer [10],
and also to the strange particles.

4.11.1 Iso-spin

The principle of charge independence is mathematically expressed by isospin for-
malism. The nucleon is endowed with another degree of freedom apart from the spa-
tial coordinates and spin, known as isospin or i-spin, designated by T . The T -spin
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Fig. 4.12 The level schemes for the nuclei with A = 14. The relative energies represent atomic
masses

operates in a fictitious space and has no relation with ordinary spin. For nucleon,
T = 1/2. It is a dichotomic variable in that it can take two values. Along the third
axis, T3 = +1/2 for proton and T3 = −1/2 for neutron. Neutron and proton are
the two aspects of the same particle, nucleon. The isospin operators are the Pauli
matries, just as they are for ordinary spin (S) of electron although there is no con-
nection between S and T . They obey the same commutation relations. Furthermore,
the algebra for the addition of isospins is identical with that for ordinary spins. This
subject is discussed in great detail in [9], Chap. 4.

Pauli’s principle is more generalized by incorporating the isospin. It now states
that the overall Eigen function for a system of two nucleons is antisymmetric with
the exchange of the particles in spatial, spin and isospin coordinates. For a system
of particles we shall use I in place of T and the third component I3 in place of T3.
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Fig. 4.13 Nuclear levels in 6He, 6Li, and 6Be

It can be shown that for a two-nucleon system

l + S + I = odd integer (4.138)

where l is the orbital angular momentum, S the spin and I the isospin for the two-
nucleon system. Calling the total isospin of a system of particles by I and its third
component by I3, the system of two protons will have I3 = +1 and I = 1, a system
of two neutrons will have I3 = −1 and I = 1, while neutron-protons system will
have I3 = 0, but I = 1 or 0.

The charge of a system of nucleons is related to the third component I3 by

Q

e
= I3 + A

2
(4.139)

where A is the mass number or the number of nucleons and Q/e is the charge in
units electron charge. As an example, it is easily verified that I3 = −1,0, +1 for
6
2He, 6

3Li and 6
4Be, respectively. The ground level of 6Li has T = 0 and occurs only

in this nucleus, but the excited level at 3.56 MeV has T = 1 and occurs in three
nuclei corresponding to the ground levels of 6He, 6Li and 6Be. All corresponding
levels with the same I also have the same angular momentum and parity, irrespective
of T3 as expected from the postulate of charge independence of nuclear forces. They
form an isospin multiplet.

When the states belonging to a given multiplet are corrected for electrostatic
interaction, all of them will have the same wave function.



234 4 General Properties of Nuclei

In so far as the nuclear forces are concerned, the total isospin is a constant of
motion, in the same way that the total angular momentum is a constant of motion for
an isolated system. The foundation of this principle is empirical and its conservation
is only approximate as it is violated by electro-magnetic and weak interactions, its
use, specially in particle physics is invaluable.

From the nucleon-nucleon scattering experiments it is known that the nuclear
forces are identical in the 1S0 state for both p–p and n–p systems both of which
correspond to I = 1 but each of which corresponds to different I3 (1 and 0, respec-
tively). It is, therefore, postulated that the nuclear forces depend on I but not on I3.
Mathematically, charge independence is equivalent to invariance with respect to ro-
tation in isospin space because rotation leaves I invariant and changes only I3. This
also amounts to the statement that the Hamiltonian commutes with I ; IH−HI = 0,
or that I is a constant of motion.

The conservation of I gives rise to approximate rules that forbid transitions be-
tween states of different isospin under the action of nuclear forces. Some examples
are given in [9], Chap. 4, others follow here. Consider the collisions of deuteron and
proton with the light nuclei. In the collision with deuteron the isospin cannot change
because deuteron has T = 0. In proton collision the isospin can change by 1/2. It
is impossible to form 10B in a state at 1.74 MeV which has T = 1 by bombarding
12C with deuterons because T = 0 for both d and 12C. But the same level can be
realized by bombarding 13C.

A stringent test of isospin conservation in nuclear reactions is provided by the
angular distributions of a reaction of the type A+B→ C +C′ where B has T = 0
and C and C′ are the members of the same multiplet [1]. Zero isospin for B implies
that the system is in an isospin state with T = TA. In the isospin formalism particles
C and C′ are the same except for different T3. Particles C and C′ are both fermions
or bosons according to their mass number (fermion if A = odd and boson, if A =
even). In a given I state, the scattered amplitude must contain only waves with l
even or l odd, but not l odd at the same time. Only even powers of cos θ appear
in the intensity (square of the amplitude). Thus the angular distribution is expected
to be symmetric with respect to a plane at 90° to the initial direction in the centre
of mass system. This prediction is verified with fair accuracy in Fig. 4.14, for the
reaction 4He + d → 3He + 3H.

4.12 Ground and Excited States of Nuclei

A nucleus is capable of existing in discrete energy levels—a property of a bound
quantum mechanical system. Figure 4.15 shows for example the low lying energy
levels of 224Ra. The energy value (in MeV) is indicated at the left side of each energy
level. The lowest state of energy is called the ground state. Under normal conditions
a nucleus like an atom is found in the ground state. If the nucleus is brought into
an excited state then it cascades down to lower energy states and ultimately to the
ground state via γ , β or even particle emission under various circumstances.
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Fig. 4.14 Angular distribution of the ratio of 3He to 3H yields. The differential cross-sections for
the process 4He + 2H → 3He + 3H at 82 MeV beam energy. Open circle represent 3He yields,
while closed circles 3H yields. According to the Barchay-Temmer theorem, this ratio ought to be
1.0 at all angles [6]

Fig. 4.15 α-particle transitions observed in the decay of 228Th

4.12.1 Nuclear Spin

Protons and neutrons, the constituents of nuclei both have spin quantum number
(1/2) (i.e. sp = sn = (1/2)�). The spin of the proton is represented by a vector op-
erator sp such that the eigenvalue of s2

p is (1/2)[(1/2)+ 1]h and of spz = (1/2)�
or −(1/2)� and similarly for Sn. Further, the nucleons may also have orbital angu-
lar momentum by virtue of their motion in the nucleus. This is represented by an
angular momentum quantum number l (= 0,1,2 . . . ) for each nucleon.

The sum total of the spin and the orbital angular momenta of the nucleons com-
bine to give rise to the total intrinsic angular momentum of the nucleus, which
is referred to as the nuclear spin and the associated quantum number is denoted
by J .
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Since an odd number of spin (1/2) particles always combine quantum mechan-
ically to give a half-integer total spin and even number of spin (1/2) particles to
integer total spin, it follows that

odd A nuclei have J = 1

2
,

3

2
,

5

2
, . . .

even A nuclei have J = 0,1,2, . . .

These facts are in agreement with the experimental measurements of nuclear spins
based on the studies of atomic hyper-fine structure, molecular spectra, nuclear mag-
netic resonance and other techniques. Furthermore, for even-even (Z even, N even)
nuclei the nuclear ground state always has J = 0.

4.12.2 Nuclear Parity

The wave function for a nuclear energy state is a function of the coordinates
r1, r2, . . . , rA of the A nucleons. Under the reflection of coordinates through the
origin (Parity operation P ) the wavefunction may change its sign or may remain
unchanged, its magnitude staying constant

Pψ(r1, r2, . . . , rA = ±ψ(−r1,−r2, . . . ,−rA) (4.140)

where P = ±1. A state with P = +1(−1) is said to have even (odd) parity. The
nuclear state can be labeled with both its spin and parity, the symbol being Jp

(e.g. 0+,1−,2+). The ground states of even-even nuclei are found to be 0+. By
convention both neutron and proton have the even parity (+). The parity arising due
to orbital motion is given by (−1)l so that for a system the overall parity is given by
the product of intrinsic parity and that due to orbital motion. Thus, for deuteron in
the ground state, the overall parity will be

(+1)(+1)(−1)0 = +1

If the nuclear Hamiltonian satisfies

H(r1, r2, . . . , rA)=H(−r1,−r2, . . . ,−rA)
PH =HP (4.141)

then the parity operator P commutes with H , i.e.

[P,H ] = 0 (4.142)

This means that parity is a constant of the motion, parity is conserved in nuclear pro-
cesses (as well as electromagnetic processes). However, in the weak nuclear force
(∼10−7 times weaker than the strong force) it changes sign invalidating (4.141),



4.13 Determination of Nuclear Spin 237

parity is not conserved. The parities of nuclear states is obtained, by studying the
angular distribution of particles and photons in nuclear processes, especially in β-
and γ -decay (see Sect. 3.6.6).

4.13 Determination of Nuclear Spin

4.13.1 Nuclear Spin from Statistics

Identical particles obey either Fermi statistics or Bose statistics, that is a wave func-
tion ψ(X1,X2) of particles 1 and 2 will be either symmetrical or antisymmetrical.
Under exchange of X1 and X2, where X1 and X2 are space and spin coordinates

ψ(X2,X1) = +ψ(X1,X2) (Bose)

= −ψ(X1,X2) (Fermi) (4.143)

Indeed all the particles without exception having even values of spin obey Bose
statistics and odd values of spin obey Fermi.

To determine the statistics we shall investigate how an exchange of identical
nuclei will effect the wave function of a molecule. Consider a diatomic molecule
with identical nuclei. Its wave function may be written as

ψ =ψelecξvibρrotσnuc spin (4.144)

Let P be the operator to exchange space and spin coordinates. Then Pψelec =
±ψelec. It is known from molecules spectroscopy, usually in the ground state it
is positive. Also ξvib = +ξvib, because ξvib depends on r , the internuclear dis-
tance (specifically, the solution of radial wave equation is of the form R(r) =
const · exp(−const · r)× rl ×L(r), where L(r) is the Laguerre function). Now

ρ ∼ Pml (cos θ)eimφ (4.145)

where Pml (cos θ) is an associated Legendre polynomial, θ , the polar angle and φ
the azimuth angle are the polar coordinates of the two nuclei. Exchange of x→ −x,
y→ −y, z→ −z, implies

θ → π − θ, φ→ π + φ (4.146)

Now

Pml
(
cos(π − θ))= (−1)l+mPml (cos θ) (4.147)

and

eim(φ+π) = (−1)meimφ (4.148)
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so that

Pρ = (−1)l+mPml (cos θ)(−1)meimθ

= (−1)2m(−1)lρ = (−1)lρ (4.149)

where m is an integer. Thus ρ is symmetrical for even l and antisymmetrical for
odd l. Analysis of Pσ

(i) Spin = zero
The total wave function ψ is antisymmetrical for odd l and symmetrical for

even l. Now the nuclei must certainly obey either Fermi or Bose statistics. It
follows therefore either only the states with even l or only those with odd l can
exist. Evidence for this conclusion is obtained from the band spectra of diatomic
molecules. These show that if the nuclei have spin zero, every second rotational
state of the molecule is absent. Indeed it is found that in every instance only
the even rotational states exist, indicating that all the nuclei of zero spin (which
have been found previously to have evenA) obey Bose statistics. Similarly it has
been found that all nuclei of even A, including those with non-zero spin, obey
Bose statistics and all those of odd A obey Fermi statistics. The result has been
of significance in deciding the model of the nucleus, that is favoring the neutron-
proton model and discarding the electron-proton hypothesis (see Sect. 4.1). In
case of an even number of particles the exchange of nuclei is equivalent to an
even number of changes of sign and ψ must be symmetrical to an interchange
of nuclei (Bose statistics). If each nucleus contains an odd number of particles,
the exchange of nuclei is equivalent to an odd number of changes of sign, that
is ψ is antisymmetrical to nuclear exchange (Fermi statistics).

(ii) Nuclei of non-zero spin
A nucleus of total angular momentum I can have a component M in any

prescribed direction taking 2I + 1 values in all (I, I − 1, . . . ,−I ), that is
2I + 1 states exist. For two identical nuclei (2I + 1)2 wave functions of the
form ψM1(A)ψM2(B) can be constructed. It the two nuclei are identical, these
simple products must be replaced by linear combination of these products
which are symmetric or antisymmetric for interchange of nuclei. If M1 =M2,
the products themselves are (2I + 1) symmetric wave functions. The remain-
ing 2I (2I + 1) functions with M1 �=M2 have the form ψM1(A)ψM2(B) and
ψM2(A)ψM1(B). Each such pair can be replaced by one symmetric and one
antisymmetric wave function of the form ψM1(A)ψM2(B)±ψM2(A)ψM1(B).
Thus half of 2I (2I + 1) functions that is I (2I + 1) are antisymmetric and
an equal number symmetric. The total number of symmetric wave functions
= (2I + 1)+ I (2I + 1)= (2I + 1)(I + 1). Number of antisymmetric functions
= I (2I + 1). Therefore, the ratio of the number of symmetric and antisymmet-
ric functions is (I + 1)/I .

If the electronic wave function for the molecule is symmetric it was shown
that interchange of nuclei produces a factor (−1)l in the total molecular wave
function, where l is the rotational quantum number. Thus if the nuclei obey
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Fig. 4.16 Intensity alteration
in band spectra of
homonuclear diatomic
molecules

Bose statistics, symmetric nuclear spin functions must be combined with even
l rotational states and antisymmetric with odd l. Because of statistical weight
attached to spin states, the intensity of even rotational lines will be (I + 1)/I as
great as that of neighboring odd rotational lines.

For Fermi statistics of the nuclei the spin and rotational states combine in a
manner opposite to the previously stated and the odd rotational lines are more
intense in the ratio (I+1/I ). Thus by determining which lines are more intense,
even or odd, the nuclear statistics is determined and by measuring the ratio
of intensities of adjacent lines the nuclear spin is obtained. The reason why
adjacent lines must be compared is that the rotational lines vary in intensity
with l in accordance with the occupation number of rotational state according
to the Bultzman distribution, (2l + 1) exp[−const · l(l + 1)/kT ] (Fig. 4.16).

4.13.2 Nuclear Spin from Hyperfine Structure

Fine structure of spectral lines is explained by the electron spin while the hyperfine
structure can be accounted for by assigning a spin to the nucleus. The nucleus be-
haves as if it was a miniature magnet, and interacts with the magnetic field just like
a magnet. It may be seen that the magnetic effects produced by nuclei are very much
small compared to those produced by electrons, even though the spin values are of
the same order of magnitude. A many-electron atom can be replaced, from the point
of view of magnetism, by three magnetic dipoles.

(1) μ′
L: resulting from orbital angular momentum of all electrons

(2) μ′
S : resulting from spin of all electron

(3) μ′
I : resulting from nuclear angular momentum

μ′
I is very small compared withμ′

S orμ′
L. Magnetic moment always refers not to the

magnitude but to maximum projected value the moment can have in any direction.
The orbital angular momentum is L� where L is an integer and magnetic moment
of electron is (e/2mc)l�, where m is the mass of electron. The quantity (e�/2mc)
is called one Bohr magneton. In analogy with the Bohr magneton for electron, we
define a nuclear magneton, (eh/2Mc) where M is the mass of the nucleon, the
nuclear magnet being less by a factor of 1836 compared to the Bohr magneton.
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Fig. 4.17 Vector addition

4.13.2.1 Vector Addition

The quantities L and S and also the magnetic moments are space quantized that is
their values take up discrete values in definite directions. The total angular momen-
tum of electron, J = L+ S, where L is the orbital part and S is the spin of electron.
The nuclear angular momentum I may be combined with J to yield the resultant
F = J + I . F takes values

J + I, J + I − 1, . . . , J − I (J > I) (2I + 1 values)

or

I + J, I + J − 1, . . . , I − J (I > J) (2J + 1 values)

As an example consider J = 2, I = 3
2 . F = 7

2 , 5
2 , 3

2 , 1
2 , as in Fig. 4.17. It is well

known that the interaction between μ′
L and μ′

S (spin-orbit coupling) splits the
atomic levels and leads to fine structure in spectrum. In just the same way each
of those split levels splits further by J − I coupling leading to hyperfine splitting in
spectral lines as in Fig. 4.18. But the hyper-fine splitting is much smaller than the
fine structure splitting. The value of nuclear spin can be ascertained directly from
the number of hyperfine components of the spectral terms provided the angular mo-
mentum in the electron system is large enough and is known.

Example 4.2 In praseodymium (Pr) spectrum the energy level 5K7 corresponding
to J = 7 is known to be split into 6 components. Find the nuclear spin.

Solution As the number of sub-levels is less that 2J + 1, that is 15, 2I + 1 = 6;
I = 5/2.

Another example is the hyperfine structure of sodium atom.

4.13.2.2 Selection Rule for F

�F = ±1,0

F = 0 � F = 0
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Fig. 4.18 The lowest states of the sodium atoms as modified by hyperfine splitting (I = 3/2)

Consider states with the same I and the same J but different F . Let θ be the angle
between the unprojected magnetic moment μ′

J and μ′
I . These quantities lie in the

direction of the angular momentum vectors. If either μ′
J or μ′

I were zero then there
would be no splitting and all the quantum states in question would have the same
energy E0.

In general

EF =E0 + kμ′
Jμ

′
I cos θ (4.150)

where k is a constant

μ′
I = gI

√
I (I + 1)

(
e�

2Mc

)
(4.151)

where gI is the nuclear g-factor. Also

μ′
J = gJ

√
J (J + 1)

(
e�

2mc

)
(4.152)

EF −E0 = k′√J (J + 1)
√
I (I + 1) cos θ (4.153)

From Fig. 4.19

F(F + 1) = J (J + 1)+ I (I + 1)+ 2
√
J (J + 1)

√
I (I + 1) cos θ (4.154)

EF −E0 = k′

2

[
F(F + 1)− J (J + 1)− I (I + 1)

]
(4.155)

where k′ = const. It is readily seen that

k′ =EF +EF−2 − 2EF−1 (4.156)
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Fig. 4.19 The addition of J
and I to form F

Also from (4.156) we have prediction of the energy spacing between states with the
same J and I but different F values as follows

EF −EF−1 = k′F (4.157)

Note that (4.157) predicts unequal spacing of energy levels. In fact it is in arithmetic
progression. Hence the experimental knowledge of hyperfine spacing of energy lev-
els allows the determination of F and hence that of I . Equation (4.153) also shows
that there is no fine structure splitting if J = 0 or I = 0.

4.13.3 Nuclear Spin from Zeeman Effect

When the magnetic field is so great that the velocity of precession of F about the
field direction becomes greater than that of J and I about F , a Paschen-Back effect
takes place as for multiplet structure. In the case of hyperfine structure on account of
weak coupling between J and I they are independently space quantized in the field
direction, the components being MJ and MI . The space quantization of J gives
the ordinary Zeeman effect, see Fig. 4.20. Each term with a given MJ is, however,
once again split up into a number of components corresponding to different values
of MI that is 2I + 1 components. This number of components is the same for all
the terms of an atom, since I is constant for a given nucleus. For a transition which
without field gives rise to one hyper-multiplet, the selection rules in a strong field are
�MJ = 0, ±1 and �MI = 0. The first of these rules gives the ordinary anomalous
Zeeman effect if at first we disregard the nuclear spin. Because of nuclear spin,
however, each of the magnetic levels with a certainMJ value has 2I + 1 equidistant
component, the separation being different in the upper and lower states. Therefore,
considering�MI = 0, each anomalous Zeeman component is split into 2I+1 lines.
The splitting dues not depend upon the field strength so long the latter is sufficiently
great to produce an uncoupling of J and I . Thus simply by counting up the number
of line components the nuclear spin I can be determined. For example, in a strong
magnetic field each of Zeeman components of Bi consists 10 components due to
nuclear spin so that, 2I + 1 = 10 or I = 9/2.

4.14 Nuclear Magnetic Dipole Moment

Any charged particle moving in a closed path produces a magnetic field which at a
large distance can be described as due to a magnetic dipole located at the current
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Fig. 4.20 Splitting of spectral lines due to Zeeman effect

loop. For an electron of charge −e and mass m an orbital magnetic moment is
associated with it and is given by

μL = − e

2m
L (4.158)

Similarly, an intrinsic magnetic moment is associated with the spin S

μS = − ge
2m
S (4.159)

where g is known as the g-factor and Dirac’s equation gives precisely g = 2.0000.
However, quantum-electro-dynamical effects modify this value slightly to g =
2.0023192. It is remarkable that the experiments are able to match the theoretical
value to one part in 107.

The value of the proton magnetic moment μp and that of neutron magnetic mo-
ments μn are defined as

μp = gp e

2mp
sp (4.160)

μn = gn e

2mn
sn (4.161)

where mp and mn are the masses of proton and neutron, respectively, with different
g-factors for each particle. We may rewrite (4.160) and (4.161) as

μp = 1

2
gpμN (4.162)

μn = 1

2
gnμN (4.163)
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where the nuclear magneton is defined as

μN = e�

2mp
= 5.05078 × 10−27 JT−1 (4.164)

The experimental values of g-factors are gp = +5.5856 · · · and gn = −3.8262 · · ·
so that the corresponding magnetic moments are

μp = +2.792S · · ·μN and μn = −1.9131 · · ·μN
Similarly, for the electron spin magnetic moment

μS = −1

2
g
e�

2m
= −1

2
gμB (4.165)

where μB = e�/2m is known as the Bohr magneton with the value

μB = −9.274 · · · × 10−24 JT−1 (4.166)

Because of the inverse dependence on the mass of the particle, the nucleon mag-
netic moments are three orders of magnitude smaller than the magnetic moment of
electron. Furthermore, they differ significantly from the value predicted for a spin
(1/2) particle (μp = 1μN , μn = 0). This is in contrast with the electron for which
μ is close to the Dirac value. This is explained by the fact that nucleons are of finite
size and have a complicated structure.

In a complex nucleus, the intrinsic magnetic moments of the constituent neu-
trons and protons will contribute to the total magnetic moment and there will be an
additional contribution from orbital motion of charged protons. The total magnetic
moment μJ is given by

μJ = gJμNJ (4.167)

where gJ is the nuclear g-factor. It is found that the nuclear magnetic moments are
spread approximately in the range −2μN to 6μN .

The techniques used for the determination of magnetic moments of nuclear
ground state as well as excited states include hyperfine structure studies, microwave
spectroscopy, nuclear magnetic resonance, use of nuclear alignment and atomic
beams.

We shall consider the magnetic resonance method which uses molecular beam.
It depends essentially upon the resonance between the precession frequency of the
nuclear magnet about a constant magnetic field direction and the frequency of an
impressed high frequency alternating magnetic field. The magnetic moment

μ= gI
(
e�

2mpc

)
(4.168)

where g is the nuclear g-factor and I the spin. When a nucleus of magnetic mo-
ment μ is in a constant magnetic field of intensity B , it will precess about the field
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Fig. 4.21 Schematic diagram of the apparatus used by Rabi et al. [11] for molecular beam mag-
netic resonance experiments

Fig. 4.22 The paths of four molecules in a molecular-beam magnetic resonance apparatus [12]

direction with a frequency ν given by Larmor’s theorem

ν = μB

Ih
(4.169)

Thus the magnetic moment μ of a nucleus can be found by determining ν which the
nucleus of spin I acquires in a known constant magnetic field B . Instead of working
with nuclei alone, Rabi used beams of neutral molecules whose electronic angular
momentum is zero. A narrow stream of molecular beam issues from the source,
which is an oven O , Fig. 4.21. A very small fraction of these molecules will pass
through the collimating slit S and reach the detector at D. The beam passes through
three magnets, A, C and B . In both A and B the field is strong but inhomogeneous,
while in C the field is uniform.

In the absence of any inhomogeneous magnetic deflecting fields the molecules
will pass through the collimating slits and traverse the straight line paths OSD and
form the direct beam (Fig. 4.22). The magnetic fields of A and B are in the same
direction but their gradient dB/dz are in opposite directions. A molecule with mag-
netic momentμwill be deflected in the direction of the gradient ifμZ , the projection
of μ in the field direction is positive and will be deflected in the opposite direction
if μZ is negative. Molecules which leave o at some angle with the line OSD will
follow paths indicated by solid lines and reach the detector D. The force experi-
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enced by any such molecule in the inhomogeneous field due to the magnet A is
F = μZ(∂B/∂Z)A. A similar expression holds for the force due to magnet B . The
actual deflection produced by each magnetic field can be established from a knowl-
edge of the velocity of molecule which is determined by the temperature of source
and geometry of arrangement. It no change occurs in μZ as the molecule goes from
A to B field, the deflections in these fields will be in opposite directions. The mag-
netic field gradients can be adjusted to make these deflections equal in magnitude
and thus to refocus the beam at the detector. Magnet C produces a homogeneous
field of intensity B . In the same region there is a high frequency alternating mag-
netic field B1 (not shown in the figures) at right angles to the homogeneous field B
produced by magnet C. When a molecule of magnetic moment μ enters this region
it will precess around B with Larmour frequency ν. Consider the oscillator whose
frequency is f flooding the field space with photons of energy hf . The interactions
with the oscillating magnetic field B1 will produce a torque which may either in-
crease or decrease the angle between μ and B . In general if f the frequency of
alternating magnetic field is different from ν the net effect will be small since the
torque produced by the alternating field will rapidly get out of phase with preces-
sional motion. But when f = ν the increase or decrease produced in angle might be
quite large.

The separation between adjacent levels in magnet C is

�E = g�MJ =
(
e�

2Mpc

)
B = ge�B

2Mpc

(∵ �MI = ±1)

(4.170)

Therefore

hf = μB

I
or (4.171)

f = ν = μB

Ih
(4.172)

The transition probability is maximum when f = ν.
The molecule will then follow one of the dotted paths while it enters region

B and escape from the detector. In some experiments f is kept constant and B
(homogeneous magnetic field) is varied. Resonance occurs at a definite value of B
as shown in Fig. 4.23

g = μ

I

2Mc

e�
= νh

B

2Mc

�
= 4πMc

e

f

B
(4.173)

If I is also known from some other experiment then μ can be found out from μ=
gI , where μ is expressed in nuclear magneton.
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Fig. 4.23 A curve showing
the occurrence of magnetic
resonance for 7Li [13]

4.14.1 Magnetic Moment of the Neutron

Classically, neutron is not expected to have a magnetic moment as it has no charge.
However, magnetic moment depends on the current rather than charge. It is possible
for the charge to cancel but not the current. Such is the case of the hydrogen atom.
which is electrically neutral but does have a magnetic moment. It turns out that the
neutron has a magnetic moment, μn = −(1.91354 ± 0.0006) nm. The negative sign
means that the magnetic moment is oppositely directed to the spin.

The value of μn was determined by Block et al. using the magnetic resonance
beam method at Stanford. The apparatus used by them is schematically shown in
Fig. 4.24. In the place of the magnets A and C they used steel plates as polarizer and
analyzer. Deuterons accelerated in a cyclotron on hitting a Be target produce neu-
trons which are thermalized in paraffin. The thermal neutrons are collimated along
the axis of the polarizer and are detected by BF3 proportional counter on the right.

The microcrystals of magnetized steel plate act as polarizer as the emerging neu-
trons tend to be aligned with their spins opposed to the direction of magnetization. If
the analyzer is magnetized in a parallel fashion then the transmission of the neutrons
will be greater. However, if the polarization of neutrons between the steel plates is
spoilt then there will be a dip in the neutron intensity at the detector. Magnetic res-
onance transitions induced in this region can cause a neutron spin to ‘flip’ from
either spin orientation to the other. However the spin orientation that is more heav-
ily populated initially will have more transitions just in proportion to its population.
Thus if the neutrons undergo magnetic resonance transitions in the region between
the plates, there will be a drop is the intensity of the beam emerging from the sec-
ond plate. The depolarization is accomplished by employing RF fields. The field
strength in the central magnet was measured by observing the proton resonance.
Figure 4.25 shows the neutron resonance curve observed by Block et al.

NMR technique has been invaluable in the studies of magnetic properties of ma-
terials, the chemical shifts and the structures of certain organic molecules and diag-
nosis.



248 4 General Properties of Nuclei

Fig. 4.24 Apparatus used by Block et al. to measure the magnetic moment of the neutron [2]

Fig. 4.25 A typical neutron
resonance curve observed by
Block et al.

4.15 Electric Quadrupole Moment

The concept of quadrupole comes from the classical electrostatic potential theory.
Assume that the nuclear charge is rotating about the nuclear spin I . Then on time
average it would appear cylindrically symmetric about I , regardless of the distribu-
tion. Because ∇2φ = 0 outside the nucleus, we can expand φ in terms of Legendre
polynomials

φ(r, θ)= 1

r

∞∑
n=0

an

rn
pn(cos θ) (4.174)

The quantity (2a2/e) is called the quadrupole. It is given by

Q=Q0 = 1

e

∫ (
3z′2 − r ′2)ρ(r ′)dτ ′ cm2 (4.175)
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Fig. 4.26 Nuclear
quadrupole shapes for which
〈Z2〉 = 1/3〈r2〉

The first term of (4.174) is ordinary coulomb term φ. The second term the perma-
nent dipole is not generated by nuclei in the static case because of parity consid-
erations. The third giving a measure of the departure from spherical symmetry is
the quadrupole term. A nucleus of the shape illustrated in Fig. 4.26(a) would have
Q �= 0. This is of more common occurrence.

Expression (4.175) is simply the average of 3z2 −r2 taken over the charge density
distribution. That is, it could be written as

Q0 = Z(3〈z2〉− 〈
r2〉) (4.176)

where Z is the total nuclear charge measured units of e. The dimensions of Q0 are
(length)2 and is expressed in units of (meter)2 or Barn. In the quantum mechanical
approach the charge density ρ(r) must be replaced by probability density ψ∗ψ .
Expression (4.175) then can be written as

Q

e
=
∫
ψ∗(3z2 − r2)ψdτ (4.177)

This leads to the result

Q= (2I − 1)Q0

2(I + 1)
(4.178)

where I is the nuclear spin. Now
〈
r2〉= 〈

x2〉+ 〈
y2〉+ 〈

z2〉 (4.179)

If the nucleus is spherical, 〈x2〉 = 〈y2〉 = 〈z2〉 so that 〈z2〉 = (1/3)〈r2〉, and for
spherical charge distribution, Q0 = 0. The quantity 〈r2〉 is the mean square radius.
It the nucleus is non-spherical then 〈z2〉 �= (1/3)〈r2〉. There are two possibilities

〈
z2〉 > 1

3

〈
r2〉 (Prolate ellipsoid) for whichQ0 > 0 (4.180)

〈
z2〉 < 1

3

〈
r2〉 (Oblate ellipsoid) for whichQ0 < 0 (4.181)

Nuclear quadrupole shapes for which 〈Z2〉 �= 1/3〈r2〉 are shown along with the
spherical shape in Fig. 4.26.
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Fig. 4.27 Quadrupole distortion Q/ZR2(≈�R/R) for odd-A nuclei plotted vs. the odd nucleon
number N [14]

For an orbiting neutron Q= 0

If |ψ |2 is spherically symmetric, Q= 0
If |ψ |2 is concentrated in the xy-plane (z= 0), then Q= −〈r2〉
If |ψ |2 is concentrated along z-axis, Q� +2〈r2〉

For I = 0, Q vanishes as no symmetric axis is defined. Also, Q vanishes for I =
1/2. Notice that for large values of I , much greater than �, Q approaches Q0, as it
should in accordance with Bohr’s correspondence principle.

Quadrupole moments for numerous nuclei have been measured using optical
hype-fine structure and atomic beam techniques, their values are found to range



4.15 Electric Quadrupole Moment 251

from −1 × 10−28, to +8 × 10−28 m2, the values being particularly high for the
rare earths Fig. 4.27. The quadrupole moment values are of great importance for the
nuclear models.

Example 4.3 Use the uncertainty relation to estimate the kinetic energy of the nu-
cleons, the nuclear radius is about 8 × 10−13 cm and the mass of a nucleon is about
940 MeV/c2.

Solution

�px ∼ �

�x

but

c�px = cp = �c

�x
= 197 (MeV fm)

8 (fm)
= 24.6 MeV

T � c2p2

2Mc2
= (24.6)2

2 × 940
= 0.32 MeV

Example 4.4 Singly-charged lithium ions, liberated from a heated anode, are ac-
celerated by a difference of 625 volts between anode and cathode. They then pass
through a hole in the cathode into a uniform magnetic field perpendicular to their
direction of motion. The magnetic flux density is 0.1 Wb/m2 and the radii of the
paths of the ions are 8.83 cm and 9.54 cm, respectively. Calculate the mass numbers
of the lithium isotopes.

Solution

p = qBr = √
2MT =√

2MqV

M = qB2r2

2V

M1 = 1.6 × 10−19 × (0.1)2 × (8.83 × 10−2)2

2 × 625 × 1.66 × 10−27
= 6.012 = 6

M2 = 1.6 × 10−19 × (0.1)2 × (9.54 × 10−2)2

2 × 625 × 1.66 × 10−27
= 7.017 = 7

Example 4.5 A narrow beam of singly charged 10B and 11B ions of energy 3.2 keV
passes through a slit of width lmm into a uniform magnetic field of 1200 gauss and
after a deviation of 180° the ions are recorded on an photographic plate. (a) What is
the spatial separation of the images? (b) What is the mass resolution of the system?

Solution

r =
(

2MV

qB2

)1/2
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r11 =
(

2 × 11 × 1.66 × 10−2.7 × 3200

16 × 10−19 × 0.122

)1/2

= 0.2252 m

r10 =
√

10

11
r11 =

√
10

11
× 0.2252 m = 0.2147 m

(a) Spatial separative of images

= (r11 − r10)× 2

= 2(0.2252 − 0.2147) m = 0.021 m

= 2.1 cm

(b) Mass resolution

δ = M

�M

M ∝ r2

�M

M
= 2�r

r

∴ δ = r

2�r
= 22 cm

2.1 cm
= 10.5

Example 4.6 By considering the general conditions for nuclear stability show that
the nucleus 229

90Th will decay and decide whether the decay will take place by α or
β emission.

The atomic mass excesses of the relevant nuclei are

Element 4
2He 225

88Ra 229
89Ac 229

90Th 229
91Pa

Mass excess amu ×10−6 2603 23528 32800 31652 32022

Solution When 229Th decays via α emission the daughter nucleus is 225Ra.
A body of massM1 will decay intoM2 +mα ifM1 >M2 +mα . Now,M −A=Δ,
where Δ is the mass excess. M1 = A+Δ = 229 + 0.031652 = 229.031652 amu.
For α decay,M2 = 225 + 0.02352S = 225.02352S amu

Mα = 4 + 0.002603 = 4.002603

M2 +mα = 229.0249558

Since M1 > M2 + mα , 229
90Th will decay via α emission. If 229Th decays via β−

emission then the daughter nucleus would be 229Pa. The criterion for β− decay is,
M1 >M2. Now,M2 =A+Δ= 229+0.032022 = 229.032022 amu but this value is
greater thanM1 = 229.031625 amu for 224Th. Therefore β− decay is not possible.
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If 229Th decays via β+ emission then the criterion for decay is, M1 > M2 +
2me. Here, M1 = 229.031652 amu, and M2 is 228Ac for which the mass M2 =
229 + 0.032800 = 229.032800 and M2 + 2me = 229.032800 + 2 × 0.000548 =
229.03389, a quantity which is larger than the mass of 229Th atom. Therefore β+
emission is not possible.

Example 4.7 Consider the β+ decays

127
51Sb → 127

52Te + β+ + 1.60 MeV

127
55Cs → 127

54Xe + β+ + 1.06 MeV

Using liquid drop model state which of the isobars 127
53I or 127

54Xe is stable against
β-decay.

Solution The liquid drop model gives the value of Z0 for the most stable isobar
of mass number A (Chap. 6) by

Z0 = A

2 + 0.015A2/3

For A = 127, Z0 = 53.38, the nearest Z is 53. Hence 127
53I is stable. On the other

hand, 127
54Xe will be unstable against β+ decay or e− capture.

Example 4.8 Estimate the ratios of the major to minor axes of 181
73Ta and 123

51Sb.
The quadrupole moments are +6 × 10−24 cm2 for Ta and −1.2 × 10−24 cm2 for Sb.
(Take R = 1.5A1/3 fm.)

Solution

Q= 4

5
ηZR2

where

η = a − b
R

R = 1.5 × (181)1/3 = 8.48 fm for Ta

R = 1.5 × (123)1/3 = 7.458 fm for Sb

Tantalum

η = 5Q

4ZR2
= 5 × 6 × 10−24

4 × 73 × (8.48 × 10−13)2
= 0.143

a

b
� 1 + η= 1.143
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Antimony

η = 5

4
× (−1.2 × 10−24)

51 × (7.458 × 10−13)2
= −0.053

a

b
= 1 − 0.053 = 0.947

Example 4.9 Use the fact that the form factor is the Fourier transform of the charge
density distribution to find an expression for F(q) for scattering from a particle
whose charge density is given by ρ(r)= (A/r) cos(πr/2R) for r ≤ R and 0 other-
wise, where A is a constant. The values of q which produce zeros in the differential
cross-section can be used to find the size of the particle. Find the condition for the
occurrence of minima in the differential cross-section.

Solution

F(q) =
∫ ∞

0
ρ(r)

sin(qr/�)

qr/�
4πr2dr

=
∫ R

0

A

r

cos(πr/2R) sin

qr/�
(qr/�)4πr2dr

= 4πA�

q

1

2

∫ R

0

[
sin

(
qr

�
+ πr

2R

)
+ sin

(
qr

�
− πr

2R

)]
dr

F (q) = 8π2A�3R

q(4q2R2 − π2�2)

(
2qR

π�
− sin

qR

�

)

F(q) = 0 when sin
qR

�
= 2qR

π�

Example 4.10 The charge distribution in proton may be written as ρ(r) =
A exp(−r/a) where A is a constant and ‘a’ is known as the characteristic radius.
Show that the form factor is proportional to (1 + q2a2/�2).

Solution

F(q)∼
∫ ∞

0
re−r/a sin

(
qr

�

)
rdr

Integrate by parts twice. Following definite integrals will be useful to get the desired
result

∫ ∞

0
e−ax cosbxdx = a

a2 + b2
,

∫ ∞

0
e−ax sinbxdx = b

a2 + b2

Example 4.11 Show that 226
88Ra is unstable against α-decay. Use the masses

226
88Ra = 226.025360 amu, 226

86Rn = 222.017531 amu, 4
2He = 4.002603 amu.
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Fig. 4.28 Decay of 28Al13 to
28Si14 via β− emission which
in turn decays to the ground
state via γ -emission

Solution The decay is

226Ra → 222Rn + 4He +Q
The decay is feasible if the mass of 226Ra is larger than the sum of the masses of
222Rn and 4He

222Rn + 4He = 222.017531 + 4.002603

= 226.020134 amu

Thus, the decay is feasible.

Example 4.12 28
13Al decays to 28

14Si via β− emission with Tmax = 2.865 MeV. 28
14Si

is in the excited state which in turn decays to the ground state via γ -emission, see
Fig. 4.28. Find the γ -ray energy. Take the masses 28Al = 27.981908 amu, 28Si =
27.976929 amu.

Solution

Q = (27.981908 − 27.976929)× 931.5 =Emax +Eγ
= 4.638 MeV

Eγ =Q− Tβ = 4.638 − 2.865

= 1.773 MeV

Example 4.13 22
11Na decays to 22

10Ne via β+ with Tmax = 0.542 MeV, followed by
γ decay with energy 1.277 MeV. If the mass of 22Ne is 21.991385 amu, determine
the mass of 22Na in amu.

Solution

22Na = 22Ne + 2mc + Tmax + Tγ
931.5

21.991385 + 2 × (0.000548)+ 0.542 + 1.277

931.5
= 21.994434 amu
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Example 4.14 7
4Be undergoes electron capture and decays to 7

3Li. Investigate if it
can decay by the competitive decay mode of β+ emission. Take the masses 7

4Be =
7.016929 amu, 7

3Li = 7.016004 amu.

Solution For E.C. the difference in atomic masses is 7.016929 − 7.016004 =
0.000925 amu. This difference is short of 2me = 2 × 0.000549 = 0.001098 amu
necessary for β+ decay. Hence minimum energy needed for β+ decay is not avail-
able.

Example 4.15 Find the energy shift of the ground state of the hydrogen atom due to
the finite size of the proton, assuming that the proton is a uniformly charged sphere
of radius 1 fm.

Solution Using Eqs. (4.116) and (4.117) and putting z= 1

�ER = 4

5
· e

2

2a0

(
R

a0

)2

= 4

5
× (13.6)

(
10−13

0.53 × 10−8

)2

= 3.9 × 10−9 eV

Example 4.16 AD5/2 term in the optical spectrum of 39
19K has a hyperfine structure

with four components. Find the spin of the nucleus.

Solution Let J be the electronic angular momentum and I the nuclear spin. The
multiplicity is (2J + 1) or (2I + 1), which ever is smaller.

Now 2J + 1 = 2 × 5
2 + 1 = 6. But only four terms are found, 2I + 1 = 4 →

I = 3/2.

Example 4.17 In Example 4.16 what interval ratios in the hyperfine quadruplet are
expected?

Solution The energy shift in hyperfine structure arises because of the interaction
of the nuclear magnetic moment with the magnetic field produced by the electron.

�E ∼ 2I · J = F(F + 1)− I (I + 1)− J (J + 1)

where F = I + J takes on integral values from 4 to 1

F = 4, �E = 20 − 25

2

F = 3, �E = 12 − 25

2

F = 2, �E = 6 − 25

2
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F = 1, �E = 2 − 25

2

The intervals are 8, 6 and 4, the ratios being 4 : 3 : 2.

Example 4.18 Obtain an expression for the potential at a distance r from the centre
of a sphere of radius R in which charge q is homogeneously distributed.

Solution
Region I (r > R)

V (r)= q

4πε0r

The charge is assumed to be concentrated at the centre.
Region II (r < R)
Let q ′ be the charge within the sphere of radius r . Then q ′ = q( r

R
)3. The electric

field will be

E = q ′

4πε0r2
= qr

4πε0R3

V = −
∫
Edr = −

∫
1

4π

qrdr

ε0R3
+ c

= − qr2

8πε0R3
+ c

At

r =R, V (R)= q

4πε0R

∴ q

4πε0R
= − q

8πε0R
+C or

C = 3

2

q

4πε0R

V = q

8πε0R

(
3 − r2

R2

)

Example 4.19 Given that the proton has a magnetic moment of 2.79 magnetons
and a spin quantum number of one half, what magnetic field strength would be re-
quired to produce proton resonance at a frequency of 50 MHz in a nuclear magnetic
resonance spectrometer?

Solution

ν = μB

Ih
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B = νIh

μ
= 50 × 106 × 1/2 × 6.62 × 10−34

2.79 × 5.05 × 10−27
= 1.167 T

4.16 Questions

4.1 Why are there no mirror nuclei with A� 40?

4.2 Give four characteristics of nuclear forces.

4.3 In what region of A is the B/A value maximum?

4.4 How do you account for the drop of B/A for low A and larger A?

4.5 Distinguish between charge symmetry and charge independence.

4.6 Give two examples of mirror nuclei.

4.7 Give two examples of isobaric triplets to justify charge independence of nuclear
forces.

4.8 List four methods for the determination of nuclear radii. Which method would
you rank as most important?

4.9 One method to determine nuclear radius is to measure Emax for β energy in the
decay of mirror nuclei. What is the merit of choosing mirror nuclei?

4.10 What information is obtained from the sign and magnitude of quadrupole
moment?

4.11 If the quadrupole moment of a nucleus is zero, what do you infer?

4.12 What value of quadrupole moment is expected for nuclide with I = 0? with
I = 1

2 ?

4.13 What is the cause of alternating intensities of rotational lines in the band
spectrum of homonuclear diatomic molecules? When will be the alternating lines
missing?

4.14 The kinetic energy of the two nuclei produced in the fission of 235U is about
200 MeV. Approximately what fraction of the original mass appears as kinetic en-
ergy?
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4.17 Problems

4.1 Calculate the binding energy of the last neutron in 13C, given the atomic masses
based on 12C

1
0n= 1.008665 amu, 13

6C = 13.003354 amu

[Ans. 4.95 MeV]

4.2 The radius of 165Ho is 7.731 fm. Find the radius of 4He.
[Ans. 2.238 fm]

4.3 What is the mass number A of an element whose nuclear radius is 2.71 fm
(r0 = 1.3 fm).
[Ans. 9]

4.4 Calculate the total binding energy of 4
2He and 5

2He. Which one of these nuclei
is more stable? Use the following atomic masses

M
(4

2He
) = 4.003873 amu; M

(4
2He

)= 5.013888 amu

M
(1

1H
) = 1.008145 amu; M

(1
0n
)= 1.008986 amu

[Ans. 28.3, 27.4 MeV, 4He more stable]

4.5 Determine the density of a nucleus. Given that the mass of proton/neutron =
1.67 × 10−27 kg. Radius of the nucleus = 1.3A1/3 fm.
[Ans. 1.8 × 1017 kg m−3]

4.6 Show that when a nucleus of rest mass M absorbs a photon of energy hν, the

excitation energy of the nucleus is given by, Eex =Mc2(

√
1 + 2hν

Mc2 − 1).

4.7 Show that if E(
 mc2) is the laboratory energy of electrons incident on a
nucleus of massM , the nucleus will acquire kinetic energy

EN = E2

Mc2

(1 − cos θ)

[1 + E

Mc2 (1 − cos θ)]

4.8 Using the uncertainty principle and the fact that the maximum energy of a β-
particle is of the order of 1 MeV, show that a free electron is not likely to be found
inside a nucleus, whose dimension δx is of the order of 10−12 cm, by using the
uncertainty principle.

4.9 Singly charged chlorine ions are accelerated, through a fixed potential differ-
ence and then caused to travel in circular paths by means of a uniform field of
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magnetic induction of 1500 gauss. What increase in induction is necessary to cause
the mass 37 ion to follow the path previously taken by the mass 35 ion?
[Ans. 42.26 G]

4.10 Two isotopes of silver 107Ag and 109Ag are to be separated electromagneti-
cally. The singly charged ions are first accelerated through an electrostatic potential
of 10 kV and then deflected in a uniform magnetic field through a semi circular path
of radius 1 m.

(i) What magnetic field intensity is required?
(ii) If the entrance and exit slits have the same size, calculate the maximum slit

width for which the two isotopes will be completely separated.

[Ans. (i) 1.497 kg, (ii) 1.86 cm]

4.11 The scattering amplitude by a spherically symmetric potential V (r) with a
momentum transfer q is given by

A=
∫ ∞

0

sin(qr/�)

qr/�
V (r)4πr2dr

Assuming a Yukawa type potential show that the scattering amplitude is propor-
tional to (q2 +m2c2)−1.

4.12 From the β+ decay of 14O an excited state of 14N is formed. The 14N γ -
rays have an energy of 2.313 MeV and the maximum energy of the positrons is
1.835 MeV. The masses of 14O and electron are 14.008623 amu and 0.000548 amu,
respectively. Calculate the mass of 14N.
[Ans. 14.003074 amu]

4.13 Estimate the ratio of the major and mirror axis of 176
71Lu and 127

53I. The
quadrupole moments are 7 × 10−24 and −2.86 × 10−24 cm2 for Lutecium and Io-
dine. (Take R = 1.5A1/3 fm.)
[Ans. (a/b)Lu = 1.18, (a/b)I = 0.97]

4.14 The empirical mass formula is

A
ZM = 0.99198A− 0.000841Z+ 0.01968A2/3

+ 0.0007668Z2A−1/3 + 0.09966

(
Z − A

2

)2

A−1 − δ

in atomic mass units, where δ = ±0.01204A−1/2 or 0. Investigate the β-decay sta-
bility of the nuclide 27

12Mg.
[Ans. Unstable]

4.15 Verify that the Coulomb repulsive energy in 238Pu is about 70 % of the total
binding energy.
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4.16 Use the uncertainty principle to show that a nucleus which is confined to a
region of the order of�x ∼ 1 fm must have a kinetic energy of the order of 20 MeV.

4.17 By what factor must the mass number be increased in order to double the
nuclear radius?
[Ans. 8]

4.18 In a magnetic resonance experiment using water as sample what would be
the magnetic field in glass if the resonance frequency is 30 megacycles per second
(magnetic moment of the proton = 2.85 nuclear magnetons).
[Ans. 6.9 kg]
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Chapter 5
The Nuclear Two-Body Problem

5.1 Deuteron

Deuteron consists of a proton and a neutron. It is essentially a loose structure as
implied by its low binding energy at around 2 MeV, i.e. 1 MeV per particle, in con-
trast with a value of 8 MeV for the average binding energy per nucleon in medium
and heavy nuclei. The binding energy of deuteron has been determined by various
methods.

5.1.1 Binding Energy of Deuteron

(a) Photo-Disintegration of Deuteron (hν + d → p + n) The threshold energy
for this reaction is equal to W , the binding energy of deuteron. For γ -ray energy
and Eγ greater than W , the surplus energy, Eγ −W appears as the kinetic energy
shared between the product particles. For Eγ not much above the threshold energy,
the deuteron would receive negligible momentum. Consequently, proton and neu-
tron would be projected with equal and opposite momentum, and they would share
nearly equal energy. The binding energy is then given byW = hν− 2Ep , where Ep
is the kinetic energy of proton which can be measured either from ionization mea-
surements or range measurements. Chadwick and Goldhaber [4] using 2.62 MeV
γ -rays from Th C′′ obtained a value of 2.14 MeV for the binding energy, while
Stetter and Jentschke determined it to be 2.19 ± 0.03 MeV.

(b) Threshold Energy of the Photo-Disintegration Reaction The neutron yield
from the photo-disintegration reaction is measured for various γ -ray energies. In
practice, electrons accelerated from a Van de Graff generator, on bombarding a
heavy target produce the γ -rays. The γ -ray energy was calibrated from the known
electron energy. By extrapolating the neutron yield to zero value corresponding to
the threshold of the reaction, a value of W = 2.226 ± 0.003 MeV is obtained.
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(c) Inverse Reaction (n + p → hν + d) When slow neutrons are absorbed in
hydrogen, deuteron is formed and a γ -ray is emitted. This reaction corresponds to
the inverse of photo-disintegration of deuteron and is also called radiative capture.
The energy that is released is equal toW . This is shared between the photon and the
deuteron. The latter carries negligible amount of energy. From the conservation of
momentum and energy, it is easily shown that

W =Eγ + E2
γ

2Mc2
(5.1)

The second term on the right side corresponding to the deuteron energy, is small,
being about 0.0013 MeV. A precise measurement of γ -ray energy for example by a
γ -ray spectrometer, yields the binding energy. From the observations of the radiative
capture of slow neutrons from reactors in hydrogen, Bell et al. [1] obtained a value
of 2.23 ± 0.007 MeV.

(d) Mass Spectrography The most accurate method for the estimation of binding
energy is based on the direct mass determination of deuteron from mass spectro-
graphs. Since the proton mass is accurately known and that of neutron is fairly
well-known from the measurements of end-point energy of β-rays in the decay of
free neutron, the binding energy of deuteron is simply given by

W = (mp +mn −md)c2 = 2.225 ± 0.015 MeV

Collecting the results of various recent measurements, the accepted value of W is
2.2246 ± 0.0002 MeV.

5.1.2 The Ground State of Deuteron

By convention, the intrinsic parity of both proton and neutron is positive. It follows
that the intrinsic parity (πd ) of deuteron must also be positive. Now, the nucleons by
virtue of their motion can have the relative angular momentum values l = 0,1,2.

The parity of deuteron is then given by

πd = πp · πn(−1)l (5.2)

But the intrinsic parities, πd = πp = πn = +1. Consequently, only even angular
momentum states can exist. In particular, the two lowest possible states for deuteron
are the S- and D-states, corresponding to l = 0 and l = 2, respectively. We shall
see that the experimentally measured value of J , the total angular momentum of the
deuteron, is effectively contributed by the spins of neutrons and protons lined up
parallel, i.e. the total spin of the particles s = sn + ss = 1 (triplet state), so that the
ground state of deuteron is predominantly the S-state (l = 0) and the corresponding
wave function is spherically symmetrical.
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The nuclear forces that provide the necessary binding of the nucleons have a
short range character, the characteristic range of interaction being of the order of
�/mπc� 1.4 fm. Corresponding to the force we may introduce a potential V given
by F = −(∂V/∂r). Because the nuclear forces are attractive, the sign of the po-
tential must be negative. We assume that the forces between the two particles are
essentially central forces, i.e. the force is directed along the line joining the two par-
ticles. We start with the time-independent Schrödinger equation in spherical polar
coordinates in the CM system of proton and neutron

∇2ψ(r, θ,φ)+ 2μ

�2

[
E − V (r)]ψ(r, θ,φ)= 0 (5.3)

where r is the distance between neutron and proton, and μ is the reduced mass given
by

μ= MnMp

Mn +Mp � M

2
(5.4)

withM as the proton or neutron mass.
The total energy E is negative and is numerically equal to the binding en-

ergy W . Under the assumption of central forces, the ψ(r, θ,φ) function is spher-
ically symmetric and consequently the angular derivatives in the Laplacian vanish.
The Schrodinger equation (5.3) is then reduced to

1

r2

d

dr

(
r2 d

dr

)
ψ(r)+ M

�2

[
E − V (r)]ψ(r)= 0 (5.5)

With the introduction of the radial wave function u(r) defined by

ψ(r)= u(r)

r
(5.6)

Equation (5.5) is simplified to

d2u

dr2
+ M

�2

[
E − V (r)]u= 0 (5.7)

Because of the short range nature of nuclear forces, the potential is assumed to
vanish for all practical purposes beyond a distance r > R, where R is of the order
of 3 fm. The simplest choice of the potential is the square well potential defined by

V = −V0, r < R

= 0, r > R (5.8)

The parameters V0 andR are called the depth and range of the potential respectively.
Writing E = −W and V = −V0 for the region r < R and V = 0 for the region,
r > R, with both W and V0 positive, the equations become
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Fig. 5.1 Wave functions uI
and uII in the square well
potential

d2u

dr2
+K2u= 0, r < R (5.9)

with K2 = M(V0 −W)
�2

and (5.10)

d2u

dr2
− γ 2U = 0, r > R (5.11)

with γ 2 = MW

�2
(5.12)

Equation (5.9) has the solution

uI =A sinKr +B cosKr, r < R (5.13)

and Eq. (5.11) has the solution:

uII = ue−γ r +De+γ r , r > R (5.14)

where A, B , C, and D are the constants of integration. The boundary condition im-
posed on the solutions is that uI must vanish as r → 0 and that uII must vanish as
r → ∞. The first condition when used in (5.13) yields B = 0; and the second con-
dition when applied to (5.14) gives us D = 0. The physically acceptable solutions
are then

uI = A sin kr, r < R (5.15)

uII = Ce−γ r , r > R (5.16)

The wave functions uI and uII in the square well potential are shown in Fig. 5.1.
Equation (5.16) shows that the wave function outside the range of nuclear forces is
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completely determined by W . The quantity R0 = (1/γ )= (�/√MW)= 4.36 fm is
loosely called the size of deuteron.

Since the wave function must be single valued and continuous throughout, we
require the amplitude and first derivative of the functions uI and uII to be equal at
the boundary r =R, i.e.

(uI )r=R = (uII)r=R(
duI

dr

)
r=R

=
(
duII

dr

)
r=R

Therefore

A sinKR = C exp(−γR) (5.17)

AK cosKR = −γC exp(−γR) (5.18)

On dividing (5.18) by (5.17), we obtain the relation

K cotKR = −γ (5.19)

which does not contain the unknown constants A or C. Figure 5.1 shows the radial
wave function u in regions r < R and r > R. Inserting the values of K and γ from
(5.10) and (5.12) in (5.19) we obtain

cotKR = −γ
K

= −√W/(V0 −W) (5.20)

It is plausible to assume that W � V0, in which case we conclude that cotKR is
negative and small numerically. This means that KR is only slightly larger than
(n+ 1/2)π , with n= 0,1,2, . . . . The correct solution for the ground state is KR �
(π/2). For, if we accept the second solution KR � (3π/2), the corresponding wave
function in the region r < R would produce a node at kr = π , and would not be
consistent with the ground state. Equation (5.19) is essentially a relation between
the depth V0 and the width R of the potential. We can approximate Eq. (5.20) to
obtain a more direct relation between K and R. Multiplying both sides of (5.19)
by R, we get

KR cotKR = −γR (5.21)

we have already seen that KR is slightly larger than (π/2). Put the value

KR = π

2
+ ε (5.22)

where ε is a small quantity

(
π

2
+ ε

)
cot

(
π

2
+ ε

)
= −γR
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But cot(π/2+ε)= −ε. It, therefore, follows that ε � 2γR/π . This value of ε when
used in (5.22) yields the formula which is a good approximation:

K � π

2R
+ 2γ

π
(5.23)

A very simple relation between V0 and R follows if we use the following approxi-
mation:

KR � π

2
or

K2R2 �
(
π

2

)2

or

R2M(V0 −W)
�2

=
(
π

2

)2

(5.24)

Further, using the approximationW � V0, we get

V0R
2 = h2

16M

= 103 MeV fm2 (5.25)

With an arbitrary value of R = 2 fm, we find V0 = 103/(2)2 or 26 MeV. The cal-
culated value of V0 is quite sensitive to the choice of R. In general, the smaller the
width of the well, the deeper is the potential depth and vice versa. For an assumed
value of R, a more precise value of V0 is obtained by the use of Eq. (5.23).

5.1.3 The Probability that the Neutron and Proton Are Found
Outside the Range of Nuclear Forces

The expression 4π |ψ |2r2dr or 4π |u|2dr represents the probability that the neutron
and proton are at a distance r and r+dr apart. We shall first determine the constants
from the normalization condition

∫ ∞

0
|ψ |2dτ =

∫ ∞

0
|ψ |24πr2dr = 4π

∫ ∞

0
|u|2dr = 1 (5.26)

using the relevant wave functions for the region r < R and r > R, we can re-write
the above condition as:

4π
∫ R

0
|uI |2dr + 4π

∫ ∞

R

|uII |2dr = 1
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Inserting the wave functions uI and uII from (5.15) and (5.16) we obtain

A2
∫ R

0
sin2 krdr +C2

∫ ∞

R

e−2γ rdr = 1

4π
(5.27)

A straightforward integration yields the result

A2
(
R − sin 2Kr

2K

)
+ C2

γ
e−2γR = 1

2π
(5.28)

We also have another relation between A and C either from (5.17) or (5.18). There-
fore

A sinKR −Ce−γR = 0 (5.29)

Solving (5.28) and (5.29) for A2 and C2, we get

A2 = γ

2π(1 + γR) (5.30)

C2 = γ sin2KRe2γR

2π(1 + γR) (5.31)

where we have used (5.19) in simplifying the expressions. The probability P of
finding the neutron and proton separated by a distance larger than R is given by

P =
∫ ∞

R

4π |uII |2dr = 4πC2
∫ ∞

R

e−2γ rdr = 2πC2e−2γR

γ

where the value of uII has been used from (5.16). Inserting the value of C2 from
(5.31), we obtain

P = sin2KR

1 + γR (5.32)

Since KR � π/2, we find the approximate value

P � 1

1 + γR (5.33)

From the experimentally measured value of W = 2.225 MeV, we find

γ =
√
MW

�
=

√
Mc2W

�c
=

√
939 × 2.225

197
= 0.232 fm−1

Therefore, with the assumed value of R = 2 fm, we find P = 1/(1 + 0.232 × 2)=
0.68. This means that 70 percent of time the neutrons and protons are found out-
side the range of nuclear forces. This is caused by the quantum mechanical ‘tunnel
effect’, the wave function leaks into the forbidden region. The size of the deuteron,
represented byR = (1/γ )= 4.31 fm is comparable with a nucleus containing 20 nu-
cleons.
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5.1.4 Excited States of Deuteron

For l = 0 there are no bound excited states. This is because if we had accepted
the solution KR � (3π/2) corresponding to the possible first excited state, then we
would have got the result analogous to (5.25)

K2R2 = 9π2

4
or (5.34)

V0 −W1 = 9π2

4

�
2

MR2
(5.35)

where W1 is the binding energy of the first excited state. But the corresponding
relation for the ground state given by (5.26) can be rewritten as:

V0 −W = π2

4

�
2

MR2
(5.36)

Comparing (5.35) with (5.36)

W1 = 9W − 8V0

� 20 − 8V0 (5.37)

where we have used the valueW = 2.225 MeV.
For any reasonable value of V0, the binding energy W1 is certainly negative,

indicating thereby that the first excited state is not a bound state. Higher excited
states would have increasingly large negative values of binding energy.

We can also prove the above result from a different angle. We may set W1 = 0
as a criterion for giving the minimum well depth. Comparison of (5.36) (wherein
W is neglected compared to V0) with (5.35) shows that the required well depth for
the first excited state is about nine times that for the ground state, a result which is
untenable.

We shall now prove that deuteron has no bound states for higher values of l. It
will be assumed that the nuclear forces between neutron and proton for the l �= 0
states are identical with that for the ground state l = 0. The Schrodinger’s equation
for the l �= 0 state is modified as:

d2u

dr2
+ M

�2
(E − V )u− l(l + 1)u

r2
= 0 (5.38)

This is equivalent to the s-wave radial equation (5.7) with the effective potential
given by

Veff (r)= V (r)+ �
2l(l + 1)

Mr2
(5.39)

The second term on the right side represents the potential arising from the cen-
trifugal force which is essentially positive and therefore repulsive. Physically, the
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centrifugal barrier has the effect of making the particles run away from each other.
Since the binding of neutron and proton is provided by the negative potential V (r),
the l �= 0 states would cause a decrease in the binding energy of the lowest bound
state compared to that for the l = 0 state. For l = 1, we obtain the result:

KR sinKR = 0

but KR �= 0 since neither K nor R is zero. It follows that sinKR = 0. The smallest
positive root of this equation is KR = π or K2R2 = π2. Using the value of K2

from (5.10) and setting W = 0, we find the relation

V0R
2 = π2

�
2

M
= h2

4m
(5.40)

Comparison of (5.40) with (5.27) shows that the minimum well depth required for
the l = 1 state is four times the actual value for the ground state. Therefore, we
conclude that the state cannot be a bound state. Similarly, it can be shown that higher
values of l would require larger values of KR and hence still deeper well depths. The
result that the deuteron cannot have bound excited states follows simply from the
fact that the binding energy for the ground state itself is already very small.

It must be conceded that the square well potential chosen in the deuteron prob-
lem is unrealistic, and has been adopted for mathematical simplicity. However, the
results obtained from the assumed potential are atleast qualitatively correct. Calcula-
tions have also been made for other forms of potentials, for example the exponential
function e−r , the error function e−r2

and the Yukawa’s potential (e−r/r). But, the
results are insensitive to the choice of the potential.

5.1.5 Root Mean Square Radius

It might appear that any arbitrary well depth with an appropriate width can be
choosen to satisfy the relation (5.19) or (5.23), or the more approximate version
(5.25). But, other considerations such as the root mean square radius of deuteron
and the results on neutron proton scattering, remove this arbitrariness and allow the
values of V0 and R to be defined within a narrow range. Since the distance of proton
or neutron from the centre of mass is half the distance separating the two particles,
the mean square radius of the deuteron is given by

〈
r2
d

〉= 1

4

〈
r2〉 (5.41)

Thus

〈
r2
d

〉= A2

4

∫ R

0
4πr2 sin2Krdr + C2

4

∫ ∞

R

4πr2e−2γ rdr (5.42)
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Using the values of A2 and C2 from (5.30) and (5.31) and simplifying the trigono-
metric functions through the application of (5.19), we find the following after some
algebra:

〈
r2
d

〉= 1

8γ 2
− 1

8K2
+ R(1 + γR)

8γ
− R3γ

24(1 + γR) (5.43)

So far we have considered proton to be point charge. On the other hand, if the charge
distribution of proton is also taken into account then under the assumption that the
charge is spherically symmetrical, the actual mean square radius of deuteron is then
given by

〈
r2
d

〉= 1

8γ 2
− 1

8K2
+ R(1 + γR)

8γ
− R3γ

24(1 + γR) + 〈
r2
p

〉
(5.44)

The high energy electron scattering experiments have determined the root mean

square radius of proton,
√

〈r2
p〉 = 0.8 fm. Inserting the measured value of

√
〈r2
d 〉 =

2.1 fm (MC Intgre et al.) and the accepted value of γ = 0.232 fm−1 Eq. (5.44)
yields a relation between K and R. Another relation between K and R is provided
from (5.19) or its approximate version (5.23). On solving the equations, we find
R = 2.08 fm, and K = 0.902. This value of K and the experimentally known value
of W = 2.225 MeV when used in (5.10) yield V0 = 35.8.

5.1.6 The Inclusion of Hard Core Potential in the Square Well

The square well potential may be modified to include the ‘hard core’ potential in-
finitely high for r < b, which effectively prevents the particles from approaching
each other within distance b (region I). Evidence on the existence of hard core is
furnished by high energy scattering experiments. The solution to this problem is
illustrated in the following example.

Example 5.1 A ‘hard core’ potential for the interaction between two nucleons is:

V (r) = ∞, 0< r < b

= 73 MeV, b < r < R

= 0, r > R

(a) If b = 0.4 fm is the radius of the hard core and the binding energy of deuteron
W = 2.225 MeV, calculate the value of R. (b) What is the most probable distance
between the proton and neutron in the deuteron ground state? (c) Calculate the root
mean square radius of deuteron.
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Fig. 5.2 Square well
potential with a “hard core”
potential

Solution (a) Figure 5.2 shows the potential as a function of r for the three regions.
We write down Schrodinger equation

d2u

dr2
+ M

�2

[
E − V (r)]u= 0

For region II, this equation takes the form

d2u

dr2
+K2u= 0, with K2 = m

�2
(V0 −W)

The general solution is:

u=A sinKr +B cosKr (5.45)

We now impose the boundary condition, u→ 0 at r = b
0 =A sinKb+B cosKb or

B = −A sinKb

cosKb
(5.46)

Using the value of B from (5.46) in (5.45), the solution simplifies to

uII =A sinK(r − b) (5.47)

where the factor 1
cosKb has been included in the constant A.

For region III, the equation has the form

d2u

dr2
− γ 2u= 0, with γ 2 = MW

�2
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The physically acceptable solution with the boundary condition u→ 0 as r → ∞ is

uIII = Ce−γ r (5.48)

We now match the solutions uII and uIII both in amplitude and the first derivative at
the boundary r = b+R

A sinKR = Ce−γ (b+R) (5.49)

AK cosKR = −γC exp
[−γ (b+R)] (5.50)

Dividing (5.71) by (5.70), we obtain, as before, the relation

K cotKR = −γ or

R = 1

K
arc cot

(−γ
K

)
(5.51)

Now

γ

K
=
√

W

V0 −W =
√

2.225

73 − 2.225
= 0.177 and

K =
√
M(V0 −W)

�2
= 1

�c

√
Mc2(V0 −W)=

√
939(73 − 2.225)

1.9732 × 10−11
= 1.31 fm−1

R = 1

1.31
arc cot(−0.177)= 1.33 fm

where we have chosen the angle in the second quadrant corresponding to the bound
ground state.

(b) Since the probability that the neutron and proton are between r and r + dr
apart is given by 4π |u|2dr , the most probable value of r is the one for which the
wave function is maximum. From Fig. 5.2 it is seen that this condition is deter-
mined by finding the maximum value of uII = sin k(r − b). Obviously, uII will be
maximum when K(r − b)= (π/2) or

rmost probable = T

2K
+ b= π

2 × 1.31
+ 0.4 = 1.24 fm

(c) With the inclusion of hard core potential of radius b in the square well poten-
tial, the mean square radius of deuteron can be calculated similar to the treatment
given in Sect. 5.5

〈
r2
d

〉= A2

4

∫ b+R

0
r2 sin2K(r − b)dr + C2

4

∫ ∞

b+R
r2e−2γ rdr (5.52)
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where the radial functions uII and uIII defined by (5.47) and (5.48) have been used.
The constants A2 and C2 are determined from the normalization condition:

A2
∫ a+b

a

sin2K(r − b)dr +C2
∫ ∞

b+R
e−2γ rdr = 1 (5.53)

together with the relation (5.49) or (5.50). We obtain

A2 = 2γ

1 + γR (5.54)

C2 = 2γ sin2KR

1 + γR exp
[
2γ (b+R)] (5.55)

The integrals in (5.52) can be readily evaluated by partial integrations. The values
of A2 and C2 are substituted from (5.54) and (5.55) and the trigonometric functions
are removed by the use of (5.51). After some algebraic manipulations we finally
obtain the expression

〈
r2
d

〉= 1

8γ 2
− 1

8K2
+ (2 +R)(1 + γR)

8γ
+ b2

4
− γR3

24(1 + γR) + 〈
r2
p

〉
(5.56)

As before, the quantity 〈r2
p〉 has been added to correct for the charge distribution of

proton. In the limit b→ 0 expression (5.56) reduces as it should, to (5.44) which was
derived without the inclusion of ‘hard core’. As before, if we use the experimental
values, we find

√〈
r2
d

〉= 2.1 fm,
√〈
r2
p

〉= 0.8 fm, b= 0.4 fm, γ = 0.232 fm−1

Equation (5.51) provides another relation between R and K . Solution of Eqs. (5.56)
and (5.51), yields R = 1.337 fm and K = 1.31 fm which implies V0 = 73 MeV.

5.1.7 Use of the Exponential Wave Function in the Solution
of a Square Well Potential Problem

If we make the drastic approximation that the outside wave function of the form
(5.16) may be used in the inside region as well then calculations are considerably
simplified. The approximate wave function together with the actual wave functions
are shown in Fig. 5.3. It is seen that most of the area under the curve is contributed
from the region II, r > R. Although, the wave function e−γ r when extended into
region I does not satisfy the boundary condition UI → 0 as r → 0, but a normalized
wave function of the exponential form adopted for the entire region 0 < r <∞,
would atleast give results of a qualitative nature. Its use in crude calculations is
found justified regardless of the details of potential provided the forces decrease
rapidly with distance.
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Fig. 5.3 Exponential wave
function

Example 5.2 Find the root mean square distance of separation of neutron and pro-
ton in deuteron under the assumption that the ground state can be described by the
approximate wave function ψ = (1/r)√γ /2πe−γ r , with ( 1

γ
)= 4.3 fm. Further es-

timate the error by the use of this approximation.

Solution Since the wave function is normalized the mean square distance of sep-
aration of the neutron and proton is given by

〈
r2〉=

∫ ∞

0
4πr2|ψ |2r2dr = 2γ

∫ ∞

0
r2e−2γ rdr = 1

2γ 2

The root mean square distance of separation is given by

√〈
r2
〉= 1√

2γ
= 4.3√

2
= 3.0 fm (5.57)

We can estimate the fractional error introduced through this approximation. The
wave function can be written as:

u= Be−γ r (5.58)

with B =
√
γ

2π
(5.59)

This is to be compared with the more exact constant for the square well poten-
tial (5.31)

C =
√
γ

2π

eγR√
1 + γR sinKR �

√
γ

2π

eγ r√
1 + γR (5.60)

where the approximation, KR � π/2 has been used in the simplification; if
γR� 1, then approximately we have the result:

C

B
= eγR√

1 + γR = (1 + γR+ · · · )
(

1 − γR

2
+ · · ·

)
� 1 + γR

2
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This shows that the constant B used in this approximation is smaller than C used
for the square well potential. The fractional error incurred is,

C −B
B

� γR

2
� 0.232 × 2.0

2
= 0.23 � 23 %

Inspite of a large error on B , the qualitative conclusions deduced earlier by the use
of more exact wave function, remain unaltered. For example, the root mean square
distance of separation given by (5.57) implies a value of about 3 fm (for γ = 0.232),
which is much larger than the range of nuclear forces (R ∼ 2 fm). Furthermore,
when the value of γ given by (5.12) is used in (5.57), we find that

√〈r2〉 ∝ (1/√W).
Thus, a low value of the binding energy implies a loose structure expressed by the
large magnitude of the root mean-square distance of separation.

5.1.8 Magnetic Dipole Moment of Deuteron

Hitherto, the ground state has taken no account of the fact that the total angular mo-
mentum has the value 1. It was supposed that the ground state is an S-state, i.e. the
orbital angular momentum l = 0. The total angular momentum then arises exclu-
sively from the combined intrinsic spins of the nucleons aligned parallel (triplet).
In the spectroscopic notation the ground state is designated as 3S1 state. The po-
tential which has been studied in the preceding sections is the triplet potential. The
magnetic moment of deuteron is contributed partly by the intrinsic moments of the
nucleons and partly by the orbital motion. Then in the S-state for the parallel spins
the magnetic moment of deuteron is expected to be the sum of intrinsic magnet
moments of the nucleons, μp + μn, since in the S-state proton does not contribute
to the magnetic moment from its orbital angular momentum and neutron because
of absence of charge does not contribute to the magnetic moment from any orbital
state for that matter. Now, the measured magnetic moments are, μp = 2.792716 and
μn = −1.913148 nuclear magnetons, so that μp +μn = 0.87961 nm which is to be
compared with the experimentally measured value, μd = 0.85739 nm.

The discrepancy of about 0.022 nm, is completely outside the experimental er-
rors. We, therefore, conclude that the deuteron magnetic moment is not exactly given
by the simple addition of the neutron and proton intrinsic magnetic moments in the
3S1 state.

Because the discrepancy between the expected and measured value of μd is
small, it follows that to a good approximation, the ground state of deuteron is es-
sentially the, 3S1 state with a small admixture of other states. Since the total spin
of the neutron and proton can take on values 0 (singlet) or 1 (triplet), and the total
angular momentum J = 1, then in accordance with the rule of vector addition of
angular momentum, the orbital angular momentum values are limited to l = 0,1
and 2. Apart from the 3S1 state, the other conceivable states are 1P1 and 3P1 and
3D1 states. However, since the P states have odd parity their mixture with even par-
ity states cannot be considered. We, are therefore left with the mixture of 3S1, and
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3D1, states. The wave function can be written as

ψ = aψS + bψD (5.61)

where ψS and ψD are the 3S1 and 3D1 functions respectively. We shall now estimate
the contribution to the magnetic moment from the orbital motion of the proton in the
D state in the presence of non-central forces (with central forces, states of different
values of l cannot be mixed).

The intrinsic magnetic moment operator of proton is given by Mp = μpσp ,
where σp is the Pauli spin operator. Similarly,Mn = μnσn.

Assuming additivity of moments the deuteron moment operator is given by

M = μ0σp +μnσn +Lp (5.62)

Where Lp = (1/2)L, is the angular momentum of the proton relative to the centre
of mass of the system. As already mentioned, neutron does not contribute to the
magnetic moment by virtue of orbital motion. We can consequently rewrite (5.62)
as follows:

M = 1

2
(μn +μp)(σn + σp)+ 1

2
(μn −μp)(σn − σp)+ L

2
(5.63)

where S = (1/2)(σp + σn) is the total spin angular momentum operator. Now, the
anti-symmetric operator σp + σn transforms a singlet spin state (anti-symmetric)
into a triplet (symmetric) spin state, and a triplet into a singlet spin state. Therefore,
both in the triplet and singlet spin states, the eigen value of σp + σn is zero. We can
then write

M = (μn +μp)S + 1

2
L

= (μn +μp)J −
(
μn +μp − 1

2

)
L (5.64)

since the total angular momentum J = L + S. The magnetic moment of deuteron
is given by the expectation value of the operator M in the state for which the total
angular momentum has maximum projection along the z-axis

〈Mz〉 = 〈(M · J)Jz〉
J (J + 1)

(5.65)

since Jz = J = 1 and J 2 = j (j + 1) and L · J = j (j+1)+l(l+1)−s(s+1)
2

〈Mz〉 = (μn +μp)−
(
μn +μp − 1

2

){
j (j + 1)+ l(l + 1)− s(s + 1)

2j (j + 1)

}
(5.66)

We give below the value of the expectation value of the deuteron magnetic moment
in nuclear magnetons for various states calculated from (5.66). Using the spectro-
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scopic notation 2S + 1LJ

3S1; (j = 1, l = 0, s = 1); 〈Mz〉 = μp +μn = 0.879
1P1; (j = 1, l = 1, s = 0); 〈Mz〉 = 0.5

3P1; (j = 1, l = 1, s = 1); 〈Mz〉 = 1

2

(
μp +μn + 1

2

)
= 0.689

3D1; (j = 1, l = 2, s = 1); 〈Mz〉 = 3

4
− 1

2
(μp +μn)= 0.310

Note that each of the last three states if considered as pure states would make the
discrepancy in the expected and observed magnetic moment of deuteron still worse.
On the other hand, if we consider the deuteron moment to arise from the mixture of
S and D states, then

〈Mz〉 = |a|2〈Mz〉s + |b|2〈Mz〉D or

0.85739 = 0.879|a|2 + 0.310|b|2 (5.67)

The quantities |a|2 and |b|2 are the probabilities of finding the system in the S
and D state, respectively. We have another relation provided by the normalization
condition:

|a|2 + |b|2 = 1 (5.68)

Solving (5.67) and (5.68), we find, pD = |b|2 = 0.039, i.e. there is about 4 % proba-
bility for the system to be found in theD state. It must be pointed out that relativistic
corrections have been ignored in the foregoing analysis. Furthermore, it is plausible
that the intrinsic magnetic moments of the nucleons may be altered by the meson
field with which they interact. Considering various, uncertainties, it is reasonable to
conclude that pD lies between 2 percent and 6 percent.

5.1.9 Tensor Force

We have seen that the binding energy and angular momentum are consistent with
the assumption of central forces and that the deuteron is essentially in the 3S1 state.
But an S state implies a spherically symmetric wave function which gives uniform
density distribution and has no angular dependence. Such a state cannot account
for the quadrupole moment of the deuteron. In 1939, the observed fine structure of
radio-frequency magnetic resonance spectrum of deuterium revealed that it could be
explained only by ascribing a non-spherical charge distribution to the deuteron (Rabi
and Nordsieck). The quadrupole moment corresponding to this charge distribution
results in an additional energy E = −(1/4)(∂E/∂z)Q(ψ), to the deuteron in the
inhomogeneous electric field of the molecule. A value of the quadrupole moment
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Q = (2.74 ± 0.02)× 10−27 cm2 was found necessary to explain the experimental
results. The existence of quadrupole moment of deuteron shows that the ground state
of deuteron is not a pure 3S1 state. On the other hand, the fact that the magnitude of
the quadrupole moment is small implies only a small admixture of higher l-states.
This can be seen by comparing the magnitude of the quadrupole moment with the
mean square radius of the deuteron which is of the order of 2×10−25 cm2. ThusQ is
two orders of magnitude smaller than the mean square radius, implying thereby that
the ground state is essentially spherically symmetrical and only slightly distorted by
higher angular momentum states. It does not of course follow that the non-central
part of the force is also very small. For, a very appreciable, non-central part of
the force will, in general, cause a relatively small asymmetry of the wave function
corresponding to the ground state.

While the central force depends only on the distance between the particles and
the spin alignment, the tensor (non-central) force depends on the angles between
the spin directions and the line joining the particles. Under the central forces, the
magnitude of angular momentum L is a constant of motion, since the orbital angular
momentum is conserved if the potential is solely dependent on r . On the other hand,
with non-central forces the total angular momentum is a constant of motion but L
is not. Since parity is a good quantum number, states of the same parity belonging
to different values of l (e.g. 3S1

3D1) but the same value of total angular momentum
J may be combined together. Thus the tensor force can explain the quadrupole
moment.

We now consider the general form of the potential. We shall again assume that
the nuclear forces are derivable from a potential and that they are velocity indepen-
dent. The potential must include apart from the relative position vector r the spin
coordinates σn and σp in order to account for the quadrupole moment. The choice
of the potential has a restricted form because of the requirement that it must be in-
variant under rotations and reflections of the coordinate system. In other words, it
must be a scalar. Thus, the number of conceivable potentials is limited due to the
following conditions.

1. The vector r changes sign under inversion (reflection followed by rotation), and
hence can occur only in even powers.

2. The vectors σ n and σp remain unchanged under reflection since they transform
like angular momentum under reflection r × p → (−r)× (−p).

3. The components of σn and σp are not invariant under rotation but σ n · σp is.
4. Higher powers of σn and σp can always be reduced to the first power by applying

the commutation rules for the Pauli operators.
5. Derivatives of r must not occur since the velocity dependent forces have been

excluded.
6. (σ · r) is invariant under rotation but not under inversion. We must therefore have

even moments of σ · r such as (σ n · r)(σp · r).

The number of scalars satisfying all these conditions are limited to the terms:

V (r); σ n · σp; (σ n · r)(σp · r); (σ n × r) · (σp × r) (5.69)

or their products.
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The last one can be simplified by the vector identity:

(a × b) · (c × d) = (b · d)(a · c)− (b · c)(a · d) or

(σ n × r) · (σp × r) = r2σ n · σp → −(σ n · r)(σp · r)

and can, therefore, be represented in terms of the remaining three.
It can be readily shown that terms with higher powers like (σ ·r)2 can be reduced

to those already assumed. Thus

(σ · r)2 = (σxx + σyy + σzz)2

= σ 2
x x

2 + σ 2
y y

2 + σ 2
z z

2 + (σxσy + σyσx)xy
+ (σyσz + σzσy)yz+ (σzσx + σxσz)zx

But

σ 2
x = σ 2

y = σ 2
z = 1;

(σxσy + σyσx) = (σyσz + σzσy)= (σzσx + σxσz)= 0

∴ (σ · r)2 = x2 + y2 + z2 = r2

The first two terms of the potential (5.69) are invariant not only under combined
rotation of space and spin coordinates but also under separate rotations of these co-
ordinates. Such potentials are called central potentials. However, the third potential
is different in that it couples the space and spin coordinates of the particles belong-
ing to the two-body system, and hence to the orbital and spin angular momenta,
with the result, the orbital angular momentum is no longer a constant of motion,
although the total angular momentum is a constant of motion. Such a potential is
called tensor or non-central potential.

It is convenient to define the non-central potential in such a way that it vanishes
when averaged over all directions. Now

1

4π

∫
(σ n · r)(σp · r)dΩ = 1

4π

∫
[σnxx + σnyy + σnzz][σpxx + σpyy + σpzz]dΩ

= 1

4π
σnxσpx

∫
x2dΩ + 1

4π
σnyσpy

∫
y2dΩ

+ 1

4π
σnzσpz

∫
z2dΩ

The cross products terms xy, yz, zx vanish upon integration. Using the substitu-
tions x = r cosφ sin θ , y = sinφ sin θ , z = r cos θ;dΩ = d(cos θ)dφ, each of the
integrals gives the result (4π/3)r2

1

4π

∫
(σ n · r)(σp · r)dΩ = 1

3
r2σ n · σp
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Hence we define the tensor operator

Snp = 3

r2
(σ n · r)(σp · r)− σ n · σp (5.70)

We may rewrite (5.70) as:

Snp = 3(σ n · er )(σp · er )− σ n · σp (5.71)

where er is a unit vector along the vector r . The non-central potential then has the
form V = VT (r)Snp . The complete potential is given by

V = VR(r)+ Vσ (r)σ1σ2 + VT (r)Snp (5.72)

The subscript T has been used to denote the tensor interaction, which is actually a
scalar product of two second-rank tensors. The first two terms comprise the central
potential VC ; the second term is the spin-dependent part so that it allows for the fact
that the central potential for triplet and singlet states is different as in low energy
neutron-proton scattering. We can then write

V = VC + VT (r)Snp (5.73)

with VC = VR(r)+ Vσ (r)σnσp (5.74)

Now

σnσp = +1 for the triplet state

= −3 for the singlet state

Consequently

VC(trip) = VR(r)+ Vσ (r) (5.75)

VC(sing) = VR(r)− 3Vσ (r) (5.76)

It is seen that the triplet state is lower than the singlet.
The operator S12 has been defined in such a way that its average over all direc-

tions is zero. In the singlet state, the spins have no preferential direction and so we
expect Snp to be zero. That this is so can be easily verified

S = 1

2
(σn + σp)= 0, implies that σn = −σp

∴ S = −3(σpσr)
2 + σpσp = −3 + 3 = 0

5.1.10 Constants of Motion for the Two-Body System

Since central forces are invariant under rotation of space and spin coordinates sepa-
rately, L2, S2, L3, Sz are constants of motion. The non-central forces are invariant
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only under coupled rotation of space and spin so that the total angular momentum
is a constant of motion. That L and S separately are not constants of motion can
be demonstrated from the fact that the potential VT (r)Snp does not remain invariant
under a rotation of space coordinates or spin coordinates separately. Another con-
stant of motion is the parity. The operator Snp has been constructed in such a way
as to remain invariant under space inversion. In the special case of two particles
of spin (1/2) it turns out that S2 is a constant of motion even under non-central
forces. To demonstrate this, examine the behavior of the potential VT (r)Snp under
the exchange of σn and σp . Clearly it remains unchanged. This then means that the
states associated with the system must be either symmetric or anti-symmetric with
respect to the spin exchange. But in our special case of two (1/2) spin particles,
only two states are possible, the symmetric triplet state and the anti symmetric sin-
glet state. Hence, the classification into symmetric and anti-symmetric states under
the exchange of spin coordinates of the two particles is actually a classification into
triplet and singlet states, proving thereby S2 is a constant of motion. Thus I 2, I3, P ,
S2 are constants of motion.

We may classify the states according to whether they are singlet or triplet. States
with even (odd) parity will consist of a linear combination of even (odd) l states. It
is apparent that the non central forces do not affect the singlet states.

We now use the normalized “Spin angle” wave function yI3Il,s belonging to state
of total angular momentum I whose z-component is Iz, and which results from the
combination of orbital angular momentum l and a spin s. Expanding yIzIl,s by the use
of Clebsch-Gordon coefficients:

∫ z

Il,s

=
∑

ml+ms=Iz
Cls(I, Iz;ml,ms)Yl,mlχsms (5.77)

From the tables of Clebsch-Gordon coefficients, for I = Iz = s = 1, and l = 0 and 2,
we find respectively.

Normalized wave function for

3S1 state ⇒ y1
101 = Y0,0χ11 = 1√

4π
χ11 (5.78)

Normalized wave function for

3D1 state ⇒ Y 1
121 =

√
6

10
Y2,2χ1,−1 −

√
3

10
Y2,1χ1,0 +

√
1

10
Y2,0χ1,1 (5.79)

We have arbitrarily assumed Iz = 1, since Iz is a constant of motion and there is no
preferred direction. Table 5.1 shows that the application of the tensor force operator
Snp on the 3S1 wave function can lead only to a linear combination of 3S1 and 3D1

wave functions. Thus

Snpy
1
101 =Ay1

101 +By1
121 (5.80)
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Table 5.1 Application of the
tensor force operator Snp on
the 3S1 wave function

I Singlet (s = 0) Triplet (s = 1)

Even parity Odd parity Even parity Odd parity

0 1S0 – – 3p0

1 – 1p1
3S1, 3D1

3p1

2 1D2 – 3D2
3p2, 3F2

Table 5.2 First few spherical
harmonics Y0,0 = 1√

4π
Y2,2 =

√
15

32π sin2 θe2iφ

Y1,1 = −
√

3
8π sin θeiφ Y2,1 = −

√
15
8π sin θ cos θeiφ

Y1,0 =
√

3
4π cos θ Y2,0 =

√
5

4π (
3
2 cos2 θ − 1

2 )

Y1,−1 =
√

3
8π sin θe−iφ Y2,−1 =

√
15
8π sin θ cos θe−iφ

Y2,−2 =
√

15
32π sin2 θe−2iφ

where A and B are constants. Now, on averaging over all directions in space, we
find using the orthonormal property of spherical harmonics

av S12y
1
101 = 0, av y1

101 �= 0, av y1
121 = 0

It follows that A= 0. One way of evaluating B is to consider a special case in which
r points in the z direction so that θ = 0. First few spherical harmonics are listed in
Table 5.2.

Since r is pointing in the z-direction Snp = 3σnzσpz − σnσp = 3 − 1 = 2, where
we have used the fact that in the triplet state

σnz = σpz so that σnzσpz = σ 2
nz = 1 and σnσp = +1

Direct evaluation of (5.80) with A= 0, yields

2√
4π
χ11 = By1

121(θ = 0)= B
√

1

10

√
5

4π
χ11

or B = √
8

Snpy
1
101 = √

8y1
121 (5.81)

Similar to (5.80) we must have

Snpy
1
121 = By1

101 +Cy1
121 (5.82)

where B is the same B appearing in (5.80) since the tensor operator S12 is Herme-
tian. Using the values, B = √

8, S12 = 2, y1
12(θ = 0)= √

(1/8π), y1
101 = √

(1/4π)
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in (5.82)

2

√
1

8π
χ11 = √

8

√
1

4π
χ11 + c

√
1

8π
χ11

or c= −2

S12y
1
121 = √

8y1
101 − 2y1

121 (5.83)

We shall now write the complete wave functions for the S and D states with space
and spin dependence. Corresponding to the S-state

φS = u(r)

r
y1

101 (5.84)

where u2(r)dr is the probability of finding neutron and proton in the S-state be-
tween r and r + dr apart

pS =
∫ ∞

0
u2(r)dr (5.85)

Similarly

φD = ω(r)

r
y1

121 (5.86)

Corresponding to the D-state, where ω2(r)dr represents the probability of finding
neutron and proton at a distance between r and r + dr apart

pD =
∫ ∞

0
ω2(r)dr

pS + pD =
∫ ∞

0

[
u2(r)+ω2(r)

]
dr = 1

(5.87)

The mixed S and D state, corresponding to the deuteron ground state can then be
written as:

φ = φS + φD (5.88){
�

2

M
∇2 +E − VC(r)− VT (r)Snp

}
φ = 0 (5.89)

Now, the Laplacian has the value

∇2φ = 1

r

d2

dr2
(rφ)− l(l + 1)φ

r2
(5.90)

with l(l + 1)= 0 for the s-state

= 6 for the D-state (5.91)
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Using (5.88), (5.90), (5.91) and (5.84) and (5.86) in (5.89), we find
{
�

2

Mr

d2

dr2
+ E

r
− VC(r)

r

}
u(r)y1

101 − VT (r)Snp
{
u(r)y1

101

r
+ ω(r)y1

121

r

}

+
{
�

2

Mr

(
d2

dr2
− 6

r2

)
+ E

r
− VC

r

}
ω(r)y1

121 = 0 (5.92)

Upon using (5.81) and (5.83) in (5.92), we find
{
�

2

M

d2

dr2
+E − VC(r)

}
u(r)y1

101 − √
8y1

121u(r)− VT (r)
{√

8y1
101 − 2y1

121

}
ω(r)

+
{
�

2

M

(
d2

dr2
− 6

r2

)
+E − VC(r)

}
ω(r)y1

121 = 0 (5.93)

This equation must be valid for all the angles θ and φ, and therefore the coefficients
of y1

101 and y1
121 must vanish separately. The following system of two coupled dif-

ferential equations in u(r) and ω(r) are obtained:

�
2

M

d2u

dr2
− VC(r)u+Eu= √

8VT (r)ω (5.94)

�
2

M

(
d2ω

dr2
− 6ω

r2

)
− [
VC(r)− 2VT (r)

]
ω+Eω= √

8VT (r)u (5.95)

These equations were first derived by Schwinger and Rarita. The total energy E is
negative and is equal to −W , corresponding to the ground state. The above coupled
equations do not lend themselves to exact solutions. Detailed numerical solutions
exist only for the cases where both the potentials VC and VT have the square well
shape or both of them have Yukawa well shape. Calculations are rendered difficult
not only because of the nature of the coupled differential equations, but also owing
to the increased number of parameters. In fact, there are four parameters, the depth
and range for each of the potentials VC(r) and VT (r) which are to be adjusted. In
principle, the four sources of experimental data viz., the binding energy of deuteron,
the quadrupole moment, the magnetic moment, and the effective range of neutron-
proton scattering in the triplet state, enable the four parameters to be fixed up. But in
practice, these parameters cannot be determined uniquely. Indeed, there are a large
sets of well parameters which are in agreement with the known experimental data on
deuteron. Thus, for example, the strength of the tensor force can be increased with
a corresponding decrease in the strength of the central force, without contradicting
the known properties of the deuteron.

5.1.11 Quadrupole Moment

The electric quadrupole moment of deuteron can be explained by invoking for the
tensor forces which depend on the angle θ between the line joining the particles and
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the axis of the total spin. Pure central forces offer no solution as states with different
L cannot mix. By definition

Q =
∫ ∞

0
φ∗
I,Iz
r2(3 cos2 θ − 1

)
φI,Izdτ

= 2

√
4π

5

∫ ∞

0
φ∗
I,Iz
r2Y2,0(θ)φI,Izdτ (5.96)

where r is the distance of the proton from the centre of mass of the deuteron. How-
ever, it is desirable to measure the distance relative to neutron, so that the wave
functions which have been previously derived can be readily used in the calcula-
tions. Thus, replacing r by r/2 in (5.96)

Q=
√
π

5

∫ ∞

0
φ∗
I,Iz
r2Y2,0(θ)φI,Izdτ (5.97)

As the ground state of the deuteron is assumed to be the mixture of 3 3S1 and 3D1
states, the expectation value of Q will be given by,

(θ,Qφ)= (φS,QθS)+ 2(φS,QφD)+ (φD,QφD)
The first term is zero, since the s-state is spherically symmetrical and cannot give
rise to a quadrupole moment. This can also be checked by the direct evaluation of
the integral:

(φS,QφS)=
√
π

5

∫ ∞

0
φ∗
Sr

2Y2,0(φ)τ (5.98)

writing dτ = dΩr2dr and using the value

φS = u(r)

r
y1

101 = u(r)

r

χ11√
4π
,

(φS,QφS)=
√

1

80π

∫ ∞

0
r2u2(r)drχ2

11

∫ ∞

0
Y2,0(θ)dΩ = 0

(5.99)

since
∫∞

0 Y2,0(θ)dΩ vanishes.
The second term can be evaluated as follows:

2(φS,QφD) = 2
∫ ∞

0
r2dr

∫ ∞

0
dΩ

u(r)

r
y1

101Y2,0(θ)
ω(r)

r
Y 1

121r
2

= 2

√
π

5

∫ ∞

0
r2dr

∫ ∞

0

χ11√
4π

u(r)

r
Y2,0(θ)

ω(r)

r
r2

√
1

10
Y2,0(θ)χ11dΩ

where φS and φD are inserted from (5.84) and (5.85), respectively. Terms involving
cross products of spin eigen functions are dropped off since they are orthonormal.
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The only terms which survive are those which involve square of the spin eigen func-
tion χ11. But integration over spin variables yields unity because of normalization.
Further ∫ ∞

0
Y ∗

2,0(θ)Y2,0(θ)dΩ = 1

Therefore

2(φS,QφD)= 1√
50

∫ ∞

0
u(r)ω(r)dr (5.100)

We shall now evaluate the third term:

(φD,QφD) =
√
π

5

∫ ∞

0
r2dr

∫ ∞

0
dΩω2(r)y∗1

121Y2,0(θ)y
1
121

=
√
π

5

∫ ∞

0
r2ω2(r)dr

{
6

10

∫ ∞

0
Y ∗

2,2Y2,0Y2,2dΩ

+ 3

10

∫ ∞

0
Y ∗

2,1Y2,0Y2,1dΩ + 1

10

∫ ∞

0
Y ∗

2,0Y2,0Y2,0dΩ

}
(5.101)

Using the general result:

∫
Y ∗
l3m3
Yl2m2Yl1m1dΩ =

√
(2l1 +1)(2l2 +1)

4π(2l3 + 1)
C(l1, l2, l3 :m1,ms)C(l1, l2, l3 : 0,0)

(5.102)
and the Clebsch-Gordon coefficients:

C(2,2,2,0,0)= −
√

2

7
; C(2,2,2,2,2)=

√
2

7
; C(2,2,2,1,1)= −

√
1

14

(φD,QφD) =
√
π

5

∫ ∞

0
r2ω(r)dΩ

√
5

4π

{
6

10

(
−2

7

)(
2

7

)
+ 3

10

(
−
√

2

7

)(
−
√

1

14

)

+ 1

10

(
−
√

2

7

)(
−
√

2

7

)}

= − 1

20

∫ ∞

0
r2ω2(r)dr (5.103)

Note that a pureD-state (5.103) would give a negative quadrupole moment contrary
to the experiment. Adding (5.100) and (5.103), we find

(φ,Qφ)= 1√
50

∫ ∞

0
r2u(r)ω(r)dr − 1

20

∫ ∞

0
r2ω2(r)dr (5.104)

We have seen that the deuteron ground state is predominantly an S-state. Therefore,
in (5.104) the first term which is linear in w(r) predominates over the second term.
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Further, the contribution to the integral
∫∞

0 r2u(r)ω(r)dr comes mainly from the
region outside the nuclear forces. Now for the outside region, both the potentials Vc
and VT vanish, and consequently, the coupled equations (5.94) and (5.95) become
independent and have the solutions:

u(r) = NS exp(−γ r) (5.105)

ω(r) = ND exp(−γ r)
[

3

γ 2r2
+ 3

γ r
+ 1

]
(5.106)

substituting (5.105) and (5.106) in the first term of (5.104) we obtain

Q � NSND√
50

∫ ∞

0
e2γ r

[
3

γ 2r2
+ 3

γ r
+ 1

]
r2dr

= NSND√
50γ 3

× 5

2

=
√

1

8

NSND

γ 3
(5.107)

we can make a rough estimate ofNS by neglecting theD-state probability compared
to unity, and by using the asymptotic form of u(r), (5.105), throughout the region.
The normalization condition is approximately given by

∫ ∞

0
u2(r)dr =N2

s

∫ ∞

0
e−2γ rdr = N2

S

2γ
= 1 or

NS �√
2γ

(5.108)

on using (5.106) in (5.105), we find,

ND � 2Qγ 5/2 = 2Q

R
5/2
0

(5.109)

with (1/γ ) = R0, the size of deuteron. Thus, the wave function, ω(r) outside the
range of nuclear forces is to the first approximation, is completely determined by
the quadrupole moment.

For small values of r,ω(r) behaves roughly as the D-state function, and goes
like r3 near the origin, whilst u(r) behaves like an S-state function and goes like r .
However, outside the range of forces ω(r) goes roughly like r−2 as indicated by
Eq. (5.106) (Fig. 5.4). Therefore, there will be a sharp maxima in ω(r) just outside
the region r �RT beyond which it goes into the asymptotic form (5.106). It is seen
that most of the contribution to PD , the D-state probability (5.87) comes from the
region near � r = RT . On the other hand, the contribution to PS the S-state proba-
bility, comes mainly for values of r �R0, the range of nuclear forces. In Fig. 5.4 is
plotted the function ω2(r) against r for two different values of RT . The behaviour of
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Fig. 5.4 Plot of function
ω2(r) and r , for two different
values of RT

the curve for r > RT is identical. For a smaller value of RT the maximum becomes
larger. Hence, the D-state probability PD becomes larger for a smaller range RT . In
what follows, we shall assume that RT � R0, where RT is approximately the po-
sition of the maximum and R0 is the size of the deuteron. Neglecting all the terms
save the first one in the parenthesis of (5.106), setting the exponential equal to unity,
and putting R0 = (1/γ )

∫ ∞

RT

ω2(r)dr �
∫ ∞

RT

9N2
D

(
R0

r

)4

dr = 3N2
D

R4
0

R3
T

� 12Q2

R0R
3
T

(5.110)

where we have inserted the value of ND from (5.109). Multiplying the integral∫∞
RT
ω2(r)dr by a factor of 2, we find very approximately the value of PD with

say 20 % uncertainty from

PD =
∫ ∞

0
ω2(r)dr � 2

∫ ∞

RT

ω2(r)dr � 24Q2

R0R
3
T

(5.111)

Inserting the value of PD = 0.04 obtained from the analysis of magnetic moment of
deuteron, R0 = 4.3 fm obtained from the binding energy of the deuteron, and from
the experimental value of the quadrupole moment Q = 0.274 fm2, we find from
(5.111) an approximate value, RT = 2.2 fm, a value which is much smaller than the
size of the deuteron (4.3 fm) but is somewhat larger than the range of central forces.
The fact that the measured quadrupole moment is positive implies that a stretched-
out configuration like, cigar-shaped, is more favored than the prolate configuration
in Fig. 5.5a. Both the figures correspond to the triplet state. In Fig. 5.5a the spins
are aligned, one behind the other while in Fig. 5.5b, they are aligned side by side
perpendicular to r . Now the tensor operator Snp in Fig. 5.5a has the value

Snp = 3(σne)(σpe)− (σnσp)= 3σ 2
nz − 1 = 3 − 1 = +2

since the spins point out in the z-direction, and the value of σnσp = 1 for the triplet
state.

In Fig. 5.5b the spins are perpendicular. Therefore, the term 3(σne)(σpe) van-
ishes, and consequently Snp = −1. We, therefore, conclude that Snp is positive in
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Fig. 5.5 In the deuteron the
tensor force favours the
prolate shape
configuration (a) over the
oblate shape configuration (b)

the stretched out configuration (Fig. 5.5a) and negative in the prolate configuration
(Fig. 5.5b). Therefore an attractive (negative) VT (r) will deform the deuteron wave
function from a spherical shape into a cigar-shape and because the observed quadru-
ple moment is indeed positive, we conclude that VT (r) is attractive (negative).

To a first approximation the function ω(r) outside the range of the forces is deter-
mined completely by the value of the quadruple moment. This then implies that the
D-state probability PD depends strongly on the tensor force range RT and increases
rapidly as RT is shortened.

For r > RT , the curves coincide. Near the origin, r = 0, both the curves are pro-
portional to (r3)2 = r6, but with different constants. Thus there is a very sharp max-
imum of ω2(r) just inside the range of the tensor force, and most of the contribution
to the integral

∫∞
0 ω2(r)dr comes from the neighborhood of this maximum. Fig-

ure 5.4 shows that the maximum becomes rapidly raised as RT is decreased. Thus
the D-state probability PD for a given Q increases sharply with decreasing RT .
Equation (5.111) implies that the tensor force cannot have an arbitrarily small range,
otherwise the ground state would become a predominantlyD-state rather than a pre-
dominantly S-state. This argument was first advanced by Schwinger.

5.2 Nucleon-Nucleon Scattering: Phase Shift Analysis

5.2.1 Introduction

Study of nucleon-nucleon scattering provides valuable information on the nature
of nuclear forces. It is easier to handle the problem of neutron-proton scattering
rather than that of proton-proton scattering. The latter is complicated due to the
superposition of coulomb scattering on nuclear scattering and secondly due to the
application of the Pauli’s principle on the system of two identical particles. We shall
first study the neutron-proton scattering.



292 5 The Nuclear Two-Body Problem

5.2.2 Neutron-Proton Scattering

In the scattering problem we abandon the classical concept of well defined trajec-
tories of particles, since according to the uncertainty principle, particles with well
defined momenta cannot be precisely localized. In quantum mechanical description
of scattering, we consider a beam of particles incident along the positive z-direction
represented by a wave packet which is essentially a plane wave which we take as
of unit amplitude, ψi = eikz, where k = (p/�) is the wave number and is the recip-
rocal of λ̄, the rationalized de Broglie wavelength. Here, the time dependent factor
e−iωt has been omitted for brevity. We consider the scattering in the centre of mass
of neutron and proton so that the two-body problem is essentially reduced to the
scattering of the reduced mass μ by a fixed scattering centre. The scattering caused
by the nuclear forces is represented by any suitable choice of potential V (r) which
guarantees their short range character. The forces are assumed to be central, and
the scattering to possess an azimuthal symmetry. The origin is taken at the scatter-
ing centre and the scattered wave is assumed to be a spherical wave of the form
ψs = (1/r)eikrf (θ,φ) where the factor (1/r) accounts for the fact that the inten-
sity of the scattered particles diminishes inversely with the square of radial distance
from the scattering centre. The factor f (θ,φ) is in general some function of the
scattering angle θ and the azimuthal angle φ and is called the scattering amplitude.
By virtue of the assumption of azimuthal symmetry f will be a function of θ only.
The total wave function ψ which describes the scattering is then the superposition
of the incident wave and the scattered wave (Fig. 5.6), i.e.

ψ =ψi +ψs

= eikz + f (θ)e
ikr

r
(5.112)

Note that because the scattering is assumed to be elastic, the momentum in the
C-system before and after the scattering is unchanged, and consequently the wave
number k appearing in the scattered wave ψs is identical with that for the incident
wave.

We shall now derive a formula for the differential cross section. The probability
of finding the scattered particles in the volume element dτs is equal to |ψs |2dτs or
|(f (θ)/r)|2 ×2πr2 sin θdθdr , the last expression can be rewritten as |f (θ)|2dΩdr ,
where dΩ is the element of solid angle.

The probability current of the scattered particles, which is the probability for the
particles to be scattered in the element of solid angle dΩ per second is given by
|f (θ)|2dΩ(dr/dt) or v|f (θ)|2dΩ where v = (dr/dt) is the velocity of the scat-
tered as well as incident particles in the C-system, since in the elastic scattering the
velocity does not change. The rate at which the particles are scattered per unit solid
angle is then given by v|f (θ)|2. Now, the probability for finding the incident parti-
cles in the volume element dτi is given by |ψi |2dτi or simply dxdydz. The proba-
bility current of incident particles, which is the rate at which the particles cross unit
area perpendicular to the incident direction, per second is given by (dz/dt) or v.
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Fig. 5.6 Superposition of the
incident wave and the
scattered wave

By definition, the differential cross-section is given by

dσ

dΩ
= Number of particles scattered per unit solid angle per second

Number of incident particles crossing unit area per second

= v|f (θ)|2
v

= ∣∣f (θ)∣∣2 (5.113)

5.2.3 Phase-Shift Analysis

We start by writing down the Schrodinger’s equation in the C-system

∇2ψ + 2μ

�2

[
E − V (r)]ψ = 0 (5.114)

where E is the energy of the relative motion and μ is the reduced mass. Equa-
tion (5.114) may be interpreted to represent the collision of a fictitious particle of
mass μ by a scattering centre through a potential V (r). The radial distance r is then
the distance of separation of the particle of mass μ and the origin located at the
centre of the scattering potential.

When the incident particles are well outside the range of nuclear forces, the po-
tential V (r) is zero, and Eq. (5.114) in that case essentially represents the incident
wave and reduces to

∇2ψ + k2ψ = 0 with k =
√

2μE

�
(5.115)
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As before E is the energy of the relative motion and is related to the Lab energy
by E(Lab)= 2E. Since the particles are incident along the positive z-direction, the
Laplacian in (5.115) reduces to (d2ψ/dz2) and the solution as expected, is the plane
wave ψi = eikz. Introducing spherical polar co-ordinates (5.115) becomes

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2
sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ k2ψ = 0

which by virtue of an azimuthal symmetry does not contain the φ term. Let
ψ(r, θ)=R(r)F (θ); the above equation is separated into radial and angular parts

1

r2

d

dr

(
r2 dR

dr

)
+
[
k2 − l(l + 1)

r2

]
R = 0 (5.116)

1

sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+ l(l + 1)F = 0 (5.117)

where l is an integer. The solution of (5.117) are the Legendre functions, i.e.

F(θ)= Pl(cos θ) (5.118)

Further, with the change of variable x = kr (5.116) is easily brought in the form

x2 d
2R

dx2
+ 2x

dR

dx
+ [
x2 − l(l + 1)

]
R = 0 (5.119)

The physically acceptable solution of (5.119) are the spherical Bessel functions
jl(x)

R(x)= jl(x)=
√
π

2x
J
l+ 1

2
(x) (5.120)

where Jl+1/2(x) is the ordinary Bessel functions. The other solution is the spher-
ical Neumann function nl(x) which at small r starts as x−(l+1/2) and is therefore
inadmissible.

The most general solution of (5.115) is then

ψi =
∞∑
l=0

Aljl(kr)Pl(cos θ) (5.121)

which has axial symmetry, i.e. does not involve the azimuthal angle φ and is finite at
the origin. The Al’s are constants which need not be real. Since ψi = eikz, we have
the expansion for the plane wave

eikr cos θ =
∞∑
l=0

Aljl(kr)Pl(cos θ) (5.122)
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where we have put z = r cos θ . We shall now calculate the constants Al’s. Multi-
plying both sides of (5.122) by Pl(cos θ)d(cos θ) and integrating between the limits
−1 and +1

∫ +1

−1
eikr cos θPl(cos θ)d(cos θ)=

∫ +1

−1
Pl(cos θ)d(cos θ)

∞∑
l=0

Aljl(kr)Pl(cos θ)

(5.123)
We now make use of the orthonormal properties of Legendre polynomials ([6], Ap-
pendix C)

∫ +1

−1
Pl(cos θ)Pl′(cos θ)d cos(θ)= 2

2l + 1
δll′ (5.124)

where δll′ is the Kronecker delta. On the right side of (5.123) only one term survives
upon integration

∫ +1

−1
eikr cos θPl(cos θ)d(cos θ)= 2

2l + 1
Aljl(kr) (5.125)

Integrating the left side by parts

1

ikr
eikr cos θPl(cos θ)

∣∣∣∣
+1

−1
− 1

ikr

∫ +1

−1
eikr cos θP ′

l (cos θ)d(cos θ) (5.126)

where P ′
l (cos θ) means differentiation of Pl(cos θ) with respect to cos θ . Since we

are interested in the behaviour of the wave function at large distances r from the
scattering centre, the second term upon integration involves (1/r2) which may be
neglected compared to the first term

1

ikr

[
eikrPl(1)− e−ikrPl(−1)

]= 2

2l + 1
Aljl(kr) (5.127)

But Pl(1)= 1 and Pl(−1)= (−1)l

∴ 1

ikr

[
eikr − (−1)le−ikr

]= 2

2l + 1
Aljl(kr)

Further, we use the identity

e
iπl
2 = il (5.128)

Aljl(kr) = (2l + 1)

2ikr
il
[
ei(kr−

πl
2 ) − e−i(kr− πl

2 )
]

= (2l + 1)il
sin(kr − πl

2 )

kr
(5.129)

∴ ψi =
∞∑
l=0

(2l + 1)il
sin(kr − πl

2 )

kr
Pl(cos θ) (5.130)
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This may be rewritten as

eikz = 1

2ikr

∞∑
l=0

(2l + 1)Pl(cos θ)
[
eikr − (−1)le−ikr

]
(5.131)

This expresses the unscattered wave as a superposition of outgoing and ingoing
spherical waves. Now, the total wave function ψ is the solution of (5.114), which
may be rewritten as

∇2ψ +
[
k2 − 2μV (r)

�2

]
ψ = 0 (5.132)

Upon introducing the spherical polar coordinates, the solution is found to be

ψ =
∞∑
l=0

Blgl(kr)Pl(cos θ) (5.133)

where g(kr) satisfies the differential equation

1

r2

d

dr

(
r2 dg

dr

)
+
{
k2 − 2μV (r)

�2
− l(l + 1)

r2

}
g = 0 (5.134)

and Bl’s are arbitrary constants. Setting, gl(r)= (1/r)u(r), Eq. (5.134) reduces to

d2u

dr2
+
[
k2 − 2μV (r)

�2
− l(l + 1)

r2

]
u= 0 (5.135)

For large values of r , the last two terms in the parenthesis tend to zero, and the
asymptotic solution is expected to be of the form

u∼A sin(kr + δ) (5.136)

where A and δ are constants. That this is so may be tested by setting u= F(r)eikr
and substituting it in (5.135), we obtain

d2F

dr2
+ 2ik

dF

dr
−
[

2μV (r)

�2
+ l(l + 1)

r2

]
F = 0 (5.137)

For large r , F may be assumed to be nearly constant and (d2F/dr2)� k(dF/dr).
Neglecting the first term in (5.137) and integrating, we obtain

2ik lnF =
∫ ∞

0

[
2μV (r)

�2
+ l(l + 1)

r2

]
dr (5.138)

The integral on the right side approaches a constant value if rV (r)→ 0 as r → ∞.
Clearly, this condition can be satisfied if the potential varies faster than (1/r). Thus
for fields which fall off more rapidly than the Coulomb potential, the asymptotic
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solution of u has the form (5.136). Since V (r)→ 0 as r → ∞, Eq. (5.134) reduces
to (5.116) appropriate for free particle. We, therefore, expect the asymptotic solution
of (5.133), to be similar to (5.121) except for a difference in phase and a multiplying
constant. Accordingly, the asymptotic solution forψ which is finite at the origin may
be written in view of (5.130) as

ψr→∞ =
∞∑
l=0

Bl

kr
sin

(
kr − πl

2
+ δl

)
Pl(cos θ) (5.139)

where δl is a constant which is real and depends on k and on the shape of the
potential.

Inserting (5.131) and (5.130) in (5.112), and rearranging the terms, we obtain,

f (θ)eikr = r(ψ −ψi)

= 1

k

[ ∞∑
l=0

Bl sin

(
kr − πl

2
+ δl

)
Pl(cos θ)

−
∞∑
l=0

il(2l + 1) sin

(
kr − πl

2

)
Pl(cos θ)

]
or

f (θ)eikr = 1

2i

∞∑
l=0

Pl(cos θ)
{
Bl
[
ei(kr−

πl
2 +δl) − e−i(kr− πl

2 +δl)]

− il(2l + 1)
[
ei(kr−

πl
2 ) − e−i(kr− πl

2 )
]}

(5.140)

where the sine functions have been expressed as exponentials. Equating the coeffi-
cients of e−ikr in (5.140)

0 = 1

2ik

∞∑
ι=0

Pl(cos θ)
{
il(2l + 1)e

iπl
2 −Blei( πl2 −δl)}

It follows that

Bl = il(2l + 1)eiδl (5.141)

Inserting the value of Bl from (5.141) in (5.140) and equating the coefficients of
eikr , we find

f (θ) = 1

2ik

∞∑
l=0

Pl(cos θ)il(2l + 1)e−
iπl
2
(
e2iδl − 1

)

= 1

2ik

∞∑
l=0

(2l + 1)Pl(cos θ)
(
e2iδl − 1

)
(5.142)
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where we have used (5.128) in simplifying the above expression. We can rewrite
(5.142) as

f (θ)= 1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ)

The scattering amplitude f (θ) is in general a complex function

dσ

dΩ
= ∣∣f (θ)∣∣2 = 1

k2

∣∣∣∣∣
∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ)

∣∣∣∣∣
2

(5.143)

Upon using (5.142), (5.112) and (5.131), we can write an expression for ψ in the
form

ψ = 1

2ikr

∞∑
l=0

(2l + 1)Pl(cos θ)
[
e2iδleikr − (−1)le−ikr

]
(5.144)

Comparison of (5.144) with (5.131) shows that for large r the ingoing spherical
waves are unaffected by the potential. The amplitude of the outgoing wave is also
unaffected. However, a phase factor has been introduced for each wave. The total
cross section σ is given by

σ =
∫ (

dσ

dΩ

)
dΩ = 2π

∫ +1

−1

(
dσ

dΩ

)
d(cos θ)

= 2π

k2

∫ +1

−1

∣∣∣∣∣
∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ)

∣∣∣∣∣
2

d(cos θ)

= 4π

k2

∞∑
l=0

(2l + 1) sin2 δl

= 4πλ̄2
∞∑
l=0

(2l + 1) sin2 δl (5.145)

where by virtue of the orthonormal property of Legendre polynomials ([6], Ap-
pendix C) all the cross products drop off.

The above method is called the method of partial waves and was originally em-
ployed by Rayleigh, for the analysis of scattering of sound waves.

5.2.4 Physical Interpretation of Partial Waves and Phase-Shifts

In view of the similarity of the angular dependent factor Pl(cos θ) occurring in
(5.117) with the one which arises in the bound state central field problem, it is
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reasonable to associate an orbital angular momentum
√
l(l + 1) with a vanish-

ing z-component (because of azimuthal symmetry, the azimuthal quantum number
m= 0) with the lth partial wave in expression (5.121) and (5.131). Using the spec-
troscopic notation, the wave function with l = 0 is called s-wave, that with l = 1 is
called p-wave, that with l = 2 is d-wave, etc.

The angle δl is called the phase shift of the lth partial wave, since it represents the
phase difference between the asymptotic form (5.144) with the potential and (5.131)
without the potential. It can be determined by imposing the boundary conditions on
the solution of differential equations in particular problems of interest. The set of δl
completely determine the scattering.

It is seen from (4.143) and (4.145) that both the differential and total cross-
section would vanish when all the δl’s are zero or 180°. If the potential vanishes,
i.e. no force acts between the particle then all δl’s must identically vanish, and there
will be no scattering. That this is so is readily seen from the integral expression for
the phase shift which relates the phase shift and the potential. This expression is
derived in the next section.

At low incident energies only a few waves contribute to the cross-section. This
can be seen by a semi-classical argument. If p is the momentum and b is the impact
parameter, then the angular momentum is given by

bp = l� or l = bp

h
= b

λ̄
(5.146)

Now, the interaction will take place if b is smaller than the range of nuclear forces,
i.e. if

l <
R

λ̄
(5.147)

Thus, at a given incident energy and hence at a definite wavelength only a limited
number of l’s contribute to the scattering cross-section. The said criterion is equiva-
lent to the statement that a classical particle is not scattered if its angular momentum
is too high to penetrate the potential region r < R. A useful numerical relation be-
tween λ̄ (the rationalized de Broglie wavelength in the C-system) and E, the neutron
kinetic energy in the Lab-system, can be readily obtained

λ̄= 1

k
= �

p∗ = �√
2ME∗ = �√

2ME0
4

= �c√
1
2Mc

2E0

Inserting �c= 197 fm MeV andMc2 = 939 MeV

λ̄ (fm)= 9√
E0
(MeV) (5.148)

Another useful relation is

k2(in 1024 cm2)= 1.206E0 (in MeV) (5.149)
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We can find the energy up to which the s-wave alone is important. It is shown in
example (5.4) that the p-wave begins to show up only beyond 20 MeV neutron en-
ergy. Similarly, the d-wave would contribute for energy greater than about 40 MeV,
and so on. The method of phase shift analysis finds useful application only at low
energies at which the partial waves are limited in number, and consequently only a
few phase- shifts contribute to the cross-section.

5.2.5 Integral Expression for Phase Shift

The same result will now be proved from quantum mechanical considerations. The
radial equation (5.135) is

[
d2

dr2
− l(l + 1)

r2
− 2μV (r)

�2
+ k2

]
ul(r)= 0 (5.150)

and has the asymptotic form

ul(r) →
r→∞ sin

(
kr − πl

2
+ δl

)
(5.151)

We shall now derive a useful expression for the phase shift. The field free equation
corresponding to (5.150) can be written as

[
d2

dr2
− l(l + 1)

r2
+ k2

]
vl(r)= 0 (5.152)

and has the asymptotic form

vl(r)= krjl(kr) →
r→∞ sin

(
kr − πl

2

)
(5.153)

Multiplying (5.150) by vl(r) and (5.152) by ul(r) subtracting and integrating the
resultant expression over r from 0 to ∞

∫ ∞

0

(
vl
d2ul

dr2
− ul d

2vl

dr2

)
dr = 2μ

h2

∫ ∞

0
V (r)ul(r)vl(r)dr (5.154)

Integrating by parts, the left hand side becomes

vl
dur

dr

∣∣∣∣
∞

0
−
∫ ∞

0

dul

dr
dvl − ul dvl

dr

∣∣∣∣
∞

0
+
∫ ∞

0

dvl

dr
dul

the second and the fourth term get cancelled—we are left with
(
vl
dul

dr
− ul dvl

dr

)∣∣∣∣
∞

0
= 2μ

�2

∫ ∞

0
V (r)ulvl(r)dr (5.155)

where we have used (5.154).
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We shall now show that ul(0)= vl(0)= 0.
If R� λ̄ then

r2 <
l(l + 1)

k2
= l(l + 1)λ̄2 (5.156)

For example at 4 MeV, λ̄ = 4.5 fm which is the range of nuclear force. The con-
dition (5.156) is certainly fulfilled if r < lλ̄. Neglecting the last two terms in the
parenthesis of (5.150), the differential equation reduces to

d2ul

dr2
− l(l + 1)

r2
ul = 0; r < lλ̄ (5.157)

which has the solution

ul = Crl+1; r < lλ̄ (5.158)

where C is the constant of integration. Thus for r → 0, ul(0) = 0. Similarly
vl(0) = 0. We are therefore concerned only with the upper limit in (5.155). Using
the asymptotic expressions (5.151) and (5.153) in (5.155)

k sin

(
kr − πl

2

)
cos

(
kr − πl

2
+ δl

)
− k sin

(
kr − πl

2
+ δl

)
cos

(
kr − πl

2

)

= 2μ

�2

∫ ∞

0
V (r)ul(r)vl(r)dr

Simplifying the L.H.S.

−k sin δl = 2μ

�2

∫ ∞

0
V (r)ul(r)vl(r)dr or

sin δl = −2μ

k�2

∫ ∞

0
V (r)ul(r)vl(r)dr (5.159)

Since δl is also contained in the function ul(r) under integral, the above expres-
sion does not yield the phase shift explicitly. However, some useful information is
provided by the above identity.

We shall now show that at low neutron energy (<10 MeV) all δl’s, save δ0, would
be small.

Equation (5.158) shows that ul decreases rapidly with decreasing r where r is
smaller than lλ̄. Since the range of forces R has been assumed to be smaller than
λ̄ the foregoing remarks are clearly valid for r = R. In other words, ul (l �= 0)
will have a very small value in the region where the potential is significant. Similar
conclusion is reached for the field free function vl . In view of the identity (5.159), it
follows that the integral will be negligible ifR < lλ̄, i.e. l > (R/λ̄) and consequently
the corresponding δl will be very small. Thus the interaction corresponding to the
lth partial wave will be effective only if l < R

λ̄
, a result which is identical with the

condition (5.147) derived from classical argument.
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We shall now investigate the sign dependence of the phase shift on the nature of
the potential (i.e. attractive or repulsive). Replacing vl by the asymptotic form, for
a square well of depth V0 (5.159) becomes,

sin δl = −2μV0

�2

∫ ∞

0
rjl(kr)ul(r)dr (5.160)

where V = −V0 for attractive potential and V = +V0 for repulsive potential, V0
being positive.

Now, in the limit of very large energies, such that k2 
 (2μ|V0|/�2) the solution
for (5.150) approaches that for the free particle equation (5.152), i.e. in this limit
ul → vl = krjl(kr) since k� = √

2μE, and E =E0/2. This condition is equivalent
to E0 
 2|V0|. In this case, the corresponding phase shift becomes very small, so
that sin δl → δl and (5.160) reduces to

δl � −2μV0k

�2

∫ R

0
r2j2

l (kr)dr (5.161)

Because the integral is positive, in the high energy limit, the phase shift tends to zero
as a positive or negative quantity depending on whether the potential is attractive or
repulsive, respectively.

If on the other hand when V0 → 0 then δl → 0, and there is no scattering. The
dependence of the phase shift on the potential and energy is quite clear from (5.161).
The approximation (5.161) is valid not only in the limit k→ ∞ for any value of l,
but also in the limit l→ ∞ for any value of k. This result follows from the fact that if
(l(l + 1)/r2)
 (2μ|V |/�2) for all r , krjl(kr) is a sufficiently good approximation
to ul .

Another interesting result which follows from (5.161) is the limiting k depen-
dence of δl for the square well potential. When the potential falls off sufficiently
rapidly as r → ∞ (this is certainly true of the square well potential), we can ap-
proximate jl in (5.161) by the asymptotic formula

jl(x)→ xl

(2l + 1)!! (5.162)

where (2l + 1)!! = (2l + 1)(2l − 1) · · ·5 · 3 · 1

δl(l
kR) ∼ −2μV0

�2

k2l+1

[(2l + 1)!!]2

∫ R

0
r2l+2dr or

δl ∼ −
(

2μV0R
2

�2

)
(kR)2l+1

[(2l + 1)!!]2(2l + 3)
(5.163)

It follows that

δl+1

δl
∼ (kR)2

(2l + 3)(2l + 5)
(5.164)
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Fig. 5.7 Schematic plots of the effect of (a) positive (repulsive) potential and (b) negative (attrac-
tive) potential, on the force-free radial wave function jl(kr), the range of the potential is R is each
case

As mentioned earlier, the phase shifts corresponding to l
 kR fall off rapidly and
can be ignored in the calculation of cross section. So long as kR� 1, i.e. λ̄
 R,
δ1 itself will be much smaller than unity, for V0 of the order of 30 MeV. Higher phase
shifts will be still smaller. In a similar way, we can estimate δl for Yukawa’s potential

V (r) = −V0
R

r
e−r/R

δl ∼ −2μV0R

�2

k2l+1

[(2l + 1)!!]2

∫ ∞

0
r2l+1e−r/Rdr

The integral can be evaluated by successive integration by parts. We finally obtain

δl ∼ −
(

2μV0R
2

�2

)
(2l + 1)!

[(2l + 1)!!]2
(kR)2l+1 (5.165)

If the potential decreases as r−n (n > 2) for large r , the above limiting energy
dependence of δ in general does not apply.

The effect of phase shift on the wave function gl(r) is shown schematically in
Fig. 5.7 for the positive (repulsive) and negative (attractive) potentials, separately,
as compared to the function jl(kr) corresponding to the free particle. In Fig. 5.7a,
gl(r) in the presence of positive potential is pushed out, i.e. has a retarded phase
(negative δl) compared to jl(kr)whilst in Fig. 5.7b, gl(r) in the presence of negative
potential is pulled in, i.e. has an advanced phase (positive δl) compared to jl . The
scattering is completely determined by the phase shift although the amplitudes have
no direct physical significance. Note that both the functions vanish at the origin. The
difference between the neighbouring nodes of jl and gl when the former has gone
through several oscillations, is given by (δl/k).

5.2.6 Angular Distribution of Scattered Neutrons at Low Energies

In the very low energy region, k → 0, so that kR � 1 in which case the s-waves
alone contribute to the scattering. In the formula (5.143) we need to accept only one
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term corresponding to l = 0. In this limit, we find

dσ

dΩ
= 1

k2

∣∣eiδ0 sin δ0P0(cos θ)
∣∣2 = sin2 δ0

k2
(5.166)

since P0(cos θ)= 1 for all θ . Equation (5.166) shows that the differential cross sec-
tion is independent of the scattering angle θ . Therefore, at very low bombarding
energies, the angular distribution is isotropic in the C-system. This has been con-
firmed in various experiments on n–p scattering at very low energies.

As the incident energy is raised, say E0 > 20 MeV, the p-wave can no longer be
neglected. If we do not go to much higher energies, so that d and higher waves may
be ignored, then we can express the differential cross section (5.143) in the presence
of s- and p-waves only

dσ

dΩ
= 1

k2

∣∣eiδ0 sin δ0 + 3eiδ1 sin δ1 cos θ
∣∣2

= 1

k2

(
eiδ0 sin δ0 + 3eiδ1 sin δ1 cos θ

)(
e−iδ0 sin δ0 + 3e−iδ1 sin δ1 cos θ

)

= 1

k2

[
sin2 δ0 + 6 sin δ0 sin δ1 cos(δ0 − δ1) cos θ + 9 sin2 δ1 cos2 θ

]
(5.167)

where we have used the fact that P0(cos θ) = 1 and P1(cos θ) = cos θ . Expres-
sion (5.167) is of the form

dσ

dΩ
=A+B cos θ +C cos2 θ (5.168)

where A, B and C are constants. The first term in (5.167) arises for s-waves alone
and the third one for p-waves alone. On the other hand, the second term which is
the cross product term, results from the interference between the s- and p-wave.
Suppose that δ0 
 δ1 so that the cos2 θ term may be neglected. The cos θ cross-
product term may change the angular distribution in a significant way from spherical
symmetry, which is expected for s-wave alone. The question of interference terms
does not arise in the total cross section and the total cross section contributed by s-
and p-waves only will be given by

σ = 4π

k2

(
sin2 δ0 + 3 sin2 δ1

)
(5.169)

If the condition δ0 
 δ1 is satisfied, then it is seen that the p-waves contribute but
little to the total scattering cross-section. On the other hand the presence of p-waves
affects the differential cross-section in a marked way at a lower energy, than that at
which it becomes significant in the total cross section. For example, if δ0 = 30◦ and
δ1 = 3◦ at a particular incident energy, the p-wave contributes only 3 % to the total

cross-section while it makes the ratio dσ(0◦)
dΩ

/
dσ(180◦)
dΩ

= 3.5. Figure 5.8 shows the
predicted angular distribution for the above choice of phase shifts. In general if L is
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Fig. 5.8 Angular distribution
for δ0 = 30◦ and δ1 = 3◦

the largest value of l for which δl is appreciably different from zero, then the largest
power of cos θ appearing in the differential cross section is (cos θ)2L.

Scattering experiments serve to determine the phase-shifts and they in their turn
afford the determination of the sign and magnitude of the potential V (r). Since
the angular distribution contains interference terms, the relative signs of the phase
shifts can be measured. On the other hand, if we reverse the sign of all the phase
shifts, i.e. make the substitution δl → −δl for all l, then the scattering amplitude
f → −f ∗ which leaves the differential cross-section (5.143) unaltered. Hence, by
the use of angular distribution, the overall sign of the set δl remains indeterminate.
The knowledge of the sign of δl is important since it affords the determination of
the sign of the potential. If V (r) is attractive everywhere then δl > 0 and repulsive,
if δl < 0, a result which is rigorously correct if V (r) never changes sign as r is
varied. The overall sign of δl can be determined only by having recourse to further
interference experiments such as those which are involved in Coulomb scattering in
p–p collisions or coherent scattering of neutrons with molecular hydrogen.

Formula (5.145) imposes restrictions on the value of σl for the lth wave; the
cross-section attains maximum value for δl = (π2 ). Thus

σ lel(max)= 4πλ̄2(2l + 1) (5.170)

This is called unitary limit.

5.2.7 Optical Theorem

The total scattering cross-section can be related to f (0), the scattering amplitude in
the forward direction (θ = 0). Now the imaginary part of the amplitude is given by
(5.142) as

Imf (θ)= − 1

2k

∞∑
l=0

(2l + 1)(cos 2δl − 1)Pl(cos θ) (5.171)
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Since for θ = 0, cos θ = 1 and Pl(1) = 1 for all values of l, the above expression
becomes

Imf (0)= 1

k

∞∑
l=0

(2l + 1) sin2 δl (5.172)

On comparing (5.172) with (5.145), it follows that

σ = 4π

k
Imf (0) (5.173)

This relation between the total elastic cross-section and the forward scattering am-
plitude is due to Bohr, Peierls and Placzek and is called the optical theorem and
derives its name from the fact that a similar result holds good in the scattering of
light by spherically symmetrical obstacles. Actually Eq. (5.173) is valid much more
generally, when f depends on θ as well as φ and when σ includes inelastic scatter-
ing, absorption as well as elastic scattering. A physical interpretation may be given
to Eq. (5.173). There is interference between the contributions of various partial
waves to the differential cross-section but not to the total cross-section. This is to
be expected since the total cross-section is just a measure of the total number of
partials scattered per unit beam flux. However, the fact that the scattered particles
appear at angles θ > 0 means that there is depletion of the beam behind the scatter-
ing region (θ = 0) than in front of it. This can occur only by interference between
the two terms in the asymptotic expression (5.112), i.e. this redistribution is pro-
duced by destructive interference between the incident plane wave and the scattered
wave in the forward direction. This close connection between the forward scattering
amplitude and the total cross section finds an expression in the optical theorem.

5.2.8 Total Cross Section

In the deuteron problem with a square well the inside and outside radial wave func-
tions uI =A sin�r and uII = ce−γ r were matched at the boundary r =R. The con-
dition that these wave functions must join smoothly at the boundary is equivalent to
identify the logarithmic derivatives

(
u′
I

uI

)
r=R

=
(
u′

II

uII

)
r=R

= −γ (5.174)

where dash means differentiation with respect to r

K =
√

2μ(V0 +E)
�

and γ =
√

2μW

�
; E = −W

W being the binding energy of deuteron. In the deuteron problem E = −W , since a
bound state exists, while for n–p scattering at very low energies, E ∼ 0 or slightly
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positive. Since the potential well V0 which is known to be of the order of 30 MeV,
is much greater thanW , we expect that the value (u′

I /uI )r=R will not be drastically
altered, when the energy E is changed from −2.2 MeV (corresponding to the bind-
ing energy of deuteron) to a value zero or even slightly positive. Thus by using the
approximation

(
u′
I

uI

)
r=R

= K cotkR

=
√

2μ(V0 +E)
�

cot
R

�

√
2μ(V0 +E)

= −γ (5.175)

γ is altered between 20 percent and 50 percent depending mainly on the choice
of R, when E is altered from 2.2 MeV to zero. To the extent that this approximation
is correct, we can match the asymptotic form given by (5.139) for r > R with the
inside deuteron wave function. Using (5.139) and accepting only the term with l = 0
and B0 = eiδ0 from (5.141)

ψr→∞ = eiδ0

kr
sin(kr + δ0)

where we have put P0(cos θ)= 1. It follows that

uII = rψr→∞ = eiδ0

k
sin(kr + δ0) (5.176)

It is then sufficient to set the logarithmic derivative of (eiδ0/k) sin(kr+δ0) at r =R,
equal to −γ . Accordingly, we have

k cot(kR + δ0)=K cotKR = −γ (5.177)

As before, in the low energy limit, we set kR → 0. This is justifiable even at few
MeV energy if we choose an arbitrary small value of R, since the main features
of the deuteron problem remain unaltered by reducing the width of the well to an
arbitrarily small value and at the same time by increasing the depth of the potential
to the correspondingly large value such that the quantity V0R

2 remains a constant.
This approximation which consists of ignoring the range R is called zero range
approximation. We then obtain

cot δ0 � −γ
k

or (5.178)

sin2 δ0 = k2

k2 + γ 2
(5.179)
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It follows that

σ = 4π

k2
sin2 δ0 = 4π

k2 + γ 2
= 4π�2

M

1

E +W

= 4π�2c2

Mc2

1

(
E0
2 +W) = 5.2

(
E0
2 +W) b (5.180)

where we have used the numerical values �c= 197.3 MeV fm andMc2 = 940 MeV.

5.2.9 Comparison of Experimental Cross-Sections with the Theory
and Evidence for Spin Dependence of Nuclear Forces

In the early days, because of experimental difficulties in obtaining monoergic beams
of neutrons, precise estimations of cross sections were scanty. Nevertheless, it was
concluded that for neutrons of few MeV, the experimental cross section (5.180)
were in rough agreement with the theoretical estimates. Thus, for example for
E0 = 4.3 MeV, Chadwick obtained a cross section between 0.5 and 0.8 b which
may be compared with a theoretical value of 1.2 b. At 2.1 MeV, the experimental
value was between 1.1 and 1.5 b while the theoretical value was 1.6 b. Because
of the uncertainties in the experimental cross-sections and the approximations in
the theory, it was believed that a rough agreement was established for neutrons of
a few MeV. But at extremely low neutron energies, the formula completely failed
to account for the observed cross section. Thus at E0 ∼ 0, σtheor = 2.6 b, while
σf ree ∼ 50 b for protons bound in molecules. Fermi pointed out that the observed
cross sections for bound protons must be divided by a factor of 2.5 in order to
reduce them to free neutron cross sections. With this correction, σf ree becomes
∼ 20 b. Even then a discrepancy of a factor of 8 remained. It may be remarked
that the ‘zero-energy’ cross sections refer to energies 5<E0 < 100 eV where they
are constant and are so called because this value is extrapolated to zero energy for
any assumed shape and finite range. Theoretical estimates of the cross-section for
any assumed shape and finite range could be improved, but it appeared improb-
able that σtheor would be raised by more than a factor of 2. On the other hand,
the zero range approximations was expected to be more valid for very low neu-
tron energies than those of few MeV. This discrepancy was finally resolved by
Wigner [9] who pointed out that the observed deuteron binding energy referred
to neutron and proton in the triplet state (spins parallel) and provides no infor-
mation regarding the n–p interaction in singlet state (spin antiparallel). Following
this suggestion, it is clear that the interaction in the singlet may be quite different
from that in the triplet state, i.e. the nuclear forces are spin dependent. In analogy
with the triplet state, we introduce the quantity Ws corresponding to the singlet
state. If it is assumed that Ws is small then we can reach agreement with theory
since σ ∝ 1/(E +Ws). Now, if an unpolarized beam of neutrons falls on protons,
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Fig. 5.9 Total n–p scattering
cross section as a function of
the incident neutron energy

the statistical weight for the triplet interaction must be three times as large as that
for the total spin (s) equal to 1 (triplet), 2s + 1 = 2 × 1 + 1 = 3, i.e. there are
three different quantum states corresponding to the spin components +1,0,−1,
in a given direction. On the other hand, for the total spin equal to zero (singlet)
2s + 1 = 2 × 0 + 1 = 1, and only one quantum state exists. We can then write the
total cross section as

σ = 1

4
σs + 3

4
σt (5.181)

Introducing the parameters Wt and Ws in the scattering formula for the triplet and
singlet scattering, respectively and using the statistical weights (5.181), we find

σ = π�2

M

(
3

E +Wt + 1

E + |Ws |
)

(5.182)

whereWt = 2.22 MeV. The value ofWs can be fixed only by comparing σtheor and
σexpt . The best value of |Ws | is found to be 68 keV, which not only gives good agree-
ment with the observed cross-sections at very small neutron energies, but also has
the merit of preserving agreement in the MeV region. This is so because for E
Wt
formula (5.182) approximately reduces to (5.180) which was previously shown to
be in accord with the observations. Thus, the entire n–p scattering, from thermal
energies up to few MeV can be explained by invoking for the spin dependence of
nuclear forces. In Fig. 5.9 is shown the variation of experimental cross section based
on comparatively recent data, for neutron energies ranging from 10 MeV, down to
thermal energies. It may be pointed out that so far we are free to choose the sign
of Ws . A negative value of the binding energy implies a bound state whilst a pos-
itive sign means a virtual state. The energy Ws has no direct significance in that
nothing extraordinary happens to σs when E ∼ Ws . Therefore, Ws may be taken
simply as an adjustable parameter.
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5.2.10 Finite Range Correction

We can improve the accuracy of the formula for the phase shift and hence the cross-
section through a better approximation than that given by the zero range approxi-
mation. We start with relation (5.177)

k cot(kR + δ0)=K cotKR (5.183)

with k =
√
ME

�
; K =

√
M(V0 +E)

�
(5.184)

We further make use of fact that for the ground state of deuteron

K0 cotK0R = −γ (5.185)

with K0 =
√
M(V0 −W)

�
; γ =

√
MW

�
(5.186)

where W = 2.22 MeV is the deuteron binding energy. Now

K2 −K2
0 = M

�2
(V0 +E)− M(V0 −W)

�2

= ME

�2
+ MW

�2
= k2 + γ 2 (5.187)

Therefore

K −K0 = k2 + γ 2

K +K0
� k2 + γ 2

2K0
or K =K0 + k2 + γ 2

2K0
(5.188)

Expanding K cotKR about K0 by Tayler’s series

K cotKR = K0 cotK0R + (K −K0)
(
cotK0R−K0R cosec2K0R

)

= −γ + (k2 + γ 2)

2K0

[
− γ

K0
−K0R

(
1 + γ 2

K2
0

)]
(5.189)

where (5.185) and (5.188) have been used. Neglecting the terms −(γ /K0) and
(−Rγ 2/K0) in comparison with K0R in the parenthesis of (5.189), we obtain

K cotKR � −γ − (
k2 + γ 2)R

2
(5.190)

On inserting (5.190) in (5.183) we have

cot(kR + δ0)= − γ
R

− R

2k

(
k2 + γ 2) (5.191)

Expanding the left side, we obtain

cot δ0 − kR cosec2 δ0 = −γ
k

− R

2k

(
k2 + γ 2) (5.192)
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using the approximate value for cosec2 δ0 from (5.179) in the second term on the
left side, we have

cot δ0 = −γ
k

+ R

k

(
k2 + γ 2)− R

2k

(
k2 + γ 2)

= −γ
k

+ R

2k

(
k2 + γ 2) (5.193)

Finally

σ = 4π

k2
sin2 δ0 = 4π

k2(1 + cot2 δ0)
� 4π

k2 + γ 2 − γR(k2 + γ 2)

= 4π

(k2 + γ 2)(1 − γR) � 4π

k2 + γ 2
(1 + γR)= 4π�2

M(E +W)(1 + γR) (5.194)

where we have neglected higher powers of γR other than the first one. Comparison
of (5.194) and (5.180) shows that the more accurate treatment introduces a correc-
tion factor (1 + γR) compared to that given in the zero range approximation. Now,
we have seen in the deuteron problem that (1/γ ) = 4.31 fm and with the choice
of R = 2 fm, the correction factor amounts to 1.5, for the scattering of neutrons by
protons with parallel spin; on the other hand, for the opposite spins, the correction
factor will be (1 + βR) with β2 = (MWs/�2). For Ws = 70 keV, the correction
factor will amount to only 1.05. For very low neutron energies where singlet scat-
tering dominates over triplet scattering, the correction to the estimated cross-section
is rather small.

5.2.11 Evidence for Neutron Spin (1/2)

Scattering experiments also provide strong evidence in favour of the assignment of
the neutron spin as 1/2 rather than 3/2. For, if it were 3/2, then there would be
two states of the n–p system contributing to the scattering, one quintet state with
a statistical weight 5 corresponding to S = 2 (the neutron spin 3/2 and proton spin
1/2 parallel) and a triplet state with a statistical weight 3 corresponding to S = 1
(neutron and proton spins antiparallel). Consequently, the corresponding formula
for the cross section would be

σ = π�2

2M

(
3

E +Wt + 5

E +Wq
)

(5.195)

If this formula is to be brought in agreement at thermal energies with a suitable
choice ofWq then for E0 = 2E ranging from 400 to 800 keV, it gives results which
are larger than a factor of 1.5 or greater compared to the observed values, the dis-
crepancy being far outside the experimental errors. We, therefore, conclude that the
results on scattering experiments are only consistent with the neutron spin value 1/2.
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Fig. 5.10 Geometrical interpretation of Fermi scattering length

Furthermore, with the assumption of neutron spin greater than 3/2, the angular mo-
mentum must be a state with l �= 0 in order to account for a total spin of 1 for the
deuteron ground state. But it was shown that the choice of l �= 0 is highly improbable
on general grounds.

5.2.12 Scattering Length

In the low energy limit E → 0, k → 0, the scattering cross section given by
σ = (4π/k2) sin2 δ0 should remain finite and must not go to zero. In that case,
we demand that (sin2 δ0/k

2) → (δ0/k)
2 → a2, where ‘a’ having the dimension

of length, in the zero energy limit is called Fermi scattering length. Its sign re-
mains to be determined. A geometrical interpretation of ‘a’ is given in Fig. 5.10.
In the zero energy limit, the asymptotic wave function outside the range of nuclear
forces goes as sin(kr + δ0)→ kr + δ0 which is linear in r and extrapolates to zero
at r = −(δ0/k). The node may be on either side of the origin. The intercept is then
equal to the scattering length. The choice of the sign of ‘a’ is such that a = −(δ0/k).
Thus, a positive phase shift implies a negative scattering length and the low energy
wave function has the form k(r − a). In accordance with this convention, scattering
against an impenetrable sphere of radius ‘a’ will have a scattering length +a.

The magnitude of the Fermi scattering length is determined by the experimental
cross-section at low energy. Its sign can be fixed only with additional experiments
which are capable of measuring the sign of the phase shifts by exploiting the inter-
ference effects. Henceforth, ‘a’ the low energy scattering length will be referred to
as a(0). With a totally repulsive potential, such as the Coulomb’s potential for the
like charged particles, the Fermi scattering length is always positive. On the other
hand, with an attractive potential, a(0)may be either positive or negative, depending
on the details of the shape of the potential.
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We may extend the definition of scattering length to higher energies. We shall
call a(k) the general scattering length for the corresponding wave number k. If we
now define

tan δ0 = −ka(k)
a(k)
k→0

→ a(0) and δ0 → −ka (5.196)

then in the low energy limit, k→ 0, the cross-section can be expressed as

σ = 4π

k2
sin2 δ0 = 4π

k2(1 + cot2 δ0)
= 4π

k2 + 1
a2(k)

(5.197)

The entire s-wave scattering is completely determined by the length a(k) which is
related to the phase shift through (5.197). The cross-section at zero energy becomes

σ0 = 4πa2 (5.198)

which is identical with the zero energy cross-section of an impenetrable sphere of
radius a. The measurement of zero energy cross-section leads directly to the es-
timation of the magnitude of Fermi scattering length but not its sign. The con-
nection between ‘a’ and σ0 can also be seen directly from (5.112) with k = 0. In
that case we have the relation ψ = 1 + (f/r); the radial function then is given by
u(r) = ψr = r + f which may be compared with the form k(r − a) deduced for
the low energy limit. We conclude that f = −a leads to (dσ/dΩ)= a2 which upon
integration yields (5.198).

5.3 Effective Range Theory

We shall now proceed to show that regardless of the shape and depth of the potential,
the inverse of the general scattering length a(k) is a linear function of energy, and
has a slope given by another parameter r0 called the effective range which has the
dimension of length. In the zero energy limit, a(k) of course approaches ‘a’, the
Fermi scattering length. We use the equations

d2u

dr2
+ 2μ

�2

[
E − V (r)]u= 0 (E finite) (5.199)

where u(r) is the wave function for the energy E and

d2u0

dr2
− 2μV (r)u0

�2
= 0 (E zero) (5.200)

where u0 is the inside function for zero energy. We multiply (5.199) by u0(r) and
(5.200) by u(r) and subtract

d

dr

(
uu′

0 − u0u
′)= k2uu0 (5.201)
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Fig. 5.11 (a) Forms of u(r)
and v(r). (b) Schematic plot
of u0(r) and the asymptotic
form v0(r) for zero energy

A similar relation holds for the asymptotic forms v(r) of u(r) and v0(r) of u0(r),
i.e. in the limit r → ∞

d

dr

(
vv′

0 − v0v
′)= k2vv0 (5.202)

We subtract (5.202) from (5.201) and integrate over r from zero to infinity

[
uu′

0 − u0u
′ − vv′

0 + v0v
′]∞

0 = k2
∫ ∞

0
(uu0 − vv0)dr (5.203)

The forms of u(r) and v(r) are shown in Fig. 5.11a. Let us examine these functions
in some detail. Now, the factor sin δ0 in the denominator has been introduced so as
to satisfy the normalization condition

u(r)
r→∞

→ v(r) = sin(kr + δ0)
sin δ0

(5.204)

v(0) = 1 (5.205)
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Here the normalization condition is different from the conventional one, and is used
here for convenience. It is seen that outside the range of nuclear forces R, the func-
tions u(r) and v(r) coincide. Inside the range of forces, the function u(r), in the
presence of potential V (r), bends around and satisfies the condition

u(0)= 0 (5.206)

On the other hand v(r) extrapolates to v(0) = 1 and the inside function has been
plotted as if the potential is absent.

Figure 5.11b is a schematic plot of u0(r) and the asymptotic form v0(r) for zero
energy. As mentioned earlier, v0(r) is a straight line and cuts the r-axis at the Fermi
scattering length a′. The function v0(r) is also normalized in the same way as v(r)

v0(0)= 1 (5.207)

also

u0(0)= 1 (5.208)

That the asymptotic form of u0 → v0 is a straight line follows immediately from
the fact that for E→ 0 and V (r)r→∞ → 0, v0(r) is a solution of (5.200) which is
reduced to (d2v0/dr

2)= 0. This has the solution

v0(r)= C(a − r)= 1 − r

a
(5.209)

which is an equation for a straight line. The constant C has been chosen in such a
way that the normalization condition (5.207) is satisfied.

Now, in the limit of zero energy (5.204) also yields and expression for v0(r)

v(r)
k→0

→ v0(r) = sin(kr + δ0)
sin δ0

= cot δ0 sinkr + coskr

= kr cot δ0 + 1 (5.210)

Comparing (5.210) with (5.209), we obtain

tan δ0 = −ka(k) (5.211)

which is identical with (5.196). Going back to (5.203) we note that in the limit
r → ∞, u→ v; u0 → v0. Hence, the expression in the parenthesis vanishes identi-
cally at the upper limit. At the lower limit, we use the expressions (5.205) to (5.208),
u(0)= v0(0)= 0, v(0)= v0(0)= 1. Further, from (5.210) we note v′(0)= k cot δ0
and v′

0(0)= −(1/a). Expression (5.203) is then simplified to

k cot δ0 = −1

a
+ k2

∫ ∞

0
(vv0 − uu0)dr (5.212)
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This is an exact equation. In order to derive useful information from this equation
we shall proceed to make certain approximations. First we note that the significant
contribution to the integral comes from those regions in which the functions u and
u0 are appreciably different from their respective asymptotic forms, viz, v and v0.
This is precisely the inside region where the nuclear forces are effective. But, in
this region the forces are so strong and the corresponding potential V (r) so great
(V0 ∼ 30 MeV) compared to E, the energy of relative motion in the C-system, is
hardly changed when E is raised from zero to a small value. Consequently, the
wave function u(r) is only slightly changed (compare u(r) and u0(r)). It is then a
sufficiently good approximation to replace u(r) by the zero energy form u0(r) in
the integral. Similarly, v(r) may be replaced by v0(r). Under these approximations
we obtain the formula

k cot δ0 = 1

a(k)
= −1

a
+ 1

2
r0k

2 (5.213)

where the quantity r0 is defined by

r0 = 2
∫ ∞

0

(
v2

0 − u2
0

)
dr (5.214)

In the higher approximation, indeed (5.213) is modified to

1

a(k)
= −1

a
+ 1

2
k2r0 + Pk4r3

0 (5.215)

where P is a small numerical co-efficient which depends on the detailed shape of the
potential and varies between −0.04 and +0.15 for typical potentials; for a square
well the curve bends down, while for a Yukawa potential it tends to curl up.

The quantity r0 has the dimension of length and is a function of V (r) but is
independent of the energy. Outside the range of forces, the integrand is zero and
inside it is of the order of unity. The factor 2 outside the integral tends to make
r0 assume a value somewhere near the edge of the potential well. The parameter
r0 is, therefore, called the “effective range” and the second term occurring on the
right side of (5.213) is called the range correction. The effective range, it must be
emphasized, depends not only on the width of the well but also on its depth. The
observed cross-sections at various energies (k2) allow the scattering length a(k) to
be determined.

Formula (5.213) shows that if the inverse of the scattering length, (1/a(k)) be
plotted as a function of E (since k2 is proportional to energy) then the curve must
be a straight line. The slope of the curve determines the effective range r0 and its
intercept at k2 = 0 yields ‘a’, the Fermi scattering length. For E ranging from zero
to 10 MeV, the curve is actually a straight line. But for higher values of E deviations
begin to occur which are attributed to the shape dependent terms involving higher
powers of k which are included in (5.215) in the higher approximation.

The approximation (5.213) is called “shape-independent” since it involves only
two independent parameters, the scattering length ‘a’, and the range r0. For any
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assumed shape of potential these two experimental parameters can be obtained with
a proper choice of range and depth of the well. So long as k is small, observed cross
sections determine only the depth and the range of potential and not its detailed
shape, since the approximation (5.213) is shape independent.

The s-wave scattering is completely described in terms of two parameters ‘a’
and r0

σ = 4π

k2 + 1
a2(k)

= 4π

k2 + [ 1
2 r0k

2 − 1
a
]2

(5.216)

5.3.1 Triplet Scattering

In our previous treatment of triplet scattering there appeared only a single free pa-
rameter, whereas here, there are two. This is because previously, the relationship
between range and depth provided by the binding energy was used. Here, again it is
possible to eliminate one of the parameters for establishing a relationship between
at and r0t , the triplet scattering length and the triplet effective range, respectively.
This is achieved by extending (5.213) to negative energies (imaginary k), i.e. to the
ground state, withE = −W , by simply replacing the square of outside wave number
k2 by −γ 2, where γ =√

MW/�2 = 1
R

, R being the size of deuteron. The asymp-
totic wave function (normalized) for the ground state has the form v(r) = e−γ r .
Hence v′(0)= −γ rather than k cot δ0. The shape independent approximation then
becomes

γ = 1

at (0)
+ 1

2
r0t γ

2 or (5.217)

r0t = 2

γ

(
1 − 1

γ at(0)

)
(5.218)

Eliminating the scattering length between (5.215) and (5.216), the triplet cross sec-
tion is given as

σt = 4π

(k2 + γ 2)[1 − γ r0t + r2
0t
4 (k

2 + γ 2)]
(5.219)

This formula involves only one adjustable parameter r0t , the effective range since
R = (1/γ ) is completely determined by the binding energy of the deuteron. It is
interesting to note that in the low energy limit, to the first approximation, (5.219)
reduces to

σt � 4π

(k2 + γ 2)(1 − γ r0t ) = 4π(1 + γ r0t )
(k2 + γ 2)

(5.220)

On identifying r0t with R, the width of the well, this formula becomes identical with
(5.194) which was derived by Bethe without using the shape independent approxi-
mation.
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We shall now investigate into the variation of σt with the neutron energy. For this
purpose we need to know the values of at (0) and r0t .

We can make a rough calculation for at (0). For E = 0, (5.194) gives the triplet
cross section, using square well potential

σt (0)= 4π�2

MW
(1 + γR)= 4π

(
1

γ 2
+ R

γ

)
(5.221)

But

σt (0) = 4πa2
t (0) (5.222)

a2
t (0) =

1

γ 2
+ R

γ
(5.223)

With (1/γ )= 4.31 fm, and R = 2 fm

at (0)= +5.21 fm (5.224)

The positive sign has been chosen since it is a bound state. For the purpose of calcu-
lations, however we shall use the generally accepted value of +5.38 fm which cor-
responds to a cross-section σt (0)= 3.63 b. Inserting this value for at (0) in (5.218)
or (5.219), we find the effective range

r0t = 1.7 fm (5.225)

Inserting these values of at (0) and r0t in (5.105), expressing k2 in terms of energyE,
we obtained

σt (in barns)= 4π

0.04E2 + 1.66E + 3.46
(5.226)

At E = 0, this formula predicts σt (0) = 3.63 b, as it should, since this is a direct
consequence of our estimate of at (0). At E = 2 MeV, it gives a value of 1.8 b,
while at E = 5 MeV, it yields a value of about 1 b. We, therefore, conclude that the
triplet cross section is a slow decreasing function of energy, in the range that we are
concerned.

5.3.2 Singlet Scattering

Since deuteron does not have bound singlet state, a formula analogous to (5.218) for
this state cannot be derived. We can, however, obtain an expression for the effective
range r0s for the singlet scattering from our knowledge of the wave functions u(r)
and v(r) which have the form

v = 1 − r

as
(5.227)



5.3 Effective Range Theory 319

Let

u=As sinKsr; r < R0 (5.228)

where

Ks =
√
M(Vs +E)

�

the continuity condition yields the relations

As sinKsRs = 1 − Rs

as
(5.229)

AsKs cosKsRs = − 1

as
(5.230)

Dividing (5.230) by (5.229) gives

Ks cotKsRs = 1

Rs − as (5.231)

Then using the functions u and v in (5.214)

r0s = 2
∫ Rs

0

[(
1 − r

as

)2

−A2
s sin2Ksr

]
dr (5.232)

A direct calculation of the integral which uses expressions (5.229) and (5.230),
yields

r0s =Rs − 1

3

R3
s

a2
s

− 1

asK2
s

(5.233)

It is interesting to note that for as → ±∞, i.e. for the singlet binding energy exactly
zero, r0s → Rs . Thus, in the case of square well potential which has such a depth
that the binding energy just vanishes, the effective range is identical with the actual
range.

We can estimate as from our knowledge of neutron-proton scattering cross-
section σ0 at very low energies. Accepting the value σ0 = 20.36 ± 0.10 b, and using
the relation (5.181), we can write

σ0 = 20.36 × 10−24 = 1

4
σs + 3

4
σt = π

(
a2
s + 3a2

t

)
(5.234)

Further, using the known value of the triplet scattering length at zero energy, viz
at (0)= +5.38 fm, we find

as = −23.6 fm (5.235)

the corresponding cross-section being σs = 4πa2
s = 70 b. The negative sign on as

has been chosen for reasons that will become apparent later. Because of the large
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magnitude of |as |, the last two terms in (5.233) are small, and it is a sufficiently
good approximations to write

r0s =Rs (5.236)

in analogy with (5.216), we have the formula for the cross section in the singlet state

σs = 4π

k2 + ( 1
2 r0sk

2 − 1
as
)2

(5.237)

Inserting the values of as and r0s from (5.235) and (5.236) and expressing k2 in
terms of energy

σs (b)= 4π

0.014R2
s E

2 +E(2.4 +Rs)+ 0.18
(5.238)

where E is in MeV and Rs is in fermis. It will be found that with the choice of
Rs = 2.5 fm, the experimental cross sections are brought in fair agreement with the
theory, throughout the low energy region. The formula then becomes

σ (b)= 4π

0.088E2 + 4.9E + 0.18
(5.239)

At E = 0, the formula predicts the large expected value σs = 70 b, at E = 2 MeV,
it drops to 1.2 b, while at E = 5 MeV, it gives 0.5 b. We conclude that the cross-
section in the singlet state is a rapidly decreasing function of energy, which is in
contrast with the slow varying behaviour of the triplet cross-section. The total cross
section, which is the mixture of σt and σs with the appropriate statistical weights,
can then be written as

σ = 3π

k2 + ( 1
at (0)

− 1
2k

2r0t )2
+ π

k2 + ( 1
as(0)

− 1
2k

2r0s)2
(5.240)

A numerical formula based on (5.226) and (5.239) is

σ = 3π

0.04E2 + 1.66E + 3.46
+ π

0.088E2 + 4.9E + 0.18
(5.241)

In both the terms, the co-efficient of the quadratic term E2 is small. The difference
in the remaining terms in the denominators of the partial cross-sections of triplet
scattering and singlet scattering arises from the difference in signs and magnitudes
of the amplitudes at (0) and as(0). This becomes more transparent on examining the
two equivalent terms in (5.240).

Figure 5.12 shows the variation of the total cross section with energy as given
by (5.241). The partial contributions, (3/4)σt and (1/4)σs corresponding to the first
and second terms respectively in (5.241) are also shown separately. It is seen that for
very small energies, the singlet scattering dominates. With the increase of energy,
both the contributions diminish, the contribution for the singlet state falling much
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Fig. 5.12 Variation of the
total cross-section with
energy

Fig. 5.13 (a) Wave function
for triplet n–p scattering at
En ∼ 200 keV and a well
radius of ∼1 fm. The
scattering length is positive.
(b) Wave function for singlet
n–p scattering with negative
scattering length

more rapidly than that for the triplet state. At around 1 MeV, the contributions be-
come about equal; and at higher energies the triple scattering becomes much more
important.

5.3.3 Nature of the Singlet and Triplet States

Figure 5.13 shows the nature of wave functions for (a) a bound state (b) an unbound
system. The sign of the scattering length is closely connected with the existence
or non-existence of a bound system. Now, the relation (5.217) has a solution with
real γ , only if ‘a’ is positive, corresponding to bound state. Conversely, if ‘a’ is neg-
ative then γ and R will also be negative, i.e. the system cannot have a bound state.
When the system is unbound the inside wave function does not have enough curva-
ture to bend around and consequently the linear extrapolation of the outside function
intersects the r-axis at a negative value. Experiments, which we shall consider later,
prove that the sign of at is positive and that of as as negative.



322 5 The Nuclear Two-Body Problem

5.3.4 Cross-Sections for Protons Bound in Molecules

(a) Chemical Bond Effect Fermi has shown that, the n–p cross-section depends
on whether the target proton is free or bound, when E0 is much less than chemical
binding energies. Under the Born approximation, the differential cross-section is

dσ

dΩ
= μ2

4π2�2

∣∣∣∣
∫
ψ∗
f Vψidτ

∣∣∣∣
2

(5.242)

where μ is the reduced mass, ψi and ψf are the wave functions of the incident and
scattered neutrons, V is the interaction potential. Now, the reduced mass depends on
whether the target proton is bound or free, while the integral does not depend on this
fact. For a free proton, the reduced mass is μ = (M/2). In the other extreme case
when the proton is bound to a very heavy molecule, such as paraffin, μ�M . In that
case we should then expect σ(bound)= 4σ(free). This result has been confirmed in
the experiments of Rainwater et al. Born approximation, it must be pointed out, is
not strictly valid for the very low energy neutrons (few eV), since the perturbation
potential is of the order of 10 MeV or greater and should therefore grossly distort
the wave—a feature which runs counter to the basic assumption implied in the Born
approximation. However, the application of Born approximation to the present prob-
lem has been shown to be justified by using artificial potentials of much shallower
depths and correspondingly larger widths. In general, for scattering against target
mass number A

σ(bound)=
(
A+ 1

A

)2

σ(free) (5.243)

Following Fermi, the proton is essentially bound to the molecule if E0 � hν where
ν is the frequency of the proton in the sub-group of the molecule. In the case of
CH bound in paraffin �ν ∼ 0.4 eV. For E0 < �ν, no energy will be imparted in the
way of the vibration of the molecule. When E0 coincides with �ν, the probability
of losing one quantum of energy to the vibration becomes very high, leading to an
abrupt rise in the cross-section. Similar discontinuities in the cross-section occur at
E0 = 2hν etc. (Fig. 5.14). At higher energies (E0 
 �ν), the proton can be easily
knocked off from the molecule and therefore acts as if it were a free particle, and
consequently the cross-section approaches σ(free).

It was mentioned that for E0 < 0.4 eV, energy transfer to the CH bond is not
possible. However, energy transfer can be effected to the vibration of the whole
CH2 group which have much smaller quantum energies.

(b) Effect of Target Motion For neutrons which have energies comparable with
the thermal energies (<0.1 eV) we can no longer ignore the thermal motion of
the target nucleus. The scattering depends on the relative velocity of the neutron
and the target nucleus, and because the relative velocity is directly related to the
thermal motion of the molecules, the scattering cross-sections are increased. This
is called the temperature effect, which is essentially similar to the Doppler effect
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Fig. 5.14 Discontinuities in
the cross-section at different
energy values

which affects the Breit-Wigner peaks in the absorption and scattering of neutrons in
nuclei, Fig. 5.14. The variation of cross-section with E0, as measured in water in the
very low energy region (0.003 < E0 < 100 eV) shows that at E0 = 0.004 eV, the
observed cross-section (82 b) is about 4σ(free), which is consistent with the value
expected from the chemical binding effect. But at lower energies the cross-section
is still increasing. This increase is partly due to the temperature effect and partly due
to the absorption of neutrons by protons (n+p→ d+γ ), a process which becomes
important at exceedingly low neutron energies.

5.4 Proton-Proton Scattering; Low Energy

Compared to neutron-proton scattering the proton-proton scattering is complicated
by the fact that the indistinguishability of the particles introduces new quantum me-
chanical effects. Secondly, the Coulomb interaction is superimposed on the nuclear
scattering resulting in interference effects.

The application of Pauli’s principle to the two-proton system is that it can exist
only in states of 1 1S, 3P , 1D etc. This can be proved by considering the spherical-
harmonic part of the eigen function. On exchanging the protons, which is identical
with changing θ to π − θ , the spherical harmonic is multiplied by (−1)l , where l
is the orbital angular momentum. Now the spin wave function is even for the triplet
(S = 1) state and odd for the singlet (S = 0) state. The overall wave function will be
odd for S = 0 and l = even or for S = 1 and l = odd, as required by Pauli’s principle
p–p scattering in the CM system. The two diagrams are identical for indistinguish-
able particles.

Differential scattering cross-section is given by

dσ

dΩ
= ∣∣f (θ)∣∣2 (5.244)
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Fig. 5.15 Exchange of the two proton co-ordinates

For distinguishable particles of the same mass, the probability that either will be
scattered through an angle θ in the CMS is

∣∣f (θ)∣∣2 + ∣∣f (π − θ)∣∣2 (5.245)

However if the particles are identical, their waves interfere and instead of summing
the squares of the amplitudes, we must first sum the amplitudes and then square
them. Further, for fermions the eigen function must be antisymmetric with respect
to exchange of particles. The portion of the eigen functions containing only spatial
coordinates without spins will then be

f (θ)± f (π − θ) (5.246)

Exchange of the two proton coordinates means exchanging θ with π − θ , as in
Fig. 5.15. If plus sign is used in (5.246) the expression is symmetric with respect to
the exchange of coordinates and if the minus sign is used the expression is antisym-
metric to the exchange. First we shall consider pure Coulomb scattering of identical
particles. The amplitude for Coulomb scattering is given by

fc(θ)= − 1

2ik

∞∑
ι=0

(2l + 1)
(
e2iσl − 1

)
Pl(cos θ) (5.247)

It can be shown that this is equivalent to

fc(θ)= − η

2k sin2 θ
2

e−iη ln sin 2(θ/2)+2iσ0 (5.248)

with η= e2

�v
; v is the relative velocity of protons.

The part of the eigen functions containing only spatial coordinates without spin,
will be

f (θ)± f (π − θ) (5.249)

It was pointed out that triplet spin state is symmetric while singlet spin state is
antisymmetric. For protons the total eigen function must be antisymmetric hence
the triplet states will be associated with

f (θ)− f (π − θ) (5.250)
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and the in singlet states will be associated with

f (θ)+ f (π − θ) (5.251)

The scattering cross-section in triplet states is thus

dσt

dΩ
= ∣∣f (θ)− f (π − θ)∣∣2 = ∣∣f (θ)∣∣2 + ∣∣f (π − θ)∣∣2 − 2Re

[
f (θ)f ∗(π − θ)]

(5.252)
and in singlet states it is

dσs

dΩ
= ∣∣f (θ)+ f (π − θ)∣∣2 = ∣∣f (θ)∣∣2 + ∣∣f (π − θ)∣∣2 + 2Re

[
f (θ)f ∗(π − θ)]

(5.253)
At very low energy the Coulomb scattering alone will be important as protons due
to repulsion will not be allowed to come close enough to undergo nuclear scattering.
The amplitude for Coulomb scattering given by (5.247) can be rewritten as

fc(θ)= e2

Mv2 sin2( θ2 )
exp

(
−iη ln sin2 θ

2

)
(5.254)

For unpolarized proton beams, the triplet and singlet scattering cross-sections are
added with statistical weights 3/4 and 1/4 respectively to obtain

(
dσ

dΩ

)
c

= 3

4

(
dσ

dΩ

)
t

+ 1

4

(
dσ

dΩ

)
s

(5.255a)

Using (5.252) and (5.253) in (5.255a) we get
(
dσ

dΩ

)
c

= 1

4

∣∣f (θ)+ f (π − θ)∣∣2 + 3

4

∣∣f (θ)− f (π − θ)∣∣2 or (5.255b)

(
dσ

dΩ

)
c

= ∣∣f (θ)∣∣2 + ∣∣f (π − θ)∣∣2 −Ref ∗(θ)f (π − θ) (5.256)

Using (5.254)

(
dσ

dΩ

)
c

=
(

1

4πε0

)2(
e2

Mv2

)2[ 1

sin4( θ2 )
+ 1

cos4( θ2 )
− cos[η ln tan2( θ2 )]

cos2( θ2 ) sin2( θ2 )

]

(Mott scattering) (5.257)

The first two terms on the right represent the classical Rutherford scattering, the
second term takes care of the target protons which recoil at angle π − θ in the CMS.
The detector cannot distinguish between the two possibilities. Thus the first two
terms are classical terms. The third term is a quantum mechanical interference term.
The three terms constitute the Mott scattering. A term similar to the third term, but
of opposite sign occurs for identical bosons such as alpha scattering with helium.
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Fig. 5.16 Interference effect
for carbon-carbon elastic
scattering at 5 MeV

Note that the numerator of the third term is nearly 1 for protons of energy larger
than 1 MeV and for angles not too close to 0° or to 90°. An example of interference
effect is shown in Fig. 5.16 for carbon-carbon elastic scattering at 5 MeV from the
work of [3].

So far we have neglected the presence of nuclear forces. At low energy, the nu-
clear phase shifts δl are all zero except δ0, and due to the Pauli principle, the two
protons must be in a singlet state. However, the Coulomb phase shifts contribute to
the scattering amplitude also for l �= 0 and the scattering amplitude becomes

f (θ)= fc(θ)+ fn(θ)= 1

2ik

∑
l

(2l + 1)
(
e2iσl − 1

)
Pl(cos θ)+ 1

k
e2iσ0e2iδ0 sin δ0

(5.258)
For even l, only singlet states contribute to fc(θ), for odd 1 only triplet states. We
finally get

dσ

dΩ
=
(

1

4πε0

)2(
e2

Mv2

)2{ 1

sin4 θ
2

+ 1

cos4 θ
2

− cos[η ln tan2( θ2 )]
sin2( θ2 ) cos2( θ2 )

}

← Rutherford scattering →← Quantum mechanical interference

−2

η
sin δ0

[
cos(δ0 + η ln sin2 θ

2 )

sin2 θ
2

+ cos(δ0 + η ln cos2 θ
2 )

cos2 θ
2

]
+ 4 sin2 δ0

η2

← Quantum mechanical interference →← pure nuclear →
between Coulomb and nuclear scattering potential scattering

(5.259)

δ0 is the l = 0 phase-shift for pure nuclear scattering. The six terms can be identified.
(1) The sin−4 θ/2 is the Rutherford scattering. (2) Since the two protons are identical
one cannot tell the case in which the incident proton comes out at θ and the target
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Fig. 5.17 The data are
from [7]

proton at π − θ (in the centre-of-mass system) from the case in which the incident
proton comes out at π − θ , and the target proton at θ . Thus, the scattering cross-
section must contain a term sin−4 (π − θ)/2 = cos−4 θ/2. (3) This term describes
the interference between Coulomb scattering at θ and π − θ . (4 and 5) These two
terms result from the interference between Coulomb and nuclear scattering. (6) The
last term is the pure nuclear scattering term.

For a given kinetic energy the differential cross-section can be measured as a
function of angle, and δ0 can be extracted from the best fit of (5.259) Fig. 5.17
shows the differential cross-section for incident energy at 3.037 MeV. Fitting the
data the last equation yields δ0 = 50.966◦ at T = 3.037 MeV. The cross section for
pure nuclear scattering would be 0.0165b. The observation of smaller value gives
evidence for interference between Coulomb and nuclear parts of the wave function.

The dependence of δ0 on energy as obtained from a number of experiments is
shown in Fig. 5.18.

The 1S wave is the only part of the incoming wave which is appreciably changed
by the nuclear effects at energies below 10 MeV, the phase shift δ0 is the only change
from pure Coulomb scattering. All the other partial waves (3P , 1D, 3F , . . .) are
effectively subject to the Coulomb force only since the particles do not get close
enough to each other to experience nuclear forces. This then means that at a given
energy the scattering cross-section is fixed by a single parameter δ0. Thus it is possi-
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Fig. 5.18 Experimental p–p
differential scattering cross
sections as represented by the
nuclear phase shift δ0, as a
function of the incident
proton energy. The data are
compiled by Jackson and
Blatt; and Worthington et al.

Fig. 5.19 Curtesy from [5]

ble to fit the observed differential cross-section at all scattering angles by the use of
only one adjustable parameter. A perfect agreement between theory and experiment
is a triumph of the theory.

Figure 5.19 shows the differential cross-section for proton-proton scattering at
Elab = 2.4 MeV. At small angles in CMS the scattering is essentially pure Coulomb
(Rutherford) scattering. At larger angles the Coulomb scattering interferes apprecia-
bly with the nuclear scattering. At still wider angles the nuclear scattering predomi-
nates. In the central region of angles, the cross-section is approximately constant in
this region because the nuclear scattering is s-wave scattering (l = 0) only. The dip
around θ = θm, Fig. 5.19 is caused by interference between nuclear and Coulomb
scattering. Since Coulomb scattering is repulsive and nuclear scattering attractive,
the interference is destructive. At angles θ < θm and correspondingly at θ > π−θm,
the Coulomb scattering predominates.

Figure 5.20 shows the angular distribution of p–p scattering in the CMS for the
incident proton energies (Lab) marked on each curve.

The most important result of p–p scattering analysis is that it permits the deter-
mination of the sign of the phase shift which occurs as linear in (5.266). Positive
values of δ0 correspond to an attractive interaction, negative values of δ0 signify
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Fig. 5.20 Angular
distribution of p–p scattering
(in C coordinates), for the
incident proton energies (in L
coordinates) marked on each
curve [2]

a repulsive force. This is also reflected in the scattering lengths. The comparison
between neutron-proton and proton-proton forces in the 1S state gave rise to the
hypothesis of the charge independence of the nuclear forces.

By measuring the differential scattering cross-section as a function of angle at
a specific incident kinetic energy, one can extract δ0 from the best fit of the curve
using (5.259). As an example, Fig. 5.20 shows such a fit from which a value of
δ0 = 50.966◦ is deduced at T = 3.037 MeV. From numerous such experiments the
dependence of δ0 on energy can be found out as in Fig. 5.18.

The neutron-proton scattering differs in two aspects

1. There are two phase shifts available, for the 3S and 1S scattering.
2. The differential cross-section is spherically symmetrical in the CMS.

A complicated angular distribution in proton-proton scattering is caused by the in-
terference between Coulomb and nuclear scattering and therefore provides a much
more sensitive test of the theory.

The important parameters which are energy independent are scattering length
and effective range. Calculations are rendered difficult due to the fact that Coulomb
interaction has infinite range and even in the k → 0 limit one cannot neglect the
higher order terms of Eq. (5.260)

k cot δ0 = 1

a
+ 1

2
r0k

2 + · · · (5.260)
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with certain modifications. However it is possible to obtain an expression incorpo-
rating the effects of Coulomb and nuclear scattering in a form similar to (5.253) and
thus to obtain values for the proton-proton scattering length and effective range

a = −17.2 fm (5.261)

r0 = 2.65 fm (5.262)

The effective range is consistent with the singlet np values. The fact that ‘a’ is
negative, suggests that there is no pp bound state, that is the nucleus 2He does not
exist. For nn parameters, one has to extract information only indirectly as free target
neutrons are not available. Experiments which have been used are concerned with
the reactions π− + 2H → 2n+ γ and n+ 2H → 2n+p. Also comparison of mirror
reactions such as 3He + 2H → 3H + 2p and 3H + 2H → 3He + 2n. The analysis of
these experiments give the neutron-neutron parameters

a = −16.6 fm (5.263)

r0 = 2.66 fm (5.264)

Here again the two neutrons do not form a stable bound state just as for p–p system.
It is not correct to say that p–p system does not exist because of Coulomb repul-

sion. In the case of n–n system this argument would fail.
The correct explanation for two identical fermions is that di-proton and di-

neutron systems must have antisymmetric or singlet spin states (for spatially sym-
metric state l = 0) which are unbound.

5.5 High Energy Nucleon-Nucleon Scattering

The low-energy nucleon-nucleon scattering is well described by phase-shift anal-
ysis based on quantum mechanics. The analysis gives some information about the
strength of nucleon-nucleon interaction but not about the detailed shape of the po-
tential. To this end scattering experiments were continued at higher energies. The
meeting ground between experiment and theory is a set of phase shift for the various
angular momentum states in which the two particles interact. As the bombarding
energy is increased a greater number of phase shifts are involved. In low-energy
proton-proton scattering, because of Pauli’s exclusion principle we deal with only
one such state, and in low energy neutron-proton scattering, we deal with two states,
one singlet S-state and one degenerate triplet S-state. For each value of l greater
than zero there are four n–p states, one singlet and three triplet states, but in the
p–p scattering the exclusion principle allows only one (antisymmetric) if l is even
(symmetric) or three states (symmetric) if l is odd (antisymmetric).

At a given energy sufficient experimental information is needed to determine the
phase shift for each of these states. In addition, if tensor forces are present then
the so-called mixing parameters need to be introduced to connect, for example, the
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3S1-state and the 3D1-state. Thus in the case of n–p scattering at a given energy,
sufficient information must be available in order to determine (5lmax + 1) parame-
ters (phase shifts and mixing parameters). Here lmax is the maximum l-value, taken
as odd, that must be considered for the energy used. For p–p scattering, the num-
ber of parameters is (5lmax + 3)/2. As an example, if lmax = 3, for n–p scattering
we need to determine fourteen phase shifts and two mixing parameters while for
p–p scattering, eight phase shifts and one mixing parameter need to be determined.
The experimental information that is most readily available in the differential cross-
section as a function of the angle, that is the angular distribution [11] and [10] can
be written as

dσ(θ)

dΩ
=

2lmax∑
n=0

AnYn0 , (θ) (5.265)

The number of terms in the sum is 2lmax + 1, and so this is the maximum num-
ber of parameters, An, that can be determined from the n–p angular distribution
measurement. In proton-proton scattering, the angular distribution is symmetrical
around 90° in the CMS, so that only even n spherical harmonics would be present
in Eq. (5.265). The number of coefficients An that is obtained from p–p angular
distribution measurements is therefore only lmax + 1. It is obvious that in both cases
the angular distribution measurements at a given energy do not yield adequate in-
formation to permit the determination of the phase shifts and mixing parameters at
that energy. Additional information can be obtained from polarization experiments
which determine the spin direction of the scattered particles.

5.5.1 Polarization

Normally the spins of beam particles are randomly oriented. But somehow if the
spins are oriented in a particular direction then the beam is said to be polarized. The
polarization can be achieved in the scattering of particles, similar to the scattering of
light. With a purely central interaction potential and an unpolarized target nucleus,
the scattered particles would not show up any left-right asymmetry, even with a po-
larized incident beam. The direction left-right is taken perpendicular to the scatter-
ing plane. However, if the interaction has a tensor or non-central component with the
coupling of the spin and orbital angular momentum then a polarized beam showing
left-right asymmetry, may be produced. The larger is the orbital angular momentum
the greater will be the asymmetry in the scattered beam. Consequently, polarization
becomes more important at high energy where a number of partial waves associated
with high values of l contribute to the phase-shift. In the polarization experiments
the beam is first polarized by scattering and the polarization is detected in the sec-
ond scattering experiment. These two constitute the double scattering experiment.
The first one plays the role of polarizer and the second one that of analyzer as for
light.
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Fig. 5.21 Double-scattering experiment to measure polarization

The spin direction of the scattered particle, that is spin ‘up’ or ‘down’ relative to
the plane of the scattering event is measured. In order to detect the polarization the
particle is allowed to scatter a second time. The geometry of such a double scattering
experiment is shown in Fig. 5.21. The apparatus is arranged so that the scattering
angle θ is identical in both events. The trajectories of the incident particle and the
scattered particle define the scattering plane for that event. The vectors n1 and n2

shown is Fig. 5.21 are unit vectors normal to the scattering planes. The second
scattering plane subtends an angle φ with the first scattering plane. The polarization
of the nucleons in a beam (or in a target) is defined as

P = N(↑)−N(↓)
N(↑)+N(↓) (5.266)

where N(↑) and N(↓) refer to the number of nucleons with their spins pointed up
and down respectively. When an unpolarized beam is scattered, values of P range
from +1, for a 100 % spin-up polarized beam, to −1, for a 100 % spin-down polar-
ized beam. An unpolarized beam, with P = 0, has equal numbers of nucleons with
spins pointing up and down.

Let there be n particles in the beam which is initially unpolarized. The first scat-
tering takes place with an unpolarized target T1. Since the beam is unpolarized there
will be n/2 particles with spins up (+) and n/2 particles with spin down (−). Af-
ter scattering once to the left by T1, the number of particles reaching the second
unpolarized target T2 with polarization P1 and spin up is (n/2)f1(1 + P1), where
f1 is the fraction of all particles reaching T2. The number reaching T2 with spin
down is (n/2)f1(1−P1). Similarly, those particles scattered once to the right by T1,
(n/2)f1(1 + P1), will reach T2 with spin down and (n/2)f1(1 − P1) will reach T2

with spin up. Let P2 be the polarization with spin up and f2 the fraction of all parti-
cles scattered by the second target into the detector. Thus the number scattered twice
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to the left with spin up is
(
n

2

)
f1f2(1 + P1)(1 + P2) (5.267)

and with spin down is (
n

2

)
f1f2(1 − P1)(1 − P2) (5.268)

Number of particles scattered twice, first to the left by T1 and then to the right by T2,
with spin up, is (

n

2

)
f1f2(1 + P1)(1 − P2) (5.269)

and with spin down is (
n

2

)
f1f2(1 − P1)(1 + P2) (5.270)

Hence, the number of particles scattered twice to the left (LL) is

LL =
(
n

2

)
f1f2

[
(1 + P1)(1 + P2)+ (1 − P1)(1 − P2)

]

=
(
n

2

)
f1f2(2 + 2p1p2) (5.271)

and the number scattered first to the left and second to the right (LR) will be

LR =
(
n

2

)
f1f2

[
(1 + P1)(1 − P2)+ (1 − P1)(1 + P2)

]

=
(
n

2

)
f1f2(2 − 2P1P2) (5.272)

Hence

ε = (LL)− (LR)

(LL)+ (LR)
= P1P2 (5.273)

If the second scattering is identical to the first, then P1 = P2 = P and (5.273) be-
comes

ε = P 2

The quantity ε is called the asymmetry. The quantity ε is directly measurable while
the magnitude of P can be found out, although not the sign of P . The sign may be
determined by studying the interference of nuclear scattering with Coulomb scatter-
ing.

Figure 5.22 shows the differential cross-sections as a function of the CMS scat-
tering angle, for p–p scattering at various energies. Figure 5.23 shows that the larger
is the bombarding energy the greater is the polarization.
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Fig. 5.22 Differential
cross-section for p–p elastic
scattering at several incident
energies. The experimental
data are compared with
theoretical predictions [8]

Fig. 5.23 Polarization in
p–p elastic scattering at
various incident energies [8]

5.5.2 Mechanism of Polarization

Scattering that involves only s-waves will be spherically symmetric and does not
exhibit the phenomenon of polarization. We can now see how the spin-orbit in-
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Fig. 5.24 Two nucleons with
spin-up incident on spin-up
target so that total spin S = 1

teraction can give rise to polarization for higher order angular momentum waves.
Figure 5.24 shows two nucleons with spin-up incident on spin-up target so that total
spin S = 1. The P -wave (l = 1) scattering of identical nucleons has an antisym-
metric spatial wave function and hence a symmetric wave function. For incident
nucleon 1, l = r × p points down (into the page) and so l · s is negative because l
and s point in opposite directions. If we assume that the spin-orbit potential Vso(r)
is negative so that the combination Vso(r)l · s is positive and so there is a repulsive
force between the target nucleus and the incident nucleon 1 which pushes it to move
to the left. For nucleon 2, l points up, l · s is positive, and the interaction being at-
tractive, nucleon 2 is pulled in towards the target and is also scattered toward left.
Thus the spin-up nucleons are preferentially scattered toward left and by a similar
argument spin-down nucleons to the right. Consequently, the spin-orbit interaction
can produce polarized scattered beams when unpolarized particles are incident on a
target.

At low energies, where s-wave scattering dominates, polarization is not expected.
As the bombarding energy increases, the contribution of p-waves increases leading
to an increased polarization. These expectations are borne out in Fig. 5.23. The
observations on the variation of P with θ and with energy elucidate vital information
on the forms of the potential Vso(r).

From the study of a large number of experiments at various energies a wealth
of information in available on the differential and total cross-sections, spin depen-
dence and polarization. This has permitted to introduce various phenomenological
potentials to fit the observed data on nucleon-nucleon scattering.

The most frequently used expressions are:

Square well V (r)= −Vc (r ≤ a)
= 0 (r > a) (5.274)

Exponential V (r)= −V0e
−ar (5.275)

Gaussian V (r)= −V0e
−a2r2 (5.276)

Yukawa V (r)= −V0e
−ar

r
(5.277)
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Hulthén V (r)= −V0e
−ar

1 − e−ar (5.278)

Eckart V (r)= −V0

(1 + ear )(1 + e−ar ) (5.279)

To all these potentials a hard repulsive core may be added for r ≤ rc with rc �
0.5 fm. One other potential frequently used is the Gammel Thaler potential

VGT (r)= Vc(r)+ Vt(r)S12 + VLs(r)L · S (5.280)

where S12 is the tensor operator and the functions V (r) are Yukawa functions for
r ≥ rc and go to infinity for r < rc .

With the availability of fast computers, more complicated potentials have been
proposed to fit the scattering data more accurately. Among these the Hamada-
Johnston, Yale and Reid potentials have been extensively used.

5.6 Properties of the Nucleon-Nucleon Force

1. At short distances (∼ 1 fm) nuclear force is stronger than Coulomb force.
2. At long distances (∼ 10−8 cm) the nuclear force is negligibly small. The interac-

tions among atoms in a molecule can be understood in terms of Coulomb force
alone.

3. Some particles like electrons or muons are unaffected by nuclear force.
4. Nuclear force is charge independent, that is the force between the pairs of n–n,
n–p, p–p is identical.

5. The nucleon-nucleon force depends on the orientation of spins, that is the spins
are parallel or antiparallel. Thus the nuclear force is spin dependent.

6. The nucleon-nucleon force has a tensor or non-central component which does
not conserve the orbital angular momentum which is a constant of motion under
central forces.

7. The nucleon-nucleon force includes a repulsive term which prevents the nucleons
to come too close to each other.

5.6.1 Exchange Forces

The fact that nuclear density is constant suggests that nuclear forces have satura-
tion property which can be explained by assuming that these forces are ‘exchange
forces’, similar to the force that binds ordinary chemical molecules.

Regardless of the origin of these forces let us enumerate various types of ex-
change forces that exist between a pair of nucleons and then investigate the effect of
these forces on the properties of the deuteron and on the saturation of the binding.

Four types of interactions may be distinguished.
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5.6.1.1 Wigner Force

For an ordinary (non-exchange) central force the Schrodinger equation for two par-
ticles in the centre of mass system is

[(
�

2

M

)
∇2 +E

]
ψ(r1, r2, σ1, σ2)= V (r)ψ(r1, r2, σ1, σ2) (5.281)

Here the interaction does not cause any exchange between coordinates of the two
particles and the spin coordinates remain unaffected.

5.6.1.2 Majorana Force

Here the interaction interchanges the space coordinates, the spin coordinates re-
maining unaffected, in addition to multiplication of ψ by the potential V (r). For
such an interaction the Schrodinger equation is

[(
�

2

M

)
∇2 +E

]
ψ(r1, r2, σ1, σ2)= V (r)ψ(r2, r1, σ1, σ2) (5.282)

5.6.1.3 Bartlett Force

Here the spin coordinates are interchanged but the spatial coordinates are unaffected.
The Schrodinger equation is

[(
�

2

M

)
∇2 +E

]
ψ(r1, r2, σ1, σ2)= V (r)ψ(r1, r2, σ2, σ1) (5.283)

5.6.1.4 Heisenberg Force

Here both the space and spin coordinates are interchanged. The Schrodinger equa-
tion is

[(
�

2

M

)
∇2 +E

]
ψ(r1, r2, σ1, σ2)= V (r)ψ(r2, r1, σ2, σ1) (5.284)

5.6.2 Effect of Exchange Forces

When exchange forces are central forces with V (r), l’s are not mixed. However, if
a tensor is used in place of V (r) as the multiplying potential, l’s are mixed and the
quadrupole moment of the deuteron can be explained. It may be pointed out that the
tensor force does not by itself lead to saturation.
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5.6.2.1 Majorana Force

The Majorana interaction replaces (r) by (−r) in ψ . This is just the parity operation
which replaces ψ(r) by (−1)lψ(r). The Schrodinger equation then can be rewritten
as [(

�
2

M

)
∇2 +E

]
ψ(r)= (−1)lV (r)ψ(r) (5.285)

This is equivalent to having an ordinary potential that changes sign according to
whether l is even or odd, and is independent of spin. Since the potential is attractive
for l = 0, it would be repulsive for l = 1 if the interaction were of pure Majorana
type.

5.6.2.2 Bartlett Force

Two nucleons in triplet state (total S = 1) will have symmetric spin function and
in the singlet state (S = 0) it will be in antisymmetric state. For the Bartlett force,
Schrodinger equation may be written as

[(
�

2

M

)
∇2 +E

]
ψ(r)= (−1)s+1V (r)ψ(r) (5.286)

This is equivalent to an ordinary potential which changes sign between S = 0 and
S = 1. Since we know from neutron-proton scattering data that both the 3S and 1S

potentials are attractive, the nuclear force cannot be pure Bartlett type.

5.6.2.3 Heisenberg Force

From the discussion of Majorana and Bartlett force the Schrodinger equation for
Heisenberg may be written as

[(
�

2

M

)
∇2 +E

]
ψ(r)= (−1)l+s+1V (r)ψ(r) (5.287)

This is equivalent to an ordinary potential which changes sign according to whether
1 + S is even or odd. We give below some examples

3S 1S 3P 1P

V (r) −V (r) −V (r) +V (r)
The reversal of sign between 3S- and 1S-states indicates that the nuclear force can-
not be purely of Heisenberg type. With the assumption of the interaction of 25 per-
cent Heisenberg or Bartlett and 75 percent Wigner or Majorana the difference be-
tween neutron-proton well depths, 21 and 12 MeV respectively for a = 2.8 fm can
be explained.
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5.6.3 Exchange Forces and Saturation

The Bartlett spin exchange force does not lead to saturation of the binding energy
per particle. For nuclear force of Bartlett type heavy nuclei should exist with all
spins aligned. In such a case the number of interacting pairs is A(A− 1)/2, which
leads to binding energy proportional to atleast the square of A.

However the space exchange in the Majorana and the Heisenberg forces does
lead to saturation because of the alteration in sign of the potential between odd and
even l.

Consider the nucleus 4He. The spatial wave function can be symmetrical in all
the four particles without violating Pauli’s principle by giving antiparallel spins (an-
tisymmetric spin wave functions) to the two neutrons as well as two protons.

In the next heavier nucleus—5He or 5Li the Pauli principle can no longer be
satisfied by spin wave functions alone. Therefore, the spatial wave function must
have atleast one node. In other words, only four particles can be in an s-states and
will therefore be repelled by the other particles, 5He and 5Li should thus be unstable,
in agreement with the experiment. This is a first sign of saturation.

Wigner force does not lead to saturation. Saturation is achieved either by the
space-exchange Majorana force or the space-exchange part of the Heisenberg force.

The Heisenberg force gives special stability to the deuteron, and the Majorana
force to the alpha particle. The Bartlett forces do not give saturation. It is concluded
that the exchange force of the Majorana type does exist. This is proved directly by
high-energy neutron-proton scattering which shows maxima in the angular distribu-
tion of protons in the CMS.

We can understand the results by the use of Born’s approximation.

f (θ)= μ

2π�2

∫
exp(−ikf r)V (r) exp(ikir)dτ (5.288)

where r = r1 − r2 and μ is the reduced mass. The integral for a short-range V (r) is
appreciable only if ki − kf ∼= 0, otherwise the function exp[i(ki − kf )r] oscillates
so rapidly over the region for which V (r) is appreciable so that the result averages
to 0. Now ki − kf = 0 indicates forward scattering. We thus find that the striking
neutrons are scattered forward, contrary to experiment. If we now introduce the
exchange force, the potential V (r) is replaced by V (r)PM which gives us

fex(θ)= μ

2π�2

∫
exp(+ikf r)V (r)PM exp(ikir)dτ (5.288(a))

as the PM operator changes particles 1 and 2 and hence transforms r into −r .
The fex(θ) due to exchange force is large when

kf + ki = 0 (5.289)

That is when the neutron is scattered backward and the proton forward. The ex-
perimental result of Fig. 5.25 demonstrates clearly two maxima in the forward and
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Fig. 5.25 Result of two
maxima in the forward and
backward at high energies

backward at high energies. We conclude that both normal and exchanges forces are
present and that they are of comparable intensities. The interaction is assumed to
take place due to exchange of field quanta, that is mesons. Since the range of nu-
clear interaction is finite the mesons were assumed to be massive. This is in contrast
with photons which are the quanta of electromagnetic field, with zero rest mass and
infinite range. According to quantum field theory, the field itself is quantized, that
is object with field quanta and the second object interact only with the field, not
directly with the first object, and absorb the field quanta (and reemit them back to
the first object) the two objects interact directly with the exchanged field quanta and
therefore, indirectly with each other.

Since the nucleons have spin 1/2 and if they have to be transformed into one
another the quanta to be exchanged between two nucleons must have spin 0 or 1
and must carry electric charge + or − or 0 charge.

The particle which is exchanged is assumed to represent the nuclear force and is
called meson, from the Greek meso, meaning intermediate, because the predicted
mass is between that of proton and electron. Suppose a nucleon emits a particle X.
A second nucleon absorbs the particle X

N1 →N1 +X
X+N2 →N2

When the particle of rest mass energy mXc2 is emitted or absorbed there will be
an apparent violation of conservation of energy in these processes. However, if the
process takes place within a short time �t such that �t < �mXc

2 as given by the
uncertainty principle, then we will be unaware that the energy mπc2 has been vio-
lated. The maximum range of the force is determined by the maximum distance that
the particle X can travel in the time �t . If the exchanged particle travels at a speed
of the order of c, then the range R can be at most

R = c�t = c�

mXc2
= 197 MeV fm

mXc2
(5.290)

Equation (5.290) gives the relationship between the mass energy of the exchanged
particle and the range of force, the smaller is the range the more massive will be the
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particle. For nuclear force with a range of about 1 fm, the exchanged particle must
have mass energy of the order of 200 MeV. For 1.0–1.5 fm, pions are responsible
for the exchange forces. For exchange between all the possible states of nucleon,
pions must exist in all the three charge states +, 0 and −. The pions have zero spin
and exist in three charged states with rest mass energies of 139.5 MeV for π± and
135 MeV for π0.

The single pion that is exchanged between two identical nucleons must be a π0

n1 → n1 + π0, π0 + n2 → n2

p1 → p1 + π0, π0 + p2 → p2

The one pion exchange model is abbreviated as OPE model. The neutron-proton
interaction can be carried by charged as well as neutral pions.

n1 → n1 + π0, π0 + p2 → p2

n1 → p1 + π−, π− + p2 → n2

p1 → n1 + π+, π+ + n2 → p2

At shorter ranges (0.5–1.0 fm) two-pion exchange is probably responsible for the
nuclear binding. At much shorter ranges (0.25 fm) the exchange of ω mesons
(mc2 = 783 MeV) may contribute to the force while the exchange of ρ mesons
(mc2 = 769 MeV) may contribute to the spin-orbit part of the interaction.

The exchanged particles are called virtual particles as they are unobserved. How-
ever they can be created as real particles at high enough energies and have identical
properties to real particles.

5.7 Yukawa’s Theory

In 1935, Hideki Yukawa, a Japanese physicist proposed a potential to represent the
nucleon-nucleon interaction. The potential was to describe the exchange of particles
giving rise to nuclear force, is analogy with the electromagnetic potentials which
describe the exchange of photons that give rise to electromagnetic force. The major
difference between the electromagnetic interaction and the strong nuclear interac-
tion is the infinite range for the former in contrast with a short range of the order of
1 fm for the latter.

The basic equations for the electromagnetic field are Maxwell’s equations which
govern the propagation of photons. The relevant equation for spin zero particles is
the Klein-Gordon equation. Consider the relativistic equation

E2 = c2p2 +m2c4 (5.291)
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In quantum mechanics energyE = i�∂/∂t and momentum p = −i�∇ . Carrying out
their substitutions in the relativistic equation, we obtain the Klein-Gordon equation

(
∇2 − m2c2

�2

)
φ = 1

c2

∂2∅
∂t2

(5.292)

where φ represents the amplitude of the field. Observe that for m= 0, Eq. (5.292)
reduces to the familiar wave equation for the electromagnetic field. The time-
independent equation is

∇2φ −K2φ = 0 (5.293)

where K =mc/�. The spherically symmetric solution of (5.293) is

φ = g e
−kr

r
(5.294)

where g is a constant that represents the strength of the pion field, in analogy with
the electronic charge e which represent the strength of the electromagnetic field.

The nuclear forces should have the range of the order of K−1 = �/mc, identical
with Eq. (5.290) derived from arguments based on uncertainty principle. E is the
total energy, and p is the momentum of a free particle of mass m.

Klein-Gordon equation describes the propagation of spinless particles of mass m

∇2φ − m2c2

�2
φ − 1

c2

∂2φ

∂t2
= 0 (5.295)

φ may be interpreted either as the potential at a point in space and time, or as the
wave amplitude. Here we are not so much interested with propagation of particle
waves as in static potentials. It we drop the time-dependent term, the resulting equa-
tion for the static potential U has the spherically symmetric form

∇2U(r)= 1

r2

∂

∂r

(
r2∂U

∂r

)
= m2c2

�2
U(r) (5.296)

for values of r > 0 from a point source at the origin, r = 0. Integration gives

U(r)= g

4πr
e−r/R (5.297)

where R = �

mc
(5.298)

Here, the quantity g is a constant of integration identical with the strength of the
point source. The analogous equation in the electromagnetism is ∇2U(r) = 0 for
r > 0, with solution U =Q/4πr , where Q is the charge at the origin. Thus, g in
the Yukawa theory plays the same role as charge in electrostatics and measures the
“strong nuclear charge”.
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Example 5.3 A beam of 100 keV neutrons is attenuated to 50 % of its initial in-
tensity in passing through 10 g cm−2 of carbon. What can you say about the s-wave
phase-shift for the scattering of neutrons from carbon nuclei?

Solution

I = I0e−Σx
I

I0
= 50

100
= e−10Σ

Σ = 1

10
ln 2 = 0.0693 cm2 g−1

σ
Nav

A
= 6 × 1023σ

12
= 0.0693

σ = 1.38 × 10−24 cm2 = 1.38 × 10−28 m2

E = 100 keV = 0.1 MeV

μ =
(

1 × 12

1 + 12

)
M = 12

13
M

k2h2 = 2μE

k2 = 2 × 12

13
× 1.67 × 10−27 × 0.1 × 1.6 × 10−13

(1.05 × 10−34)2
= 0.447 × 1028 m2

σ0 = 4π sin2 δ0

k2

sin δ0 =
√
σ0k2

4π
=
√

1.38 × 10−28 × 0.447 × 1028

4π
= ±0.2216 rad

δ = ±12.8◦

Example 5.4 Consider the photo disintegration of deuteron, γ + d → p + n. As-
suming that the proton and neutron are emitted with equal energy, see Fig. 5.26,
calculate the angle of emission of proton.

Solution

hν =W + Tp + Tn =W + 2Tp (energy conservation) (i)

p2
n = p2

p + h2ν2

c2
− 2Pp

hν

c
cos θ (momentum conservation) (ii)

Given Tp = Tn. Hence Pp = Pn.
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Fig. 5.26 Photo
disintegration of deuteron

From (ii)

cos θ =
hν
c

2Pp
= hν

2c
√

2MTp
= hν

2c
√
M(hν −W)

Example 5.5 Find the root mean square separation of neutron and proton in
deuteron using the normalized exponential wave function for the ground state

ψ = 1

r

√
α

2π
e−αr

(
1

α
= 4.3 × 10−15 m

)

Solution

〈
r2〉 =

∫
ψ∗r2ψdτ

=
∫ ∞

0

r2

r2

α

2π
e−2αr4πr2dr

= 1

4α2

hence √〈
r2
〉= 1

2α
= 4.3

2
= 2.15 fm

Example 5.6 At what neutron energy will p-wave be important in n–p scattering?

Solution In the CMS for l = 1

apcm = �

Ecm = p2
cm

2μ
= p2

cm

2 × M
2

= p2
cm

M
= �

2

Ma2

Elab = 2Ecm = 2�2

Ma2
= 2�2c2

Mc2a2

= 2 × (197)2

940 × 22
= 20.6 MeV
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where we have put a = 2 fm. Thus below 20 MeV s-waves (l = 0) alone are impor-
tant.

Example 5.7 Show that at a given energy p-waves affect dσ/dΩ to a larger extent
than σ .

Solution

σ = 4π

k2

1∑
l=0

(2l + 1) sin2 δl

= 4π

k2

(
sin2 δ0 + 3 sin2 δ1

)

dσ

dΩ
= 1

k2

[
sin2 δ0 + 6 sin δ0 sin δ1 cos(δ1 − δ0) cos θ + 9 sin2 δ1 cos2 θ

]

As an example, let δ0 = 20◦ and δ1 = 2◦ at a certain energy. The p-wave (l = 1)
contributes 3 % to total cross-section. But

dσ(0◦)
dΩ

dσ(180◦)
dω

= 3.5

Example 5.8 1 MeV neutrons are scattered on a target. The angular distribution
of the neutrons in the centre-of-mass proves to be isotropic. The total cross-section
is measured to be 10−25 cm2. Using the partial wave representation, calculate the
phase shift of the s-wave.

Solution Only s-waves (l = 0) are expected to be involved since scattering is
isotropic

σ = 4π

k2
sin2 δ0

but

k2
�

2 = p2 = 2mE

σ = 4π�2

2mE
sin2 δ0

sin2 δ = 2mEσ

4π�2
= mc2Eσ

2π�2c2
= 940 × 1 × 10

2π × (197)2
= 0.03857

where σ = 10−25 cm2 = 10 fm2

δ0 = ±11.3◦
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Example 5.9 In the analysis of scattering of particles of massm and energy E from
a fixed centre with range ‘a’ the phase shift for the lth partial wave is given by

δl = sin−1
[

(iak)l√
(2l + 1)(l!)

]

show that the total cross-section at a given energy is approximately given by

σ = 2π�2

mE
exp

(−2mEa2

�2

)

Solution

σ = 4π

k2

∑
l=0

(2l + 1) sin2 δl

By problem

sin δl = (iak)l√
(2l + 1)(l!)

sin2 δl = (iak)2l

(2l + 1)l! = (−a2k2)l

(2l + 1)l!

σ = 4π�2

k2�2

∑
l=0

(2l + 1)(−a2k2)l

(2l + 1)l! = 4π�2

2mE

∑
l=0

(−a2k2)l

l!
If the summation goes to infinite number of terms then

σ = 2π�2

mE
exp

(−a2k2)= 2π�2

mE
exp

(
−2mEa2

�2

)

Example 5.10 Consider the scattering from a hard sphere of radius ‘a’ such that
the D-wave phase-shift is negligible, the potential being

V (r) = ∞ for r < a

= 0 for r > a

Show that

σ(θ) = a2
[

1 − (ka)2

3
+ 2(ka)2 cos θ + · · ·

]
and

σ = 4πa2
[

1 − (ka)2

3

]

Solution

σ(θ)= 1

k2

∣∣Σ(2l + 1)eiδl sin δlPl(cos θ)
∣∣2
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If only s- and p-waves are present

σ(θ)= 1

k2

∣∣eiδ0 sin δ0P0(cos θ)+ 3eiδ1 sin δ1P1(cos θ)
∣∣2

but

P0(cos θ) = 1; P1(cos θ)= cos θ

σ (θ) = 1

k2

∣∣eiδ0 sin δ0 + 3eiδ1 sin δ1 cos θ
∣∣2

= 1

k2

[
sin2 δ0 + 6 sin δ0 sin δ1 cos(δ0 − δ1) cos θ + 9 sin2 δ1 cos2 θ

]

= 1

k2

[(
δ0 − δ3

0

3!
)2

+ 6δ0δ1 cos θ

]

= 1

k2

[
δ2

0 − δ4
0

3
+ 6δ0δ1 cos θ

]

= 1

k2

[
k2a2 − 1

3
k4a4 + 6(ka)

(k3a3)

3
cos θ

] (
∵ δ0 = ka, δ1 = k3a3

3

)

= a2 − k2a4

3
+ 2k2a4 cos θ

dσ

dΩ
= a2

[
1 − (ka)2

3
+ 2(ka)2 cos θ

]

σ =
∫ (

dσ

dΩ

)
dΩ = 2π

∫ +1

−1
a2
[

1 − (ka)2

3
+ 2(ka)2 cos θ

]
d cos θ

= 4πa2
[

1 − (ka)2

3

]

Example 5.11 Show that the expectation value of the potential energy of deuteron
described by a square well of depth V0 and width R is given by

〈V 〉 = −V0A
2
[

1

2
R − 1

4K
sin 2KR

]

Solution As V (r)= 0 for r > R, the contribution to 〈V 〉 comes only from within
the well

〈V 〉 =
∫ R

0
u∗

1(−V0)u1dr = −V0

∫ R

0
A2 sin2 krdr

Integration gives the desired expression.
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5.8 Questions

5.1 What fraction of time is spent by deuteron outside the range of nuclear forces?

5.2 Why deuteron is said to have a loose structure?

5.3 Why deuteron has only one bound state?

5.4 The magnetic dipole moments of proton and neutron do not add up exactly to
that of the deuteron. How is this fact explained?

5.5 Deutron has positive electrical quadrupole moment. Does this imply a cigar
shaped or prolate structure?

5.6 How is the existence of electrical quadrupole moment of deuteron explained?

5.7 List the requirements for the potential representing the static nuclear force to
fulfill?

5.8 Why we cannot have a term like S · r12 or S · P12 for the potential?

5.9 Give an example of a static force and velocity dependent force.

5.10 What is the significance of the expression S12 = 3
r2 (σ1r)(σ2r)− σ1σ2.

5.11 Write down the most general static potential as the sum of six terms showing
s = 0/1, l = odd/even, force = central/tensor.

5.12 Mention the four types of exchange forces with necessary description.

5.13 Mention various methods for the determination of binding energy of deuteron.
Which method would you rate as most accurate?

5.14 Mention some of the widely used nucleon-nucleon potentials.

5.15 Explain why R = �/
√
MB is called the deuteron radius.

5.16 Given that there are no bound states of the dineutron and the diproton, what
can you infer about the force between the two nucleons?

5.17 The deuteron ground state has the following properties (1) spin and parity
jπ = 1+, (2) magnetic dipole moment μ= 0.857μN , (3) electric quadrupole small
and positive.

What information do these quantities give about the ground state wave function
of the deuteron? The proton and neutron dipole magnetic moments are, respectively,
2.793 and −1.913μN .
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Fig. 5.27 Differential
cross-sections for Coulomb
scattering of carbon isotopes

5.18 In the deuteron problem on using square well potential of depth V0 and
width R, one finds a relation V0R

2 = const, find the value of the constant.
[Ans. 103 MeV fm2]

5.19 Figure 5.27 shows the differential cross-sections for Coulomb scattering of
13C on 12C (top), 12C on 12C (middle) and 13C on 13C (bottom) at an incident lab
energy of 4 MeV. Explain why these cross-sections are so different.

5.20 Describe the evidence for this following properties of the nucleon-nucleon
interaction (1) short range, (2) charge independence, (3) spin dependence.
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5.9 Problems

5.1 Using the exponential wave function u = C exp(−kr), with k = 0.232 fm−1

for the ground state of deuteron (0 < r <∞), show that 〈r〉 = 1.83 fm and the
probability for neutron and proton to stay outside 2 fm is p = 0.395.

5.2 Show that the threshold energy for photo disintegration of deuteron is

Eγ =EB + E2
B

2mdC2

where EB is the binding energy.

5.3 A particle of mass m moves in a potential V (r) = −V0 when r < a, and
V (r) = 0 when r > a. Find the least value of V0 such that there is a bound state
of zero energy and zero angular momentum.

[Ans. V0 = h2

32ma2 ]

5.4 The n–p interaction in deuteron may be described by square well potential
of width a and depth −V0. Assuming that the binding energy of deuteron is much
smaller than the potential well depth, show that V0a

2 = const.

5.5 When slow neutrons of negligible energy are captured by 1
1H to form 2

1D,
γ -rays of 2.224 ± 0.005 MeV are observed. Find this mass of neutron in MeV/c2.
GivenMp = 938278 MeV/c2,MD = 1875.625 MeV/c2.
[Ans. 939.571 MeV/c2]

5.6 Show that the nucleon-nucleon potential can only contain terms given by a
radial function multiplied by 1, σ 1, σ 2 · (σ 1 · r)(σ 2 · r), and (σ 1 + σ 2) · (r × p).

5.7 A more accurate Hamiltonian for deuteron has the form

3(σ 1 · r)(σ 2 · r)
r2

− σ 1 · σ 2

Explain various symbols in the above expression. What is the bearing of this expres-
sion on n–p scattering results.

5.8 Show that if deuterons are scattered by protons, the maximum scattering angles
in the lab system and the CMS are 30° and 120°, respectively, but that if protons are
scattered by deuterons, the maximum angle in both the systems is 180°.

5.9 Show that the expectation value of the electric quadrupole moment for a
neutron-proton system in the 3S1 state is zero.
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5.10 Calculate the phase shift δ0 for an impenetrable sphere of radius R. Compare
its cross-section to its geometrical area.
[Ans. ka, σ

σg
= 4]

5.11 The small binding energy of the deuteron indicates that the maximum of u(r)
lies only just inside the range R of the well. Use this information to estimate the
value of R if V0 = 22.7 MeV.
[Ans.1.5 fm]

5.12 Explain why the following dependences for potentials are not acceptable for
the description of nucleon-nucleon potential.

(a) [(r × s)(r × s)][s · s]
(b) (r · p)(r · s)
(c) (r · p)(L · s)
(d) (L · s)(L · L)
(e) (r × L) · P

[See Sect. 5.1.9]
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Chapter 6
Nuclear Models

6.1 Need for a Model

The models used in nuclear physics as well as in atomic physics are invented be-
cause we do not know how to solve the many-body Schrodinger equation either with
Coulomb forces or nuclear forces. The observed features of light and heavy nuclei
are too complex to be explained by a reliable theory. In the absence of an exact the-
ory, a number of nuclear models have been developed. These are based on different
sets of simplifying assumptions. Each model is capable of explaining only a part of
our experimental knowledge about nuclei. The experimental facts which are to be
explained by a model are:

1. Nuclear Spins I of ground state
2. Magnetic dipole moments μ as summarized in Schmidt diagrams
3. Electrical quadrupole moments Q
4. Existence of isomers and the occurrence of islands of isomerism
5. Parity of nuclear levels
6. Discontinuities of nuclear binding energy for certain values of N or Z
7. Substantially constant density of nuclei
8. Dependence of the neutron excess (N–Z) on A5/3 for stable nuclides
9. Approximate constancy of the binding energy per nucleon B/A

10. Fission by thermal neutrons of 235U and other odd nuclides
11. Nonexistence in nature of nuclides heavier than 238U
12. Wide spacing of low-lying excited levels in nuclei, in contrast with the close

spacing of highly excited levels
13. Existence of resonance-capture reactions.

6.2 Type of Nuclear Models

In Chap. 4 we have noted that the nucleons in the nucleus are confined to an approx-
imately spherical volume of radius about 1.2A1/3 fm and that the system is capable
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of existing in various energy states each with its own distinctive properties. A sound
theory would be concerned with the movement of nucleons in the nucleus, the na-
ture of interaction between various nucleons and the properties of the ground and
excited levels.

To begin with the problem may be formulated classically but eventually the so-
lution must be found in quantum mechanical terms. In particular we need the total
wave function of the nucleus which is possible only for the simplest nuclei. For a
large complex nucleus the total wavefunction even if available would be too com-
plicated to be of any practical use.

In this situation we are under the necessity of resorting to various nuclear models.
These are simple analogies based on certain similarities with some other physical
systems which are mathematically well understood. A given model based on cer-
tain assumptions attempts to explain only selected specific features of nuclei. Other
features must be explained by some other model. In the past a number of models
have been used to explain the whole lot of properties of nuclei based on very strong
interacting nucleons to very weakly interacting nucleons. The contrast between the
strong and weak interaction based models is resolved by invoking for Pauli’s prin-
ciple.

The earlier nuclear models addressed the problems of α-decay (Gamow) and the
reactions of nucleons with nuclei. The models used to explain reactions of nucleons
with nuclei assumed very weak interaction corresponding to independent particle
motion as in Bethe’s potential model and strong interactions as in Bohr’s compound
nucleus model. Subsequently, the nuclear models have been developed to a high de-
gree of sophistication both semi-classically and quantum mechanically and fall into
independent and collective categories. Among the more important models mention
should be made of the liquid drop model which involves collective motion of nu-
cleons and the Fermi gas model which treats nucleons as a gas of non-interacting
particles. Both the models are semi-classical but are the fore-runners of more im-
portant quantum mechanical models like the Shell model and the collective model
involving rotation and vibration.

The collective and single-particle aspects of nuclear structure are unified in the
form of the Nilsson model which considers the independent motion of nucleons in a
deformed potential. Another way is to consider the α-particle model which permits
a simple way of calculating some properties of nuclei that are composed only of
α-particles.

6.3 Fermi Gas Model

In the Fermi gas model, the nucleons are considered as a gas of non-interacting par-
ticles moving around in the nucleus with momenta ranging from zero to maximum
value, PF . The reality of Fermi momentum has been demonstrated by the study of
the energy spectrum of electrons scattered off a thin H2O target.

First consider the elastic scattering of electrons off free protons (neutrons) at rest.
For a given beam energy E at a fixed scattering angle, the scattered electrons will
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Fig. 6.1 Energy spectrum of
the electrons scattered off a
thin H2O target. Data are
taken at the linear accelerator
MAMI-A at a beam energy of
246 MeV and at a scattering
angle of 148.5° by [10]

be scattered at energy E′ given by [9], Chap. 6

E′ = E

1 + E

Mc2 (1 − cos θ)
(6.1)

whereM is the mass of the target. Repeating the scattering experiment with the same
beam energy and at the same scattering angle but with complex nuclei containing
several nucleons gives a more complicated spectrum. Figure 6.1 shows the spectrum
of electrons scattered off free protons as well as oxygen nuclei.

The narrow peak observed at E′ � 160 MeV occurs due to elastic scattering off
the free protons in hydrogen. On this is superimposed a broad distribution with the
maximum shifted towards smaller scattering energies, near E′ � 150 MeV. This
part of the spectrum may be identified with scattering of electrons off individual
nucleons within the 16O nucleus—a process known as quasi-elastic scattering. The
sharp peaks at high energies are due to scattering off the 16O nucleus as a whole. The
left side of the curve is interpreted to be formed from the tail of the Δ-resonance. In
the quasi-elastic scattering process the nucleon is assumed to be knocked out of the
nucleus. The shift of the maximum in the energy of the scattered electrons towards
lower energies is due to the binding energy of the nucleon. From the observations
of broadening of the maximum, compared to the elastic scattering off free protons
in the hydrogen atom, we conclude that the nucleus is not a static object with fixed
nucleons, rather the nucleons move around in the quasi-elastic fashion within the
nucleus. Consequently, the kinematics of scattering are altered compared to scatter-
ing off a nucleon at rest.
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6.3.1 Fermi Energy

The gas model or statistical model pictures the nucleus as a gas of protons and neu-
trons. The volume of the gas, Ω = 4

3πR
3 = 4

3πr
3
0A, where A is the mass number

and R = r0A1/3 is the radius of the nucleus. Due to restriction to a small volume the
nuclear energy levels are widely spaced, the energy level density being proportional
to this volume. In the absence of excitation, particles will occupy the lowest avail-
able states. Clearly, the statistical model would be applicable for heavy nuclei for
which the mass number would be sufficiently large. This model is useful for com-
puting approximately the nuclear potential depth, to explain semi-quantitatively the
increase in nuclear level density with energy and to consider emission of particles
as an evaporation process. Further, the model explains the odd-even and asymmetry
energy terms in the Weisacker’s mass formula. The model also explains the lower-
ing of particle production threshold in collision with complex nuclei as opposed to
hydrogen target. It also has application for neutron stars.

Since nucleons have spin 1/2 they obey Fermi-Dirac statistics. Pauli’s principle
requires that each energy level cannot be occupied by more than two protons and
two neutrons (with opposite spins in both the cases). The number of quantum states
(n) corresponding to momenta smaller than a given value p equals the available
phase space divided by h3

n= 2 × 4

3
πp3Ω

h3
(6.2)

The factor 2 arises due to spin 1/2 (multiplicity of states) in a nucleus containing
Z protons and A – Z neutrons. The maximum Fermi momenta PF of protons and
neutrons are given by

2

(
4

3
π

)2

r3
0P

3
F (p) = Z (for proton) (6.3)

2

(
4

3
π

)2

r3
0P

3
F (n) = A−Z (for neutron) (6.4)

The corresponding kinetic energy

EF (p) = p2
F (p)

2mp
=
(

9

32π2

) 2
3 h2

2mpr2
0

(
Z

A

)2/3

(6.5)

EF (n) = p2
F (n)

2mn
=
(

9

32π2

) 2
3 h2

2mnr2
0

(
A−Z
A

)2/3

(6.6)

In nuclei containing approximately equal number of neutrons and protons, the val-
ues of PF and FF are the same for both neutron and proton. Using numerical values
r0 = 1.2 fm, and nucleon mass mN = 940 MeV/c2, we find PF = 216 MeV/c and
EF = 25 MeV. This then suggests that in light nuclei (A = 2Z), the potential for
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Fig. 6.2 Potential well depths for neutron and proton

neutrons ∼33 MeV since the average binding energy ∼8 MeV. Notice that since in
heavy nuclei EF is smaller for protons than for neutrons, the total depth of the po-
tential well for protons (nuclear and electric) must be smaller than the depth of the
potential well for neutrons (nuclear only), Fig. 6.2. Thus the effect of the Coulomb’s
repulsion more than compensates for the somewhat greater attractive nuclear forces
acting upon the protons.

In the ground state of a nucleus the gas is completely degenerate and so all the
states up to the maximum are filled.

Number of possible states with momenta between p and p+ dp is

dn= Ω4πp2dp2

h3
= Ωp2dp

π2�3
(6.7)

Integrating

n=
∫
dn= Ω8πp3

max

3h3
(6.8)

where n=N or Z

Pn(max) = �

r0

(
9π

4

) 1
3
(
N

A

)1/3

=K
(
N

A

)1/3

(6.9)

EN(max) = p2
max

2m
= �

2

2r2
0M

(
9π

4

) 2
3
(
N

A

)2/3

= K2

2M

(
N

A

)2/3

(6.10)

Similarly, for protons

EZ(max)= K2

2M

(
Z

A

)2/3

(6.11)

The total kinetic energy of all the protons in the gas is given by

EZ =
∫ Z

0
Edn
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where dn is given by (6.7)

EZ =
∫ Pmax

0

p2

2M

p2Ωdp

π2�3
= Ω

10Mπ2�3
(pmax)

5

Using (6.11) and Ω = 4
3πR

3A,

EZ = 3

5
ZEZ(max) (6.12)

Similarly

EN = 3

5
NEN(max) (6.13)

6.3.2 Asymmetric Term (δ) in the Mass Formula

Let the kinetic energy of a nucleus be represented by E(N,Z) and the standard
nucleus have N = Z = A/2. We shall now show that the standard nucleus is the
isobar with least energy. For this purpose we can compute the increase in kinetic
energy of an isobar with a neutron or proton excess. This is clearly

δE = E(N,0)+E(0,Z)−E
(
A

2
,
A

2

)

= 3

5

K2

2MA2/3

[
N5/3 +Z5/3 − 2

(
A

2

)5/3]

= 3

5

K2

2MA2/3

[(
A

2
+Δ

)5/3

+
(
A

2
−Δ

)5/3

− 2

(
A

2

)5/3]
(6.14)

where Δ=N − A
2 = A

2 −Z.
For any real nuclei Δ is small. We can therefore expand (6.14) as far as Δ2 and

obtain the result for the increase in kinetic energy

δE = 3

5

K2

2MA2/3
×
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A

2
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)2/
A (6.15)
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This is always positive and as the depth of the potential well is independent of N , Z
and A, it follows that the standard nucleus is the isobar with the least energy. Note
that it is only the exclusion principle which makes it possible for stable nuclei to
contain protons at all. Without this it would always be energetically more favourable
to add another neutron rather than a proton to the nucleus, so that the most state
nuclei would consist entirely of neutrons.

6.3.3 Odd-Even Term in the Mass Formula

If there is an odd number of neutrons in the nucleus then the highest energy state is
only half filled and so the next neutron will go into it. This means that the energy
of the nucleus does not increase smoothly with N , as had been assumed but rather
than in steps, that is compared with the smooth increase an even-even nucleus will
have less energy and an odd-odd one. This step-like increase of energy is ensured
by the δ-term in the mass formula. A rough form of the δ-term follows from the gas
model. Clearly, the energy of an even-even nucleus (N,Z) has been overestimated
in comparison with the nucleus (N − 1,Z) by Emax(N)−Emax(N − 1) and this is
represented by f (A)

f (A)= K2

2MA2/3

[
N2/3 − (N − 1)2/3

]� const

A2/3N1/3

But

N � A

2

f (A)� const

A
(6.16)

Actually

f (A)� 1

A3/4
(6.17)

6.3.4 Threshold for Particle Production in Complex Nuclei

Consider the pion (π -meson) production in proton collisions in hydrogen

p+ p→ n+ p+ π+

The target proton is essentially at rest and the threshold for single pion production
is found to be 289.37 MeV (see [9], Chaps. 3, 6 and 7). In case of a complex target
nucleus, high energy collisions are expected to take place with individual nucleons,
because of small de Broglie wavelength of the incident particle. However, because
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of the Fermi momentum of the target nucleons the threshold energy becomes much
smaller. For a nucleon moving with maximum momentum of 218 MeV/c (EF =
25 MeV) in the opposite direction to that of incidence, less energy is needed for
the incident proton for the reaction to proceed. Consequently the required threshold
energy is dramatically lowered to 160 MeV (see [9], Example 3.27).

For antiproton-proton pair production in the reaction

p+ p→ p+ p+ p+ p−

the threshold is calculated as 6 Mc2 or 5.64 GeV for collisions in hydrogen target.
But in complex nuclei the threshold is reduced to about 4.0 GeV.

6.3.5 Application to Neutron Stars

For these objects Coulomb energy is not to be considered. Apart from the attractive
nuclear force which would lead to a density ρ0, the gravitational force can cause the
resulting density to go up to ten times larger.

Neutron stars are produced in supernova explosions. The burnt out centre of the
star whose mass is between one and two solar masses, and is mainly made of iron,
collapses under the gravitational force. The high density increases the electron’s
Fermi energy so much that the inverse of β-decay, +e− → n+ ν, takes place, while
the beta decay, n→ p + e− + νc is forbidden by the Pauli’s principle. All the pro-
tons in the atomic nuclei are eventually converted into neutrons. The Coulomb bar-
rier disappears, the nuclei lose their identity and the interior of the star is solely
composed of neutrons

56
26Fe + 26e− → 56n+ 26νe

The implosion is only stopped by the Fermi pressure of the neutrons at a density of
1018 kg/m3. If the mass of the central core is greater than double the solar mass the
Fermi pressure can not withstand the gravitational force and the star ends up as a
black hole.

The known neutron stars have masses 1.3 to 1.5 solar mass with typical radius
R of the order of 10 km. In the simplest model the innermost core is composed
of a degenerate neutron liquid with a constant density. To a good approximation
the neutron star may be considered as a gigantic nucleus held together by its own
gravitational force. We can now estimate the size of a typical neutron star with a
mass M = 3 × 1030 kg which is about 1.5 times the solar mass and corresponds to
a neutron number N = 1.8 × 1057. Assuming that the neutron star is a cold neutron
gas the Fermi momentum is given by (6.9)

PF =
(

9πN

4

)1/3
�

R
(6.9)
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The average kinetic energy per neutron is given by (6.13)

〈Ekin/N〉 = 3

5

p2
F

2Mn
= C

R2
(6.18)

where C = 3�2

10Mn

(
9πN

4

)2/3

(6.19)

The gravitational energy of a star with constant density implies that the average
potential energy per neutron is

(Epot/N)= −3

5

GNM2
n

R
(6.20)

whereMn is the mass of the neutron and G is the gravitational constant. The star is
in equilibrium if the total energy per nucleon is minimized

d

dR
〈E/N〉 = d

dR

[〈Ekin/N〉 + 〈Epot/N〉]= 0 (6.21)

Inserting (6.18) and (6.20) in (6.21) we find

R = �
2(9π/4)2/3

GM3
nN

1/3
(6.22)

Using the numerical values, R � 12 km for such a neutron star which is close to
the experimental value and an average neutron density of 0.25 nucleons/fm3, which
is about 1.5 times the density ρ0 = 0.17 nucleons/fm3 for the atomic nucleus. The
calculations have ignored the mutual repulsion of neutrons at high densities. In spite
of the crudeness of the model the result of calculations are satisfactory.

6.3.6 Energy Levels of Individual Nucleons

The Fermi gas model is generally employed to describe the macroscopic phenom-
ena like conduction of electrons in metal, nucleons in neutron stars, electrons in
white dwarf etc., where the quantization of angular momentum may be neglected.
By contrast a microscopic system, for example a nucleus is so small that it pos-
sesses distinct energy levels with distinct angular momenta. The energy levels in a
spherically symmetric potential are calculated to possess orbital angular momentum
l = 0,1,2, . . . . At zero temperature the lowest lying states are all occupied. The in-
teraction between the nucleons can only cause the nucleons to swap their place in
the energy level spectrum. This is unobservable as the total energy of the nucleon is
unchanged. This is the reason for associating the individual nucleons in the nucleus
with definite energy and angular momentum state. The wave function that describes
such a state is the one-particle wave function. The nuclear wave function is the
product of all the one-particle wave functions.
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It is not at all obvious that nucleons move freely inside the nucleus. This is
demonstrated by using  -hyperons as probes.

In 1970’s an elegant experiment was conducted at CERN to investigate the
energy levels of the individual nucleons by employing Λ-hyperons as a probe.
Λ-hyperon is produced frequently in the absorption of K−-meson with a nucleon
via

K− + p→ Λ+ π0 (6.23)

K− + n→ Λ+ π− (6.24)

When the K− is captured by a complex nucleus the Λ-hyperon thus produced may
be attached to the nucleus after knocking out one of the nucleons. The nucleus thus
formed is known as hyper-nucleus (see [9], Sect. 3.8, Chap. 7). A Λ particle in the
nucleus cannot decay strongly since strangeness is conserved in such an interaction.
Its lifetime is therefore approximately that of a free Λ particle; that is ∼10−10 s.
This is long enough to permit the analysis to be made.

Since the neutron in the reaction (6.24) is bound and the Λ also remains inside
the nucleus the energy difference between the K− and the π− yields the difference
between the binding energies of the neutron and the Λ:

BΛ = Bn + Tπ − TK + (MΛ −Mn)c2 (6.25)

where Tπ and TK are pion and kaon kinetic energies.
The Pauli principle does not restrict the states the hyperon occupies. Conse-

quently the hyperon may be captured in any bound state however deep it might
be.

Binding energies of Λ-hyperon have also been determined in the interactions of
secondary pion at Brookhaven [5]

π+ +A→ΛA +K+

Results of such experiments have yielded the binding energies of the Is states as
well the excited p, d and f states for various nuclei, Fig. 6.3.

This shows the dependence of these binding energies upon the mass number A of
the hypernuclei and that the Λ hyperons occupy discrete energy levels. The curves
shown are the theoretical curves based or the calculations which assume a potential
with uniform depth V0 � 30 MeV and the nuclear radius R = r0A1/3 [6, 12]. The
scale A−2/3 corresponds to R−2 and is chosen because BΛR2 is almost constant for
states with the same quantum numbers.

6.4 Shell Model

The basic assumption of the shell model is that nucleons move around in a nucleus
in an average potential rather freely. There is an apparent contradiction with Bohr’s
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Fig. 6.3 Data on binding energies of s, p, d and f single-particle states of the Λ as a function of
A−2/3 [4]

idea of liquid drop model in which the particles are supposed to be highly interacting
with each other. This paradox is, however, resolved if we consider Pauli’s exclusion
principle which says that no two nucleons can be in the same state. In other words,
even if a nucleon hits another nucleon inside the nucleus no transfer of energy will
take place since the other nucleon will have to be raised on the energy level but the
nucleus being a degenerate gas, the higher levels are already filled up. Hence transfer
of energy is highly suppressed. Thus because of Pauli’s exclusion principle nucleons
inside nuclear matter may have a very long mean free path. The assumption made is
that nucleons more around very much similar to the motion of electrons in an atom.
The underlying idea of shell model is that nucleons move in orbits of definite energy
and angular momentum and that the outstanding stability of the nuclides in due to
the completion of a neutron or proton shell in the same way as the stability of the
rare gas atoms is due to completion of an electron shell. The situation in the case of
nucleus is complicated by two factors:

(i) The “central” potential is really an average potential and the addition of an extra
nucleon modifies this potential far more than the addition of an electron in the
atomic case.

(ii) Because of the Coulomb repulsion of the protons, the number of neutrons and
protons in a nucleus are not even approximately the same in all but the lightest
nuclides. It is, therefore, most unlikely that a nuclide with a closed shell number
of neutrons can also have a closed number of protons and vice versa.
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6.4.1 Magic Numbers

It is found that the numbers of neutrons or protons lead to particular stability, 2, 8,
20, 28, 50, 82, 126. These are called Magic numbers. The particular nuclei ought to
be and are 4

2He, 16
8O, 40

20Ca, 48
20Ca, 208

82Pb. These are so called doubly magic numbers
in which both neutrons and protons have magic numbers.

6.4.1.1 Evidence for Magic Numbers from Abundances

(i) The number of stable and long-lived isotopes is greater at Z = 20 (six) and
at Z = 50 (ten) than for any other even Z close by. The mass spread between
46
20Ca and 48

20Ca is double the usual value in the neighbourhood. Special stability
associated with N = 28 may account for the existence of 48

20Ca. The heaviest
and lightest naturally occurring isotopes of tin differ by 12 neutrons. Only one
other element, xenon, attains an equally large spread of isotopic masses; in this
case the existence of the heaviest isotope 134

54Xe may be attributed to the special
stability associated with N = 82.

(ii) The number of stable and long-lived isotopes is greater at N = 20 (five), N =
28 (five), N = 50 (six) and N = 82 (seven) than for any other even N close by.

(iii) Pairs of stable and long-lived nuclides with different odd Z, but with the same
even number of neutrons, occur only atN = 20(37

17Cl, 39
19K),N = 50(87

37Rb, 89
39Y)

and N = 82(139
57La, 141

59Pm).
(iv) There are several exceptions to the statement that the relative abundance of an

even A isotope is in general much less than 60 %. In these exceptional cases,N
is either 50 or 82. Examples of these exceptional cases are 88

38Sr, 138
56Ba, 140

58Ce.
(v) The study of absolute abundances show peaks at Zr (50 neutrons), Sn (50 pro-

tons), Ba (82 neutrons) and Pb (82 protons or 126 neutrons). Thus these ele-
ments are more abundant than their neighbors.

6.4.1.2 Evidence for Magic Numbers from Stability

(i) Data show a sharp reduction in the binding energy of the last nucleon added to
the magic number nuclei, for example for a neutron added to N = 126 and a
proton added to Z = 82 nuclides.

(ii) The plot of the binding energy per nucleon against mass number shows special
stability for the higher magic numbers. Specially significant are the changes
in B/A at mass number 208 associated with the completion of the 82-neutron
shells, at or near mass number 140(Ce140) associated with the completion of
the 82-neutron shell, at or near mass number 88(Sr88) associated with the com-
pletion of the 50-neutron shell.

(iii) The known delayed neutron emitters are 87
36Kr, 137

54Xe and 17
8O, the emission

occurring in all cases from one or in more excited states. These nuclei emit
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neutrons when excited by the β-decay of a parent radioactive fission product.
These are extreme examples of the below average binding energy of the odd
particle whenN or Z exceeds the magic value by one. The shell binding energy
of the odd particle makes neutron emission possible at relatively low excitation
energies.

6.4.1.3 Evidence for Magic Number from Neutron Cross-Sections

Neutron absorption cross-sections are generally small for nuclides containing 50,
82 and 126 neutrons for neutron energies in the range 0.4–1.0 MeV. This can be
understood in terms of a relatively low excitation energy of the compound nucleus
containing 51, 83 or 127 neutrons. At low excitation energies, the level density is
small and consequently also the cross-section. No significant resonant scattering or
absorption is found for neutrons of energies below 0.1 MeV in 90

40Zr, 119
50Sn, 139

57La,
209
83Bi.

6.4.2 Theory

Various potential wells have been used for the central potential in which nucleons
move around, for example square well, oscillator well, and infinite spherical well.
The model was originally suggested as a possible explanation of the fluctuations in
the relative abundance and relative masses of nuclei in the periodical table. Such
fluctuations were associated with shell filling and shell closures at magic numbers.
In the simplest approach Schrodinger’s equation in three dimensions was used for
the assumed potential.

Infinite Harmonic Oscillator Well The potential has the form

V (r)= −V0 + 1

2
Mω2r2 (6.26)

where m is the reduced mass of the nucleon and ω = 2πν is the angular frequency
of the oscillator. Schrodinger’s equation is

(
− �

2

2M
∇2 + V (r)−E

)
ψ = 0 (6.27)

The solution for a spherically symmetric well has the form

ψnim = uni(r)Y lm(θ,φ) (6.28)

where Y lm(θ,φ) are spherical harmonics whose presence expresses the fact that the
angular momentum l and its z-component m are constants of motion. The function
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Table 6.1 Isotropic
Harmonic states  E 

�ω
Orbitals 2Σ(2l + 1) NorZ

6 15/2 1i 2g 3d 4s 56 168

5 13/2 1h 2f 3p 42 112

4 11/2 1g 2d 3s 30 70

3 9/2 1f 2p 20 40

2 7/2 1d 2s 12 20

1 5/2 1p 6 8

0 3/2 1s 2 2

unl(r) contains the radial dependence of the function and satisfies the equation

(
− �

2

2M

d2

dr2
+ V (r)+ �

2

2M

l(l + 1)

r2
−En,l

)
runl = 0 (6.29)

Put

q =
√
Mω

�
r (6.30)

Then (6.29) reduces to

− d2

dq2
+ q2 + l(l + 1)

q2
−
(

2En,l
�ω

)
(qunl) (6.31)

The only eigen values of such an equation are shown to be

E =EΛ =
(
Λ+ 3

2

)
�ω,  = 0,1,2 . . . (6.32)

These are a number of degenerate eigen functions classified by their l-values.

For Λ even, l = 0,2,4, . . . ,Λ
For Λ odd, l = 1,3,5, . . . ,Λ
For given Λ

unl ∼ ql exp

(
−1

2
q2
)
fnl(q) (6.33)

where the function f (q) is a polynomial in even powers of q starting with a non-
vanishing constant term. Table 6.1 exhibits the structure of the first few levels in-
cluding nl values, degeneracy and the total number of like particles (neutrons or
protons) making up the closed shells.

The states in the same row (like 1h, 2f , 3p) are degenerate, the energy levels
being identical. Closed shells occur at 2, 8 and 20 and are in agreement with the
empirical indications, but 28, 50, 82 and 126 are not in evidence.
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Table 6.2 States for
rectangular potential well of
infinite depth

Level ωnl 2(2l + 1) 2Σ(2l + 1)

2g 11.7049 18 156

1i 10.5128 26 138

3p 10.9041 6 112

2f 10.4171 14 106

1h 9.3555 22 92

3s 9.4248 2 70

2d 9.0950 10 68

1g 8.1826 18 58

2p 7.7253 6 40

1f 6.9879 14 34

2s 6.2832 2 20

1d 5.7635 10 18

1p 4.4934 6 8

1s 3.1416 2 2

Rectangular Well of Infinite Depth The radial function inside the well can be
expressed in terms of a Bessel function of half integral order

unl(r)= r−1/2Jl+1/2

(
ωr

R

)
(6.34)

with

ω=
√

2MER2

h2
(6.35)

The boundary condition at r =R requires

Jl+1/2(ω)= 0

Thus ωnl is the nth zero of the Bessel function of order l + 1
2 ; also

Enl = �
2ω2
nl

2MR2
(6.36)

Numerical results are listed in Table 6.2. The degeneracy with respect to l character-
istic of the oscillator potential does not exist in the rectangular well. Otherwise, the
order of levels is remarkably similar. The closed shell numbers 2, 8 and 20 occur
again and also many others having no apparent connection with the observations.
Once more 28, 50, 82 and 126 are missing from the list of closed shell numbers.
The third column gives the number of particle Nnl = 2(2l+ 1) in each orbit and the
last column the accumulating number. Some other potentials were also tried with
similar results.
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6.4.3 LS Coupling

A quite different suggestion was put forward independently by Mayer and by Haxel
Jensen and Suess. So far no account has been taken of the possible splitting of each
energy level into two according as the spin S and angular momentum l of the particle
in the level are in the same or in opposite directions. Such a splitting could be due
to a spin-orbit coupling which introduces a term of the form l · s into energy. If such
a splitting is postulated and if it is further assumed that

(i) the j = l + 1
2 level is below the j = l − 1

2 level
(ii) the splitting increases with l which follows naturally from the l · s form of the

spin-orbit term, then the level scheme is the one given in Table 6.3. The scheme
clearly reproduces all the magic numbers

To reproduce the higher magic numbers a spin-orbit coupling term is added to the
oscillator potential so that the single-particle potential has the form

V (r)= −V0 + 1

2
Mω2r2 − 2α

�2
(L · S) (6.37)

Now
2

�2
(L · S)= j (j + 1)− l(l + 1)− s(s + 1)

For a nucleon, s = 1
2 and j = l ± 1

2

2

h2
(L · S)=

⎧⎨
⎩
l for j = l + 1

2

−(l + 1) for j = l − 1
2 ; l �= 0

(for l = 0, the spin orbit term vanishes). We can write (6.37) in the form

V (r)= −V0 + α
{−l
l + 1

+ 1

2
Mω2r2 for j = l ± 1

2
(6.38)

Since the spin-orbit contributions are constant, like V0, the oscillator eigen functions
are not altered by the introduction of a spin-orbit coupling.

Now for the oscillator, V (r) = −V0 + 1
2Mω

2r2 (without coupling) and the en-
ergy eigen values are given by

Enl = −V0 +
(

2n+ l − 1

2
�ω

)
(l = 0,1,2 . . . ), (n= 1,2,3 . . . ) or (6.39a)

Enl −E10 =Λ�ω Λ= 2(n− 1)+ l = 0,1,2, . . . (6.39b)

The lowest lying energy state is given by the eigen value

E10 = −V0 + 3

2
�ω
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Table 6.3 States with spin-orbit coupling

For the spin-orbit case, therefore in (6.39a), we must replace −V0 by

−V0 + α
{−l
l + 1

to obtain

Enjl =
(

2n+ l − 1

2

)
�ω− V0 + α

⎧⎨
⎩

−l for j = l + 1
2

l + 1 for j = l − 1
2
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En, l + 1

2
, l −E1,

1

2
,0 =Λ�ω− αl

En, l − 1

2
, l −E1,

1

2
,0 =Λ�ω+ α(l + 1)

where Λ is given by (6.39b).
The degeneracy is therefore partly reduced; the energy eigen values for L and S

antiparallel (j = l − 1/2) are shifted to higher energies. For L and S parallel the
eigen values are shifted to lower energies. This occurs in such a way that the centre
of gravity of the energy is not changed: the degeneracy of the state j = l + 1/2 or
j = l − 1/2 is of degree

2j + 1 = 2

(
l + 1

2

)
+ 1 = 2(l + 1)

2j + 1 = 2

(
l − 1

2

)
+ 1 = 2l

Hence we have

−αl × 2(l + 1)+ α(l + 1)× 2l = 0

and the centre of gravity of the energy is indeed the same.
In a nucleon shell with fixed Λ, the state with l =Λ and j = l + 1/2 =Λ+ 1/2

is lowered most strongly by the spin-orbit coupling. If the shift is so great that the
lowest level of the Λ shell must be calculated in the next lower shell, while the
lowest level of the next higher shell is shifted into the Λ shell; we get the following
occupation numbers

NΛ =
Λ∑
l

2(2l + 1)= 2
[
(2Λ+ 1)+ (2Λ− 3)+ (2Λ− 7)+ · · · + 1

]

Number of terms in the arithmetic series = Λ+2
2 .

Sum =NΛ = 2(Λ+2
2 ){ (2Λ+1)+1

2 } = (Λ+ 1)(Λ+ 2)

NΛ = 2, 6, 20, 30, 42, 56, . . .

The lowest level of the energy shell with the quantum number Λ has the maximal
occupation number

2

(
Λ+ 1

2

)
+ 1 = 2(Λ+ 1)

Hence the new occupation number N ′
Λ of the energy shell Λ is

N ′
Λ =NΛ − 2(Λ+ 1)

Depleted
+ 2(Λ+ 2)

Repleted

= (Λ+ 1)(Λ+ 2)− 2(Λ+ 1)+ 2(Λ+ 2)

= (Λ+ 1)(Λ+ 2)+ 2
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Table 6.4 Reproduction of
magic numbers by spin-orbit
scheme

Λ Ns ΣNs

5 N ′
 = 44 126

4 N ′
 = 32 82

3 N ′
 = 22 50

3 2( + 1)= 8 28

2 N = 12 20

1 N = 6 8

0 N = 2 2

For the first three shells (Λ= 0,1,2) the splitting is still so small that the occupation
number Ns is given by NΛ. The deepest level of the shell Λ= 3 has the occupation
number Ns = 8. This level turns out to lie, because of the spin-orbit splitting just
between the two shell Λ= 2 and Λ= 3. It therefore forms its own shell. For Λ≥ 3
the splitting is so strong that the maximal occupation number is given by Ns =N ′

Λ.
Thus the magic numbers are successfully reproduced with the spin-orbit coupling

scheme, see Table 6.4.

6.4.4 Predictions of the Shell Model

6.4.4.1 Abundances and Stability of the Closed Shell Nuclei

Direct mass measurements show marked breaks in the mass defect curve for nu-
clei with Z = 20,28,50 and N = 20,28,50. The number of stable species become
markedly larger for N = 20,28,50,82 than for nearby N values. Among the rare
earths where chemical processes in nature can not much affect the original abun-
dances, the isotopes with N = 82 are outstandingly abundant. The neutron binding
energy is specially high for nuclei with N = 50 and 82. These facts show the ex-
tra stability of closed-shell nuclei. The strong tendency to asymmetric fission by
thermal neutrons seems to be a dynamic effect of some complexity but again it de-
pends on the marked stability of the closed nucleon shell, so that the most favored
fragments are those with N = 82 and their compliments.

6.4.4.2 The Spins of Nuclear Ground States

All observed nuclei with even Z and even N = A− Z, are spherically symmetric
in the ground state, with J = 0. This is the simplest line of evidence for the rule
for pairing off the angular momenta for nuclei with Z odd, N even or with Z even,
N odd which follows from the model nearly uniquely. With a handful of exceptions,
assignment can be correctly made for about hundred and fifty such nuclei. As an
example from Table 6.3 it follows that the lightest nucleus with spin 9/2 must occur
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when the neutron 1g9/2 state begins to be filled. This is at 41 neutrons. The lightest
nucleus at N = 41 is 73Ge, which indeed has a measured spin of 9/2. No lighter
stable nucleus is known to have so high a spin. The scheme outlined so for enables
us to deduce the angular momenta of nuclides consisting entirely of closed shells,
and also of nuclides consisting entirely of closed shell plus or minus one particle.
Because of the exclusion principle the former must have zero angular momentum,
and in the latter case the total angular momentum is just that of the excess particle
or of the “hole” that is the particle which would have to be added to complete the
shell. Thus the angular momenta of 16

8O8, 40
20Ca20, 208

82Pb126 should be and are zero,

and those of 15
7N8, 17

8O9, 39
19K20, 207

82Pb125 and 209
83Bi126 should be and are 1/2, 5/2,

3/2, 1/2 and 9/2 respectively.
Because of the pairing energy, an even number of like nucleons in the partly

closed subshell form pairs so that their contribution to the ground-state angular mo-
mentum is 0+. If the total number of neutrons (protons) in the subshell is odd, one
will, of course, remain unpaired. These considerations lead to the following rules
for the angular momenta and parities of nuclear ground states.

1. Even-even nuclei, that is, nuclei with even Z and even N , have total ground-state
angular momentum J = 0+. There is no known exception to the rule.

2. An odd nucleus, that is, a nucleus with odd Z or odd N , will have a total ground-
state angular momentum equal to the half-integral angular momentum J and the
parity (−1)l of the unpaired particle. These are no exceptions to this rule.

3. An odd-odd nucleus will have a total angular momentum which is the vector sum
of the odd-neutron and odd-proton I -values

J = jn + jp

The quantum number J is therefore an integer between the limits

|jn − jp| ≤ J ≤ jn + jp
The parity will be the product of the proton and the neutron parity, that is, π =
(−1)ln+lp .

Observed angular momenta of nuclear ground states provide a more stringent test
for the shell model than do the magic numbers. The level sequences are found to be
in good agreement with the calculated schemes. However, some of the levels inside
a major closed shell are quite close in energy so that the sequences are not always
strictly followed. There is a tendency for pairs of particles to go into higher orbital
angular momentum states rather than into s- or p-states when the competing states
are close. This is due to the fact that the pairing energy increases with increasing l.
The effect of the pairing energy is that a level will be depressed when it contains
an even number of nucleons compared with its position when it contains an odd
number. Further, the effect increases with increasing orbital angular momentum.
Thus, the odd A nuclides with odd N above 58, should have angular momentum
7/2 or 11/2. Instead, they have angular momentum 1/2 which shows that the 1g1/2
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and 1h11/2 levels are depressed below the 3s1/2 level when they are filled by even
number of nucleons. The shell-model calculations are valid for spherical or near
spherical nuclei. In regions where large quadruple moments are found, the ground-
state angular momenta do not generally follow the predicted values. Among the
light nuclei, 19F, 19Ne and 23Na have Jπ = 1/2+, 1/2+ and 3/2+ where as the
shell model predicts 5/2+.

6.4.5 Magnetic Moments

Even-even nuclides having zero angular momentum also have zero magnetic mo-
ment. The magnetic dipole moment of a nucleus can be finite only if J � 1/2. One
can calculate the magnetic moments of odd-A nuclides. It is assumed that the mag-
netic moment of such a nucleus is due entirely to the magnetic moment of the last
nucleon. On the shell model each odd-even nucleus has a spherically symmetric
set of closed neutron and proton shells, surrounded by paired neutrons and protons,
again with J = 0 and therefore has no magnetic moment. Entire angular momen-
tum J is assigned to the resultant spin and orbital motion of the one remaining odd
nucleon and with that J , all the magnetic moment.

From this single-particle, the magnetic moment can be calculated, just as in the
atomic Zeeman effect, by the formulae of the vector model.

The magnetic moment vector in the sum of two contributions, one from whatever
current is produced by the orbital motion of the nucleon, the other from its intrinsic
magnetic moment.

In the addition of spin and orbital angular momentum to a total angular momen-
tum, the total magnetic moment vector no longer points in a direction parallel (or
antiparallel) to the vector j, because the g factors are different. However, since the
total angular momentum is conserved in the absence of external torques, the vec-
tor

μ = μl + μs

will precess, together with l and s about the vector j, so that the time average com-
ponent of μ in the direction of J will remain constant, see Fig. 6.4.

Odd Z (proton contribution only)

μ = μorb + μint = e�

2Mc

[
l +μp(2s)

]

Odd N (neutron contribution only)

μ = 0 +μn(2s)
e�

2Mc
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Fig. 6.4 Magnetic moments

where the vector l and s are the orbital angular momentum and spin operators, and
the coefficients μp and μn the intrinsic magnetic moments of the two nucleons in
units of the nuclear magneton e�/2Mc. The neutron orbital motion does not produce
electric current and makes no contribution to the magnetic moment. The measured
magnetic moments correspond to energies of orientation in a magnetic field along
which the total angular momentum j = l + s is quantized while l and s precess about
it. The tabulated magnetic moment μ refer to the maximum value of the projected
component of the moment along the magnetic field direction, that is to that obtained
when 〈jz〉 = (Mj )max = j .

The magnetic moment is just

〈μz〉max = μ= (μ · j)
〈j2〉 j

μ = (glal + gsas)j

where gl = 1 for proton and 0 for neutron, gs = 2.7g for proton and −1.91 for
neutron. The coefficients alj and asj are the projections of j and s on j, that is

al = l · j
j2

= j (j + 1)+ l(l + 1)− s(s + 1)

2j (j + 1)
(6.40)

as = s · j
j2

= j (j + 1)+ s(s + 1)− l(l + 1)

2j (j + 1)
(6.41)

Now s = 1/2 and l = j + 1/2 or j − 1/2. If one of these is even, the other is odd
and so l is a good quantum number, since a nucleus has a definite parity. Putting
l = j − 1/2 and s = 1/2 in (6.40) and (6.41)
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al = j (j + 1)+ (j − 1
2 )(j + 1

2 )− 3
4

2j (j + 1)

= 2j2 + j − 1

2j (j + 1)
= (j − 1

2 )

j

as = j (j + 1)+ 3
4 − (j − 1

2 )(j + 1
2 )

2j (j + 1)
= 1

2j

For l = j + 1
2 , s = 1

2

al = 2j + 3

2(j + 1)

as = − 1

2(j + 1)

μ =
(
j − 1

2

)
gl + gs

2
for l = j − 1

2
(6.42)

μ = j

j + 1

[(
j + 3

2

)
gl − gs

2

]
for l = j + 1

2
(6.43)

6.4.6 Schmidt Lines

The values of μ in (6.42) and (6.43) are known as the Schmidt values and are plotted
against j in Fig. 6.5. Clearly, the agreement is not good although the experimental
values follow the trend of the two theoretical lines, the “Schmidt lines” and almost
without exception lie between them. In general, they are nearer to one line than to
the other. It is then assumed that in the first approximation, the experimental values
would be on the line to which they are nearer. It is possible to deduce the orbital
angular momentum quantum number l of the last nucleon from the experimentally
measured values of the total angular momentum j and the magnetic moment μ of
the nucleus.

Notice that there is a very important difference between the shell model pre-
dictions of angular momentum and of magnetic moments. Angular momenta are
quantized and predictions are therefore, right or wrong, in general they are right.
Now if the basic simplifying assumption of the shell model that observable effects
in odd-A nuclides are due to the last nucleon only, is not entirely correct, this will
not affect the angular momentum values. It merely means that we are dealing with a
mixture of states with the same angular momentum. The situation is quite different
for magnetic moments. These are not quantized, and so different mixture of states
yield different magnetic moments. The fact that the magnetic moments as a rule do
not lie on the Schmidt lines is a proof that mixing of states occurs, that on the whole
they do not lie far from the Schmidt line shows which single particle state of the
shell model is the most important of the states in the mixture.



376 6 Nuclear Models

(a)

(b)

Fig. 6.5 (a) Odd N , even Z Schmidt diagram of j and μ for odd-Z even-N nuclides. The solid–
line histogram corresponds to the Schmidt limits for each value of j , if j and μ were due entirely
to the motion of one odd proton. Open circles represent nuclides with one proton in excess of, or
with one proton less than a “closed shell” of 2, 8, 20, 28, 40, 50 or 82 protons. (b) Odd Z, even
N Schmidt diagram of j and μ for even-Z odd-N nuclides. The histogram corresponds to the
Schmidt limits for each value of j , if j and μ were due entirely to the motion of one odd neutron.
Open circles represent nuclides which have one neutron more, or one neutron less, than the number
required to form a “closed shell” of 2, 8, 20, 28, 40, 50, 82 or 126 neutrons
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The formulae (6.42) and (6.43) define two curves for μ versus j with the values
of = l ± 1/2, for each class of odd-even nucleus. All measured values lie within
the region bounded by the curves (with the exception of the pair H3, He3). The
values lie mainly in two broad bands, roughly parallel to the two Schmidt curve,
but are not very well defined. In a large number of cases the value lies nearer
one of the curves than another, and nearly in all these cases, the l value so indi-
cated is the shell-model value. The deviations from the Schmidt curves are under
one nuclear magneton. These deviations are evidence of the approximate nature of
the single-particle model but the qualitative correctness of the picture cannot be
doubted.

6.4.7 Parity of Nuclei

With all the closed shells and the paired off nucleons having space symmetric wave
functions, the parity of a nucleus on the shell model is just that of the orbital motion
of the odd nucleon and is even or odd according to the character of l, that is parity is
even if l is even and parity is odd if l is odd. Since l is determined by the magnetic
moment in the ideal case, the measured magnetic moments provide one check on the
parity. The other important determination of parity is provided by β-decay theory.
The parity change in β-transitions, together with the spin change determines the
life time for a given energy release. The predictions of the shell model have made
possible a very orderly classification of β transitions.

6.4.8 Nuclear Isomerism

An excited nuclear state which lives long enough to have a directly measurable
lifetime is called an isomeric state. Such a state decays by radioactivity which is
different from the ground state but must be assigned the same values of Z and A.
In a few cases several isomeric states are present. It is remarkable that of the sixty
or seventy isomers of half life greater than one second known, all occur in “islands”
of the periodic table, grouped just below the magic numbers, 50, 82 and 126. It is
found that with two exceptions all isomers are found in four distinct groups, the
so-called “Islands of isomerism” given by

(i) 19 ≤N or Z ≤ 27
(ii) 39 ≤N or Z ≤ 49

(iii) 63 ≤N or Z ≤ 81
(iv) 91 ≤N or Z

Isomeric transitions always involve large changes of angular momentum (�I ≥ 3)
and it is this large change which leads to the long life time.
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Quadrupole Moment The shell model also makes predictions about the electric
quadrupole moment of an odd-A, odd-Z nuclide, on the assumption that this is
the last proton in the nucleus. The quadrupole moment as measured is actually the
greatest that is theoretically possible for a given j , that is it is the one for which
the magnetic quantum number of the last proton mj = j . For l and s parallel (j =
l + 1/2) this corresponds to ml = l and ms = +1/2. The proton wave function can
be written as

ψ = u(r)

r
NlP

l
l (cos θ)eilφα

where α is the spin wave function and Nl is a normalization factor such that

∫ ∣∣NlP ll (cos θ)eilφ
∣∣2dΩ = 1

Now Q, the quadrupole moment is given by

Q=
Z∑
i=1

(
3Z2
i − r2

i

)∣∣ψ(r1 · · · rA)
∣∣2dτ

where the integrations are over the 3A coordinates (xi, yi, zi )

Q=
∫ ∞

0
r2[u(r)]2

dr

∫
N2
l

(
3 cos2 θ − 1

)[
P ll (cos θ)

]2
dΩ

But (2l + 1) cos θpll (cos θ)= pll+1(cos θ)

∫ ∣∣Pmn (cos θ)
∣∣2dΩ = 4π

2n+ 1

(n+m)!
(n−m)!∫ ∣∣NlP ll (cos θ)eilφ

∣∣2dΩ = 1

N2
l × 4π

2l!
(2l + 1)

= 1 → N2
l = 2l + 1

4π2l!

Also

∫ ∞

0
r2[u(r)]2

dr = 〈
r2〉
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is the mean square radius of the orbit

Q= 〈
r2〉 ∫ (

3 cos2 θ − 1
) (2l + 1)

4π2l!
[
P ll (cos θ)

]2
dΩ

= 〈
r2〉 ∫ (3 cos2 θ − 1)(2l + 1)

22l!
[
P ll (cos θ)

]2
d cos θ

= 〈r2〉(2l + 1)

22l!
[

3
∫ [

cos θP ll (cos θ)
]2
d cos θ −

∫ [
P ll (cos θ)

]2
d cos θ

]

= 〈r2〉(2l + 1)

2(2l!)
[

3
(2l + 1)!
(2l + 1)2

2

2(l + 1)+ 1
− 2l! 2

2l + 1

]

= 〈
r2〉[ 3

(2l + 3)
− 1

]
= − 2l

2l + 3

〈
r2〉

Q= −2j − 1

2j + 2

〈
r2〉 (

∵ j = l + 1

2

)
(6.44)

For l and s antiparallel the derivation is more complicated. However, the result turns
out to be identical with (6.44)

Q= −2j − 1

2j + 2

〈
r2〉= −2l − 2

2l + 1

〈
r2〉 (

j = l − 1

2

)
(6.45)

It was pointed out that mixing of angular momentum states leads to different mag-
netic moments. The same is true of quadrupole moments, in fact they are even more
sensitive to the admixture of the single particle states. Admixtures ought to be least
for nuclides with one proton outside a closed shell or a proton hole in a closed shell.
It follows from (6.44) and (6.45) that a nuclide with a proton outside a closed shell
has a negative quadrupole moment and one with a proton hole a positive one.

As regards magnitudes of quadrupole moments we first make an estimate of 〈r2〉.
For a uniform charge distribution this is equal to 3

5R
2, but for the least bound pro-

tons, which is more likely, 〈r2〉 is expected to be some what larger. Equation (6.44)
shows that the absolute value of the quadrupole moment should be of the order of,
but slightly less than R2. This is found to be so for small A, but for A> 100 values
as large as 10 R2 occur. These deviations from the single particle model may well
be due to mixing of states, but in any detailed calculations become quite prohibitive.

6.4.9 Criticism of the Shell Model

The shell model is an improvement upon the Fermi gas model in that a more re-
alistic potential is used and the spin-orbit interaction is taken into account. All the
magic numbers are correctly reproduced. The nuclei with closed shell are correctly
predicted to have zero spin and positive parity in the ground state. Further, nuclei
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consisting of one nucleon outside a closed shell have the parity and spin of that nu-
cleon. The same argument can be used to assign the Jπ values for a shell which is
deficit by one nucleon for its completion, that is the shell with a hole. Thus the shell
model is very successful in predicting ground-state angular momenta but is not so
successful in describing excited states and magnetic moments. It is therefore obvi-
ous that the shell model gives an over simplified picture of the actual situation inside
the nucleus. The assumption of a spherical symmetric potential is incorrect in most
of the cases, evidenced by appreciable quadrupole moments possessed by some of
the nuclear states. The magnetic moments are also not predicted satisfactorily. Little
can be said about the nuclei which are in the middle of a major shell.

6.5 The Liquid Drop Model

In this model the dynamics of a nucleus are compared with that of a liquid drop
(N Bohr). The molecules of the liquid correspond to the nucleons in the nucleus.
Certain features are analogous but others are not. The density of a liquid is almost
independent of the size so that the radius R of a liquid drop is proportional to the
cube root of the number A of the molecules, similar to the nuclear case. The energy
necessary to evaporate the drop completely into well separated molecules is approx-
imately proportional to the number A analogous to the binding energy of a nucleus.
The surface tension of the liquid drop causes a correction to this relation since the
molecules on the surface are somewhat loosely bound compared to those in the in-
terior. This results in a correction term in the binding energy which is proportional
to the surface area or A2/3. Similar procedure is followed in the semi-empirical
mass formula for nuclear binding energies. However the dynamics of liquid matter
and nuclear matter are different in the quantum mechanical localization of the par-
ticles. The average kinetic energy of the molecules in the liquid is of the order of
0.1 eV. The corresponding de Broglie wavelength is of the order of 5 × 10−9 cm—
a value which is much smaller than the distance between molecules. The average
kinetic energy of the nucleons in nuclei is of the order of 10 MeV with a corre-
sponding rationalized de Broglie wavelength λ̄ ∼ 10−13 cm, which is just of the
order of internucleon distance. Thus while in liquids the motion of its constituents
can be described classically, and their positions can be well defined, compared to
their mutual distance, in nuclei the motion must necessarily be described quantum
mechanically since the uncertainty in the localization of the constituents is of the
order of magnitude of their distance.

The underlying concepts of liquid drop model are diametrically opposite to those
of Shell Model or independent-particle model. The interactions between nucleons
are assumed to be strong rather than weak. Nuclear levels are pictured as quantized
states of the entire nucleus and not as states of a single particle in an average field.
The concept of Liquid-drop model originated in Bohr’s assumption of compound
nucleus in nuclear reactions. When an incident particle is captured by a nucleus its
energy is quickly shared by all the nucleons. The mean free path of the captured par-
ticle is much smaller than the nuclear size. In order to explain such a behaviour, the
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interactions between nucleons have to be strong. Consequently, the particles cannot
move independently with negligible collision cross sections with their neighbours.
The Liquid-drop model attempts to explain the following nuclear properties

1. Substantially constant density of nuclei, with R ∝A1/3

2. Systematic dependence of the neutron excess (N−Z) onA5/3 for stable nuclides
3. Approximate constancy of the binding energy per nucleon B/A as well as its

trends with A
4. Mass difference in families of isobars and the energies of cascade β transitions
5. Systematic variation of α decay energies with N and Z
6. Fission by thermal neutrons of U235 and other odd −N nuclides
7. Finite upper bound on Z and N of heavy nuclides produced in nuclear reactions

and the nonexistence in nature of nuclides heavier than U238

6.5.1 Semi-Empirical Mass Formula

IfM is the total mass of an atom then

M(Z,A) = NMn +ZMp − avA+ aa (N −Z)2
A

+ asA2/3

+ acZ2A−1/3 + δ(A,Z) (6.46)

Total binding energy

B = (NMn +ZMp −M)c2

= avA− aa (N −Z)2
A

− asA2/3 − acZ2A−1/3 − δ(A,Z) (6.47)

whereN and Z are the neutron and proton numbers respectively,Mn andMp are the
masses of neutron and proton respectively, A is the mass number, Z is the atomic
number, R = 1.3 × 10−13A1/3 metre is the nuclear radius, ε0 is the permittivity,
δ(A,Z), α, β and γ are constants to be determined experimentally.

The first term on the right side of (6.47) arises from nuclear binding energy which
is proportional to A. The second term is due to the so-called asymmetry effect. It
arises due to the fact that in general in a nuclide neutron and proton numbers are
not equal. The third term arises due to the surface tension, and is proportional to
the surface area which goes as A2/3. The surface tension arises due to the fact that
on the surface nucleons are less tightly bound than those in the interior. The fourth
term is the Coulomb energy term which can be derived. The last term is the so-called
odd-even effect term which results from the fact that the stability of nucleus depends
on A and Z being odd or even.

Equation (6.46) is known as the semi-empirical mass formula due to Weisacker.
In order to know the constants precisely, it is desirable to know these constants
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Fig. 6.6 The relative importance of the principal terms in the semi-empirical mass formula. It is
notable thatB/A is remarkably constant forA> 50 for the first three terms, and that the asymmetry
term, although vitally important, is relatively small

from detailed theory of nuclear forces. The constant in the fourth term above can
be derived, others are determined empirically from mass spectroscopy, that is one
essentially uses precise masses of various nuclides in Eq. (6.47) and solves set of
equations by the least square method. Inserting the accepted values of these con-
stants Eq. (6.47) becomes

B (MeV) = 15.56A− 17.23A2/3 − 0.7
Z2

A1/3

− 23.285
(A2 −Z)2
A

− δ(A,Z) (6.48)

where δ(A,Z)= ±12A−1/2 (+ for A even, Z even, − for A even, Z odd, zero for
A odd, Z any thing). The constants in (6.48) are not unique as they depend on the
range of masses that have been used in their evaluation.

The binding energy per nucleon (B/A) is plotted against the mass number (A)
in Fig. 6.6. The relative importance of various terms is (6.48) is indicated.

The δ-term in (6.48) or (6.50) arises due to pairing energy. We have noted
(Chap. 4) that even-even nuclei containing protons as well as neutrons in pairs, are
energetically favored as compared with odd-even, even-odd, and odd-odd nuclei.
B/A is found by dividing the right side of (6.47) by A, Fig. 6.6. The decrease in
B/A for smallA is due to surface tension effect (Fig. 4.8) which is clearly important
for small A since the nucleons lying on the surface is proportional to surface area
i.e. R2 or A2/3 while total number of nucleons goes as volume i.e. R3 or A and the
fraction of nucleons lying on the surface is A2/3/A or A−1/3. At higher A, Z will
also increase.
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Fig. 6.7 Mass parabola for
isobaric family with A= 91

Consequently, Coulomb’s repulsive force being long range goes as Z2 as every
proton interacts with every other proton where as nuclear attractive force, being
short range goes as A, as the nucleons interact only with their neighbours.

The first and the third terms are the most dominant terms. It is found that
Eq. (6.48) for B agrees with the experimental values to better than 1 % for A> 15
and the difference in B values of nuclei of not two different A is often given cor-
rectly to 0.1 %. For a given A, the minimum of M(A,Z) as a function of Z must
correspond to the stable isobar. The condition δM/δZ = 0 yields

Z0 = A

2 + 0.015A2/3
(6.49)

From formula (6.49) it is seen that the isobars for light nuclei (small A) those for
which Z � A/2. But for heavy nuclei there is a significant departure from N = Z
line (Chap. 4, Fig. 4.10) and the nuclei are stable for neutron excess.

6.5.2 Nuclear Instability Against β Emission

For odd A, the relationship between atomic mass M and nuclear charge Z is as
shown in Fig. 6.7. The lowest isobar is the stable nuclide for the particular odd
mass number A. Isobars of larger Z decay by β+ or by electron capture. Isobar of
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Fig. 6.8 Mass parabolas for
isobaric family, A= 104

smaller Z decay to the stable nuclide by successive β− decay. Note that for odd
A each isobar is either even Z odd N or odd Z, even N . Now, Eq. (6.46) can be
written as

M(Z,A)= aA+ bZ +CZ2 ± δ (6.50)

which is an equation to a pair of parabolas. For odd A, δ = 0. Therefore, only one
mass parabola exists. The minimum lies at some value of nuclear charge Z0 which
determines the “most stable isobar” and which usually is a non-integer. The integer
Z which is nearest to Z0 determines the stable isobar of odd A.

Even-A and odd-Z nuclei should be unstable and should not be found in nature.
Actually, there are a few, for example 40

19K, which is actually radioactive. The suc-
cessive isobars no longer fall on a single parabola. The isobars of even Z, even N
fall on a lower parabola and, therefore, have more tightly bound nuclear structures
than the alternative odd Z, odd N isobars. The two parabolas differ by an amount
2δ and is associated with pairing energy, Fig. 6.8.

Figure 6.8 also shows that there can be two stable isobars for a particular even
value of A. The isobar on the lower parabola can decay only by β transition to
isobars on the upper parabola. Transitions can take place only by way of two suc-
cessive transitions through intermediate odd Z, odd N isobar on the upper parabola.
When this is energetically impossible both even Z, even N isobar are stable. There
are known 54 stable pairs and 4 triads of even Z, even N . The only alternative
transition between a pair of even Z even N isobar would be by the simultaneous
emission of two β or double β decay, for which half life time is of the order of
1024 years.
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6.5.3 Instability Against Neutron Decay

We can use Weisacker’s formula to compute the binding energy of neutrons in a
nucleus

BE(neutron)= [
M(A− 1,Z)+ 1.008665 −M(A,Z)]c2 (6.51)

This turns out to be positive for the stable elements showing that these do not emit
neutrons spontaneously. However, in the case of the nuclei which are formed as the
products of fission, usually they are highly excess in neutron number and can decay
via neutron emission.

6.5.4 Instability Against Alpha Decay

BE(α)= [
M(A− 4,Z− 2)+ 4.002603 −M(A,Z)]c2 (6.52)

The BE for α particle becomes negative in the middle of the periodical table
long before the natural α emitters are reached. The intervening elements are sta-
ble against α decay only because the α energies are so small that the lifetimes
are prohibitively long (Geiger-Nuttal law). The periodical table ends in the region,
Z = 90 − 100 because of the increasingly negative values of the BE for α emission
and fission.

6.5.5 Fission and Fusion

The decrease of the binding energy at low mass numbers indicates that energy will
be released if two nuclei of small numbers combine to form a single middle-class
nucleus. The process is known as nuclear fusion, and is the reverse of fission. It
occurs in the sun and other stars and is the underlying mechanism by which the sun
generates the energy it radiates.

The decrease of the binding energy (Fig. 4.1) at high mass numbers indicates
that they are more tightly bound when they are assembled into two middle-mass
nuclei rather than into a single high-mass nucleus. Thus, energy can be released in
the nuclear fission of a single massive nucleus into two smaller fragments.

It is easily shown that for A ≥ 85 symmetric fission in exothermic. However,
the nuclei would not undergo spontaneous fission since there is a potential barrier
high enough to effectively prevent spontaneous fission (compare this with α-decay
in which such a barrier accounts for long lives, Chap. 3).

Let the fission fragments be separated by distance r, the distance being measured
between their centers. As r decreases, Coulomb’s potential energy increases until
the fragments touch each other at r = a, Fig. 6.9.
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Fig. 6.9 Variation of
Coulomb’s potential energy
with r , the distance between
the centres of two fragments

Fig. 6.10 Binary fission of
a fragment

Inside ‘a’ (Fig. 6.9) several possibilities are open: for curve 1, spontaneous fis-
sion will occur and such a nucleus will not exist in nature. Curve 2 will correspond
to the threshold for fission. All curves below 2 will call for excitation energy. But,
for such nuclei the quantum mechanical penetration is still open. However, the mean
life times are of the order of 1021 years or so. In transuranium elements, particularly
among those recently discovered, several examples of relatively short half lives for
spontaneous fission have been found.

Consider a binary fission in which each fragment has the mass number A/2 nu-
clear charge Z/2, and radius R = r0(A/2)1/3. When the separation r between the
centres of two fragments is large compared with their radii (stage (a)), their mutual

potential energy is simply given by the Coulomb energy Ec = 1
4πε0

e2

r
(Z2 )

2. When
r decreases until the two fragments are nearly touching, r ∼ 2R, nuclear attractive
forces begin to act. In that case the mutual potential energy is less than the Coulomb
value, as indicated between positions (b) and (c) in Fig. 6.10.
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If the fragments remained spherical, and attractive forces are most present then
the Coulomb energy when the two spheres just touched, that is r = 2R, will be

Ec = e2

4πε0

(Z/2)2

2r0(A/2)1/3
= 21/3

8

e2

4πε0

Z2

A1/3
(6.53)

Introducing the Coulomb’s constant ac = 3
20πε0

e2

r0
� 0.595 MeV, Eq. (6.53) be-

comes

Ec = 21/3

8

(
5

3
ac

)
Z2

A1/3
= 0.262ac

Z2

A1/3
� 210 MeV

for spheres (Z/2,A/2) in contact. This is shown as the extrapolated Ec curve at
r = 2R in Fig. 6.10.

When the two particles come closer together, r < 2R, the nuclear attractive forces
become stronger and the two halves coalesce into the (Z,A) nucleus, where energy
of symmetric fission, (d) in Fig. 6.10 is below the barrier height.

The nucleus (Z,A) will generally, be essentially stable against spontaneous fis-
sion if its dissociation energy Q is a few MeV below the barrier height.

6.5.5.1 Fission

Fission is the spontaneous disintegration of a heavy nucleus into two and some-
times three heavy fragments with the liberation of about 200 MeV energy. Natural
fission is possible but the probability is small, being down by a factor of ten million
compared with alpha emission. Fission may be readily realized by the absorption
of negative pions or by bombardment of α particles or protons. This is in contrast
with ordinary nuclear reactions in which only a small part of the heavy nucleus is
chipped off and the energy liberated or absorbed is only a few MeV.

6.5.5.2 Characteristics

The process of fission is distinguished from all other nuclear reactions in regard to
the amount of energy that is released, about 200 MeV, which is an order of magni-
tude greater than that in ordinary nuclear reactions. The masses of fission fragments
are not equal to half of the original nucleus but exhibit considerable asymmetry.
Fission is possible in heavy nuclei in which the binding energy per nuclei (B/A)
decreases with increasing mass numbers beyond A = 60 (Fig. 4.1). Hence at the
upper end of periodic table of the elements the division of the heavy nucleus with
B
A

= 7.6 MeV into approximately equal parts will release considerable energy due
to increase in B/A= 8.5 for the fission products. We can calculate the approximate
Q-values for the fission process. Consider the fission of a nucleus of mass numbers
A= 240 into two fragments (binary fission) each of mass number A= 120

Q= 2 × 120 × 8.5 − 240 × 7.6 = 216 MeV
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Alternatively, we can calculate the Q value from the actual masses. Consider a typ-
ical fission caused by the absorption of a neutron in the nucleus of U-235, in which
two additional neutrons are produced

235
92U + 1

0n→ 141
56Ba + 92

36Kr + 31
0n

Initial masses: 235.0439 + 1.0087 = 236.0526 amu
Final masses: 140.9139 + 91.8973 + 3.0261 = 235.8373 amu

Difference in mass = 0.2153 amu

Q= 0.2153 × 931.5 = 200.5 MeV

In fission, the mass converted into energy is

200

240 × 940
= 0.001 or 0.1 %

6.5.5.3 Mechanism

A heavy nucleus may be likened to a drop of liquid. In the ground state, the liquid
drop is believed to be perfectly spherical, with a sharp surface of radius R. It is
known that a liquid drop can be made to break up if mechanical vibrations of large
amplitudes can be set up. For elements below uranium, decay by natural fission
does not occur with appreciable probability. Some energy is therefore required to
induce fission artificially. A minimum energy, called activation energy is needed
for this purpose. When a neutron is absorbed, excitation energy is supplied to the
nucleus. It remains only to decide whether the excitation energy supplied is less
than, equal to or greater than the activation energy required for fission. Following
the absorption of neutron, the liquid drop is distorted by a small amount resulting in
the increased surfaces area. The surface tension forces tend to restore it to a spherical
shape. The nucleus is stable against small amplitude oscillations because excitation
energy associated with these oscillations is less than activation energy needed for
fission. If enough excitation energy is provided then the mechanical vibrations of
large amplitude can be set up. The energy associated with these vibrations is the
analog of the activation energy. On the other hand any arbitrary distortion reduces
the Coulomb energy because the centre of charge of the two ‘halves’ moves further
apart. The surface effect and Coulomb effect thus work in opposite direction. The
Coulomb effect lowers the activation energy needed for fission. Various stages in
the deformation of the nucleus before and after fission are shown in Fig. 6.11. For
a particular distortion, the nucleus may acquire a critical shape as in Fig. 6.11(e),
which is the case of unstable equilibrium. The two halves are barely joined and
the ‘neck’ is broken for a trifle increase of distortion. This is the point of no return
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Fig. 6.11 Various stages in the deformation of the nucleus before and after fission

and fission is imminent. After the fission, the resulting fragments emit a couple of
neutrons and reach a state of minimum energy. The theory is within the frame work
of liquid drop model of the nucleus, originally due to Bohr and Wheeler.

235U is fissionable by thermal neutrons (∼0.025 eV) while 238U is not. This
is because when the neutron is absorbed in 235U, an intermediate nucleus of 236U
(compound nucleus) is found. The excitation energy in 236U compound nucleus
is 6.8 MeV which is just equal to the required activation energy and fission takes
place. However, in the case of absorption of a thermal neutron in the nucleus of 238U
nucleus, the excitation energy in the compound nucleus of 239U is only 5.3 MeV.
This is not enough to cause fission because activation energy is 7.1 MeV.

6.5.5.4 Fission Fragments

Fragments resulting from fission have too many excess neutrons compared to their
stable isobars. The fragments tend to become stable through successive β− decay
followed by γ emission and alternatively by the evaporation of neutrons. These
are called prompt neutrons as they are emitted in a time of the order of 10−14 s.
On an average one neutron is produced per fission fragment. About 1 % of neu-
trons emitted by fission fragments are emitted at relatively long time after fis-
sion, that is l s to 1 minute later in the course of successive β decay. These are
called delayed neutrons which play a decisive role in the control of nuclear reactor
(Chap. 8).

About 85 % the energy released in the fission process appears as kinetic en-
ergy of fission fragments, the rest is associated with electrons photons and neutrinos
produced from the chain radioactive decay. The neutrons produced in the fission
process carry on average an energy of about 2 MeV If the fission occurs in a large
absorber, then the energy of all the fission products save the neutrinos manifests
itself as heat.

Example 6.1 Estimate the energy released in fission of 238
92U nucleus, given ac =

0.59 MeV and as = 14.0 MeV (Osmania University 1962).
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Solution

Q =M(Z,A)− 2M

(
Z

2
,
A

2

)

=
(
asA

2/3 + ac Z
2

A1/3

)
− 2

[
as

(
A

2

)2/3

+ ac Z2

4(A2 )
1/3

]

= asA2/3(1 − 24/3)+ ac Z
2

A1/3

(
1 − 1

22/3

)

Inserting A= 238, Z = 92, ac = 0.59 and as = 14 we find Q= 161 MeV.

6.5.5.5 Stability Limits for Heavy Nuclei

A rough estimate of the mass and charge of a nucleus which is unstable against
spontaneous fission can be obtained by finding (Z,A) such that Q for symmetric
fission is as large as the Coulomb energy Ec for spherical fragments (Z/2,A/2) in
contact. A nucleus will be unstable if

Q≥Ec (6.54)

Now

Q=M(Z,A)− 2M

(
Z

2
,
A

2

)

= asA2/3(1 − 21/3)+ ac Z
2

A1/3

(
1 − 1

22/3

)

= −0.260asA
2/3 + 0.370ac

Z2

A1/3
and

Ec = 0.262ac
Z2

A1/3

− 0.260asA
2/3 + 0.370ac

Z2

A1/3
≥ 0.262ac

Z2

A1/3

which upon simplification becomes

Z2

A
≥ 2.4

as

ac
= 2.4 × 13.0

0.595
= 53

This is an upper limit because it ignores the possibility of finite barrier penetration.
Note that the factor Z2/A solely depends on the relative effective strengths of the
forces associated with the Coulomb energy (∝Z2/A1/3) and with the surface energy
(∝A2/3).
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Fig. 6.12 Axial symmetry of
the surface of deformed
nuclei in the lowest state of
excitation

Fig. 6.13 Movement of an
un-deformed sphere

A much better estimate of the critical value of Z2/A can be obtained from the
modes of oscillation of a drop of incompressible fluid, under the combined action of
short-range surface tension forces and the long range Coulomb forces. In the ground
state, the liquid drop is believed to be perfectly spherical, with a sharp surface of
radius R0. In the excited state the nuclei are deformed, but in the lowest excitation
the surface will still have an axial symmetry (Fig. 6.12) so that it can be represented
in terms of Legendre Polynomials

R(θ)=R0

[
1 +

∞∑
ι=0

blPl(cos θ)

]
(6.55)

Now this formula can give both a deformation of the sphere and the translation of
the sphere as a whole, the latter being of no interest to us. First we shall show that
the coefficient of P1(cos θ) in (6.55) gives the distance through which the centre of
mass of the nucleus has moved, and for pure deformation without translation we
must set b1 = 0.

Let the sphere move undeformed through a distance b1R0 along the line θ = 0 as
in Fig. 6.13. Then

R2
0 =R2 + b2

1R
2
0 − 2RR0b1 cos θ

Put θ = 0 then

R −R0 = b1R0

Thus, b1 = 0 for the translation of centre of mass without deformation.
Further b0 must be chosen in such a way that the total volume of the nucleus

remains constant. The lowest excited states are given by b2 �= 0, bl = 0 for l > 2.
We now express b0 in terms of b2 under the assumption that the original volume

of the sphere, (4/3)πR3
0 is unchanged. Volume of a spheroidal body with axial
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Fig. 6.14 Spheroidal body
with axial symmetry

symmetry, as in Fig. 6.14, is given by

V = 2π
∫ 1

−1
R2dRd cos θ = 2π

3

∫ +1

−1
R3d cos θ

V = 4π

3
R3

0 = 2π

3
R3

0

∫ +1

−1

(
1 + b0 + b2P2(cos θ)

)3
d cos θ

= 4π

3
R3

0

(
1 + 3b0 + 3

5
b2

2

)

where we have neglected the third power for b2 and second and higher power for b0

and b0b
2
2 and used the orthonormal properties of Legendre polynomials. We get

b0 = −b
2
2

5
(6.56)

Inserting (6.56) in (6.55)

R =R0

(
1 − b2

2

5
+ b2P2(cos θ)

)
(6.57)

Surface Area The surface area of the axially symmetric object is given by

S = 2π
∫
R
[
R2 + (dR/dθ)2]1/2

d cos θ (6.58)

Now dR
dθ

=R0b2
dP2
dθ

S = 2πR2
0

∫ 1

−1

(
1 − b2

2

5
+ b2P2(cos θ)

)

×
[

1 − b2
2

5
+ b2P2(cos θ)+ b2

2

(
dP2

dθ

)2]1/2

d cos θ

Expanding the square root binomially and simplifying the integrand so that terms
only up to b2

2 are retained

S = 2πR2
0

∫ 1

−1

[
1 − 2b2

2

5
+ b2

2P
2
2 (cos θ)+ b2

2

2

(
dP2(cos θ)

dθ

)2]
d cos θ
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Using dP2
dθ

= − 3
2 sin 2θ , we finally obtain

S = 4πR2
0

(
1 + 2

5
b2

2

)
(6.59)

The corresponding surface tension energy is given by

E′
s = asA2/3

(
1 + 2

5
b2

2

)
(6.60)

Coulomb Energy We assume that the deformed surface is given by

R =R0

(
1 + b2P2(cos θ)− b2

2

5

)
(6.57)

and that the charge density is uniform

ρ = 3Ze

4πR3
0

(6.61)

The potential at an internal point is

V = V1 + V2 (6.62)

where

V1 = 2πρ

(
R2

0 − 1

3
r2
)

(6.63)

V2 = 4πρR2
0

∞∑
n=0

bn

2n+ 1

(
R

R0

)n
(6.64)

Coulomb energy for the first part is

Ec(1) = 1

2

∫
ρV1dτ = 1

2
2πρ2

∫ R0

0

(
R2

0 − 1

3
r2
)

4πr2dr

= 3

5

Z2e2

R0
(6.65)

where we have used (6.61).
Now for the second part

V2 = 4πρR2
0

[
b0 + R2

5R2
0

b2P2(cos θ)

]

= 4πρR2
0

[
−b

2
2

5
+ R2

5R2
0

b2P2(cos θ)

]
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Ec(2) = 1

2
ρ2 × 4πR2

0

5

∫ ∫ (
b2
R2

R2
0

P2(cos θ)− b2
2

)
2πR2dRd cos θ

= 4π2ρ2R2
0

5

∫ +1

−1

(
b2P2(cos θ)

5

R5

R2
0

− b2
2R

3

3

)
d cos θ

Now

R5 =R5
0

(
1 + b2P2(cos θ)− b2

2

5

)5

�R5
0

(
1 + 5b2P2(cos θ)

)
∫
b2P2(cos θ)

5

R5

R2
0

d(cos θ)=
∫ +1

−1

P2(cos θ)b2R
5
0

5R2
0

(
1 + 5b2P2(cos θ)

)
d cos θ

= 2

5
b2

2R
3
0

Also
∫
b2

2

3
R3d cos θ = b2

2

3

∫
R3

0

(
1 + b2P2(cos θ)− b2

2

5

)3

d cos θ

= b2
2R

3
0

3

∫ (
1 + 3b2P2(cos θ)

)

= 2

3
b2

2R
3
0

∴ Ec(2)= 4π2ρ2R5
0b

2
2

5

(
2

5
− 2

3

)
= − 3

25
b2

2
Z2e2

R0

E′
(c) =Ec(1)+Ec(2)=

3

5

Z2e2

R0

(
1 − b2

2

5

)

= acZ
2

A1/3

(
1 − b2

2

5

)
(6.66)

Equation (6.60) shows that the surface tension energy has increased compared to
that of the undeformed sphere

Es = asA2/3 (6.67)

simply because the surface area has increased. The increase in surface energy is

�Es =E′
s −Es = 2

5
b2

2asA
2/3 (6.68)

Equation (6.66) shows that the Coulomb energy has decreased compared to the orig-
inal sphere

Ec = ac Z
2

A1/3
(6.69)
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because the distance between the charges has increased. The decrease in Coulomb
energy is given by

�EC =E′
c −Ec = −acZ

2b2
2

5A1/3
(6.70)

Condition for fission is then

|ΔEc| ≥ |ΔEs | (6.71)

using (6.68) and (6.70) in (6.71) and simplifying we find

Z2

A
≥ 2as
ac

= 2 × 13.0

0.595
� 44

It must be stressed that when this condition is satisfied, fission is not only spon-
taneous but instantaneous. The fission of 238U for which Z2/A = 36 can not be
of this type because of the very long life time for decay. It must in fact be due
to a tunnel effect which can of course occur when the energy needed for the pro-
cess is not available classically. Actually instantaneous fission does not occur until
Z � 140 and A � 390. It is known that a liquid drop can be made to break up if
mechanical vibrations of large amplitudes can be set up. The energy associated with
these vibrations is the analog of the activation energy. For nuclei, excitation energy
is supplied by the absorbed neutron. It remains only to decide whether the exci-
tation energy is less than, equal to or greater than the activation energy required
for fission. If the spherical nucleus is distorted by a small amount it will tend to
return to its spherical shape. The nucleus is stable against small amplitude oscil-
lations because excitation energy associated with these oscillations is less than the
activation energy needed for fission. If the nucleus is stable against small shape dis-
tortions, it means that all such distortions tend to decrease E. If we increase the
oscillation amplitude enough, fission occurs. If this happens it means that E must
have passed through a maximum and then decreased, that is we must have sur-
mounted the fission barrier. This maximum value of E will be smaller than for
any other way. This smallest maximum is what we mean by the fission barrier.
The corresponding shape of the nucleus is called the critical shape. It is a con-
figuration of unstable equilibrium. If this distortion is reduced a trifle the nucleus
moves back toward its original shape, if the distortion is increased a trifle, fission
occurs.

6.5.6 Defects of Liquid Drop Model

Asymmetry in Fission Fragment Mass Distribution The fusion is invariably
asymmetrical. There are comparatively few fissions which yield products of equal
masses and the curve (Fig. 6.15) showing percentage yield plotted against mass
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Fig. 6.15 Fission product
yields for U235, Pu239, U233

(K. Way and N. Dismuke)

number has deep saddle depression in the centre with humps on each side. There
is no adequate theory for this asymmetry. However, it is observed that the humps
correspond to fragments with maximum stability. It is possible that more than
two fragments result. But the probability for this is small. For fast neutrons the
dip in the curve is less pronounced, indicating that symmetric fission is more
likely.

Bohr’s simple theory predicts symmetric distribution of mass. Further, Bohr’s
theory does not explain the following experimental facts.

(a) Mass asymmetry decreases with increasing energy.
(b) The asymmetry is well established as a part of the fission processes and exists

whether the incident particles are neutrons, protons, alphas or it is the case of
spontaneous fission. This is true for heavy elements near the uranium region.
In the case of lighter elements, for example 226Ra there are three humps unlike
235U or 238U fission mass spectrum.

(c) An angular anisotropy of the fission fragments with respect to the incident par-
ticles is observed in the photo fission of thorium and uranium, in that the fission
fragments are emitted preferentially perpendicular to the γ -ray beam.

(d) Fission thresholds calculated on liquid drop model fail to agree with the exper-
imental facts.

(e) The variation of fission cross-section with energy is not explained.
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6.5.7 Criticism of Liquid Drop Model

Lord Rayleigh had derived the formula for the frequency of surface vibration of a
deformed spherical drop:

ωl =
[

4πα

3M
l(l − 1)(l + 2)

]1/2

(6.72)

where M is the mass of the drop, the surface energy Es = αs, S = 4πR2 for a
spherical drop, l = integer. The corresponding value for energy in nuclei would be

�ωl ∼= 14.7

[
l(l − 1)(l + 2)

A

]1/2

MeV (6.73)

This value is somewhat too high to account for most low-lying nuclear states. The
first excited states for nuclei with mass number A between 100 and 200 have an
excitation energy of the order of 100 keV, where as (6.73) would predict several
MeV. The frequencies wl are reduced somewhat by the Coulomb effects. Whereas
the surface tension increases if the drop in deformed, the Coulomb energy decreases
upon deformation. This leads to somewhat smaller frequencies for heavier nuclei,
but is still insufficient to represent the actual level distance. There are very many
more closely spaced excited states than predicted. If the analogy with a liquid drop
is valid at all, the surface vibrations must be considered as one very special type
of nuclear motion. The actual excited states of nuclei correspond very probably to
much more complicated types.

If the liquid is considered slightly compressible then compressional waves can
also be set up in a drop with frequencies much higher than the frequencies of the
surface waves.

The effect of the Coulomb field on the surface deformation becomes important
for large Z. The condition of stability against surface deformation becomes

3

5

e2/r0

as

Z2

A
< 2 or

Z2

A
< 42.2 (6.74)

Any nucleus violating this condition should get deformed and finally undergo fis-
sion. Note that the heaviest nuclei are very close to this limit (Z2/A = 35.5 for
238U). The condition (6.74) is the main reason for the non-existence of nuclei heav-
ier than those observed.

Nuclei for which Z2/A is near its limit, a small perturbation from the outside
is necessary to induce an instability, that is a breakup of the nucleus. Thus in this
model nuclei near the limit of Z2/A are easily induced to undergo fission by the
additional supply of small energy.

To summarize, the liquid drop model of the nucleus is not very successful in
describing the actual excited states. It gives too large level distances. It follows that
the dynamical motions in the nucleus which give rise to the excited states are much
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more complicated than those envisaged in this model. The liquid drop model is more
successful when used to determine the stability of ground states against deformation.
The limit for stability against fission is well reproduced and the underlying idea
is well supported by the fact that nuclei near this limit show the phenomenon of
induced fission.

6.6 The Collective Model or Unified Model

In this model the concepts of the liquid drop and the shell model are combined. Con-
sequently, the collective model is able to explain much large experimental data. Both
collective model and unified model embody the collective effects. However, there
are certain differences. The unified model is a hybrid of the liquid-drop model and
distorted-shell model in which nucleons move approximately independently in non-
spherical potential rather than being strongly coupled as in the case of the liquid-
drop model. In the collective model, the nucleus is considered to consist of a core
and extra core particles with the core being treated as a liquid drop. The main as-
sumption of unified model that differs from that of the independent-particle model
is that a number of nearly loose particles move in a slowly varying potential that
originate from nuclear deformation. This deformation in the shape of the nucleus
leads to excitation modes which are classified as vibrational and rotational.

6.6.1 Rotational States

The observed excitations of even-even and odd-A nuclei far away from the closed
shells indicate level-spacings characteristic of the vibrational and rotational spectra.
Figure 6.16 shows an example of rotational energy levels for 238U. The rotational
levels show remarkable regularity

(i) All the levels have the same parity
(ii) Successive levels have angular momentum increased by 2�

(iii) Spacing between adjacent levels increases with increasing spin. The energy
eigen values are given by

EJ = �
2

2I
J (J + 1), J = 0,2,4, . . .

and I is the rotational inertia associated with the nuclear deformation. Since
the parity is given by (−1)J , for reasons of symmetry the required parity is
even and the permissible values are J = 0,2,4, . . . . I = 0 for spherical nuclei,
for example the even-even spherical nucleus 208Pb, so that it is not expected to
show rotational spectrum. This is confirmed by experiments.
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Fig. 6.16 Example of
rotational energy levels
for 238U

6.6.2 Vibrational States

In the collective vibrational motion of nucleons, if the frequency of the vibrational
mode of the core is ω then the corresponding energy is quantized in the units of �ω.
These are analogous to the energy quanta in vibrations of solids, the energy quanta
being phonons. The vibrational levels are evenly spaced, their energies are in the
multiples of �ω.

6.6.3 Electric Quadrupole Moments

The shell model cannot explain quadrupole moments observed in many nuclei. For
example, the measured reduced quadrupole moment of the middle of the shell nu-
clei, 175

71Lu is +0.25, where as the single-particle estimate give a value of −0.014.
The reduced quadrupole moment is given by dividing the quadrupole moment by
the nuclear charge and the square of the nuclear radius. The single-particle esti-
mate of quadrupole moment is not only wrong in magnitude but also wrong in
sign. On the other hand for a doubly magic plus one proton nucleus like 209

83Bi,
Qreduced(expt)= −0.014 in good agreement with the shell-model calculated value
of −0.012. It is therefore concluded that the shell-model is not able to account for
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the large observed quadrupole moments for the middle of the shell nuclei. Rainwa-
ter suggested that for the nuclei like 175Lu, the core is not spherical, as assumed by
the shell-model, but is permanently deformed by the nucleus in the outer shell. It is
this deformation that produces large quadrupole moments.

6.6.4 Shortcomings of the Shell Model

Inspite of the overwhelming success which the shell model had enjoyed in regard
to the ground states and low-lying excited states of atomic nuclei, there remained a
number of problems which were completely inexplicable in terms of the shell model
of a spherical nucleus. These were concerned with (1) the magnitude of the nuclear
quadrupole moments, (2) the ground states of odd nuclei in the range 150 �A� 190
and at A� 220, (3) magnetic moments of certain nuclei, (4) excited states of even-
even nuclei, (5) probabilities of radiative transitions and nuclear Coulomb excita-
tions. Rainwater [13] made the first attempt to explain the quadrupole moments by
pointing out the connection between particle motion and nuclear surface deforma-
tion. Hill and Wheeler pointed out that the surface oscillations of a heavy nucleus
are mainly responsible for the fission process which determine the ground state and
low-lying properties of their ground state.

Bohr and Mottelson had drawn attention to the striking properties of the spectra
of heavy even-even nuclei. These nuclei exhibit the spin parity sequence 0+, 2+,
4+, . . . . The ratio of the energies of the states 2+ and 4+ is 10/3, and the quadrupole
transition probabilities are very high.

A similar spectrum is revealed by the quantum-mechanical rotator (symmetric
top), for which

E = �
2J (J + 1)

2I
(6.75)

where I is the moment of inertia of the rotator, and J assumes only even values if
the body has plane symmetry and intrinsic angular momentum zero.

In quantum mechanics, the moment of inertia for spherical systems is equal to
zero. Such a body cannot be set into rotation since all directions are equivalent. For
small deviations from a spherical form, the moment of inertia is very small and the
rotational energy would have to be very large. However due to interaction with other
degrees of freedom, no rotational levels exist. Formula (6.75) shows that the moment
of inertia should be large which is possible if the nuclear shape differs considerably
from a sphere.

Bohr and Mottelson introduced a model of the deformed nucleus based on an
interaction between the single-particle and the so-called collective degrees of free-
dom which are the rotational and vibrational degrees of freedom of the nucleus as a
whole.
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6.6.5 General Theory of Deformed Nuclei

A nucleus has number of oscillatory degrees of freedom. The frequency of the vol-
ume oscillations can be estimated using the Fermi gas model. Assuming equal num-
ber of neutrons and protons, the Fermi energy is given by the formula

Ef = p2
max

2m
=
(

9π

8

)2/3
�

2

2mr2
0

where r0 = R

A1/3
(6.76)

For r0 = 1.2 fm, Ef = 33 MeV. Total kinetic energy is given by

Ekin = 3

5
AEF (6.77)

For a nucleus in the ground state, the Fermi gas will be in a steady state and so its
total energy is at its minimum. Now

Etot = 3

5
AEF +AV (6.78)

where V is the nucleon potential energy. Then the first derivative ∂Etot /∂R = 0
while the second derivative ∂2Etot/∂R

2 =K , the elastic force for volume deforma-
tion. Hence

K = 18

5
A

(
9π

8

)2/3
�

2

2mr2
0

1

R2
+A∂

2V

∂R2
(6.79)

As a first approximation, the term ∂2V

∂R2 may be ignored. The energy of the corre-
sponding oscillation will be

E =
(
N + 1

2

)
�ω=

(
N + 1

2

)[√
18�2

5mR2

]1/2

Ef =
(
N + 1

2

)
1.75EF
A1/3

(6.80)

Thus the minimum excitation energy is 60
A1/2 MeV, or for a heavy nucleus (A= 200),

�w = 10 MeV. Note that a similar estimate of the volume oscillation energy is
obtained within the frame work of the liquid drop model.

Another type of oscillation consists of oscillation of neutrons against protons.
The excitation energy of such dipole oscillations is of the order of 15 MeV. Such
oscillations are responsible for the occurrence of giant resonances; Sect. 6.6.9.

The collective or unified model was developed by Bohr and Mottelson in early
50’s. We have noted that certain properties of nuclei are explained by the liquid drop
model and certain others by independent particle shell model and that the underly-
ing assumptions for these model are diametrically opposite. The truth might lie in
between.
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Fig. 6.17 Spectrum of
γ -rays emitted from 232Th
nuclei excited by collisions
with 208Pb. The regularly
spaced peaks indicate a
simple feature of nuclear
structure [14]

The excited states of a nucleus can be determined by raising it to higher energy
and measuring the γ -ray energy as it cascades down to the ground state. These
measurements serve the purpose of constructing the energy level diagram. The ex-
amination of the energy level diagram shows that as we move away from the closed
shells, the spectra of excited states become more and more complicated, and then
suddenly become simple again. As an example the lower states of 232Th exhibit a
simple sequence of energies and angular momenta, Fig. 6.17. This is an unexpected
result from the stand point of the simple shell model Fig. 6.17 shows the spectrum
of γ -rays emitted from 232Th nuclei excited by collisions with 208Pb. The regularly
spaced peaks indicate the simplicity of nuclear structure. The energy level diagram
for 232Th constructed from the γ -ray spectrum. It consists of the ground state band
and the octupole band based on an excited 1-state [14].

The explanation of the said regularity in the observed spectra cannot be given
in terms of single shell model. In the collective model a number of nearly loose
particles move in a slowly varying potential that arises from nuclear deformation.
This deformation leads to modes of excitation which are classified as rotational and
vibrational. For closed-shell nuclei, the pairing forces are dominant and the nucleus
retains its spherical shape. However deformation occurs when the additional nu-
cleons start to fill the unfilled shell outside the closed shell. The nucleus gradually
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reaches ellipsoidal shape, and the collective motion appears in the form of vibra-
tional and rotational modes of excitation.

The failure to explain the quadrupole moment of non-spherical nuclei by the in-
dependent particle shell model emphasizes the inadequacy of the model. For exam-
ple, the measured quadrupole moment of 177Lu is 5.5b—a value which is 25 times
larger than we could obtain from the simple shell model by considering the orbits of
particles outside the closed shells and assuming an inert core. This can of course be
understood using the shell model, but this requires the involvement of so many nu-
cleons as to render the exercise utterly unnatural. Since the spectra of energy states
is simple, an equally simple mechanism is called for. The excitations involving the
motion of nucleons must be described in a correlated or collective way.

Another phenomenon which points to the collective model is inelastic scatter-
ing whose cross-section is much larger than that can be explained by assuming that
the excitation is caused by raising a single nucleon to a higher state. It is mainly
the collective states that are excited by inelastic scattering. In that case the projec-
tile interacts with the target nucleus as a whole and not just with one of its con-
stituent nucleons. This is a collective excitation and is described as a coherent sum
of many particle-hole excitations. Calculations are made using either the rotational
or the vibrational models for the wave functions of the nuclear states and a collective
model for the interaction. Since the interaction is strong, the coupled-channels the-
ory is used. This takes into account the coupling between various reaction channels.
A good agreement is found with the measured elastic differential cross-sections of
a few MeV protons with medium weight nuclei. Thus the data favour the assump-
tion that many particles are excited together, corresponding to the collective motion.
Further, the strengths of the γ -ray transition probabilities in these nuclei are more
than hundred times greater than those given by single-particle transition.

Two types of collective motion are considered (1) rotational states, (2) vibrational
states. Rotational motion is quite complex in that it is not a rigid-body rotation
but a rotation of the shape of the deformed surface enclosing free particles. The
vibrational states of nuclei are formed by flexings of nuclear surface. Both nuclear
rotational motion and vibrational motion involve orderly displacements of many
nucleons and both types are therefore classified as nuclear collective motion.

6.6.6 Rotational Model

The rotational type of excitation is responsible for the low-lying excited states of
nuclei with large quadrupole deformations. The frequency of such rotation is low,
so that to a good approximation the internal motion of nucleons and the rotational
motion can be treated separately. Countless energy levels have been identified as
rotational levels. They are recognized by the use of the of the formula for even-even
nucleus

E = �
2J (J + 1)

2I
−BJ 2(J + 1)2, with J = 0,2,4,6 (6.81)
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Fig. 6.18 Energy level
diagram of 180

72Hf. With
experimental and calculated
excitation energies [1]

The equation has two adjustable parameters I and B .
The moment of inertia I is greater than that for a rigid body and increases with

increasing angular momentum of rotation because of the centrifugal force which is
taken care of by the second term in (6.81).

The ground state for the even-even nucleus has Jπ = 0+. The appropriate statis-
tics is Bose-Einstein because there is an even number of nucleons in each half of
the nucleus, and therefore the resulting angular momentum in each half is integral.
With a 180° rotation, one half is exchanged with the other and the wave function ψR
should be symmetric. We therefore expect a rotational energy-level diagram with
angular momentum-parity values, Jπ = 0+,2+,4+, . . . for a deformed even-even
nucleus.

A symmetrical deformed body is described by the equation

R(θ)=R0
(
1 + β2P2(cos θ)

)
(6.82)

where R0 is the equilibrium radius of the undeformed spherical body, P2(cos θ) is
the Legendre polynomial of second order, and β2 is the deformation parameter.

It is found that the ratio I/Irigid increases with increasing deformation param-
eter β2. For nuclei with small deformation parameter β2, no rotational spectrum is
found at all.

As an example, Fig. 6.18 shows the energy-level diagram of 180
72Hf with experi-

mental and calculated excitation energies.
The excitation energies of the low lying states of an even-even rotational nucleus

closely follow the formula

E = �
2J (J + 1)

2I
, J = 0,2,4, . . . (6.75)

with spacing 2J�2/I . The sequences of states conforming to (6.75) are said to form
rotational bands. Note that they have unequal spacing.

The expression (6.75) predicts that the ratio of the energies of the first two excited
states E4/E2 = 10/3, so this provides a convenient signature of rotational motion.
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Fig. 6.19 Energies of lowest
2+ states of even-Z, even-N
nuclei. The lines connect
sequences of isotopes

Four different properties of even even nuclei that reveal collective behaviour are as
follows:

1. Except in regions near closed shells, the energy of the first 2+ excited state
(Fig. 6.19) seems to decrease rather smoothly as function of A.

2. Figure 6.19 shows that except near the closed shells the ratio of the first two
excited states E(4+)/E(2+), Fig. 6.20 is roughly 2.0 for nuclei below A= 150
and very much constant at 3.3 for nuclei between the shell closure at 82, 126
and 184. They are the rare earth and actinide nuclei, respectively. We will see in
Sect. 6.6.7, the value of the ratioE4/E2 for vibrational nuclei is 2. This is evident
in Fig. 6.20. There is, however, much more scatter around the theoretical value
compared to the rotational nuclei. This is understood in view of the fact that the
vibrational nuclei are soft and wobbly and are easily affected by small perturba-
tion not included in the simple model. On the other hand, rotational nuclei are
hard and rigid and are not so much affected by small perturbations.

3. The magnetic moments of the 2+ states (Fig. 6.21) are fairly constant in the range
0.7–1.0.

4. The electric quadrupole moments, Fig. 6.22, are small for A < 150 and much
larger for A> 150.

Thus, there are two types of collective structures, one set of nuclei with A < 150
are characterized by vibration while the other set of nuclei with 150 < A < 190
characteristic of rotations.

We can gain some insight into the structure of deformed nuclei by considering
the moment of inertia in two extreme cases. First consider the rigid rotation. The
classical moment of inertia for a uniform ellipsoid of mass M with shape given by
the lowest power in β is

Irig = 2

5
AMR2

0(1 + 0.31β) (6.83)

which reduces to the familiar value for a sphere when β = 0. The comparison is
only classical. A symmetrical spherical quantum mechanical system can not rotate
at all. Now the expression for the intrinsic quadrupole moment

Q0 = 3Z√
5π
R2

0β(1 + 0.16β) (6.84)
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Fig. 6.20 Ratio of the energies of the first two excited states of many even-even nuclei as a func-
tion of neutron number N . There are clusters of points about the value 10/3 characteristics of
rotational nuclei, and to a much less extent around the value 2 characteristic of vibrational nu-
clei [3]

Fig. 6.21 Magnetic moments
of lowest 2+ states of even-Z,
even-N nuclei. Shell model
nuclei showing noncollective
behavior are indicated

Fig. 6.22 Electric
quadrupole moments of
lowest 2+ states of even-Z,
even-N nuclei. The lines
connect sequences of isotopes
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Thus Irig andQ0 are related through the parameter β . Note thatQ0 depends on the
departure from sphericity and vanishes for β = 0. The experimental value ofQ0 can
be used to determine β which in turn enables Irig to be measured. As an example,
for 178Hf, Q0 = 8.1 × 10−24 cm2 and the relation R0 = 1.2A1/3 gives β ∼ 0.3. It

follows that �
2

2Irig
= 3 keV. This is to be compared with the experimental value of

15.5 keV. Thus the rigid body approximation overestimates the moment of inertia by
a large factor. In the other extreme the nucleus may be considered as a frictionless
fluid in the deformed envelope. If the envelope rotates, only the outer regions of the
fluid rotate, the central part remaining stationary. In that case the moment of inertia
is given by

If luid = 9

8π
AMR2

0β
2 (6.85)

which gives �
2

2If luid
= 60 keV for 178Hf.

Thus the experimental values of moment of inertia lie between the two extremes
that is Irig > I > If luid . The experimental values of the moment of inertia deter-
mined from the rotational energy states vary from 0.2 to 0.5 of Irig for nuclei in
the rare earth region. That the rotational behaviour is intermediate between a rigid
object, in which the particles are tightly bonded together and a fluid in which the
particles are weakly bonded, is ascribed to the short range strong forces between a
nucleon ad its immediate neighbors only and the absence of long range force that
characterizes the rigid body, secondly the lack of rigidity of nucleus from the in-
crease in moment of inertia at higher angular momentum or rotational frequency.
This effect known as ‘centrifugal stretching’ is seen frequently in heavy-ion reac-
tions.

Many nuclei, particularly in the rare earth and actinide regions can have excited
states characterized by more complicated deformation than the ellipsoidal

R(θ)=R0
(
1 + β2p2(θ)+ β3p3(θ)+ β4p4(θ)+ · · · ) (6.86)

where β2, β3, β4 are the quadrupole, octupole and hexadecapole deformation pa-
rameters.

Let us examine the concept of the shape of a rotating nucleus. The average kinetic
energy of a nucleon in a nucleus is of the order of 20 MeV, corresponding to a
speed of ∼0.2c. The angular velocity of a rotating state is ω = √

2E/I where E is
the energy of the state. For the first rotational state, ω � 1020 rad/s and a nucleon
near the surface would rotate with a tangential speed of v � 0.002c. The rotational
motion is therefore far slower than the internal motion. The correct picture of a
rotating deformed nucleus is therefore a stable equilibrium shape determined by
nucleons in rapid internal motion in the nuclear potential, with the particles rotating
so slowly that their rotation has little effect on the nuclear structure or on the nucleon
orbits.
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The rotational energies are of the order of a few keV’s (�2/2I � 10–20 keV)
while the vibrational states and particle states occur at energies of about 1 MeV.

As the angular velocity of rotation of a nucleus is increased there comes a stage
when the centrifugal forces overcome the attractive forces that hold the nucleus
together and the nucleus is ruptured into two pieces as in fission. The value of the
angular momentum lcrit at which this occurs can be estimated using the liquid drop
model.

Both the vibrational and rotational collective motions give rise to the magnetic
moment of the nucleus. The movement of the protons may be considered as an elec-
tric current, and a single proton moving with angular momentum quantum number
l would give a magnetic moment μ = lμN . We assume that the neutrons do not
contribute to the magnetic moment from the collective motion and that the protons
and neutrons are all coupled pairwise so that the spin magnetic moments also do not
contribute. We then expect the protons to contribute a fraction Z/A to the total nu-
clear angular momentum. The collective model therefore predicts for the magnetic
moment of a vibrational or rotational state of angular momentum J

μ(J )= J Z
A
μN (6.87)

For light nuclei, Z/A� 0.5 and μ(Z)� +1μN , while for heaver nuclei, Z/A� 0.4
and μ(Z)= +0.8μN . Figure 6.21 shows, barring the closed shell nuclei (for which
the collective model is not valid any way) the magnetic moments of the 2+ states
are in good agreement with this prediction.

6.6.7 Vibrational Model

The second mode of collective excitation is that of vibration. The nucleus is consid-
ered as a dynamic system which can perform small oscillations about the equilib-
rium shape. The oscillations can be described in terms of normal modes which for
small amplitudes can be assumed to be independent. Since the energies involved in
vibrational excitations are of the order of several hundred keV to MeV, the cou-
pling between the vibrational and intrinsic motions need no longer be weak as
was the case with rotational motion. We should not, therefore, expect as good an
agreement for the vibrational spectra with the experiment compared to the rota-
tional spectra. Unlike the rotational spectra, the vibrational spectra can be exhibited
by spherically symmetric nuclei as well. As we move away from the closed shell
nuclei, the nucleons outside the core make them easily deformable so that they
may be set into vibrational mode. The quanta of energy involved in these vibra-
tions are called phonons by analogy with the quanta of atomic vibrations in crys-
tals.

The vibrational states are known to occur not only among spherical even-even
nuclei but also among deformed nuclei.
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Fig. 6.23 A vibrating
nucleus with a spherical
equilibrium shape with
instantaneous coordinate R(t)
locate at a point on the
surface in the direction (θ,φ)

6.6.8 Collective Oscillations

The nucleus is considered as an incompressible liquid drop with a sharp surface. If
R0 is the radius of the nucleus which is spherical, the equation for its surface can be
written as

R(t)=R0

[
1 +

∑
λ,μ

αλμ(t)Yλμ(θ,φ)

]
(6.88)

where Yλμ are the spherical harmonics. R(t) is the instantaneous coordinate of a
point on the nuclear surface at (θ,φ) as shown is Fig. 6.23.

Each spherical harmonic component will have an amplitude αλμ(t). They are
also the deformation parameters which determine the nuclear shape. The subscript
μ takes the values −λ to +λ, so that there are 2λ + 1 modes of deformation of
order λ. The αλμ are not completely arbitrary, reflection symmetry requires that
αλμ = αλ−μ. Further, under the assumption that the nuclear fluid is incompressible,
the deformation of order λ= 1 is equivalent to a translation of the whole system that
is the net displacement of the centre of mass is zero and is irrelevant to a vibration,
Fig. 6.24. The lowest mode of surface deformation corresponds to quadrupole mode
(λ= 2). For λ= 2, the five values of μ= −2 to +2 correspond to five independent
modes which represent ellipsoidal shapes. The mode with μ= 0 (for all λ values)
has symmetry with respect to arbitrary rotation about the z-axis and therefore rep-
resents an axially symmetric nuclear shape.

The surface oscillations are caused by the variation of deformation parameters
αλμ, which although quantum mechanical, may be treated classically and as time
dependent. The surface oscillation gives rise to the collection transport of nuclear
matter within the nucleus. The kinetic energy T of nuclear mass transport in the
nucleus is

T = 1

2

∑
Bλ|α̇λμ|2 (6.89)

where Bλ corresponds to the moment of inertia of the nucleus with respect to
changes in deformation and is calculated under the assumption of irrotational flow
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Fig. 6.24 The lowest four vibrations of a nucleus. In each diagram a slice through the midplane
is shown. The dashed lines show the spherical equilibrium shape and the solid lines show an
instantaneous view of the vibrating surface

Bλ = ρR5
0

λ
(6.90)

where Cλ is the density of nuclear matter.
The potential energy for collective motion is

V = 1

2

∑
λ,μ

Cλ|αλμ|2 (6.91)

where Cλ are the deformability coefficients which represent the resistance of the
nucleus against deformation. The total Hamiltonian H is given by

H =E0 +
∑
λ,μ

Hλμ (6.92)

where

Hλμ = 1

2
Bλ|α̇λμ|2 + 1

2
Cλ|αλ,μ|2 (6.93)

and E0 is the energy of the nucleus for a spherically symmetric shape. The Cλ has
been determined by Bohr and Wheeler and is given by

Cλ = λ− 1

4π

[
(λ+ 2)Es − 10

2λ+ 1
Ec

]
(6.94)

where Es and Ec are the surface and Coulomb energies, respectively for a spherical
shape. The classical frequency of oscillation ωλ is given by

ωλ =
√
Cλ

Bλ
(6.95)

The Hamiltonian (6.92) can be quantized whose energy eigen values (energy levels)
are the harmonic-oscillator energies:
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Fig. 6.25 Multi-phonon
quadrupole spectrum. n2 is
the phonon number. Jp are
the possible angular momenta
and parity [8]

E =E0 +
∑
λ,μ

(
nλμ + 1

2

)
�ωλ (6.96)

where nλμ is the number of oscillators or phonons in the λμ-mode of oscillation.
From (6.94), (6.95) and (6.90), the excitation energy for the λμ mode, neglecting
Coulomb energy is

�ωλ � 13λ3/2

A1/2
MeV (6.97)

For low lying states it is sufficient to consider only small values of λ as the frequency
of the emitted radiation ω3 (for λ= 3) is �2ω2 and ω4 = 3ω2.

For surface oscillations λ≥ 2, the angular momentum of a phonon in the state λμ
is λ, its z-component being μ, and the parity is (−1)λ. Consequently the spin and
parity of the ground and first excited state should be respectively 0+ and 2+, which
have been confirmed by experiments for even-even nuclei. The spin and parity of the
second excited state can be obtained from the consideration that the energy of one
λ= 3 phonon is approximately equal to the energy of two λ= 2 phonons. Hence the
spin and parity of the second excited state are 3− or any of the values 0+, 2+, and 4+
obtained from the combination of two angular momenta of two units. Experiments
give the values 2+, some times 4+ and less frequently 3−.

Equation (6.92) shows that the energy of the γ -rays emitted should decrease with
increasing mass number, which is supported by experimental observation. Com-
pared to the single-particle model, the collection oscillations causing the electric
quadrupole transition between the first excited state and the ground state should be
stronger since a large number of nucleons are involved.

Experiments show that the E2 transition is invariably atleast one order of magni-
tude large than the predictions of the shell model.

A typical multiphonon quadrupole spectrum is shown in Fig. 6.25, indicating the
excitation of one, two, three . . . phonons. Residual interactions not included in the
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Fig. 6.26 β and γ vibrations
of a distorted nucleus. The
symmetry axis OZ′ is shown
and the diagrams at the right
are sections in the equatorial
plane. The full line is the
equilibrium contour, the
dotted line is one extreme
excursion. The arrow shows
the direction of rotation in a
rotational band [2]

model remove the degeneracy of the phonon multiplets and enable the individual
states to be identified.

Deformed nuclei can also vibrate and in this case the vibrations are of two types,
called β and γ , depending on the projection μ of the phonon angular momentum
along the symmetry axis. β-vibrations characterised by μ= 0, preserve the axis of
symmetry, while the γ -vibrations with μ = 2, do not, Fig. 6.26. Rotational bands
can be associated with each of these vibrational states, similar to rotation-vibrational
levels in molecular spectroscopy. These are classified as β and γ bands.

6.6.9 Giant Resonances

β and γ vibrations were first detected in the measurement of cross-section of
(γ,p) and (γ,n) reactions, which revealed pronounced resonances, with a few
MeV width, Fig. 6.27. These are known as giant resonances and are found to oc-
cur in all but the lightest nuclei. Their characteristics are mainly determined by
the bulk properties of the nuclei. They are interpreted as collective vibrations of
protons relative to neutrons. The incident γ -rays are assumed to provide an os-
cillating electric field that exerts a force on the charged protons but not on the
uncharged neutrons, causing the protons to be pulled away from the neutrons.
When this force is switched off the protons and neutrons come together again.
If the γ -ray frequency coincides with their natural oscillation then resonance oc-
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Fig. 6.27 Cross-section for the (γ,n) reaction on 208Pb showing the giant diapole resonance at
14 MeV [15]

curs, leading to a peak in the cross-section of any reaction of γ -rays with the nu-
cleus.

6.6.10 Nilsson Model

In this approach the single-particle and collective aspects of nuclear structure are
unified by deforming the single particle potential. Nilsson’s model is similar to that
of the shell model except that the potential is deformed. The energies of single
particle states are calculated by using an anharmonic oscillator potential. The levels
in a spheroidal well have been calculated by a number of authors. The calculations
by Nilsson are the best known.

In his calculations [11] used a Hamiltonian of the form

H =Hkin + m

2

[
ω2

1

(
x2 + y2)+ω2

2z
2]+Cl · S +Dl2 (6.98)

Such a Hamiltonian is characterized by axial symmetry, and differs from an oscilla-
tor potential with spin-orbit interaction by the inclusion of an anisotropy and by the
term proportional to l2. The potential is axially symmetric. The z-axis is taken along
the symmetry axis. The frequency ω in the harmonic oscillator potential is taken as
ω1 along x and y axes, and ω2 along z-axis.

By virtue of the term Dl2 (D is negative), the potential effectively decreases
for large orbital angular momenta, particularly at large distance, which leads to a
lowering of the corresponding states.
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The frequencies ω1 and ω2 are connected with the frequency ω0 by means of the
deformation parameter, according to the formulae

ω2
1 = ω2

0

(
1 + 2

3
δ

)

ω2
2 = ω2

0

(
1 − 4

3
δ

) (6.99)

The quantity δ is very simply related to the deformation parameter β2

δ ∼= 3

2

√
5

4π
β2 ∼= 0.95β2 (6.100)

The incompressibility of nuclear matter (constancy of volume) gives us the relation

ω2
1ω2 = ω3

0 (6.101)

In (6.98) the constant C determines the strength of the spin-orbit coupling. The
term Dl2 lowers the energy of the large angular momentum states. Both C and D
are negative.

The deformed potential is governed by four parameters ω0, C, D and δ. Of these
δ only depends on the nuclear shape. Now

δ = ΔR

R0
; R0 ∼ a + b

2
and ΔR = b− a

where a and b are the semi-axis of a homogeneously charged ellipsoid with charge
Ze (b along z-axis), then the quadrupole moment

Q= 2

5
Z
(
b2 − a2)= 4

5
ZR2

0δ (6.102)

Measurement ofQ yields δ and hence β2. The other three parameters (ω0,C,D) are
practically shape-independent. They are determined from levels of spherical nuclei
for which β2 = 0. Once ω0, C and D are determined the energy eigen values can
be explored as a function of the deformation parameter β2. For β2 = 0 (spherical
nuclear shape) the energy levels agree to these shown in Table 6.3, and they can be
labeled by quantum numbers Λ, l and j . For a non-spherical potential, the angular
momentum l is no longer a “good” quantum number, that is we cannot identify
states by their spectroscopic notation (s,p, d,f , etc.) as was done for the spherical
shell model. To put it differently, we have to deal with mixtures of different l values
but belonging to the same parity, that is even or odd.

In the cases of spherical potential, the energy levels of each single particle state
have a degeneracy of (2j + 1), that is relative to any arbitrary choice, all 2j + 1
possible orientations of j are equivalent. For a deformed shape this is no longer
valid. The energy levels depend on the spatial orientation of the orbit. To be more
precise, the energy depends on the component of j along the symmetry axis of the
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Fig. 6.28 Single-particle orbits with j = 7/2 and their possible projections along the symmetry
axis, for prolate (left) and oblate (right) deformations. The possible projections are Ω1 = 1/2,
Ω2 = 3/2, Ω3 = 5/2 and Ω4 = 7/2. (For clarity, only the positive projections are shown.) Note
that in the prolate case, orbit 1 lies closest (on the average) to the core and will interact most
strongly with the core; in the oblate case, it is orbit 4 that has the strongest interaction with the core
(Krane)

core. For example an f7/2 nucleon can have eight possible components of j, ranging
from −7/2 to +7/2. This component of j along the symmetry axis is generally
denoted byΩ . On account of the reflection symmetry the components +Ω and −Ω
will have the same energy, giving the levels a degeneracy of 2. In general number of
Ω values will be 1

2 (2j + 1). Thus, in our example the f7/2 state splits up into four
states which are labeled as Ω = 1

2 ,
3
2 ,

5
2 ,

7
2 , all with negative parity.

Figure 6.28 indicates different possible“orbits” of the odd particle for prolate and
oblate deformations. For prolate deformations, the orbit with the smallest possible
Ω (here 1/2) interacts most strongly with the core and is thus more tightly bound
and lowest in energy. On the other hand, for oblate deformations the orbit with max-
imum Ω (equal to j , here 7/2) has the strongest interaction with the core and is in
the lowest energy. For finite deformation, the only constant of motion of the Hamil-
tonian (6.98) are the parity and Ω , the projection of j = l + s along the symmetry
axis z. However, for an infinite deformation the terms l · s and l2 become negligible
in comparison to the deformation term and the Hamiltonian has cylindrical sym-
metry. Thus the wave functions are asymptotically characterized by the quantum
numbers Λ, nz, Δ, where nz is the number of nodal planes in the z-direction and Δ
is the component of l along z. The coupling scheme indicating the nucleon angular
momenta and their projection along the symmetry axis for nucleon moving in the
deformed axially symmetric potential is shown in Fig. 6.29.

Since the eigen values of the energy vary continuously with β2 and so do the
wave functions, each wave function may be characterized by the quantum numbers
Ωπ( ,nz,Δ) where the numbers in parentheses, which become good quantum
numbers only for infinite β2, are called asymptotic quantum numbers. The lower
energy levels in the axially deformed potential are shown in Fig. 6.30 as a function
of the deformation parameter. Note that just as the spin-orbit potential breaks the
degeneracy of the major shells, so the deformation breaks the degeneracies of the
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Fig. 6.29 Coupling scheme
indicating various angular
momenta (l, s)j and their
projection (Δ,Σ)Ω on the
symmetry axis (z-axis) for a
particle moving in a deformed
axially symmetric potential

Fig. 6.30 Energy
eigenvalues �ω0 in units of
β2 plotted against the
deformation parameter XX
for the Nilsson model in the
oscillator shells
N = 1,2 and 3. These energy
levels are to be associated
with odd-neutron or -proton
nuclei in the 1pm2s–1d and
2p–1f shells [7]

magnetic quantum numbers. The nucleon states labeled with the quantum numbers
(Λ, nz, Δ are also shown in Fig. 6.30. The positive deformations correspond to
probate ellipsoids and negative ones for oblate ellipsoids.

For small δ the scheme is close to that of a spherical nucleus. Each state with
given j and π is resolved into a number of substates characterized by Ω and by the
parity. Already for very small deformations, terms which arise from various values
of j for a spherical nucleus, cross. Furthermore, an interaction occurs between levels
of different origin but with the same Ω and π .
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From the knowledge of nuclear deformation it is possible to successfully predict
the spins and parities of the ground states for odd-A nuclei, using Nilsson diagrams.
It is also possible to predict ground-state moments. Low-lying excited states can
also be successfully predicted.

Example 6.2 Deduce that with ε = 0.72 MeV and γ = 23 MeV the ratio Zmin/A∼=
0.5 and a for typical light nuclei and for heavy nuclei respectively.

Solution

Zmin

A
= 0.5

1 + 0.25A2/3ε/γ
= 1

2 + (0.5 × 0.72/23)A2/3
= 1

2 + 0.0156A2/3

For light nuclei the second term in the denominator is small in comparison with 2.0,
so that Zmin/A→ 0.5. For heavy nuclei, typically A∼ 100 and Zmin/A→ 0.43.

Example 6.3 For large A it is found that B/A= 9.402 − 7.7 × 10−3A.
Given that the binding energy of alpha particles is 28.3 MeV. Determine A above

which alpha emission becomes imminent.

Solution The condition to be satisfied is

B(A− 4)+B(α) > B(A)
Using

B(A) = (
9.402 − 7.7 × 10−3A

)
A

B(A− 4) = [(
9.402 − 7.7 × 10−3)(A− 4)

]
(A− 4)

B(α) = 28.3

and solving, we find A> 151.

Example 6.4 For the nucleus 16O the neutron and proton separation energies are
15.7 and 12.2 MeV respectively. Estimate r0 assuming that the particles are removed
from its surface and that the difference in separation energies is due to the Coulomb
potential energy of the proton.

Solution

e2

4πε0
= 1.44 MeV fm

Sn − Sp = 15.7 − 12.2 = 3

5

e2

4πε0R

[
Z2 − (Z − 1)2

]= 3

5

(
e2

4πε0

)
(2Z − 1)

R

3.5R = 0.6 × 1.44(2 × 8 − 1)
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R = 3.7 fm

r0 = R

A1/3
= 3.7

161/3
= 1.47 fm

Example 6.5 The shell model energy levels are in the following way [1s1/2][1p3/2,

1p1/2][1d5/2,2s1/2,1d3/2][1f7/2][2p3/2,1f5/2,2p1/2,1g9/2][1g7/2,2d5/2,2d3/2,

3s1/2,1h11/2] · · · Assuming that the shell are filled in the order written, what spins
and parities should be expected for the ground state of the following nuclei? 7

3Li,
16

8O, 17
8O, 39

19K, 45
21Sc.

Solution
7
3Li: Spin comes from the third proton in p3/2 state. Hence Jπ = 3−

2 (∵ l = 1)
16
8O: This a doubly magic nucleus, Jπ = 0+

17
8O: Spin comes from the 9th neutron is d5/2 state. Hence Jπ = 5+

2 (∵ l = 2)
39
19K: Spin comes from the proton in shell minus hole in d3/2 state hence Jπ = 3+

2
45
21Sc: Spin comes from the 21st proton in the f7/5 state. Hence Jπ = 7−

2

Example 6.6 Find the gap between the 1p1/2 and 1d5/2 neutron shells for nuclei
with mass numberA≈ 16 from the total binding energy of the 15O (111.9556 MeV),
16O (127.6193 MeV) and 17O (131.7627 MeV) atoms.

Solution The 15O nucleus may be considered as the 16O nucleus with a deficit
neutron in the 1P1/2 shell. The energy of this level is then B(15O) − B(16O). An
17O nucleus may be considered as an 16O nucleus with an additional neutron in the
1f5/2 shell, the energy of this level being B(16O)− B(17O). The gap between the
shells is thus

E(1f5/2)−E(1P1/2) = B
(16O

)−B(17O
)− [

B
(15O

)−B(16O
)]

= 2B
(16O

)−B(17O
)−B(15O

)
= 2 × 127.6193 − 131.7627 − 111.9556

= 11.52 MeV

Example 6.7 Compute the expected shell-model quadrupole moment of
209Bi(9−/2).

Solution The single-particle quadrupole moment of an odd proton in a shell-
model state j

Q= − 2j − 1

2(j + 1)

〈
r2〉

For a uniformly charged sphere, 〈r2〉 = 3
5R

2 = 3
5 r

2
0A

2/3. Using j = 9/2, r0 =
1.2 fm, A = 209, we find Q = −0.25b. This value may be compared with the ob-
served value of −0.37b.
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Example 6.8 The masses of 15
7N and 15

8O are 15.000108u and 15.003070u respec-
tively. The masses of neutron and proton are 1.008665u and 1.007825u respectively.
Find the Coulomb’s coefficient ac in the semi-empirical mass formula.

Solution For mirror nuclei

MZ+1 −MZ =Mp −Mn+ acA2/3

ac = (15.00307 − 15.000108 + 1.008665 − 1.007825)931.5

152/3

= 0.58 MeV

Example 6.9 The chlorine isotope of mass number 33 decays by positron emission
as follows: 33

17Cl → 33
16S + β+ + μ and the maximum positron energy is 4.3 MeV.

Calculate r0 from these data.

Solution

ΔEc = (Mn −Mp +Me)c2 +Emax

= 1.29 + 4.3 = 5.59 MeV

ΔEc = 3

5

e2(2Z − 1)

4πε0R
= 0.6 × 1.44 × 33

r0(33)1/3
= 5.59

r0 = 1.59 fm

Example 6.10 Determine the most stable isobar with mass number A= 64.

Solution

Z0 = A

2 + 0.015A2/3

= 64

2 + 0.015 × 642/3
= 28.57

Z0 = 29

Example 6.11 Using the Fermi gas model show that the Fermi pressure is given by
p = 2

5ρNEF , where ρN is the nucleon density.

Solution At constant entropy S, the pressure is given by the thermodynamic rela-
tion

p = −
(
∂U

∂V

)
S

where V is the volume and U is the internal energy of the system.

U = 3

5
AEF
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p = −3

5
A
∂EF

∂V

From the gas model

N = V (pF (n))
3

3π2�3
, Z = V (pF (p))

3

3π2�3

Neutrons and protons, respectively, pF (n)and pF (p) are the Fermi momenta for
neutrons and protons.

For N = Z =A/2

A = 2Vp3
F

3π2�3
= 2

V (2MEF )3/2

3π2�3

∂EF

∂F
= −2

3

EF

V

p = 2

5

A

V
EF = 2

5
ρNEF

6.7 Questions

6.1 Give important applications of the Fermi gas model.

6.2 What is the evidence to support the reality of Fermi momentum?

6.3 Derive an expression for the total kinetic energy of all the proton in terms of
the maximum Fermi energy (EF ).

6.4 Write down the semi-empirical mass formula and identify various terms.

6.5 Why does fission occur with thermal neutrons in 235U but not in 238U?

6.6 How is the asymmetric fission explained?

6.7 Show that the Coulomb energy of a uniformly charged sphere with total charge

Q and radius R is 3
5 [ Q2

4πε0R
].

6.8 The spins and parities of the ground and four excited states of 207
82Pb are: (π),

1/2(−), 5/2(−), 3/2(−), 13/2(+), 7/2(−). Comment on the shell model descrip-
tion of these states.

6.9 Review briefly the evidence for a shell model of the nucleus.



6.8 Problems 421

6.10 Explain how a shell model uses potentials such as a square well and a har-
monic oscillator to try and predict the magic numbers.

6.11 Explain how the spins, parities and magnetic moments of a nucleus in both
the ground state and excited states may be predicted by the shell model and give
three nuclei as examples.

6.12 Briefly outline the merits and defects of the shell model.

6.13 What are magic numbers? Explain.

6.14 What are Schmidt lines? How are they explained?

6.15 What is the reason for the J = l+ 1/2 state to lie deeper than the J = l− 1/2
state in a nucleus?

6.16 The Q-value for fission reaction is positive. What prevents 238U from under-
going spontaneous fission?

6.17 What are the predictions of the collective model of the nucleus, and how far
have they been verified?

6.18 Many of the nuclei which are long lived isomer states have N or Z in the
ranges 39 · · ·49 and 69 · · ·81. Explain.

6.19 Write down the shell model state of the odd nucleon in (a) 25
12Mg, (b) 63

29Cu.

6.20 Draw the energy level diagrams, showing the filling of the levels by neutron
and protons in (a) 7

3Li, (b) 41
20Ca.

6.21 How is the spacing in the rotation and vibration energy level differ?

6.22 What is a giant dipole resonance?

6.8 Problems

6.1 The empirical mass formula (neglecting a term representing the odd-even ef-
fect) is

M(A,Z) = Z(mp +me)+ (A−Z)mn − αA+ βA2/3

+ γ (A− 2Z)2/A+ εZ2A−1/3
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where α, β , γ and ε are constants. Show that the most stable isobar is characterized
by

Zmin = 0.5A
(
1 + 0.25A2/3ε/γ

)−1

for the value of Z which corresponds to the most stable nucleus for a set of isobars
of mass number A.

6.2 23
12Mg undergoes positron decay to the mirror nucleus 23

11Na. If Emax of positron
is 3.5 MeV show that r0 ∼= 1.6 fm.
[Ans. 1.63 fm]

6.3 Use the shell model to determine the spin and parity of the ground states of the
nuclei

(a) 3He
(b) 21Ne
(c) 27Al

[Ans. (a) 1+
2 , (b) 3+

2 , (c) 5+
2 ]

6.4 Show that the electrostatic energy of a uniformly charged sphere of radius R is
( 3

5 )(Q
2/R) where Q is the total charge of the sphere.

6.5 Consider a proton as a uniform solid sphere of radius R = 1 fm.

(a) what angular velocity is needed to give it an angular momentum of h.
(b) what rotational kinetic energy does it correspond to?

[Ans. (a) 1.57 × 1023 rad s−1, (b) 8.2 × 10−10 J]

6.6 Show that for a homogeneous ellipsoid of semi axes a, a, b the quadrupole
moment is given by Q= ( 2

5 )(b
2 − a2).

6.7 Show that for a rotational ellipsoid of small eccentricity and uniform charge
density, the quadrupole moment is given by Q= ( 4

5 )ZRΔR.

6.8 With the mass formula calculate the energy that is released in the binary fission
of uranium.
[Ans. ∼170 MeV]

6.9 For nuclei with atomic mass number A greater than 100, the average binding
energy per nucleon is given by the approximate expression.

B

A
� 8.97 − 0.0068AMeV

Given that the binding energy of the alpha as particle is 28.3 MeV, estimate the
minimum atomic mass number for which alpha decay is energetically possible.
[Ans. 142]
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6.10 The masses of the mirror nuclei 27
13Al and 27

14Si are 26.981539 and 26.986704
respectively, the neutron and proton masses are 1.008665u and 1.007825u respec-
tively. Determine the Coulomb’s coefficient in the semi-empirical mass formula.
[Ans. 0.62 MeV]

6.11 27
14Si and 27

13Al are mirror nuclei. The former is a positron emitter with Emax =
3.48 MeV. Determine r0.
[Ans. 1.63 fm]
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Chapter 7
Nuclear Reactions

7.1 Types of Reactions

In the collision of two particles different processes may take place. A typical nuclear
reaction may be written as

a +X→ b+ Y +Q (7.1)

where X represents the target nucleus ‘a’ the projectile, while Y is the residual
nucleus (unobserved) and b is the particle observed. For brevity this reaction may
be written, X(a,b)y. Isotopes are indicated by the use of their mass number as a
superscript on the left of the chemical symbol. Special symbols are used to designate
elementary particles, and some of the light nuclei; for example, e for electron, p for
proton, n for neutron, d or 2H for deuteron, t or 3H for triton, ∝ or 4He for alpha
particle, γ for photon or gamma ray, π for pion, μ for muon etc. Sometimes, b or y
may be produced in an excited state. This is indicated by the use of an asterisk, Y ∗
etc.

The symbolQ in (7.1) is the energy released in a reaction; if both b and y are left
in the ground state, this is denoted by Q0. If Q �= 0, it means that a part of kinetic
energy has gone into excitation energy and/or new type of nuclei. If Ef and Ei are
the total kinetic energy in the final and initial state, then

Q=Ef −Ei (7.2)

If Q is positive, the reaction is said to be exoergic (or exothermic as in chemi-
cal reactions) and a negative value of Q signifies that the reaction is endoergic or
endothermic. In this case a definite minimum kinetic energy, called the threshold
energy is required for the projectile to initiate the reaction. The threshold energy
needed is equal to −Q in the centre of mass system.

IfQ= 0, then it represents elastic scattering in which case total kinetic energy is
conserved. Given enough energy for the bombarding particle a collision may result
in more than two particles in the final state. At sufficiently high energy a collision
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may result in an appreciable number of reaction products, called a spallation re-
action, although the break-up of a nucleus into all the constituents is an unlikely
event.

There are several major types of reactions.

(i) Elastic Scattering Here b = a and y = x. The internal states are unchanged so
that Q= 0 and the kinetic energy of the particles in the CMS is unchanged before
and after the scattering. In general

a + x→ a + x
for example

n+ 7Li → n+ 7Li or 7Li(n,n)7Li

(ii) Inelastic Scattering Here b = a, but ‘X’ is raised to an excited state, Y = X∗,
so thatQ= −Ex , where Ex is the excitation of the state. Since “a” is emitted with
reduced energy, it is usually written as a′

a +X→ a′ +X∗ −Ex
For example

10B + α→ 10B∗ + α′

or
10B

(
α,α′)10B∗ (7.3)

If ‘a’ is itself a complex nucleus, it may get excited instead of the target, or both
may be excited. An example of the latter is

12C + 16O → 12C∗ + 16O∗ (7.4)

(iii) Nuclear Reaction Here b �= a and y �= x so that there is a rearrangement of the
constituent nucleons between the colliding pair, known as transmutation. A number
of possibilities are open; x+a→ Y1 +b1 +Q1 or → Y2 +b2 +Q2 etc. Examples
are

α + 10B → 13C + p (7.5)
26Mg + 14N → 27Mg + 13N (7.6)

7Li + p→ 7Be + n (7.7)

(iv) Capture Reactions This is a special case of class (iii); the pair x + a coalesce,
forming a compound system in an excited state which decays via one or more
γ -rays,

x + a→ C∗ → C + γ +Q (7.8)

For example
197Au(p, γ )198Hg (7.9)
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(v) Fission A neutron absorbed by a heavy nucleus like 235U causes the nucleus to
split it into two and sometimes three large fragments with the emission of a few
neutrons. An example is

n+ 235U → 141Ba + 92Kr + 3n+ 189 MeV (7.10)

The energy released is much greater than in other types of reactions. Fission can
also be caused by other projectiles like p, α or pions.

(vi) Other Reactions If sufficient energy is available then in the final state there can
be more than two particles. In general, x + a→ y + b+ c+Q. For example

α+ 40Ca → p+ α′ + 39K or 40Ca
(
α,α′p

)39K (7.11)

The bombarding particle and the target particle a+ x constitute the entrance chan-
nel, while the products such as b + y form the exit channel. Open channels are
those which are energetically available.

7.2 Energy and Mass Balance

Q-value has been defined as the energy that is released. Hence it is the change in
the sum of the kinetic energies of the colliding particles and the reaction products

Ef −Ei =Q (7.12)

The Q-value can also be expressed in terms of the rest masses of the particles and
using the relativistic relation E =mc2. Consider the reaction X(a,b)Y

mX +ma =mY +mb + Q

c2
(7.13)

where mi is the mass of the ith particle.
Alternatively,Q is equal to the change in the binding energies Bi of the particles

By +Bb = Bx +Ba +Q (7.14)

For an elementary particle, such as a nucleon we regard Bi = 0 in this equation.
Further (7.13) says that the sum of masses in the initial state is heavier then that in
the final state. On the other hand, (7.14) says that the particles in the initial state are
less tightly bound than those in the final state in case of exoergic reactions and more
tightly bound in the entrance channel that those in the exit channel for endoergic
reactions. Obviously Q-value deduced from (7.13) or (7.14) must be identical. As
an example consider the reaction

d + d → 3He + n+Q (7.15)
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By (7.13)

Q = [
2md − (m3He +mn)

]× 931.5 MeV

= [
2 × 2.014102 − (3.016030 + 1.008665)

]× 931.5

= 3.27 MeV

By (7.14)

Q = (B3He +Bn)− 2Bd

= (7.72 + 0)− 2 × 2.225

= 3.27 MeV

It is noteworthy that in nuclear reactions the energies evolved or absorbed are of
the order of a few MeV while those in chemical reactions they are of the order
of a few eV. This is closely connected with the fact that nuclear reactions involve
rearrangement of nucleons whose binding energy is of the order of a few MeV, while
chemical reactions involve rearrangement of atoms in molecules whose dissociation
energy is of the order of a few eV.

7.3 Conservation Laws for Nuclear Reactions

The conservation laws may be stated and explained with reference to a specific
example

10
5B + 4

2He → 1
1H + 3

6C (7.16)

(i) Charge Total charge is conserved in every type of reaction. In 10B(∝,p)12C;
there are seven protons initially, and also in the products of the reaction. In all such
reactions, we may for brevity write

Σ
Qi

e
= const (7.17)

where e is the electronic charge.
(ii) Mass Number The total number of nucleons entering and leaving the reaction

is constant. In the above example there are fourteen nucleons initially and in the
products of the reaction. In general we may write

ΣA= const (7.18)

(iii) Statistics Both sides of a reaction such as (7.16) involve the same total number
of fermions, hence the statistics is either Fermi-Dirac through out (for odd ΣA) or
Bose-Einstein throughout (for even ΣA). In our example Bose-Einstein statistics
will be applicable
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(iv) Angular Momentum The total nuclear angular momentum is always a constant
of motion. In our example 10B has nuclear spin I = 3, while α particle has spin
zero. If the initial capture takes place by a s-wave, that is li = 0, then the total
angular momentum is also 3. Now, in the final state both 1H and 13C have nuclear
spin 1/2, which add up vectorially to 0 or 1. The mutual angular momentum of 1H
and 13C is restricted to lF = 2, 3 or 4.

(v) Parity As nuclear reactions are actuated by strong forces, total parity is con-
served. The parity of a system is given by the product of the parity of its com-
ponents. In our example if low energy alphas are used, then only s-waves (l = 0)
are involved in the collision process. Hence the contribution from orbital angular
momentum will be (−1)l = (−1)0 = +1. Shell model indicates that the parity of
the ground level of 10B and 4He is even while that of 13C is odd. Hence the total
parity of the system in the initial state is even. In the final state proton has even
parity while 13C in the ground state has odd parity. In order to conserve the over
all parity, it is necessary that the parity from the product particles be odd, that is
lF = 1,3,5, . . . . Combining the results from the conservation of both angular mo-
mentum, and parity, we conclude that lF = 3 alone is allowed provided the alpha
particle is captured in the l = 0 state.

(vi) Linear Momentum In all nuclear reactions, the total linear momentum before
and after the reaction is constant.

(vii) Energy In any nuclear reaction the sum of kinetic energy and the rest mass
energy (mc2) is constant.

(viii) Isospin Nuclear reactions will proceed if the total isospin is conserved. In the
entrance channel 4He has T = 0, so also 10B so that initially total isospin is I = 0.
In the final state 1H has T = 1/2 while 13C has T = 1/2 (the other member being
13N) so that I = 0 or 1. Conservation of isospin requires that the nuclear reaction
can proceed only through I = 0 channel.

7.3.1 Quantities that Are not Conserved

In nuclear reactions, quantities like magnetic dipole moments and electric
quadrupole moments of the reacting nuclei which depend upon the internal dis-
tribution of mass, charge and current within the nuclei are not conserved.

7.4 Cross-Sections

In order to measure the probability quantitatively that a given nuclear reaction will
take place we introduce the concept of cross-section. Consider a reaction of the type
x(a, b)γ . If I0 is the flux of particles ‘a’ incident per unit area on a target consisting
N nuclei of type x, then the number of particles b emitted per unit time (I ) will
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Fig. 7.1 Scattering of the
incident beam after hitting the
target

be proportional to both I0 and N . The constant of proportionality σ is called the
cross-section which has the dimensions of area. Thus

I = I0Nσ or (7.19)

σ = I

I0N
(7.20)

In words

Cross-section

= number of particles b emitted/s

(number of particles ‘a’ incident/unit area/s)(number of a target nuclei within the beam)

In nuclear Physics the unit of cross-section is a Barn (b) 1 b = 10−24 cm2 =
10−28 m2; The sub-multiples are: millibarn, 1 mb = 10−3 b, microbarn, 1 µb =
10−6 b, nanobarn, 1 nb = 10−9 b.

The number of particles b emitted per unit time within an element of solid angle
dΩ in the direction with polar angles (θ,φ) with respect to the incident beam will
be proportional to dΩ as well as I0 and N , Fig. 7.1. The constant of proportionality
is known as the differential cross-section dσ(θ,φ)/dΩ , also written as (dσ/dΩ) or
σ(θ,φ) so that

dσ

dΩ
= I

I0NdΩ
(7.21)

the unit of dσ/dΩ is barn/steradian. If the particles are unpolarised then the scat-
tered particles will not depend on the azimuth angle φ, and the scattering will be
symmetrical about the beam axis. In that case the differential cross-section will de-
pend only on the polar angle θ , and will be written as dσ(θ)/dΩ or σ(θ).

The total elastic cross-sections σ and dσ/dΩ are related by

σ =
∫ 4π

0

(
dσ

dΩ

)
dΩ (7.22)
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Fig. 7.2 Effect of collision
between two spheres and
point particle and disc

But dΩ = sin θdθdφ; so that

σ =
∫ π

0
sin θdθ

∫ 2π

0
dφ

(
dσ

dΩ

)

In the absence of spin polarization, dσ/dΩ is independent of φ, we get

σ = 2π
∫ π

0

(
dσ

dΩ

)
sin θdθ (7.23)

For the same entrance channel a number of exit channels will be open corresponding
to different reaction products at a given energy. As the exit channels are independent,
there will not be any quantum interference and the cross-section of different reaction
channels may be added. The sum of all these non-elastic channels cross-section is
called the reaction or absorption cross-sections and is denoted by σr . When the
elastic cross-section is also added we speak of the total cross-section

σtotal = σr + σel (7.24)

Strictly speaking the finite dimensions of the projectile must also be taken into ac-
count in the calculation of cross-section. Let a sphere 1 of radius R1 be at rest and
sphere 2 proceed toward it with impact parameter b, see Fig. 7.2. The two spheres
will collide only if the impact parameter b ≤R1 +R2.

The effect is the same as for the collision of a point particle with a disc of ra-
dius R1 + R2, the disc being perpendicular to the axis joining the centres of the
spheres. The area of the disc which is the projected area of the two spheres touching
each other, is equal to π(R1 +R2)

2. This is the cross-section for the collision. This
then means that if the radius of target nucleus is to be determined the radius of the
bombarding particle must be taken into account.

7.5 Exoergic and Endoergic Reactions

We may illustrate these reactions in the following examples:

D +D→ 3
2He + n+Q (7.25)

P + 3Li7 → 7
4Be + n+Q (7.26)

The energy Q that is released is given by subtracting the sum of masses on the
RHS from the sum on the LHS and multiplying by c2. In (7.25), Q= +3.29 MeV,
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Fig. 7.3 Emission of reaction
products at different angles

and is positive; the reaction is called exoergic reaction, where as in (7.26), Q =
−1.64 MeV, being negative, is called endoergic reaction. The excess of energy man-
ifests itself as kinetic energy of the product particles.

The Coulomb’s repulsion between the incident and the target particle means that
the incident particle must have certain minimum kinetic energy in order to get close
to the nucleus and thence induce a nuclear reaction. Certain conservation laws must
be valid for a reaction to proceed, e.g. the conservation of charge, linear momentum,
nucleon number, angular momentum, energy etc.

In general, we may write the reaction of the incident particle ‘a’ of kinetic energy
Ea with the target nucleus x, resulting in the products, b and y

a + x→ b+ y (7.27)

Conservation of energy gives us

(mx +ma)c2 +Ea = (my +mb)c2 +Eb +Ey (7.28)

Now

Q= (mx +ma −my −mb)c2 =Eb +Ey −Ea (7.29)

Note thatQ is independent of Ea and can be positive or negative; or zero for elastic
scattering.

Let the reaction products b and y be emitted at angles θ and α, respectively, with
respect to the original direction (see Fig. 7.3).

Conservation of energy and momentum gives us

Q = Ey +Eb −Ea (7.30)

pa = pb cos θ + py cosα (7.31)

0 = −pb sin θ + py sinα (7.32)

where p is the momentum. Writing, p2 = 2mE, and eliminating α and Ey , we
obtain

Q=Eb
(

1 + mb

my

)
−Ea

(
1 − ma

my

)
− 2

my

√
mambEaEb cos θ (7.33)
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If the nucleus y is produced in the ground state, then the Q-value deduced
from (7.33) and (7.29) would be identical. On the other hand, if the nucleus y is
produced in an excited state, then the Q-value calculated from (7.33) would be
lower corresponding to the energy of the excited state. The experimental Q-values,
therefore, allow the energy levels to be determined. We shall now study the variation
of Eb for a fixed value of Q. Writing

C =
√
Eamamb

mb +my cos θ (7.34)

D = Ea(my −ma)+Qmy
mb +my (7.35)

Equation (7.33) may then be written as

Eb − 2C
√
Eb −D = 0 (7.36)

The solution of the above equation is

√
Eb = C ±

√
C2 +D (7.37)

Now, Eb must always be real and positive. The factors which can make the emission
of b at an angle θ impossible are, (i) negativeQ-value, (ii) ma >my , (iii) large θ so
that cos θ may be negative.

7.5.1 Exoergic Reactions (Q-Value is Positive)

Example

n+ 10B → α+ 7Li (Q= +2.8 MeV) (7.38)

When the bombarding energy (energy of the incident particle) is very small, i.e.
Ea → 0 then C→ 0, and (7.37) shows that

Eb = Qmy

mb +my (7.39)

The particle b is, therefore, emitted with the same energy at all angles. When the
bombarding energy, Ea is finite two cases may be distinguished

(A) ma <my

In example (7.38), we choose a = n, b = α, y = 7Li. This means that D is always
positive, and only one of the solutions of (7.37) viz,

√
Eb = C + √

C2 +D is ac-
ceptable. Further, Eb will depend on θ , the angle of emission; being maximum for
θ = 0 and minimum for θ = 180◦, Fig. 7.4.
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Fig. 7.4 Energy of the
produced particle as a
function of the incident
energy, for the exoergic
reaction n+ 10B →
α + 7Li + 2.8 MeV

(B) ma >my

Consider the reaction

α+ 10B → 13C + p (7.40)

Here, we choose mb = 13, my = 1, and ma = 4. The energy of the product parti-
cle 13C is being studied. It follows that D = (Q− 3Eα)/14, which goes negative
for α energies greater than Q/3, i.e. >1.33 MeV, since Q= 4 MeV. For α energy
<1.33 MeV, only one solution for Eb is acceptable. Eb is positive for all angles
0< θ < 180◦. For α energy >1.33 MeV, D is negative and there are two solutions
for Eb in the interval 0 < θ < 90◦. But, for θ > 90◦, only one solution is possi-
ble.

7.5.2 Endoergic Reactions (Q-Value is Negative)

There exists a threshold below which the reaction cannot proceed. The threshold
energy is the minimum energy required in the lab system so that in the center of
momentum system, the product particles are at rest.

Calculations in the CM System Let the particle ‘a’ of mass ma be moving with
velocity va and kinetic energy Ea in the Lab system, and hit the target particle x,
initially at rest (Fig. 7.5). In the CM System, both the particles will be observed
to be approaching each other with equal and opposite momentum (by definition of
the CM System). Let the CM system itself be moving with velocity vc along the
incident direction. Let v∗

a and v∗
x be the velocity of ‘a’ and ‘x’ respectively, in the

CMS. Clearly

v∗
x = vc (7.41)

since to an observer fixed to the CM System, the particle x will be seen to approach
with velocity vc. Also

v∗
a = va − vc (7.42)

By definition
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Fig. 7.5 Mass, energy and
velocity of the particles in lab
system and the CM system

mav
∗
a = mxv∗

x (7.43)

∴ ma(va − vc) = mxvc (7.44)

whence, we find

vc = v∗
x = vama

ma +mx (7.45)

Also

v∗
a = vamx

ma +mx (7.46)

The sum of the energy of the particles in the CMS is then,

E∗ = 1

2
mav

∗2

a + 1

2
mxv

∗2

x = 1

2
mav

2
a

(mx)
2

(ma +mx)2 + 1

2
mxv

2
a

(ma)
2

(ma +mx)2

= 1

2
mav

2
a · mx

ma +mx = Eamx

ma +mx (7.47)

where, we have used (7.45) and (7.46), and Ea = (1/2)mav2
a . If the reaction is to

barely proceed then we must write, E∗ = −Q

Ea(threshold) = |−Q|
(

1 + ma

mx

)
(7.48)

At Ea corresponding to the threshold energy, the particle b appears at 0◦, with en-
ergy

Eb = Eamamb

(mb +my)2 = Eamamb

(ma +mx)2 (7.49)

As Ea is raised above the threshold, b appears at angles >0°. At angles ≥90°, the
particle b first appears with Eb = 0 when the terms C and D vanish separately.
Thus, at θ = 90◦

Ea(90◦) = −Qmy
my −ma (7.50)
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Fig. 7.6 Energy of the
produced particle as a
function of the incident
energy for the endoergic
reaction, p+ 7Li → 7Be + n
(Q= −1.64 MeV)

The particle b can appear in the forward direction with double solution for Eb ,
provided Ea ≤ −Qmy/(my − ma), and Ea ≥ Ea(0◦), i.e. C2 + D ≥ 0. In other
words, for the backward hemisphere (θ > 90◦) there is a single solution.

In endoergic reactions, Eb becomes single valued for all θ when Ea >

−Qmy/(my − ma). It may be remarked that the heavier fragment can never be
projected in the backward direction. Also, Eb can be zero only at 90°. The energy
Eb as a function of Ea is graphically represented in Fig. 7.6, for the typical endoer-
gic reaction

p+ 7Li → 7Be + n− 1.64 MeV

7.6 Behaviour of Cross-Sections near Threshold

For a given pair of nuclei a large variety of nuclear reactions are possible. However,
the general trends for the variation of cross-sections with energy can be investigated
for different classes.

Consider the reaction of the type X(a,b)Y . Let na be the number of particles
of type ‘a’ per unit volume and vax the velocity of ‘a’ relative to X. The product
navax represents the flux of ‘a’, that is the number of particles of type ‘a’ crossing
unit area per second. We can write

vaxnaσX→Y =W (7.51)

where W is the number of transitions per second. Now the golden rule gives

W = 2π

�
〈|Hif |2〉dN

dE
(7.52)

where 〈|Hif |〉 is the matrix element averaged over individual states and dN/dE is
the density of final states. The statistical factors due to spin are

gi = (2Sa + 1)(2Sx + 1) and gf = (2Sb + 1)(2Sy + 1) (7.53)
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for the initial state i and the final state f . Experimentally the initial system is nor-
malized to have a weight 1. In the final state, since different spin orientations are not
distinguished, 〈|Hif |2〉 must be multiplied by gf . The matrix element Hif is

Hif =
∫
ψ∗
f Vψidτ (7.54)

As the wave functions ψ∗
f and ψi are normalized, we put Ω = 1. The density of

final states is

dN

dE
= phase space

�3
= (physical space)× (momentum space)

�3

=Ω4πp2
b

dpb

dE
= 4πp2

bdpb

vbydpb
= 4πp2

b

vby
(7.55)

Combining (7.51) and (7.55) and calling va = vax and vb = vby for simplicity, and
noting na = 1/Ω = 1, we find

σx→y = 1

π�4

〈|Hif |2〉 p
2
b

vavb
(2Iy + 1)(2Ib + 1) (7.56)

Equation (7.56) permits us to investigate the variation of cross sections for different
class of reactions. Here we avoid the regions of resonances, that is nuclear levels
which play a dominant role

1. Elastic scattering (Both bombarding particle and scattering particle are un-
charged) as for neutron scattering, va = vb , therefore p2

b/vavb = (Mneutron)2 =
const. At low energy Hif is approximately constant so that σ � constant at low
energy, Fig. 7.7(a).

2. Exoergic reaction The bombarding particle is uncharged, for example neutron
at low energy. The Q-value is positive and is of the order of few MeV and
neutron energy is a few eV so that vb � const, and p2

b/vavb ∝ (1/va). Now
|Hif |2 ∝ e−2(Gn+Gb), where the exponential is the barrier factor. But Gn = 0 for a
neutral particle and Gb = (πZbZγ e2/�vb)� const. It is therefore concluded that
σ ∝ 1/vn, the famous 1/v law, Fig. 7.7(b). The examples to be considered are
(n,γ ), (n,p), (n,α), (n,f ) reactions where f is for fission.

3. Exoergic reaction, charged incoming particle Examples are (p,n), (α,n), (p,γ ),

(α, γ ) reactions. At incident energies � Q, the factor
p2
b

vavb
∝ 1
va

and the barrier

factor e−Ga alone is of consequence so that σ ∝ (1/va)e−2Ga , Fig. 7.7(c).
4. Inelastic scattering (n,n′) This is a particular case of an endoergic reaction.Q is

negative and −Q is the excitation energy of the nucleus. At incident neutron en-
ergies slightly above the threshold, vn � const; since the fractional change in in-
cident energy is small. But vn′ ∝ (�E)(1/2) where �E = excess of energy above

the threshold. Consequently, the factor
p2
n′

vnvn′
∝ v′

n or ∝ (�E)(1/2). Therefore, near

the threshold σ ∝ (energy excess)1/2, Fig. 7.7(d).
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Fig. 7.7 Schematic behavior of various cross-sections near the threshold

5. Endoergic reaction; charged outgoing particles Examples are (n,p), (n,α) re-
actions. The dependence is the same as in case 4, except the barrier factor e−Gb
operates and σ ∝ (energy excess)1/2 × e−2Gb , or ∝ (�E)1/2ec1/E1/2

b , Fig. 7.7(e).
6. Endoergic reaction; charged outgoing particles Examples are (n,p), (n,α) re-

actions. The dependence is the same as in case 4, except the barrier factor e−Gb
operates and σ ∝ (energy excess)1/2 × e−2Gb or ∝ (�E) 1

2 e−c′/Eb1/2, (c′ = const)
Fig. 7.7(e).

7.7 Inverse Reaction

If the equation describing the reaction process

a + x→ b+ y +Q
is invariant under time reversal (changing the sign of the time variable) then it also
describes the process

y + b→ x + a −Q
At a given total energy in the CMS, the forward reaction cross-section σ(a → b)

and the backward reaction cross-section σ(b→ a) are not identical but are simply
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Fig. 7.8 An experimental test of the reciprocity theorem, Eq. (7.58). The vertical scales for the
cross-sections of the reaction and its inverse have been adjusted to compensate for the statistical
weights due to spin and momentum which appear in Eq. (7.58) [31]

related by the density of final states, that is by the phase space available in the
respective exit channels. The number of states available for momenta between p
and p + dp is proportional to p2. Hence σ(a→ b) is proportional to p2

b where pb
is the relative momentum of b with respect to y, and σ(b→ a) is proportional to
p2
a if pa is the relative momentum of “a” with respect to x. We then have

σ(b→ a)

σ (a→ b)
= p2

a

p2
b

(7.57)

This is known as the reciprocity theorem or the principle of detailed balance. It is
valid for differential as well as total cross-sections.

For particles with spins we must also take into account the corresponding statis-
tical weights. Assuming that the participating particles are unpolarised, there will
be (2I + 1) states of orientations available for a particle of spin I . For particles with
spin Ia , Ix , Ib and Iy (7.57) becomes

σ(b→ a)

σ (a→ b)
= (2Ix + 1)(2Ia + 1)p2

a

(2Iy + 1)(2Ib + 1)p2
b

(7.58)

The reciprocity theorem has been tested in numerous experiments. The agreement
is excellent and demonstrates the validity of time-reversal invariance of the underly-
ing equations. In case one or more particles are polarised more complicated relations
hold for these relations. The measured differential cross-sections for the reactions
24Mg(α,p)27Al and 27Al(p,α)24Mg at the same energy in CMS and at the same
angle are compared and are shown to verify the predictions of time-invariance to
a high degree of accuracy, Fig. 7.8. The principle of detailed balance has been ap-
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Fig. 7.9 A comparison of the
energy spectra for the
products from the reactions
12C(12C, α) and
16O(7Li, t)20Ne which lead
to the same final nucleus.
This shows that the two
reactions do not excite the
states of Ne in the same way;
both reactions are very
‘selective’. The peaks are
labeled by the excitation
energy of the corresponding
states in 20Ne [8]

plied to the photo-disintegration of deuteron and the capture of neutron by proton.
Another important application is the determination of pion spins [24], Chap. 3.

7.8 Qualitative Features of Nuclear Reactions

Nuclear reactions display a bewildering variety. Nevertheless some general charac-
teristics can be studied and certain types can be classified. Nuclear reactions often
result in the production of a variety of nuclei which are left in various excited states.
It is possible to obtain the same product nucleus with the use of different pairs of in-
cident and target particle. As an example consider the production of 20Ne nucleus in
the reactions 12C(12C, α)20Ne and 16O(7Li, t)20Ne. Referring to Fig. 7.9 it is found
that not all the states are excited with equal probability. Further the excited states
in 20Ne are populated differently in the above mentioned reactions. Thus, there is
certain amount of selectivity in various channels which varies with the bombarding
energy. It often permits us to obtain useful information about the mechanism of the
reactions and the nuclear structure. The type of information obtained from reaction
measurements also depends upon the nature of the projectile and the bombarding en-
ergy. Thus, the collision of a proton of several hundred MeV with a nucleus will be
like a nucleon-nucleon collision in which pions or strange particles may be produced
and a target nucleon may be knocked out. The collision of a heavy ion such as 40Ca
on 84Kr of the same energy will be different as the energy will be deposited over
a large volume, setting up a large scale collective motion of the compound system.
Further, the heavy ion may input larger amount of angular momentum. For example,
a proton of 400 MeV incident upon an 107Ag nucleus will not strike the nucleus if
its angular momentum is greater than about 30 h, while a 84Kr with 400 MeV can
interact with the same target nucleus when their relative angular momentum is up to
470 h.
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7.9 Reaction Mechanisms

Three different reaction mechanisms are compound nucleus reactions, direct reac-
tions and pre-equilibrium reactions. In the compound nucleus reactions the incident
particle is captured by the target nucleus and its energy (kinetic + binding energy �
8 MeV) is shared among the nucleons of the compound nucleus until it attains
a state of statistical equilibrium. After a time of the order of 10−14–10−15 s at
low incident energies and 10–100 times greater at high energies, a nucleon or
a group of nucleons near the surface may, by a statistical fluctuation, receive
enough energy to escape, in the manner of evaporation of a molecule from a
heated drop of liquid. This statistical process favours the emission of low energy
particles which form the Maxwellian distribution. If the excitation energy of the
compound nucleus is high enough, several particles may be emitted in succes-
sion until the energy of the nucleus has dropped below the threshold for particle
emission. Then the nucleus emits γ rays until the ground state is reached. The
nucleus may decay in a variety of other ways such as fission into two large frag-
ments if the compound nucleus is very heavy or through the production of ra-
dioisotopes. The type of information which the study of compound nucleus yields
includes the properties of energy levels of the compound nucleus which are ex-
cited, the mechanism of nuclear de-excitation, the density of high energy states,
the role of angular momentum and nuclear deformation in affecting the evapora-
tion process. The measurement of γ ray energies and intensities and their angular
correlations find important applications for the structure studies of low energy lev-
els.

The direct reactions take place in the time the incident particle takes to traverse
the target nucleus which is typically of the order of 10−22 s. Here the incident par-
ticle may interact with a nucleon or a group of nucleons or the entire nucleus and
emission takes place immediately. The simplest direct process is the elastic scatter-
ing in which the target nucleus is left in the ground state. In non-elastic processes the
states of the residual nuclei which are excited bear a simple structural relationship to
the ground state of the target nucleus. Inelastic scattering predominantly excites col-
lective states, one nucleon transfer excites single-particle states and multi nucleon
transfer excites cluster states. Measurements of cross-sections of these states, the
angular distribution of the emitted particles, and their state of polarization permit
the study of these states. Much of our knowledge of nuclear structure has originated
from the study of direct reactions.

It is possible that after the interaction the particle may not be emitted immedi-
ately as in the direct reactions nor after a long time in the statistical way as from the
compound state. The particle may be emitted before reaching the statistical equilib-
rium, such processes are termed as pre-compound or pre-equilibrium reactions and
constitute the third category.

The interaction of two heavy ions requires yet one other mechanism.
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(a)

Fig. 7.10 (a) Some resonance peaks that show up when 27Al is bombarded with protons. The or-
dinate measures the gamma radiation from the target; the abscissa is the proton energy in MeV [11]

7.10 Nuclear Reactions via Compound Nucleus Formation

In early 1930’s a large number of nuclear reactions were studied. Detailed studies
showed sharp peaks in cross sections at selective bombarding energies, Fig. 7.10(a).

This led Bohr [6] and independently Breit and Wigner to postulate that these
reactions proceed through two stages, first the formation of an intermediate state,
called compound nucleus state, second its break up in a relatively long time into the
observed products. According to Bohr:

(i) The same compound nucleus can be formed in a variety of ways. For exam-
ple, the compound nucleus in a particular excited state in the compound state
designated as 64Zn∗ can be produced by

(7.59)

The asterisk (∗) shows that the compound nucleus is produced in an excited
state.

(ii) A particle which hits the nucleus is captured and the energy released consists
of its binding energy plus the kinetic energy. In its strong interaction with one
or more nucleons, the available excitation energy is dissipated and shared by
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Fig. 7.10 (Continued)

(b)
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several nucleons in the collision processes. The excitation energy (Eexc) is
given by adding the binding energy (B) and the available kinetic energy in

the c-system. Thus, Eexc = B + Eamx
(ma+mx) , where Ea is the bombarding energy

in the Lab system. The new nucleus is thus formed in the intermediate stage
(compound nucleus). Sooner or later lot of energy may be deposited on one
or more particles of the compound state nucleus, resulting in the emission of
a particle (s). The compound state nucleus is long lived (∼10−16 s) compared
to the natural nuclear time which may be taken as the time taken to cross the

nuclear diameter, that is t ∼ 10−12 cm
109 cm/s

= 10−21 s.
(iii) The final break-up of the compound state nucleus is independent of the mode of

formation. The time involved in break-up is so long that ‘memory’ is lost. The
formation and break-up can be regarded as independent events. For example,
the compound nucleus 64Zn∗ can decay into a variety of ways as in (7.60).

Figure 7.10(a) shows the resonance peaks formed in the reaction (p, 27Al)
the corresponding energy level diagram is indicated in Figs. 7.7–7.10, the en-
ergy level diagram is constructed from the measured Q values for various en-
ergy levels. The ground energy level E0 is taken as zero. The energy level En
is given by En =Qn −Q0, where n is the energy level

(7.60)

(iv) The exit channel with neutron emission is much more favoured than the
charged particles like proton and α as the latter have to overcome the Coulomb
barrier.

Reaction Channels-Various ways in which a compound state is formed are called
entrance channels, and the various ways in which a compound nucleus breaks up
are called exit channels.

7.10.1 Resonances in the Formation of the Compound Nucleus

In order to form a compound nucleus the incident particle must penetrate the
Coulomb barrier as well as the nuclear surface. Now the probability of transmis-
sion through the potential step at the “surface” of the nucleus is not a monotonic
function of the bombarding energy but shows very large values for certain selected
values. If the excitation energy of the compound nucleus is just equal to one of the
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Fig. 7.11 Relative yield of the 3.9 MeV γ -rays from C13∗, showing resonances in the formation
of the compound nucleus in the reaction B10(α,p)C13∗. A thin target (∼10 keV stopping power
for α-rays) of isotopically enriched 10B was used. The γ -rays were observed with a scintillation
spectrometer, at 90° from the α-particle beam (Talbott and heydenburry)

excited levels then a resonance formation of the compound nucleus is expected. Fig-
ure 7.11 shows the resonances in the formation of the compound nucleus 14N∗ in
the reaction 10B(α,ρ)13C∗. Relative yield of 3.9 MeV γ -rays from 13C∗ is mea-
sured as a function of α-energy. Peaks of γ -ray intensity in Fig. 7.11 correspond to
resonance penetration of the 10B + α barrier and formation of 14N∗ in a succession
of excited levels.

7.10.2 Width of Resonance Levels

From Fig. 7.11 we can also estimate the width T of each of the virtual levels. Be-
cause of its finite lifetime, the level can not be said to have a perfectly sharply de-
fined energy and the uncertainties in energy and time are related by the Heisenberg
uncertainty principle �E�t ≥ �.

Any level which has a number of possible competing modes of decay will have a
corresponding number of “partial width” Γj , each corresponding to the probability
of decay by a particular mode.

The total width of the level, which corresponds to the total probability of decay,
is the sum of all the partial widths

Γ = Γ1 + Γ2 + Γ3 + · · · (7.61)

The total width is defined as the full width of the resonance peak measured at one-
half the maximum height of the peak, Fig. 7.11.
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7.10.3 Experimental Verification of the Compound Nucleus
Hypothesis

According to the compound nucleus concept, we can write

σ(a, b)= σcpb(ε) (7.62)

where σ(a, b) is the cross section for the complete reaction X(a,b)Y ; σc is the
cross section for the formation of compound nucleus with excitation energy ε by
absorbing particle ‘a’ with kinetic energy Ea ; pb(ε) is the normalized probability
that the nucleus so formed will decay by emission of b. It is assumed that pb(ε) is
independent of the mode of formation of the compound nucleus. In the experiment
of Ghoshal [19] the same compound nucleus 64Zn∗ was produced with the bom-
bardment of 60

28Ni by alpha particles and 63
29Cu by protons. The bombarding energy

for each of the reactions was adjusted to yield the same excitation energy for the
compound nucleus.

The reactions observed were

(1) 60Ni(α,n)63Zn
(2) 60Ni(α,2n)62Zn
(3) 60Ni(α,pn)62Cu
(4) 63Cu(p,n)63Zn
(5) 63Cu(p,2n)62Zn
(6) 62Cu(p,pn)62Cu

Since the excitations produced through the two processes are the same the decay rate
through the channel b is the same, as it depends only upon the excitation produced
in the compound nucleus, and not upon the mode of formation. If the compound
nucleus assumption is true then it is expected from Fig. 7.12

σ(p,n) : σ(p,2n) : σ(p,pn)= σ(α,n) : σ(α,2n) : σ(α,pn) (7.63)

These expectations were borne out by this and other experiments. In John’s exper-
iment on reactions with heavy elements, excitation functions of (α,Xn) reactions
in 206Pb were compared with those of (p,Xn) in 209Bi where X = 2,3,4. For the
same excitation in the compound nucleus 210Po, the expected ratios

σ(p,2n) : σ(p,3n) : σ(p,4n)= σ(α,2n) : σ(α,3n) : σ(α,4n) (7.64)

were experimentally confirmed.

7.10.4 Energy Level Density

The density of nuclear levels depends strongly on the excitation energy and on the
mass number. In the light nuclei, near the ground state the levels are about 1 MeV
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Fig. 7.12 Experimental cross
section for the reactions of
Eq. (7.59). The scales of
alpha energy are shifted by
7 MeV to take account of the
fact that an alpha particle
must have more energy than a
proton (by this amount) if
they are to produce
compound nuclei with the
same excitation energy [19]

apart, while in heavy nuclei about 50 keV apart, except in magic number nuclei.
When the excitation energy is in the vicinity or the neutron binding energy (8 MeV)
slow neutron resonances in medium-heavy elements are a few electron volts apart.
Using Fermi’s gas model (Chap. 6) one can obtain the level density ρ(E) for the
total system energy E by an approximate formula

ρ(E)= ρ(0)e2(aE)1/2

where ρ(0) and ‘a’ are empirical constants.

Decay of Compound Nucleus The compound nucleus formed by the absorption
of neutron is de-exited by evaporating one or more neutrons or other particles. If the
excitation energy is sufficient then the evaporation of one particle may leave enough
energy to enable the second particle to leave and so on. We may then have (p,Xn),
for example with X = 1,2,3, . . . upto 6 or 7. The probability of decay through a
larger number of particles increases with greater excitation. When little excitation
is left particle emission ceases and only gamma emission is possible. The energy
distribution of the evaporated neutrons is described by the Maxwellian distribution
at the temperature T of the residual nucleus. Number or neutrons emitted between
En and En + dEn, being

ndEn � const ·Ene−En/ktdEn

In the case of charged particles the Coulomb barrier inhibits the emission of low
energy particles. The energy distribution is modified by multiplying the Maxwell
distribution by the Coulomb barrier penetration factor.
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7.11 Partial Wave Analysis of Nuclear Reactions

The method of partial waves was used for n–p and p–p scattering (Chap. 5). This
method has been successfully applied by Weisskopf and others to nuclear reactions.
We consider two-body collisions. Two possibilities are:

1. ‘a’ is elastically scattered from X.
2. ‘a’ reacts with X in such a way that it is removed from the incident beam by

any process other than elastic scattering. Process, 1 is described by an elastic
scattering cross-section σel and process 2 by the reaction cross-section σr .

The total cross-section σt is composed of the elastic scattering cross-section σs and
the reaction cross-section σr

σt = σs + σr (7.65)

We shall derive expressions for σs and σr for the lth partial wave for neutron beam.
The incident beam of unit density and of flux v along the z-axis in the partial-wave
expansion can be written as

eirz =
∞∑
ι=0

il(2l + 1)jl(kr)Pl(cos θ)

�
∑
r→∞

il+1

2kr
(2l + 1)

{
exp

[
−i

(
kr − lπ

2

)]
− exp

[
i

(
kr − lπ

2

)]}
Pl(cos θ)

(7.66)

Equation (7.66) is the superposition of both the incoming and outgoing spherical
waves. In scattering or nuclear reaction the amplitude of the outgoing spherical wave
part of the plane wave is modified.

The wave function ψ(r) describing the outgoing wave after interaction is written
as

ψ(r)
r→∞

�
∑
l

il+1

2kr
(2l + 1)

{
exp

[
−i

(
kr − lπ

2

)]
− ηl exp

[
i

(
kr − lπ

2

)]}
Pl(cos θ)

(7.67)
where

ηl = e2iδl (7.68)

is a complex amplitude for the lth partial wave. If |ηl | = 1, there is no change in
the number of particles in the lth wave and only elastic scattering will occur. If,
however |ηl | < 1, then both elastic scattering and nuclear reaction will take place,
a condition that is valid for all values of l. In case the incident particles are charged
then the Coulomb function must be incorporated in the exponential factors in (7.67).
When the target is polarized and the non-central forces are present, the factor 2l+ 1
must be replaced by a weighted sum over the magnetic quantum number m.
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The elastically scattered wave function ψel , which is the difference of (7.66) and
(7.67) is given by

ψs =
∑
l

il+1

2kr
(2l + 1)(1 − ηl) exp

[
i

(
kr − lπ

2

)]
Pl(cos θ) (7.69)

Now the quantum mechanical expression for current density is

j = �

2mi

(
∂ψs

∂r
ψ∗
s − ∂ψ∗

s

∂r
ψs

)
(7.70)

The ingoing flux corresponding to ψs through a sphere of radius r0 is given by

φ = �r2
0

2im

∫ (
∂ψ

ψr
ψ∗
s − ∂ψ∗

s

∂r
ψs

)
dΩ

∣∣∣∣
r=r0

(7.71)

σs = φ

v
= π�k

2k2mv

∫ +1

−1

∣∣Σ(2l + 1)(1 − ηl)Pl(cos θ)
∣∣2d cos θ

σs =
∞∑
ι=0

σ ls (7.72)

where

σ ls = π

k2
(2l + 1)|1 − ηl |2 (7.73)

The total flux entering a large sphere of radius r0 may be computed from (7.71), by
using ψ(r) and not ψs

φr = − �r2
0

2im

∫ (
∂ψ

∂r
ψ∗ − ∂ψ∗

∂r
ψ

)
dΩ

= − �π

2imk2

∫ ∑
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{[
−ik exp
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(
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2

))

− ikηl exp

(
i

(
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2

))][
exp i
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)
− η∗

l exp

(
−
(
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2

))]

− complex conjugate

}
d cos θ

= �π

mk

∑
l

(2l + 1)
(
1 − |ηl |2

)
(7.74)

σr = φr

v
=

∞∑
l=0

σ lr (7.75)
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Fig. 7.13 The cross-hatched
area shows permissible value
for the scattering and
absorption cross sections
multiplied by β [5]

where

σ lr = π

k2
(2l + 1)

(
1 − |ηl |2

)
(7.76)

The total cross-section is the sum of the scattering and reaction cross-sections

σ lt = σ ls + σ lr = πλ̄2(2l + 1)|1 − ηl |2 = πλ̄2(2l + 1)
(
2 − ηl − η∗

l

)
(7.77)

Equations (7.72) and (7.75) suggest that there is a relationship between σr and σs .
This becomes quite apparent if we consider the partial wave cross-sections σ lr and
σ ls . These quantities divided by π(2l + 1)λ2 = (1/β), are plotted in Fig. 7.13.

All possible values of these quantities lie in the cross-hatched area. Values out-
side this area are not realized.

Thus σ lr /πλ
2(2l + 1) cannot exceed unity and σ ls/πλ̄

2(2l + 1) cannot exceed 4.
Note that (7.73) and (7.76) cannot be directly compared with experiment because
δl’s and ηl’s are undetermined. When there is only scattering and no reaction,
|ηl |2 = 1. In terms of phase-shifts, since ηl = e2δl , δl is real: In the presence of
any reaction, atleast one of the δl’s is complex so that ηl has magnitude less than 1.

The maximum value of σ ls is obtained for δl = 180◦ for which ηl = −1;
σ ls (max)= 4πλ̄2(2l + 1) in which case σ lr = 0.

The maximum value of σ lr is obtained for ηl = 0 in which case σ ls �= 0. Blatt
and Weisskopf explain this fact by suggesting that the outgoing part of the wave is
weakened. Such a weakening can be caused by the coherent elastic scattering of a
part of the incoming wave with a phase shift of 180°. Thus there can be scattering
without absorption but the converse is not true.

Consider a limiting case of a nucleus with a sharp edge of radius R
 λ̄ so that a
semiclassical concept of trajectories is valid. We assume that all particles that strike
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the nucleus react. If the impact parameter is bl then the angular momentum

L= l�= pbl = �
bl

λ̄
(7.78)

Hence all the incident particles with bl < R or ≤ (R/λ̄), react and all those with
l > R/λ̄ do not, the last condition gives |ηl |2 = 1 for l > (R/λ̄). For l ≤ (R/λ̄),
the reaction is maximum, which is equivalent to the condition ηl = 0. Then, since
(R/λ̄≥ 1) we find from (7.75) and (7.76)

σr = πλ̄2
R/λ̄∑
ι=0

(2l + 1)= πλ̄2
[2(R/λ̄)(1 + R

λ̄
)

2
+ 1 + R

λ̄

]

= π(R + λ̄)2 � πR2 (7.79)

where we have summed over natural numbers. Similarly, the scattering cross-section
is given by

σs � πR2 (7.80)

Adding Eqs. (7.79) and (7.80), the total cross-sections is

σt � 2πR2 (7.81)

Equation (7.81) implies that σt is approximately twice the geometrical cross-section
of the nucleus for fast neutrons reacting with totally absorbing nucleus. The nucleus
absorbs the partial wave completely and acts as a black disc. However even in this
case there is scattering. Equations (7.79) and (7.80) show that the elastic cross-
section is then equal to the reaction cross-section. Classically one might expect that a
reaction cross-section equal to πR2 should not be accompanied by elastic scattering.
In the high energy limit (kR
 1). It is then possible to make wave packets that are
small in comparison with the size of the scattering region, and these can follow
the classical trajectories without spreading appreciably. However, the apparently
anamolous result (7.81) is explained by the fact that the asymptotic form of the wave
function is so set up in Eq. (5.112) ψr→∞ = A[eikz + (1/r)f (θ)eikr ] that in the
classical limit the scattering is counted twice; once in the true scattering which turns
out to be spherically symmetrical, and again in the shadow of the scattering sphere
strongly in the forward direction, since this is produced by interference between the
incident plane wave eikz and the scattered wave f (θ)(eikr/r). So long R/λ̄ is finite
and diffraction around the sphere in the forward direction does take place. In order
to suppress completely the incoming wave behind the obstacle, a source must be
placed on it with the same amplitude but opposite phase uniformly spread over the
obstacle. This source produces a beam, in a cone of angular aperture � (λ̄/R) of
intensity approximately equal to that intercepted by the obstacle. This is known as
shadow-scattering and is detectable provided R is a few times λ̄.

At very high energies the wavelength of the projectile becomes small compared
with R, and collisions occur with single nucleons in the nucleus. Between these two
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limits the nuclei are partially transparent for the incident particles. They are said to
be ‘grey’ obstacles.

7.12 Slow Neutron Resonances and the Breit-Wigner Theory

The resonances shown in Fig. 7.11 correspond to various energy levels (states) of
the compound nucleus characterized by definite spin, parity and width. The life time
of a given level is related to the width of the level through the uncertainty relation.

τΓ � � (7.82)

The lifetime of compound states τ is of the order of 10−15 s. For lighter nuclei,
the widths of the resonances are greater and the corresponding lifetimes shorter,
but in any case they would be much larger than the characteristic time on nuclear
scale (10−22 s). Bohr assumed that when the compound nucleus decays it has lost
the ‘memory’ and does not ‘remember’ how it was formed. This independence has
been experimentally verified.

Consider only the s-wave (l = 0) neutron of low energy. We shall derive Breit-
Wigner formulae for elastic scattering and reactions in the neighbourhood of a single
isolated resonance level. These formulae describe the variation of cross-sections for
slow neutrons as a function of energy. To begin with we ignore the spins of the par-
ticles. In Chap. 5 we observed for zero-energy neutrons the connection of the phase
shift 6 with the scattering length ak , and the effective range r0, the corresponding
equations are

lim
k→0

δ

k
= −ak (7.83)

k cot δ = − 1

ak
+ r0k

2

2
(7.84)

where k = 2π/λ. We define a(k) through the relation

k cot δ = − 1

a(k)
(7.85)

for all values of k. If there is no reaction, a(k) is real. For σr �= 0, a(k) is in general
complex. By putting a(k)= a

η = e2iδ = (cos δ + i sin δ)2

=
(

1 − ika√
1 + k2a2

)2

= 1 − ika
1 + ika (7.86)
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The scattering cross-section σsc in Eq. (7.73) and the reaction cross-section σr in
Eq. (7.76) are expressed in terms of the scattering length ‘a’ by substituting the
value of η from (7.86). Remembering that l = 0

σs = π

k2
|1 − η|2 = 4π

| 1
a

+ ik|2 (7.87)

σr = π

k2

(
1 − |η|2)= 4π

k

Im(
1
a
)

| 1
a

+ ik|2 (7.88)

For real a, σr = 0. At resonance, the phase-shift is π/2, so that

1

a(E0)
= 0 (7.89)

where E0 is the energy at which the resonance occurs. Expanding 1/a(E) about E0

by Taylor’s series

1

a(E)
= 0 + (E −E0)

[
d

dE

(
1

a

)]
E0

+ · · · (7.90)

Defining
[
d

dE

(
1

a

)]
E0

= 2k

Γs
(7.91)

Retaining only the linear term in the expansion and substituting in (7.87) for σs , we
obtain

σs = 4π

|(E −E0)
2k
Γs

+ ik|2 = πλ̄2Γ 2
s

|(E −E0)+ iΓs
2 |2

= πλ̄2Γ 2
s

(E −E0)2 + (Γs2 )2
(7.92)

where Γs is defined as the width of the level from which the scattering takes place.
It is the width at half maximum, Fig. 7.14.

Equation (7.92) is known as the Breit-Wigner single-level formula for scattering
when the absorption is absent.

We can follow the shape of the resonance curve by invoking for the phase-shift
which is more physical than the scattering length. At the resonance energy E0, the
cross-section is a maximum and this occurs when σl = π/2. We expand the phase-
shift around π/2 to obtain

δl = π

2
− (E0 −E)dδl

dE
(7.93)
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Fig. 7.14 This curve gives
the schematic representation
of the width Γs of a level of
energy E0 with a spread in
energy of ±Γs/2

where dδl/dE determines the sharpness of the resonance. If it is small the resonance
is broad, if it is large the resonance is sharp. Assume

dδl

dE
= 2

Γs
(7.94)

where the factor 2 ensures that Γ refers to full width at half maximum. From (7.93)
and (7.94) we find

tan δl � δl = Γs/2

(E0 −E) (7.95)

sin2 δl = Γ 2
s

Γ 2
s + 4(E0 −E)2 (7.96)

Using (7.96) in the formula for scattering cross-section

σ ls = πλ̄2(2l + 1) sin2 δl

for s-waves we get Eq. (7.92). Note that at E =ER , the cross-sections for resonance
scattering and potential scattering (without the compound nucleus formations are
equal, each equal to 4πλ̄2 Fig. 7.14).

We shall now derive the formulae for σsc the scattering cross-section in the pres-
ence of absorption and the cross-section for absorption (σr ). In this case a(E) is a
complex function of the variable E.

Let 1/a(E0) = 0 at E0 = ε0 − iΓR/2, where ε0 and ΓR are real. Expanding
1/a(E) about E0,

1

a(E)
= 0 + (E −E0)

[
d

dE

(
1

a

)]
E0

+ · · · (7.97)

Let

Re

[
d

dE

(
1

a

)]
E0

= 2k

Γs
(7.98)

Im

[
d

dE

(
1

a

)]
E0

= kα (7.99)
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Combining (7.97), (7.98) and (7.99) and substituting for E0,

1

a(E)
=
(
E − ε0 + iΓR

2

)(
2k

Γs
+ ikα

)

= 2k

Γs
(E −ER)+ ik

[
ΓR

Γs
+ α(E −E0)

]
(7.100)

where

ER = ε0 + αΓRΓs

4
(7.101)

The scattering cross-section is given by

σs = 4π

[ 1
a

+ ik]2
= πλ̄2Γ 2

s

(E −ER)2 + (Γs+ΓR+aΓs(E−ε0)
2 )2

For sharp resonance, α is small, so that near resonance, αΓs(E−E0) is very small.
Writing for the total width

Γ = Γs + ΓR (7.102)

σs = πλ̄2Γ 2
s

(E −ER)2 + (Γ2 )2
(7.103)

Substituting (7.100) in (7.88),

σr = πλ̄2[ΓRΓs + Γ 2
s α(E −E0)]

(E −ER)2 + (Γs+ΓR+αΓS(E−ε0)
2 )2

(7.104)

Again neglecting α(E −E0) and using (7.102), (7.104) becomes

σr = πλ̄2ΓRΓs

(E −ER)2 + (Γ2 )2
(7.105)

Equations (7.103) and (7.105) are the Breit-Wigner formulae for a single isolated
level for neutrons with l = 0. Here ER = E0, is the resonance energy at which the
cross section is maximum. So far we have not taken the spins of the particles into
account. If Ia is the spin of the projectile and Ix that of the target nucleus and Ic that
of the compound nucleus then both formulae (7.103) and (7.105) must be multiplied
by the statistical weight

g = (2Ic + 1)

(2Ia + 1)(2I× + 1)
(7.106)

which is the probability that the two randomly directed spins Ia and Ix couple to
give Ic, this will be so for unpolarised projectile and target particles. In the preceding
formulae Γ is the level width defined by (7.82), Γs = Γa and ΓR = Γb are the
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“partial level widths” defined from

Γaτa = � and Γbτb = � (7.107)

where τa and τb are the mean lifetimes that the compound nucleus would have if
(1) the elastic scattering of “a” or (2) the emission of “b” were the only possible
modes of decay. Clearly

Γ = Γa + Γb +ΣiΓi (7.108)

where the summation is over all possible modes of decay except the two mentioned.
The concept of “width” is not always applicable so that the definition of the Γ ’s
in terms of a mean life time or its inverse, the decay probability is to be preferred.
The energy E = Ea is the relative energy of the system a + x, and E0 = ER is a
constant, the resonance energy. When Ea =ER

σ(a, b)= σ0 = 4πΓaΓb
k2Γ 2

(7.109)

7.12.1 Resonance Absorption and the 1/ν Law

For reactions involving neutrons of energy <1 keV, (7.105) leads to the well known
1/ν variation for the cross-section for energies away from the resonance. Suppose
the particle b is a gamma ray (the usual case when a slow neutron is absorbed). In
order to find out the variation of cross-sections for both the types of channels with
neutron energy it is necessary to know the behaviour of Γb and Γa . Now

λ̄2 ∝ 1

v2
n

(7.110)

When a slow neutron is absorbed an excitation energy equal to the binding energy
(∼8 MeV) + En the kinetic energy of neutron (few eV–few keV) is imparted to
the compound nucleus. Clearly the excitation energy Eex is insensitive to small
variation of En since the former will be of the order of few MeV and En ∼ few
eV–few keV. Hence the energy available for γ -ray transition is practically constant.

It follows that Γr = Γb which represents the probability for γ emission also
remains constant.

Γγ � const (7.111)

For particle emission, however, the situation is completely different. Since the ex-
citation energy is shared among many particles in the compound nucleus the possi-
bility of emission of a particle depends on the concentration of sufficient energy on
this particle to allow it to escape. Upon leaving, the emitted particle must return the
binding energy to the nucleus. Let τ ′

a be the average time between such rearrange-
ments of the nuclear constituents as would permit the emission of particle a. The
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frequency of emission of the particle “a” is given by the product of the frequency
for the favourable configuration and the probability Pa that the particle a is given
the required amount of energy to penetrate through the nuclear surface

Γn = �

τn
= �Pa

τ ′
a

But

Pa = 4kK

(k +K)2 (7.112)

where K and k are the inside and outside wave numbers, respectively. Equa-
tion (7.112) is the formula for the penetration of a rectangular barrier.

For small En, k�K . Therefore Pa � 4k
k

= 4λin
λout

, giving

Pa ∝ 1

λout
, so that

Γn ∝ vn (7.113)

Further

Γγ 
 Γn and Γ = Γγ + Γn � const (7.114)

since Γr � const. When En � ER (resonance energy) the denominator in (7.103)
and (7.105) are nearly constant. Using (7.110), (7.111), (7.113) and (7.114) in
(7.105), we get (away from resonance energy)

σ(n,r) ∝ 1

v
(7.115)

As En → ER , σ(n, γ ) varies much more rapidly and σ(n, γ )→ σ0 = σmax when
En = ER . Subsequently, when En exceeds ER , σ(n, γ ), will decrease at first
sharply, then more slowly with increasing En. Note that the absorption curve is
asymmetric because of 1

v
or (1/

√
E) factor in the expression.

When Γ 
 En − ER , then again σ(n, r) ∝ (1/vn). Thus the (1/v) law is valid
either when

(1) En �ER
(2) Γ 
En −ER
In (2) no maximum occurs in the σ(n, γ )–En plot, σ(n, r) decreasing with increas-
ing neutron energy En.

In the case of emission of charged particles the Gamow factor is introduced in the
final formula. The energy levels in the compound nucleus are relatively far apart near
the ground state and become closer at higher excitation energy. At energies ∼15–
20 MeV, energy levels are practically continuous. For nuclei in the medium range
of A= 100–150 the spacing near the ground state is ∼0.1 MeV. However, when the
energy is in the region of 8 MeV above ground state, the spacing is 1–10 eV. For
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Fig. 7.15 Total cross-section
for neutron interactions with
238U, showing many very
narrow resonances with
intrinsic widths of order
10−2 eV corresponding to
excited states of 239U [10]

Fig. 7.16 The total
cross-section for the
scattering of neutrons by
238U showing resonant
structure [16]

light nuclei, the spacing is ∼1 MeV near the ground state and ∼10 keV when the
internal energy is ∼8 MeV above the ground state.

For elements of moderate and high mass numbers, resonances occur for neutron
energy ∼1 eV–10 eV. For example 238U exhibits resonance capture of neutrons in
the eV and keV range as in Figs. 7.15 and 7.16. If the neutron kinetic energy is
such that the excited level coincides with one of the levels of the compound nucleus
then a high absorption takes place. Note that at high neutron energies, 1 MeV or
more, the compound nucleus will acquire 9 MeV or more above the ground level,
Fig. 7.17.

In this region the levels widths are frequently comparable with the level spacing.
Hence resonance effects will not show up.

For nuclei of low mass number the spacing of the energy levels in the 8 MeV
region is larger than for nuclides of moderate or high atomic weights. Hence reso-
nance absorption occurs with En ∼ 10 keV or so. But the absorption is not marked
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Fig. 7.17 Hypothetical levels
for a compound nucleus
ER = 8 +En

as there is a general tendency for the absorption to decrease with the increase of
neutron energy.

7.12.2 Elastic Scattering

Two types of elastic scattering must be distinguished (1) potential scattering, (2) res-
onance scattering. The potential scattering also known as shape-elastic scattering
is caused by the interaction of the neutron wave with the potential at the nuclear
surface. Effectively the incident neutron does not enter the target nucleus and the
compound nucleus is not formed. It results from the diffraction of those neutrons
which pass close by, but not into the nucleus. In the case of elastic resonance scat-
tering the neutron is captured by the target nucleus when its energy is close to one
of the quantum states and it is re-emitted. Re-emission of the captured neutron is
expected from the fraction (Γn/Γ ) of the compound nucleus. Formula (7.103) for
σ(n,n) is applicable only if this resonance elastic scattering is the only kind of elas-
tic scattering (Fig. 7.14). However, because of the presence of potential scattering
the two types are superimposed coherently. For l = 0 and the neutrons assumed as
projectiles

σel = π

k2

∣∣∣∣ iΓn

(En −ER)+ iΓ
2

+ [
exp(2ikR)− 1

]∣∣∣∣
2

(7.116)

The quantity between the vertical bars is a complex number. The first term is called
the resonance scattering term, the second is called the potential scattering term. We
can write (7.116) as

σel = π

k2
|Ares +Apot |2 (7.116a)

with

Ares = iΓn

(En −ER)+ 1
2 iΓ

and Apot = exp(2ikR)− 1
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Fig. 7.18 The upper curve
shows the elastic scattering of
protons from aluminum as a
function of proton energy.
The ordinate is the ratio of the
observed scattering to the
scattering at energies far from
resonance. The lower curve
shows how the gamma
radiation from the target
varies with proton energy; it
is a measure of the resonance
absorption. Both curves are
drawn to give a best fit,
without regard to theory [2]

where R is the nuclear radius. The potential energy term varier smoothly with en-
ergy. The resonance term rise to large values when En =ER , otherwise it is small.

For En <ER the two terms interfere destructively yielding a low value of σel .
For En >ER they interfere constructively (Fig. 7.18).

Except near resonance, the resonance scattering is usually much less than the
potential scattering. Away from the resonance energy (En � ER), in (7.103), the
denominator is constant as before, λ̄2 ∝ (1/v2) and Γ 2

n ∝ v2. Hence σ(n,n)� const
(Fig. 7.18). The cross-sections for resonance scattering and potential scattering are
of the same order of magnitude, except near the resonance. It is generally accepted
that the total elastic scattering cross-section is independent of En. This is specially
true for neutrons with energies <0.1 MeV when scattered by nuclei of fairly low
mass number.

7.13 Optical Model

It is of interest to consider cross-sections averaged over energy ranges greater that
the average resonance spacing. At such energies the characteristic features of a
particular compound nucleus are suppressed and features common to all nuclei
are revealed. It turns out that these energy averaged cross-sections vary smoothly
with projectile energy in passing from one nucleus to the neighbouring one. As
the incident particle energy is varied broad resonances are encountered with life
times of 10−21–10−22 s. This smooth variation of the cross-sections is displayed.
In Figs. 7.19(a) and 7.19(b) for neutrons interaction with element heavier than Mn,
as a function of the neutron energy and the target nucleon mass [1] and [15]. These
cross-sections appear to be related to the bulk properties of the nucleus, the details of
its structure being unimportant. This remarkable feature of nuclear scattering cross-
section can be explained by the optical model which employees a complex potential
based on the nuclear dimension and nuclear shape.
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Fig. 7.19 (a) Measured cross-section averaged over resonances for E and A [1]. (b) Observed
“gross structure” of total neutron cross section (compiled by Feshbach et al. [15])

It is assumed that all the individual nucleon-nucleon interactions between the
projectile and the target nucleus can be replaced by a one-body interaction that can
be represented by a potential V (r), where r is the separation of the projectile and
the nucleus. This assumption is similar to that underlies the shell model (Chap. 6).
V (r) is expected to be uniform in the interior and fall off exponentially toward the
surface following the nuclear matter distribution, Fig. 7.20. Outside the nucleus it
is zero because of short range of nuclear forces. A real potential alone is not ade-
quate to describe the experimental data since besides scattering absorption will also
be present by which the incident particles can be removed by various non-elastic
channels via compound nucleus reactions, direct or pre-equilibrium reactions.

Now, it is well known that the scattering and absorption of light can be success-
fully explained mathematically by using a complex potential. It is therefore tempting
to use a complex potential for the nuclear case.
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Fig. 7.20 The radial
variation of the nuclear
optical potential

For simplicity we consider a one-dimensional model with a wave incident on a
square well potential

V = −U − iW, z≤R; V = 0, z > R (7.117)

The energy of the nucleon outside the nucleus is E and its wave number is k =
(2mE)1/2/�. As the nuclear potential is attractive the particle moves more rapidly
inside the nucleus so that its wave number becomes

k + k1 + 1

2
iK = [2m(E +U + iW)](1/2)

�
(7.118)

The wave number is complex because V is complex. The factor (1/2) is introduced
to make the absorption coefficient K equal to the reciprocal of the mean free path
of the nucleon in nuclear matter as in (7.125).

In analogy with optics we can define the refractive index n as the ratio of the
particle velocity inside and outside the potential well

n=
(
E +U + iW

E

)(1/2)
= 1 + k1

k
+ iK

2k
(7.119)

At high energies kR
 1, k1 � k, and K � k so that n� 1 and to a high degree of
accuracy

n2 − 1 � 2(n− 1) (7.120)

Combining (7.119) and (7.120), and equating real and imaginary terms, we easily
find

U = �νk1 and (7.121)

W = �

2
νK (7.122)

where v = √
(2E/m) is the velocity of the incident nucleon. The nucleon wave

function inside the nucleus is given by

ψ = einkz = ei(k+k1)ze−(1/2)Kz (7.123)
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Fig. 7.21 Schematic
representation of the path of a
high energy neutron within a
nucleus

Thus the nucleon wave is attenuated exponentially according to

|ψ |2 = e−Kz (7.124)

and it implies that the imaginary potential removes particles from the elastic chan-
nel. In (7.124),K is clearly the reciprocal of the mean free path in the nuclear matter
in (7.122), the product νK = ν/λ represents the number of collisions per unit time
(collision frequency) of the incident nucleon with the nucleons of the nucleus. If ρ
is the nuclear density, that is number of nucleons per unit volume and σ the average
nucleon-nucleon cross-section in nuclear matter then

K = 1

λ
= ρσ = 3σ

4πr3
0

(7.125)

because ρ = A/V and nuclear radius R = r0A1/3. The average cross-section σ
must be corrected for the fact that the interaction occurs with nucleons endowed
with Fermi moment varying in magnitude and direction and that the collision cross-
sections are energy dependent. Further, the cross-sections are reduced due to Pauli’s
principle which forbids nucleon-nucleon interactions leading to nucleon to a state
already occupied. According to Goldberger the reduction factor is obtained from

σnp = 2

3
σnp(free) (7.126)

We shall now derive expressions for the reaction and elastic cross-sections for a high
energy neutron interacting with a nucleus of radius R, see Fig. 7.21.

The portion of the wave which strikes a distance b from a line through the centre
of the sphere emerges after travelling a distance 2S, with S2 =R2 −b2, on emerging
has the amplitude a = e(−K+2ik1)S so that

σr = 2π
∫ R

0

(
1 − |a|2)bdb= 2π

∫ R

0

(
1 − e−2Ks)sds

= πR2
{

1 −
[

1 − (1 + 2KR)

2K2R2
e−2KR

]}
(7.127)

According to (7.123), the wave transmitted through a distance z in the nucleus is

ψt = e(−K
2 +ik1)zeikz = aeikz (7.128)
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Fig. 7.22 Curves for
k1/K = 1.5

The scattered wave is

ψs = 2π
∫ R

0
|1 − a|2bdb= 2π

∫ R

0

∣∣1 − e(−K+2ik1)S
∣∣2SdS (7.129)

The expressions (7.127) and (7.129) reproduce the experimental data quite accu-
rately at high energies. Note that σr/πR2 is a function of KR alone while σs/πR2

depends on k1/K as well. A direct confirmation of the theory, quite independent
of the parameters is obtained by plotting σtotal(exptl)/A2/3 against A1/3 where one
finds that the experimental points from Li to U lie on a smooth curve which reaches
a maximum and comes down as predicted by the theory. By contrast, the curves
would be a horizontal line if the nucleus were taken as a totally black sphere, that is
a body with complete absorption.

In Fig. 7.22 the curves are drawn for k1/K = 1.5. For a given sss and K we
can find R, the radius required for each nucleus to give the observed total scattering
cross-sections. A value of K = 2.2 × 1012 cm−1 corresponds to a mean free path in
nuclear matter, λ = 4.5 fm. The radii calculated from the measured cross-sections
(Fig. 7.22) yield r0 = 1.37 fm. The associated value of 3.3×1012 cm−1 corresponds
to U = 30.8 MeV.

The concept that the imaginary part of the complex potential in the potential
model has the effect of removing particle flux from the elastic channel is equally
valid for the three-dimensional problem. To this end we set up the Schrodinger equa-
tion for scattering by the complex potential (7.117)

∇2ψ + 2m

�2
(E +U + iW)ψ = 0 (7.130)

Multiply (7.130) by ψ∗ and subtract the complex conjugate of this equation multi-
plied by ψ to obtain

ψ∗∇2ψ −ψ∇2ψ∗ = −4imW

�2
ψψ∗ (7.131)
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The quantum mechanical expression for the current density is

j = �

2im

(
ψ∗∇ψ −ψ∇ψ∗) (7.132)

so that (7.131) becomes

divj = −2

�
Wψψ∗ (7.133)

Since ψψ∗ is the probability density and W is given by (7.122), this equation is
equivalent to the classical continuity equation

∂ρ

∂t
+ divj = −v

λ
ρ (7.134)

where v is the particle velocity. When steady state is reached, the term ∂ρ/∂t in
(7.134) vanishes. Provided W > 0, the imaginary part of the complex potential has
the effect of absorbing flux from the incident channel.

7.14 Direct Reactions

It was pointed out that direct reactions are those which proceed without the forma-
tion of the compound nucleus. They include a variety of nuclear reactions such as
inelastic scattering, stripping and its inverse, pick-up reaction, Knock-out reaction
and heavy ion reaction. The time during which the incident and the target nucleus
interact is very much shorter (of the order of 10−21 s) than the life of a compound
nucleus (10−15–10−16 s). Because of this difference, the reactions products have
characteristics which are entirely different from those observed in compound nu-
cleus reactions.

These two processes represent extreme views of the mechanism of nuclear reac-
tions. It is difficult to state at which energy one or the other mechanism will operate.
As a rule at low energies, compound nucleus formation is more likely while at high
energies direct reaction will dominate.

While compound nucleus reaction is a two-step process, direct reaction is a one-
step process. The possibility of the direct reaction was first recognized by Oppen-
heimer and Phillips while analyzing the low-energy (d,p) reactions. It was exper-
imentally observed that (d,p) reactions were more frequent than (d,n) reactions.
This is opposite to what is expected if the reaction proceeds through the compound
nucleus formation. In the collision of deuteron, the neutron is captured by the target
nucleus, while the proton is repelled due to Coulomb forces, leading to a prepon-
derance of (d,n) reactions over (d,p) reactions.

Butler’s theory [13] has demonstrated that the forward peak in the angular dis-
tribution is given by the square of the spherical Bessel function of order l, where
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l is the angular momentum of the state is which the neutron (for (d,p) reac-
tion) and the proton (for (d,n) reaction) is captured. (See Fig. 7.27.) The spheri-
cal Bessel functions are given in [24], Appendix C. The uncaptured nucleon pro-
ceeds in the forward direction giving a forward peak. Such reactions are called
“stripping” reactions. Later it was found that a large number of reactions such as
31P(∝,p)34S, 13C(3He,∝)12C23,Na(d,p)24Na, 7Li(p, d)6Li etc. show character-
istics of “stripping” or “pick-up” reactions recognized by the forward peaking. The
reactions (p,d) and (n,d) are known as the inverse of the (d,p) and (d,n) reac-
tions. In the process of pick-up, the incident proton on approaching close to the
target nucleus strongly interacts with an outer neutron and forms a deuteron which
is emitted. A similar explanation is given for the (n,d) reaction. The forward peak-
ing in (∝,p) reaction is explained as the stripping of a triton from the alpha particle.
On the other hand, the (p,∝) reaction is the pick-up of a triton by the proton from
the target nucleus to form an alpha-particle. Reactions of the type (∝,p) and (n,p)
are known as knock-on reactions in which the incident particle strikes a nucleon or a
cluster of nucleons and ejects it. The stripping or pick-up reactions mentioned above
are special cases of a general class of direct reactions known as transfer reactions or
rearrangement collisions.

Reactions which correspond to inelastic scattering such as (p,p′), (∝,∝′) and
(d, d ′) may also fall under direct reaction category and analyzed similarly.

Direct reactions have provided valuable information for nuclear structure. The
Born approximation which is based on plane-wave approximation does not give
satisfactory results to explain the direct approximation. Since the incident wave is
distorted due to nuclear reaction, one resorts to the distorted-wave Born approxima-
tion (DWBA) which is outside the scope of this book. We shall now describe various
types of direct reactions in the order of complexity.

7.14.1 Inelastic Scattering

In the inelastic scattering process the incident particle interacts with the target nu-
cleus and imparts some of its energy, raising it to an excited state. Measurement of
the energy loss of the scattered particle indicates the energy of the excited level and
the differential cross-section and polarization of the scattered particle throw light on
the nuclear structure.

At low energy the target nucleus can be excited by pure Coulomb field between
the projectile and the target, a process known as Coulomb excitation and is important
only for high Z particles. This aspect will be discussed in Sect. 7.17.2 which is
devoted to heavy ion reactions. At higher energies the excitation is caused by the
nuclear interaction in the presence of Coulomb field.

The simplest model for the inelastic scattering is the shell model which assumes
that the interaction raises a single nucleon to a higher state. However, the calculated
cross-section is far below the experimental values.

The observation that the collective states are strongly excited by inelastic scatter-
ing led to the assumption that the incident particle interacts with the target nucleus
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Fig. 7.23 Elastic and
inelastic differential
cross-sections for the
interaction of 12 MeV
protons with a medium
weight nucleus, compared
with calculations made using
the coupled channel theory.
The spin of the Ni state
excited in the inelastic
process is 2+ [12]

as a whole. This then is the collective excitation which is described as the coherent
sum of many particle hole excitation. In heavy ions such as uranium highly devel-
oped rotational bands have been found with only even values I = 0,2,4, . . . The
symmetry of the problem demands that I can take only even values with even par-
ity. The nucleus is excited by quadrupole transitions in successive jumps produced
by the electromagnetic field of the same projectile. Calculations are therefore made
using the collective model for the rotational or vibrational states.

Reasonably good results are obtained by using the weak coupling expression

dσif

dΩ
= kfmimf

4π2�4ki

∣∣〈f |V |i〉∣∣2 (7.135)

for the differential cross-section for the transition from the initial state i to the fi-
nal state f . Here 〈f |V |i〉 is the matrix element. However, the interaction being
strong, the so-called coupled channel theory is employed. This theory is much more
accurate and takes into account the coupling between various reaction channels.
The theory gives both the differential cross-section and polarization. As an example
the theoretical predictions are compared with the experimental data on differential
cross-sections for both the elastic and inelastic scattering of 12 MeV protons from
Ni nuclei, in Fig. 7.23 from the work of Buck [12]. Further the spin and parity of
the excited state of Ni(2+) is extracted from the theory.

7.14.2 Charge-Exchange Reactions

In a charge-exchange reaction both energy and charge are exchanged between the
projectile and the target nucleus. The most important charge exchange reactions are
the (p,n) and the (3He, t) reactions. Both provide useful information on nuclear
structure. The cross-sections for the former are one order of magnitude greater than
the latter. However, the (p,n) reactions occur throughout the nuclear volume while
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Fig. 7.24 Triton spectrum at
0° in the 71Ga(3He, t ) at
450 MeV [18]

the (3He, t) reaction is confined to the nucleus surface since both 3He and t easily
dissolve into their constituents in their passage through the nuclear interior.

In such a charge exchange process the target nucleus is converted into an iso-
bar. That the isospin T is a good quantum number is evidenced by the parity of
the isobaric analogue state (IAS) excited in the high resolution measurements of
(3He, t) reactions. As an example Fig. 7.24 shows the IAS excited in the reaction
71
31Ga(3He, t)71

32Ge obtained by Fugiwara et al. [17].
If the reaction goes to the isobaric state of the target nucleus only the isospin

vectors are flipped and the isobar analogue will have the same isospin as the target
nucleus. Such reactions are quite similar to elastic scattering and are referred to as
quasi-elastic scattering.

7.14.3 Nucleon Transfer Reactions

Here one or more nucleons are transferred from the projectile to the target nucleus
(stripping reactions) or from the target nucleus to the projectile (pick-up reactions).
Deuteron stripping reaction is the simplest example of transfer reaction in which
one neutron or proton from deuteron is transferred to the target nucleus. Direct re-
actions in which a single neutron or proton is transferred from the projectile to the
target nucleus are known as single transfer reactions. Examples of this in heavy ion
collisions are

32S
(14N, 13N

)33S and 25Mg
(14N, 13N

)26Mg

Double transfer means that two particles, for example two neutrons or two protons
have been transferred from one nucleus to the other. Multiple transfer is then the
transfer of many particles, all in one direction.

The neutron-transfer reaction has several fairly well established features. Below
the Coulomb barrier, the excitation function decreases more slowly with decreasing
energy than the excitation function for the compound nucleus formation. This is to
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Fig. 7.25 Schematic representation of a (d,p) reaction

be expected for a direct reaction which takes place on the nuclear surface and which
proceeds without the formation of compound nucleus. The total cross-sections for
neutron-transfer reactions tend to level off at values of tens of mb. Further, cross-
sections are strongly dependent on Q values.

The angular distribution of neutron transfer of the type (14N13N) show a peak
in the forward direction. Consider the transfer reaction to be quasi-elastic scatter-
ing modified by the passage of a neutron from one nucleus to the other. Neutrons
are not transferred for very distant collisions (small angle scattering) and for very
close collisions for which the compound nucleus reactions strongly compete with
the transfer processes. The position of the maximum depends on the energy of the
incident ion. The peak is shifted to wider angles at higher incident energy.

We shall focus on the (d,p) reaction as historically it was the first to be studied
in detail and was found to be valuable in nuclear structure studies. In this reaction
the neutron from the projectile is transferred to an unfilled single particle state of
the residual nucleus. The same analysis is valid for (d,n) reaction and other one
nucleon transfer reactions. The (d,n) reaction is not favorable to study as the energy
resolution of the resultant neutrons is so low that it is not possible to resolve the
neutrons corresponding to protons captured in nearby states.

The angular distribution of protons from (d,p) reactions was observed to be
peaked either in the forward or backward direction. this observation led Serber to
suggest the direct reaction model. When the capture of neutron by the target nucleus
takes place at the surface in a peripheral collision, the proton is detached and con-
tinues its flight in the forward direction at a small angle. This explains the forward
peak. On the other hand if a deuteron at low energy makes a head-on collision on
a heavy nucleus, the neutron may be captured and the detached proton would be
repelled in the backward direction due to Coulomb forces, leading to the backward
peak.

In the stripping reaction of deuteron (d,p) let the energies of the incident
deuteron and the outgoing proton be large enough so that these particles are un-
affected by the Coulomb field. Let the incident deuteron have linear momentum
kd�, the outgoing proton kp� and the captured neutron kn� directed toward target
nucleus. The momentum of the deuteron is then given by vector sum of momenta of
proton and neutron, Fig. 7.25.

The momentum triangle, Fig. 7.25(b) gives

k2
n = k2

p + k2
d − 2kpkd cos θ (7.136)
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The momentum transfer to the neutron is

|kd − kp| = kn = Ln

R
(7.137)

Now, the absolute value of the angular momentum carried by the neutron into the
nucleus is �knb, where the impact parameter b ranges from zero to R, the radius of
the nucleus. But the neutron is captured from an orbital of angular momentum l�,
so that

knR ≥ ln (7.138)

Squaring (7.138) and combining with (7.136)

2kpkd cos θ ≤ k2
p + k2

d − l2n

R2
(7.139)

For n = 0, ln = 0, and (7.139) will be satisfied, at θ = 0◦. For a given transition
k2
p and k2

d are constants determined by energy conservation, and (7.139) shows that
the preferred angle of scattering θ will increase with increasing ln. Actually the
semi-classical argument is oversimplified. In any case (7.137) will be satisfied for
a larger angle when kn has increased. Sophisticated calculations are made using
DWBA. The shape of the angular distribution permits the determination of l. The
analysis is simple if the target nuclei have J = 0. If the neutron is captured with
orbital angular momentum L, then the total angular momentum of the final state
consisting of target + neutron, is J = L + (1/2) so that J = L ± 1/2. Thus the
determination of L gives two possible values for J . The ambiguity is removed from
the measurement of polarization of the outgoing proton which has opposite sign
for the two possibilities. Furthermore, the product of the parities of the initial state
and final state is determined by (−1)l . This means that both spin and parity of
the final state is determined with the knowledge of initial state and the value of l.
Figure 7.26 shows the fitting of theoretical curves with the experimental data. There
are many other types stripping and pick-up reactions in which one or more nucleons
are transferred. They have been used to determine nuclear structure of numerous
nuclei.

One-nucleon transfer reactions give valuable information on the single-particle
structure of nuclei, two neutrons transfer reactions such as (p, t) and (t,p) reac-
tions provide information on pairing energy, while ∝-transfer reaction like (6Li, d)
reaction throw light on the ∝-cluster structure.

The contributions of different angular momentum (l) values shown in Fig. 7.26
are reminiscent of Butler’s semi classical theory, using approximations which are
equivalent to Born’s approximation. The energetics of the stripping reactions are
indistinguishable from those of compound nucleus reactions. However,the angu-
lar distribution does not have fore-and aft symmetry about θ = 90◦, but shows a
pronounced maximum in the forward direction. Note that for ln or lp = 0, this max-
imum lies at θ = 0 and progressively advances to wider angles for larger values of
ln or lp . Besides, there are also secondary maxima for each value of ln or lp value
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Fig. 7.26 The differential cross-section for the 76Se(d,p) reaction at 7.8 MeV to various final
states showing how the peak angle increases with the orbital angular momentum transfer L. The
curves were obtained from distorted wave calculations with two sets of optical potentials [26]

Fig. 7.27 Angular distribution of the uncaptured particle in the stripping reaction (d,p) and
(d,n). The captured particle transfers orbital angular momentum In or Ip directly into a level in the
final nucleus. In general, the differential cross section is largest for In or Ip = 0 and decreases as
the angular momentum transfer increases. The illustrative angular distributions shown referto any
stripping reaction for which the incident deuteron energy is 14.9 MeV and the uncaptured particle
has 19.4 MeV, both in center-of-mass coordinates [13]

(Fig. 7.27). The contributions to σ(θ) is directly proportional to the square of the
spherical Bessel function of the corresponding order. The spherical Bessel functions
j0(x), j1(x) and j2(x) are given in [24], Appendix C.

At high energy the stripping mechanism can be described semi-classically by
Serber’s model [29] in which one of the nucleons from deuteron is absorbed by the
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Fig. 7.28 Schematic representation of (a) Coulomb break-up at low energies on a heavy target
nucleus; (b) nuclear break-up at higher energies

target nucleus and the other continues its flight almost unperturbed with the initial
velocity of the deuteron, and therefore with half of deuteron energy. The energy
and angular distribution governed by the addition of the internal momentum of the
deuteron to half the momentum of its centre of mass. The energy spread of the
stripped nucleon is given by

�E = 1.5(BdEd)
1/2 (7.140)

the angular width by

�θ = 1.6

(
Bd

Ed

)1/2

(7.141)

and the energy of the stripped nucleon by

EN = 1

2
Ed (7.142)

where Bd is the binding energy of the deuteron and Ed is its kinetic energy.

7.14.4 Break-up Reactions

In the Coulomb field at few MeV incident energy a composite particle may undergo
a break-up into its constituents. The simplest example is a (d,pn) reaction. The
break-up may take place in the Coulomb field specially when the target nucleus
has high Z, without the neutron being captured. This is known as Coulomb break-
up. As there are three particles in the final state, energy can be shared in a number
of ways, the angular distribution of proton and the neutron is not a line spectrum
but a continuous one, with a broad peak centred at about one-half of the incident
deuteron energy. As the deuteron traverses a Coulomb orbit, the neutron and pro-
ton break up, the neutron and proton are emitted on the same side of the incident
direction, the proton being repelled and the neutron continuing in a straight line,
Fig. 7.28(a).

At higher energies (of the order of 100 MeV or more) the break-up may occur in
the nuclear field. In this process the proton and neutron may be emitted on the oppo-
site side and the target nucleus may be left in the ground state or raised to an excited
state. These processes are known as elastic and inelastic break-up respectively.
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Fig. 7.29 Schematic
representation of the (p,2p)
knock-out reaction

7.14.5 Knock-out Reactions

These consist of reactions X(a,bc)Y in which there are three nuclei in the final
state. The simplest example of a knock-out is the (p,2p) reaction. At high energies
this can occur as a simple billiard-ball collision with a target nucleon, Fig. 7.29 with
the two outgoing proton emerging at an angular separation of θ = θ1 + θ2 = 90◦ in
the Lab system.

The condition for the occurence of the knock-out reaction is that the wavelength
of the incident particle is small compared with the internucleon separation in the
nucleus and that the projectile energy is much higher than the binding energy of
the struck nucleon. The first condition ensures that the collision occurs with a sin-
gle nucleon and not with the entire nucleus; the second one implies that the ejected
proton results from a direct process and not via a compound nucleus. This then
means that a few hundred MeV energy is required for the projectile. The knock-
out process is recognized by detecting the two protons in coincidence. This is ac-
complished by fixing one proton counter at a definite angle say θ = 45◦, on one
side of the beam axis, and measuring coincidence rates with the second proton
counter placed on the other side of the beam, in the same plane, at variable an-
gle. There will be a peak in the coincidence rates at the angle θ2 = 45◦ for the
knock-out protons. This is singled out from the background protons resulting from
other processes, such as pre-equilibrium reactions, which have continuous distribu-
tion.

If the energies of the two outgoing protons are measured then the energy bal-
ance indicates the binding energy that the struck proton had in the target nu-
cleus. One finds peaks in the summed energy spectrum corresponding to the bind-
ing energies of the various shell model single-particle orbitals. This is one of the
most direct pieces of evidences for the existence of these orbits and the results
are analogous to those obtained by Franck-Hertz experiments on the ionization of
atoms.

The statement that the emitted protons subtend a right angle needs some qualifi-
cation. The struck proton will not be completely at rest but will be moving about in
the target nucleus. This will permit the emergence of the two protons at angle of sep-
aration different from 90°, and also allow non-coplanar events. This leads to a peak
centred around the favoured angle but broadened by the initial motion as shown in
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Fig. 7.30 Illustrating a
knock-out reaction of the type
(a, a′b). The angular
correlation between protons
emitted with equal deflections
to left and right (that is, with
θa = θb in the 6Li(p,2p)
reaction at 450 MeV
bombarding energy for
knock-out from the 1s1/2 and
1p3/2 orbits. The maximum
and minimum, respectively,
are shifted slightly from
θa = θb = 45◦ because of
refraction of the incident and
outgoing protons [23]

Fig. 7.30. Only if the struck proton is in a s-state then it can be found at rest. If
it has a finite amount of angular momentum, it will always be in motion, although
this motion will be slow compared to the projectile’s motion provided the incident
energy is high. In such cases, there will be actually a minimum at the favoured an-
gle θ = θ1 + θ2, corresponding to a free particle, with a peak on either side. This
is illustrated in Fig. 7.30 for the knock-out process 6Li(p,2p) from the p-state, in
the work of Jacob and Maris [23]. From such measurements on angular correlation
one can get information on the angular momentum of the state from which the tar-
get proton was ejected as well as its energy. Furthermore from the observed shape
of the peak, information can be obtained about the momentum distribution of the
nucleon in the target nucleus before it was struck and emitted. A great advantage
of the knock-out reactions is that the deep single-particle states can be studied from
the missing energy while nucleon transfer reactions permit access only to such states
which lie near the Fermi surface.

7.15 Comparison of Compound Nucleus Reactions and Direct
Reactions

In Table 7.1 are compared the distinguishing features of the two extreme types of
reactions.

7.16 Pre-equilibrium Reactions

So far we have discussed two extreme views of nuclear reactions. The direct re-
action takes place with a single nucleon or a cluster of nucleons and the reaction
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Table 7.1 Comparison of compound nucleus reactions and direct reactions

Feature Compound nucleus reactions Direct reactions

Times involved 10−14 –10−16 s ≈ 10−20–10−21 s

Dominance of reaction Low energy High energy

Nature of reaction Surface phenomenon Nuclear interior

Cross-section ≈b ≈mb

Angular distribution Isotropic in the centre of mass
system

Peaked in the forward
hemisphere

Location of peaks Energy dependent Orbital angular momentum
dependent

Energy distribution Boltzmann distribution Peaked toward higher energy
side

Deuteron stripping at low
energy

(d,n) reactions more frequent (d,p) reactions more
frequent

Variation of excitation function
with energy

Rapid and irregular Smooth

is completed in a very short time (∼10−20–10−21 s). In the compound nucleus re-
action the projectile is captured and initiates numerous collisions and the energy
is distributed over the entire nucleus so that a thermal equilibrium is reached in a
relatively long time (∼10−14–10−16 s). The hot liquid drop cools off by emitting
one or more particles. We can expect some events to occur after the first stage of
direct reaction is over but in relatively few collisions the compound nucleus evap-
orates long before the thermal equilibrium is reached. Such reactions are called
pre-equilibrium reactions or pre-compound reactions. Their time scale is intermedi-
ate between the very fast direct reactions and the relatively slow compound nucleus
reactions. Direct evidence for pre-equilibrium reactions is provided by the energy
spectra of particles at relatively high energy particles. They show conspicuous devi-
ation from the Maxwellian distribution expected from compound nucleus reactions
and by the presence of peak from the excitation of low lying energy level due to
direct reactions. As an example Fig. 7.31 shows the energy spectra of inelastic pro-
tons emitted from the bombardment of 55Fe by protons of 29, 39 and 62 MeV. The
spectra can be divided into three distinct regions, the one on the left side corre-
sponds to low energy particles evaporated from a hot nucleus with the characteristic
Maxwellian distribution; this is followed by a somewhat structure less continuum in
the middle, which is weakly dependent on ejectile energy; finally on the right side
toward the higher energies, sharp peaks corresponding to protons associated with
single particle excited states.

Analysis of the angular distribution of the observed particles reveals that the
Maxwellian peak is symmetric about 90°, thereby confirming its compound state
origin. On the higher side the sharp peaks reveal a forward-peaked structure con-
firming their origin in the direct reactions. Further, these peaks shift toward higher
energy with the increase of bombarding energy, showing that higher states are ex-
cited. The structure less continuum in the middle can neither be attributed to the
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Fig. 7.31 The energy spectra
of inelastic protons emitted
after bombardment of 55Fe by
protons of 29 (upper left), 39
(upper right) and 62 MeV
(lower). The highest-energy
protons emitted (right hand
end of spectra) correspond to
the excitation (mainly by
direct reactions) of discrete,
low-lying, excited states in
56Fe; the peaks to the left
correspond to evaporation
from the compound nucleus
57Co [3]

compound state reactions nor to the direct reactions. On the lower energy side of
this continuum the angular distribution is symmetric about 90° but the cross-sections
are much greater than those predicted by the compound state theory. On the higher
energy side the angular distributions are peaked forward but lack both diffraction
structure and the nuclear structure dependence which characterize particles origi-
nating from direct reactions.

These observations are explained by assuming that the nucleon cascade generated
in the high energy collisions causes the excitation of particle-hole states (excitons)
through nucleon-nucleon interactions. At various stages particles may be emitted
from these particle-hole states in the intermediate nuclei much before they have
attained thermal equilibrium. Such particles are said to result from pre-equilibrium
reactions.

Usually the individual final states cannot be resolved as they occur at consider-
able energy. The total cross-section for the pre-equilibrium reactions comes from
the continuum of final states. As there is no interference in the reactions occuring at
various stages, the total pre-equilibrium reaction cross-section is evaluated by sim-
ply adding the contribution from various stages of the nucleon-nucleon interaction
cascade.
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The first successful theory to explain these processes was the excitation model,
introduced by Griffin [22]. It is outside the purview of this book. Such reactions
may be studied by Monte Carlo methods.

7.17 Heavy-Ion Reactions

A heavy ion is defined as a nucleus with mass number A > 4. Reactions between
two heavy nuclei offer a richer variety of phenomena than those between a light ion
and a heavy target nucleus.

7.17.1 Characteristics of Heavy Ion Reactions

(1) The large mass implies a greater linear momentum compared to a light ion
of the same energy. This also means a greater angular momentum about the
target nucleus (l� <∼ pR). For example, consider a Zn nucleus (A1 = 30) at
500 MeV making a grazing collision with a Sn nucleus (A2 = 50). Then the re-
duced mass μ= 30×50/(30+50)= 18.75. The relative velocity of Zn nucleus
will be v = c√2E/M1c2 = c√2 × 500/(63.93 × 931.5)= 0.13c. The inter nu-
clear distance r =R1 +R2 = 1.3(A1/3

1 +A1/3
2 )= 1.3(301/3 +501/3)= 6.79 fm.

J = μvr = l�

∴ l = 18.75 × 931.5 × 0.13 × 6.79

197
� 78

Thus an angular momentum of 78� is involved in the grazing collision of Zn
nucleus about the centre of the Sn target nucleus. This affords the excitation
of nuclear states with very high spin. States as large as 60� or more have been
excited in (HI, xn) reactions. Here HI means heavy ion projectile which is ab-
sorbed by a target nucleus resulting in the evaporation of x neutrons.

A large amount of kinetic energy and angular momentum is distributed over
a large number of nucleus leading to the formation of a compound nucleus. It is
interest to know whether there is some critical limit to the angular momentum
that can be sustained by the compound nucleus beyond which the compound
nucleus becomes unstable against fission by virtue of centrifugal forces. Indeed,
experiments have demonstrated that for angular momenta larger that the critical
value the compound nucleus breaks into two large fragments.

(2) For reactions intermediate between extreme peripheral (grazing collisions cor-
responding to direct reactions) and complete fusion reaction (compound nucleus
reactions) resulting from head-on collision, the cross-sections are by far larger
for heavy ions than for light ions. There are events in which two heavy nuclei
stick together for a time longer than that associated with direct reactions but not
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long enough to fuse into a compound nucleus. Large loss of kinetic energy oc-
curs in such collisions, the energy being converted into heat (excitation energy)
the system, however, retains the ‘memory’ as evidenced by the forward peak
in the angular distribution. Such events have been referred to as deep inelastic
or strongly damped collisions. After complete fusion, fission into two heavy
fragments is more probable than evaporation of neutrons.

(3) The large mass of a heavy ion means that its de Broglie wave length will be
shorter than for light ion of the same energy. In a number of experiments the
wavelength will be so short that classical concepts such as trajectory become
valid, this has lead to the revival of semi-classical theories in heavy ion physics,
atleast for qualitative understanding.

(4) As the charge in a heavy ion may be quite large, high projectile energies are
required to overcome Coulomb barrier between the incident ion and the target
nucleus. Thus the Coulomb barrier to be surmounted before two lead nuclei
come into contact is about 600 MeV this requires a bombarding energy in the
Lab system of about 1200 MeV. The subject of heavy ion interactions has now
become fascinating and accelerators have been constructed to produce heavy
ions of energy ranging from few MeV per nucleon to as much as 200 GeV per
nucleon, and to accelerate ions as heavy as uranium. In the collisions of such
ultra relativistic ions with targets of heavy nuclei elementary particles and their
resonant states will be produced copiously.

(5) The velocity of sound in nuclear matter is estimated to be about 0.2c corre-
sponding to ∼20 MeV nucleon. This leads to the division of low energy into
two parts, subsonic and supersonic. In the subsonic region nuclei are expected to
behave as incompressible while in the supersonic region compressibility comes
into the picture and shock waves are assumed to be generated in nuclei.

(6) It is suggested that ultra heavy nuclei with A∼ 310 may be stable although they
have not yet been found in nature. One other interest in heavy ion physics is to
explore the possibility of creating super heavy elements by fusing two heavy
ions.

7.17.2 Types of Interactions

It was pointed out that in the semi-classical picture it was legitimate to use the ion
trajectories. It Ecm is the centre of mass energy of the two interacting ions then the
minimum distance of approach is given by

rmin = b√
1 − V (rmin)

Ecm

(7.143)

where b is the impact parameter and V (rcm) is the nuclear potential acting between
the two ions. The three regions in which different reactions dominate may be distin-
guished in terms of the minimum distance of approach in the decreasing order:
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Fig. 7.32 Schematic representation of heavy ion trajectories showing distant, grazing and close
collisions

(a) The Coulomb region with rmin > RN , where RN is the distance for which the
nuclear interactions are ineffective.

(b) The deep inelastic and the incomplete fusion region with rmin =R1 +R2.
(c) The fusion region with 0 ≤ rmin ≤R1 +R2.

The ion orbits corresponding to the above regions are schematically shown in
Fig. 7.32.

7.17.3 Distant Collisions

Elastic and Inelastic Scattering At energies below the Coulomb barrier two ions
can suffer only Coulomb interaction. For distinguishable particles (projectile and
the target) the angular distribution is accurately described by the Rutherford scat-
tering. However, for the indistinguishable (identical) ions the quantum mechani-
cal interference produces a conspicuous departure from the classical predictions,
the scattering being modulated by damped oscillations. The problem of scatter-
ing of identical particles was elaborately discussed for Fermions and Bosons in
Chap. 5.

Figure 7.33 shows the angular distributions of 16O ions on magnesium and alu-
minium, showing the characteristic exponential decrease following a local increase
above the Rutherford predictions. The local increase is attributed to interference be-
tween Coulomb and nuclear amplitudes. From such data it is possible to extract the
interaction radii.

Figure 7.34 shows typical angular distributions for oxygen elastically scattered
from oxygen. In both the diagrams the energies are below the Coulomb barrier. The
data are in excellent agreement with the Mott scattering predictions along with the
marked modulation.
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Fig. 7.33 Angular
distributions for O16 on
magnesium and
aluminium [9]. The data are
normalized to the Rutherford
predictions at forward angles

The appropriate formula for Mott scattering is

dσ

dω

∣∣∣∣
Mott

=
(
Ze

4E

)2∣∣∣∣cos4 θ

2
+ sec4 θ

2

+ (−1)2s
2

2s + 1
cosη ln tan2 θ

2

(
csc2 θ

2
sec2 θ

2

)∣∣∣∣ (7.144)

where S in the nuclear spin and η = (Ze)2

�v
, is the Sommerfield parameter. The first

two terms are clearly the Rutherford prediction for identical particles while the third
one is due to quantum mechanical interference. The third term actually modulates
the classical predictions through the ln tan2(θ/2) term as well as η which depends
on both Z and v. Compared to the scattering of ∝ particles on helium, the heavy

Fig. 7.34 Angular distributions for 16O on oxygen. The dashed and solid curves are the Ruther-
ford and Mott predictions, respectively
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Fig. 7.35 Angular distributions for 16O on oxygen. The legend is that of Fig. 7.34 with the addition
of the dot dashed Blair prediction for lmax = 6

ion scattering tends to amplify the modulation markedly. Note that for θ = 90◦ the
energy modulation disappears. Secondly, the cross-section falls smoothly inversely
with the square of energy as for Rutherford scattering.

Figure 7.35 shows angular distributions measured at energies above the Coulomb
barrier, showing the characteristic decrease in cross-section below the Mott predic-
tion, but without marked change of shape [9]. The departure from the Mott scattering
is obviously caused by nuclear absorption. Blair’s sharp cut-off model describes the
elastic scattering reasonably well even in its very simple form [4]. In this model
all partial waves in the incident beam with an impact parameter corresponding to
a classical distance of closest approach (7.143) less than the nuclear interaction ra-
dius are totally absorbed, while those with higher impact parameters are subjected
to pure Coulomb scattering. This corresponds to the subtraction of the low partial
wave contributions to the Coulomb scattered as shown in (7.145). For S = 0 bosons
such as 16O or 12C the expression takes a simple form

dσ

dω

∣∣∣∣
Blair

=
(
ze2

4E

)2
∣∣∣∣∣csc2 θ

2
exp

(
2iδ0 − iη ln sin2 θ

2

)

+ sec2 θ

2
exp

(
2iδ0 − iη ln cos2 θ

2

)

− 2i

η

lmax∑
l=0

(2l + 1) exp(2iδl)Pl(θ)

∣∣∣∣∣
2

(7.145)

where exp(2iδl) = Γ (l+1+iη)
Γ (l+1−iη) , is Coulomb phase of order l. Here only even values

are permitted. Since the Coulomb phases are completely defined in the Mott scat-
tering formalism (7.144), it is possible to compare the experimental data with the
predictions for absorption of different limiting values. Blair model predictions for
16O on oxygen in Fig. 7.35, are shown to fit the experimental data with lmax = 6.
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Fig. 7.36 Differential
cross-section for production
of projectile-like fragments in
the interaction of 136Xe with
209Bi at incident energies of
940 and 1130 MeV. The
arrows indicate the two
incident ion experimental
grazing angles [27]

At large impact parameters inelastic scattering and transfer reactions also con-
tribute to the reaction cross-sections.

For large impact parameters and corresponding small scattering angles the two
interacting nuclei do not come very close to each other so that the probability for
nucleon transfer is small. The Coulomb excitation is simply the excitation of the
nucleus by Coulomb interaction. When the Sommerfield parameter n is large this
process may be comparable to the excitation by nuclear interaction, specially for the
low multipoles (small L values). These two contributions are coherent and produce
interference effects. Because of the long range character of Coulomb interaction
(∼ (1/rL+1) for the L1� multipole) the Coulomb excitation becomes important for
L = 2 and L = 3. Below the Coulomb barrier the Coulomb excitation dominates
and provides an important tool for measuring transition probabilities. Because the
Coulomb interaction is large for heavy ions, Coulomb excitation to very high spin
states, particularly in nuclei displaying rotational spectra through repeated E2 tran-
sitions up the band becomes important.

7.17.4 Deep Inelastic Collisions

When the impact parameter is reduced to the point that rmin = R1 + R2, then (a)
grazing collision occurs as in the trajectory (b) of Fig. 7.32, the two ions make suf-
ficiently strong contact resulting in large loss of energy in the form of excitation
energy; hence the name ‘deep inelastic scattering or collision’ or damped reactions.
In this process a few nucleons may be transferred, yet they do not stay long enough
to be considered as a compound nucleus. The excited residues that are produced
resemble the original ions, one projectile like and the other target like. This is ev-
idenced by the angular distribution of the residues which peaks very close to an
angle close to the grazing angle which is the angle at which the projectile would
have suffered Rutherford scattering in the grazing collision. Figure 7.36 shows the
angular distribution of residues in the collision of 136Xe with 209Bi at lab energy of
940 and 1130 MeV [28]. The extreme peripheral collisions are the direct reactions
discussed in Sect. 7.14.
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The products of deep inelastic collisions are found to be primarily binary, their
masses and charges differing by only a few units from those of the projectile and tar-
get, meaning that only a few nucleons have been exchanged although considerable
energy transfer has occured.

The angular distributions of the deep-inelastic products are strongly correlated
with the energy loss. These distributions are approximately Gaussian with a width
which increases with decreasing total kinetic energy. This suggests a strong cor-
relation between the kinetic energy loss and the number of nucleons exchanged.
Peripheral collisions involve less energy loss and a quick separation time leading
to the ejectiles projected in the forward direction concentrated in a small range of
angles. Greater energy loss would imply a more intimate contact (as for trajec-
tory (c) in Fig. 7.32) in which the two ions rotate about one another for a longer
time. During this time they are assumed to retain their dinuclear configuration,
without complete fusion. When they break-up they would have exchanged a large
number of nucleons. Such events are characterized by a broader angular distribu-
tion. The excited ejectiles decay by particle or γ -ray emission. Measurements of
neutron spectra from these ejectiles show that the two fragments have the same
temperature, meaning that when they separated after the statistical equilibrium was
reached.

When the bombarding energy is below or close to the Coulomb barrier the re-
action products exhibit angular distribution of “bell shape” centred around the de-
flection angle for the grazing Rutherford orbit. As the energy increases above the
Coulomb barrier, the angular distribution reveals the structure. With further increase
of energy, a diffraction appears typical of direct reactions, Fig. 7.37.

Another important aspect of direct reactions is the transfer reactions involving the
transfer of an α-particle-like cluster of two neutrons and two protons to explore the
validity of α-particle models for the lighter nuclei and the clustering of α-particles
in heavy nuclei. To this end reactions such as (16O, 12C), (20Ne, 16O), (6Li, d) and
their inverse have been used.

7.18 Fusion

Fusion in heavy ion reactions produce nuclei with high excited states and high spins.
Further, these reactions can produce super heavy nuclei and proton rich nuclei far
from the stability curve. We summarize the characteristics of fusion reactions.

1. At low incident energies light projectile are found to have fusion cross-section, a
large fraction of reactions cross-section.

2. For larger ionic charges the fusion cross-section σF falls off abruptly.
3. The plot of σF with 1/Ecm shows a linear increase up to a maximum after which

it decreases linearly.
4. The variation of σF with the bombarding energy is generally smooth, except the

oscillatory behaviour when the interacting ions are light.
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Fig. 7.37 Typical angular distributions for peripheral or direct reactions between heavy ions in
which one or two nucleons is transferred and the residual nuclei are left with little or no excitation
energy. (a) ‘Bell-shaped’ curves typical of reactions initiated by bombarding energies close to the
Coulomb barrier Toth et al. [30]. (b) Transition from a bell-shape to a diffraction pattern as the
bombarding energy is increased (from Bond et al. [7]). (c) An example of an oscillating angular
distribution when two neutrons are transferred (Levine et al. [25]). In each case, the curves repre-
sent theoretical calculations using the distorted-wave Born approximation. The notation g.s. means
a transition to the ground state of the final nucleus

5. The same composite system may be formed from different combinations of ions,
but the energy dependence of σF may be quite different.

Quite a few of the above features can be explained at least qualitatively by using the
critical model which is based on the optical potential. The real part of the effective
one body potential describes the refraction of the incident ion and the imaginary
part the absorption of all inelastic processes. For the present discussion we shall
focus only on the real part which consists of three terms, the Coulomb potential,
the nuclear potential and the centrifugal potential. To a good approximation the
Coulomb potential may be taken as that between two uniformly charged spheres.
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Fig. 7.38 (a) Sum of the nuclear, Coulomb, and centrifugal potentials for 18O + 120Sn as a func-
tion of radial distance for various values of orbital angular momentum L. The nuclear poten-
tial has the Saxon-Woods form with V = 40 MeV, γ0 = 1.31, a = 0.45. The horizontal line at
Ecm = 87 MeV corresponds to an incident energy of 100 MeV. The turning points for various
values of I are marked by dots. (b) The distance of closest approach for various partial waves,
showing the discontinuity at L= 57 [20]

The nuclear potential may be taken that of Saxon-Woods form

Vn(r)= V0

1 + exp( r−R
a
)

(7.146)

where R = r0(A1/3
1 +A1/3

2 ). The centrifugal term is

VL(r)= h2

2μ
l
(l + 1)

r2
(7.147)

The relative contributions of these three potentials is determined by the energy,
masses and charges of the interacting ions. As an example, Fig. 7.38(a) shows the
total potential V = VN + VC + Vl , as a function of R, for typical values of l, in the
collision of 18O + 120Sn [20]. Note that for smaller angular momentum a pocket is
formed in the potential which vanishes for larger values of l. There is a range of
partial waves for which the l values are such that the ions are permitted sufficiently
close to be trapped in the pocket leading to fusion. Otherwise the two ions are re-
flected back and do not fuse. Figure 7.38(a) shows that fusion may take place up to
a critical angular momentum lcrit . The figure also suggests that the pocket is located
at a distance RF which is approximately constant. The occurence of lcrit causes a
discontinuity in the curve for the distance of closest approach D(F) as a function
of l as in Fig. 7.38(b). In this example it occurs for l = 57.

The maximum value or the fusion reaction occurs at an energy corresponding to
the relative momentum

k(RF ) = k
√

1 − V (RF )

Ecm
= Lcrit

RF
(7.148)
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σF (max) � π

R2
L2
crit = πR2

F

[
1 − V (Rf )

Ecm

]
(7.149)

with the experimental value

RF � r0
(
A

1/3
1 +A1/3

2

)
(7.150)

Expression (7.149) shows that upto σF increases linearly with decreasing 1/Ecm
and then it decreases as 1/Ecm at higher energies after the maximum is reached
since l cannot exceed lcrit , in agreement with the data.

The critical-distance model also explains the fact that σF is a substantial fraction
of σr , the reaction cross-section for light projectiles. Further, the abrupt decrease
in the ratio σF /σr for the higher Z ions is attributed to the increase of repulsive
Coulomb potential which results to a decrease of lcrit , thereby reducing the proba-
bility of pocket formation.

When the composite system is imparted a large amount of excitation energy as
well as a large angular momentum, it is set into rapid rotation. Consequently, the
original spherical shape of the nucleus in the ground state changes into a highly
deformed shape.

Now the rotational energy of a body the moment of inertia I rotating with angular
velocity ω is

E = 1

2
Iω2 (7.151)

Its angular momentum is J = Iω, so

E = J 2

2I
(7.152)

Consider a deformable body rotating in space with a fixed angular momentum. The
rotation deforms the body and it will take up a shape that minimizes the energy,
and by (7.152) it tends to maximize the moment of inertia. At small deformations
corresponding to small angular velocities the favoured shape is oblate, rotating about
its axis of symmetry. This explains why earth is an oblate spheroid flattened at the
poles. At high angular velocities, the favoured shape is a prolate spheroid with the
axis of rotation perpendicular to the axis of symmetry. If the composite nucleus is
imparted sufficiently high angular speed then at a certain stage the centrifugal force
overcomes the attractive nuclear force and the system becomes unstable against
fission into two fragments. The excitation energy can also be dissipated by particle
emission. In the initial stages the particle emission occurs rapidly, the orderly motion
of the interacting ions being transformed into a chaotic motion due to the cascade
of nucleon-nucleon interactions while thermalization of the system goes on. The
pre-equilibrium emission takes place in a time less than 10−21 s, this is followed
by evaporation from the equilibrated nucleus in a time of the order of 10−16 s. The
particles thus emitted are recorded in coincidence with the residue nuclei. Fission
requires much longer time for deformation and so does not compete with particle
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Fig. 7.39 Angular
distribution of fission
fragments in the
center-of-mass system for
fission of 197Au induced by
12C ions of 123-MeV energy.
Solid line, experimental
curve; broken line,
1/ sin θ [21]

Fig. 7.40 Schematic picture
of the contributions of
different partial waves to the
reaction cross-section for a
collision between two heavy
ions. The relative proportions
of the various non-elastic
events varies with energy and
the masses of the ions

emission during the nuclear thermalization but only during evaporation stage. On
the other hand if initially the compound nucleus receives an angular momentum
greater than about 65� then fission into two fragments is the most favoured process
for the decay because the fission barrier would be quite small. In the evaporation
regime if the excitation energy is below the neutron binding energy, then neutron
emission is inhibited, and the de-excitation occurs via γ -emission, α particle and
even heavy ions emission at the end of the evaporation chain.

The angular distribution of fission fragments as well as the evaporated particles is
characterized by 1/ sin θ form peaking in the forward and backward direction along
the collision axis and symmetric about 90° in the CMS as in Fig. 7.39. The form is
predicted from simple classical considerations.

The angular momentum structure of the reaction or absorption cross-section for
the heavy ion collisions may be schematically represented by a diagram such as in
Fig. 7.40, which shows how various contributions vary with the angular momentum
in the entrance channel. The diagram is only of a qualitative nature as the rela-
tive contributions depend upon the energy and nature of the two ions. However, the
figure does indicate qualitatively that in the event of genuine fusion, systems pos-
sessing larger angular momenta are more likely to decay by fission into two large
fragments, while those with smaller spins tend to decay via evaporation of low en-
ergy particles specially neutrons and gamma rays.
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7.18.1 Quark-Gluon Plasma

The study of heavy ion reactions at relativistic energies is another fascinating area.
At ultra relativistic energies (≥100 GeV per nucleon). The approaching ions are
Lorentz contracted in the form of flat discs. Upon collision the quark-gluon plasma
(separation of quarks from gluons) may be formed in the hot and dense region, and
when the ions separate the region between the ions expands and cools off. Thus the
quark-gluon plasma may last for a time of the order of collision time. Its existence
is based on the study of particles from a highly excited state. Experiments made
at CERN [14] by bombarding heavy nuclei with 200 GeV/nucleon sulphur ions
suggested that the conditions necessary for the formation of quark-gluon plasma
might have already been realized-a conclusion which has been controversial.

Such experiments have been repeated in the past 15 years both at CERN and
Brookhaven laboratory. At CERN lead ions were used and at Brookhaven lab gold
ions. In the latter heavy ion Collider was used and gold ions bombarded each other
at beam energy of 130 GeV/nucleon. Temperatures as high as 105 times the central
temperature of the sun were reached and the nuclear density 20 times the normal
nuclear density was established. All sorts of elementary particle were recorded per-
pendicular to the beams. All this had to be done in the time of the order of 10−23 s
during which the quark gluon plasma would last. It is found that the production rate
of particles is less than that predicted by the standard theory. It is appears that under
these conditions the quark-gluon plasma, the fifth state of matter, could exist. But
the discovery is still uncertain. This problem is of paramount importance for the Big
Bang theory of the early universe ([24], Chap. 8).

Example 7.1 Calculate the energy of protons detected at 90° when 4.0 MeV
deuterons are incident on 27Al to produce 28Al with an energy difference Q =
5.5 MeV.

Solution Consider the reaction

a +X→ b+ Y +Q

Q = Eb

(
1 + mb

mY

)
−Ea

(
1 − ma

mY

)
− 2

mY

√
mambEaEb cos θ

Given reaction is

d + 27Al → p+ 28Al

put

ma = md = 2, mb =mp = 1, mY =mAl = 28

Ea = 4.0 MeV, θ = 90◦, Q= +5.5 MeV

Solving the equation we find Ep = 9.03 MeV.
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Example 7.2 Determine the range of neutrino energies in the solar fusion reaction,
p+p→ d + e+ + ν. Assume the initial protons have negligible kinetic energy and
that the binding energy of the deuteron is 2.2 MeV.

Solution The minimum energy of ν is zero when d and e+ go off in opposite
direction and ν carries negligible energy.

The maximum energy of ν corresponds to a situation in which both e+ and d
move in a direction opposite to ν

Q= 2.2 − 0.51 = 1.69 MeV

(i) Ted + Tν =Q= 1.69 (energy conservation)

(ii) P 2
ed = P 2

ν (momentum conservation)

(iii) 2Mc2
edTed = T 2

ν

Eliminating Ted between (i) and (iii) and using Medc2 = 1875 MeV, we find Γν =
1.69 MeV. Thus the energy range of ν will be zero to 1.69 MeV.

Example 7.3 A nucleus has a neutron resonance at 65 eV and no other resonances
nearby. For this resonance, Γn = 4.2 eV, Γγ = 1.3 eV and Γα = 2.7 eV and all other
partial widths are negligible. Find the cross-sections for (n, γ ) and (n,∝) reactions
at 65 eV.

Solution The low energy cross-section for the compound nuclear reaction

a +X→ c∗ → Y + b
is given by

σab = λ2ΓaΓb

4π((E −E0)2 + Γ 2

4 )

Γ = Γn + Γγ + Γα = 4.2 + 1.3 + 2.7 = 8.2 eV

λ = h

p
= 2π�c

cp
= 2π�c√

2Mc2T

= 2π × 197√
2 × 939 × 65 × 10−6

fm = 3.544 × 10−12 m

Put a = n, b= γ or ∝, E = 65, E0 = 65

σnγ = 616B; σn∝ = 1280B

Example 7.4 Find the energy of the helium nucleus in the fusion reaction d +p→
3He + γ + 5.3 MeV, where initially proton ans deuteron are essentially at rest.
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Solution

(i) THe +Eγ = 5.3 (energy conservation)

(ii) PHe = Pγ (momentum conservation)

(iii) c2p2
He = 2THeMHec

2 =E2
γ

Eliminating Eγ between (i) and (iii) and solving the quadratic equation, with
MHec

2 = 2809 MeV, we find THe = 5 keV.

Example 7.5 Calculate the threshold energy of the projectiles in a 3H(p,n)3He
reaction, given, Q= −0.74 MeV.

Solution For the endoergic reaction X(a,b)Y

Ea(thres) = |−Q|
(

1 + ma

mX

)

= 0.74 ×
(

1 + 1

3

)
= 0.987 MeV

Example 7.6 Consider the reactions

d + 16O → n+ 17F − 1.631 MeV

→ p+ 17O + 1.918 MeV

Which is the unstable member of the pair (17O, 17F), and calculate the maximum
energy of the β-particles it emits? (n-1H mass difference is 0.782 MeV.)

Solution

d + 16O → n+ 17F − 1.631 MeV

d + 16O → p+ 17O + 1.918

n+17 F − 1.631 = p+ 17O + 1.918 or

17O − +17F = (n− p)− 3.549

= (
n− 1H + e)− 3.549

= (0.782 + 0.511)− 3.549

= −2.256 MeV

∴ 17F is heavier. +17F decays to +17O by β+ emission:

17
9F → +17

8O + β+ + ν
Q=Emax(β)+ 0.511 × 2
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Fig. 7.41 Energy level
diagram

Emax(β)= 2.25 − 1.02 = 1.23 MeV

Example 7.7 An aluminum target is bombarded by α particles of energy 7.68 MeV,
and the resultant proton groups 90° were found to posses energies 8.63, 6.41, 5.15
and 3.98 MeV. Draw an energy level diagram of the residual nucleus, using the
above information.

Solution

4He + 27Al = p+ 30Si +Q
a +X→ b+ Y
Q=Eb

(
1 + mb

mY

)
−Ea

(
1 − ma

mY

)
− 2

mY

√
mambEaEb cos θ

Q=Ep
(

1 + 1

30

)
− 7.68

(
1 − 4

30

)

For

Ep = 8.63, Q0 = 2.262

Ep = 6.41, Q1 = −0.032

Ep = 5.15, Q2 = −1.334

Ep = 3.98, Q3 = −2.543

Q0 −Q0 = 0.000

Q0 −Q1 = 2.294

Q0 −Q2 = 3.596

Q0 −Q3 = 4.805

The energy level diagram of the residual nucleus is as in Fig. 7.41.

Example 7.8 If the Q-value for the 3H(p,n)3He reaction is—0.7637 MeV and
tritium β− decays to 3He with end point energy Emax. Given the difference in mass
between the neutron and the hydrogen atom as 0.78 MeV, calculate Emax.
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Solution Nuclear reaction

3H + p→ 3He + n− 0.7637 MeV or (1)

3H − 3He = n− p− 0.7637 MeV (2)

β-decay:

3H → 3He + β− + ν +Emax (3)

On nuclear scale

3H → 3He +mec2 + 0 +Emax (4)

Combining (2) and (4),

Emax = n− (
p+ e−)− 0.7637

= n− 1H − 0.7637

= 0.781 − 0.7637 = 0.0173 MeV

= 17.3 keV

Example 7.9 The reaction 3H(d,n)4He has a Q-value of 17.6 MeV. What is the
range of neutron energies that may be obtained from this reaction for an incident
deuteron beam of 300 keV?

Solution

a + x→ b+ y +Q

Q=Eb
(

1 + mb

my

)
−Ea

(
1 − ma

my

)
− 2

my

√
mambEaEb cos θ (1)

Identify

a = d; x = 3H; b= n; y = 4He

Q = 17.6 MeV; Ea = 0.3 MeV

• For En(max) put θ = 0 in (1) and solve for En

En(max)= 15.41 MeV

• For En(min) put θ = 180◦ in (1) and solve for En

En(min)= 13.08 MeV

Thus, the range of neutron energies obtained is 13.08 to 15.41 MeV.
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Example 7.10 The cross-section of the 207Pb(n, γ )208Pb reaction for neutrons of a
certain energy is 10−24 cm2. By how much will the intensity of a beam of neutrons
of this energy be reduced on passing through 20 cm of 207Pb (density 11 g/cm3)?

Solution

Σ = σ Navρ
A

= 10−24 × 6 × 1023 × 11

207
= 0.032 cm−1

I

I0
= e−Σx = e−0.032×20 = 0.527

The intensity will be reduced to 0.527.

Example 7.11 A target of hydrogen is bombarded with 897.7 MeV 181Ta ions to
form 182W in an excited state. Calculate the energy of the excited state (ignore the
Coulomb barrier and assume the target nuclei at rest). If 182W in the same excited
state were produced by bombarding a 181Ta target with energetic protons, what en-
ergy would be needed? The atomic masses in amu are:

1
1H = 1.007825; 181

74Ta = 180.948007; 182
74W = 181.948301

Solution If ETa is the kinetic energy of Ta ions, energy available in the CMS will
be

W ∗ =ETa
mp

mp +mTa
(1)

If the projectile and the target are interchanged, the same excitation energy W ∗ is
available with Ep given by

W ∗ =Ep mTa

mp +mTa
(2)

Using the masses in (1) W ∗ = 4.972 MeV Combining (1) and (2)

Ep = 5.0 MeV

Example 7.12 Consider a general type of reaction a+ x→ b+ y. Then the princi-
ple of detailed balance gives the result

(2Sa + 1)(2Sx + 1)P 2
a σab = (2Sb + 1)(2Sy + 1)P 2

b σba

Apply this principle to the reaction d + 14N → α + 12C, to determine the spin of
14N, given the ratio σdN/σαC at the same CMS energy.

Atomic masses of 14N, 2H and 4He are 14.003074, 2.014102, 4.002603 amu,
respectively. 1 amu = 931.44 MeV.
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Solution

Q = [
(md +mN)− (mα +mc)

]× 931.44

= [
(2.014102 + 14.003074)− (4.002603 + 12.0)

]× 931.44

= 13.57 MeV

Forward reaction.
Energy available in the CMS

Q+ T ∗
F =Q+ Td mN

mN +md = 13.57 + 20 × 14

14 + 2
= 31.07 MeV

The energy of 31.07 MeV is shared between ∝ and 12C. From energy and momen-
tum conservation we find P ∗

α = 416.8 MeV/c.
The inverse reaction is endoergic, an energy of 31.07+13.57 = 44.64 MeV must

be provided. In that case ∝ in the Lab system must have kinetic energy

Tα = 44.64 × 12 + 4

12
= 59.5 MeV

In the CMS, the energy of 44.64 MeV is shared between 2H and 14N. The momen-
tum of deuteron would be 383.23 MeV/c

σdN

σαC
= (2Sα + 1)(2SC + 1)

(2Sd + 1)(2SN + 1)

P ∗2
α

P ∗2
d

= 1 × 1

3 × (2SN + 1)
×
(

416.8

383.2

)2

= 1.18

2SN + 1

since Sα = SC = 0 and Sd = 1. From the experimental ratio of the cross-sections the
spin of 14N can be determined. We find SN = 1.01 or 1.

Example 7.13 Neutrons incident on a heavy nucleus with spin JN = 0 show a
resonance at an incident energy ER = 200 eV in the total cross-section with a peak
magnitude of 1500 b, the observed width of the peak being Γ = 25 eV. Find the
elastic partial width of the resonance.

Solution Since JN = 0, statistical factor will be absent. At resonance

σtotal = λ2

π

Γn

Γ
= (0.286)2

Eπ

Γn

Γ
× 10−16

= (0.286)2

200π

Γn

25
× 10−16 = 5.21 × 10−22Γn

∴ Γn = σtotal

5.21 × 10−22
= 1500 × 10−24

5.21 × 10−22
= 2.88 eV
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Example 7.14 1.0 g of 23Na of density 0.97 is placed in a reactor at a region where
the thermal flux is 1011/cm2/s. Set up the equation for the production of 24Na and
determine the saturation activity that can be produced. The half-life of 24Na is 15 h,
and the activation cross-section of 23Na is 536 mb.

Solution IfQ is the number of atoms of 23Na at any time t , the rate of production
of 24Na is

dQ

dt
= φΣa − λQ

For saturation activity, dQ
dt

= 0. Then

λQs = φΣa = φσa Naνρ
A

= 1011 × 536 × 10−27 × 6 × 1023

23
× 0.97

= 1.36 × 109 s−1

Example 7.15 Suppose 100 mg of gold (197
79Au) film is exposed to a thermal neutron

flux of 1010 neutrons/cm2/s in a reactor. Calculate the activity and the number of
atoms of 198Au in the sample at equilibrium. (Thermal neutron activation cross-
section for 197Au is 98 b and half-life for 198Au is 2.7 h.)

Solution At equilibrium number of 198Au atoms in m grams

Qs = φΣa

λ
= φσaNavm

0.693A
T 1

2

= 1010 × 98 × 10−24 × 6.02 × 1023 × 0.1 × 2.7 × 3600

0.693 × 197

= 4.2 × 1010

Activity =Qsλ= Qs×0.693
T1/2

= 4.2×1010×0.693
2.7×3600 = 3 × 106/s.

Example 7.16 For neutrons with kinetic energy 100 MeV incident on nuclei with
mass number A� 120, the real and imaginary parts of the complex potential are ap-
proximately −24 and −8.0 MeV respectively. On the basis of these data, estimate.

(i) The de Broglie wavelength of the neutron inside the nucleus.
(ii) The probability that the neutron is not absorbed in passing diametrically through

the nucleus.

Solution

(i)

cp = √
2m(E +U)
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λ = h

p
= 2π�c√

2mc2(E +U) = 2π × 197 MeV-fm√
2 × 939 × (100 + 24)MeV

= 2.56 fm = 2.56 × 10−15 m

(ii)

W = 1

2
�vK = hc

2

(
v

c

)
K

v

c
=
√

2E

mc2
=
√

2 × 100

939
= 0.4615

8.0 = 197

2
× 0.4615K → K = 0.176 fm−1

2R = 2r0A
1/3 = 2 × 1.3 × (120)1/3 = 12.82 fm

Probability that the neutron will not be absorbed in passing diametrically through
the nucleus

= e−K2R = e−0.176×12.82 = 0.1

Example 7.17 In the reaction, 48Ca + 16O → 49Sc + 15N, the Q-value is
−7.83 MeV. What is the minimum kinetic energy of bombarding 16O ions to initiate
the reaction. At this energy, estimate the orbital angular momentum in units of the
ions for a grazing collision. Take R = 1.1A1/3 fm.

Solution

Tthr = |Q|
(

1 + mO

mCa

)
= 7.83

(
1 + 16

48

)
= 10.44 MeV

v = c
√

2T

Mc2
= 3 × 108

√
2 × 10.44

931 × 16
= 1.123 × 107

b = R1 +R2 = 1.1
(
161/3 + 481/3)× 10−15 = 6.153 × 10−15 m

J =M0vb= n�

n = M0vb

�
= 16 × 1.66 × 10−27 × 1.123 × 107 × 6.153 × 10−15

1.05 × 10−34
� 18

Example 7.18 In a scattering experiment, an aluminium foil of thickness 10 µm is
placed in a beam of intensity 3 × 1012 particles per second. The differential scatter-
ing cross-section is known to be of the form

dσ

dΩ
=A+B cos2 θ

where A, B are constants, θ is the scattering angle and Ω is the solid angle.
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When a detector of area 0.1 × 0.1 m2 is placed at a distance of 5 m from the foil,
it is found that the mean counting rate is 20.0 s−1 when θ is 30◦ and 15.75 s−1 when
θ is 60°. Find the values of A and B . The mass number of aluminium is 27 and its
density is 2.7 g cm−3.

Solution

dσ

dΩ
= I

I0NdΩ
=A+B cos2 θ

I0 = 3 × 1012

m2-s
= 3 × 108

cm2-s

dΩ = 0.1 × 0.1

52 m2
m2 = 4 × 10−4

N = NAvρt

A
= 6 × 1023 × 2.7 × 10 × 10−4

27
= 6 × 1019

A+B cos2 30◦ = 20

3 × 108 × 6 × 1019 × 4 × 10−4
= 2.778 × 10−22

A+B cos2 60◦ = 15.75

3 × 108 × 6 × 1019 × 4 × 10−4
= 2.188 × 10−22

Solving the above equations

A= 89.3 b/sr, B = 118 b/sr

Example 7.19 A beam of 460 MeV deuterons impinges on a target of bismuth.
Given the binding energy of the deuteron is 2.2 MeV, compute the mean energy,
spread in energy and the spread in the angle of the cone in which the neutrons are
emitted.

Solution

En = 1

2
Ed = 0.5 × 460 = 230 MeV

�En = 1.5(BdEd)
1
2 = 1.5(2.2 × 460)

1
2 = 47.7 MeV

�θ = 1.6

(
Bd

Ed

)1/2

= 1.6

(
2.2

460

)2

= 0.11 rad

7.19 Questions

7.1 State the quantities which are conserved in nuclear reactions and those which
are not.
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7.2 What is the importance of measuring the Q-value of various reactions?

7.3 Draw rough graphs to indicate the behaviour of neutron cross-sections of vari-
ous types as a function of bombarding energy near the threshold.

7.4 State the reciprocity theorem.

7.5 How can the spin of a particle be determined from the inverse reaction cross-
sections?

7.6 How is it known that the emission of a particle from the compound nucleus is
independent of the formation of the compound nucleus?

7.7 Under what conditions is the (1/v) law for neutron absorption valid?

7.8 Draw rough graphs to indicate interference effects in elastic scattering of neu-
trons on nuclei.

7.9 What is the purpose of introducing a complex potential in the optical model?

7.10 State the salient features of direct reactions and compound state reactions.

7.11 State various types of direct reactions.

7.12 How is the kock-out reaction (p,2p) distinguished from other reactions.

7.13 What are the various types, of phenomena associated with the heavy ion re-
actions?

7.14 In what way the heavy ion reactions differ from the light ion reactions?

7.15 State the distinguishing features of fusion reactions with heavy ions.

7.16 Describe Blair’s model for the scattering of ions with complex nuclei.

7.17 What are pre-equilibrium reactions?

7.18 What is deep inelastic scattering?

7.20 Problems

7.1 13N is a positron emitter with an end point energy of 1.2 MeV. Determine the
threshold of the reaction 13C + P → 13N + n, if the neutron-hydrogen atom mass
difference is 0.78 MeV.
[Ans. 3.23 MeV]
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7.2 Consider the reaction

7
3Li + p→ 7

4Be + n− 1.62 MeV

Calculate the total energy released in the decay of K capture

e− + 7
4Be → 7

3Li + ν
Calculate the energy carried by ν and 7Li, respectively. (Mpc2 = 938.23 MeV,
Mnc

2 = 939.52 MeV,Mec2 = 0.51 MeV.)
[Ans. Q = 0.84 MeV, Eν = 0.84 MeV, ELi = 125 eV]

7.3 If a target nucleus has mass number 20 and a level at 1.41 MeV excitation,
what is the minimum proton energy required to observe scattering from this level?
[Ans. 1.48 MeV]

7.4 The nuclear reaction which results from the incidence of sufficiently energetic
α-particles on nitrogen nuclei is, 4

2He + 14
7N → 17

8O + 1
1H. What is the decay prod-

uct X?
What is the threshold energy required to initiate the above reaction?
(Atomic masses in amu: 1H = 1.0081; 4He = 4.0039; 14N = 14.0075; 17

8O =
17.0045.)
[Ans. 1.437 MeV]

7.5 Consider the fusion reactions

d + d → 3He + n+ 3.27 MeV

d + d → 3H + p+ 4.03 MeV

(a) Calculate the difference between the binding energy of triton and helium-3 nu-
clei.

(b) Show that this is approximately the magnitude of coulomb energy due to the
two protons of the 3He nucleus at a distance of 1.87 fm.

[Ans. 0.76 MeV]

7.6 Thermal neutrons are absorbed by 10
5B to form 11

5B which decays by α-emission
to Li. Assuming that α-emission takes place from 11

5B at rest, find

(a) the Q-value of the decay of α-particle
(b) the energy of α-particle

(Atomic masses, 10
5B = 10.01611 amu, 1

0n = 1.008987 amu, 7
3Li = 7.01822 amu,

4
2He = 4.003879 amu and 1 amu = 931 MeV.)
[Ans. 2.79 MeV, 1.78 MeV]
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7.7 The end-point of positrons spectrum from the decay of 27Si is found be
3.5 MeV. Find the threshold proton energy for the reaction 27Al(p,n)27Si, given
that the neutron-proton mass difference is 0.8 MeV.
[Ans. 5.0 MeV]

7.8 Calculate the threshold proton energy for the reaction

p+ α→ 3He + d − 18.4 MeV

[Ans. 23 MeV]

7.9 Calculate the threshold energy for the appearance of the neutrons (a) in the
forward direction (b) at 90◦ for reaction 3H(p,n)3He which hasQ= −0.764 MeV.
[Ans. (a) 1.019 MeV, (b) 1.146 MeV]

7.10 Consider the reaction 115Sn(n, r)116Sn, with thermal neutrons.
Calculate the γ -ray energy. (Atomic masses: 115Sn = 114.903346 amu, 116Sn =
115.901745 amu.)
[Ans. 9.56 MeV]

7.11 The end-point energy of positron spectrum from the decay of 11
6C is found to

be 0.98 MeV. Calculate the difference between the rest mass energy of 11
6C and 11

5B.
[Ans. 2.0 MeV]

7.12 In the reaction 2H(2H, 3He)n,Q= 3.26 MeV. Calculate the mass of neutrons
in amu. (Atomic masses: 2H = 2.014102 amu and 3He = 3.016030 amu.)
[Ans. 1.008675 amu]

7.13 Find the Q-value of the reaction

30Si + d → 31Si + p+Q (1)

given

30Si + d → 31P + n+ 5.10 MeV (2)

31Si → 31P + β− + 1.51 MeV (3)

n→ p+ β− + 0.78 MeV (4)

[Ans. 4.37 MeV]

7.14 The nucleus 12C has an excited state at 4.43 MeV. You wish to investigate
whether this state can be produced in inelastic scattering of protons through 90° by
a carbon target. It you have access to a beam of protons of kinetic energy 20 MeV,
what is the kinetic energy of the scattered protons for which you must look?
[Ans. 12.83 MeV]
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7.15 A beam of 2 MeV neutrons is used to give the reaction 14
7N+1

0n→ 11
5B+4

2He.
Determine

(a) The threshold energy of this reaction
(b) The maximum energy of the α-particles

Given the atomic masses in amu: 14
7N = 14.003074; 1

0n = 1.008665; 4
2He =

4.002603; 11
5B = 11.009305; amu = 931.6 MeV.

[Ans. 169 keV, 1.68 MeV]

7.16 Calculate the energy of proton ejected in the forward direction when 51 MeV
gamma rays undergo elastic scattering with hydrogen.
[Ans. 0.5 MeV]

7.17 Calculate the thickness of Indium foil which will absorb 2 % of neutrons
incident at the resonance energy for indium (1.44 eV) where σ = 28000 b. At wt of
Indium = 114.7 amu, density of Indium = 7.3 g/cm3.
[Ans. 93 µm]

7.18 Show that the de Broglie wavelength for neutron is given by the formula
λ= 0.286√

E
Å, where the kinetic energy E is in electron volts.

7.19 Calculate the thickness of 113Cd required to reduce the beam of neutrons to
0.1 % of the original intensity. Density of cadmium is 8.67 g/cm3 and σa = 20800 b.
[Ans. 71.8 µm]

7.20 Protons of energy 5 MeV scattering from 10
5B at an angle of 45° show a peak

in the energy spectrum of the scattered protons at an energy of 3.0 MeV

(a) To what excitation energy of 10
5B does this correspond?

(b) What is the expected energy of the scattered protons if the scattering is elastic?

[Ans. (a) 1.45 MeV, (b) 4.2 MeV]
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Chapter 8
Nuclear Power

8.1 Nuclear Fission Reactor

It is estimated that in near future the available conventional power, i.e. the power
harnessed from coal, oil, hydro-electricity etc would become totally inadequate to
match the ever increasing demands. This grim situation, therefore, calls for the ex-
ploitation of new types of power, e.g. the nuclear power obtained from the nuclear
reactors, both fission and fusion.

The basic idea of a fission reactor is that if a fissile material like U235 undergoes
fission, then 2 or 3 neutrons are produced in each fission process, and if by some
trick we could minimize the leakage of neutrons from the assembly called pile or
reactor, and reduce the losses of neutrons in non-fissionable processes (radiative,
capture, i.e. absorption of neutrons leading to production of γ -rays) then it is pos-
sible that the neutrons thus produced will cause further fissions in their encounters
with other nuclei of the fuel element, the number of neutrons in one generation being
at least equal to the number in the previous generation; and if this process called the
Chain Reaction, is sustained for sufficiently long time, then we have a convenient
way of obtaining power from the reactor. This is so because a very large number of
fissions take place per second, and in each fission, the fission fragments carry bulk
of the kinetic energy (85 %), which means that heat is produced at a constant rate.
In principle, the reactor will continue to work until the fuel is exhausted or the as-
sembly rendered ‘poisonous’ owing to the constant accumulation of fission products
which merely absorb the neutrons via non-fissionable processes.

The direct physical consequence of the operation of a reactor is that heat is pro-
duced. The reactor is then nothing more than a furnace but capable of yielding much
greater power. This is because in nuclear reactions the energy released is of the order
of million times greater than in chemical reactions. The remaining problem is that of
extraction of heat with high efficiency, and to shield it suitably so as to minimize the
health hazards, and above all to keep it under control so that the neutron production
and hence the nuclear power does not exceed the danger level.

The first reactor was built by Enrico Fermi at the Chicago university in 1942
which produced a small power of 0.5 W, and later raised to 200 W. Today we have
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reactors capable of yielding power up to 500 Mega Watts. The smaller ones give 1
to 5 Mega Watts and are mostly used for research work and to produce isotopes. The
power reactors are currently in use for the production of electricity and for driving
submarines and ships. In the early days, the ‘pile’ was used for reactor or assembly.
Reactors may be divided into two classes (1) thermal reactors in which fissions take
place mainly at thermal energy (∼0.025 eV), (2) fast reactors in which fissions take
place at a few MeV neutron energy.

Reactors may be divided into homogeneous and heterogeneous types. In the for-
mer, the moderator is homogeneously mixed, while in the latter the fuel in the form
of lumps is embedded heterogeneously in the moderator. More details are given in
Sect. 8.19. First, we shall consider the thermal reactors.

8.2 The Thermal Reactor

8.2.1 Moderation of Neutrons

The neutrons produced from fission are relatively fast (1 to 2 MeV). Now, if the fuel
element used is U235 then, σ (fission) for neutrons of energy 1 to 2 MeV is quite
small (∼1.5 b) where as for neutrons of small energy (say 0.025 eV), it is quite large
(∼600 b). It is therefore, necessary to moderate the neutrons (slow down). This can
be accomplished if the neutrons in their traversal through the medium suffer a num-
ber of elastic collisions. But, if the scattering takes place with the uranium nuclei,
then the average energy loss per collision is so small that an unduly large number of
collisions are required (about 2000) to slow them down to the desired energies, and
by this time the neutrons would have wandered off outside the reactor and thus lost
for setting up the chain reaction. This then means that some other lighter element
must be incorporated in the reactor in order to slow down the neutrons after reason-
ably small number of collisions. An element or a mixture used for this purpose is
called a moderator.

In what follows, we shall study the simple kinematics of elastic scattering. Let
the mass of neutron be unity and that of the target nucleus A. The target nucleus is
assumed to be initially at rest. This is justified since the small energy of the scatterer
is negligible in comparison with neutron energy until neutrons have reached thermal
energies (i.e. of the order of 0.025 eV corresponding to kT , where k is the Boltz-
mann constant and T is the absolute temperature of the medium), at which point the
gain and loss of energy in the scattering collisions with the target nuclei would be
equally probable. This state of affairs is called thermal equilibrium.

Let v0 be the velocity of neutron and E0 its kinetic energy before collision in
the Lab System (LS). In the Center of Mass System (CMS) i.e. a system in which
the total linear momentum is equal to zero, the neutron will be seen to approach
with velocity Av0

(A+1) along the incident direction, while the target nucleus would be
moving with velocity v0

(A+1) in the opposite direction. The CMS itself moves with
velocity vc = v0/(A+ 1) along the incident direction.
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Fig. 8.1 Velocity of neutron before and after collision in LS and CMS

After the collision, let the neutron be scattered at an angle θ in the LS and be
moving with velocity v and kinetic energyE. Let the corresponding scattering angle
in the CMS be θ∗ (Fig. 8.1). Since the scattering is assumed to be elastic, kinetic
energy is conserved. It follows that after the collision, neutron will be moving with
the same velocity (v∗

1 ) in the CMS as before the collision. From the diagram, it is
seen that the velocities v∗

1 and vc combine vectorially to yield v. This gives us

v2 = v∗2
1 + v2

c + 2v∗
1vc cos θ∗

Substituting for v∗
1 and vc, we have

v2 = (Av0)
2

(A+ 1)2
+ (v0)

2

(A+ 1)2
+ 2 cos θ∗Av2

0

(A+ 1)2

∴ E

E0
= v2

v2
0

= A2 + 2A cos θ∗ + 1

(A+ 1)2
(8.1)

For a glancing collision

θ∗ = 0 and Emax =E0 (8.2)

For a head-on collision

θ∗ = π and Emin = αE0 (8.3)

where

α = (A− 1)2

(A+ 1)2
(8.4)
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It follows that in an elastic collision, the minimum energy of the scattered neutron
is equal to ∝E0. Therefore, the maximum possible energy loss in a collision is

E0 −Emin = (1 − α)E0 (8.5)

The maximum fractional energy loss is

E0 −Emin

E0
= 1 − α = δ (8.6)

Thus, in the scattering with the nuclei of Carbon (A = 12), δ = 0.28, i.e. 28 %,
while the corresponding quantity for hydrogen (A= 1) is 100 %.

For large A, it is convenient to expand δ as

δ = 1 − α = 1 −
(
A− 1

A+ 1

)2

= 4A

(A+ 1)2
= 4

A

(
1 + 1

A

)−2

� 4

A

(
1 − 2

A
+ · · ·

)
= 4/A (8.6a)

We note that for heavy target nuclei (largeA), the maximum fractional loss of energy
is small. Thus, for example, if A= 200, δ = 4 %, whilst for A= 100, δ = 2 %. We
conclude that the smaller A, the larger is δ, the maximum fractional energy loss and
vice versa.

We shall now show that if the neutron scattering (at a fixed incident energy E0)
is isotropic in the CMS the energy distribution in the LS is rectangular (uniform) i.e
independent of the energy E of the scattered neutrons.

Let n(E) neutrons scattered between the angles θ∗ and θ∗ + dθ∗ in the CMS
appear with energy E and E + dE in the LS. Then we can write

n(E)dE = −2π sin θ∗dθ∗

4π
= −1

2
sin θ∗dθ∗ or (8.7)

n(E)dE = 1

2
d cos θ∗ (8.8)

The negative sign on the RHS of (8.7) is introduced because an increase in θ∗ im-
plies a decrease in E. Differentiating (8.1)

dE

E0
= 2Ad cos θ∗

(A+ 1)2
(8.9)

Eliminating d cos θ∗ between (8.8) and (8.9), we get

n(E)dE = (A+ 1)2

4A

dE

E0
= dE

(1 − ∞)E0
(8.10)

The last equation shows that the energy spectrum of the scattered neutrons is in-
dependent of the energy E, the spectrum extending uniformly from the minimum
value Emin = αE0, to the maximum value E0 (Fig. 8.2).
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Fig. 8.2 Energy spectrum
extending uniformly for
different values of E

It is readily seen that
∫ Emax
Emin

n(E|)dE = 1, a result which is expected since the

distribution was assumed to be normalized.
The height of the distribution is easily seen to be equal to 1

E0(1−α) since the area
under the spectrum must be equal to 1.

8.2.2 The Average Energy Decrement

It is of importance to know the average energy loss per collision. It turns out that
the quantity 〈E0/E〉 is not suitable since the fluctuations about this quantity would
be very large. We therefore choose energy on the logarithmic scale and introduce
another variable ξ defined by

ξ =
〈
ln
E0

E

〉
(8.11)

called the average logarithmic energy decrement

ξ =
∫ E0

∝E0

ln
E0

E
dE

/∫ E0

∝E0

dE = − 1

1 − α
∫ E0

∝E0

ln
E

E0
d
(E)

E0
= 1 + ∝ ln ∝

1− ∝ (8.12)

Substituting (8.4) for ∝ in (8.12)

ξ = 1 + (A− 1)2

2A
ln
A− 1

A+ 1
(8.13)

If A
 1, then:

ln
A− 1

A+ 1
= ln

(
1 − 1

A

)(
1 + 1

A

)−1

� ln

(
1 − 2

A

)
� −2/A

and

ξ � 2A− 1

A2
(8.14)

We note that ξ depends only on A, the target mass and is independent of the initial
energy of the neutron. Thus on an average neutron always loses the same fraction of



508 8 Nuclear Power

Fig. 8.3 Logarithmic scale
of energy loss

Table 8.1 Various elements
with number of collisions and
their corresponding values
of ξ

Element A ξ n

H 1 1 18

D 2 0.73 25

Li 7 0.27 67

C 12 0.165 114

O 16 0.143 127

U 238 0.0084 2168

energy it had before the collision. This is true as long as the scattering is isotropic
in the CMS. When the neutron energy is comparable with the thermal energy of
the moderator, neutron is likely to gain as much as lose energy in a collision, i.e.
remain in thermal equilibrium, until it is captured. For substances other than the
monoatomic gases, the formula breaks down even before the region of thermal en-
ergies owing to the binding energy of the atoms. In fact at energies of the order of
0.3 eV, the collisions can not be considered as elastic.

Since in each collision, the average energy loss on logarithmic scale is constant
(Fig. 8.3), it follows that the number of collisions needed to reduce the initial energy
E0 to final energy En is given by

n= 1

ξ
ln
E0

En
(8.15)

Thus, the number of collisions required to thermalize neutrons of energy E0 =
2 MeV, in graphite (A = 12), n = 1

0.16 ln[ 2×106

0.025 ] = 114, where we have assumed
En = 0.025 eV and ξ = 0.165 obtained by putting A= 12 in (8.13).

Table 8.1 shows n the number of collisions required on an average to thermalize
neutrons in various targets (E0 = 2 MeV, En = 0.025 eV). Also, are indicated the
corresponding values of ξ .

The greater is the value of ξ , the smaller is the number of collisions required to
thermalize neutrons. But, this is not enough. The cross-section for scattering must
be large so that scattering may take place with appreciable probability. At the same
time, the absorption cross-section should be small so that too many neutrons are not
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lost. The quantity

φ = ξΣs

Σa
(8.16)

called moderating ratio is the best practical measure of the effectiveness of the
moderator. Here, Σs and Σa are the macroscopic scattering and absorption cross-
sections respectively. In case the moderator is a mixture or a compound then the
moderating ratio is defined as

φ = ξ1Σs1 + ξ2Σs2 + · · ·
Σa1 +Σa2 + · · · (8.17)

8.2.3 Forward Scattering

It is of interest to know the departure from isotropic scattering in the LS since this
has a bearing on the mean distance the neutrons drift away from the source as com-
pared with isotropic scattering. The quantity, cos θ is a direct measure of the depar-
ture from spherical symmetry in the LS.

From Fig. 8.1, we note that

v cos θ = v0

A+ 1
+ Av0 cos θ∗

A+ 1
= v0

A+ 1

(
1 +A cos θ∗) (8.18)

v sin θ = Av0 sin θ∗

A+ 1
(8.19)

Dividing (8.19) by (8.18), we get

tan θ = A sin θ∗

A cos θ∗ + 1

whence we find

cos θ = 1 +A cos θ∗
√

1 + 2A cos θ∗ +A2

Assuming that scattering is isotropic in the CMS, we find:

cos θ =
∫ π

0
cos θ

1

2
sin θ∗dθ∗ = 1

2

∫ +1

−1

(1 +A cos θ∗)d(cos θ∗)
(1 + 2A cos θ∗ +A2)1/2

A straight forward integration yields

cos θ = 2/3A (8.20)

If A is large, then 2/3A→ 0 and the scattering is very nearly isotropic in the LS.
This is merely a consequence of the fact that the CMS velocity would be very small
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Fig. 8.4 Moderation of
neutrons by elastic collisions
with moderator nuclei

so that the spherical symmetry in the CMS is preserved in the Lab system. Any
positive value of cos θ would imply excess forward scattering in the LS. Even for
carbon nucleus, cos θ = 0.056, and the scattering is roughly isotropic. For hydrogen,
cos θ = 2/3, and the scattering is strongly in the forward direction.

8.3 Thermal Neutrons

It was pointed out that neutrons produced from fission are fast, their energy being
a few MeV. However, as a result of elastic collisions with the nuclei of the mod-
erator which is incorporated in the thermal reactor, their energy is soon reduced.
The slowing down process continues until the average kinetic energy of neutrons is
of the order of the thermal energy of the moderator nuclei (Fig. 8.4). The neutrons
are said to be in thermal equilibrium with their immediate surroundings. When this
state of affairs is reached, neutrons are said to be thermalized, and their energy dis-
tribution will be approximately Maxwellian, corresponding to the temperature of
the medium.

The velocity distribution will be given by the Maxwell-Boltzmann expression

dn= n(v)dv = 4πn0v
2e− 1

2mv
2/kT dv

(2πkT/m)3/2
(8.21)

where, dn= n(v)dv = number of neutrons with speed between v and v+ dv.

n0 = total number of neutrons
m= neutron mass
T = Absolute temperature
k = Boltzmann constant

= 1.38 × 10−23 J K−1, or 8.55 × 10−5 eV K−1

The velocity distribution is shown in Fig. 8.5. By maximizing (8.21), we find vmax

the most probable value of v

vmax = (2kT /m)1/2 (8.22)
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The energy Ep that corresponds to this velocity is given by

Ep = 1

2
mv2

max = kT (8.23)

The average speed v is given by

v =
∫∞

0 vn(v)dv∫∞
0 n(v)dv

= (8kT /πm) 1
2 (8.24)

It follows that

v = 2vmax√
π

(8.25)

Another quantity of interest for the speed distribution is the root-mean-square speed
(vrms ). It is obtained from

v2
rms =

∫∞
0 v2n(v)dv∫∞

0 n(v)dv
= 3kT

m
(8.26)

whence

vrms =
(

3kT

m

)1/2

(8.27)

Thus

vmax : v : vrms : : 1 : 2√
π

:√3/2 (8.28)

for the Maxwellian distribution.
The energy distribution, i.e. the number to be found between E and E + dE, is

given by

dn= n(E)dE = 2πn0E
1
2 e−E/kT

(πkT )3/2
dE (8.29)

The energy distribution is shown in Fig. 8.6. The number of neutrons that are found
within a small velocity or energy interval, given by (8.21) and (8.29) respectively,
are shown in Figs. 8.5 and 8.6.

The average energy is given by

E =
∫∞

0 Edn∫∞
0 dn

= 3kT /2 (8.30)

The most probable value of E is obtained by maximizing expression (8.29), and
occurs at

Emax = 1

2
kT (8.31)
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Fig. 8.5 Velocity distribution
of neutrons according to
Maxwell-Boltzmann
distribution

Fig. 8.6 Maxwell-
Boltzmann energy
distribution

Fig. 8.7 The neutron energy
distribution

The most probable value of velocity occurs at a value of E = kT , which is actually
twice that given by (8.31). The energy distribution of neutrons is closely given by the
Maxwellian distribution at intermediate energies (Fig. 8.7) but deviates markedly at
lower energies because of strong absorption, and also at higher energies because of
continual production of those neutrons by the slowing down of fission neutrons. At
room temperature, say 30 °C, the average energy E = 3kT /2 = 3 × 8.55 × 10−5 ×
300/2 = 0.04 eV. Neutrons in the neighborhood of this energy are called thermal
neutrons.

If the neutron absorption obeys 1/v law, then the absorption cross section may
be expressed by σa = c0/v, where c0 = const and the average cross section σa is
given by

σa =
∫∞

0 σa(E)φ(v)dv∫∞
0 φ(v)dv

=
∫∞

0 σa(E)n(v)vdv∫∞
0 n(v)vdv

(8.32)

where, φ is the neutron flux defined by φ = n(v)v.
We, therefore, obtain

σa = c0
∫∞

0 n(v)dv∫∞
0 vn(v)dv

= c0

v
(8.33)

where, we have used (8.24). This shows that the effective cross-section for neutrons
is equal to the cross-section with speeds equal to the average speed for thermal
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neutron distribution. The constant c0 is conventionally taken with reference to the
most probable velocity vmax for the thermal neutrons so that,

c0 = vmaxσmax (8.34)

where, σmax is the cross-section for neutrons of speed vmax. It follows that

σ = (vmax/v)σmax =
√
π

2
σmax (8.35)

The effective cross-section is smaller than the cross-section for the most probable
velocity by the factor

√
π/2 = 0.886 since the average speed for Maxwellian distri-

bution is greater than the most probable speed by the same factor.
The thermal neutron cross-sections are normally quoted for the speed 2200 m/s

which corresponds to the most probable speed of a Maxwellian neutron distribution
at 293.6 K and corresponds to a neutron energy of 0.0253 eV.

The effective neutron cross-section to be used in reactor calculations for a neu-
tron distribution at a temperature T is given by

σ =
√
π

2
(293.6/T )

1
2 σmax(2200)g (8.36)

where, we used (8.35) and (8.32); g is a correction factor, close to unity, and is
called ‘Not 1/v factor’; it corrects for the fact that the 1/v absorption law may not
be strictly valid.

8.4 Scattering Mean Free Path (M.F.P.)

Let p(x) be the probability that the neutron does not scatter after having travelled
a distance x. Then, if λs is the mean free path for scattering, the probability of
scattering in a distance dx is given by dx/λs . Therefore the probability that the
neutron does not scatter between x and x + dx is given by (1 − dx/λs ). Now the
probability that the neutron does not scatter in (0, x + dx) is given by the product
of the probability that it does not scatter in (0, x) and the probability that it does
not scatter in (x, x + dx) and is equal to the product of these probabilities since the
probabilities are independent, i.e.

p(x + dx)= p(x)p(dx)= p(x)(1 − dx/λs)
Expanding the LHS by Taylor’s theorem up to two terms

p(x)+ dp(x)

dx
dx = p(x)− p(x)dx/λs or

dp(x)

p(x)
= −dx/λs



514 8 Nuclear Power

Direct integration gives

lnp(x)= − x

λs
+ lnC

where, lnC is the constant of integration

∴ p(x)= Ce−x/λs

Now, at x = 0, p(0) = 1 since neutron certainly would not scatter. This gives us,
c= 1; we then get

p(x)= e−x/λs (8.37)

for the probability that the neutron does not scatter in distance x. The probability
that the neutron scatters in a distance x is then

ps(x)=
(
1 − e−x/λs ) (8.38)

∴ dps(x)= 1
λs
e
− x
λs dx is the probability for it to scatter in the interval (x, x + dx).

Note that

p(x + dx) = e−(x+dx)/λs = e−x/λs e−dx/λs = e−x/λs
(

1 − dx

λs

)

= p(x)p(dx)
(neglecting higher power of dx), as required. It is readily seen that the mean distance
of scattering is equal to λs

x =
∫ ∞

0
xdps(x)=

∫ ∞

0

x

λs
e−x/λs dx = λs (8.39)

8.4.1 Transport Mean Free Path

Because of the predominant forward scattering in the Lab System, the average dis-
tance travelled by the neutron from the source in a given number of collisions would
be more than that for isotropic scattering. The increased effective mean free path for
non-isotropic scattering is called the Transport mean free path λtr , and may be de-
fined as the mean distance travelled between collisions by a neutron projected on to
the direction of its original motion (Fig. 8.8)

λtr = λs + λscos θ + λscos θcos θ + · · ·
= λs(1 + cos θ + (cos θ)2 + (cos θ)3 + · · ·
= λs

1 − cos θ
or
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Fig. 8.8 Transport mean free
path

λtr = λs

1 − 2/3A
(8.40)

where we have used (8.20).

8.4.2 The Mean Square Distance of Scattering

The mean distance of scattering is given by,

〈
x2〉=

∫ ∞

0

x2

λs
e−x/λs dx = 2λ2

s (8.41)

For isotropic scattering, after n collisions, the net mean distance square is

〈
R2〉= n〈x2〉= 2nλ2

s (8.42)

However, in the Lab System, the forward direction is preferred and Eq. (8.42) is
modified as follows:

〈
R2〉= 2

1 − 2/3A

(
1

ξ
lnE0/En

)
λ2
s (8.43)

8.5 Slowing-Down Density

Slowing-down density, q(E) is defined as the rate at which neutrons per unit volume
of a moderater slow down past a particular energy E. Since the energy loss in elas-
tic scattering is discontinuous, and because of absorption resonances for neutrons
of discrete energies, the variation of q with energy is not expected to be simple.
However, the problem is rendered simpler if the energy loss per collision is small
as would be the case for sufficiently heavy moderator so that slowing down process
may be regarded as virtually a continuous process. In what follows we shall assume
the validity of this model. The assumption of continuous slow-down would be ap-
proximately correct for graphite as a moderator but would be grossly incorrect for
hydrogen.

We assume that fission neutrons are produced throughout the assembly and that a
steady state has reached, which means that the rate at which neutrons enter an energy
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Fig. 8.9 Slowing-down
density is the rate at which
the neutron density crosses
the energy E

interval between E and E+ dE is equal to the rate at which they leave it (Fig. 8.9).
Supposing that the rate of production of neutrons with an initial high energy E0 is
constant and equal toQ, then in the absence of losses of neutrons through absorption
or through leakage (escape from the assembly), before they have reached thermal
energies, the slowing-down density q(E) will remain constant at all energies and
will be equal to Q. The leakage can be reduced to negligible proportion by use of
large amount of moderator material, so that neutron absorption will remain the only
loss of neutrons.

We shall first assume thatΣa = 0, i.e the absorption is absent. We can then write,

q(E)=Q= const (8.44)

Now, the number of neutrons that lie in the energy interval E and E +�E per cm3

is given by (8.29) and is equal to n(E)�E. If �t is the time that is required in
their transit through the energy interval�E, the number of neutrons that are present
within the energy interval E and E+�E is given by the product of the rate of flow
q(E) and time interval �t , i.e.

−q(E)�t = n(E)�E (8.45)

In the above equation, negative sign is introduced because with increasing t , E de-
creases.

The neutron density that crosses the energy E per second, q(E) is also given
by the product of the neutron density that crosses E per collision with an energy
loss �E per collision, and the number of collisions this neutron group suffers per
second. But neutron density crossing E per collision = n(E)�E; and number of
collisions per second = v/λs = vΣs

∴ q(E)= [
n(E)�E

][vΣs] (8.46)

If �E is chosen sufficiently small, we can set

�E

E
=�(lnE)= ξ

whence we obtain

�E = ξE (8.47)

Substituting �E from (8.47) in (8.46), we find

q(E)= n(E)EξvΣs = φ(E)EξΣs (8.48)
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where, φ(E) = n(E)v is the neutron flux per unit energy. Since in the absence of
neutron absorption, q(E)=Q, we can write

φ(E)= Q

EξΣs
(8.49)

so that slowing down neutron flux per unit energy interval is proportional to the
energy E. If (8.49) is recast as follows:

φ(E)Σs�E = Q�E

Eξ
(8.50)

then the left side of (8.50) represents the number of neutrons within the energy
interval �E (per cm3) that undergo scattering collisions with the moderater nuclei
and are scattered out of it per s. The quantity φ(E)Σs is called the collision density.

If a steady state prevails then the number of neutrons scattered out of the energy
interval �E per s per cm3 must be equal to the number of neutrons scattered into
this energy interval per s: per cm3; i.e.

Scattering loss per cm3 per s = Neutron influx gain per cm3 per s

As the left side of (8.50) has already been identified with scattering loss, it follows
that the right side must represent the rate of neutron influx.

8.5.1 Slowing-Down Time

Combination of (8.45) and (8.48) yields T , the slowing-down time, which is the time
required for the neutrons to slow down from an initial energy E0 to final energy Ef .
We, therefore, have

�t = − �E

EξvΣs
= −√m/2 �E

ξΣsE3/2
(8.51a)

If we now assume that ξ and Σs remain substantially constant over the slowing
down range of energies, we can integrate (8.51a) to obtain the slowing down time T

T =
∫ T

0
�t = −

√
1

2
m

1

ξΣs

∫ Ef

E0

E−3/2�E =
√

2m

ξΣs

[
E

− 1
2

f −E− 1
2

0

]
(8.51b)

As an example, we may calculate the slowing-down of 2 MeV neutrons to thermal
energies (0.025 eV) in graphite. We accept ξ = 0.158, and σs = 4.8 b

∴ Σs = 6.03 × 1023 × 4.8 × 10−24 × 1.62

12
= 0.385 cm−1
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Fig. 8.10 Neutron absorption
cross-section as a function of
energy for 238U; the peaks
corresponding to resonances
are clearly indicated

Also, since E0 
Ef , the second term in the parenthesis in (8.51b) can be neglected

T = (2mc2/0.025)1/2

0.158 × 0.385 × c = (2 × 940 × 106/0.025)1/2

0.385 × 0.158 × 3 × 1010
= 1.5 × 10−4 s

8.6 Resonance Escape Probability

Previously we have assumed that the moderator hasΣa = 0. But, when this assump-
tion is no longer correct, i.e. absorption is present, then q would not be constant
(equal to Q) but would depend on neutron energy. The change in q , as the neutrons
pass from an energy E to an energy E−�E caused by neutron absorption is equal
to the rate of neutron absorption per cm3. We can, therefore, write

Absorption loss =�q = n(E)�EvΣa = φ(E)�EΣa (8.52)

In the presence of absorption, the slowing-down density would only be a fraction of
its value Q, in the absence of absorption. We may express this fact by writing

q(E)=Qp(E) (8.53)

where p(E) < 1 is the measure of fraction of neutrons that have escaped absorption
in the process of their slowing down from an initial energy E0 to an energy E.

In the process of slowing down, the neutrons are largely absorbed in the material,
when their energies are in the neighborhood of various resonances. The resonances
in the epithermal energy region are shown in Fig. 8.10 for 238U. The factor p(E)
is a measure of the extent to which the neutrons escape resonance capture, and is
called the Resonance escape probability.

With the inclusion of neutron absorption, the steady-state condition within energy
interval �E is modified as:

Scattering loss + Absorption loss = Influx
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Substituting (8.52) for absorption loss and left side of (8.49) for scattering loss, the
state condition becomes

φ(E)Σs�E + φ(E)Σa�E = q(E)�E

Eξ
(8.54)

Combining (8.52) and (8.54) we get:

φ(E)Σa�E

φ(E)Σa�E + φ(E)Σs�E = �qEξ

q(E)�E
or (8.55)

Σa

(Σs +Σa) .
�E

Eξ
= �q

q(E)
(8.56)

Physically, the left side of Eq. (8.55) implies the ratio of the number of neutron
collisions terminating in an absorption and the total number of collisions leading to
absorption and scattering. The factor �E/E

ξ
= �(lnE)

ξ
is the average number of colli-

sions corresponding to an increase in neutron lethargy by an amount du= −d(lnE),
so that the product of the two factors on left side of (8.56) represents the probability
of neutron absorption as the neutron energy changes by an amount corresponding to
a change in lethargy of �u=�(lnE).

Integration of (8.56) between the limits E and E0 gives

pa =
∫ E0

E

Σa

Σs +Σa
�(lnE)

ξ
= ln

[
q(E0)

q(E)

]
(8.57)

The integral merely represents the summation over partial probabilities of neutron
absorption, i.e. pa represents the total probability of absorption when neutrons are
moderated from energy E0 to E.

We can re-write (8.57) as

q(E)= q(E0) exp(−pa) (8.58)

Since the initial slowing-down density q(E0) is equal to the rate of neutron produc-
tion Q, we can substitute this in (8.58) and write

q(E)=Q exp(−pa) (8.59)

Comparing (8.59) and (8.53), we find

p(E)= exp(−pa) (8.60)

In all cases of practical interest, the exponent is small, so that we can write approx-
imately

p(E)= 1 − pa (8.61)

As pa is the probability for neutron absorption, p(E) which is equal to 1 − pa ,
must represent the probability of neutron escaping absorption during the moderation
from E0 to E, an interpretation which is consistent with the definition of p(E) as
resonance escape probability (8.53).
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8.6.1 The Effective Resonance Integral

The exponent in (8.60) as given by the integral (8.57) is called Resonance Integral,
which with the assumption of constancy of Σs and ξ under the range of integration,
can be conveniently written as

pa =
∫ E0

E

Σa

Σa +Σs
d(lnE)

ξ
= 1

ξΣs

∫ E0

E

Σa

1 +Σa/Σs
dE

E
or (8.62)

pa = p = N0

ξΣs

∫ E0

E

σa

1 + N0σa
Σs

dE

E
(8.63)

where N0 is the number of atoms per unit volume.
The integral in this expression is known as the effective resonance integral

∫ E0

E

σa

1 + N0σa
Σs

dE

E
=
∫ E0

E

(σa)eff
dE

E
(8.64)

and the integrand

σa

1 + N0σa
Σs

= (σa)eff (8.65)

as the effective absorption cross section. The quantity (σa)eff is a smoothed-out
effective value of the absorption cross section in a region where the variation of
absorption with energy is extremely complicated because of the presence of pro-
nounced resonances. The limits of integration in the effective resonance integral are
the energies that bound the resonance absorption region.

Since the resonant absorptions of various fuels that are of interest in a reactor
assembly vary in irregular manner, the value of resonance integral must be found
empirically. It depends mainly on the ratio of the fissionable to moderator material as
well as on other factors determined by the type of the reactor employed. The number
of nuclei per cm3, N0, which appears in the preceding formulae refer to the number
of resonance absorber nuclei present. In particular, if all the resonance absorption
takes place in uranium alone, then N0 is simply the number of uranium nuclei per
cm3. If different kinds of nuclei are present in the moderator as would be the case
when the moderator is a mixture or a compound then ξΣs in the denominator of
(8.63) must be replaced by the sum terms ξiΣs,i for the ith type of scatterer.

Further, in so far as the scattering is concerned, the effect of the uranium nuclei
can be neglected because of the small value of ξ which is 0.0084 for 238U and be-
cause these nuclei are only a small fraction of the total number of scatterers present,
we can write to a very good approximation, Σs =Σs,m, where m stands for moder-
ator.
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Fig. 8.11 Diffusion of
neutrons

8.7 Diffusion of Neutrons

Consider a large volume of moderator in which neutrons are diffusing as a result of
successive elastic collisions with the nuclei of the moderator. We shall calculate the
net flow of neutrons in a given direction, and also the leakage of neutrons from a
unit volume. Consider a small area �S located in the XY -plane within this volume
of the moderator. We shall determine the flow of neutrons along the Z-direction.
We assume that the scattering of neutrons is isotropic, and that the absorption cross-
section is negligible. We further assume that the scattering is independent of energy
and position.

We introduce the polar co-ordinates, r and θ . Imagine an element of volume dV
located centrally about the z-axis (Fig. 8.11) in which the neutrons get scattered. We
note that

dV = (2πr sin θ)(rdθ)(dr)

The number of scattering collisions taking place per second in the volume dV is
equal to φΣsdV , where φ is the neutron flux (total neutron path traversed per s: per
cm3).

The probability that a neutron scattered in the volume dV should proceed along
r so as to pass through �S, is given by �s cos θ

4πr2 , since the area �S is inclined at an
angle θ with respect to r . But we must allow for the fact that a neutron scattered in
the volume dV and heading towards the correct direction (i.e. along r) should escape
another scattering collision, the probability for which is given by exp(−r/λs), or
exp(−Σsr).

Thus the number of neutrons dn scattered in volume dV that reach the surface
�S is given by

dn= (φΣs)(2πr
2 sin θdθdr)

4πr2
�S cos θ exp(−Σsr)

If J− is the neutron current in the downward direction through �S expressed as
number of neutrons/cm2/s, then

J− = n/�s =
∫ r=∞

ω

∫ θ=π/2

0

φΣs

2
sin θ cos θ exp(−Σsr)dθdr (8.66)
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We shall first assume that the flux φ is constant, then we find

J− = φ/4
Because of symmetry, the current in the positive Z-direction would also be equal to
φ/4; i.e.

J+ = φ/4
So that the net current

J = J+ − J− = 0

Next, we suppose that the flux φ is not constant in a direction normal to the surface,
but varies only slowly then using Maclaurian expansion, we can write

φ = φ0 + z
(
∂φ

∂z

)
(8.67)

The subscript 0 means that the quantity is to be evaluated at the origin.
Since z= r cos θ , we have

φ = φ0 + r cos θ

(
∂φ

∂z

)
0

(8.68)

Inserting (8.68) in (8.66), a straight forward integration yields

J− = φ0

4
+ 1

6Σs

(
∂φ

∂z

)
0

(8.69)

where, J− is the neutron current in the downward direction through �s. For J+, the
integration must be performed between π

2 and π , giving us

J+ = φ0

4
− 1

6Σs

(
∂φ

∂z

)
0

(8.70)

The net current in the vertical direction is then given by

J = J+ − J− = −λs
3

(
∂φ

∂z

)
0

(8.71)

The net flow of neutrons through a unit area located in the XY -plane depends on the
gradient of the flux in the z-direction. Variation of the flux in the x and y directions
would not affect the flow of neutrons in the vertical direction, and may be ignored.
The assumption under which (8.71) is valid is that the gradient of the flux is small
over distances of a few scattering M.F.P. It will be invalidated in regions close to
the source or sink or near a boundary separating two media with different scattering
cross-sections. Actually, (8.71) is more valid than this treatment would allow, for,
when the second order term is included in the Maclaurian expansion then it gets
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Fig. 8.12 Leakage of
neutrons in orthogonal
directions

cancelled out in the calculation of J . The anisotropic scattering may be allowed for
by replacing λs by λtr in (8.71)

J = −λtr
3

(
∂φ

∂z

)
0

(8.72)

8.7.1 Leakage of Neutrons

Consider a small volume element of sides dx, dy, dz within the moderator
(Fig. 8.12). Let Jx be the net neutron current in the x-direction, then

dJx =
(
∂J

∂x

)
dx = −λtr

3

(
∂2φ

∂2x

)
dx

where, dJx represents the excess of neutron current passing through the volume
element in the x-direction. If Lx is the leakage in the x-direction defined by the
excess number of neutrons leaving the volume element per second in the x-direction,
then

Lx = dJxdydz= −λtr
3

(
∂2φ

∂2x

)
dxdydz (8.73)

Similar terms will be obtained in the y- and z-direction.
The total leakage L out of unit volume expressed as the number of neutrons

leaving per cm3 per second is

L= Lx +Ly +Lz
dxdydz

= −λtr
3

∇2φ (8.74)

where ∇2 is the Laplacian.
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8.7.2 The Diffusion Equation for Thermal Neutrons

We shall now set up the diffusion equation which governs the distribution of neu-
trons throughout the reactor. We shall assume that all the neutrons to be considered
having the same energy. Let n neutrons be present at any time t in a unit volume.

The change of neutron density with time may be written as

∂n

∂t
= Production − Leakage − Absorption

Let S be the rate of production of neutrons/cm3/s; the absorption rate is given by
φΣa per cm3/s; then using (8.74) for the leakage we may write the balance equation
as

∂n

∂t
= S + λtr

3
∇2φ − φΣa (8.75)

This is the general form of diffusion equation and is applicable only to monoergic
neutrons and at distances of about three M.F.P. from strong sources or absorbers and
from boundaries of dissimilar material.

If the reactor is working at a steady state then the neutron flux, and hence the
power would be constant. In this case

∂n

∂t
= 0, and the balance equation becomes

Production = Leakage + Absorption

As the neutrons are produced only at the point located at the source, neutron pro-
duction will be zero at all other points. Putting S = 0 and ∂n

∂t
= 0 in (8.75) the steady

state equation for these regions reduces to

∇2φ − 3

λtrλa
φ = 0 or (8.75a)

∇2φ − 1

L2
φ = 0 (8.75b)

with

L2 = λtrλa

3

The value of the Laplacian in (8.75) would depend on the geometry of the system.
In Table 8.2, we give the explicit form of the Laplacian for typical geometry.

Note that the Laplacian for Cylindrical and Spherical geometry is much simpler
than the usual expressions because of the absence of the terms involving azimuth
angle and the polar angle. This is so because we expect the flux not to depend on
these angles.
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Table 8.2 Geometrical
shapes and their Laplacian Geometry ∇2

1. Parallelpiped ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

2. Infinite slab ∂2

∂x2

3. Cylindrical ∂2

∂r2 + 1
r
∂
∂r

+ ∂2

∂z2

4. Spherical ∂2

∂2 + 2
r
∂
∂r

Fig. 8.13 Extrapolation
distance

8.7.3 Extrapolation Distance

At the outside surface of the reactor, there cannot be any scattering of neutrons back
into the reactor, so that at the boundary, the neutron current in the negative direction
is zero:

J− = φ0

4
+ λtr

6

(
∂φ

∂z

)
0
= 0 (8.76)

where φ0 is the flux at the outside surface of the reactor. If we extrapolate the neutron
flux beyond the outside surface using a straight line with the same slope as at the
boundary (Fig. 8.13), then

∂φ

∂z
= −3

2

φ0

λtr
= −φ0/d or

d = 2

3
λtr (8.77)

where d is the extrapolation distance at which the flux falls to zero.
The value of d as given by (8.77) is only approximate since diffusion theory is

not valid near the boundary. A more refined treatment using the Transport theory
gives

d = 0.71λtr (8.78)

Example 8.1 Calculate the steady state neutron flux distribution about a point
source emitting Q neutrons/s isotropically in an infinite homogenous diffusion
medium. Assume that inside a region of interest, neutrons are not produced.
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Solution A steady state implies that ∂n
∂t

= 0. Further the source term S = 0. Using
the Laplacian for spherical geometry in (8.75), we have

λtr

3

(
∂2φ

∂r2
+ 2

r

∂φ

∂r

)
− φΣa = 0 or

d2φ

dr2
+ 2

r

dφ

dr
− k2φ = 0 (8.79)

where

k2 = 3Σa/λtr

Equation (8.79) can be solved easily by the change of variable v = φr . After some
simplification, we get

d2v

dr2
− k2v = 0 (8.80)

The solution of this standard equation is known to be

v =A1e
kr +A2e

−kr

where A1 and A2 are constants of integration

∴ φ = A1e
kr

r
+ A2e

−kr

r
(8.81)

Since k is positive, ekr → ∞ as r → ∞. But flux must be finite everywhere includ-
ing at large distances. Therefore, we must put A1 = 0. Thus

φ = A2e
−kr

r
(8.82)

We also have:

dφ

dr
= −A2

rz
(kr + 1)e−kr (8.83)

We shall now evaluate the constant A2. Consider a small sphere of radius r sur-
rounding the point source. The net current through this sphere is

J = −λtr
3

∂φ

∂r
= λtr

3r2
A2(kr + 1)e−kr

where we have used (8.83).
The net number of neutrons leaving the sphere per second is,

4πr2J = 4

3
πλtrA2(kr + 1)e−kr
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But as r → 0, the total number of neutrons leaving the sphere per s must be equal
to the source strength q

∴ q = 4

3
πλtrA2 or

A2 = 3q

4πλtr

The complete solution is

φ = 3qe−kr

4πrλtr
(8.84)

Example 8.2 A point source of thermal neutrons is placed at the centre of a large
sphere of Beryllium. Estimate what its radius must be if less than 1.5 % of the
neutrons are to escape through the surface.

At: wt: of beryllium = 9
Density of beryllium = 1.85 g/c c
Avagadro number = 6 × 1023 atoms/g atom
Thermal neutron scattering cross section on Beryllium = 5.6 b
Thermal neutron capture cross-section on Beryllium = 10 mb (at velocity v =
2200 m/s)

Solution Using the results of Example 8.1

n

q
= (1 + kr)e−kr

∴ 1.5

100
= (1 + 0.0157r)e−0.0157r

Solving the above equation by the method of successive approximation, we find
r = 393 cm.

Example 8.3 Calculate the steady state neutron flux distribution about a plane
source emitting Q neutrons/s/cm2 in an infinite homogeneous diffusion medium.
Assume that neutrons are not produced in any region of interest.

Solution Since we are interested only in the x-direction, we use the Laplacian d2

dx2

in (8.75), and remembering that S = 0, and ∂n
∂t

= 0, we have

λtr

3

d2φ

dx2
− φΣa = 0 or (8.85)

d2φ

dx2
− k2φ = 0 (8.86)
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Fig. 8.14 Diffusion from
plane (infinite) source

with

k2 = 3Σa
λtr

= 3

λaλtr
(8.87)

The solution of (8.86) is

φ =A1e
kx +A2e

−kx (8.88)

where A1 and A2 are constants of integration. The requirement that the flux should
not diverge at any point including at infinity implies that A1 = 0

∴ φ =A2e
−kx (8.89)

We shall now calculate A2. Consider a unit area located at a small distance x from
the plane source, Fig. 8.14. On an average, half of the neutrons will travel along
positive x-direction. As x → 0, the net current flowing in the positive x-direction
would be equal to 1

2Q; the diffusion of neutrons through unit area would have a
cancelling effect since from symmetry equal number of neutrons would diffuse in
opposite direction at the surface (x = 0). Now, the current

J = −λtr
3

∂φ

∂x
=A2k

λtr

3
e−kx

But, as

x→ 0, J =Q/2 =A2k
λtr

3

whence we find

A2 = 3Q

2kλtr

The complete solution is

∴ φ = 3Qe−kx

2kλtr
(8.90)
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Fig. 8.15 Thermal neutron
traveling from point of
production to point of
absorption

8.7.4 Diffusion Length

Equation (8.90) shows that the flux falls off exponentially with distance from the
source. The distance required for the flux to fall by a factor e is

L= 1/k =
√
λtrλa

3
(8.91)

Apart from the factor 1/3, the diffusion length L is seen to be given by the geomet-
ric mean of λtr and λa . The diffusion length is a measure of the average distance
a thermal neutron travels from the point of production to the point of absorption
(Fig. 8.15). The average crow-flight distance traveled by a neutron away from an
infinite plane source in a moderator before being absorbed is calculated using (8.90)

x =
∫∞

0 xe−x/Ldx∫∞
0 e−x/Ldx

= L (8.92)

as expected.
The mean square distance travelled 〈x2〉 from the infinite plane source is given

by

〈
x2〉=

∫∞
0 x2e−x/Ldx∫∞

0 e−x/Ldx
= 2L2 (8.93)

8.7.5 Relationship Between 〈r2〉 and L2 for a Point Source

Consider a spherical shell surrounding the source of radius r from the point source
and thickness dr . The volume of the shell is 4πr2dr . The neutron capture rate in
this shell is then equal to 4πr2drφΣa . The mean square distance that a neutron
travels from the source before getting captured is

〈
r2〉= 1

Q

∫ ∞

0
r24πr2drφΣa (8.94)

Substituting the value of φ from (8.84) in (8.94) we get

〈
r2〉= 3Σa

λtr

∫ ∞

0
r3e−krdr = 6/k2 = 6L2 (8.95)
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It may be pointed out that 〈r2〉 is the mean square crow flight distance the neutron
travels, but the actual path length is much greater because of the zig-zag path of the
neutron resulting from various elastic scatterings with the nuclei of the moderator.
Since the leakage of neutrons from a reactor depends on the average crow flight dis-
tance the neutrons travel, the diffusion length is one of the factors that is intimately
connected with the criticality of a reactor.

Example 8.4 The spatial distributions of thermal neutrons from a plane neutron
source kept at a face of a semi-infinite medium of graphite was determined and
found to fit e−0.03x law where x is the distance along the normal to the plane of the
source. If the only impurity in the graphite is boron, calculate the number of atoms
of boron per cm3 in the graphite if the mean free path for scattering and absorption
in graphite are 2.7 and 2700 cm, respectively. The absorption cross-section of boron
is 755 b.

Solution We ignore the scattering of neutrons in boron. Let there be N atoms of
boron per cm3

λa(graphite) = 2700 cm

∴ Σa(graphite) = 1

2700
= 3.7 × 10−4 cm−1

Σa(boron) = 755 × 10−24 N

Σa = Σa(graphite)+Σa(boron)= 3.7 × 10−4 + 755 × 10−24 N

λtr = λs

1 − 2
3A

= 2.7

1 − 2
3×12

= 2.86 cm

Given

L= 1

0.03
= 33.33 cm

but

L2 = λtrλa

3
= λtr

3Σa

∴ (33.33)2 = 2.86

3(3.7 × 10−4 + 755 × 10−24N)

Solving for N , we get

N = 6.47 × 1017 boron atoms/cm3
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Table 8.3 Values of L and
λtr for different moderators Moderator L (cm) λtr (cm)

Water 2.88 0.426

Heavy water 100 2.4

Graphite 50 2.71

8.7.6 Experimental Measurement of Diffusion Length

Calculated values of L and λtr for thermal neutrons can be in considerable error
for various reasons. First, thermal neutrons have wide energy spectrum and hence
variable properties. Secondly, the simple scattering laws break down owing to com-
plications arising due to chemical binding and crystalline effects at low energies.
Further, the scattering cross-section is not strictly constant in the thermal region.
For these reasons, the reliable values of L and λtr are those which are determined
experimentally. One way of measuring L is to measure the flux by the foil activation
method at various distances from a plane source of thermal neutrons placed inside
a large body of moderator. The plot of lnφ against x can be fitted by a straight
line the slope of which yields 1/L. Table 8.3 gives the values of L and λtr for the
moderators water, heavy water and graphite.

8.7.7 The Albedo

The loss of neutrons which escape from the reactor can be minimized by surround-
ing it with a reflector which has the ability to scatter a number of neutrons back into
the reactor. The efficiency of the reflector may be measured in terms of the reflection
coefficient or Albedo which is the ratio of the number of neutrons reflected back to
the number entering the reflector

Albedo =
φ0
4 + λtr

6 (
∂φ
∂x
)

φ0
4 − λtr

6 (
∂φ
∂x
)

If the reflector is an infinite slab, we have the one-dimensional problem where the
neutron current entering the reflector acts as a plane source of neutrons (Fig. 8.16).
But

φ = A2e
−kx; dφ

dx
= −kA2e

−kx

∴ Albedo = 3 − 2kλtr
3 + 2kλtr

= 3 − 2λtr
L

3 + 2λtr
L

(8.96)

Thus, the smaller the value of λtr and the greater the L, the Albedo approaches
unity. The Albedo depends on the size and the shape of the reflector. The Albedo
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Fig. 8.16 Reflector as an
infinite slab

Fig. 8.17 A rectangular
column composed of the
moderator containing the
neutron source

will be smaller for a reflector of finite thickness than the one of infinite thickness
which in practice is reached for thickness equal to about 2L. Further, for a reflector
about a spherical reactor, the Albedo will be smaller for a given thickness than in
the case of an infinite slab because a neutron sees a smaller reactor surface in the
case of a sphere so that the probability of its getting scattered back into the reactor
is smaller.

8.7.8 Determination of Diffusion Length from the ‘Exponential’
Pile

If the plane source is finite then the previous treatment needs modification. Consider
a rectangular column (pile) composed of the moderator with one of its faces con-
taining the neutron source. The neutron source may be either an artificial neutron
source or thermal neutrons from a nuclear reactor. Let the sides of the base of this
column have lengths a and b (Fig. 8.17).

The diffusion equation is

∇2φ − k2φ = 0

with

k2 = 3

λtrλa

We shall choose the x-axis along the length of the column; y- and z-axes are taken
along the sides of the base of the column. Since the flux is no longer independent of
the y and z co-ordinates, we must use the full Laplacian

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
− k2φ = 0 (8.97)
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We solve this equation by the method of separation of variables. Let

φ =X(x)Y (y)Z(z) (8.98)

Substituting (8.98) in (8.97), and dividing through out by XYZ

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2Z

dz2
− k2 = 0 or

1

X

d2X

dx2
= k2 − 1

Y

d2Y

dy2
− 1

Z

d2Z

dz2
(8.99)

Since left side of (8.99) is a function of x only,while the right side is a function of y
and z only, the only way in which the above equation can be satisfied is when each
side equals the same constant, say A2

∴ 1

X

d2X

dx2
=A2 (8.100)

The solution for this equation is known to be

X = c1e
−Ax + d1e

+AX

where c1 and d1 are constants. But the requirement that the flux must not diverge as
x→ ∞ gives us d1 = 0

∴ X = c1e
−Ax (8.101)

Also

k2 − 1

Y

d2Y

dy2
− 1

Z

d2Z

dz2
=A2 or

1

Y

d2Y

dy2
= k2 −A2 − 1

Z

d2Z

dz2
(8.102)

Left side of (8.102) is a function of y only and right side is a function of z only.
Therefore, each side must be equal to constant, say −B2

∴ 1

Y

d2Y

dy2
= −B2

gives us Y = c2 sinBy + d2 cosBy, where c2 and d2 are constants. An approximate
boundary condition is that, φ = 0 at y = 0, y = a, z = 0, z = b. The first of the
boundary conditions gives us, d2 = 0. The second condition gives us

Ba = nπ (8.103)

Note that a positive constant +B2 cannot give the required boundary conditions.
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Taking the first mode (n= 1)

B = π/a (8.104)

Also

1

Z

d2Z

dz2
= k2 −A2 +B2 = −D2 (8.105)

giving us

Z = c3 sinDz+ d3 cosDz

Application of the third boundary condition gives us d3 = O , and the fourth one
gives us

D = π/b (8.106)

∴ The flux

φ = ce−Ax sin
πy

a
sin
πz

b
(8.107)

where

c= c1c2c3

Further, from (8.105) we find

A2 = k2 +B2 +D2 (8.108)

We, therefore find that the flux along the x-axis varies as e−x/L1 where L1 = 1/A.
From (8.108), we note that

1

L2
1

= 1

L2
+ π2

a2
+ π2

b2
(8.109)

The quantity L1 is called the effective diffusion length. We can, therefore, first de-
termine L1 in the manner previously described and then obtain L, the true diffusion
length using (8.109).

Note that if the sides a and b are much larger than L, then L1 → L. The neutron
flux in the column falls off exponentially in a direction perpendicular to the face
containing the neutron source. Hence the nomenclature ‘exponential pile’.

8.8 Elementary Theory of the Chain-Reacting Pile

Absorption and Production of Neutrons in a Pile We consider the ‘pile’ which
is a mass of uranium spread in some suitable arrangement throughout a block of
graphite. Whenever fission occurs in uranium, on an average 2.5 neutrons are pro-
duced. The neutrons produced from fission have energies of the order of 1 MeV and
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are conventionally called ‘fast neutrons’. After a neutron is emitted, its energy de-
creases as a result of elastic collisions with the nuclei of carbon and to some extent
also by inelastic collisions with the nuclei of uranium. A large fraction of the fast
neutrons will be slowed down to thermal energies in about 100 collisions with car-
bon nuclei. On attaining thermal energies, the neutrons keep on diffusing until they
are finally absorbed. In several cases, however, the neutrons are absorbed before the
slow-down process is completed.

The neutrons may be absorbed either in carbon or uranium. But, the absorption
cross section in carbon is quite small, being about 5 mb. For graphite of density 1.6
this corresponds to a mean free path of about 25 m. Since σa follows the l/v law,
the absorption cross section which is already quite small at thermal energies is prac-
tically negligible at higher energies. It is, therefore, sufficiently good approximation
to neglect the absorption by carbon during the slowing-down process. The absorp-
tion cross-section of thermal neutrons in 235U is quite large, being about 650 b. The
absorption of neutron in uranium may lead either to fission or to radiative capture—
a process in which gamma ray is produced. The relative importance of resonance
absorption and fission is dependent on neutron energy. For this purpose, we may
broadly consider three energy intervals:

(i) Neutrons of energy >1 MeV above the fission threshold of 238U. These are the
so-called fast neutrons, for which the most important absorption process is fis-
sion which normally occurs in the abundant isotope 238U, resonance absorption
being small but not negligible.

(ii) Neutrons of energy below the fission threshold of 238U but above the thermal
energy (0.025 eV). These are called ‘epithermal neutrons’. In this energy inter-
val, the most important absorption process is resonance capture. The variation
of cross section with energy is quite irregular, and displays the occurrence of
a large number of maxima, called resonance maxima, which are explained by
Breit Wigner theory, Fig. 8.10. The phenomenon of resonance absorption be-
comes important in all practical cases at energies of about 200 eV and becomes
increasingly more important as the energy decreases.

(iii) Neutrons of thermal energies. For thermal neutrons both the resonance and
fission absorption processes are important. In this energy interval, both the ab-
sorption processes approximately follow the l/v law; consequently, their rela-
tive importance becomes independent of energy. From the preceding discussion
we conclude that only a fraction of the original fast neutrons produced will sur-
vive, and ultimately lead to fission. Further, in systems of finite size, leakage
of neutrons is expected outside the pile.

8.8.1 Life History of Neutrons and Four-Factor Formula

The following sequence of events may take place in one life cycle of a neutron:

1. Suppose that at a given instance, there are available n thermal neutrons which
are captured in the fuel. Let η be the average number of fast fission neutrons
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emitted per fission, then due to the absorption of n thermal neutrons nη fast
neutrons will be produced. If v is the average number of neutrons emitted when
a thermal neutron is absorbed in the fuel, then v = (ησf )/(σf+σr) where σr
refers to radiative capture. The values of v for various fuels are 2.43 for 235U,
2.47 for natural uranium, 2.5 for 233U, 2.89 for 239Pu.

2. There is a small probability that some of the neutrons may be absorbed in ura-
nium before their energy is appreciably decreased. If this is the case then the
absorption in 238U often leads to fission. The available number of neutrons is
therefore increased by a factor ε, which is called fast fission factor and is de-
fined by the ratio of the total number of fast neutrons produced by fissions due
to neutrons of all energies to the number resulting from thermal neutron fissions.
The probability of producing such fast fission neutrons is only a few percent, for
uranium fuel, for example, ε = 1.03, with either graphite or D2O as moderater.
Indeed, if the system contains little uranium and a large amount of carbon, the
elastic collisions with carbon tend to reduce the energy very rapidly to a value
well below the fission threshold for 238U. On the other hand, if the system is very
rich in uranium then inelastic collisions rapidly reduce the energy of the origi-
nally fast neutrons to the point much before the neutrons get a chance to cause
fission in 238U. The number of neutrons then becomes nηε.

3. As a result of collisions, mainly elastic, with the moderator, the fast neutrons
will be ultimately thermalized. With graphite as moderator, about 14.6 collisions
are required to reduce their energy by a factor of 10, and about 110 collisions to
reduce 1 MeV neutrons to 0.025 eV While the slow-down process is in progress,
the neutrons may be absorbed by resonance capture in uranium. Let p be the
probability that neutron escapes resonance capture and is able to reach ther-
mal energy. This is called resonance escape probability. The number of neutrons
reaching thermal energies is then nηεp.

4. If the neutrons have not been absorbed then on reaching thermal energies, they
will ultimately be absorbed either in uranium or carbon. If uranium and carbon
are mixed uniformly, the probability for these two events would be in the ratio of
the absorption cross-sections of uranium and carbon for thermal neutrons multi-
plied by the atomic concentrations of the two elements. Of the thermal neutrons,
therefore, a fraction f called thermal utilization factor will be absorbed in fuel
material.

Thus

f = Σa(fuel)

Σa(fuel)+Σa(moderater)+Σa(other material)

The number of thermal neutrons absorbed in fuel becomes nηεpf .
To sum up, n neutrons are multiplied to nηεpf after the completion of one cycle.

Let k∞ be the multiplication factor or reproduction factor which is defined as the
ratio of the number of neutrons in one generation to the number in the previous
generation

k∞ = nηεpf/n= ηεpf (8.110)
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Table 8.4 Values of p, f ,
and the product pf for
various ratios of atomic
concentrations of graphite
and natural uranium

Nm/NU f p fp

100 0.960 0.523 0.5020

200 0.923 0.647 0.5971

300 0.889 0.706 0.6276

400 0.858 0.751 0.6443

500 0.828 0.774 0.6408

600 0.800 0.795 0.6360

This is called the Four-factor formula.
If k∞ is at least equal to 1, then the reactor would work continuously (it is as-

sumed that the system has infinite dimension so that there is no leakage of neutrons)
since the life cycle of neutron will be repeated again and again. This repetitive phe-
nomenon is called chain reaction. For an assembly of finite dimensions the effective
reproduction constant keff will be less than k∞ by the non-leakage factor L(L< 1)

keff = k∞L (8.111)

The reactor is said to be critical if keff = 1.
The value of k∞ will depend on the relative production and loss of neutrons

by various processes. In practice, apart from leakage through a system of finite di-
mensions, neutrons will be lost as a result of non-fission capture by 235U and 238U
including both thermal and resonance capture and as a result of parasitic capture
of neutrons by the moderator, coolant, structural materials, fission products and any
other material, called poison, present in the reactor.

In the special case in which the fuel contains only 235U, both ε and p will be
very close to unity. Thus, k∞ = ηf .

Of the four factors in (8.110), ε and η are more or less fixed by the character
of the fuel over which we have no control; and the success of the chain reactor
depends upon the values of p and f which vary with geometry, the composition
of the reactor elements and the ratio of fuel to moderator. In order to ensure the
propagation of chain reaction, p and f should be as large as possible although
each of them is always less than unity. Unfortunately such changes in the relative
proportion of fuel and moderator which cause f to increase and cause p to decrease
and vice-versa. Thus, in order to make f large, it is desirable to have the system
very rich in uranium so that the probability of absorption of thermal neutrons by
carbon is reduced. On the other hand, the smaller proportion of carbon implies that
the slowing-down process will be very slow, and consequently, the probability of
resonance absorption is increased. The reverse will be true if the concentration of
moderator is large.

Table 8.4 shows the values of p and f , as well as the product pf for various ratios
of atomic concentrations of graphite and natural uranium which contains 99.3 %
238U and 0.7 % 235U.

Actually, a homogeneous natural uranium-graphite-moderated reactor cannot be-
come critical since k∞ is always less than unity. But, the opposing tendency of p
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and f is quite obvious from Table 8.4. In any case, in order to make the product pf
maximum, we must make a compromise between two conflicting requirements by
finding an optimum value for the ratio of uranium to carbon.

So long we deal with homogeneous mixture of uranium and carbon, the values of
p and f depend only on the relative concentrations of the two components. How-
ever, if we do not restrict ourselves to homogeneous systems, then it is possible
to have a more favorable situation by suitable geometrical distribution of the two
elements. This is possible is due to the following circumstances. The resonance ab-
sorption cross-section which is responsible for the loss of neutrons has sharp peaks
of the Breit-Wigner type discussed earlier. Therefore, if uranium instead of being
smeared throughout the assembly, is used in sizable lumps, then a thin surface layer
would shield the interior of the lump from the action of neutrons with energy close
to resonance maxima. Therefore, the resonance absorption of a uranium atom inside
the lump will be much less than it would be for an isolated atom. Of course, self pro-
tection in a lump reduces not only resonance absorption but also thermal absorption
in uranium. Calculations, however, show and experiments have confirmed, that at
least up to a certain size of the lumps, the gain obtained by reducing the resonance
loss of neutrons, weighs out by a considerable amount the loss due to a lesser ab-
sorption of thermal neutrons in the interior of the lump. The typical structure of the
pile is a lattice of uranium lumps embedded in a matrix of graphite. The lattice may
be, for example, a cubic lattice of lumps or a lattice of rods of uranium. Such an
assembly is obviously; heterogeneous. In practice, one deals with an assembly of
finite size so that some neutrons will leak from the assembly.

We now give typical figures for the production and losses of neutrons in one
complete cycle, as in Fig. 8.18.

Thus numbers of neutrons in the beginning and end of the cycle are almost iden-
tical so that the reactor becomes critical.

8.8.2 Fast-Fission Factor (ε)

The value of this quantity can be easily calculated for a very small lump of uranium.
In this case, it is obviously given by

ε = σFnd (8.112)

where σF is the average value of the fission cross section for fast fission neutrons;
n is the concentration of uranium atoms in the lump, and d is the average value
of the distance that the neutron produced in the lump must travel before reaching
the surface of the lump. Calculations for lump of large size are rendered difficult
owing to the multiple collision processes comprising elastic, and inelastic collisions.
In particular, the last process for a lump of large size effectively slows down the
neutrons below the fission threshold of 238U and brings them down to an energy
level in which they are readily absorbed by the resonance process.
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Fig. 8.18 Typical figures for
the production and losses of
neutrons in one complete
cycle

8.8.3 Resonance Absorption

For isolated atoms of uranium contained in the medium of graphite in which fast
neutrons are produced and slowed down to thermal energies, the probability per unit
time of resonance absorption of neutrons with energy larger than thermal energy is
given by the following expression:

qλ

0.158

∫
σ(E)

dE

E
(8.113)

where q is the number of fast neutrons entering the system per unit time and unit vol-
ume, λ is the M.F.P. and σ(E) is the resonance absorption cross section at energy E.
The integral must be taken between a lower limit just above the thermal energy and
an upper limit equal to the average energy of fission neutrons. We should expect the
largest contribution to the integral from the Breit-Wigner peaks.

The above formula would be very much in error in case of a lattice of lumps.
As we have already pointed out, this is due to the fact that inside a lump there
is an important self-screening effect that reduces very considerably the density of
neutrons having energy close to a resonance maximum. The best approach to the
practical solution to the problem is, therefore, a direct measurement of the number
of neutrons absorbed by resonance in lumps of uranium of various sizes.

We consider below a typical empirical relation which is used for the evalua-
tion of resonance escape probability. We note that the effective resonance inte-
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Fig. 8.19 Resonance integral
as a function of Σs/N0
for 238U

gral (8.63) depends on Σs/N0, which represents the scattering cross section of the
mixture per atom of absorber. This quantity is not identical with Σs (absorber) be-
cause Σs is the scattering cross section of the fuel-moderator mixture as a whole,
Σs =Σs(fuel)+Σs(moderator). In general, the scattering contribution due to ura-
nium can be neglected. Experiments show that the value of the effective resonance
integral is essentially independent of the mass of the moderator atom, so that the
dependence can be taken to be the same for all common moderators. For a given
fuel, its value depends only on the fuel/moderator ratio. For 238U, the empirical re-
lation between the effective resonance integral andΣs/N0 that was found to be very
satisfactory for the ratio Σs/N0 ≤ 1000 b is:

∫ E0

E

(σa)eff
dE

E
= 3.85(Σs/N0)

0.415 (8.114)

The integral is shown as a function of Σs/N0 in Fig. 8.19 for 238U.
For 238U, the integral approaches a limiting value of 282 b at infinite dilation.

For the pure 238U metal, the value of the integral is 9.25 b.
The numerical value of the resonance escape probability for these two limits can

be obtained directly from (8.60), from which it follows that for infinite dilution,
the ratio N0/Σs → 0, the exponent approaches zero, so that p→ 1. For the pure
238U metal p, of course, approaches zero. The tendency for the variation of p with
dilution is in conformity with the previous discussion and is contradictory to the
variation of f with dilation.

Example 8.5 Calculate k∞ for a homogeneous natural uranium-graphite moderated
assembly which contains 200 moles of graphite per mole of uranium. Assume natu-
ral uranium to contain one part of 235U to 139 parts of 238U, and use these constants

Natural uranium Graphite

σa(U)= 7.68b σa(M)= 0.0032 b
σs(U)= 8.3 b σs(M)= 4.8 b

ξ = 0.158
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Solution If Nu is the number of uranium atoms per cm3 and N0 is the number of
238U atoms only per cm3, thenN0 = 139×Nu/140. Also,Nm/Nu = 200. Therefore

Nm/N0 = 200 × 140/139 = 201.4

Thermal utilization factor (f )

f = Σa(u)

Σa(u)+Σa(m) = Nuσa(u)

Nuσa(u)+Nmσa(m)
= 1

1 + Nmσa(m)
Nuσa(u)

= 1

1 + 201.4×0.0032
7.68

= 0.9226

Resonance escape probability p

Σs

N0
= Σs(u)+Σs(m)

N0
= σs(U)+ Nm

N0
σa(M)= 8.3 + 201.4 × 4.8 = 975 b

Assuming the validity of the empirical expression (8.114), for this high value of
Σs/N0, we get for the effective resonance integral, 3.85(975)0.415 = 67 b.

We are justified in ignoring the contribution of the uranium in the scattering since
instead of ξΣs , the use of the quantity ξuΣs(u)+ξmΣs(m) hardly changes the result

∴ p = exp−
(

67

975 × 0.158

)
= exp(−0.435)= 0.8

Taking = 1, and η= 1.34

k∞ = 1 × 1.34 × 0.647 × 0.923 = 0.776

where k∞ means the reproduction factor for infinite dimension. This assembly is,
therefore, not capable of sustaining a chain reaction. Similar computations for other
ratios of moderator/uranium lead to the result shown in Fig. 8.20 for which the
opposing tendency of f and p with varying fuel concentrations is also quite ap-
parent. It is to be noted that since k∞ is always less than unity, even with the
most favorable product pf , it is not possible for a homogeneous natural uranium-
graphite-moderated reactor to become critical. Same thing is true of a uranium-
water-moderated reactor. This conclusion was reached before the first reactor de-
signed by Fermi was put into commission, and led to the concept of a heterogeneous
reactor. It must, however, be stressed that for a homogeneous mixture of natural ura-
nium with D2O as moderator, a chain reaction can be set up.

In natural uranium 235U constitutes only 0.7 %. If, by isotope separation we use
a higher proportion of, 235U then the sample is said to be enriched.

It turns out that in a homogeneous assembly, chain reaction is possible, with
graphite or light water as moderator provided enriched uranium is used as fuel.
Figure 8.21 shows k∞ for homogeneous mixtures with some common moderators
for different molar ratios and various degrees of enrichment.
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Fig. 8.20 Computations for
the ratios of
moderator/uranium

Fig. 8.21 k∞ for
homogeneous mixtures

8.9 Neutron Leakage and Critical Size

It was pointed out that for an assembly of finite dimensions, the effective reproduc-
tion factor keff will be less than k∞ by a factor L, (L< 1) which is determined by
leakage of the system

keff = k∞L (8.115)

It is convenient to separate the total leakage effect into two components, a fast
neutron non-leakage factor lf , and a thermal neutron non-leakage factor lth. This
separation is justified by the diffusion theory which treats the diffusion of fast neu-
trons and that of thermal neutrons separately. WC , therefore, set

L= lthlf (8.116)
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Thus

keff = k∞lf lth (8.117)

For a given reactor keff is defined as the ratio of the number of neutrons (at
corresponding stages of the neutron cycle) in successive generations. The self-
multiplication of neutrons is the underlying principle of a nuclear chain reaction.
The magnitude of keff determines the speed with which the number of neutrons
builds up and the rate at which nuclear fissions occur in the reactor.

If keff > 1, the assembly continues to produce more neutrons than it consumes,
the system is said to be super-critical.
If keff < 1, fewer neutrons are produced than consumed. Such an assembly is
said to be sub-critical.
If keff = 1, the rate of neutron production is exactly balanced by the rate of their
consumption and in this case the assembly is called critical.

If we start with an assembly for which keff > 1, we can decrease keff by progres-
sively decreasing the size, thereby increasing the neutron loss through leakage from
the assembly. If this reduction be continued till keff = 1, then the reactor is said
to have critical size, the assembly being critical, in which case the neutron losses
due to all causes including leakage is exactly balanced by the rate of production in
the assembly. Note that the neutron production is proportional to the volume (∝ r3

for a sphere) while leakage depends on the surface area (∝ r2). The ratio leak-
age/production ∝ 1/r , so that by decreasing the size of the reactor it is possible to
reach critical dimensions.

8.10 The Critical Dimension of a Reactor

8.10.1 One Group Theory

In the previous sections we have developed equations concerned with the produc-
tion, absorption, moderation and diffusion of neutrons. We shall now apply these
equations to the problem of critical size of a reactor for a given mixture of fuel and
moderator. To determine the critical size of a reactor for a given mixture of fuel and
moderator, we consider the case of a homogeneous unreflected reactor operating
at a steady state so that the neutron flux is constant with time at all points in the
assembly.

The balance equation is then

S + (λtr/3)∇2φ = φΣa (8.118)

For the source term S, the simplest assumption is that all the production, diffusion
and capture of neutrons occurs at a single energy—an assumption which drastically
simplifies matters but is far removed from reality. We need to consider the properties
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Fig. 8.22 Infinite slab reactor

of neutrons of the same energy. If k is the multiplication factor for the system, each
neutron absorbed results in the production of k∞ neutrons as a result of fission. We
may therefore, set S = k∞φΣa . The balance equation can, therefore, be rewritten
as:

k∞φΣa + λtr

3
∇2φ − φΣa = 0 or (8.119)

∇2φ +B2φ = 0 (8.120)

where

B2 = 3(k∞ − 1)
Σa

λtr
= k∞ − 1

L2
(8.121)

Equation (8.120) is the familiar wave equation. The boundary condition is that the
flux mast fall to zero at the boundary. Actually, the flux would fall to zero at a little
greater distance corresponding to the extrapolation distance (equal to 0.71λtr ) than
the physical boundary. The other requirement imposed on the flux is that it should
be finite everywhere including at large distances.

We consider below some examples which illustrate the calculation of the critical
dimensions of the assembly, for well defined geometry, and use the known appro-
priate Laplacian.

8.10.1.1 Infinite Slab Reactor

The appropriate balance equation for the geometry of an infinite slab reactor is
(Fig. 8.22)

d2φ

dx2
+B2φ = 0 (8.122)

The solution is obviously

φ =A1 cosBx +A2 sinBx (8.123)
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Taking the origin at the centre of the slab, from symmetry we would expect φx =
φ−x . We must, therefore, drop off the sine function

∴ φ =A1 cosBx (8.124)

Also, φ = 0, when x = ±x0/2 where x0/2 is one half the actual width of the slab
plus the extrapolation distance d = 0.71λtr . We set

A1 cos
Bx0

2
= 0 or (8.125)

B = nπ

x0
, +n= 1, 3, 5, or (8.125a)

φ =An cos
nπx

x0
(8.126)

is the general solution. The first term is called the fundamental eigen value and
all the higher terms are the harmonics. For a sub-critical reactor, with an auxiliary
source of neutrons, the flux distribution is obtained from (8.126), where all the har-
monics can be present. For a critical reactor, all the harmonics drop off and only the
fundamental eigen value is needed. Under these conditions, B = π/x0, and

φ =A cos
πx

x0
(8.127)

Note that A is undetermined. Its absolute value is determined only by the power
level of the reactor. This is an important conclusion from diffusion theory according
to which at constant temperatures and pressure within the system, once a reactor
has gone critical its power can be raised to any desired level without requiring any
additional fuel. The power is limited only by the efficiency with which heat can be
extracted from the reactor. This also means that the reactor must be always under
control.

The critical volume of an infinite slab reaction is infinite.

8.10.1.2 Spherical Reactor

The balance equation is

d2φ

dr2
+ 2

r

dφ

dr
+B2φ = 0 (8.128)

Change of variable v = φr in the above equation gives

d2v

dr2
+B2v = 0 (8.129)

which has the solution

v = A1 sinBr +A2 cosBr (8.130)
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∴ φ = A1

r
sinBr + A2

r
cosBr (8.131)

When r → 0, φ must be finite. Therefore, we must put A2 = 0. We are finally left
with

φ =A1
sinBr

r
(8.132)

Imposing the boundary condition that at the critical radius r = r0, φ = 0 (8.132)
gives

Br0 = π, 2π, 3π

Taking only the fundamental eigen value for the critical assembly

φ = A1

r

sinπr

r0
(8.133)

The radius r0 is given by

r0 = π/B = π
√

λtr

3(k − 1)Σa
(8.134)

Volume is given by

V = 4π4

3B3
∼= 130/B3

Actual critical radius of the sphere = r0 − 0.71λtr , taking into account the extrapo-
lation distance.

8.10.1.3 Rectangular Parallel-Piped Reactor

The equation is

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
+B2φ = 0 (8.135)

The above equation can be solved by the method of separation of variables and is
very much the same as for (8.97) we finally obtain

φ = a cos
x

x0
cos

y

y0
cos

z

z0
and (8.136)

B2 = (π/x0)
2 + (π/y0)

2 + (π/z0)
2 (8.137)

If the sides are equal, i.e. x0 = y0 = z0 then x0 = √
3π/B . The critical volume is

approximately given by x3
0 = 161/B3.
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8.10.1.4 Cylindrical Reactor

The appropriate equation is

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ ∂2φ

∂z2
+B2φ = 0 (8.138)

Substituting, φ =R(r)Z(z), and then dividing throughout by RZ, and re-arranging

1

R

∂2R

∂r2
+ 1

Rr

∂R

∂r
+B2 = − 1

Z

∂2Z

∂z2
(8.139)

Obviously, each side of the above equation must be equal to a constant, say A2

∴ Z = a1 cosAz+ a2 sinAz (8.140)

Because of symmetry, a2 = 0. Thus

Z = a1 cosAz (8.141)

Also, the flux must vanish at z = 1
2z0, where, z0 is the total height of the cylinder.

We get, A= π/z0. We can, therefore, write

Z = a1 cos
πz

z0
(8.142)

Also

1

R

∂2R

∂r2
+ 1

Rr

∂R

∂r
+ (
B2 −A2)= 0

Multiplying the above equation throughout by Rr2

r2 d
2R

dr2
+ rdR

dr
+ r2(B2 −A2)R = 0

Put b2 = B2 −A2, and br = x, d
dr

= b d
dx

, the above equation is transformed into

x2 d
2R

dx2
+ xdR

dx
+ x2R = 0 (8.143)

This is the Besel equation of zero order

∴ R = a3J0(br)+ a4Y0(br) (8.144)

The second solution in (8.144) must be rejected, i.e. we must put a4 = 0, since at
r = 0 the flux must be finite, and positive. Let the flux vanish at r = r0 then

J0(br0)= 0 (8.145)
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The first root of the Bessel function gives

br0 = 2.4

Therefore, the complete solution is

φ = a cos
πz

z0
J (2.4r/r0) (8.146)

Now

B2 = b2 +A2 = (2.4/r0)2 + (π/z0)
2

Volume of the cylinder is

V = πr2
0z0 = 5.76πz3

0

B2z2
0 − π2

The minimum volume is conditioned by, dV
dz0

= 0, yielding, B2 = 3π2/z2
0. Therefore

Vmin = 148/B3

8.11 Reactor with a Reflector

In practice no rector will be bare. We consider the reactor to be surrounded by a
material called reflector which has the property of scattering back neutrons into the
reactor which would otherwise escape. The reflector should have the same properties
as that of a moderator viz large scattering cross-section, low absorption cross-section
for neutrons, and small atomic weight. Suitable material for reflector are graphite,
water and heavy water. The use of reflector results in the flattening of neutron flux
within the core and fuel saving, and improved power utilization.

The reflector reduces the neutron leakage by scattering back the escaping neu-
trons into the core. Furthermore, the fast neutrons which have entered the reflector
from the core are moderated much more efficiently than in the core itself. This is be-
cause the absorbing material free regions in the reflector will reduce neutron losses
due to resonance absorption, so that a good fraction of the fast neutrons in the re-
flector can reach thermal energies than in the fuel containing regions of a moderator.
The improved neutron economy reduces the amount of fuel, or for the given core
size, the fuel concentration compared to a bare reactor.

The flux flattening across the core for a reactor with a reflector compared to a
bare reactor with neutron flux being greater at the core-reflector interface results
in a higher average neutron flux for the same maximum neutron flux, Fig. 8.23.
Now the power production rate is proportional to the average neutron flux, this then
means that the reactor can be operated at a higher power level for the same maximum
neutron flux. Also, because of flux flattening effect, the power production rate will
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Fig. 8.23 Variation of
neutron flux with the reflector

Fig. 8.24 Variation of the
critical core thickness TC
with the reflector
thickness TR

also be more uniform over the core volume, which is highly desirable particularly
for large power reactors.

Figure 8.24 shows the variation of the critical core thickness TC with the reflector
thickness TR . The critical thickness decreases with increasing reflector thickness.
After the reflector has reached a certain thickness T ′, very little reduction in critical
core thickness can be gained by a further increase of reflector thickness.

8.12 Multigroup Theory

On-group calculations are only approximate as the physical properties of core and
reflector for fast and slow neutrons are quite different. A greater accuracy is achieved
by dividing the neutrons into two or more groups and considering the behavior of
each group in the core and reflector separately. In the two-group theory thermal
neutrons comprise one group and the epithermal and fission neutrons the second
group. Average values for the physical properties for the two groups give fairly good
results. Greater accuracy is obtained by increasing the number of energy intervals
into which neutrons are divided. Balance equations can then be written for the group
in the core and reflector to obtain a set of n equations with n arbitrary constants. The
problem is complicated but can be solved with computers. For simple geometry, the
two group theory will predict critical size and mass with an accuracy of 80 % or
greater.
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Fig. 8.25 Reciprocal
multiplication of original
counting rate against the
weight of the fissionable
material added

8.12.1 Experimental Measurement of Critical Size

Simple diffusion theory gives critical size or mass only to an accuracy of 80 % or
90 %, and because the criticality factor of a reactor must be controlled to a frac-
tion of a percent before a reactor is installed, its critical size must be determined
experimentally. There are two methods most widely used.

1. Critical assembly method (for small reactors)
2. Exponential pile method (for large reactors)

In both the methods an auxiliary source of neutrons is used.

8.12.1.1 Critical Assembly Method

For small reactors, the critical size can be determined by increasing the fuel to mod-
erator ratio until criticality is attained. A small neutron source (106 neutrons/s) is
placed near the centre of the assembly and the neutron intensity at various points
is measured by the neutron counters. In the absence of fissionable material in the
assembly, the counting rate as measured by the counters is determined by the in-
tensity of the primary neutron source. As fissionable material is added, net neutron
intensity increases. As the amount is increased, the multiplication of primary neu-
trons is increased, until the assembly is exactly critical, the chain reaction takes
place as a result of fuel only, and the presence of the auxiliary source makes the
assembly supercritical. At this point, the multiplication of the source neutrons be-
comes infinite. Figure 8.25 shows the reciprocal multiplication of original counting
rate against the weight of the fissionable material added. Nature of the curve de-
pends on geometry, position of counters etc. It is necessary to use a neutron source;
otherwise, dependence on spontaneous fission neutrons will lead to such statistical
fluctuations that whole situation may be underestimated, and too much addition of
fuel may endanger the reactor itself. When criticality is reached the neutron source
is withdrawn and the chain reaction is allowed to proceed at a very low power. The
merit of this method is that the critical mass can be found out without actually going
to criticality by simply extrapolating the reciprocal multiplication versus weight of
the fissionable material curve (Fig. 8.25).
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8.12.1.2 Exponential Pile Experiment

This method is used for large reactors. It involves the construction of any assembly
having exactly the same lattice as the reactor under construction but with dimensions
of about 1/3 the critical size. Such an assembly cannot go critical, but by the use
of an artificial neutron source, a steady state neutron flux distribution throughout
the assembly can be realized. The so-called exponential pile is a rectangular column
built from the moderator material with one of its faces containing the neutron source.
The neutron flux in such a column falls off exponentially in a direction perpendicular
to the face containing neutron source, i.e. φ ∝ exp(−x/L1) where L1 is a constant
which is related to the diffusion length through (8.109). Thus L can be found out;
and since diffusion length is related to the buckling constant and critical size is
related to the buckling constant, critical size of the given rectangular pile can be
known from

B2
g = (π/x0)

2 + (π/y0)
2 + (π/z0)

2 (8.147)

For cubical geometry x0 = y0 = z0 and critical volume in given by V = 161
B3
g

, where

Bg is known as geometrical buckling.

8.13 Fast Neutron Diffusion and the Fermi Age Equation

We shall now consider the diffusion of prethermal neutrons during the slow-down
stage. Neutrons at these energies cannot be considered monoenergic as was done
for the thermal neutron group since in the course of slowing down the fast and
prethermal neutrons undergo considerable energy changes. The neutron density per
energy interval, n(E) depends on the difference between the slowing down density
q(E+�E) into the energy interval �E and the slowing-down density q(E) out of
it. For thermalized neutrons, this difference vanishes because a thermal equilibrium
between the neutrons and their surroundings is established which simply means that
the rate of neutron flow into energy interval �E is equal to the rate of neutron flow
out of it.

We assume that the slowing-down is a continuous process, which means that
a large number of collisions are involved in the course of thermalization of fast
neutrons. We further assume that the scattering M.F.P. λs is nearly constant. The
assumption of continuous energy loss is valid for most moderators except for the
very lightest, such as hydrogen and deuterium.

Consider the slowing-down of neutrons in a region of moderator in which neutron
absorption is absent (σa = 0) and the sources are also absent, i.e. (Q= 0).

Let there be n neutrons in a unit volume with energies between E and E +�E,
then the only physical processes which can alter n are assumed to be:

(i) Diffusion of neutrons into or out of the unit volume.
(ii) Slowing down of neutrons into the energy interval �E and out of it.
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A steady state will be reached, i.e. the number of neutrons in the given unit volume
and energy interval will remain constant if the neutrons diffusing out of the volume
are compensated by an equal number of neutrons slowing down into and remaining
in the energy interval �E.

The rate of neutron diffusion is:

−D∇2n= −λtr
3
v∇2n (8.148)

where D is called the diffusion coefficient.
The number of neutrons slowing down into the energy interval �E and remain-

ing is given by the excess of neutrons flowing into �E over the number of neutrons
leaving it

q(E +�E) − q(E)= ∂q

∂E
�E

↓ ↓
Influx Outflow

(8.149)

Hence, (8.148) and (8.149)

∂q

∂E
�E = −λtr

3
v∇2n (8.150)

Now, q(E) = φ(E)EξΣs . It follows from successive differentiation of the above
equation

∇2q =EvξΣs∇2n (8.151)

Substituting the value of ∇2n from (8.151) in (8.150) and re-arranging

∇2q = ∂q

−λsλtr ∂E
3ξE

(8.152)

Introduction of a new variable τ , such that

dτ = −λtrλsdE
3ξE

(8.153)

leads to

∇2q − ∂q

∂τ
= 0 (8.154)

This is called Fermi age equation and the variable τ the Fermi age or Neutron age.
The subsidiary condition imposed on τ is

τ =
∫ E0

E

dτ, τ (E0)= 0 (8.155)
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It is seen that the dimension of τ is (length)2. The age has nothing to do with time.
It is thus called because τ appears in the same way as time appears in the stan-
dard heat-diffusion equation. The age equation contains a complete description of
the neutron density distribution in both energy and space co-ordinates for neutrons
undergoing moderation. Note that the Fermi age equation is a time-independent or
steady-state equation as it does not contain time explicitly.

If λs and λtr are assumed constant over the slowing-down energy range integra-
tion of (8.153) yields

∫ E0

E

dτ = τ(E0)− τ(E)= −λtrλs
3ξ

∫ E0

E

d(lnE)

= −λtrλs
3ξ

ln(E0/E) (8.156)

But, 1
ξ

ln(E0/E)= C, is the average number of collisions a neutron undergoes with
the moderator nuclei, the energy being reduced from E0 to E. We can then write

τ(E)= λtrλsC

3
(8.157)

In this expression, Cλs represents the total ziz-zag path of a neutron between the
beginning and end of slow-down. If we set

Λs = cλs (8.158)

We note that Λs is quite analogous to λs in (8.91). We can then by analogy define

τ0 = λtrΛs

3
= L2

f

where Lf is called the fast diffusion length. It is a measure of the distance a fission
neutron travels from the point of creation till it is thermalized.

We solve Fermi equation (8.154) for the particular case of a point source emitting
fast monoenergetic neutrons of strength Q inside a moderator. Using the Laplacian
in spherical co-ordinates

d2q

dr2
+ 2dq

rdr
− ∂q

∂τ
= 0 (8.159)

The solution is found to be

q(r, τ )= Q

(4πτ)3/2
exp

(−r2/τ
)

(8.160)

The neutron slowing-down distribution for a given τ is thus Gaussian. It has its
maximum value at the origin (r = 0), and for different choices of the parameter τ ,
the maximum, is higher the smaller the value of τ (Fig. 8.26). It is seen from (8.156)
that the lower the value of E, the greater the corresponding τ . The neutron age is,
therefore a direct measure of the degree of moderation of the neutrons.
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Fig. 8.26 Neutron
slowing-down distribution for
a given τ

The root mean square distance for a given neutron age can be obtained from

〈
r2〉=

∫ ∞

0

r2q(r)4πr2dr∫∞
0 q(r)4πr2dr

= 6τ (8.161)

In particular, if the terminal energy is equal to thermal energy so that we may write
the corresponding age as τ = τ0; then

〈
r2〉= 6τ0 = 6L2

f (8.162)

Thus, the neutron age τ is equal to 1/6 of the mean square distance from the point
of creation to the point where their energy is reduced to a value E corresponding to
that τ . The role of neutron age is therefore, quite analogous to that of L2 in thermal
diffusion. For the respective processes of fast diffusion and thermal diffusion, τ0 and
L2 are each 1/6 of the mean square distance traveled by a neutron from the point of
its origin to the point of its termination. The sum of τ0 and L2 is called the migration
areaM2.

8.13.1 Correction for Neutron Capture

In the derivation of the age equation, the neutron absorption by the moderator was
ignored. Should the moderator have a relatively weak capture cross-section for neu-
trons above thermal energies, the differential equation (8.154) would contain an
additional term which is linear in q , but the form of the solution of the age equation
is not affected. If q is the solution of the age equation with zero absorption, and q ′
is the solution of the modified equation with absorption, it can be shown that

q ′ = pq (8.163)

where, p is the resonance escape probability for the medium in which neutrons slow
down.
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8.13.2 Application of Diffusion Equation to a Thermal Reactor

Let Q(x,y, z) be the number of fast neutrons produced per unit time and unit vol-
ume at each position in a lattice. These neutrons diffuse through the mass and are
slowed down. During this process, some of the neutrons are absorbed at resonance.
Let q(x, y, z) be the number of neutrons per unit time and unit volume which be-
come thermal at the position x, y, z;q is called the ‘density of nascent thermal neu-
trons’.

The balance equation which expresses the local balancing of all processes where
by the number of thermal neutrons at each place tends to increase or decrease may
be written as

λtr

3
∇2φ − φΣa + q = 0 (8.164)

where the source of thermal neutrons is given by the slowing-down density which is
a function of the space coordinates r and the neutron age τ . The first term represents
the increase in number of neutrons due to diffusion; the second one, the loss of
neutrons due to absorption, and the third, the effect of the nascent thermal neutrons.
We must, therefore, first find the value of q for thermal energies. This is done by
solving (8.154) as indicated below. λa = 1/Σa is the absorption mean free path of
thermal neutrons.

8.13.2.1 Thermal Neutron Source as Obtained from the Fermi Age Equation

The present treatment applies to homogeneous assembly, but would be equally ap-
plicable to a heterogeneous assembly if its unit cell, i.e. the representative unit from
which the whole lattice can be imagined to have been built up is very much smaller
than the critical dimension of the reactor. By treating such a heterogeneous assem-
bly as a homogeneous system, we neglect the local depressions in the flux density
that occur at the location of the fuel lumps and we consider only the large scale
variation of the flux across the linear extension of the reactor. We use the method of
separation of variables. Let

q(r, τ )=R(r)T (τ ) (8.165)

Differentiating twice with respect to space co-ordinates only

∇2q = T (τ)∇2R (8.166)

and differentiating with respect to τ only

∂q

∂τ
=R(r)∂T

∂τ
(8.167)
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Substituting (8.166) and (8.167) in the Age equation (8.154), we get

T (τ)∇2R = R(r)∂T
∂τ

or

∇2R

R
= 1∂T

T ∂τ
(8.168)

Since each side of (8.168) is independent of the variables of the other side, each side
must be equal to the same constant, say −B2, so that

1

T

∂T

∂τ
= −B2 and (8.169)

∇2R

R
= −B2 or (8.170)

∇2R +B2R = 0 (8.171)

The solution of (8.169), is

T = T0 exp
(−B2τ

)
(8.172)

where T0 is the initial value of T when τ = 0. Since q decreases with increasing
age because of neutron losses, T < T0, so that B2 must be real and positive num-
ber.

The slowing-down density at the beginning of the slowing-down process, q0 is
given by (8.165)

q0 =R(r)T (0)=R(r)T0 (8.173)

We shall now express q0 in terms of the physical properties of the assembly. The
number of neutrons per cm3 per s that become available for slowing down is
given by the rate of production of fission neutrons which is equal to Σfη per
thermal neutron that is absorbed (at the present, we omit the resonance absorp-
tion).

Since the rate of thermal neutron absorption per cm3 is φΣa , the rate of pro-
duction of fission neutrons per cm3 is (εf η)(φΣa). This is also the rate per cm3 at
which fast neutrons become available for slowing down, which is the same as the
initial slowing-down density q0. Hence

q0 = φ(r)Σaεf η (8.174)

but

q = T (τ)R(r)= T0 exp
(−B2τ

)
R(r)= q0 exp

(−B2τ
)

(8.175)

where we have used (8.172) and (8.173)
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∴ q = exp
(−B2τ

)
φΣaεf η (8.176)

where we have used (8.174). But, we must allow for the absorption during the
prethermal stage. The source term, with the necessary correction for resonance es-
cape then becomes

q ′ = qp = exp
(−B2τ

)
φΣaεf ηp =K∞Σaφ exp

(−B2τ
)

(8.177)

Substituting this in (8.164)

λtr

3
∇2φ − φΣa + k∞Σaφ exp

(−B2τ
)= 0 (8.178)

Multiplying this equation throughout by 3/λtr and using the value of L from (8.91)
we may write:

∇2φ + φ

L2

[
k∞ exp

(−B2τ
)− 1

]= 0 (8.179)

This is the Fermi age equation with correction for neutron capture.

8.13.3 Critical Equation and Reactor Buckling

We shall now show that the numerical value of the constant B2 is determined by the
neutron flux distribution φ inside the assembly. For this purpose we evaluate ∇2q ′
and ∂q ′

∂τ
for the slowing down density q ′ as given by (8.177)

∇2q ′ = k∞Σa exp
(−B2τ

)∇2φ

∂q ′

∂τ
= k∞Σaφ

(−B2) exp
(−B2τ

)

∴ ∇2q ′ − ∂ql

∂τ
= k∞Σa exp

(−B2τ
)(∇2φ +B2φ

)= 0 or

∇2φ +B2φ = 0 (8.180)

Since the thermal flux distribution φ(r) across the reactor depends on the size,
shape, and the general geometry of the assembly, the value of B2 is similarly deter-
mined by the geometry of the reactor. In fact it is given by (8.180)

B2 = −∇2φ

φ
(8.181)
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Because of its intimate connection with the geometry of the nuclear assembly, B2 as
determined by (8.180) or (8.181) is called the geometrical buckling, and is usually
denoted more specifically by B2

g .

The quantity −∇2φ/φ is essentially the second derivative of φ divided by the
function φ itself, which describes the curvature or bending of φ or buckling of neu-
tron flux. Combining (8.180) and (8.179), we get

k∞ exp(−B2τ)

1 +L2B2
= 1 (8.182)

This is the critical equation and the left side of the above expression is equal to keff ,
or the criticality

keff = k∞ exp(−B2τ)

1 +L2B2
(8.183)

Equation (8.182) is a transcendental equation for B2; it determines B2 in terms
of the physical properties of the reactor materials which are involved through k∞,
τ and L2. The numerical value of B2 as determined from this equation is, there-
fore, called the material buckling of the reactor and is designated more specifically
by B2

m.
When the reactor is critical, the geometrical buckling as determined by (8.180)

is equal to the material buckling B2
M as obtained from (8.182). This assumption

was in fact made when we combined (8.179) and (8.180). In general, the choice
of B2 that satisfies the mathematical requirements of (8.180) is not unique, but the
smallest numerical value of B2 that satisfies Eq. (8.180) is the one that has physical
significance for our problem. It is also clear from (8.183) that the dimensions of B2

are that of reciprocal of area, cm2, since B2τ and L2B2 must be pure numbers. We
shall see that increasing the geometrical dimensions of a critical reactor causes the
numerical value for the geometrical bucklingB2

g to decrease. But, increasing the size
of a reactor beyond its critical size results in a keff greater than unity. On the other
hand, the material buckling B2

m as given by (8.182) depends only on the material
properties of the assembly and does not change with the reactor size. Hence we
conclude that for a super-critical reactor keff > 1, and B2

m must be greater than B2
g .

Similarly, a reduction in size which makes the reactor sub-critical (keff < 1)
causes B2

g to increase without causing a similar change in B2
m; so that we have in

that case B2
g greater than B2

m.

8.13.4 The Non-leakage Factors

Previously, we had introduced the non-leakage factors lf and lth for the fast and
thermal neutrons respectively. We shall now relate them to the material properties
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of the assembly. We rewrite Eq. (8.177) as

Thermal Diffusion Rate

−λtr∇
2φ

3
+Σaφ = k∞Σaφ exp

(−B2τ
)

Thermal absorption rate Production rate of thermal neutrons

(8.184)

SinceΣaφ is the rate of thermal neutron absorption per cm3, it follows that k∞Σaφ
is the rate of fission neutrons produced per cm3. For a reactor of infinite size all
these neutrons will survive through the slowing-down stage and reach thermal en-
ergies. Since our reactor has finite dimensions, some of the neutrons on reaching
the boundary will leak outside. The non-leakage probability will be given by the
ratio of the actual production rate of thermal neutrons, k∞Σaφ exp(−B2T ) over the
maximum possible rate for a reactor of infinite size, k∞Σa∅,

∴ Non-leakage factor = k∞Σaφ exp(−B2τ)

k∞Σa∅ = exp
(−B2τ

)
(8.185)

This then is the fraction of fast neutrons that does not leak out of the assembly
during slowing down and reaches thermal energies. Therefore

lf = exp
(−B2τ

)
(8.186)

The left side of (8.184) represents the rate at which thermal neutrons disappear from
the reactor. The thermal non-leakage factor is given by the ratio of absorption rate
and absorption + thermal diffusion rate, i.e.

lth = Σaφ

Σaφ − λtr
3 ∇2φ

(8.187)

We shall now use (8.180) and replace ∇2φ by −B2φ, and also use Σa = 1/λa . We
can write:

lth = 1

1 + λtrλaB2

3

= 1

1 +B2L2
(8.188)

It is instructive to note that by multiplying (8.186) and (8.188), we get

lf lth = exp(−B2τ)

1 +B2L2

but

keff = k∞lf lth = k∞ exp(−B2T )

1 +B2L2
(8.189)

a formula which is identical with (8.183).



560 8 Nuclear Power

8.13.5 Criticality of Large Thermal Reactors

It was pointed out that B is related reciprocally to the dimensions of the reactor,
so that for large reactors, B2 becomes small enough to permit an expansion of the
exponential term, and if τ is not large, to omit terms containing higher orders of B2

with negligible error. Thus

keff = k∞ exp(−B2τ)

1 +L2B2
= k∞
(1 +L2B2) exp(B2τ)

= k∞
(1 +L2B2)(1 +B2τ)

= k∞
1 +B2(L2 + τ) (8.190)

The quantity L2 + τ , is demoted byM2 and is known as the Migration area, andM
as the migration length. Therefore

M2 = L2 + τ (8.191)

Hence, for large thermal reactor

keff = k∞
1 +B2M2

= 1 (8.192)

8.13.6 The Diffusion Length for a Fuel-Moderator Mixture

When we deal with a mixture of fuel and moderator, the fuel hardly affects the scat-
tering properties of the material, but has a marked effect on the absorbing properties.
Since the ratio of the moderator to fuel in a reactor is very large, the slowing-down
and diffusion properties of the mixture are those of the moderator, and the value of
λtr to be used in the formula L2 = λtrλa

3 is that for pure moderator. On the other
hand since the neutron absorbing properties are definitely affected by the presence
of the fuel, the λa to be used must be that for the mixture as a whole. Thus

λa = 1

Σa
= 1

Σao +Σam
L2 = λtrλa

3
= λtr

3Σa
= λtr

3(Σao +Σam)
But, the thermal utilization factor

f = Σao

Σao +Σam or (8.193)

1 − f = Σam

Σao +Σam or
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1

Σao +Σam = (1 − f )
Σam

= (1 − f )λam

∴ L2 = λtrλam(1 − f )
3

= L2
m(1 − f ) (8.194)

where Lm is the diffusion length for pure moderator. This shows that the diffusion
length for a fuel-moderator mixture is smaller than that for the pure moderator by
a factor

√
1 − f . It can be shown that in practice (8.193) is also valid for hetero-

geneous assemblies. For the same fuel/moderator ratio, f is smaller for a hetero-
geneous assembly than for a homogeneous assembly; the diffusion length for the
former will be greater than for the latter type of fuel-moderator arrangement.

8.13.7 k∞ for a Heterogeneous Reactor

In the case of a heterogeneous reactor, not only is the average thermal neutron flux in
the regions occupied by fuel and moderator different, but also the volumes occupied
by these components are different. This fact must be allowed for, while calculating
the absorption rate of thermal neutrons. Figure 8.27 shows a unit cell and its equiv-
alent radius r1. The fuel rod of radius r0 is also indicated. Let Vu and Vm represent
the volumes of fuel and moderator respectively. Then, the absorption rate in fuel is
given by ΣauφVu and for the moderator ΣamφmVm. The fraction of thermal neu-
trons absorbed by uranium fuel as compared to the total number of thermal neutron
absorptions in the assembly is then

f = ΣauφuVu

ΣauφuVu +ΣamφmVm
= 1

1 + ΣamφmVm

ΣauφuVu

(8.195)

Thermal neutron absorption such as in ‘poisons’, structural materials, coolants, etc.,
may be taken into account by including similar terms in the denominators of (8.195).
Equation (8.195) reduces to the simple formula (8.193) appropriate for homoge-
neous assembly on putting φm = φu, and Vm = Vu. Since the thermal disadvan-
tage factor defined by the ratio φm/φu > 1 and also Vm/Vu > 1, it is abvious that
fhet < fhom, that is the thermal utilization factor for a heterogeneous assembly is
smaller than that for a homogeneous assembly, both using the same amount of fuel
and moderator.

The value of the disadvantage factor varies with the size of the fuel elements and
the lattice spacing (also called pitch). For a given fuel-to-moderator ratio, the ther-
mal advantage factor increases with the diameter of the cylindrical fuel elements,
and consequently the thermal utilization factor must decrease. Figure 8.28 shows f
as function of the fuel element radius r0 for three values of radius r1 of the equiva-
lent cylindrical unit cell.
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Fig. 8.27 Unit cell and
equivalent cell radius

Fig. 8.28 Fuel element
radius r0 graphs showing the
behavior of ∅ with fuel
element radius for unit cells
of different radii

8.13.7.1 Resonance Escape Probability

Previously, we have remarked that an increase in k∞ in a heterogeneous assembly of
fuel and moderator is primarily caused due to decrease in the resonance absorption
of neutrons by 238U. Theoretical calculations of p are rendered complicated because
all the resonances in 238U are not known with sufficient accuracy, and therefore, the
integral in the expression for p must be replaced as shown earlier by the effective
resonance integral. When evaluating the effective resonance integral, we can pro-
ceed on the assumption that it can be considered to consist of two partial contribu-
tions (a) a surface contribution which is proportional to surface area of the uranium
fuel element, and (b) a volume contribution which is proportional to the volume of
the uranium lump. The division into two parts means this, that the surface absorp-
tion implies the absorption of those neutrons which have been slowed down in the
moderator to an energy corresponding to a strong U238 absorption line, whereas all
other absorptions are treated as a volume absorption effect which takes place inside
the uranium lump exclusively.

When both the volume part and the surface contribution are taken into account,
the effective resonance integral is given by

∫ E0
E
(σa)eff

dE
E

= (9.25 + 24.7 S
M
) b

Volume part Surface part

(8.196)
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where S is the surface area expressed in cm2, and M the mass of the fuel element
in grams. Formula (8.196) is limited to uranium rods with diameter greater than
0.6 cm.

Because of the surface screening action of the uranium the neutron flux inside the
fuel elements (φ0) is smaller than in the moderator (φm). Furthermore, the difference
in resonance neutron flux for the scattering region (moderator) and the absorption
region (uranium) must be taken into account in the expression for p.

We must also take into account the fact that the volume occupied by the fuel ele-
ments V0 and that occupied by the moderator Vm are not equal in the heterogeneous
lattice arrangement unlike for the homogenous assembly.

When these weighting factors are included the resonance escape probability for
the heterogeneous assembly becomes

p = exp

[
− N0V0φ0

ξΣsVmφm

∫ E0

E

(σa)eff
dE

E

]
(8.197)

It is interesting to note that if V0 = Vm, and φ0 = φm, expression (8.197) reduces to
(8.63) appropriate for the homogeneous arrangement.

As a first approximation we can set φm = φ0, so that (8.197) simplifies to

p = exp

[
− N0V0

ξΣsVm

∫ E0

E

(σa)eff
dE

E

]
(8.198)

Expression (8.198) gives an error of only 1 %. For fuel elements of uranium with
the shape of long cylinders the area of the caps will be negligible compared to the
mantle area of the cylinder so that

S

M
= 2πrl

πr2lρ
= 2

rρ

(
ρ = 18.7 g/cm3)

which when used in (8.196) and (8.197) gives for the resonance escape probability
for this particular case

p = exp

[
−V0φ0N0(9.25 + 49.4/rρ)

VmφmξΣs

]
(8.199)

(Note that the term in parenthesis is in units of barns.) Inspection of this expres-
sion shows that increasing the size of the fuel elements by increasing r , but keeping
V0/Vm ratio unchanged, decreases 1/r term in the exponent of (8.199), so that p
must increase. In addition, increasing r causes an increased resonance neutron ab-
sorption by the fuel element because of its greater surface area, and this in turn
causes a further depression of φ0, so that as a result, φ0/φm decreases also. This
will lead to a further decrease of the exponent, so that p must increase.

As we know, the filtering action of the uranium surface layer causes also a de-
crease of the thermal flux in the interior of the fuel element, so that increasing the
radius r0 of the fuel element must increase the thermal disadvantage factor. Inspec-
tion of (8.195) shows that, as a consequence of this, f must become smaller. This
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Fig. 8.29 Variation of p with
r0 for different cylindrical
radii

indicates that changing the fuel element size affects p and f in opposite ways, in-
creasing one and decreasing the other. Figure 8.29 shows the variation of p with r0
for different cylindrical radii.

8.13.7.2 Fast Fission Factor

Figure 8.30 shows the variation of ε with fuel rod radius r0 for natural uranium. It
is seen to increase slowly with r0. Figure 8.31 shows the variation of k∞ with the
fuel rod radius r0 (cm). Figure 8.32 shows, the variation of k∞ for a heterogeneous
natural uranium-graphite assembly for various molar ratios of graphite and uranium
for different fuel rod radius. It is concluded that by the use of a heterogeneous as-
sembly, chain reaction can be established with natural uranium as fuel and graphite
as moderator.

Example 8.6 An unreflected thermal reactor consists of a lattice of uranium rods
surrounded by graphite. The appropriate constants are as follows: One neutron cap-
tured in one atom of natural uranium produces η = 1.308 neutrons. The fast fission
factor ε = 1.0235. The resonance escape probability p = 0.893. The thermal uti-
lization factor f = 0.8832. The slowing down length Ls = 20.05 cm. The diffusion
length L= 17.03 cm. If the reactor is to have cubical geometry find out the critical
dimension.

Solution

k∞ = 1.308 × 1.0235 × 0.893 × 0.8832 = 1.055

τ = L2
s = (20.05)2 = 402 cm2

Critical equation is

k∞ exp(−B2τ)

1 +L2B2
= 1 or
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Fig. 8.30 Variation of ε with
fuel rod radius r0 for natural
uranium

Fig. 8.31 Variation of k∞
with the fuel rod radius
r0 (cm)

Fig. 8.32 Variation of k∞ for
a heterogeneous natural
uranium-graphite assembly
for various molar ratios of
graphite and uranium for
different fuel rod radius

k∞ � 1 +B2(L2 + τ)

∴ B2 = k∞ − 1

L2 + τ = 0.055

(17.03)2 + 402
= 0.0000795

but a2 = 3π2/B2 = 3π2/0.0000795, giving a = 611 cm.

8.13.8 Power

It is useful to derive an appropriate relationship between the power produced by a
reactor and the intensity of thermal neutrons inside it. Roughly, 50 % of the thermal
neutrons absorbed in a reactor, give rise to fission, and the energy released per fission
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is of the order of 200 MeV. This corresponds to about 1.6 × 10−4 ergs per thermal
neutron absorbed. Since the number of thermal neutrons absorbed per unit volume
is vn/λa , the energy produced is approximately

vn× 1.6 × 10−4

λa
= vn× 1.6 × 10−4

316
= 5 × 10−7vn ergs/cm3/s

where we have used λa = 316 cm.
The power is not produced uniformly throughout the reactor because n is a max-

imum at the center and decreases to zero at the edge of the reactor. For a cubical
reactor, n is represented approximately by

n= n0 cos
πx

a
cos
πy

a
cos
πz

a

where we have taken the origin at the center of the cube. The ratio

φ/φ0 = 1

V

∫
cos

(πx)

a
cos
(πy)

a
cos
(πz)

a
dV

but dV = dxdydz, and V = a3

φ/φ0 = 1

a3

∫ a/2

−a/2
cos(πx/a)dx

∫ a/2

−a/2
cos(πy/a)dy

∫ a/2

a/2
cos(πz/a)dz

Each of the integrals is equal to 2a/π

φ/φ0 = 1

a3
(2a/π)3 = 8/π3 = 0.256

Therefore, we obtain the following formula for the power

W = 0.256 × 5 × 10−7n0va
3 = 1.28 × 10−7n0va

3

In our example, if we take a = 611 cm we obtain:

W = 29n0v ergs/s

When the reactor is operating at a power of 1 Mega Watt, the flux of thermal neu-
trons at the center is, therefore

n0v = 106 × 107/29 = 3.4 × 1011 neutrons/cm s

8.14 The Chain Reaction Requirements

(a) Fuel: 235U, 239Pu, and 233U are the only three fissionable nuclides with slow
neutrons. For 235Pu the fraction of delayed fission neutrons is greatest; this fact
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is important for reactor control. For 239U breeding gain is high. 233U is poten-
tially the most abundant fuel as the fertile material from which it can be derived
viz thorium which is four times as abundant as uranium. (In the breeder reac-
tor a fertile element is converted into a fissionable element.) Although 238U is
fissionable with fast neutrons, it is not suitable since neutrons given out from
fission do not have enough energy to propagate the reaction.

Pure uranium cannot be used for the construction of nuclear chain reactor, be-
cause 238U has very high resonance peaks for absorption through radiative cap-
ture. Fission neutrons are generated at about 1 MeV energy, and at this energy
natural uranium has σs � 4 b and σf = 0.015 b. Thus in an assembly of pure
uranium most fission neutrons would simply be scattered until they reach ener-
gies corresponding to the resonance region of 238U at which point they would
be rapidly absorbed before they have a chance to fission more of 235U atoms. In
principle one can separate out the isotopes of uranium so that 235U is enriched.
This has the effect of increasing σf and reducing radiative captures.

(b) Moderators: For natural uranium σf = 0.015 b at 1 MeV, and σf = 3.9 b at ther-
mal energy. Hence, moderation of neutrons is desirable. Three properties deter-
mine the choice of a moderator since the moderating ratio is given by ξΣs/Σa :

(i) Large ξ (element should be light say below oxygen in the periodical table)
(ii) Large Σs

(iii) Small Σa

Heavy water is the best liquid moderator because of low atomic weight and
small Σa of D2. Ordinary water has a fairly large cross section for thermal
neutrons and can be used in rectors having enriched fuel. Use of H2O and D2O
has the advantage in that by recirculation though an external heat exchange they
can serve as coolant as well as moderator. Beryllium oxide and carbon (graphite)
find considerable application where a solid moderator is needed, although all are
inferior to heavy water. When graphite is used as a moderator, it is important that
it is completely free from foreign matter. Helium is not suitable as a moderator
because it is a gas; and the other two light elements lithium and boron have too
high an absorption cross section.

(c) Reactor Coolants: Most nuclear chain reactors operate at high enough power
levels so that some form of cooling is required. Theoretically, a critical reactor
could be run at any power level (as pointed out earlier). Power output is limited
by the efficiency for removal of heat, and thermal tolerances of the materials
of the reactor assembly. The requirements for a reactor coolant are rather rigid.
Such a material must have suitable thermal properties; must be non-corrosive
to materials in the reactor, must be stable to radiations to which it is exposed,
and above all must have a very small σa for neutrons. The coolant merely serves
to keep the operating temperature down to a reasonable value. For low power
reactors, the coolants that are in use are air, water, heavy water, and mercury.
For power producing reactors where a high operating temperature is desired,
liquid metals such as mercury, sodium, lead, bismuth and potassium may be
used. The power of a chain reactor is dependent on how rapidly heat is removed
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from the system, there being practically no upper limit to the power density. For
this reactor coolants with high coefficient of heat transfer are desired.

(d) Structured Materials: This may comprise, for example pipes to handle coolants;
cladding to protect the fissionable material from corrosion etc. The requirements
are, the structural material must be stable against neutron and gamma bombard-
ment, and must have small σa for neutrons. Suitable materials are, lead, bismuth,
beryllium, aluminum, magnesium, zinc, tin, and zirconium. Among these most
important and cheap is aluminum, useful in the form of jackets protecting ura-
nium rods and cooling pipes (in low temperature thermal reactors). For reactors
using enriched fuel, stainless steel may be used inspite of its high σa .

(e) Control Rods: If a reactor were to operate at any appreciable power level the
multiplication constant must be greater than one. This excess reactivity is nec-
essary to overcome temperature effects as the neutron flux is raised to the operat-
ing level, for overcoming the poisoning effects of fission products that gradually
build up in the reactor fuel and to make available additional fuel to compensate
for depletion or burn-up of fuel as the reactor operates. While handling such
a super-critical reactor, it is important to have it under control. This is easily
done by inserting in the reactor a material such as boron or cadmium which
has a large σa for thermal neutrons. Adjustable control rods of boron or cad-
mium steel are inserted at the proper distance into the reactor to maintain k at
the desired power level. As the fission products accumulate, they act as poison
to the chain reaction and it is necessary to pull out the control rods gradually to
keep constant reactor power. If it is desired to shut down the reactor, the control
rods are merely inserted their maximum distance into the reactor; k drops below
unity, and the chain reaction dies out. Normally, three types of control rods are
present in a reactor viz shim. Fine control and safety rods. During normal oper-
ation of the reactor, most of the excess reactivity is absorbed in shim rods. As
operation continues, small changes in temperature, pressure and other variables
take place from time to time and require small changes in reactivity to keep the
reactor at a steady power. This is accomplished by automatic or manual opera-
tion of fine control rods which absorb less reactivity than the shim rods. In case
of emergency requiring shut down of reactor, the safety rods enter the reactor
and reduce k well below 1. The disadvantage with control with rods is the loss
of neutrons.

Other methods of control are:

1. Addition or removal of moderator
2. Motion of reflector
3. Negative temperature coefficient which is useful in the water moderated re-

actors

(f) Reactor Shielding: The radiations from a reactor that must be shielded against
include prompt neutrons, delayed neutrons, prompt γ -rays, fission product
γ -rays, capture γ -rays from fuel, moderator, coolant and structural elements in
the reactor, Bremmstrahlung , annihilation γ -rays from β+, inelastic scattering
of γ -rays, capture γ -rays in shield and photo-neutrons.
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Concrete (density 2.3 and composition 50 % oxygen; 19 % calcium; 18 %
silicon and small amount of magnesium, carbon, iron etc.) provides an effective
shield for neutrons rather than γ -rays. Lead is an effective shield against γ -rays.
Radiation damages of the shield can be avoided by surrounding it with thermal
shield such as iron, water or boron carbide which can absorb large quantities of
heat without damage.

(f) Reflector: Surrounding a reactor with a reflector which is a medium of high σs
and low σa has certain advantages over bare reactors:

1. Improved neutron economy: The reflector reduces neutron leakage from the
core by reflecting or scattering many of the escaping neutrons back into the
core region of the reactor and also acts as a moderator for the fast neutrons
that have entered it from the core. In a way the moderation of the fast neutrons
in the reflector will be more efficient than in the core itself, since the absence
of neutron absorbing material in the reflector will reduce neutron loss due
to resonance absorption, so that a larger fraction of the fast neutrons in the
reflector can reach thermal energies than is possible in the fuel containing
region of a moderator.

2. Possibility of fuel saving: Fuel can be saved to a certain extent if reflector
is incorporated in the design of a nuclear reactor. It is possible to reduce the
critical dimension of a reactor when it is bare.

3. Improved reactor power utilization: Improvement in the power utilization is
a consequence of the flux flattening across the reactor core that occurs when
reflector is used. This is desirable as it permits a higher power level operation
without at the same time over-heating the central portion of the core, The
neutron flux will be markedly greater at the core-reflector interface than what
it would be in the absence of the reflector. Since the power production rate
is proportional to the average neutron flux, the reactor can be operated at a
higher total power output for the same maximum neutron flux. By virtue of
the flux flattening effect the power production rate will also be more uniform
over the core volume, which is highly desirable from the operation point of
view especially with large power reactors.

8.15 The Reactor Period

8.15.1 Thermal Lifetime and Generation Time

In thermal reactors the average slowing-down time is much smaller (10−5 to 10−6 s)
compared to thermal diffusion time (10−1 to 10−2 s) and can be ignored in the
following considerations.

The thermal lifetime can be calculated from

t = λa

v
= 1

vΣa
(8.200)

where v is the average thermal neutron speed of 2200 m/s at 293.6 K.
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Note that in an assembly which contains fuel the thermal lifetime will be shorter
than that which contains pure moderator because of larger absorption cross-section.
Again, the average lifetime in a finite assembly will be shorter than that in an infinite
assembly because of leakage.

It t0 is the thermal lifetime in the presence of leakage then

t0 = t lth = t

(1 +L2B2)
(8.201)

where we have used (8.200).
Combining (8.201) and (8.188), the thermal lifetime of neutrons is

t0 = 1

vΣa(1 +L2B2)
(8.202)

For large reactor for which L2B2 � 1, t � t0. We, conclude that the average time
that elapses between two successive generations of thermal neutrons known as gen-
eration time is basically equal to the thermal diffusion time.

The Generation time of a neutron includes the time required to fission a 235U
nucleus, the slowing down time of the fast neutron produced and the diffusion time
of the thermal neutron before it is captured in fuel or impurity. If we consider only
the prompt neutrons, they are given off in time of the order of 10−14 s after ther-
mal fission, so that the fission process is usually considered to be instantaneous.
Slowing-down times are about 10−4 to 10−5 s and the thermal diffusion times for a
natural uranium reactor are about 10−3 s, so that the generation time is 10−3 s. Sup-
pose we have a reactor operating in a steady state with a criticality factor of unity. If
the reactivity c is now suddenly increased, e.g. by pulling out a control rod, the crit-
icality factor will increase by a factor �c and the neutron flux will start increasing.
After one generation time, there will be φ0(1 +�c) neutrons. After n generation
times, there will be φ = φ0(1 +�c)n neutrons present, where φ0 is the flux at time
zero

∴ ln
φ

φ0
= n ln(1 +�c)� n�c (8.203)

∴ φ = φ0e
n�c (8.204)

If t is the time after the change in criticality factor is made and ifΛ is the generation
time of a neutron, then = t/Λ

∴ φ = φ0e
t�C/ (8.205)

Thus, when the criticality factor is changed suddenly from unity, the flux increases
or decreases exponentially with time. Clearly, since Λ is of the order of 10−3 s in
a very short time t , φ will increase enormously even for very small values of �c,
which would make the reactor highly dangerous. If we use an average lifetime of
∼ 10−3 s for a typical reactor, an excess reactivity of only 0.005, for example, would
lead to a 20000 fold increase of neutron flux in about 2 s.
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Table 8.5 Details of delayed neutrons from 235U taken from [1]

Delayed neutron
groups

Yield (%) ni Mean life time τi/s niτi/s

1 0.0267 0.33 0.0088

2 0.737 0.88 0.0648

3 0.2526 3.31 0.8361

4 0.1255 8.97 1.1257

5 0.1401 32.78 4.5925

6 0.0211 80.39 1.6962∑6
i=1 ni = 0.64 Σniτi = 8.324

8.16 Effect of Delayed Neutrons

Fortunately, since some of the neutrons are delayed for as long as several seconds,
which means that the average life time of a neutron is much greater than the thermal
diffusion time of 10−3 s the reactor period is increased. The average time of delay
of neutrons (inspite of small percentage of slow neutrons) comes out to be ∼0.1 s.
This can be seen as follows. The prompt neutrons which make up over 99 % of
all fission neutrons are emitted within 10−3 s after the initiation of fission process.
235U yields the largest fraction of delayed fission neutrons (0.645 %), 233U yields
less than half as many (0.266 %), and 239P about 1/3 as many (0.209 %). There
are very slight differences in these yields for fast and thermal neutron fissions. For
235U, we use t0 = 10−3 s as the average life for the generation of fission neutrons,
their population n0 being 99.36 %, and using

∑i=6
i=1 niti = 8.324 corresponding to

the six delayed neutron groups, we find the average life t for both the prompt and
delayed neutrons as

t =
∑i=6
i=0 niti∑i=6
i=0 ni

= 8.324 + 99.36 × 10−3

100
= 0.084 s

or about 0.1 s.
The details of delayed neutrons from 235U taken from [1] are shown in Table 8.5.
The result shows that the presence of delayed fission neutrons has lengthened the

average life time of a neutron generation by a factor of nearly 100. Instead of a mean
life time for prompt neutrons of about 10−3 s; the life time of neutrons, generation
time has been increased to 10−1 s by the delay in the emission of only a minute frac-
tion of the fission neutrons. Since it is the generation time that determines the period
of the reactor, this means that the delayed neutrons have effectively lengthened the
reactor period by a factor of 100, thus making the reactor control much more man-
ageable and elastic. Suppose the power level of a reactor (and hence the flux) should
suddenly double, the production of prompt neutrons would also double. But the pro-
duction of delayed neutrons would increase only slowly because they are dependent
upon the concentration of their percursors as determined by the old power level; so
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that the effect of delayed neutrons is to slow down the power rise of the reactor. In
the case of 235U about 0.73 % of the neutrons are delayed, and by never allowing k
to go above 1.0073, a dangerous rise in power can be avoided.

8.17 Classification of Reactors

Nuclear reactors are classified in a variety of ways according to

1. The arrangement of fuel and moderator
2. The neutron energy at which fission mainly occurs
3. Type of fuel used
4. Type of moderator used
5. The purpose of the reactor
6. The methods of heat removal and the coolants employed

There are innumerable types of reactors based on different combinations of the
above features. We will now compare some of the types of reactors in detail.

8.17.1 Homogeneous Reactor

The fuel and moderator are intimately and uniformly mixed either as a solid mixture
in the form of fine slurry or as a liquid solution of a uranium salt in the moderator,
for example uranyl sulfate mixed in H2O or D2O. Homogeneous thermal reactors
employing natural uranium can reach criticality only with heavy water as moderator.
However, k∞ greater than 1 can be obtained with H2O or graphite provided one uses
enriched uranium (>25 %).

The active solution of uranyl sulfate or nitrate in light or heavy water circulates
directly through the heat exchanger and back to the active core contained in a stain-
less steel sphere. The sphere is large enough to contain the critical mass. The entire
system is pressurized in order to permit the liquid to reach an operating temperature
well above the normal boiling point of the solvent.

The main advantage of homogeneous reactor is the possibility of continuous pro-
cessing of fuel to remove fission products, operation with liquids which are easily
transported by pumping, simple mechanical design and the non-requirement of ex-
pensive metallic elements. Thus, the reactor need not be shut down periodically to
replenish the burnt-up fuel or to remove the 239Pu produced. It is fairly stable during
operation. High neutron flux and a power level of several megawatts are obtainable
with the use of high enriched solution for relatively small reactor size.

When the active core is surrounded by a blanket of fertile material, this type of
reactor can also serve the purpose of breeding with a high breeding ratio. Figure 8.33
is the schematic diagram of a homogeneous reactor.

The disadvantage is that a water moderated reactor requires the use of enriched
fuel because of high absorption cross-section with hydrogen. As uranium is present
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Fig. 8.33 Schematic diagram
of a homogeneous reactor

in uranyl nitrate or uranyl sulfate, corrosion is a serious problem. Further, the dis-
ruptive action of the fission fragments causes the decomposition of the moderator.

The corrosion effect of the fuel solution on the reactor components can be
avoided by protecting them by cladding them with gold or uranium.

In the water-moderator-coolant reactor the need for pressurization can be avoided
by employing organic moderator-coolants like polyphenols or their derivatives.
Such substances have high enough boiling points to facilitate their use at fairly
high temperature without resorting to pressurization. Further, the use of organic
moderator-coolants results in low induced radioactivity in the pure materials, which
is a significant feature.

8.17.2 Heterogeneous Reactors

In a heterogeneous reactor fissionable material is concentrated in plates, rods or
spheres which are arranged in arrays in the form of a matrix throughout the moder-
ator. The spacing between fuel lumps is sometimes called pitch. While a homoge-
neous reactor cannot become critical with natural uranium as fuel and graphite as
moderator, only with D2O as moderator can the criticality be reached. For this rea-
son, majority of the reactors that have been constructed are of heterogeneous type,
notwithstanding the fact that it is much easier to construct a homogeneous type. It
was pointed out that a higher resonance escape probability can be achieved com-
pared to a homogeneous arrangement because the resonance captures are reduced
considerably with a lattice arrangement. This is due to two reasons.

First most of the slowing down can take place in the moderator which is a re-
gion completely free of resonance absorbing material. This circumstance gives the
neutrons to reduce their energy below the resonance peaks so that when these neu-
trons re-enter the uranium lumps they will not be able to interact with 238U nuclei
appreciably.
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Fig. 8.34 Variation of
thermal neutron flux across a
heterogeneous assembly

Second, neutrons of resonance energies 6.7, 21, 37 eV and higher can enter the
fuel only from outside and are rapidly absorbed in the surface layer of uranium
before they get a chance to penetrate deeper into the fuel. A thin surface layer of
238U acts as an impenetrable screen which protects the interior of the uranium lump
against neutron resonance absorption. Thus, the neutron resonance absorption be-
comes mainly a surface effect as the 238U atoms in the interior of lumps have little
opportunity to encounter neutrons of resonance energy. The resonance absorption
can be kept to minimum by employing large lumps so that surface to volume ratio
is reduced.

It must be pointed out that the screening effect on the surface of uranium lumps
reduces not only the resonance neutron flux but also the thermal neutron flux. How-
ever, theory shows and experiments confirm that the reduction in resonance absorp-
tion is by far more significant than that for thermal neutron flux so that a net gain in
neutron economy results from the lumping arrangement.

The heterogeneous assembly suffers from the disadvantage that the thermal uti-
lization is lowered because of the decrease of thermal neutron flux within the ura-
nium rods.

Figure 8.34 shows the variation of thermal neutron flux across a heterogeneous
assembly. The flux distribution reveals rhythmic depressions across the lattice at the
location of fuel elements. They are caused by much larger neutron absorption in the
fuel elements as compared to that in the moderator, the neutron flux being about 2/3
of that in the graphite moderator. If we disregarded the minor depressions then the
overall flux distribution is essentially the same as for the homogeneous assembly.

The fast fission factor ε makes a contribution of about 1.03 to the production of
fast neutrons in uranium before they enter the moderator.

To summarize, the resonance escape probability increases, the thermal utilization
factor decreases and the fast fission factor ε is constant at around 1.03. On the whole
k∞ increases compared to the homogeneous assembly.
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Fig. 8.35 Arrangement for
the uranium rods embedded
in the graphite moderator

Fig. 8.36 Schematic diagram
of a typical heterogeneous
reactor

Figure 8.35 shows the arrangement for the uranium rods embedded in the
graphite moderator. Figure 8.36 is the schematic diagram of a typical heteroge-
neous reactor. Among Indian reactors, the Canada-India reactor which is a uranium-
graphite-moderated reactor giving a power of 40 MW and located at Trombay (near
Mumbai) is of this type.

8.17.3 Fast Reactors

High-energy neutrons (>1 MeV) are used to sustain the chain reaction. Here, the
moderator is unnecessary. As the moderator is eliminated the critical core size may
not be more than one foot across. This small size presents difficult technical prob-
lems for heat removal. Natural uranium cannot be used for the fast reactor because
criticality cannot be achieved. Enriched uranium and plutonium-239 are suitable fu-
els for this type of reactor. The reactor can be operated successfully with an enriched
fuel with not less than 25 % of fissionable material content (i.e. 233U, 235U, 239Pu).
A large amount of fissionable material is needed to reach criticality. The reflector
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is usually natural uranium and the coolant is mercury. The main application of fast
reactors is for breeding, in particular to produce plutonium.

In the fast reactor parasitic neutron absorption is greatly reduced. Further, the
σf /σc ratio for the fuel is also greater for the fast reactor. Fast reactors suffer from
the disadvantage that all cross-sections including the fission cross-section are small
at high emerges. Since the power of a reactor is proportional to the product of the
flux and fission cross-section for any reasonable power level the fast flux must be
very large.

8.17.4 Breeder Reactors

The main function of a breeder reactor is to produce new fissionable material.
Although 239Pu, and 233U do not occur in nature, they can be produced by suit-

able nuclear reactions from 238U, and 232Th

238U and 232Th which themselves are not fissionable can be converted into fission-
able isotopes and are known as fertile materials. Note that although the two fis-
sionable isotopes 233U and 239Pu are derived from fairly abundant 232Th and 238U,
each conversion process requires a source of neutrons which at present must come
from 235U. We thus must consume fissionable material (232U) in order to produce
new fissionable material 235Pu or 233U in larger quantity. This process is known as
breeding.

The number of new fissionable nuclei produced for each 235U nucleus destroyed
is termed as the conversion factor.

8.17.4.1 Conversion Factor C

Let a 235U nucleus on the average produce η fast neutrons per neutron absorbed.
One of these neutrons is required to continue the chain reaction. The maximum
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possible conversion factor is then

Cmax = η− 1

When allowance is made for the losses of neutrons due to leakage L and through
absorption in poison nuclei

C = η− 1 −L (8.206)

The breeding gainG in defined as the excess of fissionable nuclei produced over the
number of fissionable nuclei consumed per nucleus of 235U fuel consumed

G= C − 1 = η− 2 −L
Let there be N nuclei of fissionable material. Then the number of new nuclei that
are formed are

NC +NC2 +NC3 + · · ·
If C ≥ 1; the series is divergent.
If C < 1; the limiting conversion of fertile nuclei

= NC

1 −C (8.207)

The amount of fissionable material available after x stages is nCx , and if C < 1, this
decreases with x. If C = 1, then this is equal to N at all stages. Thus the condition
for breeding is C > 1, that is G must be positive or

η− 2 −L> 0 or η > 2 +L
If L= 0, the absolute minimum requirement for breeding is η > 2.

8.17.5 Thermal Breeders

In the case of 239Pu, at thermal energies η = 1.94 rules out breeding. In the case of
235U, η = 2.12 and breeding is possible whereby 235U fuel is charged to a reactor
containing 238U or 232Th, yielding 239Pu and 233U respectively by an amount greater
than the fuel charged. However, the margin of only 0.12 neutron available is so small
as to jeopardize the breeding process. Apart from the loss of neutrons by leakage and
parasitic absorption, there is another factor which hampers thermal breeding. The
transformation of the fertile material to fissionable material is not instantaneous.
Consequently, intermediate products which are formed absorb neutrons and act as
sinks via formation of non-fissionable products such as 233Th, with σa = 1400 b
and T1/2 = 23.5 min and 233Pa, with σa = 37 b and T1/2 = 27.4 days. Both of them
limit the possibility of breeding by thorium cycle.
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8.17.6 Fast Breeders

In the case of fast neutron fission the relative decrease in the fission cross-section is
less than the decrease in the capture cross-section, and the value of η is considerably
larger than 2.12. As breeding depends upon the value of η − 2 a marked increase
in the breeding gain can be achieved by working in the fast region. Among Indian
reactors the one located at Kalpakkam (Tamil Nadu ) is of breeder type.

8.17.7 Doubling Time

Let φ be the flux of neutrons, N the number of atoms of fuel at time t , σa the
total microscope absorption cross-section of the fissionable nuclide, then the number
of neutrons captured per (s)(cm2) in fuel is Nσaφ. For each neutron captured by
fissionable material, η fast neutrons are produced of which one neutron is needed to
continue the chain reaction and one neutron is needed for breeding. The increase of
fuel in time T or the breeding gain is

Breeding gain =Nσaφt (η− 2) (8.208)

Equation (8.208) gives the maximum value of the breeding gain since the loss of
neutrons by leakage and parasatic capture by moderator, coolant etc., have been
ignored.

The time required to double the total amount of fuel is known as the doubling
time td ; setting the breeding gain equal to N in (8.208) gives

N = Nσaφtd(η− 2) or (8.209)

td = 1

σaφ(η− 2)
(8.210)

Thus, the greater is the flux, η and σa , the smaller will be the doubling time. No-
tice that if η < 2, breeding is not possible and the concentration of the fuel simply
continuously decreases with time.

8.18 Other Types of Reactors

We shall now briefly mention other types of reactors.

8.18.1 Power Reactors

The main purpose of a power reactor is to convert the fission energy into useful
power. The main types of power reactors are (1) the pressurized water reactor,
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(2) the boiling water reactor, (3) the gas-cooled natural uranium, graphite moder-
ated reactor and (4) the homogeneous reactor.

8.18.2 The Pressurized Water Reactor

This is a heterogeneous reactor that uses mildly enriched uranium (1.4–2 % 235U)
as fuel and light water as moderator and coolant. The core is kept in a pressure
vessel under a pressure of 1000 to 2000 psi. Pressurized water with raised boiling
pint (300 to 400 °C) is circulated by means of a pump through the core and external
heat exchanger for satisfactory heat transfer.

8.18.3 The Boiling Water Reactor

The boiling water reactor also uses light water as moderator-coolant. Here the steam
is generated in the reactor core itself and is passed directly to the turbines avoiding
the heat exchanger. It is a comparatively safe reactor and largely self, regulatory.
Sudden power surge causes formation of steam bubbles or steam voids in the liquid
moderator, leading to the reduction of thermalization of neutrons while increasing
the neutron leakage rate. Consequently, the fission rate and hence the power produc-
tion will be lowered.

The fuel elements (pure uranium metal or uranium oxide UO2) must be “canned”,
i.e. they must be enclosed by cladding materials and sealed to protect them against
corrosion on coming into contact with the coolants and also prevent the fission prod-
ucts from escaping. Aluminum and to a larger extent zirconium, are widely used as
cladding material.

8.18.4 The Gas-Cooled Natural-Uranium-Graphite Reactor

This type of reactor requires graphite moderator of high degree of purity devoid of
parasitic absorbers and the fuel employed is uranium metal. The coolant consists of
either nitrogen or carbon dioxide. The fuel elements are inserted at regular intervals
in the graphite moderator. The gas coolant passes through the fuel channels and car-
ries away heat generated in the fuel elements. Apart from the generation of power,
it finds application for the production of 239Pu.

8.18.5 The Homogeneous Reactor

The working of the homogeneous reactor was described in Sect. 8.17.1. High neu-
tron flux and power level of several megawatts are obtained by the use of highly
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enriched fuel solution of uranyl nitrate or uranyl sulphate. This class of reactors is
characterized by a small critical size and high power density. It can also be used as
a breeder reactor.

8.18.6 Research Reactors

Here the main concern is to provide relatively high neutron flux densities for exper-
imental work. Unlike the power reactors, the power produced in the form of heat is
undesirable and the elaborate cooling arrangements can be dispensed with.

The average thermal neutron flux in approximately given by

φth = 2.6 × 1010 × P (W)

m (g)
(8.211)

where m is the critical mass of the reactor fuel 235U. Now m is proportional to the
volume of the reactor core. Hence in order to obtain a large flux φ an enriched fuel
with a good moderator like D2O may be employed and a very compact size of the
core with linear dimensions of the order of l ft is possible.

Experimental facilities are provided by openings that lead into the reactor core
or into the lattice where the entire reactor spectrum is available, the fast neutron flux
and the thermal flux being in equal proportion. When openings lead into the fuel free
moderator region, the neutron flux will be predominantly thermal with admixture of
fast neutrons since fission neutron flux decreases exponentially with distance from
the fuel.

One can have access to well-thermalized neutrons by the use of a thermal column
which is an extension of the moderator against a portion of one side of the reactor
from which the reactor shielding has been removed.

The four main types of research reactors are (1) the water boiler, (2) the swim-
ming pool, (3) the tank-type reactor, (4) the graphite moderated reactor.

8.18.7 The Water Boiler

This is usually a homogeneous mixture of a highly enriched uranium salt dissolved
in ordinary water contained in a small stainless steel vessel surrounded by a reflector
and shield. A neutron flux of ∼1012 can be achieved.

This type of reactor is not to be confused with the boiling water reactor described
in Sect. 8.18.3. The term “Water boiler” is used for the reason that a sudden surge
in power would cause the formation of steam bubbles in the solution leading to the
shutdown of the reactor. Under normal operating conditions boiling does not occur
as the temperature of the fuel solution is kept below 80 °C by circulating coolant
through the coils inside the core vessel.
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8.18.8 The Swimming Pool Reactor

This reactor consists of a concrete tank containing 100 to 200 m3 of highly purified
water. The fuel consists of highly enriched rectangular uranium plates clad with
aluminum suspended by a steel frame work spanning the width of the swimming
pool and immersed 5 to 7 feet below the water surface.

The water in the pool serves the purpose of moderator, coolant as well as shield.
At a power level up to 100 kW the neutron flux available will be of the order of
1012.

The first reactor constructed in INDIA called APSARA is located at Trombay
and is of the swimming pool type.

8.18.9 The Tank-Type Reactor

This type of reactor is similar to the swimming pool type except that its size is
reduced to that of a tank. The heat transfer which is much more efficient enables the
operating power to boost up to provide neutron flux as high as ∼1014. A number of
tank-type research reactors use D2O instead of H2O as moderator-coolant, with 1 to
2 kg of 90 % enriched uranium at power level of several megawatts.

8.18.10 The Graphite-Moderated Natural Uranium Reactor

All of them are prototype of the first historical reactor built at Chicago under Fermi’s
direction. All of them use 20 to 50 tons of natural uranium as fuel in the form of
rods clad mostly in aluminum embedded in several hundred tons of graphite which
serve the purpose of both moderator and reflector. Air or CO2 at low pressure is
used as a coolant. The power level ranges from 100 kW to 30 MW and flux 4×1010

to 4 × 1012.
It D2O be used instead of H2O as a moderator then the reactor size is consid-

erably reduced. This is because the amount of D2O required to moderate fission
neutrons is much smaller than that of graphite. A smaller volume implies a higher
neutron density and hence greater power density and grater neutron flux. This is the
reason for the extensive use of D2O moderated reactors for research purposes and
also for production of plutonium.

8.19 Variation of Reactivity

8.19.1 Fuel Depletion and Fuel Production

The reactivity of a reactor is affected over long spans of time. In case of depletion
of fuel or accumulation of poisonous material the reactivity goes down and when
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surplus fissile material is produced the reactivity increases. Normally, in order to run
the reactor continuously it is necessary to build up an excess reactivity into the as-
sembly to compensate for the fuel depletion. For reactors employing highly enriched
uranium, the decrease in reactivity is proportional to the fraction of 235U burnt up,
and for those which employ natural uranium, the depeletion of 235U is partly com-
pensated through the production of 239Pu from 238U by neutron absorption.

In a Breeder reactor, the reactivity increases because the amount of 239Pu pro-
duced exceeds the amount of 235U burnt up. For this reason proper control must be
provided to check the build up of reactivity.

8.19.2 Effect of Fission Products Accumulation

When the reactor runs there will be a gradual build-up of fission fragments both in
the reactor core and the fuel elements which affects the neutron multiplication and
hence the reactivity of the reactor. The most poisonous fission fragments are 135Xe
with σth ∼ 3 × 106 b and 149Sm with σth ∼ 5 × 104 b. Such nonproductive absorp-
tion of neutrons adversely affects the thermal utilization f and hence the reactivity.
135Xe is an intermediate product of the fission product chain which terminates with
135Ba as the stable end-product, and 149Sm is the stable end-product of the fission
chain.

When the reactor is shut down, the production of poisonous Xe nuclei does
not halt immediately but continues to build up and reaches a maximum in about
11 hours, resulting in a reactivity loss of about 40 %. The build-up of poisonous
Xe nuclei after shut down occurs because of the continuing decay of the parent 135I
(6.7 hour half-life) into 135Xe (9.2 hour half-life) without the compensating neutron
absorption reactions. These reactions are not taking place after the shut down be-
cause of rapid decay of neutron flux. It is then the case of chain radioactive decay
with λparent > λdaughter in which transient equilibrium is established (at 11 hours
after the shut down). This then means that extra fuel reserves must be accessible to
over-ride the Xe poisoning if the reactor is to run without any break. Otherwise, one
will have to wait for several hours before the Xe nuclei substantially die out. This
aspect is very important in the design of reactors which drive a submarine or a ship.

8.19.3 Temperature Effects

When a reactor is operated at any appreciable power level the fission energy heats
up the fuel, moderator and other material present. An increase in temperature will
decrease the density of the material present, and will decrease σ because of high
average neutron velocity (1/v) law.

The Parameters of Chain Reaction The Fast fission factor ε is expected to be
insensitive to small temperature changes since it is determined by the behavior of
fast neutrons.
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It is reasonable to expect v, the number of neutrons released per fission to be
temperature independent. If σf and σa follow the 1/v law, then η the number of
neutrons released per capture will also be temperature independent since η= vσf

σf+σc .
For a homogeneous reactor, the thermal utilization factor

f = Σa(uranuim)

Σa(uranuim) +Σa(modertor) +Σa(other)

Because of 1/v law dependence, all absorption cross-sections will be proportion-
ately decreased and f remains unaffected.

For heterogeneous assembly, however, f will increase with the rise in tempera-
ture. This can be explained as follows

f = 1

1 + ΣamφmVm
ΣauφVu

(8.212)

An increase in temperature will decrease the thermal disadvantage factor φm/φu
because the decreased uranium absorption cross section will be less effective in
reducing the neutron flux entering the fuel rods resulting in a more even distribution
of the neutron flux across the lattice cell. This causes a decrease in the thermal
disadvantage factor and therefore an increase in f .

The resonance escape probability p does change with temperature because of
Doppler broadening of the resonance levels in 238U nuclei with the temperature rise
which implies larger absorption cross section and smaller value of p.

The value of multiplication factor K∞ is unchanged for all practical purpose for
small temperature changes.

The Thermal diffusion length L is also affected by temperature changes. From its
definition, L2 = λtr/3Σa . Obviously, L2 is inversely proportional to the square of
density as well as the absorption cross-section σa . Ignoring the variation of σs with
temperature which is small the temperature rise causes decrease in density as well
as σa , leading to increase in L.

From the definition of the Fermi age equation dτ = −(λtrλs/3ξ)(dE/E), τ ∝
1/Σ2

s which means that the variation of τ is determined by the temperature depen-
dence of the density. The change in the thermal diffusion length is more significant
than the change is τ with temperature.

An increase in temperature will cause an increase of the reactor core which would
decrease the buckling B2.

8.19.4 Temperature Coefficient and Reactor Stability

The temperature coefficient may be defined as

1

ke

dke

dT
= ∞ (8.213)
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which is the fractional change in effective multiplicative factor per degree.
As far as the nuclear cross-sections are concerned a rise in temperature leads to

a decrease in the reactivity so that the nuclear temperature coefficient is negative.
Likewise the temperature coefficient turns out to be negative. However, the volume
temperature coefficient turns out to be positive. But the last one turns out to be much
smaller than the first two. Consequently the net reactivity decreases with the rise in
reactor temperature.

If the reactivity decreases with the rise in temperature then the reactor is said to
be stable. On the other hand, if the reactivity increases with temperature then it is
unstable. Safe design must ensure a reactor to be stable at all times since it is self
regulating. Generally, H2O or D2O-moderated reactors have larger negative tem-
perature coefficients than graphite-moderated reactors, and are therefore inherently
more stable than the latter.

8.20 Nuclear Fusion

8.20.1 Fusion Reactions

The curve for binding energy/nucleon versus mass number (Chap. 4) shows that
energy will be released either when a heavy nucleus like 235U breaks up into two
medium heavy fragments as in fission or two very light nuclei below A = 56 are
fused as in the case of fusion reactions of the type

D +D→ T + p+ 4.03 MeV

→ 3
2He + n+ 3.27 MeV

Since deuterium is present in ordinary water to the extent of one part in 6500, there
is an inexhaustible supply of nuclear energy in the oceans of the world. The main
problem is to run the fusion reactions in a controlled way. It is necessary that the
deuterons acquire sufficient energy to overcome the Coulomb barrier in order to in-
duce the reactions. Just firing a beam of deuterons on to a target of deuterium is not
practical. First, it is far too expensive to produce a beam of deuterons. Secondly, the
cross-section for the fusion reaction is so small that most of the deuterons would
lose all their energy in collisions with the atoms of the target before undergoing
fusion reaction with other deuterons. Alternatively, the deuterium may be heated to
such temperatures that the electrons are all knocked off the atoms and the gas is
reduced to the state of plasma consisting of positive nuclei intermingling with neg-
ative electrons. Also, the nuclei acquire such large energies that when they collide a
portion of them will fuse together.

In order to produce the plasma for deuterium a temperature of only 105 K is
required. But to achieve fusion reactions much higher temperature, of the order of
108 K is needed, so that the deuteron’s thermal energy is so large that they may be
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permitted to overcome the Coulomb barrier. Such reactions are known as thermonu-
clear reactions. The advantages of fusion over fission reactions are (a) light nuclei
are easily available, (b) end products are usually light and stable, rather than heavy
and radioactive.

The disadvantage is that charged nuclei must penetrate the coulomb’s barrier in
order to come into contact with each other. This is accomplished either by acceler-
ating the particles and bombarding the target nuclei or by raising them to very high
temperatures. For fission the question of barrier penetration does not arise as neutron
is neutral and slow neutrons can be used. The main difficulty for fusion reactions is
the containment of plasma for sufficiently long time.

8.20.1.1 Coulomb Barrier

The Coulomb barrier Vc at the point of contact of the particles (here two deuterons)
is given by

Vc = e2

4πε0

Z1Z2

(R1 +R2)
(8.214)

where Z1e and Z2e are the charges, and R1 and R2 the nuclear radii. For numerical
calculations

Vc = 1.44
Z1Z2

R1 +R2
MeV-fm (8.215)

where R1 and R2 are in Fermis.
Using R1 +R2 = 5 fm for deuterons, Vc = 280 keV particles with relative energy

greater than 280 keV each will be able to come into contact where nuclear force
will take over. Equating this energy to the mean thermal energy we can find the
corresponding temperature

3

2
KT = 2.8 × 105 eV

T = 2

3
× 2.8 × 105

8.15 × 10−5
= 2.3 × 109 K

This is a very high temperature. Fortunately, there are two circumstances which lead
us to expect that nuclear reactions will take place at much lower temperature.

8.20.1.2 Maxwell’s Distribution of Colliding Particles

Particles at temperature T have their energy distributed according to Maxwell’s law

n(E)dE = const

√
E

T 3/2
e−E/kT dE (8.216)
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The left hand side is the number of particles with energy E and E + dE. A frac-
tion of the particles will have energy in excess of 3

2kT , the mean energy. Further,
the cross-section for fusion increases rapidly as the energy of colliding particle in-
creases. Thus, a few high energy particles from the ‘tail’ of the distribution are
precisely those which produce the most fusion reactions. This is the first circum-
stance which brings down the temperature at which fusion in deuterium takes place
to something well below 109 K.

8.20.1.3 Tunneling of Coulomb Barrier

The second circumstance is the ability to tunnel the Coulomb’s barrier. For E� Vc ,
the fusion reaction

σf (E)∝ 1√
E

exp

[
−const × Z1Z2√

E

]
(8.217)

where E is the relative energy.
The proportionality factor contains the matrix elements and statistical factors

which depend on the spin of particles participating in the reaction. The dominant
term is the negative exponential which represents the Gamow factor, and accounts
for the tunneling effect of the potential barrier.

8.20.1.4 Factors Which Affect the Reaction Rates

We can ignore the presence of electrons in the hot plasma as they do not affect
the interaction of nuclei. However, their presence is necessary to preserve electrical
neutrality. We have noted that in the case of two deuterons the Coulomb barrier is
approximately 280 keV However, at temperature of 10 keV, that is 1.2×108 K there
are still many deuterons with energies much greater than 10 keV. Also, the tunneling
effect well below 280 keV is quite important. In Fig. 8.37, curve A represents the rel-
ative number of nuclei as a function of energy, curve B gives the barrier penetration
probability. Curve C is the product of these two curves and represents the number
of fusion reactions that actually take place. Observe that most of the reactions occur
from a small number of particles in the tail of the Maxwellian distribution.

8.20.2 Three Important Fusion Reactions

From Gamow’s formula (8.217) it is obvious that the smaller in the product Z1Z2
the larger will be the probability for barrier penetration. The best candidates are then
the lightest elements, the isotopes of hydrogen. The three important reactions are

D +D→ 3He + n+ 3.27 MeV (8.218)
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Fig. 8.37 Factors affecting
the reaction rates

D +D→ T + p+ 4.03 MeV (8.219)

D + T → α + n+ 1.76 MeV (8.220)

Note that the reaction p+ p→ 2
2He does not proceed as 2

2He does not exist.
The temperature requirement can be brought down with the choice of lighter

nuclei so that Vc would be smaller. But even then T ∼ 108 K would be required.
Such temperatures are available in the interior of stars and fusion via thermonuclear
reactions would be possible, effectively 4 protons are converted into an ∝-particle
through a series of reactions and decays.

8.20.3 Reaction Rate

For neutron induced fission reactions σ ∝ 1
v

(away from resonance) or σv = const.
For fusion this is not so. Also, particle speed distribution is Maxwellian

n(v)dv ∝ e−mv2/2kT dv (8.221)

The left hand side is the number of neutrons with speed v and v+ dv.
The reaction rate R is given by

R =Σφ =Σnv (8.222)

where n is the number of neutrons per unit volume

〈σv〉 ∝
∫ ∞

0
e−2Ge−mv2/2kT vdv

∝
∫ ∞

0
e−2Ge−E/kT dE (8.223)

where G � e2Z1Z2
4ε0�v

is Gamow’s factor and v is the relative velocity. Figure 8.38
shows the variation of σv averaged over a Maxwell-Boltzmann energy distribution
for D–T fusion reaction (solid line) and D–D reactions (broken line) extremely
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Fig. 8.38 Variation of σν
averaged over a
Maxwell-Boltzmann energy
distribution for D–T fusion
reaction (solid line) and D–D
reactions (broken line)
extremely high temperatures
(T ∼ 1010 K) correspond to
MeV energies

high temperatures (T ∼ 1010 K) correspond to MeV energies. At such high tem-
peratures D–T reactions are less favored than other types of fusion reactions. But
for the practical range of temperatures (T ∼ 107 to 108 K) D–T reactions are fa-
vored more than the D–D reactions. The simple calculations are actually valid for
D–D reactions. For two different types of nuclei as in the D–T reactions σ and R
must be calculated taking into account Maxwellian distribution for both the species.
Nevertheless the general conclusions remain unchanged.

The reaction rate for fusion reactions

RDT = n1n2〈σv〉 (8.224)

where n1 and n2 are the densities of the fusing nuclei.
If only one kind of fusing nuclei are present as in D–D reactions, then

RDD = 1

2
n2〈σv〉 (8.225)

where the factor 1
2 takes care of double counting of reactions.

8.20.4 Power Density

Adding Eqs. (8.218), (8.219) and (8.220)

5D→ 3He + 4He + p+ 2n+ 24.9 MeV (8.226)

Thus, on an average, each D–D reaction produces one-half of 24.9 MeV and uses
up 2.5 deuterons ultimately. The rate at which this energy is produced is that given
in Table 8.6 and Fig. 8.35.

The energy generated per cubic meter per s is then given by

1

2
n2
DσvDD × 12.45 MeV m−3 s−1 (8.227)
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Table 8.6 The values of
σv m−3 s−1 at various
temperatures

Temperature (keV) D–D D–T

1.0 2 × 10−28 7 × 10−27

5.0 1.5 × 10−25 1.4 × 10−23

10.0 8.6 × 10−24 1.1 × 10−22

100.0 3.0 × 10−23 8.1 × 10−22

where vDD is the relative velocity of two deuterons. Similarly, from (8.225) and
(8.220) we find the corresponding expression for the D–T reaction

nDnT σv× 17.6 MeV m−3 s−1 (8.228)

Power density (power per cubic meter) for D–D reaction

= 1

2
n2
DσvDD × 12.45 × 1.6 × 10−13

= 1.0 × 10−12n2
DσvDD W m−3 (8.229)

Power density for D–T reactions

= nDnT σvDT × 17.6 × 1.6 × 10−13

= 2.8 × 10−12nDnT σvDT W m−3 (8.230)

As an example of the D–D reaction, let us choose a temperature of 100 keV,
which turns out to be the temperature at which the D–D reactions could provide
useful amount of energy (see Fig. 8.36). From Table 8.6 we find σvDD = 3.0 ×
10−23 m3 s−1. Therefore power density at 100 keV = 3×10−35n2

D W m−3. Suppose
that the density of deuterium is that for NTP so that 1 mole or 4 × 10−3 kg occupies
22.4 × 10−3 m3. Since deuterium is diatomic a mole contains 2 × 6 × 1023 atoms.
Thus, the number of nuclei

nD = 12 × 1023/22.4 × 10−3 m−3 = 5.4 × 1025 m−3

Substituting this in (8.230), power produced

= 3 × 10−35 × (
5.4 × 1025)2 = 9 × 1016 W m−3

Compared to a fission nuclear reactor of power 1000 MW the thermonuclear ma-
terial at 100 keV, under the stipulated conditions, would produce 100 million times
greater power. This sort of power is produced in an atom bomb explosively, certainly
not in laboratory. The 100 keV corresponds to a temperature of 1.16 × 109 K. Now
the pressure of a perfect gas is proportional to the absolute temperature and we have
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taken the density to be that expected at N.T.P. Therefore the pressure at 100 keV is

4 × 1.16 × 109

273
or 17 million atm

The factor 4 accounts for the fact that each molecule of deuterium has split up into
two nuclei and two electrons, and each of the four particles exerts its own partial
pressure.

If the thermonuclear power is to be produced in a usable form, either the tem-
perature must be lowered drastically or the density decreased by a very large factor.
The former cannot be done conveniently mainly because the reaction would be too
slow. The only option is to reduce the pressure. The sort of power which can be
handled is of the order of 108 W m−3 similar to that generated in a fission reactor.

In a fission reactor at such rates energy can be transported from the region of
production and used to generate electricity. If we insist on temperature of 100 keV,
the power must be reduced by a factor of about 109, and since power depends on
n2
D , the density is lowered approximately by a factor of 3 × 104.

The corresponding pressure will be

17 × 106/3 × 104 or 600 atm

At a temperature of 10 keV, the pressure would be lowered to 60 atm which is man-
ageable. Densities of the order of 10−4 to 10−5 times normal atmospheric density
are recommended.

The above discussion for D–D reaction is equally valid for the D–T reac-
tion which is much faster than the D–D reaction at temperature below 100 keV
(Fig. 8.35). This then means that the same power can be obtained from D–T reac-
tions at a lower temperature than for a D–D reaction, a fact which is of paramount
importance for the production of thermonuclear power.

8.20.5 Thermonuclear Reactions in the Laboratory

Unlike the stars in whose core thermonuclear reactions are believed to occur, in the
laboratory we can no longer depend on the forces of gravitation to hold the plasma
together. We are faced with a very difficult problem of containment. The difficulty is
to prevent the plasma from dispersing rapidly to the walls of the containing vessel.
Time is therefore essence of success. The reaction which proceeds with greatest rate
is likely to be most successful under the given conditions of temperature and pres-
sure. The best candidate is the D–T reaction which at temperatures below 100 keV
proceeds 100 times as fast as the D–D reaction. Tritium is not found in nature as it
is radioactive (T1/2 = 12.26 Y) except for small quantities produced by cosmic rays.
In any case it is very expensive. The solution to this problem is to use the neutrons
produced in the D–T reaction to get more tritons than are used up in the reaction,
so that in principle we can get both energy and replacement of the expensive part of
the fuel.
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8.20.6 The D–T Reaction

D + T → He4 + n+ 17.6 MeV

The rate of reaction is

RDT = nDnT σv interactions m−3 s−1

From (8.231) total power released in D–T reaction is

Power = 2.8 × 10−12nDnT σv W m−3

Using the value of σvDT = 1.1 × 10−22 from Table 8.6 we find

power = 3.1 × 10−34nDnT W m−3 (8.231)

Putting nD = nT and anticipating the power = 108 W m−3 as in the fission reactor,
we find

nT = nD = 5.7 × 1020 particles m−3

Of the total energy released, 17.6 MeV per fusion, 14.1 MeV appears as kinetic
energy of the neutron and 3.5 MeV as kinetic energy of the 4He nucleus. The col-
lision cross-section of neutrons with matter at this energy is small. As they escape
they pose a serious health hazard. Hence the reactor must be surrounded by a thick
‘biological shield’. Only the energy of helium nuclei remains within the plasma
and is shared by collisions with all other charged particles present (4He, D, T and
electrons).

8.20.7 Energy Losses

At the high temperatures the electrons in the plasma moving close to the ions suffer
Coulomb scattering and emit bremsstrahlung radiation due to acceleration. Taking
into account the Maxwell’s distribution into account, the power per unit volume
radiated in bremsstrahlung is calculated as

Pbr = 0.5 × 10−36Z2
nne

√
kT W/m3 (8.232)

where Z is the ion charge, n the density of positive ions, ne the density of electrons
and kT is in keV.

Figure 8.39 shows the power density curves for D–D and D–T reactions. It is
seen that fusion output exceeds bremsstrahlung for temperatures exceeding 4 keV
for D–T reactions and 40 keV for D–D reactions. We conclude that the D–T re-
actions are to be preferred to D–D reactions. Other radiation losses including syn-
chrotron radiation (see [2], Chap. 2) from charged particles orbiting around mag-
netic field lines, can also be neglected.
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Fig. 8.39 Power density
curves for D–D and D–T
reactions

8.20.8 Lawson Criterion

Fusion reactor will have net energy gain if energy released in fusion reactions ex-
ceeds the radiation losses and the original energy invested in heating the plasma to
the operating temperature. Consider the D–T reactions. Energy released per unit
volume from fusion reactions in the plasma is

Ef = 1

4
n2σvQτ (8.233)

where the densities of D and T are each equal to 1
2n (so that total n = ηe), Q =

17.6 MeV is the energy released per reaction, τ = length of time the plasma is
confined during which reactions can occur.

Thermal energy/unit volume required to raise the ions and electrons to tempera-
ture T will be

Eth = 2 × 3

2
nkT = 3nkT

where

n(ions)= n(electrons)= n
Condition for the reactor to operate is

Ef > Eth or

1

4
n2σvQτ > 3nkT

that is

nτ >
12kT

σvQ
(lawson criterion) (8.234)

For D–T reactor, at T = 10 keV, σv ∼ 10−22 m3 s−1 so that

nτ >
12 × 10

10−22 × 17.3
or nτ > 7 × 1022
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Lawson criterion will be different for different operating temperature T .
For D–D reaction, bremsstrahlung losses do not permit the reactor to work at

10 keV (Fig. 8.36). For

T = 100 keV, σv � 0.5 × 10−22

nτ >
12 × 100

0.5 × 10−22 × 4
or nτ > 6 × 1024

We therefore, need 100 fold increase in density of ions or confinement times or a
combinations of both to gain energy in D–D reactions.

8.20.9 Ignition Temperature

Observe that as the temperature rises from 2 to 8 keV, the power density in theD–T
reactions increases by a factor of order 1000, Fig. 8.35. However bremsstrahlung
which is proportional to the square root of temperature goes up by

√
4 or 2 over

the same temperature range. Thus, for the temperatures up to 30 keV, the rate of
energy generation in the D–T plasma is much more rapid than the loss due to
bremsstrahlung. By the time the temperature has reached 4 keV the energy generated
and retained in the plasma just balances the loss by bremsstrahlung . The temper-
ature at which the energy gain balances the loss is called the ignition temperature.
Below this temperature we cannot expect the fusion reactions to be self-sustained,
as the net energy loss would rapidly cool off the plasma. Above the ignition tem-
perature, self sustaining reactions are possible. Now, a temperature of 4 keV is the
same as 46 million degrees kelvin which emphasises the difficulties in extracting
energy from fusion reactions.

Should the plasma be contaminated with high Z elements the energy losses are
increased due to bremsstrahlung which is proportional to the square of nuclear
charge. It is, therefore, imperative that the plasma is free from impurities of high
Z materials. On the other hand, for the purpose of fusion reactions the presence of
high Z material is useless.

8.20.10 Controlled Fusion Reactions

In order to obtain useful energy we must have controlled fusion reactions over rea-
sonably long times. The requirements are:

1. The thermonuclear fuel must be heated to temperatures of the order of 108 K
corresponding to the mean kinetic energy of 10 keV. At such high temperatures
the fuel would be in the form of plasma. (For hydrogen only 13.6 eV energy is
needed for ionization.)
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2. The density of particles must be high enough for a reasonably long time so that
the reaction rate may be high enough, and must be low enough so that an explo-
sive situation does not arise.

3. The D–T reactions are decidedly favourable compared to the D–D reactions as
not only are they faster (∼100 times) at around 10 keV but also the energy gain
is in excess of bremsstrahlung losses.

4. Plasma must be confined and must be stable.

8.20.11 Confinement

The confinement of plasma is the major problem. Hot fuel would exchange energy
with the wall of the container and melt it. Two types of confinement are used.

1. Magnetic Confinement Here the plasma is contained by a carefully designed
magnetic field.

2. Inertial Confinement A solid pellet is suddenly heated and compressed by hitting
it from a number of directions with intense beams of photons or particles.

8.20.12 Containment of a Plasma

A hot plasma is a gas which would expand and quickly fill up the container. The
mean free path of the nuclei of the plasma is so large that the nuclei are capable
of traversing thousands of kilometers. However before they do so, they would hit
the wall of the container several times to give up practically all their energy to the
molecules of the walls. It is therefore necessary to keep the plasma away from the
walls of the container and maintain its temperature for a short time in which the
nuclei undergo fusion reactions. In this connection, the product nτ occurring in
Lawson’s criterion is important (8.234). For densities which can be handled conve-
niently (n∼ 1022 m−3) the containment time needed is of the order of 1 s.

It can be shown that electric fields cannot be used to cage the plasma with any
arrangement of electrically charged conductors whatever. The other option is to em-
ploy strong magnetic field to contain the plasma.

8.20.12.1 Magnetic Confinement

Simplest magnetic confinement in two directions is provided by a uniform mag-
netic field. Charged particles spiral about the field direction. The magnetic field is
established by the large current carrying coils, Fig. 8.40.

There will be loss of particles along the field direction in the simple method
described above. There are two solutions to circumvent this difficulty.
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Fig. 8.40 Magnetic
confinement in two directions
provided by a uniform
magnetic field

Fig. 8.41 A magnetic field in
a torus

1. A magnetic field is provided in a torus in which particles spiral following the
magnetic field lines. As the particles spiral there will be a gradual drift toward
the outer wall (Fig. 8.41).

2. Particles are confined in a magnetic mirror and follow magnetic lines. They are
reflected from high field region into low field region (Fig. 8.42).

The fusion plasma cannot be maintained at thermonuclear temperature if it is per-
mitted to come in contact with the reactor wall as the material of the wall exposed
to the plasma would cool it off. This difficulty is avoided by making the particles
spiral around the magnetic lines of force and ‘bottled’ up. The principle of magnetic
confinement is illustrated with reference to Fig. 8.42(a). The charged particles are
trapped between magnetic ‘mirrors’. The plasma is constrained to be bunched in the
space filled by the magnetic lines of force of an electromagnet. Consider the plasma
injected in the central region of a hollow solenoid, (Fig. 8.42b). The holes shown by
circles represent the windings. The field at the ends, PP ′ and RR′ is much stronger

Fig. 8.42 (a) The principle of magnetic confinement. (b) Plasma injected in the central region of
a hollow solenoid
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Fig. 8.43 Tokamak, a device
which works on the principle
of toroidal field

than in the central regionQQ′. The plasma is therefore constrained to move inward
towards the center. By varying the currents in the field coils PP ′,QQ′ and RR′ the
shape of the field can be modified and the plasma made to move sideways. By an
overall increase in field, the plasma volume is compressed thereby producing higher
ionic velocities and hence greater collision frequency leading to higher temperatures
conducive for fusion.

8.20.12.2 Tokamak

Tokamak is a device which works on the principle of toroidal field, Fig. 8.43. How-
ever the toroidal field is weaker at larger radii so that a particle spiraling drifts to
region of lower field towards the wall. This effect is reduced by introducing a po-
laroid field—a field which has a component along the surface to toroid. It is obtained
by passing a current along the axis of toroid through the plasma itself. The current
serves double purpose.

1. Heating the plasma
2. Confining the particles

Tokamak is a good candidate for the success of a fusion reactor. It operates in pulsed
mode.

At present Tokamak is limited to 1 s duration.
Additional heating is required to raise the plasma to temperatures of 10 to

100 keV. Two methods have been proposed

1. Radio frequency (rf ) heating
2. Neutral beam injection (NBI)

In the radio frequency method rf waves are sent into the plasma and drive the
electrons which in turn induce toroidal currents which heat the plasma.

In NBI technique, a beam of hydrogen or deuterium ions are accelerated to 10
to 100 keV and then neutralized by charge-exchange reactions on passing through a
cell of neutral hydrogen or deuterium atoms. The neutral atoms can pass undeviated
through magnetic fields of Todmak and into the plasma where they rapidly lose
energy through Coulomb scattering from ions and electrons.
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Auxiliary heating systems of tens of Mega Watts are required to achieve ignition
of plasma, after which 3.5 MeVα’s from D–T fusion will provide necessary heat to
sustain the reactions. The α’s confined to plasma by magnetic field eventually lose
energy to plasma through collisions.

Magnetic confinement in three dimensions, the “magnetic well” the so-called
minimum B configuration is also employed.

8.20.12.3 Inertial Confinement

In a different approach a tiny pellet containing deuterium and tritium is suddenly
struck with an intense laser pulse. This heats the pellet and compresses it to high
density. Fusion is expected to occur before the pellet expands and blow apart. Ten to
hundred pellets per second are expected to be used. We can estimate the power pro-
duced applying Lawson-s criterion for a D–T mixture for confinement times 10−9

to 10−10 s. The particle density works out as atleast 1029 to 1030/m3 which is two
order of magnitude greater than ordinary liquid or of solid densities for hydrogen.
Energies of 10 keV/particle to be supplied to a spherical pellet of 0.4 mm radius will
yield energy

E = 4

3
π
(
0.4 × 10−3)3 × 1029 × 104 × 1.6 × 10−19 = 4.3 × 104 J

and the power will be

P = 4.3 × 104

10−9
= 4.3 × 1013 W

which is too terrific to be of any practical use.

8.20.13 Plasma Diagnostics

8.20.13.1 Spectroscopic Measurements

Temperature measurement of hot plasma is not possible by conventional methods.
Furthermore, at such temperatures at which thermonuclear reactions are expected
to proceed the deuterium and tritium gas will be fully ionized and therefore the
characteristic line spectra of atoms will not be emitted. To make matters worse,
measurements must be taken in a small fraction of a second. However, the impurities
of high Z elements which might be present in the plasma will not be fully ionized
and will emit their own characteristic spectrum and its intensity will be a measure
of the amount present. The half width at half maxima is taken as a measure of
broadening. One reason for broadening is Stark effect since the atoms are placed in
electric field. In a plasma the electrons and ions produce strong and varying electric
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fields in the neighborhood of neutral atoms and the energy of the line emitted is
changed. As the field varies from atom to atom, depending on the configuration
of the ions and electrons in the neighborhood, a mixture of wavelength is emitted
leading to the broadening of the line. Atomic theory can be applied to the measured
broadening of the spectral line from which the distribution of E can be ascertained.
It is then possible to calculate the density of ions in the plasma.

Another cause of broadening of spectral lines is the optical Doppler effect. This
type of broadening is quite different in shape and can be easily separated from that
due to stark effect. As it depends on the velocities of atoms, its measurement es-
tablishes the speed distribution of atoms. If the plasma is in a steady state then the
observed distribution of all the particles can be fitted with a Maxwellian distribution
characterized by a unique temperature for the plasma. Doppler broadening applies
to both atoms and ions but not necessarily to electrons.

8.20.13.2 Bremsstrahlung

Usually there is no time for both ions and electrons to reach a common tempera-
ture. It is therefore, necessary to measure the temperature of the two constituents
separately. Doppler effect fixes the temperature of atoms and ions and measurement
of bremsstrahlung spectrum establishes the temperature of electrons. Since this ra-
diation is caused by changes in the energy of fast moving electrons in the field
of relatively stationary heavy nuclei and so it depends on the electron temperature
rather than that of nuclei. As the temperature of electrons rises, the bremsstrahlung
spectrum moves toward shorter wavelength. Assuming a Maxwellion distribution
for electrons in the plasma the expected bremsstrahlung spectrum can be worked
out at the given electron temperature. The electron temperature can be found out by
making the best fit with the measured spectrum.

The total intensity of bremsstrahlung per unit volume of the plasma depends on
both its temperatures and density. Measurement of total intensity of light emitted
together the knowledge of temperature yields the density of the plasma.

8.20.13.3 Detection of Neutrons Emitted by a Plasma

It is important to establish that the neutrons that are observed from a fusion reactor
are indeed of thermonuclear origin. For there may be neutrons which are produced
from spurious sources for example deuterons and tritons which get accelerated by
the electric fields and collide with other nuclei to produce neutrons. We can, how-
ever, distinguish between the genuine and spurious sources since in the former the
neutrons are expected to be emitted isotropically with the same energy distribution
while in the latter the neutrons emitted in the direction of field would be more en-
ergetic than in the opposite direction. Neutrons may be detected by employing BF3
counters and their energy distribution can be infered from the energy distribution of
recoil protons on their collisions with hydrogen nuclei.
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In conclusion we may state that the power from fusion reactors is still on exper-
imental stage. In the current experiment “Jet” the output is slightly less than input
and lasts for a few seconds. In June 2005, “Inter” Reactor was designed to produce
more power than input for plasma, lasting for a few minutes.

8.21 Questions

8.1 Describe the basic design of a power generating thermal nuclear reactor, giving
an outline of its principal components.

8.2 Obtain the formula for the average log energy decrement.

8.3 Obtain the Fermi-age equation.

8.4 Set up the diffusion equation which governs the distribution of neutrons
throughout the reactor.

8.5 Mention the advantages and disadvantages of homogeneous and heterogeneous
reactors.

8.6 Write an essay on the classification of reactors.

8.7 Indicate the use of the following material in nuclear reactors:

(i) Graphite (ii) Beryllium (iii) Cadmium
(iv) Stainless steel (v) Liquid sodium/Potassium (vi) Lead
(vii) Concrete (viii) 235U (ix) 238U
(x) 233Th (xi) Zirconium (xii) Aluminum

as

(a) fuel in thermal reactor (b) fuel in the fast reactor
(c) fertile material in breeder reactor (d) control rods
(e) coolant (f) reflector
(g) shield against neutrons (h) shield against gamma rays
(i) cladding material for uranium rods (j) moderator

8.8 Define thermal diffusion time and generation time. Obtain an expression for
the thermal lifetime in the presence of thermal neutron leakage.

8.9 Distinguish between prompt neutrons and delayed neutrons. What is the effect
of delayed neutrons on the working of a reactor?

8.10 Describe the working of a breeder reactor. Define the doubling time in con-
nection with breeders.
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8.11 Obtain the four-factor formula in the design of a nuclear reactor.

8.12 Which of the nuclei are fissionable with thermal neutrons: 227Th, 233U, 235U,
238U, 239Pu, 242Pu?

8.13 Explain why a self-sustaining chain reaction cannot be obtained with natural
uranium as fuel (except with heavy water as moderator) in a homogeneous assembly.

8.14 Explain in detail the effect of heterogeneous arrangement on p, f and ε.

8.15 Outline the considerations which lead to the Lawson criterion for the min-
imum value of the product of ion density and confinement time required for net
power generation by a fusion reactor.

8.16 Give a brief description of the main components of an inertial confinement
fusion reactor.

8.17 The temperature at which deuterons would overcome electrostatic repulsion
can be calculated. Due to some physical considerations, the temperature can be low-
ered for the fusion to occur. What are these considerations?

8.22 Problems

8.1 Calculate k∞ for a homogeneous natural uranium heavy water-moderated re-
actor, with Nm/N0 = 45. Use the constants:

For D2O; σa = 0.00092 b, σs = 10.6 b, ξ = 0.57
For natural uranium, σa = 7.68 b, σs = 8.3 b, η= 1.34, ε = 1

[Ans. k∞ = 1.11]

8.2 Calculate the thermal utilization factor for a heterogeneous lattice made up of
cylindrical uranium rods of diameter 3 cm and pitch 18 cm in graphite.

Take the flux ratio φm/φu as 1.6

Densities: Uranium = 18.7 × 103 kg m−3

Graphite = 1.62 × 103 kg m−3

Absorption cross-sections σau = 7.68 b
σam = 4.5 × 10−3 b

[Ans. 0.933]

8.3 Explain what is meant by the four factor formula. Discuss how the factors vary
with fuel rod diameter and lattice pitch in a natural uranium-graphite reactor and
how the optimum pitch is obtained. Given σf 235 = 580 b, σa235 = 680 b, σa238 =
2.8 b and v = 2.5. Calculate η at 0.71 and 2 % enrichment.
[Ans. 1.35; 1.77]
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8.4 Using one group theory, calculate the critical radius of a bare spherical reactor.

Diffusion length = 23.6 cm
Slowing down length = 9.9 cm
K∞ = 1.54

[Ans. 101.3 cm]

8.5 Compare the moderating ratios for light and heavy water for 2 MeV neutrons.
Use the following cross-sections.

Medium σa σs

H2O 0.66 b 44 b
D2O 0.46 mb 11 b

8.6 Assuming the energy released per fission of 235U is 200 MeV, calculate the
amount of 235U consumed per day in the Canada India reactor ‘CIRUS’ operating
at 40 megawatts of power.
[Ans. 4.23 g]

8.7 Assuming that the energy released per fission of 235
92 U is 200 MeV, calculate

the number of fission processes that should occur per second in a nuclear reactor to
operate at a power level of 40 MW. What is the corresponding rate of consumption
of 235

92 U?
[Ans. 12.5 × 1017/s; 4.88 × 10−4 g]

8.8 Assume that in each fission of 235U, 200 MeV is released. Assuming that 5 %
of the energy is wasted in neutrinos, calculate the amount 235U burned which would
be necessary to supply at 30 % efficiency, the whole annual electricity consumption
in Britain 50 × 109 kWh.
[Ans. 1.92 × 104 tons]

8.9 Assuming that the fission process releases on the average 200 MeV and 2.5 neu-
trons, what mass of plutonium-239 is produced annually in a 200 MW reactor if no
neutrons are lost?
[Ans. 39 kg]

8.10 Assuming that the n–p scattering is isotropic in the CM-system and that
E1 and E2 are the neutron energies before and after the collision, show that
ln(E1/E2)= 1.

8.11 Calculate the number of collisions required to reduce fast fission neutrons
with an average initial energy of 2 MeV to the thermal energy (0.025 eV) in a
graphite moderated assembly.
[Ans. 115]
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8.12 Calculate the number of collisions required for neutrons of 2 MeV to lose
99 % of initial energy in graphite.
[Ans. 29]

8.13 What would be the energy of 2 MeV neutrons that have made 50 collision
with carbon nuclei?
[Ans. 742 eV]

8.14 Calculate the moderating ratio for heavy water. Given the epithermal cross-
sections

(σS)D = 6.0 b, (σs)0 = 4.2 b

(σa)D = 0.00046 b, (σa)0 = 0.0002 b

[Ans. 7932]

8.15 Calculate the slowing-down time in beryllium for neutrons starting with an
initial energy of 2 MeV and terminating at thermal energies (0.025 eV). Σs =
0.57 cm−1.
[Ans. 3.7 × 10−5 s]

8.16 Calculate p for a lattice consisting of natural uranium fuel rods of circular
cross-section, diameter 2.4 cm, and spaced 24 cm apart in a graphite moderator. You
may assume φm

φ0
= 1, ρm = 1.62 g cm−3, ρu = 18.7 g cm−3, σs = 4.8 b, ξ = 0.158.

[Ans. 0.933]

8.17 Calculate the slowing-down length for fission neutrons of 2 MeV average
energy to thermal energy 0.025 eV in graphite. Assume Σs = 0.335 cm−1.
[Ans. 19.2 cm]

8.18 Calculate K∞ for a homogeneous, natural uranium-graphite moderated as-
sembly which contains 400 moles of graphite per mole of uranium. Assume natural
uranium to contain one part of 235U to 139 parts of 238U, and use the following
constants:

Natural uranium Graphite

σa(U)= 7.68 b σa(M)= 0.0032 b
σs(U)= 8.3 b σs(M)= 4.8 b
ε = 1.0; η= 1.34 ξ = 0.158

[Ans. 0.859]
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8.19 Calculate k∞ for an enriched uranium-graphite-moderated reactor, using 300
moles of graphite to 1 mole of uranium and a 238U/235U ratio of 60. Use the con-
stants:

σa(235) = 698 b, σa(238) = 2.75 b

σf (235) = 590 b, ν = 2.46; ε = 1

σa(M) = 0.0032 b, σs(M)= 4.8 b

[Ans. 1.1]

8.20 CalculateL for thermal neutrons in graphite using the constants: σa = 3.2 mb;
σs = 4.8 b; ρ = 1.62 g/cm3.
[Ans. 59.2 cm]

8.21 Calculate the diffusion length for a homogeneous mixture of 1 atom of 235U
per 5000 atoms of 12C. Lm = 52 cm; σa(m)= 0.0032 b; σa(235) = 698 b.
[Ans. 7.89 cm]

8.22 Calculate the neutron age and Lf for fission neutrons of 2 MeV average en-
ergy to thermal energy 0.025 eV in beryllium. For Be, A= 9 and Σs = 0.57 cm−1.
[Ans. τ = 97 cm2, Lf = 9.8 cm]

8.23 10000 fission neutrons in a critical thermal reactor employ 235U and graphite
in an atom ratio of 1 : 105. Use the constants: σa(c) = 0.003 b; σa(235) = 698 b;
Lm = 54 cm; τ0 = 364 cm2; For uranium, η = 2.08. Assume = 1, ε = 1. Find the
number of neutrons lost by fast diffusion and that by thermal diffusion.
[Ans. 1120 fast and 1970 thermal diffusion]

8.24 Calculate the material buckling of a large critical homogeneous reactor em-
ploying 235U and Be in an atomic ratio of 1 : 20000. For Be, Lm = 21 cm,
τ0 = 98 cm2; σa = 0.01 b. For uranium σa(U)= 698 b, p = 1, ε = 1, η= 2.08.
[Ans. 0.00315 cm2]

8.25 Calculate the critical radius for a spherical reactor using the value B2 =
0.002 cm−2.
[Ans. 70.25 cm]

8.26 Calculate the thermal diffusion time for graphite. Use the constants: σa(C)=
0.003 b; ρc = 1.62 g cm−3; Average thermal neutron speed = 2200 ms−1.
[Ans. 1.87 × 10−2 s]

8.27 Calculate the generation time for neutrons in a critical reactor employing
235U and graphite. Use the following data: Σa = 0.0008 cm−1; B2 = 0.000325;
L2 = 878 cm2; 〈v〉 = 2200 m s−1.
[Ans. 0.442 s]
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8.28 Calculate the increase in neutron flux in 1 s in a critical reactor which employs
235U fuel with graphite as moderator, the generation time for neutrons being 4.4 ×
10−3 s. The multiplication factor is suddenly increased by 0.5 %.
[Ans. 3.11]

8.29 Show that f(nat)η(nat) = f(235)η(235).

8.30 Deutrons almost at rest undergo fusion reactionD+D→ 3
2He+n+3.2 MeV.

Find the kinetic energy of neutron.
[Ans. 2.4 MeV]

8.31 It is estimated that fusion reactions would ensue if deutrons come within a
distance of separation of 100 fm. Find the energy to overcome electrostatic repul-
sion.
[Ans. 14.4 keV]

8.32 Calculate the 3He energy in the reaction D+ P → 3He + γ + 5.5 MeV when
initially deuterons are at rest.
[Ans. 5.4 keV]

8.33 In the reaction given in Problem 8.32 the deutron and proton need to approach
each other at a distance of 650 fm. Calculate the temperature at which the fusion
reaction can proceed.
[Ans. 1.7 × 107 K]

8.34 It is believed that the fusion reaction D + P → 3He + γ + 5.5 MeV, occurs
in the interior of the sun where the temperature is approximately 1.7 × 107 K. As-
suming that the deuteron and the proton are at rest, how close they must approach
for the reaction to occur?
[Ans. 650 fm]
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