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Preface

In this book I present an analysis course which I have taught to first-
year graduate students at the University of Wisconsin since 1962.

The course was developed for two reasons. The first was a belief that
one could present the basic techniques and theorems of analysis in one
year, with enough applications to make the subject interesting, in such
a way that students could then specialize in any direction they choose.

The second and perhaps even more important one was the desire to do
away with the outmoded and misleading idea that analysis consists of
two distinct halves, ‘‘real variables” and ‘‘complex variables.” Tradi-
tionally (with some oversimplification) the first of these deals with
Lebesgue integration, with various types of convergence, and with the
pathologies exhibited by very discontinuous functions; whereas the second
one concerns itself only with those functions that are as smooth as can
be, namely, the holomorphic ones. That these two areas interact most
intimately has of course been well known for at least 60 years and is evi-
dent to anyone who is acquainted with current research. Nevertheless,
the standard curriculum in most American universities still contains a
year course in complex variables, followed by a year course in real varia-
bles, and usually neither of these courses acknowledges the existence of
the subject matter of the other.

I have made an effort to demonstrate the interplay among the various
parts of analysis, including some of the basic ideas from funectional
analysis. Here are a few examples. The Riesz representation theorem

(14 »
and the Hahn-Banach theorem allow one to “guess” the Poisson integral

formula. They team up in the proof of Runge’s theorem, from which
the homology version of Cauchy’s theorem follows easily. They com-
bine with Blaschke’s theorem on the zeros of bounded holomorphic fune-
tions to give a proof of the Miintz-Szasz theorem, which concerns approxi-
mation on an interval. The fact that L3 is a Hilbert space is used in the
proof of the Radon-Nikodym theorem, which leads to the theorem about
differentiation of indefinite integrals (incidentally, differentiation seems

to be unduly slighted in most modern texts), which in turn yields the
v



vi Preface

existence of radial limits of bounded harmonic functions. The theorems
of Plancherel and Cauchy combined give a theorem of Paley and Wiener
which, in turn, is used in the Denjoy-Carleman theorem about infinitely
differentiable functions on the real line. The maximum modulus theorem
gives information about linear transformations on L*-spaces.

Since most of the results presented here are quite classical (the novelty
lies in the arrangement, and some of the proofs are new), I have not
attempted to document the source of every item. References are
gathered at the end, in Notes and Comments. They are not always to
the original sources, but more often to more recent works where further
references can be found. In no case does the absence of a reference imply
any claim to originalify on my part.

The prerequisite for this book is a good course in advanced caleulus
(set-theoretic manipulations, metric spaces, uniform continuity, and
uniform convergence). The first seven chapters of my earlier book
“Principles of Mathematical Analysis” furnish sufficient preparation.

Chapters 1 to 8 and 10 to 15 should be taken up in the order in which
they are presented. Chapter 9 is not referred to again until Chapter 19.
The last five chapters are quite independent of each other, and probably
not all of them should be taken up in any one year. There are over 350
problems, some quite easy, some more challenging. About half of these

. .
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The students’ response to this course has been most gratifying, and I
have profited much from some of their comments. Notes taken by’
Aaron Strauss and Stephen Fisher helped me greatly in the writing of the
final manuscript. The text contains a number of improvements which
were suggested by Howard Conner, Simon Hellerstein, Marvin Knopp,
and E. L. Stout. It is a pleasure to express my sincere thanks to them
for their generous assistance,

Waller Rudin
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Prologue

The Exponential

Funetion

This is undoubtedly the most important function in mathematies. It
is defined, for every complex number z, by the formula

(1) exp (2) = 2

§|m

Th

Semew

f"'\

1) converges absolutely for every z and con ergeq uniformlv

R e - -a\.'—.‘.-vv & iNiANE Sraa

e =7
n ev ounded subset of the complex plane Thus exp is a continuous
functmn The absolute convergence of (1) shows that the computation

DEDEEDEIE ek R

is correct. It gives the important addition formula

(2) exp (a) exp (b) = exp (a + b),

valid for all complex numbers ¢ and b.

We define the number ¢ to be exp (1), and shall usually replace exp (2)
by the customary shorter expression ¢>. Note that e® = exp (0) = 1,
by (1).

Theorem

(a) For every complex z we have e* = 0.

(b) exp is its own derivative: exp’ (z) = exp (2).

(¢) The resiriction of exp to the real axis is a monotonically increasing
positive function, and

€ — © g8y — o, ee—0asz— — o,



2 Real and complex analysis

(d) There exists a posilive number = such thal e*'? = ¢ and such that
e* = 1 if and only if 2/(2x7) s an integer.

(e) exp s a periodic function, with period 2ri.

(f) The mapping t — €* maps the real axis onto the unit circle.

(9) If w is a complex number and w 7= 0, then w = e* for some 2.

PROOF By (2),¢?-¢* = ¢ = ¢ = 1. This implies (a¢). Next,

exp (h) — 1

exp'(z) = lim SR T — exp () .

A0 h

= exp (2) lim

A0

= exp (2).

The first of the above equalities is a matter of definition, the second
follows from (2), and the third from (1), and (b) is proved.

That exp is monotonically increasing on the pogsitive real axis, and

that e — o« agx — =, is clear from (1). The other assertions of (¢)

are consequences of e* - ¢™% = 1.

For any real number ¢, (1) shows that ¢~ is the complex conjugate
of ¢. Thus

|eit|2 = git + git z= git - g—it = gil—it 2= g0 — 1,
or

(3) le#| = 1 (¢ real),

In other words, if £ is real, ¢* lies on the unit circle. We define cos {,
sin ¢ to be the real and imaginary parts of e:

(4) cost = Re [e], sin { = Im [e¥] (t real).

If we differentiate both sides of Euler’s identity

(5) ¢ = cos{ + isin{,

which is equivalent to (4), and if we apply (b), we obtain

cos’ { + ¢sin’ { = ze# = — sint 4 7 cos {,
so that

(6) cos’ = — gin, sin’ = cos.
The power series (1) yields the representation

2 A S A
Take { = 2. 'The terms of the series (7) then decrease in absolute
value (except for the first one) and their signs alternate. Hence
cos 2 is less than the sum of the first three terms of (7), with { = 2;
thus cos 2 < —}. Since cos 0 = 1 and cos ig a continuous real func-

+ ..
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tion on the real axis, we conclude that there is a smallest positive
number £, for which cosf, = Q. We define

(8) T = 2l
It follows from (3) and (5) that sin ¢p = +1. Since
sin’ (f) = cost > 0

on the segment (0,f;) and since sin Q = 0, we have sin {, > 0, hence
sin f, = 1, and therefore

(9) enilt = 4,

It follows that e = 2 = —1,¢? = (—1)2 = 1, and then ¢?7i» = 1
for every integer n. Also, (¢) follows immediately:

(10) ei+2i'!' m eze2‘l’i = e,

If z=2+4 iy, z and y real, then ¢t = e%%¥; hence |e7| = ¢ If
¢* = 1, we therefore must have ¢* = 1, so that z = 0; to prove that
y/2x must be an integer, it is enough to show that ev =1 if
0 <y < 2x, by (10).

Suppose 0 < y < 2w, and

(11) eVt = y + 4y (v and ¢ real).
Since 0 < y/4 < »/2,wehaveu > 0and v > 0. Also
(12) e = (u + @)t = u* — 6u%? + v* + 4ruw(u? — v?),

The right side of (12) is real only if u? = v?; since u? + »? = 1, this
happens only when 4? = ¢? = }, and then (12) shows that

ev = —1 =1,

This completes the proof of {(d).

We already know that i — e maps the real axis inio the unit circle.
To prove (f), fix w so that |w] = 1; we shall show that w = e for
some real {. Write w = u < %, 4 and v real, and suppose first that
v >0andv > 0. Since u < 1, the definition of = shows that there
exists af,0 < ¢t < 7/2,such that cost = u;thensin?{ = 1 — u? = 2,
and sincesint > 0if 0 < ¢ < /2, wehavesint = v. Thusw = e%,

If w < 0 and » 2> 0, the preceding conditions are satisfied by —aw.
Hence —iw = ¢ for some real ¢, and w = ¢!¢t*/2_  Finally, ifv < 0,
the preceding two cases show that —w = e for some real {, hence

= ¢i+"_ This completes the proof of (f).

If w0, put «a = w/|wl. Then w = |wla. By (c), there is a
real z such that jw| = e*. Since |a| = 1, (f) shows that a = e¥ for
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some real y. Hence w = e¢*t%, This proves (g) and completes the
theorem.

We shall encounter the integral of (1 + 22)~! over the real line. To
evaluate it, put ¢(f) = sin{/cosf in (~n/2x/2). By (6), ¢ = 1 + .
Hence ¢ is a monotonically increasing mapping of (—=/2,r/2) onto
(-~ ,»), and we obtain

= dx (2 JOdL 2,
,/_.. 1 422 f—r/21 + o) [_,/2 di =




1

Abstraet Integration

Toward the end of the nineteenth century it became clear to many
mathematicians that the Riemann integral (about which one learns in
caleulus courses) should be replaced by some other type of integral, more
general and more flexible, better suited for dealing with limit processes.
Among the attempts made in this direction, the most notable ones were
due to Jordan, Borel, W. H. Young, and Lebesgue. It was Lebesgue’s
construction which turned out to be the most successful.

In brief outline, here is the main idea: The Riemann integral of a func-.

O ey P ipE— | P

tion f over an interval fa,b] can be approximated by sums of the form
-
2 Fitym(E:)
f=1

where E,, . . . , E, are digjoint intervals whose union is [a,b], m(E,)
denotes the length of E;, and ;e E; forn = 1, . . . , n. Lebesgue dis-
covered that a completely satisfactory theory of integration results if the
sets E; in the above sum are allowed to belong to a larger class of subsets
of the line, the so-called “measurable sets,” and if the class of functions
under consideration is enlarged to what he called “measurable functions.”
The crucial set-theoretic properties involved are the following: The union
and the intersection of any countable family of measurable sets are
measurable; so is the complement of every measurable set; and, most
important, the notion of “length” (now called ‘“measure’) can be extended
to them in such a way that

m(E1u Eyu Eyu - » 1) = m(E1) + m(Es) + m(Es) + - - -

for every countable collection {E:} of pairwige disjoint measurable sets.
This property of m is called couniable addilivity.
The passage from Riemann’s theory of integration to that of Lebesgue

is a process of completion (in a sense which will appear more precisely
]
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later). It is of the same fundamental importance in analysis as is the
construction of the real number system from the rationals.

The above-mentioned measure m is of course intimately related to the
geometry of the real line. In this chapter we shall present an abstract
(axiomatic) version of the Lebesgue integral, relative to any countably
additive measure on any set. (The precise definitions follow.) This
abstract theory is not in any way more difficult than the special case of
the real line; it shows that a large part of integration theory is independ-
ent of any geometry (or topology) of the underlying space; and, of course,
it gives us a tool of much wider applicability. The existence of a large
class of measures, among them that of Lebesgue, will be established in
Chap. 2.

Set-theoretic Notations and Terminology

1.1 Some sets can be described by listing their members. Thus
{z1i, . . . ,x.} is the set whose members are z,, . . . , Z.; and {z} is the
set whose only member is 2. More often, sets are described by proper-
ties. We write

{z: P}
for the set of all elements x which have the property P 1
denotes the empty set. The words collection, family, and class will be
used synonymously with sef.

We write z & A if z is a member of the set A; otherwise z¢ 4. If B
is a subset of 4, i.e., if z& B implies re A, we write BC 4. If BC A
and A C B,then A = B. If BC A and A # B, B is a proper subset of
A. Note that & C A for every set A.

AuB and A n B are the union and intersection of 4 and B, respec-
tively. If {A.} is a collection of sets, where a runs through some index
set I, we write

U 4. and N A,
1

atl
for the union and intersection of {A.}:

U Ae = {z: z¢ A, for at least one a e I}

asl
NA, = {x: z¢e A, for every ae I}.

atl

If I is the set of all positive integers, the customary notations are

U 4, and n A..
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If no two members of {A.} have an element in common, then {4,} is a
disjoint collection of sets.

Wewrite A — B = {z:2¢ A, z ¢ B}, and denote the complement of 4
by A°¢ whenever it is clear from the context with respect to which larger
set the complement is taken.

The cartesian product Ay X - - - X A,of thesets 4,, . . . , A,is the
set of all ordered n-tuples (@, . . . ,a,) wherea;e A¢forl =1, ... ,n.

The real line (or real number system) is B!, and

RE=R'X --- XR! (k factors).

The exlended real number system is B! with two symbols, = and — =,
adjoined, and with the obvious ordering. If —» <a < b £ «, the
interval [a,b] and the segment (a,b) are defined to be

[ab] = {z:a <z < b}, (a,b) = {r:a < x < b},
We also write
[ab) = {z:a < 2 < b}, (a,b] = {z:a < z < b}.

If EC[— »,=]and E # &, the least upper bound (supremum) and
greatest lower bound (infimum) of E exist in [— % ,»] and are denoted
by sup E and inf E.

Sometimes (but only when sup E ¢ E) we write max E for sup E.

The symbol

1 X->Y

means that f is a function (or mapping or iransformation) of the set X into
theset Y;i.e., fassignstoeachze X anelement f(z)e Y. If A C X and
B C Y, the image of A and the inverse vmage (or pre-image) of B are

F(A) = {y:y = f(z) for some ze A},
f~(B) = {=:f(z) e B}.

Note that f~'(B) may be empty although B > &.

The domain of f is X. The range of f is f(X).

Iff(X) =Y, f is said to map X onto Y.

We write f~1(y), instead of 7'({y}), for everyye ¥. If f~'(y) consists
of at most one point, for each y € Y, f is said to be one-to-one. If f is one-
to-one, then f~! is a function with domain #(X) and range X.

If f: X = [— o,>] and E C X, it is customary to write sup f(z) rather

xeE

than sup f(F).
If f:X—>Y and g: Y— Z, the composite function gof: X — Z is
defined by the formula

(o) = g(f(@))  (xeX).
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The Concept of Measurability

The class of measurable functions plays a fundamental role in integra-
tion theory. It hassome basic properties in common with another most
important class of functions, namely, the continuous ones. It is helpful
to keep these similarities in mind. Our presentation is therefore organ-
ized in such a way that the analogies between the concepts topological
space, open set, and conlinuous funclion, on the one hand, and measurable
space, measurable sel, and measurable funclion, on the other, are strongly
emphasized. It seems that the relations between these concepts emerge
most clearly when the setting is quite abstract, and this (rather than a
desire for mere generality) motivates our approach to the subject.

1.2 Definition

(a) A collection 7 of subsets of a set X is said to be a topology in X if r
has the following three properties: -

(i) gerand X £7.
() If Vierfori =1, ... ,nthen VanVyn - - -nV,er
(iii) If {V.} is an arbitrary collection of members of 7 (finite,
countable, or uncountable), then U V. e 7.

(b) If 7 is a topology in X, then X is called a topological space, and
the members of 7 are called the open sels in X.

(¢) If X and Y are topological spaces and if f is a mapping of X
into Y, then f is said to be continuous provided that f~(V) is an
open set in X for every open set Vin Y.

1.3 Definition

(a) A collection 9 of subsets of a set X is said to be a o-algebre in X
if 9N has the following three properties:

(1) Xem.
(ii) If A e 9N, then A°¢ M, where A°is the complement of A
relative to X.
Gii) If A= U A, and if AdpeS for n =1, 2, 3, ...,

n=1 *

then 4 £ M.

(b) If 9% is a c-algebra in X, then X is called a measurable space, and
the members of M are called the measurable sefs in X.

(¢) If X is a measurable space, Y is a topological space, and f is a
mapping of X into ¥, then f is said to be measurable provided
that f~1(V) is a measurable set in X for every open set V in Y.
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It would perhaps be more satisfactory to apply the term ‘‘measurable
space” to the ordered pair (X,91), rather than to X. After all, X is a
set, and X has not been changed in any way by the fact that we now also
have a o-algebra of its subsets in mind. Similarly, a topological space is
an ordered pair (X,r). But if this sort of thing were systematically done
in all mathematics, the terminology would become awfully cumbersome.
We shall discuss this again at somewhat greater length in Sec. 1.21.

1.4 Comments on Definition 1.2 The most familiar topological spaces
are the meiricspaces. Weshall assume some familiarity with metric spaces
but shall give the basic definitions, for the sake of completeness.

A metric space i8 a set X in which a distance function (or meiric) p is
defined, with the following properties:

(a) 0 < p(z,y) < o forall z and ye X.

(b) p(z,y) = 0if and only if z = .

(¢) p(z,y) = p(y,x) for all x and y & X.

(@) o(z,y) < p(z,2) + p(2,y) for all 7, y, and ze X.

Property (d) is called the iriangle inequalily.

If ze X and r > 0, the open ball with center at x and radius r is the set
{ye X:p(zy) <r}. , 7 | o

If X is a metric space and if 7 is the collection of all sets E C X which
are arbitrary unions of open ballg, then r is a topology in X. This is not
hard to verify; the intersection property depends on the fact that if
z € B;n B,, where B, and B; are open balls, then z is the center of an open
ball B C Bin B:. We leave this as an exercise.

For instance, in the real line B! a set is open if and only if it is a union
of open segments (a,b). In the plane R? the open sets are those which
are unions of open circular discs.

Another topological space, which we shall encounter frequently, is the
extended real line [— =, =« ]; its topology is defined by declaring the follow-
ing sets to be open: (a,b), [— =,a), (a,=], and any union of segments of
this type.

The definition of continuity given in Sec. 1.2(c) is a global one. Fre-
quently it is desirable to define continuity locally: A mapping f of X into
Y is said to be continuous af the potnt o € X if to every neighborhood V of
f(zo) there corresponds a neighborhood W of z, such that f(W) C V.

(A neighborhood of a point z is, by definition, an open set which contains
x.)

For metric spaces, this local definition is of course the same as the
usual epsilon-delta definition.

The following easy proposition relates the two definitions of continuity
in the expected manner:
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1.5 Proposition Let X and Y be topological spaces. A mapping f of X
tnto Y is continuous if and only if f is continuous at evéry point of X.

PrROOF If fis continuous and z,¢ X, then f~1(V) is a neighborhood
of z,, for every neighborhood V of f(z,). Since f(f~1(V)) C V, it
follows that f is continuous at z.

If f is continuous at every point of X and if V is open in Y, every
point zef~!(V) has a neighborhood W, such that f(W.) C V.
Hence W. C (V). It follows that f~1(V) is the union of the open
sets W, so f~Y(V) is itself open. Thus f is continuous.

1.6 Comments on Definition 1.3 Let 9M be a s-algebra in a set X.
Referring to Properties (i) to (iii) of Definition 1.3(a), we immediately
derive the following:

(a) Since &F = X*, (i) and (ii) imply that & £ 9.

(b) Taking Apq1 = Apy2 = -+ + = & in (1ii), we see that A;u 4, v
s uvdAeMif Ayemfori=1,...,n.
(c) Since
N 4, = (U Anc)ca
n=1 n=1

I is closed under the formation of countable (and also finite)
intersections.
(d) SinceA — B = B‘nA,wehave A — Be M if A e M and B ¢ M.

The prefix ¢ refers to the fact that (iii) is required to hold for all count-
able unions of members of M. If (iii) is required for finite unions only,
then 9 is called an algebra of sets.

1.7 Theorem Let Y and Z be topological spaces, and let g: Y — Z be
conitnuous,

(@) If X is a topological space, if f: X — Y is continuous, and if
h = gof, then h: X — Z is continuous.

(b) If X s a measurable space, tf f: X — Y is measurable, and if
h = gof, then h: X — Z i3 measurable.

Stated informally, continuous functions of continuous functions are
continuous; continuous functions of measurable functions are measurable,

PROOF If V is open in Z, then g~(V) is open in ¥, and
V) = f~Y{g (V).

If f is continuous, it follows that A~1(V) is open, proving (a).
If f is measurable, it follows that A~'(V) is measurable, proving (b).
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1.8 Theorem Let u and v be real measurable functions on a measurable
space X, let ® be a continuous mapping of the plane into a topological space
Y, and define

h(z) = ®(u(z)w(2))
Jorze X. Then h: X — Y is measurable.

PROOF Put f(z) = (u(x)r(z)). Then f maps X into the plane.
Since h = & o f, Theorem 1.7 shows that it is enough to prove the
measurability of f.

If R is any open rectangle in the plane, with sides parallel to the
axes, then R is the cartesian produet of two segments I, and I,, and

FYR) = w'({I) nv=(I)),

which is measurable, by our assumption on « and ». Every open set
V in the plane is a countable union of such rectangles R;, and since

1) =10 R = U @),

f~YV) is measurable,

1.9 Let X be a measurable space. The following propositions are
corollaries of Theorems 1.7 and 1.8:

(a) If f = u + v, where u and v are real measurable functions on X,
then f is a complex measurable function on X.
This follows from Theorem 1.8, with ®(z) = z.
(b) If f = u + w i3 a complex measurable funciton on X, then u, v, and
If] are real measurable functions on X.
This follows from Theorem 1.7, with g(z) = Re (2), Im (2),
and |z{.
(¢) If f and g are complex measurable funciions on X, then soare f + ¢
and fg.
For real f and g this follows from Theorem 1.8, with

B(st) = s+ 1
and &(s,t) = st. The complex case then follows from (a) and (b).
(d) If E is a measurable set in X and if

Xa() = 1 ifze E
BY) =10 ifz¢E

then Xg is a measurable function.

This is obvious. We call xg the characteristic function of the
set E. The letter x will be reserved for characteristic functions
throughout this book.
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(e) If f 18 a compler measurable function on X, there is a complex
measurable function a on X such that |a| = 1 and f = off|.

PROOF Let E = {z: f(z) = 0}, let Y be the complex plane with the
origin removed, define ¢(2) = z/|z| for ze ¥, and put

a(z) = o(f(z) + x2(x)) (zeX).

HzeE, a(z) = 1;if ¢ E, a(z) = f(x)/|f(z)|. Since ¢ is continuous
on Y and since ¥ is measurable (why?), the measurability of a follows
from (c), (d), and Theorem 1.7.

We now show that s-algebras exist in great profusion.

1.10 Theorem If & s any collection of subsets of X, there exists a smallest
o-algebra M* in X such that § C IN*,

This 9M* is sometimes called the o-algebra generated by &.

PROOF Let © be the family of all s-algebras 9% in X which contain
¥. Since the collection of all subsets of X is such a s-algebra, Q is
not empty. Let 9* be the intersection of all 9 e Q. It is clear
that § C 9* and that 9* lies in every o-algebra in X which contains
§. To complete the proof, we have to show that IM™* is itself a

o-algebra,

If ApjeM*forn=1,23,..., andif MeQ, then 4, M, so
UA, & 9, since IN is a o-algebra. Since UA, e I for every MeQ,
we conclude that U4, € M*. The other two defining properties of a

o-algebra are verified in the same manner.

1.11 Borel Sets Let X be a topological space. By Theorem 1.10, there
exists a smallest o-algebra ® in X such that every open set in X belongs
to ® The members of ® are called the Borel sets of X.

In particular, closed sets are Borel sets (being, by definition, the
complements of open sets), and so are all countable unions of closed sets
and all countable intersections of open sets. These last two are called
F/s and G,'s, respectively, and play a considerable role. The notation
is due to Hausdorfi. The letters F and G were used for closed and open
sets, respectively, and o refers to union (Summe), & to intersection
(Durchscknitt). For example, every half-open interval [a,b) is a G5 and
an F, in R,

Since ® is a o-algebra, we may now regard X as a measurable space,
with the Borel sets playing the role of the measurable sets; more con-
cisely, we consider the measurable space (X,®). If f: X — Y is a con-
tinuous mapping of X, where Y is any topological space, then it is evident
from the definitions that f~1(V) ¢ ® for every open set V in Y. In other
words, every continuous mapping of X is Borel measurable.
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If Y is the real line or the complex plane, the Borel measurable mappings
will be called Borel functions.

1.12 Theorem Suppose M is a o-algebra tn X and Y is a topological space.
Let f map X into Y.

(a) If Q s the collection of all sets E C Y such that f~(E) e 9N, then
1 is a o-algebra in Y.

(b) If f 1s measurable and E is a Borel set in Y, then f~'(E) e .

() If Y = [— ,»] and f'((a,>]) € M for every real a, then f is
measurable.

L

prooF (a) follows from the relations

FN =X, (Y- 4)=X-544)

and Y A,ud.u - ) =Y AD U A)u o

To prove (b), let @ be as in (a); the measurability of f implies that
Q contains all open sets in Y, and since Q is a o-algebra, { contains all
Borel sets in Y.

To prove (c), let @ be the collection of all E C [— «, ] such-that
FYE) e M. Since O is a g-algebra in [— «,»], and since (@, ] &0
for all real «, the same is true of the sets

[-—w,a).—.: G [-oo,a-"—];]== G (d—;]-;, w]c

n=l

and (a,ﬁ) = [— wyﬁ) n (ar 00],

Since every open set in [— =, ] is a eountable union of segments of
the above types, @ contains every open set, so f is measurable.

1,13 Definition Let {a,} be a sequence in [— »,«], and put

(1) by = sup {ak,a;,+1,a;+g, s . } (k = 1, 2, 3, .. .)
and
@ 8 = inf {by,ba,bs, . . .}.

We call 8 the upper limit of {a.}, and write

@) g = lim sup a..

The following properties are easily verified: First, b, 2 by 2 bs 2 * - -,
so that by — 8 as k — o ; secondly, there is a subsequence {a,,} of {a.}
such that a,, — g as{—» «, and 8is the largest number with this property.
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The lower limit is defined analogously: simply interchange sup and inf
in (1) and (2). Note that

(4) lim inf a, = — lim sup (—as).
If {a.} converges, then evidently
) lim sup a, = lim inf @, = lim a,.

Suppose {f.} is a sequence of extended-real functions on a set X.
Then sup f, and lim sup f, are the functions defined on X by
n r—r

(6) (sup fa) (@) = sup (fu(=)),

@) (tim sup f,)(z) = lim sup (fa(2))-
If

8 @) = lim f,(z),

the limit being assumed to exist at every z ¢ X, then we call f the point-
wise limit of the sequence {f.}.

1.14 Theorem If fo: X — [— 0, ] is measurable, forn = 1,2,3, . . .,
and

g = sup fy, h = lim sup fn,
n>1 b 0

then g and h are measurable.

PROOF g~ }((a, 0]) = ljlf,."((a,w]). Hence Theorem 1.12(c) im-

plies that g is measurable. The same result holds of course with inf
in place of sup, and since

k = inf {sup fi},
k>1 ik
it follows that h is measurable.

Corollaries

(a) The limit of every pointwise convergent sequence of complex measur-
able functions i8 measurable.

(0) If f and g are measurable (with range in [— «,®]), then so are
max {f,g} andmin {f,g}. In particular, thisis true of the functions

f+ = max {fro} and f“ = — min {fyo}
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1.13 The above functions f+ and f~ are called the positive and negaiive

partsof f. Wehave|f] = f+ 4+ f~and f = f+ — f~, astandard representa-
tion of f as a difference of two nonnegative functions, with a certain
minimum property:

Proposition Iff=¢g—h,g2>20,andh >0,then ft < gandf <h.
PRoOF f < g and 0 X g clearly implies max {f,0} < g.

Simple Functions

1.16 Definition A function s on a measurable space X whose range con-
sists of only finitely many points in [0, ) will be called a simple function.

(Sometimes it is convenient to call any function with finite range
simple. The above situation is, however, the one we shall be mainly
interested in. Note that we explicitly exclude « from the values of a
simple function.)

If @y, . . ., an are the distinct values of a simple function s, and if
A; = {z: 3(x) = a:}, then clearly

8 = Z aiXa;,
=1
where x4, is the characteristic function of A4, as defined in Sec. 1.9(d).
It is also clear that s is measurable if and only if each of the sets A is
measurable,

1.17 Theorem Letf: X — [0,%] be measurable. There exist simple meas-
urable functions s, on X such that

@0<<s1<s< <.
(b) 8a(2) — f(z) as n— =, for every x ¢ X.

prRooF Forn =1,2,3, ... ,andfor1l < ¢ < n2* define

O Bu=r(555) wmd Fo= )

and put

@ =Y o, + ke,

Theorem 1.12(b) shows that E,; and F, are measurable sets. It is
easily seen that the functions (2) satisfy (a). If z is such that
f(z) < =, then s,(z) > f(z) — 2" as soon as n is large enough; if
f(z) = =, then s,(z) = n; this proves ().
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It should be observed that the preceding construction yields a uniformly
convergent sequence {s,} if f is bounded.

Elementary Properties of Measures
1.18 Definition

(a) A posttive measure is a function u, defined on a o-algebra I, whose
range is in [0,] and which is couniably addilive. This means
that if {4.} is a disjoint countable collection of members of IR,
then

@) WU 4) = 3 u(d).

i=1]1 i=1
To avoid trivialities, we shall also assume that p(4) < <« for at
least.one A4 & M.
(b) A measure space is a measurable space which has a positive meas-
ure defined on the o-algebra’of its measurable sets.
(¢} A complex measure is a complex-valued countably additive func-
tion defined on a o-algebra.

Note: What we have called a positive measure is frequently just called
a measure; we add the word *‘positive’ for emphasis. If p(¥) = 0 for
every E & 9, then u is a positive measure, by our definition. The value
 is admissible for a positive measure; but when we talk of a complex
measure u, it is understood that u(F) is a complex number, for every
Eea. The real measures form a subclass of the complex ones, of course.

1.19 Theorem Let u be a positive measure on a o-algebra M. Then

(@) u(@) = 0.

®) p(Adqvu - - - vd) = p(A) + - - - +u(ds) of Ay ..., A,
are patrwise disjoint members of .

(¢) A C B implies y(A) S u(B) if A e M, Be M.

(@ p(Ad) 2 pA)asn—o o ff A = G A, A,.e I, and

n=l

AlCA:CAlC RN

(€) nlAy) = u(d) asn— w if A = N A4, Ao e,

n=]

AIDASDASD oty
and u(A,) 18 finile,
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As the proof will show, these properties, with the exception of (c), also
hold for complex measures; (b) is called finite additivity; (c) is called
monotonicity.

PROOF

(a) Take A &9 so that u(4) < », and take A; = A and
A=Ay = - -+ = & in L.18().

(b) Take An+1 = A,H.g = ot = Q in 1.18(1).

(¢) Since B=Au(B— A) and An(B— A) = J, (b) gives
p(B) = p(4) + p(B — A) 2 p(4).

(d) Put By = A, B, = A, — Ap_1forn=2,3,4,. ... Then

D - oy D ~D __ r~ £ r _r A . D .. _ . _ .. D PR, |
Da 8L, DiND;= (O I 17%jJ Axa=D1U " ° * U Dy, ana
o
A = U Bi Hence
tm]

n

a4 = 3 uB)  end  wd) = 3w,

4=

Now (d) follows, by the definition of the sum of an infinite
series.

(e)PUtCn=A1—An. Then01CCQCCaC---,

I‘(CN) = A“(Al) — P'(An))
A, — A = UC,, and so (d) shows that
u(dy) — p(d) = p(d1 - 4) = '}in.l‘ #(Ca) = p(4y) — ELH: 1(44).

This implies ().

1,20 Examples The construction of interesting measure spaces requires

some labor, as we shall see. However, a few simple-minded examples can
be given immediately:

(a) For any E C X, where X is any set, define u(E) = « if Eigan
infinite set, and let y(E) be the number of points in E if E is
finite. This g is called the counting measure on X.

() Fix zoe X, define u(E) = 1if zoe K and u(E) = 0if 20 ¢ E, for
any E C X. This y may be called the unit mass concentrated
at ZLo.

(c) Let u be the counting measure on the set {1,2,3, .. .}, let
A, = {n,n+1,n+4+2 ...}. ThenNN4, = Fbutpu(d,) = =
forn =1,2,3, .... Thisshows that the hypothesis

“u(d,) < o

is not superfluous in Theorem 1.19(e).
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1.21 A Comment on Terminology One frequently sees measure spaces
referred to as “‘ordered triples” (X,9M,u) where X is a set, 9 is a o-algebra
in X, and g is a measure defined on M. Similarly, measurable spaces
are ‘“ordered pairs” (X,9). This is logically all right, and often con-
venient, though somewhat redundant. For instance, in (X,9m) the set
X is merely the largest member of 9, so if we know 9 we also know X.
Similarly, every measure has a o-algebra for its domain, by definition, so
if we know a measure g we also know the s-algebra 9 on which x is defined
and we know the set X in which 9% is a o-algebra.

It is therefore perfectly legitimate to use expressions like “Let u be a
measure’ or, if we wish to emphasize the a—algebra. or the set in question,
to say “Let 2 be a measure on M’ or “Let M be & measure on X.”

What is logically rather meaningless but customary (and we shall often
follow mathematical custom rather than logic) is to say “Let X be a
measure space’’; the emphasis should not be on the set, but on the meas-
ure. Of course, when this wording is used, it is tacitly understood that
there is a measure defined on some o-algebra in X and that it is this
measure which is really under discussion.

Similarly, a topological space is an ordered pair (X,r), where r is a
topology in the set X, and the significant data are contained in r, not in X,
but “the topological space X’ is what one talks about.

This sort of tacit convention is used throughout mathematics. Most

LR e ARV Rl RIVA2 AT VALV EASV Ay RIS RAATAAISARS Y2 LR

mathematical systems are sets with some class of distinguished subsets
or some binary operations or some relations (which are required to have
certain properties), and one can list these and then desecribe the system
as an ordered pair, triple, ete., depending on what is needed. For
instance, the real line may be described as a quadruple (R%,+,, <),
where +, -, and < satisfy the axioms of a complete archimedean ordered
field. But it is a safe bet that very few mathematicians phmk of the real
field as an ordered quadruple.

Arithmetic in [0, =]

1.22 Throughout integration theory, one inevitably encounters . One
reason is that one wants to be able to integrate over sets of infinite
measure; after all, the real line has infinite length. Another reason is
that even if one is primarily interested in real-valued functions, the
lim sup of a sequence of positive real functions or the sum of a sequence
of positive real functions may well be = at some points, and much of the
elegance of theorems like 1.26 and 1.27 would be lost if one had to make
gsome special provisions whenever this occurs.
Let us definea+ © = © +a= = if0 <a < », and

w0 -g=]% f0<a< »
—lo ifa=0;

sums and products of real numbers are of course defined in the usual way.

a-®w =
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It may seem strange to define 0 - « = 0. However, one verifies with-
out difficulty that with this definition the commutative, associative, and
distributive laws hold in [0, ©] without any restriction,

The cancellation laws have to be treated with some care:a + b =a + ¢
implies b = ¢ only when a < «, and ab = ac implies b = ¢ only when
0<a< =,

Observe that the following useful proposition holds:

IfoLam<La< - ,0800 <0< -, an—a, and b, — b,
then a.b. — ab.

If we combine this with Theorems 1.17 and 1.14, we see that sums and
products of measurable functions inlo [0, <] are measurable.

Integration of Positive Functions

In this section, 91 will be a g-algebra in a set X and p will be a positive
measure on M.

1.23 Definition If s is a measurable simple function on X, of the form

(1) s = 2 X4,

=1
where a1, . . . , a, are the distiuct values of s (compare Definition 1.16),
and if E ¢ M, we define

(2) [Esd,u = Z au(A;n E).
i=1
The convention 0+ « = 0 is used here; it may happen that «; = 0 for
some ¢ and that u(4d;n E) = =.
If f: X — [0, ] is measurable, and E & M, we define

3) [ofan=sup [ sdu

the supremum being taken over all simple measurable functions s such
that0 < s < f.

The left member of (3) is called the Lebesgue integral of f over E, with
respect to the measure u. It is a number in [0, x|,

Observe that we apparently have two definitions for [gfdu if [ is
simple, namely, (2) and (3). However, these assign the same value to

the integral, since f is, in this case, the largest of the functions s which
occur on the right of (3).

1.24 The following propositions are immediate consequences of the defi-

nitions. The functions and sets occurring in them are assumed to be
measurable:
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(@ If0<f< g, then [gfde < [rgdu
® IfACBandf 20, then [afdu < [5fdp.
(¢) If f 2 0 and c is a constant, 0 < ¢ < =, then

chd,. = chdu.

@) Iff(x) =0forallze E, then [gfdu = 0, even if u(E) =
(€) If u(E) =0, then [efdu = 0, even if f(z) = o« for every z ¢ E.
(N Iff 20, then [sfdu = [x xf dp.

This last result shows that we could have restricted our definition of
integration to integrals over all of X, without losing any generality. If
we wanted to integrate over subsets, we could then use (f) as the defini-
tion. It is purely a matter of taste which definition is preferred.

One may also remark here that every measurable subset E of a measure
space X is again a measure space, in a perfectly natural way: The new
measurable sets are simply those measurable subsets of X which liein E,
and the measure is unchanged, except that its domain is restricted. This
shows again that as soon as we have integration defined over every
measure space, we automatically have it defined over every measurable
subset of every measure space.

1.25 Proposition Lei s and i be measurable simple funciions on X. For

E & M, define

® o(B) = [Lsdu
Then ¢ 18 a measure on M. Also
(2) L(8+t)dn=Lsdn+Ltdﬂ-

(This proposition contains provisional forms of Theorems 1.27 and 1.29.)

PROOF If 8 is as in Definition 1.23, and if E,, E,, . . . are disjoint

members of 91 whose union is ¥, the countable additivity of u shows
that

»(E) = ﬁl au(4in E) = -21 o 21 w(4:n E,)

E Eauu(A nE,) = 2 o(By).

rm]l im] r=]

Also, o(&) = 0, so that ¢ is not identically .
Next, let s be as before, let 8y, . . . , Bm be the distinct values of
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t, and let B; = {z:i(z) = 8;}. If E;; = A:n B;, then
Jo, (6 0 dis = (o + B)u(E)
and jn,-,- sdu + ,[E.',' tdu = ai(Eyj) + Bin(Es).

Thus (2) holds with E;; in place of X. Since X is the disjoint union
of the sets Fi;; (1 <7 < n,1 <j < m), the first half of our proposi-
tion implies that (2) holds.

We now come to the interesting part of the theory. One of its most
remarkable features is the ease with which it bandles limit operations.

1.26 Lebesgue’s Monotone Convergence Theorem Let {f,} be a sequence
of measurable functions on X and suppose that

(@) 0 < fi(x) <falx) L+« < @ foreveryxe X,
(b) fa(x) — f(x) as n — =, for every x & X.

Then f is measurable, and

(1) ij,,d,uﬁa as n— oo.

By Theorem 1.14, f is measurable. Since f, < f, we have [f, < [f
for every n, so (1) implies

(2) a< [ fdn

Let s be any simple measurable function such that 0 < s < f, let
¢ be a constant, 0 < ¢ < 1, and define

(3) E. = [2:fu(x) 2 cs(2)} n=1213,...).

Each E, is measurable, B, C E, CE; C - -+, and X = U E..
For if f(z) = 0, then z ¢ E;; and if f(z) > 0, then ¢s(z) < f(x), since
¢ < 1; hence x ¢ E, for some n. Also

@ [ feduz [ hduzc[ sd (=123 ..)

Let n— <, applying Proposition 1.25 and Theorem 1.19(d) to the
last integral in (4). The result is

(5) a > c/xsd,u.
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Since (5) holds for every ¢ < 1, we have
(6) a > /X sdu
for every simple measurable s satisfying 0 < g < f, so that

@) a2 [ fda
The theorem follows from (1), (2), and (7)
y « - . and

1.27 Theorem Iff.: X — [0, ] 13 measurable, forn = 1,2, 3

® 1@ = 3 W@ @eX),
then
'[.fd" 22 l;ﬁudﬂ-

2)

PROOF First, there are sequences {s}}, {s/’} of simple measurable

functions such that & — f; and s/ — f, as in Theorem 1.17. If
; = 8, + &', then 8;— f; + fo, and the monotone convergence the-

8 = 8

orem, combined with Proposition 1.25, shows that

@) fGi+sdde= [ridut [ rda
Next, put gy = fL + - + fv. The sequence {gy} converges

monotonically to f, and if we apply induction to (3) we see that

4) [ 0w du = 5: [ RN

Applying the monotone convergence theorem once more, we obtain

(2), and the proof is complete.
If we let p be the counting measure on a countable set, Theorem 1.27

is a statement about double series of nonnegative real numbers (which

can of course be proved by elementary means)

-~y g Py e s

Corollary Ifa; >Qforiand; =1,2 3

i=]1,=1 J=1li=1

1.28 Fatou’s Lemma If f,: X — [0, ] 78 measurable, for each positive

tnieger n, then
fn d.u

(1) . (lim inf f,} du < lim inf
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Striet inequality can occur in (1); see Exercige 2.

PROOF Put

(2) ge(z) = glff.(z) k=1,23,... ;zeX)

Then g; < f&, so that

®) fonde< [rdn  G=123 ...

Also, 0 € g: < ga < * - -, and g is measurable, by Theorem 1.14,

and gi(z) — lim inf f.(z) as ¥ — <, by Definition 1.13. The mono-
tone convergence theorem therefore shows that the left side of (3)
tends to the left side of (1), as k — . Hence (1) follows from (3).

1.29 Theorem Suppose f: X — [0, ] 78 measuradble, and

1

oB) = [fau  (Eem).

Then ¢ 18 a measure on M, and

(@)

_[X g de = fx gf du
for every measurable g on X with range in [0, ].
proor Let E, E,; E, ... be disjoint members of 9 whose
union is E. Observe that
3) xef = ) Xzf
i=1
and that
@ o(B) = [(xxfdu,  o(B) = [ xnfdu.

It now follows from Theorem 1.27 that

®) oB) = Y olEy).
i=1
Since (&) = 0, (56) proves that ¢ is a measure,
Next, (1) shows that (2) holds whenever ¢ = xz for some E & 9
Hence (2) holds for every simple measurable function g, and the
general case follows from the monotone convergence theorem.,

Remark The secondl assertion of Theorem 1.29 is sometimes written in
the form

(6)

de = fdp.
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We assign no independent meaning to the symbols de and dyu; (6) merely
means that (2) holds for every measurable g > 0.

Theorem 1.29 has a very important converse, the Radon-Nikodym
theorem, which will be proved in Chap. 6.

Integration of Complex Functions

As before, u will in this section be a positive measure on an arbitrary
measurable space X.

1.30 Definition We define L'(u) to be the collection of all complex

measurable functions f on X for which
meaggurable § ns j on X Ior which

$ 3 A 0p s

_Llfld# < .

Note that the measurability of fimplies that of ]f|, as we saw in Propo-
sition 1.9(b); hence the above integral is defined.

The members of Li(u) are called Lebesgue integrable functions (with
respect to p) or summable functions. The significance of the exponent 1
will become clear in Chap. 3.

1.31 Definition If f + v, where » and v are real measurable func-

= U
: - X - e A
tions on X, and if f & L*(u), we define

®  ffde= [, wtdu - Lumduﬂlﬂwdp—iﬂv—dp

for every measurable set E.

Here u* and u— are the positive and negative parts of u, as defined in
Sec. 1.15; v+ and v~ are similarly obtained from v. These four functions
are measurable, real, and nonnegative; hence the four integrals on the
right of (1) exist, by Definition 1.23. Furthermore, we have u+ < |u| <
lf], ete., so that each of these four integrals is finite. Thus (1) defines the
integral on the left as a complex number.

Occasionally it is desirable to define the integral of a measurable func-
tion f with range in [— %, ®] to be
(9 [ eg — [ eva, [ g
1t Jgd @B = JpiT OB — T @k,
provided that at least one of the integrals on the right of (2) is finite.
The left side of (2) is then a number in [— o, «].

1.32 Theorem Suppose fand g ¢ LYW (u) and a and § are complexr numbers.
Then af + 8g € L'(u), and

(1) ];(af+ﬁg)dn=a[¥fdu+ﬁﬁrgdu-
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PrROOF The measurability of «f 4+ 8g follows from Proposition
1.9(c). By Sec. 1.24 and Theorem 1.27,

[, laf + sl du < [, od 171 + 161 lo) d

= lol [ du+ 18] [ loldu < .
Thus of + Bg € L (u).
To prove (1), it is clearly sufficient to prove

@) fU+ade= [ rdu+ [ gau

and

3) fe@hdu=a [ 1du

and the general case of (2) will follow if we prove (2) for real f and
g in L(n).

Assuming this, and setting h = f + g, we have
W —h = =gt — g

or

(4) Br4+f-+g =f+gt+h

By Theorem 1.27,

(5) e+ [+ [q = [+ [¢* + [h,

and since each of these integrals is finite, we may transpose and
obtain (2).

That (3) holds if & > 0 follows from Proposition 1.24(c). Itiseasy
to verify that (3) holds if @ = —1, using relations like (—u)* = u~.
The case a = ¢ is also easy: If f = u + v, then

f(z'f) = f(z'u—-v) =f(‘—v)+z'fu = —_[v+i[u=i(/u+ifv) = iff.
Combining these cases with (2}, we obtain (3) for any complex a.

1.33 Theorem If fe L'(u), then

| [rau] < [, 111 an

PROOF Put z = [xfdu. Sincez is a complex number, there is a
complex number a, with |a] = 1, such that oz = |2|. Let u be the
real part of af. Then u < |af| = |f|l. Hence

ot an] = fru= frofu= fudus fpifian
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The third of the above equalities holds since the preceding ones show
that [of du is real.

We conclude this section with another important convergence theorem.

1.34 Lebesgue’s Dominated Convergence Theorem Suppose {f.} i3 a
sequence of complexr measurable functions on X such that

QY f@) = lim fa(2)

exists for every x e X. If there 13 a function g € L'(u) such that
(2) [fa(@)| < glz) n=123 ...;zeX),
then f € L'(u),

) lim [ 1fa = flde =0,

and |

@) lim fetadu= [ 5an.

PROOF Since |f| < g and f is measurable, fe L1(u). Since |f, — f]
< 29, Fatou’s lemma applies to the functions 2¢g — |f, — f| and

ald.
ACTIULD

[y 20du <timinf [ @g — |fa — 1) du

= [ 20 du + lminf (= [} |fa — fldu)

= [;29du — lim sup [ |fs — f] du.
Since [2¢ du is finite, we may subtract it and obtain
(5) lim sup fx |fa = flde £ 0.

If a sequence of nonnegative real numbers fails to converge to 0,
then its upper limit is positive. Thus (5) implies (3). By Theorem

1.33, applied to f» — f, (3) implies ).

The Role Played by Sets of Measure Zero

1.35 Definition Let P be a property which a point z may or may not
have. For instance, P might be the property “f(z) > 0” if fis a given

function, or it might be “{f.(z)} converges” if {f,} is a given sequence
of functions.
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If 4 is a measure on a o-algebra M and if E e M, the statement “P
holds almost everywhere on E” (abbreviated to ‘“P holds a.e. on E”)
means that there exists an N € 9 such that u(N) =0, N CE, and P
holds at every point of £ — N. This concept of a.e. depends of course
very strongly on the given measure, and we shall write “a.e. [4]" when-
ever clarity requires that the measure be indicated.

For example, if f and g are measurable functions and if

1) #(lz: f(z) = g(x}}) = O,

we say that f = g a.e. [ug] on X, and we may write f ~ g. This is easily
seen to be an equivalence relation. The transitivity (f ~ g and g ~ A
implies f ~ h) is a consequence of the fact that the union of two sets of
measure 0 has measure 0.

Note that if f ~ g, then, for every E & 9,

@) fordu = [ odu

To see this, let N be the set which appears in (1);-then E is the union of
the disjoint sets E — Nand EnN;on E — N,f=g,and uy(EnN) = 0.

1 s
Thus, generally speaking, sets of measure 0 are negligible in integration.

It ought to be true that every subset of a negligible set is negligible. But
it may happen that some set N € 9 with u(N) = 0 has a subset F which
is not & member of M. Of course we can define u(E) = 0 in this case.
But will this extension of u still be a measure, i.e., will it still be defined on
a o-algebra? It is a pleasant fact that the answer is affirmative:

1.36 Theorem Let (X,0M,u) be a measure space, let M* be the collection
of all E C X for which there exist sets A and Be M such that A C ECB
and u(B — A) = 0, and define u(E) = p(A) in this situation, Then
M* i8 a o-algebra, and u 18 a measure on M*,

This extended measure g is called complete since all subsets of sets of
measure 0 are now measurable; the s-algebra 9M* is called the u-completion
of 9M. The theorem says that every measure can be completed, so,
whenever it is convenient, we may assume that any given measure is
complete; this just gives us more measurable sets, hence more measurable
functions. Most measures that one meets in the ordinary course of
events are already complete, but there are exceptions; one of these will
occur in the proof of Fubini’s theorem in Chap. 7.

ProoF We verify the three defining properties of a o-algebra.
(i) X e M, hence X e m*, (ii) If A C F C B, then B° C E° C A-,
and A — B° =B — A, (iii) If A;,CE.CB:, A =UA,E = UE,
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and B = UB;,then A C E C B and
B—Aci:J(B.-—A.-),

so that u(B — A) = 0if u(B; — 4;) =0fori=1,2,83,....
Next, we check that uis well defined on M*. Suppose A C E C B,
A, CECByand uy(B— A) = u(B; — A)) = 0. Then

A"—A]_CBI_Al}

s0 u(A — A)) = 0. Similarly, u(4; — A) = 0. Hence

AY == L(A.-n
~J

o f o Y = glA)
AN ML LR] V) Al [ ACT Y

The countable additivity of u on 9M* is obvious.

1.37 The fact that functions which are equal a.e. are indistinguishable
as far as integration is concerned suggests that our definition of measura-
ble function might profitably be enlarged. Let us call a function f
defined on a set E ¢ N measurable on X if u(E°}) = 0 and if f1(V)n E is
measurable for every open set V. If we define f(x) = 0 for z & E*, we
obtain a measurable function on X, in the old sense. If our measure
happens to be complete, we can define f on E¢ in a perfectly arbitrary

manner, and we still get a measurable function. The integral of f over

any set A e 9 is independent of the definition of f on E°; therefore this
definition need not even be specified at all.

There are many situations where this occurs naturally. For instance,
a function f on the real line may be differentiable only almost everywhere
(with respect to Lebesgue measure), but under certain conditions it is
still true that f is the integral of its derivative; this will be discussed in
Chap. 8. Or asequence {f,} of measurable functions on X may converge
only almost everywhere; with our new definition of measurability, the
Limit is still a measurable function on X, and we do not have to cut down
to the set on which convergence actually oceurs.

To illustrate, let us state a corollary of Lebesgue’s dominated conver-

gence theorem in a form in which exceptional sets of measure zero are
admitted:

1.38 Theorem Suppose {f,} 48 a sequence of complex measurable functions
defined a.e. on X such that

&) > felldu< =,
a=1

Then the series

@) 1@ = Y fula)

St i -
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converges for almost all z, f € L¥(u), and

® ferdu="3 [ fadu

n=1

ProoF Let S, be the set on which f, is defined, so that u(S.) = 0.
Put ¢(z) = Z|f.(z)|, for ze8 = NS,. Then u(S?) = 0. By (1)
and Theorem 1.27,

@) frodun < .

IftE = {ze8: o(X) < o}, it follows from (4) that x(£°) = 0. The
series (2) converges absolutely for every z ¢ E, and if f(z) is defined
by (2) for z & E, then |f(z)| < ¢(z) on E, so that f & L(u) on E, by
4). If go=f1+ - +fo then lgs| < ¢, ga(z) — flz) for all
z ¢ E, and Theorem 1.34 gives (3} with Einplaceof X. Thisisequiv-
alent to (3), since u(E°) = 0,

Note that even if the f, were defined at every point of X, (1) would only
imply that (2) converges almost everywhere. Here are some other situa-
tions in which we can draw conclusions only almost everywhere:

1.39 Theorem

(a) Suppose f: X —[0,] 7s measurable, E ¢ 9, and [gfdu = 0.
Then f = 0 aie. on E.

(b) Suppose fe L'(u) and [gfdu = O for every Ee M. Then f = 0
a.e. on X,

(c) Suppose fe L'(p) and

| fpfau| = [ 17 du.

Then there is a constant o such that of = |f| a.e. on X.

Note that (¢) describes the condition under which equality holds in
Theorem 1.33.

PROOF
() If A, = {zeE:f(z) > 1/n},n=1,2,3, . . ., then
1 :
quA) < [ fdu< [fdu=0,

so that u{d,) =0. Since {zeE: f(z) > 0} = Ud., (a)
follows.
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() Put f=u-+ %, let E = {z: u(z) > 0}. The real part of
[efdu is then [putdu. Hence [zut du = 0, and (a) implies
that u* = 0 a.e. We conclude similarly that

u - =vt =9 =0a.e

(¢} Examine the proof of Theorem 1.33. Our present assumption
implies that the last inequality in the proof of Theorem 1.33
must actually be an equality. Hence [(|f] — u)du = 0.
Since |f| — u > 0, (a) shows that |f| = u a.e. This says that
the real part of of is equal to |of| a.e., hence of = |of] = |fl a.e.,
which is the desired conclusion.

1.40 Theorem Suppose u(X) < «, fe L} (u), 8 48 a closed set in the com-~
plex plane, and the averages

1
Ax(f) = i) j;.fd#

lie tn S for every E ¢ M with u(E) > 0. Then f(x) £ S for almostall z 2 X.

PRoOF Let A be a closed eircular dise (with center at « and radius
r > 0, say) in the complement of 8. Since 8¢ xs the union of count-
ably many such discs, it is enough to prove that u(E) = 0, where
= f~1(4).
If we had u(E) > 0, then

_ 1 1
|45(f) -a|-m'LU"a)anSijlf—ald#Sr,
which is impossible, since A z(f) ¢ 8. Hence u(E) = 0.

1.41 Theorem Let {E.} be a sequence of measurable sets in X, such that
(1) NICARSES

=1
Then almost all x & X lie in at most finitely many of the sets E;.

[ Te 4 > .1 _ 4 _ 8 _11 ) L T L B Y . S, | _ w =
PROOF 1I 418 10e S€u ol all T wiiich l1e 1n 1nnnitely many fig, we h

to prove that u(4) = 0. Put

mi

(2) g(z) = kil xp(r) (zeX).

For each z, each term in this series is either 0 or 1. Hence z £ 4 if
and only if g(x) = «. By Theorem 1.27, the integral of g over X
is equal to the sum in (1). Thus g € L'(x) and so g(z) < « a.e.
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Exercises

1 Let {a.} and {b,} be sequences in [— «,x], and prove the follow-
ing- assertions:

(a) lim sup (—a,) = — lim inf a,.

> N~ %

() lim sup (a. 4+ b,) < lim sup a, + lim m sup b,

provided none of the sums is of the form o — oo,
(¢) If an < b, for all n, then

hm inf @, < lim inf b,.

n—»« n—r

Show by an example that strict inequality can hold in (b).
2 Put fo =xgifnisodd, f» =1 — xg if # is even. What is the
relevance of this example to Fatou’s lemma?
3 Suppose f.: X — [0,x] is measurable for n = 1, 2, 3,

fHizfe2 fa__ v s 20, falz) o f(zx)asn — e foreverya:sX
Prove that then

fim .[andﬂ = Lfdn

and show that this conclusion does not follow if the condition
“fire LY(u)” is omitted.

4 Prove that if f is a real function on a measurable space X such
that {z: f(z) > r} is measurable for every rational r, then f is
measurable.

5 Prove that the set of points at which a sequence of measurable
real functions converges is a measurable set.

6 Let X be an uncountable set, let 9 be the collection of all sets
E C X such that either E or E¢ is at most countable, and define
u(E) = 0 in the first case, u(E) = 1 in the second. Prove that
I is a o-algebra in X and that u is a measure on 9.

7 Does there exist an infinite o-algebra which has only countably
many members?

8 Prove an analogue of Theorem 1.8 for n functions.

9 Prove the conclusion of Theorem 1.7(b) under the weaker hypothe-
sis that g is Borel measurable; i.e., prove that Borel measurable
functions of measurable functions are measurable.

10 Suppose x(X) < o, {f,} is a sequence of bounded complex meas-

%0
=
D..
=h
(]
I"-c

/‘-\
~

g
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urable functions on X, and f, — f uniformly on X. Prove that

lim [ fadu= [ fdu

and show that the hypothesis “u(X) < «’’ cannot be omitted.

11 Show that
A=N UE
amlikmn

in Theorem 1.41, and hence prove the theorem without any

reference to integration.
12 Suppose f& L'(u). Prove that to each ¢ > 0 there exists 2 § > 0

such that [z|f] du < ¢ whenever u(E) < 3.
13 Show that proposition 1.24(c) is also true forc = =,
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Positive Borel

Measures

Vector Spaces

2.1 Definition A complex vector space (or a vector space over the com-
plex field) is a set V, whose elements are called vecfors and in which two
operations, called addition and scalar multiplication, are defined, with the
following familiar algebraic properties:

To every pair of vectors z and y there corresponds a vector z + y, in
such a way that x4+ y=y+zand 2+ @y +2)=(C+y)+2;, V
contains & unique vector O (the zero vecior or origin of V) such that
z + 0 = z for every z & V; and to each x &€ V there corresponds a unique
vector —z such that z + (—z) = 0.

To each pair (a,z), where z £ V and « is a scalar (in this context, the
word scalar means complex number), there is associated a vector ax e V,

in such a way that 1z = z, a(Bz) = (aB)z, and such that the two dis-
tributive laws

(1) oz + y) = az + ay, (« + B = ax + Bz

hold.

A linear transformation of a vector space V into a vector space Viis a
mapping A of V into V, such that

(2) Alaz + By) = aAzx + BAy

forall z and y £ V and for all scalars « and 8.  In the special case in which
V, is the field of scalars (this is the simplest example of a vector space,
except for the trivial one consisting of 0 alone), A is called a linear func-
tional. A linear functional is thus a complex function on V which
satisfies (2).
Note that one often writes Az, rather than A(z), if A is linear.
33



34 Real and eomplex analysis

The preceding definitions can of course be made equally well with any
field whatsoever in place of the complex field. Unless the contrary is
explicitly stated, however, all vector spaces occurring in this book will
be complex, with one notable exception: the euclidean spaces R* are vector
spaces over the real field.

2.2 Integration as a Linear Functional Analysis is full of vector spaces
and linear transformations, and there is an especially close relationship
between integration on the one hand and linear functionals on the other.

For instance, Theorem 1.32 shows that L(u) is a vector space, for any
positive measure yu, and that the mapping

m J= [ofdu

is & linear functional on L*(u). Similarly, if g is any bounded measurable
function, the mapping

@) J= fefodu

is a linear functional on L(x); we shall see in Chap. 6 that the functionals
(2) are, in a sense, the only interesting ones on L!(u).

For another example, let C be the set of all continuous complex func-
tiong on the unit interval 7 = [(.1], The gum of two continuous fune-

202283 022 AT LRLLfV ALV VW &RL .- Lvry=Je - SN MFwmALL oA VRSES UAALLENS ALY AR iS

tions is continuous, and so is any scalar multiple of a continuous funetion.
Hence C is a vector space, and if

3) A= [feydz (20,

the integral being the ordinary Riemann integral, then A is clearly a linear
functional on C; A has an additional interesting property: it is a positive
linear functional. This means that Af > 0 whenever f 2> 0.

One of the tasks which is still ahead of us is the construction of the
Lebesgue measure., The construction can be based on the linear func-
tional (3), by the following observation: Consider a segment (a,b) C I
and consider the class of all fe C suchthat 0 < f < lonlandf(z) =0

for all z not in (a,b). We have Af < b — a for all such f, but we can
chnnse 'f g0 that A-l' is as n]nnn to b — a as ﬂnmrnrl ’Fhug the 1nnn'f]‘\ (nr

NALNINI NI

mea.sure) of (a,b) is intimately related to the values of the functmna.l A.
The preceding observation, when looked at from a more general point
of view, leads to a remarkable and extremely important theorem of
F, Riesz:
To every positive linear functional A on C there corresponds a finite posi-
tive Borel measure u on I such that

(4) Af= [fdu  (eO).
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[The converse is obvious: if u is a finite positive Borel measure on I and
if A is defined by (4), then A is a positive linear functional on C.]

It is clearly of interest to replace the bounded interval I by R:. We
can do this by restricting attention to those continuous functions on R?
which vanish outside some bounded interval. (These functions are
Riemann integrable, for instance.) Next, functions of several variables
occur frequently in analysis. Thus we ought to move from R! to R~
It turns out that the proof of the Riesz theorem still goes through, with
hardly any changes. Moreover, it turns out that the euclidean properties
of B* (coordinates, orthogonality, etc.) play no role in the proof; in fact,
if one thinks of them too much they just get in the way. Essential to
the proof are certain fopological properties of B*. (Naturally, We are
now dealing with conétnuous functions.) The crucial property is that of
local compactness: each point of B* has a neighborhood whose closure is
compact.

We shall therefore establish the Riesz theorem in a very general setting
(Theorem 2.14). The existence of Lebesgue measure then follows as a
special case. Those who wish to concentrate on a more concrete situation
may skip lightly over the following section on topological preliminaries
(Urysohn’s lemma is the item of greatest interest there; see Exercise 14)
and may replace X by R!in the remainder of this chapter, at least for a
first reading.

Topological Preliminaries

~

2.3 Definitions Let X be a topological space, as defined in Sec. 1.2,

() A set E C X is closed if its complement E° is open. (Hence &
and X are closed, finite unions of closed sets are closed, and arbi-
trary intersections of closed sets are closed.)

(b) The closure E of a set E C X is the smallest closed set in X which
contains E. (The following argument proves the existence of E:
The collection © of all closed subsets of X which contain E is not
empty, since X ¢ ; let E be the intersection of all members of Q.)

(c) A set K C X is compact if every open cover of K contains a finite
subcover. More explicitly, the requirement is that if {V,} is a
collection of open sets whose union contains K, then the union of
some finite subcollection of {V,.} also contains K.

In particular, if X is itself compact, then X is called a compact
space.

(d) A neighborhood of a point p £ X is any open subset of X which
contains p. (The use of this term is not quite standardized;
some use “neighborhood of p”’ for any set which contains an
open set containing p.)
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() X is a Hausdorff space if the following is true: If pe X, g ¢ X,
and p # g, then p has a neighborhood U and ¢ has a neighborhood
V such that UnV = &.

(f) X is locally compact if every point of X has a neighborhood whose
closure is compact.

Obviously, every compact space is locally compact.

We recall the Heine-Borel theorem: The compact subsets of a euclidean
space R* are precisely those that are closed and bounded ([26],f Theorem
2.41). From this it follows easily that R" is a locally compact Hausdorff
space. Also, every metric space is a Hausdorff space.

2.4 Theorem Suppose K is compact and F is closed, in a topological space
X. If F C K, then F is compaci.

proor If {V.} is an open cover of ¥ and W = F¢, then Wu EV,
covers X ; hence there is a finite collection {V,,} such that
KCWuVau:- - -uV,,.
Then FC Vyu - uV,,.
Corollary If A C B and if B has compact closure, so does A.

2,5 Theorem Suppose X 78 a Hausdorff space, K C X, K is compact, and
pe K. Then there are open sets U and W such that pe U, K C W, and
UnW = &.

prooF If ge K, the Hausdorff separation axiom implies the exist-
ence of disjomt open sets U, and V,, such that pe U, and ge V,.
Since K is compact, there are points q;, . . . , g» € K such that

KCVyu---uV,.
Our requirements are then satisfied by the sets
U=Ugan -+ -nlU, and W="V,u---uV¥,.
Corollaries

(a) Compact subsets of Hausdorff spaces are closed.
(b) If F i3 closed and K is compact in a Hausdorff space, then F n K
18 compact.

Corollary (b) follows from (@) and Theorem 2.4.
1 Numbers in brackets refer to the Bibliography.
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2.6 Theorem If {K,} i3 a collection of compact subsets of a Hausdorff
space and if NK. = &, then some finite subcollection of {K.} also has

emply interseclion.

PrRoOF Put ¥V, = K., Fix a member K, of {K,}. Since no point
of K, belongs to every K,, {Va.} is an open cover of K;. Hence
Ky C Vau + - - uV,, for some finite collection {¥,,}. Thisimplies
that

KinK,n---nkK, = .

2.7 Theorem Suppose U is open in a locally compact Hausdorff space X,
K C U, and K 13 compact. Then there is an open set V with compact
closure such that

KCvVvCVCU.

PROOF Since every point of K has a neighborhood with compact
closure, and since K is covered by the union of finitely many of these
neighborhoods, K lies in an open set G' with compact closure. If
U=X, take V = G.

Otherwise, let C be the complement of U. Theorem 2.5 shows
that to each pe C there corresponds an open set W, such that
KC W,and p¢ W,. Hence {C nGnW,}, where p ranges over C,
is & collection of compact sets with empty intersection. By Theorem
2.6 there are points p;, . . . , ps & C such that

CnGaW,n-: - aW, = &.
The set
V=GaW,n---aoW,

then has the required properties, since
VCGaW,n- - aW,.

2.8 Definition Let f be a real (or extended-real) function on a topological
space. If

{z: f(z) > a}
is open for every real «, f is said to be lower semicontinuous. If
{z: f(z) < a}

is open for every real «, f is said to be upper semicontinuous.
The following properties of semicontinuous functions are almost imme-
diate consequences of this definition:

(@) A real function 18 continuous if and only if it is both upper semi-
continuous and lower semicontinuous.
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(b) Characteristic functions of open sets are lower semicontinuous;
characteristic functions of closed sets are upper semicontinuous.

(¢) The supremum of any collection of lower semicontinuous functions
is lower semiconlinuous. The tnfimum of anv collection of upper
semiconiinuous functions is upper semiconlinuous.

2.9 Definition The support of a complex function f on a topological
space X is the closure of the set

{z: f(x) # 0}.

The collection of all continuous complex functions on X whose support
is compact is denoted by C.(X).
Observe that C.(X) is a vector space. 'This is due to two facts:

(a) The support of f + g lies in the union of the support of f and the
support of g, and any finite union of compact sets is compact.

(b) The sum of two continuous complex functions is continuous as
are scalar multiples of continuous functions.

(Statement and proof of Theorem 1.8 hold verbatim if ‘““measurable func-
tion’ is replaced by “continuous function,” ‘“measurable space” by “topo-
logical space’’; take ®(s,f) = s + {, or ®(s,{) = s8¢, to prove that sums and
products of continuous functions are continuous.)

2.10 Theorem Let X and Y be topological spaces, and let f: X — Y be
continuous. If K is a compact subset of X, then f(K) is compact.

prooF If {V,} is an open cover of f(K), then {f~}(V.)} is an open
cover of K, hence K C f~* (Vo) u - - - uf(V,,) for somea,, . .
o, hence f(K) C Ve, u - - - U V.

t

Corollary The range of any f& C.(X) 7s a compact subset of the complex
plane.

In fact, if K is the support of fe C.(X), then f(X) C f(K)u {0}. If
X is not compact, then 0 ¢ f(X), but 0 need not lie in f(K), a8 is seen by
easy examples.

2.11 Notation In this chapter the following conventions will be used.
The notation

1) K<f

will mean that K is a compact subset of X, that fe C.(X), that 0 <
f(x) < 1forall ze X, and that f(z) = 1 forall ze K. The notation

2) <V
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will mean that V is open, that f& C.(X), 0 < f £ 1, and that the support
of fliesin V. The notation

3 K<f<V
will be used to indicate that both (1) and (2) hold.

2,12 Urysohn’s Lemma Suppose X i3 a locally compact Hausdorff space,
Visopenin X, K C V, and K 7s compact. Then there exists an f & C,(X),
such that

1) K<f<V.

In terms of characteristic functions, the conclusion asserts the existence
of a continuous function f which satisfies the inequalities xx < f < xv.
Note that it is easy to find semicontinuous functions which do this; exam-
ples are Xx and Xy.

PROOF Putry = 0,7, = 1, and let ry, 4, 75, . . . be an enumeration
of the rationals in (0,1). By Theorem 2.7, we can find open sets ¥,
and then V', such that V, is compact and

(2) KCViCV.CV,CV,.CV.

Suppose n 2> 2 and V,,, . . . , ¥, have been chosen in such a man-
ner that r; < r; implies V,, C V,. Then one of the numbers
Ty, . - -, Tny 88y 7¢, will be the largest one which is smaller than
Ta+1, and another, say r;, will be the smallest one larger than r,,,.
Using Theorem 2.7 again, we can find V,,, so that

Vfi c V"-r-l C V’un C Vfi‘

Continuing, we obtain a collection {V,} of open sets, one for every
rational r e [0,1], with the following properties: K C V,;, ¥V, C V,
 each V. is compact, and

(3) §>r  implies V.CV,.
Define

_fr fzeV, |1 if ze V,,
@ fi(=) = {0 otherwise, 9:(7) = {s otherwise,
and
(5) f=supf, g=infg.

The remarks following Definition 2.8 show that f is lower semi-
continuous and that g is upper semicontinuous. It is clear that
0 < f<1, that f(z) = 1 if x ¢ K, and that f has its support in V,.
The proof will be completed by showing that f = g¢.
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The inequality f,(x) > g.(x) is possible only if r > s, xe V,, and
z¢ V,. Butr > simplies V., C V,. Hence f, < g, for all r and s,
sof <g.

Suppose f(z) < g(z) for some 2. Then there are rationals r and s
such that f(z) <r < s < g{z). Since f(z) < r, we have z¢ V,;
since g(x) > s, we have z e V By (3), this is a contradiction.
Hence f = g.

2.13 Theorem Suppose Vi, . . . , Va are open subsets of a locally com-
pact Hausdorff space X, K is compact, and

KCV]_U"'UV”.
Then there exist functions h; < Vi (# = 1, . . . , n) such that

1) M)+ - - - + ha(z) =1 (z e K).

Because of (1), the collection {h,, . .. ,hs} is called a partition of
unily on K, subordinate to the cover {V,, . . . ,V,}.

PROOF By Theorem 2.7, each z € K has a neighborhood W, with
compact closure W. C V; for some ¢ (depending on z). There are
points i, . . . ,Tmsuch that Wou - - U W, D K. If1 <7<,
let H; be the union of those W, which lie in V.. By Urysohn’s
lemma, there are functions ¢: such that H; < g: < V;. Define

h =g
@) he = (1 — g1)g2

---------

hy = (1 - 91)(1 - 92) e (1 - gn—l)gn-
Then h: < V. 1tis easily verified, by induction, that
B) hithe+ + Fhi=1—-1Q=g)10—=g2) -1 —gn.

Since K C Hyu - - - u H,, atleast one g;(z) = 1 at each point x € K;;
hence (3) shows that (1) holds.

The Riesz Representation Theorem

2,14 Theorem Let X be a locally compact Hausdorff space, and let A be a
posilive linear functional on C.(X). Then there exisis a o-algebra M in X
which contains all Borel sets in X, and there exists a unique positive meas-
ure p on N which represents A in the sense that

(a) Af = [ fdu
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for every f & Co(X) and which has the following additional properties:
() p(K) < = for every compact set K C X.
(¢} For every E & M, we have

#(E) = inf {u(V): E C V, V open}.
(d) The relation
u(E) = sup {u(K): K C E, K compact}

holds for every open set E, and for every E ¢ I with u(E) < o,
(&) IfEem, A CE, and u(E) = 0, then A ¢ M.

Property (a) is of course the one of greatest interest. After we define
9N and g, (b) to (d) will be established in the course of proving that 9 is
a o-algebra and that u is countably additive. We shall see later (The-
orem 2.18) that in ‘“reasonable” spaces X every Borel measure which
satisfies (b) also satisfies (¢) and (d) and that (d) actually holds for every
E £ 9, in those cases, Property (¢) merely says that (X,91,u) is a com-
plete measure space, in the sense of Theorem 1.36.

Throughout the proof of this theorem, the letter K will stand for a
compact subset of X, and V will denote an open set in X.

Let us begin by proving the uniqueness of . If u satisfies (¢) and (d),
it is clear that u is determined on M by its values on compact sets.
Hence it suffices to prove that k(K) = u2(K) for all K, whenever u;
and u; are measures for which the theorem holds. So, fix K and ¢ > 0.
By (b) and (c), there exists a V 2 K with ux(V) < u(K) + ¢; by Ury-
sohn’s lemma, there exists an f so that K < f < V; hence

w(K) = [ xedun < [ fdui = 8f = [ dua

< L xv duz = pe(V) < po(K) + e

Thus g (K) < p2(K). If we interchange the roles of u; and u,, the oppo-
site inequality is obtained, and the uniqueness of u is proved.
Incidentally, the above computation shows that (a) forces (b).

Constructzon of p and M
For every open set V in X, define
(1) w(V) = sup {Af: f < V}.
If Vi C V,, it is clear that (1) implies u(V,) < u(Vs). Hence
2) #(E) = inf {u(V): E C V, V open}
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if E is an open set, and it is consistent with (1) to define u(E) by (2), for
every B C X.
Note that although we have defined u(E) for every E C X, the count-
able additivity of x will be proved only on a certain o-algebra 9 in X.
Let 9r be the class of all F C X which satisfy two conditions:
p(E) < =, and

(3) w(E) = sup {u(K): K C E, K compact}.

Finally, let 9 be the class of all £ C X such that E n K & 97 for every
compact K.

Proof that u and M have the required properties

It is evident that u is monolone, i.e., that p(4) < u(B) if A C B and
that u(E) = 0 implies E ¢ My and E ¢ M. Thus (¢) holds, and so does
(c), by definition.

Since the proof of the other assertions is rather long, it will be conven-
ient to divide it into several steps.

Observe that the positivity of A implies that A is monotone: f < ¢
implies Af < Ag. Thisisclear, since Ag = Af + A(g — f)andg — f =2 0.
This monotonicity will be used in Steps IT and X.

8sTEP 1 If E\, Es, E;, . . . are arbitrary subsets of X, then

@ WU B) < Y wEd.

=1

PrRoOOF We first show that
(5) p(Viu Ve < (V) + #(Vz)

if V, and V; are open. Choose ¢ < V,uV, By Theorem 2.13
there are functions k, and A, such that 2; < V; and h,(x) + ke(z) = 1
for all z;in the support of g. Hence hig < Vi, g = hig + hog, and so

(6) Ag = A(hyg) + A(Rag) < w(Vy) + u(Va).

Since (6) holds for every g < Viu Vs, (5) follows.

If u(E;) = « for some %, then (4) is trivially true. Suppose there-
fore that u(E;) < « for every 7. Choose ¢ > 0. By (2) there are
open sets V; D E; such that

(M p(V) < p(E) + 2% (=123, ...).

Put Vv = l;] Vi, and choose f < V. Since f has compact support,
f< Viu- - -uV.forsomen. Applyinginduction to (5), we there-
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fore obtain

AF<p(Viu - -uVa) Su(Vy) + « - - + (V) £ Z u(E) + e

i=1

Since this holds for every f < V, and since UE; C V, it follows that

® w(0 B <u(n) < T w(E) +4

i=1
which proves (4), since e was arbitrary.

STEP II IMr coniains every compact set.

This implies assertion (b) of the theorem.

ProoF If K < filet V = {z:f(z) > }}. Then K C V, and g < 2f
whenever g < V. Hence

#(K) < u(V) =sup {Ag:g < V} S A2f) < =.
Since K evidently satisfies (3), K € M.

STEP 1t FEvery open set satisfies (3). Hence My containg every open sel
V with u(V) < .

PROOF Let « be a real number such that o < u(V). There exists
an f < V with « < Af. If W is any open set which contains the
support K of f, then f < W, hence Af < u(W). Thus Af £ u(K).

This exhibits a compact K C V with « < u(K), so that (3) holds
for V.

STEP Iv  Suppose E = _Ul E;, where E1, E,, E;, . . . are pairwise digjoint
members of Mp. Then

9) w(E) = 3 u(E).
i=1
If, in addition, u(E) < <, then also E e Mp.
PROOF We first show that
(10) #(K1u Kz) = u(Ky) + u(Ko)

if K, and K, are disjoint compact sets. Choosee > 0. By Theorem
2.7 (with K, in place of K and K,° in place of U) there are disjoint
open sets ¥V, and Vg such that K; C V.. By Step II, there is an open
set W DO K,u K, such that p(W) < u(K,u K5} + ¢, and there are
functions f; < Wn V; such that Af; > u(WnV,) —¢ fori=1, 2,
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Since K; CWn V;and f, + f: < W (it is here that VinV, = F is
used!), we obtain

p(Ky) + w(K) Sp(Wa V) +pu(WnV,y) <Afi + Afz + 2
S (W) + 2¢ < p(K1U K3) + 3e.

Since e was arbitrary, (10) follows from Step I.
If uy(E) = «, (9) follows from Step I. Assume therefore that

p(E) < «, and choose ¢ > 0. Since E; & Mp, there are compact
sets H; C E; with

(11) w(H:) > u(E;) — 2% =123, ...).

Putting K, = H,u * + - u H, and using induction on (10), we obtain

” n

(12) p(B) 2 w(Ka) = 3, w(H) > Y w(E) — e

=1 t=1

Since (12) holds for every n and every ¢ > 0, the left side of (9) is not
smaller than the right side, and so (9) follows from Step I,
But if u(E) < « and ¢ > 0, (9) shows that

N

(13) k(E) < Y uw(E) + e

i=1

for some N. By (12), it follows that u(E) < u(Kx) + 2¢ and this
shows that E satisfies (3); hence E e Ny.

STEP Vv If E e My and € > 0, there 1s a compact K and an open V such
that K CECVaduw(V — K) < e

PROOF Our definitions show that there exist K and V so that

(V) = 5 < w(E) < w(K) + 5
Since V — K is open, V — K & 9y, by Step III. Hence Step IV
implies that

p(K) + u(V — K) = u(V) < p(K) + ¢

STEP V1 If AeMrand Be My, then A — B, Au B, and A n B belong to
Nr.

PROOF If ¢ > 0, Step V shows that there are sets K; and V;such that
KyCACV, K.CBCV,y and p(Vi— K) < ¢ for i =1, 2.
Since

A—BCV1—'K2C(V1—K1)U(K1—Vg)U(Vz_Kz),
Step I shows that
(14) A — B) e+ pu(Ki—Vy) + e
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Sinee K, — V:is a compact subset of A — B, (14) shows that A — B
satisfies (3), so that A — B & Mp.

Since AuB = (A — B)u B, it follows (by StepIV) that AuB e Mp.
Since AnB =A — (A — B), we also have A n Be 5.

STEP VII M s a o-algebra in X which contains all Borel sels.

PROOF Let K be an arbitrary compact set in X.

If Aeon, then A°nK = K — (A n K), so that A°n K is a differ-
ence of two members of 9z, Hence A¢n K € 9, and we conclude:
A € 9 implies Ace M.

Next, suppose A = l;jAz-, where each A;e M. Put B; = 4,;nK,
and
(15) B, = (Ax,nK)— (Biu - - - uB,_,) n=23,4...).
Then {B.} is a disjoint sequence of members of M, by Step VI, and
AnK = i:] B.. It follows from Step IV that A n K ¢ 9. Hence

A e M.

Finally, if C is closed, then C n K is compact, hence C n K & M,
so C e M. In particular, X & 9.

We have thus proved that 97 is a s-algebra in X which contains all
closed subsets of X. Hence 9N contains all Borel sets in X.

STEPVIIL Ny consists of precisely those sets E € 9N for which u(E) < «.
This implies assertion (d) of the theorem.

prooF If F & My, Steps II and VI imply that £ n K ¢ M for every
compact K, hence E £ 9.

Conversely, suppose E €9 and u(E) < =, and choose ¢ > 0.
There is an open set V D E with u(V) < «; by IIl and V, thereis a
compact K C V with u(V — K) < e¢. Since En K ¢ Mz, there is a
compact H C E n K with

wEnK) < u(H) + e

Since £ C (E n K)u (V — K}, it follows that
p(E) K pEnK) + u(V — K) < p(H) + 2¢
which implies that E € 9.
STEP IX pu 18 @ measure on I,

ProoF The countable additivity of x on 9N follows immediately
from Steps IV and VIII.
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STEP X For every fe C(X), Af = [xf dpu.

This proves (a), and completes the theorem.

PROOF Clearly, it is enough to prove this for real f. Also, it is
enough to prove the inegualily

(16) Af < [oFdu

for every real fe C,(X). For once (16) is established, the linearity
of A shows that

~Af = A-N S [y (—Ndu=— [, 1dn

which, together with (16), shows that equality holds in (16).
Let K be the support of a real fe C.(X), let [a,b] be an interval
which contains the range of f (note the Corollary to Theorem 2.10),

choose ¢ > 0,and choosey;, fori = 0,1, . . . ,n,s0thaty; — yiy < e
and

(17) pL<a<y1 <+ <ya=0

Put

(18) E;={z:9:1 <f(zx) < y}nK (t=1,...,n).

Since f is continuous, f is Borel measurable, and the sets E; are there-

fore disjoint Borel sets whose union is K. There are open sets
V: O E; such that

(19) w(Vy <p@)+ - G=1,...,n

and such that f(z) < y: + e for all ze V;. By Theorem 2.13, there
are functions & < V: such that Zh; = 1 on K. Hence f = Zh:f.
Since kS < (y: + €h;, and since y; — ¢ < f(z) on E;, we have

n

Af = z A(f) < i (% + AR < i (y: + (V)

i=] i=1 =1

< i (g + (B + i (s + e);z

$=1 f=]

n

< ) (g — Qp(Ed) + 2eu(K) + (b + €)e

< }; Jof du + d2u() + b+

= L:fdﬂ+€[2ﬂ(K)+b+‘]'
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Since ¢ was arbitrary, {(16) is established, and the proof of the theorem
is complete.

Regularity Properties of Borel Measures

2.15 Definition A measure u defined on the o-algebra of all Borel setsina
locally compact Hausdorff space X is called a Borel measure on X. H p
is positive, a Borel set £ C X is oufer regular or inner regular, respectively,
if E has property (c) or (d) of Theorem 2.14. If every Borel set in X is
both outer and inner regular, u is called regular,

In our proof of the Riesz theorem, outer regularity of every set E was
built into the construction, but inner regularity was proved only for the
open sets and for those E ¢ M for which u(F) < . It turns out that
this flaw is in the nature of things. One cannot prove regularity of u
under the hypothesis of Theorem 2.14; an example is described in Exer-
cise 16.

However, a slight strengthening of the hypotheses does give us a regular
measure. Theorem 2.17 shows this. And if we specialize a little more,
Theorem 2.18 shows that all regularity problems neatly disappear.

2.16 Definition A set ¥ in a topological space is called o-compact if E is a

.
countable union of compact sets.

A set F in a measure space (with measure u) is said to have o-finite
measure If E 1s a countable union of sets E; with u(E;) < «.

For example, in the situation described in Theorem 2.14, every ¢-com-
pact set has o-finite measure. Also, it is easy to see that if £' ¢ 9T and E
has o-finite measure, then E is inner regular.

2.17 Theorem Suppose X 13 a locally compact, o-compact H ausdorff space.
If M and u are as described in the statement of Theorem 2.14, then M and u
have the following properties:

(a) If E€ O and € > 0, there ts a closed set F and an open set V such
that F CECVand u(V — F) < e

() u s a regular Borel measure on X.

(¢) If E € 9N, there are sets A and B such that A is an F., B 13 a G,
ACECB,and u(B — A) = 0.

As a corollary of (c) we see that every E £ 9 is the union of an F, and
a set of measure 0.

ProOF Let X = K;uK;uK;3u - - -, where each K, is compact.
If E€9n and € > 0, then p(K.n E) < =, and there are open sets
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Va O K. n E such that
1) wVe— KanE) <z (=123, ...
If V = UV, then V — E C U(V. — (K»n E)), s0 that
€
w(V — E) < 3

Apply this to E¢in place of E: Thereisan open set W D E¢such that
p(W — E) <e¢/2. Ift F =W thenF CE,andE — F =W — E-
Now (a) follows.

— T 1t
F

If F is closed, then
p((KsU - - - VK)nF) = u(F)

as n — «, Hence (b) follows from (a).

If we apply (@) withe =1/ (= 1,2,3, .. .), we obtain closed
sets F; and opensets V;such that F; C E C V;and u(V; — F;) < 1/5.
Put A = UF;and B=NV,;, Then A CECB,Aisan F, Bisa
G, and uy(B — A) = OsinceB — A CV;— F;forj=1,2,3,....
This proves (c).

2.18 Theorem Let X be a locally compact Hausdor[f space in which every
open 8et is o-compact. Let N be any positive Borel measure on X such that
MK) < o for every compact set K. Then \ is regular.

Note that every euclidean space R* satisfies the present hypothesis,
since every open set in R* is a countable union of closed balls.

PROOF Put Af = [xfd\, for fe C.(X). Since A(K) < <« for every
compact K, A is a positive linear functional on C.(X), and there is a
measure g, satisfying the conclusions of Theorem 2.17, such that

1) frin= [fds  (FeCux)).

Let V be open in X. Then V = UH;, where H; is compact for
1=12,3 .... Choosef;sothat H; < fi < V. Having chosen
fu - . ., fa, with supports K,, . . . , K,, choose fa.y; so that

(2) Hyu:- - uH,uK U - - UK. < fa1 <X V.
The sequence {f,} increases monotonically to xv at every point of X,
Hence (1) implies

® AW =lm [fd=lm [ fadu= V).

= oy

Let E be a Borel set in X, and choose ¢ > 0. Since p satisfies
Theorem 2.17, there is a closed set F and an open set ¥ such that
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FCECYVY and p(V — F) <e But V — F ig open. Hence (3)

shows that A(V — F) < ¢, and this proves the regularity of A, as in
Theorem 2.17.

Note: It also follows easily that A(E) = u(E) for every Borel set £ in X.
In Exercise 17 a compact Hausdorff space is described which confains

an open set which is not c-compact and in which the preceding theorem
fails,

Lebesgue Measure

2.19 Euclidean Spaces FEuclidean k-dimensional space R* is the set of
2ll smnteido o m o A cohnon namediendne Foovn waol meiembiae. =il
Gll PRAIIILDS 4 = \Jly « . -« &) WIHUDD CUUILULLIALEDS & 810 108 J.lull.lWlb, Willl
the following algebraic and topological structure:

Hz= (&, -..,8),y=0, ... ,m), and ais a real number, z + y
and azx are defined by

(1) x + vy = (El + My - o )Ek + nk)) ar = (afl, o e e 1a£k)-
This makes R* into a real vector space. If z-y = Z&m: and |z| = (z - 2)3,
the Schwarz inequality |z - | < lz| |y] leads to the triangle inequality
2) lr -yl <le -2+ |z —yl;

hnnnn wa ohtain a matrie hv sattine aflz.2) = }'r —_ 'ul Wp assume f.hg_. !
WAAW Y FF SRS VETVLAL ©F AAdW VA AN MJ vvv‘lmb r\w’a” v P P e A L -~

A%

these facts are familiar to the reader, and shall prove them in greater
generality in Chap. 4.

If E C R* and z ¢ R*, the {ranslate of E by z is the set
(3) E4z={y+zyeE}

A get of the form
(4) W={ra<&<p1 i<k}

or any set obtained by replacing any or all of the < signs in (4) by <, is
called a k-cell; its volume is defined to be

k
(5) vol (W) = H B —

i=1

If a ¢ R* and & > 0, we shall eall the set

(6) Qa;d) = {rau< <o+ 3 1=<7Lk}
the &-box with corner ai a. Herea = (a1, . . . ,ou).
Forn=1,2,3, ..., welet P, be the set of all z ¢ R* whose coordi-

nates are integral multiples of 2—*, and we let Q, be the collection of all
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2-"-boxes with corners at points of P,. We shall nced the following four
properties of {Q,}. The first three are obvious by inspection.

(a) If n is fized, each x € R* lies in one and only one member of Q..

b)) If Q@ €9, Q" e, andr < n,theneither @' C Q" or@ n@Q"”" = &.

(¢) If Q e Q,, then vol (Q) = 2-7%; and if n > r, the sel P, has exactly
20k points in Q.

(d) Every nonempty open set in R* is a countable union of disjoint boxes
belonging to Q1 u QU Qzu - - -

PROOF OF (d) If V is open, every x € V lies in an open ball which
lies in V; hence zeQ C V for some @ belonging to some Q.. In
other words, V is the union of all boxes which lie in ¥V and which
belong to some Q,. From this collection of boxes, select those which
belong to @), and remove those in Qp, Q;, . . . which lie in any of the
selected boxes. From the remaining collection, select those boxes of
2, which lie in V, and remove those in Q;, @4, . . . which lie in any
of the selected boxes, If we proceed in this way, (@) and (b) show

that (d) holds.

2.20 Theorem There exists a posilive complete measure m defined on a
a-algebra 9 in R, with the following properties:

(a) m(W) = vol (W) for every k-cell W.

(b) M contains all Borel sets in R*; more precisely, E &€ 9N if and only if
there are sets A and B C R* suchthat A C EC B, Aisan F,, B
isa Gy, and m(B — A) = 0. Also, m s regular,

(¢) m s translation tnvariant, i.e.,

m(E + z) = m(E)

for every E € O and every x & R*.

(d) If u s any positive translation tnwariant Borel measure on R* such
that u(K) < « for every compact set K, then there is a constant ¢
such that u(E) = em(E) for ail Borel sets E C R*.

The members of 9 are the Lebesgue measurable sets in R*; m is the
Lebesgue measure on B*, 'When clarity requires it, we shall write m; in
place of m. For a description of other measures on R?, see Theorem 8.14.

PROOF If f is any complex function on R* with compact support,
define

(1) Af=2"%3 flz) (=123, ..,
a¢Pa

where P, is as in Sec. 2.19.
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Now suppose f & C.(R*), f is real, W is an open k-cell which con-
tains the support of f, and e > 0. The uniform continuity of f ([26],
Theorem 4.19) shows that there is an integer N and that there are
functions g and h with support in W, such that (i) g and 4 are constant
on each box belonging to Qw, (i) g <f <A, and (iil)) + — ¢ <e.
It n > N, Property 2.19(c) shows that

2) Avg = Ag < Aof < Ak = Ayh.

Thus the upper and lower limits of {A,f} differ by at most e vol (W),
and since ¢ was arbitrary, we have proved the existence of

(3) Af = lim A.f  (feC.(RM).

It is immediate that A is a positive linear functional on C.(R*).
(In fact, Af is precisely the Riemann integral of f over B*. We went
through the preceding construction in order not to have to rely on
any theorems about Riemann integrals in several variables.) We
define m and M lo be the measure and o-algebra associated with this A
as in Theorem 2.14.

Since Theorem 2.14 gives us a complete measure and since R¥ is
o-compact, Theorem 2.17 implies assertion (b) of Theorem 2.20.

To prove (a), let W be the open cell 2.19(4), let E, be the union of
those boxes belonging to Q. whose closure lies in W, and choose f so

that B, < f < W. Our construction of Af then shows that

k
@ Af >[I B: — ai — 2v7).

i=1
Let r — =, and recall that
() m(W) = sup {Af:f < W},

by the construction in Theorem 2.14. Thus m(W) = vol (W) for
every open cell W, and since every cell is the intersection of a decreas-
ing sequence of open cells, we obtain (a).

Since vol (W + z) = vol (W), it follows that
(6)’ m(E + z) = m(E)  (zeR"

holds for every cell E; in particular, (6) holds for every box E;
Property 2.19(d) therefore implies that (6) holds for every open sef
E; and now (6) follows for every E & 91, since
m(E) = inf {m(V): E C V, V open].
This proves (c).
Finally, suppose u is a translation invariant Borel measure on R¥,
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Put ¢ = u(Q,), where Qo is a 1-box. Since @, is the union of 2%
disjoint 2—"-boxes, since these are translates of each other, and since
m(Qo) = 1, we have

) 27%u(Q) = 1(Qo) = em(Qo) = 27*em(Q)

forevery 2=7-box . Property 2.19(d) now implies that u(E) = cm(E)
for every open set E, and the regularity of m and u (Theorem 2.18)
shows that this last equation holds for every Borel set E.

This completes the proof.

2.21 Remarks If m is the Lebesgue measure on R¥, it is customary to
write L(R*) in place of L'(1n). If E is a Lebesgue measurable subset of
R*, and if m is restricted to the measurable subsets of E, a new measure
space is obtained in an obvious fashion. The phrase “f& L' on E’’ or
“fe L'(E)” is used to indicate that f is integrable on this measure space.

If £ = 1, if I is any of the sets (a,b), (a,b], [a,b), [a,b], and if f & LYT), it
is customary to write

[ *fz)dz  in place of ﬁ f dm.

Since the Lebesgue measure of any single point is 0, it makes no difference
over which of these four sets the integral is extended.

If f vs a continuous complex function on [a,b], then the Riemann integral
of f and the Lebesgue integral of f over [a,b] cotncide. This is obvious from
our construction if f(a) = f(b) = 0 and if f(z) is defined to be 0 forz < a
and for z > b. The general case follows without difficulty. Actually
the same thing is true for every Riemann integrable f on [a,b]. Since we
shall have no occasion to discuss Riemann integrable functions in the
sequel, we omit the proof and refer to Theorem 10.33 of [26].

A natural question, which may have occurred to some readers, is
whether every subset of R* is Lebesgue measurable. It is a consequence
of the axiom of choice that the answer is negative, even for k = 1,

2.22 Example For real numbers z and y, write z ~ y if and only if
z — y is rational. It is clear that z ~ z, that z ~ v implies ¥ ~ z, and
that £ ~ y, y ~ z implies z ~ 2. Thus ~ is an equivalence relation.
(In algebraic terminology, letting Q be the additive group of the rational
numbers, each equivalence class is a coset of Q@ in R!.) Let E be a set in
(0,1) which contains exactly one point in every equivalence class, (The
assertion that there is such a set E is a direct application of the axiom of
choice.) We claim that E is not Lebesgue measurable.

Asin Bec. 219, let E + 7 = {z + r: ze E}. We need two properties
of E:
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(a) If z ¢ (0,1), then z ¢ E + r for some rational r e (—1,1).
(b) If r and s are distinct rationals, then (E +r)n (¥ + 38) = &.

To prove (a), note that to every x & (0,1) there corresponds a y ¢ E such
thatz~y. Ifr=2—y, thenz=y+rekE +r.

To prove (b), supposeze (E+r)n(E +s). Thenz=y+r=2+3s
forsome ye E,zeE. Sincey —2=8—r 30, wehavey ~ 2, and E
contains two equivalent points, in contradiction to our choice of E.

Now assume that £ is Lebesgue measurable, and put a = m(E).
Define S = U(E + r), the union being extended over all rational rg (~1,1).
By (b), the sets E + r are pairwise disjoint; since m is translation invar-
iant, m(E + r) = a for every r; since 8 C (—1,2), m(S) < 3. The

countable additivity of m now forces & = 0, and hence m(S) = 0. But
(@) implies that (0,1) C 8§, hence 1 < m(8), and we have a contradiction.

Continuity Properties of Measurable Functions

Since the continuous functions played such a prominent role in our
construction of Borel measures, and of Lebesgue measure in particular, it
seems reasonable to expect that there are some interesting relations

between continuous functions and measurable functions. In this section
we ghall give two theorems of this kind.

We shall assume, in both of them, that u 7s @ measure on a locally compact
Hausdorff space X which has the properties stated in Theorem 2.14. In

particular, p could be Lebesgue measure on some R*.

2.23 Lusin’s Theorem Suppose f is a complexr measurable function on X,
p(Ay < =, f(z) =0 z¢ A, and ¢ > 0. Then there exists a g e C.(X)
such that

1) wlz: f(z) # g@)]) < e

Furthermore, we may arrange it so that
2) sup |g(z)| < sup [f(x)].
zeX ze X

PROOF Assume first that 0 < f < 1 and that 4 is compact, Attach
a sequence {s,} to f, as in the proof of Theorem 1.17, and put ¢, = s;
and i, = s, — sp—1forn = 2,3,4, . . .. Then 2%, is the character-
istic function of a set T, C 4, and

_(3) flz) = E ta(2) (z & X).

n=1

Fix an open set V such that A C V and V is compact. There are
compact sets K, and open sets V,such that K, C T, C V. C V and
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u(Va — K,) < 2" By Uryschn’s lemma, there are functions A,
such that K,.< ks < V.. Define

@ 0@ = 3 Th@ e

This series converges uniformly on X, so g is continuous. Also, the
support of g lies in V. Since 27"h,(z) = t.(z) except in V, — K,
we have g(z) = f(z) except in U(V, — K,), and this latter set has
measure less than e.  Thus (1) holds if A is compact and 0 £ f < 1.

Tt follows that (1) holds if A is compact and f is a bounded meas-
urable function. The compactness of 4 is easily removed, for if
u(4) < = then 4 contains a compact set K with u(4 — K) smaller
than any preassigned positive number. Next, if f is a complex
measurable function and if B, = {z:|f(z)| > n}, then NB, = &, s0
p(Bn) — 0, by Theorem 1.19(¢). Since f coincides with the bounded
function (1 — xz,) - f except on B,, (1) follows in the general case.

Finally, let B = sup {|f(z)|: z € X}, and put o(2) = 2z if [¢[| < R,
o(z) = Rz/|z| if 2| > R. Then ¢ is a continuous mapping of the
complex plane onto the dise of radius R. If g satisfies (1) and
g, = oo g, then g, satisfies (1) and (2).

Corollary Assume that the hypotheses of Lusin’s theorem are satisfied and
that |f| £ 1. Then there is a sequence {g.} such that g. &€ C(X), lg.| < 1,

and

()

f(z) = lim g.(z) a.e.

PROOF The theorem implies that to each n there corresponds a
gn € C.(X), with |g.| £ 1, such that u(E,) < 27, where E, is the
set of all x at which f(z) £ g,(x). For almost every z it is then true
that z lies in at most finitely many of the sets E, (Theorem 1.41),

For any such z, it follows that f(z) = g.(x) for all large enough n.
This gives (5).

2.24 The Vitali-Carathéodory Theorem Suppose f& L'(u), f is real-
valued, and € > 0. Then there exist funciions uw and v on X such that

u < f < v, uis upper semicontinuous and bounded above, v is lower semi-
continuous and bounded below, and

1)

/;r(v-—u)du<e.
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PROOF Assume first that f > 0 and that f is not identically 0.
Since f is the pointwise limit of an increasing sequence of simple
functions s, f is the sum of the simple functions #, = sn — sy
(taking s, = 0), and since %, is a linear combination of characteristic
functions, we see that there are measurable sets E: (not necessarily
disjoint) and constants ¢; > 0 such that

@ &) = 3 exs@  @eX)
Since
3) fordun="Y cu),

i1

the series in (3) converges. There are compact sets K; and open sets
V:such that K; C E; C V:and

(4) cu(Vi— K,) < 27l =123, ...
Put
w N
(5) v = E CXv,y u = 2 CiXK,y
i=1 i=1

where N is chosen so that

©6) Y ) < &
TR

Then v is lower semicontinuous, u is upper semicontinuous, u < f < v,

and :
N ®
v—u= Z ci(xv, — X&) + Z CiXv;
i=1 NT1

< Y oalxve—xx) + Y eaxs
i=1 Nt
so that (4) and (6) imply (1).

In the general case, write f = f+ — f-, attach w; and v to ft,
attach u, and »: to f, as above, and put u = u; — vz, v = v1 — Ua.
Since —p. is upper semicontinuous and since the sum of two upper
semicontinuous functions is upper semicontinuous (similarly for
lower semicontinuous; we leave the proof of this as an exercise), u
and v have the desired properties.
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Exercises

In Exercises 1 to 5, m stands for Lebesgue measure on Rl

1 Given ¢ > 0, construct an open set E C [0,1] which is dense in

' [0,1], such that m(E) = e. (To say that A is dense in B means
that the closure of A contains B.)

2 Construct a totally disconnected compact set K C R! such that
m(K) > 0. (K is to have no connected subset consisting of more
than one point.)

If » is lower semicontinuous and v < xz, show that actually
v < 0. Hence xx cannot be approximated from below by lower
semicontinuous functions, in the sense of the Vitali-Carathéodory
theorem.

3 Construct a Borel set £ C R* such that

0 < mEnI) <m{)

for every nonempty segment 7. Is it possible to have m(E) < «
for such a set?

4 Show that there are uncountable sets £ C R! with m(F) = 0.

5 If f is a Lebesgue measurable complex function on R, prove that
there is a Borel function g on R! such that f = g a.e. {m].

6 Construct a sequence of continuous functions f. on [0,1] such that
0 < fa £ 1, such that

lim [ f.(z)dz =0,
n—rw 0

but such that the sequence {f,(z}} converges for no z e [0,1].

7 If {f.} is a sequence of continuous functions on [0,1] such that
0 < f» < 1and such that f,(z) » 0 as n — =, for every z € [0,1],
then

lim [ fu(z)dz = 0.

maw JO
Try to prove this without using any measure theory or any the-
orems about Lebesgue integration. (This is to impress you with
the power of the Lebesgue integral. A nice proof was given by
W. F. Eberlein in Communications on Pure and Applied Mathe-
matics, vol. X, pp. 357-360, 1957.)

8 If u is an arbitrary positive measure and if f e L'(u), prove that
{z: f(z) 5= 0} has os-finite measure.

9 Let f be an arbitrary complex function on R, and define

¢(z,8) = sup {|f(s) — f(D)|:s, te(z — § =+ 9},
¢(x) = inf {¢(z,8): 3 > 0}.
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10

11

12

13

14

Prove that ¢ is upper semicontinuous, that f is continuous at a
point z if and only if ¢(z) = 0, and hence that the set of points of
continuity of an arbitrary complex function is a Gi.

Formulate and prove an analogous statement for general
topological spaces in place of RL
Let {f.} be a sequence of real nonnegative functions on B!, and
consider the following four statements:
(a) If f1 and f. are upper semicontinucus, then f; 4+ f3 is upper

semicontinuous.
(b) If fi and f. are lower semicontinuous, then f; + f, is lower
semicontinuous. ,
-]
{¢) If each f, is upper semicontinuous, then ? fa is upper semi-

continuous.

(d) If each f,. is lower semicontinuous, then Z f, is lower semi-
1

continuous.

Show that three of these are true and that one is false. What
happens if the word “nonnegative” is omitted? Is the truth of
the statements affected if R! is replaced by a general topological
space?

Let u be a regular Borel measure on a compact Hausdorff space X;
assume u(X) = 1. Provethat thereis a compactset K C X (’rhe
carrier or support of u) such that u(K) = 1 but u(H) < 1{or every
proper compact subset H of K. Hint: Let K be the intersection
of all compact K, with u(K,)} = 1; show that every open set V
which contains K also contains some K, Regularity of u is
needed; compare Exercise 17. Show that K* is the largest open
set in X whose measure is 0.

Show that every compact subset of R! is the support of a Borel
measure.

Is it true that every compact subset of B! is the support of a con-
tinuous function? If not, can you describe the class of all com-
pact sets in R' which are supports of continuous functions? Is
your description valid in other topological spaces?

Let X be a metric Space, with metric p. For any nonempty
.[‘} L A aenne

pe(z) = inf {p(z,y):y e E}.
Show that pg is a uniformly continuous function on X. If A and
B are disjoint nonempty closed subsets of X, examine the relevance
of the function
_ pa(x)
@) = 2@ + @

to Urysohn’s lemma.
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15 Examine the proof of the Riesz theorem and prove the following

16

17

two statements: :

(a) If E, C V: and E; C V, where V; and V; are disjoint open
sets, then u(E,V E;) = u(E,) + p(E:), even if E; and K, are
not in 9M.

(b) If Ee Mg, then E = NuK,;uKjsu . . . , where {K;} is a dis-
jcint countable collection of compact sets and u(N) = 0.

Let X be the plane, with the following topology: A set is open if

and only if its intersection with every vertical line is an open sub-

set of that line, with respect to the usual topology of . Show

that this X is a locally compact Hausdorff space. If fe C,(X),

ot 7. » ha thosse valies af » far whirh f(> 1) =2 0 far at
E Sy wl, L] - . , “wir APV VRARLFLT s ¥ AL WA L W AVrA ¥Y RAENW LR J \w,s’ rd A4 ER 2 -

least one y (there are only finitely many such z!), and define

Af = Z f o [y dy.

F=1

Let p be the measure associated with this A by Theorem 2.14.
If E is the z-axis, show that u(E) = « although u(K) = 0 for
every compact K C E.

This exercise requires more set-theoretic skill than the preceding
ones. Let X be a well-ordered uncountable set which has a last
element w;, such that every predecessor of w, has at most countably
many predecessors. (‘“Construction”: take any well-ordered set
which has elements with uncountably many predecessors, and let
w; be the first of these; w, is called the first uncountable ordinal.)
For a e X, let P.[S.) be the set of all predecessors (successors) of
a, and call a subset of X open ifitisa P, or an Sgora P,nSzora
union of such sets. Prove that X is then a compact Hausdorff
space. (Hint: No well-ordered set contains an infinite decreasing
sequence,)

Prove that the complement of the point w; is an open set which
is not e-compact..

Prove that to every f & C(X) there corresponds an « # w, such
that f is constant on S,.

Prove that the intersection of every countable collection {K,}
of uncountable compact subsets of X is uncountable. (Hini:
Consider limits of increasing countable sequences in X which
intersect each K, in infinitely many points.)

Let 91t be the collection of all E C X such that either E v {w:}
or E°u {w,;} contains an uncountable compact set; in the first case,
define A(E) = 1;in the second case, define A\(E) =.0. Prove that
9 is a o-algebra which contains all Borel sets in X, that X is a
measure on 9 which is not regular (every neighborhood of w,; has
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measure 1), and that

fo) = fofan

for every fe C(X). Describe the regular u which Theorem 2.14
associates with this linear functional.

18 Does there exist a sequence of continuous real functions f, on R!
such that f.(x) — « if and only if z is rational? What if
“rational” is replaced by “irrational”’?

19 It is easy to guess the limits of

"1 — ZY ears " A e
1() (1 n)e’dx and Jé(l-!—n)e dz,
as n — ©, Prove that your guesses are correct.

20 If m is Lebesgue measure on E*, prove that m(—E) = m(E),
where —E = {—x:z & E}, and hence that

o F@ dz = [, f(~2) dz
for all f e L(R*).

21 There is an error in the final computation on p. 46. Find it.
Show that u(K) < A(Zh;) by a variation of the argument used in
Step II (replace 4 by @ < 1, let @ — 1) and check that the follow-
ing computation is correct:

=3 a0n < 3w+ ok

tm] 1=1
n

= Y (ol + 5+ oAk = laf 2 Ak,

sml i=1
< Y (al + 3 + OB + ¢/nl — lolu(K)
tm]
= Y = o) + 2u®) + - ) (ol + 5+ 9
1=l 1=l
f k] ) [l A

du + €2u(K) + |e| + b + ¢}

S~y

5],‘
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L’=spaces

Convex Functions and Inequalities

Many of the most common inequalities in analysis have their origin
in the notion of convexity.

3.1 Definition A real function ¢ defined on a segment (a,b), where
— o < a < bK< «,is called convex if the inequality

1) e((1 — Nz + Ay) < (1 = Ne(@) + Ae(y)

holds whenevera < r < b,a <y < b,and0 <A <L 1.

Graphically, the condition is that if z < ¢ < y, then the point (¢,¢(f))
should lie below or on the line connecting the points (z,¢(z)) and (y,¢(y))
m the plane. Also, (1) is equivalent to the requirement that

@) olt) — o(8) . (1) — (1)

t— 8§ — u—t

whenever a < s <t < u <b.

The mean value theorem for differentiation, combined with (2), shows
immediately that a real differentiable function ¢ is convex in (a,b) if and
only if a < 8 < t < b implies ¢'(8) < ¢'(¥), i.e., if and only if the deriva-
tive ¢’ is & monotonically increasing function.

For example, the exponential function is convex on (— «, e},

3.2 Theorem If ¢ is convex on (a,b), then ¢ 18 continuous on (a,b).

PROOF The idea of the proof is most easily conveyed in geometric
language. Those who may worry that this is not “rigorous’” are
invited to transcribe it in terms of epsilons and deltas.

Suppose a < s <z <y <t <b Write 8 for the point (s,¢(s))
in the plane, and deal similarly with z, , and ¢{. Then X is on or
below the line SY, hence Y is on or above the line through 8 and X;

also, Y is on or below X7T. As y— z, it follows that ¥ — X, i.e,
60
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¢(y) — ¢(x). Left-hand limits are handled in the same manner, and
the continuity of ¢ follows.

Note that this theorem depends on the fact that we are working on an
open segment. For instance, if ¢(x) = 0 on [0,1) and ¢(1) = I, then ¢
satisfies 3.1(1) on [0,1] without being continuous.

3.3 Theorem (Jensen’s Inequality) Let p be a positive measure on a
o-algebra M in a set Q, so that u(Q) = 1. If f is a real function in L (y), if
a < f(x) < b for all z £, and if ¢ 7s convex on (a,b), then

(1) e([1du) < [ ondu
Note: The cases a = — ® and b = « are not excluded.

PROOF Put t = fgafdp. Thena <t < b. IfBisthe supremum of
the quotients on the left of 3.1(2), wherea < s < t, then g8 is no larger
than any of the quotients on the right of 3.1(2), for any w ¢ (¢,b). It
follows that

@ e(8) > o) +8E—1t) (a<s<bh).
Hence
3) e(f(x)) — o(t) — B(fx) — ) 2 0

for every z £ Q. Since ¢ i8 continuous, ¢ o f is measurable. If we
integrate both sides of (3) with respect to u, (1) follows from our
choice of ¢ and the assumption u(2) = 1.

To give an example, take ¢(z) = e*. Then (1) becomes

@) exp{Lfd,u} < Lefdu.

If © is a finite set, consisting of points p,, . . . , Pa, say, and if
p(pd) = 1/n,  f(pa) = =,

(4) becomes

®  epflet o ta)<ier e,

for real x;. Putting y; = €%, we obtain the familiar inequality between
the arithmetic and geometric means of n positive numbers:

Q s g S @ ).

Going back from this to (4), it should become clear why the left and right
sides of

@) exp{ [loggdu} < [ gdu
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are often called the geometric and arithmetic means, respectively, of the
positive function g.
If we take u({p:}) = ai > 0, where Za; = 1, then we obtain

(8) Yiuys®™ - - - o L ayi a4+ - 0 0 4 anls

in place of (6). These are just a few samples of what is contained in
Theorem 3.3.
For a converse, see Exercise 20.

3.4 Definition If p and g are positive real numbers such that p + ¢ = pg,
or equivalently

(1) +

Q1

=1,
I

3|

then we call p and ¢ a pair of conjugate exponents. 1t is clear that (1)
implies 1 <p< o and 1 < ¢ < «. An important special case is
p=g=2

Asp— 1, (1) forcesg— «. Consequently 1 and « are also regarded
as a pair of conjugate exponents.

3.5 Theorem Let p and g be conjugale exponents, 1 < p < w. Let X be
a measure space, with measure u. Let f and g be measurable functions on X,
with range in [0,«]. Then

w fefoaw < { [ du}"™ { [ gnau}™”
and

o {Larara)” s (fraf s (Lo}

The inequality (1) is Hélder’s, (2) is Minkowski’s. If p = ¢ = 2, (1)
is known as the Schwarz inequality.

ProoF Let A and B be the two factors on the right of (1). IfA = 0,
then f = 0 a.e. (by Theorem 1.39); hence fg = 0 a.e., so (1) holds.
If A > 0and B = o, (1) is again trivial. So we need consider only
thecase 0 < A < ©,0 < B < «, Put

_f - 9.
(3) F = 1 G = B
This gives
(4) Lm@=ﬂm@=L

If x ¢ X issuch that 0 < F(z) < « and 0 < G(z) < =, there are
real numbers s and ¢ such that F(z) = e/, G(z) = ¢!/2. Since
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1/p + 1/q = 1, the convexity of the exponential function tmplies
that

(5) etlnttle < plet + gl
It follows that
(6) F(2)G(z) £ p~'F(z)* + ¢'G(z)?

for every z 8 X. Integration of (6) yields
@) [ FGdu < p g =1,

by (4); inserting (3) into (7), we obtain (1).
To prove (2), we write

(8) F+or=f-G+g+g-(F+g
Holder’s inequality gives

@ [+ <[ P+ g)enefte

Let (9’) be the inequality (9) with f and g interchanged. Since
(p — 1)g = p, addition of (9) and (9’) gives

10 [G+or<{f T+ [{[ Y+ {fo}'"]

Clearly, it is enough to prove (2) in the case that the left side is
greater than 0 and the right side is less than . The convexity of
the function {? for 0 < ¢ < = shows that

(L5 <3+ o

Hence the left side of (2) is less than «, and (2) follows from (10) if
we divide by the first factor on the right of (10), bearing in mind that
1 —1/q = 1/p. This completes the proof.

It is sometimes useful to know the conditions under which equality
can hold in an inequality. In many cases this information may be
obtained by examining the proof of the inequality.

For instance, equality holds in (7) if and only if equality holds in (6)
for almost every z. In (5), equality holds if and only if s = {. Hence
“Fr = (7 a.e.”’ is a necessary and sufficient condition for equality in (7),
if (4) is assumed. In terms of the original functions f and g, the following
result is then obtained:

Assuming A < = and B < , equality holds in (1) if and only if there
are constanls o and B, not both 0, such that af* = Bg¢ a.e.

We leave the analogous discussion of equality in (2) as an exercise.
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The L?-spaces

In this section, X will be an arbitrary measure space with a positive
measure p.

3.6 Definition If 0 < p < « and if fis a complex measurable function
on X, define

M 1fls = { [y 17l du} ™
and let L?(u) consist of all f for which
(2) ”f”p < ®,

We call || f|l, the Lr-norm of f.

If x is Lebesgue measure on R*, we write L?(R¥) instead of L?(u), as in
Sec. 2.21. If u is the counting measure on a set A, it is customary to
denote the corresponding L?-space by £7(4), or simply by ¢?, if A is
countable. An element of £# may be regarded as a complex sequence
z = {&}, and

ol = { 2 &)

3.7 Definition Suppose g: X — [0, ] is measurable. Let 8 be the set
of all real « such that

(1 wlg=((a, =])) = 0.

IfS=¢,putB= o. If S ¢, put B =inf8. Since

@) 7B, = U g—f((ﬁ + 5 oo])
n=1 n

and since the union of a countable collection of sets of measure 0 has meas-
ure 0, we see that & S. We call 8 the essential supremum of g.

If f is a complex measurable function on X, we define ||f||. to be the
essential supremum of |f|, and we let L=(u) consist of all f for which
Iflle < . The members of L*(u) are sometimes called the essentially
bounded measurable functions on X.

It follows from this definition that the inequality |f(x)] < N\ holds for
almost all z if and only if X > || fil«.

As in Definition 3.6, L*(R*) denotes the class of all essentially bounded
(with respect to Lebesgue measure) functions on R*, and £°(A4) is the
class of all bounded functions on A. (Here bounded means the same as
essentially bounded, since every nonempty set has positive measure!)
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3.8 Theorem If p and q are conjugate exponents, 1 < p < «», and if
fe LP(u) and g € L1(u), then fg & L' (), and

@) gty < (A0 llglle.

prooF Tor 1 < p < o, (1) is simply Hélder’s inequality, applied
to |f| and |gl. If p = =, note that

) f@)g@)| < |l fll=lg@)|

for almost all z; integrating (2), we obtain (1). If p =1, then
g = «, and the same argument applies.

3.9 Theorem Suppose 1 <p < », and feL?(u), ge L?(u). Then
f+ geL*(n), and

(1) Wf+ glls < IIflls + llglls

prooF For 1 < p < =, this follows from Minkowski’s inequality,
since

[o\r+alan < [, U1+ 1D dn.

For p = 1 or p = =, (1) is & trivial consequence of the inequality

I + gl < |f| + gl

3.10 Remarks Fix p, 1 <p < ». If felL?(u) and « is a complex
number, it is clear that of € L*(g). In fact,

(1) : lafils = la] [|Fi]-

In conjunction with Theorem 3.9, this shows that L2(u) is a complex vector
space.

Suppose f, ¢, and h are in L?(u). Replacing fbyf — gandgbyg — &
in Theorem 3.9, we obtain

(2) If = ke < if = gll, + [lg — Al

This suggests that a metric may be introduced in L7(u) by defining the
distance between f and g to be ||f — g||,. Call this distance d(f,g) for
the moment. Then 0 < d(f,g) < «», d(ff) =0, d(f,¢) = d(g.f), and
(2) shows that the triangle inequality d(f,h) < d(f,g) + d(g,h) is satisfied.
The only other property which d should have to define a metric space is
that d(f,g) = 0 should imply that f = g. In our present situation this
need not be so; we have d(f,g) = 0 precisely when f(x) = g(zx) for almost
all z.

Let us write f ~ g if and only if d(f,g) = 0. It is clear that this is an
equivalence relation in L*(u) which partitions L?(u) into equivalence
classes; each class consists of all functions which are equivalent to a given
one. If F and G are two equivalence classes, choose f € F and g ¢ G, and
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define d(F,G) = d(f,g); note that f ~ f, and g ~ g, implies

d(f;g) = d(fl!gl)s

so that d(F,(F) is well defined.

With this definition, the set of equivalence classes is now a metric
space. Note that it is also a vector space, since f ~ f, and g ~ g, implies
F+g~fi+ g1and of ~ afs.

When L?(u) is regarded as a metric space, then the space which is
really under consideration is therefore nol a space whose elements are func-
tions, but a space whose elements are equivalence classes of functions. For
the sake of simplicity of language, it is, however, customary to relegate
this distinction to the status of a tacit understanding and to continue to
speak of L?(u) as a space of functions. We shall follow this custom.

If {f.} is & sequence in L?(u), if f& L*(u), and if im || f. — fll, = 0, we

n—o

say that {f.} converges to f in L?(u) (or that {f.} converges to f in the
mean of order p, or that {f,} is LP-convergent to f). If to every e > 0
there corresponds an integer N such that ||f, — ful, < eassoonasn > N
and m > N, we call {f.} a Cauchy sequence in L*(u). These definitions
are exactly as in any metrie space.

It 18 a very important fact that L?(u) is a complete metric space, i.e.,
that every Cauchy sequence in L?(u) converges to an element of L?(u):

3.11 Theorem L*(u) is a complete metric space, for 1 < p < « and for
every posiiive measure .

PROOF Assume first that 1 < p < «. Let {f.} be a Cauchy

sequence in L?(u). There is a subsequence {f,.,}, n1 < ma < - -
such that

(1) ”fﬂa'ﬂ - fﬂ;” <2 (7: = 1) 2! 3; ‘o -)-
Put
(2) Z |fn+1 .fm g= 2 fﬂ-u ﬂ

i=1

Since (1) holds, the Minkowski inequality shows that |gsfl, < 1
fork=1,23 .... Hence an application of Fatou’s lemma to
{g:?} gives ﬂgﬂp < 1. Inparticular, g(r) < = a.e., so that the series

) Fole) + 3, (Funa) = fue)

converges absolutely for almost every z € X. Denote the sum of (3)
by f(x), for those z at which (3) converges; put f(z) = 0 on the remain-
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ing set of measure zero. Since

k=1
(4) I + ‘Zl (Fains — o) = Sy
we see that

(5) fl) = lim fo,(x)  ae

Having found a function f which is the pointwise limit a.e. of
{fx.}, we now have to prove that this f is the Lr-limit of {f.}. Choose
¢ > 0. There exists an N such that |[fa — full, < € if n > N and
m > N. For every m > N, Fatou’s lemma therefore shows that

© [ 1f = falrdu < lim inf [ Vine = Suls s < e

We conclude from (6) that f — f. & LP(u), hence that fe L2(u)
{since f = (f — fw) + ful, and finally that ||f — full, > 028 m — o,
This completes the proof for the case 1 < p < =,

In L=(x) the proof is much easier. Suppose {f.} is a Cauchy
sequence in L*(u), let A, and B,. . be the sets where |fi(2)] > ||fill»
and |fa(x) — fu(@)| > ||fn — fullw, and let E be the union of these
sets, fork, m,n =1,2,3, . ... Then u(E) = 0, and on the com-
plement of E the sequence {f,} converges uniformly to a bounded func-
tion f. Define f(z) = 0 forz e E. Then fe L*(u), and {|fa — fll« —
Oasn— .

The preceding proof contains a result which is interesting enough to be
stated separately:

3.12 Theorem Ifl1 < p < = and if {f.} is a Cauchy sequence in L*(u),
with limit f, then {f.} has a subsequence which converges pointwise almost
everywhere to f(x).

The simple functions play an interesting role in L?(u):
3.13 Theorem Let 8 be the class of all complex, measurable, simple func-
tions on X such that
(1 p({z: s(x) = 0}) < .
If 1 £ p < =, then 8 is dense tn L*(u).
prooF First, it is clear that 8 C Lr(u). Suppose f > 0, f& L7(u),
and let {s,} be as in Theorem 1.17. Since 0 < s, < f, we have
sae L7(u), hence s, & 8. Since |f — s./? < f?, the dominated con-

vergence theorem shows that ||f — s./,— 0 as »n — . Thus f is

in the L?-closure of 8. The general case (f complex) follows from
this.
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Approximation by Continuous Functions

So far we have considered L?(u) on any measure space. Now let X
be a locally compact Hausdorff space, and let u be & measure on a s-algebra
I in X, with the properties stated in Theorem 2.14. For example, X
might be R* and u might be Lebesgue measure on R*.

Under these circumstances, we have the following analogue of Theorem
3.13:

3.14 Theorem Forl < p < oo, C(X) is dense in L?(u).

PROOF Define S as in Theorem 3.13. If s& .S and ¢ > 0, there
exists a g ¢ C.(X) such that g(x) = s(x) except on a set of measure
< ¢, and |g| < ||s]|o (Lusin’s theorem). Hence

(1) lg — sil, < 2617 8] .

Since S is dense in L?(u), this completes the proof.

3.15 Remarks Let us discuss the relations between the spaces L?(R*)
(the Lr-spaces in which the underlying measure is Lebesgue measure on
R*) and the space C.(R*) in some detail. We consider a fixed dimension .

For every p e {1, =] we have a metric on C.(R¥); the distance between
1" and g is ” 'F — 4l Note that thig is 3 genuine metrie and that we do

“eriva y Yip EA RV AT ALK AW v AL dad A3 CNARLA

not have to pass to equivalence classes. The point is that if two con-
tinuous functions on R* are not identical, then they differ on some non-
empty open set V, and m(V) > 0, since V contains a k-cell. Thus if two
members of C.(R¥) are equal a.e., they are equal. It is also of interest
to note that in C.(R*) the essential supremum is the same as the actual
supremum : for f & C.(R¥)

1) - 1 flle = sup |f(@)].
ze Rk

If 1 < p < =, Theorem 3.14 says that C.(R¥) is dense in L?(R*), and
Theorem 3.11 shows that L?(RF¥) is complete. Thus L?(R*) is the com-
pletion of the meiric space which 7s oblained by endowing C.(R*) with the
Lr-metric.

The cases p = 1 and p = 2 are the ones of greatest interest. Let us
state once more, in different words, what the preceding result says if
p =1 and k = 1; the statement shows that the Lebesgue integral is
indeed the “right” generalization of the Riemann integral:

If the distance between two continuous funclions f and g, with compact
supports in R, is defined to be

2) [2. 150 — o)
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the completion of the resulting metric space consisis precisely of the Lebesgue
integrable functions on R, provided we identify any two that are equal almost
everywhere.

Of course, every metric space S has a completion 8* whose elements
may be viewed abstractly as equivalence classes of Cauchy sequences in
S (see [26], p. 71). The important point in the present situation is that
the various L?-completions of C.(R*) again turn out to be spaces of fune-
tions on RF.

The case p = « differs froin the cases p < ». The L~-completion of
C.(RF) s not L>(R¥), but is Co(RF*), the space of all continuous functions on
R® which “vanish at infinity,” a concept which will be defined in Sec. 3.16.
Since (1) shows that the L*-norm coincides with the supremum norm on
C.(RF), the above assertion about Cy(R*) is a special case of Theorem 3.17.

3.16 Definition A complex function f on a locally compact Hausdorff
space X is said to vanish at infinity if to every ¢ > 0 there exists a compact
set K C X such that |f(x)] < ¢ for all z not in K.

The class of all continuous f on X which vanish at infinity is called
Co(X).

It is elear that C.(X) C Co(X), and that the two classes coincide if X
is compact. In that case we write C'(X) for either of them.

3.17 Theorem If X 73 a locally compact Hausdorff space, then Co(X) is the
completion of C.(X), relative to the meiric defined by the supremum norm

(1) Il = sup |f@)].

PROOF An elementary verification shows that Co(X) satisfies the
axioms of a metric space if the distance between f and g is taken to
be ||f — gll. We have to show that (a) C.(X) is dense in Co(X) and
(d) Co(X) i8 a complete metric space.

Given fe Co(X) and ¢ > 0, there is a compact set K so that
|f(z)| < e outside K. Urysohn’s lemma gives us a function g € C.(X)
such that 0 < g <1 and g(z) =1 on K. Put A = fg. Then
he C.(X) and ||f — hj] < e. This proves (a).

To prove (b), let {f.} be a Cauchy sequence in Co(X), i.e., assume
that {f.} converges uniformly. Then its pointwise imit function f
is continuous. Given ¢ > 0, there exists an n so that ||f» — f|| < /2
and there is a compact set K so that |f.(z)] < ¢/2 outside K. Hence
|f(z)| < e outside K, and we have proved that f vanishes at infinity.
Thus Co(X) is complete,
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Exercises

1 Prove that the supremum of any collection of convex functions
on (a,b) is convex on (a,b) and that pointwise limits of sequences
of convex functions are convex. What can you say about upper
and lower limits of sequences of convex functions?

2 If ¢ is convex on (a,b) and if ¢ is convex and nondecreasing on
the range of ¢, prove that ¢ o ¢ is convex on (a,b). For ¢ > 0,
show that the convexity of log ¢ implies the convexity of ¢, but
not vice versa.

3 Assume that ¢ is a continuous real function on (a,b) such that

o(P5Y) < o + 5 o)

for all x and y € (a,b). Prove that ¢ is convex. (The conclusion
does not follow if continuity is omitted from the hypotheses.)

4 Suppose f is a complex measurable function on X, u is a positive
measure on X, and

e® = [ Ifrdu=llfl; ©<p< )

Let E = {p: o(p) < ©}. Assume |fllo > 0.

(@) fr<p<s rekE and seE, prove that pe E.

(b) Prove that log ¢ is convex in the interior of E and that ¢ is
continuous on K,

(¢) By (a), E is connected. Is E necessarily open? Closed?
Can FE consist of a single point? Can E be any connected
subset of (0, «)?

(@ If »r <p <s, prove that {Iffl, < max (||f[l»[f]l). Hence
Lr(u) 0 L2 (u) C LP(n).

(¢) Assume that ||f|l, < « for some r < « and prove that

1fls = Ifle a8 p— <.
5 A‘.,Sllmv, in addition 1o the hvnothegas of Fyarciae 4 tha
WA VW VAAL, & JFUULI.W\.«IJ WL ASNVA AR ‘-, vALeWV

(a) Prove that ||fl, < |IflLif0<r <s < =.

(b) Under what conditions does it happen that 0 < r < s < =
and [|ffl, = [flls < ©? '

(¢) Prove that L7(u) D L*(x) if 0 < r < s. Under what condi-
tions do these two spaces contain the same functions?
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(d) Assume that ||f||, < « for some r > 0, and prove that

tim |, = exp { [ log |1 du}

if exp { — |} is defined to be 0.
6 Let m be Lebesgue measure on [0,1], and define ||f||, with respect
to m. Find all functions ® on [0, ) such that the relation

oim [f]) = [ (@of)dm

holds for every bounded, measurable, positive f. Show first that

cBlz) + (1 — AB(1) = B(z%) (2>00<c<1
EANNS ) A Y e Bl S ) - ra WV 7 Wy Y el Vs RS

Compare with Exercise 5(d).

7 For some measures, the relation r < s implies L7(u) C L*(u); for
others, the inclusion is reversed; and there are some for which
L7(u) does not contain I*(u) if r = s. Give examples of these
situations, and find conditions on x under which these situations
will occur.

8 If g is a positive function on (0,1) such that g(z) — « asz— 0,
then there is a convex function 2 on (0,1) such that A < g and
h{z) > « as x— 0. True or false? Is the problem changed if
(0,1) is replaced by (0,«) and 2 — 0 is replaced by z — «?

9 Suppose f is Lebesgue measurable on (0,1), and not essentially
bounded. By Exercise 4(e), [|f]l,— « as p— «. Can ||,
tend to <o arbitrarily slowly? More precisely, is it true that to
every positive function ® on (0, « ) such that ®(p) — © agp —
one can find an f such that || f]l, — = asp — «, but [|f]l, < ®(p)
for all sufficiently large p?

10 Suppose f. e L*(u), forn = 1,2,3, . . . ,and ||f. — f|l, — Oand
fo—ga.e,asn— ., What relation exists between fand g?

11 Suppose u(2) = 1, and suppose f and g are positive measurable
functions on © such that fg > 1. Prove that

Lfdn‘ﬁlgduz 1.

Suppose u(@) = 1 and h: & — [0, ] is measurable, If

A = [ghdpy,

o)
[ &)

prove that

\/1+A25L\/1 Fhtdu <1+ A.

If « is Lebesgue measure on [0,1] and if 4 is continuous, &k = f/,
the above inequalities have a simple geometric interpretation.
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From this, conjecture (for general @) under what conditions on A
equality can hold in either of the above inequalities, and prove
your conjecture.

Under what conditions on f and g does equality hold in the con-
clusions of Theorems 3.8 and 3.9? You may have to treat the
cases p = 1 and p = <« separately.

Suppose 1| < p < », fe L? = L?((0,«)), relative to Lebesgue
measure, and

1 1=
F(z) = Eﬁ) iWdt 0<z< o).
(a) Prove Hardy’s inequality

p
171, < 2 111,

which shows that the mapping f— F carries L? into L>.
(b) Prove that equality holds only if f = 0 a.e.

(¢) Prove that the constant p/(p — 1) cannot be replaced by a
smaller one.

(@) If f> 0and fe L prove that F ¢ L.
Suggestions: (@) Assume first that f = 0and fe C.((0, «)).
Integration by parts gives

r” Pl ~ F r o re__ L WY bt N 3
jo Frr)dr = —p jo PR e)elr (2} ax.

Note that 2F’ = f — F, and apply Holder’s inequality to
JF*=Yf, Thenderive the general case. (¢} Take f(x) = 2~V
on [1,4), f(z) = 0 elsewhere, for large A.

Suppose {a.} is a sequence of positive numbers. Prove that
w 1 N p w
> (72 o) s(E) 2 e
N=1 n=1 nwl

if 1 <p< oo, Hint: If g, > a.41, the result can be made to
follow from Exercise 14. This special case implies the general one.
Prove Egoroff’s theorem: If w(X) < o, if {f.} is a sequence of
complex measurable functions which converges pointwise at every
point of X, and if ¢ > 0, there is a measurable set £ C X, with
u(X — E) < ¢ such that {f,} converges uniformly on E.

(The conclusion is that by redefining the f. on a set of arbi-
trarily small measure we can convert a pointwise convergent

sequence to a uniformly convergent one; note the similarity with
Lusin’s theorem.)

Hint: Put
Swh) = 0 e 1) - @ <]
Li>n
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and show that there is a suitably increasing sequence {ni} such
that E = NS(ny,k) has the desired property.

Does the result extend to o-finite spaces?

17 Suppose u is a positive measure on X, 1 < p < «, feL?(u),
Ja € LP(u), fulz) — f(2) a.e., and || full, — [|f]|»» as n — «. Prove
that then ||f — full, > 0 as n — <.

Hint: Assume ||fufl, = ||fll, =1 for all n. Put X = Au B,
where [4|f|? < e. Apply Fatou’s lemma to [5|f.|?.and conclude
that the upper limit of {4]f.|? is at most e. Show that matters
can be so arranged (by Egoroff’s theorem) that {f.} converges to
f umformly on B.

Show that the conclusion is false if ¢
is omitted, even if u(X) < «.

18 Let u be a positive measure on X. A sequence {f.} of complex
measurable functions on X is said to converge in measure to the
measurable function f if to every ¢ > 0 there corresponds an N

such that
u({z: |falx) — f@)] > €]) <ee

for all » > N. (This notion is of importance in probability
theory.) Assume u(X) < « and prove the following statements:
(a) If fu(x) — f(z) a.e., then f, — fin measure.
() If faeLl?(u) and f[f. — filp — 0, then f. - f in measure;
herel <p < =»
(¢) If f. — fin measure, then {f,} has a subsequence which con-
verges to f a.e.
Investigate the converses of (a) and (b). What happens to
(a), (b), and (¢) if u(X) = =, for instance, if u is Lebesgue
measure on E!?
19 Define the essential range of a function f e L*(u) to be the set B,
consisting of all complex numbers w such that

p({z: |f@) —wl <) >0
for every ¢ > 0. Prove that R, is compact. What relation

exists between the set B; and the number ||f].?
Let A, be the set of all averages

1
u(E) [’f 7 au
where E ¢ 91 and u(E) > 0. What relations exist between A;
and R,? Is A, always closed? Are there measures u such that
A, is convex for every fe L*(u)? Are there measures u such
that A4, fails to be convex for some f & L*(u)?

How are these results affected if L=(u) is replaced by L'(u), for
instance?
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20 Suppose ¢ is a real function on R! such that

o [ 1@ de) < [' o) de

for every real bounded measurable f. Prove that ¢ is then
convex.

21 Call a metric space Y a completion of a metric space X if X is
dense in Y and Y is complete. In Sec. 3.15 reference was made
to “the” completion of a metric space. State and prove a unique-
ness theorem which justifies this terminology.
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Elementary Hilbert
Space Theory

Inner Products and Linear Functionals

4.1 Definition A complex vector space H is called an inner product
space (or unitary space) if to each ordered pair of vectors z and ye H
there is associated a complex number (z,y), the so-called “inner product”

(or “scalar product’’) of x and y, such that the following rules hold:

(@) (v,2) = (z,5). (The bar denotes complex conjugation.)
() (x+y,2) = (x2) + (y2) if 2, y,and ze H.

(¢) (ax,y) = alr,y) if x and y e H and « is a secalar.

(d) (x,) > O forall ze H.

(e) (z,x) = Oonlyif z = 0.

Let us list some immediate consequences of these axioms:

(c) implies that (0,y) = 0 for all y & H.

() and (c) may be combined into the statement: For every y € H, the

mapping r— (x,y) 1s a linear functional on H.
(a) and (c) show that (z,ay) = a&(z,y).
(¢) and (b) imply the second distributive law:

B z+y) = (@20 + ().

By (d), we may define ||z|, the norm of the vector z &€ H, to be

the nonnegative square root of (z,2). Thus

) 2] = (z,2).
4.2 The Schwarz Inequality The properties 4.1(a) to (d) *mply that
[,y)] < llzfl [yl

Jorallzand ye H.
9



76 Real and complex analysis

PROOF Put A = ||z]?, B = |(z,y)|, and C = |ly||2. There is a com-
plex number « such that |aj = 1 and a(y,z) = B. For any real r,
we then have

(1) (x —ray,x — ray) = (.’L‘,.'E) - ra(y,x) - r&(x,y) + rz(y;y)'
The expression on the left is real and not negative. Hence

(2) A—2Br+4+Cr2 >0

for every real . If C = 0, we must have B = 0, otherwise (2) is
false for large positive r. If C > 0, take r = B/C in (2), and obtain
B? < AC.

4.3 The Triangle Inequality For x and y ¢ H, we have

lz + yll < [l + llwll.
PROOF By the Schwarz inequality,

lz+4l* = @+ 92+ = @D+ @9 + G2 + @)
< [l=* + 2ll=ll N1yl + fyll* = =l + Nyi)*.
4.4 Definition It follows from the triangle inequality that

ey le =2 <z -yl +ly—2] (z,9 2z2H).
If we define the distance between x and y to be [z — y||, all the axioms for
a metric space are satisfied; here, for the first time, we use part (e) of
Definition 4.1.

Thus H is now a metric space. If this metric space is complele, i.e.,
if every Cauchy sequence converges in H, then H is called a Hilbert space.

Throughout the rest of this chapter, the letter H will denote a Hilbert
space,

4.5 Examples

(a) For any fixed n, the set C* of all n-tuples

T = (EIJ .. Eﬂ):
where £, . . ., £, are complex numbers, is a Hilbert space if
addition and sealar multiplication are defined componentwise; as

usual, and if

G = Y6 W= )

(b) If uis any positive measure, L?(u) is a Hilbert space, with inner
product

(f’g) = ]X 1§ du.
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The integrand on the right is in L'(x), by Theorem 3.8, so that
(f,g) is well defined. Note that

171 = G = { [ 1z au}’ = 10

The completeness of L2*(u) (Theorem 3.11) shows that L2(u) is
indeed a Hilbert space. [We recall that L#(x) should be regarded

as a space of equivalence classes of functions; compare the dis-
cussion in See, 3.10.]

For H = L?(u), the inequalities 4.2 and 4.3 turn out to be
special cases of the inequalities of Holder and Minkowski.
Note that Example (a) is a special case of (b). What is the
measure in {a)?
(¢) The vector space of all continuous complex functions on [0,1] is
an inner product space if

1 —
G = [ 569 de
but is not a Hilbert space.

4.6 Theorem For any fixred y € H, the mappings

z— (xsy); T — (y:x)y z— ”x”

are coniinuous functions on H.
PRoOOF The Schwarz inequality implies that

I(zl,y) - (x%y)l = I(xl — Ty y)l < ”.CC]_ — sz ”y”)

which proves that z — (z,y) is, in fact, uniformly continuous, and
the same is true for 2 — (y,z). The triangle inequality |z,|| <
lxs — 22l + ||2:l yields

lzdll = llzal] < [l&r — all,
and if we interchange z, and z, we see that

lzaf} = fl2afl] < [lox — 2a]

for all z; and z; € H. Thus & — ||z| is also uniformly continuous.

4.7 Subspaces A subset M of a vector space V is called a subspace of V
if M is itself a vector space, relative to the addition and scalar multiplica-
tion which are defined in V. A necessary and sufficient econdition for a
set M C V to be a subspace is that + + ye M and ox e M whenever
zand y&e M and « is a scalar.

In the vector space context, the word “‘subspace’” will always have this
meaning. Sometimes, for emphasis, we may use the term ‘“linear sub-
space’” in place of subspace.
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For example, if V is the vector space of all complex functions on a set S,
the set of all bounded complex functions on S is a subspace of V, but the
set of all f & V with |f(z)| < 1 for all & S is not. The real vector space
R?® has the following subspaces, and no others: (a) R?, (b) all planes
through the origin 0, {¢) all straight lines through 0, and (d) {0}.

A closed subspace M of H is a subspace which is a closed set relative to
the topology induced by the metric of H.

4.8 Convex Sets A set E in a vector space V is said to be convex if it has

the following geometric property: Wheneverze E,ye E,and 0 <t < 1,
the point

2, =

z 1
(3 A Sl

— Dz + ty

also lies in E. As ¢ runs from 0 to 1, one may visualize z, as describing a
straight line segment in V, from z to y. Convexity requires that E con-
tain the segments between any two of its points.

It is clear that every subspace of V is convex.

Also, if E is convex, so is each of its translates

E+4z={y+2z:yeE}

4.9 Orthogonality If (z,5) = O for some r and y ¢ H, we say that z is
orthogonal to y, and sometimes write z L y. Since (z,y) = 0 implies
(y,x) = 0, the relation 1 is symmetric.

Let x* denote the set of all y ¢ H which are orthogonal to z; and if M
is a subspace of H, let M* be the set of all y € H which are orthogonal to
every re M.

Note that z* is a subspace of H, since z L y and z L y' implies
z L{(y+¥) and z L ay. Also, x* is preciseiy the set of points where
the continuous funection y — (2,y) is 0. Hence z* is a closed subspace of
H. Since

ML= 0 24
zeM

M* is an intersection of closed subspaces, and it follows that M+ is a
closed subspace of H.

A TN ThL - F'nomnt mnm ) T
Feiv R AICUTTIIL uvo:y‘ wuwempty, Czesed, conver sel E ma

contains a unique element of smallest norm.

2ibert &
AL VYV V

In other words, there is one and only one r, ¢ E such that |jz.f| < ||z
for every z ¢ E.

PROOF An easy computation, using only the properties listed in
Definition 4.1, establishes the identity

® =+ yl?+ llz — gl = 2[=]* + 2[lyl* (zand yeH).



Elementary Hilbert space theory 79

This is known as the parallelogram law: 1f we interpret ||z|| to be the
length of the vector z, (1) says that the sum of the squares of the
diagonals of a parallelogram is equal to the sum of the squares of its
sides, a familiar proposition in plane geometry.

Let & = inf {lz]: ze E}. For any = and ye E, we apply (1) to
4z and }y and obtain

) Hie — ylI* = 3l=l* + #vli* -

r+yl?
5 .

Since E 1s convex, (z + y)/2¢ E. Hence
@)z — yl* < 2[2l + 2[lyl* — 48*  (zand ye E).

If also ||z|} = [lyll = 8, then (3) implies z = y, and we have proved
the uniqueness assertion of the theorem.

The definition of 8 shows that there is a sequence {y,} in E so that
llyall — 6 as n — «. Replace x and y in (3) by y. and y.. Then,
as n— « and m — «, the right side of (3) will tend to 0. This
shows that {y.} is a Cauchy sequence. Since H is complete, there
exists an zoe H so that y, — =ze, i€, [[ya — 2o/ = 0, as > o,
Since y, ¢ £ and F is closed, zo & E. Since the norm is a continuous
function on H (Theorem 4.6), it follows that

4,11 Theorem Let M be a closed subspace of H. There exists a unique
pair of mappings P and Q such that P maps H into M, Q maps H into M4,
and

(1) r =Pz + Qr
forall xe H. These mappings have the following further properties:

2) IfzeM,then Px =2, Qr = 0;if e M+ then Pz = 0, Qz = z.

(3) - e — Pz|| = inf {|lz — yll:ye M} i ze H.
4) lzl? = ||Pzl? + [Qx]*
(5) P and @ are linear mappings.

Corollary If M £ H, there exists a ye H, y # 0, such that y 1L M.
P and @ are called the orthogonal projections of H onto M and M*.

PROOF For any re H, the set 2 + M = {x + y: ye M} is closed
and convex. Define Qx to be the unique element of smallest norm in
x <+ M, this exists, by Theorem 4.10. Define Pz = 2 — Qx. Then
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(1) holds. Since Qrex + M, it is clear that Px ¢ M. Thus P maps
H into M.

We next have to show that (Qz,y) = 0 for all ye M. Assume
llyll = 1, without loss of generality, and put z = @». The minimal
property of @z shows that

(Z,Z) = "zHE < ”Z - ay“2 = (Z —ay, & — ay}
for every scalar o This simplifies to
0 < —a(y2) — &(zy) + o

With a = (z,3), this gives 0 < —|[(z,9)|%, so that (z,y) = 0. Thus
Q maps H into M+,
Now if £ = xo + x1, with 202 M, x, e M+, then

Zo — Pr = Qx — z,.

Since o — PreM,Qr — e M*, and M n M+ = {0} [an immediate
consequence of the fact that (z,2) = 0 implies £ = 0], we have
9 = Pz, x, = Qz, which proves the uniqueness assertion.

The linearity of P and @ is proved similarly: applying (1) to z,
to y, and to ax + By, we obtain

P(ax + By) — aPzr — BPy = oQz + 8Qy — Q(az + By).

The left side is in M, the right side in #/*; hence both are 0, so P
and @ are linear.

Property (2) follows from (1); (3) was ‘used to define P; and (4)
follows from (1), since (Pz,Qx) = 0. To prove the corollary, take
zeH, z¢ M, and puty = Qz; since x # Pz, y # 0,

We have already observed that £ — (z,y) is, for each y € H, a continu-
ous linear functional on H. 1t is a very important fact that all continuous
linear functionals on H are of this type.

4.12 Theorem If L is a continuous linear functional on H, then there is a
unique y € H such that

(1)

Lz = (zy) (zeH).
PROOF If Lz = O for all z, take y = 0. Otherwise, define
2) M = |z: Lr = 0}.

The linearity of L shows that M is a subspace. The continuity of
L shows that M is closed. Since Lz # 0 for some z & H, Theorem
4.11 shows that M+ does not consist of 0 alone.
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It is clear that we must look for our desired y in M+, and that we
must have Ly = (y,y).
Choose ze M+, 2= 0. Then z¢ M, hence Lz = 0. Put y = az,

where & = (Lz)/(2,2). Then ye M*, Ly = (y,9), and y %2 0. For
any z & H, put

Lz Lz
3 "= — d o =24
@) TET T aw Y an * W Y

Then Lz’ = 0, hence 2’ £ M, hence (z’,y) = 0, hence
(4) (zy) = (@) = Lz,

which gives the desired representation of Lzx.

The uniqueness of y 18 easily proved, for if (z,y) = (x,y’) for all
zeH, set z =y — ¢/; then (z,2) = 0 for all x¢ H; in particular,
(2,2) = 0, hence z = 0.

Orthonormal Sets

4.13 Definitions If V is a vector space, if 21, . .., &V, and if
€, . . ., Care scalars, theneyry + * -+ + cuxy is called a linear combe-
nation of 21, . . . , z:. The set {z,, . . ., z:} is called independent if
citr+ * - + cere = Oimpliesthate; = - - - =¢,=0. AsetSCV

is independent if every finite subset of S is independent. The set [S] of
all linear combinations of all finite subsets of S (also called the set of all
fintle linear combinations of members of S) is clearly a veetor space; [S]
is the smallest subspace of V which contains S; [S] is called the span of S,
or the space spanned by S.

A set of vectors u,. in a Hilbert space H, where « runs through some
index set A4, is called orthonormal if it satisfies the orthogonality relations
(tgug) = 0 forall @ # 8, ae A,and 8¢ A, and if it is normalized so that

l|uall = 1 for each ae A. In other words, {u,} is orthonormal provided
that

@ o) = | e Zy

If {uq: a€ A} is orthonormal, we associate with each z ¢ H a complex
function £ on the index set 4, defined by

2 #a) = (zr,u.) {(ae A).

One sometimes calls the numbers £(«) the Fourier coefficients of z, relative
to the set {u.}.
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k
4.14 Theorem If u,, . . . , ux 8 an orthonormal set, and if x = E Calln,
1

then

(1) e = (Zyus), forl<n<k,
%

2 ll||? = ;lcniz-

PROOF Apply the relations 4.13(1).
Corollary Every orthonormal set is independent.

PROOF This follows from (2).

4.15 An Approximation Problem Let vy, ..., v, be a set of inde-
pendent vectors in H, and suppose z&¢ H. The problem is to find a
method of computing the mintmum value of

k
@ Iz = % enll

J=1
where ¢1, . . . , ¢ range over all scalars, and o find the corresponding values

of ¢i, . . . , Ck

Let M be the spanof vy, . . . , 2. If we knew that M is closed, we
could apply Theorem 4.11 and deduce the existence of a unique mini-
mizing element z,.= Pz, where

k
2) zo = 3 &,
i=1

which also has the property that x — zoe M. These facts could then
be used to obtain information about the coefficients ¢i, . . . , & in (2).

Since M is the span of a finite set of vectors, it may seem obvious that M
is closed. One may prove it by induction, observing that {0} is certainly
closed and proceeding with the aid of the following lemma:

If V is a closed subspace of H,if ye H,y ¢ V, and V'™* is the space spanned
by V and y, then V* s closed.

To
- L

2 = Iim (xn + 7\»?/),

n-— 0

where z, £ V, and A, are scalars. Since convergent sequences in metric
spaces are bounded, there exists an 3 < « such that ||z, 4+ Ayl < g for
n=123,.... Ifit were true that [\,] = «, we should have

- K
Aa=2a + yil < T 0
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so that —y & V', since Visclosed. But y ¢ V. Hence {)\.} has a Cauchy
subsequence {\,,} converging to some A, and so {z,}, being a difference
of two Cauchy sequences, is itself a Cauchy sequence in H and converges
tosomeze V. Thenz = x -+ Ay. This proves that V* contains all its
limit points.

We now return to our problem. Put

(3) Ay = (v,-,v.-), b; = (x,vi)'
Then if zo, given by (2), is the minimizing element, we must have
(x — 2o, 05) =0
for + =1, ..., k, which leads to a set of k linear equations in the
unknowns ¢y, . . . , Ck:

) Y g =b  (1<i<k).

We know from Theorem 4.11 that z, exists and is unique. Hence the
determinant of the a,; is not 0, and the ¢; can be computed from (4}.

Next, let & be the minimum value of (1). Since (x — z, v;) = 0, we
have (x — xo, o) = 0; hence

= (—zoz—2)= (23 —2) = (32— Y e,
i=1

so that
k
(5) = lzll* — 3 &b
i=1
This solves our problem, in terms of the quantities (3).
Let us now turn to a special case: Replace v,, . . . , vx by an ortho-
normal set %y, . . . ,%. Thenay = 117 = j, a; = 0if 7 > 7, hence (4)

gives ¢; = b;, and (5) becomes

k
/0N ag 1 e AT
6) 62 = |lzf|2 — ), |bii%
i=1
We may summarize as follows:
4,16 Theorem Let u,, ..., u: be an orthonormal set in H, and lel

ze H. Then

k k
o 2= 2, @] <l = % w]
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for all scalars N1, . . . , M. Egquality holds in (1) if and only if \; = (z,u;)
for 1 <7 < k. Thevector
k
@) Y (@ uu
i=1

18 the orthogonal projection of t into the subspace [u1, . . . , w], and if &
18 the distance from x to this subspace, then

k

3 D, l@uw)® = [lz]|* — .

@ )JA [#(a)]2 < |12,

This corollary calls for some explanation and comment. The set A
is any index set, possibly even uncountable, and not ordered in any way.
Under those conditions, what does the sum on the left side of (4) signify?
We define it as follows: If 0 < ¢(a) < = for each a & A, the symbol
&) )

Ly ¥
atd

(o
A St

denotes the supremum of the set of all finite sums ¢{a1) + ¢(as) + -
+ ¢(ai), where oy, . . . , ay are distinet members of A. With this agree-
ment, it is clear that (4) follows from (3).

A moment’s consideration will show that the sum (5) ds precisely the
Lebesgue integral of ¢ relative to the counting measure on A. Let £2(A) be
the L?-space relative to this counting measure. Then (4) asserts that
£¢& £2(A) and that ||£l]l; < ||zl

One immediate consequence of (4) should be mentioned explicitly:

For any x € H and any orthonormal set {us} in H, the set of all a such that
£(a) # 0 18 af most countable.

Let F be the mapping which assigns to each z ¢ H the function £ on A.
For each ae A, x — (z,u.) is a linear functional. Hence F is a linear
transformation of H into £2(A4) (see Definition 2.1). Also, F does not
increase distances, since ||# — §ll: <z — yll. In particular, F is
continuous,

We shall now see that the completeness of H implies that F maps H
onto £2(A) and that under certain conditions on {u.}, F is actually an
isometry, i.e., that |£]]. = ||z|| for all ze H. Then, of course, F will be
one-to-one,
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4.17 The Riesz-Fiseher Theorem Letl {u,’ ae A} be an orthonormal set
w H. Suppose o€ {2(A). Then ¢ = £ for some z ¢ H.

PrRooF Forn =1,2,3, ... ,let An = {a: |p(a)] > 1/n}. Each
A, is a finite set. (In fact, one checks easily that A, has at most
n?|¢|3 elements.) Put

(1) Zn= Y pld)ua (0 =1,2,3 ...
atdn

Then £, = ¢ Xa,, 50 that #£.(a) — ¢(a) for every aeAd, and
¢ — £a]® < |p|2. Hence, by an elementary case of the dominated
convergence theorem, |¢ — £/ — 0. It follows that {£.} is a
Cauchy sequence in £2(4). Since the sets A, are finite, Theorem
4.14 shows that |z, — za| = ||£s — £alle. Thus {z.} is & Cauchy
sequence in H, and since H is complete, there exists an 2z = lim z, in

ft— 0

H. For any at A we then have

£(a) = (X,ue) = lim (Zs,u.) = lim £.(a) = ¢(a),

h—r %

which completes the proof.

4.18 Theorem Lel {u,: € A} be an orthonormal sef in H. Each of the
following four conditions on {u.} implies the other three:

(@) {u.} 7s @ maximal orthonormal set in H.

(b) The set 8 of all finite linear combinations of members of {u.} ts
dense in H.

(¢c) For every x € H, we have ||z||* = EA |£(a)i2.

@) Ifze H and y e H, then (z,y) = EA.‘t(a)m

This last formula is known as Parseval's identity. Observe that
£¢ £2(A) and § & £2(4), hence £7 € £1(A), so that the summation in (d) is
well defined. Of course, (¢) is the special case z = y of (d). Maximal

orthonormal sets are frequently called complete orthonormal sets or ortho-
normal bases.

PrRooF To say that {u.} is maximal means simply that no vector of
H can be adjoined to {u.} in such a way that the resulting set is still
orthonormal. This happens precisely when there is no z % 0 in H
which is orthogonal to every u,.

We shall prove that (a) — (b) — (¢) — (d) — (a).

Let M be the closure of S. Since 8 is a subspace, sois M (., —
and y, — y implies z. 4+ ya — = -+ ¥, Ao — Ar); and if S is not dense
in H,then M = H,so that M* contains a nonzero vector, by Theorem
4.11. Thus {u,} is not maximal if S is not dense, and (@) implies (b).
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Suppose (b) holds. Fixz2e H, ¢ > 0. Since S is dense, there is a
finite set uq, . . . , Ua, such that some linear combination of these
vectors has distance less than ¢ from z. By Theorem 4.16, this
approximation can only be improved if we take £(«;) for the coeffi-
cient of u,;. Thus if

(1) g = ﬁ(al)ua1 + R f(ak)u"!k:v

we have ||z — 2|} < ¢, hence ||z|l < ||z]] + ¢, and Theorem 4.14 gives

@) (=l — 9 < llzflz = [#(@)* + -+ - + [#(a)* < Y, 1E()]2

atA

Since ¢ was arbitrary, (¢) follows from (2) and the Bessel inequality.
Mha nrriadian 11 (A 2ot alon ha wreifdan 10 dha Lozesn
A 11C cqunmup HIL \b} Uil a1V L WILILLCIL 111 WE 1UL1IL

(3) (z,x) = (&,%),

the inner product on the right being the one in the Hilbert space
£2(A), as in Example 4.5(). Fixze H, ye H. 1If (¢) holds, then

(4) (z+ Ay, z+Ny) = @+ 0, 2+ D)
for every scalar \; hence
(5) AMz,y) + My,x) = XNE,9) + N\ 3,5).

Take A =1 and A = z. Then (5) shows that (z,y) and (£,4) have
the same real and imaginary parts, hence are equal. Thus (c¢)
implies (d).

Finally, if (a) is false, there exists a v = 0 in H so that (u,u.) = 0
for all ag A. If z = y = u, then (z,y) = ||ul|2 # 0, but £(a) = 0
for all a¢ A, hence (d) fails. Thus (d) implies (a), and the proof is
complete.

4.19 Isomorphisms Speaking informally, two algebraic systems of the
same nature are said to be isomorphie if there is a one-to-one mapping of
one onto the other which preserves all relevant properties. For instance,
we may ask whether two groups are isomorphic or whether two fields are
isomorphic. Two vector spaces are isomorphic if there is a one-to-one .
linear mapping of one onto the other. The linear mappings are the ones
which preserve the relevant concepts in a vector space, namely, addition
and scalar multiplication.

In the same way, two Hilbert spaces H; and H, are isomorphic if there
1s a one-to-one linear mapping A of H, onto H, which also preserves inner
products: (Ax,Ay) = (z,y) for all x and y € H,. Such a A is an isomorph-
ism (or, more specifically, a Hiulbert space isomorphism) of H, onto H,.
Using this terminology, Theorems 4.17 and 4.18 yield the following
statement:
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If {ua: e A} i3 a mazimal orthonormal sel in a Hilbert space H, and if
£(a) = (2,4), then the mapping x — £ is a Hilbert space isomorphism of
H onto £2(4A).

One can prove (we shall omit this) that £2(4) and {2(B) are isomorphic
if and only if the sets A and B have the same cardinal number, But we
shall prove that every nontrivial Hilbert space (this means that the
space does not consist of 0 alone) is isomorphic to some £2{4), by proving
that every such space contains a maximal orthonormal set (Theorem

4.22). The proof will depend on a property of partially ordered sets
which is equivalent to the axiom of choice.

A B ¥R ot B Aw ¥ ¥ O . | R T o Y- . Ao Lo a0 T Y L
4.40 raruially vuraerea oets A sy U I sall 10 DE pariidily oraereq Dy o

binary relation < if

(@) a <band b < cimplies a < c.
(b) @ < a for every ae ®.
(¢) a <band b < gimpliesa = b.

A subset @ of a partially ordered set @ is said to be totally ordered (or
linearly ordered) if every pair a, b & Q satisfies either a < b or b < a.

For example, every collection of subsets of a given set is partially
ordered by the inclusion relation C.

TILALIRAL Ay VAL SRAARASANAAL IRavuiv

To give a more specific example, let @ be the collection of all open sub-
sets of the plane, partially ordered by set inclusion, and let @ be the collec-
tion of all open circular dises with center at the origin. Then @ C @, @
is totally ordered by (, and 9 is a maximal totally ordered subset of @.
This means that if any member of ® not in € is adjoined to @, the resulting
collection of sets is no longer totally ordered by C.

4.21 The Hausdorff Maximality Theorem Every nomempty partially
ordered set contains a maximal totally ordered subset.

This is a consequence of the axiom of choice and is, in fact, equivalent
to it; another (very similar) form of it is known as Zorn’s lemma. We
give the proof in the Appendix.

If now H is a nontrivial Hilbert space, then there exists a « & H with
ll#l| = 1,sothat there is a nonempty orthonormal setin H. The existence

of a maximal orthonormal set is therefore a consequence of the following
theorem:

4.22 Theorem FEvery orthonormal set B in a Hilbert space H s contained
in @ maximal orthonormal set in H.

PROOF Let @ be the class of all orthonormal sets in H which contain
the given set B. Partially order ® by set inciusion. Since Be @,
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® = . Hence ® contains a maximal totally ordered class Q. Let
S be the union of all members of €. 1t is clear that B C S. We
claim that S is 2 maximal orthonormal set:

If 4, and us € S, then u, & A; and us & A, for some 4, and A, ¢ Q.
Since @ is totally ordered, A; C A; (or A; C Ay), =0 that v, £ A, and
use A, Since A, is orthonormal, (uy,us) = 0 if ur # ue, (ur,uz) =1
if w3 = u;. Thus 8 is an orthonormal set.

Suppose S is not maximal. Then 8§ is a proper subset of an ortho-
normal set 8*. Clearly, 8* ¢ Q, and S* contains every member of Q.
Hence we may adjoin 8* to € and still have a total order. This
contradicts the maximality of Q.

Trigonometric Series

4.23 Definitions Let T be the unit circle in the complex plane, i.e., the
set of all complex numbers of absolute value 1. If F is any function on
T and if f is defined on R! by

) f(®) = F(e¥),
then f is a periodic function of period 2x. This means that f({ 4 2x) = f(f)
for all real £. Conversely, if f is a function on R, with period 2, then
there is a function F on T such that (1) holds. Thus we may identify
functions on T with 2#-periodic funetions on R'; and, for simplicity of
notation, we shall sometimes write f(¢) rather than f(e*), even if we think
of f as being defined on 7.

With these conventions in mind, we define L*(T), for 1 <'p < =, to
be the class of all complex, Lebesgue measurable, 2#-periodic functions
on R! for which the norm

- 1/p
@ 11, = {o [, 0P o
is finite.

In other words, we are looking at L?(u), where u is Lebesgue measure
on [0,2r) (or on T}, divided by 2x. L=(T) will be the class of all 2=-
periodie members of L=(R?"), with the essential supremum norm, and C(T)
consists of all continuous complex functions on T (or, equivalently, of all

continuous, complex, 2r-periodie functions on R}, with norm
(3) Ifle = sup 7).

The factor 1/(2x) in (2) simplifies the formalism we are about to
develop. For instance, the L?-norm of the constant function 1 is 1.
A trigonomelric polynomial is a finite sum of the form
N

4) &) = ag + E (an cos nt + by, sin nf) (te RY)

n=l
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where ao, @1, . . ., @y and by, . . . , by are complex numbers, On
account of the Euler identities, (4) ean also be written in the form
N
(5) SO = Y caei
n=—N

which is more convenient for most purposes. It is clear that every
trigonometric polynomial has period 2.

We shall denote the set of all integers (positive, zero, and negative) by
Z, and put

(6) un(t) = eint ne2).
If we define the inner product in L%(T) by

1 ¢, —=
™ (o) = 5 |7 1090 at
[note that this is in agreement with (2)], an easy computation shows that
1 (= . 1 ifn=m
= T(n—m) —_ ’
) (U tm) o0 [-r ¢ ‘df { 0 if n # m.

Thus {u,.: n e Z} is an orthonormal set in L*(T), usually called the trigono-
melric system. We shall now prove that this system is maximal, and shall
then derive concrete versions of the abstract theorems previously obtained
in the Hilbert space context.

4.24 The Completeness of the Trigonometric System Theorem 4.18
shows that the maximality (or completeness) of the trigonometric system
will be proved as soon as we can show that the set of all trigonometric
polynomials is dense in L*(T). Since C(T) is dense in L*(T), by Theorem
3.14 (note that T is compact), it suffices to show that to every fe C(T)
and to every ¢ > 0 there is a trigonometric polynomial P such that
Ilf — Pl < e. Since |lgll: < |lglle for every ge C(T), the estimate

hf — Pll; < e will follow from ||f — P|l.. < ¢, and it is this estimate which
we shall prove.

Suppose we had trigonometric polynomials Q,, Q. @3, . . . , with the
following properties:
(a) Q.(t) > 0 for te R\
1 ¢~
® o [l @wa=1

(© If m(8) = sup {Qu(0): 6 < |t] < x}, then

lim 'r)k(a) =0
b
for every & > 0.
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Another way of stating (¢) is to say that Qi({) — 0 uniformly on
[—m,— 8] u[dr] for every § > 0.
To each f & C(T) we associate the functions P, defined by

M) P = o [ fG— Q) ds & =1,23, ...

If we replace s by —s and then by s — ¢, the periodicity of f and Qi shows
that the value of the integral is not affected. Hence

1 rr
@ P =g [ fOQE—9ds  (=1,2,3..0).
Since each @k is a trigonometric polynomial, @k is of the form

®) 00 = Y e,
n=—=Ns
and if we replace { by ¢t — s in (3) and substitute the result in (2), we see
that each Py is a trigonometric polynomial.
Let ¢ > 0 be given. Since f is uniformly continuous on 7', there exists
a & > 0 such that |f(f) — f(s)| < € whenever |t — 3| < 5. By (b), we
have

&

Pi(t) — f() = o [T 1 = &) — 108
and (a) implies, for all ¢, that

1 =
Pe() — SO S 5 [T 15 — &) —FOIQu(s) ds = As + 4
where A, is the integral over [—§,8] and A, is the integral over
[—wr,—8]u[5,x]

In A,, the integrand is less than «Q:(s),s0 A; < ¢, by'(b). In A4, wehave
Q:(8) < m:(d), hence

(4) Ay < 2)|flle - m(d) < e

for sufficiently large k, by (¢). Since these estimates are independent of
t, we have proved that

© Jim |15 = Pyl = 0

It remains to construct the Q: This can be done in many ways.
Here is a simple one. Put

(6) Qk(i) = Ck (}i%()s—f)ky
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where ¢; is chosen so that (b) holds. Since (@) is clear, we only need to
show (¢). Sinece @ is even, (b) shows that

_ e [ f1 4 cosit\ G {14 cos ity . _ 2¢x
1‘?[)( 2 )d‘>}o( 2 )S‘ntdt‘w(k+1)'

Since Q: is decreasing on [0,r], it follows that

M @0 <o <TEFDEEON o sy g,

2

This implies (¢), since 1 + cos 8 < 2if 0 < § < =.
We have proved the following important result:

4,25 Theorem If f& C(T) and ¢ > 0, there is a trigonometric polynomial
P such that

/@) — P())] <
for every real t.

A more precise result was proved by Fejér (1904) : The arithmetic means
of the partial sums of the Fourier series of any f € C(T') converge uniformly
to f. For a proof (quite similar to the above) see Theorem 8.15 of [26].

4.26 Fourier Series For any f& L}(T), we define the Fourier coefficients
of f by the formula

® oy = o [T j@endt  (ez),

where, we recall, Z is the set of all integers. We thus associate with each
fe LYT) & function f on Z. The Fourier series of f is

@) 3 fonyem,

and its pariial sums are
N

3) sn(f) = 2 f(n)em‘ (¥N=0,1,2,.. -
N

Since L*(T) C LYT), (1) canbe applied to everyf € L*(T). Comparing
the definitions made in Secs. 4.23 and 4.13, we can now restate Theorems
4.17 and 4.18 in concrete terms:

The Riesz-Fischer theorem asserts that if {¢,.} is a sequence of complex
numbers such that

4) Y el < oo,
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then there exists an f ¢ L2(T) such that

3) e = Ql; [[ jemd me2).

The Parseval theorem asserts that

© Y K = 5 [T 5050 d

nm —m

whenever f ¢ L*(T) and g ¢ L*(T); the series on the left of (6) converges
absolutely; and if sy is as in (3), then

(7) lim {|f — syll. = 0,

Nes w

since & special ease of (6) yields

(8) I/~ sxlii = 3 1fm)|*
In|>N

Note that (7) says that every f & L¥T) is the L2limit of the partial
sums of its Fourier series; i.e., the Fourier series of f converges to f, in the
L2-sense. Pointwise convergence presents a more delicate problem, as
we shall see in Chap. 5.

The Riesz-Fischer theorem and the Parseval theorem may be sum-
marized by saying that the mapping f — f is a Hilbert space isomorphism .
of L*(T) onto £2(Z).

The theory of Fourier series in other function spaces, for instance in
L(T), is much more difficult than in L2(7T), and we shall touch only a few
aspects of it.

Observe that the erucial ingredient in the proof of the Riesz-Fischer
theorem is the fact that L? is complete. This is so well recognized that
the name ‘‘Riesz-Fischer theorem’ is sometimes given to the theorem
which asserts the completeness of L2, or even of any L».

In this set of exercises, H always denotes a Hilbert space.

1 1f M is a closed subspace of H, prove that M = (M*)L. Is there
a similar true statement for subspaces M which are not necessarily
closed?

2 Forn=1,2,3,...,let {¢v.} be an independent set of vectors
in H. Develop a constructive proeess which generates an ortho-
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normal set {ua}, such that u, is a linear combination of vy, . . . ,
1., Note that this leads to a proof of the existence of a maximal
orthonormal set in separable Hilbert spaces which makes no appeal
to the Hausdorff maximality principle. (A space is separable if it
contains a countable dense subset.)

3 Show that L*(T) isseparableif 1 < p < «, but that L=(T) is not
separable.

4 Show that H is separable if and only if H contains a maximal
orthonormal system which is at most countable.

5 If M = {z: Lz = 0}, where L is a continuous linear functional on

H, prove that M! is a vector space of dimension 1 (unless M = H).
I 4 + far b f 9 0 3 be an nrtha + In H' Qhnaw

vV oAddu v lwn, \fe J-, H’ U, . L] o} CBE VL ULAVFLAVIL L1ILCUL VU 1AL M RAVE ¥Y

that this gives an example of a closed and bounded set which is not
compact. Let @ be the set of all z ¢ H of the form

=

o0
Tz = Z Calhn, Where [cn] <
1

Prove that @ is compact. (@ is called the Hilbert cube.)

More generally, let {8.} be a sequence of positive numbers, and
let S be the set of all z ¢ H of the form

T = Z Cnlin, Where |¢.| < 8,.
|}

Prove that S is compaect if and only if ;1 8a2 < o0,
1

Prove that H is not locally compact.

7 Suppose {a.} is a sequence of positive numbers such that Za.b, < «©
whenever b, > 0 and Zb,2 < «, Prove that Za.?2 < «.

8 If H, and H; are two Hilbert spaces, prove that one of them is
isomorphie to a subspace of the other. (Note that every closed
subspace of a Hilbert space is a Hilbert space.)

9 If A C[0,2x] and 4 is measurable, prove that

lim L cos nz dr = lim f sinnzdr =0
| —r ™ A
19 Let n1y < ny < m3 < - - - be positive integers, and let E be the

set of all r&[0,2x] at which {sinmn.r} converges. Prove that
m(E) = 0. Hini: 2 sin®a = 1 — cos 2a, 50 sinmez — +1/4/2
a.e. on E, by Exercise 9.

11 Prove that the identity

Hzy) =z +yl* — flz — yI? +dllz + wyll* — iz ~ ay]?
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is valid in every inner product space, and show that it proves the
implieation (¢) — (d) of Theorem 4.18.

12 The constants ¢, in See. 4.24 were shown to be such that k¢, is
bounded. Estimate the relevant integral more precisely and show
that

0 < lim ke < w,
k—

13 Suppose f is a continuous function on R?, with period 1. Prove
that

N
fim %,Zl jne) = [ 5(0) dt

N—w

for every irrational real number «. Hint: Do it first for

f(&) = exp (2xiki),
k=0, 1, £2, . ...
14 Compute
. 1
151;161 f_l |2} — a — br — ex?|? dz

and find
max f_ll rig(x) dx,

where ¢ is subject to the restrictions

[Lo@iz= [ m@d= [ 2@d=0; [ lg@ldz=1

15 Compute
min /w |z — @ — br — cz?|% " d.
abe J0
State and solve the corresponding maximum problem, as in Exer-
cise 14.
16 If zo& H and M is a closed linear subspace of H, prove that

min {jjz — 2o :ze M} = max {{@oy)l: y& M+, fjy|l = 1}.

17 Show that there is a continuous one-to-one mapping v of |0,1] into
H such that y(b) — v(a) is orthogonal to v(d) — v{c) whenever
0<a<b<ece<d<1l (y may be called a “curve with
orthogonal increments.”) Hint: Take H = L2, and consider
characteristic functions of certain subsets of [0,1].

18 Give a direct proof of Theoremn 4.16, i.e., one which does not
depend on the more general considerations of Sec. 4.15,
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Space Techniques

Banach Spaces

5.1 In the preceding chapter we saw how certain analytic facts about
trigonometric series can be made to emerge from essentially geometric
considerations about general Hilbert spaces, involving the notions of con-
vexity, subspaces, orthogonality, and completeness. There are many
problems in analysis which can be attacked with greater ease when they
are placed within a suitably chosen abstract framework. The theory of
Hilbert spaces is not always suitable since orthogonality is something
rather special. The class of all Banach spaces affords greater variety.
In this chapter we shall develop some of the basic properties of Banach
spaces and illustrate them by applications to concrete problems.

5.2 Definition A complex vector space X is said to be a normed linear

space if to each x £ X there is associated a nonnegative real number |z||,
called the norm of z, such that

(@ llz + gl < llzll + |ly|| for all z and y e X,
(0) llex|| = || x|l if ze X and « is a scalar,
(¢) |zl = 0 impliesz = 0.

By {(a), the triangle inequality

lz —yll =dz =2l +lle — ol (z 9 2zeX)

holds. Combined with (b) (take & = 0, « = —1) and (¢) this shows that
every normed linear space may be regarded as a metric space, the distance
between z and y being |z — yll.
A Banach space is a normed linear space which is complete in the metric
defined by its norm.
95
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For instance, every Hilbert space is & Banach space, so is every L?(u)
normed by ||fll, (provided we identify functions which are equal a.e.) if
1 <p < «,and so is Co(X) with the supremum norm. The simplest
Banach space is of coursé the complex field itself, normed by |z|| = |z|.

One can equally well discuss real Banach spaces; the definition is
exactly the same, except that all scalars are assumed to be real.

5.3 Definition Consider a linear transformation A from a normed linear
space X into a normed linear space Y, and define its norm by

(1) HA)| = sup {H”ﬁjl:ln ze X,z # O}-

If |A]] < «, then A is called a bounded linear transformation.

In (1), |iz|| is the norm of z in X, ||Az|| is the norm of Az in Y; it will
frequently happen that several norms occur together, and the context will
make it clear which is which,

Observe that we could restriet ourselves to unit veclors z in (1), i.e,, to
z with ||z|| = 1, without changing the supremum, since

(2) IA(az)] = llaAz] = |a| Az
Observe also that ||A|| is the smallest number such that the inequality
(3) Az]l < [IA] [l=]

holds for every z & X.
The following geometric picture is helpful: A maps the closed unit ball
in X, i.e., the set

4) fzeX: |zl <1},

into the closed ball in ¥ with center at 0 and radius ||A]|.
An important special case is obtained by taking the complex field for
Y; in that case we talk about bounded linear functionals.

5.4 Theorem For a linear transformation A of a normed linear space X
into a normed linear space Y, each of the following three conditions implies
the other two:

(a) A is bounded.
(b) A is continuous.
(¢) A is continuous at one point of X.

PROOF Singe [|A(z) — z2)|| < ||All |21 — 2a]l, it is clear that (a)
implies (b), and (b) implies (¢) trivially. Suppose A is continuous at
zo. To each ¢ > 0 one can then find a & > 0 so that ||z — zo| < &
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implies ||[Ax — Axo| < e In other words, ||z| < & implies
[A(ze + 2) — Azof| < e

But then the linearity of A shows that ||Az]l < e Hence [|A] < /3,
and (¢) implies (a).

Consequences of Baire’s Theorem

5.5 The manner in which the completeness of a Banach space is fre-
quently exploited depends on the following theorem about complete metrie
spaces, which also has many applications in other parts of mathematics.
It implies two of the three most important theorems which make Banach
spaces useful tools in analysis, the Banach-Steinhaus theorem and the open
mapping theorem. The third is the Hahn-Banach exlension theorem, in
which completeness plays no role.

5.6 Baire’s Theorem If X is a complete melric space, the intersection of
every countable collection of dense open subsets of X is dense in X.

In particular (except in the trivial case X = ¢¥), the intersection is not
empty. This is often the principal significance of the theorem.

PROOF Suppose V,y, Vy, V3, . . . are dense and open in X. Let W
be any open set in X, We have to show that NV, has a point in W
if W= &,

Let p be the metric of X; let us write

08 S(x,r) = {ye X:p(xy) <r}

and let S(z,r) be the closure of S(z,r). [Note: There exist situations
in which S(z,r) does nof contain all y with p(z,y) < r!]

Since V', is dense, W n V1 is a nonempty open set, and we can there-
fore find z; and r, such that

(2) S—($1,T1) C Wn V1 and 0 < r < 1.

If n > 2 and x,_, and r._; are chosen, the denseness of V, shows that
Van S(zn_1,ra1) is not empty, and we can therefore find z, and r,
such that

(3)  S(zxn,ra) C Van S(ao1,razi) and O<r <

——— Slp_g

By induetion, this process produces a sequence {z,} in X. If
i > n and 7 > n, the construction shows that x; and z; both lie in
S(xa,rs), so that p(z;z;) < 2r, < 2/n, and hence {x,} is a Cauchy
sequence. Since X is complete, there is a point r € X such that
z = lim z,.

n—w=
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Since z; lies in the closed set 8(xa,rn) if 7> n, it follows that z
lies in each S(z.,rs), and (3) shows that z lies in each V,. By (2),
ze W. This completes the proof.

Corollary In a complete metric space, the intersection of any countable
collection of dense Gy's is again a dense Gs.

This follows from the theorem, since every G; is the intersection of a
countable collection of open sets, and since the union of countably many
countable sets is countable.

5.7 Baire's theorem is sometimes called the category theorem, for the
following reason.

Call a set E C X nowhere dense if its closure E contains no nonempty
open subset of X. Any countable union of nowhere dense sets is called
a set of the first category; all other subsets of X are of the second category
(Baire’s terminology). Theorem 5.6 is equivalent to the statement that
no complete melric space is of the first category. To see this, just take
csmplements in the statement of Theorem 5.6.

5.8 The Banach-Steinhaus Theorem Suppose X 18 a Banach space, Y isa
normed linear space, and {A.} 18 a collection of bounded linear transforma-
tions of X into Y, where a ranges over some index set A. Then either there

ty lAall < M
for every a ¢ A, or

2 sup [|Agzl = =
atA

Sfor all z belonging to some dense G5 in X.

In geometric terminology, the alternatives are as follows: Either there
is a ball B in Y (with radius M and center at 0) such that every A, maps
the unit ball of X into B, or there exist x &€ X (in fact, a whole dense G;
of them) such that no ball in Y contains A,z for all «.

The theorem is sometimes referred to as the wuniform boundedness
principle,

PROOF Put

(3) elz) = sup llAazll (ze X)
and let
(4) Va = {z: ¢(z) > n} n=123....

Since each A, Is continuous and since the norm of Y is a continuous
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function on Y (an immediate consequence of the triangle inequality,
as in the proof of Theorem 4.8), each function z — [jA.z|l is continu-
ous on X. Henece ¢ is lower semicontinuous, and each V, is open.

If one of these sets, say V, fails to be dense in X, then there exist
an 2o £ X and an r > 0 such that ||z|| < r implies zo + = § Vy; this
means that ¢(zo + 1) < N, or

(5) la(@o + 2)|| <N

for all ag A and all z with [jz[| < r. Since z = (zo + z) — 2o, We
then have

(6) [Aaz]l < llAa(zo + 2){| + lAazoll < 2N,

and it follows that (1) holds with M = 2N /7.

The other possibility is that every V,is dense in X. In that case,
NV, is a dense G4 in X, by Baire’s theorem; and since ¢(z) = « for
every z € NV, the proof is complete.

5.9 The Open Mapping Theorem Let U and V be the open unit balls
of the Banach spaces X and Y. To every bounded linear transformation
A of X onto Y there corresponds a & > 0 so that

(1) AT D V. /

Note the word ‘“onto” in the hypothesis. The symbol 8V stands fo
the set {8y: ye V}, i.e, the set of all y & ¥ with |ly|| < &.

It follows from (1) and the linearity of A that the image of every open
ball in X, with center at x(, say, contains an open ball in ¥ with center
at Are. Hence the image of every open set is open. This explains the
name of the theorem.

Here is another way of stating (1): To every y with ||y|| < 8 there corre-
sponds an z with |iz|| < 1 so that Az = y.

-

PRoOF Given ye Y, there exists an re& X sueh that Az = y; if
llz|| < k, it follows that y € A(kU). Hence Y is the union of the sets’
ARU), for £ =1, 2, 3,.... Since Y is complete, the Baire
theorem implies that there is a nonempty open set W in the closure
of some A(kU). This means that every point of W is the limit of a
sequence {Az;}, where x;£ kU; from now on, £ and W are fixed.

Choose yoe W, and choose n > 0 so that yo + ye W if lly|| <=»
For any such y there are sequences {z:}, {z;'} in kU such that

@) Az;—yo, Ao yoty (T »).

Setting z; = z}’ — z, we have ||z:]| < 2k and Az; — y. Since this
holds for every y with [|yll < », the linearity of A shows that the
following is true, if § = 4/2k:



100 Real and complex analysis

- To each ye Y and to each € > 0O there corresponds an x ¢ X such that
) fz < o7Myll  and  |ly — Azl < e

This is almost the desired conclusion, as stated just before the start
of the proof, except that there we had ¢ = 0.
Fix y& 8V, and fixe > 0. By (3) there exists an z; with ||z.]] < 1

and

Y ly — Azy|| < 3oe.

Suppose zj, . . . , Z» are chosen so that

(5) ly — Azy — - - - — Azf| < 27" de

Use (3), with y replaced by the vector on the left side of (5), to obtain
an Ty 50 that (5) holds with » + 1 in place of n, and

(6) ”xn.“” < 27" n=123,....

If we set 8o = 21+ -+ + + 2a, (6) shows that {s.} is a Cauchy
sequence in X. Since X is complete, there exists an z € X so that
sn — z. The inequality ||zi]| < 1, together with (6), shows that
fzll <1 4+ e Since A is continuous, As, — Az. By (5), As.— ¥.
Hence Az = y.

We have now proved that

™ A + 9U) DoV,
or
(8 ATU) D (A + oLy,

for every ¢ > 0. The union of the sets on the right of (8), taken over
all ¢ > 0,18 8V. This proves (1).

5.10 Theorem If X and Y are Banach spaces and if A is a bounded linear
transformation of X onto Y which is also one-to-one, then there isa & > 0
such that

@) Azl > szl (zeX).
In other words, A= 13 a bounded linear transformation of Y onto X.

PROOF If § is chosen as in the statement of Theorem 5.9, the con-
clusion of that theorem, combined with the fact that A is now one-
to-one, shows that ||Az|| < § implies ||z|| < 1. Hence |zll > 1
implies ||Az|| > 8, and (1) is proved.

The transformation A~! is defined on Y by the requirement that
A~y =z if y = Az. A trivial verification shows that A~! is linear,
and (1) implies that ||A—3|| < 1/8.
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Fourier Series of Continuous Functions

5.11 A Convergence Problem Is it true for every f € C(T) that the Fourier
sertes of  converges to f(x) at every point x?

Let us recall that the nth partial sum of the Fourier series of f at the
point z is given by

A sfiz) = 517; [ s0D —pd (=012, ..,

where

n
(9) D.Y= § gike
=7 AY L‘

k=—~n

This follows directly from formulas 4.26(1) and 4.26(3).
The problem is to determine whether

®) lim sa(f32) = 1(2)

for every f€ C(T) and for every real z. We observed in Sec. 4.26 that
the partial sums do converge to f in the L2*-norm, and therefore Theorem
3.12 implies that each f & L*(T) [hence also each f £ C(T)] is the pointwise

limit a.e. of some subsequence of the full sequence of the partial sums.

PO LA L1 LA AR88 2 RA L L RALL Lii o0

But this does not answer the present question.
We shall see that the Banach-Steinhaus theorem answers the question
negatively. Put

@) s*(fiz) = sup [sn(f37)l-
To begin with, take z = 0, and define

(5) Anf = s.(f;0) (feC(T);n=12,3,...).

We know that C(T') is a Banach space, relative to the supremum norm
Iflle. It follows from (1) that each A, is a bounded linear functional on
C(T), of norm

(®) lAdll < o [7,1DaO dt = [ Daf
We claim that
@ A= ©  asn— .

This will be proved by showing that equality holds in (6) and that

®) | Dall; — o asn — ©.
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Multiply (2) by €i? and by ¢—/? and subtract one of the resulting two
equations from the other, to obtain

_sin (n + Dt
©) Da() = sin (¢/2)

Bince |sin z| < |z| for all real z, (9) shows that

2 (]| . dt 2 (e . dE
| D.ll > - ,[o sin (n + ) l == _/o lsin ¢| <
2w 1 [k 4 v 1
EZka = Iqmtldt_;ﬁzkﬂﬁw’
which proves (8).

Next, fix n, and put g(¢) = 1 if D.{t) > 0, g(f) = —1 if D.(f) < O.
There exist f; € C(T) such that —1 < f; < 1 and f;(¢) — g(#) for every ¢,

as j — o. By the dominated convergence theorem,

lim An(f;) = lim —-] (= 10) Dalt) dt = %’; [ o=t Dutt) at

= ol
= || Dals.
Thus equality holds in (6), and we have proved (7).
Since (7) holds, the Banach-Steinhaus theorem now asserts that
8*(f0) = o« for every f in some dense Gs-set in C(7).
We chose z = 0 just for convenience. It is clear that the same result
holds for every other z:

To each real number = there corresponds a set E. C C(T) which i3 a
dense Gs in C(T), such that s*(fix) = = for every f € E..

In particular, the Fourier series of each f ¢ E, diverges at z, and we
have a negative answer to our question.

It is interesting to observe that the above result can be strengthened
by another application of Baire’s theorem. Let us take countably many
points z;, and let E be the intersection of the corresponding sets

E.,, C C(T).

De. DPolan
2y Lull'c

s*(fixs) = o
at every point z,.

For each f, s*(f;z) is a lower semicontinuous function of z, since (4)
exhibits it as the supremum of a collection of continuous functions.
Hence {z: s*(fiz) = ©} is a G; in R, for each f. If the above points z;
are taken so that their union is dense in (—,r), we obtain the following
result:
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5.12 Theorem There is a set E C C(T) which is a dense G5 in C(T) and
which has the following property: For each [ ¢ E, the set

Qr = {z:8*(f;x) = =}
ts a dense (G5 in R

This gains in interest if we realize that E, as well as each @y, is an
uncountable set:

5.13 Theorem In a complete metric space X which has no isolated points,
no countable dense set is a G,

PROOF Let 2, be the points of a countable dense set £ in X. Assume

that E is a Gs» Then E = NNV, where each V, is dense and open.

Let

n
Wn = Vﬂ, b U {a:k‘-
k=1
Then each W, is still a dense open set, but W, = &, in contradic-
tion to Baire’s theorem. :

Note: A slight change in the proof of Baire’s theorem actually shows that
every dense G; contains a perfect set if X is as above.

Fourier Coeflficients of Li-functions

5.14 As in Sec. 4.26, we associate to every fe L'(T) a function f on Z
defined by

® . o =g [ fOema (neD),

It is easy to prove that f(n) — 0 as |n| — «, for every fe L*. For we
know that C(T) is dense in LY(T) (Theorem 3.14) and that the trigono-
metric polynomials are dense in C(T) (Theorem 4.25). If ¢ > 0 and
fe LY(T), this says that there is a g& C(T") and a trigonometric poly-
nomial P such that ||/ — g|l; < eand ||g — P|lo < & Since

g — Plls < llg — Pllw

it follows that ||f — P|l < 2¢; and if |n| is large enough (depending
on P), then

@ el = | [T 170 = POledt| < If = Pl < 2e

" Thus f(n) — 0 as n — + . This is known as the Riemann-Lebesgue
lemma.-
The question we wish to raise is whether the converse is true. That
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is to say, if {e.} is a sequence of complex numbers such that a, — 0 as
n— + », does it follow that there is an f& L1(T) such that f(n) = a.
for all neZ? In other words, is something like the Riesz-Fischer
theorem true in this situation?

This can easily be answered (negatively) with the aid of the open
mapping theorem.

Let co be the space of all complex functions ¢ on Z such that ¢(n) — 0
as n — + «, with the supremum norm

3) lelle = sup {le(n)|: ne Z}.

Then ¢, is easily seen to be a Banach space. In faet, if we declare every
subset of Z to be open, then Z is a locally compact Hausdorff space, and
¢o 1s nothing but Cy(2).

The following theorem contains the answer to our question:

5.15 Theorem The mapping f — f i3 a one-to-one bounded linear trans-
formation of LA(T) into (but not onio) cy.

PROOF Define A by Af = f. It is clear that A is linear. We have
just proved that A maps L1(T') into ¢, and formula 5.14(1) shows that
I7(n)] < Ifll,, so that Al < 1. (Actually, [|A]] = 1; to see this,
take f = 1.) Let us now prove that A is one-to-one. Suppose
Ffe LY(T) and f(n) = O for every ne Z. Then

(1) JRCTOE R /

if g is any trigonometric polynomial. By Theorem 4.25 and the
dominated convergence theorem, (1) holds for everyge C(T). Apply
the dominated convergence theorem once more, in conjunction with
the Corollary to Lusin’s theorem, to conclude that (1) holds if g is
the characteristic function of any measurable setin T. Now Theorem
1.39(b) shows that f = 0 a.e.

If the range of A were all of ¢, Theorem 5.10 would imply the
exigtence of a § > 0 such that

(2) 1fle = 810
for every fe LY(T). But if D,(¢) is defined as in Sec. 5.11, then
Doe LNT), |Dullo =1 for n=1,2,3, ..., and |Du),— » as

n — . Hence there is no § > 0 such that the inequalities
®) | Dalle > 8 Dalls

hold for every n.
This completes the proof.
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The Hahn-Banach Theorem

5.16 Theorem If M is a subspace of a normed linear space X and if f is
a bounded linear functional on M, then f can be extended to a bounded linear
functional F on X so that |[F|| = | fl.

Note that M need not be closed.

Before we turn to the proof, some comments seem called for. First, to
say (in the most general situation) that a function F is an extension of f
means that the domain of F includes that of f and that F(z) = f(z) for
all z in the domain of /. Secondly, the norms ||F|| and || fll are computed
relative to the domains of F and f; explicitly,

- /()| _ |F(z)] .
1Al = sup [ o .xeM}, IF] = sup[ ol e X}

The third comment concerns the field of scalars. So far everything
has been stated for complex scalars, but the complex field could have
been replaced by the real field without any changes in statements or
proofs. The Hahn-Banach theorem is also true in both cases; neverthe-
less, 1t appears to be essentially a ‘‘real” theorem. The fact that the
complex case was not yet proved when Banach wrote his classical book
“Opérations linéaires” must be the reason that real scalars are the only
ones considered in his work.

It will be helpful to introduce some temporary terminology. Recall
that V is a eomplex (real) vector space if z + ye V for z and y ¢ V, and
if ax € V for all complex (real) numbers o. It follows trivially that every
complex vector space 73 also a real vector space. A complex function ¢
on a complex vector space V is a complex-linear functional if

1) ez + ) = (@) + o) and  ¢(az) = ap(2)

for all x and y eV and all compler a. A real-valued function ¢ on a
complex (or real) vector space V is a real-linear functional if (1) holds for
all real a.

If  is the real part of a complex-linear functional f, i.e., if u(z) is the
real part of the complex number f(z) for all z2 V, it is easily seen that
uis areal-linear functional. The following relations hold betweenf and u:

5.17 Proposition Let V be a complex vector space.

(@) If u 1s the real part of a complex-linear functional f on V, then
(1) f(@) = ulzx) — tulix) (xe V).

(0) If u s a real-linear functional on V and if f is defined by (1), then
J 18 a complex-linear functional on V.
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(¢) If V i3 a normed linear space and f and u are related as wn (1),
then | fii = lluil.

PROOF If « and B8 are real numbers and z = a + 78, the real part
of 7z 13 —f. This gives the identity

(2) z = Rez — 7 Re (i2)
for all complex numbers z. Since
3) Re (#f(z)) = Re f(iz) = u(ix),

(1) follows from (2) with z = f(z).
Under the hypotheses (b), it is clear that f(z + y) = f(z) + f(¥)
and that f(ax) = of (z) for all real «. But we also have

@) fGx) = u(@z) ~ wu(—z) = u@z) + uz) = ),

which proves that f is complex-linear.
Sinee |u(z)| < |f(z)|, we have |jul| < |/fl|. On the other hand, to
every z & V there corresponds a complex number «, |a] = 1, so that

of (®) = |f(z)]. Then
6 @) =flex

which proves that

S

= u(az) < [lul - llezll = {lul} - llz],

5.18 Proof of Theorem 5.16 We first assume that X is a real normed .
linear space and, consequently, that f is a real-linear bounded functional
on M. If Ilfli =0, the desired extension is F = 0. Omitting this case,
there is no loss of generality in assuming that || f]| = 1.

Choose zoe X, 0¥ M, and let M, be the vector space spanned by M
and zo. Then M, consists of all vectors of the form £ + Az, wherez ¢ M
and A is a real scalar. If we define fi(z 4 Azo) = f(z) + Ae, where o is
any fixed real number, it is trivial to verify that an extension of f to a
linear functional on M, is obtained. The problem is to choose a so that
the extended functional still has norm 1. This will be the case provided
that
(1) If@) + o] < lz + 2zl  (ze M, A real).

== =

Replace z by —Az and divide both sides of (1) by [A\|. The requirement
is then that

2) f@ — o <z -zl (ze M),
ie., that A, € @ < B, for all z ¢ M, where
B) A, =1 -z — =z and B, = f(2) + liz - 2l
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There exists such an « if and only if all the intervals [A.,B;] have a com-
mon point, i.e., if and only if

4) 4. < B,
forallz and ye¢e M, But

G) J@) —f@) =7 -y <z -yl <z -2l + [ly — 2ll,

and so (4) follows from (3).

We have now proved that there exists a norm-preserving extension f;
of f on M,.

Let @ be the collection of all ordered pairs (M’,f’), where M’ is a sub-
space of X which contains M and where f is a real-linear extension of f
to M’, with || f'{| = 1. Partially order @ by declaring (M",f") < (M",f"
to mean that M' C M” and f"(z) = f'(z) for all x¢ M’. The axioms
of a partial order are clearly satisfied, @ is not empty since it contains
(M.f), and so the Hausdorff maximality theorem asserts the existence
of a maximal totally ordered subcoliection @ of @.

Let @ be the collection of all M’ such that (M’,f) £ 2. Then & is totally
ordered, by set inclusion, and therefore the union M of all members of &
is a subspace of X. (Note that in general the union of two subspaces
is not a subspace. An example is two planes through the origin in R3.)
If ze M, then z¢ M’ for some M’ ¢ ®; define F(x) = f'(z), where f' is
the function which ocecurs in the pair (M',f") € Q. Our definition of the
partial order in @ shows that it is immaterial which M’ £ @ we choose
to define F(x), as long as M’ contains z.

It is now easy to check that F is a linear functional on /M, with ||F|| = 1.
If 3 were a proper subspace of X, the first part of the proof would give
us a further extension of F, and this would contradict the maximality
of . Thus M = X, and the proof is complete for the case of real scalars.

If now f is a complex-linear functional on the subspace M of the com-
plex normed linear space X, let u be the real part of f, use the real Hahn-
Banach theorem to extend u to a real-linear functional U on X, with
Tl = llulj, and define

(6) F(z) = U(x) — tU(4x) (ze X).
By Proposition 5.17, F is a complex-linear extension of f, and
IFl =101 = llull = il
This completes the proof.

Let us mention two important consequences of the Hahn-Banach
theorem:
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5.19 Theorem Let M be a linear subspace of a normed linear space X,
and let xoe X. Then xo is in the closure M of M if and only ¢f there is no
bounded linear functional f on X such that f(x) = 0O for all xe M but

flxo) # 0.

prooF If zo€ M, fis a bounded linear functional on X, and f(z) = 0
for all 2 ¢ M, the continuity of f shows that we also have f(zo) = 0.

Conversely, suppose zo ¢ M. Then there exists a & > 0 such that
llix — zo)| > 6 for all ze M. Let M’ be the subspace generated by
M and z,, and define f(z 4 Azo) = Nif z € M and A is a scalar. Since

3] < I 2o 4+ N %) = [[Azo + 2,

we see that f is a linear functional on M’ whose norm is at most 5.
Also f(z) = 0 on M, f(zo) = 1. The Hahn-Banach theorem allows
us to extend this f from M’ to X.

5.20 Theorem If X is a normed linear space and if o€ X, 20 # 0, there
18 @ bounded linear funciional f on X, of norm 1, so that f(zo) = ||z

PrRoO¥ Let M = {Azy}, and define f(Azg) = Allzo]l. Then f is a
linear functional of norm 1 on M, and the Hahn-Banach theorem
can again be applied.

5.21 Remarks If X is a normed linear space, let X* be the collection of all
bounded linear functionals on X. If addition and scalar multiplication
of linear functionals are defined in the obvious manner, it is easy to see
that X* is again a normed linear space. In faet, X* is a Banach space;
this follows from the fact that the field of scalars is a complete metric
space. We leave the verification of these properties of X™ as an exercise.

One of the consequences of Theorem 5.20 is that X* is not the trivial
vector space (i.e., X* consists of more than 0) if X is not trivial. In fact,
X™* separates points on X. This means that if z; # 2. in X there exists
an f & X* such that f(z,) # f(xs). To prove this, merely take

Tp = T2 — 1
in Theorem 5.20.
Another consequence is that, for z ¢ X,

izl = sup {|f(@)|: fe X* |7l = 1}.

Hence, for fixed z¢ X, the mapping f — f(z) is a bounded linear fune-
tional on X*, of norm [|z||.

This interplay between X and X* (the so-called ‘‘dual space” of X)
forms the basis of a large portion of that part of mathematics which is
known as functional analysis.
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An Abstract Approach to the Poisson Integral

5.22 Successful applications of the Hahn-Banach theorem to concrete
problems depend of course on a knowledge of the bounded linear func-
tionals on the normed linear space under consideration. So far we have
only determined the bounded linear functionals on a Hilbert space (where
a much simpler proof of the Hahn-Banach theorem exists; see Exercise 6)
and we know the positive linear functionals on C.(X).

We shall now describe a general situation in which the last-mentioned
functionals occur naturally.

Let K be a compact Hausdorﬂ’ space, let H be a compact subset of K,
B PN A l.n P arars ALl thad 1 A Annmtaa 4—1-. £ “q#-:n“
aiia lUIJ L1 UU d.u DUUGPQUU Ui \IL} ﬁubll blli:l.-b F N C- A1 \l UUIIUUUD viie 1 1GUIULL

which assigns the number 1 to each x € K) and such that

(1) Il =fle  (feA).
Here we used the notation
@ stz = sup {lf(x)|: z e E}.

Because of the example discussed in Seec. 5.23, H 18 sometimes called a
boundary of K, corresponding to the space A.
Iffe A and z¢ K, (1) says that

3) lf@)| < 1 /1ls

In particular, if f(y) = 0 for every y € H, then f(z) = 0 for all xe K.
Hence if f, and foe A and fi(y) = f.(y) for every ye H, then f, = f3; to
see this, put f = fi — f.

Let M be the set of all functions on H which are restrictions to H of
members of A. It is clear that M is a subspace of C(H). The preceding
remark shows that each member of M has a unique extension to a mem-
ber of A. Thus we have a natural one-to-one correspondence between
M and A, which is also norm-preserving, by (1). Hence it will cause no
confusion if we use the same letter to designate a member of A and its
restriction to H.

Fixapoint z ¢ K. Theinequality (3) shows that the mapping f — f(z)
is a bounded linear functional on M, of norm 1 [since equality holds in
(3) if f = 1]. By the Hahn-Banach theorem there is a linear functional
A on C(H), of norm 1, such that

(4) A =1&) (fe M).
We claim that the properties

(5) at=1, |l =

imply that A is a positive linear functiorial on C(H).
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To prove this, suppose fe C(H), 0 < f <1, put g = 2f — 1, and put
Ag = a + i8, where « and B are real. Note that —1 < g < 1, so that
lg + ir|2 £ 1 + 2 for every real constant ». Hence (5) implies that

(6) B+N:<ja+i@B+n= A+ <1402

Thus 82 + 2r8 < 1 for every real r, which forces 8 = 0. Since |igllz < 1,
we have ja| £ 1; hence

Q) A =300 +g) =41+ 20

Now Theorem 2.14 can be applied. It shows that there is a regular
positive Borel measure x. on. H such that

® A= [ fds  (JeCED).

In particular, we get the representation formula

(9) 1@ = [fde  (Fed).

What we have proved is that fo each z &€ K there corresponds a positive
measure u. on the “boundary” H which “represents” z in the sense that (9)
holds for every fe A.

Note that A determines u. uniquely; but there is no reason to expect
the Hahn-Banach extension to be unique. Hence, in general, we cannot
say much about the uniqueness of the representing measures. Under
special circumstances we do get uniqueness, as we shall see presently.

5.23 To see an example of the preceding situation, let U = {z: |z| < 1}
be the open unit disc in the complex plane, put K = U (the closed unit
disc), and take for H the boundary T of U. We claim that every poly-
nomial f, i.e., every function of the form

N

1) @) = Y awn,
nm(
where aq, . . . , ay are complex numbers, satisfies the relation
@) I fly = Uz
-7 o LY 1JJ s

(Note that the continuity of f shows that the supremum of |f] over U
is the same as that over U.)

Since U is compact, there exists a zoe U such that |f(zo)| > |f(2)| fox
all 2¢ U. Assume zoe U. Then

N

(3) J@) = Y balz — zo)",

n={
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and if 0 < r < 1 — |20/, we obtain

N
1 x . 1 bl 3 in
Y balirn = o 7 1fGeo + e de < o f7 1(z0)iz dB = Ibol,

n=0

so that b, = by = - - - = by = 0; 1.e., f is constant. Thus 2,¢ T for
every nonconstant polynomial f, and this proves (2).

(We have just proved a special case of the maxrimum modulus theorem;
we shall see later that this is an important property of all holomorphie
functions.)

5.24 The Poisson Integral Let A be any subspace of C(U) (where U is
the closed unit dise, as above) such that A contains all polynomials and
such that

(1) WAle = I fllr

holds for every fe A. We do not exclude the possibility that A consists
of precisely the polynomials, but A might be larger.

The general result obtained in Sec. 5.22 applies to A and shows that to
each z¢ U there corresponds a positive Borel measure g, on T such' that

@) f@) = [fdu  (Fed).

(This also holds for z¢ T, but is then trivial: u, is simply the unit mass
concentrated at the point z.)

We now fix ze U and write z = re®?, 0 < r < 1, 0 real.

If uo(w) = w", thenu,e Aforn = 0,1,2, . . . ;hence (2) shows that

@) rrgin® = fT‘u,.dpz n=012...).
Since u_, = %, on T, (3) leads to
(4) Jondu, =gt (n =0, £1, £2, .. ).

This suggests that we look at the real function

5) P0—9= Y rignen (treal),
n-‘La
since
1 s« . .
(6) ) o J—= P,(G - t)emt di = rirlgin® ('n = Or il: iz; - - ')'

Note that the series (5) is dominated by the convergent geometric series
Zrinl; so that it is legitimate to insert the series into the integral (6) and
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to integrate term by term, which gives (6). Comparison of (4) and (8)
gives

@) firdue = o= [T 5P.(0 — 1) dt

for f = u,, hence for every trigonometric polynomisl f, and Theorem
4.25 now implies that (7) holds for every fe C(T). [This shows that .,
was uniquely determined by (2). Why?]

In particular, (7) holds if f& A, and then (2) gives the representation

1 fr X
— 114 —
® @ = o [T HE@P6—0dt  (fe ).
The series (5) can be summed explicitly, since it is the real part of

etz _1—1r+ 2irsin(d -1
et — 2z 11 — ze~#j? '

14 25: (ze~ )" =
1

Thus

©) PO 1) = S :
i T 1 —2rcos (8 —1) + r?

This is the so-called ‘“Poisson kernel.”” Note that P.(8 — ) > 0 if

0Lr <1,

We now summarize what we have proved:

5.25 Theorem Suppose A is a veclor space of continuous complez functions
on the closed unit disc U. If A contains all polynomials, and if

1 =

1) sup |f(2)| = sup |f(2)]

for every f & A (where T is the unit circle, the boundary of U), then the Potsson
indegral representalion

1 g 1—r it = rpi
@) f@) = o ,[—rl — 2rcos (6 — t) + rzf(e ) dt (e = re)

ts valid for every fe A and every ze U.

Exercises

1 Let X consist of two points a and b, put u({a}) = u({b}) = %,
and let L#(u) be the resulting real Lr-space. Identify each real
function f on X with the point (f(a),f(d)) in the plane, and sketch
the unit balls of L?(u), for0 < p < ». Note that they are con-
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vex if and only if 1 € p < ». For which p is this unit ball a
square? A circle? If u({a}) ¢ u({b}), how does the situation
differ from the preceding one?

2 Prove that the unit ball (open or closed) is convex in every
normed linear space.

3 If1 < p < o, prove that the unit ball of L?(u) is siricily convex;
this means that if

il = lglle =1, f#g h=345+g,

then ||k|l, < 1. (Geometrically, the surface of the ball contains
no straight lines.) Show that this fails in every L'(u), in every
L=(y), and in every C(X). (Ignore trivialities, such as spaces
consisting of only one point.)

4 Let C be the space of all continuous functions on [0,1], with the
supremum norm. Let M consist of all f& C for which

L* 7() dt — /; F(H) dt = 1.

Prove that M is a closed convex subset of ¢ which containg no
element of minimal norm.

5 Let M be the set of all f& L}([0,1]), relative to Lebesgue measure,
such that

Ef(t) dt = 1.

Show that M is a closed convex subset of L!([0,1]) which contains
infinitely many elements of minimal norm. (Compare this and
Exercise 4 with Theorem 4.10.)

6 Let f be a bounded linear functional on a subspace M of a Hilbert
space H. Prove that f has a unique norm-preserving extension
to a bounded linear functional on H, and that this extension
vanishes on M.

7 Construct a bounded linear functional on some subspace of some
L'(u) which has two (hence infinitely many) distinct norm-pre-
serving linear extensions to L'(u).

8 Let X be a normed linear space, and let X™* be its dual space, as
defined in Sec. 5.21, with the norm

I/l = sup {if()]: ||=ll <1}.

(@) Prove that X* is a Banach space.

(b) Prove that the mapping f — f(z) is, for each 2 & X, a bounded
linear functional on X*, of norm ||z|. (This gives a natural
imbedding of X in its “second dual” X**, the dual space of
X*)
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(¢) Provethat {||z.]|!} is bounded if {z,} is a sequence in X such

that {f(z.)} is bounded for every fe X*.
Let ¢o, £, and ¢= be the Banach spaces consisting of all complex

sequencesz = {&},7=1,2,3, . .., defined as follows:

z el if and only if ||z|[; = Z|&| < .

z €= if and only if ||z]| = sup |&| < .

o is the subspace of £* consisting of all z €~ for which ¢, — 0
as 41— o,

Prove that (co)* = ! and that ({1)* = {=, using the notation of
Exercise 8, but that ({=)* < £1,

Prove that ¢, and £! are separable but that £ is not.

[The statement ‘“(co)* = ¢V means, more explicitly, that to
every bounded linear functional A on ¢, there corresponds a unique

sequence {m:} such that
Z|n = ||Al} and Ax = Ztm, for all z € co

and conversely. That ({*)* = 1 depends on the fact that there
is a nontrivial bounded linear functional on £* which vanishes on
all of ¢o.]

If Zoit; converges for every sequence {£} such that & — 0 as
i — o, prove that Z|a| < .

For 0 < a < 1, let Lip a denote the space of all complex functions
f on [a,b] for which

My — up O =101
st | — H°
Prove that Lip « is a Banach space, if || fl| = {f(a)| + M/; also, if
Ifll = M; + sup |f(z)]. (The members of Lip & are said to

satisfy a Lipschitz condition of order a.)

Let K be a triangle (two-dimensional figure) in the plane, let H be
the set consisting of the vertices of K, and let A be the set of all
real functions f on K, of the form

I Y R S PO - VORI O S By LY
JWY) = ok + pYy T+ °f {a, 8, anq 7y reaij.

Show that to each (xo,50) € K there corresponds a unique measure
p on H such that

f(xo,y0) = /I;fd#-

(Compare Sec. 5.22.)
Replace K by a square, let H again be the set of its vertices, and
let A be as above. Show that to each point of K there still cor-
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13

14

15

responds a measure on H, with the above property, but that
uniqueness is now lost.

Can you extrapolate to a more general theorem? (Think of
other figures, higher dimensional spaces.)
Let {fs} be a sequence of continuous real functions on the line
which converges at every point. Prove that there is an interval
I and a number M < <« such that |f.(z)| < M for every ze [
andn =1,2,3,.... Find some generalizations of this.
Let C be the space of all real continuous functions on I = [0,1]
with the supremum norm. Let X, be the subset of C consisting of
those f for which there exists a t & I such that |f(8) — f()| < nls — {]
for all se I, Fix n and prove that each open get in C contains an
open set which does not intersect X,. (Each f&C can be uni-
formly approximated by a zigzag function g with very large slopes,
and if {lg — Al is small, 2 ¢ X,.) Show that this implies the
existence of a dense G; in C which consists entirely of nowhere
differentiable functions,
Let A = (a;;) be an infinite matrix with complex entries, where
i, 7=0,1,2 .... A associates with each sequence {s;} a
sequence {o;}, defined by

i D ,
@585 @ =

by
|
1 Nt

provided that these series converge.

Prove that A transforms every convergent sequence {s;} to a
sequence {o¢} which converges to the same limit if and only if the
following conditions are satisfied:

(a) lim a;; = 0 for each j.
®) sup 20 lag] < .

i ;2
(e) lim Z a; = 1.

The proecess of passing from {s;} to {s;} is called a summabilsty
method. Two examples are:

1 . .
a={it1 HOSISN

0 if £ <j,
and ay = (1 — r)rd, 0<rn<l, rn— 1,
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Prove that each of these also transforms some divergent sequences
{s;} (even some unbounded ones) to convergent sequences {o:}.
Suppose X and Y are Banach spaces, and suppose A is a linear
mapping of X into Y, with the following property: For every
sequence {z.} in X for which z = lim z, and y = lim Az, exist,
it is true that y = Az. Prove that A is continuous.

This is the so-called “‘closed graph theorem.” Hini:let X @ Y
be the set of all ordered pairs (z,5), z¢ X and y ¢ Y, with addition
and scalar multiplication defined componentwise. Prove that
X @ Y is a Banach space, if {(z,y)[| = [|=}| + |lyil. The graph
@G of A is the subset of X & Y formed by the pairs (z,Az), z ¢ X.

Note that our hypothesis says that @ is closed; hence G is a
Banach space. Note that (z,Az) — z is continuous, one-to-one,
and linear and maps @ onto X,

Observe that there exist nonlinear mappings (of R' onto R, for
instance) whose graph is closed although they are not continuous:
f@) = 1/zifz = 0, f(0) = 0.

If 4 is a positive measure, each f& L*(u) defines a multiplication
operator M; on L%(u) into L*(u), such that M,(g) = fg. Prove
that M, € ||fle- For which measures u is it true that
|M,)| = |flle forall fe L*(u)? For which fe L*(x) does M; map

L2(p) onto L*(u)?
Suppose {A,} is a sequence of bounded linear transformations
from a normed linear space X to a Banach space Y, suppose
[Anll € M < = for all n, and suppose there is a dense set £ C X
such that {A,z} converges for each zx € E. Prove that {A.z} con-
verges for each z ¢ X.

If s, is the nth partial sum of the Fourier series of a function
f€ C(T), prove that s./log n — 0 uniformly, as n — o, for each
fe C(T). That is, prove that

i lonlle _ o
n—w 10gN

On the other hand, if \,/log n — 0, prove that there exists an
fe C(T) such that the sequence {s.(f;0)/M.} is unbounded.
Hint: Apply the reasoning of Exercise 18 and that of See. 5.11,
with a better estimate of || D,]l; than was used there.

Is the lemma of Sec. 4.15 valid in every Banach space? In every
normed linear space?
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Complex Measures

Total Variation

6.1 Introduction Let 9 be a s-algebra in a set X. Call a countable
collection { E;} of members of M a partition of E if E;n E; = & whenever
t# 7, and if E = UE;. A complex measure u on 9 is then a complex
function on M such that

1) p(E) = El w(E) (Fem)
i<
for every partition {E;} of E.

Observe that the convergence of the series in (1) is now part of the
requirement (unlike for positive measures, where the series either could
converge or could diverge to ). Since the union of the sets E; is not
changed if the subscripts are permuted, every rearrangement of the series
(1) must also converge. Hence ([26], Theorem 3.56) the series actually
converges absolutely.

Let us consider the problem of finding a positive measure A which
dominates a given complex measure u on 9%, in the sense that |u(E)| < ME)
for every E € I, and let us try to keep A as small as we can. Every
solution to our problem (if there is one at all) must satisfy

@) ME) = 3 ME) 2 3 (B,

i=3

for every partition {E;} of any set E € 917, so that A (E) is at least equal to
the supremum of the sums on the right of (2), taken over all partitions of
E. 'This suggests that we define a set function |u| on I by

@ Wl(B) = sup i WE)  (Eem),

the supremum being taken over all partitions {E;} of E.
117



118 Real and complex analysis

This notation is perhaps not the best, but it is the customary one.
Note that |u|(E) > |u(E)|, but that in general |u[(E) is not equal to [u(E)|.

It turns out, as will be proved below, that |u] actually 7s a measure, so
that our problem does have a solution. The discussion which led to (3)
then shows clearly that |u| is the minimal solution, in the sense that any
other solution A has the property AME) > |u|(E) for all E € 9.

The set function |u| is called the total variation of p, or sometimes, to
avoid misunderstanding, the toial variation measure. The term ‘‘total
variation of u”’ is also frequently used to denote the number lu{(X).

If u is a positive measure, then of course |u| = p.

Besides being a measure, |u| has another unexpected property:

(X) < =. Since [u(E)| < u|(E) < |u(X), this implies that every

”&1 LAr ) ™~ . UIJJ.UU M AL = M _— "ﬁ <2 Js Ul.llﬂ VALK U

complex measure g on any c-algebra is bounded: if the range of u lies in
the complex plane, then it actually lies in some disc of finite radius. This
property (proved in Theorem 6.4) is sometimes expressed by saying that
1 t8 of bounded variation.

6.2 Theorem The lotal variation |u| of a complex measure p on M is a
positive measure on .

prooF Let {E:} be a partition of E e 9. Let { be real numbers
such that & < |u|(E;). Then each E; has a partition {A;} such that

(1) AN >t G=123, ...
3
Since {A4;} (4,7 =1, 2.3, .. .)is a partition of E, it follows that
2) Y4 <Y (4] < Jul(B).
1 i3

Taking the supremum of the left side of (2), over all admissible choices
of {t;}, we see that

(3) E Isl(E:) < |ul(E&).

To prove the opposite inequality, let {A;} be any partition of E.
Then for any fixed 7, {4; n E;} is a partition of 4;, and for any fixed ¢,
{A; n E;} is a partition of E;. Hence

ey Y )l = Y| ¥ w4 n E)|
<y Z |(4; n E))]

= ¥ 3 W40 E)| < 3 lul(E).
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Since (4) holds for every partition {4;} of E, we have
®) W) < 3, |ulCED.

By (3) and (5), |u} is countably additive.
Note that the Corollary to Theorem 1.27 was used in (2) and (4).
That [g| is not identically < is a trivial consequence of Theorem
6.4 but can also be seen right now, since |u|(&) = 0.

6.3 Lemma If 2z, 25, . . . , 2, are complex numbers, there is a subset S
of {1, . . . ,n} such that

1
) PEIETINC
jes jml
PROOF Put w = |z + + - - + |2al. The complex plane is the

union of four closed quadrants, bounded by the lines ¥y = +z, and
at least one of these quadrants @ (assume, without loss of generality,
that it is the one defined by |y| < x) has the property that the sum of
the |z;] for which z; & Q is at least w/4. For z¢ Q, we have

=Y
n
7
[
=
<
W
T
=
Q
=y
)
=
L
W
:':
l:
l:!
]
&
™
£
b=
b
=
=
=
o
=
=
o
[

6.4 Theorem If u is a complex measure on X, then
N |#l(X) < .

prooF We first show that if |u[(E) = » for some E &9, then
E =AvuvB,where Aand Be 9, A nB = &, and

2) () >1,  [s]B) =
Indeed, the definition of [u| shows that to every ¢ < « there
responds a partition {E;} of F such that Z{u(E;)| > ¢. Letust ‘re

t = 6(1 + |s(E)]). Then
@ Y wE) > ¢
=1
for some n; and if we apply Lemma 6.3 with z; = u(E;). and put

(4) A= U E:':

je8
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it follows that A C F and |u(4)| > ¢/6 2 1. If B =E — A, then
G B = KB — w@)] 2 W) - KB >} — WB)| = L.

Since |u|(E) = |u|(4) + |u]|(B), by Theorem 6.2, we have |u/(4) = =
or |u}(B) = « (or both), and we obtain (2) by interchanging A and
B, if necessary.

Now assume that |u](X) = «. Put By = X. Suppose n > 0,
and B, is chosen so that |u|(B,) = «. Then, applying (2) with B,
in place of E, we see that B, is the union of two disjoint sets 4,,, and
By, such that |u(Aa.s)] > 1 and |u|(Bas1) = . We thus indue-
tively obtain disjoint sets Ay, Az, A, . . ., with ju(d,)] > 1. If
C = UA,, the countable additivity of u shows that

(6) p(C) = EM(A,.)-

But this series cannot converge, since u(A4,) does not tend to 0 as
n - o, This contradiction shows that (1) must hold.

6.5 If u and A are complex measures on the same os-algebra 91, we define
# + X and cu by

G+ N(EB) = w(E) +7\(B)
@ ) (B) = cu(B) (Fe )

for any scalar ¢, in the usual manner. It is then trivial to verify that
# =+ M and cu are complex measures. The collection of all complex meas-
ures on 9N is thus a vector space. If we put

2) [sll = |ul(X),

it is easy to verify that all axioms of a normed linear space are satisfied.

6.6 Positive and Negative Variations Let us now specialize and consider
a real measure u on a c-algebra M. (Such measures are frequently called
signed measures.) Define |u| as before, and define

1y I PO I 4 1 I T ¥ = — 110
\x) T M T M) M UM B

Then both u* and y— are positive measures on 3, and they are bounded,
by Theorem 6.4. Also,

(2) p=pt—p, ||l =pt 4

The measures u* and u~ are called the positive and negative variations
of u, respectively. This representaticn of x as the difference of the posi-
tive measures ut and u— is known as the Jordan decomposition of p.
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Among all representations of u as a difference of two positive measures,
the Jordan decomposition has a certain minimum property which will be
established as a corollary to Theorem 6.14.

Absolute Continuity

6.7 Definitions Let u be a positive measure on a s-algebra 9, and let A

be an arbitrary measure on 9; A may be positive or complex. (Recall

that a complex measure has its range in the complex plane, but that our

usage of the term “positive measure” includes « as an admissible value.

Thus the positive measures do not form a subclass of the complex ones.)
We say that X is absolufely continuous with respect to u, and write

(1) AL p

if AM(E) = 0 for every E ¢ 91 for which u(E) = 0.

If there is a set A € 9 such that A(E) = A(4 n E) for every F e I, we
say that \ is conceniraled on A. This is equivalent to the hypothesis that
AME) = 0 whenever EnAd = .

Suppose A; and A\ are measures on N, and suppose there exists a pair
of disjoint sets 4 and B such that A, is cohcentrated on A and A, is con-
centrated on B. Then we say that \; and A; are mutually singular, and

write
(2) A L e

Here are some elementary properties of these concepts.

6.8 Proposition Suppose u, A\, A1, and A\, are measures on a o-algebra M,
and u 18 posilive.

(a) If \ is concentrated on A, so is |A].

(b) If }\1 1 }tz, then |k1l A [7\2[

(c) If}\l L nand)\g_L M, then)\l +R2 L u.
(d) If ML pand A K B, then Ay + A2 < p.
(&) If N\ K p, then |\ K p.

(f) If MKy and As L My then A L A

@) IfA<Kpand X i u, then A = 0.
PROOF

(a) If En A = & and {E;} is any partition of E, then A(E;) = 0
for all . Hence \|(E) = 0.

(b) iollows immediately from (a).

(¢) There are disjoint sets 4, and B, such that A is concentrated
on A, and u on B,, and there are disjoint sets A; and B; such
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that A; is concentrated on A, and x on B,. Hence X\, 4+ A; is
concentratedon A = A;u A, pisconcentratedon B = By n B,,
and AnB = (.

(d) is obvious.

(e) Suppese u(E) =0, and {E;} is a partition of E. Then
p(E;) = 0;andsince A < g, A(F;) = Ofor all 7, hence Z|A(E;)| = 0.
This implies |A|(E) = 0.

(f) Since A\ L pu, there is a set A4 with u(4) = 0 on which X, is
concentrated. Since A, K pu, A(F) = 0 for every F C A.
S0 A; 18 concentrated on the complement of A.

(g) By (f), the hypothesis of (g) implies that A L A, and this
clearly forces A = 0.

We now turn to the principal theorem concerning absolute continuity.
In fact, it is probably the most important theorem in measure theory.

6.9 Theorem Let u and \ be positive bounded measures on a o-algebra M
in a set X.

(a) There ts a unique pair of measures A\, and N\, on I such that
(1) E RV D VS Ve O W

These measures are posilive, and As L A,.
(b) There i3 a unique h & L(u) such that

@) NE) = [hdu  (Eeom).

The pair A, and A, is called the Lebesgue decomposition of A relative to u.
The uniqueness of the decomposition is easily seen, for if A\, and )] is
another pair which satisfies (1), then

(3) )\.’, — A=A A,

A = Ay K p, and X, — A} 1 u, hence both sides of (3) are 0; we have used
6.8(c), 6.8(d), and 6.8(g).

The existence of the decomposition is the significant part of (a).

Assertion (b) is known as the Radon-Nikodym theorem. Again, unique-
ness of k is immediate, from Theorem 1.39(b). Also, if A is any member
of L1(u), the integral in (2) defines a measure on 91 (Theorem 1.29) which
is clearly absolutely continuous with respect to u. The point of the
Radon-Nikodym theorem is the converse: every N < p (in which case
XA¢ = \) is obtained in this way.

The function k which occurs in (2) is called the Radon-Nikodym deriva~
tive of A, with respect to u. As noted after Theorem 1.29, we may express
(2) in the form d\, = & du, or even in the form h = d\,/dp.
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The idea of the following proof, which yields both theorems at one
stroke, is due to von Neumann.

PROOF Put ¢ = A + u. Then ¢ is a positive bounded measure on
oM. The definition of the sum of two measures shows that

@ [erde = [ran+ [ fdu

for f = xg, hence for simple f, hence for any nonnegative measurable
f. I fe L*p), the Schwarz inequality gives

| [ < finan< [ ifde < { [ I doPoOl;
since p(X) < «, the mapping

®) J= [y f &

is seen to be a bounded linear functional on L(y).

We know that every bounded linear functional on a Hilbert space
H is given by an inner product with an element of H. Hence there
exists a g € L?(p) such that

®) ferax=[fgde  (FeL¥o).

Observe how the completeness of L?(y) was used to guarantee the
existence of the function g. Observe also that although g is defined

uniquely as an element of L%(y), g is determined only a.e. [¢] a5 &
point function on X.

Put f = xg in (6), for any E & 9 with o(E} > 0. The left side of
(6) is then A(E); and since 0 < A < ¢, we have

1
') Oﬁz.rE—)/I;gdanl.

Hence g(z) € [0,1] for almost all = (with respect to ¢), by Theorem
1.40. We may therefore assume that 0 < g(z) < 1 for every z ¢ X,
without affecting (6), and we rewrite (6) in the form

@®) f@—afdn= [ fgdu  (eLe).

Put

® A={e:0<g@) <1}, B={zig@@ =1},
and define

(10) A(E) =MANE), MNE) =MXBnE) (Esm).
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If we take f = xp in (8), we see that u(B) = 0. Thus )\, L u.
Since g is bounded, (8) holds if we replace f by

A+g+ -+
forn=1,2,3,...,EeM Wethen obtain

ay  fa-gma= fd+g+ - +g)de

At every point of B, g(z) = 1, hence 1 — g»t(x) = 0. At every
point of 4, g"ti(z) —» 0 monotonically, The left side of (11) con-
verges therefore to A(A n E) = N\ (E), as n— o,

The integrand on the right side of (11) increases monotonically to a

nonnegative measurable limit 4, and the monotone convergence the-
orem shows that the right side of (11) tends to fE hdu, asn— co.

We have thus proved that (2) holds for every E ¢ 9. Taking
E = X, we'see that he Li(u), since \(X) < .
Finally, (2) shows that A\ << i, and the proof is complete.

6.10 Extensions of Theorem 6.9 The proof of Theorem 6.9 strongly
depended on the assumption that ¢(X) < «, i.e., that both u and X were
bounded measures.

If o ig a-fnite thon (hy definitinn) 1@ a nninn nf nountahly manvy cete

o P D v Alulu\.l, VAL AL \UJ “\'Llllluluu’ AR AR BV WALLAVIIL A WULALLUCYRFS AdALDL "' [ LW 1)
X, such that u(X,) < «. We may assume that the X, are disjoint, for
ifnot, we replace {X,} b {Y,}, where ¥, = X, and

for n > 2. If now A(X) < «, we can apply Theorem 6.9 to each X.,.
The Lebesgue decompositions of the measures A(E n X,) add up to a
Lebesgue decomposition of \; we get functions i, on X, which define a
function h on X, by setting A(z) = h.(x) if x¢ X,,; and since )\(X) < o,
it follows easily that h e Li(p).

" Next, if we keep u o-finite and let A be a complex measure on 9N, then
A = A1 + #Ag, with A; and A, real, and we can apply the preceding result-
to the positive and negative va,ria.tions of A; and A, (see Sec. 6.6).

We may summarize as follows:

The Lebesgue decomposition theorem and the Radon-Nikodym theorem are
valid if u ts a positive o-fintle measure on M and if N 1s a complex measure
on M.

If both u and X are positive and o-finite, most of Theorem 6.9 is still
true. We can now write X = UX,, where p(X,) < « and MX,) < =,
forn=1,2,3,.... The Lebesgue decompositions of the measures
AME n X,) still give us a Lebesgue-decomposition of A, and we still get a
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function k which satisfies Eq. 6.9(2); however, it is no longer true that
h € L'(y), although 4 is “locally in L1, ie., [x, hdy < = for each n.

Finally, if we go beyond o-finiteness, we meet situstions where the two
theorems under consideration actually fail. For example, let u be
Lebesgue measure on (0,1), and let A be the counting measure on the
o-algebra of all Lebesgue measurable setsin (0,1). Then X has no Lebesgue
decompostition relative to u, and although p <<\ and p ts bounded, there 1s no
h e LY(\) such that dp = hd\. We omit the easy proof.

The following theorem may explain why the word “continuity” is used
in conneection with the relation X << u.

6.11 Theorem Suppose u and N\ are measures on a o-algebra M, p 13 posi-
tive, and N s complex. Then the following two conditions are egquivalent:

(@) A < p.
(b) To every ¢ > O there corresponds a 8 > 0 such that |\N(E)| < ¢ for
all E & M with p(E) < 8.

Property (b) is sometimes used as the definition of absolute continuity.
However, (a) does not imply (b) if A is & positive unbounded measure.
For instance, let u be Lebesgue measure on (0,1), and put

\B) = [, ¢t
for every Lebesgue measurable set £ C (0,1).

ProoF Suppose (b) holds. If u(E) = 0, then u(E) < & for every
8§ > 0, hence |A(E)| < e for every ¢ > 0, so M(E) = 0. Thus (b)
implies (a). .

Suppose (b) is false. Then there exists an e > 0 and there exist
sets E,e M (n = 1,2,3, . . .) such that u(E,) < 2™ but |A(E.)| = e
Hence [A|(E,) > e Put

0 Ad.= UE, 4= 4.

Then u(4.) < 21, A, D Any1, and so Theorem 1.19(e) shows that
p(A) = 0 and that

AJ(4) = Hm |A[(4,) = >0,

since |A|(4.) > W(E.).
It follows that we do not have |A] < pu, hence (e} is false, by Proposi-
tion 6.8(e).
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Consequences of the Radon-Nikodym Theorem

6.12 Theorem Let u be a complex measure on a o-algebra M tn X. Then
there is a measurable function h such that |h(x)| = 1 for all z€ X and such
that

(1) du = h d|gl.

By analogy with the representation of a complex number as the product
of its absolute value and a number of absolute value 1, Eq. (1) is some-
times referred to as the polar representation {or polar decomposition) of u.

PROOF It is trivial that g < |g|, and therefore the Radon-Nikodym
theorem guarantees the existence of some 4 ¢ L!([u|) which satisfies (1).
Let A, = {z:|h(x)| < r}, where r is some positive number, and let

{E,} be a partition of A,, Then
> W@ =Y | fo hdll | <Y rlalB) = riul(4)),

4
so that |u|(4,) < rlul(4,). If r < 1, this forces |u|(4,) = 0. Thus

(k] > 1 a.e.
On the other hand, if [u|(£) > 0, (1) shows that

1 _ (B
| iy Je h e I =@ St

We now apply Theorem 1.40 (with the closed unit disc in place of S)
and conclude that |h| < 1 a.e.

Let B = {zeX: |h(x)] = 1}. We have shown that |u|(B) = 0;
and if we redefine 2 on B so that A(z) = 1 on B, we obtain a function
with the desired properties.

6.13 Theorem Suppose p is a positive measure on M, g &€ L (), and

(1) MB) = [gdu  (Beom).

Then

fOY BTN = [ lal du (T o oo
) jAj L) ,’E’ \Fi G (4% € il ).

PROOF By Theorem 6.12, there is a function A, of absolute value 1,
such that dx = hd|A|. By hypothesis, dA» = gdp. Hence
hd|A| = g dp.

This gives d|A\]| = g du. (Compare with Theorem 1.29.)
_Since [A\| > 0 and p > 0, it follows that g > O a.e. [u], so that
hg = lg| a.e. [u].
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6.14 The Hahn Decomposition Theorem Lel p be @ real measure on a
o-algebra M in a set X. Then there exist sets A and B e 9 such thal

AuB =X, AnB = &, and such that the positive and negative variations
ut and u= of p satisfy

(1) pH(E) = u(AnE), u(E)=—-uBnk) (EFem).

In other words, X is the union of two disjoint measurable sets A and
B, such that ““A carries all the positive mass of 4"’ [since (1) implies that
uw(E) > 0if EC A] and “B carries all the negative mass of p”’ [since

uw(E) <0if E C Bl. The pair A and B is called a Hahn decomposition
of X, induced by u.

ProOF By Theorem 6.12, du = h dlu|, where |h| = 1. Since u is
real, it follows that h is real (a.e., and therefore everywhere, by
redefining on a set of measure 0), hence A = +1, Put

(2) A = {z:h(x) = 1}, B = {z: h(x) = —1}.
Since p+ = }(|x| + »), and since

h on 4,

® a+n={g o

we have, for any E & 91,
@ wB =4 [0+ndsl= [ hdul=nEnl).

Since u(E) = u(FnA) + u(EF n B) andsincep = ut — u—, the second
half of (1) follows from the first.

Corollary If p = Ay — XA;, where Ay and \: are posilive measures, then
A2 ptand Xy 2 .

This is the minimum property of the Jordan decomposition which was
mentioned in Sec. 6.6.

PROOF Since u < A;, we have

pH(E) = pEnd) S M(End) < M(E).

Bounded Linear Functionals on L?”

6.15 Let p be a positive measure, suppose 1 < p € », and let ¢ be the
exponent conjugate to p. The Hélder inequality (Theorem 3.8) shows
that if g € Le(u) and if &, is defined by

© &) = [, fadu,
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then @, is & bounded linear functional on L?(u), of norm at most ||g(ls
The question naturally arises whether all bounded linear functionals on
L?(u) have this form, and whether the representation is unique.

For p = =, the answer is negative: L!(u) does not furnish all bounded
linear functionals on L*(k). For 1 < p < =, the answer is affirmative,
It is also affirmative for p = 1, provided certain measure-theoretic pathol-
ogies are excluded. For o-finite measure spaces, no difficulties arise,
and we shall confine ourselves to this case.

6.16 Theorem Supposel < p < ™, u1s ag-fintle positive measure on X,
and ® 78 a bounded linear functional on L?(u). Then there is a unique
g & Le(u), where q 13 the exponent conjugate to p, such that

M *(f) = fods  (FeL*G).

Moreover, if ® and g are related as in (1), we have
2 el = llglle.

In other words, L¢(s) is the dual space of L*(u), under the stated
conditions.

PROOF The uniqueness of g is clear, for if g and g’ satisfy (1), then
the integral of g — g’ over any measurable set F of finite measure is 0
(as we see by taking Xz for f), and the o-finiteness of u therefore
implies that g — ¢’ = 0 a.e. -

Next, if (1) holds, Hélder’s inequality implies

@3) @l < llglle-

So it remains to prove that g exists and that equality holds in (3).
If ||®]] = 0, (1) and (2) hold with g = 0. So assume ||| > 0.

We first consider the case u(X) < o,

For any measurable set £ C X, define

ME) = ®(xz).

Since ® is linear, and since Xays = x4 + Xz if 4 and B are disjoint,
we see that \ is additive. To prove countable additivity, suppose E
is the union of countably many disjoint measurable sets E;, put
Ay = Eiu + - - uE;, and note that

4 IXe = xaills = [(E — 4)]*—0 (k- «);

the continuity of ® now shows that A(4:) — ME). So A is a complex
measure. [In (4) the assumption p < « was used.] It is clear that
AE) = 0 if w(E) = 0, since then ||xg|, = 0. Thus A < u, and the
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Radon-Nikodym theorem ensures the existence of a function g € L!(u)
such that, for every measurable E C X,

(5) *0) = fgdu = [ Xsgdu.
By linearity it follows that
(6) *(f) = [ fodu

holds for every simple measurable f, and so also for every fe L*(u),
since every f & L=(u) is & uniform limit of simple functions f;, Note
that the uniform convergence of f; to f implies |f: — f||» — 0, hence

EBIEY B aa s s e
TU;)_’TU}’GDG_’ et

We want to conclude that g € L2(u) and that (2) holds; it is best
to split the argument into two cases.

case 1 p = 1. Here (5) shows that

| foodu] < I8l Ixely = [8] - u(B)

for every E ¢ M. By Theorem 1.40, |g(z)| < {|®|| a.e., so that
lgll. < @]

CASE 2 1 < p < =. There is a measurable function «, |of =1,
such that ag = |g| [proposition 1.9(¢)]. Let E, = {z: |g(x)| < n},

and put f = Xg,|g|*'a. Then |f|? = |g|? on E., f& L=(u), and (6)
gives

fo lgleds = [ fgdu = () < |2 { /.. la1e}™”,
so that .

@ fxsled<ele (=123 ...

If we apply the monotone convergence theorem to (7), we obtain
lglle < 1@

Thus (2) holds and ge Le(x). It follows that both sides of (6)
are continuous functions on L?(u). They coincide on the dense sub-
set L~(u) of L?(u); hence they coincide on all of L?(x), and this
completes the proof if p(X) < o,

In the o-finite case, X is the union of countably many disjoint sets
Xg‘ with y(X,-) < «o, Put Y}, = X;U = UXk. Note that

[xeflls < 1151l
for every measurable set £ C X, so that the mapping

€Y f— ®(xzf)
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is a linear functional on L?(u), of norm at most ||®[|. The preceding
result (applied to X; in place of .X) shows that there are functions g;
on X; such that

© *0xf) = [ Sodp  (FeLe(w)).
Define gi(z) =0 for z¢X;, and put g=g:1 +gs+gs+ - - - .
Since

10) (nf) = [ S+ - +@de  (elr@w)
and since u(¥Y:) < «», the preceding result shows that
(11) ”gl + -+ gk”a < ”(I’“ (k = 1; 2; 3, .. ')’

whence {lgll, < ||®]] (by Fatou’s lemma, for instance). This con-

cludes the proof.

6.17 Remark We have already encountered the special case p = ¢ = 2
of Theorem 6.16. In fact, the proof of the general case was based on this
special case, for we used the knowledge of the bounded linear functionals
on L2(g) in the proof of the Radon-Nikodym theorem, and the latter was
the key to the proof of Theorem 6.16. The special case p = 2, in turn,
depended on the completeness of L2(u), on the fact that L2(u) is therefore
a Hilbert space, and on the fact that the bounded linear functionals on a
Hilbert space are given by inner produects.
We now turn to the complex version of Theorem 2.14.

The Riesz Representation Theorem

6.18 Let X be a locally compact Hausdorff space. Theorem 2.14 char-
acterizes the positive linear functionals on Cc(X). We are now in a posi-
tion to characterize the bounded linear functionals ® on C¢(X). Since
Cc(X) is a dense subspace of Co(X), relative to the supremum norm,
every such & has a unique extension to a bounded linear functional on
Co(X). Hence we may as well assume to begin with that we are dealing
with the Banach space Co(X).

If 1 is a complex Borel measure, Theorem 6.12 asserts that there is a
complex Borel function & with |A] = 1 such that du = h dju|. Itis there-
fore reasonable to define integration with respect to a complex measure
g by the formuls,

@) [fdu= [fhdlul.
The relation fxzdy = u(E) is a special case of (1). Thus

@ [ xede+)) = G+ NE) = w(B) + B = [ xedu+ [, X D
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whenever u and A are complex measures on 9 and ¥ ¢ 9. This leads to
the addition formula

3) fefdw+n = [ fde+ [ fan,

which is valid (for instance) for every bounded measurable f.

We shall call a complex Borel measure u on X regular if {u| is regular in
the sense of Definition 2.15.

If p is a complex Borel measure on X, it is clear that the mapping

@ f— [fofde
is a bounded linear functional on C3(X), whose norm is no la_ger than
|#{{X). That all bounded linear functlonals on Co(X) are obtained in

this way is the content of the Riesz theorem:

6.19 Theorem To each bounded linear functional ® on Co(X), where X

is a locally compact Hausdorff space, there corresponds a unique complex
reqular Borel measure p such that

M *(f) = [pfds  (feCuX)).
Moreover, if @ and p are related as in (1), then
2 @l = |l(X).

PROOF We first settle the uniqueness question. Suppose p is a
regular complex Borel measure on X and [fdu = 0 for all f & Co(X).
By Theorem 6.12 there is a Borel function &, with || = 1, such that
de = hd|p|. For any sequence {f,} in Co(X) we then have

@ @ = f ¢ —fhdlul < [ 1R~ £l dlul,

and since C¢(X) is dense in L'(|g|) (Theorem 3.14), {f.} can be so
chosen that the last expression in (3) tends to 0 as n — «. Thus
u](X) =0, and p = 0. Tt is easy to see that the difference of two
regular complex Borel measures on X is regular. This shows that
at most one p corresponds to each .

By ] ST I .

LAPS ida LotromAdnd 13 1 & N Y
WNOW COnSsiger a slVUll DOUNAEa 1inealr 1Uncuionsa, ¥ oOn Lo\AJ.

Assume ||®|| = 1, without loss of generality. We shall construct a
positive linear functional A on C¢(X), such that
4) 2N < A(M LAl (fele(X),

where || f|| denotes the supremum norm.
Once we have this A, we associate with it a positive Borel measure
A, as in Theorem 2.14. The conclusion of Theorem 2.14 shows that
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A is regular if M(X) < . Since
MX) = {sup Af: 0 L f < 1, fe Ce(X)}
and sinee |Af] < 1 if [|f]] £ 1, we see that actually AM(X) < 1.
We also deduce from (4) that

) D<A = flfld={fli  (FeCe(X)).

The last norm refers to the space L!(A\). Thus & is a linear functional
on Ce¢(X) of norm at most 1, with respect to the L*(\)-norm on Ce(X).
There is a norm-preserving extension of ® to a linear functional on
L1(A), and therefore Theorem 6.16 (the case p = 1) gives a Borel
funection g, with |g| < 1, such that

(©) () = [fad  (feCo(X)).

Each side of (6) is a continuous functional on Co(X), and Ce¢(X) is
dense in C{X). Hence (6) holds for all f& Co(X), and we obtain
the representation (1) with du = g dA.

Since ||®|| = 1, (6) shows that

@ [ loldr 2 sup {le(D]: feCou®), I < 1) = L.

We also know that \(X) < 1and |g| £ 1. These facts are compatible
only if A(X) = 1 and |g| = 1 a.e. [\l. Thus dju} = |g|d\ = dA, by
Theorem 6.13, and

(8) [(X) = MX) =1 = |&],

which proves (2).

So all depends on finding a positive linear functional A which
satisfies (4). If fe Cct(X) [the class of all nonnegative real members
of Co(X)], define

(9) Af = sup {|®(R)|: ke Ce(X), B < f}.

Then Af > 0, A satisfies (4), 0 < f, < f. implies Af; < Af;, and
A(ef) = cAf if ¢ is a positive constant, We have to show that

(10) A(f4+ 9 = Af+ Ag  (fand g e Cct (X)),

and we then have to extend A to a linear functional on C¢(X).
Fix f and g £ Cct(X). If ¢ > O, there exist A, and k; & C¢(X) such
that |h) < f, ks < g, and

(11) Af < (@(h)| + 6  Ag < [2(ho)] +



Complex measures 133

There are complex numbers a;, |a] = 1, so that a®(h;) = |®(h)|,
t=1,2. Then

Af + Ag < |@(h)| + |®(h2)| + 26
= ®(arh1 + azhs) + 2
< A(jhq] + |Rs]) + 2¢
<A+ g) + 2

so that the inequality > holds in (10).
Next, choose & £ C¢(X), subject only to the condition || < f + ¢,
let V = {z:f(z) + g(z) > 0}, and define

b = JERE@ o g@h) v
a2 " T MO T Fa@m OV

hi(z) = ha{z) = 0 (g V).

It is clear that k, is continuous at every point of V. If 24¢ V, then
k(zo) = O; since h is continuous and since |h;(x}| < |A(x)] for all
z e X, it follows that z¢is a point of continuity of 2. Thus k; e Ce(X),
and the same holds for h,.

Since k1 + hs = h and |h)| < f, |hs| < g, we have

[2(R)| = |®(h1) + ®(ho)| < |®(h1)| + [B(ha)| < Af + Ag.
Hence A(f + g) < Af + Ag, and we have proved (i0).
If f is now a real function, f & C¢(X), then 2f+ = |f| + f, so that
freCet(X); likewise, f~ & Cct(X); and sinece f = f+ — f~, it is
natural to define

(13) Af = Aft — Af~  (fe Ce(X), f real)
and
(14) Alu + 7)) = Au + 1A,

Simple algebraic manipulations, just like those which oceur in the
proof of Theorem 1.32, now show that our extended functional A is
linear on C¢(X).

This completes the proof.

Exercises

1 If p is a complex measure on a o-algebra 9, and if E e 91, define

ME) = sup Y {u(E))|,

the supremum being taken over all finite partitions {E,} of E.
Does it follow that X = |g|?
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2 Prove that the example given at the end of Sec. 6.10 has the
stated properties.

3 Prove that the vector space M(X) of all eomplex regular Borel
measures on a locally compact Hausdorff space X is a Banach
space if |pf = [p|(X). Hint: Compare Exercise 8, Chap. 5.
[That the difference of any two members of M(X) is in M(X)
was used in the first paragraph of the proof of Theorem 6.19;
supply a proof of this fact.]

4 Suppose 1 < p < », and g is the exponent conjugate to p.

Suppose p is a o-finite measure and g is a measurable function

such that fg € L'(¢) for every f &€ L?(u). Prove that theng e La(y).

Suppose X consists of two points a and b; define p{{a}) = 1,

p({b}) = p(X) = o, and p(F) = 0. Is it true, for this x, that

L*(u) is the dual space of L'(u)?

6 Suppose 1 < p < » and prove that Le(u) is the dual space of
Lr(u) even if p is not o-finite. (Asusual, 1/p + 1/¢ = 1.)

7 Suppose p is a complex Borel measure on [0,27) (or on the unit
circle T), and define

pn) = [emdp() (v =0, £1, £2, .. ).
Assume that g(n) — 0 as n —» + » and prove that then g(n) — 0

as n — — . Hini: The assumption also holds with f du in place
of du if f is any trigonometric polynomial, henece if f is continuous,
hence if f is any bounded Borel function, hence if dp is replaced
by d|el.

8 In the terminology of Exercise 7, find all 4 such that 2 is periodic,
with period k. [This means that g(n 4+ k) = fi(n) for all integers
n; of course, k is also assumed to be an integer.]

9 Let u be a finife positive measure on a measure space X. A
sequence {fa.} in L'(u) is said to have uniformly absolutely con-
tinuous integrals if to each ¢ > 0 there corresponds a § > 0 such
that x(E) < § implies

'/;f"d“‘ﬁ n=123 ...

Prove the following theorem of Vitali: If {f.} has uniformly
absolutely continuous integrals and if f.(x) — f(x) a.e., then
fe LY(p) and

o

fefdu = lim [ fodu.

n=-—r o

Hint: Show first that {|f.|} also has uniformly absolutely con-
tinuous integrals. X is a union of finitely many sets of small
measure. Thisleads to [|f| < «. Forany ¢ > 0, the set where
|fa — f] > € has small measure for all large n.
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10 (@) Show that Vitali’s theorem implies Lebesgue’s dominated con-
vergence theorem, for finite measure spaces. Construct an
example in which Vitali’s theorem applies although the
hypotheses of Lebesgue’s theorem do not hold.

(b) Construct a sequence {f.}, say on [0,1], so that f.(x) — O a.e.,
{fa— 0, but {f.} does not haveuniformly absolutely continuous
integrals.

(c) However, the following eonverse of Vitali’'s theorem is true:
Suppose p is a finite positive measure on X, {f.} is a sequence

in L(u), f & L' (), fa(z) — f(z) a.e., and
,}jﬂ J/;,,fn dp = Jé,fdn

for every measurable set £ C X. Then {f.} has uniformly
absolutely continuous integrals. Prove this. (It is enough to
consider the case f = 0.)
11 Show that pointwise convergence a.e. can be replaced by con-
vergence in measure in Exercises 9 and 10.
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Integration on

Produet Spaces

This echapter is devoted to the proof and discussion of the theorem of
Fubini concerning integration of functions of two variables. We first
present the theorem in its abstract form.

Measurability on Cartesian Products

7.1 Definitions If X and Y are two sets, their carlesian product X X Y
is the set of all ordered pairs (z,y), with 2e X and yeY. If ACX
and B C Y, it follows that A X BC X X Y. We call any set of the
form A X B a reclanglein X X Y.

Suppose now that (X,§) and (Y,3) are measurable spaces. Recall
that this simply means that § is a s-algebra in X and Jis a s-algebrain Y.

A measurable rectangle is any set of the form A X B, where A £ § and
Be3.

If Q=R,U - - UR,, where each R, is a measurable rectangle and
RN R; = F for i # j, we say that Q € &, the class of all elementary sets.

§ X 3 1s defined to be the smallest s-algebra in X X ¥ which contains
every measurable rectangle.

A monotone class I is a eollection of sets with the following properties:
If A; e m, ngm, A,C Ai‘!’li B;: D B‘-'-H; for z = l; 2; 3, ... ,andif

(1) A= U4, B=A0B,
f=1 i=1
then A e M and Be M.
HECX XY, zeX,yeY, wedefine
2 E, = {y: (zy) e E}, Bv = {2: (z,y) ¢ E}.

We call E, and E¥ the z-section and y-section, respectively, of E. Note

that E. C Y, Ev C X.
136
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7.2 Theorem If Ee§ X3, then E;e3 and Eve §, for every xe X and
ye?,

PROOF Let @ be the class of all E &€ § X 3 such that £, & 3 for every
zeX. If E=AXDB, then E, =B if ve A, E,= & if 2¢ A.
Therefore every measurable rectangle belongs to Q. Since 3 is a
o-algebra, the following three statements are true. They prove that
Q is a o-algebra and hence that @ = § X 3:

(o) X X YeQ.
() If E e Q, then (E9, = (E,)°, hence Ece Q.
() HE;£Q(:=1,2,3,...)and E = E, then E, = U(E).,

. ____ T _
Hence L € .

The proof is the same for Ev,

7.3 Theorem § X 3 is the smallest monotone class which contains all
elementary sets.

PrROOF Let M be the smallest monotone class which contains §; the
proof that this class exists is exactly like that of Theorem 1.10.
Since § X J is a monotone class, we have M C § X 3.

The identities

(4; X B))n (4; X By) = (A1nAy) X (BinBy),
(A1 X By) — (A2 X Bs) = [(A1 — A:) X Bldu[(A1n Aj) X (B1— By)]

show that the intersection of two measurable rectangles is a measur-
able rectangle and that their difference is the union of two disjoint
measurable rectangles, hence is an elementary set. If Pe & and
Q e §, it follows easily that Pn Qe §and P — Qe & Since

PuQ=(P—-Qu@

and (P — Q) n@ = &, we also have Pu@e&.
For any set P C X X Y, define Q(P) to be the class of all

QCXXY

such that P — Qe M, Q — Pe 9, and PuQe M. The following
properties are obvious:

(@) Qe Q(P) if and only if P e Q(Q).
(b) Since 9 is a monotone class, so is each Q{P).

Fix Pe8&. Our preceding remarks about & show that Q e 2(P)
for all Q & &, hence & C 2(P), and now (b) implies that o C Q(P).
Next, fix Qe M. We just saw that Qe Q(P) if Pe & By (a),
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P & 2(Q), hence § C 2(Q), and if we use (b) once more we obtain

m C Q).
Summing up: If PeMand Qe M, then P — Qe Mand Pu Q & IMN.
It now follows that 9 is a o-algebrain X X Y:

(i) X XYe8 hence X X Yeom
(ii) If Q € 9N, then @Q° ¢ N, since the difference of any two mem-
bers of 91 1s in 91,
(iii) If P;emfori=1,2,3,...,and P = UP;, put
Q. = Pyu - ubP,

Since 9 is closed under the formation of finite unions, @, € 9.
Since Q. C Qu41 and P = UJQ,, the monotonicity of M shows
that Pe 9.

Thus 9 is a o-algebra, E C M C § X 3, and (by definition)
$ X Jis the smallest s-algebra which contains 8. Hence I = § X 3.

7.4 Definition With each function f on X X ¥ and with each ze X
we associate a function f, defined on Y by £:(y) = f(z,y).
Similarly, if y ¢ Y, fv is the function defined on X by fv(z) = f(z,y).
Since we are now dealing with three s-algebras, §, 3, and § X 3, we
shall, for the sake of clarity, indicate in the sequel to which of these three
o-algebras the word “measurable” refers.

7.5 Theorem Let f be an (§ X 3)-measurable function on X X Y. Then

(a) For each x & X, f, 18 a 3-measurable function.
(b) For eachye Y, fv is an $-measurable function.

PROOF For any open set V, put
Q= {(zy):fzy eV}
Then Qe § X 3, and

is similar.

Product Measures

7.6 Theorem Let (X,§,u) and (Y,3,)\) be o-finite measure spaces. Sup-
pose Qe § X 3. If

(1 o) = M@, ¥y = »(@)

|
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Joreweryxe X and ye Y, then ¢ is §-measurable, ¥ is 3-measurable, and

2 frodu= [van

Notes: The assumptions on the measure spaces are, more explicitly, that
¢ and X\ are positive measures on § and J, respectively, that X is the union
of countably many disjoint sets X, with p(X,) < =, and that Y is the
union of countably many disjoint sets Y, with A(Y,,) < .

Theorem 7.2 shows that the definitions (1) make sense. Since

3) MQ) = [ xa(oy) M) (e X),

with a similar statement for x(Q¥), the conclusion (2) can be written in
the form

@ [fodu@) fxemn) @) = f, &) [ xoloy) du@)-

PROOF Let Q be the class of all Q € § X 3 for which the conclusion
of the theorem holds. We claim that Q has the following four
properties:

(e) Every measurable rectangle belongs to Q.
YIUHG CQCQT - ,ifeach @eq and if
Qe
(c) If {Q.} is a disjoint countable collection of members of 2, and
Q = UQ,, then Q& Q.
(@) If u(A) < © and AM(B) < o, if

AXBDGDODQDQLED -,
if @ =NQ;,and QeQfori=1,23,...,thenQeQ.

N
0 ¢ = U@, then,

IfQ=A X B,where Ae g, Be 3, then

() M@ =ABxal®) and  p(@) = p(A)xs(y),

and therefore each of the integrals in (2) is equal to w(A)\(B).
This gives (a).

To prove (b), let ¢; and ¥; be associated with @; in the way in which
(1) associates ¢ and ¥ with Q. The countable additivity of x and M
shows that

(6) ei(2) = 0(@), wly) oY) o =),

the convergence being monotone increasing at every point. Since
¢ and ¢; are assumed to satisfy the conclusion of the theorem, (b)
follows from the monotone convergence theorem.
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For finite unions of disjoint sets, (c) is eclear, because the char-
acteristic function of a union of disjoint sets is the sum of their
characteristic functions. The general case of (¢) now follows from (b).

The proof of (d) is like that of (b), except that we use the dominated
convergence theorem in place of the monotone eonvergence theorem,
This is legitimate, since u(4) < « and AM(B) < .

Now define

(7) Qun = @n (X, X Y,) (mn=1,23,..)

and let 9T be the class of all Q@ & § X 3 such that Q... £ @ for all choices
of m and n. Then (b) and (d) show that I is a monotone class; (a)

n'nrl £ nhnn-r -Hnni- & f- an: and ginea M f- (’ V " ]nnnrem '7 Q 1mn]1aa

W \wJ DLILWVYY il g CUOLING WLILEVY TV Wy A AivAFA

that 9T = § X 3.

Thus Q.. e Q for every @ & § X J and for all choices of m and =n.
Sinece @ is the union of the sets Q... and since these sets are disjoint,
we conclude from (¢) that Q@ ¢ 2. This completes the proof.

1.1 Definition If (X,§,s) and (Y,3,\) are as in Theorem 7.6, and if
Qe8 X 3, we define

o X NQ = [ M) du@) = [, u(@) AAQ).

The equality of the integrals in (1) is the content of Theorem 7.6. We
call 4 X N the product of the measures x and A. That u X A is really a
messure (i.e., that g X \ is countably additive on § X J) follows imme-
diately from Theorem 1.27.

Observe also that u X A 18 o-finite.

The Fubini Theorem

7.8 Theorem Let (X ,§,6) and (Y,3,\) be o-finite measure spaces, and let
J be an (§ X 3)-measurable function on X X Y.

(@) If0<f< w,andif
W) @) = [ fod,  ¥@) = [ @eX,yeY),
then ¢ is §-measurable, ¥ s 3-measurable, and
@  fpedn= fr  faeXN = [y

(®) If f is complex and if
@ ¢*@ = [Ifl.dx  and [ o*du < =,
then fe L'(u X N).
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(¢) If fe L'(u X N), then f. & L*(\) for almost all z ¢ X, fv e L (u) for
almost all y e Y; the functions ¢ and ¥, defined by (1) a.e., are in
LY(u) and L1(\), respectively, and (2) holds.

Notes: The first and last integrals in (2) can also be written in the
more usual form

@ fe @@ [5@n) d@) = [ @) [S@y) du).

These are the so-called “iterated integrals” of f. The middle integral in
(2) is often referred to as a double integral.

The combination of (b) and (c¢) gives the following useful result: If f
18 (§ X 9)-measurable and if

(5) Je @@ [, 150 @) < =,
then the two iterated integrals (4) are finite and equal.

In other words, “the order of integration may be reversed” for (§ X J)-
measurable functions f whenever f > 0 and also whenever one of the
iterated integrals of |f] is finite.

PRoOOF We first consider (@). By Theorem 7.5, the definitions of ¢
and ¥ malka cenge Sunnose Qe e W Tand f = v.. BRv Definition

Qi A Y AbACUIDNS WAL MU puUeU o W g) S8 W ociida g NG ALY A Nizdasvass

7.7, (2) is then exactly the conclusion of Theorem 7.6. Hence (a)
holds for all nonnegative simple (§ X J)-measurable functions s.
In the general case, there is a sequence of such functions s,., such that
0< <8 < - and s.(z,y) — f(z,y) at every point of X X Y.
If ¢, is associated with s, in the same way in which ¢ was associated
to f, we have

(6) /;¢,,,dp= j‘;rxysnd(le) =123 ...).

The monotone convergence theorem, applied on (¥,3,\), shows that
¢n{Z) increases to ¢(z), for every z ¢ X, asn — «. Hence the mono-
tone convergence theorem applies again, to the two integrals in (6),
and the first equality (2) is obtained. The second half of (2) follows

- . .
by interchanging the roles of z and y. This completes {a).

If we apply (a) to |f|, we see that (b) is true.

Obviously, it is enough to prove (¢) for real f £ L'(u X A); the com-
plex ease then follows. If fis real, (a) applies to f+ and to f~. Let
¢1 and ¢, correspond to f+ and f— as ¢ corresponds to fin (1). Since
feL'(u X A) and f+ < |f], and since (a) holds for f+, we see that
o1& L} (). Similarly, ¢, & L'(u). Since

) fo= (f)e — (F):
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we have f, e L'(\) for every x for which ¢;(z) < @« and ¢(r) < «;
sinee ¢, and ¢, are in L*(u), this happens for almost all z; and at any
such z, we have ¢(2) = ¢1(2) — ¢o(z). Hence ¢ ¢ Lt(z). Now (2)
holds with ¢; and f+ and with ¢, and f=, in place of ¢ and f; if we sub-
tract the resulting equations, we obtain one half of (¢). The other
half is proved in the same manner, with f¥ and ¥ in place of f, and o.

7.9 Countercxamples The following three examples will show that the
various hypotheses in Theorems 7.6 and 7.8 cannot be dispensed with.

(a) Let X = Y = [0,1],u = A = Lebesgue measureon[0,1]. Choose
{6s) s0that 0 = 8, < 82 < 83 < ++ -, 8 — 1, and let g, be a

roal aantinunus function with sunnort in (8. 8_..) such that
ATANL WILILUIAITAU S AWAILV UAFIL WY AWAL DNAP WA Y A \UpyUp-lsy VAL Sliav

JigaDdt=1,forn =1,2,3,.... Define

Fag) = Y lgal@) = gorr(@lga(y).
1

Note that at each point (z,y) at most one term in this sum is
different from 0. Thus no convergence problem arises in the
definition of f. An easy computation shows that

[lae [remdy =1=0= ["dy ['fa0) do,

so that the conclusion of the Fubini theorem fails, although both
iterated integrals exist. Note that fis continuous in this example,
except at the point (1,1), but that

fraz [Miieyldy = .

(b) Let X = Y = [0,1], » = Lebesgue measure on [0,1], A = counting
measure on Y, and put f(z,y) = 1ifz =y, flz,y) = 0if 2z = y.
Then

fefew) du@ =0, [ fay) dr@) =1
for all z and y in [0,1], so that
[ W) [fo) du@) =01 = [ dux) [, =) M),

This time the failure is due to the fact that A is not o-finite.
Observe that our function f 78 (§ X J)-measurable, if § is the

class of all Lebesgue measurable sets in [0,1] and 3 consists of all -

subsets of [0,1). To see this, note that f = xp, where D is the
diagonal of the unit square. Given n, put

IJ:[‘L-?I_,%]
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and put

Qn=(UL XIY)uv T2 XT)u -+ u(l, XI).

Then Q, is a finite union of measurable rectangles, and D = (1Q..
(¢) In examples (a) and (), the failure of the Fubini theorem was

due to the fact that either the function or the space was ‘“‘too
big.” We now turn to the role played by the requirement that
f be measurable with respect to the o-algebra § X 3.

To pose the question more precisely, suppose u(X) = AMY) =1,
0 € f £ 1 (so that “bigness” is certainly avoided); assume f, is
J-measurable and f¥ is §-measurable, for all z and y; and assume
¢ is §-measurable and y is 3-measurable, where ¢ and ¢ are
defined as in 7.8(1). Then 0 € ¢ <1, 0 < ¢ <1, and both
iterated integrals are finite. (Note that no reference to product
measures is needed to define iterated integrals.) Does it follow
that the two iterated integrals of f are equal?

The (perhaps surprising) answer is no.

In the following example (due to Sierpinski), we take

(X,S,,u.) = (Y’S)A) = [0;1]

with Lebesgue measure. The construction depends on the con-
tinuum hypothesis. It is a eonsequence of this hypothesis that
there is a one-to-one mapping j of the unit interval [0,1] onto &
well-ordered set W such that j(z) has at most countably many
predecessors in W, for each z £ {0,1). Taking this for granted,
let @ be the set of all {z,y) in the unit square such that j{z) pre-
cedes 7(y) in W. For each z & [0,1], Q. contains all but countably
many points of [0,1]; for each y£[0,1], Q¥ contains at most
countably many points of [0,1]. If f = xg, it follows that f; and
fv are Borel measurable and that

o@ = [fepdy =1 v = [ fzy) de =0

for all z and 3. Hence

j: dx Lif(x,y) dy=1#0= Ll dy Ef(x,y) dz.

Completion of Product Measures

7.10 If (X,8,x) and (Y,3,\) are complete measure spaces, it need not be
true that (X X ¥, § X 3, ¢ X \) is complete. There is nothing patho-
logical about this phenomenon: Suppose that there exists an Ae§,
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A = &, with u(4) = 0; and suppose there exists a B C Y so that B ¢ 3.
Then A XBCAXY, (WXMNAXY)=0, but A XBggXa.
(The last assertion follows from Theorem 7.2.)

For instance, if 4 = A = m, (Lebesgue measure on R!), let A consist
of any one point, and let B be any nonmeasurable set in R, Thus
my X m, is not a complete measure; in particular, m, X m, is not m,,
gince the latter is complete, by its construction. However, m, is the
completion of m; X my. This result generalizes to arbitrary dimensions:

7.11 Theorem Lel m, denote Lebesgue measure on R:. If k =1r 4 s,
r 2> 1,8 > 1, then my is the completion of the product measure m, X m,.

PROOF Let ®: and 97 be the g-algebras of all Borel sets and of all
Lebesgue measurable sets in R*, respectively. We shall first show
that

(1) ® C M, X M, C My,

Every k-cell belongs to 91, X 91,. The o-algebra generated by the
k-cells is ®;. Hence ®; C 9, X IM,. Next, suppose Eedn, and
Fedn, Itis easy to see, by Theorem 2.20(b), that both E X R*and
Rt X F belong to 9. The same is true of their intersection E X F.
It follows that 9, X oM, C M.

Choose Qe I, X 9,. Then Q& M, so there are sets P; and
Pge(B., such tha.tP1 C Q CP,andmk(Pz -— P1) = (. Bothmkand
m, X m, are translation invariant Borel measures on R* They
assign the same value to each k-cell. Hence they agree on ®,;, by
Theorem 2.20(d). In particular,

(mr X ma)(Q'—Pl) S (mr xma)(Pz_Pl) = mk(Pz—Pl) = 0
and therefore

(me X m)(Q) = (me X m)(P1) = mu(P1) = ma(Q).

So m, X m, agrees with m; on M, X IMN,.
It now follows that 91, is the (m, X m,)-completion of 9, X IN,,
and this is what the theorem asserts.

We conclude this section with an alternative statement of Fubini’s
theorem which is of special interest in view of Theorem 7.11,

7.12 Theorem Let (X,$,1) and (Y ,3,\) be complele o-finile measure spaces.
Let (§ X 3)* be the completion of § X 3, relative to the measure p X \.
Let f be an (§ X 3)*-measurable function on X X Y. Then all conclusions
of Theorem 7.8 hold, the only difference being as follows:

|

: el
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The 3-measurability of f. can be asserted only for almost all z ¢ X, so that
o(zx) 18 only defined a.e. [u] by 7.8(1); a similar statement holds for fv and .

The proof depends on the following two lemmas:

Lemma 1 Suppose » 18 a positive measure on a o-algebra M, IN* s the
completion of M relative to v, and f is an M *-measurable function. Then
there exists an M-measurable function g such that f = g a.e. [»].

(An interesting special case of this arises when » is Lebesgue measure
on R* and 91 is the class of all Borel sets in E*.)

Lemma 2 Let b be an (§ X 3)*-measurable function on X X Y such that
h = 0ae [p XA Then for almost all x &€ X 1 is true that h(x,y) = O for
almost all y £ Y, in particular, h, 18 3-measurable for almost all ze X. A
similar statement holds for hv,

If we assume the lemmas, the proof of the theorem is immediate: If f is
as in the theorem, Lemma 1 (with » = u X \) shows that f = ¢ + &,
where h = 0 a.e. [u X )] and g is (§ X J)-measurable. Theorem 7.8
applies to g. Lemma 2 shows that f, = g, a.e. [A] for almost all 2 and
that fv = gv a.e. [u] for almost all y. Hence the two iterated integrals of
[, as well as the double integral, are the same as those of g, and the theorem
follows

PROOF OF LEMMA 1 If f is a characteristic function, the econclusion of
the lemma is just the definition of * (see Theorem 1.36). Hence
the lemma, is true for simple functions f. If fis 9 *-measurable and
f 20, and if {s.} is a sequence of M *measurable simple functions
which converges pointwise to f, there are 9-measurable simple func-
tions ¢, such that ¢, = s, a.e. [¢] and such that £,(z) = 0 at those z at
which £,.(z) # s.(z). Then g(z) = lim t.(z) exists for every z, ¢ is
M-measurable, andg = fa.e.[v]. The general case (f real or complex)
follows.

PROOF OF LEMMA 2 Let P be the set of all points in X X Y at which
hiz,y) # 0. Then Pe(§ X 3)}* and (¢ X A\)(P) = 0. Hence there
exists a @ € § X J such that P C @ and (u X A)(Q) = 0. By The-

orem 7.6,

(1) [:7(@0) duta) = 0.

Let N be the set of all x £ X at which A(Q.) > 0. It follows from (1)
that w(N) = 0. For every z ¢ N, A(@Q.) = 0. Since P, C Q. and
(Y,3,A) is a complete measure space, every subset of P, belongs to 3
ifzgN. If y¢P,, then h,(y) = 0. Thus we see, for every z ¢ N,
that A, is 3-measurable and that A.(y) = 0 a.e. [A].
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Convolutions

7.13 It happens occasionally that one can prove that a certain set is not
empty by proving that it is actually large. The word “large’” may of
course refer to various properties. One of these (a rather crude one) is
cardinality. .An example is furnished by the familiar proof that there
exist transcendental numbers: there are only countably many algebraic
numbers but uncountably many real numbers, hence the set of transcen-
dental real numbers is not empty. Applications of Baire’s theorem are
based on a topological notion of largeness: the dense G's are “large” sub-
sets of a complete metric space. A third type of largeness is measure-
theoretic: One can try to show that a certain set in a measure space is not
empty by showing that it has positive measure or, better still, by showing
that its complement has measure zero. Fubini’s theorem often ocecurs in
this type of argument.

For example, let f and g & L}(R?!), assume f > 0 and g > 0 for the
moment, and consider the integral

o) @) = [Cfe— g dt (== <2z < ).

For any fixed z, the integrand in (1) is a measurable function with range
in [0, ], so that A{z) is certainly well defined by (1), and we see that
0 < h(z) £ .

But is there any x for which h(z) < «? Note that the integrand in (1)
is, for each fixed z, the product of two members of L!, and such a product
is not always in I'. [Example: f(z) = g(z) = 1//zif 0<z2<1,0
otherwise.] The Fubini theorem will give an affirmative answer. In
fact, it will shaw that & ¢ L'(R?), hence that A(z) < <« a.e.

7.14 Theorem Suppose fe L'(R'), ge L*(RY). Then

1) [ = v dy < =
Jor almost all x. For these z, define

@ w@) = [ @~ ye) dy.
Then h e L'(RY), and

3) 12l £ UA1gl,
where

@ Il = [ 1) da.

We call k the convolution of f and g, and write b = f =+ g.
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PROOF There exist Borel functions f, and g, such that f, = f a.e. and
go = g a.e. The integrals (1) and (2) are unchanged, for every z, if
we replace f by foand g by go. Hence we may assume, to begin with,
that f and g are Borel functions.

To apply Fubini’'s theorem, we shall first prove that the function F
defined by

(5) Flx,y) = f(z — y)g(y)

is a Borel function on R2.
Associate with each £ C R! the set £ C E? defined by

(6) E={@y):z—yekEl.

If E is open, so is £. The collection of all E C R! for which £ is a
Borel set is easily verified to be a o-algebra in B!, hence contains all
Borel sets in Rt It follows that £ is a Borel set in B? whenever E is
a Borel set in R

Now let V be open, and let £ = {z:f(z) € V}. Then E is a Borel
set in B!, and so is

(7) {@y):fe—yeV} = {@y):z—yeE} = E
This shows that (z,y) — f(z — y) is a Borel function. So is

(v a2y — o) Sinece the nraduet of two Rarsl funetinne is a Rarel
\W’y} i v \u} - LA VAR y‘- WA VR WA WYY S VLA N A ALRLALY VIS AN Ak [+ el WA N

function, our assertion concerning F is proved.
Next we observe that

® [Tay [° [F@y)lde
= [* @l dy [, 1@ — iz = |7lgll

since
©) [7. 1f@ = p)ldz = Il

for every y e R!, by the translation invariance of Lebesgue measure.
Thus F £ L1(R?), and Fubini's theorem implies that the integral (2)
exists for almost all x € B! and that 4 £ L'(R')., Finally,

i = [ h@ldz < [° dz [7 [F@y)] dy

= f_: dy f_: |F(z,y)| dz = [ fllllgll,

by {8). This gives (3), and completes the proof.

Convolutions will play an important role in Chap. 9.



148 Real and complex analysis

Exercises

1 Find an example of a monotone class 9 in a set X such that
&M, X &M, but M is not a s-algebra.

2 Suppose f is a Lebesgue measurable nonnegative real function on
R and A(f) is the ordinate set of f. This is the set of all points
(x,y) &€ R? for which 0 < y < f(x).

(a) Is it true that A(f) is Lebesgue measurable, in the two-dimen-
sional sense?

() If the answer to (@) is affirmative, is the integral of fover R!
equal to the measure of A(f)?

(¢) Is the graph of f a measurable subset of E??

(d) If the answer to (¢) is affirmative, is the measure of the graph
equal to zero?

3 Find an example of a positive eontinuous function f in the open
unit square in R?, whose integral (relative to Lebesgue measure)
is fintte but such that ¢(x) (in the notation of Theorem 7.8) is
infinite for some x ¢ (0,1).

4 Supposel < p < «, fe LI(RY), and g & LP(RY).

(2) Tmitate the proof 'of Theorem 7.14 to show that the integral
defining (f * ¢)(x) exists for almost all z, that f * g ¢ L*(&"),

antd that
aJiul Llilavb

I glle < [filallghs

(b) Show that equality can hold in (@) if p = 1 andif p = «, and
find the conditions under which this happens.

(¢) Assume 1 < p < «, and equality holds in {a). Show that
then either f = 0 a.e. org = 0 a.e.

(d) Assumel £ p £ =,¢e > 0,and show that there exist fe L!(R?)
and g € LP(R") such that

1f % glls > (A = &llfllillgl.

5 Let M be the Banach space of all complex Borel measures on R
The norm in M is |lu|| = |u|(R!). Associate to each Borel set
E C R! the set

E, = {(z,y):z +ye E} C R~

If p and A &£ M, define their convolution g * X to be the set function
given by
(u ¥ A (E) = (u X AE?)

for every Borel set £ C R!; 4 X A is as in Definition 7.7.
(a) Prove that u * A £ M and that |u * A|| < {[u]l A
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(b) Prove that u * A is the unique » ¢ M such that

[rdv = [[ 1@ + y) du(z) A )

for every fe Co(R'). (All integrals extend over RE!.)

(¢) Prove that convolution in M is commutative, associative, and
distributive with respect to addition.

(d) Prove the formula

(e *N(EB) = [ w(B - ) d\®)
for every u and A € M and every Borel set E. Here
E—~t={x—tzeE].

(e) Define u to be discrete if u is concentrated on a countable set;
define u to be continuous if u({z}) = 0 for every point z £ R!;
let m be Lebesgue measure on B! (note that m § M). Prove
that p = )\ is discrete if both u and )\ are discrete, that x * ) is
continuous if u is continuous and A £ M, and that g * A < m if
w<Lm.

(f) Ifdp = fdm,d\ = gdm, f e L}(R"), and g € L'(K?), prove that
d(p *X) = f*gdm.

(g) Properties (a) and (c) show that the Banach space M is what
one calls a commutative Banach algebra. Show that (e) and (f)
imply that the set of all discrete measures in M is a subalgebra,
of M, that the continuous measures form an ideal in M, and
that the absolutely continuous measures (relative to m) form
an ideal in M which is isomorphic (as an algebra) to L'(RY).

(k) Show that M has a unit, i.e., show that there exists a 6 M
such that § *u = pforall ue M.

(7) Only two properties of B! have been used in this discussion: R!
is a commutative group (under addition), and there exists a
translation invariant Borel measure m on R! which is not
identically 0 and which is finite on all compact subsets of R
Show that the same results hold if R!isreplaced by R*orby T
(the unit circle) or by T* (the k-dimensional torus, the car-
tesian product of k copies of T'), as soon as the definitions are
properly formulated.

6 (Polar coordinates in R*.) Let S;—_; be the unit sphere in R¥, ie.,
the set of all u ¢ R* whose distance from the origin 0is 1. Show
that every z ¢ R*, except for x = 0, has a unique representation
of the form z = ru, where r is a positive real number and « € S;—1.
Thus R* — {0} may be regarded as the cartesian product
(OJ 00) X Sg-1.

Let m, be Lebesgue measure on Rf, and define a measure oy,
on Si_.; as follows: If A C S;—; and A is a Borel set, let A be the
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set of all points ru, where 0 < r < 1 and u € 4, and define
0'};...1(‘4.) =k mk(ﬁ)

Prove that the formula

o fdm; = L " pk=1 gy /..sk-; flru) dor_1(u)

1s valid for every nonnegative Borel function f on R*. Check that
this coincides with familiar results when & = 2 and when & = 3.
Suggestion: If 0 < r; < rpand if 4 i1s an open subset of Si—,, let
E be the set of all ru with ry < r < r;, u e A, and verify that the
formula holds for the characteristic function of E. Pass from
there to characteristic functions of Borel sets in R*.
Suppose (X,8,4) and (Y,3,\) are o-finite measure spaces, and sup-
pose ¢ is a measure on § X J such that

v(4 X B) = u(4N(B)

whenever 4 £§ and Be 3. Prove that then ¢(E) = (u X AHE)

forevery Ee § X 3.

(a) Suppose f is a real function on R? such that each section f, is
Borel measurable and each section f¢ is continuous, Prove
that f is Borel measurable on R2.

Note the contrast between this and Example 7.9(c).

(b) Suppose g is a real function on B* which is continuous in each
of the & variables separately. More explicitly, for every
choice of =3, . . . , o, the mapping x; — g(z,,xs, . . . ,2;) I8
continuous, etc. Prove that g is a Borel function.

Hint: f 0 -~ 1)/n = ;.1 £ 2 < ¢ = i/n, put

In(zy) = ——f(a,_l,y) + — =l S,

Suppose E is a dense set in R? and f is a real function on K? such
that (a) f: is Lebesgue measurable for each x ¢ E and (b) f¥ is con-
tinuous for almost all y € R'. Prove that f is Lebesgue measur-
able on K2

Suppose f is a real function on R? f; is Lebesgue measurable for
each z, and f% is continuous for each y. Suppose g: R' — R! is
continuous and h(y) = f(g(y),y). Prove that h is Lebesgue
measurable on B'. Then use Lusin’s theorem to obtain the same
result if continuity of g is replaced by measurability.

Let ®: be the os-algebra of all Borel sets in R*. Prove that
®Bmyn = Bp X B,. This is relevant in Theorem 7.14.
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Differentiation

Derivatives of Measures

We begin with a theorem about derivatives of certain point functions,
in order to motivate Definition 8.2.

8.1 Theorem Suppose u is a complex Borel measure on R! and
) J@) = p((—=x)) (@R
For any z & R}, each of the following two statemenis implies the other:

(a) f s differentiable at xz and f'(z) = A
(b) To every € > O there exists a § > 0 such that

sl)
for every open segment I which contains x and whose length is less
than é.

Here m denotes Lebesgue measure on Rl

PROOF Replace u by 4 — Am, restricted to some segment containing
z (so that the new measure is finite). This shows that there is no loss
of generality in assuming 4 = 0.
If f/(x) = 0 and ¢ > 0, there exists a § > 0 such that
/@) — f@)] < €|t — 2

if |t — x| <8 Supposezxel, I = (s,t), and¢t— s < 8. Choose s,
sothatz > 8, > 8> -+ ,8,— s Then

llsat)l = 1) — flsa)| < IfO ~ f@)| + 1) — Flsa)l

Selt— 1) + ez — 8a) = (t — 8) < em(I),
151
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and since I = U([s4,f)), it follows that [u(J)| < em(I). Thus (a)
mmplies (b).

Next, suppose (b) holds with A = 0, choose ¢ > 0, and choose & as
m@®). Hs<z<tandt— s < §, then

() <elmerd)

for all large enough n. Since [s,8) = N(s — 1/a, {) and

JO ~ f(8) = u((s,0),
it follows that

(3) f@) — f(®)] £ et — s s<zx<i<s+3d).
If (b) holds, then u({z}) = 0, where {x} is the set consisting of z

alone. Hence f is continuous at x. Hence either s or ¢ can be
replaced by z in (3), and we eonclude that /() = 0.

8.2 Definition Theorem 8.1 suggests that the derivative of u at z might
be defined as the limit of the quotients u(I)/m(I) as the segments 7 shrink
to the point z. Of course, one could also consider quotients u(E)/m(E),
where K runs over some other family of sets. On the line there seems
little point in doing this, but in euclidean spaces of higher dimension it is

annronriata
u,l.,IHA U!J’l. ALH UV e

A collection 2 of open sets in R* will be called a substantial famidy if

(a) There is a constant 8 < = such that each E & Q is contained in
an open ball B with m(B) < gm(E), where m denotes Lebesgue
measure in R,

(b) To every z & B* and & > 0 there exists an F £ , whose diameter
is less than 3, such that xz ¢ E.

Recall that
() diam E = sup {|x — yl:ze E, y ¢ E}.

Condition (e) is a quantitative statement of the requirement that the
members of £ should not be too long and thin; if the volume is small, the
diameter must be small.  Simple examples of substantial families are the
collection of all open balls, the collection of all open cubes, and the collec-
tion of all open k-cells whose longest edge is at most 1,000 times as long as
the shortest edge.

Now suppose p is a complex Borel measure on R*, Q is a substantial
family, x ¢ R*, and A is a complex number. If to each ¢ > 0 there cor-
responds & & > O such that

)

s(E)
m(B) — A4 ’ <e
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for every E £ Q@ with z ¢ E and diam F < §, then we say that u is differ-
entiable al x, and write

3 (Dp)(x) = A.

Note that this definition of Dy depends on @, so that we should perhaps
be talking about Q-derivatives and should perhaps use the notation Dg
in place of D. Since we shall never be dealing with more than one family
Q at a time, this will not be necessary.

8.3 Definition If u is a real (or a positive) Borel measure on R*, we can
define upper and lower derivatives of u at every point x £¢ R*. For every
r > 0, put

< w(B) .
1) A(z) = sup m.xsE, EeQ diam E < r},

where @ is a given substantial family, and define the upper derivative of
at z by

2 (Du)(x) = lim A,(z).

Since r > s implies A,(x) > A.(z), the limit in (2) exists, as a number in
[_ e, ]-

to be lim A.(x), as r— 0. i
It is clear that u is differentiable at z if and only if (Dy)(x) and (Du)(x)
are equal and finite; in that case, we have

3) (Dw)(@) = (Du)(x) = (Dw)(2).
Also, (Du)(z) < (Du)(z) always holds.

8.4 Proposition Suppose u and \ are real Borel measures on B¥, e = u + ),
and xe R®. Then

(1) (Do) (z) < (Du)(z) + (DN)(2)

unless the right side of (1) is undefined (i.e., 1s of the form «© — =), Ifp
and X are differentiable at x, so is o, and

) (Do)(@) = (Dr)(x) + (DN)(2).

ProOF If either of the numbers on the right of (1) is + =, there is
nothing to prove. If not, and if A > (Du)(z), B > (DA)(z), there
exists a 8§ > 0 such that u(E) < Am(E) and ME) < Bm(E) for all
EeQ with ze £ and diam F < 4. Hence

o(E)

m<A+B



154 Real and complex analysis
for all such E, so that (Do)(x) < A 4+ B. This gives (1).
The inequality
3 (Do)(x) = (Du)(z) + (DN (x)
is proved similarly, and (2) is a eonsequence of (1) and (3).

The relevance of substantial families to the result we are aiming at
(Theorem 8.6) depends on the following covering theorem.

8.5 Theorem Let Q be a substantial family in R*, and suppose A s the
union of a finite collection ® of members of Q. Then there i3 a disjoint sub-
collection @' of ® whose unton A’ has the property
ey m(A) < 8- 3* - m(4").
Here B 13 the constant in Definition 8.2(a).
PROOF Order the elements Sy, S;, . . . , S, of & so that
diam S; > diam S.'+1.

Put 7, = 1, let ¢; be the smallest integer greater than ¢, such that
S;, n S;, 18 empty, let i3 be the smallest integer greater than ¢, such
that S;, n (S;u8,) is empty, and s0 on as long as possible. In a
finite number of steps this gives us a disjoint collection S;, S;,, . . .
which we call &',

Each S;, lies in an open ball B, such that

(2) m(B,) < gm(S,).

Let V. be the open ball which has the same center as B, but whose
radius is 3 times as large. To each S; there corresponds at least one
7a < 7 such that S;intersects S;,. ThenS; C V,. Hence A C UV,;
and since A’ = US;,, we have

m(4) < Y, m(Va) = 3* Y, m(B)
< 36-8- Y m(Sy) = 8% 8- m(4)).

8.6 Theorem Let Q be a substantial family in B*. If u 18 a complex Borel
measure on R, then

(a) u is differentiable a.e. [m)},
(b) Due LMRF),
(¢) For every Borel set E,

w(E) = w(B) + [, (Dw)() ds
where . 1. m and (Dp,)(z) = 0 a.e. [m).
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Note that (c) is the Lebesgue decomposition of g, relative to m. This
leads to the following.

Corollary (1} p L m if and only if (Du)(x) = 0 a.e. [m]. (i) u K m if
and only if

w() = [ (D) () da;

in this case, the derivative (Du)(x) (compuled as a limit of quotients) coincides
a.e. [m] with the Radon-Nikodym derivalive du/dm.

We begin with some lemmas.

Lemmal [If u 18 o posttive or real Borel measure on K*, then Dy is a Borel

function.

ProoF If ais a real number and A,(z) > afor some z £ R* and some
r > 0 (the notation is as in Definition 8.3), then there exists an £ £ Q
such that x e K, diam E < r, and u(E) > am(E). It follows that
A.(y) > a for every y € E; and since E is open, we have proved that
{z:A,(z) > «} is open. Thus A4, is lower semicontinuous, for every
r > (, and since

([)F)(x) = lim 51/,.(32),

n— o

Dy is a Borel function.

Lemma 2 Suppose u 18 a positive Borel measure on R* which is finite on
compact sets. Let A be a Borel set for which u(A) = 0. Then (Du)(x) =0
a.e. [m] on A.

PROOF If P is the set of all z at which (Du)(z) > 0, Lemma 1 shows
that P is a Borel set, and hence so is A n P. We have to prove that
m(d nP) = 0.

Assume this is false. Then there exists an « > 0 and a Borel set
E,C A n P such that m(E,) > 0 and (Du)(z) > o« for all z¢ E.,.
The regularity of m shows that E, contains a compact set K, with
m(K) > 0.

Fixd > 0. Each ze K then lies in some S € @ such that diam S < §
and u(8) > am(S). Since K is compact, a finite collection ® of these
sets 8 covers K, and Theorem 8.5 shows that there is a subcollection
(81,8, . . . 8.} of & with the following properties:

(1) S{ n S,' = g if ¢ L j, ,U.(S;') > am(S,—),
and
2 ¥ m(8) = g71-37* - m(K);

i=1
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also, 8; C K;, fori =1, . . ., n, where K, is the set of all points
whose distance from K is less than §. Hence

(3) n(Ks) 2 w(U 8) = ¥ w8
t= i=1
>a Y m(S) = ap1-3* - m(K).
=1
Take 6 = 1/n,n=1,2,3, . ... Then u(K) = lim p(Ky»), since

K is the intersection of the decreasing sequence { K ym} and u(K;) < .
(K; has compact closure.) Hence (3) implies

(4) wK) 2 a7 37 m(K) > 0.

But K C A and u(4) = 0.

This contradiction proves that (Du)(x) < 0 a.e. [m] in A. Since
4 2 0, the inequality (Du)(z) > 0 is obvious for all x. This proves
the lemma.

Lemma 3 If u L m, then (Du)(z) = 0 a.e. [m].

PrOOF It isenough to prove thisforrealu. Inthatcasey = ut — u—
(Jordan decomposition theorem), where p+ > 0, u* L m, and similar
statements apply to x=. Since u* L m, there is a Borel set 4 such
that ut(A) = 0 and m(4°) = 0. By Lemma 2, Dyt = 0 a.e. [m].
Similarly, Dy~ = O a.e. [m], and the lemma follows from Proposition
8.4.
Proof of Theorem 8.6 By Lemma 3 and the Lebesgue decomposition
theorem we only need to consider the case u << m; also, it is enough to
consider real 4. The Radon-Nikodym theorem then shows that there is a
real Borel function f & L'(R*) such that

6) w(E) = [ f@) da.
The theorem therefore follows from the equality

(6) Du)(x) = flx)  (a.e [mi),

which we shall now prove.
Let 7 be a rational number, put

@) A={2:f@z) <r}, B=lz:r<f@)},

and define

® NE) = [ (@) ~n)dz

., =
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for all Borel sets F in B%. For every E ¢ Q,
©) u(E) — m(E) = [ (f@) — 1) dz < A(E),

and since (DA)(z) = 0 a.e. [m] on A, by Lemma 2, we conclude from (9)
that

(10) Dwx) < r (a.e. [m]} on A).
In other words, if
11 E, = {z:fx) <71 < (Dp)@)},

we have proved that m(E,) = 0. But f(z) < (Du)(z) if and only if
z ¢ UE,, the union being taken over the countable set of all rational
numbers. Thus

(12) (Du)(@) < fz) (a.e. [m]).
If we replace u by —u, hence f by —f, (12) leads to (Dg)(x) 2 f(z)

a.e. [m]. This gives (6) and completes the proof of the theorem,

8.7 Remarks Theorem 8.6 evidently also holds if u is defined only on
the Borel sets in some open set V C R* (the conclusions then also just
hold in V, of course), as an examination of the proof will show. Or we

nor civneilesr dafiema I N Fonw 211 B 7 T7C o sevenler ¢ b ccisincn oo
Giall Dllllply uclLlilie ‘U-\LJ) — U 1Ul all L& \_ ¥ [«H LN uppxy LIIE LIICVICTILIL a8
1t stands.

If f& L'(R*) and
¥ wE) = [, f@) da,

it is reasonable to call u the indefinite integral of f. With this terminology,
Theorem 8.6 asserts that the derivative of an indefinite integral equals
the integrand a.e. [m], and that every u <« m is the indefinite integral
of its derivative. Note that this holds for every substantial family Q;
the exceptional set of measure 0 on which the derivative may fail to exist
may of course depend on Q.

The differentiability of indefinite integrals may be interpreted as a
kind of “average continuity’”’ of Lebesgue integrable functions. For if
(1) holds, the assertion (Du)(xe) = f(xo) is nothing but the statement that

@) 5 Jo @ do— 1z
as E shrinks to x,, or that

3) m—(lE") [E {fz) — fxo)} dz— 0.
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The left side of (2) is the averaffe of f over small neighborhoods E of zo;
the left side of (3) is the average of f — f(xo) over E.

Now (3) could be due to a cancellation effect caused by changes of
sign of f — f(xo) in small neighborhoods of almost all points ze; or a
stronger statement might be true, namely, that the averages of |f — f(xo)]
actually become small in small neighborhoods of almost all points ze.
The stronger result is in fact true:

8.8 Theorem Suppose fe LY(R*), and Q is o substantial family in R*.
Then

o il Jo VF@ — S@dl da— 0

for almost all z, & R*.

More precisely, the conclusion is that to each ¢ > 0 there corresponds
a & > 0 such that the left side of (1) is less than e for all E £ Q such that
zo e E and diam £ < 6.

PrOOF Let S be a countable dense set in the complex plane. For
each r & 8, the relation

@ my fo 1f@ = rldz— S = 1

holds for almost all 24, by Theorem 8.6. Let @, be the exceptional
set, and put @ = UQx Then m(Q) = 0. Fix 2,¢ @, and choose
e> 0.

There exists an r £ S such that |f(xy) — | < ¢, s0

G ey 1@ ~ Sl ds < o [15@ — rlde +e

If we apply (2) to the integral on the right of (3), we see that the left
side of (3) is less than 2¢ for all E £ @ which contain x, and whose
diameter is sufficiently small. This proves (1).

Note: The set of all z, at which the relation (1) holds is usually called
the Lebesgue set of f, especially when £ = 1 and when Q is the family of
all segments in R,

We now turn to some results of a more special character:

8.9 Theorem Suppose u s a real Borel measure on R, p 2> 0,and p 1. m.
Let Q be the family of all open segmenis in R. Then (Du)(x) = * a.e. [u].

Corollary If
8 = {z: D)) > 0} n {x: (Duw)(x) < =},
then m(S) = u(S) = 0.
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PROOF There is a Borel set A, with m(4) = 0, on which u is concen-
trated. If 0 < @ < », let E, be the set of all z£ A at which
(Du)(z) < a, and let K be a compact subset of £,. If we can prove
that 4(K) = 0, it will follow that u(£,) = 0, since u is regular (Theo-
rem 2.18), and this gives the desired result.

Fix ¢ > 0. Since K C A4, m(K) = 0, and K lies in an open set
V with m(V) < e BSince K C E,, each & K lies in a segment
I. C V such that u(Z;) < - m(I;). The compactness of K shows
that there are points z;, . . . , 2z, 8K sothat KC I,,u - - -ul..
If any point of R! lies in three segments, one of these lies in the union
of the other two and can be removed without changing the union.
In this way we can remove the superfluous segments I, and arrive

at a situation in which no point lies in more than two of the segments
I.. Then

wE) S u(UL) < 3 ulle) < aRml)

1

< 2am (UI,,) < 2am(V) < 2ae.

Since ¢ was arbitrary, u(K) = 0, and the proof is complete.

8.10 Examples Note that a very special property of the line was used
in the preceding proof. To see that this was essential, let J be a compact
interval on the line y = z in R?, let m; be one-dimensional Lebesgue
measure on J, and define u(E) = m(E nJ) for every Borel set £ C R
Then u 1 m,, since my(J) = 0.

Let © consist of all open squares in the plane, with sides parallel to the
axes. It is clear that Dy = 0 at every point not in J. Each point of J
lies in arbitrarily small members of @ which intersect J in a very tiny
segment. This shows that Du = 0 at every point of K2, unlike the con-
clusion of Theorem 8.9.

It is not hard to see that Dy = o at every point of J, in this example.

However, let us change Q: Let @ now consist of all open squares (sides
parallel to the axes) which do not intersect J, plus those squares of area
8% (for every & > 0) which intersect J in a segment of length 3. This
collection @ is a substantial family, and we can verify that the above p
even has Du = 0 al every point of R?, although p 1 m, and p = 0.

This example shows that some special hypothesis on Q is needed in the
next theorem. (For an application, see Theorem 8.26.)

8.11 Theorem Suppose u is a real Borel measure on R*, y > 0. Let Q
be the collection of all open cubes in R*, with sides parallel to the coordinate
azes. Assume (Dp)(z) < » for every xe Rx. Then p is absolutely con-
tinuous with respect to Lebesgue measure.
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PROOF Assume there is a set E with m(E) = 0 but u(E) > 0. Put
1) E,= {zeE: (Du)(z) < n} n=123, ...).

Since E = UE,, we have u(E,) > 0 for some n. Fix this n. With
the notation of Definition 8.3, put

2) 4= {zeE.: by <n} (=123 ...

Since E, = UA4;, we have u(4;) > 0 for somej. The regularity of
(Theorem 2.18) now shows that there is a compact set K C A; with
u(K) > 0.

Our construction shows that K has the following property: If
reK,zel, IeQ and diam J < 1/7, then up(I) < n

Let ¢ > 0 be given. Since K C E, m(K) = 0, so there is an open
set VO K with m(V) <.

Partition R* into disjoint_cubical boxes B, as in Sec. 2.19, whose
diameter is less than 1/7 and is so small that any box which intersects
K lies in V. Keep those B’s which intersect K, and enlarge each
of them so as to obtain open cubes I; D B; with m(l)) < 2m(B)),
diam I; < 1/4. Then

- m(I).

w(K) < Zu(B) < Zu(l) < n-Zmly)

< 2n-Zm(B;) € 2n-m(V) < 2ne.

LA

Since e was arbitrary, we have u(K) = 0, a contradiction.

Functions of Bounded Variation

8.12 Definitions We associate with each complex function f on R! its
total variation function T, defined by

(1) Ty(x) = sup _Zl 1f@) — fzi-)] (= <2 < ),

where the supremum is taken over all N and over all choices of {z;} such
that

@) —o K< H < - LAy = 2.
In general,
3 0<T@) STy(y) < > (@ <y).

If T, is a bounded function, then (3) implies that
) Vi) = lilil Ti(z)
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exists and is finite. In that case we say that f is of bounded variation,
and we call V(f) the fotal variation of f; the eclass of all such f will be
denoted by BV.

If —o <z £ o, fissaid to have a left-hand limit at z, written f(z—),
if there corresponds to each ¢ > 0 a real number a < z such that

(5) a<t<z implies /() — flz—)| < e

If f(x—) = f(z), f is said to be left-continuous at z.

Right-hand limits and continuity from the right are defined similarly
onf[— x,®),

We call a function f & BV normalized if f(z) >0 as 22— — o and fis

left-continuous at avery pnnrl‘ of R, The class

be denoted by NBV.

Instead of considering only functions defined on all of R! we eould
equally well consider functions defined on any segment or interval of R
Neither the preceding definitions nor the theorems which follow would
be affected in any significant way.

8.13 Theorem

(@) If fe BV and z < y, then
[f@) — J@)

l/\

:\ Ax)
Y LAY

(b) If fe BV, then f(x—) exists al every point of (— o,o], f(z+)
exists at every point of [— o, ), the set of points at which f is dis-

continuous 1s at most countable, and there is a unique constant ¢
and a unique function g € NBV such that

J(@) = ¢ + g(2)

at all points of continuity of f. Also, V(g) < V().
(c) If fe NBV, then T, e NBYV.

PROOF
(@) If z < yand e > 0, therearepointszo < 2, < -+ * < Zp =1z
so that
) S @) — fi)| > To@) — e
i=1
Hence

T,y) > |f(y) — flz)| + _il |fx) — flzic)| > |f@y) — f@)] + Tp(z) — e

This proves (a).
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(b) It follows from (a) that if {x;} is a sequence for which {T(z,)}
is a Cauchy sequence, then {f(z,)} is also a Cauchy sequence.
Since monotone functions (and 7T, in particular) have right-
and left-hand limits at all points and since they have at most
countably many discontinuities, the same therefore holds for f.
Hence we can define

@ c= t_l’il_nmf(t), g(z) = flz—) —c (zeRY).

It is clear that g(2) > 0asz— —«. IfzeR'ande > 0,
there exists an a < z such that |f(t) — f(z—)| < ¢ for all
t ¢ (@,2). Sinee f(t—) is a limit point of the set of all numbers
f(s), for & < 8 < ¢, it follows that |f(t—) — f(z—)| L ¢ if
a <t <z 'Thus g is left-continuous.

Ifze<zy< -+ < z4andé >0, then

@) Y lo@) — gla)| = lim 3, [f(z: — &) — f(zea = 3)),
i1 50 i=1
and since none of the sums on the right of (3) exceeds V(f),
we have V{g) < V(f). In particular, g ¢ BV.

This proves (b), except for the uniqueness. But if two left-
continuous functions coincide on a dense subset of B!, then
they are identical. The uniqueness of g now follows easily.

(c) If fe NBV, fix z ¢ R', ¢ > 0, and choose points

Lo K1 < »"" L2 =72

so that (1) holds. If {p < + + + <ty = =g, then

N »
@  T@ 2 Y — S+ Y @) — fa)
a1 fa=]
By (1), the first sum in (4) is less than . Hence Ty(zo) < ¢,
and this says that T,(t) - 0ast— — o,
Finally, choose ¢, so that z.—; < ¢ < z,. Then

n—1

) __Z |f(@:) = fmi)] + 1f@) — fla-)] £ To(t) £ Tolz—) < To(2).
i=1
If we let t — 2, = x, the left side of (5) tends to the left side
of (1), since f(z) = f(z—), and this gives T,(z) — ¢ < Tfz—).
Comparison with (5) now shows that T,(z—) = T,(z), and
the proof is complete.

The next theorem explains the importance of the class NBV. Observe
how the correspondence between f and u associates the total variation
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of f with that of u, and how the existence of Lebesgue measure is used
to construct x in part (b).

8.14 Theorem

(a) If u is a complex Borel measure on B! and if
(1) fl@) = u((—=,2))  (zeRY,

then f ¢ NBV.
(b) Conversely, to every f € NBV there corresponds a unique complex
Borel measure u such that (1) holds; for this p,

N L/ LI Y
\<«/ A

(¢) If (1) holds, then f 13 continuous precisely at those points x at which
s({z}) = 0.

prooF If fis defined by (1) and if 2, <z, < + - -, . — &, then
f(@s) — f(z), since

@) (—o,z) = U (—o,z)

R=]

Thus f is left-continuous. If z, > 22> ¢+, z,— — e, then
N(— o,2,) = &, so f(x) - 0 as £ — — o, by Theorem 1.19(¢). If
T <21 < -+ < u =2z then

3 116ad = sl = 3, aioaad)] < (= »,2)

t=1

so that

4) Ty(z) < |u|((— =,2)).
This proves (a).

In the proof of (b), let us first assume that f¢e NBV and f is non-
decreasing, f # 0. Associate with each point z € B! a set ®[z], as
follows: If f is continuous at x, ®[z] is the point f(z); if f(z+) > f(z),
then ®[z] is the interval [f(z),f(z+)]. If E C RY, let ${E] be the
union of all sets ®[z], for z¢ E. We claim that the definition

(5) w(E) = m(P[E])
gives us a measure which satisfies (1); here m is Lebesgue measure
on Rl

Put J = ®[R1Y. Then J is a 1-cell (i.e., a bounded interval with
or without its end points). There are at most countably many
points y; € J such that f~1(y) consists of more than one point; for
these y;, f~*(y:) is a 1-cell.
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Let Z be the class of all E C R?! such that ®[E] is a Borel set. If
E is a 1-cell, so is ®[E], hence E ¢ Z. For any E C R, $[E°] is the
union of J — ®{E] plus an at most countable set (a subset of {y:});
thus E ¢ Z implies E€¢ Z. Next,

$[E1uEsu - - *] = B[EJud[Eu - - -

This proves that Z is a os-algebra which contains all segments, hence
all Borel sets, so m(®[E]) is defined for all Borel sets E. Moreover,
x is countably additive, for if {E;} is a disjoint collection of Borel
sets in R}, then {®[E,]} is disjoint, except for our at most countable
set {y:}, and this does not affect the countable additivity of u since
m(E) = 0 for every countable set E.

Thus (5) defines a Borel measure. Since ®f(— «,2)] is a 1-cell
whose end points are 0 and f(z), (5) shows that (1) holds.

We now turn to the general case of (b). If fe NBV,thenf = u + 4,
u and v real, u e NBV, and T, ¢ NBV by Theorem 8.13(c). Put

(6) ur = $(Tu + u),  us = (Tu — ).

Then wu, and u, e NBV, and they are nondecreasing; this follows
easily from Theorem 8.13(a). The preceding construetion associates
measures g; and g, with %, and u,, and p; — u, will be associated
with 4 = u; — u,. If we deal similarly with » and combine the
results, we obtain a measure u which corresponds to f in the sense
that (1) holds.

If two regular measures (note Theorem 2.18) coincide on all seg-
ments of the form (— «,z), they coincide on all 1-cells of the form
fa,8), hence on all open sets, hence on all Borel sets. This proves
the uniqueness assertion of (b).

Finally, let A be the measure associated with 7', in the same way.
If @ < B, then

(D s(e8) =18) — fla), M) = T;(8) — Ty(a).
The inequality
® lu(E)| < NE)

therefore holds if £ = [@,8). Since every open set in R! is a count-'
able disjoint union of such 1-¢ells, (8) holds for every open set, hence
for every Borel set. The definition of the total variation |u| of u now
implies that |u| < \. In particular,

C)) el ((— =,2)) < M(—2,2)) = Ts(2).

Now (2) follows from (4) and (9).
The proof of (¢) is left as an exercise.
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Differentiation of Point Functions

8.15 Absolutely Continuous Functions A complex function f on R! is
said to be absolutely continuous if to every ¢ > 0 there corresponds a
é > 0 such that

N N

) 21 (B: — @) <8  implies 21 1£(8) — fle)| < ¢,
g= t=

whenever (a;,81), - - . , (a~,By) are disjoint segments.

Observe that every absolutely continuous function is uniformly con-
tinuous (take N = 1) and that the restriction of any absolutely continu-
ous function to a bounded interval is of bounded variation. However,
if f(z) = sin z, or if f(z) = z 4+ |z|, then f is absolutely continuous, but
f¢BV. ‘

The two meanings of the term ‘‘absolutely continuous” are related
as follows:

8.16 Theorem Suppose fe NBV and u is associated with f as in Theorem
8.14. Then u << m if and only of f is absolutely continuous.

‘(Here m denotes Lebesgue measure on R1.)

PROOF Suppose f is absolutely continuous. Let E be a Borel set
such that m(E) = 0, choose ¢ > 0, and choose § > 0 in accordance
with Sec. 8.15. The regularity of u shows that there are open sets
WiD WyD - - - D E such that m(W;) < é and u(W,) — u(E) as
n— ©, Sinee W, is a disjoint union of segments I; = (a;,8;), and
Z(B; — o)) < 3, it follows that

lk(Wa)| < Y, [wZ)] = 3 17(8) — fl@)| < e
t 7
Consequently, u(E) = 0. This proves that p < m.
The converse follows from Theorem 6.11.

We are now in a position to translate our earlier results on differentia-
tion of set functions into point-function language. Theorems 8.17 to
8.19 are classical results, due to Lebesgue. Theorems 8.18 and 8.21
generalize the fundamental theorem of calculus.

8.17 Theorem If g¢ LY(RY), and if

) 5@ = [omd (e <z<w),
then f &€ NBV, f s absolulely continuous, and

(2) f'(z) = g(z) a.e. [m].
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PROOF Define

® w(B) = [ g0 de

for every Borel set E. Then f(z) = u({— ,z)) and g <Km. By
Theorem 8.14, f ¢ NBV; by Theorem 8.16, f is absolutely continuous;
Theorems 8.1 and 8.6 imply that

(4) f'z) = (Dp)(z) = g(z) a.e. [m]

if Du is computed relative to the family of all open segments in Rl

8.18 Theorem Iffe NBV, ihen f1s differentiable a.e. [m), f’ ¢ L}(RY), and

there is a function f, ¢ NBV with {1(x) = 0 a.e. [m] such that

) @ =f@+ [[ rwd (e <z < =)
J: = 0<f and only if f is absolutely continuous; if f is nondecreasing, so s f..

We eall f, the singular part of f. 1t is a perhaps unexpected fact that
there exist continuous singular funetions which are not constant. Exam-
ples are given in Sec. 8.20(b). The word ‘‘singular’ as applied to meas-
ures has its origin in this phenomenon.

PROOF By Theorem 8.14 there is a complex measure u on R! such
that u((— «,z)) = f(z). By Theorem 8.6,

® w(E) = w(E) + [, (D) d,
where Dy is computed relative to the open segments in B Put
3 fi(@) = p(—2,2)) (- <z < =)

Theorems 8.6 and 8.1 show that fi(z) = 0 a.e. {m] and that

f'(z) = (Du)() a.e. [ml.

Hence (1) follows from (2) if we take E = (— «,z).

By Theorem 8.16, f is absolutely continuous if and only if u < m,
i.e., if and only if u, = 0.

Finally, if f is nondecreasing, then g > 0, hence u, > 0, hence f,
is nondecreasing.

8.19 Theorem If f& BV, then f is differentiable a.e. [m], and f’ € L'(R?).

PROOF By Theorem 8.13, there exists a g ¢ NBV such that

f(z) = g(z) + ¢

at all points of continuity of f. Theorem 8.18 applies to g. Hence
the following lemma (with k = f — g¢) implies the theorem:
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Lemma If e BV and h(zx) = 0 except on an ai most countable set, then
K (z) =0ae

To prove the lemma, let § = {z;} be the at most countable set at which
h{z) = c; = 0. Since ke BV, it is easily seen that Zje < . Fix %,
and let 4, be the set of all z ¢ 8 at which

h(y) — h(z)
y—=

> 1

(1) k

for infinitely many y. Thus z¢ A; if and only if |z — z| < kle for

infinitely many 2. If J; is the segment with center at x; and length
2k|ci, it follows that

) m(J) =2k 3 lal < o,

and hence m(4;) =0fork =1, 2,3, . .., by Theorem 1.41,

But if t¢SuAd,udsudsu - -+, then 2'(z) = 0. This completes
the proof.

Exercises 5 and 6 are relevant to this lemma.

8.20 Examples The preceding theorems show that the equation

W f@ —f@ = [Traya

(in which the right side is a Lebesgue integral) holds for all  in some
interval {a,b] if and only if f is absolutely continuous on {a,b]. One may
ask whether the existence of f' implies the absolute continuity of f. Put
this way, the question is not precise enough. We shall give two examples
which show how (1) can fail, and then give a theorem in which (1) is
deduced from another set of sufficient conditions.

(@) Put f(z) = 22 sin (z2) if z # 0, f(0) = 0. Then f is differenti-
able at every point, but

@ Lrold = «,

so f"¢ L. Also, f¢ BV on {0,1].

If we interpret the integral in (1) (with [0,1] in place of [a,b])
as the limit, as ¢ > 0, of the integrals over [¢,1], then (1) still
holds for this f.

More complicated situations can arise where this kind of pas-
sage to the limit is of no use. There are integration processes,
due to Denjoy and Perron (see [18], [28]), which are so designed
that (1) holds whenever f is differentiable at every point. These
fail to have the property that the integrability of f implies that
of |f], and therefore do not play such an important role in analysis.
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(b) Suppose f is continuous on [a,b], f is differentiable at almost every
point of [a,b], and f’ € ! on [a,b]. Do these assumptions imply
that (1) holds?

Answer: No.

Choose {3,} sothat 1 =8, > 8, >8> - -+, 8,—0. Put
E, = [0,1]. Suppose n > 0 and E, is constructed so that E, is
the union of 2 disjoint closed intervals, each of length 2-73,.
Delete a segment in the center of each of these 2" intervals, so
that each of the remaining 2"+! intervals has length 2-"15,,,
(this is possible, since 8,41 < &s), and let E..; be the union of

these 2! intervals. Then E, D E,D - - -, m(E,) = &,
and if
®) E= N E,

then E is compact and m(£) = 0. (In faet, E is perfect.) Put

@) gn=bs,  and  fu@®) = [Te0 @t

n=012...).
Then f,{(0) =0, f.(1) = 1, and each f. is a monotonic function
which is eonstant on each segment in the complement of E.,.
If I is one of the 2" intervals whose union is E,, then

(5) fo@®dt = [ guna® dt = 27
It follows from (5) that

(6) fanr(@) = falz)  (z¢ E.)
and that

) |fa@) — farr(@)] < [,lgn — gupi] € 21 (z e Ea).

Hence {f.} converges uniformly to a continuous monotonic func-
tion f, with f(0) =0, f(1) =1, and f'(z) = 0 for all z ¢ E.
Since m(E) = 0, we have f/ = 0 a.e.

Thus (1) fails. Incidentally, we have now constructed exam-
ples of continuous singular functions as defined after the state-
ment of Theorem 8.18,

If 6, = (2/3)", the set F is Cantor’s “‘middle thirds” set.

8.21 Theorem Suppose [ 78 a real function on [a,b] which is differéentiable
at every point of [a,b], and assume that f' ¢ L' on [a,b]. Then

) f@ =@ = [[rod @<z <b).
Note that differentiability is assumed to hold at every point of [a,b].
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PROOF It is clear that it is enough to prove this for z = b. Fix
¢ > 0. Theorem 2.24 ensures the existence of a lower semicontinu-
ous function g on [a,b] such that g > f’ and

(2) f g(t) dt < L” £/@) dt + e

Actually, Theorem 2.24 only gives g > f’, but since m([a,b]) < =,
we can add a small constant to g without affecting (2). For any
7 > 0, define

@ Fa@) = [[9®dt— @) +J@) + 1z —a) (@ <z<h)

Keep 7 fixed for the moment. To each z € [a,b) there corresponds a
8. > 0 such that

@ g0 >r@ ama OIS pg gy

forallte (z, z + &.), since g is lower semicontinuous and g(z) > f'(z).
For any such ¢ we therefore have

o) = Fa(@) = [ g(8) ds — 1) = f@)] + n(t — 2)

>t —o)f'(x) — ¢ —2)f @ + 2+ 208-2 =0
Since F,(a) = 0 and F, is continuous, there is a last point z & [a,b] at
which F,(z) = 0. If x < b, the preceding computation implies
that F,(t) > Oforte (x,b]. Inany case, Fy(b) > 0. Since thisholds
for every n > 0, (2) and (3) now give

5) & =@ < [fowa< [ rod+e
and since e was arbitrary, we conclude that
®) 1®) =@ < [ raa

If f satisfies the hypotheses of the theorem, so does —f; therefore
(6) holds with —f in place of f, and these two inequalities together
give (1).

Differentiable Transformations

8.22 Definitions Withanyx = (&, . . . ,&) & R* we associate the norm

) 2l = max ({&], . . . &

This norm is better adapted for dealing with cubes than is the ordinary
euclidean norm

) [zlle = (&2 + - - - + &L
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Since |[z]| < |lzll: < V% ||z]|, the metrics induced by these two norms
give rise to the same topology on R*. In particular, ||z.]] > 0asn— «
if and only if ||z, — O.

Suppose V is an open set in B*, T is & mapping of V into B*, z ¢ V, and
A is a linear operator on R* (i.e., a linear mapping of R* into R*, as in
Definition 2.1). If to every e > 0 there exists a 8 > 0 such that the
inequality

@3) TG + k) — T(x) — Akl < €]lA|

holds for all % € B* with ||]] < 8, we say that T is differentiable at x, and
define

4) T'(z) = A.

The linear operator 7”(z) is called the derivative of T at 2. The term
differential is also very frequently used for T’(x); then, rather than say
that T is differentiable at x, one says that T has a differential at z, or
that the differential of T exists at z.

Neither the differentiability of T nor the value of T'(z) is affected by
replacing the norm (1) by the norm (2) in (3).

We say that T is differentiable in V if T is differentiable at every point

of V. In that case there corresponds to each z ¢ V a linear operator
T'(x); for fixed z and small h, T(x + k) — T(zx) is approximated by

LANES AVaila RMAEASNAA £ (W § ‘e LR e Y

T'(x)h, a linear function of h, in the sense of (3).

Since every real number a can be interpreted as a linear operator on
R' (mapping ¢ to atf), the above definition of 7"(z) coincides with the usual
one when k = 1,

With each linear operator A on R* we associate the number

(5) A(4) = m(A(Q))

where m is Lebesgue measure on R* and Q is the unit cube: z € Q if and
onlyif 0 < & <lforl <75k

8.23 Remark If A is a linear operator on K*, then

(1) A'(x) = A (zeRY),
2) w(E) = m(A(E))
for all Borel sets E, then u is translation invariant, since

w(EB 4+ z) = m(A(E + 2)) = m(A(E) + Az) =’m(A(E)) = u(E).
It follows from Theorem 2.20(d) that

) WE) = A(A)m(E)

d if we define
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and hence that
) (Du)(z) = A(A'(x))  (zeRH).

Since every differentiable transformation can be locally approximated by
a constant plus a linear transformation, we may conjecture that (4)
extends to differentiable transformations, under suitable conditions. This

is indeed the case. We first state the result without any reference to
any induced measure pu.

8.24 Theorem Suppose T 18 a continuous open mapping of an open set
V C R* into R¥, and suppose that T is differentiable at some point x e V.
Then to every ¢ > 0 there corresponds a 8 > 0 such that

(1) '1";,(—2%(’;2 — AT (@) | < e

Sor every open cube C, with edges parallel to the azes and of length less than é,
which contains x.

rroOF We assume, without loss of generality, that £ = 0 and
T(x) =0. Put A = T(0).

The following elementary fact about linear operators on finite-
dimensional vector spaces will be used (for a proof, see any book on
linear algebra): A linear operator A on R* is one-lo-one if and only if
the range of A is all of R*. In this case, the inverse A—! of A is a linear
operator on R*, and A is said to be nonsingular or invertible.

The proof conveniently splits into two cases.

case 1 A 4s nonsingular. Consider the mapping S defined by
(2) S(x) = AT (x) (xe V).

Itis clear that S is continuous and open and that 8'(0) = A—1T'(0) = I,
the identity operator. We shall prove that then

m(S(C))
@3 o)

for all sufficiently small C which contain 0.
Since T(z) = AS(z), we have

C) m(T(C)) = m(A(S(C))) = A(4)m(S(C)),

by 8.23(3). Hence (3) will give the desired result.
Fix » > 0 so that » < 4 and

(5) l—e<(1—-20¢< (1 +29<1+e
Since S(0) = 0 and §'(0) = I there exists a § > 0 such that
(6) IS@) — zf| < qllell  if flzfl < 6.

—1;<e
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Let C be an open cube which contains 0 and whose edges are
parallel to the axes and have length A < 6. Let C; and C; be open
cubes concentric with C whose edges have lengths

() M= (1 =29\ A= (14 29N
Note that (6) implies
(8) IS@) — =zl <m  (¢2C),

where C is the closure of C.
If z & C, (8) shows that S(x) £ C,. Thus S(C) C C..
Our next objective is to prove that ¢, C 8(C). Put

0N R o~ QIO o __ Y
) Ly = Loy, Lug = Ly — O(\u ).

By (8), S maps no boundary point of €' into C,. Henece we could
replace C by C in (9) without affecting the definitions of E; and E,.
Since C, is open and S(C) is compact, we see that E, is open. Since
7 < 1, (8) shows that § maps the center of C into Cy, so that E, is not
empty. Finally, S is assumed to be an open mapping, so that S(C)
is open, and therefore E, is open. So C is the union of two disjoint
open sets F;and E,, and E; . But C;is a connected set (every
convex set in R* is connected) and is therefore not the union of two
disjoint nonempty open sets. We conclude that E, = ¢f, hence
E, = (,, and this gives Cy C §(C).
We have now proved that ¢y C 8(C) C C,. Hence

m(S(C))

(10) 1- 2’7)" < W

< (1 + 217)ky

and (3) follows from (5).
This completes the proof in Case 1.

CcASE 2 A s stngular. In this case A maps R* into a subspace of
lower dimension, i.e., into a set of measure 0. In particular,

(11) A(A) = m(A(Q)) = 0.

If ¢ > 0 is given, there exists an 5 > 0 such that m(E,) < ¢if E, is
the set of all points whose distance from A(Q) is less than 5. Since
A = T’(0), there exists a 6§ > 0 such that

(12) IT(z) — Az| < ale)  if [lz]] < s

Let € be an open cube as in Case 1, with edge of length A < 8,
Then |[T(x) — Az|| < g\ for all & C, which means that T(C) lies
in the set £ which consists of those points whose distance from A4 (C) is
less than gA. Our choice of n shows that m(F) < e\*. Hence

m(T(C) _ m(E) _ m(E)
m(C) — m(C) N\

(13) <€
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as soon a8 A < §; and since A(A) -= 0, we have proved that (1) holds
also in Case 2.

The proof is now complete,

8.25 Remarks The preceding theorem is true, but harder to prove, if the
first ‘“open” is deleted from the hypotheses. We used the openness of
T only to prove the following: If C and C, are concentric cubes, C; inside
C, if the distance between corresponding faces of C and C;ise, and if T
moves no point of C by as much as ¢, then T(C) D €. This is true for
continuous 7', but the proof depends on a deeper knowledge of the topology
of RB* than we wish to assume here.

It should also be pointed out that if we assume that 7 is continuously
differentiable, i.e., if we assume that x — 7”(2) is a continuous mapping
of V into the space of all linear operators on EK*, then the inverse function
theorem ([26], Theorem 9.17) guarantees that T is open provided that
T’(z) is nonsingular. So “open” can be deleted from the hypotheses if
we assume that T’ is continuous.

In the application which follows, existence of T'(z) is assumed, but no
continuity assumption is imposed on 7’. The topological assumptions
imposed on T circumvent measurability difficulties.

8.26 Theorem Suppose T is a differentiable mapping of an open set
If f_ pk N fn Fs ) ;\AGJWIIJ{)I] nMD‘V] (‘ﬂ’ W (- p Q’ll’r]’r]n(‘ﬂ t‘l]nn J‘)

. AV ULV W U R W UIIO Lol off o LU o wuwt T 0 0%6 I’I[’I‘ Gna

and that the inverse of T is continuous. Then

(a) T(FE) is a Borel set for every Borel set E C V.
&) If E is Lebesgue measurable, so is T(E).

(¢) If u(E) = m(T(E)), then u is a positive bounded Borel measure on
V, and for every x e V

(Dp)(x) = A(T'(2))

provided that Dp is compuled relative to the collection of all open
cubes with sides parallel to the coordinale azxes.
(d) u < m, and

m(1(E)) = [, a(1"@) dz

for every Lebesgue measurable set & C V.
(e) More generally, of f &€ L'(W), we have

fol@ dy = [, A(T@) AT @)) da.

PROOF Since the inverse of T is continuous, T(E) is open if E is

open; the collection of all £ C V such that T(E) is a Borel set is a
g-algebra in V; this implies (a).
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If p is defined as in (¢), the countable additivity of u follows froin
that of m, since T is one-to-one. Since m(W) < «, u is bounded.
The equation in (c) is just Theorem 8.24. Now Theorem 8.11 implies
that u < m, and the equation in (d) follows from Theorem 8.6, for
all Borel sets E. But if E is a Borel set and m(£) = 0, then also
m(T(E)) = 0; it follows that T (A) is Lebesgue measurable for all
Lebesgue measurablesets A C V withm(A) = 0and that m(T(4)) =0
in this case. This completes the proof of (d) and also establishes (b).

It remains to prove (¢). If A isa Borelsetin Wand E = T-(4),
then E is a Borel set, xg(x) = x4(T'(x)), so (d) implies that

fiy X2@) dy = m(4) = m(T(B) = [, xa(T@) MT'®) de.

Thus (e) holds if f = x4, henece if f is any simple Borel function, and
the general case follows.

8.27 Jacobians The change-of-variables formula 8.26(e) is usually stated
in the form

M frn 7@ dy = [, ST@NIr@)| do

where Jr(z) is the Jacobian of T at xz. By definition, this is the deter-
minant of the linear operator T’(z). The equivalence of the two formulas

will be established if we show that
2) A(T'(z)) = (o)),

and this is clearly a consequence of the following result.

8.28 Theorem If A is a linear operator on R* and if A(A) 73 the scale
Sfactor assoctated with A, so that

(1) m(A(E)) = A(A)m(E)
for every measurable set E, then
2 A(A) = |det A].

We chose to formulate and prove Theorems 8.24 and 8.26 in terms of
the geometrically defined quantity A(A) in order to stress the geometric
and measure-theoretic aspects of these theorems. That A(A) also hap-
pens to be the absolute value of the determinant of (2 matrix associated
with) A is additional information, of an algebraic nature, which is obvi-
ously important for computational reasons. However, earlier intrnduc-
tion of this determinant would not have simplified our work.

PROOF Let {e;, . . . ,ex} be the standard basis for R*: the ith coor-
dinate of ¢;is 1if ¢ = §,0if 7 » j. If A is a linear operator on E* and
k

@ Aej= Y agei  (L<j<h),

sm]
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then det A is, by definition, the determinant of the matrix [4] which
has a;; in the ith row and jth column.

If A = A,A,, (1) implies that A(A) = A(A;) A(A,), and the multi-
plication theorem for determinants therefore shows that if (2) holds
for A, and A., then (2) also holds for A. Since every linear operator
A on E* is a product of finitely many operators of the following three
types, it is sufficient to establish (2) for each of these:

(I) {Aey, . . . ,Ae;} is a permutation of {e;, . . . ,e.}.
(II) Aey = aey, Aes =e;fori =2, ...,k
(III) Ae; = €1+ e, Aes =e;fori =2, ...,k

If A is of type (I), then [A] has exactly one 1 in each row and each
column and has 0 in all other places. Sodet A = +1. If Q is the
unit cube, then A(Q) = Q, hence A(A) = 1 = |det A].

If A is of type (II), then clearly A(A) = |a] = |det A].

If A is of type (III), then det A = 1, and A(Q) is the set of all
points Ze; whose coordinates satisfy

(4) E<bL<H+L O0LE<Y  ifi==2

If 8; is the set of those points in A(Q) which have £ < 1 and if S,
is the rest of A(Q), then

(5) S10 (82 — e2) = Q,
where S, — ez is a translate of S;. Hence
A(A) = m(81u 8z) = m(S;) + m(S; — e2) = m(Q) = 1.
This completes the proof.

Exercises

1 The symmelric derivative of a complex Borel measure u on E* is
defined to be

_ i, #(B)

Domi) @) = lim )y’
where B(x;r) is the open ball in B* with center at x and radius 7.
Prove that Theorem 8.6 implies the analogous theorem for D,ym.
2 Suppose {us} is a sequence of positive Borel measures on R* and

0

w(B) = 3, un(E).

L
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Assume u(R¥) < «. Show that p is a Borel measure. What is
the relation between the Lebesgue decompositions of the u, and
that of u? Prove that

D@ = 3 D@ we.

n=1

3 Suppose each f, is a positive nondecreasing function on £?, and

f@) = 2 fal@) <
for all z. Prove that

f(z) = g i@ ae

4 Construct a continuous monotonic funetion f on R! o that f is
not constant on any segment although f'(z) = 0 a.e.

5 If fis asin the Lemma to Theorem 8.19, can there be an uncount-
able set E such that f is not differentiable at any point of E?

6 Suppose {c;} is a sequence of complex numbers such that Z|c;| =
Show that there are segments J; = (x; — ¢;, «; + ¢;) such that
x; #“a; if 177, {x} is dense in RY, and every z ¢ B! lies in
infinitely many J;, Put f(z;)) =c; ¢ =1,2,3,.. ), fl2) =0

for all other x. Prove that fis nowhere dlﬂ'erentlable

7 Suppose E is a compact set in B! (or B*) without isolated points

*  (a perfect set). Show that E is the support (see Chap. 2, Exercise

11, for the definition) of a continuous positive Borel measure u.
If m(E) = 0, this gives examples of singular measures.

8 Suppose E C [a,b], m(E) = 0. Construct an absolutely con-
tinuous monotonic function f on [a,b] such that f'(z) = + = for
every ze E. Suggestion: EC NV, m(V,) <2, V. open.
Consider the sum of the xy,_.

9 Show that the product of two absolutely continuous functions on
[a,b] is absolutely continuous. Use this to derive a theorem about
integration by parts.

10 If f is a real function on [0,1] and

¥ =t +if@®,
the length of the graph of f is, by definition, the total variation of
v+ on [0,1]. Show that this length is finite if and only if f& BV.
Suppose f(0) = 0, f is eontinuous and nondecreasing, and f, is the

singular part of f (see Theorem 8.18). Prove that the length of
the graph of f is

Q) + [,1 V1 + O] dt.
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11

12

13

14

How does this formula change if f &€ BV but f is not necessarily
monotonic? How long is the graph of the funetion constructed in
Example 8.20(b)?

If £ is a Lebesgue measurable set in B!, the upper and lower limits
of the quotients

m(En{z — §, z + §))
28

are called the upper and lower densities of E at x, Dg(x) and
Dge(x). 1f these are equal, their common value Dg(x) is the
density (sometimes called the metric density) of E at z. If
De(x) = 1, « is a point of density of E.

Prove that Dg(z) = 1 at almost all x ¢ £ and that Dg(z) = 0
at almost all z ¢ E.

Construct a set E such that Dz(0) # Dz(0). Can it happen
that Dz(0) = 0 and Dg(0) = 1?

If ACR! and BCR!, put A +B=1{a+b: ae A, be B}.
Suppose m(A) > 0 and m(B) > 0, and prove that A + B con-
tains a segment.

Suggestion: Either use the existence of points of density in A and
B, or assume m(4) < «,m(B) < «, and show that the convolu-
tion of x4 and x5 is a coutinuous function whose integral over Rt
is not 0.

Let C be Cantor’s middle thirds set and show that ¢ + Cis an
interval, although m(C) = 0.

Extend these results to sets in RF.

Show (with the aid of the Hausdorff maximality theorem) that
there exist real discontinuous functions f on B! such that

(1) fle+y) = f) + 1)

for all x and y ¢ R

Show that if (1) holds and f is Liebesgue measurable, then f is
continuous. )

Show that if (1) holds and the graph of f is not dense in the
plane, then f is continuous.

Find all continuous functions which satisfy (1).
For f e L=(R"), define fxz) = f(x — ¢), and assume that

lim {|fy — fllw = 0.
=0

The norm is the essential supremum. Prove that under these

conditions there is a uniformly continuous function g on R! such
that g(z) = f(x) a.e.
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Suggestion: Put hy,(§) = n if |t| < 1/(2n), h.(t) = 0 otherwise,
and let g, be the convolution f * h,. Prove that g.(z) — f(z) a.e.
and that

lga(z + &) — ga@)| < ISt — flle.

Exploit the equicontinuity of the sequence {g.}([26], Theorem
7.23).

Show that there is at most one operator A which satisfies the
requirements for 7'(z) in Definition 8.22.

Show that Lebesgue measure on E* is rotation invariant.
Construct a monotonic function on K! whose derivative exists at
every point but is not a continuous function on R

Suppose @ is a subgroup of K! (relative to addition), G » K, and
@ is Lebesgue measurable. Prove that then m(G@) = 0. (Com-
pare with Exercise 12.)

Call t a period of the function f on R! if f(z 4+ t) = f(z) for all
z ¢ R, Suppose f is a real Lebesgue measurable function with
periods s and ¢ such that 8/t is irrational. Prove that there is a
constant A such that f(z) = X a.e., but that f need not be constant.
Hint: The periods of f form a dense set. Look at points of density
of the sets £, = {z: f(x) > «}, for real a.

Suppose f is a real function on the rectangle determined by the
inequalities a <z < b and A <y £ B. Find conditions
(make them as weak as you can) under which the following state-
ment makes sense and is correct (D.f denotes the partial derivative
of f with respect to the first variable, x): If

9@ = [ fay) dy,

“ y nv F
I IU UVUHIUIVIVLD Uil

then g@) = [, dylfaw) + [ (DHEY) di
= [Ca [F@pendy+ [ sy ay,

so that /@ = [ D) dy.

See also under what conditions you can derive the last formula
by direct consideration of the quotients [g(t) — g(@)]/(t — ).
Suppose f is a continuous complex function on [a,b] with tofal
variation V. Prove that to each W < V there corresponds a
6 > 0 with the following property:lfa =z < ;< -+ * <aa = b
and if |2; — 44| < 8fori =1, ... ,n, then

n

Y f @) — flan)| > W.

i=]
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22

23

Suppose f is a continuous real function on [a,b). For each real y,
let M (y) be the number (finite or infinite) of points z on [a,b] at
which f(z) = y. (M may be called the multiplicity function of f.)
Prove that M is a Borel function and that fM(y) dy is the total
variation of f on [a,b).

Hint: The result is clear for funetions whose graph is a finite
union of straight line intervals. Approximate f by a suitably
chosen sequence of such functions. (Their multiplieity functions
should increase to that of f.) Use Exercise 21.

Is every left-continuous complex function f on B! a Borel func-
tion? If V is open, what can you say about f~1(V)?
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Fourier Transforms

Formal Properties

9.1 Definitions In this chapter we shall depart from the previous nota-
tion and use the letter m not for Lebesgue measure on R! but for Lebesgue
measure divided by 4/2x. This convention simplifies the appearance of
results such as the inversion theorem and the Plancherel theorem.
Accordingly, we shall use the notation

L [" f() da,

a__
vem’

W [7. 1@ dm(z) =
where dz refers to ordinary Lebesgue measure, and we define
@ ifle = {[", V@I dm@}" @ <p <),
@) (0@ = [ e —pew) dny)  (eRY,

and
@) foy = [7, j@e =t dm(a) (te RY.

Throughout this chapter, we shall write L? in place of L?(R!), and C
will denote the space of all continuous functions on R! which vanish at
mfinity.

If f € L, the integral (4) is well defined for every real {. The function
7 is called the Fourier transform of f. Note that the term “Fourier trans-
form” is also applied to the mapping which takes f to f.

The formal properties which are listed in Theorem 9.2 depend intimately
on the translation invariance of m and on the fact that for each real « the
mapping £ — e is a character of the additive group B'. By definition, a
function ¢ is a character of R' if |¢(f)] = 1 and if

(5) els + ) = o(s)e(t)
180
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for all real s and ¢. In other words, ¢ is to be a homomorphism of the
additive group R! into the multiplicative group of the complex numbers
of absolute value 1. We shall see later (in the proof of Theorem 9.23)
that every continuous character of B! is given by an exponential.

9.2 Theorem Supposefe L', and a and \ are real numbers.

(@) If g(x) = f(x)eie, then §(t) = f(t — a).
(b) If g(z) = f(z — ), then §(B) = f(t)e—.
(c) Ifge Lt and h = f » g, then h(t) = f(O4(®).

Thus the Fourier transform converts multiplicaiion by a character into
translaiion, and vice versa, and ti converts convolutions to poiniwise products.

@) If g(x) = J(—=), then §(8) = f(0).
(&) If g(x) = f(z/A) and X > 0, then §(t) = N (\D).
(f) Ifg(x) = —ixf(x) and g & L1, then f is differentiable and f'() = §(t).

PROOF (a), (b), (d), and (¢) are proved by direct substitution into
formula 9.1(4). The proof of (¢) is an application of Fubini’s theorem
(see Theorem 7.14 for the required measurability proof):

itz Ay S e — 2Nl
A3 WAL } j—m J YIY\Yy)

Aaan fne
w

o [ \
Iﬁ\b} — j._.m ""'J\y}

= [ sweivdm@) [ f@ — gl dm(z)

= [Cosweivim@) [7 j@)e dmia)
= 90/,

Note how the translation invariance of m was used.
To prove (f), note that

a =IO _ 1 e s —nam@ 0,

where ¢(z,u4) = (e7%* — 1)/u. Since |¢(z,u)| < |z| for all real u = 0
and since ¢(z,u) — —ix as v — 0, the dominated convergence the-
orem applies to (1), if s tends to ¢, and we conclude that

2) ) = —14 /_: rf(x)e—=t dm(z).
9.3 Remarks

(e) In the preceding proof, the appeal to the dominated convergence
theorem may seem to be illegitimate since the dominated con-
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vergence theorem deals only with countable sequences of functions.
However, it does enable us to conclude that

f(sn) - f(t)

N

f_: xf(x)e~*t dm(t)

for every sequence {s,} which converges to ¢, and this says
exactly that

lim 16 = S0 _

st s—1

—4 [_: zf(z)e~i=t dm(t).

We shall encounter similar situations again, and shall apply
convergence theorems to them without further comment.
(b) Theorem 9.2(b) shows that the Fourier transform of

_ fe + @) = j@)/a
18
-1

i &

This suggests that an analogue of Theorem 9.2(f) should be true
under certain conditions, namely, that the Fourier transform of f/
is itf(t). I fe L, f' ¢ L}, and if f is the indefinite integral of f’,
the result is easily established by an integration by parts. We
leave this, and some related results, as exercises. The fact that
the Fourier transform converts differentiation to multiplication
by ti makes the Fourier transform a useful tool in the study of
differential equations.

The Inversion Theorem

9.4 We have just seen that certain operations on functions correspond
nicely to operations on their Fourier transforms. The usefulness and
interest of this eorrespondence will of course be enhanced if there is a way
of returning from the transforms to the functions, that is to say, if there
is an inversion formula.

T o 220 s wrhhad cnmnle o2 £ane i 1.

LiCL U dDUC Wilida L SUCIE o 1U1 wuig,
series. If

(1) Cn = 51; [:w f(x)e—in= dr (neZ),

then the inversion formula is

@) @) = 3 e
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We know that (2) holds, in the sense of L?*convergence, if fg L2(T).
We also know that (2) does not necessarily hold in the sense of pointwise
convergence, even if f is continuous. Suppose now that f € LY(T), that
{eq} is given by (1), and that

(3) i len| < 0.
Put
€] g(x) = _i Cne™®,

By (3), the series in (4) converges uniformly (hence g is continuous), and
the Fourier coefficients of g are easily computed:

w

(5) % j_"' g(z)e = dx = _21_1'_ /:” { Z cnein-’c} e—iks dop

n=-—

o
= z cﬂ-!- f T et gy = ¢
27 J—=

n=—wx

Thus f and g have the same Fourier coefficients. Thisim
so the Fourier series of f converges to f(z) a.e.
The analogous assumptions in the context of Fourier transforms are

that fe L' and f £ L!, and we might then expect that a formula like

(6) 1@ = [ J®e= am@

is valid, Certainly, if f € L!, the right side of (6) is well defined; eall it
g(x); but if we want to argue as in (5), we run into the integral

(7) /:: eilt—sls dx’

which is meaningless as it stands. Thus even under the strong assump-
tion that f £ L1, a proof of (6) (which s true) has to proceed over a more
devious route.

[It should be mentioned that (6) may hold even if f ¢ L, if the integral
over (-« o) is interpreted as the limit, as A — «, of integrals over
(—A,A). (Analogue: a series may converge without converging abso-
lutely.) We shall not go into this.]

9.5 Theorem For any function f on R and every y € R', let f, be the
translate of f defined by

(1) @) =fle—y)  (zeRY.
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If1 < p < » and if fe L?, the mapping

2 y— fy

18 a unzformly continuous mapping of B! inlo L*(RY).

PROOF Fix e > 0. Since f ¢ L? there exists a continuous function ¢
whose support lies in a bounded interval [—4,4], such that

1f = glls <e

(Theorem 3.14). The uniform eontinuity of g shows that there exists
a § & (0,A) such that |s — ¢ < & implies

lg(s) — g(t)] < (34)~"7e.
If j¢ — ¢| < 8, it follows that
[ la@ — 8 — gz — Ylrdz < 3A) @4 + 3) < &,

so that |jg. — ¢, < e
Note that L*-norms (relative to Lebesgue measure) are translation
invariant: ||fll, = [|fi]l» Thus

Wfe = flls < Nfe — galls + llge — gll> + Nge — fills
= [(f = galls + lige — gells + 11{g — Nill» < 3¢
whenever |s — t| < §. This completes the proof.

9.6 Theorem Iffe L}, then f& Coand

(1) 1Mo < 1l
PROOF The inequality (1) is obvious from 9.1(4). If {, — ¢, then

@ ) =01 < 7] 7@l — e dma).

The integrand is bounded by 2|f(x)| and tends to O for every z, as
n— ». Hencef(t,) — f(t), by the dominated convergence theorem.

Thus f is eontinuous.
Qines ot — .1 Q1 (4)

ASBLAV L’ Ved

(3) f(t) = e /‘_ww f(z)e—ii(r!—fh) dm(x)
= — f_: flx — x/te " dm(zx).

Hence

@ 0= [ -rs(s-])] e ane)



Fourier transforms 185
80 that

(3) 2@ < NS — Frselly,
which tends to 0 as { —» + «, by Theorem 9.5.

9.7 A Pair of Auxiliary Functions In the proof of the inversion theorem
it will be convenient to know a positive function H which has a positive
Fourier transform whose integral is easily calculated. Among the many
possibilities we ehoose one which is of interest in connection with harmonic
functions in a half plane. (See Exercise 17, Chap. 11.)

Put

ey, H{ty = e

and define

@) W) = [T HOje=dm@® O > 0).
A simple eomputation gives

@) R e

and hence

) /. @) dm(z) = 1.

Note also that 0 < H({{) <1 and that HQAf) > 1asA— 0.

9.8 Proposition If fe L!, then

(f+ @) = [ HO)S(O)e dm(y).

prOOF 'This is a simple application of Fubini’s theorem.
(f % ) (@) = f_‘: fz — y) dm(y) f_: H(\)e™ dm(f)
= f_: H(\) dm(t) f_: fz = y)e* dm(y)
= [ HOY dm® [ f@e e dm(y)
- f_: HQb f(te= dm(d).

9.9 Theorem If g & L= and g is continuous at a point x, then
1) lim (g » m)(z) = g(z).
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PROOF On account of 9.7(4), we have

@* )@ — 9@ = [* o — ) ~ 9@)]h(y) dm()
= f_: lg(z — ¥) — g(@)IN""n (%) dm(y)

- f—: lg(z — As) — g(2)]ha(s) dm(s).

The last integrand is dominated by 2||g|leh1(s) and converges to O
pointwise for every s,asA — 0. Hence (1) follows from the dominated
convergence theorem.

9.10 Theorem If1 < p < « and fe L?, then
) }H’% |f % hx — fll, = 0.

The cases p = 1 and p = 2 will be the ones of interest to us, but the
general case is no harder to prove.

PROOF Since hy) € L?, where ¢ is the exponent conjugate to p,
(f * ha)(z) is defined for every z. (In fact, f * hx is continuous; see
Exercise 11.) Because of 9.7(4) we have

@ @ —1@ = [ e - 1) — @) dm()
and Theorem 3.3 gives
@ 1 *m@ =@ < [° 1 = y) = f@)Ph@) dm().
Integrate (3) with respect to z and apply Fubini’s theorem:
@ W=z < [7 5y = flzhaG) dm(y).
If g(y) = {ify — fl|5, then g is bounded and eontinuous, by Theorem
9.5, and ¢(0) = 0. Hence the right side of (4) tends to 0 as A — 0,
by Theorem 9.9.

9.11 The Inversion Theorem If fe L' and fe L!, and if

W 0@ = [7 JWestdm@®)  (zeRY,

then g € Cp and f(x) = g(x) a.e.
PROOF By Proposition 9.8,

@) Frh)@) = [ HOf e dm().
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The integrands on the right side of (2) are bounded by |f(#)|, and
sinee H(At) — 1 as A — 0, the right side of (2) converges to g{x), for
every z £ R!, by the dominated convergence theorem.

If we combine Theorems9.10 and 3.12 wesee that there is a sequence
fA.} such that A, — 0 and
3) im (f * k) (z) = f(z) a.e.

n—r oo

Hence f(z) = g(x) a.e. That g £ C, follows from Theorem 9.6.

9.12 The Uniqueness Theorem If f e L' and f(t) = O for all t & R!, then
fx) =0 aq.e.

PROOF Since f = 0 we have f & L!, and the result follows from the
inversion theorem.

The Plancherel Theorem

Since the Lebesgue measure of R! is infinite, L? is not a subset of L
and the definition of the Fourier transform by formula 9.1(4) is therefore
not directly applicable to every f € L% The definition does apply, how-
ever, if f ¢ L' n L2, and it turns out that then fe L2. Infact, || fll. = [/
This isometry of L! n L2 into L? extends to an isometry of L? onto L2, and
this extension defines the Fourier transform (sometimes called the Plan-
cherel transform) of every fe L?. The resulting L2-theory has in fact a
great deal more symmetry than is the case in L. In L2, f and f play
exactly the same role.

9,13 Theorem One can associate to each f& L? a function fe L? so that
the following properties hold:

(@) If f € Lt n L2, then f s the previously defined Fourier transform of f.
(b) For every fe L2, [|fll2 = /]l

(¢) The mapping f — { is a Hilbert space isomorphism of L* onto L2.
(d) The following symmetric relation exists between f and f: If

wa(t) = f_A_A_ f(x)e = dm(x) and Yalz) = [_AA fl)ei= dm(t),
then lloa — flla— O and |ya — fllo—>0as 4 — =,

Note: Since L' n L? is dense in L2, properties (a) and (b) determine the

mapping f — f uniquely. Property (d) may be called the L? inversion
theorem.

Proo¥ Qur first objective is the relation

1) ”f”z = |[fll, (fe L'n 12).
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We fix f£ L' n L2, put f(z) = f(—=z), and define g = f*f. Then
@ 9@ = [ & — F=9) dm@) = [~ Sz + 9)7Q) dm@),

or

@3) g(x) = (f-f),

where the inner product is taken in the Hilbert space L? and f_.
denotes a translate of £, as in Theorem 9.5. By that theorem, z — f_
is a continuous mapping of R! into L2, and the continuity of the inner
product (Theorem 4.6) therefore implies that g is a continuous fune-
tion. The Schwarz inequality shows that

(4) @) < Nf=l:NA = A2,

so that g is bounded. Also, g ¢ L! since f& L* and fe L.
Since g ¢ L*, we may apply Proposition 9.8:

() @*m)©) = [7 HOHI® dm(®).
Since g is continuous and bounded, Theorem 9.9 shows that
®) lim (g * )0 = 9(0) = [/

Theorem 9.2(d) shows that § = |f|? > 0, and since H(\f) increases
to 1 as A — 0, the monotone convergence theorem gives

@ lim [T HO0) dmie) = [0 1O dm(s).

Now (5), (6), and (7) show that f € L? and that (1) holds.

This was the erux of the proof.

For any A > 0, let f4 be the product of f and the characteristic
function of the interval [— A,A]. Iffe L2, then clearly ||fs — flla— O
as A — . Also, fae L' n L2 and if ¢4 is defined as in {d), we have
¢a = f4. Since {f4} is a Cauchy sequence in L?, the relation (1)
shows that {4} is a Cauchy sequence in L?; and since L2 is complete,
{0s} converges to an element of 1?, as A — «, which we call 1.
Note that if fe L' n L?, then ¢4(f) converges pointwise to the pre-
viously defined Fourier transform of f, and this pointwise limif
coincides a.e. with the L2limit (Theorem 3.12).

The domain of the mapping f — f is now extended from L! n L2
to L2, Moreover, (1) implies that [[¢4lls = || f4]|2, so that

® Mo = lim llgals = Bim 1falls = 17l

We have now proved (a), (b), and the first half of (d).
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Let us introduce the temporary notation &f for f. Then &f is the
Lz-limit of the functions ¢4, if f& L2, and ¢ is an isometry of L? into
Lt For g € L?, define ¥g analogously as the L2-limit of the functions

(9) [?, 9ve= am.

Then ¥ is an isometry of L? into L2, since (¥g)(z) = (®g)(—=x). If
both f and f are in L! n L?, it follows from Theorem 9.11 that

(10) vof = f.

By Proposition 9.8, f * hy satisfies these requirements if fe¢ L! n L?
and A > 0. Thus

(11) TB(f* hy) = f * .

As A— 0, [[f*h — fla— 0 (Theorem 9.10), and since ¥® is an
isometry, we obtain (10) for every f& L' n L2 Since L' n L? is dense
in L?, (10) holds for every fe L2. This proves the second half of (d).

But the relation ®¥g = ¢ is then also valid for every g ¢ L2, since
the roles of the operators & and ¥ can obviously be interchanged.
This says that if f = ¥g then g = f. The mapping f — f therefore
maps L? onto L2,

Finally, the identity

(12)  4fg = |f+gI* = [f — gl* + i + 49> — ilf — 4g*

shows that every isometry of L? onto L? also preserves inner products.
In other words, the Parseval formula

(13) [ /@@ dm@) = [~ FOF© dm(

holds if f& L? and g £ L2
This gives (¢) and completes the proof.

9.14 Theorem Iffe L?andfe L', then
flx) = [_: (e dm(l) a.e.
prooF This is a corollary of Theorem 9.13(d).

9.15 Remark If fe L!, formula 9.1(4) defines f(f) unambiguously for
every {. If f& L2 the Plancherel theorem defines f uniquely as an ele-
ment of the Hilbert space L?, but as a point function f(£) is only deter-
mined almost everywhere. This is an important difference between the
theory of Fourier transforms in L! and in L2. The indeterminacy of f(f)
as a point function will cause some difficulties in the problem to which
we now turn.
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9.16 Translation Invariant Subspaces of L' A subspace M of L? is
said to be translation invariant if f € M implies that f. € M for all real o,
where f.(z) = f(x — a). Translations have already played an important
part in our study of Fourier transforms. We now pose a problem whose
solution will afford an illustration of how the Plancherel theorem can
be used. {Other applications will occur in Chap. 19.) The problem is:

Describe the closed translation invariant subspaces of L*.

Let M be a closed translation invariant subspace of L2, and let M be
the image of M under the Fourier transform. Then M is closed (since
the Fourier transform is an L*isometry). If f. is a translate of f, the
Fourier transform of . is fe., where eq(f) = ¢~i*; we proved this for f e L*
in Theorem 9.2; the result extends to L?, as can be seen from Theorem
9.13(d). It follows that M is invariant under multiplication by ea, for
all a & R, _

Let E be any measurable set in R'. If M is the set of all ¢ & L* which
vanish a.e. on E, then M certainly is a subspace of L?, which is invarian¢
under multiplication by all e, (note that |es] = 1, 80 pe, & L? if ¢ £ L?),
and M is also closed. Proof: ¢ € M if and only if ¢ is orthogonal to every
¥ € L? which vanishes a.e. on the complement of E.

If M is the inverse image of this M, under the Fourier transform, then
M is a space with the desired properties.

One may now conjecture that every one ot our spaces M is obtained
in this manner, from a set E C R!. To prove this, we have to show that
to every closed translation invariant M C L* there corresponds a set
E C R! such that fe M if and only if f(f) = 0 a.e. on E. The obvious
way of constructing E from M is to associate with each f e M the set E;
consisting of all points at which f(¢) = 0, and to define E as the inter-
section of these sets E,, But this obvious attack runs into a serious
difficulty : Each E, is defined only up to sets of measure 0. If {A,} isa
countable collection of sets, each determined up to sets of measure 0,
then NA; is also determined up to sets of measure 0. But there are
uncountably many f € M, so we lose all control over NE,.

This difficulty disappears entirely if we think of our functions as ele-
ments of the Hilbert space L3, and not primarily as point functions.

We shall now prove the conjecture. Let M be the image of a closed
translation invariant subspace M C L2 under the Fourier transform.
Let P be the orthogonal projection of L? onto M (Theorem 4.11): To
each f & L? there corresponds a unique Pf & M such that f — Pf is orthog-
onal to M. Hence

() f—Pfr1 Pg (f and g e L?)
and since M is invariant under multiplication by e., we also have
2 f— Pf 1 (Pg)ea (fand ge L3, a e RY).
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If we recall how the inner product is defined in L?, we see that (2) is
equivalent to

3) f:., (f — Pf) Pgreadm=0 (fandgel?, aeRY
and this says that the Fourier transform of
@) (f — Pf)- Py

is 0. The function (4) is the product of two L*-functions, hence is in L,
and the uniqueness theorem for Fourier transforms now shows that the
function (4) is 0 a.e. This remains true if Pg is replaced by Pg. Hence

(5) f-Pg=(FP)-(Pg) (fandgel?.
Interchanging the roles of f and g leads from (5) to
(6) f-Pg=g-Pf (fandgel?.

Now let ¢ be a fixed positive function in L?; for instance, i)ut g(t) = e,
Define

0 o = 200,

(Pg)(t) may only be defined a.e.; choose any one determination in (7).
Now (6) becomes

(8) Pf=¢f (fel?).

If fe M, then Pf = f. This says that P? = P, and it follows that
¢* = ¢, because

©) e’ g=¢ Pg=Plg=Pg=¢p-g

Since ¢? = ¢, we have ¢ = 0 or 1 a.e., and if we let E be the set of all ¢
where ¢(f) = 0, then M consists precisely of those fe L? which are 0
a.e. on E, since fe M if and only if f = Pf = ¢ f.

We therefore obtain the following solution to our problem:

9.17 Theorem Associale to each measurable set E C R the space Mg
of all fe L? such that f = 0 a.e. on E. Then Mg is a closed translation
tnvariant subspace of L. Every closed translation invariant subspace of L*
18 Mg for some E, and M4 = Mz if and only if

m((A — B)u (B — 4)) = 0.

The uniqueness statement is easily proved; we leave the details to the
reader,
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The above problem can of course be posed in other function spaces.
It has been studied in great detail in L. The known results show that
the situation is infinitely more complicated there than in L2

The Banach Algebra L!

9.18 Definition A Banach space A is said to be a Banach algebra if there
is a multiplication defined in A which satisfies the inequality

1) leyll < lizll Hyll  (z and y € 4),

the associative law x(yz) = (ay)z, the distributive laws

2 z(y+2) =22y + 2z, (y + 2)x = yz + 2z (z, y,and ze A),
and the relation

@) (ax)y = z(ay) = a(zy)

where a is any scalar.

9.19 Examples

{a) Let A = C(X), where X is a compact Hausdorff space, with the
supremum norm and the usual pointwise multiplication of funec-
tions: (fg)(z) = f(z)g(z). Thisisacommutative Banach algebrs,
(fg = g¢f) with unit (the constant function 1).

() Co(R?) is a commutative Banach algebra without unit, i.e., with-
out an element « such that uf = f for all f e C(RY).

(¢) The set of all linear operators on B* (or on any Banach space),
with the operator norm as in Definition 5.3, and with addition
and multiplication defined by

(A 4+ B)(z) = Az + Bz, (AB)x = A(Bx),

is a noncommutative Banach algebra (unless & = 1) with unit.
(d) L1is a Banach algebra if we define multiplication by convolution;
since
1~ 1 o 11 a1l It ‘
S *glis = [I7H1lI911, v
the norm inequality is satisfied. The associative law could be
verified directly (an application of Fubini’s theorem), but we
can proceed as follows: We know that the Fourier transform of
f*gisf* g, and we know that the mapping f — f is one-to-one.
For every t & R,

FOBORED)] = [FOIDOIRE),

. et oL
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by the associative law for complex numbers. It follows that
fx(@*h) = (*g *h In the same way we see immediately
that f+ g = g *xf. The remaining requirements of Definition
9.18 are also easily seen to hold in L.

Thus L! is a commutative Banach algebra. The Fourier
transform is an algebrs isomorphism of L! into C,. Hence there
is no f & L! with f = 1, and therefore L! has no unit.

9.20 Complex Homomorphisms The most important complex func-
tions on a Banach algebra A are the homomorphisms of 4 into the
complex field. These are precisely the linear functionals which also

nreserve mnultinlh nn'hn'n 1 e, H\n ‘ann+1nnq > aunh that

elaz + By) = ap(@) + Be(y),  o(zy) = e(@)e(y)

for all z and y € A and all scalars @ and 8. Note that no boundedness
assumption is made in this definition. It is a very interesting fact that
this would be redundant:

9.21 Theorem If ¢ is a complex homomorphism on a Banach algebra A,
then the norm of ¢, as a linear functional, is at most 1.

PROOF Ascu]mp to get a contradiction, that | |

______ LRI = & LOLILISARARLIRAL LMRAAL T

[E
zoe A. Put A= ¢(x0), and put z = xz¢/A. Then |zl <1 and

olz) =
Since ||:t:"|l < |lz||* and ||z]] < 1, the elements

| fo r some

1) 8o = —Z — 22—+ — "

form a Cauchy sequence in A. Since A is complete, being a Banach
space, there exists a y e A such that ||y — s.ll = 0, and it is easily
seen that z 4+ 8. = zs._1, so that

2 T+ y = zy.
Hence o(z) + ¢(¥) = ¢(x)e(y), which is impossible if ¢(z) =

9.22 The Complex Homomorphisms of L' Suppose ¢ is a complex
homomorphism of L!, ie., a linear funectional (of norm at most 1, by
Theorem 9.21) which also satisfies the relation

1 o(f+9) = ¢(Nelg)  (fandgeL).
By Theorem 6.16, there exists a 8 € L* such that

@) o) = [* 1@B@) dm@) (e L.
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We now exploit the relation (1) to see what else we can say about 8.
On the one hand,

3) o(fxg) = [7, (* ) @)B(@) dm(z)
= f_: B(z) dm(z) f_ " f@ = y)g() dmy)
= [, o) dm@) [7, ju()8@) dm(z) ‘
= [7. W) dm@).

On the other hand,
@ eNe@) = o) [, 9w)BW) dm(y).

Let us now assume that ¢ is not identically 0. Fix fe L! so that
¢(f) #= 0. Since the last integral in (3) is equal to the right side of (4)
for every g € L, the uniqueness assertion of Theorem 6.16 shows that

(5) e(NBY) = o)

for almost all 3. But y — f, is a continuous mapping of R! into L!
(Theorem 9.5) and ¢ is continuous on L!. Hence the right side of (5)
is a continuous function of y, and we may assume {by changing 8(y) on a
set of measure 0 if necessary, which does not affect (2)] that 8 is continu-
ous. If we replace y by z 4+ y and then f by £, in (5), we obtain

e(NBE + y) = o(fers) = o((f2)) = o(f)B(y) = ¢(f)B()B(y),
so that
(6) Bz +y) = B(x)B(y)  (zand yeRY).
Since # is not identically 0, (6) implies that 8(0) = 1, and the continuity
of 8 shows that there is a § > 0 such that
(7) B@) dy = ¢ =0.

ML s
411011

®) B = [(BwBEdy = [[By+2dy = [T 8)dy.

Since 8 is continuous, the last integral is a differentiable function of z;
hence (8) shows that 8 is differentiable. Differentiate (6) with respect
to y, then put y = 0; the result is

(9) Bz) = AB(x), A =pg0).
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Hence the derivative of g(x)e~42 is 0, and since g(0) = 1, we obtain
(10) B(z) = e4=

But 8 is bounded on R. Therefore 4 must be pure imaginary, and we
conclude: There exists a ¢ & R! such that

(11) B(x) = e~it=.
We have thus arrived at the Fourier transform:

9.23 Theorem To every complexr homomorphism ¢ on L' (except to ¢ = 0)
there corresponds a unique t € R such that o(f) = f(t).

The existence of ¢ was proved above. The uniqueness follows from the
observation that if ¢ > & then there exists an f & L! such that f(t) = f(s);
take for f(z) a suitable {randate of ¢~!2.

Exercises

1 Compute the Fourier transform of the characteristic function of
an interval. Forn =1,2,3, .. ., let g, be the characteristic
function of { —n,n], let A be the characteristic function of [—1,1],
and compute g¢. * b explicitly. (The graph is piecewise linear.)
Show that g. * k is the Fourler transform of a function f, e L!;
except for s multiplicative constant,

fa(z) =

Show that ||f.]l,—  and conclude that the mapping f — f maps
L' into a proper subset of Co.
Show, however, that the range of this mapping is dense in C.
2 Give examples of f& L? such that f¢ L' but fe L. Under what
circumstances can this happen?
3 If fe Lt and f|tf()| dm(t) < =, prove that f coincides a.e. with a
differentiable function whose derivative is

i [_: tf () etet dm(L).

4 Suppose fe L', f is differentiable almost everywhere, and f' € L.
Does it follow that the Fourier transform of f’ is tf(£)?

5 Let S be the class of all functions f on B! which have the following
property: f is infinitely differentiable, and there are numbers
Ama(f) < o, formandn =0,1,2, ... ,such that

|z"D"f(z)] < Amalf)  (zeRY).
Here D is the ordinary differentiation operator.

sin x sin nx
z? )
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Prove that the Fourier transform maps S onto S.
Find examples of members of S.
6 The Fourier transform can be defined for f € L1(R*) by

1) = [ f@evdm@  (yeRH,

where z-y = Ztm if z = (EI: t e 1£k): y= ("71! S :nk)r and
m; is Lebesgue measure on R¥, divided by (2x)*/2 for convenience.
Prove the inversion theorem and the Plancherel theorem in this
context, as well as the analogue of Theorem 9.23.

7 If f e L(R*), A is a linear operator on R*, and g(z) = f(Az), how
is g related to f? If f is invariant under rotations, ie., if f(z)
depends only on the euclidean distance of z from the origin, prove
that the same is true of f.

8 The Laplacian of a function f on R* is

k
9%
Af = 2 St
=1
provided the partial derivatives exist. What is the relation
betweenfand §if g = Af and all necessary integrability conditions

are satisfied? It is clear that the Laplacian commutes with
translations. Prove that it also commutes with rotations, i.e.

fe el Rli L0 3N b 1Y - s LiInL LU S ail VoD WY ALIL LRIV IS )

that
A(fo A) = (&f) o A

whenever f has continuous second derivatives and A is a rotation
of R*. (Show that it is enough to do this under the additional
assumption that f has compact support.)

9 Show that every Lebesgue measurable character of R! is con-
tinuous. Do the same for R*. (Adapt part of the proof of
Theorem 9.23.)

10 Suppose f£ L, f > 0. Prove that |f(y)| < f(0) for every y > 0.

11 If p and q are conjugate exponents, fe L?, ge L9, and h = f * g,
prove that & is uniformly continuous, If also 1 < p < «, then
h € Cy; show that this fails for some fe L', g e L=

12 Suppose 1 < p < «, fe L7, and

0@ = [Tt

Prove that ge Co. What can you say about g if f e L*?

13 Let C= be the class of all infinitely differentiable complex fune-
tions on R!, and let C.® consist of all g € C* whose support is
compact. Show that C.» does not consist of 0 alone.

Let L], be the class of all f which belong to L! locally; ie.,

-
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fe L, provided that f is measurable and f7|f] < = for every
bounded interval I.

If fe L], and g € C,®, prove that f* g e C=.

Prove that there are sequences {g,} in C.* such that

15 %gn = fl1—0

as n — oo, for every fe L!. (Compare Theorem 9.10.) Prove
that {g.} can also be so chosen that (f *g.)(z) — f(z) a.e., for
every fe L},; in fact, for suitable {g.} the convergence occurs
at every point z at which f is the derivative of its indefinite
integral.
Prove that (f* m)(z) — f(z) a.e. if fe L, as A — 0, and that
f = ha € C=, although k) does not have compact support. (ks is
defined in Seec. 9.7.)
14 Find
bm [ sin \¢
Aw J—A 1

et= di (—o <z < ®)

where \ is a positive constant.
15 Find conditions on f and/or f which ensure the correctness of the
following formal argument: If

o) = o= [ fe)ee d

and F(z) = E flz + 2kx)

km =
then F is periodic, with period 2x, the nth Fourier coefficient of
F is ¢(n), hence F(x) = T¢(n)et*:. In particular,

i f(2kx) = Y o).

k= —w fi= —®

More generally,

(%) Z fkB) = « i o(na) fa>0,8>0, a8 = 2r.

k= —m

What does (*) say about the limit, as « — 0, of the 'ght-hand

mida (£ € M L ndloaes Al mmessecn T 4L fon agreeinen T N
SIUG \I.Ul l.lll;U lLlI..lbb.I.Ul.l.ﬂ’ Ul DUulﬁU}l A4S LIl 1Rl &51 CILLEL. I.U Wil
the inversion theorem?

[(*) is known as the Poisson summation formula.)

16 Take f(x) = e¢—'* in Exercise 15 and derive the identity

1 a
etrx — 1 1—r Z o +nt
17 Take f(z) = ¢ *' in Exercise 15. What is the resulting identity?
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Elementary Properties of
Holomorphie Functions

Complex Differentiation

We shall now study complex functions defined in subsets of the com-
plex plane. It will be convenient to adopt some standard notations which
will be used throughout the rest of this book.

10.1 Definitions If r > 0 and a is a complex number,
(1) Da;r) = {z:]z — a| < r}

is the open cireular disc with center at a and radius r. D(a;r) is the
closure of D(a;r), and

2) D'(ar) = {2:0 < |z — a| < r}

is the punctured dise with center at a and radius r.

A set E C X, where X is a topological space, is said to be connected
if there do not exist two disjoint open sets ¥V and Wsuch that EC Vu W
and such that both ¥ and W intersect E. A maximal connected subset
of E is called a component of E. 1t is easy to see that any two compo-
nents of £ are disjoint and that E is the union of its components.

By a region we shall mean a nonempty connected open subset of the
complex plane. Thus an open set € # ¢ in the plane is a region if
and only if © is not the union of two nonempty disjoint open sets. Each
component of a plane open set @ is clearly a region. The letter £ will
from now on denote a plane open set.

10.2 Definition Suppose f is a complex function defined in £. If 20e Q
and 1if
(1) lim @) — f(ZO)_

2=+ 2y Z— 2

198

min Uittt ey SRS e m—
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exists, we denote this limit by f'(z,) and call it the derivative of f at ze.
If f'{z0) exists for every zoe Q, we say that f is holomorphic (or analytic)
m Q. The class of all holomorphic functions in @ will be denoted by H(2).

To be quite explicit, f'(z0) exists if t0 every ¢ > 0 there corresponds a
é > 0 such that

2) w —fz0) | < e for all z € D’(z;8).

Thus f'(z¢) is a complex number, obtained as a limit of quotients of com-
plex numbers. Note that f is a mapping of Q into R? and that Definition
8.22 associates with such mappings another kind of derivative, namely,
8 linear operator on R% In our present situation, if (2) is satisfied, this
linear operator turnms out to be multiplication by f'(z0) (regarding R*
as the complex field). We leave it to the reader to verify this.

10.3 Remarks If fe H(Q) and ge H(Q), then also f+ g e H(2) and
fo € H(Q), so that H() is a ring; the usual differentiation rules apply.

More interesting is the fact that superpositions of holomorphic func-
tions are holomorphic: If fe H(Q), if f(Q) C, of ge H(Q)), and if
h = gof, then he H(Q), and b’ can be computed by the chain rule

1) W(z)) = ¢'(fz))f"(20) (202 ).

To prove this, fix zo € @, and put we = f{zo). Then
(2) f2) — flzo) = [f'(20) + e(@)I(z — z0),
3) gw) — glwo) = [¢'(wa) + n(w)](w — wo),

where e(z) — 0 as z — 2 and n(w) — 0 as w— w,. Put w = f(2), and
substitute (2) into (3): If z 3= z,,

@) &) = had) _ 1(5e)) + a(f @) o) + €@)L.

2 — 20

The differentiability of f forces f to be continuous at z,. Hence (1)
follows from (4).

10.4 Examples Forn =0,1,2, ..., 2" is holomorphic in the whole
plane, and the same is true of every polynomial in 2. One easily verifies
directly that 1/z is holomorphicin {z:z ¢ 0}. Hence, taking g(w) = 1/w
in the chain rule, we see that if f; and f, are in H(Q) and Q, is an open
subset of @ in which f, has no zero, then f1/f, e H(Qy).

Another example of a funetion which is holomorphic in the whole
plane (such functions are called entire) is the exponential function defined
in the Prologue. In fact, we saw there that exp is differentiable every-
where, in the sense of Definition 10.2, and that exp’ (2) = exp (2) for
every complex z.
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10.5 Power Series From the theory of power series we shall assume only
one fact as known, namely, that to each power series

(1) Z C.,(Z - a)n

n=0
there corresponds a number I_B £ [0, 0] such that the series converges
absolutely and uniformly in D(a;r), for every r < R, and diverges if
z¢ D(a;R). The “radius of convergence” R is given by the root test:

_1_ — 15 1in
(2) 7= ln:;s_up caflim,

cawr 41 ..4. o fas;mnd ion FFon | | $~-0T. L

Let us 8ay uiatv a runcuion j f defined in @ is represeniacie oy power 67“63
in @ if to every dise D(a,r) C Q there corresponds a series (1) which
converges to f(z) for all z € D(a;r).

10.6 Theorem If f is representable by power series in Q, then f& H(Q) and
f’ 18 also represeniable by power series in Q. In fact, if

) i@ = 3 ez =0

n=0

for z € D(a;r), then for these z we also have

) F@=3 neaz — a)=1.
n=1
PROOF If the series (1) converges in D(a;r), the root test shows that
the series (2) also converges there. Take @ = 0, without loss of
generality, denote the sum of the series (2) by g¢(z), fix we D(a;r),
and choose p so that |w] < p < 7. If z = w, we have

@ LI, [ —w m,,,._l].
1

z2—w z—w

n=

The expression in brackets is 0 if » = 1 and is

@) e — w) :2—:: Jwh-1gn—k-1

if n > 2. If|z] < p, the absolute value of the sum in (4) is less than
) n(nz— L3

50 .

R I L 2, el

Mw—-—w_—g O ————————
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Since p < 7, the last series converges. Hence the left side of (6)

tends to 0 as z— w. This says that f(w) = g(w), and completes
the proof.

Corollary Since f' is seen fo salisfy the same hypothesis as f does, the
theorem can be applied to f'. It follows that f has derivalives of all orders,
that each derivative is representable by power series tn Q, and that

o

) [P =Y am—1) - -+ (0 —k+ Deale — @)

n=k
if (1) holds. Hence (1) tmplies that
(8) klex '__f(k)(a) (k =0, 11 2’ . ')!
so that for each a & Q there is a unique sequence {¢.} for which (1) holds.

We now describe a process which manufactures funetions that are
representable by power series. Special cases will be of importance later.

10.7 Theorem Suppose u is a complex (finite) measure on a measurable
space X, ¢ is a complex measurable function on X, Q is an open set in the
plane which does not intersect ¢(X), and

o)) (&) = Jg —é’;& (z29).
e(f) — 2
Then f is representable by power series in Q.
PROOF Suppose D(a;r) C 2. Since
z—a |z — al
2 < <1
@ O —al= 7

for every z € D(a;r) and every { £ X, the geometric series

o

3) (z — a)» 1

L Gl — oy T o) —

converges uniformly on X, for every fixed ze D{a;r). Hence the
series (3) may be substituted into (1), and f(z} may be computed
by interchanging summation and integration. It follows that

w0

) J@) =Y ez — @ eDlayn)
0
where
d
(5) ¢, = A(‘P(g.)”_(fl)n+l (n=012 ...
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Note: The convergence of the series (4) in D(a;r) is a consequence of
the proof. We can also derive it from (5), since (5) shows that

©) ol <& o012, .0,

Integration over Paths

Our first major objective in this chapter is the converse of Theorem
10.6: Every f ¢ H(Q) is representable by power series in 2. The quickest
route to this is via Cauchy’s theorem which leads to an important integral
representation of holomorphic funections. In this section the required
integration theory wili be developed ; we shallkkeep it as simple as possible
and shall regard it merely as a useful tool in the investigation of properties
of holomorphic functions,

10.8 Definitions If X is a topological space, a curve tn X is a continuous
mapping v of a compact interval [a,8] C R'into X; herea < 8. We call
l,B] the parameter interval of ¥ and denote the range of ¥ by ¥*. Thus v
is a mapping, and y* is the set of all points ¥(f), for a < ¢t < 8.

If the 7nitial point ¥(a) of v coincides with its end point v(8), we call v
a closed curve.

A path is a piecewise continuously differentiable curve in the plane.
More explicitly, a path with parameter interval [«,8] is a continuous
complex function ¥ on [@,8], such that the following holds: There are
finitely many points s;, @ = 89 < 53 < * * + < 8, = f, and the restriction
of ¥ to each interval [s;_1,8;] has a continuous derivative on [s;_y,s;]; how-
ever, at the points s;, . . . , 8a—1 the left- and right-hand derivatives of v
may differ.

A closed path is a closed curve which is also a path.

Now suppose v is a path, and f is a continuous function on y*. The
integral of f over v is defined as an integral over the parameter interval

[2,8] of 7:
&) [1@ dz = [" i)y de

Let ¢ be a continuously differentiable one-to-one mapping of an interval
[e1,81] onto [a,8], such that ¢(a1) = «, ¢(81) = 8, and put y: = yo 0.
Then «, is a path with parameter interval [a;,8]; the integral of f over
Y118

L rnovi@ d= [P 56y e ® dt = [ 1)) ds,

so that our “reparametrization’” has not changed the integral:

@) [ 1@ dz = [ f@) dz.
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Whenever (2) holds for a pair of paths ¥ and v, (and for all f), we shall
regard ¥ and vy, as equivalent.

It is convenient to be able to replace a path by an equivalent one, i.e.,
to choose parameter intervals at will. For instance, if the end point of
v; coincides with the initial point of vz, we may locate their parameter
intervals so that v, and v, join to form one path v, with the property that

(3) [r=[r1+[7

for every continuous f on v* = vy u v7,

However, suppose [0,1] is the parameter interval of a path v, and
i) =v1 — 1), 0Lt < 1. Weecall v, the path opposite to v, for the
following reason: For any f continuous on vf = 4*, we have

Jr@)vi@ de = — [Tt = 0)v'a — oyt

= — [ rv@)v' () ds,
so that

@ [r=—[7
From (1) we obtain the inequality

5 | (i) de| < 19 (% i)l dt
®) | [ 1@ dz| < lifile [ vl ds,

where [l fl|, is the maximum of |f] on ¥* and the last integral in (5) is (by
definition) the length of .

10.9 Special Cases

(a) If a is a complex number and r > 0, the path defined by

1) v(t) = a + re¥ 0 <t< )

is called the positively oriented circle with center at a and radius r;
we have

@) L 7@) dz = ir L 2 f(a + re?)ei do,

and the length of v is 2xr, as expected.
(b) If @ and b are complex numbers, the path v given by

3) ) =a+®—a)t @OLtLY)
is the ortented interval [a,b]; its length is |b — al, and

@ [ J@d=0-a) [ fla+ 6o
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If
al — ) + bt — a)
B— «a

we obtain an equivalent path, which we still denote by [a,b].
The path opposite to [a,b] is [b,a].
(¢) Let {a,b,c} be an ordered triple of complex numbers, let

A = A(ab,0)

6) 7@ = (e<t< B,

be the triangle with vertices at a, b, and ¢ (A is the smallest con-
vex set which contains a, b, and ¢), and define

©) fuf = fuf+ fof+ fou

for any f continuous on the boundary of A. We may regard (6)
as the definition of its left side. Or we may regard 9A as a path
obtained by joining [a,b] to [b,c] to [c,a], as outlined in Definition
10.8, in which case (6) is easily proved to be true.

If {a,b,c} is permuted cyclically, we see from (6) that the left
side of (6) is unaffected. If {a,b,c} is replaced by {a,c,b}, then
the left side of (6) changes sign.

We now come to a theorem which plays a very important role in fune-
tion theory.

10.10 Theorem Lety be a closed path, let Q be the complement of v* (relative
to the plane), and define

) Ind, () = 2Lﬂ / FE’_% e 9).

Then Ind, 78 an integer-valued function on @ which s constant in each
component of @ and which is 0 in the unbounded component of .

We call Ind, (2) the index of 2z with respect to v. Note that v* is
compact, hence v* lies in a bounded dise D whose complement D¢ is con-
nected; thus D¢ lies in some eomponent of €. This shows that Q has
precisely one unbounded component.

PROOF Let [a,8] be the parameter interval of v, fix £ £ Q, then

© Ind, (z) = %[’—i@—ds

@ 'y(s) —z

Since w/2x4 is an integer if and only if ¢v = 1, the first assertion of
the theorem, namely, that Ind, (2) is an integer, is equivalent to the
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assertion that ¢(8) = 1, where

@) ¢m—mmuyé@zm] (@ <t <P).

Differentiation of (3) shows that

g ¥
@ P OREOEY,

except possibly on a finite set S where v is not differentiable. There-
fore ¢/ (y — 2) is a continuous funetion on [a,8] whose derivative is
zero in [a,8] — S. Since 8 is finite, ¢/(y — 2) is constant on [,8];

anr] ainmno A(ru\ R | we nhtain
RALLWIN ‘- AV LV R ZY NN

() — =
) p(t) = 1) — 2 (a <t L H).

We now use the assumption that vy is a closed path, ie., that
v(B) = v(a); (5) shows that »(8) = 1, and this, as we observed above,
implies that Ind, (2) is an integer.

By Theorem 10.7, (1) shows that Ind, € H(2). The image of a
connected set under a continuous mapping is connected ([26], The-
orem 4.22), and since Ind, is an integer-valued function, Ind, must
be constant on each component of .

Finally, (2) shows that |Ind, (2)] <1 if || is suﬂiciently Iarge.
This implies that Ind, (2) = 0 in the unbounded component of Q.

Remark: If A(f) denotes the integral in (3), the preceding proof shows
that 2x Ind, (2) is the net increase in the imaginary part of A(f), as ¢ runs
from o to 8, and this is the same as the net increase of the argument of
v(t) — 2. (We have not defined “argument” and will have no need for
it.) If we divide this increase by 2=, we obtain “the number of times
that v winds around 2,” and this explains why the term ‘‘winding number”’
is frequently used for theindex. One virtue of the preceding proof is that
it establishes the main properties of the index without any reference to the
(multiple-valued) argument of a complex number.

10.11 Theorem If v is the positively oriented circle with center at a and
radius r, then

1 iflz —al <,
Ind, (2) { 0 dfle—al>r

PROOF We take v as in See. 10.9(a). By Theorem 10.10, it is
enough to compute Ind, (a), and 10.9(2) shows that this equals
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The Cauchy Theorem

There are several forms of Cauchy’s theorem. They all assert that if
v is a closed path in &, and if & and @ satisfy certain topological conditions,
then the integral of every f e H(Q) over v is 0. We-shall first derive a
simple version of this (Theorem 10.14) which is quite sufficient for many
applications. A more general form will be established later, with the aid
of Runge’s theorem on approximation by rational functions.

10.12 Theorem Suppose F € H(Q) and F’ i3 continuous in Q. Then

for every closed path v in Q.

proOF If [a8] is the parameter interval of v, the fundamental
theorem of caleulus shows that

[F@de= [[Fao)r®d=Fa@) — Fa@) =0,

since y(8) = v(a).

Corollary Since z" is the derivative of 2711/ (n + 1) for all integersn = —1,
we have

[zndz =0

Y

for every closed path v if n = 0,1, 2, . . . , and for those closed paths v for
which 0 g v* if n = -2, —3, —4, .

The case n = —1 was dealt with in Theorem 10.10.

10.13 Cauchy’s Theorem for a Triangle Suppose A 18 a closed iriangle
in a plane open setQ, p £ Q, f is continuouson Q, and f € H(Q — {p}). Then

(1) A f(2) dz =0,

For the definition of A we refer to Sec. 10.9(c). We shall see later that
our hypothesis actually implies that f & H(Q), i.e., that the exceptional
point p is not really exceptional. However, the above formulation of the
theorem will be useful in the proof of the Cauchy formula.

PROOF We assume first that p ¢ A. Let g, b, and ¢ be the vertices of
A, let a’, b, and ¢’ be the midpoints of [b,c], [¢,a], and [a,b}, respectively,
and consider the four triangles A7 formed by the ordered triples

(2) {a’c’!b’}, {b!a’lc’} ? {c’b’ia’} ? {a’!b"c'}'
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If J is the value of the integral (1), it follows from 10.9(6) that

4

®) J=Y [f@d

i=1

The absolute value of at least one of the integrals on the right of (3)
is therefore at least |J/4|. Call the corresponding triangle A,, repeat
the argument with A; in place of A, and so forth., This generates a
sequence of triangles A, such that A D A; D A; D - - -, such that
the length of dA, is 2L, if L is the length of dA, and such that

4) ] < 4n LA_ i) dz[ n=123...).

There is a (unique) point 2, which the triangles A, have in common.
Since A is compact, zo £ A, so f is differentiable at z,.
Let ¢ > 0 be given. There exists an r > 0 such that

() |f(2) — f(z0) — f'(zo)(z — 20)| < ¢z — 2

whenever |2 — zo| < r, and there exists an n such that |z — 20| < r
for all ze A,. For this n we also have |z — zo] < 2L for all z £ A,.
By the Corollary to Theorem 10.12,

® [, f@de= [ ) —fa) = e = 20)] d,
so that (5) implies

@ | [, @) de| < @Dy,

and now (4) shows that |J| < eL?. HenceJ = 0if p ¢ A.

Assume next that p is a vertex of A, say p =a. If a, b, and care
collinear, then (1) is trivial, for any continuous f, If not, choose
points z € [a,b] and y ¢ [a,c], both close to @, and observe that the
integral of f over dA is the sum of the integrals over the boundaries
of the triangles {a,z,y}, {x,b,y}, and {b,c,y}. The last two of these
are 0, since these triangles do not contain p. Hence the integral
over dA is the sum of the integrals over [a,z], {z,y], and {y,a], and since
these intervals can be made arbitrarily short and f is bounded on 4,
we again obtain (1).

Finally, if p is an arbitrary point of A, apply the preceding resuit to
{a,b,p}, {b,c,p}, and {c,a,p} to complete the proof.

10.14 Cauchy’s Theorem in a Convex Set Suppose @ is a convex open sel,
peQ, fis continuous on @, and f € H(Q — {pl). Then

) [1@) dz =0
for every closed path v in Q.
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PROOF Fix aeQ. Since @ is convex, @ contains the straight line
interval from a to z for every z £ 2, so we can define

2) F@) = | J@®dE  (29).

For any z and z¢ £ Q, the triangle with vertices at a, 2o, and z lies in Q;
hence F(z) — F(zo) is the integral of f over [zy,2], by Theorem 10.13.
Fixing 2o, we thus obtain
F(z) — Flz0) _ 1 _

@) =E =) = = [, U@ — fGaldg,

if 2 7 z,. Givene > 0, the continuity of f at 2o shows that there is a
& > O-such that |f(§) — f(z0)] < €if |¢ — 2o] < §; hence the absolute
value of the left side of (3) is less than e as soon as |z — zo] < 8. This
proves thatf = F’, and the desired result follows from Theorem 10.12.

10.15 Cauchy’s Formula in a Convex Set Suppose v 18 a closed path in
a convex open set , and fe HQ). IfzeQand z ¢ v*, then

: _1 r J®
(1) f@) - Indy () =5~ [ rpmeli
The case of greatest interest is, of course, Ind, (z) = 1.
PrROOF Fix 2z so that the above conditions hold, and define
& —f@ .
— if teQ
@ g(z-)=[ = el B4
(2 if £ = 2.
Then g satisfies the hypotheses of Theorem 10.14. Hence
1
@) == [e®dE=o.

If we substitute (2) into (3) we obtain (1).

The theorem concerning the representability of holomorphic functions
by power series is an easy consequence of Theorem 10.15, if we take a
circle for +:

10.16 Theorem For every open set Q@ in the plane, every f € H() 18 rep-
resentable by power series in .

PROOF Suppose fe H(®) and D(a;R) C Q. If v is a positively ori-
ented circle with center at ¢ and radius r < R, the convexity of
D{(a;R) allows us to apply Theorem 10.15; by Theorem 10.11, we
obtain

) 10 =5 [ L ar  Gela).
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But now we can apply Theorem 10.7, with X = {0,2x], ¢ = v, and

du(t) = f(v(®)y'(t) dtf, and we conclude that there is a sequence {ca}
such that

@) f@ = Y calz—a)  (zeD(ay)).

n=0
The uniqueness of {c,} (see the Corollary to Theorem 10.6) shows
that the same power series is obtained for every r < R (as long as a
is fixed). Hence the representation (2) is valid for every z € D(a;R),
and the proof is complete.

Corollary If fe H(Q), then ' £ H().
prooF Combine Theorems 10.6 and 10.16.

The Cauchy theorem has a useful converse:

10.17 Morera’s Theorem Suppose f 18 a continuous complex function in
an open set  such that

];Af(z) dz =20

Jor every closed triangle A C Q. Then fe H(Q).

DRAAT Tat TV ho a nnnvav nnan ant 1in O Alcs in +ha

" At
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51 tne proc
10.14, we can construet F € H(V) such that F' = f. Since derivatives
of holomorphic functions are holomorphic (Theorem 10.16), we have

f e H(V), for every convex open V C Q, hence f & H(2).

o
r

The Power Series Representation

The fact that every holomorphic function is locally the sum of a con-
vergent power series has a large number of interesting consequences. A
few of these are developed in this section.

10.18 Theorem Suppose Q is @ region, f £ H(R), and
(1) Z(f) = {aeQ: f(a) = 0}.

Then either Z(f) = &, or Z(f) has no limit point in Q. In the latler case

there corresponds to each a € Z(f) a unique positive integer m = m(a) such
that

@ J@ = (@ —a)m(s) (2£Q),
where g € H(Q) and g(a) ¥ O; furthermore, Z(f) is af most countable.
(We recall that regions are connected open sets.)
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The integer m is called the order of the zero which f has at the point a.
Clearly, Z(f) = Qif and only if f is identically 0 in Q. We call Z(f) the
zero set of f. Analogous results hold of course for the set of a-points of f,
i.e., the zero set of f — @, where « is any complex number.

PROOF Let A be the set of all limit points of Z(f) in Q. Since f is
continuous, A C Z(f).

Fix a ¢ Z(f), and choose r > 0 so that D(a;r) C Q. By Theorem
10.16,

3 f@ = Y ez —a)"  (ze D(a;n).

a=0
There are now two possibilities. Either all ¢, are 0, in which case
D(a;r) C A and a is an interior point of A, or there is a smallest
integer m [necessarily positive, since f(a) = 0] such that ¢, % 0. In
that case, define

(4) o) = | =) (ea—(a]),

Cm (z = a).
Then (2) holds. It is clear that ge H(Q — {a}). But (3) implies

®) 00 = T nse—af (e Dla)

Hence g € H(D(a;r)), so actually g e H(Q).

Moreover, g{a) = 0, and the continuity of g shows that there is a
neighborhood of @ in which g has no zero. Thus @ is an isolated
point of Z{f), by (2).

If ae A, the first case must therefore occur. So A is open. If
B = Q — A, it is clear from the definition of A as a set of limit points
that B is open. Thus Q is the union of the disjoint open sets A and
B; and since Q is connected, we have either A = Q, in which case
Z(f) =Q,or A = . In the latter case, Z(f) has at most finitely
many points in each compact subset of 2, and since @ is s-compact,
Z(f) is at most countable.

Corollary If f and g are holomorphic functions in a region @ and if

f(z) = g(2) for all z in some set which has a limit point in Q, then f(z) = g(z)

forall ze Q.

In other words, a holomorphic function in a region Q is determined by
its values on any set which has a limit point in €. This is an important
uniqueness theorem.

Note: The theorem fails if we drop the assumption that @ is connected:
if @ =Quy, and Q and @; are disjoint open sets, put f = 0 in Q, and
f=1inQ,
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10.19 Definition If aeQ and fe H(Q — {a}), then f is said to have an
isolated singularity at the point a. If f can be so defined at a that the
extended function is holomorphic in @, the singularity is said to be
removable.

10.20 Theorem Suppose fe H(Q — {a}) and f is bounded in D'(a;r), for
somer > 0. Then f has a removable singularity af a.

Recall that D'(a;r) = {2: 0 < |z — a| < r}.

PROOF Define h(a) = 0, and h(z) = (z — a)*f(2) in @ — {a}. Our
boundedness assumption shows that A'(a) = 0. Since 4 is evidently
differentiable at every other point of @, we have h € H(Q), so

h(z) = 2 en(z — a)» (z e D(a;r)).

a=2

We obtain the desired holomorphic extension of f by setting f(a) = c,,
for then

f(z) = E Cri2(z — a)» (z € D(a;r)).

n=0

10.21 Theorem IfaeQandfe H(Q — {a}), then one of the following three
cases must occur:

(a) f has a removable singularity at a.
(b) There are complex numbers ¢1, . . . , Cm, Where m 18 a positive
integer and ¢, = 0, such that

flz) — kZI G=ap

has a removable singularity at a.
() If r > 0 and D(a;r) C @, then f(I(a;r)) is dense in the plane.

In case (b), f is said to have a pole of order m at . 'The function

i‘: c(z — a)~*,

k=1

a polynomial in (2 — a)~%, is called the principal part of f at a. It is
clear in this situation that |f(2)] — = as z— a.

In case (c), f is said to have an essential singularity at a. A statement
equivalent to (¢) is that to each complex number w there corresponds a
sequence {z,} such that 2z, — a and f(z,) > w as n — o,
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PROOF Suppose (¢) fails. Then there exist r > 0, § > 0, and a
complex number w such that |f(z) — w| > & in D'(a;r). Let us
write D for D(a;r) and D’ for D’(a;r). Define

1 ,
(1) 9(2) = m (z eD )

Then ge H(D') and |g| < 1/6. By Theorem 10.20, g extends to a
holomorphic funetion in D.

If g(a) # 0, (1) shows that f is bounded in D’(a;p) for some p > 0.
Hence (a) holds, by Theorem 10.20.

1f g has a zero of order m > 1 at a, Theorem 10.18 shows that

(2) §iz) = @ — a)"g:(2) (e D),

where g; ¢ H(D) and g,(a) % 0. Also, g, has no zero in D/, by (1).
Put h = 1/¢g:in D. Then h ¢ H(D), h has no zero in D, and

(3) f@) —w=(z—a)™h(z) (zeD).

But & has an expansion of the form

(4) h(z) = Y, ba(z ~a)*  (ze D),

n={

with by £ 0. Now (3) shows that (b) holds, with ¢ = b,_i,
k=1,...,m
This completes the proof.

We shall now exploit the fact that the restriction of a power series
Zea(z — a)* to a circle with center at a is a trigonometric series,

10.22 Theorem I[If

o

(1) f@ = ) ez —a)  (¢eD(a;R))

a=0

and if 0 < r < R, then

(@) Y leirn = o [7 |fa+ re)] do.

n=0

PROOF We have

3) f@+ et = 3 cameins,

a=0
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For r < R, the series (3) converges uniformly on [—x,x]. Hence
N N & i0Y pmind =
(4) eum = 5z f_'f(a + ret®)e=in? do n=012 ..,

and (2) is seen to be a special case of Parseval’'s formula.

Here are some consequences:

10.23 Liouville’s Theorem Every bounded entire function ts constant.

Recall that a function is entire if it is holomorphic in the whole plane.

for all », which is possible only if ¢, = 0 for all n > 1.

10.24 The Maximum Modulus Theorem Suppose Q is a region, f ¢ H(Q),
and a € Q. Then either f is constant tn Q, or each neighborhood of a contains
a point b such that |f(a)| < |f(b)].

In other words, either f is constant or {f| has no local maximum at any
point of Q.

PROOF Assume there exists an B > 0 such that D(a;R) C € and
such that |f(2)| < |f(a)| for all z € D(a;R). Theorem 10.22, applied
to the expansion

i@ =Y eale —ay,

a=0

shows for every r < R that

%, lenltrt < 1@ = e

Hence ¢; = ¢; =¢3= - - =0, f(2) = f(a) in D(a;R), and since @
is connected, f is constant in 2, by Theorem 10.18.

10.25 Theorem (Cauchy’s Estimates) If fe H(D(a;R)) and |f(z)| < M
for all ze D(a;R), then

@ @ <2 =123 ...

PROOF For each r < R, each term of the series 10.22(2) is bounded
above by M3,
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If we takea =0, R = 1, and f(z) = z*, then M = 1, f»(0) = nl, and
we see that (1) cannot be improved.

10.26 Definition A sequence {f;} of functions in Q is said to converge to f
uniformly on compact subsets of Q if to every compact K C @ and to every
¢ > 0 there corresponds an N = N(K,e) such that |fi(z) — f(2)| < € for
allze K ifj > N. '

For instance, the sequence {z"} converges to 0 uniformly on compact
subsets of D(0;1), but the convergence is not uniform in D(0;1).

It is uniform convergence on compact subsets which arises most nat-
urally in connection with limit operations on holomorphic functions. The
term ‘“almost uniform convergence” is sometimes used for this concept.

10.27 Theorem Suppose f;e H(Q),forj =1,2,3, .. . ,and fi— f uni-
formly on compact subsets of Q. Then fe H(Q), and f; — f" uniformly on
compact subsets of Q.

PROOF Since the convergence is uniform on each compact disc in @,
f is continuous. Let A be a triangle in Q. Then A is compact, so

Jo 7@ de = lim [ fi@) de = 0,

by Cauchy’s theorem. Hence Morera’s theorem implies that f e H (£2).

Let K be compact, K C 2. There exists an r > 0 such that the
union E of the closed dises D(z;r), for all z ¢ K, is a compact subset of
Q. Applying Theorery 10.25 to f — f;, we have

') = fi@| < Uif—flle (2e K),

where || f||z denotes the supremum of |f|on E. Since f; — f uniformly
on E, it follows that f; — f’ uniformly on K.

Corollary Under the same hypothesis, i — f uniformly, asj— o=, on
every compact set K C Q.

Compare this with the situation on the real line, where sequences of
infinitely differentiable functions can converge uniformly to nowhere
differentiable functions!

The Open Mapping Theorem

If Q 7s a region and f € H(Q), then () s either a region or a point.

This will be proved, in more detailed form, in Theorem 10.32. The
proof will depend on facts about the index, on Cauchy’s theorem, and on
the notion of residue:
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10.28 Definition Suppose aeQ, fe H(Q — {a}), and f has a pole at aq,
with prinecipal part

(1) Qi) = Y alz — o)™,

k=1
as defined in Theorem 10.21, We call the number ¢; the residue of f at a:

(2) ¢1 = Res (f;a).

10.29 Theorem Suppose 2 is a convex region, &y, . . . , G ave distinct
points in Q, f s holomorphicin @ — ({a,;} v - - - v {a.}), and f has a pole
at each of the points ax (1 < k < n). If v 18 a closed path in Q such that
mgy* (=1, ... ,n), then

n

1) Q% [ de = Res (fia) - Ind, (a).

k=1

PROOF Let @ be the principal part of f at a.. Since

f—'(Ql“"""‘l’Qn)

has only removable singularities in @, Cauchy’s theorem (Theorem
10.14) shows that the integral in (1) is the same as the integral of
Qi+ - - - + Q. over v. This latter integral is equal to the right
side of (1), by the Corollary to Theorem 10.12.

A more general version of this so-called “residue theorem’ (for non-
convex regions) will be derived in Chap. 13.

10.30 Theorem Suppose fe H(Q) and f has a zero of order m at a poind
aeQ. Then f'/f has a stmple pole ot a, and

(1) Res (jf:;a) = m.
If f has a pole of order m al a, and f € H(Q — {a}), then
| (2) Res (fl 'a) = —m
je)=m

ProOF If f has a zero of order m at a, then
3) f@) = (2 — ay™g(2),
where g ¢ H(R), g(a) 0. For z 5 a,

flle) _ m g'(2)
@ @~ r—at gk
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Since g(a) = 0, 1/g is holomorphic in a neighborhood of a. Hence
the principal part of f'/f at @ is m(z — a)~'. This proves (1). The
proof of (2) is analogous.

10.31 Theorem Suppose fe H(R), v 15 a posttively oriented circle in Q
whose interior D also lies in R, and T is the path defined by

® o) =fx®) (0<t<2r),

where [0,2x] 15 the parameter interval of v. Fix w so that w g T*. Then the
number of zeros of f — w tn D (counted according to their multiplicities) 1s
equal to Indr (w).

To count the zeros of a function according to their multiplicities means
that a zero of order m, say, is counted as m zeros.

PROOF The number of zeros of f — w in D is equal to the sum of the
residues of f'/(f — w) in D, by Theorem 10.30, and since y* lies in a
convex subregion of , Theorem 10.29 shows that this sum is equal to

1 F@ ., _1 = _F00)
21 Jv f(2) ~ wdz T2 Jo F((1)) — w v (¢) dt
R N S SIS S - S NP
i T —w™ " FmieE—w W

10.32 The Open Mapping Theorem Suppose Q is a region, f e H(Q), f is
not constant, z, & Q, and wo = f(20). Let m be the order of the zero which the
Junction f — ws has at zo.

Then there exist open sets V and W such that zo e V C Q, W = f(V), and
for each we W — {wy} there are exactly m distinct poinis ze V at which

f(@ = w.

It follows that each wo e f(2) is an interior point of f(2), hence f(Q) is
open. (Exercise 17, Chap. 13, gives a more precise statement.)

PROOF Since f is not constant, f' is not identically 0. Hence 2, is
not a limit of zeros of f — w,, nor is z, a limit point of zeros of f'.
Hence there exists an r > 0 such that D(z;2r) C Q@ and such that
neither f — wg nor f” has a zero in D’(2,;2r). Let v be the positively
oriented circle with center at z, and radius », and put T' = fo v, as
in Theorem 10.31. Then w, ¥ T*. Let W be that component of the
complement of T'* which contains w,, and put

V = D(zor) nf~Y(W).

Since W is open, the continuity of f shows that V is open.
By Theorem 10.31, Indr (we) = m. Since Indr is constant in W
(Theorem 10.10), we can use Theorem 10.31 again to conclude that
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the function f — w has exactly m zeros in D(zo;r) (hence in V) for
each we W. Since f' has no zero in D’(z¢;r), these zeros of f — w
must all be distinct if w £ w,, for if f — w had a zero of order & > 1
at some point, then f* would have a zero of order ¥ — 1 at that point.
This completes the proof.

10.33 Let us restate Theorem 10.32: If z,e Q, fe H(Q), and f — wo has a
zero of order m = 1 at 2o, then there are neighborhoods V of z¢ and W of wq
such that f is an exactly m-to-1 mapping of V — {20} onto W — {w,}.

It is clear that the maximum modulus theorem is a corollary of this,
and so is the following analogue:

TT Ly

If fe H(Q), where § s a region, then neither the real part of f nor the
imaginary part of f can have a local maximum or minimum, unless f 1s
constant.

The case m = 1 in Theorem 10.32 is of particular interest:

10.34 Theorem Suppose Q is a region, fe H(Q), zoeQ, f(zq) = wo,
f'(z0) # 0. Then there exist neighborhoods V and W of z9 and w, such that
f is a one-to-one mapping of V onto W. If g is defined in W by

1 9(f@) =2z  (ze V),

FTIT\

then g € H(W).
In other words, f has a holomorphic inverse in W.

PROOF The only assertion which is not already contained in Theorem
10.32 is the claim that ¢ is holomorphic in W. Fix w, ¢ W; then
f(z1) = wy for a unique z; e V. If we W and g(w) = z, we have

(2) g(w) _ g(wl) — .2 N

W= w1 f(@) — f(z1)
Since f is an open mapping, ¢ is continuous; hence z — 2z; if w — w,.
Also, f’(21) # 0 since f is one-to-one in a neighborhood of z; (Theorem
10.32). If we let w — w;, (2) now shows that ¢'(w,) = 1/f'(2;). So
g is differentiable at every point of W, and the proof is complete.

We already know that Ind, (2), for z ¢ v*, is unchanged if v is fixed
and z is varied slightly. But we can also fix z and vary y. Our next
theorem deals with this situation; it leads to Rouché’s theorem, which
enables us to estimate the number of zeros of one holomorphic function in
a disc if we know how many zeros some ‘‘nearby’’ function has.

10.35 Theorem Suppose vi and v, are closed paths with parameter inlerval
(e, 8], and suppose that

(1) lvi(®) — v2(8)] < |v:(®)] (a £t L B).
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Then
(2) Ind,, (0) = Ind,, (0).

PROOF Note first that (1) implies that O ¢ y§ and O0g~¥. Put
v(t) = v2(8)/v:(t). Then

3 Y %%
(3) =
Y Y2 T

and (1) shows that
(4) t—v® <1 (@<t<H).

Thus v* C D(1;1), hence 0 lies in the unbounded component of the
complement of y*, so Ind, (0) = 0. Now integration of (3) over

[«,8] gives (2).
10.36 Rouché’s Theorem Suppose fe H(Q), g e H(Q), D(a;r) C Q, and
@) [f@) —g@)| <|f@| lz—~al=mr

Then f and g have the same number of zeros in D(a;r) (if they are counied
according to their multiplicities).

PROOF Let  be the positively oriented ecircle with center at a and
radius r. Put 4: = foy and v: = geo v, and let N, and N; be the
number of zeros of f and ¢ in D(a;r). By Theorems 10.31 and 10.35,

N, = Ind,, (0) = Ind,, (0) = N..
10.37 An Application If n is a posilive inleger and
§(@) = 2"+ @u-rz"' + -+ - + az + a,

where @o, . . . , Ga_y are complex numbers, then g has precisely n zeros in
the plane.

Of course, these zeros are counted according to their multiplicities.
This theorem contains the fact that the complex field is algebraically
closed, i.e., that every nonconstant polynomial with eomplex coefficients
has at least one complex zero. This can also be derived as a corollary of
Liouville’s theorem. (Apply Liouville’s theorem to 1/g.)

PROOF Put f(z) = 2*. Ifr > landr > |al + - - * + law—il, and
if |#| = r, then

A1 a—1
_— pu " k S pr—l r o= .
/@) — g@)| = | 2 o | Xl <1 = 1G]

Hence f and ¢ have the same number of zeros in D(0;r), by Rouché’s
theorem; and since f has n zeros, the proof is complete.
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Exercises

1 The following fact was tacitly used in this chapter: If A and B
are disjoint subsets of the plane, if A is compact and if B is closed,
then there exists a & > 0 such that |« — 8] > & for all ce 4
and 8¢ B. Prove this, with an arbitrary metric space in place
of the plane.

2 Suppose P and @ are polynomials, the degree of @ exceeds that
of P by at least 2, and the rational function R = P/Q has no pole
on the real axis. Prove that the integral of B over (— o, ) is
2mt times the sum of the residues of R in the upper half plane.
[Replace the integral over (— A,A) by one over a suitable semi-
circle, and apply the residue theorem.] What is the analogous
statement for the lower half plane? Use this method to compute

./_: 1—_7_—%; dx

3 Compute =, e**/(1 + z?) dx for real ¢, by the method described
in Exercise 2. Check your answer against the inversion theorem
for Fourier transforms.

A . I SR, e

[ S, Ji. LS [N (R,
4 Let v be the positively oriented unit circle, and compute

5 Suppose « is a complex number, |a| = 1, and compute

jzr do
0 1 — 2acos8 8+ a

by integrating (z — a)~'(z — 1/a&)~! over the unit cirele.
6 Suppose fe H(Q), D(a;r) C Q, v is the positively oriented circle
with center at a and radius r, and f has no zero on y*. Forp = 0,

the integral
@ ,
21 .[ f(z)

is equal to the number of zeros of f in D(ayr). What is the value
of this integral (in terms of the zeros of f) forp =1,2,3, . . .7
What is the answer if 27 is replaced by any ¢ ¢ H(Q)?

7 Consider a polynomial in two variables with complex coefficients
P(z,w). Suppose w, is chosen so that all zeros of P(z,w) are
distinct. Use Rouché's theorem to prove that this property
holds for all w in some neighborhood of we. Can you generalize
this, from polynomials to other functions?
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Suppose Q is a region, f,e H(Q) for n =1, 2, 3, . . . , none of
the functions f, has a zero in @, and {f,} converges to f uniformly
on compact subsets of @ Prove that either f has no zero in Q
or f(z) = 0 for all ze Q.
Suppose Pa(z) =14+ 2z/114 - - - +2¢/n), Q.(z) = P.(z) — 1,
wheren = 1,2,3, . . . . What can you say about the location
of the zeros of P, and @, for large n? Be as specific as you can.
Suppose f and g are entire functions, and |f(2)| < |g(2)| for every
z. What conclusion ean you draw?
Suppose f is an entire function, and

@] < 4 + Bla]
for all z, where A, B, and k are positive numbers. Prove that f
must be a polynomial.
Suppose fe H(2), @ contains the closed unit dise, and |f(2)] < 1
if |z = 1. How many fixed points must f have in the dise?
That is, how many solutions does the equation f(z) = z have
there?
Suppose fe H(Q), @ contains the closed unit dise, |f(z)] > 2 if
|z} = 1, and f(0) = 1. Moust f have a zero in the unit dise?
Suppose @ is a region, ¢ € H(Q), ¢’ has no zero in Q, f ¢ H(e(9)),
g =Ffop zeQ, and wo = ¢(zo). Prove that if f has a zero of
order m at w,, then g also has a zero of order m at z,. How is
this modified if ¢’ has a zero of order & at z,?

15 Suppose u is a complex measure on a measure space X, @ isanopen

set in the plane, ¢ is a bounded function on € X X such that
¢(z,t) is a measurable function of #, for each z€ Q, and ¢(z,) is
holomorphic in @, for each t £ X. Define

f@) = /X e(z,t) du(t)

for z ¢ Q. Prove that fe H(Q). Hint: Show that to every com-
pact K C Q there corresponds a constant M < « such that

!"cz’” — e(zol) ! <M (zandzeK,te X).

g — 2o

16 Use Exercise 15 to determine the regions in which the tollowing

functions are defined and holomorphic:

1 etﬂ

1 di w gt
L T 90 = [Trrad ke = f_11+t2dt.

17 Suppose {f.} is a uniformly bounded sequence of holomorphic

functions in @ such that {f.(z)} converges for every z¢ Q. Prove
that the convergence is uniform on every compact subset of Q.
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Hint: Apply the dominated convergence theorem to the Cauchy
formula for fn - fa.

18 Suppose f e H(U), where U is the open unit dise, f is one-to-one
in U, @ = f(U), and f(2) = Zcaz". Prove that the area of Q is

x Z nleal2
n=1
Hint: The Jacobian of fis |f'|%

19 There is a region Q such that exp (@) = D(1;1). Show that exp
is one-to-one in @, but that there are many such Q. Fix one, and
define log 2z, for |z — 1] < 1, to be that we @ for which e* = z.
Prove that log’ (z2) = 1/2. Find the coefficients a, in

= ,.Zo a,(z — 1)»

and hence find the coefficients ¢, in the expansion

1 = — 1)=,
og z an cnlz }
In what other discs can this be done?

20 Suppose 2; and Q, are plane regions, f and ¢ are nonconstant
complex functions defined in @, and Q,, respectively, and f(Q;) C Q..
Put h = gof If f and g are holomorphic, we know that & is
holomorphic. Suppose we know that f and A are holomorphic.
Can we conclude anything about ¢? What if we know that ¢
and k are holomorphic?

21 Suppose fe H(U), g e H(U), and neither f nor ¢ has a zero in

U. I
?’G)=%’(}%) mn=1,23 ...

find another simple relation between f and g.
22 Compute

© dzr
fu T3z n=234...).
[For even n, the method of Exercise 2 can be used. However, a
different path can be chosen which simplifies the computation
and which also works for odd n: from 0 to B to R exp (2xi/%) to 0.]
Answer: (x/n)/ sin (x/n).
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Harmoniec Funetions

The Cauchy-Riemann Equations

11.1 The Operators d and d Suppose f is a complex function defined in a
plane open set . Regard f as a transformation which maps Q into R?,
and assume that f has a differential at some point zo £ 2, in the sense of
Definition 8.22. For simplicity, suppose zo = f{zo) = 0. Our differenti-
ability assumption is then equivalent to the existence of two complex
numbers « and B (the partial derivatives of f with respect to z and y at
2o = 0) such that

~

1) f&) = ez + By + n(2)z

/

z-—x—i—'iy),

o

where 9(z) — 0 asz— 0.
Since 2z = 2z -+ Z and 24y = 2z — Z, (1) can be rewritten in the form

@) 6 =SB+ C T 5 4 e

This suggests the introduction of the differential operators

1/0 . d 1/4 . d
® =3(-im)y i)

Now (2) becomes

@ 18 = @ + @O F+aE @0,
) 1 Lome amrzmra LT OAEV 2 = 1 ) PR 7 % N
1'Or Teal 3’ 4/5 - .|. 101 pu.lt: Illluslll y u@ &f&e — T 1. 11CHICE jJi\& )/ o
has a limit at O if and only if (§f)(0) = 0, and we obtain the following

characterization of holomorphie functions.

11.2 Theorem Suppose [ is a complex funciion in @ which has a differen-
tial at every point of Q. Then f e H(Q) if and only tf the Cauchy-Riemann
equation

) (8))(@) = 0

222
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holds for every z e Q. In that case we have
(2) ['e) = (i)  (zeQ).
If f = u + v, w and v real, (1) splits into the pair of equations
Uz = Uy, Uy = —Us

where the subscripts refer to partial differentiation with respect to the
indicated variable. These are the Cauchy-Riemann equations which must
be satisfied by the real and imaginary parts of a holomorphic function.

11.3 The Laplacian If f has continuous second-order partial derivatives,
then fz, = fy=, and therefore

(1) f:cz +fyy = 465‘f.
This is the Laplacian of f. The harmonic functions in an open set 2 are
those which satisfy the Laplace equation

@) 35f = 0

at every point of Q. It is clear from (1) that the Laplacian of a real
function is real. Hence a complex function is harmonic in @ if and only
if both its real part and its imaginary part are harmonic in Q.

If f is holomorphie, then df = 0, f has continuous derivatives of all
orders, and therefore (1) shows:

11.4 Theorem Holomorphic functions are harmonic.

We shall now turn our attention to an integral representation of har-
monic functious which is closely related to the Cauchy formula for
holomorphie functions. It will show, among other things, that every
real harmonic function is locally the real part of a holomorphic function,
and it will yield information about the boundary behavior of certain
classes of holomorphie functions in open dises.

The Poisson Integral

11.5 The Poisson Kernel This is the function
(1) P(t) = ¥ rmeint (0 <7 <1, ireal).

We may regard P.(f) as a function of two variables r and ¢ or as a family
of functions of ¢, indexed by 7.

If 2 = re’® (0 < r < 1, 8 real), a simple caleulation, made in Sec. 5.24,
shows that

_ et 27 1 =72 .
2) P86 -1 _Re[e“—z:l—1—2rcos(9"'t)+r2
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From (1) we see that

@) + [T P@a=1 @<r<y.

From (2) it follows that P,(t) > 0, P,(t) = P,(—?), that

4) P.(t) < P.(8) V<s<it] <m),

and that

(5) lim P(3) =0 (0 <3<

11,6 Notation From now on, U will denote the open unit disc, i.e.,
U = D(0;1), and T will be the unit circle, the boundary of U in the com-
plex plane.

If f is a function on T and u is a measure on 7T it will often be desirable
to write

M [ 10 dut

in place of [rfdu, where « is a conveniently chosen real number. The
integration in (1) is understood to be over the half-open interval

[a, & + 2).

F saniras a lifaral 1n ntatinr ~f (1\ "ia

Wi WUUL QU’ o LUl Ll IILUD‘.}I UOUIGLL vl J.} u.mntass '10 Se lse f‘a‘;
on 7', not on an interval of the real axis,. However, if f an
on T, and if we define

o A
w Wi

[ % o2y f‘ " an,
[» TR VRV ) Iy SR W,
u are defined

nd .
LINA Lk
d

V9] &) = fe),  B(E) = n(e(E)),

fora £t <a+2r E Cla o+ 2r) where o(f) = %, then it is true that
o2

® [T i dp) = [fdu.

The notation (1) thus amounts to an identification of f with f and g with
u and should cause no confusion.

The reason for preferring (1) to [rfdu is simply that it is easier to
manipulate the integrals in the form (1).

We shall also continue to identify the spaces L?(T) and C(T) with the
related spaces of 2r-periodic functions on R, as in Sec. 4.23.

11,7 The Poisson Integral If fe L(T) and
M F(re®) = o~ [ P.(0 = 07(t) ds,

the function F so defined in U is called the Poisson integral of f; we shall
sometimes abbreviate the relation (1) to

) F = P[f].
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The Poisson integral F = P{du] of a complex Borel measure u on T is
defined analogously by

® Fret) = o [7 P8 — 1) du(d).

If we associate with each f ¢ L1(T') its indefinite integral u(E) = [z f(¢) dt,
we see that the functions F of the form (1) form a subclass of those defined
by (3).

If 4 is real, formula 11.5(2) shows that P[du] is the real part of

. et
@ o [ GE2

9;- —_—— oﬂ —
ain 5T " O &

du(t) (z = re%; ze U).

But (4) defines a holomorphic function in U, by Theorem 10.7. Hence
Pldu] is a harmonic function, Since linear combinations (with constant
coefficients) of harmonic functions are harmonic, we have proved the
following:

11.8 Theorem For every complex Borel measure uon T its Poisson inlegral
Pldu] s a harmonic function in U. Hence P[f] is harmonic in U for
every f & LA(T).

Our next concern will be the behavior of P[du](re), for fixed 6, a8
r— 1. In other words, we are going to study the radial limits (if they
exist) of Poisson integrals of measures. The following lemma contains
the computational part of this investigation.

1.9 Lemma Suppose u 18 a real Borel measure on T, fix 8, put
1) J(@;8) = {e:0 — s <t < 0+ s},

so that J(0;3) s the open circular arc of length 2s with center at ¢, and
assume there exists a 8, 0 < & < «x, and a real number A such thal

) u(J(8;8)) < 284 0 <s<é.
If F = Pldy), these conditions tmply that
@ Firé) <A+ Pl ©<r<D),
where |u|| = |u|[(T) is the total variation of u.
PROOF We have
. 1 fetr
(4) F(re*) = 5 /; P8 — §) du(®).

Split the integral into two parts. If § < [0 — ¢| < =, then
Pr(o - t) < Pr(5)1
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and therefore the integral over this range is not larger than the last
term of (3). The remaining integral over I(§) = (8 — 5, 8 + &) can
be estimated by an integration by parts, using Fubini's theorem.
We integrate

(5) P,(s) ds du(Y)

(the differentiation is with respect to s) over the triangle
(6) {(8):80 —s8<t<8+350<s <

and obtain

@ [ AP ds = [ [PAs) = P(6 = 0] du().

The left side of (7) was obtained by first integrating with respect to ¢;
on the right the s-integration came first. Since u(I(s)) < 284, by
assumption (note that we have identified 4 and &, as in Sec. 11.6),
and since P/(s) < 0on (0,r) [this follows from the inequality 11.5(4)],
we conclude from (7) that

Jieo B0 = 0 du® = P.@uT(®) + [[ @)~ Pils)] ds

< 24

A[sP(3) — [ sPi(s) ds]

h

MLW@%<M£R@@=%L
and this gives (3).

11.10 Theorem Suppose u s a real Borel measure on T, J(8;8) is as in
Lemma 11.9, define

1 (D) (6) = tirm sup 209,

and define(Dyu)(8) and (Du)(8) analogously, with lim and lim inf in place
of lim sup. Put

@) Fire®) = o= [T P(o—0dutty (0 <7 <D
Then
(3 (Du)(8) < lim ilﬂf F(re'®) < lim sup F(re®) < (Dp)(6)

for every 6, and
(4) lim F(re') = (D) (8)

exists and 1s finite for almost all 8 (with respect to Lebesgue measure).
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PRoOF Fix 0, and suppose A > (Du)(). Then there existsa 6 > 0
so that the hypotheses of Lemma 11.9 hold. Asr— 1, P,(8) — 0,
and so the last inequality in (3) follows from Lemma 11.9. The first
inequality in (3) now follows if we apply the last one to —u in place
of u, and (4) is a consequence of the one-dimensional case of Theo-
rem 8.6,

Corollary If fe LYT) and F = P[f], then

lin} F(re®) = f(e) a.e.

This follows from (4) since f is almost everywhere equal to the derivative
of its indefinite integral.

If we take f continuous we get an even stronger result:
11.11 Theorem Suppose fe C(T), F = P[f], and

o (e =1,
(1) u(ret?) = F(re) fo0<r<l.

Then u is a continuous function on the closed unit disc U.

PROOF F is harmonic in U, hence continuous in U, so the continuity
of u on U will follow if we can show that to every ¢ > O there exists
an ro < 1 such that

@) If(e®) — F(re)| <e  (ro<r <1}

This s most easily proved by an elementary argument almost identi-
cal to the one used in Sec. 4.24. But we can also obtain (2) as a
consequence of Lemma 11.9.

Assume fis real. (The complex case then follows trivially.) For
any Borel set E C T, define u(E) = fgf. Fix ¢ > 0. The uniform
continuity of f shows that there exists a & > 0 such that

F(J(e,s)) — id
3) B f(e¥)
for all ¢ and for 0 < s < 6. Hence Lemma 11.9 applies, with
A = f(e'®) + ¢, and the conclusion of the lemma, combined with the
analogous estimate from below, shows that

@ PG — )] < e+ P - o [ 150 dt

< ¢

for 0 < r < 1. Since P.(8) = 0 as r— 1, (4) shows that (2) holds
if 7o is close enough to 1.

Now suppose 7 < 7 < 1 and |@ — 8| < 8, where & is so chosen
that |f(e™) — f(e®)| < e By (2), |u(e’) — u(re®)| < 2¢. Hence
uwe C(U).
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Nofe: This theorem provides the solution of a boundary value problem
(the Dirichlet problem): a continuous function f is given on T and it is
required to find a harmonic function F in U “whose boundary values
aref.”” The theorem exhibits a solution, by means of the Poisson integral
of f, and it states the relation between f and F more precisely. The
uniqueness theorem which corresponds to this existence theorem is con-
tained in the following result.

11.12 Theorem Suppose u s a continuous real function on the closed unst
disc U, and suppose u is harmonic in U. Then (in U) u is the Poisson
integral of its restriction to T, and w is the real part of the holomorphic
Junction
. oit
M 1@ =g [ G 2uenat oD,
PROOF Theorem 10.7 shows that f ¢ H(U). If 4, = Re f, then (1)
shows that u; is the Poisson integral of the boundary values of «,
and the theorem will be proved as soon as we show that u = ;.
Put h = u — u;. Then h is continuous on U (apply Theorem
11.11 to %), A isharmonic in U, and b = Qat all pointsof 7. Assume
(this will lead to a contradiction) that h(ze) > O for some z,¢ U.
Fix e so that 0 < 4e < k(z0), and define

(2) g@) =h2) + el(z — 22— 4] (e 1),

where z = 2 -+ 7y, 20 = Zo + %o Then g(zo) > 0. Since g is con-
tinuous on U and since g < 0 at all points of T, there exists a point
z1 & U at which ¢ has a local maximum. This implies that g.. < 0
and g,, < 0atz. But (2) shows that the Laplacian of g is 2¢ > 0,
and we have a contradiction.

Thus v — u; £ 0. The same argument shows that «; — » < 0.
Hence u = u,, and the proof is complete.

11.13 So far we have considered only the unit disec U = D(0;1). It is
clear that the preceding work can be carried over to arbitrary circular
discs, by a simple change of variables. Hence we shall merely sum-
marize some of the results:

If % is a continuous real function on the boundary of the disc D(a;R)
and if  is defined in D(a;R) by the Poisson integral

i _1 x R"’——r* .
() ula +re) = 2r f—r R®* — 2Rrcos (8 — &) + 2 (e + Re¥) dt

(0<r<RB),

then u is continuous on D(a;R) and harmonic in D(a;R).
If % is harmonic (and real) in an open set @ and if D(a;R) C @, then u
satisfies (1) in D(a;R) and there is a holomorphie function f defined in
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D(a;R) whose real part is . This f is uniquely defined, up to a pure
imaginary additive constant. For if two functions, holomorphic in the
same region, have the same real part, their difference must be constant
(a corollary of the open mapping theorem, or the Cauchy-Riemann
equations).

We may summarize this by saying that every real harmonic function
18 locally the real part of a holomorphic function.

Consequently, every harmonic function has continuous partial deriva-
tives of all orders.

The Poisson integral also yields information about sequences of har-
monic functions:

(a) If un — u uniformly on compact subsets of Q, then w is harmonic
in Q.

B) Ifuy < ug Kug < - - -, then etther {u,} converges uniformly on
compact subsels of Q, or un(2) = * for every z e Q.

prooF To prove (a), assume D(a;R) C ©, and replace u by u, in
the Poisson integral 11.13(1), Since u, — u uniformly on the bound-
ary of D(a;R), we conclude that u itself satisfies 11.13(1) in D(a;R).

In the proof of (b), we may assume that u; > 0. (If not, replace
Un DY Un — uy) Put u = sup ua, let A = {zeQ: u(z) < <}, and
B =9 — A. Choose D(a;R) C Q. The Poisson kernel satisfies the
inequalities

R—r< R — 12 <BAr
R4+r—R—2rRcos (8 —t)+r—" R—r

for0 < r < R. Hence

g o u,,(a) < un{o + re®) < R+ :un(a).

The same inequalities hold with % in place of u,. It follows that
either fu(o\ = e forallze n(n P\ or tnfa\ < o forallze n(n,’g)
Thus both A and B are Open, and since Q is connected, we have
either A = @ (in which case there is nothing to prove) or A = Q.
In the latter case, the monotone convergence theorem shows that
the Poisson formula holds for » in every.disc in . Hence « is har-
monic in 2. Whenever a sequence of continuous functions converges
monotonically to a continuous limit, the convergence is uniform on
compact sets ([26], Theorem 7.13). This completes the proof.
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The Mean Value Property

11.15 Definition We say that a continuous function % in an open set Q
has the mean value property if to every z £ @ there corresponds a sequence
{ra} such thatr, > 0,7, > 0 asn— o, and

0 u@) = o [ e+ e dt (n=1,2,3,...).

In other words, u(z) is to be equal to the mean value of u on the circles
of radius r, and with center at 2.

Note that the Poisson formula shows that (1) holds for every harmonie
funetion u, and for every r such that D(z;r) C Q. Thus harmonie fune-
tions satisfy a much stronger mean value property than the one that we
just defined. The following theorem may therefore coine as a surprise:

11.16 Theorem If a continuous funcltion u has the mean value property
in an open set §, then u is harmonic in .

PROOF It is enough to prove this for real u. Fix D(a;R) C ©. The
Poisson integral gives us a continuous function i on D{(a;R) which
18 harmonic in D(a;R) and which coincides with % on the boundary
of D(a;R). Put v = u — h, and let m = sup {v(2): z& D(a;R)}.
Assume m > 0, and let E be the set of all z& D(a;R) at which
v{z) = m. Since v = 0 on the boundary of D(a;R), E is a compact
subset of D(a;R). Hence there exists a 2q & ¥ such that

|20 — a| > |z — g

for all ze E. For all small enough r, at least half the circle with
center at zo and radius r lies outside E, so that the corresponding
mean values of v are all less than m = v(z;). But v has the mean
value property, and we have a contradiction. Thus m = 0, so
v < 0. The same reasoning applies to —». Hencez = 0,oru = A
in D(a;R), and since D(a;R) was an arbitrary closed disc in @, u is
harinonic in Q.

Theorem 11.16 leads to a reflection theorem for holomorphic functions.
By the upper half plane ¥ we mean the set of all z = = + 7y withy > 0;
the lower half plane I~ consists of all z whose imaginary part is negative.

11.17 Theorem (The Schwarz reflection prineiple) Suppose L is a seg-
ment on the real axis, It is a region in II*, and every I € L s the center of
an open disc D, such that I+ n D, lies in Q*. Let @ be the reflection of Q+:

(1) O = {z:2e QY.
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Suppose f = w + w 18 holomorphic in Q*, and

(2) lim #(z,) = 0
for every sequence {z.} in QF which converges to a point of L.

Then there is a function F, holomorphicin @+ v L v Q~, such that F(z) = f(2)
in QF; this F satisfies the relation

(3) F(Z) = F(2) (ze QruLuQ).

The theorem agserts that f can be extended to a function which is
holomorphie in a region symmetric with respect to the real axis, and (3)
states that F preserves this symmetry. Note that the continuity
hypothesis (2) is merely imposed on the imaginary part of f.

PrOOF Put @ = QtuLuQ-. We extend v to Q by defining v(z) = 0
for ze L and v{2) = —v(Z) for ze Q—. It is then immediate that » is
continuous and that v has the mean value property in Q, so that » is
harmonic in €, by Theorem 11.16.

Hence v is locally the imaginary part of a holomorphic function.
This means that to each of the discs D; there corresponds an f; € H(D,)
such that Im f; = v. Each f, is determined by v up to a real additive
constant. If this constant is chosen so that fi(2) = f(2) for some
ze D,nIl*, the same will hold for all z ¢ D, nII*, since f — f, is con-

cbnad 1 bl waoinn T n'+ M cactivia thot tha frinatinsg £ owean
stant in the TegiOil 1 nu- VY € aSSulne vnav wWie IUncLions j; are so
adjusted.

The power series expansion of f; in powers of z — ¢ has only real
coefficients, since v = 0 on L, so that all derivatives of f; are real at &.
It follows that

4 (@) = £ (2 & D).

Next, assumethat D,n D, = @&. Thenf, = f = f,in Dy n D, nTI*;
and since D, n D, is connected, Theorem 10.18 shows that
(5) Ji(@) = f.(2) (2€ D¢n D,).

Thus it is consistent to define

f(&) for z e Qt
F ~ FRN £ 2N Lrac o~ T
F \3) == Jele) 11Ul ¢ ¢t L7}

§{0) forze Q-

and it remains to show that F is holomorphic in @—. If D(a;r) C Q™
then D(a;r) C Q% so for every z € D(a;r) we have

—
(=7}
[ty

@) 1@ = 3 oz —

0
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Hence

(8) F(z) = Z én(z — a)* (z € D(a;r)).

n=0

This completes the proof.

Positive Harmonic Functions

11.18 It is clear that the Poisson integral P[du] of every positive finite
Borel measure g on the unit cirele 7 is a positive harmonic function in the
open disc U. The question arises whether every positive harmonic fune-
tion in U is obtained in this manner.

The following observation will lead to an affirmative answer. If
h = P[du], where p is any complex Borel measure on T, Fubini’s theorem
shows that

W [ Iende < [T [% [ P09 do] dlul(®) = lu)

where ||u| is the total variation of g on 7. Thus the first integral in (1) is
a bounded function of » on [0,1), a condition which must be satisfied by
all Poisson integrals.

Now if h is a positive harmonic function, then |h| = %, so the first
integral in (1) is 2xh(0), for every r£[0,1). Thus positive harmonic
functions satisfy the necessary condition which we just found, and we
are led to the following stronger theorem.,

11.19 Theorem The mapping u— Pldy] is a linear one-lo-one corre-
spondence between the space of all complex Borel measures on T and the
space of all harmonic functions h in U which satisfy the growth condition

1) sup [* |h(re)| df < .
0<r<l f—x
The set of all positive finite Borel measures on T is thereby put in one-lo-one
correspondence with the set of all positive harmonic functions in U.

Corollary Every harmonic function h in U which satisfies (1) has finile
radial limits at almost all (with respect to Lebesgue measure) points of T.

prooF It is clear that the mapping u — P[dy] is linear. The dis-
cussion in Seec. 11.18 showed that (1) holds for every Pldu].

To prove that u — Pldu] is one-to-one, assume Pldu] =0 in U.
We have to show that u = 0. Choose fe C(T). Theorem 11.11
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shows that
[, 76) du(®) = im [ due) 5 [* SG)P.(0 — 1) dt
=lim [* j© &t o [7 Pt~ 0) du(o)

= lim f " (P [dy] (re*) di = 0.
r—1 /77

Thus [fdu = 0 for every f& C(T), and the uniqueness assertion of
Theorem 6.19 now implies that g = 0.

We turn to the proof of the most significant part o
Every harmonic function in U which satisfies (1) is Pldg] for some
complex Borel measure p on 7. The proof depends on the notion of
“weak convergence,” which is defined, in more general situations, in
Exercise 14.

Let k be a harmonic function in U for which

@) /_ﬂ, h(re®)|d8 < M < ©  (0<7r < 1).
For 0 < 8 < 1, define
(3) MF= [T R dt (feC(TY).

Each A, is then a linear functional on ¢ (T), of norm ||A,]] < M. Let
{ ij} be a countable dense subset of C(T). (For instam;a, take all
trigonometric polynomials whose coefficients lie in some countable
dense subset of the complex plane.) For each j the numbers A.f;
form a bounded set. The diagonal process (see [26], page 145) there-

fore guarantees the existence of a sequence {s,} such that s, — 1 and
such that

(4) Em A, f;

n—ra
exists for each f;.

We claim that {A, f} is a Cauchy sequence for every f & C(T): Fix
fg C{T‘, € > 0 chnnce +hat e __ ol = /A +h H A
J A 73 3y LRAUAASU UVILEL U “J JJH” < E/ll{l, nen CnOOSe IV
so large that

(5) [Ae S — Asfi| < e ifn>N,m> N.
Since
it = Aef] < A0 = I + {Anf; = Al + 1A(F; — D,
it follows that [A,f ~ A,.f] < 3eif n > Nand m > N. Hence
(6) Af = lim A, f
-

= 7

=Y Y
(=1 V)
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exists for every f € C'(T), and (6) defines a linear functional A on C(T),
with ||A]| £ M. The Riesz representation theorem 6.19 now yields a
complex Borel measure u on 7 such that the relation

@) lim [* fOh(swe) dt = [7 1) du(d)

holds for every f & C(T); this follows from (3) and (6).

For gach n, h(s,re?) is harmonic in the dise D(0;1/s,) which con-
taing U. In U this function is therefore the Poisson integral of its
restriction to 7. In other words,

E.. r — it = i
® 5 [_, P8 — Dh(sze™) dt = h(sre®) (0 <r < 1).

If we let n— » in (8) and use (7), we obtain

) % [ P@=-0du) = hire)  O<r<1,—r<0<n),
which is the desired representation of h: A = P[dy].

If h isreal, so is 4, by the previously established uniqueness property.
If h > 0, then each A, is a positive linear funetional on 7, hence S0 18

2 macititits LAllnvre Funes +h.. Diaae varmwacantd

A e +h . " 1.
J.,l, a.uu vile pUDlUlVlby Ul. F. IULLIUWS 11Ul uuc AuiCOa lUplUDUIJ.U&UlUu. bl..l.t?'
orem 2.14.

This completes the proof. The corollary is a consequence of
Theorem 11.10.

There are of course many applications of this theorem. We shall now
give one which shows that there is a Cauchy formula for bounded holo-
morphic funetions in U, in which the path of integration is moved to 7.
Other applications occur in Chap. 17.

11.20 Decfinition We let H= be the space of all bounded holomorphic
functions in U, normed by

1 flle = sup |f(2)1.

As before, L*(T) will be the space of all (equivalence classes of) essentially
bounded functions on 7, normed by the essential supremum norm (rela-
tive to Lebesgue measure). For g e L*(T), ||g]l~ stands for the essential
supremum of |g].

11.20 Theorem To every f & H= there corresponds a function f* ¢ L=(T),
defined almost everywhere by

8 f(e) = lim f(re).
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The equality | file = [[f*|lw holds. For every z & U, the Cauchy formula
[ hiadt3) . 4

holds, where v is the positively ortented unit circle: v(f) = e*, 0 < t < 2.
The functions f* & L=(T) which are obtained in this manner are precisely
those which satisfy the relations

(2) 1)

21n

1 /= ) )
(3) or [_Wf*(e")e—’”‘dt =0 (n = -1, -2 -3, ...).

The fact that every f & H* has radial limits at almost all points of T
was proved by Fatou in one of the earliest applications of the Lebesgue
integral to the study of holomorphie functions.

prooF The existence a.e. of f* follows from the Corollary to Theorem
11.19, and (1) makes it obvious that [[f*/l. < |l fl|e.
Ifze Uand |2 <r <1, put v.(f) = re* (0 <t < 2x). Then

@  f@ = [ L g o SO g,

Zm v £ — 2 27 J-rret — 2

Let {r.} be a sequence, r, — 1, and apply Lebesgue’s dominated con-
vergence theorem to the last integral in (4). The result is

®) 1@ =5 [ 2

ze—lt

which is the same as (2). The Cauchy theorem gives

(6) [forde=0 (m=012...).
Hence a passage to the limit, similar to the above, shows that f*

satisfies (3). We can therefore convert (5) into a Poisson integral:
If 2 = re¥,

@ 1@ = 5 [T 7)Y renen
n=0

- :?1;[_' (e 2 rintgin—0 g

ne=—aw

= o f P,(6 — 1)F*(e") di.

From this we conclude that ||f]|o < [|f*||«, so that the two norms are
equal.
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Finally, if f* € L*(T') is such that (3) holds, and if we define f by (5)
for all z ¢ U, then (5) shows that f ¢ H(U), (3) implies that the Cauchy
integral (5) is equal to the Poisson integral (7), so that f is bounded,
and the representation of f as the Poisson integral of f* shows that (1)
holds almost everywhere, by the Corollary to Theorem 11.10.

There is a uniqueness theorem which follows easily from the above
Cauchy formula:

11.22 Theorem Suppose f& H*, J is a subare of T, and f*(e*) = 0 a.e.
onJ. Then f(z) =0forallze U.

(A considerably stronger statement will be obtained later, in Theorem

15.19, See slso Theorem 17,18 and Sec, 17.19.)

E R PN Vi)

PROOF Let n be a positive integer such that the length of J is larger
than 27 /n, let n = exp {2xi/n}, and put

1) g@) = [l fi*a)  (zeU).

k=1

Sinee f is bounded and f* = 0 a.e. on J, we see that g* = O a.e.on T,
and g g H*. Since ¢ is the Cauchy integral of ¢*, ¢g(z) = 0 for all
2e U. If Z(f), the zero set of f in U, is at most countable, then so is

Z(g)j since Z(n) is the union of n sets abtained from 7(f) by rotations

BV LNy 2 WAL RRLLlINAAL NAL T U VS U AAvAliTla fAi a2 X R =]

But Z(g) = U. Hence f = 0, by Theorem 10.18,

Exercises

1 Suppose u and v are real harmonic functions in a plane region Q.
Under what conditions is wv harmonic? (Note that the answer
depends strongly on the fact that the question is one about real
functions.) Show that u? cannot be harmonic in ©, unless u is
constant. For which f & H(Q) is |f]2 harmonic?

2 Suppose fis a complex function in a region Q, and both f and f? are
harmonic in Q. Prove that either f or f is holomorphic in €.

3 If u is a harmonic function in a region Q, what can you say about
the set of points at which the gradient of u is 0? (This is the set
on which u. = u, = 0.)

4 Prove that every partial derivative of every harmonic function is
harmonie,

Verify, by direct computation, that P,(6 — 1) is, for each fixed ¢,

a harmonic function of re®, Deduce (without referring to holo-
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morphie functions) that the Poisson integral P{du] of every finite
Borel measure x on 7 is harmonic in U, by showing that every
partial derivative of P[du| is equal to the integral of the correspond-
ing partia] derivative of the kernel.

5 Suppose u is a Lebesgue measurable function in a region 2, and «
is locally in L. This means that the integral of [u| over any
compact subset of @ is finite. Prove that u is harmonic if it
satisfies the following form of the mean value property:

1
u@ = — [[ ulzy) dedy
D{(a;r)

whenever D(a;r) C 9.

6 (a) Suppose u is a positive harmonic funetion in U and w(0) = 1.
How large can u(3) be? How small? Get the best possible
bounds.

(b) Supposef =u+ . fe HU), f(0) =0,and ju| <1inU. If
0 < r < 1, how large can |f(re?)| be?
7 Suppose Q is a region, K is a compact subset of @, 2 £Q. Prove
that there exist positive numbers a and 8 (depending on 2z, K, and
Q) such that

au(z) < u(z) < Pulzo)
for every positive harmonic funetion % in Q@ and for all z ¢ K.

If {wa} is a sequence of positive harmoniec functions in £ and if
un(29) — 0, describe the behavior of {u,} in the rest of . Do the
same if u,(z) — . Show that the assumed positivity of {u.}
is essential for these results.

8 Suppose u is a positive harmonie function in U, and u(rei®) — 0

asr — 1, for every e®® ## 1. Prove that there is a constant ¢ such
that

u(re’®) = cP,.(6).

9 Here is an example of a harmonic function in U which is not
identically 0 but all of whose radial limits are O:

u(z) = Im [(i -_F Z)z]

Prove that this « is not the Poisson integral of any measure on T
and that it is not the difference of two positive harmonic functions
in U,

10 Suppose u is a positive Borel measure on T, not identically 0, and
u is singular (relative to Lebesgue measure). If u = Pldu], prove
that u(re’®) — ® asr — 1, for at least one §. Hint: Theorem 8.9.
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Let ® be the set of all positive harmonic functions % in U such
that 4(0) = 1. Show that ® is a convex set and find the extreme
points of . (A point z in a convex set ® is called an extreme point
of ® if z lies on no segment both of whose end points lie in ® and
are different from x.) Hint: If C is the convex set whose members
are the positive Borel measures on 7, of total variation 1, show
that the extreme points of C are precisely those x £ C whose sup-
port consists of only one point of 7.

Suppose fe L?(T),1 < p < o, and F = P[f]. Prove that

lim f_’! (rei®) — f(e®)|?dg = 0.
(Compare with Theorems 9.5 and 9.10. Exercise 17 of Chap. 3
can also be applied here.)

Suppose f& H(2) and f has no zero in Q. Prove that log |f] is
harmonie in @, by computing its Laplacian. Is there an easier
way?

Let X* be the dual space of the Banach space X. A sequence
{An} in X* is said to converge weakly to A € X* if A,z — Ax as

n— o, for every z&¢ X. Note that A, — A weakly whenever
A 3 1\ in the norm of X°* (See Exercise 8, Chan. 5. \ The con-

A, — Ainthe norm of X*. (See Exercise 8, Chap. The con-

verse need not be true. For example, the functlonals f—f@)on .

L*T) tend to O weakly (by the Bessel inequality), but each of

these functionals has norm 1.

(a) Provethat {||As||} must be bounded if {A,} converges weakly.

(b) Suppose X is a separable Banach space and {A,} is a sequence
in X* suchthat {||A.]|} isbounded. Provethat {A.} containsa
weakly convergent subsequence. (The proof is quite similar
to the special ease of Theorem 11.19.)

Suppose I = [a,b] is an interval on the real axis, g is a continuous

funetion on I, and

10 = [[2La  GeD.

P
Show that

}irg [fz + i) —flz —d)] (¢>0)

exists for every real z, and find it in terms of .

How is the result affected if we assume merely that ¢ & L1?
What happens then at points x at which ¢ has right- and left-
hand limits?
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16 Suppose I = [a,b], @ is a region, I C £, f is continuous in ©, and
fe H(Q — I). Prove that actually fe H(Q).

Replace I by some other sets for which the same conclusion can
be drawn,

17 If 1 < p < « andf ¢ L*(R"), prove that (f = h)(2) is a harmonie
function of * + ¢\ in the upper half plane. (hy is defined in Sec.
9.7; it is the Poisson kernel for the half plane.)

18 Suppose @ is a region, f, e H(Q) forn =1,2,3, . . ., u, is the
real part of f., {u.} converges uniformly on compact subsets of £,
and {fa(2)} converges for at least one z¢ Q. Prove that then
{f.} converges uniformly on compact subsets of Q.

19 The device used in the proof of Lemma 11,9 yields a general
theorem which makes it legitimate to apply the process of integra-

tion by parts to integrals of the form j; fdu, where p is a Borel

measure on a segment [ of the real line. State such a theorem
and prove it.
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The Maximum

Modulus Principle

Introduction

12,1 The maximum modulus theorem (10.24) asserts that the constants
are the only holomorphic functions in a region @ whose absolute value has
a local maximum at any point of Q.

Here is a restatement: If K s the closure of a bounded region Q, if f 1s
conlinuous on K and holomorphic in Q, then

(1) () < [l fllex

for every z £ Q. If equality holds at one point z € Q, then f is constant.

[The right side of (1) is the supremum of |f| on the boundary 4K of K.]

For if |f(z)| = |ifllax at some z € Q, then the maximum of |f| on K
(which is attained at some point of K, since K is compact) is actually
attained at some point of Q, so f is constant, by Theorem 10.24.

The equality || f]» = ||f*{]», which is part of Theorem 11.21, implies that
(2) /@) < |If*le (22U, fe Ho(D)).

This says (roughly speaking) that |f(z)| is no larger than the supremum
of the boundary values of f, a statement similar to (1). But this time
boundedness on U is enough; we do not need continuity on U.

This chapter contains further generalizations of the maximum modulus
theorem, as well as some rather striking applications of it, and it concludes
with a theorem which shows that the maximum property “almost” char-
acterizes the class of holomorphic functions.

The Schwarz Lemma

This is the name usually given to the following theorem. We use the

notation established in Definition 11.20.
240
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12.2 Theorem Supposefe H*, ||file < 1, and f(0) = 0. Then

(1) @ <l (e U),
(2) o<1

if equality holds in (1) for one z € U — {0}, or if equality holds in (2), then
f(2) = \z, where \ is a constant, |\| = 1.

In geometric language, the hypothesis is that fis a holomorphic mapping
of U into U which keeps the origin fixed; part of the conclusion is that

either f is a rotation or f moves each z & U — {0} closer to the origin than
it was.

pROOF Since f(0) = 0, f(z)/z has a removable singularity at z = 0,
hence there exists a g & H(U) such that f(z) = zg9(2). Since 1/[¢| is
bounded near the boundary of U, ge H*. Its radial limits satisfy
the relation |g*| = |f*|. Thus |g*|l. £ 1. By Theorem 11.21,
lglle <1, and now the maximum modulus theorem shows that
lg(2)| = 1forsomeze U if and only if g is constant. Since f'(0) = g(0),
this completes the proof.

Note: We did not really have to use the existence of radial limits a.e. on
T; we could have applied Theorem 10.24 to g on dises D(0; 1 — ¢) and
let ¢ — 0 to obtain the final result.

Many variants of the Schwarz lemma can bé obtained with the aid of
the following mappings of U onto U:

12.3 Definition For any a & U, define

T —a

Spa(z) = 1 — az'
12.4 Theorem Fizae U. Then ¢, 1s a one-to-one mapping which carries
T onto T, U onto U, and a to 0. The inverse of ¢ 15 v, We have

ey ‘F’;(O) =1 |al2r ‘P’a(a) = Ijlizl*z

PROOF ¢, Is holomorphic in the whole plane, except for a pole at 1/a
which lies outside U. Straightforward substitution shows that

(2) v—a(pal2)) = 2.
Thus ¢, is one-to-one, and ¢_, is its inverse. Since, for real ¢,

(3)

et — o

le* — af
1 — ae't

-l

=1

(z and Z have the same absolute value), ¢, maps T into T'; the same
is true of ¢_,; hence ¢.(T) = T. It now follows from the maximum
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modulus theorem that ¢.(U) C U, and consideration of ¢_, shows
again that actually ¢.(U) = U.

12.5 An Extremal Problem Suppose « and § are complex numbers,
el <1, and |8) < 1. How large can |f'(a)| be if f is subject to the condi-
tions f e H=, ||fll. < 1, and f(a) = 8?

To solve this, put
@ 9=esofopa

Since p—o and ¢z map U onto U, we see that g e H* and ||g||l. < 1;also,
g(0) = 0. The passage from f to g has reduced our problem to the
Schwarz lemma, which gives |¢’(0)] < 1. By (1), the chain rule gives

) 9'(0) = 4(B)f (a)el,(0).
If we use Eqgs. 12.4(1), we obtain the inequality

®) @l < =2
This solves our problem, since equality can occur in (3). This happens

if and only if |¢’(0)] = 1, in which case g is a rotation (Theorem 12.2),
so that

A £
\=/ JA

for some constant X with |A\| = 1.

A remarkable feature of the solution should be stressed. We imposed
no smoothness conditions (such as continuity on U, for instance) on the
behavior of f near the boundary of U. Nevertheless, it turns out that
the functions f which maximize |f’(a)] under the stated restrictions are
actually rational functions. Note also that these extremal functions map
U onto U (not just into) and that they are one-to-one. This observation
may serve as the motivation for the proof of the Riemann mapping theorem
in Chap. 14.

At present, we shall merely show how this extremal problem can be
used to characterize the one-to-one holomorphic mappings of U onto U.

12.6 Theorem Suppose f e H(U), f is one-to-one, f(U) = U, a e U, and
f(a) = 0. Then there is a constant \, A| = 1, such that

) f@ = Nea(z) (22 ).
In other words, we obtain f by composing the mapping ¢, with a rotation.

PROOFP Let g be the inverse of f, defined by g(f(z)) =z z¢e U.
Since f is one-to-one, f* has no zero in U, so g ¢ H(U), by Theorem
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10.34. By the chain rule,
2) O () = 1.
The solution of 12.5, applied to f and to g, yields the inequalities
1 ’
(3) | ()| < T=@r 1g'(0)] <1 — a2

By (2), equality must hold in (3). As we observed in the preceding
problem (with 8 = 0), this forces f to satisfy (1).
The Phragmen-Lindelof Method

12.7 For a bounded region £, we saw in Sec. 12.1 that if f is continuous
on the closure of Q and if f ¢ H(Q), the maximum modulus theorem implies

0y iflie = llfllae-

For unbounded regions, this is no longer true.
To see an example, let

@) Q= z=x+z'y:—-1§r<y<7r};

]

Q is the open strip bounded by the parallel lines y = +x/2; its boundary
39 is the union of these two lines. Put

(3) f(z) = exp (exp (2)).
For real z,
@ $(2£5) = exp (i)

since exp (r1/2) = 4,80 |f(z)] = 1forz € Q. But f(z) > o« very rapidly
as ¢ — « along the positive real axis, which lies in Q.

“Very” is the key word in the preceding sentence. A method developed
by Phragmen and Lindeléf makes it possible to prove theorems of the
following kind: If fe H(Q) and if |f] < g, where g(z) —> = “slowly” as
z— o in @ (just what “slowly”’ means depends on @), then f is actually
bounded in ©, and this usually implies further conclusions about f, by the
maximum modulus theorem.

Rather than describe the method by a theorem which would cover a
large number of situations, we shall show how it works in two cases. In
both, & will be a strip. In the first, f will be assumed to be bounded, and
the theorem will improve the bound; in the second, a growth condition
will be imposed on f which just excludes the function (3). In view of
later applications, @ will be a vertical strip in Theorem 12.8.
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First, however, let us mention another example which also has this
general flavor: Suppoese f is an entire function and

(5) [f@)] <1+ [

Jor all z. Then f is constant. :
This follows immediately from the Cauchy estimates 10.25, since they
show that f®(0) =0forn=1,2,3,....

12.8 Theorem Suppose

€)) Q= {z 4+ a<z <b}, R={z+1y:a <z<bh},

f is continuous on 8, f e H(2), and suppose that |f(2)] < B for all ze Q and
some fired B < . If

(2) M@)=sup{lfz+y): —o <y<w} (@<z<D)

then we actually have

(3) M(z)—= < M(a)r—=M(b)** (@ <z <b).

Note: (3) implies that the inequality {f| < B can be replaced by
|/l < max (M({a),M(®)), so that |f| is no larger in Q than the supremum of
{f| on the boundary of Q.

If we apply the theorem to strips bounded by lines 2 = « and z = 8,
where ¢ < a < 8 £ b, the conclusion can be stated in the following way :
Corollary Under the hypotheses of the theorem, log M is a convex funclion
on (a,b).

PROOF We assume first that M(a) = M(b) = 1. In this case we
have to prove that |f(z)] < 1forallzeQ.
For each ¢ > 0, we define an auxiliary function

@ M) = Ty €D

Since Re{l +e¢z—a)} =1+ ex—a) > 1in &, wehave |h| < 1
in ©, so that

(5) fRRr(] <1 (z2989).
Also, |1 + ez — a)| = ey, so that

(6) f@h(2)] < q%[ =1+ iye ).

Let R be the rectangle cut off from @ by thelinesy = +B/e. By
(5) and (6), |[fh < 1 on 3R, hence |fh|] < 1 on R, by the maximum
modulus theorem. But (6) shows that |fh < 1 on the rest of Q.
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Thus |f(2)h(2)| < 1for all zeQ and all e > 0. If we fix zeQ and
then let e — 0, we obtain the desired result |f(z)| < 1.
We now turn to the general case. Put

™ 92 = M(a)=216-0 }f ()e-010-),

where, for M > 0 and w complex, M¥ is defined by

(8) Mv = exp (wlog M),

and log M is real. Then g is entire, g has no zero, 1/g isbounded in Q,
&) lgla + @)l = M(a), |9 + )l = M(b),

and hence f/g satisfies our previous assumptions. Thus |f/g| <1
in Q, this gives (3).

12.9 Theorem Suppose

1) Q = lx+iy:|y|<%], Q= [x-l—z'y: |?I|S%}

Suppose f is continuous on Q, f € H(Q), there are constants a < 1, A < =,
such that

) |f(2)| < exp {A exp (a|z{}] (z=2z+1yeQ),
and
3) tf(xi—%—i)‘SI (—® <z < ®).

Then |f(z)| < 1 for all ze Q.

Note that the conclusion does not follow if & = 1, as is shown by the
function exp (exp 2).

PROOF Choose 8 > 0 so that « < 8 < 1. Fore > 0, define
4) he(z) = exp {—e(e®* + &%)},

Forze Q,

(5)  Relefs + ef] = (ef~ + eP) cos By > 8(¢#* + e P%)
where 6 = cos (8r/2) > 0, since || < 1. Hence

©®  Ih(2)] <exp {—ed(e” + e)) <1 (22 D).

It follows that {fh] < 1 on 32 and that

(1) f@h(2)| < exp {Ael — ed(ef* + )} (2 D).
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Fix ¢ > 0. Since ¢ > 0 and 8 > e, the exponent in (7) tends to
— o as z— + . Hence there exists an z, so that the right side of
(7) is less than 1 for all > z,. Since !/A.] < 1 on the boundary of
the rectangle whose vertices are +x, + (ri/2), the maximum modulus
theorem shows that actually |fA] <1 on this rectangle. Thus
ifhe < 1 at every point of @, forevery e > 0. Ase—0, h(2) — 1
for every z, so we conclude that [f(z)| < 1 for all z¢ Q.

An Interpolation Theorem

12,10 The convexity theorem 12.8 can sometimes be used to prove that
certain linear transformations are bounded with respect to certain Le-
norms. Rather than discuss this in full generality, let us look at a
particular situation of this kind.

Let X be a measure space, with a positive measure p, and suppose

{¥n} (n =1,2,8,...)is an orthonormal set of functions in L2(u); we
recall what this means:

— . |1 ofm=n,
@ JAZZE [0 if m # n,

Let us also assume that {¢,} is a bounded sequence in L®(u): There exists
an AL < oo such that

wuER AVE IORAVAL UARLAUY

(2) I'I'n(-’ﬂ)l <M (n = 1: 21 37 R X)
Then for any f € L?(u), where 1 < p < 2, the integrals
&) fo) = [(fondn  (=1,23..)

exist and define a function f on the set of all positive integers.
There are now two very easy theorems: For f & Li(u), (2) gives

4) Iflle < M|| Sl
and for f e L3(u), the Bessel inequality gives
(5) 1Fll2 < 15l
where the norms are defined as usual:

(6) Ifle = [fifir du]™™  Ifle = (2R},
and [flle = sup |f(n)!.

Since (1, ) and (2,2) are pairs of conjugate exponents, one may conjec-
ture that |[f]|, is finite whenever f e L*(u) and 1 < p < 2, ¢ = p/{(p — 1).
This is indeed true and can be proved by “interpolation” between the
preceding trivial cases p = 1 and p = 2:
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12.11 The Hausdorff-Young Theorem Under the above assumptions, the
inequality

M Iffle < M-212|I 1],

holds if 1 < p < 2 and if f e L*(n).

PRooF We first prove a reduced form of the theorem.

Fix p, 1 < p < 2. Let f be a simple eomplex function such that
lfllz =1, and let &y, ..., by be complex numbers such that
Z|bal? = 1. Our objective is the inequality

(9Y 1 N 3 fra)
| v /

< RF(2—p)p
\H} _— AVL

Put F = |f|?, and put B, = |b,|?. Then there is a function ¢ and
there are complex numbers 81, . . . , S5 such that

@3) f=Fig,  lo=1, [Fdu=1,
and
N
(4) b = Baupﬁn, lﬂnl = _l, 2 B, = 1.
nal}l

If we use these relations and the definition of f(n) given in Sec.
12,10, we obtain

(5) i baf(n) = i B,Y*g, fXF”’smI'. du.
n=1 n=1

Now replace 1/p by z in (5), and define
N
()] ®(z) = E BB, A Fpl, dy
n=1
for any complex number z. Recall that A* = exp (zlog A)if A > 0;
if A = 0, we agree that A* = 0. Since F is simple, since F > 0, and
since B, > 0, we see that ® is a finite linear combination of such
exponentials, so @ is an entire function which is bounded on
{z: a < Re (2) < b}

for any finite a and b. We shall take ¢ = } and b = 1, shall estimate
& on the edges of this strip, and shall then apply Theorem 12.8 to
estimate ®(1/p).

For — © < y < w, define

(7) @) = [, PP du.



248 Real and complex analysis

The Bessel inequality gives

N

® ) @< [ 1PFedu= [ |Fldu =

n=]1
and then the Schwarz inequality shows that

N
(9) l'i'('} + zy)l = I Zl Bu*Bﬂinﬂcn] < { Z B, Z Ic,.lz}* <1

n=1

The estimate
(10) @+ <M (—= <y < »)

follows trivially from (3), (4), and (6), since {[¥./l. < M.
We now conclude from (9), (10), and Theorem 12.8 that

1) @+ a) <M= GF<z<l —o <y< o)

With z = 1/p and y = 0, this gives the desired inequality (2).
The proof is now easily completed. Note first that

N N
7100\ I X 12, Aatle Y 2 Aeon
lisg) 1 2 J" iy = sup| L OnJ\Pe} |,

n=1 n=1
the supremum being taken over all {b;, . . . , by} with Z}b,[? = 1,

since the L¢ norm of any function on any measure space is equal to
its norm as a linear functional on L?, Hence (2) shows that

N

(13) { 3 1)} < o)),

nal

for every simple complex f e L?(u).

If now f & L*(u), there are simple functions f; such that ||f; — fll,— 0
as j— o. Then f(n) — f(n) for every n, because ¥, & Lo(u).
Thus since (13) holds for each f;, it also holds for f. Since N was

QT‘]‘\I“"!‘Q‘I“T we finally n]’\+n'l'h (1\

Cus SR J ) l-l.l.ll}lll--l

A Converse of the Maximum Modulus Theorem

We now come to the theorem which was alluded to in the introduction
of the present chapter.,

The letter ;7 will denote the identity function: j(z) = =.

The function which assigns the number 1 to each z ¢ U will be denoted
by 1.
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12,12 Theorem Suppose M s a vector space of continuous complex func-
tions on the closed unit disc U, with the following properties:

(a) 1e M.
(b) If fe M, then also jf e M.
© Iffe M, then ||fllv = | fllr-

Then every f € M 1is holomorphic in U.

Note that (¢) is a rather weak form of the maximum modulus principle;
(c) asserts only that the overall maximum of |f] on U is attained at some
point of the boundary 7, but (c) does not a priori exclude the existence
of local maxima of |f] in U.

PROOF By (a) and (b), M contains all polynomials. In conjunction
with (¢), this shows that M satisfies the hypotheses of Theorem 5.25.
Thus every f e M is harmonic in U. We shall use (b) to show that
every f £ M actually satisfies the Cauchy-Riemann equation.

Let 8 and 6 be the differential operators introduced in Sec. 11.1.
The product rule for differentiation gives

(39)(fg) = f- (89g) + (3f) - (3g) + (9/) - (8g) + (39f) - g.

Fix fe M, and take g = ;5. Then fje M. Hence f and fj are
harmonic, so ddf = 0 and (83)(f7) = 0. Also, dj = 0 and 9j = 1.
The above identity therefore reduces to df = 0. Thus fe H(U).

Exercises

1 Give a proof of Theorem 12.2 which requires no knowledge of the
boundary values of f.

2 Suppose f ¢ H(IT*), where IT* is the upper half plane, and |f] < 1.
How large can |f'(z)] be? Find the extremal functions. (Com-
pare the discussion in Sec. 12.5.)

3 Suppose fe H(Q). Under what conditions can |f| have a local
mintmum in Q7

4 Suppose fe H(U). Prove that there is a sequence {z,} in U
such that |z,| — 1 and {f(z.)} is bounded.

SIf0 < R <Ry < =, let A(R,R:) denote the annulus

{2: By < l2] < R,}.
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There is a vertical strip which the exponential function maps
onto A(R1,Rs). Use this to prove Hadamard’s three-cirele theorem:
If f e H(A(R,R))), if

M(r) = max |f(re®)]  (Bi < r < Ry),
andif By <a<r<b< R, then

log (b/r) log (r/a)
log M(r) Smlog M(a) + Tog b/ )1 g M ().

[In other words, log M(r) is a convex function of log ] For
which f does equality hold in this inequality?

Let 11 be the open right half plane (z € IT if and only if Re z > 0).
Suppose f is continuous on the closure of I (Re z > 0), f & H(QI),
and there are constants 4 < « and o < 1 such that

I7@)| < 4 exp (fe])

forallzel. Furthermore, |f(zy)| < 1 for all real 5. Prove that
If(2)| £ 1inIL

Show that the conclusion is false for @ = 1.

How does the result have to be modified if II is replaced by

region bounded by two rays through the origin, at an angle no
equal to »?

e’-ﬂ'

7 Suppose T is the boundary of an unbounded region Q, f& H(Q),

f is continuous on Qu T, and there are constants B < « and
M < o such that |fi| < M on T and |f] £ Bin Q. Prove that
we then actually have |f] < M in Q.

Suggestion: Show that it involves no loss of generality to assume

that UnQ = &. Fix 209, let n be a large integer, let V be a
large disc with center at 0, and apply the maximum modulus
theorem to the function f*(z)/z in the component of ¥V n Q which
contains z,.
Let f be an entire function. I there is 2 continuous mapping v of
[0,1) into the complex plane such that v({) — < and f(y({f)) — «
as t — 1, we say that a is an asymplotic value of f. [In the com-
plex plane, “y(f) = « as {— 1’ means that to each R < « there
corresponds a iz < 1 such that |y(f)| > Rif ip <t < 1.] Prove
that every nonconstant entire function has « as an asymptotic
value.

Suggestion: Let E, = {z: |f(z)| > n}. Each component of
E. is unbounded (proof?) and contains a component of E,,i, by
Exercise 7.



The maximum modulus principle 251

9 Show that exp has exactly two asymptotic values: 0 and .
How about sin and cos? Nole: sin z and cos z are defined, for
all complex z, by

sinz =2 =", cesz=tET
2t 2

10 If f is entire and if « is not in the range of f, prove that « is an
asymptotic value of f.

11 Suppose © is a bounded region, {f.} is a sequence of continuous
functions on & which are holomorphic in @, and {f.} converges
uniformly on the boundary of Q. Prove that {f.} converges
uniformly on .

12 Suppose Q is a bounded region, f ¢ H(Q), and

lim sup |f(z.)] £ M

for every sequence [z,} in @ which converges to a boundary point
of Q. Prove that |f(z)| < M forallze.

13 Suppose @ is a region, D isa dise, D C 9, fe H(Q), f is not constant,
and |f| is constant on the boundary of D. Prove that f has at
least one zero in D,
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Approximation by

Rational Funetions

Preparation

13.1 The Riemann Sphere It is often convenient in the study of holo-
morphic functions to compactify the complex plane by the adjunction
of a new point called . The resulting set S? (the Riemann sphere, the

nnnnnn af P2 and [ an 1) ig famalagioad 317 tha fallaorivg mannar Tar aner
uxuuu O n° ala | < ) 15 WOPp0106giZea in the IOUOWINE Inainer. ror any

r > 0, let D’(«;r) be the set of all complex numbers 2z such that |z| > 7,
put D(e ;r) = D'(ee;r) u { ©}, and declare a subset of S? to be open if and
only if it is the union of discs D(a;r), where the a’s are arbitrary points of S?
and the r’s are arbitrary positive numbers. On 82 — {]}, this gives
of course the ordinary topology of the plane. It is easy to see that S? is
homeomorphic to a sphere (hence the notation). In fact, a homeo-
morphism ¢ of S? onto the unit sphere in R? can be explicitly exhibited:
Put ¢() = (0,0,1), and put

. 2rcos @ 2rsin g r2 — 1
@ q"(T‘3’8)=(7~2+1’7-2+1’r2+1)
for all complex numbers re?. We leave it to the reader to construct the
geometric picture that goes with (1).

If f is holomorphic in D’( < ;r), we say that f has an isolated singularity
at . The nature of this singularity is the same as that which the
function f, defined in D’'(0;1/7) by f(z) = f(1/2), has at 0.

Thus if f is bounded in D’( ;r), then lim f(z) exists and is a complex

number (as we see if we apply Theorem 10.20 to f), we define () to
be this limit, and we thus obtain a function in D(e ;r) which we call
holomorphic; note that this is defined in terms of the behavior of f near

0, and not in terms of differentiability of f at <,
252
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If f has a pole of order m at 0, then f is said to have a pole of order m
at « ; the principal part of f at « is then an ordinary polynomial of degree
m (compare Theorem 10.21), and if we subtract this polynomial from f,
we obtain a function with a removable singularity at .

Finally, if f has an essential singularity at 0, then f is said to have an
essential singularity at «. For instance, every entire function which
is not a polynomial has an essential singularity at «.

Later in this chapter we shall encounter the condition “S? — Q is con-
nected,” where Q is an open set in the plane. Note that this is not
equivalent to the condition “the complement of Q relative to the plane
is connected.” For example, if Q@ consists of all complex z = 2 + &y
with 0 < ¥ < 1, the complement of @ relative to the plane has two
components, but S? — Q is connected.

13.2 Rational Funections A rational function f is, by definition, a quo-
tient of two polynomials P and Q: f = P/Q. 1t follows from the theo-
rem in Sec. 10.37 (combined with some elementary algebra or with
Theorem 10.18) that every nonconstant polynomial is a product of factors
of degree 1. We may assume that P and @ have no such factors in com-
mon. Then f has a pole at each zero of @ (the pole of f has the same order
as the zero of @); and if we subtract the corresponding principal parts,
we obtain a rational function whose only singularity is at « and which

1a thaoanafara o nalenamial
10 VIIVLIVIVAITC Pulyllullllal.

Thus every rational function f = P/Q has a representation of the form

k
(1) f@) = Ao@) + Y, Ai((z — a)™Y)
i=1
where Ao, Ay, . . . , Ai are polynomials, 4,, . . . , 4; have no constant
term, and a,, . . . , @ are the distinct zeros of @; (1) is called the partial

Jractions decomposition of f.

We turn to some topological considerations. We know that every
open set in the plane is a countable union of compact sets (closed discs,
for instance). However, it will be convenient to have some additional
properties satisfied by these compact sets:

13.3 Theorem Every open set Q in the plane is the union of a sequence
E 1l n =1 2 2 4 onto cossnh $hat

I = 1 A - II'F DNYYIn N
{(&2R )y Vv ] 3Py v e g Y LUNERPIRLE OUEO OUWATD W

(@) K, lies in the intertor of Kpyy, forn =1,2,8, . . ..
(b) Every compact subsel of Q lies in some K,.

(¢) Every component of St — K, contains a component of S* — Q, for
n=12123 ....

Property (c) is, roughly speaking, that K, has no holes except those
which are forced upon it by the holes in 2. Note that Q is not assumed
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to be connected. The inlerior of a set E is, by definition, the largest
open subset of E.

PROOF Forn =123, ..., put
1) Va=D(om)u U D(a;-l)
afQ n

and put K, = 82 — V,. [Of course, @ # « in (1).] Then K, is a
closed and bounded (hence compact) subset of @, and @ = UK,. If
zeK,andr = n-! — (n + 1), one verifies easily that D(z;r) C K,44.
This gives (a). Hence Q is the union of the interiors W, of K..
If K is a compact subset of @, then K C Wyu - - - v Wy forsome N,
hence K C Ky.

Finally, each of the dises in (1) intersects S? — Q; each disc is
connected; hence each component of V, intersects S§? — @; since

Vi DO 8% — Q, no component of S?2 — Q can intersect two components
of V.. This gives (c).

13.4 Theorem Suppose ¢ and b are complex numbers, b % 0, and v is
the path consisting of the oriented intervals

(1) [@ + b, @ 4 2*11D] (n=20,1,2 3).
Then
(2) Ind, () =1

Jor every z in the interior of the square with vertices at the poinis a + b
n=20,1,2,3).

PROOF Let v, be the nth oriented interval in (1). For any 2 in the
interior of the square, the integral of (¢ — 2)~! over v,'is the same
as its integral over the circular arc T, defined by

(3) Tu(t) = a - t"be® (0 <t< %),
as we see from Cauchy’s theorem, applied to a convex region which

contains y¥uT} but excludes z. The result now follows from
Theorem 10.11

SARAFAAALE AV 2

13.5 Theorem If K is a compact subset of a plane open set Q, there exist
oriented line intervals v, . . . , va tn @ — K such that the Cauchy formula

® CEMEY LT,

holds for every f ¢ H(Q) and for every z e K.
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PRoOF Since K is compact and Q is open, there exists an n > 0 such
that the distance from any point of K to any point outside Q is at
least 29. Construct a grid of horizontal and vertical lines in the
plane, such that the distance between any two adjacent horizontal

lines is 5, and likewise for the vertical lines. Let @,, . . . , Q. be
those squares (closed 2-cells) of edge n which are formed by this grid
and which intersect K. Then Q. C Qforr=1, ..., m.

Let Q. be the positively oriented boundary of @,. By this we
mean that 8Q, consists of four oriented line intervals, as in Theorem
13.4, with a at the center of Q,. Some of these line intervals may

appear twice, but with opposite orientation; this happens whenever
'l'mn nf +I‘\n n ’a l'\owa an adea In AT t“iﬂnnvr] 4-‘1 aan intarvala and

'y \J\LEU ALL U‘Iullllull, VLIAVOU 1liVua vmn, RLINA
let 4y, . . ., s be the remaining ones. It is then clear that
@) Z 5 [ o) dt = 2 — [, e®)

for any ¢ continuous on the union of the boundaries of the squares
Q,...,0m

Any edge of any of the @,’s which intersects X lies in the boundary
of two @,’s. For if an edge intersects K, then so do the two squares
in whose boundary it lies. It follows that the intervals v, . . . , ya
liein & — K.

Now suppose fe H(2) and fix 2 in the interior of somne Q,. Put
¢(§) = [f¢) — f(@)/( — 2), and apply (2). By the Cauchy theo-
rem (which, since it holds for triangles, holds equally well for squares),
the right side of (2) is 0. Hence

* 1 J® NI (O
E%wf—zr Z%wi‘—zr

= 1) 2 o o s = @,

since the last integral is O for all but one value of r, and for that
value it is 1, by Theorem 13.4.

This proves {1\ nrnvndpd 2 is 1n the interior of some Q.. Ifze _Ki

then z does not he on any v}, and z is a limit point of the interior of
some Q,; hence (1) also holds for these z, by continuity.

Runge’s Theorem

The main objective of this section is Theorem 13.9. We begin with a
slightly different version in which the emphasis is on uniform approxima-
tion on one compact set.
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13.6 Theorem Suppose K i8 a compact get in the plane and {a;} i8 a sel
which conlains one point in each component of 8* — K. IfQis open,
QD K, fe HXQ), and € > 0, there exists a rational function R, all of whose
poles lie in the prescribed sel {a;}, such that

{® |f(z) — R(z)] <
Jor every ze K.

Note that 82 — K has at most countably many components. Note
also that the preassigned point in the unbounded component of 8% — K
may very well be «; in fact, this happens to be the most interesting
choice.

ProoF We consider the Banach space C(K) whose members are the
continuous complex functions on K, with the supremum norm. Let
M be the subspace of C(K) which consists of the restrictions to K
of those rational functions which have all their poles in {«;}. The
theorem asserts that f is in the closure of M. By Theorem 5.19 (a
consequence of the Hshn-Banach theorem), this is equivalent to
saying that every bounded linear functional on C(K) which vanishes
on M also vanishes at f, and hence the Riesz representation theorem
(Theorem 6.19) shows that we must prove the following assertion:

If u 18 a complex Borel measure on K such that
@) JeRdu=0

for every rational function R with poles only tn the sel {oy}, and if
f e H(), then we also have

(3) ];_,fdu = 0.

So let us assume that u satisfies (2). Define

_ du(®) . _

4) h(z) = xF—z (ze 82 — K).
By Theorem 10.7 (with X = K, o({) = ¢), h ¢ H(S? — K).

T nt W o tha antriem amd f Q2 Ir  Tinh nnmdaing ~. and cinnnen

i V. Ty 7 e viice WIISPUIJ.UU.U Ul O = N WILULL COLIVALLLY a,, @l SUppusLc
D(a;;r) C V. If o5 3 o and if z is fixed in D(aj;r), then

N
— L (g — o)

(5) = lim Zo G =)

“'—z N—w
n

uniformly for { € K. Each of the functions on the right of (5) is one
to which (2) applies. Hence h(z) = 0 for all z& D(e;;r). This
implies that h(z) = 0 for all z £ V;, by the uniqueness theorem 10.18.
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If ¢; = e, (5) is replaced by

1 1 N
®  F—zT Tam ) e ek l>7),
n=0

which implies again that A(z) = 0 in D( ;r), hence in V;, We have
thus proved from (2) that

(N k(z) =0 (ze S — K).

Now choose oriented line intervals 45, . . . , ¥4, in € — K, as in
Theorem 18.5, and integrate this Cauchy integral representation of f
with respect to . An application of Fubini’s theorem (legitimate,
since we are dealing with Borel measures and continuous functions
on compact spaces), combined with (7), gives

fod# = [Kdu(ﬁ') [,‘21% Lig(—?_ﬂ—)-;_dw]

- Y o [ 10 [ frty | o

2

1

_,Z%i [ 1)) dw = 0.

The last equality depends on the fact that each v; is an interval in
S? — K, where h vanishes.

Thus (3) holds, and the proof is complete.

The following special case is of particular interest.

13.7 Theorem Suppose K is a compact set in the plane, S — K I8 con-
nected, and f &€ H(Q), where Q is some open set containing K. Then there
18 a sequence {P,} of polynomials such that P.(z) — f(z) uniformly on K.

PROOF Since now S* — K has only one component, we need only
one point «; to apply Theorem 13.6, and we may take a; = .

13.8 Remark The preceding result is false for every compact K in the
plane such that S? — K is not connected. For in that case Sz — K
has a bounded component V. Choose a € V, put f(2) = (z — «)~?, and
put m = max {{z — e|: z¢ K}. Suppose P is a polynomial, such that
|P(z) — f(2)| < 1/mforall ze¢ K. Then

(1) (g —a)P(z) — 1| < 1 (ze K).
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In particular, (1) holds if z is in the boundary of V; since the closure
of V is compact, the maximum modulus theorem shows that (1) holds
for every ze V; taking 2z = o, we obtain 1 < 1. Hence the uniform
approximation is not possible.

The same argument shows that none of the o; can be dispensed with
in Theorem 13.6.

We now apply the preceding approximation theorems to approxima-
tion in open sets. Let us emphasize that K was not assumed to be con-
nected in Theorems 13.6 and 13.7 and that Q@ will not be assumed to be
connected in the theorem which follows.

13,9 Theorem Let Q be an open set in the plane, let A be a set which has
one point in each component of S* — Q, and assume f e H(Q). Then there
18 @ sequence {R.} of rational functions, with poles only in A, such that
R, — f uniformly on compact subsets of Q.

In the special case in which S* — Q 18 connected, we may take A = { o}
and thus obtain polynomials P, such that P, — f uniformly on compact
subsets of Q.

Observe that S? — Q@ may have uncountably many components; for
instance, we may have S? — @ = { o} u C, where C is a Cantor set.

PROOF Choose a sequence of compact sets K, in @, with the prop-
erties specified in Theorem 13.3. Fix n, for the moment. Since
each component of S? — K, contains a component of S? — Q, each
component of S? — K, contains a point of A, so Theorem 13.6 gives
us a rational function B, with poles in A such that

® Rae) = FD <% e K.

If now K is any compact set in @, there exists an N such that
KCK,foralln > N. It follows from (1) that

@) Ra) = F@I <7 GeK a2 W),

which completes the proof.

13.10 Remark The power series representation of holomorphic functions
provides us with a very specific procedure of approximation by poly-
nomials, but this process can only be applied locally (i.e., in a circular
disc contained in the set in which the given function is holomorphic).
Runge’s theorem provides a global approximation by rational functions
(and, in some cases, by polynomials), in a much less specific manner,
of course.

This global approximation leads to very simple proofs of general ver-
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sions of the Cauchy theorem and the residue theorem. Essentially,
any integration theorem that holds for rational functions with poles
outside Q holds for every fe H(Q2). For if v is a path in Q, then y* is
compact and f can therefore be uniformly approximated on v* by such
rational functions. The only other significant ingredient of the proofs
which follow is the residue theorem for rational functions (Theorem
10.29, with @ the whole plane): If v is any closed path in the plane which
passes through no pole of the rational function R, then

2Lﬂ' L R(z) dz = z Res (RB;ax) Ind, (aw),

k=1

where Gy, . . . , Gs are the poles of B in the plane.

Cauchy’s Theorem

13.11 Theorem Suppose Q is a plane open set, and f &€ H(RQ).
(a) If v is a closed path in Q such thal

(1) Ind, () =0 for every a € S? — Q,
then
@) [ 1@ dz = 0.

Y

() If vo and v, are closed paths in Q such that
(3) Ind,, («) = Ind,, (a) for every a g 8% — Q,
then

@) [ @) dz = [ f@)de.

(¢) If 8% — Q is connecled, then (1) holds for every closed path v in Q;
hence, 8o does (2).

Note; We define Ind, () = 0.

prRooF By Theorem 10.29, (a) and (b) hold for all rational functions
without poles in Q; as we observed above, the general case therefore
follows from Theorem 13.9. As to (¢), Ind, (a) = O for every « in
the unbounded component of the complement of v* and if S? — Q
is connected, S? — Q lies in that component. This completes the

proof.

Part (3) shows under what conditions integration over one path can
be replaced by integration over another one, without changing the value
of the integral.
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If Q is convex, then §? — Q1is connected. Hence (a) is a generalization
of Theorem 10.14.

13.12 Definition A function f is said to be meromorphic in an open set 2
if there is a set 4 C Q such that

(@) A has no limit point mn Q.
b) fe HE — A).
(c) f has a pole at each point of 4.,

Note that the possibility 4 = & is not excluded. Thus every
fe H(Q) is meromorphic in £.

Note also that (a) implies that no compact subset of @ can contain
infinitely many points of A and that A is therefore at most countable.

We now state a general form of the residue theorem:

13.13 Theorem Suppose f is a meromorphic function in the plane open
set Q. Let A be the set of points in Q af which f has poles. If -y is any closed
path in @ — A such that Ind, () = O for every a € 82 — @, then

a) ey [ de = ¥ Res (f0) Ind, (@).
aed

PROOF Let B = {ae A: Ind, (¢) # 0}]. Every point of B lies in a
bounded component V of 82 — 4* such that V does not intersect
S2 — @, Hence B lies in the union of v* and these V’s; this union
is a compact subset of 2, and since 4 has no limit point in 2, we con-
clude that B is a finite set. The sum in (1), though formally infinite,
is therefore actually finite.

Letai, . . . ,a.bethepointsof B,let ¢y, . . . , ¢a be the principal
partsof fata;, . . . ,a,andputg=f— (o1 + - - © + ¢n). Then
g has removable singularitiesatay, . . . ,a, IfQ =90 — (4 — B),

Theorem 13.11(a) applies to the function ¢ and the open set Q.

Hence .[r g = 0. Since the only pole of ¢ is at ax, it follows that '

n

1 r - 1 7 -
S j_r flz) dz = k%l o _L ee(2) dz = »2='1 Res (¢r;ar) Indy (ab),

and since f and ¢, have the same residue at a; we obtain (1).

13.14 Homology and Homotopy We now give a brief discussion of the
topological concepts which are relevant to Cauchy’s theorem.

Two closed paths yo and v, in Q are said to be Q-homologous if they
satisfy condition (3) of Theorem 13.11; if  satisfies condition (1) of that
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theorem, we say that y is Q-homologous to 0. Intuitively, v, is Q-
homologous to v if 4 and ¥; wind around each point of 82 — Q thesame
number of times, and v is 2-homologous to 0 if ¥ does not wind around
any point of 82 — Q. It is clear that 2-homology is an equivalence rela-
tion in the set of all closed paths in 2.

The notion of homotopy (also an equivalence relation) formalizes the
notion of deforming one curve to another:

Suppose v, and v, are closed curves in a topological space X, both with
parameter interval I = [0,1]. We say that v, and v, are X-homotopic if
there is a continuous mapping of the unit square I? = I X I into X
such that

) R0, = yo(),  R(11) = (8, h(s0) = h(s,1),

for all se¢l and te1. Setting v.(t) = h(s,f), (1) gives what one calls
a one-parameter family of closed curves v, in X, which connects v, and ;.

If vo is X-homotopic to a constant mapping v, (i.e., if ¥§ consists of
just one point), we say that v, is null-homotopic in X. Intuitively, this
means that v, can be shrunk to a point within X.

The class of simply connected regions is defined in terms of homotopy,
as we shall see presently, and there are important relations between
homotopy and analytic continuation. As far as Cauchy’s theorem is
concerned, homology is of greater significance. Theorem 13.11 shows
this. The two concepts are related in the following manner.

13.15 Theorem Suppose vo and v, are closed paths in Q. If these paths
are Q-homotopic, they are also Q-homologous. If v, i3 null-homotopic 1n Q,
then v, ts also -homologous to 0.

proOF Clearly, it is enough to prove the first assertion. So assume
ve and vy, are Q-homotopic, with parameter interval [0,1], let h be a
mapping of I? into Q with the properties listed in 13.14(1), and let
{7.} be the corresponding one-parameter family of closed curves in
Qfor0<s<1.

There is now a minor difficulty, due to the fact that we have defined
the index only for closed paths, not for closed curves. We can circum-
vent this in two ways. One is to prove that if v, and v, are differ-
entiable, and if there is a eontinuous mapping h with the required
properties, then there is also a differentiable mapping A with these
properties, so that the resulting v, will actually be paths.

The other way is to define the index for all closed curves, in the
following way. Let I' be a closed curve, with parameter interval
[0,22}, say, and assume a ¢ I'*, T can be uniformly approximated on
[0,22] by trigonometric polynomials I'.. As soon as n and m are
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large enough, Theorem 10.35 can be applied to T', — o and ', — «
and it shows that Indr, (a) = Indr, (a). Define this common value
to be Indr (). It is easy to see that the result does not depend on
the particular choice of [T, }, and it is also easy to verify that Theorem
10.35 now holds for closed curves and not merely for closed paths.
We leave it to the reader to check the details.

In any case, the uniform continuity of our mapping & of I2 into @
now implies that Ind,, (a) is, for each a € 82 — Q, a continuous func-
tion of s on [0,1]. Every integer-valued continuous function is con-
stant on [0,1]. Hence v, and +; are Q-homologous.

13.16 Example The converse of Theorem 13.15 is false. To show this,
we shall construct a path -+, in a region Q so that v, 1s -homologous to 0
without being null-homotopic in €.

Let M be the center of a square with vertices A, B, C, and D; let P and
Q be interior points of the triangles AMD and BCM, respectively; and let
Q be the plane region whose complement consists of the points P and Q.
Let o be the piecewise linear path ADBCDACBA. That is to say, yo
consists of the interval {4 D], followed by [DB], ete. Since [AD] cancels
[DA] and [BC] cancels [CB] in every integral over v, we see that v, is
Q-homologous to the path v,;;: ACDBA. Since P and @ dre in the
unbounded component of the complement of v{, 1 is 2-homologous to 0,
and hence the same is true of y,. But 7, cannot be shrunk to a point
within Q. This should be clear from a picture of v, A formal proof
(using the tools of algebraic topology) would depend on properties of the
fundamental group of Q.

Simply Connected Regions

13.17 Definition A plane region 9 is said to be simply connected if every
closed curve in 2 is null-homotopic in Q. '
(A similar definition can of course be made in the class of all arcwise
connected topological spaces.)
Simply connected regions play a particularly important role in the
theory of holomorphic functions, for the following reason.

13.18 Theorem For a plane region 2, each of the following eight conditions
implies all the others.

(a) Q i3 homeomorphic lo the open unit disc U.

b) Q is simply connecled.

{c) S? — Q is connecled.

(@) Ind, («) = 0 for every closed path v in  and for every a € S* — Q.
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(e) For every f € H(Q) and every closed path v in 9,

ﬁf(z) dz = 0.

() To every f € H() there corresponds an F ¢ H(Q) such that F' = §,
(¢) If f e H(Q) and f has no zero in Q, there exists a g £ H(R) such that

f = exp (g).
(h) If f € H(Q) and f has no zero in Q, there exists a ¢ € H(Q) such that
f=e

The assertion of (g) is that f has a “holomorphic logarithm’’ g in Q; (k)
asserts that f has a “holomorphic square root” ¢ in 2; and (e) says that
the Cauchy theorem holds for every closed path in a simply connected
region.

PROOF (a) implies (). To say that £ is homeomorphic to U/ means
that there is a continuous one-to-one mapping ¢ of @ onto U whose
inverse Y1 is also continuous. If ¥ i1s a closed curve in @, with
parameter interval [0,1], put

1) k) =y Hw(v®) 0 <s<1L,0Zt< D).
Then k is a continuous mapping of the unit square into Q;
h(s,0) = h(s,1)

since v(0) = ¥(1); h(0,f) = y~1(0), a constant; and A(L,l) = ~¥(¥).
Thus © is simply connected.

(b) implies (¢). Assume (c) is false. Then there are disjoint open
sets ¥V and W in 82 whose union covers 82 — @ and such that both V
and W intersect S2 — Q. Let W be the one which contains «, and put

2) K=Vn(S8-Q).
Then K = &, and K is compact since V is compact and
V(S —0) = Vn(S:— Q.

There is a positive number » such that every closed square of edge
and vertical lines partition the plane into squares of edge 7, let A be
the union of those (finitely many!) closed grid squares which intersect
K, let B be one component of 4 (so Bn K # &), and let C be the
union of B and the bounded components of the complement of B (C
is obtained by filling the holes of B). The boundary of C consists of
finitely many intervals which join to a closed curve v in ¥V — K, such
that Ind, (@) = 1 for all a e Bn K. Since a¢Q, Theorem 13.15
shows that + is not null-homotopic in ©, so (b) fails.
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(c) implies (d) and (d) implies (¢). This is part of Theorem 13.11.
(e) implies (f). Assume (e) holds, fix zo £ 2, and put

®) F@) = [, JO&  en

where I'(z) is any path in @ from 2z, to 2. This defines a function F
in Q. For if I'1(2) is another path from z, to z (in @), then I' followed
by the opposite of T’y is a closed path in Q, the integral of f over this
closed path is 0, so (3) is not affected if I'(z) is replaced by I'i(z).
We now verify that F/ = f. Fix aeQ. There exists an r > 0 such
that D(a;r) C Q. For ze D{a;r) we can compute F(z) by integrating
f over a path I(a), followed by the interval {a,z]. Hence, for
ze D'(a;r),

F(z) — F(a) 1
Z2—a Tz — la,2]

) f(¢) dt,
and the continuity of f at @ now implies that F'(a) = f(e), as in the
proof of Theorem 10.14.

(f) implies (g). 1f f& H(Q) and f has no zero in &, then f'/f € H(Q),
and (f) implies that there exists a g € H(Q) so that ¢’ = f'/f. Wecan
add a constant to g, so that exp {g(z0)} = f(z0) for some 2o £ Q2. Our
choice of g shows that the derivative of fe—7 is 0 in Q, hence fe~7 is
constant (since Q is connected), and it follows that f = ee.

(g) implies (h). By (g),f = ¢?. Put ¢ = exp (49).

(&) implies (a). If © is the whole plane, then £ is homeomorphic to
U: map z to z2/(1 + |2|).

If @ is a proper subregion of the plane which satisfies (h), then
there actually exists a holomorphic homeomorphism of 2 onto U (a
conformal mapping). This assertion is the Riemann mapping the-
orem, which is the main objective of the next chapter. Hence the
proof of Theorem 13.18 will be complete as soon as the Riemann
mapping theorem is proved. (See the note following the statement
of Theorem 14.8.)

The fact that (g) holds in every simply connected region has the follow-

13
ing co

ngequence (wh\pk can also he nproved }\v quite n]pmnnfﬂrv meang):

LIRS p Quite Cleineil means;

13.19 Theorem If fe H(RQ), where @ is any open set in the plane, and if f
has no zero in Q, then log |f| is harmonic in Q.

PROOF To every disc D C Q@ there corresponds a function g &€ H(D)
such that f = ¢? in D. If u = Reg, then u is harmonic in D, and
[fl = e*. Thus log |f] is harmonic in every disc in @, and this gives
the desired conclusion.
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Exercises

1 Complete the details in the proof of Theorem 13.15.

2 Prove that every meromorphic function on S? is rational.

3 Suppose Q is a simply connected region, f € H(Q), f has no zero in
Q, and n is a positive integer. Prove that there exists a g ¢ H(Q)
such that g = f.

4 Let @ = {z2:1]2]| < 1and |2z — 1| > 1}, and suppose f &€ H(Q).

(a) Must there exist a sequence of polynomials P, such that P, — f
uniformly on compact subsets of Q?

(b) Must there exist such a sequence which converges
formly in Q7

(¢) Is the answer to (b) changed if we require more of f, namely,
that f be holomorphic in some open set which contains the
closure of Q?

5 Is there a sequence of polynomials P, such that P,(0) =1 for
n=1 2,3 ..., but P,(2) =0 for every 2 # 0, as n— «?

6 Is there a sequence of polynomials P, such that

1 ifImz>0,

lim P,.(2) = 0 if z is real,
e | —1 if Im 2z < 0?
7 Forn=1,23 ...,let A, bea closed disc in U, and let L, be

an arc (a homeomorphic image of [0,1]) in U — A, which intersects
every radius of U. There are polynomials P, which are very
small on A, and more or less arbiirary on L,. Show that {A,},
{L.}, and {P,} can be so chosen that the series f = ZP, defines a
function f € H(U) which has no radial limit at any point of 7. In
other words, for no real 6 does linll f(re’?) exist.

8 Here is another construction of such a function. Let {n:} be a
sequence of integers such that ny; > 1 and ngyy > 2kng.  Define

h(z) = ¥ 5kem,
k=1

Prove that the series converges if |2| < 1 and prove that there is a
constant ¢ > Osuchthat [k(z)| > ¢- 5mforallzwith [z| = 1 — (1/n.).
[Hint: For such 2z the mth term in the series defining h(z) is much
larger than the sum of all the others.]

Hence k& has no finite radial limits,

Prove also that A must have infinitely many zeros in U. (Com-
pare with Exercise 4, Chap. 12.) In fact, prove that to every
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complex number « there correspond infinitely many ze U at
which h(z) = a.

9 Show that in Theorem 13.9 we need not assume that A intersects
each component of 82 — Q. It is enough to assume that the
closure of A intersects each component of 8% — Q.

10 Prove the following general form of Rouché’s theorem: Let @ be
the interior of a compact set K in the plane. Suppose f and g are
eontinuous on K and holomorphic in Q, and [f(2) — ¢(2)| < |f(2)]
for all ze K — Q. Then f and g have the same number of zeros
in Q.

11 Let A be the annulus {z: r; < l2| < r;}, where r, and r; are given
positive numbers.

(a) Show that the Cauchy formula

f@) = 21 (f /1:,) {f(—r)z

is valid under the following conditions: f € H(A),

rnte<l|zg <ri—e
and

vi{t) = (r1 + €)e*, ya(t) = (ry — €)et (0 <t<2n).

(b) Show by means of (a) that every fe H(A) can be decom-
posed into a sum f = f; + f., where fie H(D(;r))) and
f2 e HD(Q;rz)); the decomposition is unique if we require
that fi(<) = 0.

(¢) Use this decomposition to associate with each f & H(A) its so-
called “Laurent series’’

2, o

which converges to fin A. Show that there is only one such
series for each f. Show that it converges to f uniformly on

compact subsets of A.

(d) If fe H(A) and fis bounded in 4, show that the components
f1and f; are also bounded. Show tha.t f then has radial himits
f* at almost all points of the boundary of A4 and that the
Cauchy formula (e) holds with ¢ = 0 and with f* in place of
f in the integrand.

(¢) How much of the foregoing can you extend to the case r; = 0
(or r» = @, or both)?

() How much of the foregoing can you extend to regions bounded
by finitely many (more than two) circles?
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12

13

14

15

16

17

It 1s required to expand the function

1 1
1—zz+3—z

o
in a series of the form X c,2™

How many such expansions are there? In which region is each
of them valid? Find the coefficients ¢, explicitly for each of these
expansions. ' :
Suppose Q is a horizontal strip, determined by the inequalities
a <y <b say. Suppose fe H(), and f(z) = f(z + 1) for all
ze Q. Prove that f has a Fourier expansion in Q,

©
f(z) —_— E cﬂ62winz’
—w®

which converges uniformly in {z:a + e < y < b — ¢}, for every
e > 0. Hint: The map z-- e** converts [ to a function in an
annulus.

Find integral formulas by means of which the coefficients ¢, can
be computed from f.
Suppose foe HQ) (n = 1,2,3, . . .),fisacomplex function in ©,

and f(z) = hm f.(z) for every z£ Q. Prove that Q@ has a dense
>

open subset V on which f is holomorphic. Hint: Put ¢ = sup |fa].
Use Baire’s theorem to prove that every dise in © contains a dise
on which ¢ is bounded. Apply Exercise 17, Chap. 10. (In gen-
eral, V = Q. Compare Exercises 5 and 6.)
Prove Theorem 13.4 by direct computation (without intervention
of a circle).
Suppose @ is a region, f € H(Q), and f # 0. Prove that f has a
holomorphic logarithm in @ if and only if f has holomorphic nth
roots in @ for every positive integer n.
Suppose f&e H(Q), zo£ 2, m is a positive integer, and f has a zero
of order m at z,. Prove the existence of a neighborhood V of 2
and of a function g ¢ H(V) which maps V in a one-to-one fashion
onto D(0Q:r), for some r > 0, and such that f(z) = [g(2)]™ for all
zeV.

Observe that this is a more precise statement than that fur-
nished by Theorem 10.32. Namely, f = hog, where g is one-to-
one in V, and h{w) = w™
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Conformal Mapping

Preservation of Angles

14.1 Definition Each complex number z # 0 determines a direction from
the origin, defined by the point

(1) Ald = o1
on the unit circle.

Suppose f is a mapping of a region Q into the plane, z, £ Q, and 2z, has a
deleted neighborhood D’(zo;r) C @ in which f(z) == f(z). We say that
f preserves angles at z, if

2 lirré e PA[f(z0 + 1) — f(z0)] r>0)

exists and ¢s independent of 6.

In less precise language, the requirement is that for any two rays L’
and L", starting at z,, the angle which their images f(L’) and f(L"") make
at f(zo) is the same as that made by L' and L”, in size as well as in
orientation.

The property of preserving angles at each point of a region is character-
istic of holomorphic functions whose derivative has no zero in that region,
This is a corollary of Theorem 14.2 and is the reason for calling holomorphic
functions with nonvanishing derivative conformal mappings.

14.2 Theorem Let f map a region @ into the plane. If f'(z0) exists at
some zo € 2 and f'(z0) # O, then f preserves angles at z,. Conversely, if the
differential of f exists and is different from 0 al zo, and if f preserves angles al
2o, then f'(z0) exists and s different from 0.

Here f'(z¢) = lim [f(z) — f(20)]/(z — 20), as usual. The differential of
f at zp is a linear transformation L of R? into R? such that, writing
&g = (xoryﬂ):

(1 ] f(xo + z, yo + y) = f(zo,y0) + L(zy) + (22 + yDHh(zy),
268
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where n(z,y) — 0 as z — 0 and y — 0, as in Definition 8.22.

proor Take 2z, = f(zg) = 0, for simplicity. If f/(0) = a = 0, then
it is immediate that ~

@ Al = TG 60,
s0 f preserves angles at 0. Conversely, if the differential of f exists at
0 and is different from @, then (1) can be rewritten in the form

(3) f&) = az + BE + lz|n(2),

where 7(z) — 0 as z— 0, and « and g8 are complex numbers, not both
0. If f also preserves angles at 0, then

— oy — ot e
(4) rl-{—vlrole A[f(re )] - la + Be....g.wl
exists and is independent of 8. We may exclude those # for which
the denominator in (4) is 0; there are at most two such # in [0,2x).
For all other 8, we conclude that « 4 Be~%* lies on a fixed ray
through 0, and this is possible only when 8 = 0. Hence a # (, and
(3) implies that f/(0) = .

anﬂ Nﬂ ]’\n]n nrn}nn FI'I“R"‘ 1NN ﬂ?ﬂﬂﬂ'l"l?ﬂ
FA RV AN NS ARCLSANR AN pralihs TRV WL ANNSUL Y L

derivative is 0. We omit the easy proof of this. However, the dlffer
ential of a transformation may be 0 a a point where angles are preserved.
Example: f(z) = |z|z, 20 = 0.

Linear Fractional Transformations

14.3 1If a, b, ¢, and d are complex numbers such that ad — bc # 0, the
mapping

az+ b
0 27 e +d

is called a linear fractional transformation. It is convenient to regard (1)
as a mapping of the sphere S2 into S2, with the obvious conventions con-
cerning the point «. For instance, —d/c maps to «© and « maps to
a/c, i ¢ # 0. Itisthen easy toseethat each linear fractional transforma-
tion is a one-to-one mapping of S% onto S%. Furthermore, each is
obtained by a superposition of transformations of the following types:

{a) Translations: z— z + b.

(b) Rotations: z— az, |a| = 1.
(c) Homotheties: z— rz, r > 0.
(d) Inversion: z — 1/z,
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If ¢ = 0 in (1), this is obvious. If ¢ 0, it follows from the identity

ee+b _a A _be—ad
w¥d cTa¥fd T

(2)

The first three types evidently carry lines to lines and circles to circles.
This is not true of (d). But if we let ¥ be the family consisting of all
straight lines and all circles, then & ds preserved by (d), and hence we
have the important result that & ¢s preserved by every linear fractional
transformation. (It may be noted that when & is regarded as a family of
subsets of 82, then § consists of all circles on S2% via the stereographic
projection 13.1(1); we shall not use this property of § and omit its proof.)

The proof that ¥ is preserved by inversion is quite easy. Elementary
analytic geometry shows that every member of & is the locus of an equation

(3) ozZ+Bz+ P2+ y=0

where a and y are real constants and g8 is a complex constant, provided
that 88 > ay. If a # 0, (3) defines a circle; a = 0 gives the straight
lines. Replacement of z by 1/z transforms (3) into

(4) a+ Bz + Bz + y22 = 0,

which is an equation of the same type.

4 + nlavw N AT, e
S‘n}ppsse &y b, aud  are dlSumﬂu CoOmpieX numoers. Ywe& COonsy

linear fractional transformation ¢ which maps the ordered triple {a,b
into {0,1, »©}, namely,

uﬁ-
U

.}

_b—-09k—-a
(5) ¢(z) e (b _ a)(z _ C)

There is only one such ¢. For if ¢(a) = 0, we must have z — @ in the
numerator; if ¢(¢) = «, we must have 2 — ¢ in the denominator; and if
o) = 1, weareled to (5). If aorborcis =, formulas analogous to (5)
can easily be written down. If we follow (5) by the inverse of a trans-
formation of the same type, we obtain the following result:

For any two ordered triples {a,b,c} and {a',b',c’} in S? there is one and
only one linear fractional transformation which maps a to o', b to b/, and

r
cloc.

(It is of course assumed that a £ b, a # ¢, and b # ¢, and likewise for
a, b, and ¢'.)

We conclude from this that every cirele can be mapped onto every
circle by a linear fractional transformation. Of more interest is the fact
that every circle can be mapped onto every straight line (if = is regarded
as part of the line) and hence that every open disc can be conformally
mapped onto every open half plane.
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Let us discuss one such mapping more explicitly, namely,

142
(6) w(z) = T—
This ¢ maps {—1,0,1} to {0,1,0}; the segment (—1,1) maps onto the
positive real axis, The unit circle 7' passes through —1 and 1; hence
¢(T) is a straight line through ¢(—1) = 0, Since T makes a right angle
with the real axis at —1, ¢(7") makes a right angle with the real axis at 0.
Thus (T) is the imaginary axis. Since ¢(0) = 1, it follows that ¢ is a
conformal one-to-one mapping of the open unit disc onto the open right half

plone.
The role of linear fractional transfermations in the theory of conformal
mapping is also well illustrated by Theorem 12.6.

14.4 Linear fractional transformations make it possible to transfer
theorems concerning the behavior of holomorphic functions near straight
lines to situations where circular arcs occur instead. It will be enough
to illustrate the method with an informal discussion of the reflection
principle.

Suppose £ is a region in U, bounded in part by an arc L on the unit
cirele, and f is continuous on £, holomorphic in @, and real on L. The
function

—1
0y ¥ = - + ;
maps the upper half plane onto U. 1If g = foy, Theorem 11.17 gives
us a holomorphic extension G of g, and then F = G oy~ ! gives a holo-
morphic extension F of f which satisfies the relation

(2 F(z*) = F(3),
where 2* = 1/z.

The last assertion follows from a property of ¢: If w = ¢(z) and
w; = ¢(2), then w; = w*, as is easily verified by computation.

Exercises 2 to 5 furnish other applications of this technique.

Normal Families

The Riemann mapping theorem will be proved by exhibiting the map-
ping funetion as the solution of a certain extremum problem. The
existence of this solution depends on a very useful compaciness property
of certain families of holomorphic functions which we now formulate,

14.5 Definition Suppose § C H(Q), for some region 2. We call ¥ a
normal family if every sequence of members of F contains a subsequence
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which converges uniformly on ecompaet subsets of 2. The limit funetion
is not required to belong to &.

(Sometimes a wider definition is adopted, by merely requiring that
every sequence in § either converges or tends to <, uniformly on compact
subsets of €. This is well adapted for dealing with meromorphic
functions.)

14,6 Theorem Suppose § C H(Q) and F is uniformly bounded on each
compact subset of the region Q. Then F is a normal family.

PRooF The hypothesis means that to each compact K C Q there
corresponds a number M(K) < = such that [f(z)| < M(K) for all
feF and all ze K.

Let {K,} be a sequence of compact sets whose union is 2, such that
K, lies in the interior of K,,,; such a sequence was constructed in
Theorem 13.3. Then there exist positive numbers §, such that

(1) D(2,28,) C K1 (ze K,).

Consider two points 2’ and 2" in K,, such that [/ — 2| < &,
let ¥ be the positively oriented circle with center at 2’ and radius
28,, and estimate |f(2") — f(z’")| by the Cauchy formula. Since

1 1 2 =3

F—7 -2 G- -2

we have
’ "o_ 2 — 2 &)
(2) f(z) '_f(z ) = ot L (g. — Z')(g' -~ zu)

and since |[{ — 2/| = 28, and |¢ — 2’| > &, for all {ey*, (2) gives
the inequality

d¢,

@ ) = fa)) < MEed e
valid for all feF and all 2 and 2" € K, provided that |2’ — 2"'| < §,.
This was the crucial step in the proof: We have proved, for each
K., that the restrictions of the members of & to K, form an equicon-
t’iﬂ%ﬂ% fﬂma'ly Thic maasne hy dafinitinn +thet #+n aaah - ~ N
IIVVE L. A LALS AMAVGHLLD, WY UGHILLILIULL, WAV W Gaull & S U
there corresponds a & > 0 such that |f(z) — f(¢"')| < efor all fe &
and all 2’ and 2" € K, for which |2/ — 2| < 5. A glance at (3) shows

that this requirement is satisfied by
... S
e+ M (Kn+1)

Now let {fa} be asequence in §. Choose a countable dense subset
{2:} of Q. Since {fn(2)} is bounded at each 2¢Q, {f»} has a sub-

4) )
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sequence, say {fm1}, which converges at z;. From {fm.} we can
extract a subsequence, say {f..}, which also converges at z,. Pro-
ceed in this manner. We obtain sequences {f..;} which converge at
z; and such that {f..} is a subsequence of {f.:_:}. The “diagonal
sequence’”’ {f.»} then converges at every one of our points z,.

We claim that {fn..} actually converges uniformly on each K,
(and hence on each compact subset K of ).

Fix K,, fix ¢ > 0, and choose ¢ as in (4). There are points

21, . . ., 2pof our set {z;] such that K, lies in the union of the discs
D(z;;8),7 =1, . . ., p, and there is an integer N such that
(5) {fer(2) = foo(2d)] < e

ifr>N,s> N,and1 <7< p.
To every ze K, there corresponds a 2; so that 1 < ¢ < p and
|z — 2] < 8. Then |f..(2) — f...(2)| is not larger than

(6) Ifr.f(z) - fr.r(zi)l + Ifr.r(zi) — Jo.s (@) + [fos(2s) — fn(z)]

The first and third differences in (6) are less than ¢, by our choice
of §; the second term is less than eif r > N and s > N. Hence

(7) Ifr,r(z) - fs.a(z)l < 36

for every z2€ K,, if r > N and s > N.
This completes the proof.

The Riemann Mapping Theorem

14,7 Conformal Equivalence We call two regions Q; and €, conformally
equivalent if there exists a ¢ ¢ H(2,) such that ¢ is one-to-one in Q, and
such that o(Q;) = @, i.e., if there exists a conformal one-to-one mapping
of Q; onto Q,.  Under these conditions, the inverse of ¢ is holomorphic in
2, (Theorem 10.34) and hence is a conformal mapping of 2, onto Q.

It follows that conformally equivalent regions are homeomorphie.
But there is a much more important relation between conformally equiva-
lent regions: If ¢ is as above, f — f e ¢ is a one-to-one mapping of H(Qy)
onto H(Q,) which preserves sums and products, i.e., which is a ring iso-
morphism of H(Q:) onto H{Q,). If Q; has a simple structure, problems
about H(Q,) can be transferred to problems in H(Q,), and the solutions
can be carried back to H(Q;) with the aid of the mapping function ¢.
The most important case of this is based on the Riemann mapping theo-
rem (where Q; is the unit dise U), which reduces the study of H(Q) to
the study of H(U), for any simply connected proper subregion of the
plane. Of course, for explicit solutions of problems, it may be necessary
to have rather precise information about the mapping function.
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14.8 Theorem Every simply connecled region Q in the plane (other than
the plane itself) is conformally equivalent lo the open unit disc U.

Note: The case of the plane clearly has to be excluded, by Liouville’s
theorem. Thus the plane is not conformally equivalent to U, although
the two regions are homeomorphie.

The only property of simply connected regions which will be used in
the proof is that every holomorphic function which has no zero in such a
region has a holomorphic square root there. This will furnish the con-
clusion “(h) implies (a)”’ in Theorem 13.18 and will thus complete the
proof of that theorem,

PROOF Suppose Q is a simply connected region in the plane and let
wo be a complex number, wy, ¥ Q. Let £ be the class of all ¢ € H(?)
which are one-to-one in € and which map 2 into U. We have to
prove that some ¢ € £ maps £ onto U.

We first prove that = 7s not empty. Since Q is simply connected,
there exists a ¢ € H(Q) so that ¢%(2) = 2z — woin Q.  If ¢(z)) = ¢(22),
then also ¢%(z)) = ¢2(z;), hence 2; = 2z,; thus ¢ is one-to-one. The
same argument shows that there are no two points z; and 2 in Q@ such
that ¢(z1) = —¢(z:). Since ¢ is an open mapping, ¢(Q) contains a
disc D(a;r), with 0 < r < |a|. The disc D(—a;r) therefore fails to
intersect ¢(2), and if we put ¢ = r/(¢ + a), we see that ¢ € Z.

The next step consists in showing that 7f ¢ € Z, #f ¢(Q) does not
cover all of U, and if 2, € Q, then there exists a ¥ ¢ Z with

Wi(zo)l > W' (20)l.
It will be convenient to use the functions ¢, defined by

Pa(2) = lz_— :z

For a e U, ¢, is a one-to-one mapping of U onto U, its inverse is
¢-a (Theorem 12.4).

Suppose ¢y ¢, ae U, and af$(). Then .oy €Z, and gao ¢
has no zero in Q; hence there exists a ¢ ¢ H(Q) such that g = ¢, ¢ ¢.
We see that g is one-to-one (as in the proof that £ = &), henceg € Z;
and if 1 = g0 g, where 8 = g(z,), it follows that ¢, € Z. With the
notation w? = s(w), we now have

‘I/= Pa080g = ¢_¢oso¢_ﬁo‘(/1_
Sinee ¢1(2o) = 0, the chain rule gives
¥ (z0) = F'(0)¢1(20),

where F' = ¢_,080¢p 5 We see that F(U) C U and that ¥ is not
one-to-one in U. Therefore |F'(0)] < 1, by the Schwarz lemma
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(see Sec. 12.5), so [¥'(z0)] < |¢¥1(20)|- [Note that ¢'(z,) # 0, since ¢
1s one-to-one in Q.]
Fix zo £ @, and put

n = sup {|[¥'(z0)}: ¥ € Z}.

The foregoing makes it clear that any heZ for which |h'(20)] = 9
will map @ onto U. Hence the proof will be completed as soon as
we prove the existence of such an A.

Since |¢(z)] < 1 for all ¢y € £ and 2z £ Q, Theorem 14.6 shows that
¥ is a normal family. The definition of 5 shows that there is a
sequence {¢.} in Z such that |¢,(z0)] — 5, and by the normality of =
we can extract a subsequence (again denoted by {y.}, for simplicity)
which converges, uniformly on compact subsets of @, to a limit
he H(Q). By Theorem 10.27, |h'(z0)| = n. Since T = &, n > 0,

so k is not constant. Since ¢.(Q) C U, forn =1, 2,3, ..., we
have A(Q) C U, but the open mapping theorem shows that actually
RQ) C U.

So all that remains to be shown is that A is one-to-one. Fix dis-
tinct points z; and z. £ 2; put @ = h(z1) and a, = Ya(21) for n = 1,
2,3, .. .;and let D be a closed circular disc in @ with center at 2.,
such that z: ¢ D and such that A — « has no zero on the boundary
of D. This is possible, since the zeros of A — a have no limit point
in . The functions ¢, — a, converge to & — «, uniformly on D;
they have no zero in D, since they are one-to-one and have a zero
at z;; it now follows from Rouché’s theorem that 2 — « has no zero
in D; in particular, h(zz) = h(z1).

Thus A ¢ £, and the proof is complete.

A more constructive proof is outlined in Exercise 26.

14.9 Remarks The preceding proof also shows that A(z,) = 0. For if
h(zo) = B = 0, then g0 he Z, and

W(Zo)i
1— g

It is interesting to observe that although A was obtained by maximizing
[¥'(20)| for ¢ € =, h also maximizes |f’(z0)| if f is allowed to range over the
class consisting of all holomorphic mappings of @ into U (not necessarily
one-to-one). For if f is such a function, then g = fo A=Y maps U into U,
hence |¢'(0)| < 1, with equality holding (by the Schwarz lemma) if and
only if g is a rotation, so the chain rule gives the following result:

If fe HQ), f(Q) C U, and 20 € Q, then |f'(20)| < |W' (20)|- Equality hold.
tf and only if f(z) = Nh(2), for some constant N\ with |\| = 1.

|(§0ﬂ e h)'(20)| = |¢§(B)h’(zo)l =

> |k (20)]-
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The Class §

14.10 Definition § is the class of all f ¢ H(U) which are one-to-one in U
and which satisfy

) f0) =0, f(0) =1
Thus every f € § has a power series expansion

2) fd=z+ Y azr (e U).

n=2

The class of all F such that 1/F € § will also be of interest; every such F
has a pole of order 1 at z = 0, with residue 1, and is holomorphic in
U - {0}. Hence

(3) F@) =

[ SR

-+ Z 2" (ze U).

n=()

The class § is not closed under addition or multiplication, but has many
other interesting properties. We shall develop only a few of these in this
section. Theorem 14.15 will be used in the proof of Mergelyan’s theorem,
in Chap. 20.

14.11 Example The function

2 N
O = == L™
is a member of .

For if f(z) = f(w), then (z — w)(1 4+ 2w) = 0, and the second factor
isnot 0if 2| <1 and |w < 1.
We leave it to the reader to find f(U) for this f.

1412 Theorem (a) If fe8, le| =1, and g(2) = af(az), then ge§.
(b) If fe § there exists a g € § such that

(1 g*(z) = f(z8)  (ze ).
PROOF (a) is clear. To prove (b), write f(z) = z¢(2). Then
vt H(U), ¢(0) = 1, and ¢ has no zero in U, since f has no zero in
U — {0}. Hence there exists an k¢ H(U) with 2(0) = 1, A%(z) = ¢(2).
Put
(2) g(2) = zh(z®) (22 D).

Then g3(z) = 2?2k2(2?) = 2%p(2?) = f(2?), so that (1) holds. It is clear
that g(0) = Oand ¢’(0) == 1. We have to show that g is one-to-one,
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Suppose z and we U and g(2) = g(w). Since f is one-to-one, (1)
implies that 22 = w® 8o either z = w (which is what we want to
prove) or z = —w. In the latter case, (2) shows that g(2) = —g(w);
it follows that g(z) = g(w) = 0, and since g has no zero in U — {0}
we have 2 = w = (.

4

14.13 Theorem If1/F¢§ and

M F@) =3 + ) e o)
then
@)  nlan? < 1.

nzml

This is usually called the area theorem, for reasons which will become
apparent in the proof.

PROOF The choice of «p is clearly irrelevant. So assume ap = 0.
Neither the hypothesis nor the conclusion is affected if we replace
F(z) by \NF(Az) (J]A| = 1). So we may assume that «; is real.

For 0 <r <1, put U, = {z: |zl <r}, Cr= {z: |zg] =7}, and
V., = {z:r < |eg] < 1}. Then F(U,) is a neighborhood of « (by the
open mapping theorem, applied to 1/F); and F(U,), F(C,), and F(V,)
are disjoint, since F is one-to-one. Write

(3) F@) = +az+e@) (el
F =u + v, and
@) A=t an B="—an

For z = re*®, we then obtain
(5) u=Acosf+ Reog and v= —RBsin 0 + Im ¢
Divide Eqgs. (5) by 4 and B, respectively, square, and add:

u? | p? 2 cos 6 Re ¢\? 2 sin 6 Im ¢\2
Z’é+§é=1+ A Re‘P+(A¢)_ B In1§9+ HB_)

By (3), ¢ has a zero of order at least 2 at the origin; and if we keep
account of (4), it follows that there exists an » > 0 such that, for all
sufficiently small r,

2 2
(6) =+ %2 <1+ mt (2= re®).
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This says that F(C,) 18 in the interior of the ellipse E, whose semi-

axes are A 4/1 + »® and B /1 + 7%, and which therefore bounds
an area

@ *4B@+w) =« (24 ar) (- ar) 0+ ) <F A+

Since F(C,) is in the interior of E,, we have E, C F(U,); hence
F(V,) is in the interior of E,, so the area of F(V,) is no larger than
(7). The Cauchy-Riemann equations show that the Jacobian of the

mapping (z,) — (w,v) is |F’|2. Theorem 8.26 therefore gives the
following result:

® S0+ [f |2
_ ﬁltdt LZ:

= 2r ‘[l 2+ 2 n?la,|%21) dt
T

L
1

=x{rt =14 nlaft - I}
1

If we divide (8) by = and then subtract r—2 from each side, we obtain

N
(9) Z nlasl3(l — ) <14 o

nm=]

for all sufficiently small r and for all positive integers N. Letr— 0
in (9), then let N — «. This gives (2).

Corollary Under the same hypothesis, |ai] < 1.

That this is in fact best possible is shown by F(z) = (1/2) + az,
|z} = 1, which is one-to-one in U.

14.14 Theorem Iffe§, and

f(z) =2z+ ia,.z",

n=2

then (a) |az] < 2, and (b) f(U) D DO;}).

The second assertion is that f(U) contains all w with |w| < 3.
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pPRoOF By Theorem 14.12, there exists a g £ § so that g2(z) = f(z?).
If @ = 1/g, then Theorem 14.13 applies to G, and this will give (a).

Since @) = 22(1 + @22 + « - ),
we have g(2) = 2(1 + }a.z® + - - ),
and hence G(z) = > (1 — fase? + + - ) =%..%‘-!z+ .

The Corollary to Theorem 14.13 now shows that |as| < 2.
To prove (b), suppose w ¢ f(U). Define
J‘/z\
h(Z) — J\&)

1 —f@)/w
Then k ¢ H(U), h is one-to-one in U, and

hz) = (2 + a2 + - - ')(l+~$+ - ')=z+(az+51)zz+ T

so that he §. Apply (g) to h: We have |a; + (1/w)| < 2, and since
las| < 2, we finally obtain |1/w| < 4. So |w| > } for every w ¢ f(U).
This completes the proof.

Example 14.11 shows that both (a) and (b) are best possible; the point
—3} is not in f(U) for this particular fe §.

14.15 Theorem Suppose 1/Fe§, wig F(U), and w.¢ F(U). Then
I’U)1 - 'w'zl S 4,

ProoF If f = 1/(F -~ w,), then fe §, hence f(U) DO D(0;}), so the
image of U under F - w; contains all w with |w| > 4. Since
ws — w1 is not in this image, we have jw, — wi| < 4.

Note that this too is best possible: If F(z) = z-! + 2, then F(U) does
not contain the points 2, —2. In fact, the complement of F(U) is pre-
cisely the interval {—2,2] on the real axis.

Continuity at the Boundary

Under certain conditions, every conformal mapping of a simply con-
nected region € onto U can be extended to a homeomorphism of its
closure & onto U. The nature of the boundary of Q plays a decisive
role here.

14.16 Definition A boundary point 8 of a simply connected plane region
Q will be called a simple boundary point of  if 8 has the following property:
To every sequence {a,} in Q such that a, — § as n— « there corre-
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sponds a curve v, with parameter interval [0,1], and a sequence {t.},
O0<th<tg< -, t,— 1, such that y(t») =0, (n =1, 2,83, .. )
and y() eQfor0 <t < 1.

In other words, there is a curve in @ which passes through the points
a, and which ends at 8.

14.17 Examples Since examples of simple boundary points are obvious,
let us Iook at some that are not simple.

If @ is U— {z: 0 <z <1}, then © is simply connected; and if
0 < 8 £ 1, B8is a boundary point of @ which is not simple.

To get a more complicated example, let 2, be the interior of the square
with vertices at the points 0, 1, 1 + ¢, and 7. Remove the intervals

1 1  n-1. 1 7 1
[%’ﬁ+ n i] and [2n+l+n 2n+1+z]
from £o. The resulting region Q is simply connected. If 0 £y £ 1,
then gy is a boundary point which is not simple.

14.18 Theorem Let Q be a bounded simply connected region in the plane,
and let-f be a conformal mapping of @ onte U.

(a) If Bis a simple boundary point of Q, then f has a continuous exten-
ston to Qu {8}, Iff is so extended, then |f(8)| =

(b) If B, and B; are distinct simple boundary points of @ and if f s
extended to QU {8} U {B:} as in (a), then F(B1) # f(Bs).

PROOF Let g be the inverse of f. Then g ¢ H(U), by Theorem 10.34,
g(U) = Q, g 1s one-to-one, and g ¢ H*, since Q is bounded.

Suppose (a) is false. Then there is a sequence {a,} in @ such that
ay —+ B, f(oz) = wi, flaany1) — we, and wy % wy. Choose vy as in
Definition 14.16, and put T({) = f(y{#)), for 0 <t <1 Put
K. = g(D(0;r), for 0 < r < 1. Then K, is a compact subset of Q.
Since v(t) — B ast— 1, there exists a t* < 1 (depending on r) such
that 7(t)¢K if t* <t <« 1. Thus |T@)| > r if t* < t <1, This

s

5ays that [+ (t)! —last— 1 Since T \bgﬂ) — Wi al nd 1Y 2ﬂ+1) — Ws,
we also have |w| = |w,| =

It now follows that one of the two open arcs J whose union is
T — ({w.} v {we}) has the property that every radius of U which
ends at a point of J intersects the range of T in an infinite set. Note
that g(T'(t)) = v(¢) for 0 < t < 1 and that g has radial limits a.e. on
T, since g e H*. Hence

(1 limlt g(re®) = B (a.e. on J),
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since g(I'(Y)) — Bast— 1. By Theorem 11.22, applied to g — 8, (1)
shows that g is constant. But g is one-to-one in U, and we have a
contradiction. Thus w; = w,; and {a) is proved.

Suppose (b) is false. If we multiply f by a suitable constant of
absolute value 1, we then have 8, # 8, but f(8,) = f(8s) = ~1.

Since 8, and B. are simple boundary points of Q, there are curves
vi with parameter interval [0,1] such that v:([0,1)) C @ forz = 1 and
2 and (1) = Bi. Put T'y(t) = f(vi(t)). Then T4([0,1)) C U, and
Ty(1) = Ty(1) = —1. Bince g(Tu«(#)) = 7:(f) on [0,1), there exists a
{* < 1 such that

@) 1g(T@®) — g2 > 4181 — Bo]  (F <t < D),

and there exists a_6 > 0 such that D(—1;5) intersects neither
I'1([0;¢%]) nor T2([0;t*]).

Put A(3) = UnD(—1;8). Suppose 0 < r < §; by (2) and the
choice of 8 there are points w; on the range of I';such that |1 4+ w| = r
and

3) lglw:) — glws)| > |81 — Bal.

But g(w,) — g(w:) is the integral of g’ over the circular arc from w,
to w; in U, with center at —1. Hence

@ He— Bl < [Tl (=14 reMrds 0 <7<,

where 7 = 9(r) is the largest number such that —1 + 7e?® ¢ U when-

ever |8] < 3. Thenn < #/2, and if we apply the Schwarz inequality
to (4) we find

(5) IEI—;—TBZE < [_"ﬂ lg'(—1 4 re)|2ds (0 < r < 3).

Integrate the right side of (5) with respect to r, over (0,5). The
result is the area of g(A(8)), which is finite, since g(4 (8)) C € and &
is bounded. But the integral of the left side of (5) over (0,3) is =,
unless 8; = Bs.

This completes the proof of (b).

14.19 Theorem If Q is a bounded simply connected region in the plane and
if every boundary poini of Q is simple, then every conformal mapping of O
onto U extends to a homeomorphism of & onto U.

PROOF Suppose f& H(Q), f(Q) = U, and f is one-to-one. By The-
orem 14,18 we can extend f to a mapping of & into U such that
f(a.) — f(z) whenever {a,} is a sequence in @ which converges to z,
If {2.} is a sequence in & which converges to z, there exist points
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an € © such that o, — 2.] < 1/n and {f(an) — f(2.)| <1/n. Thus
a, — 2, hence f(a,) — f(2), and this shows that f(z,) — f(2).

We have now proved that our extension of f is continuous on .
Also, U C f(§) C U. The compactness of { implies that f(Q) is
compact. Hence /(&) = U.

Theorem 14.18(b) shows that f is one-to-one on ©. Since every
continuous one-to-one mapping of a compact set has a continuous
inverse ([26], Theorem 4.17), the proof is complete.

14.20 Remarks

(@)

®

(©)

(@)

The preceding theorem has a purely topological corollary: If every
boundary point of a bounded simply connecied plane region Q 7s
simple, then the boundary of Q 1is a Jordan curve, and & is homeo-
morphic to U.

(A Jordan curve is, by definition, 8 homeomorphic image of the
unit circle.)

The converse is true, but we shall not prove it: If the boundary
of € is a Jordan curve, then every boundary point of Q is simple.
Suppose f is as in Theorem 14.19, g, b, and ¢ are distinct boundary
points of ©, and A, B, and C are distinct points of 7. There is a
linear fractional transformation ¢ which maps the triple {f(a),
fb),f(e)} to {A,B,C}; suppose the orientation of {4,B,C} agrees
with that of {f(a),f(b),f(c)}; then ¢(U) = U, and the function
g = ¢ of is a homeomorphism of & onto U which is holomorphic
in @ and which maps {a,b,c} to prescribed values {4,B,C}. It
follows from Sec. 14.3 that g is uniquely determined by these
requirements.

Theorem 14.19, as well as the above remark (b), extends without
difficulty to simply connected regions Q in the Riemann sphere
S2, all of whose boundary points are simple, provided that S2 — @
has a nonempty interior, for then a linear fractional transforma-
tion brings us back to the ease in which Q is a bounded region in
the plane. Likewise, U can be replaced, for instance, by a half
plane.

More generally, if f, and f; map @, and Q3 onto U, as in Theorem
14.19, then f = f,' ¢ f; is a homeomorphism of &; onto &, which
is holomorphic in ;.

Conformal Mapping of an Annulus

14.21 It is a consequence of the Riemann mapping theorem that any two
simply connected proper subregions of the plane are conformally equiv-
alent, since each of them is conformally equivalent to the unit dise. This
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is a very special property of simply connected regions. One may ask
whether it extends to the next simplest situation, i.e., whether any two
annuli are conformally equivalent. The answer is negative.

For0 <r < R, let

1) A(r,R) = {z: r < |z] < R}

be the annulus with inner radius  and outer radius R. If A > 0, the
mapping z — Az maps A(r,R) onto A(\rAR). Hence A(r,R) and A(r,R))
are conformally equivalent if R/r = R,/r1.. The surprising fact is that

this sufficient condition is also necessary ; thus among the annuli there is a
different conformal type associated with each real number greater than 1.

14.22 Theorem A(r,R1) and A(ry,R3) are conformally equivalent if and
only ’L.f Rl/?'], = Rz/'fﬁ.

PROOF Assume r; = r; = 1 without loss of generality, put
A, = A(L,Ry),

A, = A(1,R,), and assume there exists an f € H(4,) so that f is one-
to-one and f{A:) = A,. Theneither|f(z)] > laslzl— 1or{f(z)| - R:
as [z| — 1. In the latter case, replace f by R:/f. So we can assume
that [f(2)] — 1 as |¢{—> 1, and hence that |f(z)| — R, as |z| — R..

Put
_ log R,
« log R1
and
(1) u(z) = log |f(z)] — alog |¢| (z¢ Ay).

Since f has no zero in A4, log |f| is harmonie in A;. Our choice of
o shows that u(z) — 0 as [2] — 1 and as || —» R;. Hence u extends
to a continuous function on A,, which is 0 on the boundary of 4.
Since nonconstant harmonic functions have no local maxima or
minima, we conclude that « = 0. Thus

(2) f@] = lzl* (e Ay

Let D be any disc in 4,. There exists a g e H(D) such that
f=exp (g) in D. By (2),

3)

;am{Q?},zl (e D),

hence exp (g/a) = Az, where )\ is a constant and [A| = 1. Differ-
entiation of this last equation gives ¢’(2) = a/z, and hence

f'@) _
4) ﬁzT =

141
4
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Since D was arbitrary, (4) holds for all ze A,. Divide (4) by 2x:
and integrate over the positively oriented circle with center at 0 and

radius 4/R;. The left side of (4) gives +1, since f is a homeomorph-
ism of A,onto A;, The right side givesa. Hencea = 1,s0R; = R,.

Exercises

1 Find necessary and sufficient conditions which the complex num-
bers a, b, ¢, and d have to satisfy so that the linear fractional
transformation z — (az -+ b)/(cz -+ d) maps the upper half plane
onto itself.

2 In Theorem 11.17 the hypotheses were, in simplified form, that
@ C II*, L is on the real axis, and Im f(z) — 0 asz— L. TUse this
theorem to establish analogous reflection theorems under the fol-
lowing hypotheses:

(a) @ CII*, L on real axis, |f(z)] = 1 as z— L.
®QCULCT,|fte)) >1asz— L.
() QCULCT, Imf(2)>0asz— L.

In case (h\ if fhasa zero at a2 Q, show that its extension

a SRS J o mAD W AL BV R R g 3 LV -2 extens L ¥ £

a

pole at 1/& What are the analogues of this in cases (a) and (c)?

3 Suppose R is a rational function such that [R(z)| = 1 if || = 1.
Prove that R is of the form

@) = cm n A

ne=l

where ¢ is a constant, m is an integer, and a1, . . . , ax are com-
plex numbers such that a, # 0 and |a,| # 1. Note that each of
the above factors has absolute value 1 if [z| =
4 Obtain an analogous description of those rational functions which
are positive on 7.
Hint: Such a function must have the same number of zeros as
s of o

in LT‘ Cona;r‘nr
(z — a)(1 — &)
(¢ — /(1 — B2)

where o] < 1 and |8] < 1.
5 Suppose f is a trigonometric polynomial,

iO) = Y men,

k= —n
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10

11

12

i3

14

15

and f(6) > 0O for all real 4. Prove that there is a polynomial
P(z) =cot+cz+ - - 4+ caz” such that

5(6) = |P(e”)|* (8 real).

Hint: Apply Exercise 4 to the rational function Za.2*. Is the
result still valid if we assume f(8) > 0 instead of f(8) > 0?

Find the fixed points of the mappings ¢, (Definition 12.3). Is
there a straight line which ¢, maps to itself?

Suppose Q is a region, f,e H(Q) forn =1,2,3, . . . , each f, is
one-to-one in @, and f, — f uniformly on compact subsets of Q.
Prove that f is either constant or one-to-onein . Show that both
cases can oceur.

Find all complex numbers & for which f, is one-to-one in U, where

Jale) = 1+ oz —I— oz?

Describe f.(U) for all these cases.

Find a homeomorphism of U/ onto U which cannot be extended to
a continuous function on U.

If fe § (Definition 14.10) and 7 is a positive integer, prove that
there exists a g € § such that g*(z) = f(z*) forall ze U.

Suppose  is a convex region, fe H(Q), and Re f'(z) > 0 for all
ze Q. Prove that f is one-to-one in Q. Is the result changed if
the hypothesis is weakened to Re f'(z) > 0? (Exclude the trivial
case f = constant.) Show by an example that “convex’ cannot
be replaced by “simply connected.”

Suppose Q is a simply connected region, z,£ @, and f and g are
one-to-one conformal mappings of @ onto U which carry 2, to 0.
What relation exists between f and g? Answer the same question
if f(20) = g(20) = o, for some a & U.

Suppose @ = {z: -1 < Rez < 1}. Find an explicit formula for
the one-to-one conformal mapping f of Qonto U for which f(0) = 0
and f'(0) > 0. Compute f'(0).

Note that the inverse of the function constructed in Exercise 13
has its real part bounded in U, whereas its imaginary part is
unbounded. Show that this implies the existence of a continuous
real function % on U which is harmonic in U and whose harmonie
conjugate v is unbounded in U, [» is the function which makes
% + v holomorphic in U; we can determine v uniquely by the
requirement #(0) = 0.]

Let & be the class of all f€ H(U) such that Re f > 0 and f(0) =
Show that ¥ is a normal family. Can the condition “f(0) = 1”
be omitted? Can it be replaced by “|f(0)| < 17°?
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Let & be the class of all f ¢ H(U) for which

[/ |f@)|2dzdy < 1.

Is this a normal family?

Suppose @ is a bounded region, aeQ, fe H®), f(Q) C Q, and

J(a) = a

(a) Put f, = fand f, = f o fa_y, compute f.(a), and conclude that
F@l<1.

(b) If f'(a) = 1, prove that f(z) = zforall ze Q. Hint: If

f&)=z2+calz — )™+ - - -,

_______ .. T Y Y

bunlpuw b.ll.e bUBlll(.,.lt"llb Ul \z - ﬂ} ll.l Bﬂe expﬂnﬂSlOﬁ f Z).
(¢) What are the possibilities for fif |{f'(a)| = 1 but f'(a) = 1?
Discuss all cases.

Suppose Q is a region, fo e H(Q) forn =1, 2 3, ..., fa—>7
uniformly on compact subsets of Q, and fis one-to-onein . Does
it follow that to each compact K C € there corresponds an integer
N(K) such that f, is one-to-one on K for all n > N(K)? Give
proof or counterexample.

Suppose f is a one-to-one conformal mapping of U onto a square
with center at 0, and f(0) = 0. Prove that f(iz) = if(z). If

fl2) = B 7" nrove that ¢, = () unlecs n — 1 15 a multinle of 4,

JA"S PeLr 14 P VEACH N v Bt i ] & ARINsAVARS

Generahze thls Replace the square by other simply connected
regions with rotational symmetry.

Prove the following analogue of Theorem 14.2: If f has a differ-
ential at z, and if

f@) — f(z0)

22— 20

hm

Fan g {1]

exists, then f’(zo) exists.

Suppose f(z2) = z 4+ (1/z). Describe the families of ellipses and
hyperbolas onto which f maps circles with center at 0 and rays
through 0,

Let @ be a bounded region whose boundary consists of two non-
intersecting circles. Prove that there is a one-to-one conformal
mapping of Qonto an annulus. (This is true for every region @ such
that S? — @ has exactly two components, each of which contains
more than one point, but this general situation is harder to handle.)
Complete the defails in the following proof of Theorem 14.22.
Suppose 1 < R; < R, and f is a one-to-one conformal mapping of
A(1,R,) onto A(1,R;). Define f; = f and fa = fofas. Then a
subsequence of {f,} converges uniformly on compact subsets of
A(1,R) to afunction g. Show that the range of g cannot contain
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24

25

26

any nonempty open set (by the three-circle theorem, for instance).
On the other hand, show that g cannot be constant on the circle
{z: 2|2 = R:}. Hence f cannot exist.
Here is yet another proof of Theorem 14.22. If f is as in 14.22,
repeated use of the reflection principle extends f to an entire func-
tion such that |f(2)| = 1 whenever 2| = 1. Thisimplies f(2) = a2z",
where |a] = 1 and n is an integer. Complete the details.
Modify the proof of the Riemann mapping theorem so that the
role of the square root is taken over by the logarithm.
Iteration of Step 2 in the proof of Theorem 14.8 leads to a proof
(due to Koebe) of the Riemann mapping theorem which is eon-
vvvvvvvvvvvvvvvv

normal families and so does not depend on the existence of some
unspecified subsequence. For the final step of the proof it is con-
venient to assume that Q@ has property (g) of Theorem 13.18.
Then any region conformally equivalent to @ will satisfy (g).
Recall also that (g) implies (h), trivially.

By Step 1 in Theorem 14.8 we may assume, without loss of gen-
erality, that 0e Q, Q C U,and @ = U. Put @ = @,. The proof

consists in the construction of regions Q,, Qy, @3, . . . and of func-
tions f1, f5, f3, . . . ,s0that f,(Q,-1) = Q,and so that the functions
Jaofa_1e - ofaof, converge to a conformal mapping of &
onto U.

Complete the details in the following outline.
(a) Suppose Q.. is coustructed, let r, be the largest number such
that D(0;r.) C Qu-1, let a, be a boundary point of 2,1 with
lan] = 74, choose B, 80 that 8,2 = —a,, and put

Fp=¢_q,c80¢.3,

(The notation is as in the proof of Theorem 14.8.) Show that
F, has a holomorphic inverse G, in Q,.,, and put fo» = A.G,,
where ), = [cl/cand ¢ = G, (0). (Thisf, is the Koebe mapping
associated with Q,—;. Note that f, is an elementary function.
It involves only two linear fractional transformations and a
square root.)

() Compute that f:(0) = (I + r.)/2/r, > 1.

(¢) Putyo(z) = zand ¥.(2) = fal¥n_i1(2)). Show thaty, is a one-
to-one mapping of @ onto a region 2, C U, that {y,(0)} is
bounded, that

n

’ 147
10 = [ —/—=
v, (0) .1.12\/1'::

and that therefofe re— 1l asn— o,
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(d) Write ¢n(2) = zha(2), for z £ Q, show that |k, < |hayi], apply
Harnack’s theorem and Exercise 18 of Chap. 11 to {log A,} to
prove that {{.} converges uniformly on compact subsets of 2,
and show that lim ¥, is a one-to-one mapping of © onto U.

Prove that z (1 — ra)? < o, where {r,} is the sequence which

nm]
occurs in Exercise 26. Hint:

lﬂ=1+£1_':_\_{_;)_2.
2 Vr 247

Suppose that in Exercise 26 we choose a, ¢ U — Q,-. without
insisting that |a,| = r.. For example, insist only that

lea] < (1 4 1a)/2.

Will the resulting sequence {y.} still converge to the desired
mapping function?

Suppose @ = {x +y: —1 <y <1}, fe HE), |fl <1, and
f(x) > 0asz-— . Prove that

lim f(x 4 1y) = 0 (-1<y<l)

and that the passage to the limit is uniform if y is confined to an
interval [—o,a], where @« < 1. Hint: Consider the sequence {f.},
where f,(2) = z + n, in the square |z] < 1, |y| < 1.

What does this theorem tell about the behavior of a function
g € H* near a boundary point of U at which the radial limit of ¢
exists?
Let A be the set of all linear fractional transformations.

If {«,8,v,6} is an ordered quadruple of distinct complex num-
bers, its cross ratio is defined to be

- — 5)
wpig] = 2= B =)
Al = =B

If one of these numbers is «, the definition is modified in the

Aalerinng nrarr her nantinzizdar Mho caran aeeling 18 I!A:hl!:t‘]l:!ﬂ arith

WAV IUWUD WCI-J’ U.y uuuuuu.u.uy. 4 110 DA11IG u.yput;o A1 O VULLIVIWGD YW auil
Borvyors.

(e} If ¢(z) = |2,a,8,v], show that ¢ ¢ A and ¢ maps {ap,y} to

{0,1,}.

(b) Show that the equation [w,a,b,c] = [2,a,8,7] can be solved in
the form w = ¢(2); then ¢ & A maps {a,8,v} to {a,b,c}.
(c) If ¢ 2 A, show that

[e(a),0(8),¢(7),0(8)] = [,8,7,8].
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(@)
(¢)

)

31 (a)

®)

(c)

()

(e)

Show that [«,8,7,5] is real if and only if the four points lie on
the same circle or straight line.
Two points z and z* are said to be symmetric with respect to
the circle (or straight line) C through o, 8, and v if [2*,a,8,y] is
the complex conjugate of [z,a,8,y]. If C is the unit circle, find
a simple geometric relation between z and z*. Do the same
if C is a straight line.
Suppose z and 2* are symmetric with respect to C. Show that
¢(2) and ¢(2*) are symmetric with respect to ¢(C), for every
& A
Show that A (see Exercise 30) is a group, with ecomposition as
group operation. That is, if peA and ¢ ¢ A, show that
¢ ¢ ¢ A and that the inverse ¢! of ¢isin A. Show that A is
not commutative.
Show that each member of A (other than the identity map-
ping) has either one or two fixed points on S2. [A fixed point
of ¢ is a point & such that ¢(a) = a.]
Call two mappings ¢ and ¢; € A conjugate if there existsay e A
such that ¢; = ¢y legeoy. Prove that every ¢ £ A with a
unique fixed point is conjugate to the mapping z— 2z + L.
Prove that every ¢ £ A with two distinct fixed points is conju-
gate to the mapping z — az, where a is a complex number; to
what extent is o determined by ¢?
Let a be a complex number. Show that to every ¢ € A which
has a for its unique fixed point there corresponds a £ such that
1 1

ga(z)—a=z-—a+ﬁ'

Let G, be the set of all these ¢, plus the identity transforma-
tion. Prove that G, is a subgroup of A and that G, is iso-
morphic to the additive group of all complex numbers.

Let o and B be distinet complex numbers, and let G.s be the
set of all ¢ £ A which have a and 8 as fixed points. Show that
every ¢ €. g is given by

tafﬂ\ — W A — Y
& [ #4

Pre) =«

@) —8 T z—F§

where v is a complex number. Show that G4 is a subgroup of
A which is isomorphic to the multiplicative group of all non-
zero complex numbers.

If ¢ is as in (d) or (¢), for which circles C is it true that
¢(C) = C? The answer should be in terms of the parameters
a, 8, and .
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Zeros of

Holomorphie Funections

Infinite Products

15.1 8o far we have met only one result concerning the zero set Z(f) of
a nonconstant holomorphic function f in a region Q, namely, Z(f) has no
limit point in ©. We shall see presently that this is all that can be said
about Z(f), if no other conditions are imposed on f, because of the the-
orem of Weierstrass (Theorem 15.11) which asserts that every 4 C @
without limit point in Qis Z(f) forsome fe H(Q). If A = {a,}, a natural
way to construct such an f is to choose functions f, € H{() so that f, has

only one zero, at a., and to consider the limit of the products

po=Jife S

asn — . One has to arrange it so that the sequence {p,} converges to
some f ¢ H(Q) and so that the limit function f is not 0 except at the pre-
seribed points «,. It is therefore advisable to begin by studying some
general properties of infinite produets.

15.2 Definition Suppose {u,} is a sequence of complex numbers,

(1) Pn=(14+ )+ u) - -+ 1+ ua),
and p = lim p, exists. Then we write
(2) P= l_l (1 + un)-

n=1

The p, are the partial products of the infinite product (2). We shall say
that the infinite product (2) converges if the sequence {p.} converges.
In the study of infinite series Za, it is of significance whether the a,

approach 0 rapidly. Analogously, in the study of infinite products it is
290
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of interest whether the factors are or are not close to 1. This accounts
for the above notation: 1 4 u, is close to 1 if u, is close to 0.

15.3 Lemma [f uy, . . . , uy are complex numbers, and if
N N

® pv =[] Q4w ph =11 @+ D,
n=1 n=1

then

(2) px < exp (Jud + - - - + |ux))

and

3) pw = 1| < p§ ~ 1.

PROOF For z > 0, the inequality 1 4+ = < ¢* is an immediate con-
sequence of the expansion of e¢* in powers of z. Replace = by
luil, . . ., lux| and multiply the resulting inequalities. This gives
(2). For N =1, (3) is trivial. The general case follows by induc-
tion: Fork=1,...,N — 1,

Pryr — 1 = pe(1 + seq) — 1 = (e — DA + uzyr) + Uk+1y
so that if (3) holds with % in place of N, then also

* L

<« (¥ _ 1N las. IV L lay | — ok — 1
= \Vx AINE T Wkl T YRl T Peyd X

L — 1l

Prt1 — 1]
15.4 Theorem Suppose {u.} s a sequence of bounded complex functions on
a set S, such that Z|u.(s)| converges uniformly on 8. Then the product

(1) f&) =TI (1 + uals))
n=1
converges uniformly on S, and f(so) = 0 at some sp e 8 if and only of
uq(8) = —1 for some n.
Furthermore, if {nimgng, . . .} 1s any permutation of {1,23, . . .},
then we also have

(2) ) = [I 0+ uals)  (s€8).
k=1
PROOF The hypothesis implies that Z[u,(s)] is bounded on 8, and if
px~ denotes the Nth partial product of (1), we conclude from Lemma
15.3 that there is a constant C < o such that |px(s)] < C forall N
and all s.
Choose ¢, 0 < ¢ < 4. There exists an N, such that

o

3) E [un(8)| < e (se 8).

n=Np
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Let {ni,ne,ns, . . .} beapermutationof {1,2,3, . . .}. IfN > N,,
if M is so large that

(4) {1,2, . . . ,N} Cinyns, . . . nu},
and if ¢ga(s) denotes the Mth partial product of (2), then
5) gy — PN = Dn {H (14 uay) — 1}.

The n, which occur in (5) are all distinet and are larger than N,.
Therefore (3) and Lemma 15.3 show that

(6) lgse — pxl < lpw|(ec — 1) < 2lpxle < 2Ce.

Ifne=k((k=1,2 3,...), then gy = pn, and (6) shows that
{pn} converges uniformly to a limit function f.  Also, (6) shows that

(M) lpu — px| < 2ipwle (M > No),
so that |px| > (1 — 2¢)|pw,|. Hence
(8) @) = (1 — 29[pw,(s)|  (se8),

which shows that f(s) = 0 if and only if py,(s) = 0.
Finally, (6) also shows that {qux} converges to the same limit as

{pn}.
15.5 Theorem Suppose0 < u, < 1. Then

ﬂ(l—u“)>0 if and only if Zun< ©,
n=1

n=l

PROOF Ifpy =1 —u1) * - (1 —un),thenp: 2 p22 - - ,pv >0,
80 p = lim py exists. If Zu, < «, Theorem 15.4 implies p > 0.
On the other hand,
N
p<pv=[[Q~u) <expl—wn—u— - —un}
1

and the last expression tends to 0 as N — o, if Su, = =,
We shall frequently use the following consequence of Theorem 15.4:
15.6 Theorem Supposef. e H(Q)forn = 1,2,3, . . . ,nofaisidentically

0 in any component of Q, and

(1) Z ll —fu(Z)l

n=l
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converges uniformly on compact subsets of Q. Then the product

2) 1) = [] f(2)

n=1

converges uniformly on compact subseis of Q. Hence f € H(S).
Furthermore, we have

3) m(fz) = Zlm(fn;z) (z£9),

n=

where m{f;z) is defined to be the multiplicity of the zero of fat z. [If f(2) # 0,
then m(f;z) = 0.]

prooF The first part follows immediately from Theorem 15.4. For
the second part, observe that each z&Q has a neighborhood V in
which at most finitely many of the f, have a zero, by (1). Take these
factors first. The product of the remaining ones has no zero in V, by
Theorem 15.4, and this gives (3). Incidentally, we see also that at
most finitely many terms in the series (3) can be positive for any
given z € Q.

The Weierstrass Factorization Theorem

15‘7 Deﬁnition Put En(z) 3 1 —-— z’ and for p —_ 1’ 2’ 3’ e e
22 zp
E,(2) = (1 — 2) exp [z +ot o +;]

These functions, introduced by Weierstrass, are sometimes called ele-
mentary factors. Their only zero is at z = 1. Their utility depends on
thefact that they are close to 1if |2| < 1 and pislarge, although E (1) = 0.

158 Lemma For|z| <landp=0,1,2, ...,
1 — Eyp(2)| < [2]7*.

prooF For p = 0, this is obvious. For p > 1, direct computation

ahowe that
LAV YY b WILRMNWY

—Eﬁ(z)=z"exr>|z+;—2+ e +-’-;f -

So — E/, has a zero of order p at 2 = 0, and the expansion of —E, in
powers of z has nonnegative real coefficients. Since

1= By(e) = — [, Esw) du,
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1 — E, has a zero of order p + 1 at z = 0, and if

oe) = =20,

then ¢(2) = Za.z®, with all a, > 0. Hence [¢(2)] < ¢(1) =1 if
|z| < 1, and this gives the assertion of the lemma.

15.9 Theorem Let {2,.} be a sequence of complex numbers such that z, = 0
and |za] — © asn—> . If {pa} is a sequence of nonnegative integers such
that

~~
[,
S’

for every positive r (where 1, = |2.]), then the infinite product

@) PG) = nlill £, (—)

defines an entire function P which has a zero at each point z, and which has
no other zeros in the plane.

More precisely, if a occurs m times in the sequence {z.}, then P has a zero
of order m at a.

Condition (1) is always satisfied if p, = n — 1, for instance.

PROOF For every r, ra > 27 for all but finitely many =, hence
r/ra < 3 for these n, so (1) holds with 1 4+ p, = =n.
Now fix r. If |z|] < r, Lemma 15.8 shows that

1+, o\ 142,
- (2)] < |27 < ()

if r, > r, which holds for all but finitely many n. It now follows
from (1) that the series
. [z
L — &, ( ;)

%

converges uniformly on compact sets in the plane, and Theorem 15.6
gives the desired conclusion.

£

-

Note: For certain sequences {r,}, (1) holds for a constant sequence
{pa}. It is of interest to take this constant as small as possible; the
resulting funetion (2) is then called the canonical product corresponding to
{z.}. For instance, if Z1/r, < «, we can take p, = 0, and the canonical
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product is simply

0

— ..z.. zfzp
,.11 (1 zn) e*l,

Canonical products are of great interest in the study of entire functions
of finite order. (See Exercise 12 for the definition.)
We now state the Weierstrass factorization theorem.

15.10 Theorem Let f be an enlire function, suppose f(0) = 0, and let
21, 22, 23, - . . be the zeros of f, listed according to their multiplicities. Then
there exist an entire function g and a sequence {p,} of nonnegative integers,
such that

1y ) = o 1] (2)

n=l

Note: (a) If f has a zero of order k at z = 0, the preceding applies to
f) /2. (b) The factorization (1) is not unique; a unique factorization
can be associated with those f whose zeros satisfy the condition required
for the convergence of a canonical product.

PROOF Let P be the product in Theorem 15.9, formed with the zeros
of f. Then f/P has only removable singularities in the plane, hence
is (or can be extended to) an entire function. Also, f/P has no zero,
and since the plane is simply connected, f/P = e? for some entire
function g.

The proof of Theorem 15.9 is easily adapted to any open set:

15.11 Theorem Let @ be an open set in 82, @ % S%.  Suppose A C Qand
A has no limit point in Q. With each a € A associate a positive integer
m{e). Then there exists an f &€ H(Q) all of whose zeros are in A, and such
that f has a zero of order m(a) af each a g A.

PRoOF It simplifies the argument, and causes no loss of generality,
to assume that « ¢ but « g A, (If this is not so, a linear frac-
tional transformation will make it s0.) Then S? — @ is a nonempty
compact subset of the plane, and « is not a limit point of A.

If A is finite, we can take a rational function for f.

If A is infinite, then A is countable (otherwise there would be a
limit point in 2). Let {aa} be a sequence whose terms are in A and



296 Real and complex analysis

in which each a ¢ A is listed precisely m(a) times. Associate with
each a, a point 8, &£ 82 — @ such that |8, — a.] < |8 — a.| for all
B € S? — Q; this is possible since S? — Q is compact. Then

|ﬁn - anl —0

as n — o ; otherwise A would have a limit point in 2. We claim that

<0

o = 11 7 (%27)

has the desired properties.

Pasd . — .. a | Tt ¥ Lo N —an
FUl Tp = 2|0 — Pp|. L€V LA PE & COMpAac

n > N. Hence

on — Ba
z--B,,

which implies, by Lemma 15.8, that

an_ﬁn
ll_Eﬂ(z_Bn)

and this again completes the proof, by Theorem 15.6.

1 n4-1
ﬁ(;;) (z¢ K, n > N),

i

As a consequence, we can now obtain a characterization of meromorphic
functions (see Definition 13.12):

15.12 Theorem FEvery meromorphic function in an open set i3 a quotient
of two functions which are holomorphic in Q.

The converse is obvicus: If g ¢ H(R), h € H(Q), and h is not identically
0 in any component of Q, then g/h is meromorphic in Q.

PROOF Suppose f is meromorphic in Q; let A be the set of all poles
of f in Q; and for each a e A, let m(a) be the order of the pole of f
at . By Theorem 15.11 there exists an h € H(Q) such that 4 has a
zero of multiplicity m(a) at each a £ A, and 2 has no other zeros.

Put g = fh. The singularities of g at the points of A are removable,
hence we can extend 250 that o 2 "(0\ Clearly f = n/]} nog — A,

SAVLLLL FY W WAL TAVIVIANE i W VLAY i w as i aiama Y

The Mittag-Leffler Theorem

This theorem does for meromorphic functions what Theorem 15.11
does for holomorphic functions.

15.13 Theorem Suppose Q s an open sel in the plane, A C Q, A has no
limit point i Q, and to each ae A there are associated a positive integer
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m{a) and a rational funciion

ma)

P = Y Gialz — o)

i=1

Then there exists a meromorphic function f in @, whase principal part at
each c € A 18 P, and which has no other poles in Q.

proOF We choose a sequence {K,} of compact sets in @, as in
Theorem 13.3: Forn =1, 2,3, . . . , K, lies in the interior of K.,
every compact subset of @ lies in some K,, and every component
of 82 — K, contains a component of §2 — Q. Put 4, = An K;, and
4, =An{K, - K,,)forn=2,3,4 .... Bince A4, C K, and
A has no limit point in € (hence none in K,), each 4, is a finite set.
Put

1) Q.(z) = Z P.(2) (n=1213...).

oatAn

Since each A, is finite, each @, is a rational function. The poles
of Q. liein K, — K,—y,forn > 2. In particular, ¢, is holomorphicin
an open set containing K,_;. It now follows from Runge’s theorem
that there exist rational functions R., all of whose poles are in
8% — G, such that

@2 IR:(2) — @u(2)| < 2 (28 Kaoa).
We claim that

3) f@) = Q@) + Y Qi) — Ru(2))  (2£9)

n=2

has the desired properties.
Fix N. On Ky, we have

N w
@) f=Q+ Y @—EB)+ Y @ — R
n=2 N41

By (2), each term in the last sum in (4) is less than 2—= on K; hence
this last series converges uniformly on Ky, to a function which is
holomorphic in the interior of Ky. Since the poles of each R, are
outside Q,

f“'(Ql"l‘ +QN)

is holomorphic in the interior of Ky. Thus f has precisely the pre-

scribed principal parts in the interior of Ky, and hence in ©, since
N was arbitrary.
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15.14 An Interpolation Problem The Mittag-Leffler theorem may be
combined with the Weierstrass theorem 15.11 to give a solution of the
following problem: Can we take an arbitrary set A C Q, without limit
point in @, and find a function f & H(Q) which has prescribed values at
every point of A? The answer is affirmative. In fact, we can do even
better, and also preseribe finitely many derivatives at each point of A:

15.15 Theorem Suppose Q ts an open set in the plane, A C Q, A has no
limit point in Q, and o each a & A there are associated a nonnegative inleger
m(a) and compler numbers Wna, 0 < n < m(a). Then there exists an
fe H(Q) such that

1) f@(a) = ntwpe  (x£4,0 < n < mia).
PROOF By Theorem 15.11, there exists a g ¢ H(Q) whose only zeros
are in A and such that g has a zero of order m(a) + 1 at each a g A.
We claim we can associate to each a € A a function P, of the form

14-mia)

)] Pu(e) = ) Gale — )

=1
such that gP, has the power series expansion
(3) g()Pa(2) = woa+ Wialz — @) + * * * + Wm@)alz — )™ 4+ - - -

In some disc with center at o,
To simplify the writing, take « = 0 and m(a) = m, and omit the
subscripts «. For z near 0, we have

4) g(z) = biz™t 4 bamt 4 - - -
where b; # 0. If

(5) O R
then

6) g(@PE) = (tmpr+ caz + + - - +ce™(bs+ bz + 022+ - ).

The b’s are given, and we want to choose the ¢’s so that

() g(2)P(2) = wo + wiz + * * + + wWaz™ 4 - -

If we compare the coefficients of 1, 2, . . . , 2™ in (6) and (7), we
can solve the resulting equations successively for ¢myr, €my . . . , Cy,
since b; # 0.

In this way we obtain the desired P,’s. The Mittag-Leffler
theorem now gives us a meromorphic & in @ whose principal parts
are these P,’s, and if we put f = gh we obtain a function with the
desired properties.
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Jensen’s Formula

15.16 As we see from Theorem 15.11, the location of the zeros of a
holomorphie funection in a region € is subject to no restriction except
the obvious one concerning the absence of limit points in Q. The situa-
tion is quite different if we replace H{(Q) by certain subclasses which are
defined by certain growth conditions. In those situations the distribu-
tion of the zeros has to satisfy certain quantitative conditions. The basis
of most of these theorems is Jensen’s formula (Theorem 15.18). We
shall apply it to certain classes of entire functions and to certain sub-
classes of H (U)

The u.uluwxug, lemma affords an OPppOrtiiiil
theorem to the evaluation of a definite integral.

1 roe if —
15.17 Lemma -Q-;L log |1 — €| d¢ = 0.

PROOF Let @ = {z:Rez < 1}. Since 1 — 270 in @ and Q is
simply econnected, there exists an h € H() such that

exp {h(2)} =1 — ¢z

in €, and this & is uniquely determined if we require that A(0) = 0.
Since Re (1 — 2) > 0 in @, we then have

(1) Reh(z) =log|l —z2, [Imk@E)|< "Q’ (22 ).

For small § > 0, let T be the path
(2) T)=¢* (8<1<2r—9),

and let v be the circular arc whose center is at 1 and which passes
from ¢? t0 ¢~ % within /. Then

1 2r— - 1 d
(3) Zr- ]6 Glog I]- _ 6161 dg = Re |:‘— _/F h(Z) ._z.]

The last equality depended on Cauchy’s theorem ; note that A(0) = 0.

The length of v is less than =8, so (1) shows that the absolute value
of the last integral in (3) is less than C§ log (1/8), where C is a con-
stant. This gives the result if § — 0 in (3).

15.18 Theorem Suppose Q@ = D(O;R), fe H(Q), f(0) # 0, 0 < r < R,
and oy, . . . , ay are the zeros of f in D(0;r), listed according to their multi-
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plicities. Then

i 1 ¢
0 O T 1y = exp {5 [, 1og Ifcre)| do)-

This is known as Jensen’s formula. The hypothesis f(0) # 0 causes
no harm in applications, for if f has a zero of order k at 0, the formula
can be applied to f(z)/2".

PROOF Order the points o; 80 that a1, . . . , am are in D(0;r) and
lamss| = « + * = |an| = r. (Of course, we may have m = N or
m=0.) Put

—_— 8n? Xn
(2) g(2) = f(2) H r( )”-l;[_i_l O — 2

Then g ¢ H(D), where D = D(0; r + ¢) for some ¢ > 0, ¢ has no zero
in D, hence log |g| is harmonic in D (Theorem 13.19), and so

@). log lg(@)] = 5 [ log lg(re®)| do.
By (2),
A | #ran | ITI T
= 1JW 11 m'
n=]

1
g\

o’

4
+

Fan)

For 1 < n < m, the factors in (2) have absolute value 1 if |z| = r.
If ap = rei™» form < n < N, it follows that

N
(5) log lg(re®)| = log |f(re®)| — Z log [1 — eit#—],
n=mm41

Lemma 15.17 therefore shows that the integral in (3) is unchanged
if g is replaced by f. Comparison with (4) now gives (1).

Jensen’s formula gives rise to an inequality which involves the bound-
ary values of bounded holomorphic functions in U (we recall that the
class of these functions has been denoted by H*):

13.19 Theorem If fe H=, and if f* is the radial limit function of f, asin
Theorem 11.21, then

M) log IfO < 5 [, log Iftre)| do < 5 [ log 1| o

Jor all r between 0 and 1. The ceniral term in (1) 7s a nondecreasing func-
tion of r.
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If f 1s not identically 0, it follows that the last integral in (1) i3 greater
than — « so that the relation

(2) (e #0

holds at almost all poinis of T.
prooF The left side of Jensen’s formula 15.18(1) evidently does not
decrease if r increases. The same is therefore true of the central

term in (1). Let us now assume, without loss of generality, that
|f| £ 1. Then log (1/|f)) > 0, and Fatou’s lemma gives

ag
\re”)l)
This implies (1). If fis not identically 0 but f has a zero of order

m at z = 0, put g(z) = f(z)/z~. Then |g(0)| > O, |f*| = |g*|, and
if we apply (1) to g we see that [ log |f*| > — «.

3) flog{,*,l 1d0<hmf log!.—-iﬂ.——
=1 J=x o S

J== 7 )]

15.20 Zeros of Entire Functions Suppose f is an entire function,

(1) M) = sup [fire®)] (0 < r < ),

and n(r) is the number of zeros of f in D(0y). Assume f(0) = 1, for
simplicity, Jensen’s formula gives

M(2r) > exp {Ql,"r [:r log |f(2re®)] dﬂ}

n(2r) o n(r)
= Moy z 1 gz,
n=1 !a n=l |a”I

if {a,} is the sequence of zeros of f, arranged so that |a;} < |as| <
Hence

(2) n(r) lbg 2 < log M(2r).

Thus the rapidity with which n(r) can increase (i.e., the density of the
zeros of f) is controlled by the rate of growth of M(r). Suppose, to look
at a more specific situation, that for large r

(3) M(r) < exp {Ar¥}

where A and k are given positive numbers. Then (2) leads to

4) lim sup ——— log n(r) (r)

row  lOg

For example, if k is a positive integer and

(5) fz) =1 —e¥,
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then n(r) is about =~ %r*, so that
() lim log n{r) _

o logr

This shows that the estimate (4) cannot be improved.

Blaschke Products

Jensen’s formula makes it possible to determine the precise conditions
which the zeros of a nonconstant f & H® must satisfy.

15.21 Theorem If {a.} ¢s a sequence in U such that a, ¥ 0 and
L]

(1) Y, (1= Jan) < =,
n=l

if k is a nonnegative integer, and if

@) (2) = nl—a,,,za,, (ze U),

then B £ H®, and B has no zeros except at the poinls a, (and at the origin,
if k > 0).

We call this function B a Blaschke product. Note that some of the an
may be repeated, in which case B has multiple zeros at those points.
Note also that each factor in (2) has absolute value 1 on T

The term ‘‘Blaschke product’ will be used also if there are only finitely
many factors, and even if there are none, in which case B(z) = 1.

PROOF The nth term in the series

2 1 — — 2 ol
1 - &nz qn
nal
. an + oz _ 1 + Ty
18 0= adan (1 — |aa)) S (1 loa|)

if |z| < r. Hence Theorem 15.6 shows that B ¢ H(U) and that B
has only the prescribed zeros. Since each factor in (2) has absolute
value less than 1 in U, it follows that |B(z)| < 1, and the proof is
complete.

15.22 The preceding theorem shows that

® S —lud <

n=]
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is a sufficient condition for the existence of an f& H* which has only the
prescribed zeros {a,}. This condition also turns out to be necessary:
If f &€ H* and f is not identically zero, the zeros of f must satzsfy (1). This
is a special case of Theorem 15.23. It is interesting that (1) is a necessary
condition in a much larger class of functions, which we now describe.
For any real number ¢, define logt ¢t = log tif t > 1 and log* t =0
ift <1. Welet N (for Nevanlinna) be the class of all f ¢ H(U) for which

(2) sup — [ log* |f(re®)| do < <o.

0<r<
It is clear that H* C N. Note that (2) imposes a restriction on the
rate of growth of |f(z)| as izi — 1, whereas the boundedness of the integrals

3) or [ log |i(re)] do

imposes no such restriction. For instance, (3) is independent of r if
f = e? for any ge H(U). The point is that (3) can stay small because
log |f] assumes large negative values as well as large positive ones,
whereas logt |f| > 0. The class N will be discussed further in Chap. 17.

15.23 Theorem Suppose feN, f is not identically 0 in U, and o, a,
oy, . . . are the zeros of f, listed according to their multiplicities. Then

) Y = Jal) < .
n=]
(We tacitly assume that f has infinitely many zeros in U. If there
are only finitely many, the above sum has only finitely many terms, and
there is nothing to prove. Also, |as| < |@nsaf)

prROOF If f has a zero of order m at the origin, and g(z) = z2="f(z),
then g £ N, and ¢ has the same zeros as f, except at the origin. Hence
we may assume, without loss of generality, that f(0) = 0. Let n(»)
be the number of zeros of f in D(0;r), fix k, and take r < 1 so that
n(r) > k. Then Jensen’s formula

1 ,
® VO T o = o {5 7, lou ftre®)| do]
n=ml "
implies that
k
® 1O T <o o [ og" e ao)-
n=]

Our assumption that f ¢ N is equivalent to the existence of a con-
stant ¢ < o which exceeds the right side of (3) forall »,0 < r < L.
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It follows that

k
4) [1 leal = €115 0)Ir*.

n=1

The inequality persists, for every k, as r— 1. Hence'

(5) I1 leal = €150} > 0.

n=1

By Theorem 15.5, (5) implies (1).

Corollary If fe H® (or even if fe N), if ay, as as, . . . are the zeros
of fin U, and if Z(1 — |an|) = o, then f(z) = 0 for all ze U.

For instance, no nonconstant bounded holomorphic function in U can
have a zero at each of the points (n — 1)/n (n = 1,2,3, . . .).

We conelude this section with a theorem which describes the behavior
of g Blaschke product near the boundary of U. Recall that as a member
of H*, B has radial limits B*(¢*) at almost all points of T

15.24 Theorem If B is a Blaschke product, then |B*(e**)| = 1 a.e., and

s . 1 " . Taazs  :an] ¥n ~

— log |B(re'®)| dd = 0.

1) {Tll S j__‘r og |B(re”}|
PROOF The existence of the limit is a consequence of the fact that
the integral is a monotonic function of r. Suppose B(z) is as in
Theorem 15.21, and put

@) By() = [ 2=t . 1ol

~— Qa2 o
ﬂ.-N1 ™ »

Since log (|B/By|) is continuous in an open set containing 7, the
limit (1) is unchanged if B is replaced by By. If we apply Theorem
15.19 to By we therefore obtain

. 1 T . I T N
3) log|By(0)|<lim 5 f_, log| B(re*)|do < 5 [_rlog|B*(ew)|deso.

As N — o, the first term in (3) tends to 0. This gives (1), and
shows that [ log |B*| = 0. Since log [B*| < 0 a.e., Theorem 1.39(a)
now implies that log |B*| = 0 a.e.

The Miintz-Szasz Theorem

15.25 A classical theorem of Weierstrass ([26], Theorem 7.24) states
that the polynomials are dense in C(I), the space of all continuous com-
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plex functions on the closed interval I = [0,1], with the supremum norm.
In other words, the set of all finite linear combinations of the functions

(1) 1: tr tZ: tsy .

is dense in C(I). This is sometimes expressed by saying that the func-
tions (1) span C(I).

This suggests a question: If 0 < A; <Az <Ay < -+ -, under what
conditions is it true that the functions

@) 1, P ph,

span C(I)?

It turns out that this problem has a very natural connection with the
problem of the distribution of the zeros of a bounded holomorphic func-
tion in a half plane (or in a disc; the two are conformally equivalent).
The surprisingly neat answer is that the functions (2) span C(I) if and
only if Z1/ A, = .

Actually, the proof gives an even more precise conclusion:

15.26 Theorem Suppose 0 <A\ <A< N < - - and let X be the
closure in C(I) of the set of all finite linear combinations of the functions

1,8, e, 8, L L L

(@) If Z1/A. = o, then X = C(I).
@) If ZY/N. < o, and ©f A€ {Aa}, X £ 0, then X does not contain
the function t.

prooF It is a consequence of the Hahn-Banach theorem (Theorem
5.19) that ¢ ¢ C(I) but ¢ ¢ X if and only if there is a bounded linear
functional on C(I) which does not vanish at ¢ but which vanishes
on all of X. Since every bounded linear functional on C(7) is given
by integration with respect to a complex Borel measure on I, (a)
will be a consequence of the following proposition:

If Z1/\, = o« and if p 18 a complex Borel measure on I such that

(1) [ Pdu) =0 (n=123,...),
then also
@) ﬁ Fdp(®) =0 (k=1,23,...).

For if this is proved, the preceding remark shows that X contains
all funetions #; since 1 £ X, all polynomials are then in X, and the
Welerstrass theorem therefore implies that X = C(J).
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So assume that (1) holds. Since the integrands in (1) and (2)
vanish at 0, we may as well assume that u is concentrated on (0,1].
We associate with u the function

3) /@) = [ #du().

For t > 0, t* = exp (2 log {), by definition. We claim that f is
holomorphic in the right half plane. The continuity of f is easily
checked, and we can then apply Morera’s theorem. Furthermore,
ifz=z+14, >0 and 0 <t <1, then |¢*| =t < 1. Thus fis
bounded in the right half plane, and (1) says that f(\,) = 0, for
n=123,.... Define

@ 0@ =115 e

Then g ¢ H* and g{an) = 0, where o, = (\n — 1)/(An + 1). A sim-
ple computation shows that Z(1 — |a,]) = « if 1/, = «. The
Corollary to Theorem 15.23 therefore tells us that g(z) = 0 for all
ze¢ U. Hencef = 0. In particular, f(k) =0fork =1,2,3, ...,
and this is (2). We have thus proved part (a) of the theorem.,

To prove (b) it will be enough to construct a measure g on I such
that (3) defines a function f which is holomorphic in the half plane
Re z > —1 (anything negative would do here), which is 0 at 0, A,,
Az, Az, . . . and which has no other zeros in this half plane. For
the functional induced by this measure p will then vanish on X but
will not vanish at any function # if A £ 0 and A ¢ {A.}.

We begin by constructing a function f which has these prescribed
zeros, and we shall then show that this f can be represented in the
form (3). Define

2 - A — 2
®) 1® = eyl s 75
Since 1 Ay — 2 2: 4+ 2

T2 XMtz THmFz2

the infinite product in (5) converges uniformly on every compact set
which contains none of the points —\, — 2. It follows that f is a
meromorphie function in the whole plane, with poles at —2 and
—A» — 2, and with zeros at 0, A1, Az, N3, . . . . Also, each factor
in the infinite product (5) is less than 1 in absolute valueif Rez > —1.
Thus |f(z)| < 1if Rez > —1. The factor (2 + 2)? ensures that the
restriction of f to the line Re z = —1 is in L.

Fix 2z so that Re # > —1, and consider the Cauchy formula for
f(z), where the path of integration consists of the semicircle with
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center at —1, radius R > 1 + l¢[, from —1 — 7R to —1 4+ R to
—1 + 7R, followed by the interval from —1 4+ iR to —1 — {R.
The integral over the semicircle tends to 0 as B — =, so we are left
with

® 0= -5 [ Lt e @ee> -,

But

1 t z~i3
(7) T¥z—17 =L = di (Rez> —1).

Hence (6) can be rewritten in the form
(8) flz) = Ll t: {2%—1- f:. f(—1 + 7s)e 1"“ds} dt.

The interchange in the order of integration was legitimate: If the inte-
grand in (8) is replaced by its absolute value, a finite integral results.
Put g(s) = f(—1 + 4s). Then the inner integral in (8) is §(log 2,
where § is the Fourier transform of g. This is a bounded continuous
function on (0,1), and if we set du(t) = ¢(log¢) dt we obtain a measure
which represents f in the desired form (3).
This completes the proof.

13.27 Remark The theorem implies that whenever {1,0 8 . . .}
spans C(I), then some infinite subcollection of the # can be removed
without altering the span. In particular, C{J) contains no minimal
spanning sets of this type. This is in marked contrast to the behavior
of orthonormal sets in a Hilbert space: if any element is removed from
an orthonormal set, its span is diminished. Likewise, if {1,tM,fs, . . .}
does not span C(J), removal of any of its elements will diminish the span;
this follows from Theorem 15.26(b).

Exercises

1 Under what conditions on a sequence of real numbers y, does
there exist a bounded holomorphic function in the open right half
plane which is not identically zero but which has & zero at each
point 1 + ¢y,? In particular, can this happen if (@) y» = log n,
(b) Yn = \/n: (C) Yn = N, (d) Ya = n??

2 Suppose 0 < |as| <1, Z(1 — |as]) < =, and B is the Blaschke
product with zeros at the points «,. Let E be the set of all
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points 1/&, and let Q@ be the complement of the closure of E.
Prove that the product actually converges uniformly on every
compact subset of @, so that B ¢ H(Q), and that B has a pole at
each point of E. (This is of particular interest in those cases in
which @ is connected.)

Pat o, =1 —n"%forn=1,23, ..., let B be the Blaschke
product with zeros at these points a, and prove that lirri B(r) = 0.

r—

(It is understood that 0 < r < 1.)
More precisely, show that the estimate

N-=1 N-1
..... [s 2 v N — Og
|B(r)| < 11 -———1 < 11 T <™

is valid if oy < 7 < an.

Prove that there is a sequence {a,} with 0 < e, < 1, which tends
to 1 so rapidly that the Blaschke product with zeros at the points
an satisfies the condition

lim sup |B(r)| = 1.
r—1

Hence this B has no radial limit at z = 1.

Let ¢ be a linear fractional transformation which maps U onto
U. For any ze U, define the o-orbit of z to be the set {¢.(2)},
where ¢4(2) = 2, @a(2) = o(pen—1(2)), n = 1, 2, 3, . . Ignore

the case ¢(2) = 2.

(a) For which ¢ is it true that the ¢-orbits satisfy the Blaschke
condition Z(1 — |en(2)]) € ©? [The answer depends in part
on the location of the fixed points of . There may be one
fixed point in U, or one fixed point on T, or two fixed points
on 7. Inthe last two cases it is advantageous to transfer the
problem to (say) the upper half plane, and to consider trans-
formations on it which either leave only « fixed or leave 0 and
o fixed.]

(b) For which ¢ do there exist nonconstant functions fe H®
which are invariant under ¢, i.e., which satisfy the relation
fle(2)) = f(z) for all 2e U?

Find all entire functions f such that |f(z)| = 1 whenever jz| =

Let Z(f) denote the set of all zeros of the function f. Suppose

J1 and f3 are entire functions and Z(f,) n Z(f:) = &. Prove that

there exist entire functions g; and g., such that

fig1 + fag: = 1.

Hint: The Mittag-Leffler theorem shows that there is an entire
function g, such that (1 — fig1)//: is entire.
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Generalize this as follows: If f, . . . , fs» are entire, and if

Z(f)n - - - nZ(f.) = &, then there exist entire functions
g1, - - . 5 gn such that

Jigr + fage + - 0 + fuga= 1.

Finally, if f), . . . , fa are entire, can you describe the class of
all entire functions A which are representable in the form

h-"'",flgl-[— Tt +fuga,

where ¢y, . . . , ga are entire?
[Under discussion here are the finitely generated ideals in the
ring of all entire functions. The results apply to any H(Q).]

8 Let {z.} be a sequence of distinct complex numbers, z, # 0, such
that 2z, — ® as n— o, and let {m,} be a sequence of positive
integers. Let g be a meromorphic function in the plane, which
has simple poles with residue m, at 2z, and which has no other

poles. If z¢ {2,}, let y(2) be any path from 0 to # which passes
through none of the points z,, and define

@& =exp { [ o) d&s}-

Prove that f(z) is independent of the choice of ¥{z) (although
the integral itself is not), that f is holomorphie in the complement
of {z.], that f has a removable singularity at each of the points
2z, and that the extension of f has a zero of order m, at z,.

Thus the existence theorem contained in Theorem 15.9 can be
deduced from the Mittag-Leffier theorem.

9 Suppose A\; > X2 > + ¢ -, and A\, — 0 in the Miintz-Szasz the-
orem. What is the conclusion of the theorem, under these
conditions?

10 Prove an analogue of the Miintz-Szasz theorem, with L2() in
place of C(I).

11 Put fu®) = tre* (0<t < o, n=0,1,2, ...) and prove that
the set of all finite linear combinations of the functions f, is dense
in L*0,). Hint: If g € L*0, =) is orthogonal to each f, and if

F(z) = j;’“‘ etg®dt  (Rez > 0),

then all derivatives of F are 0 at z = 1. Consider F(1 + 7y).
12 Suppose f is entire, X is a positive number, and the inequality

I7(2)| < exp (f2I)

holds for all large enough |z|. (Such functions f are said to be of
finite order. The greatest lower bound of all X for which the above
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condition holds is the order of ) If f(2) = Zaa.2", prove that the
inequality

holds for all large enough n. Consider the functions exp (z*),
k=1,2,3, ..., to determine whether the above bound on |a,]
1s close to best possible.

Find all complex z for which exp (exp (z)) = 1. Sketch them as
points in the plane. Show that there is no entire function of
finite order which has a zero at each of these points (except, of
course, f = 0).

Show that the function

etu + e—-nz

e Tit — e—'l"ll

arcotwz = wt

has simple poles with residue 1 at the integers. The same is true
of the function

w N

1 1
f(Z) = E z N—oao g — n.

n=—N

t
difference is a bounded entire function, hence a constant, and that
this constant is actually 0, since

Show that both functions are periodic [f(z 4+ 1) = f(z)], that t

hm f@y) = —2¢ f TI + = —m.

This gives the partial fractions decomposition

rcot vz = _+Zzz o
(Compare with Exercise 16, Chap. 9.) Note that = cot 72z is
(9'/9)(2) if g(z) = sin rz. DPeduce the product representation

L]

Sln w2 2“
— 1 — 2

we n
n= l

Suppose k i3 a positive integer, {2,} is a sequence of complex num-
bers such that Z|z,|** < «, and

o= ()

ne=1l
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(See Definition 15.7.) What can you say about the rate of growth
of

M) = max [f(re”)]?

16 Suppose [ is entire, f(0) = 0, |f(z)] < exp (|z]?) for large |z|, and
{z.} is the sequence of zeros of f, counted according to their
multiplicities. Provethat Z|2,[~** < « foreverye > 0. (Com-
pare with Sec. 15.20.)

17 Suppose {a.} and {b,} are sequences of complex numbers such
that Z|la, — b.] < ®. On what sets will the product

converge uniformly? Where will it define a holomorphic function?

18 Suppose f is an entire function, f(+/n) = Oforn =1,2,3, . . .,
and there is a positive constant « such that |f(z)| < exp (|z]?) for
all large enough |z|. For which « does it follow that f(z) = 0 for
all 22 [Consider sin (rz2).]

19 Suppose0 < a < 1,0< 8 < 1, fe H(U), f(U) C U, and f(0) = «a.
How many zeros can f have in the disc D(0;8)? What is the
answerif (@) a=4,8=4 B a=48=} (@ a=4 8=1;
(d) @ = 1/1,000, 8 = 1/10?

20 Prove the Mittag-Leffler theorem for the case in which Q is the
whole plane, by a direct argument which makes no appeal to
Runge’s theorem.

21 Suppose |ai| < |ae| < jas] < - -+ <1, and let n(r) be the num-
ber of terms in the sequence {«;} such that o] < r. Prove that

]: n(r) dr = 121 (1 — |ayl).

22 If B(z) = Zci2* is a Blaschke product with at least one zero off the
origin, is it possible to have ¢, > 0fork =0,1,2, . . . ?
23 Suppose B is a Blaschke produet all of whose zeros lie on the seg-
ment (0,1) and
1@ = (z ~ 1)*BG).

Prove that the derivative of f is bounded in U.
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Analytie Continunation

In this chapter we shall be concerned with questions which arise because
functions which are defined and holomorphic in some region can frequently
be extended to holomorphie functions in some larger region. Theorem
10.18 shows that these extensions are uniquely determined by the given
functions. The extension process is called analytic continuation. It leads
in a very natural way to the consideration of funetions which are defined
on Riemann surfaces rather than in plane regions. This device makes it
possible to replace “multiple-valued functions” (such as the square-root
function or the logarithm) by functions., A systematic treatment of
Riemann surfaces would take us too far afield, however, and we shall
restrict the discussion to plane regions.

Regular Points and Singular Points

16.1 Definition Let D be an open circular disc, suppose fe H(D), and
let 8 be a boundary point of D. We call 8 a regular point of f if there
exists a disc D; with center at 8 and a function ge H(D,) such that
g(2) = f(2) for all ze Dn D,. Any boundary point of D which is not a
regular point of f is called a singular point of f.

It is clear from the definition that the set of all regular points of f is an
open (possibly empty) subset of the boundary of D.

In the following theorems we shall take the unit dise U for D, without
any loss of generality.

16.2 Theorem Suppose f e H(U), and the power series

1) f(2) = i ae® (zeU)

n=0

has radius of convergence 1. Then f has at least one singular point on the
unit circle T.
312
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PROOF Suppose, on the contrary, that every point of T is a regular
point of f. The compactness of T implies then that there are open
discs Dy, . . . , D, and functions g; € H(D;) such that the center of
each D; is on T, such that T C Dyu - - » uD,, and such that
gi(z) = f() in D;n U, forj = 1, , A

If DinD; # & and Vi; = D nD nU then Vi; # ¢f (since the
centers of the D; are on T), and we have g; = f = g; in V. Since
D:n D; is connected, it follows from Theorem 10.18 that g; = g; in
D:n D;, Hence wemay define a functionAin@ = UvDyu - - - uD,
by ‘
o f(z) (ze U),
@) Mo =1aG  (eD).

Since © D U and @ is open, there exists an ¢ > 0 such that
DO;1+4+ ¢ C Q. But ke H), h(2) is given by (1) in U, and now
Theorem 10.16 implies that the radius of convergence of (1) is at least
1 + ¢, contrary o our assumption.

16.3 Definition If fe H(U) and if every point of T is a singular point of
f, then T is said to be the natural boundary of f. In this case, f has no
holomorphic extension to any region which properly contains U.

16.4 Remark It is very easy to see that there exist f & H(U) for which
T is a natural boundary. In fact, if Q is any region, it is easy to find an
f e H(®) which has no holomorphic extension to any larger region. To
see this, let A be any countable set in 2 which has no limit point in Q but
such that every boundary point of Q is g limit point of A, Apply Theorem
15.11 to get a function f & H(Q) which is 0 at every point of A but is not
identically 0. If g € H(Q,), where ©, is a region which properly contains
Q, and if g = f in 2, the zeros of g would have a limit point in Q;, and we
have a contradiction.
A simple explicit example is furnished by

(1) (@) = Ez2”=z+z2+z4+zs+--- (ze U).

n=0
This f satisfies the functional equation
@) &) = (& — 2,

from which it follows (we leave the details to the reader) that fis unbounded
on every radius of U which ends at exp {2rik/2"}, where k and n are
positive integers. These points form a dense subset of T'; and since the
set of all singular points of f is closed, f has T as its natural boundary.

That this example is a power series with large gaps (i.e., with many
zero coefficients) is no accident. The example is merely a special case of
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Theorem 16.6, due to Hadamard, which we shall derive from the following
theorem of Ostrowski:

16.5 Theorem Suppose \, pi, and q. are posttive inlegers,
P<p<p3< e,

and
® M >A+Dm;e (R=1,2,3 .. ).
Suppose
(2) flz) = % a.zn
\ =/ A L( G
n=Q

has radius of convergence 1, and a, = 0 whenever pr < n < g for some k.
If 3,(2) s the pth partial sum of (2), and if B is a regular point of fon T, then
the sequence {s, (z)} converges in some neighborhood of 8.

Note that the full sequence {s,(z)} cannot converge at any point out-
side U. The gap condition (1) ensures the existence of a subsequence
which converges in a neighborhood of 8, hence at some points outside U.
This phenomenon is called overconvergence.

prooF Ifg(z) = f(82), then g also satisfies the gap cop dition. Hence
we may assume, without loss of generality, that 8 = Then f has a

holomorphic extension to a region € which contams Uvu{l}. Put
(3) p(w) = $(w* + )

and define F(w) = f(e(w)) for all w such that o(w)eQ. If juw| <1
but w # 1, then |p(w)| < 1, since [1 + w| < 2. Also, (1) = 1. It
follows that there exists an ¢ > 0 such that «(D{0; 1 4 ¢)) C Q.
Note that the region ¢(D(0; 1 + €)) contains the point 1. The series

L)

(4) F(w) = Y, bnw™
mw(
converges if |w| < 1 +
The highest and lowest powers of w in [¢(w)]* have exponents
(A + 1)n and An. Hence the highest exponent in [¢(w)]}?: is less than
the lowest exponent in [¢(w)]e, by (1). Since

L]

(5) Fw) = Y ale@l* (] < 1),

n=0
the gap condition satisfied by {@.} now implies that

Dk (A +1Dpx

6 Y ale@)lr= Y b~ (k=123 ...

n=0 m=0
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The right side of (6) converges, as k — «, whenever |w] < 1 4+ e
Hence {s,,(2)} convergesforallz € ¢(D(0;1 + ¢)). Thisis the desired
conclusion.

Note: Actually, {s,.(2)} converges uniformly in some neighborhood of 3.
We leave it to the reader to verify this by a more careful examination of
the preceding proof.

16,6 Theorem Suppose \ is a positive integer, {pi} is a sequence of positive
integers such that

M pei>(141)m G=123..0,
and the power series
@) @) = Y cem

k=1

has radius of convergence 1. Then f has T as its natural boundary.

PROOF The subsequence {s,} of Theorem 16.5,is now the same
(except for repetitions) as the full sequence of partial sums of (2).
The latter cannot converge at any point outside U; hence Theorem
16.5 implies that no point of T" can be a regular point of f.

16.7 Example Puta, = 1if nis a power of 2, put a, = 0 otherwise, put
= exp (— v/7), and define

(1) f(z) = E Annl™
n=0

Since

(2) lim sup la.ga|¥" = 1,

the radius of convergence of (1) is 1. By Hadamard’s theorem, f has T
as its natural boundary. Nevertheless, the power series of each deriva-
tive of f,

8

(3) f®(z) = E (n—1) - -+ (@ —k+ Daume™,
converges uniformly on the closed unit disc. Each f® is therefore uni-
formly continuous on U, and the restrietion of f to T is infinitely differ-
entiable, as a function of 4, in spite of the fact that T is the natural bound-
ary of f.

The example demonstrates rather strikingly that the presence of sin-
gularities, in the sense of Definition 16.1, does not imply the presence of
discontinuities or (stated less precisely) of any lack of smoothness.
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This seems to be the natural place to insert a theorem in which con-
tinuity does preclude the existence of singularities:

16,8 Theorem Suppose  is a region, L is a straight line or a circular arc,
Q — L s the union of two regions Q, and Q,, f 18 continuous in Q, and f is
holomorphic in ; and in Q;.  Then [ is holomorphic in Q.

PrROOF The use of linear fractional transformations shows that the
general case follows if we prove the theorem for straight lines L. By
Morera’s theorem, it is enough to show that the integral of f over the
boundary A is 0 for every triangle A in @. The Cauchy theorem
implies that the integral of f vanishes over every closed path y in
AnQorin AnQ; The continuity of f shows that this is still true if
part of ¥ is in L, and the integral over 9A is the sum of at most two
terms of this sort.

Continuation along Curves

16.9 Definitions A function element is an ordered pair (f,D), where D is
an open circular disc and fe H(D). Two function elements (f,,D;) and
(fuD:) are direct continuations of each other if two conditions hold:
Don Dy # &, and fo(2) = f1(2) for all ze Den D,. 1In this case we write

(1) (fO)DO) ~ (flyDl)-

A chain is a finite sequence € of discs, say @ = {D¢,Dy, . . . ,D.}, such
that DianD; ## Ffori=1, .. .,n If (fo,D) is given and if there
exist elements (f,D;) such that (fi_, D)) ~ (fi,D)) fori =1, ..., n,

then (f.,Da) is said to be the analytic continuation of (fo,Do) along €.
Note that f, is uniquely determined by f, and € (if it exists at all). To
see this, suppose (1) holds, and suppose (1) also holds with g, in place of
fi. Then g, = fo = fi in Dyn D,; and since D, is connected, we have
g1 = f1 in Dy. The uniqueness of f. now follows by induction on the
number of terms in €,

If (f.,D.) is the continuation of (fy,D0) along €, and if D, n D, # &,
it need not be true that (fo,De¢) ~ (f4,D.); in other words, the relation ~
is not transitive. The simplest example of this is furnished by the square-
root function: Let Dy, Dy, and D. be discs of radius 1, with centers 1, «,
and w? where w? = 1, choose f; ¢ H(D;) so that f;2(z) = z and so that
(fo,Do) ~ (f1,D1), (fi,D1) ~ (f2,D:). In Dyn D, wehavefy = ~fo # fo.

A chain @ = {D,, . . . ,D,} is said to cover a curve y with parameter
interval [0,1] if there are numbers 0 = gy < 8, < - - - < 8, = 1 such
that (0) is the center of Dg, v(1) is the center of D,, and

(2) v([si,8:44)) C D t=0,...,n—1).
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If (fo,Do) can be continued along this € to (fp,D.) we call (f,,D,) an
analytic continuation of (fo,De) along v (uniqueness will be proved in
Theorem 16.11); (fo,Do) is then said to admit an analytic continuation
along «.

Although the relation (1) is not transitive, a restricted form of transitiv-
ity does hold. It supplies the key to the proof of Theorem 16.11.

16.10 Proposition Suppose Don Dyn Dy = &, (Do,fo) ~ (Dy,f1), and
(Dy,f1) ~ (Da,fa).  Then (Do, fo) ~ (D2, f5).

PrRoOOF By assumption, fo = f1 in DynD; and f; = f2 in Dy n D..
Hence fo = fa in the nonempty open set Dyn Dyn Dy, Since f, and
f» are holomorphic in Dy n D, and Dy n D, is connected, it follows that
fo = fz in Don Dz.

16.11 Theorem If (f,D) is a function element and if v s a curve which
starls at the center of D, then (f,D) admits at most one analytic continuation

along +.

Here is a more explicit statement of what the theorem asserts: If v is
covered by chains @, = {444, . . . ,An] and @, = {By,B,, . . . ,B.},
where Ag = By = D, if (f,D) can be analytically continued along €; to

a function element (n A Y and if (f I ran he analvtically nnnhn11pr"

AL VALILE VAMARLRALY AgMmyLEm)y wvRina NSy 7 MRER R CULMAEg VALREEg MAAVALR R
along €, to (h,,B,), then gm = h, in A, n B,.

Since 4,, and B, are, by assumption, discs with the same center y(1),
it follows that g.. and A, have the same expansion in powers of z — y(1),
and we may as well replace A, and B, by whichever is the larger one of
the two. With this agreement, the conclusion is that gn = &,.

PROOF Let @, and @, be as above. There are numbers
0=8 <1< " <8n=1=8up
and 0 =gy <01 < * -+ <o, =1 = 0, such that
(1) v(susim]) T4y, y(ososa) CB;  0£i<m, 075 < n).
There are function elements (gi,4:) ~ (giy1,4:41) and
(hiy B} ~ (his1,Bs11),

for0<z'<m-—1and0<j<n—1 Here go = ho = f.

We claim thatif 0 < i < mand 0 < j < n, and if [s;,8:,1] intersects
[0;,05+1], then (gi,4:) ~ (hj,B;).

Assume there are pairs (7,7) for which this is wrong. Among them
there is one for which z + jis minimal. It is clear that thenz 47 > 0.
Suppose 8 > o;, Then 7 > 1, and since [8;,8:;1] intersects [o},0444),
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we see that
(2) v(s:)e AiminA;n B,

The minimality of ¢ 4+ j shows that (g;1,4:-1) ~ (h;,B,); and since
(gi—1,Aiy) ~ (gi,A:), Proposition 16.10 implies that (g,,4:) ~ (h;,B}).
This contradicts our assumption. The possibility s; < o, is ruled out
in the same way.

So our claim is established. In particular, it holds for the pair
(m,n), and this is what we had to prove.

16,12 Definition Suppose a and § are points in the plane and ¢ is a con-
tinuous mapping of the unit square 72 = I X 7 (where I = [0,1]) into the

phane, such that ¢(0,) = a and ¢(1,t) = 8 for all te I. The curves ¥,
defined by

) v:(8) = (st}  (sel, iel)
are then said to form a one-parameter family {v.} of curves from o to 8.

We now come to a very important property of analytic continuation:

16.13 Theorem Suppose {v.} (0 <t < 1) is a one-parameter family of
curves from o lo B, D is a disc with center at a, and the funclion element (f,D)
admils analytic continuation along each v, to an element (g,,D,). Then
g1 = go.

The last equality is to be interpreted as in Theorem 16.11:

(g1,D1) ~ (go,Do)’
and D¢ and D, are discs with tbe same center, namely, 8.

ProoF Fixtel., Thereisachain@ = {4, . . . ,A.} whichcovers
v, with Ag = D. There are numbers 0 = so < * -+ < 8, = 1such
that

(1) E;, = T:([S:‘,Si+1]) C A; (?, == 0, 1, N 1)

There exists an e > 0 which is less than the distance from any of the
compact sefs E; to the complement of the corresponding open disc
4;. The uniform continuity of ¢ on I? (see Definition 16.12) shows
that there exists a 8 > 0 such that

(2) lri(s) — vu(s)] < e ifsel,uel, ju —t <.

Suppose u satisfies these conditions. Then (2) shows that € covers
7. and therefore Theorem 16.11 shows that both g; and g. are obtained
by continuation of (f,D) along this same chain €. Hence g = g..

Thus each i e I is eovered by a segiment J, such that g. = g, for all
welnd,. Since] is compact, / is covered by finitely many Jy; and
since I is connected, we see in a finite number of steps that g; = g
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The Monodromy Théorem

16.14 Definition Let o and 8 be points in a region Q, and suppose I'g and
T'; are curves in Q, from a to 8. We say that 'y and Ty are Q-homotopic
if there is a one-parameter family {v,} of curves from « to 8 (see Definition
16.12) such that each v, is a curve in Q@ and such that yo = T'gand v, = T'y.

Intuitively, this just means that Ty can be deformed to T'; within €,
keeping the end points fixed.

16.15 Definition Suppose € is a region, (f,D) is a function element, and
D C Q. We say that (f,D) admits unrestricted continuation in Q if (f,D)
can be analytically continued along every curve in @ which starts at the
center of D.

We can now state the monodromy theorem:

16.16 Theorem Suppose (f,D) admits unrestricted continuation in a plane
region .

(@) If Ty and Ty are Q-homotopic curves from « to 8, where a 18 the center
of D, then the continuation of (f,D) along Ty coincides with its con-
tinuation along T'y.

(b) If, in addition, Q is simply connected, then there exists a g & H(Q)
such that g(z) = f(z) for all z € D.

PROOF (@) is a corollary of Theorem 16.13.
If Q is simply connected, then there is a homeomorphism 4 of £ onto
U; and since U is convex, we can define

(1) 7(s) = A1 — HA(To(8)) + th(X+(s))]
0<s<1,0<t< ).

The resulting one-parameter family {v.} shows that any two curves
To and Ty in €, from « to B, are Q-homotopic. It now follows from
(a) that all continuations of (f,D) to 8, along any curve in Q, lead to
the same element (gs,Dy), where Dy is a disc with center at 8. If Dy,
intersects Dg, then (gs,,Dp,) can be obtained by first continuing (f,D)
to 8, then along the straight line from g to 8y. This shows that
gs, = g in Dy, n Dy.
The definition

(2) g9(2) = gs(z)  (2€ Dy)

is therefore consistent and gives the desired holomorphic extension of f.
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Construction of a Modular Function /"

16.17 The Modular Group This is the seb G of all linear fractional

transformations ¢ of the form :
!

_az+b

where a, b, ¢, and d are integers and ad — bec = 1.
Since a, b, ¢, and d are real, each ¢ £ G maps the real axis onto itself
(except for «). The imaginary part of ¢(3) is (¢2 + d?)~* > 0. Hence

{2) (TH-\ = 11+ {n e (N

=/ L S kS o S
where II* is the open upper half plane. If ¢ is given by (1), then

dw — b
—cw + a

(3) ot (w) =

sothat = 'e(G. AlsopodeGif peGandy e G

Thus G is a group, with composition as group operation. In view of
(2) it is customary to regard G as a group of transformations on IT+,

The transformationsz—» 2+ 1(@a=b=d=1,¢=0)andz— —1/2
(@a=d=0,b= —1,c=1) belong to @. Infact, they generate G (i.e.,
there is no proper subgroup of ¢ which contains these two transforma-
tions). This can be proved by the same method which will be used in
Theorem 16.19(c).

A modular function is a holomorphic {(or meromorphic) function f on
II+ which is invariant under (@ or at least under some nontrivial subgroup
I of ¢. This means that fo ¢ = f for every o & T.

16.18 A Subgroup We shall take for I the group generated by ¢ and r,
where

(1) o(z) = TR + 7 2) =2+ 2.

One of our objectives is the construction of a certain function A which is
invariant under I' and which leads to a quick proof of the Picard theorem.
Actually, it is the mapping properties of A which are important in this
proof, not its invariance, and a quicker construction (using just the
Riemann mapping theorem and the reflection principle) can be given.
But it is instructive to study the action of T on II*, in geometric terms,
and we shall proceed along this route.

Let @ be the set of all z which satisfy the following four conditions,
where z = z 4 1y:

2 y>0, -—-1<Lz<1l, |22+1>1  |[22—1|>1.
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Q is bounded by the vertical lines z = —1 and z = 1 and is bounded
below by two semicircles of radius 4, with centers at —3 and at 3. Q
contains those of its boundary points which lie in the left half of I+. @
contains no point of the real axis.
We claim that Q is a fund&mental domain of . This means that state-
ments (a) and (b) of the following theorem are true.

16.19 Theorem Let T and Q be as above.

(@) If o1 and g2 €T and @1 5 2, then ¢:(Q) 0 (@) = .
()] vyr e(Q) = II*.

(¢) T contains all transformations ¢ & G of the form

az+ b

M o) = o

for which a and d are odd integers, b and c are even.

PROOF Let T'; be the set of all ¢ £ 7 described in (¢). It is easily
verified that T'; is a subgroup of @. Sinces e T, and r & Ty, it follows
that T C I'y. Toshow that T' = T'y, i.e., to prove (¢), it is enough to
prove that (a’) and (b) hold, where (a’) is the statement obtained from
(a) by replacing T by T';. For if (a’) and (b) hold, it is clear that T
cannot be a proper subset of T',.

We shall need the relation

@ Im o(e) = o

which is valid for every ¢ £ G given by (1). The proof of (2) is a
matter of straightforward computation, and depends on the relation
ad — bec = 1.

We now prove (a'). Suppose ¢; and ¢:€T), ¢1 5 ¢s and
o= o1 logs I 2201(Q)Nnex(Q), then p7(2) QN (Q). It is
therefore enough to show that

(3) Qne(Q) = &

if o€ Ty and ¢ 1s not the identity transformation.

If ¢ = 0in (1), then ad = 1, and since @ and d are integers, we have
a=d= +1. Hence ¢(z) = z + 2n for some integer n 7 0, and the
description of @ makes it evident that (3) holds.

If ¢ = 0, we claim that |cz + d| > 1 for every z£ Q. Otherwise,
the circle with center at —d/c¢ and radius |1/¢| would intersect Q.
The description of Q shows that if any circle with center on the real
axis intersects @, then at least one of the points —1, 0, 1 lies in the
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interior of this circle. But if w is an inteﬁ, then cw + d is an odd
integer whose absolute value cannot be legs than 1.

8o {ez + d| > 1, and it now follows from (2) that Im ¢(z) < Im 2
for every z £ Q. 1f it were true for some # £ @ that ¢(2) £ @, the same
argument would apply to ¢! and would; show that

() Imz = Im o= 4e(2)) < Tm o(2).

This contradiction proves (a’).

To prove (b), let = be the union of the sets ¢(Q), for £ T, It is
clear that £ C 7. Also, Z contains the sets 7*(Q), for n = 0, +1,
+2, ... ,wherer*(z) = 2+ 2n. Sincesmapsthecircle|2z24+1| =1
onto the circle |2z — 1| = 1, we see that T contains every zeMt
which satisfies all inequalities

(5) 2z — 2m + 1) >1 (m=0, +1, +2, .. ).

Fix w ¢ II*t. Since Im w > 0, there are only finitely many pairs of
integers ¢ and d such that |cw + d|lies below any given bound, and we
can choose ¢o € T s0 that |cw + d| is minimized. By (2), this means
that

(6) Im ¢(w) < Im go(w) (peT).
Put z = go{w). Then (6) becomes
(7 Im ¢(z) < Imz (peT).

Apply (7) to ¢ = 7™ and to ¢ = o~ r . Since

i 22— 2m vy z— 2n
8) () = % —dn + 1 (@) () = — 2z FdnF+1

it follows from (2) and (7) that
9 12¢ —4n+4 1 > 1, |22 — 4n — 1] 2 1
n=0,+1, £2, .. .)

Thus z satisfies (5), hence 2 & Z; and since w = ¢y 1(2) und go~t £ T,
we have we 2.
This completes the proof.

The following theorem summarizes some of the properties of the mod-
ular function X which was mentioned in Sec. 16.18 and which will be used
in Theorem 16.22.

16.20 Theorem If I' and Q are as described in Sec. 16.18, there exists a
function \ € H(II*) such that

(@) No @ = A for every ¢ £ T.
(6) X is one-to-ome on Q.
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(¢) The range @ of N [which is the same as M@Q), by (a)], i3 the region
consisting of all complex numbers different from 0 and 1.
(d) N has the real axis as its natural boundary.

PROOF Let Q¢ be the right half of Q. More precisely, @, consists of
all z ¢ I+ such that

(1) 0 <Rez< 1, |2z — 1| > 1.

By Theorem 14.19 (and Remarks 14.20) there is a continuous func-
tion k on Q, which is one-to-one on Q, and holomorphic in Q,, such
that 2(Qo) = 11+, A(0) = 0, A(1) = 1, and h{xo) = «. The reflec-
tion principle (Theorem 11.17) shows that the formula

(2) h(—z + 1y) = h(z + 7y)

extends h to a continuous function on the closure Q@ of § which is a
conformal mapping of the interior of @ onto the complex plane minus
the nonnegative real axis. We also see that h is one-to-one on @,
that h(Q) is the region © described in (c), that

@) h(—1+iy) =hQ1 +iy) = (=1 +49)) (0 <y < =),
and that

@ Bt + 360 = G + 1) = ho(— + 1)
0 <<,

Since k is real on the boundary of @, (3) and (4) follow from (2) and
the definitions of ¢ and 7.
We now define the function A:

(5) AMz) = h(p™Y(2)) (22 o(Q), peT).

By Theorem 16.19, each z ¢ II* lies in (@) for one and only one
¢ €. Thus (5) defines A(2) for z £ II+, and we see immediately that
A has properties (a) to (¢) and that A is holomorphic in the interior of
each of the sets ¢(Q).

It follows from (3) and (4) that A is continuouson Qu Q) us—(Q),
hence on an open set V which contains . Theorem 16.8 now shows
that A is holomorphic in V. Since [Tt is covered by the union of the
sets ¢(V), ¢ €T, and since A o ¢ = A, we conclude that A & H({JI).

Finally, the set of all numbers ¢{0) = b/d is dense on the real axis.
If A could be analytically continued to a region which properly con-
tains 1I+, the zeros of A would have a limit point in this region, which
is impossible since A is not constant.
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The Picard Theorem

{

16.21 The so-called ‘“little Picard theorem” asserts that every noncon-
stant entire function attains each value, with one possible exception.
This is the theorem which is proved below. There is a stronger version:
Every entire function which ts not a polynomial attains each value infinitely
many times, again with one possible exception. That one exception can
occur is shown by f(z) = ¢*, which omits the value 0. The latter theorem
is actually true in a local situation: If f has an isolated singularity at a
point zq and if f omits two values tn some neighborhood of 2o, then z, is a
removable singularity or a pole of f. 'This so-called “big Picard theorem”

is a remarkable strengthening of the theorem of Weierstrass (Theorem
10.21) which merely asserts that the image of every neighborhood of 2,
is dense in the plane if f has an essential singularity at z,. We shall not

prove it here,

16.22 Theorem If fis an entire function and if there are two distinct com-
plex numbers a and 8 which are not in the range of f, then f is constani.

prooF Without loss of generality we assume that « = O and 8 = 1;
if not, replace f by (f — a)/(8 — a). Then f maps the plane into
the region @ described in Theorem 16.20.

With each disc )y C Q there is associated a region V, C II+ (in
fact, there are infinitely many such V,, one for each ¢ & ') such that
A is one-to-one on V,; and A(V,) = Dy; each such V; intersects at
most two of the domains ¢(Q). Corresponding to each choice of V,
there is a function ¢, € H(D,) such that ¢;(A(2)) = zforall ze V.

If D, is another disc in Q and if DynD, 3= &, we can choose &
corresponding V, so that V,;nV, = &J. The function elements
(¥1,D1) and ($.,1:) will then be direct analytic continuations of each
other. Note that :(D;) C IIt,

Since the range of f is in Q, there is a disc 4, with center at 0 so
that f(A,) lies in a disc Do in . Choose ¢, ¢ H(D,), as above, put
g(2) = Yo(f(2)) for z € Ay, and let v be any curve in the plane which
starts at 0. The range of fo v is a compact subset of 2. Hence ¥
can be covered by a chain of discs, Ay, . . . , A,, so that each A;
lies in a dise D; in 2, and we can choose y; ¢ D; so that ({,,D;) is a
direct analytic continuation of ($i_1,Di-1), fore =1, ... ,n  This
gives an analytic continuation of the function element (g,Ag) along
the chain {4, . . . ,A,}; note that ¢, o fhas positive imaginary part.

Since (g,A;) admits unrestricted continuation in the plane and
since the plane is simply connected, the monodromy theorem impiies
that g extends to an entire function. Also, the range of g 1s In II*,
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hence (g — 7)/(g + ¢) is bounded, hence constant, by Liouville's
theorem. This shows that g is constant, and since ¥, was one-to-one
on f(Ay) and A, was a nonempty open set, we conclude that f is
constant,

Exercises

1 Suppose f(z) = Za.z", a, > 0, and the radius of convergence of
the series is 1. Prove that f has a singularity at z = 1. Hint:
Expand f in powers of z — 1. If 1 were a regular point of f, the
new series would econverge at some z > 1. What would this
imply about the original series?

2 Suppose (f,D) and (g,D) are function elements, P is a polynomial
in two variables, and P(f,g) = 0 in D, Suppose f and g can be
analytically continued along a curve v, to f; and g.. Prove that
P(f1,g1) = 0. Extend this to more than two functions. Is there
such a theorem for some class of functions P which is larger than
the polynomials?

3 Suppose Q is a simply connected region, and u« is a real harmonic
function in €. Prove that there exists an fe H(Q) such that
u = Re f. Show that this fails in every region which is not
simply connected.

4 Suppose X is the closed unit square in the plane, f is a continuous
complex function on X, and f has no zeroin X. Prove that there
is a continuous function g on X such that f = ¢?. For what class
of spaces X (other than the above square) is this also true?

5 Prove that the transformations z — z + 1 and 2 — —1/z generate
the full modular group ¢. Let R consist of all z = « 4 7y such
that |z| < 1, ¥ > 0, and |z| > 1, plus those limit points which
have x < 0. Prove that R is a fundamental domain of G.

6 Prove that G is also generated by the transformations ¢ and ¢,

ﬂr]‘\ onrn
YYillcaw

z—1
2

0@ = —7 Y@ =

Show that ¢ has period 2, ¢ has period 3.

7 Find the relation between composition of linear fractional trans-
formations and matrix multiplication. Try to use this to con-
struct an algebraic proof of Theorem 16.19(c) or of the first part
of Exercise 5.
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f

8 Let E be a compact set on the real axis, of positive Lebesgue

10

11

measure, let @ be the complement of E, relative to the plane, and
define

@ = [%  Geo.

Answer the following questions:

(a) Is f constant?

(b) Can f be extended to an entire function?

(¢) Does lim zf(z) exist as z— ©? If s0, what is it?

(d) Does f have a holomorphic square root in Q?

(e) Ts the real part of f bounded in Q7

() Is the imaginary part of f bounded in Q7
[If “yes” in (e) or (), give a bound.]

(g) What is [,f(2) dz if v is a positively oriented circle which has
E in its interior?

(k) Does there exist a bounded holomorphic function ¢ in 2 which
18 not constant? .

Check your answers in Exercise 8 against the special case

E = (-1,

Call a compact set F in the plane removable if there are no non-
constant bounded holomorphic functions in the complement of E.
(a) Prove that every countable compact set is removable.

(b) If K is a compaet subset of the real axis, and m(K) = 0, prove
that ¥ isremovable. ffint: E can be surrounded by curves of
arbitrarily small total length. Apply Cauchy’s formula, as in
Exercise 11, Chap. 13.

(c) Suppose £ is removable, @ is a region, £ C Q, fe H(Q — E),
and f is bounded. Prove that f can be extended to a holo-
morphie funetion in €.

(d) Formulate and prove an analogue of part (b) for sets £ which
are not necessarily on the real axis.

(e) Prove that no compact connected subset of the plane (with
more than one point) is removable.

IFor each positive number «, let T, be the path with parameter

interval (— »,x) defined by

—t — =t (—e <t < —a),
Ta(f) = a—|—-%” (—a £t < a),
t+ 7 (@ <t < ®),
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12

13

Let Q4 be the component of the complement of T* which contains
the origin, and define

ful2) = 1 ‘/; exp (¢*) dw (z € Q).

27 Jv, w — z

Prove that s is an analytic continuation of f, if &« < 8. Prove
that therefore there is an entire function f whose restrietion to
Q, i3 fo. Prove that

lim f(re’®) = 0

r—3 o
far svory o9 =<1 (Hera » 1g nocitive and 2 ie real aa meiial )
Avra ¥ \-“" o rd A \J.I.\,l \Y3 i A ? HUI“I 1Y Cllva v Al l\Jul’ [4 ) UDUWII}

Prove that fis not constant. {Hini: Look at f(r).] If
g = fexp (=)

prove that

llm g(reia) _— 0

for every e,
Show that there exists an entire function % such that

lim h(nz) = ! } if 2 = 0,

r— {0 if 2z # 0,
Suppose

Find the regions in which the two series converge. Show that
this illustrates Theorem 16.5. Find the singular point of f which
is nearest to the origin.

For real z, define

o = 3 (M)

n=

Apply the Poisson summation formula to y~* sin? y (see Exercise
1, Chap. 9) to get another expression for g(x). Your computation
should produce entire functions @,. (one for each integer m) such
that Gm(z) = g(x)if m < z < m + 1, although the series defining
g{x) diverges for every z which is not real. To check your
computation, verify that g({(3) = % and ¢(%) = $.
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H=spaces

This chapter is devoted to the study of certain subspaces of H(U)
which are defined by certain growth conditions; in fact, they are all con-
tained in the class N defined in Chap. 15. These so-called Hr-spaces
(named for G. H. Hardy) have a large number of interesting properties
concerning factorizations, boundary values, and Cauchy-type representa-
tions in terms of measures on the boundary of {". We shall merely give
some of the highlights such as the theorem of I'. and M. Riesz on meas-
ures u whose Fourier coefficients a(n) are 0 for all n < 0, Beurling’s
classification of the invariant subspaces of H?, and M. Riesz’s theorem
on conjugate functions,

A convenient approach to the subject is via subharmonic functions,
and we begin with a brief outline of their properties.

Subharmonic Functions

17.1 Definition A function v defined in an open set @ in the plane is
said to be subharmonic if

(@) —» < u(z) < « for all ze Q.
(b) u is upper semicontinuous in €.
(¢) Whenever D(a;r) C Q, then

ufa) < % f_" u(a + rei®) dé.
(d) None of the integrals in (¢) is — o,

Note that the integrals in (¢) always exist and are not 4 «, since (a)
and (b) imply that u is bounded above on every compact K C Q. [Proof:

If K, is the set of all zg K at which u(z) > n, then K D K; DK, - -+,
328
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go either K, = & for some n, or NK, # &, in which case u(z) = « for
some z¢ K.] Hence (d) says that the integrands in (¢) belong to LX(T).
Every real harmonic function is obviously subharmonic.

17.2 Theorem If u 8 subharmonic in @, and if ¢ is @ monotonically
increasing convexr function on R, then ¢ o u is subharmonic.

[To have ¢ o u defined at all points of @, we put ¢(— ) = lim ¢(z)
asr — — ]

pROOF First, ¢ o u is upper semicontinuous, since ¢ is increasing
and continuous. Next, if D{(a;r) C Q, we have

o(ula)) < ¢ (?};r f_rw u(a + re) dﬂ) < %r f_: p(ula + re®)) do.

The first of these inequalities holds since ¢ is increasing and wu is
subharmonic; the second follows from the convexity of ¢, by Theo-
rem 3.3.

17.3 Theorem If Q is a region, f £ H(Q), and f 18 not identically 0, then
log |f] is subharmonic in Q, and so are log* |f| and |f|? (0 < p < ).

PROOF It is understood that log [f(z)] = — = if f(z) = 0. Then
log |f] is upper semicontinuous in @, and Theorem 15.19 implies that
log |f| is subharmonic,

The other assertions follow if we apply Theorem 17.2 to log |f] in
place of u, with

e(t) = max (0,1 and o(t) = e?.

17.4 Theorem Suppose u 18 a continuous subharmonic function in @, K
18 a compact subset of Q, h is a continuous real function on K which ts har-
monic in the interior V of K, and u(z) < h(z) at all boundary points of K.
Then u(z) < h(z) for all z¢ K.

This theorem accounts for the term ‘‘subharmonic.” Continuity of
u is not necessary here, but we shall not need the general case and leave

, AJAALpL A ALV LAV LA WARLS E\JLI\/ A ORI
it as an exercise.

PROOF Put u; = u — h, and assume, to get a contradiction, that
u1(z) > 0 for some z¢ V. Since u; is continuous on K, u, attains
its maximum m on K; and since u, < 0 on the boundary of K, the
set E = {z¢ K: u,(2) = m} is a nonempty compact subset of V.
Let 2, be a boundary point of E. Then for some r > 0 we have
D(z;r) C V, but some subarc of the boundary of D(ze;r) lies in the
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complement of E. Hence

1 ,
u(20) = m > o [_ﬂ_ u1(zo + re®) dé,

and this means that u, is not subharmonic in V. But if u is subhar-
monic, so is # — h, by the mean value property of harmonic func-
tions, and we have our contradiction.

17.5 Theorem Suppose u 18 a continuous subharmonic function in U, and
) me) = o [T utreyde O <7 <),

TS - F) R S T Y 4 \
I ry < rq, tnen m(ry) < mira).

PROOF Let k be the continuous function on D(0;rs) which coincides
with « on the boundary of D(0;r,) and which is harmonic in D(0;ry).
By Theorem 17.4, u < h in D(Q;rs). Hence

™ ) 1 /= .
m(r) < o= [7 hre®) do = 1O) = o= (7 h(re®) b = m(ry).

The Spaces H? and N
H

17.6 Theorem If fe H(U), and tf
1 fr .
Mo(fir) = exp 5 / log™ |f(re®)| d6}>
-—T

1 - . 1/p
Mot = Lo 7 e as)” 0 <p <)

Mo (fir) = sup | f(re'®)|,

then My, M, and M, are monotonically increasing functions of v in [0,1).

PROOF For M, and M, this is an immediate consequence of Theo-
rems 17.3 and 17.5. For M, it follows from the maximum modulus
theorem.

This suggests the following definition:
17.7 Definition For any fe¢ H(U) and for 0 < p £ «, we put
1£lls = lim My(f),
where M,(f;r) is as in Theorem 17.6.
For 0 < p £ «, the class H? is defined to consist of all & H(U) for

which [|f|l, < «. Note that this coincides with our previously intro-
duced terminology in the case p = .
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The class N consists of all fe¢ H(U) for which ||f]lo < .
Itisclear that H* CHP CH* C Nif0 <8< p < =,

17.8 Remarks For 1 < p < w, |/f|[, satisfies the triangle inequality,
so that H? is a normed Linear space. To see this, apply the Minkowski
inequality to M ,(f;r):

ey My(f+g;7) S M(fir) + My(gyr) O <r <.
As r— 1, we obtain
2) ”f + g”p < ”f“p + ”9'”9-

Actually, H? 7s a Banach space, if 1 < p < «: To prove the compiete-
ness, suppose {f.} is a Cauchy sequence in H?, |2 < r < R < 1, and
apply the Cauchy formula to f, — fm, integrating around the circle of
radius B. This leads to the inequalities

(R — n)[fal2) — Jm(2)| ‘s M:(fo — fm; B) < My(fn — fm; R)
< fa = fullsy

and we conclude that {f,} converges uniformly on compact subsets of U
to a function of fe H(U). Given e > 0, there exists an m such that
lfa — fmllp < €for all n > m, and then, for every r < 1,

My(f — fmir) = im My(fa — fm;7) < e

This gives ||f — full, > 0asm— «.

For p < 1, H? is still a vector space, but the triangle inequality is
no longer satisfied by {|f|l,.

We saw in Theorem 15.23 that the zeros of any fe N satisfy the
Blaschke condition Z(1 — |aa|) < ®. Hence the same is true in every
He. It is interesting that the zeros of any fe H? can be divided out
without increasing the norm:

17.9 Theorem Suppose feN, f# 0, and B s the Blaschke product
formed with the zeros of f. Put g = f/B. Then ge N and |lgllo = ||flle
Moreover, if f€ H?, then ge H? and |igll, = ||f]» 0 < p £ ).

PROOF Note first that

1) @l = 7@ (ze ).

In fact, strict inequality holds for every z e U, unless f has no zeros
in U, in whichcase B=1and g = .
If s and ¢ are nonnegative real numbers, the inequality

(2) logt (st) < log* s 4 logt ¢
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holds since the left side is 0 if st < 1 and is log s + log ¢ if st > 1.
Since |g| = |f|/|BI, (2) gives

3) log* g < log* |f] + log l—};,-

By Theorem 15.24, (3) implies that ||gilo < [|flls, and since (1) holds,
we actually have IIg!! [ fMlo-

Now suppose f ¢ H? for some p > 0. Let B, be the finite Blaschke
product formed with the first n zeros of f (we arrange these zeros in
some sequence, taking multiplicities into account). Put g, = f/B,.
For each n, |B,(re?}| — 1 uniformly, asr — 1. Hencé ||ga|, = [|f]l»-
As n — », |g,| increases to {g|, so that
@ Mg = lim M,gni) O <7 < 1),
by the monotone convergence theorem. The right side of (4) is at
most || fl|z for all r < 1; and if we let r — 1, we obtain |igll, < IIfl|,
Equality now follows from (1), as before.

The Space H?

l'1" . _....J. cl R P ..J.-_ ~ A TF2 I, Ao dhn Londt dbad 24 2o o TTi1lewwd
11 p L LAUULAL IJLU. CE OI I1° 18 uuU W I.rl..l.U 1aCu WAL 1L i a L1IIUCL Y
space and th t it can be ry easily identified with a certain subspace
of L*T), where T is the mt circle. We recall that the norm of any

g e L¥(T) is
lols = {55 . ot as]’
and that each g ¢ L*(T") has Fourier coefficients
0) = o [ glee=rde  (n=0, £1, £2, .. ).
The basic properties of H? are summarized in the following theorem.

17.10 Theorem
(a) A function fe H(U), of the form
Q) fz) = 2::01,.2" (ze 1),
28 tn H? if and only if Z|a.l? < «; in that case,

@) I£lls = {z;'i jaal2}.
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(b) If fe H?, then f has radial limils f*(e*®) at almost all points of T;

¥ &€ L*(T); the nth Fourier coefficient of f* is a, if n > 0 and 0
if n < 0; the L2-approximation

@  lmg [T I — foenltde = 0

holds; and f is the Poisson integral as well as the Cauchy integral
of f*: If z = re®, then

@ j@) = 5= [T Puo — () de
and
(5) 1@ = 57 f =5

where T 18 the positively oriented unil circle.
(¢) The mapping f — f* ts an isometry of H*® onto the subspace of L2(T)
which consists of those g &€ L*(T) which have §(n) = 0 for alln < 0.

PROOF Direct computation (Parseval’s theorem) shows that

-3

(6) My(fir) = {Y la.2r}t (0 <r<1)
0
This proves (a).
Now suppose f¢ H2. For 0 < s < 1, define functions f, on T by

(7) f,(e‘"’) - f(se“’) = iansneinﬂ.
0

Since Z|a.|* < «, the Riesz-Fischer theorem ensures the existence
of a function g & L2(T) such that §(n) = a. forn > 0 and g(n) = 0
forn < 0. The Fourier coefficients of g — f, are (1 — s*)a.if n > 0.
Another application of Parseval’s theorem therefore shows that

L
@) lg — filld = 3 (1 — s7)?aaf?

1
A o 1 b 1T I L sON A .. on oY T T alod
8 5 -7 1, VB I1ZOL Siae UL (O) Lenus U, aiid we COnciuae uviiav

©) lim [lg — £ = 0.

For any fixed se (0,1), f(sz) is holomorphic in D{0;1/s). Hence
if ze U and 2 = re', we have

(10) f(s2) = % * o — 056
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and

fa(s‘)
(1) f2) = 5t [ E8 .

Consider the differences between these integrals and the corre-
sponding ones with g in place of f,. The Schwarz inequality, com-
bined with (9), then gives (4) and (5), with g in place of f*. So fis
the Poisson integral of ¢; and since g £ L*(T), the Corollary to Theo-
rem 11.10 shows that the radial limits of f exist and are equal to
g a.e. on 7. This proves (b).

That || *|l: = || f]l2 follows from (3). The proof of (b) shows that
all Fourier coefficients of f* are 0 forn < 0. To complete the proof
of {(¢), suppose g € L*(T) and ¢(n) = § for all n < 0, and put

12) 1) = i:,o(noz».

Then f e H? by (a), and the proof of (b) shows that f* = g,

17.11 Remark Suppose f ¢ H? for some p > 0, B'is the Blaschke product
formed with the zeros of f, and g = f/B. Theorem 17.9 shows that
g e H», and even that |lg|l, = [|fll,. Since g has no zero in U and U is

simply connected, there exists ¢ € H(U) such that exp (¢) = g (Theorem
12 18\ Put b = oxn (ne/?2) Then he n{TT\ and 1hl2 = |n|P hance

il & MpS NJN ) ). A AAV/LL TV % L& W [LA2] 11 ARG ARI

he H?. In fact, |Rfi} = flgl2.
Thus f has a factorization of the form
0 f =B

where h € H? and h has no zero in U. This makes it possiblé, in many
cases, to apply HZ2results to functions in any H?. The proof which
follows uses this technique.

17.12 Theorem Iffe HY, then

1) F*(e°) = lim f(re¥)

exists at almost all points of T, and

@ llm— j [f*(e®) — f(re®*)] dO = 0.

PROOF That the limit (1) exists a.e. follows from the Corollary to
Theorem 11.19. If B is the Blaschke product formed with the zeros
of f, the preceding remark shows that there exists an h ¢ H? such that
h* = f/B and [kl = ||fll.. Putg = Bh. Thenge H |iglls = [|k|ls,
and f = gh. We have factored f into a product of two functions
belonging to H?,
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Define f, on T by f(e?%) = f(rei?), and define g, and k, in the same
manner. Since f* = g*4* a.e., we have

3 f* —fr=g*h*— h) + hr(g* - g:).

By Theorem 17.10, [[A* — &,|ls— 0 and |g* — g,]:— 0 as r— 1.
Also,

@ lg*II3 = llglls = A1l
and
(5) 1212 < [|Al1E = {1 £]]1

If we apply the Schwarz inequality to each of the two products on
the right of (3), we therefore conclude that ||f* — /|1 > 0 as r— 1.

Corollary If f& H*, then f 1s the Poisson integral and the Cauchy integral
of f*.

ProOF If R < 1 and g¢g(z) = f(Rz), then g ¢ H(D), where

D = D(0;1/R).
Hence, for z¢ U,

f(Rz) = L r f(B) ,,

I o g =2

1 (= f(Re")

o J-x et — zID

Now fix ze U, let R— 1, and use (2). This gives the Cauchy

representation. The Poisson representation is obtained in the same
manner.

The Theorem of F. and M. Riesz
17.13 Theorem If p 18 a@ complex Borel measure on the unit circle T and if
(1) fre™du® =0 (n=—1,-2-3..),

then p is absolutely continuous with respect to Lebesgue measure.

ProOF For z ¢ U, define

(2) f(2) = _au@®)

Tl — ze™%
If z = re*, then

(3) (1 — ze=*)—1 = Z prgin(6—1)_
nm=Q
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and since

4) Pi(6 — f) = Y rnlginte-n,

-0

(1) shows that f is also given by the Poisson integral

() £&) = [, P.i6 — 1) du(d).

Hence

© M) < [ diui@) 5 [7 PG~ 0 do = lul,

forian M nnwnms 17 163 thad
i 1i.1& viiav

(7) f@) = 5= 7 Pu6 — 0f*(e¥) dt,

where f* ¢ L'(T). Comparison of (5) and (7) yields
1 )
® au(d) = 5 fe db

by Theorem 11.19. This gives the desired conclusion.

The remarkable feature of this theorem is that it derives the absolute
continuity of a measure from an apparently unrelated condition, namely,
the vanishing of one-half of its Fourler coefficients. In recent years
the theorem has been extended to various other situations,

Factorization Theorems

We already know from Theorem 17.9 that every f € H? (except f = 0)
can be factored into a Blaschke product and a function g ¢ H» which has
no zeros in U. There is also a factorization of g which is of a more subtle
nature. It concerns, roughly speaking, the rapidity with which g tends
to 0 along certain radii.

17.14 Definition An inner function is a function M e H= for which
|M* =1 ae. on7. (Asusual, M* denotes the radial limits of M.)

If ¢ is a positive measurable function on T such that log ¢ ¢ LY(T),
and if

(1) Q(z) = cexp {§1rl— /: et log ¢(e*) dt]

e — 2

for ze U, then Q is called an outer function. Here cis a constant, [¢| = 1.
Theorem 15.24 shows that every Blaschke product is an inner function,
but there are others. They can be described as follows.
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17.15 Theorem Suppose ¢ is a constant, |c| = 1, B 13 a Blaschke product,
p 18 a finite positive Borel measure on T which is singular with respect to
Lebesgue measure, and

et‘

(1) M(z) = ¢B(2) exp{— [ e i_zdu(t)] (ze U).

Then M 18 an inner function, and every tnner function 18 of this form.

prooF If (1) holds and g = M/B, then log |g| is the Poisson integral
of —du, hence log lg| < 0, so that g € H*, and the same is true of M.
Also, Du = 0 a.e., since p is singular (Theorem 8.6), and therefore
the radial limits of log |g] are 0 a.e. (Theorem 11.10). Since |B*| = 1
a.e., we see that M is an inner function.

Conversely, let B be the Blaschke product formed with the zeros
of a given inner function M and put g = M/B. Then log |g| is
harmonic in /. Theorems 15.24 and 17.9 show that |¢g| < 1in U
and that |g*| = 1 a.e. on T. Thus log |[g| < 0. We conclude from
Theorem 11.19 that log |g| is the Poisson integral of —du, for some
positive measure g on 7. Since log |g*| = 0 a.e. on T, we have
Dy = 0a.e. on T, so p is singular. Finally, log |g{ is the real part of

LRI ‘t +
nz) = j a#(‘);

and this implies that g = ¢ exp (k) for some constant ¢ with |¢| =
Thus M is of the form (1).
This completes the proof.

The simplest example of an inner function which is not a Blaschke
product is the following: Take ¢ = 1 and B = 1, and let p be the unit mass
att = 0. Then

M(z) = exp {z + }},

which tends to 0 very rapidly along the radius which ends at z = 1.

17.16 Thegrem Qumnmnee )
L] IR

AV E EIiVIFE L AKR

17.14. Then

(a) log |Q| #s the Poisson integral of log e.
(b) lim |Q(re’®)| = () a.e. on T.
r~+1

(¢) Qe H? if and only if ¢ € L*(T). In this case, |Qll, = [l¢|l,

PROOF (a) is clear by inspection, and (a) implies that the radial
limits of log |Q| are equal to log ¢ a.e. on T, which proves (). If
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Q & H7, Fatou’s lemma implies that [[Q*|, < (@], so flell, < 1Q1l,,
by (b). Conversely, if ¢ ¢ L?(T), then

(QCe)z = exp {o [P0 — 1) log o7

1 = i
<o [P0 — 07

by the inequality between the geometric and arithmetic means (The-
orem 3.3), and if we integrate the last inequality with respect to ¢ we
find that ||Q|, < |lell, if p < ®. The case p = = is trivial.

17.17 Theorem Suppose 0 < p < =, fe H?, and f 45 not identically 0.
Then log |f*| € LYT), the outer function

® Q) = exp {5 7 52 log |+ o
18 in H?, and there is an inner funciion M, such that

(2) f=MqQ,.

Furthermore,

® log 1/0)] < o [ log |f*(e")] dt.

Equality holds in (3) if and only if M, is constant.

The functions M; and Q; are called the inner and outer factors of f,
respectively; Q; depends only on the boundary values of |f].

PROOF We assume first that f&¢ H*. If B is the Blaschke product
formed with the zeros of f and if ¢ = f/B, Theorem 17.9 shows that
g € H'; and since |g*| = |f*| a.e. on T, it suffices to prove the theorem
with ¢ in place of f.

So let us assume that f has no zero in U and that f(0) = 1. Then
log |f| is harmonic in U, log |f(0)| = 0, and since log = logt — log~,
the mean value property of harmonic functions implies that

@) g [ log |ftre)| do = o [ logt Lf(re®)| do < 1o < 11

for 0 <r < 1. It now follows from Fatou’s lemma that both
log™ |f*| and log— |f*| are in LY(T), hence so is log |f*|.

This shows that the definition (1) makes sense. By Theorem 17.16,
Qse H. Also, |QF| = |f*| # 0 a.e, since log |f*| e L}(T). If we



HP-spaces 339

can prove that

G F@ <10 (22 D),

then f/Q; will be an inner function, and we obtain the factorization (2).
Since log |Q,| is the Poisson integral of log |f*|, (5) is equivalent
to the inequality

(6) log |f] < Pllog |/*],

which we shall now prove, Qur notation is asin Chap. 11: P{A] is the
Poisson integral of the function k & LY(T).
Forjzl| < 1and 0 < R < 1, put fr(z) = f(Rz). Fixze U. Then

(1) log |fz(2)| = Pllog* |f£|1(2) — Pllog= |fr|1(2).

Since |logt ¥ — logtv| < [u — »| for all real numbers 4 and v, and
since ||fr — f*Ili— 0 as R — 1 (Theorem 17.12), the first Poisson
integral in (7) converges to Pllogt |f*|], as R — 1. Hence Fatou’s
lemma. gives

(8) Pllog~ |f*]] < lir;l_'i{lf Pllog— |f&l]

= Pllog* |f*] — log |f],

which is the same as (6).

We have now established the factorization (2). If we put 2 =0
in (5) we obtain (3); equality holds in (3) if and only if |f(0)| = |Q,(0)|,
ie., if and only if |M,(0)| = 1; and since ||M;||. = 1, this happens
only when M/ is a constant.

This completes the proof for the case p = 1.

If1 < p < =, then H? C H!, hence all that remains to be proved
is that Q; € H». But if fe¢ H?, then |f*| ¢ L?(T), by Fatou’s lemma;
hence Q; € H?, by Theorem 17.16(c).

If p < 1, we can use the technique described in Sec. 17.11. We
leave the details as an exercise.

The fact that log |f*| € L(T) has a consequence which we have already
used in the proof but which is important enough to be stated separately:
17.18 Theorem If0 < p < «, fe H?, and f is not identically 0, then al
almost all points of T we have f*(e®) # 0.

prooF If f* = 0 then log |f*| = — %, and if this happens on a set
of positive measure, then

]f, log |f*(e")| dt = — .



340 Real and complex analysis

Observe that Theorem 17.18 imposes a quantitative restriction on the
location of the zeros of the radial limits of an f &€ H?. Inside U the zeros
are also quantitatively restricted, by the Blaschke condition.

As usual, we can rephrase the above result about zeros as a uniqueness
theorem:

If f ¢ H?, g ¢ H?, and f*(e¥®) = ¢g*(e®) on some subset of T whose Lebesgue
measure s positive, then f(2) = g(z) for all ze U.

17.19 Let us take a quick look at the class N, with the purpose of deter-
mining how much of Theorems 17.17 and 17.18 is true here. If f&e N and
f # 0, we can divide by a Blaschke produet and get a quotient g which
has no zero in U and which is in N (Theorem 17.9). Then log |g] is

harmonic, and since

ey flog |g| | = 2 log* Ig| — log lg]

and

@ o [ Tog lg(re®)| de = log g(0)]
5 J_.log lg g lg(0)l,

we see that log |g| satisfies the hypotheses of Theorem 11.19 and is there-
fore the Poisson integral of a real measure p. Thus

®) @) = @ exp | [ 52 auo)

where ¢ is a constant, |¢| = 1, and B is a Blaschke product.

Observe how the assumption that the integrals of log* |g| are bounded
(which is a quantitative formulation of the statement that |g| does not
get too close to «) implies the boundedness of the integrals of log™ lg|
(which says that |g| does not get too close to 0 at too many places).

If u is a negative measure, the exponential factor in (3) is in H=.
Apply the Jordan decomposition to u. This shows:

To every fe N there correspond two functions by and by € H* such that b.
has no zero in U and f = by/b..

Since bf # 0 a.e., it follows that f has finite radial limits a.e. Also,
f* # 0 a.e.

Is log |f* e LY(T)? Yes, and the proof is identical to the one given in
Theorem 17.17.

However, the inequality (3) of Theorem 17.17 need no longer hold.
For example, if

@ &) = exp {12},

Z
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then ||fllo = ¢, |f*] = 1 a.e., and

(%) log IfO)] = 1> 0 = o= [7 log [f*(e)] dt.

The Shift Operator

17.20 Invariant Subspaces Consider a bounded linear operator S on a
Banach space X; that is to say, S is a bounded linear transformation of
X into X. If a closed subspace Y of X has the property that S(¥Y) C Y,
we call Y an S-tnvariant subspace. Thus the S-invariant subspaces of X
are exactly those which are mapped into themselves by S.

The knowledge of the invariant subspaces of an operator S helps us to
visualize its action. (This is & very general—and hence rather vague—
principle: in studying any transformation of any kind, it helps to know
what the transformation leaves fixed.) For instance, if S is a linear
operator on an n-dimensional vector space X and if S has n linearly

independent characteristic vectors =i, . . . , #., the one-dimensional
spaces spanned by any of these z; are S-invariant, and we obtain a very
simple description of S if we take {z,, . . . ,z.} a8 & basis of X.

We shall describe the invariant subspaces of the so-called “shift oper-
ator” S on £2. Here £ is the space of all complex sequences

(1) T = {50,51;52:53» . - '}
for which
@) = = { 3, &2} < =,

and S takes the element x & £ given by (1) to

(E) Sx = {0)£0;£l’£2; . . -}-

It is clear that S is a bounded linear operator on £2 and that ||S] = 1.

A few S-invariant subspaces are immediately apparent: If Y} is the set
of all z ££2 whose first k& coordinates are 0, then Y, is S-invariant.

To find others we make use of a Hilbert space isomorphism between (2
and H? which converts the shift operator S to a multiplication operator
on H% The point is that this multiplication operator is easier to analyze
(because of the richer structure of H? as a space of holomorphiec functions)
than is the case in the original setting of the sequence space 2,

We associate with each z £ 3, given by (1), the function

@ @ =3 ter el

n=0
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By Theorem 17.10, this defines a linear one-to-one mapping of ¢* onto
H: If

®) y=1{ml, ¢@=3 me

n={)

and if the inner product in H? is defined by
1 /= ) -
®) (f9) = 5= [ HeNg7 @™ de,

the Parseval theorem shows that (f,g) = (z,y). Thus we have a Hilbert,
space isomorphism of {2 onto H?, and the shift operator S has turned into

a multiplication operator (which we still denote by S) on H%

(7) (8)(2) = 2f(z)  (feH? ze U).

The previously mentioned invariant subspaces Y, are now seen to con-
sist of all f ¢ H? which have a zero of order at least k at the origin. This
gives a clue: For any finite set {a1, . . . ,ax} C U, the space Y of all
fe H? such that f(e;) = - - - = flew) = 0 is S-invariant. If B is the
finite Blaschke product with zeros at ey, . . . , o, then f & Y if and only
if f/Be H:. Thus Y = BH%

This suggests that infinite Blaschke products may also give rise to
S-invariant subspaces and, more generally, that Blaschke products might
be replaced by arbitrary inner functions ¢. It is not hard to see that
each ¢H? is a closed S-invariant subspace of H?, but that every closed
S-invariant subspace of H? is of this form is a deeper result.

17.21 Beurling’s Theorem

(a) For each inner function ¢ the space
eH? = {of: f£ H?}

18 a closed S-invariant subspace of H

(b) If ¢1 and g are inner functions and if ¢1H? = @H?, then o1/ ¢2 18
constant.

(¢) Every closed S-invariant subspace Y of H?, other than {0}, containg
an tnner function ¢ such that ¥ = oH?%,

PrROOF H?is a Hilbert space, relative to the norm

= l Tk pi0)|2 }

@ Il = {5 [ 17 as)’
If ¢ is an inner function, then |¢*| = 1 a.e. The mapping f— of
is therefore an isometry of H? into H?; being an isometry, its range
oH? is a closed subspace of H?. [Proof: If ¢fa — g in H? then {of.}
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is a Cauchy sequence, hence so is {f.}, hence f., — fe& H? so
g = of e pH%] The S-invariance of ¢H? is also trivial, since
z-of = ¢ 2f. Hence (a) holds.

If ¢1H2 = qasz, then 1= lpzf for some f£ Hz, hence (01/502 e H2.
Similarly, ¢:/¢1€ H:. Put ¢ = ¢1/¢: and h = ¢ + (1/¢). Then
h g€ H? and since |¢*| = 1 a.e. on T, h* is real a.e. on T, Since & is
the Poisson integral of A* it follows that % is real in U, hence h is
constant. Then ¢ must be constant, and (b) is proved.

The proof of (¢) will use a method originated by Helson and
Lowdenslager. Suppose Y is a closed S-invariant subspace of H?
which does not consist of 0 alone. Then there is a smallest integer k

such that Y contains a function f of the form
--3
3) @y =Y e a=1
n=k

Then f ¢ zY, where we write zY for the set of all g of the form
g(z) = zf(z), fe Y. It follows that zY is a proper closed subspace of
Y [closed by the argument used in the proof of (a)], so ¥ contains a
nonzero vector which is orthogonal to z¥ (Theorem 4.11).

So there exists a ¢ & Y such that |l¢fl: =1 and ¢ L 2Y. Then
¢ Lz, for n=1,2 3, .... By the definition of the inner

=5 53 23 + = 2111 Wl

produet in H? [see 17.20(6)] this means that

(4) 2}‘; [:r lo*(ei®) |20 d8 = 0 n=123....

These equations are preserved if we replace the left sides by their
complex conjugates, ie., if we replace n by —n. Thus all Fourier
-coefficients of the function |¢*|? e L}(T) are 0, except the one cor-
responding to n = 0, which is 1. Since L*-functions are determined
by their Fourier coefficients (Theorem 5.15), it follows that |¢*| =1
a.e. on T. But ¢ £ H? s0 ¢ is the Poisson integral of ¢*, and hence
e} € 1. We conclude that ¢ is an inner function.
Since ¢ £ Y and Y is S-invariant, we have ¢z" ¢ Y for

n=012 ...,

hence ¢P € Y for every polynomial P, The polynomials are dense
in H? (the partial sums of the power series of any f € H? converge to
f in the H2-norm, by Parseval’s theorem), and since Y is closed and
lel € 11t follows that ¢H2 C ¥. We have to prove that this inclu-
sion is not proper. Since ¢H? is closed, it is enough to show that the
assumptions he Y and h 1 oH? imply h = 0.



344 Real and complex analysis

Ifh 1 oH% thenh L gzforn=0,1,2, . .. ,0r
A i\ F (B in g — —
(5) 5= [_Th (e p*(eit)e " df = 0 n=20,1,2,.. ).

Ifhe Y, thenzrhezYifn = 1,2,3, . . . , and our choice of ¢ shows
that z"h L ¢, or

Ve ap oy ¥ it = = —1, -2 —
®) o [ T EMeds =0 (n=—1,-2 =3, .. ).

Thus all Fourier coefficients of h*p* are 0, hence h*p* = 0 a.e. on T';
and since |¢*| = 1 a.e., we have h* = 0 a.e. Therefore 4 = 0, and

+ha nraof 12 comnlete
ViAW Pluv‘. Fag vva;;yavvv-

17.22 Remark If we combine Theorems 17.15 and 17.21 we see that the
S-invariant subspaces of H? are characterized by the following data: a
sequence of complex numbers {a,} (possibly finite, or even empty) such
that [as| < 1 and Z(1 — ]aa|) < =, and a positive Borel measure p on
T, singular with respect to Lebesgue measure (so Dug = 0 a.e.). It is
easy (we leave this as an exercise) to find conditions, in terms of {a.} and
#, which ensure that one S-invariant subspace of H? contains another.
The partially ordered set of all S-invariant subspaces is thus seen to have
an extremely complicated structure, much more complicated than one
might have expected from the simple definition of the shift operator on £2.

We conclude the section with an easy consequence of Theorem 17.21
which depends on the factorization described in Theorem 17.17.

17.23 Theorem Suppose M; is the inner factor of a function f e H?, and
Y ts the smallest closed S-invariant subspace of H* which contains f. Then

1) Y = MH
In particular, Y = H? if and only +f f 18 an outer function.

PROOF Letf = M,Q, be the factorization of f into its inner and outer
factors. It is clear that fe M H?; afid since M H? is closed and S-
invariant, we have ¥ C M H2

On the other hand, Theorem 17.21 shows that there is an inner
function ¢ such that ¥ = @H? Since fe Y, there exists an
h = M@ e H? such that

(2) MQ; = oMQs.

Since inner functions have absolute value 1 a.e. on T, (2) implies that
Q; = @, hence M; = oM, ¢ Y, and therefore ¥ must contain the
smallest S-invariant closed subspace which contains M, Thus
M;H* C Y, and the proof is complete.
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It may be of interest to summarize these results in terms of two ques-
tions to which they furnish answers,

If f ¢ H?, which functions g € H? can be approximated in the H2-norm
by functions of the form fP, where P runs through the polynomials?
Answer: Precisely those g for which g/ M, e H?

For which f € H? is it true that the set {fP} is dense in H?? Answer:
Precisely for those f for which

log fO)] = 5 [, log |9 d.

17.24 Formulation of the Problemm Every real harmonic function % in
the unit disc U is the real part of one and only one f € H(U) such that
f0) = u(0). If f = u 4+ 7v, the last requirement can also be stated in
the form »(0) = 0. The function » is called the harmonic conjugate of u,
or the conjugate function of u.

Define M,(u;r) as in Theorem 17.6 (with % in place of f). Since |u| is
subharmonic, Theorem 17.6 applies to M,(u;r). Hence, if p > 1,

(1) lim M (u;r) = sup Mp(u;r).
r—1 0<r<1

We shall denote this common value by [ju],.
The following question now arises: Does the finiteness of ||u||, tmply the
finiteness of ||v||?
The question is equivalent to the following: Must fe H? if |lu|l, < =?
Yet another formulation of the question is contained in Exercise 17,
The answer (given by M. Riesz) is affirmative if 1 < p < =, (For
p = land p = it is negative; see Exercise 16.) The precise statement
is given in Theorem 17.26.

17.25 Lemma Suppose 1 < p < 2. There exists a positive constant B,
depending only on p, such thal

(1) (1 + B)(Beos8)* — Beospg > 1 (-g <8< g)
PROOF Put B = (cos §)', where § is chosen so that (1 + p)é = m.
Then 8 < n/2, so that B > 0, and cos pd = — cos é.
If 0 < |8| £ 5, then Beos 8 > B cos 8 = 1, so that the left side of
(1) is at least (1 + B) — B = 1.
If 8 < |B] < /2, then pé < p|B| £ pr/2 < 7, so that

cos p8 < cos pé = —1/B.
Hence — B cos p8 > 1, and (1) holds again.
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17.26 Theorem To each p such that 1 < p < « there corresponds a con-
stant A, such that the inequality

(1) lolls < Apllull,

holds for every real harmonzc function u in U if v is the harmonic conjugaie
of u.

PROOF We first assume 1 < p < 2, and put f = u + w.

The lemma settles the case in which « > 0 in U. For then f has
no zero in U; and since U is simply connected there exists a g ¢ H(U)
such that f = ¢?, g = a + 78 (so that « and 8 are harmonic), and
B(0) = 0. Sinceu > 0, we have |8| <7/21in U. Since

(2 u = e*cos B = |f] cos B,
Lemma 17.25 shows that
(3) Ifir £ (1 + B)B?u® ~ B|f]» cos p8.

Observe that |f]? cos pB is the real part of exp (pg) and is therefore
harmonic, so that

4) :21; _f:, |f(rei®)|? cos [p8(re®)] do = |f(O))? >0 (0O <r < 1),

Hence integration of (3) leads to

(5) Iflls < C”u“p

where C = (1 + B)Y*#B.

This is the crux of the proof. The rest is a matter of routine and
can be handled in various ways.

If w > 0in U and u is continuous on U, then (5) can be written in
the form

(®) 17l < © {5 [ uere arf ™

Now suppose u is continuous on U, real and harmonic in U, and

f‘ nﬁn o
A RARARS

—-}- - e“"{"z
(7) fl(z - 2’” — eit Y-

ut(e®) dt = ui(2) + w.(2),

for z & U; define f; = uy -+ ; in the same way, with %~ in place of
ut. Then (6) applies to the pairs fi, u1 and f2, 4. in place of f, w.
OnTwehavew, = ut < |[ul. OnU,u=u1— us. InU,f=fi—fa
It follows that the pair f, u satisfies (6) with 2C in place of C. Hence
(1) holds with 4, = 2C, provided « is continuous on U.
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In the general case, choose R < 1, and put fr(z) = f(Rz), for
ze U. The preceding case applies to fr. Since |uzril, < l|lul, we
obtain

@) [fzlly < Apllunll, < Apllull,

for every R < 1, and this gives (1), since j»| < |fl.

We have now proved the theorem for 1 <p < 2.

To complete the proof, suppose 2 < ¢ < = and let p be the
exponent conjugate to q.

Let % and v be as in the statement of the theorem, put f = u + 4,
and let g(z) = a(z) 4+ #8(2) be a polynomial, with g(0) real. We

nla
widkilil

()] —21; [:r u(ret®)8(e®) df = — % ; v(rei®) ale’) de
for0 < r < 1. To see this, note that uf + ve is harmonie, being the
imaginary part of fg. Hence

10) o [7 [u(re)B(e) + o(re®)a(e)] db = u(OF(O) + v(0)x(0),

and since 8(0) = O and v(0) = 0, we obtain (9). The Hélder inequal-

. .
1ty now oves
J-UJ lllll b" ¥ Wi

D) |5 [7, oreate do| < Nl < oAl

Since the real trigonometric polynomials « are dense in the space of
all real L?-functions on 7, (11) and Theorem 6.16 show that

lvlle < Apllulle.

We have now proved the theorem for 2 < ¢ < =, and we see that
A, < A, If we take the smallest admissible values for 4, and 4,,
the last computation can be reversed, and we find that 4, = A,.

Exercises

1 Suppose f € H(U) and f(U) is not dense in the plane. Prove that
f has finite radial limits at almost all points of T'.

2 Prove that f & N if and only if f = g/h, where g and h ¢ H= and A
has no zero in U.

3 If f£ H' and f* £ L?(T), prove that f e H>.
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Fix a £¢ U. Prove that the mapping f — f(«) is a bounded linear
functional on H% Since H?is a Hilbert space, this functional can
be represented as an inner product with some g ¢ H2.  Find this g.
Fix aeU. How large can |f'(a)| be if ||f|: £ 1? Find the
extremal functions. Do the same for f™(a). '

Suppose 0 < p £ « and fe H(U). Prove that f ¢ H?if and only
if there is a harmonic function % in U such that |f(2)|? < u(2) for
all ze U. Prove that if there is one such harmonic majorant u of
|f|?, then there is a least one, say u,. (Explicitly, |f|? < u; and
uy is harmonic; and if {f|* € u and » is harmonic, then u; < u.)
Prove that ||f||, = us(0)¥?. Hint: Consider the harmonic func-
tions in D(Q;R), B < 1, with boundary values |f|?, and let R — 1.
Prove likewise that f £ N if and only if log* |f| has a harmonic
majorant in U.

Suppose f e H?, o € H(U), and «(U) C U. Does it follow that
fe o e H?? Answer the same question with N in place of H>,

If 0 < r < s < «, show that H* is a proper subclass of H',
Show that H= is a proper subclass of the intersection of all H»
with p < o,

Prove Theorems 17.4 and 17.5 for upper semicontinuous sub-
harmonic functions.

Suppose p > 1, f& H?, and f* is real a.e. on T. Prove that f is
then constant. Show that this result is false for every p < 1.
Complete the proof of Theorem 17.17 for the case 0 < p < 1,
Let ¢ be a nonconstant inner function with no zero in U.

(a) Prove that 1/o ¢ H?if p > 0.

(b) Prove that there is at least one ¢! £ T such that lirr; o(rei?) = 0,

Hint: log |¢| is a negative harmonic function.
Suppose ¢ is a nonconstant inner function, |a| < 1, and a ¢ o(U).
Prove that lim ¢(re’®) = « for at least one e ¢ T'.
r—1

The conformal mapping of U onto a vertical strip shows that
M. Riesz’s theorem on conjugate functions cannot be extended to
p = . Deduce that it cannot be extended to p = 1 either.
Suppose 1 < p < <, and associate with each f £ L?(T) its Fourier
coefficients

fn) = % /:rf(e“)e"""‘ dt n=0, +1, +2, .. ).

Deduce the following statements from Theorem 17.26:
(a) To each f€ L?(T) there corresponds a funection ¢ £ L?(T) such
that g(n) = f(n) for n > 0 but g(n) = 0 for all n < 0. In
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fact, there is a constant C, depending only on p, such that
lglls < ClI A5

The mapping f— g is thus a bounded linear projection of
L?(T) into L?(T). The Fourier series of g is obtained from
that of f by deleting the terms with n < 0.

(b) Show that the same is true if we delete the terms with » < k,
where k is any given integer.

{¢) Deduce from (b) that the partial sums s, of the Fourier series
of any f&L?(T) form a bounded sequence in L?(T). Con-
clude further that we actually have

lim ”f - sﬂ”p = 0.
L ad

(d) If f £ L?(T) and if

Fe = ) e,

n=_0

then F £ H?, and every F £ H? is so obtained. Thus the pro-
jection mentioned in (@) may be regarded as a mapping of
L?(T) onto H>.

18 Show that there is a much simpler proof of Theorem 17.26if p = 2,
and find the best value of A..

19 Supposefe H'and1/fe HY, Provethat fisthen an outer function.

20 Suppose fe H* and Re [f(z)] > 0 for all z¢ U. Prove that f is
an outer function.

21 Suppose f € H(U), and suppose there exists an M < < such that
f maps every circle of radius r < 1 and center 0 onto a curve v,
whose length is at most M. Prove that f has continuous exten-
sion to U and that the restriction of f to T is absolutely continuous.

22 Suppose u is a complex Borel measure on T such that

[T emdu®) =0 (n=123,....

Prove that then either x = 0 or the support of g is all of T.

23 Suppose K is a proper compact subset of the unit circle 7. Prove
that every continuous function on K can be uniformly approx-
imated on K by polynomials. Hini: Use Exercise 22.

24 Prove that the following statements are correct if {nx] i3 a sequence
of positive integers which tends to « sufficiently rapidly. If

f&) = ): =
kml
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then |f'(z)] > n:/(10k) for all z such that

1 1

Hence Ll |f (re®)} dr = o

for every 4, although
; B ot it
i [ e

exists (and is finite) for almost all 8. Interpret this geometrically,
in terms of the lengths of the images under f of the radii in U.

25 Suppose f(2) = z a.z" in U and Z|a.| < «. Prove that

0

L Y re)| dr < w

for all 4.
26 Find the conditions mentioned in Sec. 17.22.

27 Prove the following converse of Theorem 15.24:
If fe H(U) and if

*) lim [ llog| f(re®)] |d6 = O,
then f is a Blaschke product. Hint: (*) implies
lim f " log* |f(re'®)| do = 0.
r—1 J77T

Since log* |f| > 0, it follows from Theorems 17.3 and 17.5 that
logt|f| = 0,50 |f] £ 1. Now/f = By, g has no zeros, |g| < 1, and

(*) holds with 1/g in place of f. By the first argument, |1/g] < 1.
Hence g = 1.
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Elementary Theory
of Banach Algebras

Introduction

18.1 Definitions A complex algebra is a vector space A over the complex
field in which an associative and distributive multiplication is defined, i.e.,
A1) z(z) = (zy)e, (z+ 2z = 2z + yz, x(y +2) = 2y + z2

for z, y, and 2z € A, and which is related to scalar multiplication so that
(2) a(zy) = z(ay) = (ax)y

for z and y £ A, a a scalar.
If there is a norm defined in A which makes A into a normed linear
space and which satisfies the multiplicative inequality

@) lleyll < llzll llyll  (randye4),

then A is a normed complex algebra. 1f, in addition, A is a cemplete
metric space relative to this norm, i.e., if A is a Banach space, then we
call A a Banach algebra.

The inequality (3) makes multiplication a continuous operation. This
means that if 2, — z and y, — y, then z.y, — zy, which follows from (3)

and the identity
4) TalYn — TY = (Tn — T)Ya + 2(Ya — ¥).

Note that we have not required that A be commutative, i.e., that
zy = yz for all z and y & 4, and we shall not do so except when explicitly
stated.

However, we shall assume that A has a undt, This is an element e such
that

(5) Te = ex = 2 (z e A).
351 .
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It is easily seen that there is at most one such e (¢/ = ¢’e = ¢) and that
leil = 1, by (3). We shall make the additional assumption that

(6) lleli = 1.

An element z ¢ A will be called snvertible if x has an inverse in 4, i.e.,
if there exists an element z—! ¢ 4 such that

(7) rir=xrl=ec

Again, it is easily seen that no r € A has more than one inverse.
If z and y are invertible in 4, so are 7! and zy, since (zy)™! = y~ =z~ L
The invertible elements therefore form a group with respect to multi-
The spectrum of an element z ¢ 4 is the set of all complex numbers A
such that & — Ae is not invertible. We shall denote the spectrum of z

by ¢(x).

18.2 The theory of Banach algebras contains a great deal of interplay
between algebraic properties on the one hand and topological ones on the
other. We already saw an example of this in Theorem 9.21, and shall
see others. There are also close relations between Banach algebras and
holomorphie functions: The easiest proof of the fundamental fact that
o(r) is never empty depends on Liouville’s theorem concerning entire
functions, and the spectral radius formula follows naturally from the-
orems about power series. This is one reason for restricting our attention
to complex Banach algebras. The theory of real Banach algebras (we
omit the definition, which should be obvious) is not so satisfactory.

The Invertible Elements

In this section, A will be a complex Banach algebra with unit e, and G
will be the set of all invertible elements of A.

18.3 Theorem Ifze A and|z| < 1,thene+ 2£G,

(1) e+ o) =) (=1,
n=0

and

@ e + 207 — e+ ol < 2h

PrROOF The multiplicative inequality satisfied by the norm shows
that ||zl < |«"=. If

(3) SN:e‘_x"{"xz—"‘-I—(—l)NxN’
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it follows that {sx} is a Cauchy sequence in A4, hence the series in (1)
converges (with respect to the norm of A) to an element y ¢ A.
Sinee multiplication is continuous and

(4) (e + z)en = ¢ + (—1)NzxN+ = gy(e + 2),

we see that (e + z)y = ¢ = yle + x). Thisgives (1), and (2) follows
from

o

@ |3 cow|< S wis T =gl
n=2 n

n=2 =92

18.4 Theorem Suppose zeG, |z~ = /o, he A, and ||h|| = 8 < o
Then z + he G, and

1) & + B — o + 27ha || < o

(e — )

PROOF |z~1h|| < B/a < 1, hence ¢ + z~he G, by Theorem 18.3;
and since ¢ + b = z(e + k), we have z + h ¢ G and

(2) x4+ k)= (e + zh) 2"\

Thus

{Q\ (M 1 \—1 —_ a—l _I. m_llnm""l— [fn 1 m—ll\_l —_ N 1 w1 140—1
(O B 2 (] “ T & T T = I\ T X iy (-2 ' ] F

Corollary 1 G is an open set, and the mapping x — z~! 18 a homeomorphism
of G onito G.

For if ze @ and ||h]| — 0, (1) implies that ||(z + k)~ — z~|| — 0.
Thus 2 — z! is continuous; it clearly maps @ onto G, and since it is its
own inverse, it is a homeomorphism.

Corollary 2 The mapping x — z7' is differentiable. Its differential al
any x € G 18 the linear operator which takes he A to —zthz™.

This can also be read off from (1). Note that the notion of the differen-
tial of a transformation makes sense in any normed linear space, not just
in R*, as in Definition 8.22. If A is commutative, the above differential

takes h to —z~%h, which agrees with the fact that the derivative of the
holomorphie funetion z-1is —z—2

Corollary 3 For every x e A, o(z) is compact, and |\| < ||z]| if N eo(2).

For if |\| > ||z||, then ¢ — A2z ¢ G, by Theorem 18.3, and the same
is true of £ — \e = —A(e — A 'z); hence A §o(z). To prove that o(x)
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is closed, observe (a) A ea(z) if and only if x — Ae ¢ G; (b) the comple-
ment of G is a closed subset of 4, by Corollary 1; and (¢) the mapping
A — & — Ae is a continuous mapping of the complex plane into A.

18.5 Theorem Let ® be a bounded linear functional on A, fir xe A, and
define

(1) JO) =&z —re)"t ] (N go(2)).
Then f vs holomorphic in the complement of a(x), and f(A) — 0 as A — o,

PROOF Fix Agqs(x) and apply Theorem 18.4 with £ — Ae in place
of z and with (A — p)e in place of h. We see that there is a constant
C, depending on x and A, such that

2) @ —pe)? = (@ =)'+ (A = w)(x — )2 <Clu — N|?

for all y which are close enough to A. Thus

3) (x — pe)™? :— )(\x — Ae)!
i

— (x — Ae)™?

as u — A, and if we apply ® to both sides of (3), the continuity and
linearity of ® show that

(4) f(,u) T fO‘) — ‘I)[(IC _ Ae)_..g].
p—A

So f is differentiable and hence holomorphic outside ¢(z). Finally,
as A — o we have

G) MO = Bz — Ae)1] = @ [(ﬁ - e)_l] > &(—e),

by the continuity of the inversion mapping in G.

18.6 Theorem For every xe A, () 1s compact and not empty.

PROOF We already know that o(x) is compact. Fix xe 4, and fix
Moga(x). Then (r — Aee)™' # 0, and the Hahn-Banach theorem
implies the existence of a bounded linear functional ® on A such that
f(Zo) # 0, where f is defined as in Theorem 18.5. If o(x) were empty,
Theorem 18.5 would imply that f is an entire function which tends
to 0 at o, hence f(A\) = 0 for every A, by Liouville’s theorem, and
this contradicts f(Ag) # 0. So ¢(z) is not empty.

18.7 Theorem (Gelfand-Mazur) If A is a complex Banach algebra with
unil in which each nonzero element is invertible, then A is (isometrically
1somorphic to) the complex field.
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An algebra in which each nonzero element is invertible is called a
division algebra. Note that the commutativity of A is not part of the
hypothesis; it is part of the conelusion.

rroOoF If xe A and A\, # X, at least one of the elements z — \e
and £ — Aze must be invertible, since they cannot both be 0. It now
follows from Theorem 18.6 that ¢(z) consists of exactly one point,
say Ax), for each x &£ A. Since x — A(z)e is not invertible, it must
be 0, hence z = A(x)e. The mapping z — Afz) is therefore an
isomorphism of A onto the complex field, which is also an isometry,
since |AMx)} = ||[A(z)e] = lz|| for all z ¢ A.

18.8 Definition For any z ¢ A, the speciral radius p(z) of x is the radius
of the smallest closed dise with eenter at the origin which contains ¢(z)
(sometimes this is also called the spectral norm of z; see Exercise 14):

p(x) = sup {{A|: rea(@)}.
18.9 Theorem (Spectral Radius Formula) For every x & A,

(1) lim Jlz=[|* = p(2).

(The existence of the limit is part of the conclusion.)

. Tiwe e A ad o2 Lo o sncmctdliera tevbaman Y 0 amesadne ;maiealean
PR Lixa £ t,[i, eV 7 pe d pUbll;lVE 111U EUI., FAS= "] bU[lllJlCA DulLueL,

and assume A* £o(z*). We have
(2) (@* —A%) = (z — Ne)(@*1 + Ng*2 4+ - ¢+ A™le).

Multiply both sides of (2) by (z* — A"e)~1. This shows that z — Qe
is invertible, hence \ € o(z).

So if N eo(z), then A\go(z®) forn =1,2, 3, . . ., Corollary 3
to Theorem 18.4 shows that [A*| < ||z"||, and therefore |A| < ||lz=[}V=.
This gives

3) p(z) < Ym inf {lz»]=,

n— o

Now if |A] > llzll, it is easy to verify that

4) (e —2) Y Nzt =
n=0
The above series is therefore —(z — Ae)™.. Let ® be a bounded

linear functional on A and define f as in Theorem 18.5. By (4), the
expansion

) ) = = 3 e

n=10
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is valid for all M such that |A| > |lz]. By Theorem 18.5, f is holo-
morphic outside o(z), hence in the set {A: |A| > p(z)}. It follows
that the power series (5) converges if [\| > p(z). In particular,

(6) sup [e(x )| < o (A > p(x))

for every bounded linear functional & on 4.

It is a consequence of the Hahn-Banach theorem (Sec. 5.21) that
the norm of any element of A is the same as its norm as a linear
functional on the dual space of A. Since (6) holds for every ®, we
can now apply the Banach-Steinhaus theorem and conclude that to
each A with [A\| > p(x) there corresponds a real number C'(A) such that

Q) Ix—mzm|| < CQN) n=1,23...).
Multiply (7) by |A|* and take nth roots. This gives
8) izl < PICMIV (n=1,2,8,...)
if |\l > p(x), and hence

9 lir’?“)sllp |l < plx).

The theorem follows from (3) and (9).
18.10 Remarks

(@) Whether an element of A is or is not invertible in A4 is a purely
algebraic property. Thus the spectrum of z, and likewise the
spectral radius p(z), are defined in terms of the algebraic strue-
ture of A, regardless of any metric (or topological) considera-
tions. The limit in the statement of Theorem 18.9, on the other
hand, depends on metric properties of A. This is one of the
remarkable features of the theorem: It asserts the equality of
two quantities which arise in entirely different ways.

(b) Our algebra may be a subalgebra of a larger Banach algebra B
(an example follows), and then it may very well happen that
some r & A is not invertible in 4 but is invertible in B. The
spectrum of x therefore depends on the algebra ; using the obvious
notation, we have ¢s(x) Dop(z), and the inclusion may be
proper. The spectral radius of z, however, is unaffected by this,
since Theorem 18.9 shows that it can be expressed in terms of
metric properties of powers of z, and these are independent of
anything that happens outside A.

18.11 Example Let C(T) be the algebra of all continuous complex fune-
tions on the unit circle 7 (with pointwise addition and multiplication
and the supremum norm), and let 4 be the set of all f € C' (T) which can



Elementary theory of Banach algebras 357

be extended to a continuous funetion F on the closure of the unit dise U,
such that F is holomorphic in U. It is easily seen that 4 is a subalgebra
of C(T). If foe A and {f.} converges uniformly on 7, the maximum
modulus theorem forces the associated sequence {F,} to converge uni-
formly on the closure of U. This shows that 4 is a closed subalgebra
of C(T), and so A is itself a Banach algebra.

Define the function fo by fo(e?¥) = e®®. Then Fy(z) = 2. The spec-
trum of f, as an element of A consists of the closed unit disc; with respect
to C(T), the spectrum of f, consists only of the unit circle. In accord-
ance with Theorem 18.9, the two spectral radii coincide.

Ideals and Homomorphisms
From now on we shall deal only with commutative algebras.

18.12 Definition A subset I of a commutative complex algebra A is
said to be an ideal if (a) I is a subspace of A (in the vector space sense)
and (b) zye I whenever re A and yel. IfJ = A, I is a proper ideal. .
Mazximal ideals are proper ideals which are not contained in any larger
proper ideals. Note that no proper ideal contains an invertible element.

If B is another complex algebra, a mapping ¢ of 4 into B is called a
homomorphism if ¢ is a linear mapping which also preserves multiplica-
tion: o(x)e(y) = o(zxy) for all z and y e A. The kernel (or null space)
of ¢ is the set of all x € A such that ¢(z) = 0. It is trivial to verify that
the kernel of a homomorphism is an ideal. For the converse, see Sec.
18.14.

18.13 Theorem If A is a commulalive complex algebra with unit, every
proper ideal of A s contained in a maximal ideal. If, in addition, A is a
Banach algebra, every maximal ideal of A is closed,

PROOF The first part is an almost immediate consequence of the
Hausdorfi maximality principle (and holds in any commutative ring
with unit). Let I be a proper ideal of A. Partially order the collec-
tion @ of all proper ideals of A which contain I (by set inelusion), and
let M be the union of the ideals in some maximal linearly ordered

subnn“an'l‘,inn Q Gf &, Thoen Af iz an idesl M

Qa
WATLLC L VAT

al (beine the union of
Then M is an ideal (being the union of a
linearly ordered collection of ideals), I C M, and M = A, since no
member of @ contains the unit of A. The maximality of @ implies
that M 1s a maximal ideal of A.

If A is a Banach algebra, the closure M of M is also an ideal (we
leave the details of the proof of this statement to the reader). Since
M contains no invertible element of 4 and since the set of all inverti-
ble elements is open, we have M > A, and the maximality of M
therefore shows that M = M.
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18.14 Quotient Spaces and Quotient Algebras Suppose J is a subspace
of a vector space A, and associate with each x € A the coset

1) o) =z+J ={z+yyed}

If 2, — z.eJ, then o(x1) = o(x2). If 2y — 228 J, o(x) nelzy) = &.
The set of all cosets of J is denoted by A /J; it is a vector space if we define

2) o) + e(y) = ez + ), Ael®) = ¢(x)

for z and y &€ A and scalars \. Sinee J is a vector space, the operations
(2) are well defined; this means that if o(z) = ¢(z') and o(¥) = (¥,
then

3) o(@) + o) = 0@} + o(y),  Ne(@) = Aop(@).

Also, ¢ is clearly a linear mapping of A onto A/J; the zero element of
A/T i8 o(0) = J.

Suppose next that A is not merely a vector space but a commutative
algebra and that J is a proper ideal of 4. If 2’ — zeJandy — yeJ,
the identity

!

(4) Yy —zy =@ —2)y + 2@ — v

shows that z'y’ — zyeJ. Therefore multiplication can be defined in

. .
A / JF in a ponvicteant mannar:
‘L" o Adkd W WATLIMNLI UL ARU RLIALVLIILILLI L »

(5) e(@e(y) = o(zy) (xand y e A).

It is then easily verified that A/J is an algebra, and ¢ is 2 homomorphism
of A onto A/J whose kernel 1s J.

If A has a unit element e, then ¢{e) is the unit of A/J, and A/J s a
field if and only if J is a maximal ideal.

To see this, suppose x £ 4 and z ¢ J, and put

(6) I =t{arxr+y acd, yed).

Then I is an ideal in A which eontains J properly, since xef. If J is
maximal, I = A, hence ar + y = e for some ae A and y&.J, hence
p(a)p(xz) = ¢le); and this says that every nonzero clement of A/J is
invertible, so that A/J is a field. If J is not mmaximal, we ean choose
as above so that I # A, hencee ¢ I, and then ¢(x) is not invertible in A /J.

18.15 Quotient Norms Suppose A is a normed linear space, J is a closed
subspace of A, and ¢(z) = z + J, as above. Define

) le@l = inf {[lz + yl: y e.J}.

Note that ||¢(x)]] is the greatest lower bound of the uorms of those ele-
ments which lie in the coset ¢(x); this is the same as the dixtance from
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z to J. We call the norm defined in 4/J by (1) the quotient norm of
A/J. It has the following properties:

(a) A/J is a normed linear space.

(b) If A is a Banach space, so is A/J.

(c) If A is a commulative Banach algebra and J is a proper closed
ideal, then A/J is a commutative Banach algebra.

These are easily verified:

Ifzeld, |jp@))| =0. If z¢J, the fact that J is closed implies that
le@)t > 0. It is clear that |[Ae(2)| = I\ lle(@))l. If z, and z:e A
and e > 0, there exist y; and y. & J so that

(2) lz: + yill < lle@)ll +¢  (E=1,2).
Hence

@)l + 2zl < llza + 22 + 91 + w2l < llo@)] + lle(@)] + 2,

which gives the triangle inequality and proves (a).
Suppose A is complete and {¢(z,)} is a Cauchy sequence in A/J.
There is a subsequence for which ~

(4) H‘P(xn.) — (p(x"i-t-l)” <27 (Z =1, 2, 3: .. -):

and there exist elements z; so that z; — z,, eJ and ||2; — z;,}] < 275
Thus {z;} is a Cauchy sequence in A4; and since 4 is complete, there
exists z€ A such that lz; — z|| — 0. It follows that ¢(x.) converges to
o(2) in A/J. But if a Cauchy sequence has a convergent subsequence,
then the full sequence converges. Thus 4/J is complete, and we have
proved (b).

To prove (c¢), choose z; and 2 & 4 and ¢ > 0, and choose y, and y. e J
80 that (2) holds. Note that (x; + y1)(z2 + y2) € 2122 + J, 80 that

G llelez) ]l £ e + g + vl < llz + wall 122 + gell.
Now (2) implies

(6) le(@za)]] < [lelen ]l Helz)].

Finally, if e is the unit element of A, take z,¢ J and z; = ¢ in (6);
this gives |¢(e)]| > 1. But e e ¢(e), and the definition of the quotient
norm shows that |¢(e)]] < Jiefl = 1. So |¢fe)]] = 1, and the proof is
complete,

18.16 Having dealt with these preliminaries, we are now in a position
to derive some of the key facts concerning commutative Banach algebras.

Suppose, as before, that 4 is a commutative complex Banach algebra
with unit element e. We associate with A the set A of all complex homo-
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morphisms of A4; these are the homomorphisms of A onto the complex
field, or, in different terminology, the multiplicative linear functionals
on A which are not identically 0. As before, o(z) denotes the spectrum
of the element x £ A, and p(x) is the spectral radius of z.

Then the following relations hold:

18.17 Theorem

(a) Every maximal ideal M of A is the kernel of some h & A.
(b) A ec(x) if and only if h(x) = X for some h g A.

(¢) x 8 invertible tn A if and only if h{z) # 0 for every he A.
(d) h(z) eo(x) for every x £ A and h e A,

(&) |h(x)| < p(x) < ||z]| for everyz e A and h ¢ A.

prOOF If M is a maximal ideal of A, then A/M is a field; and since
M is closed (Theorem 18.13), A/M is a Banach algebra. By Theorem
18.7 there is an isomorphism j of A/M onto the complex field. If
h = jo ¢, where ¢ is the homomorphism of 4 onto A/M whose kernel
is M, then h e A and the kernel of h is M. This proves (a).

If A go(x), then £ — Ae is not invertible; hence the set of all ele-
ments (z — e}y, where y € A, is a proper ideal of A, which lies in a
maximal ideal (by Theorem 18.13), and (a) shows that there exists an
h € A such that A(x — Xe) = 0. Since h(e) = 1, this gives h(z) = X\

On the other hand, if \ ¢ o(z), there exists a ye A such that
(z — Ne)y = e. It follows that h(z — Ne)h(y) = 1 for every ke A,
so that h(z — Xe) # 0, or h(x) # X\. This proves (b).

Since z is invertible if and only if 0 ¢ 6(z), (¢) follows from (b).

Finally, (d) and (¢} are immediate consequences of (b).

Note that (¢) implies that the norm of A, as a linear functional, is
at most 1. In particular, each h e A is continuous. This was already
proved earlier (Theorem 9.21).

Applications

We now give some examples of theorems whose statements involve no
algebraic concepts but which can be proved by Banach algebra techniques.

18.18 Theorem Let A(U) be the set of all continuous functions on. the
closure U of the open unit disc U whose resirictions to U are holomorphzc.
Suppose f1, . . . , fa are members of A(U), such that

(1) i@+ - - - + @1 >0
for every z € U. Then there exist g1, . . . , gn € A(U) such that

n

(2) Y fd)gi(z) =1 (ze D).

=1 .
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PROOF Since sums, products, and uniform limits of holomorphic
functions are holomorphic, A(U) is a Banach algebra, with the
supremum norm. The set J of all functions Zf.g;, where the g; are
arbitrary members of A(U), is an ideal of A(U). We have to prove
that J contains the unit element 1 of A(U). By Theorem 18.13 this
happens if and only if J lies in no maximal ideal of A(U). By The-
orem 18.17(a) it is therefore enough to prove that there is no hemo-
morphism &k of A(U) onto the complex field such that 2(f) = 0 for
every 1 (1 < ¢ < n).

Before we determine these homomorphisms, let us note that the
polynomials form a dense subset of A(U). To see this, suppose
fe A(U) and ¢ > 0; since f is uniformly continuous on U, there exists
an r < 1 such that |f(z) — f(rz)| < e for all z¢ U; the expansion of
f(r2) in powers of z converges if |rz| < 1, hence converges to f(rz) uni-
formly for z € U, and this gives the desired approximation.

Now let 2 be a complex homomorphism of A(U). Put fo(z) = z.
Then foe A(U). Itisobviousthate(fo) = U. By Theorem 18.17(d)
there exists an a g U such that 2(fo) = a. Hence h(f2) = o™ = fi{a),
forn=1,2 3,..., 50 h(P) = P(a) for every polynomial P.
Since k is continuous and since the polynomials are dense in A(U),
it follows that A(f) = f(a) for every fe A(U).

i,1 <1 <n. Thushk(f) # 0.

We have proved that to each A ¢ A there corresponds at least one
of the given funections f; such that A(f;) £ 0, and this, as we noted
above, is enough to prove the theorem.

Note: We have also determined all maximal ideals of A(U), in the
course of the preceding proof, since each is the kernel of some A e A: If
oae Uand if M, is the set of all f &€ A(U) such that f(a) = O, then M, is a
maximal ideal of A(U), and all maximal ideals of A(U) are obtained in this
way.

18.19 The restrictions of the members of A(U) to the unit circle T form
a closed subalgebra of C(T). This is the algebra A discussed in Example
18.11, In fact, 4 is a maximal subalgebra of C(T). More explicitly, if
A CBCC(T) and B is a closed (relative io the supremum norm) sub-
algebra of C(T), then either B = A or B = C(T).

It follows from Theorem 11.21 that A consists precisely of those
f & C(T) for which

M) o) = o [ feNemde =0 (n=-1,-2-3,..).

Hence the above-mentioned maximality theorem can be stated as an
approximation theorem:
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18.20 Theorem Suppose ge C(T) and §(n) = 0 for somen < 0. Then
to every f € C(T) and to every ¢ > 0 there correspond polynomials

m(n)

(1) Pu(e®) = 3 anpe™ (n=0,...,N)
k=0

such that
N

(2) | /) — ) Pulei)gr(e®)| <e  (e?eT).
n=0

PROOF Let B be the closure in C = C(T) of the set of all functions
of the form

N
(3) 20 P.g.

The theorem asserts that B = C. Let us assume B = C.

The set of all functions (3) (note that N is not fixed) is a complex
algebra. Its closure B is a Banach algebra which contains the fune-
tion fo, where fo(e?*) = e®®, Our assumption that B # C implies that
1/f~ ¢ B, for otherwise B would contain f* for all integers n, hence
all trigonometric polynomials would be in B; and since the trigono-
metric polynomials are dense in ¢ (Theorem 4.25) we should have
B =C.

S0 fo is not invertible in B. By Theorem 18.17 there is a complex
homomorphism & of B such that A(f) = 0. Every homomorphism
onto the complex field satisfies (1) = 1; and since h{fo) = 0, we
also have

(4) R(fS) = ({(fdl*=0 (=1,23,..).

We know that h i1s a linear functional on B, of norm at most 1.
The Hahn-Banach theorem extends % to a linear functional on C
(still denoted by &) of the same norm. Since (1) = 1 and |[&]] £ 1,
the argument used in See. 5.22 shows that & is a positive linear fune-
tional on C. In particular, h(f) is real for real f; hence (f) = A(f).
Since fo" is the complex conjugate of fy, it follows that (4) also

holds forn = —1, —2, —3, . . .. Thus
(1 ifn=0,
®) hfs) = {0 if n 5 0.

Sinee the trigonometric polynomials are dense in C, there is only
one bounded linear functional on € which satisfies (5). Hence b is
given by the formula

© M) = o [ I ds (GeC).
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Now if n is a positive integer, gf7 ¢ B; and since & is multiplicative
on B, (6) gives

(@) 0(—n) = o [* o(ee™ do = h(gff) = hQh(R) = O,

by (6). This contradicts the hypothesis of the theorem.

We conclude with a theorem due to Wiener.

18.21 Theorem Suppose
0 6 = 5 e, 3 e <

and f(e'®) # O for every real 8. Then

(2) (e;e) z Yn€i"? with E lval < 0.

PROOF We let A be the space of all complex functions f on the unit
circle which satisfy (1), with the norin

® i1 = 3 le

It is clear that A is a Banach space. In fact, A is isometrically
isomorphic to £, the space of all complex functions on the integers
which are integrable with respect to the counting measure. But A is
also a commutative Banach algebra, under pointwise multiplication.
Forif ge A and g(e®) = Zbne™?¢, then

4) fle?)g(e) = E (z cu—kbk) gin?
n k
and hence

® 1ol = TIY cosbr] < Tl T leacl = 151l

Also, the function 1 is the unit of A, and ||1]| =

Put fo(e'®) = ¢ as before. Then foe A, 1/foe A, and |if3i| =
forn =0, £1, +2, . ... If his any complex homomorphism of
A4 and h(fo) = A, the fact that ]| < 1 implies that
® = LU= (=0 %1, £2,...).

Hence [\| = 1. In other words, to each h there corresponds a point
ei* ¢ T such that i(fs) = e'=, so

(7)  h(f3) = ei= = f3(eie) n=0, £1, £2, .. ).
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If f is given by (1), then f = Ze¢.f2. This series converges in 4;
and since h 1s a continuous linear functional on A, we conclude from
(7) that

(8)
Our hypothesis that f vanishes at no point of T therefore says that

h(f) = fle)  (fe A).

f is not in the kernel of any complex homomorphism of A4, and now
Theorem 18.17 implies that f is invertible in A. But this is precisely
what the theorem asserts.

Exercises

1

Suppose B(X) is the algebra of all bounded linear operators on
the Banach space X, with

(41 + AD(@) = A + Az, (AA)@) = A(A), 4] = sup 1A2H,

2

L

i

if A, Ay, and A; e B(X). Prove that B(X) is a Banach algebra.
Let n be a positive integer, let X be the space of all complex
n-tuples (normed in any way, as long as the axioms for a normed
linear space are satisfied), and let B(X) be as in Exercise 1.
Prove that the spectrum of each member of B(X) consists of at
most n complex numbers. What are they?

Take X = L — «, ), suppose ¢ € L*(— «,o), and let M be
the multiplication operator which takes f £ L? to ¢f. Show that
M is a bounded linear operator on L? and that the spectrum of M
is equal to the essential range of ¢ (Chap. 3, Exercise 19).

What is the spectrum of the shift operator on £2? (See Theorem
17.20 for the definition.)

Prove that the closure of an ideal in a Banach algebra is an ideal.
If X is a compact Hausdorff space, find all maximal ideals in C(X).
Suppose A is a commutative Banach algebra with unit, which is
generated by a single element z. This means that the polynomials
in x are dense in A, Prove that the complement of ¢(z) is a con-
nected subset of the plane. Hini: If X g o(x), there are poly-
nomials P, such that P.(z) —» (x — Ne)™! in A. Prove that
Pa(2) = (z — A\)~! uniformly for z £ o(x).

Suppose:z‘, lea] < 0, f(z) = E caz®, |f(2)] > 0 for every z& U, and
0 0

1/f(z) = %a,.z". Prove that%i lan] < .
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9 Prove that a closed linear subspace of the Banach algebra L'(R?)
(see Sec. 9.19) is translation invariant if and only if it is an ideal.

10 Show that LY(T) is a commutative Banach algebra (without unit)
if multiplication is defined by

1

fxp® = é!;r f_:f(t — 8)g(s) ds.

Find all complex homomorphisms of L!(T), as in Theorem 9.23.
If E is a set of integers and if I is the set of all f &€ L¥(T) such
that f(n) = Oforalln ¢ E, prove that I is a closed ideal in LY(T),
and prove that every closed ideal in L'(T) is obtained in this
manner.

11 The resolvent R(\,x) of an element z in a Banach algebra with unit
is defined as

R\z) = (Ae — 2)?
for all complex A for which this inverse exists, Prove the identity
R(\z) — R(p,x) = (1 — MEMNE(u)

and use it to give an alternative proof of Theorem 18.5.
12 Let A be a commutative Banach algebra with unit. The radical
of A is defined to be the intersection of all maximal ideals of A.

Prawa +1no+ the followine three statoments ahriit an n]nmnni*
A rUY Viigu L Uil LNILLV YY Llls VId: U MV ULLLLL LU [Z S AW AS i) [Z'F8 8 A2 AP N AW T Y

z e A are equivalent:
(a) zis in the radical of A.
(b) lm |z||V" = 0.

(¢) h(z) = 0 for every complex homomorphism of A.
13 Find an element z in a Banach algebra 4 (for instance, a bounded

linear operator on a Hilbert space) such that 2 = 0 for alln > 0,
but lim ||z*||V* = 0.

fn—

14 Suppose 4 is a commutative Banach algebra with unit, and let A
be the set of all complex homomorphisms of 4, as in Seec. 18.16.
Associate with each z £ A a function £ on A by the formula

£y = k()  (heA).

£ is called the Gelfand transform of z.
Prove that the mapping £ — £ is a homomorphism of A onto an
algebra 4 of complex functions on A, with pointwise multiplica-

tion. Under what condition on A is this homomorphism an
isomorphism? (See Exercise 12.)

Prove that the spectral radius p(z) is equal to

|£lle = sup {|£(h)|: he A}.
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Prove that the range of the function £ 1s exactly the spectrum
a(x).
If A is a commutative Banach algebra without unit, let A, be the
algebra of all ordered pairs (z,\), with z e A and A a complex
number; addition and multiplication are defined in the “obvious”
way, and |I(z\)]| = |lz]| 4+ IA]. Prove that 4, is a commutative
Banach algebra with unit and that the mapping z — (x,0) is an
isometric isomorphism of A onto a maximal ideal of A;. This is a
standard embedding of an algebra without unit in one with unit.
Show that H= is a commutative Banach algebra with unit, rela-
tive to the supremum norm and pointwise addition and multiplica-
tion. The mapping f — f(a) 13 & complex homomorphism of H=,
whenever |al < 1. Prove that there must be others.
Show that the set of all functions (z — 1)2f, where fe H=, is an
ideal in H* which is not closed. Hini:

(l—2(l+e—2)1— (1 —z)|<e iflg<1e>0.

Suppose ¢ is an inner function. Prove that {¢f:fe H*} is a
closed ideal in H=. In other words, prove that if {f,} is a sequence
in H* such that ¢fn — g uniformly in U, then g/¢ & H=.
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Holomorphie Fourier

Transforms

Introduction

19.1 In Chap. 9 the Fourier transform of a function f on R! was defined
to be a function f on R!. Frequently f can be extended to a function
which is holomorphic in a certain region of the plane. For instance, if
f(t) = e, then f(x) = (1 + z?~, a rational function. This should not
be too surprising. For each real {, the kernel ¢ is an entire function of z,
so one should expect that there are conditions on f under which f will be
holomorphie in certain regions.

We shall deseribe two classes of holomorphic functions which arise in
this manner.

For the first one, let F be any function in L*(— o, ) which vanishes
on (— o« ,0) [i.e., take F £ L2(0,«)] and define

(1) f@) = [T F@etdt  (zem),

where II* is the setof allz = # + sy withy > 0. If ze [T+ then |e¥"| = e*,
which shows that the integral in (1) exists as a Lebesgue integral. The
continuity of f in I+ is easily verified; and if v is any closed path in IT+
we can apply the theorems of Fubini and Morera to conclude that
f e H{II+).

Let us rewrite (1) in the form

) fa+iy) = [ F)etet=di,

regard y as fixed, and apply Plancherel’s theorem. We obtain

@) E]_;—r f_: |f(x + y)|*dx = j;w |F ()% dt < L" IF()|2 dt
367
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for every y > 0. [Note that our notation now differs from that in Chap.
9. There the underlying measure was Lebesgue measure divided by

v/27. Here we just use Lebesgue measure. This accounts for the
factor 1/(2r) in (3).] This shows:

(a) Iffis of the form (1), then f is holomorphic tn I+ and ils restrictions
to horizontal lines in II* form a bounded set in L2(— o o).

Our second class consists of all f of the form

(4) flz) = f_ “A F(b)e* dt

Tors A

where 0 < A < «» and F & L*(—A,A). These functions f are entire
(the proof is the same as above), and they satisfy a growth condition:

(5) 72 < [*, IF@levdt < etw [* 1F @)t
If C is this last integral, then C < «, and (5) implies that
(6) |f(2)] < CeArl.

[Entire functions which satisfy (6) are said to be of exponential type.]
Thus:

(b) Every f of ihe form (4) is an eniire funcition which saiisfies (6) and
whose restriction to the real axis lies tn L2 (by the Plancherel
theorem).

It is a remarkable fact that the converses of (a) and (b) are true. This
is the content of Theorems 19.2 and 19.3.

Two Theorems of Paley and Wiener

19.2 Theorem Supposefe H(IIY) and

® s oo [C I+ ltde = € < .
Then there exisis an F € L*(0, ) such that

@) f(2) = [) "F(tetrdt  (zell¥)
and

3) L “IF@)|2dt = C.

Note: The function F we are looking for is to have the property that
f(z 4+ 7y) is the Fourier transform of F(f)e ¥ (we regard y as a positive
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constant). Let us apply the inversion formula (whether or not this is

correct does not matter; we are trying to motivate the proof that follows):
The desired F should be of the form

@  F@) = ew- -2{; [ f@ + ig)ei= dz = % [ feye=in d.

The last integral is over a horizontal line in I+, and if this argument is
correct at all, the integral will not depend on the particular line we happen
to choose. This suggests that the Cauchy theorem should be invoked.

PROOF Fixy,0 < y < . Foreacha > 0let T', be the rectangular
path with vertices at +a + ¢ and o 4+ 4y. By Cauchy’s theorem

(5) ﬁ, f@erdz = 0.

We consider only real values of {. Let ®(8) be the integral of
f(z)e™* over the straight line interval from g + £ to 8 + 1y (B real).
Putl =[yllify<1,I=[,yif1 <y. Then

® [#®)] = | [ 6 + wererw gu

< fI‘f(ﬁ + u)|® du fre’-'" du.
Put

(7) A = [ 118 + w)l*du.

Then (1) shows, by Fubini’s theorem, that

® 5 [ A®) 48 < om).

Hence there is a sequence {0y} such that a;j — « and
) AMa) + A=) =0 (j— =).

By (6), this implies that

(10) $(o) >0, B(—a) >0 asjo .

Note that this holds for every ¢ and that the sequence {o;} does not
depend on ¢.

Let us define

(11) 6w = 5 [ fz + e dz.

Then we deduce from (5) and (10) that
(12) hm [ewg.i(y?t) — etgi(l:t)] =0 (_ o <t < °°)-
J—w
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Write f,(z) for f(z + 4y). Then f, e L?*(— =, «), by hypothesis,
and the Plancherel theorem asserts that

(13) lm 71500 — gl di =0,

where f, is the Fourier transform of f,. A subsequence of {g;(y,t)}

therefore converges pointwise to f,(f), for almost all ¢t (Theorem
3.12). If we define

(14) F(t) = ¢'fu(t)
it now follows from (12) that
(15) F(§) = ewfy(t).

Note that (14) does not involve y and that (15) holds for every
y € (0,=). DPlancherel’s theorem can be applied to (15):

1) [ ewF@ld= [7 fokd= [" ks < C.

If we let y— «, (16) shows that F(f) = O a.e. in (— «,0).
If we let ¥ — 0, (16) shows that

(17) [T IFOEa < c.

It now follows from (15) that f, ¢ L! if y > 0. Hence Theorem
9.14 gives

(18) fu@ = [C, fe=de

or

(19) @) = [ Feverd = L "Fendt  (zeT¥).
This is (2), and now (3) follows from (17) and formula 19.1(3).

19.3 Theorem Suppose A and C are positive constanis and f is an entire
function such that

® /@) S Cex
for all z, and
2) [_: lf(@)|2dz < .

Then there exists an F ¢ L*(—A,A) such that

(3) f(z) = [_‘A F(t)e™ dt.
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PROOF Put f(2) = f(z)e 4%, for ¢ > 0 and z real. We shall show
that

(4) ling /_: fe(@)edz =0 (t real, |t] > A).

Since ||fe — fll2 — 0 as ¢ — 0, the Plancherel theorem implies that
the Fourier transforms of f. converge in L? to the Fourier transform
F of f (more precisely, of the restriction of f to the real axis). Hence
(4) will imply that F vanishes outside [— 4,4}, and then Theorem
9.14 shows that (3) holds for almost every real z. Since each side of
(3) is an entire function, it follows that (3) holds for every complex 2.

Thus (4) implies the theorem.

For each real a, let T, be the path defined by

(5) La(s) = see, 0 <8< o,
put
(6) I, = {w: Re (we™) > A},

and if w € 11, define

(7) ®,(w) = /; : f(2)e s dz = e'@ ]‘; " f(sei) exp (—wse*) ds.

By (1) and (5), the absolute value of the integrand is at most
C exp { —[Re (wei*) — Als},

and it follows (as in Sec. 19.1) that ®, is holomorphic in the half
plane II,.

However, more is true if « = 0 and if « = x: We have

@8) Bo(w) = [) * f(z)ev* d (Rew > 0),
© ®.w) = — [ j@e~dz  (Rew <0).

&, and ®, are holomorphic in the indicated half planes beeause of (2).
The significance of the functions &, to (4) lies in the easily verified
relation

(10) [_"’” Fu@e i dx = ®o(e + it) — ®,(—e +4) (¢ real).

Hence we have to prove that the right side of (10) tends to O as
e—0,ift > Aandift < —A.

We shall do this by showing that any two of our functions &,
agree in the intersection of their domains of definition, i.e., that they
are analytic continuations of each other, Onee this is done, we can
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replace ®, and ®, by ®,/,in (10) ift < —4,and by ®_,,2ift > A, and
it is then obvious that the difference tends to 0 as e — 0.
So suppose 0 < § — a < x. Put

(11) 7=a2 , n=c0sB;a>0.

If w = |wle, then

(12) Re (we'®) = ylw| = Re (we®)

so that w € II, n Il as soon as [w| > A/9. Consider the integral
(13) L f(2)e dz

over the circular are I’ given by T'(f) = re*, &« <t < 8. Since
(14) Re (—wz) = —|w|rcos (¢ — v) < —|wl|ry,

the absolute value of the integrand in (13) does not exceed
C exp {(4 — lwln)r}.

If |w| > A/nit follows that (13) tends to 0 as r — e,

We now apply the Cauchy theorem. The integral of f(2)e—** over
the interval [0,re*] is equal to the sum of (13) and the integral
over [Q,r¢i2]. Since (13) tends to 0 as r —» », we conclude that
®,(w) = B5(w) if w = |wle~™ and |w| > A/n, and then Theorem
10.18 shows that ®, and ®; coincide in the intersection of the half
planes in which they were originally defined.

This completes the proof.

19.4 Remarks Each of the two preceding proofs depended on a typical
application of Cauehy’s theorem. In Theorem 19.2 we replaced integra-
tion over one horizontal line by integration over another to show that
19.2(15) was independent of y. In Theorem 19.3, replacement of one
ray by another was used to construct analytic continuations; the result
actually was that the functions ®, are restrictions of one function @
which is holomorphic in the complement of the interval [— A7,A41].

The class of functions deseribed in Theorem 19.2 is the half plane
analogue of the class H? discussed in Chap. 17. Theorem 19.3 will be
used in the proof of the Denjoy-Carleman theorem (Theorem 19.11).

Quasi-analytic Classes

19.5 If Qis a region and if 2o £ Q, every f ¢ H(Q) is uniquely determined
by the numbers f(z0), f/(20), f'(20), . . . . On the other hand, there
exist infinitely differentiable functions on B! which are not identically O
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but which vanish on some interval. Thus we have here a uniqueness
property which holomorphic funetions possess but which does not hold
in C= (the class of all infinitely differentiable complex functions on RY).

If fe H(Q), the growth of the sequence {|f™(z0)|} is restricted by
Theorem 10.25. It is therefore reasonable to ask whether the above
uniqueness property holds in suitable subclasses of C* in-which the growth
of the derivatives is subject to some restrictions. This motivates the
following definitions;the answer fo our questionis given by Theorem 19.11.

19.6 The Classes C{M,} If M., M,, M,, . . . are positive numbers, we
let C{M,} be the class of all f € C* which satisfy inequalities of the form

)] IDll. < 8B3Ms (n=0,1,2,..).

Here D% = f, D*f is the nth derivative of f if n > 1, the norm is the

supremum norm over R, and 8; and By are positive constants (depending
on f, but not on n).

If f satisfies (1), then

1in
(2) lim sup {“%}"2} < B,.
This shows that B, is a more significant quantity than®8,, However, if
B; were omitted in (1), the case n = 0 would imply ||fll« < Mo, an
undesirable restriction. The inclusion of 8; makes C{ M.} into a vector
space.

Each C{M,} is invariant under affine trgnsformations. More explicitly,
suppose f & C{M,} and g(z) = f(ax +b). Then g satisfies (1), with
Bs = B;and B, = aB,.

We shall make two standing assumptions on the sequences {M,} under
consideration: ' ‘

@3) Mo =1. :
(4) M?; S M‘rl—lMiH-l (n =.1; 2’,3, . ')°

Assumption (4) can be expressed in the form: {log M.} s a convez sequence.
These assumptions will simplify some of our work, and they involve no
loss of generality. [One can prove, although we shall not do so, that
every class C{M,} is equal to a class C{M.,}, where {M,} satisfies (3)
and (4).]
The following result illustrates the utility of (3) and (4):

19.7 Theorem Each C{M.} is an algcbra, with respect. to pointwise
mulizplication. “

PROOF Suppose f and g £ C{M.}, and B, By, B,, and B, are the
corresponding constants. The product rule for differentiation shows
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that

(1) D (fy) = 20 (5) @n - o).
Hence

2 ID*(fg)] < 8,8, 20 (’J"’) BiBr~M;M.,_;.

The convexity of {log M.}, combined wit h M
MM, ;< M, for 0 €7 <n. Hence the binom

FELEAE

from (2) to

(3) "Dn(fg)"w S 6}30(-3)' + Ba)nMn (n = 0, 11 2: - ')-
so that fge C{M.}.

= 1, shows that
t

b}
heorem leads

)--l

23

19.8 Definition A class C{M .} issaid to be quasi-analytic if the conditions
(1) feC{M,}, (DO =0 forn=0,1,2 ...
imply that f(z) = 0 for all x € R

The content of the definition is of course unchanged if (D*)(0) is
replaced by (D*)(z.), where z, is any given point.

The quasi-analytic classes are thus the ones which have the uniqueness
property we mentioned in Sec. 19.5. One of these classes is very inti-

mately related to holomorphic functions:

19.9 Theorem The class C{n!} consists of all f to which there corresponds -
a & > 0 such that f can be extended to a bounded holomorphic function in the
strip defined by \Im (2)| < 8.

Consequently C{n'} is a quasi-analytic class.

PROOF Suppose f e H(Q) and |f(2)| < 8 for all z £ Q, where Q con-
sists of all z = z + 4y with |y| < 8. It follows from Theorem 10.25
that

(1) (D) (z)| < B6~"n! n=0,12 ...

for all real z. The restriction of f to the real axis therefore belongs
to C{nlt}.

Conversely, suppose f is defined on the real axis and feCin!}.
In other words,

2) IDYll. <8B! (n=0,1,2,...).
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We claim that the representation

@ fw = 3 L@ _ g

n=0

is valid forallae R'ifa — B! < z < a 4+ B~l. This follows from
Taylor’s formula

@ =3 P - oyt s [ e = om0

i=0

which one obtains by repeated integrations by part. By (2) the last
term in (4) (the “remainder”) is dominated by

5 ngB"

f (x — 1 dt—l = B|B(z — a)|".

. If |B(z — a)| < 1, this tends to 0 as n — o, and (3) follows.

We can now replace z in (3) by any complex number 2z such that
|z — a| < 1/B. This defines a holomorphic function F, in the dise
with center at a and radius 1/B, and F.(z) = f(z) if = is-real and
|z — a] < 1/B. The various functions F, are therefore analytic
continuations of each other; they form a holomorphie extension F of
f in the strip |y| < 1/B.

If0<é<1/Bandz=a+ 1y, ly| <3, then

F@)| = |Fu@)] = | E D@ S o - £

n=Q

This shows that F is bounded in the strip |y| < §, and the proof is
complete.

19.10 Theorem The class C{M,} is quasi-analytic if and only if C{M.}
contains no nontrivial function with compact support.

prooF If C{M,} is quasi-analytic, if f € C{Ma}, and 1f f has compact
nt o

Sd})lﬁl lJ, thcu eV ldcuuy J uud u}}. ltb dcuvatlvwa Val-llb.l.l. aU D me r’eint,
hence f(z) = 0 for all z.

Suppose C{M,} is not quasi-analytic. Then there exists an
fe C{M,} such that (D*)(0) = Oforn =0,1,2, . . . ,butf(zs) # 0
for some zo. We may assume zo > 0. If g(z) = f(z) forz > 0 and
g(z) =0 for x <0, then g C{M,}. Put h(z) = g(z)g(2z0 — ).
By Theorem 19.7, heC{M.,}. Also, h(z) =0 if z <0 and ¥
z > 2zo. But h(zo) = f*(zo) #£ 0. Thus A is a nontrivial member

of C{M,} with compact support.
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We are now ready for the fundamental theorem about quasi-analytic
classes.

The Denjoy-Carleman Theorem
19.11 Theorem Suppose Mo=1 M2 <M, M, forn=1,2,3, ...,
and

Q(z) = 2 ;:;”r g(z) = ilé% ;;;s

n=0

for x > 0. Then each of the following five condiitons tmplies the oiher four:

(a) C{M,} 18 not quasi-analytic.
© dx
(b) /(; log Q(z) i+ < ®.

@ [ loga@ 1P <

Note: If M,— = very rapidly as n— «, then Q(z) tends to infinity
slowly as £ — «. Thus each of the five conditions says, in its own way,
that M, — o« rapidly. Note also that Q(z) > 1 and ¢(z) > 1. The
integrals in (b) and (c) are thus always defined. It may happen that
Q(zr) = « for some z < «. In that case, the integral (b) is + =, and
the theorem asserts that C{M,} is quasi-analytic.

If M, =nl, then M._y/M, = 1/n, hence {(¢) is violated, and the
theorem asserts that C{n!} is quasi-analytic, in accordance with Theo-
rem 19.9.

PROOF THAT (a) 1MpLIEs (B) Assume that C{M.} is not quasi-
PROOF THAT (g) IMPLIES (b) ! e ;i 18 not quas

E Slelh 38 Vassw ¥ hdi B

analytic. Then C{M,} contains a nontrivial function with compaet
support (Theorem 19.10). An affine change of variable gives a
function F ¢ C{M,}, with support in some interval [0,4], such that

(1) |D*Flle £ 2*M, n=012 ...
and such that F is not identically zero. Define

(2) fz) = L“ F(t)e di
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and

t— 1w
® o) = 1(152)

Then f is entire. If Im 2z > 0, the absolute value of the integrand
in (2) is at most |F()|. Hence f is bounded in the upper half plane,
therefore g is bounded in U. Also, g is continuous on U, except at
the point w = —1. Since f is not identically 0 (by the uniqueness
theorem for Fourier transforms) the same is true of g, and now
Theorem 15.19 shows that

1/ i0 —
@) 5 |-, log lg(e®)| d8 > — .

Ifz = i1 — e®)/(1 + ¢'%) =2 tan(6/2),thendsd = 2(1 + z?)~tdz,s0
(4) is the same as

®) %f_‘, log | ()| 1—% > — o,

On the other hand, partial integration of (2) gives

©) 1@ = Goy [* (DF) e dt (2 # 0)

since F and all its derivatives vanish at 0 and at A. It now follows
from (1) and (6) that

(7 lznf(z)| < 2-"AM, (zxreal,n=0,1,2, .. .).
Hence

®  e@iwl=y DA <o @20,

n=0
and (5) and (8) imply that (b) holds.
PRoOF THAT (b) iMPLIES (¢) ¢q(z) < Q(z).
pPrRooF THAT (c¢) IMPLIES (d) Put a. = M,Y* Since M, =1 and

M2< M, 1M, it is easily verified that a, < @uq1, forn > 0. If
T 2 edn, then 2*/M, > e, so

9) log ¢{x) 2 log -%"— 2 log e® = n,
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Hence

N
(10) e /; : log ¢(x) - g >e Z o rrdr toe fe :w (N+ Dz2ds

Mz"“-s

» N+1
n(l— 1)+N+1= 1
1

Ay an-{—l
n

for every N. This shows that (¢) implies (d).

aAvit a
N+ e n

PROOF THAT (d) IMPLIES (¢) Put

(1D A = %
LY 7 ]lfn

n=1213
AS >

.
S’
.

Then Ay 2 X2 2 N3 2> - - -, and if @, = M,Y" as above, we have
(12) (@) S Mo ANz -+ » Aa = 1.
Thus A\, £ 1/a,, and the convergence of Z(1/a,) implies that of Z\,.

PROOF THAT (¢) IMPLIES (@) The assumption now is that 2\, < =,
where A, is given by (11). We claim that the function

(13) f& =\7~
n=1l

is an entire function of exponential type, not identically zero, which
satisfies the inequalities

(14) | (@) < M, (Si’; "‘)2 (zreal k =0,1,2, .. ).

Note first that 1 — 2~ sin 2 has a zero at the origin. Hence there
is a constant B such that

(15) 1-2E< B (eSO,

1t follows that

sin )\,,z

(16) ll -

< Bae] (lzl < ,\i)

so that the series

(17) >
1

7 -

sin Az
AnZ
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converges uniformly on compact sets. (Note that 1/\, — = as
n— o, since ZA\, < ©.) The infinite product (13) therefore defines
an entire funetion f which is not identically zero.

Next, the identity

sinz 1 r1 it
) 22 L[ e a

gshows that |z71sin 2| < eV if 2z = £ + 7y. Hence
(19) /)] < e4,  with 4 =2 1+ 2 Ane
nwl

For real z, we have |sin z} < |z] and |sin 2} < 1. Hence

sin A,z
Anl

sin z\2 u
@) ) <l (22)' 1]
n=1

sin 2\?2 sin )2
< PP -1 = .
__(—'—'x ) (A1 ) Mk( po )

This gives (14), and if we integrate (14) we obtain

@1) ,l,f_”.. @) de < My  (k=0,1,2, .. )

We have proved that f satisfies the hypotheses of Theorem 19.3.
The Fourier transform of f,

22) F) = 5 [~ f@e=ds  (tread

is therefore a function with compact support, not identically zero,
and (21) shows that F € C* and that

(23) (DFYO) = 5= [, (—iapf@)ee da,

by repeated application of Theorem 9.2(f). Hence ||[D*F|, < M,,
by (21), which shows that F ¢ C{M,}.
Hence C{M,} is not quasi-analytie, and the proof is complete.

Exercises

1 Suppose f is an entire function of exponential type and

o) = [, \f@ + i)l da.



Real and complex analysis

Prove that either ¢(y) = « for all real y or o(y) < = for all
real y. Prove that f = 0 if ¢ is a bounded funection.

Suppose f is an entire function of exponential type such that the
restriction of f to two nonparalle] lines belongs to L?. Prove
that f = 0.

Suppose f is an entire function of exponential type whose restric-
tion to two nonparallel lines is bounded. Prove that f is con-
stant. (Apply Exercise 6 of Chap. 12.)

Suppose f is entire, | f(z)] < C exp (Alz]), and f(2) = Za.z". Put

o 0l
q)(w) 5‘ n-!—l-
A~
Prove that the series converges if |w| > A, that

f@) =5 f B(w)ev dw

ifT({) = (A + e)e*t, 0 <t < 27, and that @ is the function which
occurred in the proof of Theorem 19.3. (See also Sec. 19.4.)
Suppose f satisfies the hypothesis of Theorem 19.2. Prove that
the Cauchy formula

£ L4
T

0 Q) =g LR 0<e<y

+ 16 - 2
holds; here z = z + iy. Prove that
(@) = im f(z + i)
y—0

exists for almost all . What is the relation between f* and the
function F which oceurs in Theorem 19.27? Is (x) true with
e = 0 and with f* in place of f in the integrand?

Suppose g & L*(—,®) and ¢ > 0. Prove that there exists an
f with |f] = ¢ such that the Fourier transform of f vanishes on a
half line if and only if

w d
[_wlogga(x)ﬁ>—w

Suggestion: Consider f*, as in Exercise 5, where f = exp (u + )
and

u(z) = = [ = t)“ e log (%) dt.

Let f be w complex function on a closed set E in the plane.

Prove that the following two conditions on f are equivalent:

(@) There is an open set @ D £ and a funetion F e H(Q) such
that F(z) = f(z) for z¢ E,
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(b) To each a ¢ E there corresponds a neighborhood V, of @ and
a function F, ¢ H(V,) such that F.(2) = f(2) in V.n E.
(A special case of this was proved in Theorem 19.9.)

8 Prove that C{n!} = C{n*}.

9 Prove that there are quasi-analytic classes which are larger than
Cinl}.

10 Put A\s = M,._y/M,, as in the proof of Theorem 19.11. Pick

go € C.(RY), and define

@ = @) [T g -t (=123, ...

Prove directly (without using Fourier transforms or holomorphic .
functions) that g = lim g, is a function which demonstrates that
(¢) implies (@) in Theorem 19.11. (You may choose any g, that
is eonvenient.)

11 Find an explicit formula for a function ¢ & C*, with support in
[—2,2], such that o(z) = 1if —1 <z <1,

12 Prove that to every sequence {a,] of complex numbers there
corresponds & function fe C* such that (DY)(0) = as for
n=20,1, 2 .... Suggestion: If ¢ is as in Exercise 11, if
Br = an/nl, if ga(z) = Baz"ep(z), and if

fn(x) = Rn—"gn(knx) = 61;3:“({’0"37) )
then ||D¥ujle <2 for k=0, ..., n~1, provided that A\,

is large enough. Take f = Zf..
13 Construct a function f € C* such that the power series

2 (D"f) (a) @ —
n=0

has radius of convergence 0 for every a ¢ R'. Suggestion: Put

= \ ki)«,‘z
f@) 2108 .

where {¢;} and {A\:} are sequences of positive numbers, chosen so
that Tehe® < o forn =0,1,2, . . . and so that c,A," increases
very rapldly and is much larger tha.n the sum of all the other
terms in the series Zep\®.
For instance, put ¢, = A\, *, and choose, {\¢} so that
h—1
e > 2 E ciAt and A > k%,
i=1
14 Suppose C{M.} is quasi-analytic, f e C{M.,}, and f(x) = 0 for

infinitely many z € [0,1]. What follows?
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Uniform Approximation

by Polynomials

Introduction

20.1 Let K° be the interior of a compact set K in the complex plane.
(By definition, K is the union of all open discs which are subsets of K;
of course, K° may be empty although K is not.) Let P(K) denote the
set of all functions on K which are uniform limits of polynomials in z.

Which funetions belong to P(K)?

Two necessary conditions come to mind immediately: If fe P(K),
then f e C(K) and fe H(K").

The question arises whether these necessary conditions are also suffi-
clent. The answer is negative whenever K separates the plane (i.e.,
when the complement of K is not connected). We saw this in Sec. 13.8.
On the other hand, if K is an interval on the real axis (in which case
K" = ), the Weierstrass approximation theorem asserts that

P(K) = C(K).

So the answer is positive if K is an interval. Runge’s theorem also
points in this direction, since it states, for compact sets K which do not
separate the plane, that P(X) contains at least nll those fe C(K) which
have holomorphic extensions to some open set @ D K.

In this chapter we shall prove the theorem of Mergelyan which states,
without any superfluous hypotheses, that the above-mentioned necessary
conditions are also sufficient if K does not separate the plane.

The principal ingredients of the proof are: Tietze’s extension theorem,
a smoothing process involving econvolutions, Runge’s theorem, and
Lemma 20.2, whose proof depends on properties of the class § which
was introduced in Chap. 14. '

382
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Some Lemmas

20.2 Lemma Suppose D is an open disc of radius r > 0, E C D, E s
compact antd connected, @ = 8* — E 13 connecled, and the diameter of B
18 at least r. Then there is a function g e H(Q) and a constant b, with the
following property: If

(1) Q,2) = g(a) + € — b)g*@),

the mequalities

@ O eeal <
1 1,00072
(3) Q2 — ) =T

hold for all z € @ and for all { € D.

We recall that S? is the Riemann sphere and that the diameter of E
is the supremum of the numbers |z; — 24|, where z, € E and 2z, ¢ E.

prooF We assume, without loss of generality, that the center of D
is at the origin. So D = D(0;r).

The implication (¢) — (b) of Theorem 13.18 shows that @ is simply
connected. (Note that «© £¢Q.) By the Riemann mapping theorem
there s therefore a conformal mapping F of U onto @ such that
F(0) = . F has an expansion of the form

a
4) | HM~5+2fm (we V).
We define
1
(5) g@) = _F7'(2)  (229),
where F~! is the mapping of € onto U which inverts F, and we put
1
(6) b =5 fr 29(2) dz,

where T is the positively oriented circle with center 0 and radius r.

ChooseceE. ThenF — chasnozeroinU. By (4),a/(F —-c)e§
(see Definition 14.10), so Theorem 14.15 asserts that the diameter
of the complement of (F/a)(U) is at most 4. So diam E < 4 la|.
Since diam E > r, it follows that

@) lol > 7-
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Since g is a conformal mapping of € onto D(0;1/}al), (7) shows that
®) W@l <2 Geo)

and since T is a path in @, of length 2xr, (6) gives
¢)) 1b] < 4r.
If ¢ € D, then |{| < r, s0 (1), (8), and (9) imply
4 16 100

(10) IQi < T + or (}”g) < >
This proves (2).

Fix re D.

If z=F(w), then 29(z) = wF(w)/a; and since wF(w)-— a as
w— 0, we have 2g(2) > 1 as z— «. Hence g has an expansion
of the form

(1D @) = — + (z"ff%z + (z"“_(%a oo (e—gl > 2.

Let Ty be a large circle with center at 0; (11) gives (by Cauchy’s
theorem) that

(12) M) =5 [ @~ D@ da=b— 1.
Substitute this value of A.(¢) into (11). Then (1) shows that the
function
1
13) o0 = [0 - 2] e - oy

is bounded as z— «. Henece ¢ has a removable singularity at .
If zeQn D, then |z — | < 2r, s0 (2) and (13) give

(14) le(2)] < 8r8|Q(¢,2)| + 4r* < 1,00072
By the maximum modulus theorem, (14) holds for all ze Q2. This
proves (3).

20.3 Lemma Suppose f & CL(K?), the space of ail continuously differenii-
able functions in the plane, with compact support. Put

1/9 . 0

Then the following “‘Cauchy formula” holds:
_ _ Y @GN _ :
@) fer= -2 [[ F=odean G = etin.
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PROOF This may be deduced from Green’s theorem. However,
here is a simple direct proof:

Put o(r,8) = f(z -+ re?), r > 0, @ real. If § = z -+ re’*, the chain
rule gives

® @) = 3o 3+ L 5] et

The right side of (2) is therefore equal to the limit, as ¢ — 0, of

@) 21[ fz"(a“’—ﬂa“’)ded

For each r > 0, ¢ is periodic in 6, with period 2x. The integral of
3¢/ 00 is therefore 0, and (4) becomes

®) — o [t ["32ar = o [ otet) do.
As e — 0, o(¢,6) — f(2) uniformly. This gives (2).

We shall establish Tietze's extension theorem in the same setting in

which we proved Urysohn’s lemma, since it is a fairly direct consequence
of that lemma.

Y. ]

206.4 Tietze's Exiension Theorem- nuppose Kisa COMPGGD 8%0835 OJ' a

locally compact Hausdorff space X and fe C(K). Then there erists an
F ¢ C.(X) such that F(x) = f(z) for all z ¢ K.

(As in the proof of Lusin's theorem, we can also arrange it so that

IFlix = I/l

PROOF Assume fisreal, —1 < f < 1. Let W be an open set with
compact closure so that K C W. Put

() K*={zeK:fx) 24}, K- ={zeK:f(z) < —4}.

Then K+ and K~ are disjoint compact subsets of W. As a conse-
quence of Urysohn’s lemma there is a function f; € C.(X) such that

fil) = 3 on K¥, fi(x) = —} on K-, —} < f(z) < } for all ¢ X,
and the support of f; lies in W. Thus
(2) lf —fil<§on K, [fif <jonX.

Repeat this construction with f — f, in place of f: There exists an
f2 & C(X), with support in W, so that

@3) F—fn—-fRl<@®*mK, |fij<i-2onX.

In this way we obtain functions f. & C.(X), with support in W,
such that

@ [f=fim - ~f <@r*onK, |fal <3 @F*'onX.
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Put F=fi+fo+/ s+ - -. By(4), the series converges to f on
K, and it converges uniformly on X. Hence F is continuocus.
Also, the support of F lies in W.

Mergelyan’s Theorem

20.5 Theorem If K is a compa-t set in the plane whose complement s
connecled, if f is a continuous complex function on K which is holomorphic
i the interior of K, and if € > 0, then there exists a polynomial P such
that |f(z) — P(z)] < eforall z¢ K.

If the interior of K is empty, then part of the hypothesis is vacuously
satisfied, and the conclusion holds for every f € C(K). Note that K need
not be connected.

PROOF By Tietze's theorem, f can be extended to a continuous
function in the plane, with eompact support. We fix one such exten-
sion, and denote it again by f.

For any & > 0, let w(8) be the supremum of the numbers
[f(22) — f(21)]

where z; and z; are subject to the condition |z — z;| < 8. Since f is
uniformly continuous, we have

(1) lim w(8) = 0.
50

From now on, 3 will be fixed. We shall prove that there is a
polynomial P such that

(2) 1f(z) — P(2)] < 10,000 w(3) (22 K).

By (1), this proves the theorem.
Qur first objective is the construction of a function ®e& C/(R?),
sueh that for all z

3) 5G) — 3| < wlo),
@) Ge)@) < 22,
and

5) @@=—§ﬂ%@§aw ¢ = &+ ),

where X is the set of all points in the support of & whose distance
from the complement of K does not exceed 3. (Thus X contains
no point which is “far within"” K.)
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We construct & as the convolution of f with a smoothing function
A. Puta(r) =0ifr > 5, put

3 r7\2
Q o) = (1-5) ©<r<,
and define
') A(z) = a(|z])

for all complex z. It is clear that A e C/(R?). We claim that

® gA=L

@) ! 3A =0,
(10) !f 14| = % < 35

The constants are so adjusted in (6) that (8) holds. (Compute
the integral in polar eoordinates.) (9) holds simply because A has
compact support. To compute (10), express 64 in polar coordinates,
as in the proof of Lemma 20.3, and note that 84/86 = 0,

|0A/dr] = —a'(r).
Now define

) 26 = [f ft = DA didn = [/ A - pre) azan
Since f and A have compact support, so does . Since
12) @) - f@) = [ [ 15z = &) — F@IAG) dg dn

and A(¥) = 0if |¢ > 8, () follows from (8). The difference quo-
tients of A converge boundedly to the corresponding partial deriva-
tives, since A € C/(R?. Hence the last expression in (11) may be
differentiated under the integral sign, and we obtain

13 @D = lf (BA) & — DFC) dedn
= l 7 = $)(3A)Q) de dn

= !j [ = ©) = f@IGA)) de dn.
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The last equality depends on (9). Now (10) and (13) give (4). If
we write (13) with ®, and &, in place of ®, we see that & has con-
tinuous partial derivatives. Hence Lemma 20.3 applies to &, and
(5) will follow if we can show that d® = 0 in @, where G is the set
of all 2 € K whose distance from the complement of K exceeds é.
We shall do this by showing that

(14) B(2) = flz) (2eG);

note that f = 0 in G, since f is holomorphic there. (We recall that
J is the Cauchy-Riemann operator defined in Sec. 11.1.) Now if
z¢ @, then z — { is in the interior of K for all { with |¢| < 3. The
mean value property for harmonic functions therefore gives, by
the first equation in (11),

(15) &) = A ' a(r)r dr L" f(z — re'*)y do

= 2xf(2) L‘ a{r)r dr = f(2) g’ A = f(2)

for all ze G

We have now proved (3), (4), and (5).

The definition of X shows that X is compact and that X can be
covered by finitely many open discs D,, . . . , D,, of radius 23,
whose centers are not in K. Since 8* — K is connegted, the center
of each Dj can be joined to « by a polygonal path in 82 - K. It
follows that each D; contains a compact connected set E;, of diameter
at least 28, so that S? — E; is connected and so that K n E; = .

We now apply Lemma 20.2, with r = 28. There are functions
g; ¢ H(S* — E;) and constants b; so that the inequalities

16) Qs < 3

a7) Q) - | < P

hold for 24 E;and t e Dy, if

(18) Qi(t,2) = g;(2) + (& — b)gi*(2).

Let Q@ be the complement of Eyu - - - v E,. Then @ is an open
set which contains K,

Put X; =XnD; and Xj = (XnD,) — (Xyu - - - v X;.,), for
2 £j £ n. Define

(19) BGp) = QG2)  (eX,ze0)
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and

@  F@ = [[ GIORCAdd  Een.

Smce

J=1

@)  F() = 2 }r ﬂ (%) ()Qi(s,2) dt dn,

(18) shows that F isa finite linear combination of the functions g; and
g*. Hence F £ H(Q).

By (20), (4), and (5) we have

@ \Fe@) ~ 20| <222 [[ |Rea - Zp|dtdn oo

Observe that the inequalities (16) and (17) are valid with R in place
of Q;if e Xandze Q. Forif { ¢ X then { & X; for some 7, and then
R(t,2) = Qi(¢,2) forall ze Q.

Now fixze Q, put { = 2z -+ pe®, and estimate the integrand in (22)
by (16) if p < 45, by (17) if 48 < p. The integral in (22) is then seen
to be less than the sum of

@3) o [* (? + %) pdp = 808x3

and

(24) % [J 4.&@.__.‘?:1.5_’ pdp = 2,000x3.
Hence (22) yields

(25) \F(z) — ®(z)| < 6,000 w(8) (c£9).

Since F e H(Q), K C 9, and 8 — K is connected, Runge’s theorem
shows that F can be uniformly approximated on K by polynomials.
Hence (3) and (25) show that (2) can be satisfied.

This completes the proof.

One unusual feature of this proof should be pointed out. We had to
prove that the given function f is in the closed subspace P(K) of C(K).
(We use the terminology of Sec. 20.1.) Our first step consisted in
approximating f by ® But this step took us outside P(K), since & was
go constructed that in general ® will not be holomorphic in the whole
interior of K. Hence ® is at some positive distance from P(K). How-
ever, (25) shows that this distance is less than a constant multiple of
w(3). [In fact, having proved the theorem, we know that this distance
is at most w(8), by (3), rather than 6,000 «(8).] The proof of (25)



390 Real and complex analysis

depends on the inequality (4) and on the fact that & = 0 in ¢. Since
holomorphic functions ¢ are characterized by d¢ = 0, (4) may be regarded
as saying that ® is not too far from being holomorphic, and this interpreta-
tion is confirmed by (25).

Exercises

1 Extend Mergelyan’s theorem to the case in which §? — K has
finitely many components: Prove that then every f £ C(K) which is
holomorphic in the interior of K can be uniformly approximated on
K by rational functions.

2 Show that the result of Exercise 1 does not extend to arbitrary
compact sets K in the plane, by verifying the details of the following
example. Forn =1,2,3, ..., let Dy = D(asjra) be disjoint
open dises in U whose union V is dense in U, such that Zr, < «.
Put K = U —- V. Let I and v. be the paths I'(f) = &%,

7ﬂ(t) = On + rne“,
0 <t < 2, and define

L) = [ fe) dz - Zl [f@d  (FeCE)).
Prove that L is a bounded linear functional on C(K), prove that
L{(R) = 0 for every rational function B whose poles are outside K,
and prove that there exists an f € C{K) for which L(f) = 0.

3 Show that the function g constructed in the proof of Lemma 20.2
has the smallest supremum norm among all f& H(Q) such that
2f(2) — 1 as z— «. (This motivates the proof of the lemma.)

Show also that b = ¢o in that proof and that the inequality
|b| < 4r can therefore be replaced by |b] < r. In fact, b lies in the
convex hull of the set F.



Appendix

Hausdorif’s Maximality
Theorem

We shall first prove a lemma which, when combined with the axiom of
choice, leads to an almost instantaneous proof of Theorem 4.21.

If § is a collection of sets and ® C F, we call ® a subchain of F provided

that @ is totally ordered by set inclusion. Explicitly, this means that if
Ae®and Bed, then either A C B or B C A, The union of all mem-
bers of ® will simply be referred to as the union of ®.
Lemma Suppose § s a nonempty collection of subsels of a set X such that
the union of every subchain of F belongs to . Suppose g is a funclion which
associates o each A €T a set g(A) € F such that A C g(4) and g(A) — A
consists of at most one element. Then there exisls an A € F for which
g(A) = A.

PROOF Fix Age & Call a subcollection & of & a tower if ' has the
following three properties:

(a) Aoe T,
(b) The union of every subchain of F belongs to F.
(¢} If A €7, then also g(4) e F.

The family of all towers is nonempty. For if &, is the collection
of all A eF such that Ao C A, then §, is a tower. Let F, be the
intersection of all towers. Then &, is & tower (the verification is
trivial), but no proper subcollection of F; is a tower., Also, A0 C 4
if A €%, The idea of the proof is to show that ¥, is a subchain of .

Let T be the collection of all C € Fosuch that every A & F, satisfies
either A C Cor C C A.

For each CeT, let $(C) be the collection of all A & Fo such that

either A C C or g(C) C A.
91
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Properties (a) and (b) are clearly satisfied by T' and by each &(O).
¥ix C ¢ T, and suppose A € $(C). We want to prove that g(4) e #(0).
If A e ®(C), there are three possibilities: Either A C C and A = C,
or A = C,org(C) C A. If A is a proper subset of C, then C cannot
be a proper subset of g(A), otherwise g(4A) — A would contain at
least two elements; since C & T, it follows that g(4) C C. If A = C,
then g(A) = g(C). If ¢g(C) C 4, then also g(C) C g(4), since
A C g(A). Thus g(A) € (C), and we have proved that (C) is a
tower. The minimality of Fo now implies that ®(C) = F,, for every
CeTl.

In other words, if A € Foand C £ T, then either A C Corg(C) C A.
But this says that g(C) e T. Hence I' is a tower, and the minimality
of § shows that I' = F, It now follows from the definition of T
that &, is totally ordered.

Let A be the union of Fp. Since F satisfies (b), A €Fo. By (c),
g(A) € Fo. Since 4 is the largest member of Fo and since 4 C g(4),
it follows that A = g(4).

Definition A choice function for a set X is a funetion f which associates
to each nonempty subset E of X an element of E: f(E) e E.

In more informal terminology, f “‘chooses” an element out of each non-
empty subset of X.

The Axiom of Choice For every set there is a choice function.

Hausdorff’s Maximality Theorem Every nonempty partially ordered set
P contains a mazimal totally ordered subset.

PROOF Let F be the collection of all totally ordered subsets of P.
Since every subset of P which consists of a single element is totally
ordered, ¥ is not empty. Note that the union of any chain of totally
ordered sets is totally ordered.

Let f be a choice functionfor P. If A £ F, let A* bethesetof all x
in the complement of A such that Avf{z}ed. If A* > &, put
g(4) = Av {f4%)}. If A* = ¢F, put g(4) = 4.

By the lemma, A* = & for at least one 4 £ F, and any such A is a
maximal element of &.



Chapter 1

The first book on the modern theory of integration and differentiation is
Lebesgue’s “Lecons sur intégration,” published in 1904.

The appl‘oa.ch to abstract integration presented in the text is inspired by Saks
128].1 Greater generality can be aitained if o-algebras are replaced by o-rings
(Axioms: U4;e® and 4, — 4;e®R if A;eRfori=1,2, 3, ... ;itisnot

required that X € &), but at the expense of a necessarily fussier definition of
measurability. See sec. 18 of [7]. In all classical applications the measurability
of X is more or less automatic, This is the reason for our choice of the some-
what simpler theory based on o-algebras.

Sec. 1.11. This definition of @ is as in [12]. In [7] the Borel sets are defined
as the o-ring generated by the compact sets. In spaces which are not e-compact,
this is a smaller family than ours.

Chapter 2

Sec. 2.12. The usual statement of Urysohn’s lemma is: If K, and K, are dis-
joint closed sets in a normal Hausdorff space X, then there is a continuous fune-
tion on X which is 0 on K¢and 1 on K,. The proof is exactly as in the text.

Sec. 2.14. The original form of this theorem, with X = [0,1], is due to F.
Riesz (1909). See [5], pp. 373, 380-381, and [12], pp. 134-135 for its further
history. The theorem is here presented in the same generality as in [12]. The
set function g which is defined for all subsets of X in the proof of Theorem 2.14
is called an outer measure because of its countable subadditivity (Step I). For
systematic exploitations (originated by Carathéodory) of this notion, see [25)
and [28].

1 Numbers in brackets refer to the Bibliography.
393
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Sec. 2.20 For direct constructions of Lebesgue measure, along more classical
lines, see [31], {35], and [26].

Sec. 2.22. A very instructive paper on the subject of nonmeasurable sets in
relation to measures invariant under a group is: J. von Neumann, Zur allge-
meinen Theorie des Masses, Fundamenta Math., vol. 13, pp. 73-116, 1929. See
also Halmos’s article in the special (May, 1958) issue of Bull. Am. Math. Soc.
devoted to von Neumann’s work.

Sec. 2.23. [28], p. 72

Sec. 2.24. [28], p. 75, There is another approach to the Lebesgue theory of
integration, due to Daniell (Ann, Math., vol. 19, pp. 279-294, 1917-1918) based
on extensions of positive linear functionals. When applied to C(X) it leads to
a construction which virtually turns the Vitali-Carathéodory theorem into the
definition of measurability. See [17] and, for the full treatment, [18].

Exercise 16, This example appears in A Theory of Radon Measures on Locally
Compact Spaces, by R. E. Edwards, Acta Math., vol. 89, p. 160, 1953. Its
existence was unfortunately overlooked in [27].

Exercise 17. [7], p. 231; originally due to Dieudonné.

Chapter 3

The best general reference is [9]. See also chap. 1 of [36].

Exercise 3. Volume 1 (1920) of Fundamenta Math. contains three papers rel-
evant to the parenthetical remark.

Exercise 16. [28], p. 18.

Exercise 18. Convergence in measure is a natural concept in probability
theory. See [7], chap. IX.

Chapter 4

There are many books dealing with Hilbert space theory. We cite [6] and [24]
as main references, See also [5], [17], and [19].

The standard work on Fourier series is [36]. For simpler introductions, see
(10] and §31]).

Chapter 5

The classical work here is {2]. More recent treatises are [5), [14], and [24].
See also [17] and [19].

See. 5.22. For a deeper discussion of representing measures see Arens and
Singer, Proc. Am. Math. Soc., vol. 5, pp. 735-745, 1954.

Chapter 6

Sec. 6.9. von Neumann’s proof is in a section on measure theory in his paper:
On Rings of Operators, III, Ann. Math., vol. 41, pp. 94-161, 1940. See pp.
124-130.

Sec. 6.15. The phenomenon L™ 7 (L1)* is discussed by J. T. Schwartz in
Proc. Am. Math. Soc., vol. 2, pp. 270-275, 1951, and by H. W. Ellis and D. O.
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Snow in Can. Math. Bull., vol. 6, pp. 211-229, 1963. See also [7], p. 131, and (28],
p. 36.

Sec. 6.19. The references to Theorem 2.14 apply here as well.

Exercise 6. See [17], p. 43.

Exercise 10. See [36], vol. I, p. 167.

Chapter 7

Fubini’s theorem is developed here as in [7] and [28]). For a different approach,
see [25].

Sec. 7.9(c) is in Pundamenia Math., vol. 1, p. 145, 1920,

Exercise 2. Corresponding to the idea that an integral is an area under a
curve, the theory of the Lebesgue integral can be developed in terms of measures
of ordinate sets. This is done in [16).

Exercise 8. Part (b), in even more precise form, was proved by Lebesgue in
J. Mathématiques, ser. 6, vol. 1, p. 201, 1905, and seems to have been forgotten.
It is quite remarkable in view of another example of Sierpinski (Fundamenia
Math., vol. 1, p. 114, 1920): There is a plane set E which is not Lebesgue measura-
ble and which has at most two points on each straight line. If f = Xg, then fis
not Lebesgue measurable, although all of the sections f. and f¥ are upper semi-
continuous; in fact, each has at most two points of discontinuity. (This example
depends on the axiom of choice, but not on the continuum hypothesis.)

Chapter 8

Usually (see [28]) (Du)(x) is defined as a Emit of quotients u(E)/m(E), where
E ranges over a suitable family of closed sets containing . In most applications
the sets B are nice sets like balls or eubes, and the utility of the differentiation
theorems does not depend on whether these are open or closed. The use of open
sets permits the exploitation of the finiteness property of open covers of compact
sets. The rather difficult covering theorem of Vitali ([28], p. 109) can be replaced
by the almost trivial Theorem 8.5 in the proof of the basic Theorem 8.6. This
approach seems to have been originated by W. Hurewicz, in a course given at
M.LT. in 1950 (or earlier).

Sec. 8.19. For an elementary proof that every monotone function (hence
every f &£ BV) is differentiable a.e., see [24], pp. 5-9. In that work, this theorem
is made the starting point of the Lebesgue theory. Even simpler is the recent
proof by D. Austin in Proc. Am, Math. Soc., vol. 16, pp. 220-221, 1965.

Sec. 8.21. See [16], Theorems 260-264, for situations in which the same con-
clusion is obtained from somewhat weaker hypotheses. Note that the proof
of Theorem 8.21 uses the existence and integrability of only the right-hand
derivative of f, plus the continuity of f.

Chapter 9

For another brief introduction, see [36], chap. XVI. A different proof of
Plancherel’s theorem is in [33]. Group-theoretic aspects and connections with
Ranach algebras are discussed in [17], [19], and [27). For more on invariant sub-
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spaces (Sec. 9.16) see [11]; the present status of the corresponding problem in
L! is described in [27], chap. 7.

Chapter 10

General references: {1}, [4], [13], [20], [29], and [31].

Sec. 10.8. Integration can also be defined over arbitrary rectifiable curves.
See [13], vol. I, Appendix C.

Sec, 10.10. The topological concept of index is applied in [29] and is fully
utilized in [1]. The computational proof of Theorem 10.10 is as in [1], p. 93.

Sec. 10.13. Cauchy published his theorem in 1825, under the additional
assumption that f’ is continuous. Goursat showed that this assumption is
redundant, and stated the theorem in its present form. See[13], p. 163, for further
historical remarks.

Sec. 10.16. The standard proofs of the power series representation and of the
fact that fe H(Q) implies f' ¢ H(2) proceed via the Cauchy integral formula, as
here. Recently proofs have been constructed which use the winding number
but make no appeal to integration. For details see [34].

Sec. 10.32. The open mapping theorem and the discreteness of Z(f) are
topological properties of the class of all nonconstant holomorphic functions which
characterize this class up to homeomorphisms. This is Stoilov’s theorem.
See [34].

fec. 10.37. A very elementary proof of the algebriic completeness of the
>omplex field is in [26], p. 170.

Chapter 11

General references: [1], chap. 5; [20], chap. 1.

Sec. 11.10. Actually, “nontangential” limits exist a.e. on the circle. See [15],
pp. 34-37, and {36], vol. I, pp. 96-106, especially Theorem (7.6).

Sec. 11.17. The reflection principle was used by H. A. Schwarz to solve
problems concerning conformal mappings of polygonal regions. See sec. 17.6 of
{13). Further results along these lines were obtained by Carathéodory; see [4],
vol. I, pp. 88-92, and Commentarii Mathematici Helveticy, vol. 19, pp. 263-278,
1946-1947.

Sec. 11.19. This is due to Herglotz, Leipziger Berichte, vol. 63, pp. 501-511,
1911.

Sec. 11.21, See Fatou’s thesis, Séries trigonométriques et séries de Taylor,
Acta Math., vol. 30, pp. 335—400, 1906.

Chapter 12

Sec. 12.7. For further examples, see [31], pp. 176-186.

Sec. 12.11. This theorem was first proved for trigonometric series by W. H.
Young (1912;, ¢ =2, 4, 6, . . .) and F. Hausdorff (1923; 2 <¢ £ =»). F.
Riesz (1923) extended it to uniformly bounded orthonormal sets, M. Riesz (1926)
derived this extension from a general interpolation theorem, and G. O. Thorin
(1939) discovered the complex-variable proof of M. Riesz’s theorem. The proof
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of the text is the Calderén-Zygmund adaptation (1950) of Thorin’s idea. Full
references and discussions of other interpolation theorems are in chap. XII of [36).

Sec. 12.12. In slightly different form, this is in Duke Math. J., vol. 20, pp.
449-458, 1953.

Chapter 13

Sec. 13.9. Runge’s theorem was published in Acta Math., vol. 6, 1885. (Inci-
dentally, this is the same year in which the Weierstrass theorem on uniform
approximation by polynomials on an interval was published; see M athematische
Werke, vol. 3, pp. 1-37.) See [29], pp. 171-177, for a proof which is close to the
original one. The functional analysis proof of the text is known to many analysts
and has probably been independently discovered several times in recent years.
It was communicated to me by L. A. Rubel. In [13], vol. II, pp. 299-308, atten-
tion is paid to the closeness of the approximation if the degree of the polynomial is
fixed.

Sec. 13.11. Cauchy’s theorem in simply connected regions is derived from
Runge’s theorem in [29), p. 177. The general formulation of Cauchy’s theorem
in terms of homology is in [1], p. 118, It is proved there via theorems about
exact differentials, with no appeal to approximation theorems.

Exercises 7, 8. For yet another method, see D. G. Cantor, Proc. Am. Math.
Soec., vol. 15, pp. 335-336, 1964.

Chapter 14

General reference: [20]. Many special mapping functions are described there
in great detail.

Sec. 14.3. More details on linear fractional transformations may be found in
[1], pp. 22-35; in [13), pp. 46-57; in [4]; and especially in Chap. 1 of L. R. Ford’s
book “Automorphic Functions,” McGraw-Hill Book Company, New York, 1929.

Sec. 14.5. Normal families were introduced by Montel. See chap. 15 of [13].

Sec. 14.8. The history of Riemann’s theorem is discussed in [13], pp. 320-321,
and in {29), p. 230. Koebe's proof (Exercise 26) is in J. filr Math., vol. 145, pp.
177-223, 1915; doubly connected regions are also considered there.

Sec. 14.10. The as yet unproved conjecture of Bieberbach is that |a. < =
forallnif fe§. See [13], pp. 346-358.

Sec. 14.18(b). This argument occurs in {20], p. 179.

Sec. 14.19. The boundary behavior of conformal mappings was investigated
by Carathéodory in Math. Ann., vol. 73, pp. 323-370, 1913. Theorem 14.19 was
proved there for regions bounded by Jordan curves, and the notion of prime ends
was introduced. See also [4], vol. IT, pp. 88-107.

Exercise 23. This proof is due to Y. N. Moschovakis.

Chapter.15

Sec. 15.9. The relation between canonical products and entire functions of
finite order is discussed in chap. 2 of (3], chap. VII of {29], and chap. VIII of [31].
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Sec. 15.25. See Szasz, Math. Ann,, vol. 77, pp. 482-496, 1916, for further
results in this direction. Also chap. II of [21].

Exercise 7. See Kakutani’s article in “Lectures on Functions of & Complex
Variable” (W. Kaplan, ed.}, The University of Michigan Press, Ann Arbor, 1955.

Chapter 16

The classical work on Riemann surfaces is [32]. (The first edition appeared in
1913.) Other references: Chapter VI of [1], chap. 10 of [13], chap. VI of [29],
and [30].

Sec. 16.5. Ostrowski’s theorem is in J. London Math. Soc., vol. 1, pp. 251-
263, 1926. See J. P. Kahane, Lacunary Taylor and Fourier Series, Bull. Am.
Math. Soc., vol. 70, pp. 199-213, 1964, for a recent account of gap series.

Sec. 16.17. Chapter 13 of [13], chap. VIII of {29], and part 7 of [4].

See. 16.21. Picard’s big theorem is proved with the aid of modular functions
in part 7 of [4]. “Elementary” proofs may be found in [31], pp. 277-284, and in
chap. VII of [29].

Exercise 10. Various classes of removable sets are discussed by Ahlfors and
Beurling in Conformal Invariants and Function-theoretic Null-Sets, Acta Math.,
vol. 83, pp. 101-129, 1950.

Chapter 17

The best general reference here is [15]. See also [36], chap. VII. Although
[15) deals mainly with the unit dise, most proofs are so constructed that they
apply to more general situations which are described there. Some of these
generalizations are presented in chap. 8 of [27].

Sec. 17.1.  See [22] for a thorough treatment of subharmonie functions.

Sec. 17.13. For a different proof, see [15], or the paper by Helson and Low-
denslager in Acta Math., vol. 99, pp. 165-202, 1958.

Sec. 17.14. The terms ‘“‘inner function” and ‘“‘outer function” were coined by
Beurling in the paper in which Theorem 17.21 was proved: On Two Problems
Concerning Linear Transformations in Hilbert Space, Acta Math., vol. 81, pp.
239-255, 1949. For further developments, see [11].

Secs. 17.25, 17.26. This proof of M. Riesz’s theorem is due to A. P. Calderén.
See Proc. Am. Math. Soc., vol. 1, pp. 533-535, 1950. See also [36], vol. I, pp.
252-262,
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Chapter 18

General references: [17], [19], and [23]; also (14]. The theory was originated
by Gelfand in 1941.

Sec. 18.18. This was proved in elementary fashion by P. J. Cohen in Proc.
Am. Math. Soc., vol. 12, pp. 159-163, 1961.



Notes and comments 399

Sec. 18.20. This theorem is Wermer’s, Proc. Am. Math. Soc., vol. 4, pp. 866—
869, 1953. The proof of the text is due to Hoffman and Singer. See [15], pp.
93-94, where an extremely short proof by P. J. Cohen is also given. (See the
reference to Sec. 18.18.)

Sec. 18.21. This was one of the major steps in Wiener’s original proof of his
Tauberian theorem. See [33], p. 81. The painless proof given in the text was
the first spectacular success of the Gelfand theory.

Exercise 14. The set A can be given a compact Hausdorff topology with
respect to which the funections Z are continuous. Thus z — £ is a homomorphism
of A into C(A). This representation of 4 as an algebra of continuous functions
is a most important tool in the study of commutative Banach algebras,

Chapter 19

Secs. 19.2, 19.3: [21], pp. 1-13. See also [3], where functions of exponential
type are the main subjeect.

Sec. 19.5. For a more detailed introduction to the classes C{M.,}, see S.
Mandelbrojt, ‘“‘Séries de Fourier et classes quasi-analytiques,” Gauthier-Villars,
Pans, 1935.

Sec. 19.11. In [21], the proof of this theorem is based on Theorem 19.2 rather
than on 19.3.

Exercise 4. The function ® is called the Borel transform of f. See {3], chap. 5.

Exercise 12. The suggested proof is due to H. Mirkil, Proc. Am. Math. Soc.,

1 M L nEn OEA 1AED AL dhncinen o a1 e 1A
VOI, {, pp. O0U—0D4, 1900, 10€ Lneorei was provea oy Dorel il 19Yo.

Chapter 20

See 8. N. Mergelyan, Uniform Approximations to Functions of a Complex
Variable, Usephi Mat. Nauk (N.8.) 7, no. 2 (48), 31-122, 1952; Amer. Math. Soc.
Translation No. 101, 1954, Our Theorem 20.5 is Theorem 1.4 in Mergelyan’s

aper.

F R functional analysis proof, based on measure-theoretic considerations, has
recently been published by L. Carleson in Math. Scandinavica, vol. 15, pp.
167-175, 1964.

Appendix

The maximality theorem was first stated by Hausdorff on p. 140 of his book
“Grundziige der Mengenlehre,” 1914. The proof of the text is patterned after
section 16 of Halmos’s book [8]. The idea to choose g so that g(4) — A has at
most one element appears there, as does the term “tower.”” The proof is similar
to one of Zermelo’s proofs of the well-ordering theorem; see Math. Ann., vol. 65,
pp. 107-128, 1908.
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List of Special Symbeols and

Abbreviationst
exp (2) 1
T 8
m 8
XE 11
lim sup 13
lim inf 14
1 14
L(p) 24
E 35
C.(X) 38
K<f<V 39
Mp 42
m, my 50
LY(R¥), L\(E) 52
I fll2 1170 64
L#(y), L?(R¥), ¢» 64
L=(u), L*(R*), £~ 64
Co(X), C(X) 69
@), Izl 75
z Ly M* 78
#(a) 81
T 838
Lx(T), C(T) a3
Z 89
f(n) 91
Co 104
I All= 109

t The standard set-theoretic symbols are described on pages 6 and 7 and are not
listed here.
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U

Pr(o - t)
u|(E)

ut, w”

AL u

A1 L Ag

E., Ev

Ju fY

X A

fxg

g A

Dy, Dy, Dy
T./, V(f}
BY, NBY
fl@—), flz+)
T”(ﬂ:)

A(4)

0]

Cw, Ccm

D(a;r), D'(a;r), Diayr)

Q
H(Q)

VY

dA

Z(f)

3,8

P[f]

Pldy]

m+, -
*(e)

Hen

¢a(2)

S2
nr=IxI
S

Er(z)

logt i

N

(fo,D0) ~ (f1,D)
M,(f;r), H?
M;, Qy
C{M.}
P(K)
C.(R?)
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110
111
117
120
121
121
136
138
140
146
148
153

&£
160

161
161
170
170
180
196
198
198

199
202

-

204
209
222
224
225
230
234
234
241
252
261
276
293
303
303
316
330
338
373
382



Index

Absolute continuity, 121, 125, 159, 335
of functions, 165
Ahsolute convergence, 117
Absolutely convergent Fourier series, 363
Addition formula, 1
Affine transformation, 373
Ahlfors, L. V., 398
Algebra, 351
of measures, 149
of sets, 10
Algebraically closed field, 218
Almost everywhere, 27
Almost uniform convergence, 214
Analytic continuation, 316, 372, 375
Analytic function, 199
Annulus, 249, 266, 282, 286
Area, 221
Ares theorem, 277
Arens, R., 394
Argument, 205
Arithmetic mean, 62, 91, 94
Associafive law, 192
Asymptotic value, 250
Austin, D, 395
Average, 30, 158
Axiom of choice, 392

Baire’s theorem, 97
Ball, 9
Banach, 8., 105
Banach algebra, 149, 192, 351
Banach space, 95, 331
Banach-Steinhaus theorem, 98, 101, 356
Bessel's inequality, 84, 246
Beurling, A., 328, 398
1405

Beurling’s theorem, 342

Bieberbach conjecture, 397

Blaschke product, 302, 308, 311, 331, 35C
Borel, E., 5, 399

Borel function, 13, 147, 150

Borel measure, 47

Borel set, 12

Borel transform, 399

Boundary, 109, 204, 240

Bounded function, 16, 64

Bounded linear functional, 96, 127, 131
Bounded linear transformation, 96
Bounded variation, 118, 161

Box, 49

Celderén, A. P., 397, 398

Cancellation law, 19

Canonical produet, 204, 397

Cantor, D. G., 397

Cantor set, 168

Carathéodory, C., 393, 396, 397

Carleson, L., 399

Carrier, 57

Cartesian product, 7, 136

Category theorem, 98

Cauchy, A., 396

Cauchy formula, 208, 235, 254, 266, 333,
335, 380, 384

Cauchy-Riemann equations, 223, 249

Cauchy sequence, 66

Cauchy theorem, 206, 259, 299, 369, 371

Cauchy’s estimates, 213

Cell, 49

Chain, 316, 391

Chain rule, 199
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Change of variables, 174
Character, 180
Characteristic function, 11
Choice function, 392
Class, 6
Closed curve, 202
Closed graph theorem, 116
Closed path, 202
Closed set, 12, 35
Closed subspace, 78
Closure, 35
Cohen, P. J., 398, 399
Collection, 6
Commutative algebra, 351
Commutative law, 19, 33
Compact set, 35
Complement, 7
Complete measure, 27
Complete metric space, 66, 76, 95
Completion, of measure space, 27, 144

of metric space, 68, 74
Complex algebra, 351
Complex field, 218, 354
Complex homomorphism, 193, 360
Complex-linear functional, 105
Complex measure, 16, 131
Complex vector space, 33
Component, 198
Composite function, 7
Concentrated, 121
Conformal equivalence, 273
Conjugate exponents, 62
Conjugate function, 345
Connected set, 198
Continuity, 8, 9
Continuous function, 8
Continuous linear functional, 80, 96
Continuous measure, 149
Continuum hypothesis, 143
Contour integral, 219
Convergence, almost uniform, 214

dominated, 26

in L», 66

in measure, 73

monotone, 21

uniform, 16

on compact subsets, 214

weak, 233, 238
Convex function, 60
Convex sequence, 373
Convex set, 78
Convexity theorem, 244

Real and complex analysis

Convolution, 146, 148, 192
Coset, 52, 358
Cosine, 2, 251
Countable additivity, 5. 16, 117
Counting measure, 17
Cover, 35, 316
Covering theorem, 154
Curve, 202
with orthogonal increments, 94

Daniell, P. J., 394
Denjoy, A., 167
Denjoy-Carleman theorem, 376
Dense set, 56
Density, 177
Derivative, 151, 199
of Fourier transform, 181
of function of bounded variation, 166
of integral, 185
lower, 153
of measure, 153, 155, 173
symmetric, 175
of transformation, 170
upper, 153
Determinant, 174
Diagonal process, 233, 273
Diameter, 152
Dieudonng, J., 394
Differentiable transformation, 170, 353
Differential, 170, 353
Dirchlet problem, 228
Direct continuation, 316
Dise, 9, 198
Discrete measure, 149
Disjoint sets, 7
Distance function, 9
Distributive law, 19, 33, 192
Division algebra, 355
Domain, 7
Dominated convergence theorem, 26, 28,
181

i bnmnal

Nanhla ¢ 141
LAOU0IE INiegEras, 171

Dual space, 108, 128, 238

Eberlein, W. F., 56
Edwards, R E., 394
Egoroff’s theorem, 72
Elementary factor, 203
Elementary set, 136
Ellipze, 278
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Ellis, H. W., 394 Function, harmonie, 223
Empty set, 6 holemdrphic, 199

End point, 202 Lebesgue integrable, 24
Entire function, 199, 301, 370, 397 left-continuous, 161, 179
Equicontinuous family, 272 locally integrable, 196, 237
Equivalence claases, 65 lower semicontinuous, 37
Equivalent paths, 202 measurable, 8 28, 150
Essential range, 73, 364 meromorphie, 260, 296
Essential singularity, 211, 342 modular, 320

Essential supremum, 64 monotone, 176

Euclidean norm, 169 normalized, 81, 161
Euclidean space, 34, 49 nowhere differentiable, 115
Euclid’s inequality, 75 rational, 219, 253, 284
Euler’s identity, 2 simple, 15, 67
Exponential funetion, 1, 199 gingular, 168

Exponential type, 368, 378, 399 subharmonie, 328
Extended real line, 9 summable, 24

Extension, 105 upper semicontinuous, 37
Extension theorem, 105, 385 Function element, 316
Extremal function, 242, 348 Functional, bounded, 96
Extreme point, 238 on C,, 131

complex-linear, 105
continuous, 96

F-set, 12 on Hilbert space, 80

Factorization, 295, 334, 336 on Lr, 128

Family, 6 linear, 33

Fatou, P., 396 multiplicative, 193, 360

Fatou’s lemma, 22, 67, 301, 338 positive, 34

Fatou’s theorem, 235 real-linear, 105 .

Fejér’s theorem, 91 Functional analysis, 108

Field, 358 Fundamental theorem of caleulus, 165

Finite additivity, 17
First category, 98

Fixed point, 220, 285, 308 Gi-set, 12
Ford, L. R,, 397 Gap series, 265, 314, 349, 381, 398
Fourier coefheients, 81, 91 Gelfand, 1., 398
of measure, 134 Gelfand-Mazur theorem, 354
Fourier series, 91, 267 Gelfand transform, 365
Fourier transform, 180, 196, 367 Geometric mean, 62
Fubini’s theorem, 140, 144, 395 Goursat, E., 396
Function, 7 Graph, 116, 148
absolutely continuous, 165 Greatest lower bound, 7
ansalytic, 199 Green’s theorem, 385
Borel, 13
bounded, 64
of bounded variation, 161 Hadamard, J., 250, 314
continuous, 8 Hahn-Banach theorem, 105, 109, 256,
convex, 60 305, 354, 356, 362
entire, 199 Hahn decomposition, 127
essentially bounded, 64 Halmos, P. R., 394, 399
exponential, 1 Hardy, G. H. 328

of exponential type, 368, 399 Harmonic conjugate, 285, 345
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Harmonic function, 223

Harmonic majorant, 348

Harnack’s theorem, 229

Hausdorff, F,, 12, 396, 399

Hausdorff maximality theorem, 87, 107,

177, 357, 392

Hausdorff separation axiom, 36

Hausdorff space, 36

Hausdorff-Young theorem, 247

Heine-Bore! theorem, 36

Helson, H., 343, 398

Herglotz, G., 396

Hilbert cube, 93

Hilbert space, 76, 332
isomorphism, 86, 92, 187, 341

Hoffman, K., 399

Hélder’s inequality, 62, 65

Holomorphic function, 199

Homeomorphism, 263

Homology, 260

Homomeorphism, 181, 193, 357, 365, 399

Homotopy, 260, 319

Hurewicz, W., 395

Ideal, 149, 309, 357, 365
Iinage, 7
Indefinite integral, 157
Independent set, 81
Index, of curve, 261
of path, 204
Infimum, 7
Infinite product, 290
Initial point, 202
Inner factor, 338
Inner function, 336, 342
Inner preduct, 75
Inner regular set, 47
Integral, 19, 24, 130, 202
Integration, 19
of derivative, 166, 168
over measurable set, 20
by parts, 176, 226, 239
over path, 202
with respect to complex measure, 130
Interior, 254
Interpolation, 246, 298
Intersection, 6
Interval, 7
Invariant subspace, 190, 341
Inverse funetion theorem, 173
Inverse image, 7
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Inverse mapping, 7, 217
Inversion, 269

Inversion formula, 182

Inversion theorem, 186, 187, 189
Invertible element, 352
Invertible operator, 171

Isolated singularity, 211
Isometry, 84, 187, 363, 365
Isomorphism, 86, 187, 363, 365
Iterated integral, 141, 143

Jacobian, 174, 221

Jensen’s formula, 300

Jensen’s inequality, 61, 300

Jordan, C., 5

Jordan curve, 282

Jordan decomposition, 120, 127, 340

Kahane, J. P., 398
Kakutani, 8., 398
Kernel, 357

Koebe mapping, 287

Laplace equation, 223
Lapiacian, 196, 223
Laurent series, 266
Lebesgue, H. J., 5, 21, 26, 165, 393, 395
Lebesgue decomposition, 122, 155
Lehesgue integralile function, 24, 52, 69
Lebesgue integral, 19
Lehesgue measurable set, 50
Lebesgue measure, 50
Lebesgue set, 158
Left-continuous function, 161, 179
Left-hand lmit, 161
Length, 176, 203
Limit, pointwise, 14
in mean, 66
of measurable functions, 14
in measure, 73
Linear combination, 81
Linear fractional transformation, 269, 288
Linear independence, 81
Linearly ordered set, 87
Liouville's theorem, 213, 274, 354
Lipschitz condition, 114
Locally compact space, 36
Locally integrable function, 196, 237
Logarithm, 221, 263
Lowdenslager, D., 343, 393
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Lower derivative, 153

Lower half plane, 230

Lower limit, 14

Lower semicontinuous function, 37
Lusin’s theorem, 53

Mandelbrojt, S., 399
Mapping, 7

continuous, 8

one-to-one, 7

open, 99, 173, 216

(See also Function)
Maximal ideal, 357, 360
Maximal orthonormal set, 85
Maximal subalgebra, 361
Meximality theorem, 392
Maximum modulus theorem, 111, 213,

249, 258, 357

Mean value property, 230, 237
Mesasurabie function, 8, 28, 150, 393
Measurable set, 8, 50
Measurable space, 8
Measure, 16

absolutely continuous, 121, 335

Borel, 47

complete, 27

complex, 16, 131

continuous, 149

counting, 17

discrete, 149

Lebesgue, 50

positive, 16

real, 16

regular, 47, 131

representing, 110, 394

o-finite, 47

signed, 120

singular, 121

translation invariant, 50
Measure space, 16
Mergelyan’s theorem, 386, 399
Meromorphic function, 260, 296
Metrie, 9
Metric density, 177
Metric space, 9
Minkowski’s inequality, 62, 65
Mirkil, H., 399
Mittag-Leffler theorem, 296, 308, 309
Modular function, 320
Modular group, 320
Monotone class, 136

Monotone convergence theorem, 21
Monotone function, 176
Monotonicity, 17, 42

Morera’s theorem, 209
Moschovakis, Y. N., 397

Multiplication operator, 116, 199, 341, 364

Multiplicative inequality, 351
Multiplicative linear funciional, 360
Multiplicity function, 179
Multiplicity of & zero, 216, 293
Miintz-Szasz theorem, 305, 309

Natural boundary, 313, 315, 323
Negative part, 15

Negative variation, 120
Neighborhood, 9, 35

Neumann, J. von, 123, 394
Nevanlinna, R., 303
Nonmeasurgble set, 52, 143, 395
Nonsingular operator, 171
Norm, 64, 75, 95, 169, 330
Norm-preserving extension, 107
Normal family, 271

Normalized function, 81, 161
Normed algebra, 351

Normed linear space, 85
Nowhere dense, 98

Nowhere differentiable function, 115
Null-homotopic curve, 261

Null space, 357

One-fo-one mapping, 7
One-parameter family, 261, 318
Onto, 7

Open ball, 9

Open cover, 35

Open mapping theorem, 99, 216, 267, 396

Open set, 8
Opposite path, 203
Orbit, 308
Order, of entire function, 310
of pole, 211
of zero, 210
Ordinal, 58
Ordinate set, 148, 395
Oriented interval, 203
Orthogonal projection, 79, 190, 343
Orthogonality, 35, 78
Orthogonality relations, 81
Qrthonormasl basis, 85
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Orthonormal set, 81
Ostrowski, A., 314
Outer factor, 338
Outer function, 336
Outer measure, 393
Quter regular set, 47
Overconvergence, 314

Paley-Wiener theorems, 368, 370
Parallelogram law, 79
Parameter interval, 202
Parseval’s identity, 85, 92, 189, 213, 333
Partial derivative, 222
Partial fractions, 253
Partial product, 290
Partial sum of Fourier series, 91, 101, 116,
349
Partially ordered set, 87
Partition, of set, 117, 133
of unity, 40
Path, 202
Perfect set, 176
Periodic function, 2, 88, 178, 267
Perron, O., 167
Phragmen-Lindelof method, 243
L ]
Picard theorem, 324, 398
Plancherel theorem, 187, 368, 371
Plancherel transform, 187
Point of density, 177
Pointwise limit, 14
Poisson integral, 112, 224, 228, 235, 332
Poisson kernel, 112, 223
Poisson summation formula, 197
Polar coordinates, 149
Polar representation of measure, 126
Pole, 211
Polynomial, 110, 218
Positive linear functional, 34, 40, 109
Positive measure, 16
Positive part, 15
Positive variation, 120
Positively oriented circle, 203
Power series, 200, 209
Pre-image, 7
Preservation of angles, 268
Prime end, 397
Principal part, 211
Product measure, 140
Projection, 79, 190, 343, 349
Punctured disc, 198

Real and complex analysis

Quasi-analytic class, 374
Quotient algebra, 358
Quotient norm, 358
Quotient space, 3568

Radial limit, 226, 232, 235, 304, 347
Radical, 365

Radius of convergence, 200
Radon-Nikodym derivative, 122, 155
Radon-Nikodym theorem, 122, 126, 156
Range, 7

Rational function, 219, 253, 284

Real line, 7

Real-linear functional, 105

Real measure, 16

Rectangle, 136

Reflection principle, 230, 271, 284, 396
Region, 198

Regular Borel measure, 47, 131

Regular point, 312

Removable set, 326

Removable singularity, 211
Representable by power series, 200
Representation theorems, 40, 80, 128, 131
Representing measure, 110, 394
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Residue theorem, 215, 259, 260

Resolvent, 365

Restriction, 20, 109

Riemann integral, 5, 34, 51

Riemann-Lebesgue lemma, 103

Riemann mapping theorem, 264, 273, 287

Riemann sphere, 252

Riesz, F., 34, 328, 335, 393, 396

Riess, M., 328, 335, 345, 396

Riesz-Fischer theorem, 85, 91, 92, 333

Riesg representation theorem, 34, 40, 131,
234, 256, 393

Right-hand derivative, 395

Right-hand limit, 161

Root test, 200

Rotation, 269

Rotation invariance, 178

Rouché’s theorem, 218, 266, 275

Rubel, L. A, 397

Runge’s theorem, 255, 258, 397

Saks, S., 393
Scalar, 33 ..
Scalar produet, 75
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Schwartz, J. T., 394
Schwarz, H. A, 396
Schwarz inequality, 49, 75
Schwarz lemma, 240
Schwarz reflection principle, 230
Second category, 98
Section, 136
Segment, 7
Separable space, 93
Set, 6
Borel, 12
closed, 12, 35
compact, 35
connected, 198
convex, 78
dense, 56
elementary, 136
empty, 6
F,, 12
Gs, 12
inner regular, 47
measurable, 8, 50
nonmeasurable, 52, 143, 305
open, 8
outer regular, 47
partially ordered, 87
perfect, 176
strictly convex, 113
totally disconnected, 56
totally ordered, 87
Shift operator, 341
Sierpingki, W., 143, 395
o-algebra, 8
e-combpact set, 47
o-finite measure, 47, 124, 138, 140
Signed measure, 120
Simple boundary point, 279
Simple function, 15, 67
Simply connected, 262, 319, 325
Sine, 2, 251
Singer, I. M., 394, 399
Singular function, 168
Singular measure, 121, 337, 344
Singular point, 312
Snow, D. 0., 395
Space, Banach, 95, 331
compact, 35
complete metrie, 66, 76, 95
dual, 108, 128, 238
Hgausdorfi, 36
Hilbert, 76, 322
inner product, 75

Space, locally compact, 36
measurable, 8
metric, 9
normed linear, 95
separable, 83
topological, 8
unitary, 75
vector, 33
Span, 81
Spectral norm, 355
Spectral radius, 355
Spectrum, 352
Square root, 263
Stotlov’s theorem, 396
Strictly convex set, 113
Subadditivity, 393
Subchain, 391
Subharmonie function, 328
Subset, 6
Subspace, 77
Substantial family, 152
Summability method, 115
Summable function, 24,
Supremum norm, 69
Support, 38, 57
Symunetric derivative, 175, 226
Szasz, 0., 398

Tauberian theorem, 399
Taylor’s formula, 375
Thorin, G. O., 396
Three-circle theorem, 250
Tietze’'s extension theorem, 385
Topological space, 8
Topology, 8
Total variation, 118, 160
Totally disconnected set, 56
Totally ordered set, 87
Tower, 391
Transcendental number, 146
Transformation, affine, 373
bounded linear, 96
differentiable, 170, 353
linear, 33
linear fractional, 269, 288
(See also Function)
Transitivity, 317
Translate, of function, 183
of set, 317
Translation invariance, 50, 147
Translation invariant measure, 50
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Translation invariant subspace, 190, 365
Triangle, 204

Triangle mequality. 9, 49, 76, 95
Trigonometrie polynomial, 88
Trigonometric system, 89

Uniform absolute continuity, 134
Uniform boundedness principle, 98
Uniform continuity, 51, 177
Uniform convergence, 16, 214
Union, 6

Uniqueness theorems, 187, 210, 236, 240
Unit, 149, 192, 531

Unit ball, 96

Unit circle, 2

Unit dise, 110

Unit mass, 17

Unit vector, 96

Unitary space, 75

Unrestricted continuation, 319
Upper derivative, 153

Upper half plane, 230

Upper limit, 13

Upper semicontinuous function, 37
Urysohn’s lemma, 39, 393

Real and complex analysis

Vanish at infinity, 69

Vector space, 33

Vitali-Carathéodory theorem, 54, 169, 394
Vitali’s covering theorem, 395

Vitali’s theorem, 134

Volume, 49

von Neumann, J., 123, 394

Weak convergence, 233, 238

Weierstrass, K., 290, 324

Weierstrass approximation theorem, 304,
397

Weierstrass factorization theorem, 295

Wermer, J., 399

Wiener, N., 363, 368, 399

Winding number, 205
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