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Preface

Vector analysis, which had its beginnings in the middle of the 19th century, has in recent
years become an essential part of the mathematical background required of engineers, phy-
sicists, mathematicians and other scientists. This requirement is far from accidental, for not
only does vector analysis provide a concise notation for presenting equations arising from
mathematical formulations of physical and geometrical problems but it is also a natural aid
in forming mental pictures of physical and geometrical ideas. In short, it might very well be
considered a most rewarding language and mode of thought for the physical sciences.

This book is designed to be used either as a textbook for a formal course in vector
analysis or as a very useful supplement to all current standard texts. It should also be of
considerable value to those taking courses in physics, mechanics, electromagnetic theory,
aerodynamics or any of the numerous other fields in which vector methods are employed.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
so vital to effective teaching. Numerous proofs of theorems and derivations of formulas
are included among the solved problems. The large number of supplementary problems
with answers serve as a complete review of the material of each chapter.

Topics covered include the algebra and the differential and integral calculus of vec-
tors, Stokes' theorem, the divergence theorem and other integral theorems together with
many applications drawn from various fields. Added features are the chapters on curvilin-
ear coordinates and tensor analysis which should prove extremely useful in the study of
advanced engineering, physics and mathematics.

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more flexible, to provide a more useful book
of reference, and to stimulate further interest in the topics.

The author gratefully acknowledges his indebtedness to Mr. Henry Hayden for typo-
graphical layout and art work for the figures. The realism of these figures adds greatly to
the effectiveness of presentation in a subject where spatial visualizations play such an im-
portant role.

M. R. SPiEGEL

Rensselaer Polytechnic Institute

June, 1959
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A VECTOR is a quantity having both magiiitud and direction such as di splacement,_ velocity, force
and acceleration.

Graphically a vector is represented by an arrow OP (Fig.l) de-
fining the direction, the magnitude of the vector being indicated by
the length of the arrow. The tail end 0 of the arrow is called the
origin or initial point of the vector, and the head P is called the
terminal point or terminus.

Analytically a vector is represented by a letter with an arrow
over it, as A in Fig.1, and its magnitude is denoted by I AI or A. In
printed works, bold faced type, such as A, is used to indicate the
vector A while JAI or A indicates its magnitude. We shall use this
bold faced notation in this book. The vector OP is also indicated as
OP or OP; in such case we shall denote its magnitude by OF, OPI ,

or of.

Fig.1

A SCALAR is a quantity having magnitude but (n direction, e.g.
m, a IS h, tf e, tem er and

any real number. Scalars are indicated by letters in ordinary type as in elementary alge-
bra. Operations with scalars follow the same rules as in elementary algebra.

VECTOR ALGEBRA. The operations of addition, subtraction and multiplication familiar in the alge-
bra of numbers or scalars are, with suitable definition, capable of extension

to an algebra of vectors. The following definitions are fundamental.

1. Two vectors A and B are equal if they have the same magnitude and direction regardless of
the position of their initial points. Thus A= B in Fig.2.

2. A vector having direction opposite to that of vector A but having the same magnitude is de-
noted by -A (Fig.3).

Fig. 2 Fig. 3

1



2 VECTORS and SCALARS

3. The sum or resultant of vectors A and B is a
vector C formed by placing the initial point of B
on the terminal point of A and then joining the
initial point of A to the terminal point of B
(Fig.4). This sum is written A+B, i.e. C = A+B.

The definition here is equivalent to the par-
allelogram law for vector addition (see Prob.3).

Extensions to sums of more than two vectors
are immediate (see Problem 4). Fig. 4

4. The difference of vectors A and B, represented by A -B, is that vector C which added to B
yields vector A. Equivalently, A- B can be defined as the sum A + (-B).

If A = B, then A-B is defined as the null or zero vector and is represented by the sym-
bol 0 or simply 0. It has zero magnitude and no specific direction. A vector which is not
null is a proper vector. All vectors will be assumed proper unless otherwise stated.

5. The product of a vector A by a scalar m is a vector mA with magnitude Imf times the magni-
tude of A and with direction the same as or opposite to that of A, according as m is positive
or negative. If m = 0, mA is the null vector.

LAWS OF VECTOR ALGEBRA. If A, B and C are vectors and m and n are scalars, then

1. A+ B = B + A Commutative Law for Addition
2. A+ (B+C) _ (A+B) + C Associative Law for Addition
3. mA = Am Commutative Law for Multiplication
4. m (nA) _ (mn) A Associative Law for Multiplication
5. (m+ n) A = mA + nA Distributive Law
6. m (A+ B) = mA + mB Distributive Law

Note that in these laws only multiplication of a vector by one or more scalars is used. In Chap-
ter 2, products of vectors are defined.

These laws enable us to treat vector equations in the same way as ordinary algebraic equations.
For example, if A+B = C then by transposing A = C - B .

A UNIT VECTOR is a vector having unit magnitude, if
A is a vector with magnitude A 0,

then A/A is a unit vector having the same--direction as
A.

Any vector A can be represented by a unit vector a
in the direction of A multiplied by the magnitude of A. In
symbols, A = Aa.

THE RECTANGULAR UNIT VECTORS i, j, k. An impor-
tant set of

unit vectors are those having the directions of the pos-
itive x, y, and z axes of a three dimensional rectangu-
lar coordinate system, and are denoted respectively by
i, j, and k (Fig.5).

We shall use right-handed rectangular coordinate
systems unless otherwise stated. Such a system derives

z

Fig. 5

Y



VECTORS and SCALARS

its name from the fact that a right threaded screw rotat-
ed through 900 from Ox to Oy will advance in the pos-
itive z direction, as in Fig.5 above.

In general, three vectors A, B and C which have
coincident initial points and are not coplanar, i.e. do
not lie in or are not parallel to the same plane, are said
to form a right-handed system or dextral system if a
right threaded screw rotated through an angle less than
180° from A to B will advance in the direction C as
shown in Fig.6.

COMPONENTS OF A VECTOR. Any vector A in 3 di-
mensions can a repre-

sented with initial point at the origin 0 of a rec angular
coordinate system (Fig.7). Let (Al, A2, A3) be the
rectangular coordinates of the terminal point of vector A
with initial point at 0. The vectors Ali, A2j, and A3k
are called the recta lar component vectors or simply
component vectors of A in the x, y and z directions re-
spectively. A1, A2 and A3 are called the rectangular
components or simply components of A in the x, y and z
directions respectively.

The sum or resultant of Ali, A2j
vector A so that we can write

and A3k is the

A = A 1i + A2 I + A k
The magnitude of A is A = I AI Al+A2+A3

Fig. 6

Fig. 7

In particular, the position vector or radius vector r from 0 to the point (x,y,z) is written

r = xi + yj + zk

and has magnitude r = I r I =
x2 + y2 + z2 .

3

.y0, 1to$
.

SCALAR FIELD. If to each point (x,y,z) of a region R in space there corresponds a number or scalar
then is called a scalar function of position or scalar point function

and we say that a scalar field 0 has been defined in R.

Examples. (1) The temperature at any point within or on the earth's surface at a certain time
defines a scalar field.

(2) ct (x,y,z) = x3y - z2 defines a scalar field.

A scalar field which is independent of time is called a stationary or steady-state scalar field.

VECTOR FIELD. If to each point (x,y,z) of a region R in space there corresponds a vector V(x,y,z),
then V is called a vector function of position or vector point function and we say

that a vector field V has been defined in R.

Examples. (1) If the velocity at any point (x,y,z) within a moving fluid is known at a certain
time, then a vector field is defined.

(2) V(x,y,z) = xy2i - 2yz3j + x2zk defines a vector field.

A vector field which is independent of time is called a stationary or steady-state vector field.



4 VECTORS and SCALARS

SOLVED PROBLEMS

1. State which of the following are scalars and which are vectors.
(a) weight (c) specific heat (e) density (g) volume (i) speed
(b) calorie (d) momentum (f) energy (h) distance (j) magnetic field intensity

Ans. (a) vector (c) scalar (e) scalar (g) scalar (i) scalar
(b) scalar (d) vector (f) scalar (h) scalar (j) vector

2. Represent graphically (a) a force of 10 lb in a direction 30° north of east
(b) a force of 15 lb in a direction 30 ° east of north.

N N

Unit = 5 lb

W

S

E W

Fig.(a)
S

Fig.(b)

Choosing the unit of magnitude shown, the required vectors are as indicated above.

F

3. An automobile travels 3 miles due north, then 5 miles northeast. Represent these displacements
graphically and determine the resultant displacement (a) graphically, (b) analytically.

Vector OP or A represents displacement of 3 mi due north.

Vector PQ or B represents displacement of 5 mi north east.

Vector OQ or C represents the resultant displacement or
sum of vectors A and B, i.e. C = A+B. This, is the triangle
law of vector addition.

The resultant vector OQ can also be obtained by con-
structing the diagonal of the parallelogram OPQR having vectors
OP =A and OR (equal to vector PQ or B) as sides. This is the
parallelogram law of vector addition.

(a) Graphical Determination of Resultant. Lay off the 1 mile
unit on vector OQ to find the magnitude 7.4 mi (approximately).
Angle EOQ=61.5°, using a protractor. Then vector OQ has
magnitude 7.4 mi and direction 61.5 ° north of east.

(b) Analytical Determination of Resultant. From triangle OPQ,
denoting the magnitudes of A, B. C by A, B, C, we have by
the law of cosines

C 2 = A2 + B2 - 2AB cos L OPQ = 32 + 52 - 2(3)(5) cos 135 ° = 34 + 15V2 = 55.21

and C = 7.43 (approximately).

By the law of sines,
A C

Then
sin L OQP sin L OPQ
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sin L OQP =
A sin LOPQ _ 3(0.707) ° ,

C 7.43

Thus vector OQ has magnitude 7.43 mi and direction (45° + 16°35') = 61°35' north of east.

4. Find the sum or resultant of the following displacements:
A, 10 ft northwest; B, 20 ft 30° north of east; C, 35 ft due south. See Fig. (a)below.

At the terminal point of A place the initial point of B.

At the terminal point of B place the initial point of C.
The resultant D is formed by joining the initial point of A to the terminal point of C, i.e. D = A+B+C.

Graphically the resultant is measured to have magnitude of 4.1 units = 20.5 ft and direction 600 south of E.

For an analytical method of addition of 3 or more vectors, either in a plane or in space see Problem 26.

Fig.(a) Fig.(b)

5. Show that addition of vectors is commutative, i.e. A + B = B + A. See Fig. (b) above.

OP + PQ = OQ or A + B = C,

and OR + RQ = OQ or B + A = C.

Then A + B = B + A .

6. Show that the addition of vectors is associative, i.e. A + (B+C) = (A+B) + C C.

and

OP + PQ

PQ + QR

= OQ =
= PR =

(A + B),

(B + C).

OP + PR = OR = D, i. e. A + (B + C) = D .
OQ + QR = OR = D, i.e. (A + B) + C = D.

Then A + (B + C) = (A + B) + C.

Extensions of the results of Problems 5 and 6 show
that the order of addition of any number of vectors is im-
material.

= = 0.2855 and L OQP = 16 35 .

7. Forces F1, F20 ... , F6 act as shown on object P. What force is needed to prevent P from mov-
ing ?
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Since the order of addition of vectors is immaterial, we may start with any vector, say Fl. To Fl add
F2, then F3 , etc. The vector drawn from the initial point of Fl to the terminal point of F6 is the resultant
R, i.e. R = F1+F2+F3+Fµ+F5+F6 .

The force needed to prevent P from moving is -R which is a vector equal in magnitude to R but opposite
in direction and sometimes called the equilibrant.

F4

8. Given vectors A, B and C (Fig.1a), construct (a) A - B + 2 C (b) 3 C -- z (2A -B) .

(a)

Fig. 1(a)

(b)

Fig. 2 (a)

Fig. 1(b) Fig. 2 (b)
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9. An airplane moves in a northwesterly direction at
125 mi/hr relative to the ground, due to the fact
there is a westerly wind of 50 mi/hr relative to
the ground. How fast and in what direction would
the plane have traveled if there were no wind ?

Let W = wind velocity

Va = velocity of plane with wind

Vb = velocity of plane without wind

-w

Then Va = Vb + W or Vb = Va - W = Va + (-W)

Vb has magnitude 6.5 units =163 mi/hr and direction 33° north of west.

7

10. Given two non-collinear vectors a and b, find an expression for any vector r lying in the plane de-
termined by a and b.

Non-collinear vectors are vectors which are not parallel to
the same line. Hence when their initial points coincide, they
determine a plane. Let r be any vector lying in the plane of a
and b and having its initial point coincident with the initial
points of a and b at O. From the terminal point R of r construct
lines parallel to the vectors a and b and complete the parallel-
ogram ODRC by extension of the lines of action of a and b if
necessary. From the adjoining figure

OD = x(OA) = x a, where x is a scalar
OC = y(OB) = y b, where y is a scalar.

But by the parallelogram law of vector addition

OR = OD + OC or r = x a + y b

which is the required expression. The vectors x a and y b are called component vectors of r in the directions
a and b respectively. The scalars x and y may be positive or negative depending on the relative orientations
of the vectors. From the manner of construction it is clear that x and y are unique for a given a, b, and r.
The vectors a and b are called base vectors in a plane.

11. Given three non-coplanar vectors a, b, and c, find an expression for any vector r in three dimen-
sional space.

Non-coplanar vectors are vectors which are not paral-
lel to the same plane. Hence when their initial points co-
incide they do not lie in the same plane.

Let r be any vector in space having its initial point co-
incident with the initial points of a, b and c at O. Through
the terminal point of r pass planes parallel respectively
to the planes determined by a and b, b and c, and a and c;
and complete the parallelepiped PQRSTUV by extension of
the lines of action of a, b and c if necessary. From the
adjoining figure,

OV = x(OA) = x a where x is a scalar
OP = y(OB) = y b where y is a scalar
OT = z(OC) = z c where z is a scalar.

But OR = OV + VQ + QR = OV + OP + OT or r = xa+yb+zc.
From the manner of construction it is clear that x, y and z are unique for a given a, b, c and r.
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The vectors xa, yb and zc are called component vectors of r in directions a, b and c respectively. The
vectors a, b and c are called base vectors in three dimensions.

As a special case, if a, b and c are the unit vectors i, j and k, which are mutually perpendicular, we
see that any vector r can be expressed uniquely in terms of i, j, k by the expression r = xi + yj + zk.

Also, if c = 0 then r must lie in the plane of a and b so the result of Problem 10 is obtained.

12. Prove that if a and b are non-collinear then xa + yb = 0 implies x = y = 0.

Suppose x / 0. Then xa + yb = 0 implies xa = -yb or a = - (y/x) b, i.e. a and b must be parallel to
to the same line (collinear) contrary to hypothesis. Thus x = 0; then yb = 0, from which y = 0.

13. If xla + ylb = x2a + y2b , where a and b are non-collinear, then x1 = x2 and yl = y2

x1a+ylb = x2a+y2b can be written
x1a + y1b - (x2a+y2b) = 0 or (x1-- x2)a + (yl- y2)b = 0.

Hence by Problem 12, xl - x2 = 0, y1- y2 = 0 or xl = x2, yi = y2 .

14. Prove that if a, b and c are non-coplanar then xa + yb + zc = 0 implies x = y = z = 0.

Suppose x / 0. Then xa + yb + zc = 0 implies xa = -yb - zc or a = -(y/x)b - (z/x)c. But
- (y/x ) b - (z/x) c is a vector lying in the plane of b and c (Problem 10), i.e. a lies in the plane of b and c
which is clearly a contradiction to the hypothesis that a, b and c are non-coplanar. Hence x = 0. By sim-
ilar reasoning, contradictions are obtained upon supposing y / 0 and z / 0.

15. If x1a + y1b + zlc = x2a + y2b + z2c, where a, b and c are non-coplanar, then x1=x2, y1=y2,
z1= z2 .

The equation can be written (x1-x2)a + (y1-y2)b + (zl-z2)c = 0. Then by Problem 14, xl-x2 =0,
y1-y2=0, z1-z2=0 or x1=x2, y1=y2, z1=z2.

16. Prove that the diagonals of a parallelogram bisect each other.

Let ABCD be the given parallelogram with diagonals in-
tersecting at P.

Since BD + a = b, BD =b-a. Then BP = x(b - a).
Since AC = a + b, AP = y(a + b).

But AB =AP + PB =AP-BP,
i.e. a = y(a +b) - x(b -a) = (x +y)a + (y-x)b.

Since a and b are non-collinear we have by Problem 13,
x + y = 1 and y - x = 0, i.e. x = y = 2 and P is the mid-
point of both diagonals.

17. If the midpoints of the consecutive sides of any quadrilateral are connected by straight lines,
prove that the resulting quadrilateral is a parallelogram.

Let ABCD be the given quadrilateral and P, Q, R, S the midpoints of its sides. Refer to Fig.(a) below.

Then PQ = 2 (a + b), QR = 2 (b + c), RS = 2 (c + d), SP = 2(d + a).

But a+b+c+d = 0. Then

PQ = 2(a + b) = - 2 (c + d) = SR and QR = 2 (b + c) 2 (d + a) = PS

Thus opposite sides are equal and parallel and PQRS is a parallelogram.
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18. Let P. , P2
1

P3 be points fixed relative to an origin 0 and let r1, r2, r3 be position vectors from
0 to each point. Show that if the vector equation alrl + a2r2 + a3r3 = 0 holds with respect to
origin 0 then it will hold with respect to any other origin 0' if and only if al + a 2 + a 3 = 0.

Let r 3 be the position vectors of PI, P2 and P3 with respect to 0' and let v be the position
vector of 0' with respect to 0. We seek conditions under which the equation a, r +a r' + a r` = 0 will
hold in the new reference system.

From Fig.(b) below, it is clear that r1= v + ri, r2 = v + r2, r3 = v + r3 so that a1r1 + a2r2 +a
3
r

3
= 0

becomes

alrl + a2r2 + a3r3 = a,(v+ r') + a2(v+ r2) + a3(v + r3)

_ (al + a2 + a3) v + alr1 + a2r2 + a3r3 = 0

The result alrj + a2r2 + a3r3 = 0 will hold if and only if

(al + a2 + a3) v = 0, i.e. al + a2 + a3 = 0.

The result can be generalized.

O'

Fig.(a) Fig.(b)

19. Find the equation of a straight line which passes through two given points A and B having posi-
tion vectors a and b with respect to an origin 0.

Let r be the position vector of any point P on the line
through A and B.

From the adjoining figure,

OA + AP = OP or a + AP = r , i.e. AP = r - a
and OA+AB =OB or a+AB = b, i.e. AB = b-a
Since AP and AB are collinear, AP = tAB or r - a = t(b -- a).
Then the required equation is

r = a+ t(b-a) or r = (1-t)a + tb
If the equation is written (1- t) a + t b - r = 0, the sum

of the coefficients of a, b and r is 1- t + t -1 = 0. Hence by
Problem 18 it is seen that the point P is always on the line
joining A and B and does not depend on the choice of origin
0, which is of course as it should be.

Another Method. Since AP and PB are collinear, we have for scalars m and n :

Solving, r
ma + nb

m + n

mAP = nPB or m(r-a) = n(b-r)

which is called the symmetric form.
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(a) Find the position vectors r1 and r2 for the
points P(2, 4, 3) and Q(1, -5, 2) of a rectangular
coordinate system in terms of the unit vectors
i, j, k. (b) Determine graphically and analyti-
cally the resultant of these position vectors.

(a) r1 = OP = OC + CB + BP = 2i + 4j + 3k
r2 = OQ = OD+DE+EQ = i-5j+2k

(b) Graphically, the resultant of r1 and r2 is obtained
as the diagonal OR of Parallelogram OPRQ. Ana-
lytically, the resultant of r1 and r2 is given by

r1 + r2 = (2i + 4j + 3k) + (i - 5j + 2k) =

21. Prove that the magnitude A of the vector A =
A1i+A2j+A3k is A = A1+ A2 +A3 .

By the Pythagorean theorem,

_ (OP)2 = (OQ)2 + (QP)2
where OP denotes the magnitude of vector OP, etc.
Similarly, (OQ)2 = (OR)2 + (RQ)2.

Then (5P)2 = (OR)2 + (RQ)2 + (QP)2 or

A2 = Ai + A2 + A2, i.e. A = Al + A2 + A.

22. Given r1 = 3i - 2j + k, r2 = 2i - 4j - 3k, r3 = - i + 2j + 2k,
(a) r3 , (b) r1 + r2 + r3 , (c) 2r1- 3r2 -- 5r3 .

(a) I r3 I = I - i + 2j + 2k I = V'(-1)2 + (2)2 + (2)2 = 3.

find the magnitudes of

(b) r1+ r2+ r3 = (3i - 2j + k) + (2i - 4;j -3k) + (- i + 2j + 2k) = 4i - 4j + Ok = 4i - 4j

Then I r1 + r2 + r3 I = 14i - 4j + 0k (4)2 + (- 4)2 + (0)2 = 32 = 4/2 .

(c) 2r1- 3r2 - 5r3 = 2(3i - 2j + k) -- 3(2i -4j -3k) - 5(- i + 2j + 2k)

= 6i-4j+2k-6i+12j+9k+5i-10j-10k = 5i-2j+k.
Then I2r1-3r2- 5r3 I = 15i-2j+k I = V'(5)2+(-2)2+ (1)2 = V130.

Y

23. If r1 = 2i- j + k, r2 = i + 3j - 2k, r3 = -21+j--3k and r4= 3i+ 2j +5k, find scalars a,b,c such
that r4 = art + br2 + cr3 .

We require 3i +2j + 5k = a(2i -j + k) + b(i + 3j -2k) + c(-2i +j -3k)

_ (2a +b -2c)i + (-a +3b +c)j + (a -2b -3c)k.

Since i, j, k are non-coplanar we have by Problem 15,

2a + b - 2c = 3, -a + 3b + c = 2, a -2b-3c = 5.
Solving, a = -2, b = 1, c = -3 and r4 = -2r1 + r 2- 3r3 .

The vector r4 is said to be linearly dependent on r1, r2,and r3 ; in other words r1, r2, r3 and r4 constitute a
linearly dependent set of vectors. On the other hand any three (or fewer) of these vectors are linearly in-
dependent.

In general the vectors A, B, C, ... are called linearly dependent if we can find a set of scalars,
a, b, c,... , not all zero, so that aA + bB + cC + ... = 0. otherwise they are linearly independent.
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24. Find a unit vector parallel to the resultant of vectors r1 = 2i + 4j - 5k, r2 = i + 2j + 3k .

Resultant R = r1 + r2 = (2i + 4j - 5k) + (i + 2j + 3k) = 3i + 6j - 2k .

R = P. I = 13i + 6j - 2k I = /(-37+ (6)2 + (-2)2 = 7.

Then a unit vector parallel to R is R = 3i+6j-2k = 3i+ 6j- 2k.
R 7 7 7 7

3i 6j 2 V3)2 6 2 2 2Check: Ii + i -77 7 7k1 = (3 +(6) +(-i) = 1.

25. Determine the vector having initial point P (x1, y1, z1)
and terminal point Q(x2, y2 , z2) and find its magnitude.

The position vector of P is r1 = x1 i + y1 j + z1 k .

The position vector of Q is r2 = x2 i + y9 j + z2 k .

r1 + PQ=r2 or

PQ = r2-r1 = (x2i+y2j+z2k)- (xli+ylj+zlk)
(x2-x1)i + (y2- )j + (z2-z1)k.

Magnitude of PQ = PQ = (x2- x1)2 + (y2 - y1)2 + (z2 - z1

Note that this is the distance between points P and Q.

11

26. Forces A, B and C acting on an object are given in terms of their components by the vector equa-
tions A = A1i + A2j + A3k, B = Bli + B2j + B3k, C = Cli + C2j + C3k. Find the magnitude of the
resultant of these forces..

Resultant force R = A + B + C = (A1 + B1 + C1) i + (A2 + B2 + C2) j + (A3 + B3 + C3) k.

27.

Magnitude of resultant - (A1+ B1+ C1)2 + (A2+ B2+ C2)2 + (A3+ B3 + C3)2 .

The result is easily extended to more than three forces.

Determine the angles a, (3 and y which the vector
r = xi + yj + zk makes with the positive direc-
tions of the coordinate axes and show that

cost a + cost r3 + cost y = 1.

Referring to the figure, triangle OAP is a right

triangle with right angle at A ; then cos a =
I r l .

Sim-

ilarly from right triangles OBP and OCP, cos (3 = Y

and cos y = z . Also,
Irl

Irl
IrI = r = vx2 ++y2+z2

Then cos a = x
, cos p = y , cosy= z

from

which a, 0, y can be obtained. From these it follows
that

cost a + cost (3 + cost y = x2 + y2 + z2

r2
= 1.

The numbers cos a, cos (3, cos y are called the direction

x

z

cosines of the vector OP.

28. Determine a set of equations for the straight line passing through the points P(x1, y1, z1) and
Q(x2, Y2' z2).
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Let r1 and r2 be the position vectors of P and Q respec-
tively, and r the position vector of any point R on the line
joining P and Q.

r1 + PR = r or PR = r - r1
r1 + PQ = r2 or PQ = r2 - r1

But PR = t PQ where t is a scalar. Then r- r1 =
t (r2 - r1) is the required vector equation of the straight line
(compare with Problem 19).

In rectangular coordinates we have, since r = xi + yj + zk,

(xi + yj + zk) - (x1i + y1) + z1k) = t [(x2i + y2j + z2k) - (x1i + y1j + z1k)]
or

(x - x1) i + (y - y1) j + (z - z1) k = t [(x2 - x1) i + (y2 - y1) j + (z2 - z1) k ]

Since i, j, k are non-coplanar vectors we have by Problem 15,

x - x1 = t (x2 - x1), y - y1 = t (y2 - y1), z - z1 = t (z2 - z 1)

as the parametric equations of the line, t being the parameter. Eliminating t, the equations become

X- x
x2 - x

Y-Y1 z-z1
Y2 ` Y1 z2 - z1

29. Given the scalar field defined by (x, y, z) = 3x22 - xy3 + 5, find at the points
(a) (0, 0, 0), (b) (1, -2, 2) (c) (-1, -2, -3).

(a) 0 (0, 0, 0) = 3(0)2(0) - (0)(0)3 + 5 = 0 - 0 + 5 = 5

(b) 00, -2, 2) = 3(1)2(2) - (1) (-2)3 + 5 = 6 + 8 + 5 = 19

(c) )(-1, -2, -3) = 3(-1)2(-3) - (-1)(-2)3 + 5 = -9 - 8 + 5 -12

30. Graph the vector fields defined by:
(a) V(x, y) = xi + yj , (b) V(x, y) _ -xi - yj , (c) V(x, y, z) = xi + yj + A.

(a) At each point (x, y), except (0, 0), of the xy plane there is defined a unique vector xi + yj of magnitude

having direction passing through the origin and outward from it. To simplify graphing proce-
dures, note that all vectors associated with points on the circles x2+y2 = a2 a > 0 have magnitude
a. The field therefore appears as in Figure (a) where an appropriate scale is used.

Y

Fig. (a) Fig. (b )
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(b) Here each vector is equal to but opposite in direction to the corresponding one in (a). The field there-
fore appears as in Fig.(b).

In Fig.(a) the field has the appearance of a fluid emerging from a point source 0 and flowing in the
directions indicated. For this reason the field is called a source field and 0 is a source.

In Fig.(b) the field seems to be flowing toward 0, and the field is therefore called a sink field and 0
is a sink.

In three dimensions the corresponding interpretation is that a fluid is emerging radially from (or pro-
ceeding radially toward) a line source (or line sink).

The vector field is called two dimensional since it is independent of z.

(c) Since the magnitude of each vector is x2 + y2 + z2 , all points on the sphere x2 + y2 + z2 = a2, a > 0
have vectors of magnitude a associated with them. The field therefore takes on the appearance of that
of a fluid emerging from source 0 and proceeding in all directions in space. This is a three dimension-
al source field.

SUPPLEMENTARY PROBLEMS

31. Which of the following are scalars and which are vectors? (a) Kinetic energy, (b) electric field intensity,
(c) entropy, (d) work, (e) centrifugal force, (f) temperature, (g) gravitational potential, (h) charge, (i) shear-
ing stress, (j) frequency.
Ans. (a) scalar, (b) vector, (c) scalar, (d) scalar, (e) vector, (f) scalar, (g) scalar, (h) scalar, (i) vector

(j) scalar

32. An airplane travels 200 miles due west and then 150 miles 600 north of west. Determine the resultant dis-
placement (a) graphically, (b) analytically.
Ans. magnitude 304.1 mi (50Y'3-7), direction 25°17' north of east (arc sin 3/74)

33. Find the resultant of the following displacements: A, 20 miles 30°south of east; B, 50 miles due west;
C, 40 miles northeast; D, 30 miles 60° south of west.
Ans. magnitude 20.9 mi, direction 21°39' south of west

34. Show graphically that - (A - B) _ - A + B .

35. An object P is acted upon by three coplanar forces as shown in Fig.(a) below. Determine the force needed
to prevent P from moving. Ans. 323 lb directly opposite 150 lb force

36. Given vectors A, B, C and D (Fig.(b) below). Construct (a) 3A - 2B - (C - D) (b)

2

C + I(A - B + 2D) .

Fig.(a) Fig.(b)
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37. If ABCDEF are the vertices of a regular hexagon, find the resultant of the forces represented by the vec-
tors AB, AC, AD, AE and AF. Ans. 3 AD

38. If A and B are given vectors show that (a) I A+ B I I A I+ I B I, (b) IA-BI I A I- I B I.

39. Show that IA+B+CI "S JAI + IBI + ICI.

40. Two towns A and B are situated directly opposite each other on the banks of a river whose width is 8 miles
and which flows at a speed of 4 mi/hr. A man located at A wishes to reach town C which is 6 miles up-
stream from and on the same side of the river as town B. If his boat can travel at a maximum speed of 10
mi/hr and if he wishes to reach C in the shortest possible time what course must he follow and how long
will the trip take)
Ans. A straight line course upstream making an angle of 34°28` with the shore line. 1 hr 25 min.

41. A man travelling southward at 15 mi/hr observes that the wind appears to be coming from the west. On in-
creasing his speed to 25 mi/hr it appears to be coming from the southwest. Find the direction and speed of
the wind. Ans. The wind is coming from a direction 56°18' north of west at 18 mi/hr.

42. A 100 lb weight is suspended from the center of a rope
as shown in the adjoining figure. Determine the ten-
sion T in the rope. Ans. 100 lb

43. Simplify 2A + B + 3C - { A - 2B -2 (2A - 3B - C) } .
Ans. 5A - 3B + C

44. If a and b are non-collinear vectors and A = (x + 4y) a +
(2x+y+1)b and B = (y-2x+2)a+ (2x-3y-1)b,
find x and y such that 3A = 2B.
Ans. x=2, y=-1 1001b

45. The base vectors a1, a2, a3 are given in terms of the base vectors b1, b2, b3 by the relations

a1 = 2b1 + 3b2 - b3 , a2 = b1 - 2b2 + 2b3 , a3 = - 2b1 + b2 - 2b3

If F = 3b1- b2 + 2b3 , express F in terms of a1, a2 and a3 . Ans. 2a1 + 5a2 + 3a3

46. If a, b, c are non-coplanar vectors determine whether the vectors r1 = 2a - 3b + c , r2 = 3a - 5b + 2c , and
r3 = 4a- 5b+ c are linearly independent or dependent. Ans. Linearly dependent since r3 = 5r1- 2r2 .

47. If A and B are given vectors representing the diagonals of a parallelogram, construct the parallelogram.

48. Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and has one
half of its magnitude.

49. (a) If 0 is any point within triangle ABC and P, Q, R are midpoints of the sides AB, BC, CA respectively,
prove that OA + OB + OC = OP + OQ + OR .

(b) Does the result hold if 0 is any point outside the triangle? Prove your result. Ans. Yes

50. In the adjoining figure, ABCD is a parallelogram with
P and Q the midpoints of sides BC and CD respec-
tively. Prove that AP and AQ trisect diagonal BD at
the points E and F.

51. Prove that the medians of a triangle meet in a common
point which is a point of trisection of the medians.

52. Prove that the angle bisectors of a triangle meet in a
common point.

53. Show that there exists a triangle with sides which are
equal and parallel to the medians of any given triangle.

54. Let the position vectors of points P and Q relative to an origin 0 be given by p and q respectively. If R is
a point which divides line PQ into segments which are in the ratio m : n show that the position vector of R
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is given by r = 'nP +nq and that this is independent of the origin.m+n

55. If r1, r2, ..., rn are the position vectors of masses m1 , m2, ..., mn respectively relative to an origin 0,
show that the position vector of the centroid is given by

r =

and that this is independent of the origin.

m1r1+m2r2+...+mnrn
In 1+m2+...+Inn

56. A quadrilateral ABCD has masses of 1, 2, 3 and 4 units located respectively at its vertices A (-1, -2, 2),
B(3, 2, -1), C(1, -2, 4), and D(3, 1, 2). Find the coordinates of the centroid. Ans. (2, 0, 2)

57. Show that the equation of a plane which passes through three given points A, B, C not in the same straight
line and having position vectors a, b, c relative to an origin 0, can be written

r
ma + nb + pc

= m+ n+ p
where in, n, p are scalars. Verify that the equation is independent of the origin.

58. The position vectors of points P and Q are given by r1 = 2i + 3j - k, r2 = 4i - 3j + 2k. Determine PQ in
terms of i, j, k and find its magnitude. Ans. 2i - 6j + 3k, 7

59. If A= 3i - j - 4k, B = - 2i + 4j - 3k, C =i + 2j - k, find
(a) 2A -B +3C, (b) f A +B +C I, (c) 13A -2B +4C 1, (d) a unit vector parallel to 3A -2B +4C .

(a) 11i - 8k (b) (c) (d) 3A - 2B + 4CAns .

60. The following forces act on a particle P : F1 = 2i + 3j - 5k, F2 = -5i + j + 3k, F3 = i - 2j + 4k, F4 = 4i -
3j -2k, measured in pounds. Find (a) the resultant of the forces, (b) the magnitude of the resultant.
Ans. (a) 2i-j (b) yr

61. In each case determine whether the vectors are linearly independent or linearly dependent:
(a) A=21+j-3k, B=i-4k, C=4i+3j-k, (b) A=i-3j+2k, B=2i-4j-k, C=3i+2j-k.
Ans. (a) linearly dependent, (b) linearly independent

62. Prove that any four vectors in three dimensions must be linearly dependent.

63. Show that a necessary and sufficient condition that the vectors A = A 1 i + A 2 j + A3 k, B = B1 i + B2 j + B3 k,

Al A2 A3
C=C I i +C2j +C3k be linearly independent is that the determinant B1 B2 B. be different from zero.

C1 C2 C3

64. (a) Prove that the vectors A = 3i + j - 2k, B = - i + 3j + 4k, C = 4i - 2j - 6k can form the sides of a triangle.
(b) Find the lengths of the medians of the triangle.
Ans. (b) vim, 2 v 4, 2 V-1--50

65. Given the scalar field defined by c(x, y, z) = 4yz3 + 3xyz - z2 + 2. Find (a) 0(1,-1,-2), (b) 4(0,-3,1).
Ans. (a) 36 (b) -11

66. Graph the vector fields defined by
(a) V(x, y) = xi - yj , (b) V(x,y) = yi - xj , (c) V(x, y, z) =

xi + yi + zk

x2+y2+z2



THE DOT OR SCALAR PRODUCT of two vectors A and B, denoted by A dot B), is de-
fined as the product of the magnitudes of A and B and the cosine

of the angle 6 between them. In symbols,

AB
Note 'that A. B is a scalar and not a vector.

The following laws are valid:

1. A B = B A Commutative Law for Dot Products

2. A (B + C) = A B + A C Distributive Law

3. m(A B) = (mA) B = A - (mB) = (A B)m, where m is a scalar.

4. j.j = 1, 0

5. If A = Ali + A2j + A3k and B = Bli + B2j + B3k, then

A1B1+A2B2+A383

A2 = Ai+A2+A3

B - B = 82 = Bi+ B2 + B3

6. If A- B = 0 and A and B are not null vectors, then A and B are perpendicular.

THE CROSS OR VECTOR PRODUCT of A and B is a vector C = AxB (read A cross B). The mag-
nitude of A x B is defined as the product of the magnitudes of

A and B and the sine of the angle 6 between them. The direction of the vector C = A x B is perpen-
dicular to the plane of A and B and such that A, B and C form a right-handed system. In symbols,

AxB = ABsinOu, 0 rc

where u is a unit vector indicating the direction of A x B. If A = B, or if A is parallel to B, then
sin O =0 and we define A xB = 0 .

The following laws are valid:

1. AXB

2. Ax (B + C) = AxB + Ax C

(Commutative Law for Cross Products Fails.)

Distributive Law

3. m(Ax B) = (mA) x B = Ax (mB) = (Ax B)m, where m is a scalar.

4. ixi = jxj = kxk = 0, ixj=1L) jxk=(i3 kxi=

5. If A = Ali + A2j + A3k and B = Bli + 82j + B3k, then

16

ad.....skg
ad...skg
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AxB =
i j k

Al A2 A3

B1 B2 B3

6. The magnitude of AxB is the same as the area of a parallelogram with sides A and B.

7. If Ax B = 0, and A and B are not null vectors, then A and B are parallel.

TRIPLE PRODUCTS. Dot and cross multiplication of three vectors A, B and C may produce mean-
ingful products of the form (A B)C, A- (BxC) and Ax (BxC). The follow-

ing laws are valid:

1.

2. A- (BxC) = B . (C x A) = C (A x B) = volume of a parallelepiped having A, B and C as edges,
or the negative of this volume, according as A, B and C do or do not form a right-handed sys-
tem. If A = A1i + A2j + Ask, B = B1i + B2j + B3k and C = C1i + C2j + C3k, then

A.(BxC) =

3. Ax (BxC) / (AxB)xC
4. Ax (BxC) = (A.B)C

(AxB)xC =

Al A2 As

B1 B2 B3

C1 C2 C3

(Associative Law for Cross Products Fails.)

The product A (BxC) is sometimes called the scalar triple product or box product and may be
denoted by [ABC] . The product Ax (BxC) is called the vector triple product.

In A (B x C) parentheses are sometimes omitted and we write A BxC (see Problem 41). How-
ever, parentheses must be used in A x (BxC) (see Problems 29 and 47).

RECIPROCAL SETS OF VECTORS. The sets of vectors a, b, c and a', b', c' are called reciprocal
sets or systems of vectors if

1

a b = a' c = b' a = b' c = c' a = c' b = 0

The sets a, b, c and a', b', c' are reciprocal sets of vectors if and only if

a'
b, _ _cxa

a. bxc a. bxc
bxc

c'
a x b

a bxc

where a bxc 4 0. See Problems 53 and 54.
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SOLVED PROBLEMS

THE DOT OR SCALAR PRODUCT.

1. Prove A B = B A.
A B = AB cos 8 = BA cos 6 = B A

Then the commutative law for dot products is valid.

2. Prove that the projection of A on B is equal to A b, where
b is a unit vector in the direction of B.

Through the initial and terminal points of A pass planes per- E

pendicular to B at G and H respectively as in the adjacent figure;
then

Projection of A on B = GH = EF = A cos B = A b

3. Prove A (B + C) = A B +A-C.

Let a be a unit vector in the direction of A; then

Projection of (B + C) on A = proj. of B on A + proj. of C on A

(B+C) a =

Multipiving by A,

(B+C).Aa =
and

Then by the commutative law for dot products,

and the distributive law is valid.

4. Prove that

G

F
E

H B

By Problem 3, (A + B)- (C + D) = A- (C + D) + B- (C + D) = A C + A D + B C + BD
The ordinary laws of algebra are valid for dot products.I

5. Evaluate each of the following.

(a) Iii IiI cos 00 (1)(1)(1) = 1

(b) Iii IkJ cos 90° _ (1)(1)(0) = 0
(c) IkI Iii cos 90° _ (1)(1)(0) = 0
(d) j - (2i-3j+k) = 0 - 3 + 0 = -3
(e) (2i - j) (3i + k) = 2i (3i + k) - j (3i + k) = 61 i + 2i k - 3j i - j k = 6 + 0 - 0 - 0 = 6

6. If A = A1i + A2j + A3k and B = B1i + B2j + B3k, prove that A B = A1B1 + A2B2 + A3 B3

AB = (A1i +A 2i +A3k) . (B1 i +B2j +B3k)

=

A1B1i i + A1B2i j + A1B3i k + A2B1j i + A2B2 A2B3j k + A3B1k i + A3B2k j + A3B3k k
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= A1B1 + A2B2 + A3B3

since i i = j j = k k = 1 and all other dot products are zero.

7. If A = A1i + A2j + A3k, show that A = A = Al + A2

(A)(A) cos 0° = A2. Then A = VIA A.

Also, A A = (A1i +A2j +A3k) (A1i +A2j +A3k)

_ (A1)(A1) + (A2)(A2) + (A3)(Ao) = A2 + A2 + As

by Problem 6, taking B = A.

+ A2

Then A= /A A = A2 +A2
3

is the magnitude of A. Sometimes A A. A is written A2 .

8. Find the angle between A = 2i + 2j -k and B = 6i - 3j + 2k .

A- B = AB cos 8, A = (2)2 + (2)2 + (-1)2 = 3 B = (6)2 + (-3)2 + (2)2 = 7

A- B = (2)(6) + (2)(-3) + (-1)(2) = 12 - 6 - 2 = 4

Then cos 8 = AB (3) (7) 4
0.1905 and 8 = 790 approximately.

21

9. If A B = 0 and if A and B are not zero, show that A is perpendicular to B.

If AB cos 6 = 0, then cos 6 = 0 or 8 = 90°. Conversely, if 6= 90°, 0.

10. Determine the value of a so that A = 2i + aj + k and B = 4i - 2j - 2k are perpendicular.

From Problem 9, A and B are perpendicular if A B = 0.

Then A B = (2) (4) +(a)(-2) +(1)(-2) = 8 - 2a - 2 = 0 for a =3.

11. Show that the vectors A = 3i - 2j + k, B = i - 3j + 5k, C = 2i + j -4k form a right triangle.

We first have to show that the vectors form a triangle.

(a)

I

(b)

19

From the figures it is seen that the vectors will form a triangle if

(a) one of the vectors, say (3), is the resultant or sum of (1) and (2),
(b) the sum or resultant of the vectors (1) + (2) + (3) is zero,

according as (a) two vectors have a common terminal point or (b) none of the vectors have a common terminal
point. By trial we find A = B + C so that the vectors do form a triangle.

Since A- B = (3)(1) + (-2)(-3) + (1)(5) = 14, A C = (3)(2) + (-2)(1) + (1)(-4) = 0, and
B C = (1) (2) + (-3) (1) + (5) (-4) 21, it follows that A and C are perpendicular and the triangle is a
right triangle.
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12. Find the angles which the vector A = 3i - 6j + 2k makes with the coordinate axes.

Let a, P. y be the angles which A makes with the positive x, y, z axes respectively.

A i = (A) (1) cos a = (3)2 + (-6)2 + (2)2 cos a = 7 cos a

3

Then cos a = 3/7 = 0.4286, and a = 64.6° approximately.

Similarly, cos 0 = - 6/7, R = 149° and cos y = 2/7, y = 73.4°.

The cosines of a, (3, and y are called the direction cosines of A. (See Prob. 27, Chap. 1).

13. Find the projection of the vector A = i - 2j + k on the vector B = 4i - 4j + 7k .

4 4
.A unit vector in the direction B is b =

BB= 4i -4j + 7k
= 4 1- 9 j + ? k

9
(4)2 +(-4)2+ (7)2

Projection of A on the vector B = A . b = (i - 2j + k) (4 i -

9

j + 9 k)

(1)(9) + (-2)(- 9) + (1)(9) = 19

14. Prove the law of cosines for plane triangles.

From Fig.(a) below, B + C = A or C = A -B.
Then (A-B) (A-B) =
and C2 = A2 + B2 - 2AB cos 8.

Fig.(a) Fig.(b)

15. Prove that the diagonals of a rhombus are perpendicular. Refer to Fig. (b) above.

OQ = OP+PQ = A+B
OR + RP =OP or B + RP = A and RP = A - B
Then OQ RP = (A + B) (A - B) = A2 - B2 = 0, since A = B .

Hence OQ is perpendicular to RP.

16. Determine a unit vector perpendicular to the plane of A = 2i - 6j - 3k and B = 4i + 3j - k .

Let vector C = c1i + c2 j +c3 k be perpendicular to the plane of A and B. Then C is perpendicular to A
and also to B. Hence,

C A = 2c1- 6c2 - 3c3 = 0 or (1) 2c1- 6c2 = 3c3

C B = 4c1 + 3c2 - c3 = 0 or (2) 4c1 + 3c2 = c3
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Solving (1) and (2) simultaneously: cl = 2 cs , c2 = - 3 G3 , C = c3 (2 i -

3

i + k) .

c3(1i- ij +k)
Then a unit vector in the direction of C is C

= 2 3 = ±(7 i - 7 + ? k).
C /C32 2)2+(- 3)2+(1)21

21

17. Find the work done in moving an object along a vector r = 3i + 2j - 5k if the applied force is
F = 2i - j - k. Refer to Fig-(a) below.

Work done = (magnitude of force in direction of motion) (distance moved)

= (F cos 6) (r) = F r
= 6-2+5 = 9.

z

r

Fig.(a)

Fig.(b)

18. Find an equation for the plane perpendicular to the vector A = 2i +3j + 6k and passing through the
terminal point of the vector B = i + 5j + 3k (see Fig.(b) above).

Let r be the position vector of point P, and Q the terminal point of B.

Since PQ = B -r is perpendicular to A, (B- r) A = 0 or r A = B A is the required equation of the
plane in vector form. In rectangular form this becomes

or

(xi + yj + zk) (2i + 3j + 6k) = (i + 5j + 3k) (2i + 3j + 6k)

2x + 3y + 6z = (1)(2) + (5)(3) + (3)(6) = 35

19. In Problem 18 find the distance from the origin to the plane.

The distance from the origin to the plane is the projection of B on A.

A unit vector in direction A is a = A 2i + 3j + 6k 2i + 3 . + 6k
A (2)2 + (3)2 + (6)2 7 7 7

Then, projection of B on A = B a = (i + 5j + 3k) (? i + -a j + 6 k) = 1(2) + 5(3) + 3(s) = 5.
7 7 7 7 7 7

20. If A is any vector, prove that A = (A. i) i + (A - j) j + (A - k)k.

Since A = A1i + A2j + 43k, A A. i = A1i i + A2j i +

A A

A j + Ask = (A. i) i + (A j) j + (A k) k .
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THE CROSS OR VECTOR PRODUCT.

21. Prove AxB = - B x A .

Fig. (a ) Fig.(b)

A x B = C has magnitude AB sin 8 and direction such that A, B and C form a right-handed system
(Fig.(a) above).

B X A = D has magnitude BA sin 8 and direction such that B, A and D form a right-handed system
(Fig.(b) above).

Then D has the same magnitude as C but is opposite in direction, i.e. C = - D or A x B = -B X A.

The commutative law for cross products is not valid.

22. If A x B = 0 and if A and B are not zero, show that A is parallel to B.

If AxB =AB sine u =0, then sin 8 = 0 and e = 0° or 180°.

23. Show that
IAxB12 + IA-Bl2 =

IA121BI2.
IAxB12+IA-BI 2

= IAB sin8 u12+ IAB
cos812

A2B2 sing 8 + A2B2 cos2 8
A2B2 _ JAI' IB 12

24. Evaluate each of the following.

(a) ixj = k (f) jxj = 0
(b) jxk = i (g) ixk = -kxi = -j
(c) kxi = j (h) (2j) x (3k) = 6 j x k = 61

(d) k x j = -jxk = - i (i) (3i) x (-2k) _ - 6 i x k = 6j
(e) i xi = 0 (j) 2j xi - 3k = -2k - 3k = -5k

25. Prove that A x (B + C) = AxB + A x C for the
case where A is perpendicular to B and also to
C.

Since A is perpendicular to B, A x B is a vector
perpendicular to the plane of A and B and having mag-
nitude AB sin 90° = AB or magnitude of AB. This
is equivalent to multiplying vector B by A and rotating
the resultant vector through 90° to the position
shown in the adjoining diagram.

Similarly, A x C is the vector obtained by multi-
plying C by A and rotating the resultant vector through
90° to the position shown.

In like manner, A x (B + C) is the vector obtained
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by multiplying B + C by A and rotating the resultant vector through 90° to the position shown.

Since A x (B + C) is the diagonal of the parallelogram with A x B and A x C as sides, we have
Ax(B+C) = AxB + Ax C.

26. Prove that A x (B + C) = A x B + AxC in the gen-
eral case where A, B and C are non-coplanar.

Resolve B into two component vectors, one perpen-
dicular to A and the other parallel to A, and denote them
by B1 and B respectively. Then B = Bl + B .

If his the angle between A and B, then B1= B sin e.
Thus the magnitude of A x B 1 is AB sin B, the same as
the magnitude of A X B. Also, the direction of A x B1 is
the same as the direction of A x B. Hence A X B 1= A x B.

Similarly if C is resolved into two component vec-
tors C,i and C1, parallel and perpendicular respectively
to A, then AxC, = AxC.

Also, since B + C = B.+ B + C1+ C = (Bl + C1) + (B,, + it follows that
Ax(B1+C1) = Ax(B+C).

Now B1 and C1 are vectors perpendicular to A and so by Problem 25,

A x (B1 + C 1) = A X B1 + A X C1

Then A x (B +C) = A x B+ Ax C
and the distributive law holds. Multiplying by -1, using Prob. 21, this becomes (B+C) x A = BXA + CxA.
Note that the order of factors in cross products is important. The usual laws of algebra apply only if prop-
er order is maintained.

27. If A = Ali + A2j +A3k and B = B1i + B2j + B3k , prove that A x B =
i j k

A, A2 As

B1 B2 B3

A x B = (Ali + A2j + A3k) x (B1i + B2j + B3k)

= Ali x (Bit + B2j + B3k) + A2j x (B1i + B2j + B3k) + Ask x (Bit + B2j +B3k)

= A1B1ixi +A1B2ixj +A1B3ixk +A2B1jxi +A2B2jxj +A2B3jxk +A3B1kxi +A3B2kxj +A3B3kxk

_ -(A2B3 - A3B2) i + (A3B1 - A1B3) j + (A1B2 - A2B1) k =

i i k

Al A2 As

B 1 B2 B3

28. If A = 2i - 3j - k and B = i + 4j - 2k, find (a) A x B, (b) B x A, (c) (A + B) x (A - B).

(a) AxB = (2i - 3j - k) x (i + 4j - 2k) =

i j k

2 -3 -1

1 4 -2

ri 4 -21 _ j
12 -2I + kll

-4I
= 10i+3j+11k

1

Another Method.

(2i - 3j -k) x (i + 4j -2k) = 2i x (i + 4j - 2k) - 3j x (i + 4j -2k) - k x (i + 4j - 2k)

= 2ixi+8ixj-4ixk-3jxi-12jxj+6jxk-kxi-4kxj+2kxk
= 0 + 8k + 4i + 3k - 0 + 6i - j + 41 + 0 = 10i+3j+11k
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i j k

(b) B x A = (i +4j - 2k) x (21-3j--k) = 1 4 -2
2 -3 -I1

4 -2 1 -2
-1 - -11 + k12 3 = -10i-3j- Ilk.

3

Comparing with (a), A x B = - B x A. Note that this is equivalent to the theorem: If two rows of
a determinant are interchanged, the determinant changes sign.

(c) A+B = (2i-3j-k) + (i+4j-2k) = 3i + j - 3k
A-B = (2i-3j-k)-(i+4j-2k) = i-7j +k

Then (A + B) x (A - B) = (31+j-3k) x (i - 7j + k) _

1

-7

-3
1

(3

j l

i j k
3 1 -3
1 -7 1

`

1
I

+ k11
-71

= -20i-6j-22k.

Another Method.

(A + B) x (A - B) = A x (A- B) + B x (A - B)

= AxA--- AxB+BxA--BxB = O-AxB-AxB-0 = -2AXB
_ - 2 (10i + 3j + Ilk) _ - 20i - 6j - 22k, using (a).

29. If A=3i-j+2k, B=2i+j-k, and C=i-2j+2k, find (a) (AxB)xC, (b) Ax(BxC).

(a) A x B =
i i k

3 -1 2

2 1 -1

= -i+7j+5k.

Then (AxB) xC = (-i+7j +5k) x (i-2j +2k) =

(b) B x C =

i i k

2 1 -1

1 -2 2

= Oi - 5j - 5k = - 5j - 5k.

Then A x (B x C) _ (31-i +2k) x (-5j -5k) _

i j k

-1 7 5

1 -2 2

i i k
3 -1 2

-5 -5

= 241 + 7j - 5k.

= 15i+15j-15k.

Thus (A x B) x C i A x (B x C), showing the need for parentheses in A x B xC to avoid ambiguity.

30. Prove that the area of a parallelogram with sides A
andBis jAxBI.

Area of parallelogram = h I B

_ JAS sin 6 JB{

= JAxB!.

Note that the area of the triangle with sides A and
B = 21AxBI.

31. Find the area of the triangle having vertices at P(1, 3, 2), Q(2, -1, 1), R(-1, 2, 3).
PQ = (2-1)i + (-1 -3)j + (1 -2)k = i - 4j - k
PR = (-1 -1) i + (2-3)j + (3-2)k = -2i - j + k
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From Problem 30,

area of triangle = 211 PQ x PR I = 121 (i - 4j - k) x (-2i - j + k)

i j k
= 2 1 -4 -1 = 2I-5i+j-9kl = z (-5)2+(1)2+(-9)2 = 2 107.

-2 -1 1

32. Determine a unit vector perpendicular to the plane of A = 2i - 6j - 3k and B = 4i + 3j - k .

A x B is a vector perpendicular to the plane of A and B .
i j k

AxB = 2 -6 -3 = 15i - IOj + 30k
4 3 -1

A unit vector parallel to A X B is AXB

IAxB

15i -10j + 30k

(15)2+ (-10)2+ (30)2

3 2
= 7i-7j+7k

Another unit vector, opposite in direction, is (-3i + 2j - 6k)/7.

Compare with Problem 16.

33. Prove the law of sines for plane triangles.

Let a, b and c represent the sides of triangle ABC
as shown in the adjoining figure; then a+b+c = 0. Mul-

tiplying by a x, b x and c x in succession, we find

axb = bxc = cxa
i.e. ab sin C = be sin A = ca sin B

sin A sin B sin C
nr = - _

a b c

34. Consider a tetrahedron with faces Fl, F2 , F3 , F4 .
Let V1, V2, V3 , V4 be vectors whose magnitudes are
respectively equal to the areas of Fl , F2 , F3, F4 and
whose directions are perpendicular to these faces
in the outward direction. Show that V1+V2+V3+V4 = 0.

By Problem 30, the area of a triangular face deter-
mined by R and S is 2 I R x S I.

The vectors associated with each of the faces of
the tetrahedron are

V1 = 2 AxB, V2 = 2 BxC, V3 = 2 CxA, V4= 2 (C-A) x (B-A)

Then V1+V2+V3+V4 =
2

[AxB + BxC + CxA + (C-A)x(B-A)]
= 2 [AxB + BxC + CxA + CxB - CxA - AxB + AxA] 0.

25

This result can be generalized to closed polyhedra and in the limiting case to any closed surface.

Because of the application presented here it is sometimes convenient to assign a direction to area and
we speak of the vector area.

35. Find an expression for the moment of a force F about a point P.

The moment M of F about P is in magnitude equal to F times the perpendicular distance from P to the
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line of action of F. Then if r is the vector from P to the ini-
tial point Q of F,

M = F (r sin 8) = rF sin 8 = ( r x F I

If we think of a right-threaded screw at P perpendicular
to the plane of r and F, then when the force F acts the screw
will move in the direction of r x F. Because of this it is con-
venient to define the moment as the vector M = r x F .

36. A rigid body rotates about an axis through point 0 with
angular speed w. Prove that the linear velocity v of a
point P of the body with position vector r is given by
v = ,w x r, where w is the vector with magnitude w whose
direction is that in which a right-handed screw would
advance under the given rotation.

Since P travels in a circle of radius r sin 0, the magni-
tude of the linear velocity v is w(r sin 0) _ jcvxr I . Also, v
must be perpendicular to both w and r and is such that r, 4) and
v form a right-handed system.

Then v agrees both in magnitude and direction with w x r ;
hence v = 6) x r. The vector Ca is called the angular velocity.

TRIPLE PRODUCTS.

37. Show that A (BxC) is in absolute value equal
to the volume of a parallelepiped with sides
A,B and C.

Let n be a unit normal to parallelogram 1,
having the direction of B x C, and let h be the
height of the terminal point of A above the par-
allelogram 1.

Volume of parallelepiped = (height h) (area of parallelogram 1)

_

A { JBxCj n} =
If A, B and C do not form a right-handed system, A. n < 0 and the volume = I A A. (B x C)

38. If A = A1i + A2j + Ask , B = B1i + B2j + B3k , C = C1i + C2j + C3k show that

A- (BxC) =

A
i i k

B1 B2 B3
C1 C2 C3

Al A2

B1 B2

Cl C2

As

B3

C3

= (A1i + A2j + A3k) ' l(B2C3 - B3C2) i + (B3C1 - B1C3) j + (B1C2 - B2C1) k

Al A2 As
= A1(B2C3 - B3C2) + A2(B3C1- B1C3) + A3(B1C2 - B2C1) = B1 B2 B3

C1 C2 C3
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39. Evaluate (2i-3j) [ (i + j - k) x (3i - k)] .

By Problem 38, the result is
2 -3 0

1 1 -1

3 0 -1

= 4.

Another Method. The result is equal to

(2i-3j). [ix(31-k) + jx(3i-k) - kx(3i-k)]
= (2i-3j)- [3ixi - ixk + 3jxi - jxk - 3kxi + kxk]
= (2i - j - 3k - i - 3j + 0)
= (2i - 3j) (-i - 2j - 3k) = (2) (-1) + (-3) (-2) + (0) (-3) = 4.

40. Prove that A (B x C) = B (C x A) = C (A x B) .

By Problem 38, A (B x C) =

Al A2 A3
B1 B2 B3
C1 C2 C3

By a theorem of determinants which states that interchange of two rows of a determinant changes its
sign, we have

Al A2 A3 B1 B2 B3 B1 B2 B3

B1 B2 B3 Al A2 As C1 C2 C3 =

Cl C2 C3 C1 C2 C3 Al A2 A3

Al A2 A3 C1 C2 C3 Cl C2 C3

B1 B2 B3 B1 B2 B3 Al A2 A3 =

C1 C2 C3 Al A2 A3 B1 B2 B3

41. Show that A- (B x C) = (A x B) C

From Problem 40, A (B x C) = C . (A x B) = (A x B) C

Occasionally A (B x C) is written without parentheses as A B x C. In such case there cannot be
any ambiguity since the only possible interpretations are A (B x C) and (A B) x C. The latter however
has no meaning since the cross product of a scalar with a vector is undefined.

The result A B x C = A x B C is sometimes summarized in the statement that the dot and cross can
be interchanged without affecting the result.

42. Prove that A (A x C) = 0.

From Problem 41, A. (A x C) = (A x A) . C = 0.

43. Prove that a necessary and sufficient condition for the vectors A, B and C to be coplanar is that
A BxC = 0.

Note that A A. B x C can have no meaning other than A (B x C).

If A, B and C are coplanar the volume of the parallelepiped formed by them is zero. Then by Problem
37,

A B x C = 0 the volume of the parallelepiped formed by vectors A, B and C is zero,
and so the vectors must lie in a plane.

44. Let r1 = x1i + y1j + z1k , r2 = x2i + y2i + z2k and r3 = x3i + y3j + z3k be the position vectors of
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points Pi(x1, yi, z1), P2(x2, y2, z2) and P3(x3,y3, z3).
Find an equation for the plane passing through P1,
P2 and P3 .

We assume that Pi, P2 and P3 do not lie in the same
straight line; hence they determine a plane.

Let r = xi + yj + zk denote the position vector of any
point P(x,y, z) in the plane. Consider vectors PIP2 =
r2 - r1, Pi P3 = r3 - r1 and P1 P = r - ri which all lie in
the plane.

By Problem 43, PIP PiP2 X P1P3 = 0 or

(r - ri) . (r2 - ri) x (r3 - r1) = 0

In terms of rectangular coordinates this becomes

[(x-xi)i + (y-y1)i + (z-z1)k] [(x2_x1)i + (y2-Y1)i + (z2-z1)k] x [(x3-x1)i + (y3-Y1)j + (z3-zi)k] =0

or, using Problem 38,

- x1

X2-XI

Y - Y1

Y2-Yi

x3-x1 Y3-y1

= 0 .

45. Find an equation for the plane determined by the points P1(2, -1, 1), P2(3, 2, -1) and P3(,-1, 3, 2).

The position vectors of P1, P2, P3 and any point P(x, y, z) are respectively r1= 21-j + k, r2 = 3i + 2j - k ,
r3=-i+3j+2k and r=xi+yj+zk.

Then P P1 = r - r1, P2 P1 = r2 - r1, P3P1 = r3 - r1 all lie in the required plane, so that

(r - r1) (r2 - r1) x (r3 - r1) = 0

i.e. [(x - 2) i + (y + 1) j + (z -1) k] [i + 3j - 2k] x [-3i + 4j + k] = 0

[(x-2)i+(y+1)j+(z-l)k] [1li+5j+13k] = 0

11(x-2)+5(y+1)+13(z--1) = 0 or 11x+5y+13z = 30.

46. If the points P, Q and R, not all lying on the same straight line, have position vectors a,b and c
relative to a given origin, show that a x b + b x c + c x a is a vector perpendicular to the plane
of P, Q and R.

Let r be the position vector of any point in the plane of P. Q a*1 R. Then the vectors r - a, b -a and
c -a are coplanar, so that by Problem 43

(r - a) (b - a) x (C - a) = 0 or (r-a) (axb + bxc + cxa) = 0.

Thus ax b + b x c + c x a is perpendicular to r -a and is therefore perpendicular to the plane of P, Q

and R .

47. Prove: (a) Ax (B x C) = B(A C) - C(A B), (b) (A x B) x C = B(A C) - A(BC).

(a) Let A=Aii+A2j+Ask, B=B1i+B2j+B3k, C=Cii+C2j+C3k.

i j k

Then A x (B x C) _ (All +A2j +Ask) x B1 B2 B3
C1 C2 C3

= (A 1i +A2j +A3k) x([B2C3-B3C2] i + [BSC1-BIC3] i + [B1C2-B2C1] k)
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i j k

Al A2 As

B2C3 - B3C2 B3C1- B1C3 B1C2 - B2C1

_ (A2B1C2 - A2B2C1- A3B2C1 + A3B1C3) i + (A3B2C3 - A3B3C2 - A1B1C2 + A1B2C1) j

+ (A1B3C1- A1B1C3 - A2B2C3 + A2B3C2) k

Also B(A C) - C(A B)
(B1i + B2j + B3k) (A1C1 + A2C2 + A3C3) - (C1i + C2j + C3k) (A1B1 + A2B2 + A4B3)

(A2B1C2 + A3B1C3 -A2C1B2 - A3C1B3) i + (B2AjCj+B2A3C3-C2Aj.Bj-C2AsB3)j

+ (B3A1C1 + B3A2C2 - C3A1B1- C3A2B2) k

and the result follows.

(b) (AxB) x C = -C x (AxB) = - {A(C B) - B(C A) } = B(A C) - A(B C) upon replacing A, B and
C in (a) by C, A and B respectively.

Note that A x (B x C) / (A x B) x C , i.e. the associative law for vector cross products is not
valid for all vectors A, B, C.

48. Prove: (AxB) (CXD) =

From Problem 41, X. (CXD) _ (X X C) D. Let X = A X B ; then

(AxB) (CxD) _ {(A x B) x C} D = {B(A C) - A(B C)} D

_ (A C) (B D) - (A D) (B C), using Problem 47(b).

49. Prove: Ax(BxC) + Bx(CxA) + Cx(AxB) = 0.

By Problem 47(a),

Adding, the result follows.

Ax(BxC) =
B x (C x A) = C(B A) - A(B C)
C x (AxB) = A(C B) - B(C A)

50. Prove: (AxB) x(CxD) = B(ACxD) - A(BCxD) = C(ABxD) - D(ABxC).
By Problem 47(a), X x (C x D) = C(X D) - D(X C). Let X = A x B ; then

(Ax B) x (CxD) = C(A x B D) - D(A x B C)

= C(ABXD)-D(ABXC)

By Problem 47(b), (AxB) x Y = B(A Y) - A(B Y). Let Y = C x D; then

(A x B) x (CxD) = B(A CxD) - A(B CxD)

51. Let PQR be a spherical triangle whose sides p, q, r are arcs of great circles. Prove that
sin P

sin p
sin Q

sin q
sin R

sin r

Suppose that the sphere (see figure below) has unit radius, and let unit vectors A, B and C be drawn
from the center 0 of the sphere to P, Q and R respectively. From Problem 50,

(1) (A x B) x (A x C) = (A B x C) A
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A unit vector perpendicular to Ax B and Ax C is A, so
that (1) becomes

(2) sin r sin q sin P A = (A. B x C) A or

(3) sin r sin q sin P = A B x C

By cyclic permutation of p, q, r, P, Q, R and A, B, C we
obtain

(4) sin p sin r sin Q = B C x A

(5) sin q sin p sin R = C A x B

Then since the right hand sides of (3), (4) and (5) are
equal (Problem 40)

sin r sin q sin P = sin p sin r sin Q = sin q sin p sin R

from which we find
sin P sin Q sin R

sinp sin q sin r

This is called the law of sines for spherical triangles.

52. Prove: (A x B) (B x C) x (CxA) (A B x C)2 .

By Problem 47(a), X x (CxA) = C (X A) - A (X . C). Let X = B x C; then

(BxC) x (CxA) = C(BxCA) - A(BxCC)
= C(ABxC) - A(BCxC) = C(ABxC)

Thus (AxB)(BxC) x (CxA) = (AxB) C(ABxC)
(AxBC)(ABxC) _ (ABxC)2

53. Given the vectors a' =
bxc b'= cx a and c'= ax b , show that if a bxc X 0,a bxc ' a - bxc a b x c

(a) a'a = b'b = c'c = 1,
(b) a'b = a'c = 0, b' - a = b'c = 0, c'a = c'b = 0,
(c) if a bxc = V then a b' x c' = 1/V,
(d) a', b',and c' are non-coplanar if a, b and c are non-coplanar.

(a) aa = aa = a bxc = abxc = 1

abxc abxc
_b'b = bb' = b cx a _ bcxa

=
a.bxc

abxc abxc abxc
C = cc = c- axb

=
caxb

=
abxc _ 1

abxc abxc abxc

(b) ab = ba = b bxc bbxc bxbc _ 0
abxc abxc abxc

Similarly the other results follow. The results can also be seen by noting, for example, that a has
the direction of b x c and so must be perpendicular to both b and c, from which a b = 0 and a c = 0.

From (a) and (b) we see that the sets of vectors a, b, c and a', b', c' are reciprocal vectors. See
also Supplementary Problems 104 and 106.
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(C)

Then

a
_ bxc cxa c,_ axb

V V V

(a b x
V3 V V

using Problem 52.

31

(d) By Problem 43, if a, b and c are non-coplanar a b x c # 0 . Then from part (c) it follows that

a b' x c X 0 , so that a', b' and c are also non-coplanar.

54. Show that any vector r can be expressed in terms of the reciprocal vectors of Problem 53
r = (r - a')a + (r b')b + (r - d) e .

From Problem 50, B (A C x D) - A (B C x D) = C (A B x D) - D (A B x C)

Then D
D) D) + D)

= -A.BxC A.BxC

A = a, B=b, C=c and D=r. Then
r rbxca + rcxab + raxbc

abxc abxc abxc
x

r
(abbxc)a +

r (acbxc)b + r (aab bc)c

= (ra)a + (rb)b + (rc)c

SUPPLEMENTARY PROBLEMS

55. Evaluate: (a) k (i+ j) , (b) (i - 2k) (j + 3k), (c) (2i - j + 3k) (3i + 2j - k).
Ans. (a) 0 (b) - 6 (c) 1

56. If A=i+3j-2k and B=4i-2j+4k, find:
(a)AB, (b)A, (c)B, (d) 13A+2B), (e) (2A+B).(A-2B).
Ans. (a) -10 (b) 14 (c) 6 (d) 150 (e) -14

as

57. Find the angle between: (a) A = 3i+2j-6k and B = 4i-3j+k, (b) C = 4i-2j+4k and D = 3i-6j-2k.
Ans. (a) 90° (b) arc cos 8/21 = 67°36'

58. For what values of a are A = ai - 2j +k and B = 2ai +aj - 4k perpendicular 9 Ans. a = 2, - 1

59. Find the acute angles which the line joining the points (1,-3,2) and (3,-5,1) makes with the coordinate
axes. Ans. are cos 2/3, are cos 2/3, arc cos 1/3 or 48°12', 48°12', 70032'

60. Find the direction cosines of the line joining the points (3,2,-4) and (1,-1,2).
Ans. 2/7,3/7,-6/7 or -2/7,-3/7,6/7

61. Two sides of a triangle are formed by the vectors A = 3i + 6j - 2k and B = 41- j + 3k. Determine the angles
of the triangle. Ans. arc cos 7/07-5, arc cos 26/ 75, 90° or 36°4', 53°56', 90°

62. The diagonals of a parallelogram are given by A = 3i -4j -k and B = 2i +3j - 6k. Show that the parallelo-
gram is a rhombus and determine the length of its sides and its angles.
Ans. 5v"3-/2, arc cos 23/75, 180° - are cos 23/75 or 4.33, 72°8', 107°52'
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63. Find the projection of the vector 2i - 3j + 6k on the vector i + 2j + 2k . Ans. 8/3

64. Find the projection of the vector 41 - 3J + k on the line passing through the points (2,3,-1) and (-2,-4,3).
Ans. 1

65. If A = 4i - j + 3k and B = -2i + j - 2k, find a unit vector perpendicular to both A and B.
Ans. ±(i-2j-2k)/3

66. Find the acute angle formed by two diagonals of a cube. Ans. arc cos 1/3 or 70°32`

67. Find a unit vector parallel to the xy plane and perpendicular to the vector 4i- 3j +k . Ans. ± (3i +4j)/5

68. Show that A = (2i- 2j +k)/3, B = (i +2j + 2k)/3 and C = (2i +j - 2k)/3 are mutually orthogonal unit vectors.

69. Find the work done in moving an object along a straight line from (3,2,-1) to (2,-1,4) in a force field given
by F = 41-3j+2k. Ans. 15

70. Let F be a constant vector force field. Show that the work done in moving an object around any closed pol-
ygon in this force field is zero.

71. Prove that an angle inscribed in a semi-circle is a right angle.

72. Let ABCD be a parallelogram. Prove that AB2 + BC2 + CD2 +DA2 = AC2 + if

73. If ABCD is any quadrilateral and P and Q are the midpoints of its diagonals, prove that
AB2 + BC2 + CD-2 + DA2 = AC2 + YD-2 + 4 PQ2

This is a generalization of the preceding problem.

74. (a) Find an equation of a plane perpendicular to a given vector A and distant p from the origin.
(b) Express the equation of (a) in rectangular coordinates.
Ans. (a) r n = p , where n = A/A ; (b) A1x + A2 y + A3 z = Ap

75. Let r1 and r2 be unit vectors in the xy plane making angles a and R with the positive x-axis.
(a) Prove that r 1= cos a i + sin a j, r2 = cos (3 i + sin I3 j .
(b) By considering r1. r2 prove the trigonometric formulas

cos (a - (3) = cos a cos a + sin a sin (3, cos ((% + S) = cos a cos(3 - sin a sin R

76. Let a be the position vector of a given point (x1, y1, z1), and r the position vector of any point (x, y, z). De-
scribe the locus of r if (a) I r - a I = 3, (b) (r-a). a = 0, (c) (r-a).r = 0.
Ans. (a) Sphere, center at (x1, y1, z1) and radius 3.

(b) Plane perpendicular to a and passing through its terminal point.
(c) Sphere with center at (x1/2, y1/2, z1/2) and radius i xi+ y1+ z1, or a sphere with a as diameter.

77. Given that A = 3i +j +2k and B = i - 2j-4k are the position vectors of points P and Q respectively.
(a) Find an equation for the plane passing through Q and perpendicular to line PQ.
(b) What is the distance from the point (-1,1,1) to the plane ?
Ans. (a) 0 or 2x+3y+6z = -28; (b) 5

78. Evaluate each of the following:
(a) 2jx(3i-4k), (b) (i+2j)xk, (c) (2i-4k)x(i+2j), (d) (4i+j-2k)x(3i+k), (e) (2i+j-k)x(3i-2j+4k).
Ans. (a)-8i-6k, (b) 2i-j, (c) 8i-4j+4k, (d) i-lOj-3k, (e) 2i-llj-7k

79. If A = 3i-j-2k and B = 2i+3j+k, find: (a) IAxBI, (b) (A+2B)x(2A-B), (c) I (A+B)x(A-B) .
Ans. (a) , (b) -25i+35j-55k, (c) 2 195

80. If A = i-2j-3k, B = 21+j-k and C = i+3j-2k, find:
(a) I (AxB) x C I, (c) A (BxC), (e) (AxB) x (BxC)
(b) IA x(BxC)I, (d) (f)
Ans. (a) 5 26, (b) 3 16, (c) -20, (d) -20, (e) -401-20j+20k, ((f) 35i-35j +35k

81. Show that if A 0 and both of the conditions (a) and (b) AxB = AxC hold simultaneously
then B = C, but if only one of these conditions holds then B # C necessarily.

82. Find the area of a parallelogram having diagonals A = 3i +J - 2k and B = i - 3j + 4k. Ans. 503-
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83. Find the area of a triangle with vertices at (3,-1,2), (1,-1,-3) and (4,-3,1). Ans. 2 61

84. If A = 2t + j - 3k and B = i - 2j + k , find a vector of magnitude 5 perpendicular to both A and B.

Ans. ± 53(i+j+k)

85. Use Problem 75 to derive the formulas
sin (a - (3) = sin a cos (3 - cos a sin Q, sin (a+ (3) = sin a cos S + cos a sin R

86. A force given by F = 3i + 2j - 4k is applied at the point (1, -1, 2). Find the moment of F about the point
(2,-1,3). Ans. 21 - 7j - 2k

87. The angular velocity of a rotating rigid body about an axis of rotation is given by w = 4i +j - 2k. Find the
linear velocity of a point P on the body whose position vector relative to a point on the axis of rotation is
2i-3j+k. Ans. -5i - 8i -- 14k

88. Simplify (A +B) (B +C) x (C +A) . Ans. 2A B xC

89. Prove that (A BxC)(abxc) _
Aa Ab Ac
Ba Bb Bc
C-a Cb Cc

90. Find the volume of the parallelepiped whose edges are represented by A = 2t - 3j + 4k, B = i + 2j - k'
C = 3i - j + 2k . Ans. 7

91. If A. B xC = 0, show that either (a) A, B and C are coplanar but no two of them are collinear, or (b) two
of the vectors A, B and C are collinear, or (c) all of the vectors A, B and C are collinear.

92. Find the constant a such that the vectors 2i-j+k, i+2j-3k and 3i+aj+5k are coplanar. Ans. a =

93. If A = x1a + yib + zic , B = x2a + y2b + z2c and C = x3a + y3b + z3c , prove that

ABxC
xi Y1 Zi
X2 Y2 Z2

X3 Y3 Z3

(abxc)

-4

94. Prove that a necessary and sufficient condition that A x (B x C) = (A x B) x C is (A x C) x B = 0. Dis-
cuss the cases where A - B = 0 or B C = 0 .

95. Let points P. Q and R have position vectors r1= 3i- 2j - k, r2 = i +3j +4k and r3 = 21 + j - 2k relative to
an origin 0. Find the distance from P to the plane OQR. Ans. 3

96. Find the shortest distance from (6,-4,4) to the line joining (2,1,2) and (3,-1,4). Ans. 3

97. Given points P(2,1,3), Q(1,2,1), R(-1,-2,-2) and S(1,-4,0), find the shortest distance between lines PQ and
RS. Ans. 3v2

98. Prove that the perpendiculars from the vertices of a triangle to the opposite sides (extended if necessary)
meet in a point (the orthocenter of the triangle).

99. Prove that the perpendicular bisectors of the sides of a triangle meet in a point (the circumcenter of the tri-
angle).

100. Prove that (A x B) (C x D) + (B x C) (A x D) + (C x A) (B x D) = 0.

101. Let PQR be a spherical triangle whose sides p, q, r are arcs of great circles. Prove the law of cosines for
spherical triangles,

cos p = cos q cos r + sin q sin r cos P

with analogous formulas for cos q and cos r obtained by cyclic permutation of the letters.
[ Hint: Interpret both sides of the identity (A x B) (A x C) = (B C) (A A) - (A C) (B A). ]

ad.....skg
mmm
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102. Find a set of vectors reciprocal to the set 21+3j-k, i-j-2k, -i+2j+2k.
Ans. 2i+lk -8i+j-?k, -?i+j-5k

3 3 3 3 3 3

bxc
b

, cxa , axb103. If a'= a.bxc ' a bxc and c = a bxc ' prove that

b'x c' c'x a axb'a
a' b x c'

b
a b 'x c' c a b'x c'

104. If a, b, c and a', b', c' are such that

a'a = b'b = c'c
a'b = a'c = b' a = b'c = c'a = c'b = 0

prove that it necessarily follows that

a
= bxc b, = cxa Cl = a x b

a bxc a bxc a bxc

105. Prove that the only right-handed self-reciprocal sets of vectors are the unit vectors i, j , k .

106. Prove that there is one and only one set of vectors reciprocal to a given set of non-coplanar vectors a, b, c.



ORDINARY DERIVATIVES OF VECTORS. Let R(u)
be a vector depending on a single scalar variable u.
Then

LR _ R(u +Au) - R(u)
Au Au

where Au denotes an increment in u (see adjoining
figure).

The ordinary derivative of the vector R(u) with respect to the scalar u is given by

dR = lim AR = lim R(u +Au) - R(u)
du Au-'o Au Au-.o Au

if the limit exists.

Since dR is itself a vector depending on u, we can consider its derivative with respect to u. If

this derivative exists it is denoted by a R . In like manner higher order derivatives are described.

SPACE CURVES. If in particular R(u) is the position vector r(u) joining the origin 0 of a coordinate
system and any point (x, y, z), then

r(u) = x(u)i + y(u)j + z(u)k

and specification of the vecto unction r(u defines x, y and z as functions of

As u changes, the terminal point of r describes
a space curve having parametric equations

x = x(u), y = y(u), z = z(u)

Then Qu = r (u +Auu)

Au
- r (u) is a vector in

Or
the di-

rection of Ar (see adjacent figure). If lim
= dr

AU-0 Au du
exists, the limit will be a vector in the direction of
the tangent to the space curve at (x, y, z) and is giv-
en by

dr _ dx dy dz

du dul + idu + duk

If u is the time t,

d
represents the velocity v with

which the terminal point of r describes the curve. Similarly, d
along the curve.

x

d2r

dt2

35

represents its acceleration a
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CONTINUITY AND DIFFERENTIABILITY. A scalar function c(u) is called continuous at u if
limo 4)(u +Au) _ 0(u). Equivalently, ¢6(u) is continu-

AU-
ous at u if for each positive number a we can find some positive number 6 such that

1 gb(u+Au) - 0(u) l < E whenever j Au j < 8.

A vector function R(u) = R1(u) i + R2(u) j + R3(u) k is called continuous at u if the three scalar
m R(u +Au) = R(u). Equivalently, R (u)functions R1(u), R2(u) and R3(u) are continuous at u or if Alu o

is continuous at u if for each positive number e we can find some positive number 8 such that

I R(u +Au) - R(u) I < E whenever I Au f < 8 .

A scalar or vector function of u is called differentiable of order n if its nth derivative exists. A
function which is differentiable is necessarily continuous but the converse is not true. Unless other-
wise stated we assume that all functions considered are differentiable to any order needed in a par-
ticular discussion.

DIFFERENTIATION FORMULAS. If A, B and C are differentiable vector functions of a scalar u, and
0 is a differentiable scalar function of u, then

2.

du(A+B)

du (A B) =

dA + du

A dB + du B

3. u(AxB) = Ax dB + dAxB

4. u(OA) _ dA
+ LoA

du du

du(A-BxC) _ du + dA BxC

6. du
{Ax(BxC)} = A X ( xC) + du x (BxC)

The order in these products may be important.

PARTIAL DERIVATIVES OF VECTORS. If A is a vector depending on more than one scalar variable,
say x, y, z for example, then we write A = A(x, y, z). The

partial derivative of A with respect to x is defined as

' = l m
A(x+Ax, y, z) - A(x,y,z)

x AX-0 Ax

if this limit exists. Similarly,

aA A(x, y +Ay, z) - A(x,y,z)
y ymo Ay

aA
lira

A(x,y, z+Az) - A(x,y,z)
az

_
Az
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are the partial derivatives of A with respect to y and z respectively if these limits exist.

The remarks on continuity and differentiability for functions of one variable can be extended to
functions of two or more variables. For example, c (x, y) is called continuous at (x, y) if
Jim 0 (x +Ax, y +Ay) = q5 (x,y), or if for each positive number e we can find some positive number

AY-0
8 such that 0 (x +Ax, y +Ay) - gb (x,y)1 < E whenever j Ax j < 8 and I Ay I < 8. Similar defi-
nitions hold for vector functions.

For functions of two or more variables we use the term differentiable to mean that the function
has continuous first partial derivatives. (The term is used by others in a slightly weaker sense.)

Higher derivatives can be defined as in the calculus. Thus, for example,

a2A _ a A 2A aA
axe ax (ax) , aye ay -6 y)

a2A a aA a2A a (aA
ax ay = ax(ay ay ax = ay ax

a2A a aA
az2 az(az )

a3A a a2A
ax az2 - ax az2

If A has continuous partial derivatives of the second order at least, then a 2 A' - a 2 `ax ay ay ax
, i.e. the

order of differentiation does not matter.

Rules for partial differentiation of vectors are similar to those used in elementary calculus for
scalar functions. Thus if A and B are functions of x,y,z then, for example,

1. ax (A B) = A - a$ + 2A . B

ax(Ax B) = Ax aB + aAx B

= {ax(A.B)} =
a

{A.aB + aA.B}
y y

A a2B + aA 3B + aA aB + a2A .B
ay ax ay ax ax ay ay ax '

etc.

DIFFERENTIALS OF VECTORS follow rules similar to those of elementary calculus.

1. If A = Al' + A2j + A3k , then dA = dA1i + dA2j + dA3k

2. d(A B) = A dB + dA B

3. d(AxB) = AxdB + dAxB

A
A

dx + aA dy + a dz , etc.4. If A = A(x,y,z), then dA = a

For example,

DIFFERENTIAL GEOMETRY involves a study of space curves and surfaces. If C is a space curve
defined by the function r(u), then we have seen that du is a vector in

the direction of the tangent to C. If the scalar u is taken as the arc length s measured from some fixed

point on C, then -d-r- is a unit tangent vector to C and is denoted by T (see diagram below). The
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rate at which T changes with respect to s is a mea-
sure of the curvature of C and is given by dT . The

dT
as

direction of
ds

at any given point on C is normal to

the curve at that point (see Problem 9). If N is a
unit vector in this normal direction, it is called the

principal normal to the curve. Then ds = KN, where

K is called the curvature of C at the specified point.
The quantity p = 1/K is called the radius of curva-
ture.

A unit vector B perpendicular to the plane of T and N and such that B = T xN, is called the bi-
normal to the curve. It follows that directions T, N, B form a localized right-handed rectangular co-
ordinate system at any specified point of C. This coordinate system is called the trihedral or triad
at the point. As s changes, the coordinate system moves and is known as the moving trihedral.

A set of relations involving derivatives of the fundamental vectors T, N and B is known collec-
tively as the Frenet-Serret formulas given by

dT = KN, dN = TB - KT, dB = -TN

where r is a scalar called the torsion. The quantity cr = 1/T is called the radius of torsion.

The osculating plane to a curve at a point P is the plane containing the tangent and principal
normal at P. The normal plane is the plane through P perpendicular to the tangent. The rectifying
plane is the plane through P which is perpendicular to the principal normal.

MECHANICS often includes a study of the motion of particles along curves, this study being known
as kinematics. In this connection some of the results of differential geometry can be of

value.

A study of forces on moving objects is considered in dynamics. Fundamental to this study is
Newton's famous law which states that if F is the net force acting on an object of mass m moving
with velocity v, then

F = dt (mv)

where my is the momentum of the object. If m is constant this becomes F = m
dv = ma, where a isatthe acceleration of the object.
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SOLVED PROBLEMS

1. If R(u) = x(u) i + y(u) j + z(u) k , where x, y and z are differentiable functions of a scalar u, prove

that
duR du 1 + d j + du k .

R(u +Au) --- R(u)dR = lim
du AU-0 Au

[x(u +Au)i +Y(u +Au)i + z(u +Au)k] - [x(u) i + Y(u)j + z(u)k]
= Jim

Au-0 AU

x(u +Au) - x(u)
i y(u +Au) - y(u) z(u +Au) - z(u)

k= lim
Au-0

+
Au Du

+

Du

dx dy , dzdui +
dd u + duk

2 2
AR dR dR dR2. Given R = sin t i + cos t j + tk , find (a)
dt , (b) dt2 , (c) I dt I , (d) I dt2

dR d d d
(a) dt dt (sin t) i + dt

(cos t) j +
dt

(t) k = cost i - sin t j + k

d2R d dR d d d

(b) dt2 dt (dt) = dt (coS t) i - dt
(sin t) j +

dt
(1) k = - sin t i - cost j

(c) I

dR
I = (coS t)2 + (-sint)2 + (1)2 =

2

(d) I dtR I (-sint)2 + (-cost)' = 1

3. A particle moves along a curve whose parametric equations are x = e -t, y = 2cos 3t, z = 2sin3t,
where t is the time.
(a) Determine its velocity and acceleration at any time.
(b) Find the magnitudes of the velocity and acceleration at t = 0.

(a) The position vector r of the particle is r = xi + yj + zk = e-ti + 2cos 3t j + 2 sin 3t k.
Then the velocity is v = dr = -e-ti - 6 sin 3t j + 6cos 3t k

2
and the acceleration is a = d r = e'"ti - 18 cos 3t j - 18 sin 3t k

dt2
2

(b) At t = 0,

dt

= - i + 6k and dt 2 = i - 18j . Then

magnitude of velocity at t = 0 is (-1)2 + (6)2 = 37
magnitude of acceleration at t = 0 is (1)2 + (-18)2 = 425.

4. A particle moves along the curve x = 2t2, y = t2 - 4t, z = 3t - 5, where t is the time. Find the
components of its velocity and acceleration at time t = 1 in the direction i - 3j + 2k.
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Velocity = dt dt
[2t2i + (t2 - 4t)j + (3t - 5)k]

= 4t i + (2t - 4) j + 3k = 4i - 2j + 3k at t = 1 .

Unit vector in direction i - 3j + 2k is i-3j+2k i-3i +2k
(1)2+ (-3)2+ (2)2

Then the component of the velocity in the given direction is
(41 - 2j + 3k) (i - 3j + 2k) (4) (1) + (-2) (-3) + (3) (2) 16 8

14 V4 7

Acceleration = dt2 = dt (dt) dt
[ 4t i + (2t - 4) j + 3k] = 4t + 2j + Ok.

Then the component of the acceleration in the given direction is
(41 + 2j + Ok) (i - 3j + 2k) (4) (1) + (2) (-3) + (0) (2) -2 - ,1

v/14 V"I 4 Y/1 4 7

5. A curve C is defined by parametric equations x = x(s), y = y(s), z = z(s), where s is the are
length of C measured from a fixed point on C. If r is the position vector of any point on C, show
that dr/ds is a unit vector tangent to C .

The vector
dr

=
d (xi + yj + zk) = dx

i + - j + dz k
ds ds ds ds ds

z = z(s). To show that it has unit magnitude we note that

fdsl =

is tangent to the curve x = x(s), y = y (s),

/(dx)2 + (d z)2 = /(dx) + (dy)2 + (dz)2
ds ds ds / (ds )2

since (ds)2 = (dx)2 + (dy)2 + (dz)2 from the calculus.

1

6. (a) Find the unit tangent vector to any point on the curve x = t2 + 1, y = 4t - 3, z = 212 - 6t.
(b) Determine the unit tangent at the point where t = 2 .

(a) A tangent vector to the curve at any point is

dt dt [(t2+1)i + (4t-3)j + (2t2-6t)k] = 2ti + 4j + (4t-6)k

The magnitude of the vector is I d (2t)2 + (4)2+ (4t--6)2.

2ti + Q + (4t-6)kThen the required unit tangent vector is T =
(2t)2+(4)2+(4t-6)2

dr ds ,f, = dr/dt _ drNote that since dt dt ' ds/dt ds

(b) At t = 2 , the unit tangent vector is T = 4i + 4j + 2k
=

2 t + 2 2j +
11 k.

(4)2 + (4)2 + (2)2 3 3 3

7. If A and B are differentiable functions of a scalar u, prove:

(a) du (A B) = A dB + du B , (b) du (A x B) = Ax dB + dA -x B
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(a) lim
Au-0

(A +AB) -

A AB
+ AA -B + A.dB +

Au Au Au

A AB + AA B + AA AB
Au

Another Method. Let A = A1i + A2 J + Ask, B = B1i + B2j + B3k. Then

du (A B) =
u (A1B1 + A2B2 + A3B3)

(b) du (A x B)

_ (A1 dB1 + A2 dB2 + A3 dB3) + (dA1 B1 + dA2 B2 + dA3 B3) = A. dB + dA , B
du du du du du du du du

lim
(A+AA)x(B+An) - AxB

AXAB + AAXB + AAxAB
Au

lim

= lim Ax
AB

+
DA x B + LA-x AB = Ax dB + dA

x B
Au Au Au du du

Another Method.
j
A2

B2

du(AxB) = du

i

Al

B1

k

As

B3

Using a theorem on differentiation of a determinant, this becomes

i j k i j k

4 A4 4 dB dA
Al A2 As

du d

32
u du

= A x du + du x B
dB1 dB2 dB3

B1 B 2 B3
du du du

8. If A = 5t2 i + tj - t3 k and B = sin t i - cost j , find (a) dt (A - B), (b) dt (A x B), (c) a (A A).

(a) A. dB + dA B

= (5t2i + tj - tAk) (cost i + sint j)

= 5t2 cost + t sin t + 10t sin t - cost

Another Method. A. B = 5t2 Sin t - t cost. Then

dt
(A. B)

+ (lot i + j - 3t2k) (sins i - cost j)

= (5t2- 1) cost + lit sin t

= dt (5t2 sin t - t cos t) = 5t2 cost + lOt sin t + t sin t - cos t

= (5t2-1) cos t + lit Sin t

i j k i j" k
(b) dt (A x B) = A x

d
B +

dA
X B = 5t2 t - t3 + lot 1 -3t2

cost sin t 0 sin t -cost 0
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[t3 sin t i - t3 cost j + (5t2 sin t - t cos t) k]

+ [-3t2 cost i - 3t2 sin t j + (-lot cost - sin t) k]

(t3 sin t - 3t2 cos t) i - (t3 cost + 3t2 sin t) j + (5t2 sin t - sin t - 11 t cost) k

Another Method.
i j k

A x B = 5t2 t - t3
sin t -cost 0

- t3 cost i - 0 sin t j + (-5t2 cos t - t sin t) k

Then dt(Ax B) _ (t3 sin t - 3t2 cos t) i - (t3 cost + 3t2 sin t) j + (5t2 sin t - l It cost - sin t) k

(c) 9-(A.A) = A , + dA A
2A .

dt dt dt

= 2 (5t2i + tj - t3k) (lot i + j - 3t2k) = 100t3 + 2t + 6t5

Another Method. A A = (5t2)2 + (t)2 + (-t3)2 = 25t4 + t2 + tB

Then dt (25t4 + t2 + t8) = loot' + 2t + 6t5.

9. If A has constant magnitude show that A and dA/dt are perpendicular provided

Since A has constant magnitude, A A = constant.

Then dt(A.A) = A dA + dA = 0.

Thus A MA = 0 and A is perpendicular to dA provided ff dA
I

I # o'dt dt dt

10. Prove u (A B x C) = A B x du + A dB x C + LA BxC , where A, B, C are differentiable

functions of a scalar u.

By Problems 7(a) and 7(b), du A (B x C) du'BxC

dBxC] + du BxC

du BxC

11. Evaluate dt (V dV x d)

By Problem 10, d (V. dV x d2V) = . dV x d3V + V. d2V x d2V + dV dV x d2V
dt dt dt2 dt dt3 dt2 dt2 dt dt dt2

3V 3
d
dt3

+ 0 + 0 = V.dVxdt-

12. A particle moves so that its position vector is given by r = cosWt i + sin wt j where cv is a con-
stant. Show that (a) the velocity v of the particle is perpendicular to r, (b) the acceleration a is
directed toward the origin and has magnitude proportional to the distance from the origin, (c) rxv =
a constant vector.
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(a) v dr
dt = -w sin wt i + w cos cot j

Then [cos wt i + sin cot j] [-co sin wt i + w cos wt j]
(cos wt) (-w sin wt) + (sin wt) (w cos wt) = 0

and r and v are perpendicular.
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2

(b) W dt =
-CO2 cos wt i - CO2 sin wt j

= _w2 [cos wt i + sin wt j] = - w2r

Then the acceleration is opposite to the direction of r, i.e. it is directed toward the origin. Its
magnitude is proportional to I r I which is the distance from the origin.

+w cos wt j](c) r x v = [cos wt i + sin wt j] x [-w sin wt i

i j k

cos wt sin wt 0

-w sin wt w cos wt 0

= co (cos2wt + sine wt) k = wk , a constant vector.

Physically, the motion is that of a particle moving on the circumference of a circle with constant
angular speed w. The acceleration, directed toward the center of the circle, is the centripetal accel-
eration.

2

13. Prove: A x
d B _ d AxB - d(AxdB _ dAxB).
dt2 dt2 dt dt dt

d
LB - dA

=
d dB - d dA

dt (A x dt dt x B) dt (A x dt) dt (dt x B)

Ax d2B + dAxdB _ [dAxdB + d2AxB]
dt2 dt dt dt dt dt2

14. Show that A A. Adt A dt

Let A = A1i + A2j + A3k. Then A = Al + A2 + A3

dA _ 1(A1 + A2 +
A3)`1/2(2A1dA1 + 2A2dA2 + 2A3d'4s)

dt 2 dt dt dt

dA1 dA2 dA3 dA
Al dt + A2 dt + A3 dt A- dt

(Al + A2 + A3)1/'2

Another Method.

A

Since A . A = A 2, dt (A . A) =
dt

(A2).

i.e. A dt = A dA .

d
= A dA dA dA d 2 dA

dr
(A A)

dt + dt 'A = 2A dt and dt (A) = 2A dt

Then 2A dA = 2A
dA

or A. dA = A dA
dt dt dt dt

Ax 64 - d2AxB
dt2 dt2

Note that if A is a constant vector A. M = 0 as in Problem 9.
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15. If A = (2x2y - x4) i + (e-"Y - y sin x) j + (x2 cos y) k , find: aA aA a2A '62A -a a 2A '32A
'3x' ay

' a' ay,ax ay ay ax

aA =
ax (2x2y - x4) i + a (exy - y sin x) j + ax

(x2 cosy) k

_ (4xy - 4x3) i + (yexy - y cos x) j + 2x cosy k

(exy - y sin x) j + a (x2 cosy) k(2x2y - x4) i + aaA - ay y
ay

2x2 i + (xexy - sin x) j - x2 sin y k

2
a A = ax (4xy - 4x3) i + ax (yexy - y cos x) j + ,a (2x cosy) k
axe

a2A
ay2

a2A
ax ay

(4y - 12x2) i + (y2 exy + y sin x) j + 2 cosy k

a (2x2) i + (xexy - sinx)j - a (x2 siny)k
ay ay ay

0 + x2exy j - x2 cosy k = x2 exy j - x2 cosy k

ax (aA) ax
(2x2) i + ax

(xexy - sin x) j - ax(x2 sin y) k
y

= 4x i + (xyexy + exy - cos x) j - 2x sin y k

a2A a aA a a
3y

ay ax ay ax ay ay

4x i + (xyexy+exy-cosx)j - 2x siny k

2 2

Note that ax = a-A , i.e. the order of differentiation is immaterial. This is true in general if A
-ay -ay

has continuous partial derivatives of the second order at least.

16. If c (x,y,z) = xy2z and A = xz i - xy2 j +yz2k, find a (4)A) at the point (2,-1,1).
ax az

gbA = (xy2z) (xz i - xy2 j +yz2k) = x2y2z2 i - x2y4z j + xy3z3 k

(OA) = a (x2y2z2 i -. x2y4z j + xy3z3 k) = 2x2y2z i - x2y4 j + 3xy3z2 k
z

a2 2z i - ),e,4 j + 34 j + 3x 3z2 k) = 4x 3z2 k2z i - x2
(2x2

yy y y
yax az ax

3

a
a

az
(OA) = (4xy2z i - 2xy4 j + 3y3z2 k) = 4y2z i - 2y4 j

x

If x =2, y = -1, z = 1 this becomes 4(-1)2(1) i - 2(-1)4 j = 4i - 2j.

a
) i + - (yexy - y cos x) j +- (4x - 4x (2x cosy) k

17. Let F depend on x, y, z, t where x, y and z depend on t. Prove that
dF aF aF dx aF d '3F dz
at

_
at ax d + ay dt az dt
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under suitable assumptions of differentiability.

Suppose that F = F1(x,y,z,t) i + F2(x,y,z,t) j + F3(x,y,z,t) k.

dF = dF1 i + dF2 j + dF3 k

[atdt+ azdx+aFldy
y

+ {fadt + az3dx +

aF1 -6 a F2 'a a F3
( 1

at at at
+ j + k) dt

+ ( 1 + -J + k) ay + ( I +

Then

+ az dz] i + t2 dt + axe dx + aF dy +
az2

dz]

aF3 d y + aF3 d z] k
y

+ (aF1 i + -a a F2

j
+ '3 a F9 k)dx

ax ax ax

-3 F, . '3 F2 , -3 a Fs -6 F, -6 a F2
+ aF3 k ) d z

j azay ay ay aZ az

aFdt + aFdx + aFdy + 3dz
y

aF aF dx aF dy aF dzdF + + .+=and so
dt at ax dt ay dt - aZ dt

DIFFERENTIAL GEOMETRY.

18. Prove the Frenet-Serret formulas (a) T = KN, (b) dB = TN , cdN = TB-KT .

45

(a) Since T . T = 1, it follows from Problem 9 that T. f-4 = 0, i.e. ds is perpendicular to T.

If N is a unit vector in the direction dT , then ds = K N. We call N the principal normal, K the
curvature and p = 1/K the radius of curvature.

(b) Let B =TxN, so that dB
= TxdN + dTxN = TxdN + KNxN = TxdN

Then T. dB = T. Tx dN = 0, so that T is perpendicular to dB

But from B B = 1 it follows that B dsB = 0 (Problem 9), so that dB is perpendicular to B and
is thus in the plane of T and N.

Since dB is in the plane of T and N and is perpendicular to T, it must be parallel to N; then dB =
--TN . We call B the binormal, 'r the torsion, and o- = 1/T the radius of torsion.

(c) Since T, N, B form a right-handed system, so do N, B and T, i.e. N = Bx T.

Then dN
= BxdT + dBXT = BXKN -- TNXT = -KT + TB = TB -- KT.

19. Sketch the space curve x = 3 cost, y = 3 sin t, z = 4t and find
(a) the unit tangent T, (b) the principal normal N, curvature K
and radius of curvature p, (c) the binormal B, torsion r and
radius of torsion cr .

The space curve is a circular helix (see adjacent figure). Since
t = z/4, the curve has equations x = 3 cos (z/4), y = 3 sin (z/4) and
therefore lies on the cylinder x2 + y2 = 9.

(a) The position vector for any point on the curve is

Y
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- 3 sin t i + 3 cost j + 4k

r = 3 cost i + 3 sin t j + 4t k

Then

(b) T-

VECTOR DIFFERENTIATION

dr dr = (._3 sint)2 + (3 cost)2 + 42 = 5
at ' dt

Is
I

dr
IIt It= =

dr _

It

Thus T
_ dr _ dr/dt

ds ds/dt
-

5
sin t i + 5 cos t j +

5
k.

d
t (- 5sinti +

5
cos t j + 5 k)

IT dT /dt 3 Cost i -- 3 sin t j
Is - ds/dt 25 25

c o s t -
5

sin t j

Since T = /<N, I aT I = 1)<1 INI = K as K?0.

Then K = IT I 25 cos t)2 + (- 25 sin t )2 = 25 and p = 1 = 35

From dT = KN, we obtain N =
K

IT = - cost i - sin t j

i j k

(c) B = T xN = 5 sin t
5

3 4cost
5

- Cost - sin t 0

cos t i +

5

sin t j,
d B

- 4

5 sin t i -
5

cost j+
5

k

dB _ dB/dt _ 4 cost i + 4 sinsIs ds/dt 25 25

-TN = -T(-cost i - sint j) _
25

cost i + 25 sin t j or T = 25 and o- = T = 25

20. Prove that the radius of curvature of the curve with parametric equations x = x(s), y = y(s), z = z(s)

is given by p = [(d22)2 + (d22Y )2 +
(d22)21-1/2

ds ds ds

The position vector of any point on the curve is r = x(s) i + y(s) j + z(s)k.

Then T = dr = dx i + dy j + dz k and IT
= d2x i + d2y +

d2 z
k

Is Is Is Is Is ds2 ds2 ds2

But
IT = KN so that K =

I

IT
s

2 3

21. Show that Ys - as2 x as3
7-

P
2

2 2 2

)2
ds2 + (ds2

)2
+ (ds2

and the result follows since p=K

r
N

r
ds - T ' ds 2 =

IT
= K N , ds3 - K dsv + ds

N = K (TB - KT) + ds
N = KTB - K2T + Is

2 3
dr d r x d r = T KN x (KTB -K2T + dK N)
ds' s2 ds3 ds

= K3NxT + Kds NxN) = T.(K2TT+K3B) = K2T T

P2
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The result can be written

T = [(x,t)2 + (y r, ) 2 + (z,r)21-.1
Y z

x
II

y
it

z
rr

/!, Iff fill
I x y z

where primes denote derivatives with respect to s, by using the result of Problem 20.

22. Given the space curve x = t, y = t2, z = 3 t3, find (a) the curvature K, (b) the torsion !r .

(a) The position vector is r = t j + t2j +
3

t3 k

Then

and

do = i + 2tj + 2t2k

ds _ dr
=

dr d_r 2 2 2 2 2

dt dt I dt - dt
(1) + (2t) + (2t ) = 1 + 2t

T = dr = dr/dt = i + 2t j + 2t2 k
ds ds/dt 1 + 2t2

47

dT (1 t 2t2) (2j + 4t k) - (i + 2t j + 2t2 k)(4t) -4t i + (2 - 4t2 )j + 4tk
dt (1 + 2t2)2 (1 + 2t2 )2

Then dT = dT/dt 4t i + (2 - 4t2) j + 4t k
ds ds/dt (1 + 2t2)3

Since dT = KN K = I dT I = (-.4t)2 + (2-4t2)2 + (4t)2 = 2

as as ( 1 + 2t2)3 2 2(1+2t)

(b) )F ( = 1 dT = - 2t i + (1 --- 2t2) j + 2t kN,arom _

K ds 1 + 2t2

i j k

1 2t 2t 2 2t2i- 2tj + kThen B = T x N = 1+2t2 1+2t2 1+ 2t2 1 + 2t2

-2t i - 2t2 2t

11+2t2 1 + 2t2

Now dB = 4t i + (4t2 - 2)j - 4t k
dt (1 + 2t2)2

and
dB

ds

Also, -'TN = --r [ - 2t i + (1 - 2t2) j + 2t k
1 + 2t2

Note that K = T for this curve.

1+2t2

dB/dt 4t i + (4t2 - 2)j - 4t k
ds/dt (1 + 212)3

Since
d = -TN , we find '

2
r = (1 +2t2

23. Find equations in vector and rectangular form for the (a) tangent, (b) principal normal, and (c)
binormal to the curve of Problem 22 at the point where t = 1.

Let To, No and B0 denote the tangent, principal normal and binormal vectors at the required point.
Then from Problem 22,

i +2j +2k -2i-j +2k 2i-2i +kTo = 3 , No = 3 , Bo = 3

l



48 VECTOR DIFFERENTIATION

If A denotes a given vector while ro and r denote respectively the position vectors of the initial point
and an arbitrary point of A, then r-r0 is parallel to A and so the equation of A is (r-r0) x A = 0.

Equation of tangent is (r -ro) x To = 0
Then : Equation of principal normal is (r --ro) x No = 0

Equation of binormal is (r-ro) x Bo = 0

In rectangular form, with r = x i + y j + z k , ro = i + j + 3 k these become respectively

x-1 y-1 z-2/3 x-1 _ y-1 z-2/3 x-1 - y-1 z-2/3
1 2 2 -2 -1 2 2 -2 1

These equations can also be written in parametric form (see Problem 28, Chapter 1).

24. Find equations in vector and rectangular form for the (a) osculating plane, (b) normal plane, and
(c) rectifying plane to the curve of Problems 22 and 23 at the point where t = 1 .

(a) The osculating plane is the plane which contains the tangent and principal normal. If r is the position
vector of any point in this plane and ro is the position vector of the point t =1, then r-ro is perpendic-
ular to Bo, the binormal at the point t=1, i.e. (r-ro) Bo = 0.

(b) The normal plane is the plane which is perpendicular to the tangent vector at the given point. Then
the required equation is (r-ro) To = 0.

(c) The rectifying plane is the plane which is perpendicu-
lar to the principal normal at the given point. The
required equation is (r-ro) No = 0.

In rectangular form the equations of (a), (b) and (c)
become respectively,

2(x - 1) -- 2(y -1) + 1(z-2/3) = 0,

1(x-1)+ 2(y-1)+ 2(z--2/3) = 0,
- 2(x - 1) - 1(y - 1) + 2(z-2/3) = 0.

The adjoining figure shows the osculating, normal
and rectifying planes to a curve C at the point P.

25. (a) Show that the equation r = r(u, v) represents a surface.
represents a vector normal to the surface.(b) Show that au

x TV
(c) Determine a unit normal to the following surface, where a > 0:

r = a cos u sin v i + a sin u sin v j + a cos v k

(a) If we consider u to have a fixed value,
say uo, then r = r (uo, v) represents a
curve which can be denoted by u = uo .
Similarly u = u1 defines another curve
r = r (u1, v) . As u varies, therefore, r =
r (u, v) represents a curve which moves in
space and generates a surface S. Then
r = r(u,v) represents the surface S thus
generated, as shown in the adjoining fig-
ure.

The curves u = uo, u = u 1, ... represent definite curves on the surface. Similarly v = vo , v = v1 ,
represent curves on the surface.

By assigning definite values to u and v, we obtain a point on the surface. Thus curves u = uo and
v = vo, for example, intersect and define the point (uo, vo) on the surface. We speak of the pair of num-
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bers (u,v) as defining the curvilinear coordinates on the surface. If all the curves u = constant and
v = constant are perpendicular at each point of intersection, we call the curvilinear coordinate system
orthogonal. For further discussion of curvilinear coordinates see Chapter 7.

(b) Consider point P having coordinates (uo, vo )
on a surface S, as shown in the adjacent dia-
gram. The vector ar/ au at P is obtained by
differentiating r with respect to u, keeping
v = constant = vo. From the theory of space
curves, it follows that ar/ au at P repre-
sents a vector tangent to the curve v = vo at
P, as shown in the adjoining figure. Similar-
ly, ar/ av at P represents a vector tangent
to the curve u = constant = uo. Since ar/ au
and ar/ av represent vectors at P tangent
to curves which lie on the surface S at P, it
follows that these vectors are tangent to the

surface at P. Hence it follows that a r a r
au

x
av

is a vector normal to S at P.

(c ) ar = -a sinu sinv i + a cosu sinv j
au
ar = a cosu cosv i + a sinu cosv j - a sinv kav

Then
ar

x
ar _

au av

i j k

-a sin u sinv a cosu sinv 0

a cosu cos v a sin u Cos v -a sin v

-a2 Cos u sine v i - a2 sin u sin2 v j - a2 sinv cosv k

represents a vector normal to the surface at any point (u, v).

A unit normal is obtained by dividing
au x av by its magnitude, au x av I , given by

a4 Cos2 u Sin4 v + a4 sin2 u sin4 v + a4 sin2v COS2 v

= Va4 (cos2u + sin2u) sin4v + a4 sin2v COS2v

a4 sin2v (sin2v + cost v) a2 sinv if sinv > 0
-a2 sinv if sinv < 0

Then there are two unit normals given by

± (cosu sinv i + sin u sinv j + cos v k) n

It should be noted that the given surface is defined by x = a cosu sinv, y = a sin u sinv, z = a cos v
from which it is seen that x2+ y2 + z2 = 2 , which is a sphere of radius a. Since r = a n, it follows that

n = cosu sinv i + sin u sinv j + cosv k

is the outward drawn unit normal to the sphere at the point (u,v).

26. Find an equation for the tangent plane to the surface z = x2 + y2 at the point (1, -1, 2).

Let x = u, y = v, z = u2+V2 be parametric equations of the surface. The position vector to any point
on the surface is

r = u i + vi + (u2+v2 ) k
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Then au = i + 2u k = i + 2k, av = i + 2v k = j - 2k at the point (1,-1,2), where u=1 and v=-1.

By Problem 25, a normal n to the surface at this point is
'a r -6 r

n au
x

av =
(i + 2k) x (j 2k) 2i + 2i + k

The position vector to point (1,-1,2) is Ro = i -j + 2k.
The position vector to any point on the plane is

R = xi+yj+zk
Then from the adjoining figure, R-Ro is perpendicular to
n and the required equation of the plane is (R - Ro) n = 0
or [(xi +yj +zk)-(i-j + 2k)] [-2i + 2j +k] = 0

i.e. ---2(x-1) + 2(y+l) + (z-2) = 0 or 2x-2y -z = 2.

MECHANICS

Y

27. Show that the acceleration a of a particle which travels along a space curve with velocity v is
given by

a = dV T + v2N

where T is the unit tangent vector to the space curve, N is its unit principal normal, and p is the
radius of curvature.

Velocity v = magnitude of v multiplied by unit tangent vector T
or v = vT

Differentiating,

But by Problem 18(a),

Then v() _
do

T +
P2N

This shows that the component of the acceleration is dv/dt in a direction tangent to the path and v2/p in
a direction of the principal normal to the path. The latter acceleration is often called the centripetal accel-
eration. For a special case of this problem see Problem 12.

28. If r is the position vector of a particle of mass m relative to point 0 and F is the external force
on the particle, then r x F = M is the torque or moment of F about 0. Show that M = dH/dt , where
H = r x my and v is the velocity of the particle.

M = rxF r x dt (mv) by Newton's law.

But dt (r x mv) = r x dt (mv) +
dr

x my

a =
dv d (vT) =

dv T + v dT
dt dt dt dt

dT dT ds
ds = KvN =

vNKN
dt = ds dt = dt p

r x dt (mv) + v x my = r x dt (mv) + 0

i.e. M = dt (r x mv) = dfl

Note that the result holds whether in is constant or not. H is called the angular momentum. The result
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states that the torque is equal to the time rate of change of angular momentum.

This result is easily extended to a system of n particles having respective masses m1, m2 , .... Mn
n

and position vectors r1, r2, ... , rn with external forces F1, F2, ... , Fn. For this case, H = I mk rk x vk
n dH k=1

as before.is the total angular momentum, M =k lrkx Fk is the total torque, and the result is M = at

29. An observer stationed at a point which is fixed rel-
ative to an xyz coordinate system with origin 0, as
shown in the adjoining diagram, observes a vector
A = A1i + A2j + A3k and calculates its time de-

rivative to be LA1 i + dt 2 j + dt 3 k . Later, he
t

finds out that he and his coordinate system are ac-
tually rotating with respect to an XYZ coordinate
system taken as fixed in space and having origin
also at 0. He asks, `What would be the time de-
rivative of A for an observer who is fixed relative
to the XYZ coordinate system ?'

A

lin

denote respectively the time derivatives of A with respect to the fixed(a) If dA If and d
and moving systems, show that there exists a vector quantity co such that

dA dA + rv x Adt
(b) Let D f and DR be symbolic time derivative operators in the fixed and moving systems re-

spectively. Demonstrate the operator equivalence
Df = DR + Cox

(a) To the fixed observer the unit vectors i, j, k actually change with time. Hence such an observer would
compute the time derivative of A as

dA dA1
(1)

1
+

=

dA2 j +
dA3 di

k + Al
+

dj
A2 +

dk
As i.e.at at d dt

dt dt dt

(2) dtA I -
-

A I + Al di + Ad+ Adk3dt f dt dt 2
dt dt

Since i is a unit vector, di/dt is perpendicular to i (see Problem 9) and must therefore lie in the
plane of j and k. Then

(3)
di - j +aa k

Similarly, (4)

dt

dj

1 2

a k + a i

(5)

dt

dk

s 4

i + a ja
dt

6
5

From i. j = 0, differentiation yields i I.
di

+
di . i=0. But i. d = a4 from (4), and

dt dt dt
from (3); then a4=-- a1.

di

dt
j=a1

Similarly from i k = 0, i. dt + dt k = 0 and a5= - a2 ; from j k = 0, j dk + di k = 0 and

as=-a3

Then dt = a1 j +a2k , dJ: = a3 k - a1 i , dk = - a2 i - as j andd d at
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Al dt + A2dt +
Aid- _ (-a1A2 - a2A3)i + (a1A1 - a3A3)j + (a2A1 + asA2)k

which can be written as

as

i j k

-a2 a1

I Al A2 As {

Then if we choose as = cv1, -a2 = cv2, a1 = cos the determinant becomes

i j k

60 1. CD -2 603 = w x A

Al A2 As

where w = w1i + cv2j + cv2k. The quantity co is the angular velocity vector of the moving system
with respect to the fixed system.

(b) By definition Elf A dA (( = derivative in fixed system
dt I f

D A =A I = derivative in moving system.
in dt

Ix

From (a), DfA = DmA + wxA = (D., +cvx)A

and shows the equivalence of the operators Df = Din + co x .

30. Determine the (a) velocity and (b) acceleration of a moving particle as seen by the two observ-
ers in Problem 29.

(a) Let vector A in Problem 29 be the position vector r of the particle. Using the operator notation of
Problem 29(b), we have

(1) Df r = (Dn + wx)r = D.r + wx r

But Df r = vplf

Dnr = vp,n

velocity of particle relative to fixed system

velocity of particle relative to moving system

wxr = vaf f = velocity of moving system relative to fixed system.

Then (1) can be written as

(2) vpif = Vpls + w x r

or in the suggestive notation

(3)
v v +PIf pln mif

Note that the roles of fixed and moving observers can, of course, be interchanged. Thus the fixed
observer can think of himself as really moving with respect to the other. For this case we must inter-
change subscripts m and f and also change w to - w since the relative rotation is reversed. If this is
done, (2) becomes

v v- w x r or v V + w x r
01 01f Pi fl2 In

so that the result is valid for each observer.
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(b) The acceleration of the particle as determined by the fixed observer at 0 is Dfr = D f(D fr). Take D f
of both sides of (1), using the operator equivalence established in Problem 29(b). Then

Dfr

D.2 r

= D2 r + Dm(wxr) + w x D,nr + wx (wxr)

Dt(Dmr +co xr)

(DIM + wx)(Dmr + wxr)

Dx(Dmr + cvxr) + co x(D,nr + wxr)

acceleration of particle relative to fixed system

acceleration of particle relative to moving system.

2w x D.r + (D,nw) x r + wx(wxr)
acceleration of moving system relative to fixed system

SUPPLEMENTARY PROBLEMS

31. If R = e -ti + In(t2+ 1) j - tan t k, find (a) dR , (b) d2R , (c) I dR (d) I d2R I at t=o.dt dt dt dt2
Ans. (a) -i - k, (b) i + 2j, (c) V, (d) v5

32. Find the velocity and acceleration of a particle which moves along the curve x = 2 sin 3t , y = 2 cos 3t,
z = 8t at any time t > 0. Find the magnitude of the velocity and acceleration.
Ans. v = 6 cos 3t i - 6 sin 3t j + 8k, a=-18sin3ti-18cos3tj, Iv10, Ial=18

33. Find a unit tangent vector to any point on the curve x = a cos cv t , y = a sin w t , z = bt where a, b, co are
-acv sin cot i + aw cos Cvt j + bkconstants. Ans.

Y a2 co + b2

34. If A = t2i - tj + (2t+1)k and B = (2t-3)i + tk, find
(a) (A - B), (b) d (A x B), (c) A+B I, (d) (AxdB) at t=1. Ans. (a) -6, (b) 7j+3k, (c)1,

d d d

or

D f(Dfr)

Dfr D2 r + 2w x D. r + (D,n w) x r + w x (wxr)

Let apl f =

api,n=
Then a,nl f =

and we can write apt f = a,,, + a12 If .

For many cases of importance w is a constant vector, i.e. the rotation proceeds with constant an-
gular velocity. Then D,n w = 0 and

a,nl f = 26) x D.r + cvx(wxr) = 2w x v. + wx(wxr)

The quantity 2w x v,n is called the Coriolis acceleration and w x (w x r) is called the centripetal accel-
eration.

Newton's laws are strictly valid only in inertial systems, i.e. systems which are either fixed or
which move with constant velocity relative to a fixed system. The earth is not exactly an inertial sys-
tem and this accounts for the presence of the so called `fictitious' extra forces (Coriolis, etc.) which
must be considered. If the mass of a particle is a constant M, then Newton's second law becomes

(4) MD,2nr = F - 2M(wxD,nr) - M[wx(wxr)]

where Dm denotes d/dt as computed by an observer on the earth, and F is the resultant of all real
forces as measured by this observer. The last two terms on the right of (4) are negligible in most
cases and are not used in practice.

The theory of relativity due to Einstein has modified quite radically the concepts of absolute mo-
tion which are implied by Newtonian concepts and has led to revision of Newton's laws.

at at tt t (d)i+6j+2k
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+ 3 j - k ,
Ans. 7i+6j-6k

2 2

36. Find ds (A . dB - dA B) if A and B are differentiable functions of s. Ans. A . dsB - dsA - B

2

37. If A(t) = 3t2 i - (t +4) j + (t2 - 2t) k and B(t) = sin t i + 3e tj - 3 cost k, find dt2 (A xB) at t = 0.
Ans. -30i + 14j + 20k

.38. If dtA = 6t i - 24t2 j + 4 sin t k, find A given that A= 2i + j and dA = - i - 3k at t =0
Ans. A = (t3-t+2)i + (1-2t4)j + (t-4sint)k

39. Show that r = e-t(C1 cos 2t + C2 sin 2t), where C1 and C. are constant vectors, is a solution of the dif-
2

ferential equation dt2 + 2 da + 5r = 0.

2

40. Show that the general solution of the differential equation d + 2a d + cv2r = 0 , where a and co are con-
stants, is
(a) r = e-at (C

1
a

a2-``'2 t + C
2

e- a2-r`'2 t) if a2 - cot > 0
(b) r = e-a.t(C1 sin w2 - a2 t + C2 Cos 1/w2 - a2 t) if a2- w2 < 0 .
(c) r = e-at(C1 + C2t) if a2 - w2 = 0,

where C1 and C2 are arbitrary constant vectors.

2
d241. Solve (a) 2 - 4 - - 5r = 0, (b) 2 2 + 4r = 0 .

dtr dt dtr + 2 da + r = 0, (c) dtr
Ans. (a) r = Cie5t + C2e-t, (b) r = e-t(Ci + C2t), (c) r = C1 cos 2t + C2 sin 2t

42. Solve dY=X, dX=-Y. Ans. X = Ci cos t + C2 sin t , Y = C1 sin t - C2 cos t

2 aA aA a2A 'a a 2A a2A a2A
43. If A = cos xy i + (3xy - 2x) j - (3x + 2y) k , find ax ' ay ' axe ' VP ax ay ' ay ax

Ans. a`9' _ --y sinxy i + (3y-4x)j - 3k, - _ -x sinxy i + 3xj - 2k,
x2

2 2 2
a A = - y 2 cosxy i - 4j , ay

A = -x2 cosxy I , 2 ay ay ax = -(xy cosxy + sinxy)i + 3j

2

44. If A = x2yz i - 2xz3 j + xz2 k and B = 2z i + y j - x2 k , find ayax (A x B) at (1,0,-2).
Ans. -4i-8j

45. if C1 and C2 are constant vectors and X is a constant scalar, show that H = sin by +C2 cos Xy)
2 2

satisfies the partial differential equation axB + ay = 0.

ic)(t - -r/c)
46. Prove that A = p0 e

r , where po is a constant vector, w and c are constant scalars and i = V 1,
2 2

Asatisfies the equation aA + 2
aA = c2 at2 . This result is of importance in electromagnetic theory.

DIFFERENTIAL GEOMETRY

47. Find (a) the unit tangent T, (b) the curvature K, (c) the principal normal N, (d) the binormal B, and (e) the
torsion T for the space curve x = t - t3/3, y =t2, z = t +t/3 .

(1 - t2) i + 2t j + (1 + t2) k 2t 1 - t2
Ans. (a) T = (c) N i + jV(1 + t2) 1 +t2 1 +t2 1

(b) K =
1 (t2 - 1) i - 2t J + (t2 + 1) k(d) B

V'2- (1 +12)

(e) T = (1 + t2)2
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48. A space curve is defined in terms of the arc length parameter s by the equations
x=arc tans, y=2Vi ln(s2+1), z=s - arc tans

Find (a) T , (b) N , (c) B , (d) K, (e) T, (f) p , (g) cr .

Ans. a T
i + y"2 s j + s 2 k

(d) K
Y"2-

S2( ) + 1 s2+

(b) N = -V s i + (1 - s2)j + /s k (e) r -_ y'
(g) s2 + 1

s2+1 s2+

(c) B = s
2 i - _sj + k (f) p= s2+1

s2 + 1 Vr2

49. Find K and T for the space curve x = t, y = t , z = t3 called the twisted cubic.

Ans. K 2"9 + 9t + 1 T
(9t4+ 4t2 + 1)3/2

3

9t4 + 9t2 + 1
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50. Show that for a plane curve the torsion T=O.

51. Show that the radius of curvature of a plane curve with equations y = f (x) , z = 0, i.e. a curve in the xy

plane is given by p = 1 + (yr)2]3l2
I Y11

52. Find the curvature and radius of curvature of the curve with position vector r = a cos u i + b sin u j , where
a and b are positive constants. Interpret the case where a = b .

Ans. K = ab = 1
if a = b , the given curve which is an ellipse, becomes a cir-

(a 2 sin2 u + b2 cos2 u) 3/2 P
cle of radius a and its radius of curvature p = a .

53. Show that the Frenet-Serret formulas can be written in the form dT = CxT, dN = w x N , dB = rv xB and
determine a). Ans. = T T + KB

54. Prove that the curvature of the space curve r = r (t) is given numerically by K = r x r3i , where dots de-
note differentiation with respect to t. I r

55. r.rxr(a) Prove that r = for the space curve r = r (t) .
Iixr, l2

dr d2r d3r
d(b) If the parameter t is the arc length s show that T = s ' Ws-2 x

(d2 rids )

2

2

56. If Q=rxr, show that K Q3 , T = Q+2 '
r1 Q

57. Find K and T for the space curve x = 8 - sin 8, y = 1 - cos 8, z = 4 sin (6/2).

1 (3 +cos 8) cos 8/2 + 2 sin 8 sin 8/2Ans. K = 8 6 - 2 cos 8 , = 12 cos 8 - 4
2

58. Find the torsion of the curve x =
tt + 1 t t 1 ,

z = t + 2. Explain your answer.

Ans. T = U. The curve lies on the plane x - 3y + 3z = 5.

59. Show that the equations of the tangent line, principal normal and binormal to the space curve r = r (t) at the
point t = to can be written respectively r = ro + t To , r = ro + t No, r = ro + t Bo, where t is a parameter.

60. Find equations for the (a) tangent, (b) principal normal and (c) binormal to the curve x = 3 cost, y = 3 sint,
z = 4t at the point where t = R.

Ans. (a) Tangent: r = -3i + 47tk + t(- 5 j + 5 k) or x = -3, y 5 t, z = 47L+
5

t.
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(b) Normal: r = -3i + 41t j +I i or x = -3 + t, y = 4Tt, z = 0.

(c) Binormal: r = - 3i + 47L j + t (4 j +

5

k) or x = -3, y = 41t +
5

t, z =

5

t .

61. Find equations for the (a) osculating plane, (b) normal plane and (c) rectifying plane to the curve x = 3t - t3
Y = 3t2 , z = 3t + t3 at the point where t =1. Ans. (a) y - z + 1 = 0, (b) y + z -- 7 = 0, (c) x = 2

62. (a) Show that the differential of arc length on the surface r = r (u, v) is given by

ds2 = E due + 2F du dv + G dv2

where E
ar ar _ ar 2 ar , '3r ar = ar 2
Cu Cu (au) F

Cu TV ' G '6V av (av)

(b) Prove that a necessary and sufficient condition that the u, v curvilinear coordinate system be orthogonal
is F=O.

63. Find an equation for the tangent plane to the surface z =xy at the point (2,3,6). Ans. 3x + 2y - z = 6

64. Find equations for the tangent plane and normal line to the surface 4z =x 2- y2 at the point (3,1,2).
Ans. 3x-y-2z=4; x=3t+3, y=1-t, z=2-2t

ar x ar

65. Prove that a unit normal to the surface r = r (u, v) is n a
, where E, F, and G are defined as

in Problem 62. G

MECHANICS

66. A particle moves along the curve r = (t3 - 4t) i + (t2 + 4t) J + (8t2 - 3t3) k , where t is the time. Find the
magnitudes of the tangential and normal components of its acceleration when t = 2.
Ans. Tangential, 16 ; normal, 2V'73

67. If a particle has velocity v and acceleration a along a space curve, prove that the radius of curvature of its

path is given numerically by p = v3

IvxaI

68. An object is attracted to a fixed point 0 with a force F = f (r) r , called a central force, where r is the posi-
tion vector of the object relative to 0. Show that r x v = h where h is a constant vector. Prove that the
angular momentum is constant.

69. Prove that the acceleration vector of a particle moving along a space curve always lies in the osculating
plane.

70. (a) Find the acceleration of a particle moving in the xy plane in terms of polar coordinates (p, cb) .

(b) What are the components of the acceleration parallel and perpendicular to p ?

Ans. (a) r = [(P- p%2) cos - (p + sin qS ] i

+ sin 0 + (pc + cos j

(b) p*+2p



THE VECTOR DIFFERENTIAL OPERATOR DEL, written V, is defined by

zi + j + azk = i x +'a + kazr r
This vector operator possesses properties analogous to those of ordinary vectors. It is useful in de-
fining three quantities which arise in practical applications and are known as the gradient, the diver-
gence and the curl. The operator V is also known as nabla.

THE GRADIENT. Let 4) (x, y, z) be defined and differentiable at each point (x, y, z) in a certain re-
gion of space (i.e. 0 defines a differentiable scalar field). Then the gradient of 4) ,

written V4) or grad 0, is defined by

(axl + y j + a k) = a i+ j+ kax r
Note that V4) defines a vector field.

The component of V4) in the direction of a nit vector a s given by Vc.a and is called the di-
rectional derivative of 4) in the direction a. Physically, this is the rate of change of 0 at (x, y, z) in

uection a.

THE DIVERGENCE. Let V(x, y, z) = V1 i + 2 j + V k be defined and differentiable at each point
(x,y,z) in a certain region of space (i.e. V defines a differentiable vector field).

Then the divergence of V, written V. V or div V, is defined by

(axi + ayj +

a a a V3

ax ay + az

Note the analogy with A - B = Al B1 + A2B2 + A3B3 . Also note that V V V - V .

THE CURL. If V(z, y, z) is a differentiable vector field then the curl or rotation of V, written V x V,
curl V or rot V, is defined by

Vx V = (3- i + ayj + azk)x(Vli + V2j + V3 k)

57
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i

V1 V3

j + k

v3 av2 v1 ay3 + !2 aV1
k_ (aY - az )i + (az - ax )3 (ax - ay )

must precedeNote that in the expansion of the determinant the operators ax , ay , _6Z
V1, V21 V3 .

FORMULAS INVOLVING V. If A and B are differentiable vector functions, and 0 and Ji are differen-
tiable scalar functions of position (x, y, z), then

1. V(0 + ) = Vb + Vk or grad (0 + ) = grad 0 + grad q

2. V (A +B) = V A + V B or div (A + B) = div A + div B

3. Vx(A+B) = VxA + VxB or curl(A+B) = curl A + curl B

4.

5. Vx(OA) _ (Vq)xA + c(VxA)
6.

7. Vx(AxB) _ (B-V)A - A(V-B)

8. V(A B) _ (B V) A + (A V) B + B x (V x A) + A x (V x B)

9. V. (VO) = V2q5
+ a-- +

ox ay az

Y a2 a2
axe + aye + a z2 is called the Laplacian operator.

10. V x (V4) = 0 . The curl of the gradient of 0 is zero.

11. V (V x A) = 0. The divergence of the curl of A is zero.

12. V x (V x A) = V(V A) - V2 A

In Formulas 9-12, it is supposed that 0 and A have continuous second partial derivatives.

INVARIANCE. Consider two rectangular coordinate systems or frames of reference xyz and x'y'z'(see
figure below) having the same origin 0 but with axes rotated with respect to each

other.

A point P in space has coordinates (x, y, z) or
(x; y; z') relative to these coordinate systems. The
equations of transformation between coordinates
or the coordinate transformations are given by

111x + 112Y + l13 z
121x + 122 Y + 123 z

131x + 132 Y + 133 z

where ljk, j, k = 1, 2,3 , represent direction cosines
of the x', y' and z' axes with respect to the x,y, and x

z
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z axes (see Problem 38). In case the origins of the two coordinate systems are not coincident the
equations of transformation become

(2)

= 111x ±112Y ±1132 +a1
121x + 122Y + 123z + a2
131x + 132Y + 133 z + a3

where origin 0 of the xyz coordinate system is located at (a", a', a3) relative to the x'y'z' coordinate
system.

The transformation equations (1) define a pure rotation, while equations (2) define a rotation plus
translation. Any rigid body motion has the effect of a translation followed by a rotation. The trans-
formation (1) is also called an orthogonal transformation. A general linear transformation is called
an affine transformation.

Physically a scalar point function or scalar field O(x,y,z) evaluated at a particular point should
be independent of the coordinates of the point. Thus the temperature at a point is not dependent on
whether coordinates (x,y,z) or (x;y; z') are used. Then if O(x,y,z) is the temperature at point P with
coordinates (x,y,z) while 0'(x, y, z') is the temperature at the same point P with coordinates (x; y; z'),
we must have 0 (x,y,z) = c'(x, y, z'). If 0 (x,y,z) == Y'(x', y' z'), where x,y,z and x, y' z' are related
by the transformation equations (1) or (2), we call (P(x,y,z) an invariant with respect to the transfor-
mation. For example, x2+y2+z2 is invariant under the transformation of rotation (1), since x2+y2+z2 =

12
x +

y12 +
Z12.

Similarly, a vector point function or vector field A(x,y,z) is called an invariant if A(x,y,z) _
A'(x, y, z'). This will be true if

A1(x,y,z)i + A2(x,y,z)j + A3(x,y,z)k A'(x,y;z')i' + A2(xy',z)j' + A3(x,y,z)k'

In Chap. 7 and 8, more general transformations are considered and the above concepts are extended.

It can be shown (see Problem 41) that the gradient of an invariant scalar field is an invariant
vector field with respect to the transformations (1) or (2). Similarly, the divergence and curl of an in-
variant vector field are invariant under this transformation.

SOLVED PROBLEMS

THE GRADIENT

1. If 0 (x,y,z) = 3x2y - y3z 2
, find Vo (or grad q5) at the point (1, -2, -1).

V
ax i + ay i + az k)(3x2Y -y3z2)

(3x2Y - y3 z2) + k az (3x2 y - y3 z2)( 3 X Y + i
-ay

= 6xyi + (3x2- 3y2z2)j - 2y3zk

6(1)(-2)i + {3(1)2 - 3(-2)2(-1)2 }j

-12i - 9j - 16k
- 2(-2)3 (-1) k
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2. Prove (a) V(F+G) = VF+VG, (b) V(FG) = F VG + G VF where F and G
lar functions of x, y and z.

(a) V(F+G)

(b) V(FG)

= (a i k) (F+G)++ a ] azax Y

i ax (F+G) + j a (F+G) + kaz (F+G)
Y

i s + i 3x +

= iaF + jaF +
ax ay

jaF + jaG + kaF + kaG
ay ay az az

kaz + iac + a + kaz
Y

are sca-

(iax +jay +kaz)F + (ia +;ay +ka )G = VF+VG

(ax i + ay j + az k) (FG)

ax (FG) i + a (FG); + az (FG) k
Y

(FaG +GaF)i + (FaG +G - )j + (Fac +GaF)k
ax ax ay ay az az

F( aG i + aG j + aG k) + G(aF i + 6F j + aF k) = FVG
ax ay az ax ay az

+ GV F

3. Find Vq5 if (a) = In , r {, (b) 4 = r .

(a) r = xi + yj + zk. Then I r I = x2+y2+z2 and c = In `r f = 2 ln(x2+y2+z2).

Vcp = 2Vln(x2+y2+z2)

= 2{ia ln(x2+y2+z2) + ja ln(x2,+y2+z2) + kaz In(x2+y2+z2)}
x y

2x 2y 2z xi + yj + zk r
2 {i x2+y2+z2 + j x2+y2+z2 + k x2+y2+Z2}

= x2+y2+z2 - r2

(b) V = V(T) _ V( 2 12 2) =
V{(x2+y2+z2)-1/}

x +y +z

i a (x2 +y2 +z2)- 1/2 + j a (x2 +y2+z2)- 1/2 + kaz (x2+y2 +z2)- 1/2

Y

1 2 2 2- 3/2 2 2 2- 3/2 I 2 2 2- 3/2
i {- Z(x +y +z) 2x} + j {-2 (x +y +z) 2y} + k {_ 2(x +y +z) 2z}

-xi--yj-zk _ r
(x2+y2+z2)3/2 - r3

4. Show that V rn = nrn-2r .

Vrn = V( x2+Y2+z2) V (x2 + y2 + z2) n/2

= i {(x2+y2+z2)n/2 } + j {(x2+y2+z2)n/2 } + k 1 {(x2+y2+z2)n/2 }
ax ay az
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{2(x2+y2+z2)n/2-1 2x} + j {2(x2+y2+z2)n/2-1 2y} + k

n(x2+y2+z2)n/2-1 (xi + yj + zk)

n (r2)n/2 - i r = nrn- 2 r

{2(x2+y2+z2)n/2-1 2z}

Note that if r = r r1 where r1 is a unit vector in the direction r, then V rn = nrn-1 ri .

5.1 Show that V is a vector perpendicular to the surface O(x,y,z) = c where c is a constant.
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Let r = x i + y j + z k be the position vector to any point P(x, y, z) on the surface. Then d r = dx i +
dy j + dz k lies in the tangent plane to the surface at P.

But d = dx + LOdy + a4dz = 0 or (a-Oi + a0i + dyj + dzk) = 0
ax ay az ax ay az

i.e. 0gb d r = 0 so that V is perpendicular to d r and therefore to the surface.

6. Find a unit normal to the surface x2y + 2xz = 4 at the point (2,-2,3).

V(x2y + 2xz) = (2xy + 2z) i + x2 j + 2x k = -2i + 4j + 4k at the point (2,-2,3).

Then a unit normal to the surface =
-21 +4j +4k 1 2. 2---t + - + -k

V'(-2)2+(4)2+(4)2 3 3 3

Another unit normal is 3 i - 2j - s k having direction opposite to that above.

7. Find an equation for the tangent plane to the surface 2xz2 - 3xy - 4x = 7 at the point (1,-1,2).

V(2xz2-3xy-4x) _ (2z2--3y-4)i - 3xj + 4xzk

Then a normal to the surface at the point (1,-1,2) is 7i - 3j + 8k.

The equation of a plane passing through a point whose position vector is ro and which is perpendicular
to the normal N is (r-ro) N = 0. (See Chap.2, Prob.18.) Then the required equation is

[(xi + yj + z k) - (i - i + 2k)] (7i--3j+ 8k) = 0
or 7(x-1) - 3(y+1) + 8(z-2) = 0.

8. Let qS(x,y,z) and c(x+Ax, y+Ay, z+Az) be the temperatures at two neighboring points P(x,y,z)
and Q(x+Ax, y+Ay, z+Az) of a certain region.

(a) Interpret physically the quantity O =
O (x+Ax, y+Ay,

z

Az) - 95(x,y,z)

distance between points P and Q.
As As

(b) Evaluate Alsmo 0 _ do and interpret physically.
S-

(c) Show that
ds
LO = Vq -

ds

where As is the

(a) Since A is the change in temperature between points P and Q and As is the distance between these

points, QO represents the average rate of change in temperature per unit distance in the direction from

P to Q.
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(b) From the calculus,

Ax + o Ay + ao Az + infinitesimals of order higher than Lax, Ay and Az

Then

or

x y z

a
dsmo As - &4 o ax As ay As + az As

do ao dx a0 dy ao dz
ds ax ds + ay ds + az ds

d
ds represents the rate of change of temperature with respect to distance at point P in a direction

toward Q. This is also called the directional derivative of .

do aq dx o dy ao dz aq . -4 , dx dy dz
(c) ds ax ds +

aay

ds + az ds (ax 1 + ay J + az
Lo

k) (ds i + ds ' + ds k )

ds

Note that since d is a unit vector, Vc
ds

is the component of V4 in the direction of this unit
vector.

9. Show that the greatest rate of change of 0, i.e. the maximum directional derivative, takes place
in the direction of, and has the magnitude of, the vector Vo .

By Problem 8(c), do = Vcb ds is the projection of VV in the direction ds . This projection will be

a maximum when VV and have the same direction. Then the maximum value of do takes place in the

direction of Vo and its magnitude is I Vo I .

10. Find the directional derivative of 0 = x2yz + 4xz2 at (1,-2,--1) in the direction 2i - j - 2k .

0 = V(x2yz + 4xz2) _ (2xyz + 4z27i + x2z j + (x2y + 8xz)k

= 8i - j - 10k at (1,-2,-1).

The unit vector in the direction of 21 - j - 2k is
a 2i -j-2k =

(2)2 + (-1)2 +(-2)2
2, -3 3J - 3k

Then the required directional derivative is

VO-a = (8i-j-
Since this is positive, 0 is increasing in this direction.

16+1+0 _ 37
3 3 3 3

11. (a) In what direction from the point (2,1,-1) is the directional derivative of = x yz3 a maximum?
(b) What is the magnitude of this maximum?

VO = V(x yz3) = 2xyz3 i + x z3 j + 3xxyz2 k

= -41 - 4j + 12k at (2,1,-1).

Then by Problem 9,
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(a) the directional derivative is a maximum in the direction Vcb = -4i -4j + 12k,

(b) the magnitude of this maximum is I VO (-4)2 + (-4)2 + (12)2 = 71 6 = 4v"11.

12. Find the angle between the surfaces x2+y2+z2 = 9 and z =x2+y2-3 at the point (2,-1,2).

The angle between the surfaces at the point is the angle between the normals to the surfaces at the
point.

A normal to x2 +y2 + z2 = 9 at (2,-1,2) is
VO1 = V(x2 +y2+z2) = 2x i + 2y i + 2z k = 4i - 2j + 4k

A normal to z = x2+y2-3 or x2+y2-z = 3 at (2,-1,2) is
Vq52 = V(x2+y2-z) = 2x i + 2y j - k = 4i - 2j - k

(VV1) (Vq52) = I V¢I1 I I V021 cos 0, where 8 is the required angle. Then

I4i-2i+4kI I4i-2i-kI cos8
16 + 4 - 4 = (4)2+(-2)2+(4)2 (4)2+(-2)2+(-1)2 cos 8

and cos B = 16 = 8 63 = 0.5819; thus the acute angle is 8 = arc cos 0.5819 = 54°25'.
6 21

13. Let R be the distance from a fixed point A(a,b,c) to any point P(x,y,z). Show that VR is a unit
vector in the direction AP = R.

If rA and rp are the position vectors a i + b j + c k and x i + y j + z k of A and P respectively, then
R = rp -rA = (x-a)i + (y-b)j + (z-c)k, so that R = (x-a)2+(y-b)2+(z-c)2 . Then

VR = V( (x-a)2 + (y-b)2 + (z-c)2) _ (x-a)i + (y-b)j + (z-c)k
= R

(x-a)2 + (y--b)2 + (z-c)2 R

is a unit vector in the direction R.

14. Let P be any point on an ellipse whose foci are at points A and B, as shown in the figure below.
Prove that lines AP and BP make equal angles with the tangent to the ellipse at P.

Let R1= AP and R2= BP denote vectors drawn re-
spectively from foci A and B to point P on the ellipse, and
let T be a unit tangent to the ellipse at P.

Since an ellipse is the locus of all points P the sum
of whose distances from two fixed points A and B is a
constant p, it is seen that the equation of the ellipse is
R1+R2=p.

By Problem 5, V(R1+R2) is a normal to the ellipse;
hence [V(R1+R2)] T = 0 or (VR2) T = -(VR1) . T .

Since VR 1 and VR2 are unit vectors in direction R-1
and R2 respectively (Problem 13), the cosine of the angle
between VR2 and T is equal to the cosine of the angle be-
tween VR1 and -T; hence the angles themselves are equal.

The problem has a physical interpretation. Light rays (or sound waves) originating at focus A, for
example, will be reflected from the ellipse to focus B.
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THE DIVERGENCE

15. If A = x2z i - 2y3z2 j + xy2z k , find V A (or div A) at the point (1,-1,1).

(axi + ayj + -z1 a
k) (x2zi - 2y3z2] + xy2zk)

ax (x2z) + a (- 2y3z2) + az (xy2z )
Y

2xz - 6y2z2 + xy2 = 2(1)(1) - 6(-1)2(1)2 + (1)(--1)2 =

a2(? a20 a2

16. Given = 2x3 y2 z4 . (a) Find V Vq (or div grad 4)).
2a2

(b) Show that V20, where V2 a2= ax2 +
a

2
+

aaz2

denotes the Laplacian operator
Y

(a) Vc = i

a
(2x3y2z4) + j

a
(2z3y2z4) + k

a
(2x3y2z4)

Ox ay Oz

6x2 y2 z4 i + 4x3yz4 j + 8x3y2z3 k

Then (al + -a -j + ak) ' (6x2 2
z

4 i + 4x3 4. + 823 2z3

,ax -ay
azyyz1yk)

ax (6x2y2z4) + (4x3yz4) + -a (8x2y2z3)
Y

12xy2z4 + 4x324 + 242y2z2

(b) (axi + a j + az k). (LO + aj + -k)
Y Y

Y Y

2 2 2

= ( ax2 + ay2 + az2) V 2q

17. Prove that V2(T) = 0.

V2(1)

-3 at (1,-1,1).

0
ax2 ay2 az2

-9
+a2 +a2

1
ax2 ay2 az2)( x2+y2+Z2)

= a (x2+y2+z2)^1/2 = -x(x2+y2+z2)-3/2

ax [-x (x2+y2+z2)-3/2]

3x2 (x2 + y2 + Z2) 5/2 - (x2 +y2 + 22) `3/2 =
2x 2_ y2 - z2

(x2+y2+ z2)5/2

Similarly,
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1 2y2 - z2 - x2a2
/ay2 (Vx2+y2+z2)

Then by addition,

(x2+y2+z2)5/2
and a-2 1

2z2 - x2 - y2

az2 ( x2+y2+z2) (x2+y2+z2)5/2

2 2 2+a 1

(a
V +

az2)( ) = 0.
VX2

The equation
020

= 0 is called Laplace's equation. It follows that 0 = 11r is a solution of this
equation.

18. Prove: (a) V (A + B) = V A + V B
(b) V (OA) = (VO)-A + 0(V' A)

(a) Let A = Ali + A2j + Ask, B = Bli + B2j + B3k.

Then V.(A+B) = (aa-i + j + ak) [(A1+B1)i + (A2+B2)j + (A3+B3)k]
x Y

= x (A1+ B1) + a
Y

a
(A2+ B2) + az (A3+ B3)

aA1

+

aA2

+

aA3

+

-6B, aB2 aB3=axayaz ax+ay+az
= (a i j + A k)i + Ak) . (A+ + a 321

zax Y

+ (ax i + a ] + az k) .
(B11 + B2j + B3k)

Y

(b)

=V.A+V.B

V. V. (OA 1i + OA2j + cA3k)

ax ((PA1) + ay az
(OA3)

=aA1+0: +a0A2+
Ox Ox

a
Al + aO A2 +aA3 +

Y

aA3

az

_ (ai + aj + aok) (A1i + A2j + A3k) + 0( ax 1
+ a j + a z k) . (A11Y y

_ (V ).A + (V- A)

19. Prove V ( 3) = 0 .
r

Let = r-3 and A= r in the result of Problem 18(b).

Then V (r-3 r) = (V r-3) . r + (r s )V. r

= -3r-5 r r + 3r -S = 0, using Problem 4.

+ A2j + Ask)
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20. Prove V- (U VV - V VU) = U V2V - V V2U.

From Problem 18(b), with <t = U and A = VV,
V.

(U VV) _
(VU).

(VV) + U

V (V (VV) U

V V V V

(VV) (VU)
+ V V2U

= UV2V - VV2U

21. A fluid moves so that its velocity at any point is v(x,y,z). Show that the loss of fluid per unit
volume per unit time in a small parallelepiped having center at P(x,y,z) and edges parallel to the
coordinate axes and having magnitude Ax, Ay, Az respectively, is given approximately by div v =
V- V .

z

Referring to the figure above,

x component of velocity v at P = V1

x component of v at center of face AFED = vi - i ax1 Ax approx.

x component of v at center of face GHCB = vi +
2

az Qx approx.

Then (1) volume of fluid crossing AFED per unit time

(2) volume of fluid crossing GHCB per unit time

Loss in volume per unit time in x direction

(v 1 - 2 ax
Ax) Ay Az

(v1 +
I

avi Ax) Ay Az .
2 x

(2) - (1) = ax
AxAyAz.

av
Similarly, loss in volume per unit time in y direction = 2 Ax Ay Az

y

loss in volume per unit time in z direction
av3

Ax 0y Az.
az

Then, total loss in volume per unit volume per unit time
av1 + av2 + av3

( ax ay az ) Ox Dy Az
= div v = v

Ax Ay Az
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This is true exactly only in the limit as the parallelepiped shrinks to P, i.e. as Lx, L\y and Az approach
zero. If there is no loss of fluid anywhere, then V v = 0. This is called the continuity equation for an in-
compressible fluid. Since fluid is neither created nor destroyed at any point, it is said to nave no sources
or sinks. A vector such as v whose divergence is zero is sometimes called solenoidal.

22. Determine the constant a so that the vector V = (x +3y) i + (y- 2z) j + (x +az) k is solenoidal.

A vector V is solenoidal if its divergence is zero (Problem 21).

'V. V =

a
(x + 3Y) + a (y - 2z) +

az

(x + az) = 1 + 1 + a
Y

Then when a=-2.

THE CURL

23. If A = xz' i - 2x2yz i + 2yz4 k , find V x A (or curl A) at the point (1,-1,1).

vxA = (a i + a j + a k)x(xz'i - 2x2yz] + 2yz4k)
ax ay az

i j k

a a a
ax ay az

xz3 -2x2yz 2yz4

= [
ay

(2yz4)
az

(-2x2yz)] i + [ a (xz3) - a (2y Z4)] j + [ aX (-2x2yz) - aY (xz3)] k

= (2z4 + 2x2y)i + 3xz2 j - 4xyz k = 3j + 4k at (1,-1,1).

24. If A = x2y i - 2xz j + 2yz k , find curl curl A.

curl curl A = V x (V x A)

= vx

i j

a a a
ax ay aZ

x2y - 2xz 2yz

= Vx [(2x+2z)i - (x2+2z)k]

i j k

a a a
ax ay az

2x +2z 0 -x2 - 2z

= (2x+2)j

25. Prove: (a) V x (A +B) = VxA + V x B
(b) V x (VO) x A + 0 (vxA) .
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(a) Let A = A1i +A2j +A3k, B = B1i +B2j +B3k. Then:

Vx (A+B) _ ( ai
+ a j + a k) x [(A1+B1)i + (A2+B2)j + (A3+B3)k]

i j k

a a a
ax ay az

Al+B1 A2+B2 A3+B3

[] (A3+B3) az
(A2+B2)] i + [a (A1+B1) - 2x (A3+B3)]

Y

+ [a (A2+B2) - (A1+B1)] k
Y

[aA3 - aA2]i
+

[-3A1 - aA3]j
+

[aA2
aA1]k

ay az az ax ax ay
+ -3Bs - aB2]i + [aB1 - aB3]j

+ [aB2 - aB1]k
ay az az ax ax ay

= VXA + VXB

(b) V x (OA) = Vx (cA1i +cA2j +OA3k)

i j k

a a a
ax ay az

OA1 OA2 OAS

[a (A2) - az ( i + [az (M1) - ax
j

Y +
[ax (042) - a (OA1)] k

Y

ay
+ AS --

as 2 - A2] i
Y Y

+ [0aA1 + Al 3 - aOA31 j +
[OaA2 + aqbA2 - OA1 - LOA1] k

az az ax ax ax ax ay ay

aA2)i + (aA1 __ aA3)j
+ ( aA2

A1)k]
ay az az ax ax ay

+ [( OAS -
a(PA2)i

+ (aOA1 - OA3)j + ( OA2 - aEA1)k]
ay az az ax ax ay

O(Vx A) +
az

Al A2 As

= 0(Vx A) + (VV) x A.



GRADIENT, DIVERGENCE and CURL

26. Evaluate V. (A x r) if V x A = 0.

Let A = A1i + A2j + A3k, r = xi + yj + zk.

Then A x r =

i j k

A 1 A2 A3

x y z

(zA2 - yA3)i + (xA3 - zA1)j + (7A1 - xA2)k

and V (A x r) =
a (zA2 - yA3) + a (xA3 - zA1) + (yA1 - xA2)

Ox ay az

aA2 aA3 aA3 aA1 aA1

Ox ax
z -- y + X

az

x(dA3 _ aA2) + y(aA1 - aA3) + z(aA2 _ aA1
ay az az ax ax ay

aA3 aA2

+

(aA1 aA3
+ (

aA2 - aA1
) k[xi + yj +zk]' [(a

'3Z a z ax ax a ]
y y

r (V x A) = r curl A. If V x A = 0 this reduces to zero.

27. Prove: (a) V x (VO) = 0 (curl grad 0 = 0), (b) V. (V x A) = 0 (div curl A = 0).

(a) V x (Vq) = V x (LO i + a(Pi + a k)
y

i j k

a a a

ax ay az

aq5 a0
ax ay az

[a ad) - z a
y y

-ao -30
[ax(a ) - ( a)]k

y y x

_ (a2 - 2 )i +
(a2 - a20 )] +

a2 - a2- )k = 0
ayaz azay azax axaz ax ay ay ax

69

provided we assume that qb has continuous second partial derivatives so that the order of differentiation is
immaterial.

(b) V (Vx A) = V

i j

a a
ax ay

Al A2

A= 2)i
ay az

a aA3 aA2

) +=ax(ay -az

a

az

A3

+ (aA1 _ aA3 )jaz ax

a aA1 aA

ay ( az - ax

+ ( aA2 _ aA1)k]
ax ay

a+ - aA2 Al)
-6Z

(

ax ay
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a2A3 a2A 2 a2A 1 a2A 3 a2A2 a2A 1 = 0
ax ay ax az ay az ay ax aZ ax aZ ay

assuming that A has continuous second partial derivatives.

Note the similarity between the above results and the results (C x Cm) = (C x C)m = 0. where m is a
scalar and C (C x A) _ (C x C) A = 0 .

28. Find curl (r f(r)) where f (r) is differentiable.

curl (r f (r)) = V x (r f (r))

= V x (x f (r) i + y f (r) j

But of = af)caaz

Then the result

+ z f (r) k)

i j k

a a a
ax ay az

x f (r) y f (r) z f (r)

(z ay yaz)i + (xaz - Zaf)j

29. Prove V x (Vx A) = -QA +

i j

Vx (VxA) = Vx a

az

= of a ( x2+y2+z2) = f'(r) x = f' x
ar ax x2 + y2 + z2 r

'z 'z 'x(z fry - y fr )i + (x ff - z fT )j +

Al A2 As

Similarly, of = LY and
of

= 'z
ay r a z r

'x '(yfT - xf Y)k = 0.

aA3 _aA2
)I + (

aA1 aA3

)'
+

(

aA2 - aAl
)k]

Vx ( azaZ -
-ax -axay ay

i j
a
ax

aA3 _ aA2

ay az

+ (yaf -xaa-f)k
y

k

a
az

aA2aA1
az ax ax ay

a ( aA2 _ aAl) _ a (aA, _ aA3 )] i
ay ax ay az az ax

+ a aA3 aA2) _
az ay az

+

a ( aA1 aA3

ax az ax

ax( axe
_aaAl)]j

y

2 )]k--
(aa3

a
y y

a
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a-2A1 a2A1
aA2 a2A2 . aA3

ay2

3 1

+ (ay ax + azax)i + (azay + axayA +

- 5z2 )1 + (-
'M -M )j + (- ax2

A.a2A a2A 2A a2A

a2A3
} kaye

c 2A'
+ a2TA' A2 )kaxaz ayaz

71

2 2 2 2 2 2 2 2
aA1 aA1 -3). -a a A,2 _ -a a A,2 aA3 3 A3 - aA3(-
ax2 aye

_
az2+ ( -3X2 ay2 az2 + ax2

-
ay2 az2)

k

2
+ (9A2 +aA2 + aA3 )i + (aA1 +aA2 + aA3 )j + (SA1 + aA2 +aAs)k

ax ay ax az ax ax ay ay az ay axaz ayaz az2

2

+

2

+

2

-('3X2 '6Y2 az2)
(A1i+A2j +Ask)

+ i a -3A, + aA2 + aA3) +
j

a (aA1 + aA2 + aA3) + k a (aA1 + aA2 + aA3)

ax(ax ay azayax ay az azax ay az

- v A + v( aA1
+ aA2 + aA3)

ax ay az

_ -vA +

If desired, the labor of writing can be shortened in this as well as other derivations by writing only the i
components since the others can be obtained by symmetry.

The result can also be established formally as follows. From Problem 47(a), Chapter 2,

(1)

Placing A = B =V and C = F,

A x (BxC) = (A-B)C

V x (VxF) = V(V-F) - (V-V) F = V(V.F) - V2F

Note that the formula (1) must be written so that the operators A and B precede the operand C, otherwise
the formalism fails to apply.

30. If v = co x r, prove w = 2 curl v where w is a constant vector.

i j

curly = V x v = V x (cvxr) = V x N1 602 W3

x y z

= V x [(a 2z - &sY)i + (W3x - W1z)j + (w1Y -cv2x)k]

i j k

a a a I = 2(cu1i + WO + cv3k) = 2ca
ax ay az

w2z -cv3y Wax -W1Z W1y -W2x
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Then = 2V x v = 2 curl v.
This problem indicates that the curl of a vector field has something to do with rotational properties of

the field. This is confirmed in Chapter 6. If the field F is that due to a moving fluid, for example, then a
paddle wheel placed at various points in the field would tend to rotate in regions where curl F # 0, while if
curl F = 0 in the region there would be no rotation and the field F is then called irrotational. A field which
is not irrotational is sometimes called a vortex field.

2

31. If V E = 0, V H = 0, V X E aH , V x H = atE , show that E and H satisfy V2u =ail
2

aH) =Vx avxE = Vx vxH _ a a a E
( (- - () ) -

( E) - t

By Problem 29, V x (Vx E) = - V2E + V(V-E) _ -VE. Then V E

Similarly, V x (Vx H) = V x
2

aE) = at (vxE) = at (- aA) _ -
H

But V x (VX H) = -V2H + V 2H.
a2 H

V2Then H =

The given equations are related to Maxwell's equations of electromagnetic theory. The equation
2 2 2 2

is called the wave equation.
y2axe + a + az 2 ate

MISCELLANEOUS PROBLEMS.

32. (a) A vector V is called irrotational if curl V = 0 (see Problem 30). Find constants a,b,c so that
V = (x + 2y + az) i + (bx - 3y - z) j + (4x + cy + 2z) k

is irrotational.

(b) Show that V can be expressed as the gradient of a scalar function.

i j

(a) curl V = V x V =

k

a a a
ax ay az

_ (c+l)i + (a-4)j + (b-2)k

I x+2y+az bx-3y-z 4x+cy+2z'

This equals zero when a = 4, b = 2, c = -1 and

V = (x+2y+4z)i + (2x-3y-z)j + (4x-y+2z)k

(b) Assume V = Vc = - i + 4i + aO k
y

Then (1) a- = x+2y+4z, (2) ,a = 2x-3y--z, (3) a = 4x-y+2z.
y

Integrating (1) partially with respect to x, keeping y and z constant,

2
(4) ca = 2 + 2xy + 4xz + f (y, z )

where f (y, z) is an arbitrary function of y and z. Similarly from (2) and (3),
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(5)

(6) 0

2

2xy - 3y - yz + g (x,z)

= 4xz - yz + z2 + h (x,y).

Comparison of (4), (5) and (6) shows that there will be a common value of 0 if we choose

2

f (Y,z) _ - 3y
+ z2

2

so that

x2
g (x,z) = 2 + z2 ,

x2 3y2
h (x,y) =

2 2

x2 -
a 2

+ Z2 + 2xy + 4xz - yz

73

Note that we can also add any constant to 0. In general if V x V = 0, then we can find 4 so that V = V0.
A vector field V which can be derived from a scalar field 0 so that V = VO is called a conservative vector
field and 0 is called the scalar potential. Note that conversely if V = Vq5, then V x V = 0 (see Prob.27a).

33. Show that if O(x,y,z) is any solution of Laplace's equation, then Vqb is a vector which is both
solenoidal and irrotational.

By hypothesis, 0 satisfies Laplace's equation
V20

= 0, i.e. V (V4)) = 0. Then VV is solenoidal (see
Problems 21 and 22).

From Problem 27a, V x (VV) = 0 so that VV is also irrotational.

34. Give a possible definition of grad B.

Assume B

a ii + !B2ij + aB3 ik

+aalji+a2jj +aa3jk
Y Y y

+
aB1 k i+ aB2 kJ + aB3

k k
az aZ az

The quantities ii, ij, etc., are called unit dyads. (Note that ij, for example, is not the same as j i.)
A quantity of the form

auii + a12 ij + aIs ik + a22ji + a22jj + a23jk + a81ki + a32kj + a33kk

is called a dyadic and the coefficients all, a12, ... are its components. An array of these nine compo-
nents in the form

all a12 a13

a21 a22 a23

a31 C32 a33

= B1 i + B2 J + B3 k . Formally, we can define grad B as

VB =
(ax i + j +

az k) (B1 i + B2j + B3 k)
Y

is called a 3 by 3 matrix. A dyadic is a generalization of a vector. Still further generalization leads to
triadics which are quantities consisting of 27 terms of the form a111 iii + a211 j i i + .... A study of how
the components of a dyadic or triadic transform from one system of coordinates to another leads to the sub-
ject of tensor analysis which is taken up in Chapter 8.
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35. Let a vector A be defined by A = Al i + A2j + A3k and a dyadic fi by
0 = a11ii + a121j + a13ik + a21ji + a22jj + a23jk + a3lki + a32kj + a33kk

Give a possible definition of A-0.

Formally, assuming the distributive law to hold,
(Ali +A2j + A3k)4> = A1i4i + A2j4i + A3k4b

As an example, consider i - 4'. This product is formed by taking the dot product of i with each term of
4) and adding results. Typical examples are i alai i, i a12i j, i a21 j i, i a32k j, etc. If we give mean-
ing to these as follows

i ass i i

i al2ij
i a2,ji
i rink j

= all(i 1)1

= a12(i i) j

= a210-hi
a32(ik)j

= alli since i i = 1

= ail j since i , 1 = 1

= p since i j = 0

= 0 since ik = 0
and give analogous interpretation to the terms of j 4) and k 40 , then

A 4) = A, (all i + a12 j + a13 k) + A2(a21 i + a22 j + a23 k) + A3(a31 i + a32 j + a33 k)

_ (Alas, + A2a2, + A3a31) i + (A1a12 + A2a22 + A3a32) j + (Alai, + A2a23 + Asass) k

which is a vector.

36. (a) Interpret the symbol A -V. (b) Give a possible meaning to (AV)B. (c) Is it possible to
write this as AVB without ambiguity?

(a) Let A = Al i + A2 j + As k. Then, formally,

A -V = (Asi + A2j + A3k) (a i + a i + azk )y

a aAl a
ax

+
A2 ay +

As
az

is an operator. For example,

(AV) (A1 ax + A2 a + As a) = Al + A2

a
+ As

ay

Note that this is the same as A Vc .

(b) Formally, using (a) with 0 replaced by B = B1 i + B2j + B3 k ,

(A0)B (A, ax
+

A2-ay
+ A3az)B

= Al
aBx + A2 aB + A3 aB

_ aB1 aB1 aB1 aB2 aB2 aB2 aB3 aB3 a
(Al

ax
+ A2

ay
+ A3 az) i + ( A , - : ax + (Al

ax
+ A2

ay
+ A3

-a z)
k

(c) Use the interpretation of VB as given in Problem 34. Then, according to the symbolism established
in Problem 35,

AVB = (A1i + A2j + Ask) VB = A1i VB + A2j VB + Ask VB
aB1 , -a a B.2 aB3 aB1 aB2 -6B3 aBl . aB2

Bs= A,(axl + axj + ax k) + A2(ayi + ayj + ayk) + As(azl + azj + azk)
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which gives the same result as that given in part (b). It follows that (A V) B = A V B without ambi-
guity provided the concept of dyadics is introduced with properties as indicated.

37. If A = 2yzi - x2yj + xz2k, B = x2i + yzi - xyk and 0 = 2x2yz3,
(a) (b) A x V0.

[(2yzi - x2yj + xz2k) ( i i
+

i
+ k

a
-ay

)]q5
az

(2yz - x2y+
ax -ay

2yza(2x2yz3) -
x

xz2 az) (2x2yz3 )

x2ya (2x yz3) + xz2
az (2x2yz3 )

Y

(2yz) (4xyz3) - (x 2y) (2x223) + (xz2) (6x yz2 )

8xy2z4 - 27j4yz3 + 6x3yZ4

(b) (2yzi - x2yj + xz2k) (a(pi + a0j + 0k)

8xy2z4 - 2x4yz3 + 6x3yz4

Ox ay az

(2yz i - x2yj + xz2k) (4xyz3 i + 2x2z3 j + fix yz2 k)

Comparison with (a) illustrates the result (A V) 0 = A V0.

(c) (B-V)A = [(x2i + yz j - xyk) (ai

= (X2-1
a -)A+ Yz - xYax a ,Y

+ a j + az k)] A
Y

x2 aA +
z

aA _ x aA
ax Y ay Y

az

x2(- 2xy j + z2 k) + yz(2z i - x2j) - xy(2y i + 2xz k)

(2yz2 - 2xy2)i - (2x3y + x2Yz)j + (x222 - 2x2yz)k

For comparison of this with B-VA , see Problem 36 (c) .

(d) (AxV) [(2yzi - x2yj + xz2k) x(axl + a j + a k)1
Y

i i k

2yz -x2y xz2 0

+ j (xZ2 ax - 2yz aZ) +

find

k(2yz
+

X2Yax)]0
Y

(xz2 --2yz:a)j + (2yza +x2y)k
Y

a-- (x y az + xz2
a

)i +
Y

a a a
ax ay az

[i(-x2y - xz2- )

Y

ad) ad)

= -( 6X4Y2 z2 + 2x3z5) i + (4x2yz5 - 12x2y2z3) j + (4x2yz4 + 4x3y2z3) k
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(e) A x V O _ (2yz i - x2Yj + xz2k) x (ai + aj + _a4) ak)
Y

i j k

2yz -x2y xz2

ax ay az

a a a aa0

INVARIANCE

2 22 2_ (-xY az - xz .ay)i + (xz ax - 2yz az)j + (2yz ay + x y
ax

)k

- (6x y2z2 + 2x3z5) i + (4x2yz5 - 12x2y2z3) j + (4x2yz4 + 4x3y2z3) k

Comparison with (d) illustrates the result (A x V) = A x Vq .

38. Two rectangular xyz and x'y'z' coordinate systems having the same origin are rotated with re-
spect to each other. Derive the transformation equations between the coordinates of a point in
the two systems.

Let r and r' be the position vectors of any point P in the two systems (see figure on page 58). Then
since r=rf,

(1) x+ y'j' + z' k' = xi + yj

Now for any vector A we have (Problem 20, Chapter 2),

A =
i' + j' + (A-k') k'

Then letting A = i, j, k in succession,

(2)

i = 1111' + 121jf + 131k'

i = (j- k') k' = 1121' + 122 it + 132k'

k = (k . i') i' + (k j') j' + (k k') k' = 113 i' + 123 j' + 133k'

Substituting equations (2) in (1) and equating coefficients of i', j', k' we find

(3) x' = 111x + 112Y + 113z,

the required transformation equations.

39. Prove i' = 111 i + 112 j + 113 k

jf = 121i +122j +123k

k' = 1311 + 132j + 133k

y' = 121 x + 122Y + 123 z , z' = 131X + 132Y + 133Z

For any vector A we have A = (A i) i + (A. j) j + (A k) k .

Then letting A = i', j', k' in succession,

1' _ (i' i) i + (i' j) j + (i' k) k =

jr =

k' _ (k' i) i + (k' j) i + (k' k) k =

111i + 112i + 113k

121 i + 122 j + 123 k

131 1 + 132 i + 133 k
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3

40. Prove that 11,E lpn = 1 if m = n, and 0 if m t- n, where m and n can assume any of the values
1, 2, 3.

From equations (2) of Problem 38,

(lilt' + 121j' + 131k') ' (lilt' + 121j' + 131k')
2 2 2
11 + 121 + 131

0 =

111112 + 121122 + 131132

0 =

111113 + 121123 + 131133

These establish the required result where m=1. By considering j i, j j, j- k, k- i, k j and k- k the result can
be proved for m=2 and m=3.

l if m=n 3
By writing the result can be written E l l = S

inn 0ifm$n P=1 Pn yen

The symbol 6n is called Kronecker's symbol.

41. If 0(x,y,z) is a scalar invariant with respect to a rotation of axes, prove that grad q5 is a vector
invariant under this transformation.

By hypothesis O(x,y,z) = J(x', y', z') . To establish the desired result we must prove that

a i + 'DO j + O k i, + ., + a ' ,

ax ay az T ax, ay'' az' k

Using the chain rule and the transformation equations (3) of Problem 38, we have

av ax' ac' ay' a4' az' _ a4' a('
ax ax' ax + ay, ax + -a" ax ax' 111 + ay' 121 +

az'

l31

ax
ay ax' ay

a4 a0' ax
az ax' az

ao' ay' aW az' a Y a0`
+ ay, ay + az' ay - ax' 112 + ay' 122

+ az' 132

ay' a0' az'
+ ay az + az' z ax' 113 + ay,123 + az' 133

Multiplying these equations by i, j, k respectively, adding and using Problem 39, the required result fol-
lows.
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SUPPLEMENTARY PROBLEMS

42. If = 2xz4 - x2y , find Vq and I V( f at the point (2,-2,-1). Ans. 10i - 4j - 16k, 2V93

43. If A = 2x2 i - 3yz j + xz2 k and q5 = 2z - x3y, find A og5 and A x Vc at the point (1,-1,1).
Ans. 5, 7i - j - Ilk

44. If F = x2z +e y/x and G = 2z2y - xy2, find (a) V(F+G) and (b) V(FG) at the point (1,0,-2).
Ans. (a) -4i + 9j + k, (b) -8j

45. Find V I r
I3.

Ans. 3r r

46. Prove Vf(r) = f !(r) r
r

47. Evaluate V(3r2- 6
) . Ans. (6 - 2r-3/2 - 2r-7/3) r

vc

48. If VU = 2r4 r , find U . Ans. re/3 + constant

49. Find 0(r) such that Vp = s and g(1) = 0. Ans. 0(r) = 3(1 - r
r

2 2 2
50. Find Vq where q = (x2 + y2 + Z2) e

-,IX + y + z
Ans. (2 - r) a-r r

51. If VV = 2xyz3 i + x2z3 j + 3x2yz2 k , find O(x,y,z) if 4. Ans. = x2yz3 + 20

52. If Vo _ (y2 _ 2xyz3) i + (3 + 2xy _ x2z°) j + (6z3 - 3x2yz2) A, find
Ans. 0 = xy2 - x2yz3 + 3y + (3/2) z4 + constant

53. If U is a differentiable function of x,y,z , prove W. dr = dU .

54. If F is a differentiable function of x,y,z,t where x,y,z are differentiable functions of t, prove that
dF _ aF dr+OF
dt at d t

55. If A is a constant vector, prove V(r A) = A.

56. If A(x,y,z) = Ali + A2j + A3k, show that dA =

57. Prove v(F) = GVF -
2

FVG if G 4 0 .
G G

58. Find a unit vector which is perpendicular to the surface of the paraboloid of revolution z = x2 +y2 at the

point (1,2,5). Ans. 2i + 4] - k
± 21

59. Find the unit outward drawn normal to the surface (x -1)2 + y2 + (z +2) 2 = 9 at the point (3,1,-4).
Ans. (2i + i - 2k)/3

60. Find an equation for the tangent plane to the surface xz2 + x2y = z - 1 at the point (1,-3,2).
Ans. 2x - y - 3z + I = 0

61. Find equations for the tangent plane and normal line to the surface z = x2+y2 at the point (2,-1,5).

Ans. 4x-2y-z = 5, x42=y 21-zr15 or x = 4t +2, y=-2t-1, z=-t+5

62. Find the directional derivative of = 4xz3 - 3x2y2z at (2,-1,2) in the direction 2i - 3j + 6k .
Ans. 376/7

63. Find the directional derivative of P = 4e2x ^ y + Z at the point (1,1,-1) in a direction toward the point
(-3,5,6). Ans. -20/9
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64. In what direction from the point (1,3,2) is the directional derivative of (P = 2xz -y2 a maximum's What is
the magnitude of this maximum ? Ans. In the direction of the vector 4i - 6j + 2k, 2v"14

65. Find the values of the constants a,b,c so that the directional derivative of 0 = axy2 + byz + cz2x3 at
(1,2,-1) has a maximum of magnitude 64 in a direction parallel to the z axis. Ans. a= 6, b = 24, c = -8

66. Find the acute angle between the surfaces xy2z = 3x +z2 and 3x2.- y2 + 2z = 1 at the point (1,-2, 1).

Ans. arc cos
1

= arc cos 14 = 79°551

67. Find the constants a and b so that the surface ax2 - byz = (a +2)x will be orthogonal to the surface
4x2y + z3 = 4 at the point (1,-1,2). Ans. a = 5/2, b = 1

68. (a) Let u and v be differentiable functions of x, y and z. Show that a necessary and sufficient condition
that u and v are functionally related by the equation F(u,v) = 0 is that Vu x Vv = 0.

(b) Determine whether u = are tan x + are tan y and v = 1 zy are functionally related.

Ans. (b) Yes (v = tan u)

69. (a) Show that a necessary and sufficient condition that u(x,y,z), v(x,y,z) and w(x,y,z) be functionally re-
lated through the equation F(u,v,w) = 0 is Vu - Vv X Vw = 0.

(b) Express Vu - Vv x Vw in determinant form. This determinant is called the Jacobian of u,v,w with re-

spect to x,y,z and is written u, v, w or J( u,v,w
) .a (x,y,z) x,y,z

(c) Determine whether u = x +y+z, v = x2+y2+z2 and w = xy +yz +zx are functionally related.

au au au
ax ay az

Ans. (b) av av av

ax ay az (c) Yes (u2-v-2w = 0)

aw aw aw
ax ay az

70. If A = 3xyz2 i + 2xy3 j -- x yz k and d)= 3x2 - yz, find (a) V A, (b) A VO, (c) V- (0 A), (d)
at the point Ans. (a) 4, (b) -15, (c) 1, (d) 6

71. Evaluate div (2x2z i - xy2z j + 3yz2 k) . Ans. 4xz -- 2xyz + byz

72. If = 3x2z - y2z3 +4x3y +2x-3y-5, find
V2cb.

Ans. 6z + 24xy - 2z3 -- 6y2z
2

73. Evaluate V (ln r). Ans. 1/r2

74. Prove V2rn = n(n+1)rn- 2 where n is a constant.

75. If F = (3x2y 4 3y - z) i + (xz + y ) j - 22z' k , find V (V F) at the point (2,-1,0). Ans. -6i + 24j - 32k

76. If w is a constant vector and v = rv x r , prove that div v = 0.

77. Prove V2(0&) = 0 V2q + 2VO -Vq + 0 V20.

78. If U = 3x2y, V = xz2 - 2y evaluate grad [(grad U) (grad V)] . Ans. (6yz2 -- 12x) i + 6xz2 j + 12xyz k

79. Evaluate V (r3 r) . Ans. 6 r3

80. Evaluate V [ r V(1/r3)] . Ans. 3 r-4

81. Evaluate
V2[V_

(r/r2) ] . Ans. 2 r
-4

82. If A = r/r, , find grad div A. Ans. -2r_3 r

83. (a) Prove V 2 f (r) = drf + 2 df . (b) Find f (r) such that V 2 f (r) = 0.

Ans. f (r) = A + B/r where A and B are arbitrary constants.
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4z2 i + 4x322 j - 3x2y2 k is solenoidal.84. Prove that the vector A = 3y

85. Show that A = (2x2 + 8xy2z) i + (3x3y - 3xy) j - (4y2z2 + 2x32) k is not solenoidal but B = xyz2 A is
solenoidal.

86. Find the most general differentiable function f (r) so that f (r) r is solenoidal.
Ans. f (r) = C/r3 where C is an arbitrary constant.

87. Show that the vector field V =
-x

1 - yj is a 1'sink field". Plot and give a physical interpretation.
x2 + y2

88. If U and V are differentiable scalar fields, prove that VU x VV is solenoidal.

89. If A = 2xz2 i - yz j + 3xz3 k and cb = x2yz , find
(a) Vx A, (b) curl (OA) , (c) V x (VxA), (d)V[A-curl A], (e) curl grad at the point (1,1,1).
Ans. (a) i + j , (b) 5i - 3j - 4k , (c) 5i + 3k , (d) - 21 + j + 8k , (e) 0

90. If F = x2yz, G = xy-3z2, find (a) V (b) V- [(VF)x(VG)] , (c) V x [(VF)x(VG)] .
Ans. (a) (2y2z + 3x2z - 12xyz) i + (4xyz - 6x2z) j + (2xy2 + x3 - 6x2y) k

(b) 0
(c) (x2z - 24xyz)i - (12x22 + 2xyz)j + (2xy2 + 12yz2 +x3)k

91. Evaluate V x (r/r2) . Ans. 0

92. For what value of the constant a will the vector A = (axy --- z3) i + (a -2)x 2 j + (1-a) xz2 k have its
curl identically equal to zero 9 Ans. a = 4

93. Prove curl (0 grad j.) = 0.

94. Graph the vector fields A = x i + y j and B = y i - x j. Compute the divergence and curl of each vector
field and explain the physical significance of the results obtained.

95. If A = x2z i + yz3 j - 3xy k , B '= y2 i - yz j + 2x k and = 2x2 + yz , find
(a) A-(V(P), (b) (A-V)gb, (c) (A.V)B, (d) (e)
Ans. (a) 4x3z + yz4 - 3xy2 , (b) 4x3z + yz4 - 3xy2 (same as (a)),

(c) 2y2z3 i + (3xy2 - yz4) j + 2x2z k ,

(d) the operator (x2y2z i - x2yz2 j + 2x3z k) + (y3z31 - y2z4 j + 2xyz3 k)
ax -ay

+ (- 3xy3 i + 3xy2z j - 6x2y k) a

(e) (2xy2z + y2z3)i - (2xyz2 +yz4)j + (4x22 + 2xz3)k

96. If A = yz2 i - 3xz2 j + 2xyz k , B = 3x i + 4z j - xy k and O = xyz , find
(a) Ax (Vf), (b) (Ax V) (P, (c) (Vx A) x B, (d) B.Vx A.
Ans. (a) -5x2yz2 i + xy2z2 j + 4xyz3 k

(b) -5x2yz2 i + xy2z2 j + 4xyz3 k (same as (a) )
(c) 16x3 i + (8x2yz - 12xz2) j + 32xz2 k (d) 24x22 + 4xyz2

97. Find Ax(VxB) and (AxV) ,'cB at the point (1,-1,2), if A = xz2i + 2y j - 3xz k and B = 3xz i + 2yzj - z2 k.
Ans. Ax(VxB) = 18i - 12j + 16k, (AxV)xB = 4j + 76k

98. Prove (v-V) v = 2Vv2- vx (Vx v).

99. Prove V (A x B) = B - (V x A) - A - (O x B) .

100. Prove V x (Ax B) = B(V.A) - A(V-B).

101. Prove V(A B) = Bx(VxA) + Ax(VxB).

102. Show that A = (6xy +z3) i + (3x2 - Z) j + (3x22 - y) k is irrotational. Find cp such that A = 0 .
Ans. cP = 3x2y + xz3 - yz + constant
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103. Show that E = r/r2 is irrotational. Find 0 such that E and such that 0 (a) = 0 where a > 0 .
Ans. gb = In (a 1r)

104. If A and B are irrotational, prove that A I B is solenoidal.

105. If f (r) is aifferentiable, prove that f (r) r is irrotational.

106. Is there a differentiable vector function V such that (a) curl V = r , (b) curl V = 2i + j + 3k? If so, find V .
Ans. (at No, (b) V = 3x j + (2y --x) k + VO, where 0 is an arbitrary twice differentiable function.

107. Show that solutions to Maxwell's equations

VxH =
c

aE VxE = aH, V-H=0, V.E = 47Tp

where p is a function of x,y,z and c is the velocity of light, assumed constant, are given by

E=-VV -
c

a`A, H=VxA
where A and 0, called the vector and scalar potentials respectively, satisfy the equations

,2 1 2 2

2
(1) V-A +

C
a = 0, (2) V c2 at _ (3) V2 A = c2 at

108. (a) Given the dyadic 4 = i i + j j + k k , evaluate r (1 r) and (r - J') r . (b) Is there any ambiguity in
writing r. 4 r ? (c) What does r 1 r = 1 represent geometrically ?
Ans. (a) r (cl r) _ (r . I) r = x2 + y2 + z2 , (b) No, (c) Sphere of radius one with center at the origin.

109. (a) If A = xz i - y2 j + yz2 k and B = 2z2 i - xy j + y3 k, give a possible significance to (Ax V )B at
the point

(b) Is it possible to write the result as A I (VB) by use of dyadics ?
Ans. (a) --41i - ij + 3ik - jj - 4ji + 3kk

(b) Yes, if the operations are suitably performed.

110. Prove that ca(x,y,z) = x2 + y2 + z2 is a scalar invariant under a rotation of axes.

111. If A (x,y,z) is an invariant differentiable vector field with respect to a rotation of axes, prove that (a) div A
and (b) curl A are invariant scalar and vector fields respectively under the transformation.

112. Solve equations (3) of Solved Problem 38 for x,y,z in terms of x', y', z'.
Ans. x = 111x'+ 121 Y'+ 131 Z', Y = 112x'+ 122YI + 132 Z', Z = 113x'+ 123 Y' + 1:33 Z'

113. If A and B are invariant under rotation show that A B and A I B are also invariant.

114. Show that under a rotation

.ax0 i + J ay + ka z
11 ax ' + j/ ay I + k' az'

Q'

115. Show that the Laplacian operator is invariant under a rotation.



ORDINARY INTEGRALS OF VECTORS. Let R(u) = R1(u) i + R2(u) j + R3(u)k be a vector depending
on a single scalar variable u, where R1(u), R2(u), R3(u) are

supposed continuous in a specified interval. Then

f R(u) du = i R1(u) du + ifR2(u) du + k Rs(u) du

is called an indefinite integral of R(u). If there exists a vector S(u) such that R(u) = du (S(u)), then

fR(u) du = f,/(s(u))du = S(u) + c

where c is an arbitrary constant vector independent of u. The definite integral between limits u=a
and u=b can in such case be written

fb
a

R(u) du =
fa

d
du (S(u)) du S(u) + c I= S(b) - S(a)

a

This integral can also be defined as a limit of a sum in a manner analogous to that of elementary in-
tegral calculus.

LINE INTEGRALS. Let r(u) = x(u) i + y(u) j + z(u) k , where r(u) is the position vector of (x,y,z),
define a curve C joining points P1 and P2 , where u = ul and u = u2 respectively.

We assume that C is composed of a finite number of curves for each of which r(u) has a contin-
uous derivative. Let A(x,y,z) = A1i + A2j + A3k be a vector function of position defined and con-
tinuous along C. Then the integral of the tangential component of A along C from P1 to P2 , written as

P2

P

Al dx + A2 dy + A3 dz

is an example of a line integral. If A is the force F on a particle moving along C, this line integral
represents the work done by the force. If C is a closed curve (which we shall suppose is a simple
closed curve, i.e. a curve which does not intersect itself anywhere) the integral around C is often
denoted by

5 Al dx + A2 dy + A3 dz

In aerodynamics and fluid mechanics this integral is called the circulation of A about C, where A
represents the velocity of a fluid.

In general, any integral which is to be evaluated along a curve is called a line integral. Such
integrals can be defined in terms of limits of sums as are the integrals of elementary calculus.

For methods of evaluation of line integrals, see the Solved Problems.

The following theorem is important.

°°

82
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THEOREM. If A= Vo everywhere in a region R of space, defined by a1 5 x < a2, b1 < y < b,2,
Cl z ! C2, where c (x,y,z) is single-valued and has continuous derivatives in R,

then P2

1. A-dr is independent of the path C in R joining P1 and P2.
P1

2. A- dr = 0 around any closed curve C in R.
C

In such case A is called a conservative vector field and cb is its scalar potential.

A vector field A is conservative if and only if VxA=O, or equivalently A=Vc. In such case
A. dr = Al dx + A2 dy + A3 dz = do, an exact differential. See Problems 10-14.

SURFACE INTEGRALS. Let S be a two-sided surface, such as shown in the figure below. Let one
side of S be considered arbitrarily as the positive side (if S is a closed

surface this is taken as the outer side). A unit normal n to any point of the positive side of S is
called a positive or outward drawn unit normal.

Associate with the differential of surface
area dS a vector dS whose magnitude is dS and
whose direction is that of n . Then dS = n dS.
The integral

ffA.dS = ffA.ndS
S S

is an example of a surface integral called the
flux of A over S. Other surface integrals are

0 dS, ffct n dS, fJA xdS
S S

where o is a scalar function. Such integrals can
be defined in terms of limits of sums as in ele-
mentary calculus (see Problem 17).

z

The notation 9j. is sometimes used to indicate integration over the closed surface S. Where
S

no confusion can arise the notation may also be used.
S

To evaluate surface integrals, it is convenient to express them as double integrals taken over
the projected area of the surface S on one of the coordinate planes. This is possible if any line per-
pendicular to the coordinate plane chosen meets the surface in no more than one point. However, this
does not pose any real problem since we can generally subdivide S into surfaces which do satisfy
this restriction.

VOLUME INTEGRALS. Consider a closed surface in space enclosing a volume V. Then

ff5.av and 5ff dV
V V

are examples of volume integrals or space integrals as they are sometimes called. For evaluation of
such integrals, see the Solved Problems.
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SOLVED PROBLEMS
2

1. If R(u) = (u - u2) i + 2u3 j - 3k , find (a) R(u) du and (b) R(u) du.
1

(a) fR(u)du = f [(u-u2)i + 2u3 j - 30 du

i f (u - u2) du + j
,J

+ 2u3 du + k J - 3 duJ
2 3i(2 - 3 + c1) + j (3 + c2) + k (--3u + c3)

2 3 4
{ 2

3
)i + Z j - 3uk + cji + c2j + c3k

2 3 4

(2 3)i + 2j - 3uk + c

where c is the constant vector cl i + c2 j + c3 k .

2

(b) From (a), fI R(u) du

Another Method.

= u2 - u3

(2 g)i +

_ -6' + 2 j

4 2

2 j - 3uk + c f1

ci - 3(2)k + ci - [(2 - 4-)i +2j-3(1)k+c]

- 3k

2 2 2 2

.f R(u) du = i f1 (u -u2)du + i f1 2u3 du + k fI - 3 du
2 3 2 4 2 2

i(3 -- 3)11 + j(3)11 + k(-3u)I1 = -s1 + 2 j

2. The acceleration of a particle at any time t ? 0 is given by

a=
dt

= 12 cos 2 t i- 8 sin 2 t j + 16 t k

If the velocity v and displacement r are zero at t =0, find v and r at any time.

Integrating, v = i f 12 cos 2 t dt + j f - 8 sin 2t dt + k f 16 t dt

= 6 sin 2 t i + 4 cos 2 t j + 8 t2 k+ c1

Putting v = 0 when t = 0, we find 0 = 0 i + 4i + O k + c1 and c1 = - 4 j .

Then v = 6sin2ti + (4cos2t-4)j + 8t2k

so that da = 6 sin 2 t i + (4 cos 2 t - 4) j + 8 t2 k .

Integrating, r = i f 6 sin 2 t dt +
J f (4 cos 2 t- 4) dt + k f 8 t2 d t

= -3cos2ti + (2sin2t-4t)j + 3?k + c2

Putting r = 0 when t=0, 0 = -3i + 0j + 0 k + c2 and c2= 3 i.

3k
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Then r = (3--3cos2t)i + (2sin2t-4t)j + 8t3k.
3

2

3. Evaluate JA x dtA dt

2

dt (A x dA)
= AX dt2A + aA aA

Integrating, f (A x ) dt = A x + c .
dt dt dt

4. The equation of motion of a particle P of mass m is given by

= f(r) r1m d2

where r is the position vector of P measured from an origin 0, r1 is a unit vector in the direction r,
and f (r) is a function of the distance of P from 0.

(a) Show that r x = c where c is a constant vector.

(b) Interpret physically the cases f (r) < 0 and f (r) > 0 .
(c) Interpret the result in (a) geometrically.
(d) Describe how the results obtained relate to the motion of the planets in our solar system.

2
(a) Multiply both sides of in dt2 = f (r) r1 by r x. Then

fib IL x d = f(r) r x r1 = 0

since r and r1 are collinear and so r x r1 = 0. Thus
2

r x ate = 0 and dt (r x dt) = 0

Integrating, r x d = c, where c is a constant vector. (Compare with Problem 3).

2

(b) If f (r) < 0 the acceleration dt2 has direction opposite to r1; hence the force is directed toward 0 and

the particle is always attracted toward 0.

If f (r) > 0 the force is directed away from 0 and the particle is under the influence of a repulsive
force at 0.

A force directed toward or away from a fixed point 0 and having magnitude depending only on the
distance r from 0 is called a central force.

(c) In time At the particle moves from M to N (see ad-
joining figure). The area swept out by the position
vector in this time is approximately half the area of
a parallelogram with sides r and A r, or

2
r x A r.

Then the approximate area swept out by the radius

vector per unit time is Ir x r ; hence the instan-

taneous time rate of change in area is

lim 2 r x Ar
=

At00

where v is the instantaneous velocity of the parti-

z
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cle. The quantity H =
Zr

xt = 2r x v is called the areal velocity. From part (a),

Areal Velocity = fl = z r x d!tr
t

= constant

Since r - H = 0 , the motion takes place in a plane, which we take as the xy plane in the figure above.

(d) A planet (such as the earth) is attracted toward the sun according to Newton's universal law of gravita-
tion, which states that any two objects of mass m and M respectively are attracted toward each other

with a force of magnitude F = GM2
, where r is the distance between objects and G is a universal

constant. Let m and M be the masses of the planet and sun respectively and choose a set of coordi-
nate axes with the origin 0 at the sun. Then the equation of motion of the planet is

d2r
m dt2

GMm
- r2 r1 or

d2r _ GM
dt2

- r2 r1

assuming the influence of the other planets to be negligible.

According to part (c), a planet moves around the sun so that its position vector sweeps out equal
areas in equal times. This result and that of Problem 5 are two of Kepler's famous three laws which he
deduced empirically from volumes of data compiled by the astronomer Tycho Brahe. These laws ena-
bled Newton to formulate his universal law of gravitation. For Kepler's third law see Problem 36.

5. Show that the path of a planet around the sun is an ellipse with the sun at one focus.

(1)

(2)

From Problems 4(c) and 4(d),
dv GM
dt = - r2 Al

rxv = 2H = h

Now r = r r1, d r Wt + dt r1 so that

(3) h rxv r r1 x (r drl
+

dr
rl) _

dt dt r2 r1 x dt

From(1), dt xh = GMr1x h = --GM r1x (r1x dtl)

- GM [ (r1. dr1) r1 -- { r1 rl) drl = GM dr1
dt dt dt

using equation (3) and the fact that rl. da = 0 (Problem 9, Chapter 3).

But since h is a constant vector, dv x h = d
(v x h) so thatdt dt

dt (v x
h) = GM dt

Integrating, v x h = GM r1 + p

from which r. (v x h) = GM r r1 + r p
= GMr + r r1. P = GMr + r p cos 8

where p is an arbitrary constant vector with magnitude p, and a is the angle between p and r1.

Since r . (v x h) _ (rxv) . h = h h = h2 , we have h2 = GMr + r p cos B and
h2 h2/GM

r
GM +p cos B 1 + (p/GM) cos 6
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From analytic geometry, the polar equation of a conic
section with focus at the origin and eccentricity E is
r = a where a is a constant. Comparing this1+ECos9
with the equation derived, it is seen that the required
orbit is a conic section with eccentricity E = p/GM.
The orbit is an ellipse, parabola or hyperbola accord-
ing as E is less than, equal to or greater than one.
Since orbits of planets are closed curves it follows
that they must be ellipses.

E11' - aapse r i+Ec0s8

LINE INTEGRALS
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6. If A = (3x2 + 6y) i - 14yz j + 20xz2 k, evaluate J A dr from (0,0,0) to (1,1,1) along the follow-
ing paths C: C

(a) x=t, y=t2, z=t3.
(b) the straight lines from (0,0,0) to (1,0,0), then to (1,1,0), and then to (1,1,1).
(c) the straight line joining (0,0,0) and (1,1,1).

fc fc,
[(3x2+ 6y) i - 14yz j + 20xz2k] (dx i + dy j + dz k)

J'(3x2+6y)dx - 14yz dy + 20xz2 dz

(a) If x =t, y = t2, Z= t3, points (0,0,0) and (1,1,1) correspond to t= 0 and t= 1 respectively. Then
1f A- dr = f (3t2 + 6t2) dt - 14 (t2) (t3) d (t2 )

t=0

I'
t=o

9t2 dt - 28te dt + 60t9 dt

f(9t_28t6+60t9) dt

t=o

+ 20 (t) (t3 )2 d(t3 )

1

3t2 - 4t7 + 6t10 1 = 5
0

Another Method.

Along C, A = 9t2i - 14t5j + 20t7k and r = xi + yj + zk = ti + t2j +t3k and dr=(i+2tj+3t2k)dt.

Then J A dr
C I'

t=o

1

(9t2 i - 14t5 j + 20t7 k). (i + 2t j + 3t2 k) dt

(9t2 - 28t6 + 60t9) dt = 5

(b) Along the straight line from (0,0,0) to (1,0,0) y= 0, z = 0, dy = 0, dz = 0 while x varies from 0 to 1. Then
the integral over this part of the path is

I'
1

3x2+6(0)) dx - 14 (0)(0)(0) + 20x(0)2 (0) = f3x 2 dx
1

x
l

= 1
0

Along the straight line from (1,0,0) to (1,1,0) x = 1, z = 0, dx = 0, dz = 0 while y varies from 0 to 1.
Then the integral over this part of the path is

SI
Y=0

(3(1)2+6y)0 - 14y(0)dy + 20(1)(0)2 0 = 0
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Along the straight line from (1,1,0) to (1,1,1) x = 1, y = 1, dx = 0, dy = 0 while z varies from 0 to 1.
Then the integral over this part of the path is

f1

z=0

3(1)2+6(1)) 0 - 14(1) z(0) + 20(1) z2 dz = f 1 20z2 dz = 203z3

z, =o

Adding, J A-dr = 1 + 0
C

+ 20 = 23
3 3

(c) The straight line joining (0,0,0) and (1,1,1) is given in parametric form by x = t, y = t, z = t . Then

f
1

J A- dr (3t2 + 6t) dt - 14 (t) (t) dt + 20 (t) (t)2 dt
C t=0

(`

t=0

(3t2+ 6t -14t2+ 20t3) dt - f
1

(6t-11t2+20t3) dt
t=0

I'

7. Find the total work done in moving a particle in a force field given by F = 3xyi - 5z j + lOx k
along the curve x =12+1, y = 2t2, z =t3 from t =l to t=2.

Total work J F-dr (3xyi- 5zj + +dyj +dzk)
C C

3xy dx - 5z dy + 10x dz

2

3 (t2 + 1) (2t2 )d(t2+1) - 5(t3) d(2t2) + 10(t2+1) d(t3)

t=1
2

(12t5 + 10t4 + 12t2 + 30t2) dt = 303

8. If F = 3xy i - y2 j , evaluate F-dr where C is the curve in the xy plane, y = 2x2, from (0,0)
to (1, 2) . ic

Since the integration is performed in the xy plane (z=0) , we can take r = x i + y j . Then

=
f(3xyi_y2j).(dxi+dyj)JF.dr

xy dx - y2 dy= fe 3

First Method. Let x = t in y = 2x2. Then the parametric equations of C are x = t, y = 2t2. Points (0,0) and
(1,2) correspond to t = 0 and t = 1 respectively. Then

f F - dr =
r1

C

3(t)(2t2) dt - (2t2)2 d(2t2)
to t=0

(6t3-1615) dt

13

3

7
6

Second Method. Substitute y= 2x2 directly, where x goes from 0 to 1. Then

f
1

f F-dr 3x(2x2) dx - (2x2)2 d(2x2)
C x=o

(6x3-16x5) dx =

x=0

Note that if the curve were traversed in the opposite sense, i.e. from (1,2) to (0,0), the value of the integral
would have been 7/6 instead of - 7/6.
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9. Find the work done in moving a particle once around a circle C in the xy plane, if the circle has
center at the origin and radius 3 and if the force field is given by

F = (2x--y+z)i + (x+y-z2)j + (3x-2y+4z)k

In the plane z=0, F = (2x -y) i + (x +y) j + (3x - 2y)k and dr =dxi + dy j so that the work done is

[(2x-y)i + (x+y)j + (3x-2y)k- [dxi + dyj]f
C J

fc
(2x-y) dx + (x+y) dy

Choose the parametric equations of the circle as x = 3 cos t, y = 3 sin t
where t varies from 0 to 2n (see adjoining figure). Then the line integral
equals

271

[2(3cost) - 3sint] [-3sint]dt + [3cost +3sint] [3cos.t]dt
t=0

I (9 - 9 sin t cost) dt = 9t -
2

sin2 t
27T 127T

0
= 18 7L

In traversing C we have chosen the counterclockwise direction indicated
in the adjoining figure. We call this the positive direction, or say that C
has been traversed in the positive sense. If C were traversed in the clock-
wise (negative) direction the value of the integral would be - 18 IT.

r=xi+yj
3cost i+3sintj

10. (a) If F = V , where is single-valued and has continuous partial derivatives, show that the
work done in moving a particle from one point P1 = (x1, y1, z 1) in this field to another point
P2 = (x2, y2, z2) is-independent of the path joining the two points.

(b) Conversely, if F. dr is independent of the path C joining any two points, show that there
C

exists a function 0 such that F = V .

P. fP12

(a) Work done = F- dr = Vqb dr
IP21 Ps

=
P 2

( a i + j + aok) (dxi + dyj + dzk)f Y zi
P2

dx + a0 dy + a dz
P1 Y z

(P2 ,/,J dY = O(P2) - O(Pi) _ (Nx2,Y2, Z2) - 0(x1,Y1, Z1)
P1

Then the integral depends only on points P1 and P2 and not on the path joining them. This is true
of course only if q5 (x,y,z) is single-valued at all points P1 and P2.

. dr is independent of the path C joining any two(b) Let F = F1 i + F2j + F3k. By hypothesis, fc F

points, which we take as (x1, y1, z1) and (x,y,z) respectively. Then

(x,y,Z) = f (x,y,Z)
cp(x,y,z) = J F1dx + F2dy + F3dz

fx1,Y1, z1) z1)

is independent of the path joining (x1, y1i z1) and (x,y,z). Thus
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C/(x+Ax, y, z) - c(x,y,z) f
(x+Ax, y, z) f (x,y,z)F. dr - JF dr

x1, yi, z 1) (x1, Y1, z1)

(x1,y1,Z1) (x+I x,y,z)r
,Y,z) J(xi,yj,zi)f
(x+. x, Y. z) -'(x+Ax, y, z)

F1 dx + F2 dy + F3 dz
(x,y,z) (x,y,z)

Since the last integral must be independent of the path joining (x,y,z) and (x+Ax, Y. z), we may choose
the path to be a straight line joining these points so that dy and dz are zero. Then

O(x+Ax, y, z) - O(x,y,z)
Ax

1 (x +Ax, y, Z)

Ox J(x,y,z)

Taking the limit of both sides as Ox -, 0, we have a0 = F1.
x

Similarly, we can show thataa y = F2 and a0 = F3.

Then F = F1i+F2j+F3k = -i +a-j + a-k = V0.
x y

F1 dx

('P2If J F. dr is independent of the path C joining P1 and P2, then F is called a conservative field. It
P1

follows that if F = VO then F is conservative, and conversely.

Proof using vectors. If the line integral is independent of the path, then

(x,y,z) f (x,y,z)
(x,y,z) = F ds

Ar- ds

fx1,Y1, Z1) (x1, Yi, z1)

By differentiation,
d(t=

F dr But
d4 = 0 dr so that (V - F) dr = 0.ds ds ds ds ds

Since this must hold irrespective of ds , we have F = Vg .

11. (a) If F is a conservative field, prove that curl F = Vx F = 0 (i.e. F is irrotational).
(b) Conversely, if VxF = 0 (i.e. F is irrotational), prove that F is conservative.

(a) If F is a conservative field, then by Problem 10, F = Vo .

Thus curl F = V x VV = 0 (see Problem 27(a), Chapter 4).

i j k

(b) If OxF= 0, then

We

a a a
ax ay az

= 0 and thus

F1 F2 F3 I

F3 F2 -a a F1. F3 F2 F1

ay - az az = ax ' ax = ay

must prove that F = VV follows as a consequence of this.

The work done in moving a particle from (x1, y1, z1) to (x,y,z) in the force field F is
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fe
Fj(x,y,z) dx + F2(x,y,z) dy + F3(x,y,z) dz

where C is a path joining (x1, y1, zl) and (x,y,z). Let us choose as a particular path the straight line
segments from (x1, y1, z1) to (x,yl, z1) to (x,y,z1) to (x,y,z) and call 0(x,y,z) the work done along this
particular path. Then

x Y z
(x,y,z) =

Jx

F1(x, y1, z1) dx + F2(x, y, zl) dy + F3(x,y,z) dz
1 9.0 Y1 f 1

It follows that

az F3(x,y,z)

_

ay
fzFa

F2(x, y, z1) + 3 (x,y,z) dz
a

1

z
'8 a F2

(x,y,z) dz= F2(x, y, z1) +
J21

-

ax

z

F2(x,y,Z1) + F2(x,y,Z) I F2(x,y,Z1) + F2(x,y,z) - F2(x,y,Z1) = F2(x,y,Z)
Z1

z
= F1(x, y1, z1) + SYe (x, y, z1) dy + f az (x,y,z) dz

1 .f 1

z

F, (x, y1, z-1) + Y
aY Fl

(x, y, z1)dy + fl a
1(x,Y,z) fdz

z
l

y z

= F1(x,Y1,z1) + F1(x,y,zj) I + F1(x,y,z) I
y1 z1

= F1(x,y1,z1) + F1(x,y,z1) - F1(x,Y1,z1) + F1(x,y,z) - F1(x,y,z1) = F1(x,y,z)

Then F = F1i + F2j + F3k a-i + a-j + k =
Y

Thus a necessary and sufficient condition that a field F be conservative is that curl F = Vx F = 0.

12. (a) Show that F = (2xy +z3 ) i + x2 j + 3xz2 k is a conservative force field. (b) Find the sca-
lar potential. (c) Find the work done in moving an object in this field from (1,-2,1) to (3,1,4) .

(a) From Problem 11, a necessary and sufficient condition that a force will be conservative is that
curl F = Vx F = 0.

Now VxF =

i j k

a a a
ax ay aZ

2xy + z3 x2 3xz2

= 0.

Thus F is a conservative force field.
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(b) First Method.

Integrating, we find from (1), (2) and (3) respectively,

By Problem 10, F = VO or a i + LO j + ao k = (2xy +z3) i + X2 j + 3xz2 k. Then
Y

(1) a = 2xy + z3 (2) = x2 (3) = 3xz2
-a zY

x2y + xz3 + f (y,z)

= 'Y'2
IV + (x z)

Z5 9

x z
3 + h(x,y)

These agree if we choose f (y,z) = 0, g(x,z) = xz3, h(x,y) = x2y so that = x2y + xz3 to which may
be added any constant.

Second Method.

dr is independent of the path C joiningSince F is conservative, fc F
Using the method of Problem 11(b),

x

fxl

VECTOR INTEGRATION

(2xy1 + z1) dx + fY

Y1

z

x2 dy + fi 3xz2
dz

z
(y(x2 y1 + xz3)

Ix

x1 + x2Y Iy1 + xz3 1z1

(x1, Y1, Z1) and (x,y,z).

x2y1 + xz3 - xi 2 y1 - X:1 z3 + x2y - x2 y1 + xz - xz

= x2y + xz - xiyi - x1 z3 x2y + xZ3 + constant

Third Method. Vo- dr = a0 dx + Lo dy + . o dz = do
Y

Then do = (2xy+z3) dx + x2 dy + 3xz2 dz

(2xy dx +x2 dy) + (z3 dx + 3xz2 dz)

= d(x2y) + d(xz3) d(x2y +xz3)

and 0 = x2y + xz3 + constant.

P2
(c) Work done =

P
F. dr

1

P1

fpi

P2

Another Method.

(2xy +z3) dx + x2 dy + 3xz2 dz

d(x2y +xz3) = x2y + xz3 I
P2

= x2y + xz3 I
(3, it 4)

= 202
P1

From part (b), c(x,y,z) = x2y + xz3 + constant.

(1,-2, 1)

Then work done = 0(3,1,4) - 0(1,-2,1) = 202.
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P2

13. Prove that if F. dr is independent of the path joining any two points P1 and P2 in a given
JP1

region, then F dr = 0 for all closed paths in the region and conversely.

Let P1AP2BP1(see adjacent figure) be a closed curve. Then

5 f fJ J
P1 AP28P1 P1 AP2 P2BP1

since the integral from P1 to P2 along a path through A is the same as
that along a path through B, by hypothesis.

fF.dr = 0

P1 AP2 P1BP2

so that,

Conversely if f F dr = 0 , then

f F dr f f 0

P1AP2 BP1 P1AP2 P2BP1 P1AP2 P1BP2

J
P1 AP2

F dr = f F dr.
P1 BP2

14. (a) Show that a necessary and sufficient condition that F1 dx + F2 dy + F3 dz be an exact differ-
ential is that V x F = 0 where F = F1 i + F2 j + F3 k .

(b) Show that (y2z3 cosx - 4x3z) dx + 2z3y sinx dy + (3y2z2 sinx - x4) dz is an exact dif-
ferential of a function q5 and find 0.

(a) Suppose F1 dx + F2 dy + F3 dz = dq5 = a dx + dy + dz, an exact differential. Then

since x, y and z are independent variables,
x y z

aa a
F1 = . , F2 = a , F3 = a

and so F = F 1 i + F 2 J + F 3 k =

a

i + j + k = V0. Thus V x F = V x Vq = 0.
y z

Conversely if Ox F = 0 then by Problem 11, F = VCa and so F dr = VV V. dr = dO, i.e.
F1 dx + F2 dy + F3 dz = dc/, an exact differential.

(b) F = (y2z3 cosx - 4x3z)i + 2z3y sinx j + (3y2z2 sinx - x4) k and Ox F is computed to be zero,
so that by part (a)

(y2z3 cosx -- 4x3z) dx + 2z3y sinx dy + (3y2z2 sinx - x4) dz = do

By any of the methods of Problem 12 we find 0 = y2z3 sinx -x4z + constant.

15. Let F be a conservative force field such that F = - VO . Suppose a particle of constant mass m
to move in this field. If A and B are any two points in space, prove that

(A) + 2mvA

f

0(B) + 2mvv

where vA and vB are the magnitudes of the velocities of the particle at A and B respectively.
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d2r dr
=

dr d2r _ in d dr 2F = ma = m dt2 Then F.
dt 'n dt dt2 2 dt (dt)

Integrating,
fA

B

J
B

If F = -Vol F dr
A

Then 0(A) - 0(B) =

2
v2

B
- 2 mvA .A = 2 mVB

2 2

f B

2
2mvB

A

B
do = 95(A) - O(B)

2m A and the result follows.

O(A) is called the potential energy at A and 2 mv2 is the kinetic energy at A. The result states that
the total energy at A equals the total energy at B (conservation of energy). Note the use of the minus sign
in F = -VV .

16. If 0 = 2xyz2, F = xy i - z j + x2 k and C Is the curve x =t2, y = 2t, z = t3 from t = 0 to t = 1,

evaluate the line integrals (a)
C

dr, (b) F x dr.
C

(a) Along C,

dr = (2t i + 2j + 3t2 k) dt . Then

r

F- dr

2xyz2 = 2(t2)(2t)(t3)2 = 4t9,

= x i + y j + z k = t2 i + 2t j + t3 k, and

f1

t=0

I

4t9(2t i + 2j + 3t2 k) dt

1 1 1

= i 8t1O dt + j 8t9 dt + k 12t11 dt =
0 0

(b) Along C, F = xy t - z j + x2 k = 2t3 i - t3 1 + t4 k.

Then F x dr = (2t3 i - t3 j + t4 k) x (2t i + 2j + 3t2 k) dt

dt = [(-3t - 2t4) i + (2t'- 6t5) j + (4t3+ 2t4) k ] dt

('1 1 1

--4t5) dt + k (4t3+2t4) dt(and Fx dr = i J (-3t5-2t4) dt + j fo
C o

SURFACE INTEGRALS.

17. Give a definition of

i - 3j + 5k

A- n dS over a surface S in terms of limit of a sum.

S

Subdivide the area S into M elements of area ASo where p = 1,2,3,..., M . Choose any point Pp within
A So whose coordinates are (xp, yp, z,). Define A (xp, yp, z p) = A. Let no be the positive unit normal to
AS at P. Form the sum
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M

Ap np ASp

where Ap n p is the normal component
of Ap at Pp.

Now take the limit of this sum as
M--a in such a way that the largest di-
mension of each A Sp approaches zero.
This limit, if it exists, is called the
surface integral of the normal compo-
nent of A over S and is denoted by

ff A n dS
S

z

18. Suppose that the surface S has projection R on the xy plane (see figure of Prob.17). Show that

ffA.nds = ffA.n%
S R

By Problem 17, the surface integral is the limit of the sum
M

(1) Ap.npAs

p=1

95

The projection of AS p on the xy plane is i (np A S p) k i or i n,- k i ASP which is equal to p y p

gypso that AS = p Thus the sum (1) becomes
p

(2)

M
AXP An

p=1

By the fundamental theorem of integral calculus the limit of this sum as M-oo in such a manner that
the largest Ax

P
and Dyp approach zero is

dx dy

A.n in-ki

and so the required result follows.
R

Strictly speaking, the result ASp = np Ay p is only approximately true but it can be shown on closer
p k 1

examination that they differ from each other by infinitesimals of order higher than Ax p Ayp , and using this
the limits of (1) and (2) can in fact be shown equal.

19. Evaluate A. n dS, where A = 18z i - 12 j + 3y k and S is that part of the plane

S

2x+3y+6z = 12 which is located in the first octant.

The surface S and its projection R on the xy plane are shown in the figure below.
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z

From Problem 17,

2i+3j+6k
22+ 32+ 62

J'f A n

R

dx dy
In-k(

To obtain n note that a vector perpendicular to the surface 2x +3y +6z = 12 is given by V(2x+3y+6z) _
2i + 3j + 6k (see Problem 5 of Chapter 4). Then a unit normal to any point of S (see figure above) is

n =

Thus n k

II

7i + 7j + 7k

(7i + 7 j + 7 k) k =
7

and so 1dn- k y -
fi

dx dy .

2 3i . 6 36z-36+18y 36- 12x
Also

7 7

using the fact that z = 12 - 6 - 3y
from the equation of S. Then

ffA.ndS = ff A-n In-kJ If
S R R

(36 712x )
S
7 dx dy = ff (6 - 2x) dx dy

R

To evaluate this double integral over R, keep x fixed and integrate with respect to y from y= 0 (P in

the figure above) to y = 12 3 2x (Q in the figure above); then integrate with respect to x from x= 0 to

x = 6. In this manner R is completely covered. The integral becomes

(6- 2x) dy dx
6

x=0 y=O x=0

(24 - 12x + 32) dx = 24

If we had chosen the positive unit normal n opposite to that in the figure above, we would have obtained
the result -- 24 .

20. Evaluate I I A-n dS , where A = z i + x j - 3y2 z k and S is the surface of the cylinder

S

x2 +y2 = 16 included in the first octant between z = 0 and z = 5 .

6 5(12_2x)/3

Project S on the xz plane as in the figure below and call the projection R. Note that the projection of
S on the xy plane cannot be used here. Then



VECTOR INTEGRATION

n
dzff dS = ff

A normal to x2+y2 = 16 is V(x2+y2) = 2xi+2yj.
Thus the unit normal to S as shown in the adjoining
figure, is

n
2xi+2yj xi+yj

V'r(2x + (2y)2
4

since x2+y2 = 16 on S.

(zi+xj-3yzk)
xi4+yj,j = 4.

Then the surface integral equals

ffxz;xYddz =
Y

R

4 (xz + xy)

xz + x) dx dz
16--x2

(x i +y j}
4

z=0 x=0

5

z= O

(4z+8)dz = 90

21. Evaluate On dS where 0 =
8

xyz and S is the surface of Problem 20.

S

We have
A dz

=
ffn

jJI
n

R

ffcbndS
S

Using n = x i 4 y n j =
4

as in Problem 20, this last integral becomes

ffxz(xi+Yi) dxdz
8

R z=O x=0

3

8

(x2z i + xz 16-x2 j) dx dz

(34zi + 34zj)dz = 1001 + 100j

97

22. If F = yi + (x - gxz) j - xy k , evaluate ff (VxF) n dS where S is the surface of the sphere

x2+y2+z2 = a2 above the xy plane.

i j k

VxF = a a a
ax ay az

y x - 2xz --xy

S

= xi+yj-2zk

A normal to x2 + y2 + z2 = a2 is

V(x2+y2+z2) = 2x1 + 2yj + 2zk
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Then the unit normal n of the figure above is given by

n =

since x2 + y2 + z2 = a2.

2xi+2yj+2zk xi+yj+zk
4x2 + 4y2 + 4z2 a

The projection of S on the xy plane is the region R bounded by the circle x2 +y2 = a2, z=0 (see fig-
ure above). Then

r(VxF).n dS = ff(VxF).nfJ
S R

I f(xi+yj-2zk).(xi+yaj+zk)
dxdy

z1a
R

Ira a

a2-x2-y2

x=-a
dy dx

using the fact that z = a2-x2-y2. To evaluate the double integral, transform to polar coordinates (p,o)
where x = p cos o, y = p sin 0 and dy dx is replaced by p dp do. The double integral becomes

(' 27 a
3p

2 - 2a2

p
2-7r

J dp df a2_p2

ja
0=0 p =0 =0 p=0

0=0 p=0

f277

J
(k=0

3 (p2 - a2) +a2 dp dp
V/a2-p2

2

(-3p/a2-p2 + a2
p

p
2) dp do

[(a2_p2)3/2 - a2 Va `p` ;=i do

5217
_ (a3-a3) do = 0

23. If F = 4xz i - y2 j + yz k , evaluate F- n dS

S
where S is the surface of the cube bounded by x = 0,
x=1, y=0, y=1, z=0, z=1.

FaceDEFG: n=i, x=l. Then
1 1

J F- n dS = (4z1 - y2 j + yz k) i dy dzfj
DEFG

_ /'i 1

J J 4z dy dz = 2
0 0
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Face ABCO: n = - i, x = 0. Then

ff F n dS fT0 0

(-y2 j + yz k) . (- i) dy dz = 0

ARCO

Face ABEF: n = j, y = 1. Then

ff F. n dS
ABEF

(4xzi - j + z k) . j dx dz

Face OGDC: n = -j, y= 0. Then

1

) (-j) dx dz 0ff F- n dS = ff (4xzi
OGDC

Face BCDE: n = k, z = 1. Then

ff(4x1_y2i+Yk).kdxdYffF.ndS =
o

BCDE

Face A FGO: n=-k, z = 0. Then

0

ffF.nds ff= J (-y2

Adding, J'J"F.ndS = 2 + 0 + (-1) + 0 +
S

2 + 0

99

-dxdz = -1

Y dx dy 2

24. In dealing with surface integrals we have restricted ourselves to surfaces which are two-sided.
Give an example of a surface which is not two-sided.

Take a strip of paper such as ABCD as shown in A

the adjoining figure. Twist the strip so that points A and B

B fall on D and C respectively, as in the adjoining fig-
ure. If n is the positive normal at point P of the surface,
we find that as n moves around the surface it reverses
its original direction when it reaches P again. If we
tried to color only one side of the surface we would find
the whole thing colored. This surface, called a Moebius
strip, is an example of a one-sided surface. This is
sometimes called a non-orientable surface. A two-sided
surface is orientable.

VOLUME INTEGRALS

C

A D
D

25. Let q = 45x2 y and let V denote the closed region bounded by the planes 4x + 2y + z = 8, x = 0 ,

y = 0, z = 0. (a) Express fff 0 dV as the limit of a sum. (b) Evaluate the integral in (a).

V
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(a) Subdivide region V into M cubes having volume
AVk

= kAyk Azk k = 1, 2, ... , M as indicated
in the adjoining figure and let (xk, yk, zk) be a
point within this cube. Define p (xk, yk, zk)
qk. Consider the sum

M

(1) OkAVk
k=1

taken over all possible cubes in the region.
The limit of this sum, when M--c in such a
manner that the largest of the quantities Auk
will approach zero, if it exists, is denoted by

fff 0 dV. It can be shown that this limit

V

is independent of the method of subdivision if
is continuous throughout V.

2

In forming the sum (1) over all possible cubes in the region, it is advisable to proceed in an order-
ly fashion. One possibility is to add first all terms in (1) corresponding to volume elements contained
in a column such as PQ in the above figure. This amounts to keeping xk and yk fixed and adding over
all zk's. Next, keep xkfixed but sum over all yk's. This amounts to adding all columns such as PQ
contained in a slab RS, and consequently amounts to summing over all cubes contained in such a slab.
Finally, vary xk. This amounts to addition of all slabs such as RS.

In the process outlined the summation is taken first over zk's then over yk's and finally over xk's .
However, the summation can clearly be taken in any other order.

(b) The ideas involved in the method of summation outlined in (a) can be used in evaluating the integral.
Keeping x and y constant, integrate from z = 0 (base of column PQ) to z = 8-4x - 2y (top of column
PQ). Next keep x constant and integrate with respect to y. This amounts to addition of columns having
bases in the xy plane (z = 0) located anywhere from R (where y = 0) to S (where 4x+2y = 8 or y = 4 - 2x),
and the integration is from y = 0 to y = 4 - 2x. Finally, we add all slabs parallel to the yz plane, which
amounts to integration from x = 0 to x = 2. The integration can be written

f2

5
4-2x 8-4x-2y 2 4-2x

f 45x2y dz dy dx 45 r
J

X=0 y=0 z=0 x=o y=o

x2y(8-4x-2y) dydx

2

45 J 3x2(4 - 2x )3 dx = 128

x=0

Note: Physically the result can be interpreted as the mass of the region V in which the density
varies according to the formula = 45z y .

26. Let F = 2xz i - x j + y2k . Evaluate fff F dV where V is the region bounded by the sur-

faces x=O, y=0, y=6, z=x2, z=4.
V

The region V is covered (a) by keeping x and y fixed and integrating from z = x2 to z = 4 (base to top of
column PQ), (b) then by keeping x fixed and integrating from y = 0 to y= 6 (R to S in the slab), (c) finally
integrating from x = 0 to x = 2 (where z = x2 meets z = 4). Then the required integral is



VECTOR INTEGRATION

f2561
x=0 y=0 z=x2

6 4 2 (' 6 42 6 4

= i 2xz dz dy dx - i
2f f f2 x dz dy dx + k J J 2 y2 dz dy dxo J J J2J J0 O x 0 O x 0 O x

= 128i - 24i + 384k

101

27. Find the volume of the region common to the intersecting cylinders x2+y2 =a2 and x2+z2 = a2 .

11

x

Required volume = 8 times volume of region shown in above figure

8

(2xzi-xj +y2k)dzdydx

f a a vra2- X2

J
x=0 y=0 z=0

fa
I

a2-x2

dz dy dx

a2-x2 dy dx

x=0 Y=O

= 8 (a2--x2) dx 16a3
3
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SUPPLEMENTARY PROBLEMS
('4

28. If R(t) = (3t2-t) i + (2- 6t) j - 4t k , find (a) R(t) dt and (b) J R(t) dt.
2

Ans. (a) (t3--.t2/2)i + (2t-3t2)j - 2t2 k + c (b) 50i - 32j - 24k

(' Tr/2
29. Evaluate f (3 sin u i + 2 cos u j) du Ans. 3i + 2j

0

2 2

30. If A(t) = t i - t2 j + (t - 1) k and B(t) = 2t2 i + 6t k, evaluate (a) J A- B dt, (b) Ax B dt.
4 J0

Ans. (a) 12 (b) - 24 i - 43 i + 564 k

2 2

31. Let A = t i - 3j + 2t k, B =i- 2j +2k, C =3i + t j - k. Evaluate (a) r A BxC dt, (b) Ax(BxC) dt.
.J1 z

Ans. (a) 0 (b)-82i-43j+ 2k

32. The acceleration a of a particle at any time t > 0 is given by a = e-ti - 6(t + 1) j + 3 sin t k. If the veloc-
ity v and displacement r are zero at t= 0, find v and r at any time.
Ans. v = (1 - e-t)i - (3t2+6t)j + (3 - 3 cost)k, r = (t- 1 +e t)t - (t3+3t2)j + (3t-3 sint)k

33. The acceleration a of an object at any time t is given by a = -g j, where g is a constant. At t = 0 the ve-
locity is given by v = vo cos 60 i + vo sin Bo j and the displacement r = 0. Find v and r at any time t > 0.
This describes the motion of a projectile fired from a cannon inclined at angle 60 with the positive x-axis
with initial velocity of magnitude vo.
Ans. v = v0cos601 + (vosin60-gt)j, r = (v0cos60)t i + [(vosin60)t - Zgt2]j

34. Evaluate I3 A dA dt if A(2) = 21 -- j + 2k and A(3) = 4i - 2j + 3k . Ans. 10
2

35. Find the areal velocity of a particle which moves along the path r = a cos we i + b sin cot j where a,b,co
are constants and t is time. Ans. 2abw k

36. Prove that the squares of the periods of planets in their motion around the sun are proportional to the cubes
of the major axes of their elliptical paths (Kepler's third law) .

37. If A = (2y +3) i + xz j + (yz -x) k , evaluate f A- dr along the following paths C:

(a) x = 2t2, y = t, z = t3 from t=0 to t = 1,
C

(b) the straight lines from (0,0,0) to (0,0,1), then to (0,1,1), and then to (2,1,1),
(c) the straight line joining (0,0,0) and (2,1,1).
Ans. (a) 288/35 (b) 10 (c) 8

r
38. If F = (5xy --- 6x2) i + (2y - 4x) j , evaluate J F dr along the curve C in the xy plane, y = x 3 from the

Cpoint (1,1) to (2,8). Ans. 35

39. If F = (2x +y) i + (3y -x) j , evaluate f F dr where C is the curve in the xy plane consisting of the
C

straight lines from (0,0) to (2,0) and then to (3,2). Ans. 11

40. Find the work done in moving a particle in the force field F = 3x2 i + (2xz -y) j + z k along
(a) the straight line from (0,0,0) to (2,1,3).
(b) the space curve x = 2t2, y = t, z = 4t2- t from t = 0 tot=1.
(c) the curve defined by x2= 4y, 3x3=8z from x = 0 to x=2.
Ans. (a) 16 (b) 14.2 (c) 16
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41. Evaluate f F. dr where F = (x - 3y) i + (y - 2x) j and C is the closed curve in the xy plane, x = 2 cos t,
C

y = 3 sin t from t = 0 to t = 271. Ans. 671, if C is traversed in the positive (counterclockwise) direction.

42. If T is a unit tangent vector to the curve C, r = r(u), show that the work done in moving a particle in a force

field F along C is given by r F. T ds where s is the arc length.

43. If F = (2x +y2) i + (3y -4x) j , evaluate F dr around the triangle C of Figure 1, (a) in the indicated
fc

direction, (b) opposite to the indicated direction. Ans. (a) - 14/3 (b) 14/3

(2,1)

01
(2,0)

x

Fig. 1 Fig. 2

dr around the closed curve C of Fig. 2 above if A = (x - y) i + (x +y) j . Ans. 2/344. Evaluate fr' A

45. If A = (y - 2x) i + (3x + 2y) j , compute the circulation of A about a circle C in the xy plane with center at
the origin and radius 2, if C is traversed in the positive direction. Ans. 871

-dr is independent of the curve C joining46. (a) If A = (4xy-3x2z2)i + 2x2j - 2x3zk, prove that fc A
two given points. (b) Show that there is a differentiable function 4 such that A = Vo and find it.
Ans. (b) 0 = 2x2y - x3 z2 + constant

47. (a) Prove that F = (y2 cos x + z3) i + (2y sin x - 4) j + (3xz2 + 2) k is a conservative force field.
(b) Find the scalar potential for F.
(c) Find the work done in moving an object in this field from (0,1,-1) to (71/2,-1, 2).
Ans. (b) = y2 sinx + xz3 - 4y + 2z + constant (c) 15 + 47T

4
48. Prove that F = r2r is conservative and find the scalar potential. Ans. = 4 + constant

49. Determine whether the force field F = 2xz i + (x2-y) j + (2z -x2) k is conservative or non-conservative.
Ans. non-conservative

50. Show that the work done on a particle in moving it from A to B equals its change in kinetic energies at
these points whether the force field is conservative or not.

A dr along the curve x2 +y2 = 1, z =1 in the positive direction from (0,1,1) to (1,0,1) if51. Evaluate fc

A = (yz+2x)i +xzj + (xy+2z)k. Ans. 1

52. (a) If E = r r, is there a function 0 such that E _ _V ? If so, find it. (b) Evaluate 5 E dr if C is any
3

simple closed curve. Ans. (a) + constant (b) 0
C

253. Show that (2x cosy + z sin y) dx + (xz cosy - x sin y) dy + x sin y dz is an exact differential. Hence
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solve the differential equation (2x cosy + z sin y) dx + (xz cosy - x2 sin y) dy + x sin y dz = 0.
Ans. x2 cosy + xz sin y = constant

54. Solve (a) (e -Y + 3x2 y2) dx + (2x3 y - xe-Y) d y = 0,

(b) (z - e-xsiny) dx + (I + e-xcosy) dy + (x-8z) dz = 0.
Ans. (a) xe-y + x3y2 = constant (b) xz + e-x siny + y - 4z2 = constant

55. If = 2xy2z + x2y , evaluate f 4) dr where C
C

(a) is the curve x = t, y= t2, z = t3 from t=0 to t=1
(b) consists of the straight lines from (0,0,0) to (1,0,0), then to (1,1,0), and then to (1,1,1).

Ans. (a) 45 i + 15 j + 77 k (b)
2

j + 2k

56. If F = 2y i - z j + x k , evaluate f F x dr along the curve x =cost, y = sin t, z = 2 cos t from t=0
C

to t=7T/2. Ans. (2 - 4)i + (7T- z)j

57. If A = (3x + y) i - x j + (y - 2) k and B = 2i - 3j + k , evaluate fc (A x B) x dr around the circle in the

xy plane having center at the origin and radius 2 traversed in the positive direction. Ans. 47T(7i+3j)

58. Evaluate fJ A- n dS for each of the following cases.

S
(a) A = y i + 2x j - z k and S is the surface of the plane 2x +y = 6 in the first octant cut off by the plane

z =4.
(b) A = (x +y2) i - 2x j + 2yz k and S is the surface of the plane 2x + y + 2z = 6 in the first octant.
Ans. (a) 108 (b) 81

59. If F = 2y i -- z j + x2 k and S is the surfaceof the parabolic cylinder y2= 8x in the first octant bounded

by the planes y = 4 and z = 6, evaluate ffF.ndS. Ans. 132

S

60. Evaluate f f dS over the entire surface S of the region bounded by the cylinder x2+z2 = 9, x =0,

3
Y=O, z=0 and y=8, if A = 6zi + (2x +y) j - x k . Ans. 187T

61. Evaluate J'J r n dS over: (a) the surface S of the unit cube bounded by the coordinate planes and the

S

planes x = 1, y = 1, z = 1; (b) the surface of a sphere of radius a with center at (0,0,0).
Ans. (a) 3 (b) 47Ta3

62. Evaluate ff A. n dS over the entire surface of the region above the xy plane bounded by the cone

S
z2 = x2+y2 and the plane z =4, if A = 4xz i + xyz2 j + 3z k . Ans. 3207T

63. (a) Let R be the projection of a surface S on the xy plane. Prove that the surface area of S is given by

iff 1 + ()+ ()dx dy if the equation for S is z = f (x, y) .
v Y

R
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('
(az 2 + (aF)2 + (F)2

(b) What is the surface area if S has the equation F(x,y,z)=0? Ans. y

aF
dxdy

R az

64. Find the surface area of the plane x + 2y + 2z = 12 cut off by : (a) x = 0, y = 0, x = 1, y = 1; (b) x = 0, y = 0,
and x2+y2 = 16. Ans. (a) 3/2 (b) 677

65. Find the surface area of the region common to the intersecting cylinders x2+Y 2 = a2 and x2 + z2 = a2 .

Ans. 16a2

66. Evaluate (a) ff(VxF).n dS and (b) ff 0 n dS if F = (x + 2y) i - 3z j + x k , = 4x +3y -2z,

S S

and S is the surface of 2x +y + 2z = 6 bounded by x = 0, x = 1, y = 0 and y = 2.
Ans. (a) 1 (b) 2i + j + 2k

67. Solve the preceding problem if S is the surface of 2x +y + 2z = 6 bounded by x = 0, y = 0, and z = 0 .
Ans. (a) 9/2 (b) 72i + 36j + 72k

68. Evaluate x2+y2 dxdy over the region R in the xy plane bounded by x2+y2 = 36. Ans. 14477

R

69. Evaluate fff(2x+y) dV, where V is the closed region bounded by the cylinder z = 4-x2 and the

V

planes x = 0, y = 0, y=2 and z=0. Ans. 80/3

70. If F = (2x2-3z)i - 2xyj - 4xk, evaluate (a) fffV.F dV and (b) ffJ'vx F dV, where V is

V V

the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x +2y +z = 4. Ans. (a) 3 (b) 3 (j-k)



THE DIVERGENCE THEOREM OF GAUSS states that if V is the volume bounded by a closed sur-
face S and A is a vector function of position with con-

tinuous derivatives, then

fffv. A dV =

Y

ffA. n dS

S

where n is the positive (outward drawn) normal to S.

3

STOKES' THEOREM states that if S is an open, two-sided surface bounded by a closed, non-inter-
secting curve C (simple closed curve) then if A has continuous derivatives

JA.dr = ff(vxA).nds
c

ffvxA) . ds

S

where C is traversed in the positive direction. The direction of C is called positive if an observer,
walking on the boundary of S in this direction, with his head pointing in the direction of the positive
normal to S, has the surface on his left.

GREEN'S THEOREM IN THE PLANE. If R is a closed region of the xy plane bounded by a simple
closed curve C and if M and N are continuous functions of x

and y having continuous derivatives in R, then

M dx + N dy = (ax - ate) dx dy
it,

where C is traversed in the positive (counterclockwise direction. Unless otherwise stated we shall
always assume f to mean that the integral is described in the positive sense.

Green's theorem in the plane is a special case of Stokes' theorem (see Problem 4). Also, it is
of interest to notice that Gauss' divergence theorem is a generalization of Green's theorem in the
plane where the (plane) region R and its closed boundary (curve) C are replaced by a (space) region
V and its closed boundary (surface) S. For this reason the divergence theorem is often called Green's
theorem in space (see Problem 4).

Green's theorem in the plane also holds for regions bounded by a finite number of simple
closed curves which do not intersect (see Problems 10 and 11).

R
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RELATED INTEGRAL THEOREMS.

1. + (v0) (vq)] dV = ff(c5v).ds
Y S

This is called Green's first identity or theorem.

2. fff(o V'O) d V

Y

(Ova.- vth) . ds

3

This is called Green's second identity or symmetrical theorem. See Problem 21.

3. fffVx A dV = ff(n x A) dS = ffds x A

V 3 S

Note that here the dot product of Gauss' divergence theorem is replaced by the cross product.
See Problem 23.

4. 0J'cir
C

fJ'(nxV)dS =

3

ffds x Vth

S

5. Let represent either a vector or scalar function according as the symbol o denotes a dot or
cross, or an ordinary multiplication. Then

fffv o qjdV = fn o qj d5 = ffds o qj

V 3 3

A o J'f(nxV) o i dS = J'fcdSxV) o f

C 3 3

Gauss' divergence theorem, Stokes' theorem and the results 3 and 4 are special cases of these.
See Problems 22, 23, and 34 .

INTEGRAL OPERATOR FORM FOR v. It is of interest that, using the terminology of Problem 19,
the operator V can be expressed symbolically in the form

vo Av 1

oAV
d 0

'AS

where o denotes a dot, cross or an ordinary multiplication (see Problem 25). The result proves use-
ful in extending the concepts of gradient, divergence and curl to coordinate systems other than rec-
tangular (see Problems 19, 24 and also Chapter 7).
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SOLVED PROBLEMS

GREEN'S THEOREM IN THE PLANE

1. Prove Green's theorem in the plane if C is a closed
curve which has the property that any straight line
parallel to the coordinate axes cuts C in at most two
points.

Let the equations of the curves AEB and AFB (see
adjoining figure) be y = Yj(x) and y =Y2(x) respectively.
If R is the region bounded by C, we have

aM dx d y =
Y

1b[ fY2(x)

J
=a =Y

DM M dy I dx =

fb

x=a

Y

f

e

0 a

M(x,y) I Y2(x) dx

y=YY(x)

b

fM(Y)
a

- J M(x,YY) dx - dx = - 5 M dx
a b C

Then (1) 5Mdx =

C

M dxdya,yJJ a
R

fb

a

b
x

[M(xY2) - M(x,Yi) dx

Similarly let the equations of curves EAF and EBF be x =X1(y) and x =X2(y) respectively. Then

JJ ax dxdy

R
f f X2(Y) aN ('f

f ax
dx dy J N(X2,y) N(Xl,Y) dY

yx=X1(y) e

fN(x)dy + fN(X2.Y)d7 = if N dy
f e C

Then (2) 5 N dy = ffdxdy
f-

R

Adding (1) and (2), + N dy = ff(aN- M ) dx dy .jMdx
ax aC R Y

2. Verify Green's theorem in the plane for

5 (xy +y2) dx + x2 dy where C is the

closed curve of the region bounded by
y =x and y =x2.

y=x and y =x2 intersect at (0,0) and (1,1).
The positive direction in traversing C is as
shown in the adjacent diagram.
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Along y = x2, the line integral equals

LI
(x) (x2) + x4) dx + (x2) (2x) dx =

Along y = x from (1,1) to (0,0) the line integral equals

I

ft0
(3x3 + x4) dx

19

20

0

(W (x) +x2) dx + x2 dx

fO
2 dx = -13x

Then the required line integral = 20 - 1

ff aN aM
(ax -aM dxdy =

I

ff(x_27)dxd7
f fX_YX- +

R x== 0 y=x2

I fXf (x - 2y) dy I dx
2

t x
(xY -Y2) 2 dx

0 x 0

ft

J
0

so that the theorem is verified.

(x4 - x3) dx 1

20

3. Extend the proof of Green's theorem in the plane
given in Problem 1 to the curves C for which lines
parallel to the coordinate axes may cut C in more
than two points. -

Consider a closed curve C such as shown in the ad-
joining figure, in which lines parallel to the axes may
meet C in more than two points. By constructing line ST
the region is divided into two regions R. and R2 which are
of the type considered in Problem 1 and for which Green's
theorem applies, i.e.,

(1) fMdx+Ndy
STUS

ff (ax - aM)dxdy
Y

(2) f Mdx + N dy = ff (aN - EM-) dxdy

Y
SVTS R2

0

Adding the left hand sides of (1) and (2), we have, omitting the integrand Mdx + N dy in each case,

f+f+f+f
STUS SVTS ST TUS SVT TS

using the fact that f= - J
ST TS

1

20

[ -x (x2) -- y (xy + y2) ] dx dy

R R

=f+f f
TUS SVT TUSVT

109

x

Adding the right hand sides of (1) and (2), omitting the integrand,
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ff + ff
R1 R2

where R consists of regions R1 and R2.

ff

Then Mdx +Ndy = ff(iaz aM) dx dy and the theorem is proved.
Y

T USVT R

A region R such as considered here and in Problem 1, for which any closed curve lying in R can be
continuously shrunk to a point without leaving R, is called a simply-connected region. A region which is
not simply-connected is called multiply-connected. We have shown here that Green's theorem in the plane
applies to simply-connected regions bounded by closed curves. In Problem 10 the theorem is extended to
multiply-connected regions.

For more complicated simply-connected regions it may be necessary to construct more lines, such as
ST, to establish the theorem.

4. Express Green's theorem in the plane in vector notation.

We have Mdx + Ndy = (Mi+Nj). (dx i + dyj) = A = Mi + Nj and
that dr = dx i + dy j .

Also, if A = Mi + Nj then

Vx A

i j k

a a a
ax ay az
M N 0

so that (`7 x A) k = aN _ aM
ax ay

` az i + aM' + (ax

aM) k
Y

Then Green's theorem in the plane can be written

where dR = dx dy .

5A.dr =

C

ff (Vx A) - k dR
R

r=xi+yj so

A generalization of this to surfaces S in space having a curve C as boundary leads quite naturally to
Stokes' theorem which is proved in Problem 31.

Another Method.

As above, Mdx f Ndy = A - dr = A. L ds = A-T ds,

where d = T = unit tangent vector to C (see adjacent fig-

ure). If n is the outward drawn unit normal to C, then T = kx n
so that

Mdx +Ndy = A- T ds = A (k x n) ds = (A x k) n ds

Since A = Mi + Nj, B = Ax k = (MI +Nj) x k = Ni-Mj and

aN -am = V. B. Then Green's theorem in the plane becomesax `ay

fffn
R

0
x

where dR = dx dy.
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Generalization of this to the case where the differential arc length ds of a closed curve C is replaced by
the differential of surface area dS of a closed surface S, and the corresponding plane region R enclosed by
C is replaced by the volume V enclosed by S, leads to Gauss' divergence theorem or Green's theorem in
space.

ff fffv.Bdv
S V

5. Interpret physically the first result of Problem 4.

If A denotes the force field acting on a particle, then fe A dr is the work done in moving the particle

around a closed path C and is determined by the value of Vx A. It follows in particular that if Vx A = 0 or
equivalently if A = V0, then the integral around a closed path is zero. This amounts to saying that the work
done in moving the particle from one point in the plane to another is independent of the path in the plane
joining the points or that the force field is conservative. These results have already been demonstrated for
force fields and curves in space (see Chapter 5).

Conversely, if the integral is independent of the path joining any two points of a region, i.e. if the
integral around any closed path is zero, then Vx A = 0. In the plane, the condition Vx A = 0 is equivalent to

the condition aM = aN where A = Mi + Nj.
Y

(' (2,1)
6. Evaluate J (10x4 - 2xy3) dx - 3x2y2 dy along the path x4 - 6xy3 = 4y2.

(0, 0)

A direct evaluation is difficult. However, noting that M = l0x4 -- 2xy3 , N = - 3x2y2 and aM = - 6xy2
Y= ax , it follows that the integral is independent of the path. Then we can use any path, for example the

path consisting of straight line segments from (0,0) to (2,0) and then from (2,0) to (2,1).
2

Along the straight line path from (0,0) to (2,0), y = 0, dy = 0 and the integral equals f 10x4 dx = 64.
x=0

Along the straight line path from (2,0) to (2,1), x = 2, dx = 0 and the integral equals

Then the required value of the line integral = 64 - 4 = 60.

Another Method.

a a

I'
y=0

- 12y2 d y = -4.

Since aM = , (10x4 - 2xy3) dx - 3x2y2 dy is an exact differential (of 2x5 -x2y3). Thenz
(2,1) (2,1)

(10x4 -2xy3) dx - 3x2y2 dy J d (2x5 -x2y3)
(0, 0) (0, 0)

7. Show that the area bounded by a simple closed curve C is given by

In Green's theorem, put M = -y, N = x . Then

f x dy - y dx ff (a (x) - ay (-y)) dx dy =

R

where A is the required area. Thus A = 2 xdy - ydx.

2x5 - x2y3 I
(2,1)

= 60
(0.0)

2 J'xdy - ydx.
. C

2f dxdy 2A

R
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8. Find the area of the ellipse x = a cos 6, y = b sin 6.

Area = kfxdy_ydx =

r 277

`22 J (a cos 6) (b cos O) dO - (b sin 8) (-a sin 6) dO
0

27r 277fab (cos26 + sin28) dO = Zfab dO =i

9. Evaluate (y-sinx)dx + cosx dy, where C is the
C

triangle of the adjoining figure:
(a) directly,
(b) by using Green's theorem in the plane.

(a) Along OA, y = 0, dy = 0 and the integral equals

fo 0

cos x

IT/2 1r/2

(0 - sinx)dx + (cosx)(0) = f - sinx dx

177/2

=0 -1

Along AB, x = LT, dx = 0 and the integral equals

(y-1)0 + Ody = 0

Along BO, y = ,

f 0

(2x-sinx)dx
2 77

dy = 2.dx and the integral equals

77ab

+
7T

cos x dx = (- + cos x +
77

sinx)
10/2

= 1 - 4 - 2

Then the integral along C = -1 + 0 + 1 - 77 - 2 = - 77 - 2
4 77 4 77

1

(b) M = y - sinx, N = cosx, az = - sinx, 'am =1 and
y

Mdx+Ndy = ff(ax - aM)dxdy =
y

R

7T/2 [12x/17

X=0 y=0

R

ff (- sin x

(- sinx - 1) dy dx

17/2

= J (- k sin x - 2) dx =
0

2x /n
(-y sinx - y)'0 dx

2 17/2

?(-xcosx+sinx)-x I =
2 77

7T 77 0 77 4

in agreement with part (a).

Note that although there exist lines parallel to the coordinate axes (coincident with the coordi-
nate axes in this case) which meet C in an infinite number of points, Green's theorem in the plane still
holds. In general the theorem is valid when C is composed of a finite number of straight line segments.

10. Show that Green's theorem in the plane is also valid for a multiply-connected region R such as
shown in the figure below.

- 1) dydx

The shaded region R, shown in the figure below, is multiply-connected since not every closed curve
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lying in R can be shrunk to a point without leaving
R. as is observed by considering a curve surrounding
DEFGD for example. The boundary of R, which con-
sists of the exterior boundary AHJKLA and the inte-
rior boundary DEFGD, is to be traversed in the pos-
itive direction, so that a person traveling in this di-
rection always has the region on his left. It is seen
that the positive directions are those indicated in the
adjoining figure.

In order to establish the theorem, construct a
line, such as AD, called a cross-cut, connecting the
exterior and interior boundaries. The region bounded
by ADEFGDALKJHA is simply-connected, and so
Green's theorem is valid. Then

Mdx + Ndy I (ax
aM) dx dy

y
ADEFGDALKJHA R

But the integral on the left, leaving out the integrand, is equal to

x

f + I + f + ! - I + I
AD DEFGD DA ALKJHA DEFGD ALKJHA

since fzD = -£A . Thus if C1 is the curve ALKJHA, C2 is the curve DEFGD

consisting of C1 and C2 (traversed in the positive directions), then fC + f2 =
1 C

Mdx + Ndy _3N -
ax

aM) dx dy
y

R
II

and C is the boundary of R

fc and so

11. Show that Green's theorem in the plane holds for the region R, of the figure below, bounded by
the simple closed curves C1(ABDEFGA) , C2 (HKLPH), Cs (QST UQ) and C4(V WX YV) .

Construct the cross-cuts AH, LQ and TV. Then the region bounded by AHKLQSTVWXYVTUQLPHA-
BDEFGA is simply-connected and Green's theorem applies. The integral over this boundary is equal to

11111 f+f+f+f+f+f+ I
AH HKL L Q QST TV VWXYV VT T (IQ QL LPH HA ABDEFGA

Since the integrals along AH and HA, LQ and QL, TV and VT cancel out in pairs, this becomes
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f+f
HKL QST

UL LPH QST TUQ

= f+f+f+ f
HKLPH QSTUQ VWXYV ABDEFGA

f+f+f
C3 C4 C1

where C is the boundary consisting of C1, C2, C3 and C4. Then

(S Mdx +Ndy =

C

as required.

+ f + f+ f+ f
VWXYV TUQ LPH ABDEFGA

f+ f + f+ r + f + f
J .1 J

VWXYV ABDEFGA

II
R

--
ax

aM) dx d y
y

12. Prove that Mdx + Ndy = 0 around every closed curve C in a simply-connected region if and

only if
7Y-

M = aN everywhere in the region.

Assume that M and N are continuous and have continuous partial derivatives everywhere in the region
R bounded by C, so that Green's theorem is applicable. Then

f Mdx + Ndy
C

If aM
axy

I f (ax - aM) dxdy
R

y

in R, then clearly f Mdx + Ndy = 0.
C

Conversely, suppose Mdx +Ndy = 0 for all curves C. If
ax -ay

> 0 at a point P, then
C y

-AUaN -from the continuit of the derivatives it follows thaty . ,a > 0 in some region A surrounding P. If
x y

I' is the boundary of A then

M dx + Ndy ff (ax
aM) dx dy > 0

y
A

which contradicts the assumption that the line integral is zero around every closed curve. Similarly the

assumption ax _ aM < 0 leads to a contradiction. Thus
ax

-- = 0 at all points.
y

aM _ aN
ay ax

is equivalent to the condition V x A = 0 where A = Mi + Nj

(see Problems 10 and 11, Chapter 5). For a generalization to space curves, see Problem 31.
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13. Let F - yi +xj
= x2 +y2 . (a) Calculate V x F . (b) Evaluate F A around any closed path and

explain the results.

i j

(a)VxF = a a a
ax ay az

-y x

x2+Y 2 x2 +y2
0

= 0 in any region excluding (0,0).

x2+ 2
Let x = p cos 0, y = p sin 0, where (p,o) are polar coordinates.(b) Fdr 5_ydx+xdyY

Then
dx

and so
-ydx +xdy y

x2 +y2 = do = d (arc tan x

For a closed curve ABCDA (see Figure (a) below) surrounding the origin, = 0 at A and = 27T

f2da fter a complete ccuit back to A. In this case the line integral equals 2.

Fig. (a ) Fig. (b)

For a closed curve PQRSP (see Figure (b) above) not surrounding the origin, o _ oo at P and
00

o _ 0o after a complete circuit back to P. In this case the line integral equals f do = 0 .

Since F = Mi + Nj, Vx F = 0 is equivalent to M = aN and the results would seem to contra-
ay

dict those of Problem 12. However, no contradiction exists since M = and N = x2 +y2 do
X T?

not have continuous derivatives throughout any region including (0,0), and this was assumed in Prob.12.

THE DIVERGENCE THEOREM

14. (a) Express the divergence theorem in words and (b) write it in rectangular form.

- p sin 0 do + d p cos 0, dy = p cos 0 do + dp sin 0

(a) The surface integral of the normal component of a vector A taken over a closed surface is equal to the
integral of the divergence of A taken over the volume enclosed by the surface.



116 DIVERGENCE THEOREM, STOKES' THEOREM, RELATED INTEGRAL THEOREMS

(b) Let A = Ali + A2j + Ask. Then div A = V.A = 2x1 + a2 + as 3
y

The unit normal to S is n = n1 i + n2 j + n3 k. Then n1 = n i = cos a, n2 = n j = cos 8 and
n3 = n k = cos y, where a,,8, y are the angles which n makes with the positive x, y, z axes or i,j, k
directions respectively. The quantities cos a, cos /3, cos y are the direction cosines of n. Then

A- n = (A1 i +A2j +A3k) (cos a i + cos,8 j + cos y k)

= Al cos a + A2 cos/3 + As cosy

and the divergence theorem can be written

fff (aA1 + dA2
+ -As) dx dy dz ff(Ai cos a + A2 cos,8 + As cosy) dS

V
ax ay az S

15. Demonstrate the divergence theorem physically.

Let A = velocity v at any point of a moving fluid. From Figure (a) below:

Volume of fluid crossing dS in At seconds

= volume contained in cylinder of base dS and slant height vAt

=

Then, volume per second of fluid crossing dS = v n dS

Fig. (a)

From Figure (b) above:

Fig. (b)

Total volume per second of fluid emerging from closed surface S

ff
S

From Problem 21 of Chapter 4, dV is the volume per second of fluid emerging from a volume ele
ment dV. Then

Total volume per second of fluid emerging from all volume elements in S

=
fffv.vdv

V

Thus J'f fff
V
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16. Prove the divergence theorem.

Let S be a closed surface which is such that any line parallel to the coordinate axes cuts S in at
most two points. Assume the equations of the lower and upper portions, S1 and S2, to be z = f1(x,y) and
z =f2(x,y) respectively. Denote the projection of the surface on the xy plane by R. Consider

fffdv
V

fff aA3 dz dy dx
az

V

f A3(x,y,z) Ifz f dy dx

R
ff [A3(x,y,f2) - A3(x,y,f1) ] dydx

R

For the upper portion S2, dydx = cos y2 dS2 = k. n2 dS2 since the normal n2 to S2 makes an acute
angle y2 with k.

For the lower portion S1, dydx = - cos y1 dS1 = - k n 1 dS1
tuse angle yi with k.

Then

and

ffAo(xyr2) dydx

R
ff A3(x,y,f1) dy dx

R

f2(x,y) aA3ff f az
R Lz=f1(x,y)

since the normal n1 to S1 makes an ob-

f As k n2
dS2

S2

ff As k.n1 dS1

Si

ffAnk.n2ds2
+

ffAsk.nidSi
S2 31

ffA2k.flds
S

so that

(1) fffdv = ffAk.flds
V S

ff A3(x,y,f2) dydx
R

ff As(x,y,f1) dydx =

R

Similarly, by projecting S on the other coordinate planes,
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(2)
fff-1dv

= ffAii.nds
V S

(3)
fj'f4_adv

= ffA2J.nds

V S

Adding (1), (2) and (3),

IffA1 + aA2 + aA3)dV
ax ay az

V

or fffv.Adv

ff(Aii +A2j dS

ffA.nds
V S

The theorem can be extended to surfaces which are such that lines parallel to the coordinate axes
meet them in more than two points. To establish this extension, subdivide the region bounded by S into
subregions whose surfaces do satisfy this condition. The procedure is analogous to that used in Green's
theorem for the plane.

17. Evaluate ff F. n dS, where F = 4xz i - y2 j + yz k and S is the surface of the cube bounded
S

by x =0, x=1, y=0, y=1, z=0, z=1.

By the divergence theorem, the required integral is equal to

fffv.Fdv = 1ff ax (4xz) + ay(-y2) + az(yz) dV

V V

= fff4Z_Y)dv
V

= f rJ

2z2 - yz
I
z_o dydx

x=o y=o z=o

(4z-y) dzdydx

f, fx=o y=o x=o y=o

(2-y) dydx = 3
2

The surface integral may also be evaluated directly as in Problem 23, Chapter 5.

18. Verify the divergence theorem for A = 4x i - 2y2 j + z2 k taken over the region bounded by
x2+y2 =4, z=0 and z=3.'

fffVolume integral fJ J V. A dV ax (4x) + (- 2y2) + (z2) dV

111 (4-4y+2z)dV
V

f2

x=--2

4-x2 3f (4-4y+2z) dz dydx = 847r

y 4-x2 z=0

The surface S of the cylinder consists of a base S1 (z = 0), the top S2 (z = 3) and the convex portion
S3 (x2 +y2 = 4). Then
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Surface integral = ffA.nds
S

ff A. n dS1 + ff A. n dS2 + ff A. n dS3

Si Sz

OnS1(z=o), n=-k, A=4xi-2y2j and so that ffA.n dS1 0.
S1

On S2 (z =3), n=k, A = 4xi -2y2j + 9k and 9, so that

ffA.n dS2 = 9 f dS2 = 3677, since area of S2 = 477

S2 S2

On S3 (x2 + y2 = 4). A perpendicular to x2 + y2 = 4 has the direction V(x2 + y2) = 2x i + 2y j .

Then a unit normal is n = 2 x i + 2y j
=

xi + y j since x2+ y2 = 4 .
4x'2+4y 2 2

A. n = ( 4 X -- 2 y 2 + z2
i +

k) . (
x

2 y J 2x2 - y3

dV=dxdydz

From the figure above, x = 2 cos 0, y = 2 sin 9, dS3 = 2 d6dz and so

ffA.ndso =

S3

7277f3

6=0 z=0

0=0

[2 (2 cos 6)2 - (2 sin 6}3 ] 2 dz d6

cos26 - 48 sin36) dO = cos26d6 = 48?r5(48 548
6=0

119

Then the surface integral = 0 + 3617 + 4877 = 8477, agreeing with the volume integral and verify-
ing the divergence theorem.

Note that evaluation of the surface integral over S3 could also have been done by projection of S3 on
the xz or yz coordinate planes.

19. If div A denotes the divergence of a vector field A at a point P, show that
dS

div A = lm
ffA.n
`

AV-.o AV
where AV is the volume enclosed by the surface AS and the limit is obtained by shrinking AV
to the point P.
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By the divergence theorem,

V

(axi + ayj5ff

ff dS

AS

By the mean-value theorem for integrals, the left side can be written

div A 5ff dV = 71v -A AV

AV

where div A is some value intermediate between the maximum and minimum of div A throughout AV. Then

ff
divA

AV

Taking the limit as AV-.0 such that P is always interior to AV, divA approaches the value div A at
point P ; hence

fffdiv A dV =

AV

ff
A = lim AS

AV

This result can be taken as a starting point for defining the divergence of A, and from it all the prop-
erties may be derived including proof of the divergence theorem. In Chapter 7 we use this definition to
extend the concept of divergence of a vector to coordinate systems other than rectangular. Physically,

ff
AS

AY

represents the flux or net outflow per unit volume of the vector A from the surface AS. If div A is positive
in the neighborhood of a point P it means that the outflow from P is positive and we call P a source. Sim-
ilarly, if div A is negative in the neighborhood of P the outflow is really an inflow and P is called a sink.
If in a region there are no sources or sinks, then div A = 0 and we call A a solenoidal vector field.

20. Evaluate jfr.n dS, where S is a closed surface.

S

By the divergence theorem,

ff r-n dS
S

V

where V is the volume enclosed by S.

3 f f f dV = 3V

V

21. Prove f/f(q5V2 q - q! V2(S) d V = ff(v q - & V o) dS .
V S

V

fff (ax + a + az) dV =
Y

Let A = q Vb in the divergence theorem. Then
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fff V. (vlj)dV
V

But

Thus

or

ffcqvii.n dS

S

V.(gvq) _ O(V.V) + (V).(vb) _

fffv.(v)dv =

V

(1)

fff «v,

V

ff(v).ds
S

OV20 + (VO) (V )

(VO) (V/)J dV

fff [Ov2 + (vO) (vo)) d V ff(v).dS
V S

which proves Green's first identity. Interchanging 0 and /i in (1),

(2)
fff [&v2( + (V dV = ff(v).ds

V S

Subtracting (2) from (1), we have

(3)
fff (q5v2b -- V2O) dV = ff(v a -

V S

which is Green's second identity or symmetrical theorem. In the proof we have assumed that 0 and
scalar functions of position with continuous derivatives of the second order at least.

22. Prove jffvc) dV = ff 0 n dS.
V S

In the divergence theorem, let A = OC where C is a constant vector. Then

fffv.(C)dv = ffc.nds
V S

Since and

f/fC.V dV = ffC.nds
V S

Taking C outside the integrals,

'C.J+f vO dV co JfOndS
V S

and since C is an arbitrary constant vector,

fffvc dV ffnds
V S

q are

23. Prove fffvxBdV =
n

x B dS.

V 3
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In the divergence theorem, let A = B x C where C is a constant vector. Then

fffv.Bxcdv =

V

ffBxc.n dS

S

(Cxn) _ (Cxn) BSince V. (BxC) = C (VxB) and (BxC) n = Bffc.nxBds

fffc.vxBdv =

V S

Taking C outside the integrals,'

CfJfOxBdV = C J J nxBdS
V S

and since C is an arbitrary constant vector,

24. Show that at any point P

fffvxBdv =

V

ffnx B dS

S

C (nxB),

ffnds ffnx AdS

(a) V lim AS and (b) V x A = lim
AS

A7-0 AV A7-0 AV

where AV is the volume enclosed by the surface AS, and the limit is obtained by shrinking AV
to the point P.

(a) From Problem 22, fffvci dV = ffn dS. Then fffvc i dV = ffct'n.i dS.

AV AS AV AS

Using the same principle employed in Problem 19, we have

ffqn.i dS
LAS

AV

where VV i is some value intermediate between the maximum and minimum of V (k i throughout AV.
Taking the limit as in such a way that P is always interior to AV, VV i approaches the value

ffctn.ids

(1)
V

t ov
S

HA7-0 AV

Similarly we find

(2)

(3)

7o. j
ff dS

lim
S

AY-0 AV

ffcbn.kds
lim S

AV
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Multiplying (1), (2), (3) by i, j, k respectively, and adding, using

Ocp = (V(t.j)j + n =

(see Problem 20, Chapter 2) the result follows.

(b) From Problem 23, replacing B by A, fff V x A dV =
AV

Then as in part (a), we can show that

(Ox lim

AVm

I
o AV

and similar results with j and k replacing i. Multiplying by i, j, k and adding, the result follows.

The results obtained can be taken as starting points for definition of gradient and curl. Using
these definitions, extensions can be made to coordinate systems other than rectangular.

25. Establish the operator equivalence

VOA =
lim

LJJdS0A
AY-o AV

dS o

where o indicates a dot product, cross product or ordinary product.

To establish the equivalence, the results of the operation on a vector or scalar field must be consist-
ent with already established results.

If o is the dot product, then for a vector A,

or

AS

= lim 1 fJ dS
AV

AS

established in Problem 19.

Similarly if o is the cross product,

curl A = OxA AVlim _-L
-0 AV ii dsxA

AS

lim 1 ffnxAdS
AV-'o AV

AS

established in Problem 24 (b).

Also if o is ordinary multiplication, then for a scalar 0,

V o lim or o lim f dSffdsoq
AV-0 AV

AS AS

!I nxAdS.

ff dS

AS

AS

AS

div A = lim 1 jJ dS A
AV-o AV

established in Problem 24(a).
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26. Let S be a closed surface and let r denote the position vector of any point (x,y,z) measured from
an origin 0. Prove that

ffn.r
dS

T3

S

is equal to (a) zero if 0 lies outside S ; (b) 477 if 0 lies inside S. This result is known as Gauss'
theorem.

(a) By the divergence theorem, J J nn 3r dl = jjJ V. r dV.

S V

But V.
3

= 0 (Problem 19, Chapter 4) everywhere within V provided r 0 in V. i.e. provided 0
r3

is outside of V and thus outside of S. Then ff nn r dS = 0.
r3

S

(b) If 0 is inside S, surround 0 by a small sphere s of radius a. Let 'r denote the region bounded by S and
s. Then by the divergence theorem

ff n r dS
r3

ffrds+
r3

S+S S

since r / 0 in -r. Thus

If n*-r dS
r3

fffv. d V

S T

ffrrds = - ff!rd5
S

Now on s , r = a, n = -

fI dS
T3

S

dS = If dS = 2 ffds
a

S S

27. Interpret Gauss' theorem (Problem 26) geometrically.

Let dS denote an element of surface area and
connect all points on the boundary of dS to 0 (see
adjoining figure), thereby forming a cone. Let dO be
the area of that portion of a sphere with 0 as center
and radius r which is cut out by this cone; then the
solid angle subtended by dS at 0 is defined as dw =

r and is numerically equal to the area of that por-d2
tion of a sphere with center 0 and unit radius cut out
by the cone. Let n be the positive unit normal to dS
and call 0 the angle between n and r ; then cos 0 =
nT rr . Also, dO _ ±dS cos 6 = ± nr r dS so that
dw nn 3r dS , the + or - being chosen according

as n and r form an acute or an obtuse angle 0 with
each other.

r so that n . r = - r/a . r _ - r . r - a2 _. 1 anda r3 a3 a4 a4 - 0

= 0

47Ta2

a2
47T

Let S be a surface, as in Figure (a) below, such that any line meets S in not more than two points.

If 0 lies outside S, then at a position such as 1 , 11 3r dS = dw; whereas at the corresponding position 2,
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n 3r dS = -do). An integration over these two regions gives zero, since the contributions to the solid
r

angle cancel out. When the integration is performed over S it thus follows that ff-_r dS = 0, since for
every positive contribution there is a negative one. S

In case 0 is inside S. however, then at a position such as 3, nn 3r dS = da) and at 4, n 3r dS = dcv

,so that the contributions add instead of cancel. The total solid angle in this case is equal to the area of a

unit sphere which is 47T, so that

Fig. (a) Fig. (b)

For surfaces S, such that a line may meet S in more than two points, an exactly similar situation
holds as is seen by reference to Figure (b) above. If 0 is outside S, for example, then a cone with vertex
at 0 intersects S at an even number of places and the contribution to the surface integral is zero since the
solid angles subtended at 0 cancel out in pairs. If 0 is inside S, however, a cone having vertex at 0 in-
tersects S at an odd number of places and since cancellation occurs only for an even number of these,
there will always be a contribution of 47T for the entire surface S.

28. A fluid of density p(x,y,z,t) moves with velocity v(x,y,z,t). If there are no sources or sinks,
prove that

O J + ap = 0 where J = pv

V is

Consider an arbitrary surface enclosing a volume V of the fluid. At any time the mass of fluid within

M = fffpdv
V

The time rate of increase of this mass is

'am

at
a

fffpdv = fffdv
at

V V

The mass of fluid per unit time leaving V is

ff pv n dS

ffn.r dS = 4Tr.s
r

S

S

(see Problem 15) and the time rate of increase in mass is therefore
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- ff pv . n dS
S

by the divergence theorem. Then

5ff ap dvat
V

or

fffv.pv) + ap) dV
at

V

= 0

Since V is arbitrary, the integrand, assumed continuous, must be identically zero, by reasoning simi-
lar to that used in Problem 12. Then

V J + LP = 0 where J = pv
at

The equation is called the continuity equation. If p is a constant, the fluid is incompressible and V. v =
0, i.e. v is solenoidal.

The continuity equation also arises in electromagnetic theory, where p is the charge density and
J = pv is the current density.

29. If the temperature at any point (x, y, z) of a solid at time t is U(x, y, z, t) and if K, p and c are re-
spectively the thermal conductivity, density and specific heat of the solid, assumed constant,
show that

at - k V2U where k = K/pc

Let V be an arbitrary volume lying within the solid, and let S denote its surface. The total flux of
heat across S, or the quantity of heat leaving S per unit time, is

ffKvu).fl dS
S

Thus the quantity of heat entering S per unit time is

(1) ff(KVu).n dS = fffv.(Kvu) dV

S V

by the divergence theorem. The heat contained in a volume V is given by

fff cpUdV
V

Then the time rate of increase of heat is

(2)
a

J J J cp U dV = fffcpdv
at t

V V

Equating the right hand sides of (1) and (2),

fff [cp aU -- V (K VU)] dV = 0

V

and since V is arbitrary, the integrand, assumed continuous, must be identically zero so that
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or if K, c, )o are constants,

cp ac = V (K DU)

The quantity k is called the diffusivity. For steady-state heat flow

time) the equation reduces to Laplace's equation VU = 0.

STOKES' THEOREM

(i.e. aU
= 0 or U is independent of

30. (a) Express Stokes' theorem in words and (b) write it in rectangular form.

(a) The line integral of the tangential component of a vector A taken around a simple closed curve C is
equal to the surface integral of the normal component of the curl of A taken over any surface S having
C as its boundary.

(b) As in Problem 14 (b),

A = A1i+A2j+A3k, n = cosai +cos/3j +cosyk
Then

VXA =

A dr

i j

a a a
ax ay az
Al A2 A3

-a U
k02U

at c

A3 _ aA2) i + a _aA3 + A2 - aA1
k

ay az (az ax ax ay

(aA3 _
aA2)

cos a + (Al a_ aA3 aAe _ aA1
) cosyazaz ax) cos,C3 + ( ax ay

and Stokes' theorem becomes

faA3 aA2 c aA1 _3A3 _3A2 aA1

[(ay az) os a + (az - ax) cos + (ax a ) cos y] dS = fAidx+A2dy+Asdz
y C

S

Let S be a surface which is such that its projections
on the xy, yz and xz planes are regions bounded by simple
closed curves, as indicated in the adjoining figure. As-
sume S to have representation z = f(x,y) or x = g(y,z) or
y =,h (x, z) , where f, g, h are single-valued, continuous and
differentiable functions. We must show that

ff(vxA).nds = ff[vx(Aii+142i+Ask)].nds
S S n_

f
C

where C is the boundary of S.

z
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Consider first ff dS.
S

i j k

Since V x (A1i) _ a a a
ax ay az

A 1 0 0

aAI a41azay

(1) -aA'n-k)
y

If z = f(x,y) is taken as the equation of S, then the position vector to any point of S is r = x i + y j + z k =

xi + y j +f(x,y)k so that ar = j + az k = j + of k. But ar is a vector tangent to S (see Problem 25,

Chapter 3) and thus perpendicular to n, so that
ay ay

Substitute in (1) to obtain

aA1

a
dS

( az
.

n
ar

=
az

0 or -az n.k
ay ay ay

or

(2) dS

aaA1

az
aa1

y

aA1 aA1 az) n.k dSay + az ay

Now on S, A1(x,y,z) = A1(x,y,f(x,y)) = F(x,y); hence

Then

aA1 aA1 az

=

aF

ay + az ay ay

x (A1 i)] n dS = - aF n k dS = -- aF dxdy
ay ay

ff [Vx (A1i)] n dS =

S

dx where F is the boundary of R. Since at each point (x,y) of F the value of F is the same as the
IT,

F

ff4
R

and(2)becomes

where R is the projection of S on the xy plane. By Green's theorem for the plane the last integral equals

value of A 1 at each point (x, y, z) of C, and since dx is the same for both curves, we must have

or

fT F dx f A 1 dx

0

ff [V x (A1 i)] n dS A, dx

S

Similarly, by projections on the other coordinate planes,

ff dS

S

A2 d y

As dzff 9
S C
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Thus by addition,

ff(vxA.nds

S

The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above. For
assume that S can be subdivided into surfaces S1,S2, ... Sk with boundaries C1, C2, ... Ck which do satisfy
the restrictions. Then Stokes' theorem holds for each such surface. Adding these surface integrals, the
total surface integral over S is obtained. Adding the corresponding line integrals over C1, C2, ... Ck , the
line integral over C is obtained.

32. Verify Stokes' theorem for A = (2x - y) i - yz2 j - y2 z k , where S is the upper half surface of
the sphere x2 + y2 + z2 = 1 and C is its boundary.

The boundary C of S is a circle in the xy plane of radius one and center at the origin. Let x = cost,
y = sin t, z = 0, 0 < t < 277 be parametric equations of C. Then

f (2x -y) dx - yz2 dy - y2z dz
C

r2n
= J (2 cost - sint) (- sint) dt = ?r

0

i j k

Also, V x A =
a a a
ax ay az

2x -y -yZ2 -y2z

k

Then ff(Vx A) n dS = ff k. n dS = J'f dx dy
S S R

since n k dS = dx dy and R is the projection of S on the xy plane. This last integral equals

x-=-!

(i =x2 t ,/, =x2 i

dx = 7J f dy dx = 4 f ('J dy dx 4 I- r

-x2y-Vi
and Stokes' theorem is verified.

33. Prove that a necessary and sufficient condition that A A. dr = 0 for every closed curve C is

that V x A = 0 identically.

Sufficiency. Suppose Ox A = 0. Then by Stokes' theorem

f
C

ff(VXA).n dS =

S

0

Necessity. Suppose f A- dr = 0 around every closed path C, and assume Ox A 0 at some point
C

P. Then assuming Ox A is continuous there will be a region with P as an interior point, where Ox A # 0 .
Let S be a surface contained in this region whose normal n at each point has the same direction as Ox A ,
i.e. OxA = an where 06 is a positive constant. Let C be the boundary of S. Then by Stokes' theorem



130 DIVERGENCE THEOREM, STOKES' THEOREM, RELATED INTEGRAL THEOREMS

f A-dr
C

J'f(nxv) x B dS.

S

ff(VxA).n dS =

S

which contradicts the hypothesis that 5 A dr = 0 and shows that Vx A = 0 .

P2

It follows that VxA = 0 is also a necessary and sufficient condition for a line Integral A. dr

to be independent of the path joining points P1 and P2 . (See Problems 10 and 11, Chapter 5.)

34. Prove jI dr x B

In Stokes' theorem, let A = Bx C where C is a constant vector, Then

ff [Vx (BxC)] n dS
S

ff[(C V) B - C(V.B)] n dS
S

ff n dS

S

ct ffn.n dS > 0

S

II [C (V B)] n dS

=
ffc. [V (B n)] dS

S
---

ffc. [n (V B)] dS

S

C ff [V (B n) - n V. B)] dS = C ff (n xV) x B dS
S S

Since C is an arbitrary constant vector 5 drx B = ff(nxv) x B dS

S

P1

35. If AS is a surface bounded by a simple closed curve C, P is any point of AS not on C and n is
a unit normal to AS at P, show that at P

A A
(curl A) . n = lira C

AS

where the limit is taken in such a way that AS shrinks to P.

By Stokes' theorem, ff(curl A) n dS = 5 A A. dr.

AS C

Using the mean value theorem for integrals as in Problems 19 and 24, this can be written

(curl A) n

f A dr
C

As
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and the required result follows upon taking the limit as AS- 0 .

This can be used as a starting point for defining curl A (see Problem 36) and is useful in obtaining

curl A in coordinate systems other than rectangular. Since
,

A A. dr is called the circulation of A about
C

C, the normal component of the curl can be interpreted physically as the limit of the circulation per unit
area, thus accounting for the synonym rotation of A (rot A) instead of curl of A.

36. If curl A is defined according to the limiting process of Problem 35, find the z component of
curl A.

z

Let EFGH be a rectangle parallel to the xy plane with interior point P(x,y,z) taken as midpoint, as
shown in the figure above. Let Al and A2 be the components of A at P in the positive x and y directions
respectively.

If C is the boundary of the rectangle, then

J J f J

A dr = (A 1
1 aA1

AY) AX
2 ay

FG GH HE

J A' dr = - (A1 + I
aAl

AY) Ax
Y

EF GH

J A. dr = (A2 + 1 as 2 AX) Ay J A A = - (A2
3A2 Ax) Aytax

FG HE

except for infinitesimals of higher order than Ax Ay .

Adding, we have approximately 5 A. dr = (axe - aA1) Ax Ay.
C Y

Then, since AS = Ax Ay,

f A-dr
z component of curl A = (curl A) k = lim

A1-o As

(az2 - a 1) Ax Ay
lim y

Ax Ay

aA2 aA1

ax ay
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SUPPLEMENTARY PROBLEMS

37. Verify Green's theorem in the plane for f (3x2- 8y2) dx + (4y - 6xy) dy, where C is the boundary of the
C

region defined by: (a) y = fx , y = x2 ; (b) x = 0, y = 0, x +y = 1 .
Ans. (a) common value = 3/2 (b) common value = 5/3

38. Evaluate f (3x +4y)dx + (2x --3y)dy where C, a circle of radius two with center at the origin of the xy
C

plane, is traversed in the positive sense. Ans. - 87T

39. Work the previous problem for the line integral f (x2+y2)dx + 3xy2 dy. Ans. 127T
C

40. Evaluate f (x2-2xy)dx +(x2y+3)dy around the boundary of the region defined by y2 = 8x and x = 2

(a) directly, (b) by using Green's theorem. Ans. 128/5

(TT.2)
41. Evaluate f (6xy - y2) dx + (3x2 --- 2xy) dy along the cycloid x = 6 - sin 6, y = 1 - cos 6.

(o,o)
Ans. 6772- 47T

42. Evaluate ' (3x2+2y)dx -- (x+3cosy)dy around the parallelogram having vertices at (0,0), (2,0), (3,1)

and (1,1). Ans. -6

43. Find the area bounded by one arch of the cycloid x = a(6 - sin 6), y = a(l - cos 6), a> 0, and the x axis.
Ans. 37Ta2

44. Find the area bounded by the hypocycloid x 2/3 + y 2/3 = a 2/3, a > 0 .
Hint: Parametric equations are x = a cos3 6, y = a sin3 6. Ans. 377a2/8

45. Show that in polar coordinates (p,0) the expression xdy - ydx = p2dc. Interpret

46. Find the area of a loop of the four-leafed rose p = 3 sin 20. Ans. 97T/8

47. Find the area of both loops of the lemniscate p2 = a2 cos Ans. a2

48. Find the area of the loop of the folium of Descartes
x3+y3 = 3axy, a > 0 (see adjoining figure).
Hint: Let y = tx and obtain the parametric equa-
tions of the curve. Then use the fact that

Area = 2 xdy -- ydx

x2 d(z)

= i x2 dt

Ans. 3a2/2

y

xdy - ydx.

49. Verify Green's theorem in the plane for f (2x-y3)dx - xydy, where C is the boundary of the region en-
C

closed by the circles x2+y2 = 1 and x2+y2 = 9. Ans. common value = 607T

f(-1 '0) -ydx +xdy
50. Evaluate (i.o) x2 +Y 2

along the following paths:
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(a) straight line segments from (1,0) to (1,1), then to (-1,1), then to (-1,0).
(b) straight line segments from (1,0) to (1,-1), then to (-1,-i), then to (-1,0).

Show that although aR = aN , the line integral is dependent on the path joining (1,0) to (-1,0) and explain.
y x

Ans. (a) 7 (b) -7

51. By changing variables from (x,y) to (u,v) according to the transformation x = x(u,v), y = y(u,v), show that
the area A of a region R bounded by a simple closed curve C is given by

A ff J (u,v) du dv where

R

J(uv)

ax ay

au au

ax ay
av av I

is the Jacobian of x and y with respect to u and v. What restrictions should you make ? Illustrate the re-
sult where u and v are polar coordinates.
Hint: Use the result A = i f x dy - y dx , transform to u,v coordinates and then use Green's theorem.

52. Evaluate ff F n dS , where F = 2xy i + yz2 j +xz k and S is :
S

(a) the surface of the parallelepiped bounded by x = 0, y = 0, z = 0, x = 2, y = 1 and z = 3,
(b) the surface of the region bounded by x = 0, y = 0, y = 3, z = 0 and x + 2z = 6 .

Ans. (a) 30 (b) 351/2

53. Verify the divergence theorem for A = 2x-2y i - y2 j + 4xz2 k taken over the region in the first octant
bounded by y2+z2 = 9 and x= 2. Ans. 180

54. Evaluate ff r n dS where (a) S is the sphere of radius 2 with center at (0,0,0), (b) S is the surface of
S

the cube bounded by x=-1, y=-1, z=-1, x =1, y=1, z=1, (c) S is the surface bounded by the paraboloid
z = 4-(x2 + y2) and the xy plane. Ans. (a) 327 (b) 24 (c) 247

55. If S is any closed surface enclosing a volume V and A = ax i + by j + cz k, prove that ff A n dS
(a +b +c) V.

S

56. If R = curl A, prove that ff H n dS = 0 for any closed surface S.
S

57. If n is the unit outward drawn normal to any closed surface of area S, show that fff divn d Y = S.
V

58. Prove f f f
2 = ff Ten dS .r

7 S

59. Prove ffr5n dS = fffsrsr dV.
S V

60. Prove ff n dS = 0 for any closed surface S.
S

61. Show that Green's second identity can be written fff(c15V2qi - bV2cp) dV =
ffw/d - d-O) dS

V S

62. Prove ffr x dS = 0 for any closed surface S.
3
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63. Verify Stokes' theorem for A = (y - z + 2) i + (yz + 4) i - xz k , where S is the surface of the cube x = 0,
y = 0, z = 0, x=2, y=2, z= 2 above the xy plane. Ans. common value = -4

64. Verify Stokes' theorem for F = xz i - y j + x2y k, where S is the surface of the region bounded by x = 0,

y = 0, z = 0, 2x +y + 2z = 8 which is not included in the xz plane. Ans. common value = 32/3

65. Evaluate ff(VxA).n dS , where A = (x2 +y - 4) i + 3xy j + (2zz + z2) k and S is the surface of (a) the
S

hemisphere x2+y2+z2 = 16 above the xy plane, (b) the paraboloid z = 4 - (x2+y2) above the xy plane.
Ans. (a) -1677, (b) - 477

66. If A = 2yz i - (x + 3y - 2) j + (x2+z) k , evaluate ff(VxA).n dS over the surface of intersection of the
S 2

cylinders x2+y2 = a2, x2+z2 = a2 which is included in the first octant. Ans. - 12(377+8a)

67. A vector B is always normal to a given closed surface S. Show that fffcurlB dV = 0, where V is the

region bounded by S. V

68. If E dr = - c at ffn dS, where S is any surface bounded by the curve C, show that V x E _
C S

1 aH
Cat

69. Prove fo dr = ff dS x V o.
S

70. Use the operator equivalence of Solved Problem 25 to arrive at (a) V0, (b) V. A, (c) V x A in rectangular
coordinates.

71. Prove fffvc75.Adv = ffA.nds - fffV.Adv.
V S V

72. Let r be the position vector of any point relative to an origin 0. Suppose 0 has continuous derivatives of
order two, at least, and let S be a closed surface bounding a volume V. Denote 0 at 0 by 0o. Show that

ff[3Vq_g5V(3)].dS = fffidv + a
S

where a= 0 or 4770, according as 0 is outside or inside S.

73. The potential O(P) at a point P(x,y,z) due to a system of charges (or masses)
vectors r1, r2, ..., rn with respect to P is given by n

Prove Gauss' law
ffE.ds = 477Q

S

gl,g2,...,qn having position

n
where E = - VV is the electric field intensity, S is a surface enclosing all the charges and Q= Y qn
is the total charge within S. 'a= I

74. If a region V bounded by a surface S has a continuous charge (or mass) distribution of density p, the po-

tential (P) at a point P is defined by = fff_-.!. Deduce the following under suitable assumptions:

(a) ff E- dS = 477 fffp d V, where E_- V .
S V

(b)
20

_ -477P (Poisson's equation) at all points P where charges exist, and V20 = 0 (Laplace's equa-
tion) where no charges exist.



TRANSFORMATION OF COORDINATES. Let the rectangular coordinates (x,y,z) of any point be
expressed as functions of (u1, u2, u3) so that

(1) x = x(u1, u2, u3) , y = y(u1, u2, u3) , z = z(u1, u2, u3)

Suppose that (1) can be solved for u1, u2, u3 in terms of x, y, z , i.e.,

(2) u1 = u1(x, y, z) , u2 = u2(x, y, z) , us = u3(x, y, z)

The functions in (1) and (2) are assumed to be single-valued and to have continuous derivatives so
that the correspondence between (x, y, z) and (u1, u2, u3) is unique. in practice this assumption may
not apply at certain points and special consideration is required.

Given a point P with rectangular coordinates (x, y, z) we can, from (2) associate a unique set
of coordinates (u1, u2, u3) called the curvilinear coordinates of P. The sets of equations (1) or (2)
define a transformation of coordinates.

z

ORTHOGONAL CURVILINEAR COORDINATES.

The surfaces u1= c1 , u2=c2, u3 = c3 , where
c1, r2, c3 are constants, are called coordinate sur-
faces and each pair of these surfaces intersect in
curves called coordinate curves or lines (see Fig. 1).
If the coordinate surfaces intersect at right angles
the curvilinear coordinate system is called orthogo-
nal. The u1, u2 and u3 coordinate curves of a curvi-
linear system are analogous to the x, y and z coor-
dinate axes of a rectangular system.

Fig. 1

UNIT VECTORS IN CURVILINEAR SYSTEMS. Let r = xi + y3 + zk be the position vector of a point
P. Then (1) can be written r = r (u1, u2, u3), A tan-

gent vector to the u1 curve at P (for which u2 and u3 are constants) is au1 . Then a unit tangent
'arvector in this direction is e1 = b-- /,

- - y

so that au1= h1 e1 where h1 =
, au1 I .

Similarly, if

e2 and e3 are unit tangent vectors to the u2 and u3 curves at P respectively, then a h2e2 and
u2

us =
h3 e3 where h2 = a h3

The are in the directions of increasing u1, u2, US. respectively.

Since Vu1 is a vector at P normal to the surface u1= c1 , a unit vector in this direction is giv-

135



136 CURVILINEAR COORDINATES

en by E1 = Vu1/I Vu1 I . Similarly, the unit vectors E2 = Vu2/I Du2 I and E3 = Vu3/I Vu3
I

at P
are normal to the surfaces u2 = c2 and u3 = c3 respectively.

Thus at each point P of a curvilinear system there
exist, in general, two sets of unit vectors, e1, e2, e3 tan-
gent to the coordinate curves and E1, E2, E3 normal to
the coordinate surfaces (see Fig.2). The sets become
identical if and only if the curvilinear coordinate system
is orthogonal (see Problem 19). Both sets are analogous

u

to the i, j, k unit vectors in rectangular coordinates but r' t- - e2
are unlike them in that they may change directions from
point to point. It can be shown (see Problem 15) that the
sets

- au, au and Vu1, Vu2, Vu3 constitute recip-

rocal systems
of

vectors.

form

Fig. 2

A vector A can be represented in terms of the unit base vectors e1, e2, e3 or E1, E2, E3 in the

A = A.e. + A2 e2 + A3 e3 = a1E, + a2E2 + a3 E.

where A1, A2, As and a1, a2, as are the respective components of A in each system.

-6 rWe can also represent A in terms of the base vectors
au , - - , au or Vu1, Vu2, Vu3 which

l. 'a
are called unitary base vectors but are not unit vectors in general. In2this case

A
_ C.

au +
C2

au +
C.

au
C1 a1

+ C2a2 + C3 as
1 2 3

and A C1 Vu1 + C2 Vu2 + C3 Vu3 C1 641 + C2 1r2 + C3 M3

where C1, C2, C. are called the contravariant components of A and c1, c2, c3 are called the covariant
components of A (see Problems 33 and 34). Note that a0 = au , l3¢ = Vu, , p = 1, 2, 3 .

ARC LENGTH AND VOLUME ELEMENTS. From r = r (u1, u2i u3) we have

dr = audul+audu2+audu3
1 2 3

h1 du1 e1 + h2 du2 e2 + h3 du3 e3

Then the differential of are length ds is determined from
ds2 = dr dr. For orthogonal systems, e1 e2 = e2. e3 =
e3 e1 = 0 and

ds2 = h2 du2 + h2 du2 + h3 du3

For non-orthogonal or general curvilinear systems see
Problem 17.

Along a u1 curve, u2 and u3 are constants so that
dr = h1 du1 e1. Then the differential of arc length ds1
along u1 at P is h1 du1. Similarly the differential arc
lengths along u2 and u3 at P are ds2 = h2 du2 , ds3 = h3 du3.

u

Referring to Fig.3 the volume element for an or-
thogonal curvilinear coordinate system is given by Fig. 3
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d V = I (h1 du1 e1) (h2 du2 e2) x (h3 du3 e3) I = h1 h2 h3 du1du2 d u3

since Ie1.e2xe3l = 1.

THE GRADIENT, DIVERGENCE AND CURL can be expressed in terms of curvilinear coordinates.
If 4) is a scalar function and A = Al e1 + A2 e2 + A. e3

a vector function of orthogonal curvilinear coordinates u1, u2, u3, then the following results are valid.

1. © = grad <1) _1 a e1 +
2 a u2- e2 + h aT e33

2. .A = div A = h h h au(h2h3A1) + a u(h3h1A2) + u (A.h2A3)
1 2 3 1 2 3

h1 e1

3. Vx A = curl A = i
h1 h2 AS

h2 e2 h3 e3

a
au3

h3A3

4. V2 = Laplacian of _
1 a h2 AS a AS h1 -6(D

)

a h1h2 a
h1 h2 h3 au1 { h1 au1) + au2 { h2 au2 + au3 { h3 au3 )

If h1= h2 = AS = 1 and e1, e2, e3 are replaced by i, j, k , these reduce to the usual expressions in
rectangular coordinates where (u1, u2i u3) is replaced by (x, y, z) .

Extensions of the above results are achieved by a more general theory of curvilinear systems
using the methods of tensor analysis which is considered in Chapter 8.

SPECIAL ORTHOGONAL COORDINATE SYSTEMS.

1. Cylindrical Coordinates (p, 0, z). See Fig.4 below.

x = pcos4, y = psinq5, z = z

where p?0, 0<_0< 27r, -co<z<oo
hP=i, ho=p, hz=1

2. Spherical Coordinates (r, 6, 0). See Fig.5 below.

x= r sin 6 cos 0, y= r sin 6 sin 0, z r cos 6

where r>0, 0<O< 27T, 0<6<7r
hr= 1, he =r, ho=rsin6
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z

Fig. 4 Fig. 5

3. Parabolic Cylindrical Coordinates (u, v, z) . See Fig.6 below.

x =
2 (u2 - v2) , y = uv , z = z

where -co<u<co, v>0, - oo<z<co
h u= h v = u2+v2, hz = 1

In cylindrical coordinates, u = 2 cos ±, v = 2 sin . , z = z

The traces of the coordinate surfaces on the xy plane are shown in Fig.6 below. They are
confocal parabolas with a common axis.

Fig. 6
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4. Paraboloidal Coordinates (u, v, 0).

x = uv cos 4 , y= uv sin (p, z = z (u2 - v2)

where u > O , v > O , 0 < <f < 27T

hu = by = u2 +v2, h = uv

Two sets of coordinate surfaces are obtained by revolving the parabolas of Fig.6 above
about the x axis which is relabeled the z axis. The third set of coordinate surfaces are planes
passing through this axis.

5. Elliptic Cylindrical Coordinates (u, v, z) . See Fig. 7 below.

x = a cosh u cosy , y = a sinhu sin v, z= z

where u > 0 , 0s v < 27r, -oo < z <oo
hu=hv=a sinh2u+sir? v, h2= 1

The traces of the coordinate surfaces on the xy plane are shown in Fig.7 below. They are
confocal ellipses and hyperbolas.

6. Prolate Spheroidal Coordinates (,77, 0).

x = a sinh 6 sin 77 cos 0, y = a sinh sin ? sin, z = a cosh 6 cos
where ?0, 0:5 ?7 7r, 4<27T

a sinh e sin?7

Two sets of coordinate surfaces are obtained by revolving the curves of Fig.7 above about
the x axis which is relabeled the z axis. The third set of coordinate surfaces are planes passing
through this axis.
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7. Oblate Spheroidal Coordinates (6,77, qb) .

x = a cosh 6 cosr cos0, y a cosh e cos77 sin 4),

where >_p, 2 2, 0<95< 27T

z = a sinh e sin 77

he =h77=a sinh26+sin27) hj, =acosh Cos-q

Two sets of coordinate surfaces are obtained by revolving the curves of Fig.7 above about
the y axis which is relabeled the z axis. The third set of coordinate surfaces are planes passing
through this axis.

8. Ellipsoidal Coordinates (X, µ, v).
,,.2 2 2

a2-X b2- c2-A

a2

x2
+

b2

y2 +
c2 z2

= 1, c2<A<b2<a2/
2x2 + 2y2 + 2z2 = 1, c2 < b2 < v < a2a -v b -v c -v

h
_ 1 (1a-X)(v-X)

h = 1 (y-µ)(X-/.L)
2 2 (a2-1-p)(b2-1-i)(c2-/ )

h =
1

v
2

(a2-v)(b2-v)(c2-v)

9. Bipolar Coordinates (u, v, z) . See Fig.8 below.

x2 + (y- a cotu)2 = a2 csc2u, (x- a coth v) 2 + y2 = a2 csch2 v, z = z

+ - Y +
z

= 1 , ) < c2 < b2 < a2

Fig. 8



CURVILINEAR COORDINATES

a sink v a sin u
or x = cosh v - cos u ' y = cosh v - cos u ' z = z

where Osu<27r, -oo<v<oo, -oo<z<oo
hu=hv= , hz= i

141

The traces of the coordinate surfaces on the xy plane are shown in Fig.8 above. By re-
volving the curves of Fig.8 about the y axis and relabeling this the z axis a toroidal coordinate
system is obtained.

SOLVED PROBLEMS

a

cosh v - cos u

1. Describe the coordinate surfaces and coordinate curves for (a) cylindrical and (b) spherical co-
ordinates.

(a) The coordinate surfaces (or level surfaces) are:

P=

Z =

The coordinate curves are:
Intersection of p = c1 and = c2 (z curve) is a straight line.
Intersection of p = c1 and z = c3 (rp curve) is a circle (or point).
Intersection of 0 = c2 and z = c3 (p curve) is a straight line.

c1 cylinders coaxial with the z axis (or z axis if c1= 0).
c2 planes through the z axis.
c3 planes perpendicular to the z axis.

(b) The coordinate surfaces are:
r = c1 spheres having center at the origin (or origin if c1= 0).
B = c2 cones having vertex at the origin (lines if c2 = 0 or IT, and the xy plane if c2 = 7T/2).

= c3 planes through the z axis.

The coordinate curves are,
Intersection of r = c2 and 8 = c2 curve) is a circle (or point).
Intersection of r = c1 and = c3 (8 curve) is a semi-circle (c1 0).
Intersection of 8 = c2 and = c3 (r curve) is a line.

2. Determine the transformation from cylindrical to rectangular coordinates.

The equations defining the transformation from rectangular to cylindrical coordinates are

(1) x = p cos 0, (2) y = p sin p , (3) z = z

Squaring (1) and (2) and adding, p2(cos2o + sin2o) = x2 + y2 or

p = x2+ y2, since cos20 + sin24 = 1 and p is positive.

Dividing equation (2) by (1), y = p sin = tan 0 or 0 = arc tan y
.

X p cos q X

Then the required transformation is (4) p = Vx2 '+y2, (5) 0 = are tan z , (6) z = z .

For points on the z axis (x= 0, y=0), note that 0 is indeterminate. Such points are called singular
points of the transformation.
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3. Prove that a cylindrical coordinate system is orthogonal.

The position vector of any point in cylindrical coordinates is

r = xi + y j+ zk = p cos cp i+ p sin g j + z k

The tangent vectors to the p, 0 and z curves are given respectively by aP , and as where

= k
ap

= cos i + sin j, a = - p sin 0 i + p cos 0 j,
'3Z

The unit vectors in these directions are

e1 _ ep = ar/ap J cos 0 i + sin 4) j = cos 0 i + sin 0 j
I ar/ap I cost g5 + sine g5

e2 e
_ - p sin Q5 i + p cos 0 j = - sin 4 i + cos 0 i

' I ar/a I y p2 sin2c5 + p2 cos2g5

e3 = ez =
ar/az

k
jar/az I

Then e1. e2 = (cos g5 i + sin g5 j) . (- sin g5 i + cos 0 j) = 0

e1. e3 = (cos cp i + sin g5 j) (k) = 0

e2 e3 = (- sin cb i + cos g5 j) (k) = 0

and so e1, e2 and e3 are mutually perpendicular and the coordinate system is orthogonal.

4. Represent the vector A = zi - 2xj + yk in cylindrical coordinates. Thus determine AO, 4 and Az.

From Problem 3,

(1) ep = cos cp i + sin 0 j (2) sin 0 i + cos 45 j (3) e2 = k

Solving (1) and (2) simultaneously,

i = cos c5 ep - sin 0 eo, j = sin 0 ep + cos cp e(k

Then A = zi-2xj+yk
= z(cos 4 ep - sin g5 ee) -- 2p cos g5(sin 0 ep + cos 0 e( + p sin ca e2

(z cos ca - 2p cos (5 sin g5) ep - (z sin 6 + 2p cos20) e4 + p sin 0 e2

and AP = z cos o - 2p cos g5 sin o, A0 = - z sin cp - 2p cos2g5, Az = p sin g5.

5. Prove
dt

ep = e,, at e. cb ep where dots denote differentiation with respect to time t.

From Problem 3,

ep = cos g5 i + sin g5 j , e, sin 0 i + cos g5 j

Then dt
ep = - (sin 0) g5 i + (cos0) sin 0 i + cos 0 j) g5 _ g5 e(k

d
e(h _ -(cosg5)gSI - (sin -(cosg5i + sin0j)cp = -r,ep
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6. Express the velocity v and acceleration a of a particle in cylindrical coordinates.

143

In rectangular coordinates the position vector is r = xi + yj + zk and the velocity and acceleration
vectors are

v = dt = zi + yj + A and a

In cylindrical coordinates, using Problem 4,

r

dt r
= zi + yj + ak

xi + yj + zk = (p cos 0) (cos cb ep - sin 0
(p sin (;b) (sin o ep + cos 0 ed,) +

pep+ z ez

z ez

dp de
ez = Pep + p q eo+ zeZThen v ` dt dt ep

+ p dtp + dz

using Problem 5. Differentiating again,

a =

d2
= dt (p

dt
dep ., . deb
dt + Pep + P, dt + peo + e + zez

p eo + P. + p (- ep) + P 4 ee + P c eo + ez

(p - p 2) ep + (p + 2p ) eb + ez

using Problem 5.

7. Find the square of the element of arc length in cylindrical coordinates and determine the corre-
sponding scale factors.

First Method.

x = pcos0, y = psino, z=z
dx p sin cp do + cos o dp, dy = p cos 0 do + sin 0 dp, dz = dz

Then ds2 = dx2+ dy2+ dz2 = (- p sin o do + cos 0 dp)2 + (p cos o dc/ + sin % dp)2 + (dz)2

(dp) + p2(dcb)2 + (dz )2 = h1(dp)2 + h2 (do )2 + h2
(dz)2

and h1 = h= 1, h2 = hq = p , hs = hz = I are the scale factors.

Second Method. The position vector is r = p cos 0 i + p sin j + z k. Then

dr = ap dp + .0Lr do + az dz

= (cos i + sin 0 j) dp + (- p sin i + p cos 0 j) do + k dz

(cos dp - p sin 0 dcp) i + (sin dp + p cos cp do) j + k dz

Thus ds2 = dr dr = (cos 0 dp - p sin 0 dc)2 + (sin 0 dp + p cos 0 do)2 + (dz )2

(dpf + p2(dcb)2 + (dz)2
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8. Work Problem 7 for (a) spherical and (b) parabolic cylindrical coordinates.

(a) x = r sin 6 cos 0, y = r sin 6 sin 0, z= r cos 6

Then dx = - r sin B sin 0 do + r cos 6 cos 0 d6 + sin 6 cos 4 dr

dy = r sin 6 cos q do + r cos 6 sin % d6 + sin 6 sin 0 dr

dz = - r sin 6 d6 + cos 6 dr

(b)

and (ds)2 = (dx)2 + (dy)2 + (dz) (dr)2 + r2(dO) + r2 sin26 (do

The scale factors are h1= hr = 1 , h2 = h8 = r , h3= ho= r sin 6.

x = 2(u2-v2), y = uv, z = z

Then dx = u du - v dv , dy = udv + v du , dz = dz

and (ds)2 (dx)2 + (dy)2 + (dz)2 = (u2+v2)(du)2 +
(u2+v2)(dv)2 + (dz)2

The scale factors are h1 = hu = Vu2 + v2 , h2 = h v = u2 + v2, h3 = hz = 1.

9. Sketch a volume element in (a) cylindrical and (b) spherical coordinates giving the magnitudes
of its edges.

(a) The edges of the volume element in cylindrical coordinates (Fig.(a) below) have magnitudes p do, dp
and dz. This could also be seen from the fact that the edges are given by

ds1 = h1du1 = (1) (dp) = dp , ds2 = h2du2 = p do, ds3 = (1) (d7) = d z

using the scale factors obtained from Problem 7.

(p do) (dp) (dz)
p dp d, dz

Y

Y

Fig. (a) Volume element in cylindrical coordinates. Fig. (b) Volume element in spherical coordinates.

(b) The edges of the volume element in spherical coordinates (Fig.(b) above) have magnitudes dr, rd6 and
r sin 6 do. This could also be seen from the fact that the edges are given by

ds1 = h1du1 = (1)(dr) = dr, ds2 = h2du2 = r d6, ds3 = h3du3 = r sin 6 do

using the scale factors obtained from Problem 8 (a).
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10. Find the volume element dV in (a) cylindrical, (b) spherical and (c) parabolic cylindrical coor-
dinates.

The volume element in orthogonal curvilinear coordinates u1, u2 , a3 is

dV = h1h2h3 du1du2du3

(a) In cylindrical coordinates u1 p, u2 = 4), u3 = z , h1= 1 , h2 = p, h3 = 1 (see Problem 7). Then

dV = (1)(p)(1) dp do dz = p dp do dz

This can also be observed directly from Fig. (a) of Problem 9.

(b) In spherical coordinates u1= r, u2 = 6, u3 = 0, h1=1, h2 = r, h3 = r sin 6 (see Problem 8 (a)). Then

dV = (1)(r)(r sin 6) dr d8 do = r2 sin 6 dr d6 do

This can also be observed directly from Fig. (b) of Problem 9.

<c) In parabolic cylindrical coordinates u1= u, u2 = v, u3 = z, h1= h2= u2 + v2, h3 = 1 (see Prob-
lem 8 (b)). Then

dV = ( u2+ v2)(u2+ v2) (1) du dv dz = (u2+ v2) du dv dz

11. Find (a) the scale factors and (b) the volume element dV in oblate spheroidal coordinates.

(a) x = a cosh 6 cos 7) cos 0, y = a cosh 6 cos 7) sin o, z = a sinh sin'r)

dx = -a cosh 6 cos 7) sin q do - a cosh 5 sin 7) cos 4 d7) + a sinh cos 7) cos ca d
dy = a cosh 6 cos 7) cos cp do - a cosh 6 sin7) sin 0 d77 + a sinh cos?) sin 0 de
dz = a sinh cos7j d77 + a cosh e sin77 de

Then (ds)2 = (dx)2 + (dy)2 + (dz)2 = a2(sinh2 + sin27))(de)2

+ a2(sinh2 e + sin27))(d77)2

+ a2 cosh2 6 cos27) (do)2

and h1 = he = a sinh2e + sin27), h2 = h, = a sinh2e + sin27) , h3 = ho = a cosh cos 7) .

(b) dV = (a cosh cos 77) d6 d7) do

= a3 (sinh2 + sine 7)) cosh cos 7) de d7) do

12. Find expressions for the elements of area in orthogonal curvilinear coordinates.

Referring to Figure 3, p.136, the area elements are given by

dA1 =
I (h2 du2 e2) x (h3 du3 e3) I = h2h3 e2 x e3 I due du3 = h2 h3 due du3

since I e2 x e3 = I e1 I = 1. Similarly

dA2 = I (h1 du1 e1) x (h3 du3 e3) I = h1 h3 du1 du3

dA3 = I (h1 du1 e1) x (h2 du2 e2) I = h1 h2 du1 du2
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13. If u1, u2, u3 are orthogonal curvilinear coordinates, show that the Jacobian of x, y, z with respect
to u1, u2, u3 is

R
x, y,z (x,y,Z)

U1, U2, u3 (u1+ u2+ u3)
h1h24

ax ay aZ

au1 au, au1

ax ay az
au2 au2 au2

ax ay az

au3 au3 au3

By Problem 38 of Chapter 2, the given determinant equals

ax -ay -a Z -ax - az -ax -a -a Z

i + au i + au i + ay i + a k)x(.a 3i + au i + a 3k)
1 1 2 2 2 3

ar ar x ar = h1 e1 , h2 e2 x h3 e3

aUl au2 au3

h1 h2 h3 e1 e2 x e3 = h1 h2 h3

If the Jacobian equals zero identically then ar , ar ar are coplanar vectors and the curvi-
aU1 au2 au3

linear coordinate transformation breaks down, i.e. there is a relation between x, y, z having the form
F(x,y, z) = 0. We shall therefore require the Jacobian to be different from zero.

14. Evaluate fff (x2+ y2 + z2) dx dy dz where V is a sphere having center at the origin and ra-
v

dius equal to a.
z

Fig. (a) Fig. (b)

The required integral is equal to eight times the integral evaluated over that part of the sphere con-
tained in the first octant (see Fig. (a) above).

Then in rectangular coordinates the integral equals

(' a Vat- x2 a2-x2_y2
8 J J f (x2 + y2+ z2) dz dy dx

x=o y=0 z=0

but the evaluation, although possible, is tedious. It is easier to use spherical coordinates for the eval-
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uation. In changing to spherical coordinates, the integrand x2 + y2 + z2 is replaced by its equivalent r2
while the volume element dx dydz is replaced by the volume element r2 sin 8 drdedo (see Problem
10 (b)). To cover the required region in the first octant, fix 8 and 0 (see Fig. (b) above) and integrate from
r=0 to r= a ; then keep 0 constant and integrate from 6=0 to 7T/2; finally integrate with respect to 0
from 95 = 0 to 0 _ 7T/2. Here we have performed the integration in the order r, 8, o although any order can
be used. The result is

71/2 71/2 a 71/2
f X71/2 (' a

8 f J J (r2) (r2 sin 6 drd8do) = 8 f J J r' sin 6 drd6do
(k=o 0=o r=o =o 0=0 r=0

71/2 71/2
a

71/2 71/2

8 f f 5 sin 8 Ir=o d8 do = 86 f f sin 6 d8 d(p
<h=o a=o

71/2 71/2
8a5 f - cos 6 IB=o do

5
=O

f
8as

do 47T as

- 55 -o

Physically the integral represents the moment of inertia of the sphere with respect to the origin, i.e. the
polar moment of inertia, if the sphere has unit density.

In general, when transforming multiple integrals from rectangular to orthogonal curvilinear coordi-

nates the volume element dx dy dz is replaced by h1h2h3 duldu.2du3 or the equivalent J(ui 1'u2 zu3 ) duldu2du3

where J is the Jacobian of the transformation from x, y, z to u1, u2, u3 (see Problem 13).

'3r 'a r -ar15. If u1, u2, u3 are general coordinates, show that
a u '

auand Vu,, Vu2,Vu3 are recipro-
a u 1 2 3

cal systems of vectors.

We must show that ar . Vu-

We have
du p `+ 0 if p A q

c=o 0=0

lt/2

where p and q can have any of the values 1,2,3.

dr = au du1 + au due + au du3
1 2 3

Multiply by Vu1 . Then

or

= du1 = (Vu1 -D-r) du1 + (Vu1 _r_) due + (V,,
ar)

du3
-

1 if p = q

au1 au2 au3

a1 = 1 , vu1 - = 0 , VU1 u3 = 0

Similarly, upon multiplying by Vu2 ' and Vu3 the remaining relations are proved.

-ar16. Prove au . au X a r Vu1 Vu2 X Vu3 = 1.
1 2 3

From Problem 15,
-a ' au ' au

and Vu1rVu2,Vu3 are reciprocal systems of vectors. Then the
-aUl 2 3

required result follows from Problem 53 (c) of Chapter 2.

The result is equivalent to a theorem on Jacobians for
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and so J( x,Y,z ) J(u1,u2.u3) _

3u 1 au1 au1

ax ay az

au2 au2 au2

ax ay az
au3 au2 au3
ax ay az

1 using Problem 13.

= J(u1,U2'u3)
x,y,z

17. Show that the square of the element of are length in general curvilinear coordinates can be ex-
pressed by

P=1 q=1

This is called the fundamental quadratic form or metric form. The quantities g0 are called metric
coefficients and are symmetric, 2i.e. g,,:3

2
gq p. If 90q= 0, p / q, then the coordinate system is orthogonal.

In this case g11 = hi . g 22 = h2 , 933 = . The metric form extended to higher dimensional space is of
fundamental importance in the theory of relativity (see Chapter 8).

GRADIENT, DIVERGENCE AND CURL IN ORTHOGONAL COORDINATES.

ui,u2,u3 x,y,z

We have

= a1 dui + d2 due + d du3dr =
-au l. + au

du2 +
au s1 2 3

Then ds2

3 3

ds2 gpq du, duq
1,=1 q=1

dr dr = CE, 42, dui + a,-42 dui du2 + ai a3 dui du3

+ C62 a1 du2 dui + d2 It2 du2 + a2 Q3 du2 du3

+ a3 Qi du3 du1 + ac3 Q2 du3 du2 + U3 a3 du3
3 3

g0q duo duq where gpq itip 01q

18. Derive an expresssion for v4) in orthogonal curvilinear coordinates.

Let 71) = f1 ei+ f2 e2 + f3 e3 where f1, f2, f3 are to be determined.

Since dr
au dui + au du2 + au

du3
1 2 3

h1 e1 dui + h2 e2 du2 + h3 e3 du3

we have

(1) d<P = V dr h1 fi dui + h2 f2 du2 + h3 f3 du3

But (2) d4) =
a

dui + a- dug + acp du3
i u2 3
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Equating (1) and (2),

Then

f= f= 1a
1 - h1 aul' 2 h2 au2 3 h3 au3

This indicates the operator equivalence

ela! e2a4 e3a
h1 au1 + h2 au-2 + h3 au3

e1 e2 e3

h1 au1 + h2 au2 + h3 au3

which reduces to the usual expression for the operator V in rectangular coordinates.

19. Let u1, u2, u3 be orthogonal coordinates. (a) Prove that I Vup l = h p p = 1, 2,3 .

(b) Show that ep= Ep.
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(a) Let = u1 in Problem 18. Then Vut = h1 and so I Vu1 i = I e1 11h, = h11 , since I e1 I = 1 . Simi-
1

- 1 1
larly by letting CI) = u2 and us, I vu2 I = h2 and I vu3

h3-

.

Vu p

(b) By definition Ep = I

vup I .
From part (a), this can be written E p = h pvu p = e p and the result is proved.

20. Prove e1 = h2 h3 vu2 x Vu3 with similar equations for e2 and e3, where ul, u2, u3 are orthogonal
coordinates.

From Problem 19, vu1 = hl = e2 3 =
e2

- , VU
2 h

u h

Then vu2 x vu3 = e2 x e3 - e1
and e1 = h2h3 vu2 x V33 .h2. h3 - h2 h3

Similarly e2 = h3 h1 vu3 x Vu1 - and e3 = h1 h2 Vu1 x vu2 .

21. Show that in orthogonal coordinates

(a)
V

.
(Al e1) h h h au (Al, h2h3)

1 2 3 1

(b) V x (A1 e1) h32 -6u3 (A1 h1) - heh2 au2 (A1 h1)

with similar results for vectors A2e2 and A3e3.

(a) From Problem 20,

V ' (Ale,) = V (A 1 h2 h3 Vu2 x Vu3)

= V(A1h2h3) , Vu2xVu3 + A1h2h3V (Vu2Xvu3)

h2 h3V(A1h2h3) X

e1 a

h1 u1 (A1 h2h3) +a
1

+ 0 = V(Ahh)2 3
e1

1 h2h3

2

3 e
h

au (A1h2h3) + h au (A1h2h3) I h h2 2 3 3 2 3

h1h2 h3 au1(A1 h2h3)
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(b) Ox (Aiei) = Vx (Aihi Vui)

= V (Ai hi) x Vui + Aihi V x Vui

Q (Ai hi) x hi +
1

0

hl -au,
(A1 hi) + h2 a22

(Aihi) + h
u3

(Aihi) x
hi

e2
a

A h
h3hi au3 ( 1 1) e3 a (Aihi)

hih2 au2

22. Express div A = V- A in orthogonal coordinates.

VIA = V . (A1 ei + A2 e2 + A3 e3) = V (A1 e1) + V (A2 e2) + V ' (A3 e3)

_ 1 a (A1 h2 h3) + 2 (A2 h3 hi) + a
(A3 h1 h2)

T h1h2h3 aui au2 au3

using Problem 21(a) .

23. Express curl A = V x A in orthogonal coordinates.

VxA

e2
(A 1 h1) -

e3
(Aihi)h3hi u3 hih2 au2

+ h h aui ('42 h2) -
he

h3 au3 (A2 h2)

= V x (Aiei + A2 e2 + A3 e3) = V x (Aiei) + V x (A2 e2) + V x (A3 e3)

ei a
+ h2 h3 au2 (A3h3)

ei
(A 3 h3) - (A2h2) +

h2 h3 au2 u3

e2 a (A3 h3)h3hi aui

e2 a
(A1h1) - a (A3h3)h3hi au3 aui

e3 a
(A2h2) -

a
(Aihi)hih2 aui au2

using Problem 21 (b). This can be written

VX A = 1
h1h2h3

hie1

a
au1

Ai h1

24. Express V2q in orthogonal curvilinear coordinates.

ei al'J e2VbFrom Problem 18, hi aui h2 au2

A2h2 A3h3

e3a
h3 au3



CURVILINEAR COORDINATES

If A = vq, then _ 1 a _ 1 a/ _ a
Ai

h au A2
h2 '

A3
h au1 1 2 2 3 3

and by Problem 22,

v- A = v2J
1 a (h2113 + (h3h1 ate) + (h1h2 aq

hih2h3 aui h1 -au, au2 h2 au2 au3 h3 au3

25. Use the integral definition

ffA n dS

lim AS

AV

(see Problem 19, Chapter 6) to express V A
in orthogonal curvilinear coordinates.

Consider the volume element AV (see adja-
cent figure) having edges hjAu1, h2Au2, h3Au3.

Let A = Ai e1 + A2 e2 + A3 e3 and let n be
the outward drawn unit normal to the surface AS of
AV. On face JKLP, n= -e1. Then we have ap-
proximately,

e1

ff A n dS = (A n at point P) (Area of JKLP)

JKLP

[ (A1 e1 + A2e2 + A3 e3) (-el) I (h2h3 Au2Au3 )

- Al h2h3 Au2 Au3

On face EFGH, the surface integral is
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e2

Al h2h3 Du2Au3 + au (A1 h2h3 Au2Au3) A U1
1

apart from infinitesimals of order higher than A 1 A 2 A 3 . Then the net contribution to the surface
integral from these two faces is

au
(A,. h2 h2 Au2Au3) A

11

The contribution from all six faces of AV is

a (A1 h2h3) Au1 Au2 Au3
1

aui (A1 h2h3) + a- (A2 h1h3) + au3 (A3 hlh2)
Au1 Au2 Au3

U2 I
Dividing this by the volume h1h2h3 A 1 A 2 Au3 and taking the limit as Au1, Au2, A33 approach zero,
we find

div A = v A 1 [-! (A 1 h2h3) + (A2 h1 h3) + a (A3 h1h2)
hi h2 h3 au1 ou2 -3u3

Note that the same result would be obtained had we chosen the volume element AV such that P is
at its center. In this case the calculation would proceed in a manner analogous to that of Problem 21,
Chapter 4.
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26. Use the integral definition

J

A dr
(curl A) n = (Ox A) n = lim

AS-0 LAS

(see Problem 35, Chapter 6) to express V x A
in orthogonal curvilinear coordinates.

Let us first calculate (curl A) e1. To do
this consider the surface S1 normal to e1 at P, as
shown in the adjoining figure. Denote the boundary
of S1 by C1. Let A= Al e1 + A2 e2 + A3 e3 . We

have

PQ Qb

The following approximations hold

(1) fA dr = (A at P) (h2 Au2 e2)

PQ

Then

or

CURVILINEAR COORDINATES

+ fA.dr + fA.dr
LM

(A1 e1 + A2 e2 + A 3 e3)(h2 u2 e2)

fA dr = A2 h2 AU-2

ML

(2) fA.dr
LM

Similarly,

or

fA. dr

PM

-A2h2A-2

-a
(A2 h2 Au2) L\u3+

-aus

au3 (A2
h2 Au2) A 3

(A at P) (h3 Du3 e3) = A 3 h3 Au3

(3) fA- dr = - A3 h3 Du3

MP

and

(4) fA.dr = As h3 Du3 + -
u

(A3 h3 Au3) Au2

QL

Adding (1), (2), (3), (4) we have

J A dr =

c 1

2

MP

A2 h2 Au2

a (A 3 h3
A3) u2 - a (A2 h2 Au2) Au32 3

= au2 (A3h3) -
a 33

(A2h2) AU2 A 3

apart from infinitesimals of order higher than A 2 Au3 .
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zero,

1(curl A) - e1 = h h3 a 22

(A3h3) -" au3 (A2h2)

Similarly, by choosing areas S2 and S3 perpendicular to e2 and e3 at P respectively, we find (curl A) - e2
and (curl A) - e3 . This leads to the required result

curl A =

153

Dividing by the area of S1 equal to h2h3 Du2t au3 and taking the limit as A U2 and A3 approach

ei
'6 au(A3h3) - a (A2h2)

h2h3 2 3

+ eh
au(A1h1) - au (A3h3)

h3 1 3 1

+ e I-au, (A2h2'
au(A1h1)

h1h2 2

hie1 h2 e2 h3e3

a a a

-3u1 au2 au3

h1A1 h2A2 h3A3

The result could also have been derived by choosing P as the center of area Si; the calculation
would then proceed as in Problem 36, Chapter 6.

27. Express in cylindrical coordinates the quantities (a) V<P, (b) V - A, (c) V x A, (d) V2< P.

and

1 awe1 +
aye2

+
aye3

h1 au, h2 au2 h3 au3

1 a e
+ 1 e + 1 aT

1 ap P p a0 1 az

a 1 a a
ap ep +

T
p

eo + aZ ez

ez

(b)
V-

A 1-3u, (h2h3 A1) + au(h3h1 A2) +h1h2h3 2

a
au3

1 a
((p)(1)Ap} + (ic)

(1)(p)a ap
aA

p ap (pAp)
+ + az (pAz)

For cylindrical coordinates (p, q, z) ,

u1=p u2=0, u3=z; e1ep, e3=ez

h1= hp = 1, h2 = ho = p, h3 = hz = 1

1

h1 h2 h3

(h1h2 A3)

+
az ((1)(p)AZ)]

where A = AP e1 + Ao e2 + AZ e3 , i.e. AI=A,, A2 = Ak , A3 = AZ.

(c) VXA = 1
h1 h2 h3

h1 e1 h2 e2 h3 e 3

a a a

au1 au2 au3

1=
P

ep peg ez

a a a
ap 4 az

h1A1 h2A2 h3A3 I Ap pA0 AZ
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1

P
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aAz _ a (PA k) ep +
a

LAP
apk(PA)_)ao

ez

(d) V2
x 1 a (?th a h3hI + h1h2

V24)
h1h2h3 Lau1 h1 au, au2 h2 au2 au3 h3

1 a ((p)(1) -a(D) + a ((1)(1) a + a (1)(P) aq)
a z (1) a zr (1)(P)(1) aP (1) aP P

a( ail
Pap`papl

28. Express (a) V x A and (b) V2

Here u1= r, u2= e, U3=0;

O 1x A =(a)
h1h2h3

P
aAp P aAz

az aP

(1)(r)(r sine)

h1 e1

a

au,

1 a2 a2<p
+

P2
42 + az2

in spherical coordinates.

e 2 = h , 2 =

h2e2 h3 e3

a a

-3U2 au3

h1A1 h2A2 h3A3

r2 sine -60
(r sin e Ao) -- a (rAe )

aAr
1 (r sin 0 AO)

(b) V2 _ 1 a (h2hsP\ + a
h1 h2 h3 -3u, hl -3u, au2

r e6 +

er

e,; +

er ree rsin0e(k

a a a
ar a& a0

Ar rAe r sin e

a (rAe) _ aAr
r sine e(h

ar ae

h3 h1 a + a (h-jh-2 a qJ

h2 au2 au3 h3 au3

1 [-3 ((r)(r sin e) a
(1)(r)(r sine) ar (1) ar

+ a (r sine) 0)(1) 'a qj

'30 r ae

+

1 sine a (r:2 a + sine
r2 sine ar ar ae ae

1 a r2 + 1 a (sinO'\
r2 -6r ar r2 sine '30 ae

29. Write Laplace's equation in parabolic cylindrical coordinates.

2 q
r2 sin29

From Problem 8 (b),

u1=u, u2 = v , u3 = z ; h1= u2 + v2, h2 = u2 + v2, h3
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Then
V2

`f' = 22 I u a +U +v a av

a2 `Y +
a-2

q1 a2
u2+ v2 au2 av2 az2

and Laplace's equation is V2' = 0 or

+ j (u+v2
z

a2
+

a2
+ (u2 + v2)

a2
= 0

au av

atp

av

az2

30. Express the heat conduction equation aU = K V2 U in elliptic cylindrical coordinates.

Here u1= u, u2-,= v, u3 = z ; hl=h,2= a sinh2 u + sine v , h3=1. Then

02U =
1 a

(iu) + a (LU) + a (a2(sinh2u
a2(sinh2 u + sin2v) au au av av az

1 ra2U + a2U + a2U
a2(sinh2 u + sin2v) L au2 -a v2 az2

and the heat conduction equation is

aU
at

1 a2U +a2U +
a2 U

a2(sinh2 u + sin2v) [aU2 av2 -a Z2

SURFACE CURVILINEAR COORDINATES

+ sin2v )

31. Show that the square of the element of arc length on the surface r = r (u, v) can be written
ds2 = E du 2 + 2F du dv + G dv2

We have

Then ds2 = dr dr

dr = ad. + aa,-v dv

_ ar ar 2 ar ar ar ar
au au

du + 2
au av

dudv + av av
dv2

E du2 + 2F dudv + G dv2

32. Show that the element of surface area of the surface r = r (u, v) is given by
dS = E dudv

The element of area is given by

dS f(!du)x(i-dv)
+

- ar x ar dudv =
au av J
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) dudv(
x

av ) au
x

a vau

The quantity under the square root sign is equal to (see Problem 48, Chapter 2)
(ar ar)(ar ar) - (ar ar )(ar ar) = EG - F2 and the result follows.
au au av av au av av au



156 CURVILINEAR COORDINATES

MISCELLANEOUS PROBLEMS ON GENERAL COORDINATES.

33. Let A be a given vector defined with respect to two general curvilinear coordinate systems
(ui, u2, u3) and (ui, u2, u3) . Find the relation between the contravariant components of the vector
in the two coordinate systems.

Suppose the transformation equations from a rectangular (x, y, z) system to the (ui, u2i u3) and
(ui , u2 , i.L3) systems are given by

(1)
x = X1(ui, u2. U3), Y = Y1(u1, u2, u3) ,

x = x.,071, 42, u3) , Y = Y-2 071, u2, u3) ,

z = zi(u1, u2, u3)

z = z2071, u2, u3)

Then there exists a transformation directly from the (u1, u2, u3) system to the (ui, u2, u3) system defined by

(2) u1 = u161, u2, u3) , u2 = u2(u1, u2, u3) ,

and conversely. From (1),

u3 = u30i1, u2, u3)

dr = a du1 + au du2 + au du3 a1 du1 + a2 du2 + a3 du3
1 2 3

dr =
ar dui + ar du2 +

ar
du3 = ai dui + a2 du2 + an du3

-au, au`2 au3

Then

(3) a1 du1 + at2 du2 + do du3 = ai dui + a2 di12 + a3du3

From (2) , dui = au1 dui + au1 d!72 + au1 du3
1 2

du2 = au2 dui + au2 du2 + au2 this
aui au2 au3

du3 =
au3

dui + au du2 + au3 du3
aui au2 au3

Substituting into (3) and equating coefficients of dui, du2, du`3 on both sides, we find

a1
aui au2 'U.1al
-37;,L

+ a2 ai
+ a3

aui

(4) °`2 = a1
1 + a2 u

2

+
a3 u3au a2 au2 2

a3
auia

+
2 3i

au3 au3 au3

Now A can be expressed in the two coordinate systems as

(5) A C, C11 + C2 a2 + C3 &a and A c1 a1 + c2 a2 + c3 a3

where C1, C2, C3 and C1, C2, C3 are the contravariant components of A in the two systems. Substituting
(4) into (5) ,

c1 a1 + C2 ac2 + C3 a3 = ci ai + c2 a2 + c3 a3

au2 au3-a + W

aui -au, -au, au2 - au2 au2 - au3 - au3 - aU3
(C1 aui + c2

au2 + au3' al
+ (Cl aui +

au2
+

-a-as)
a2 + (C1

aui + C2 a2 + c3 un) a3
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Then

6)

Cl =

C2 =

au1
-C

aul
C1

au1 +
2

aU2
+

- au2 - au2
++ C2C1

au1
C3

au3

au2
C3

-

3 =

a-u1
a2

au3 - au3
C1 aa,

+ C2
au2

+

a-u3

au3
C3

au3

or in shorter notation

(7) C, =
au

C1
uP

+ C2 P +
au

C3 P p = 1,2,3
au'1 au2 au3

and in even shorter notation

(8) C

3 - au
C

k
= 1 2 3q p , ,

au
9

Similarly, by interchanging the coordinates we see that

9 C

3
aup

C = 1 2 3( ) p E q
a

p , ,1
u

9
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The above results lead us to adopt the following definition. If three quantities C1, C2, C3 of a co-
ordinate system (u1, u2, u3) are related to three other quantities C1, C2, C3 of another coordinate system
(Z1,2, u3) by the transformation equations (6), (7), (8) or (9), then the quantities are called components of
a contravariant vector or a contravariant tensor of the first rank.

34. Work Problem 33 for the covariant components of A.

Write the covariant components of A in the systems (u1, u2, u3) and (u1, u2, u3) as c1, c2, c3 and
c1, c2, c3 respectively. Then

(1) A = C1 Du1 + C2 VU2 + C3 VU3 = c1 Du1 + C2 VU 2 + c3 V U-3

Now since u p = i p(us, u2, u3) with p = 1,2,3,

(2)

z

a; j, au1

au1 az

aup au1

au1 ax

a'up au1

au1 ay

Also,

(3) C1 Vu1 + C2 Vu2 + C3 Vu3

au p au2 auk -6U3

au2 ax au3 ax
aap au2 aup au3

au2 ay au3 ay

-au o au2 aui -3u3

au2 az au3 aZ

au1
+

au2 au3)
(clax c2

ax +c3 axi

p = 1,2,3

au1 au2 au3 au1 au2 au3
+ (C1

ay
+ c2 -j- + c3 ay) + (C1 aZ + C2 aZ + C3 az ) k

and
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(4) c1 VU, + c2 Vu2 + C3 Vu3

au1 au2 au3 aul _ au2
FS

u3
+ { C1

y
+ C2

ay y
+ C3 a) + { C1

aZ + C2 aZ + aZ
k

Equating coefficients of

au1
Cl

ax

(5)
aul

Cl ay
au1

Cl aZ

CURVILINEAR COORDINATES

i, 3, k in (3) and (4) ,

au2
C2

+ax

au3 _ au1 _ -a-U2 _ aug
cg

ax cl ax +
c2 ax + c3

ax

au2 au3 aul au2 au3+ c2 ay + c3 ay = cl ay + c2
ay

+ c3 ay

+ C au2
+ C

U3
c

au1 + C -a-U2 + c -a-U3
2 az 3 az l az 2 aZ 3 az

Substituting equations (2) with p = 1,2,3 in any of the equations (5) and
au2 au3 au1 au2 au3 aul au2 au3

on each side, we find
' ' ' zax ax ay ay ay d

_ a141 _ au2 _ aug)

(Cl ax + c2 ax + cg ax
1

az aZ

au,. au2
Cl. = +

au,

aul

c2 au1
+

_ au2
(6) C2 Cl

au2
+ C2

au2
+

,., au1 au2
CS

au3
+ C2

-a a U3

+

which can be written

aul au2
c(7) c +c1 2 +

or

auk aup

(8)

Similarly, we can show that

(9)

3 _auq
cl, = q=1 cq au0

Cl,

E3

q=l

p = 1,2,3

p = 1,2,3

of

The above results lead us to adopt the following definition. If three quantities c1, c2, c3 of a co-
ordinate system (u1, u2, u3) are related to three other quantities c1 , c2 , c3 of another coordinate system
(u1, u2, u3) by the transformation equations (6), (7), (8) or (9), then the quantities are called components of
a covariant vector or a covariant tensor of the first rank.

In generalizing the concepts in this Problem and in Problem 33 to higher dimensional spaces, and
in generalizing the concept of vector, we are led to tensor analysis which we treat in Chapter 8. In the
process of generalization it is convenient to use a concise notation in order to express fundamental ideas
in compact form. It should be remembered, however, that despite the notation used, the basic ideas treat-
ed in Chapter 8 are intimately connected with those treated in this chapter.

au3

c3 au1

equating coefficients

c3
au3

p = 1, 2,3
auo
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CURVILINEAR COORDINATES

(a) Prove that in general coordinates (u1, u2, u3),

g

(b) Show that the volume element in general coordinates is v"g du1 du2 du3.

(a) From Problem 17,

9 =
ap atq

- au au =
ax ax + ay ay + az az p, 4 = 1,2,3

q aul, auq aup auq aup auq

g11 g12 g13

g21 g22 g23

g31 g32 g33

where g,g, are the coefficients of du, duq in ds2 (Problem 17).

Then, using the following theorem on multiplication of determinants,

(1)

a1 a2 as

b1 b2 b3

C1 C2 C3

Al B1 C1

A2 B2 C2

As B3 C3

we have

(ar ar x ar )2
au1 au2 au3

( ar ar ), ar )2
au1 au2 au3

a1 A1+ a2 A2+ as A. a1 B1+ a2 B2+ as B3

159

a1 C1 + a2 C2 + as C3

b1 Al + b2 A2 + b3 As b1 B1 + b2 B2 + b3 B3 b1 C1 + b2 C2 + b3 C3

c1 Al + C2 A2 + C3 AS C1 B1 + C2 B2 + c3 B3

ax ay az

au1 au1 au1

ax ay az
au2 au2 au2

ax ay az

au3 au3 au3

ax ay az
au1 au1 au1

ax ay az

au2 au2 au2

ax ay az

au3 au3 au3

(b) The volume element is given by

ax ax

au1 au2 au3

ay ay ay

au1 au2 au3

az az az
au1 au2 au3

C1 C1 + C2 C2 + C3C3

g11 g12 g13

g21 g22 g23

g31 g32 g33

-6 rdV = 1

(au

du1) ' (au du2) X (a
r3 1

du3) I
I

au-6

r

1 ' au 2 x our1 2 3

' du1 du2 du3 by part (a).

du1 du2 du3

Note that v/-g- is the absolute value of the Jacobian of x, y, z with respect to u1, u2, u3 (see Prob. 13) .
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SUPPLEMENTARY PROBLEMS

Answers to the Supplementary Problems are given at the end of this Chapter.

36. Describe and sketch the coordinate surfaces and coordinate curves for (a) elliptic cylindrical, (b) bipolar,
and (c) parabolic cylindrical coordinates.

37. Determine the transformation from (a) spherical to rectangular coordinates, (b) spherical to cylindrical
coordinates.

38. Express each of the following loci in spherical coordinates:
(a) the sphere x2 + y2 + z2 = 9 (c) the paraboloid z = x2 + y2
(b) the cone z2 = 3 (x2+y2) (d) the plane z = 0

(e) the plane y = x .

39. If p, 0, z are cylindrical coordinates, describe each of the following loci and write the equation of each
locus in rectangular coordinates: (a) p = 4, z = 0; (b) p = 4; (c) 0 = 7T/2 ; (d) 0 = 7T/3, z =1 .

40. If u, v, z are elliptic cylindrical coordinates where a = 4, describe each of the following loci and write the
equation of each locus in rectangular coordinates:
(a) v=7T/4; (b)u=0, z=0; (c)u=1n2, z=2; (d)v=0, z=0.

41. If u, v, z are parabolic cylindrical coordinates, graph the curves or regions described by each of the fol-
lowing: (a)u=2, z=0; (b)v=1, z=2; (c) 3, z=0; (d) 1<u<2, 2<v<3, z=0.

42. (a) Find the unit vectors er, ee and of a spherical coordinate system in terms of i, j and k.
(b) Solve for i, j and k in terms of er, ee and eo.

43. Represent the vector A = 2y i - z j + 3x k in spherical coordinates and determine Ar, Ae and

44. Prove that a spherical coordinate system is orthogonal.

45. Prove that (a) parabolic cylindrical, (b) elliptic cylindrical, and (c) oblate spheroidal coordinate systems
are orthogonal.

46. Prove er = Bee + sin 6 e" , ee = e . , e0 = - sin 6 er - cos 6 ee .

47. Express the velocity v and acceleration a of a particle in spherical coordinates.

48. Find the square of the element of are length and the corresponding scale factors in (a) paraboloidal,
(b) elliptic cylindrical, and (c) oblate spheroidal coordinates.

49. Find the volume element dV in (a) paraboloidal, (b) elliptic cylindrical, and (c) bipolar coordinates.

50. Find (a) the scale factors and (b) the volume element dV for prolate spheroidal coordinates.

51. Derive expressions for the scale factors in (a) ellipsoidal and (b) bipolar coordinates.

52. Find the elements of area of a volume element in (a) cylindrical, (b) spherical, and (c) paraboloidal co-
ordinates.

53. Prove that a necessary and sufficient condition that a curvilinear coordinate system be orthogonal is that
gPq= 0 for pIq.
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54. Find the Jacobian J( x'y'z ) for (a) cylindrical, (b) spherical, (c) parabolic cylindrical, (d) elliptic
u1, u2. u3

cylindrical, and (e) prolate spheroidal coordinates.

55. Evaluate 1ff x2 + y2 dx dy dz, where V is the region bounded by z = x2 + y2 and
V

Hint: Use cylindrical coordinates.

z = 8-(X2 + y2) .

56. Find the volume of the smaller of the two regions bounded by the sphere x2 + y2 + z2 = 16 and the cone
z2 = x2 + y2.

57. Use spherical coordinates to find the volume of the smaller of the two regions bounded by a sphere of
radius a and a plane intersecting the sphere at a distance h from its center.

58. (a) Describe the coordinate surfaces and coordinate curves for the system
x2 - y2 = 2u1 cos u2, xy = u1 sin U2,

x z

z=u3

(b) Show that the system is orthogonal. (c) Determine J( 'y' ) for the system. (d) Show that u1 and
u1, u2, u3

u2 are related to the cylindrical coordinates p and 0 and determine the relationship.

59. Find the moment of inertia of the region bounded by x2 - y2 = 2, x2 - y2 =4, xy =1, xy = 2, z=1 and
z = 3 with respect to the z axis if the density is constant and equal to K. Hint: Let x2 - y2 = 2u, xy = v.

60. Find au,
r

,our ,
Du1, Out, Qua in (a) cylindrical, (b) spherical, and (c) parabolic cylindrical co-

t au2 3
ordinates. Show that e1= E1, e2 = E2, e3 = E3 for these systems.

61. Given the coordinate transformation u1= xy, 2u2= x2+y2, u3= z . (a) Show that the coordinate system is

not orthogonal. (b) Find J(
x,

y'
z

). (c) Find ds2.
u1i u2, u3

62. Find TD, div A and curl A in parabolic cylindrical coordinates.

63. Express (a) V Ji and (b) V A in spherical coordinates.

64. Find Vq in oblate spheroidal coordinates.

a2.:p
a2(1)65. Write the equation axe + a 2 = in elliptic cylindrical coordinates.

Y

66. Express Maxwell's equation V x E -an in prolate spheroidal coordinates.

2
67. Express Schroedinger's equation of quantum mechanics V q + $ 2

m (E - V(x, y, z)) ii = 0 in parabolic

cylindrical coordinates where m, h and E are constants.

68. Write Laplace's equation in paraboloidal coordinates.

69. Express the heat equation aU = K V2 U in spherical coordinates if U is independent of (a) 0, (b) QS and

e, (c) r and t, (d) and t .

70. Find the element of are length on a sphere of radius a.

71. Prove that in any orthogonal curvilinear coordinate system, div curl A = 0 and curl grad = 0.
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72. Prove that the surface area of a given region R of the surface r = r (u, v) is ff/EG_F2 du dv. Use
R

this to determine the surface area of a sphere.

73. Prove that a vector of length p which is everywhere normal to the surface r = r (u, v) is given by

A = ± p(ar x ar) EEG -F2
au av

74. (a) Describe the plane transformation x = x(u, v) , y = y(u, v) .
(b) Under what conditions will the it, v coordinate lines be orthogonal?

75. Let (x, y) be coordinates of a point P in a rectangular xy plane and (u, v) the coordinates of a point Q in
a rectangular uv plane. If x = x(u, v) and y = y(u, v) we say that there is a correspondence or mapping
between points P and Q.
(a) If x = 2u +v and y = u - 2v, show that the lines in the xy plane correspond to lines in the uv plane.
(b) What does the square bounded by x = 0, x = 5, y = 0 and y = 5 correspond to in the uv plane?

(c) Compute the Jacobian J(X , v) and show that this is related to the ratios of the areas of the square

and its image in the uv plane.

76. If x = 2 (u2 -v2) , y = uvv determine the image (or images) in the uv plane of a square bounded by x = 0,
x =l, y = 0. y=1 in the xy plane.

77. Show that under suitable conditions on F and G,

f
00 0"J0 0

f e-st
0 0

t
F(u) G(t-u) du dte-s(x+y) F(x) G(y) dxdy

Hint: Use the transformation x + y = t, x = v from the xy plane to the vt plane. The result is important in
the theory of Laplace transforms.

78. (a) If x = 3u1 + u2 - u3, y = u, + 2u2 + 2u3, z = 2u1 - u2 - u3, find the volumes of the cube bounded by
x = 0, x = 15, y = 0, y = 10, = 0 and z = 5, and the image of this cube in the u1u2u3 rectangular coor-
dinate system.

(b) Relate the ratio of these volumes to the Jacobian of the transformation.

79. Let (x, y, z) and (u1, u2i u3) be respectively the rectangular and curvilinear coordinates of a point.
(a) If x = 3u1 + u2 -- U3, y = u1 + 2u2 + 2u3 ; z = 2u1 - u2 - U3, is the system u1 u2u3 orthogonal?
(b) Find ds2 and g for the system.
(c) What is the relation between this and the preceding problem?

2 2+ + ` bd bi80 d th
a(x, y, z)

V if th t 2=2, y = u1 (a g an )( e Jaco anu2, z = u3 --- it, fin. If x = u1

ANSWERS TO SUPPLEMENTARY PROBLEMS.

-3(U-1' U2, us)
er y a ] g .

36. (a) u = c1 and v = c2 are elliptic and hyperbolic cylinders respectively, having z axis as common axis.
z = c3 are planes. See Fig. 7, page 139.

(b) is = c1 and v = c2 are circular cylinders whose intersections with the xy plane are circles with centers
on the y and x axes respectively and intersecting at right angles. The cylinders u = c1 all pass
through the points (-a, 0, 0) and (a, 0, 0). z = c3 are planes. See Fig. 8, page 140.

(c) is = c1 and v = c2 are parabolic cylinders whose traces on the xy plane are intersecting mutually per-
pendicular coaxial parabolas with vertices on the x axis but on opposite sides of the origin. z = c3
are planes. See Fig. 6, page 138.

The coordinate curves are the intersections of the coordinate surfaces.
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37. (a)

(b)

38. (a)
(e)

r =
V/x2+y2+z2,

e = arc tan arc tan Y

z x

r= p2+z2, 6 arc tan P,

r= 3, (b) e=7r/6, (c) r singe = cos 6, (d) 6=77/2,
the plane y = x is made up of the two half planes 0 = 7r/4 and = 57T/4

39. (a) Circle in the xy plane x2 +y2 = 16, z = 0. (b) Cylinder x2+y2 = 16 whose axis coincides with z axis.
(c) The yz plane where y ? 0. (d) The straight line y = x, z = 1 where x > 0, y > 0.

40. (a) Hyperbolic cylinder x2-y2 = 8. (b) The line joining points (-4,0,0) and (4,0,0), i.e. x=t, y=0, z=0

where -4' t < 4. (c) Ellipse 25 + 9 = 1, z = 2. (d) The portion of the x axis defined by x ? 4, y = 0,
z =0.

41. (a) Parabola y2 = - 8 (x - 2), z = 0. (b) Parabola y2 = 2x + 1, z = 2. (c) Region in xy plane bounded by
parabolas y2 = - 2 (x - 1/2), y2 = - 8 (x - 2), y2 = 8 (x + 2) and y2 = 18 (x + 9/2) including the boundary.
(d) Same as (c) but excluding the boundary.

42. (a) er = sin 6 cos i + sin 6 sin 0 j + cos 6 k
e0 = cos e cos i + cos 6 sin j - sin 6 k
e(, = -sin0 1 + cos0 j

(b) i = sin 6 cos 0 er + cos 6 cos 0 ee - sin o e4,
j = sin 6 sin o er + cos 6 sin o ee + cos 0 e
k = cos 6 er - sin 6 ee

43. A = Ar er + A9 ee + A0 eo where

Ar = 2, sin26 sin 0 cos 0 - r sin e cos 0 sin 0 + 3r sin 6 cos 6 cos
Ae = 2r sin 6 cos 6 sin o cos o - r cos26 sin o - 3r sin26 cos o
A0 - 2r sin a sin2 0 - r Cos 6 cos 0

47. v = yr er + v0 e0 + v. e. where

a = ar er + ae ee + ao e(h where

r = r, ve =r6, v = r sin 6
.. 2 2ar= r-r6 -rsin26

ae = T f(r28)_r sin 6 cos 6 c

ao = 1
d (r2 sin2 e c)rsin6 dt

48. (a) ds2 = (u2+v2) (du2 +dv2) + u2v2 d02, hu = by = u2+v2, ho = uv

(b) ds2 = a2(sinh2u + sin2v) (due+dv2) + dz2, hu = by = a sinh2u + sin2v, hz = 1

(c) ds2 = a2(sinh2e + sin2v) (d 2+d7J2) + a2 cosh2 Cos27J doe,

he = h,r = a sinh2 + sin27j, a cosh Cos 77

2 2 2 2 a2 du dv dz4 9 2 + vuv u. (a) ( ) du dv dW, (b) a (sink u + sin v) du dv dz , (c)
(cosh v - cos u)2

50. (a) he = h,7 = a sinh2e + sin277, a sinh sin 77

(b) a3(sinh2e + sin27)) sinh e sin 77 ded77 do
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52.

56. 647T(2-V)

54. (a) p, (b) r2 sin 0, (c) u2+v2, (d) a2(sinh2u + sin2v), (e) a3(sinh26 + sine?)) sinh sin 7)

55.

(a) pdpdo, pdc/ dz, dp dz
(b) r sin 0 dr do, r2 sin 0 d9 do, r dr dO
(c) (u2 +v2) du dv, uv u2+v2 du d%, uv u2+v2 dv do

2567T

15

59. 2 K

r cos 9 cos 0 i + r cos 9 sin 0 j- r sin 9 k

60. (a) rr = cos c) i + sin 0 j.
P

a_r = _ p sin 0 i + p cos ca j,

ar = k. vz=k
az

58. (c) z; (d)uz=2P2, u2=20

xi+yj
Op = - cos 0 i + sin j

x2+y2

,vo,
= -Sin ei + cos4 j

p

(b) ar = sine cos i + sine sin j + cos 9 k

ar

a9

ar

aq
- r sin 9 sin ¢ i+ r sin e cos 0 j

Vr = x i+ y j+ z k
= sine cos 0 i + sin a sin j+ cos 9 k

x2+y2+z2

V9 =
xz i + yz j - (x2+y2)k cos e cos i + cos 9 sin 0 j - sin 9 k

(x2+y2+z2) x2+y2 r

v yi + xj -sin i + cost j
x2 + y2 r sin e

(c) au = ui + vi, av = -vi + uj, aa r = k

vu
ui + vj

CURVILINEAR COORDINATES

3

vv = Vz = k

57.

3

(2a3- 3a2h + h3)

-vi + uj
u2 + v2 , u2 + v2 ,

61. (b)
y2

1x2 , (c) ds2

uau u2+v2 av
+ 1 a e +62. v 4) = 1 a

e

div A

curl A

u2

(x2+y2) (dui + due) - 4xy du1du2
+ du 2 =(x2-y2)2 s

v

u2+v2
Au)

1 aAz -
u2+ v2 av

a-
ae

z z

Avl
+ aAz

/J aZ

(1/2A) } uV `+v2eu
az

u2 (dui + due) - 2u1 du1 due
+ du_2

2 (u2 - u1)

+
a ( u2+ v2 A -aAz u, + v2 vV-)

az u au
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63. (a) V 1i =
a

er + T e8 + 1 e
ar ae r sin 6 a0

(b) 1
(r2

A ) +
Br sin 6 a6 r sin 6 aq5r2 ar r

(cosha2 cosh 4 (sinh26 + sin277) ae
a2_ a

1 a 1

+ a2 cos 77 (sinh26 + sin277)
(cos rJ a2 cosh2: cos2l ace

2-
=

a2(sinh2u + sin2v)cP65.
-a (1)

+ av2

1 -a

S2
(RED) - a (SE,7) S e,-66.

aR

+ (Me) - (RED) S e,7 + {(sE71) - a
(SEse) R eoa a a a

1 ax 1 ax 1 axe

c at
e, - c ate e77 c at

eo

where R sinh 6 sin 77 and S = sinh2e + sin27

2 2 2 2m1 [67.
u2+v2

a + a + a +
8he

(E - W(u, v,
z)

a-a qj
268. uv

au
'(u au) + u2va (v a) +

)(sl

(u2 + v2)
a2 p
a02 = 0

69. (a) aU =
K

1 a (r2 aU) + 1 a (Sin 6 aU )
at r2 ar ar r2 sin 6 a6 a6

-aU
(b) at K

[-4k ar
(r2 aU) (c) sin B a6 (sin 6

70. ds2 = a2 [ d62 + sin26 d02]

74. (b) ax ax + ay ay
au av au av

1 a .n6 A + 1
aA

0

q

a2 u

165

= 0, where W(u,v,z) = V(x,y,z).

0-a42 (d) dr (r2U) = 0

78. (a) 750, 75; (b) Jacobian = 10

79. (a) No. (b) ds2 = 14dui + 6du2 + 6du2 + 6du1du2 -- 6du1du3 + 8du2du3, g = 100

80. (a) g = 16u1 u3 , I =



Chapter 8

PHYSICAL LAWS must be independent of any particular coordinate systems used in describing them
mathematically, if they are to be valid. A study of the consequences of this re-L

quirement leads to tensor analysis, of great use in general relativity theory, differential geometry,
mechanics, elasticity, hydrodynamics, electromagnetic theory and numerous other fields of science
and engineering.

SPACES OF N DIMENSIONS. In three dimensional space a point is a set of three numbers, called
coordinates, determined by specifying a particular coordinate system

or frame of reference. For example (x,y, z), (p, c,z), (r, 8, 55) are coordinates of a point in rectan-
gular, cylindrical and spherical coordinate systems respectively. A point in N dimensional space is,
by analogy, a set of N numbers denoted by (x1, x2, ..., xN) where 1, 2, ..., N are taken not as expo-
nents but as superscripts, a policy which will prove useful.

The fact that we cannot visualize points in spaces of dimension higher than three has of course
nothing whatsoever to do with their existence.

COORDINATE TRANSFORMATIONS. Let (x1, x2, ..., xN) and (x1, x2, ..., RN) be coordinates of a point
in two different frames of reference. Suppose there exists N

independent relations between the coordinates of the two systems having the form

1 _ -X'1 2

2 2 1 2

(1)

which we can indicate briefly by

(2)

xN = zN(x1, x2, ..., xN)

xk = xk(x1, x2, ..., xN) k = 1, 2, ..., N

where it is supposed that the functions involved are single-valued, continuous, and have continuous
derivatives. Then conversely to each set of coordinates (x1, x2, ..., xN) there will correspond a
unique set (x1, x2, ..., xN) given by

k = 1 2 N(3) X k x,x,...,x) k = 1, 2,...,N

The relations (2) or (3) define 4 transformation of coordinates from one frame of reference to another.

166
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THE SUMMATION CONVENTION. In writing an expression such as a1x1 + a2x2 + ... + a1yx1 we can
X

use the short notation jZ1 xi. An even shorter notation is sim-

ply to write it as ajxi, where we adopt the convention that whenever an index (subscript or super-
script) is repeated in a given term we are to sum over that index from 1 to N unless otherwise spec-
ified. This is called the summation convention. Clearly, instead of using the index j we could have
used another letter, say p, and the sum could be written aoxO. Any index which is repeated in a giv-
en term, so that the summation convention applies, is called a dummy index or umbral index.

An index occurring only once in a given term is called a free index and can stand for any of the
numbers 1, 2, ..., N such as k in equation (2) or (3), each of which represents N equations.

CONTRAVARIANT AND COVARIANT VECTORS. If N quantities A1, A2, ..., AN in a coordinate sys-
tem (x1, x2, ..., x 1) are related to N other quantities

A1, A2, ..., ff in another coordinate system (x1, x2, ..., xN) by the transformation equations

A _ ax9 Aq p = 1, 2, ..., N
q=1

which by the conventions adopted can simply be written as

A = axP Aq
axq

they are called components of a contravariant vector or contravariant tensor of the first rank or first
order. To provide motivation for this and later transformations, see Problems 33 and 34 of Chapter 7.

If N quantities A1i A2, ..., AN in a coordinate system (x1, 12 , ..., x1) are related to N other
quantities At, A2, ..., Aff in another coordinate system (x1, x2, ..., xN) by the transformation equations

Ap
= axp Aq p = 1, 2, ..., N

q=1
or

AP
axq A
azp q

they are called components of a covariant vector or covariant tensor of the first rank or first order.

Note that a superscript is used to indicate contravariant components whereas a subscript is
used to indicate covariant components; an exception occurs in the notation for coordinates.

Instead of speaking of a tensor whose components are Ap or AP we shall often refer simply to
the tensor AP or AP A. No confusion should arise from this.

CONTRAVARIANT, COVARIANT AND MIXED TENSORS. If N2 quantities Aqs in a coordinate system
_ (x 1,x2, ..., x1) are related to N2 other quan-

tities A in another coordinate system (x1, x2, ..., x") by the transformation equations

Air
ax9 axs Aqs p,r = 1, 2, ..., N

S=1 q=1 x x

or
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axq axrAgs
axq axs

by the adopted conventions, they are called contravariant components of a tensor of the second rank
or rank two.

The N2 quantities Aqs are called covariant components of a tensor of the second rank if

APr
axq axs

Aax p -ay r qs

Similarly the N2 quantities AS are called components o f a mixed tensor of the second rank if

AP = ax P axs A q

axq oxr s

THE KRONECKER DELTA, written 8k, is defined by

Sk
J0 if jAk

1 if j = k

As its notation indicates, it is a mixed tensor of the second rank.

TENSORS OF RANK GREATER THAN TWO are easily defined. For example, Akit are the compo-
nents of a mixed tensor of rank 5, contravariant of order

3 and covariant of order 2, if they transform according to the relations

A firm
= axp axr azm axk ax 1. Agst

ti axq axs axt axi ax9 ki

SCALARS OR INVARIANTS. Suppose 0 is a function of the coordinates xk, and let denote the
functional value under a transformation to a new set of coordinates xk

Then cb is called a scalar or invariant with respect to the coordinate transformation if _ . A
scalar or invariant is also called a tensor of rank zero.

TENSOR FIELDS. If to each point of a region in N dimensional space there corresponds a definite
tensor, we say that a tensor field has been defined. This is a vector field or

a scalar field according as the tensor is of rank one or zero. It should be noted that a tensor or
tensor field is not just the set of its components in one special coordinate system but all the possi-
ble sets under any transformation of coordinates.

SYMMETRIC AND SKEW-SYMMETRIC TENSORS. A tensor is called symmetric with respect to two
contravariant or two covariant indices if its com-

ponents remain unaltered upon interchange of the indices. Thus if Aqs r = AQS r the tensor is sym-
metric in m and p. If a tensor is symmetric with respect to any two contravariant and any two co-
variant indices, it is called symmetric.

A tensor is called skew-symmetric with respect to two contravariant or two covariant indices
if its components change sign upon interchange of the indices. Thus if Aqs r= -Aqs r the tensor is
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skew-symmetric in m and p. If a tensor is skew-symmetric with respect to any two contravariant and
any two covariant indices it is called skew-symmetric.

FUNDAMENTAL OPERATIONS WITH TENSORS.

1. Addition. The sum of two or more tensors of the same rank and type (i.e. same number of contra-
variant indices and same number of covariant indices) is also a tensor of the same rank and type.
Thus if AQ 0 and Bq 0 are tensors, then CO = Aq 0 + Br is also a tensor. Addition of tensors
is commutative and associative.

2. Subtraction. The difference of two tensors of the same rank and type is also a tensor of the same
rank and type. Thus if Aq0 and Br are tensors, then Dr = AqO - Bq 0 is also a tensor.

3. Outer Multiplication. The product of two tensors is a tensor whose rank is the sum of the ranks
of the given tensors. This product which involves ordinary multiplication of the components of
the tensor is called the outer product. For example, Aqr BS = Cqs' is the outer product of Alir

and BS . However, note that not every tensor can be written as a product of two tensors of lower
rank. For this reason division of tensors is not always possible.

4. Contraction. If one contravariant and one covariant index of a tensor are set equal, the result in-
dicates that a summation over the equal indices is to be taken according to the summation con-
vention. This resulting sum is a tensor of rank two less than that of the original tensor. The
process is called contraction. For example, in the tensor of rank 5, AgPr, set r=s to obtain
Agrr = Bq " a tensor of rank 3. Further, by setting p = q we obtain 80 = C2 a tensor of rank 1.

5. Inner Multiplication. By the process of outer multiplication of two tensors followed by a contrac-
tion, we obtain a new tensor called an inner product of the given tensors. The process is called
inner multiplication. For example, given the tensors A' O and Bst, the outer product is Aq1 B rst*
Letting q = r, we obtain the inner product Ark B . Letting q = r and p = s, another inner product
Ar1' Br is obtained. Inner and outer multiplication of tensors is commutative and associative.

6. Quotient Law. Suppose it is not known whether a quantity X is a tensor or not. If an inner prod-
uct of X with an arbitrary tensor is itself a tensor, then X is also a tensor. This is called the
quotient law.

MATRICES. A matrix of order m by n is an array of quantities apq, called elements, arranged in m
rows and n columns and generally denoted by

all a12 ... aln all a12 ...
a21 a22 ... a2 n an a22

or

a.41 ann a,ns ani2 ... ainn

asn

a2n

or in abbreviated form by (a1,q) or [apq] p = 1, ..., m; q= 1, ..., n. If m=n the matrix is a square
matrix of order m by m or simply m; if m = 1 it is a row matrix or row vector; if n = 1 it is a column
matrix or column vector.

The diagonal of a square matrix containing the elements ass, ate, ..., ann is called the princi-
pal or main dia ogT 1. A square matrix whose elements are equal to one in the principal diagonal and
zero else h is called a unit matrix and is denoted by 1. A null matrix, denoted by 0, is a matrix
all of whose elements are zero.
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MATRIX ALGEBRA. If A = (apq) and B = (bpq) are matrices having the same order (m by n) then

1. A = B if and only if ap q = b1, q .

2. The sum S and difference D are the matrices defined by
S = A + B = (aj,q + bpq) , D = A - B = (apq- bpq)

3. The product P = AB is defined only when the number n of columns in A equals the number of rows
in B and is then given by

P = AB = (apq) (bpq) = (apr brq)
n

where al,r brq = apr brq by the summation convention. Matrices whose product is defined
r.1

are called conformable.
In general, multiplication of matrices is not commutative, i.e. AB A BA . However the asso-

ciative law for multiplication of matrices holds, i.e.- C) _ (AB)C provided the matrices are
conformable. Also the distributive laws hold, i.e. A(B+C) = AB + AC, (A +B) C = AC + BC.

4. The determinant of a square matrix A = (a,q) is denoted by I A I, det A, I I or det(ajq).
If P=AB then IPI = IAI B.

5. The inverse of a square matrix A is a matrix A-1 such that AA-1 = 1, where I is the unit matrix.
A necessary and sufficient condition that A-1 exist is that det A 0. If det A = 0, A is called
singular.

6. The product of a scalar ?. by a matrix A denoted by X A, is the matrix (Xa pq) where each
element of A is multiplied by X.

7. The transpose of a matrix A is a matrix AT which is formed from A by interchanging its rows and
columns. Thus if A = (apq), then AT = (aqp) . The transpose of A is also denoted by A.

THE LINE ELEMENT AND METRIC TENSOR. In rectangular coordinates (x,y,z) the differential
are length ds is obtained from

By transforming to general curvilinear coordinates (see Problem 17, Chapter 7) this becomes ds
3 3

E I goq dupduq. Such spaces are called three dimensional Euclidean spaces.
P=1 q=1

A generalization to N dimensional space with coordinates (x1, x2, ..., xN) is immediate. We de-
fine the line element ds in this space to be given by the quadratic form, called the metric form or
metric,

In the special case where there exists a transformation of coordinates from xI to xk such that
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the metric form is transformed into (dz 1)2 + (d x2)2 + ... + (d xN)2 or d x kd x k, then the space is call-
ed N dimensional Euclidean space. In the general case, however, the space is called Riemannian.

The quantities gpq are the components of a covariant tensor of rank two called the metric
tensor or fundamental tensor. We can and always will choose this tensor to be symmetric (see Prob-
lem 29).

CONJUGATE OR RECIPROCAL TENSORS. Let g = g q denote the determinant with elements
pqg and supp e g A 0. Define g by-

gpq

pq

cofactor of gpq

g

Then gpq is a symmetric contravariant tensor of rank two called the conjugate or reciprocal tensor
of gpq (see Problem 34). It can be shown (Problem 33) that

gpq grq spr

ASSOCIATED TENSORS. Given a tensor, we can derive other tensors by raising or lowering indices.
For example, given the tensor A pq we obtain by raising the index p, the,

tensor A .q , the dot indicating the original position of the moved index. By raising the index q also
we obtain.4'?A. Where no confusion can arise we shall often omit the dots; thus Apq can be written
Apq . These derived tensors can be obtained by forming inner products of the given tensor with the
metric tensor g pq or its conjugate gpq . Thus, for example

p rp
A.q = g Arq,

Apq
= grp gsq Ars A rs = grq A-ps

A
q%ntk _ gpk g grm

A

These become clear if we interpret multiplication by grp as meaning: let r= p (or p=r) in whatever
follows and raise this index. Similarly we interpret multiplication by grq as meaning: let r= q (or
q = r) in whatever follows and lower this index.

All tensors obtained from a given tensor by forming inner products with the metric tensor and
its conjugate are called associated tensors of the given tensor. For example A'4 and A. are asso-
ciated tensors, the first are contravariant and the second covariant components. The relation be-
tween them is given by

AP = g pq Aq or AP = gpq Aq

For rectangular coordinates g pq = 1 if p = q , and 0 if pA q , so that Ap = Ap, which explains why
no distinction was made between contravariant and covariant components of a vector in earlier chap-
ters.

LENGTH OF A VECTOR, ANGLE BETWEEN VECTORS. The quantity APBP , which is the inner
product of AP and Bq , is a scalar anal-

ogous to the scalar product in rectangular coordinates. We define the length L of the vector AO or
AP as given by
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L2 = AP AP = g1gA1'Aq = g1gAPAq

We can define the angle 6 between AP and B1' as given by

A1B1
cos 6 =

(A1A1') (B1B1')

THE PHYSICAL COMPONENTS of a vector A1' or A1' , denoted by Au, AV , and A. are the projec-
tions of the vector on the tangents to the coordinate curves and are

given in the case of orthogonal coordinates by

Au = v Al =
Al

V _9_1 1

Av = 22 A2 = Aw = , s As = A
922 933

Similarly the physical components of a tensor

A A g A
12

CHRISTOFFEL'S SYMBOLS. The symbols

A12

V'9 11922

13 A 13Auw = g1g A = etc.
-11-933V19

are called the Christoffel symbols of the first and second kind respectively. Other symbols used in-
stead o
is not trut-tf eneral.

and 1 q . The latter symbol suggests however a tensor character, which

TRANSFORMATION LAWS OF CHRISTOFFEL'S SYMBOLS. If we denote by a bar a symbol in a co-
ordinate system x k, then

[ jk m [pq, r] a0 axq axr +
g

ax1' a2 xq

axk axk a:x' pq ax's axj axk

n s axn ax1 axq azn a2xq
1k pq axs axq axk axq ax3azk

are the laws of transformation of the Christoffel symbols showing that they are not tensors unless
the second terms on the right are zero.

GEODESICS. The distance s between two points t1 and t2 on a curve xr= x'^(t) in a Riemannian
space is given by

s = J;1t2/;pq
2dx dt

t at
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That curve in the space which makes the distance a minimum is called a geodesic of the space. By
use of the calculus of variations (see Problems 50 and 51) the geodesics are found from the differen-
tial equation

d2 xr + r dxp dxq =
ds2 pq ds ds

0

where s is the are length parameter. As examples, the geodesics on a plane are straight lines where-
as the geodesics on a sphere are arcs of great circles.

THE COVARIANT DERIVATIVE of a tensor Ap with repect to xq is denoted by Ap,q and is de-
fined by

_ aAp s

Ap,q axq
_

pq As

a covariant tensor of rank two.

The covariant derivative of a tensor Ap with respect to x9 is denoted by Apq and is defined by

Ap - aAp
q axq

a mixed tensor of rank two.

1P1),AS
qs

For rectangular systems, the Christoffel symbols are zero and the covariant derivatives are the
usual partial derivatives. Covariant derivatives of tensors are also tensors (see Problem 52).

The above results can be extended to covariant derivatives of higher rank tensors. Thus

APi ... pn _ aAPl

nCri-ri ... n, q
axq

s
1,4 Sr2...rn -

rS
Ap. s rap rn

2
iq

q

sp. .Pln+ {PiAr2r
n

+ P2 Aplsp3...Pin
qs i ... rn

pi... pin q
is the covariant derivative of Ari rn with respect to x

Api ... pX
ri ... rn_is

+ ... + Pin A pi .. pin - i s

qs 1... rn

The rules of covariant differentiation for sums and products of tensors are the same as those
for ordinary differentiation. In performing the differentiations, the tensors g pq , gpq and 80 maybe
treated as constants since their covariant derivatives are zero (see Problem 54). Since covariant
derivatives express rates of change of physical quantities independent of any frames of reference,
they are of great importance in expressing physical laws.

PERMUTATION SYMBOLS AND TENSORS. Define a pqr by the relations

e123 =em1 =e312 =+1, e213=e132-= e321=-1, e pqr = 0 if two or more indices are equal

and define epgr in the same manner. The symbols epgr and epgr are called permutation symbols in
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three dimensional space.

Further, let us define

It can be shown that E pqr and Epgr are covariant and contravariant tensors respectively, called
permutation tensors in three dimensional space. Generalizations to higher dimensions are possible.

TENSOR FORM OF GRADIENT, DIVERGENCE AND CURL.

1. Gradient. If <J) is a scalar or invariant the gradient of c is defined by

grad cD =
a CD' - axp

where <D, p is the covariant derivative of with respect to xp.

2. Divergence. The divergence of AP is the contraction of its covariant derivative with respect to
xg, i.e. the contraction of A1,q. Then

divAp = Ap,p = ak(gAk)
g

1 h 1 f A A A -3 C T
aAp aAg

ur . e cur o
p

is p,q - q,p axq axp
defined as -- Epgr Ap,q .

r

pq

4. Laplacian. The Laplacian of is the divergence of grad cP or

v2 div 4>,p = 1 _ (V k
ax ax

In case g < 0, must be replaced by =g . Both cases g > 0 and g < 0 can be included by

writing g in place of V V.

8Ap
THE INTRINSIC OR ABSOLUTE DERIVATIVE of A p along a curve xq = xq(t), denoted by

St
, is

defined as the inner product of the covariant deriva-
q q

tive of AP and dt , i.e. AP, q dt and is given by

SAP dAp

st dt

Similarly, we define

8Ap _ dAp

bt dt

a tensor of rank two. The curl is also

dxg
Ar at

p Ar dxq

q r dt

The vectors AP or Ap are said to move parallelly along a curve
along the curve are zero, respectively.

if their intrinsic derivatives

Intrinsic derivatives of higher rank tensors are similarly defined.
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RELATIVE AND ABSOLUTE TENSORS. A tensor
Ap1... p'n

is called a relative tensor of weight wr1...rn
if its components transform according to the equation

Ag1...gl _ ax w Ap1.., pm azg1 azq i i axrn... pix
axs1

...
ax
.sns1... sn ax r1... rn axp1

ax

where J =
2z I

is the Jacobian of the transformation. If w=0 the tensor is called absolute and is

the type of tensor with which we have been dealing above. If w= 1 the relative tensor is called a
tensor density. The operations of addition, multiplication, etc., of relative tensors are similar to
those of absolute tensors. See for example Problem 64.

SOLVED PROBLEMS

SUMMATION CONVENTION.

1. Write each of the following using the summation convention.

4
1

'30(a) dW = ax +
axe

dx2 + +
a0

dxN .

axN

(b)
dz k = a3F k dx1 + ax k dx2 + ... + ax k dxN
dt -ax1 dt ax2 dt ax' dt

(c) (x1)2 + (x2)2 + (x3)2 + ... + (xN)2.

(d) ds 2 = g11(dx1)2 + g., (dx2)2 + gas (dx3)2 .

3 3
(e) }r g dxp dxq

p=1 q=1 p9

2. Write the terms in each of the following indicated sums.

N

(a) a , xk . }; a. xk = a x1 + a x2 + ... + ajN xN
jk b=, jk

=(b) Apq
Aqr. Apq Aqr

q=1

Ap1A1r + Ap2A2r + ...

d% = a0 dxq

dz k _ ax k dxy'
dt axrn dt

xk xk

ds2 = gkk dxk dxk , N=3

g pq dxp dxq, N= 3

+ ApNANr

a(c) g xk N=3.rs dk ax azs
,
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3 3
axj axk

_ gkj=1 k=1 axr axsgrs

axj ax1
j=1 j1 ax azs

ax, ax2 ax, ax3
+ gj2 axr axs + gj3 axr axs

-ax' -ax' + '6X2 ax1 + _6X3 ax1
_ g11 a`r axs g21 axr azs g31 axr azs

ax1 ax2 ax2 ax2 ax3 ax2
+ g12 axr azS + g22 azr axS +

g32 axr az

ax1 ax3
+

_6X2 ax3 ax3 ax3
+ 913 -ax' axS g23 azr azs + g33 a'xr azs

3. If xk, k = 1, 2, ..., N are rectangular coordinates, what locus if any, is represented by each of the
following equations for N=2,3 and Assume that the functions are single-valued, have con-
tinuous derivatives and are independent, when necessary.

(a) ax k = 1 , where ak are constants.
For N=2, a1x1 + a2x2 = 1, a line in two dimensions, i.' e. a line in a plane.
For N=3, a1x1 + a2x2 + a3x3 = 1 , a plane in 3 dimensions.
For N> 4, a1x1 +a2 X2 + ... + aNxN = 1 is a hyperplane.

(b) xkxk = 1.
For N = 2, (x1)2 + (x2)2 = 1 , a circle of unit radius in the plane.
For N = 3, (x1)2 + (x2)2 + (x3)2 = 1 , a sphere of unit radius.
For N >4, (x1)2 + (x2)2 + ... + (xN)2 = 1 , a hypersphere of unit radius.

(c) xk = xk(u) .
For N = 2, x1 = x1(u), x2 = x2(u), a plane curve with parameter u.
For N= 3, x1 = x1(u), x2 = x2(u), x3 = x3(u), a three dimensional space curve.
For N >4, an N dimensional space curve.

(d) xk = xk(u,v).
For N = 2, x1 = x1(u, v), x2 = x2(u, v) is a transformation of coordinates from (u, v) to (x1, x2) .
For N = 3, x1 = x1(u,v), x2 = x2(u,v), x3 = x3(u,v) is a 3 dimensional surface with parameters u and v.
For N>4, a hypersurface.

CONTRAVARIANT AND COVARIANT VECTORS AND TENSORS.

4. Write the law of transformation for the tensors (a) A k, (b) B k, (c) Cm

(a) A = axs axj ax k A i
qr axi azq axr jk

As an aid for remembering the transformation, note that the relative positions of indices p, q, r on
the left side of the transformation are the same as those on the right side. Since these indices are as-
sociated with the z coordinates and since indices i, j, k are associated respectively with indices p, q, r
the required transformation is easily written.
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pq _ axP axQ axi axj axk inn
(b) Bst ax'n - n azr azs axt ijk

(c) Cp Cm
ax"n

177

5. A quantity A(j, k, 1, m) which is a function of coordinates xx transforms to another coordinate sys-
tem z2 according to the rule

A(p, q, r, s) axj azk axi a. s A(, k 1 m)
axp ax ax ax

(a) Is the quantity a tensor ? (b) If so, write the tensor in suitable notation and (c) give the con-
travariant and covariant order and rank.

(a) Yes. (b) Aj 1'. (c) Contravariant of order 3, covariant of order 1 and rank 3 +1 = 4.

6. Determine whether each of the following quantities is a tensor. If so, state whether it is contra-
s N

variant or covariant and give its rank: (a) dxk, (b)
a0(axk 'x

(a) Assume the transformation of coordinates z'1 = x1(x1, ..., xN). Then dx1 = ax dxk and so dxk is a
axk

contravariant tensor of rank one or a contravariant vector. Note that the location of the index k is
appropriate.

(b) Under the transformation xk = xk(x1, ..., xT), 0 is a function of xk and hence 0 such that q(x1, ...,J) _
i.e. cP is a scalar or invariant (tensor of rank zero). By the chain rule for partial differ-

k ak k
entiation, a4

=
= a ax = -ax k transforms like A =

ax A. Then is
axi azj axk ax7 azk axk axk J axi axk

a covariant tensor of rank one or a covariant vector.

Note that in aO the index appears in the denominator and thus acts like a subscript which indi-
axk

cates its covariant character. We refer to the tensor or equivalently, the tensor with components
a- axk
a k

, as the gradient of , written grad 0 or VO.

7. A covariant tensor has components xy, 2y- z2, xz in rectangular coordinates. Find its covariant
components in spherical coordinates.

Let denote the covariant components in rectangular coordinates x1= x, xZ = y, x3 = z . Then

Al = xy = x1x2, A2 = 2y--z2 = 2x2-(x3)2, A3 = x1x3

where care must be taken to distinguish between superscripts and exponents.

Let Ak denote the covariant components in spherical coordinates

(1) Ak

x1=r,x2=6,x =0. Then
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The transformation equations between coordinate systems are

x1 = 71 sin x2 Cos x3 , x2 = x1 sin x sin V, x3 = V- Cos -X-2

Then equations (1) yield the required covariant components

Al =

A2 =

= (sin 12 cos z3) (x1x2) + (sin x2 sin x3) (2x2 - (x3)2) + (cos z2) (xlx3)

ax1 Al + ax2 A2 + ax3 A3
ax1 ax1 'ax'

(sin 6 cos (1b) (r2 sin2 6 sin 0 cos 0)

+ (sin 6 sin m) (2r sin 6 sin (P - r2 cos2 6)

+ (cos 6) (r2 sin 6 cos 6 cos ()

ax1 Al + x2 A2 + x3
As

ax ax2 az2

(r cos 8 cos 0) (r2 sine 6 sin cos (p)

+ (r cos 6 sin (p) (2r sin 6 sin m - r2 cos2 B)

+ (-r sin 6) (r2 sin 6 cos 6 cos (P)

A
= ax1

A + aax.2 A + ax3 A
3 ax3 1 Vx3 2 ax3 3

(-r sin 6 sin d) (r2 sin20 sin 0 cos gyp)

+ (r sin 6 cos q5) (2r sin 6 sin - r2 cos26)
+ (0) (r2 sin 6 cos 6 cos ()

8. Show that
aAp

axq
is not a tensor even though Ap is a covariant tensor of rank one.

By hypothesis, A, -ax, Ap . Differentiating with respect to -k.
axq

aAj dxp aA p C xp
+

k axq
A

axk axq axk ax

axp aA p axq a2 xp
+ A

axq axq axk axk DV '

axp axq aAp

azj axk axq
a2

XP

+ ax k axk
A

Since the second term on the right is present,
aAp

does not transform as a tensor should. Later we
axq

aAp
shall show how the addition of a suitable quantity to q causes the result to be a tensor (Problem 52).

ax
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9. Show that the velocity of a fluid at any point is a contravariant tensor of rank one.

k
The velocity of a fluid at any point has components dx in the coordinate system xb. In the coor-

dinate system x) the velocity is diJ . But
dt

d'l axl dxk
dt axk dt

by the chain rule, and it follows that the velocity is a contravariant tensor of rank one or a contravariant
vector.

THE KRONECKER DELTA.

10. Evaluate (a) 8q ASS, (b) bq 8q.

Since 8q = 1 if p = q and 0 if p X q,

(a) 8qAsr =

we have

r
AS. (b)8g8- = 8r

11. Show thataaxq = 8q
x

If p = q , axp
= 1 since xp = xq .aq

x

axe
P qIf p q , = 0 since x and x are independent.

a
q

x

The.. ax4 - 8q
ax

12. Prove that axfi ax = 8 .
azq axr r

Coordinates xP are functions of coordinates
by the chain rule and Problem 11,

xq which are in turn functions of coordinates xr. Then

axP axp az9

axr ax q az

a13. If A = xq Aq prove that Aq = ax - At.
ax ax

p
Multiply equation A = ax Aq by axr

axq azp
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-ax- axr axk' q r q r
= A = 8q A = A by Prob. 12. Placing r = q the result follows. ThisThen

az j'
A

az axq
indicates that in the transformation equations for the tensor components the quantities with bars and quan-
tities without bars can be interchanged, a result which can be proved in general.

14. Prove that 8Q is a mixed tensor of the second rank.

If 8q is a mixed tensor of the second rank it must transform accoraing to the rule

6k

axq axq 6p
aXP azk q

The right side equals ax' axk = k by Problem 12. Since 8 kj = 8k = 1 if j = k , and 0 if j k , it fol-

b
ax ax

lows that 8q is a mixed tensor of rank two, justifying the notation used.

Note that we sometimes use 8pq = 1 if p = q and 0 if p q, as the Kronecker delta. This is how-
ever not a covariant tensor of the second rank as the notation would seem to indicate.

FUNDAMENTAL OPERATIONS WITH TENSORS.

15. If Apq and Brq are tensors, prove that their sum and difference are tensors.

By hypothesis Arq and Brq are tensors, so that

-3-i axk jraPq
AZ axp axq aTl

Ar

ax's azk axr fiq
Bl axp axq azl

Br

Adding, (A
jk

+ ilk) = axk axk axr (APq + Br
Z l axp axq all r r

jk Jk azk azk axr pq 5q
Subtracting, (AZ - Bl) -

Z
(Ar - Br )

axp axq ax"

4Y+
Pq pq Pq

are
Pq

Then Br and Ar - Br are tensors of the same rank and type as Ar and Br .

Ps
16. If Arq and Bt are tensors, prove that Crt = Arq Bt is also a tensor.

We must prove that
rts

is a tensor whose components are formed by taking the products of compo-
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nents of tensors APg and Bt . Since AIr and areare tensors,

jk - axJ ark axr APq
l axp axq arl

arm axt BS
axs am t

Multiplying,
-1k
Al

Bm

n

ark az k axr azm axt APq Bs
axp axq azl axS axn

r t

181

which shows that APgBt is a tensor of rank 5, with contravariant indices p,q,s and covariant indices

r,t , thus warranting the notation Cats. We call Cr r= A,, Bt the outer product of Arg and Bt .

17. Let Ars t be a tensor. (a) Choose p = t and show that Arqp, where the summation convention is

employed, is a tensor. What is its rank ? (b) Choose p = t and q = s and show similarly that Argp
is a tensor. What is its rank ?

(a) Since Arst is a tensor,

(1)
A jk axk axk axr axs axt APq

lmn axk' axq ax l arm axn rst

We must show that A
Pqp is a tensor. Place the corresponding indices j and n equal to each other

and sum over this index. Then

A'
lTnj

A

axJ ark axr axs at pq

axp axg azl 'ax--M axg Arst

axt are axk axr axs vq
rs t

1' axg ax l axmaxg ax

8t axk axr axs Abq

0 axg art arm
rst

ark axr axs Apq

axg ax l axm
rsp

and so Arse is a tensor of rank 3 and can be denoted by Bqs . The process of placing a contravariant
index equal to a covariant index in a tensor and summing is called contraction. By such a process a
tensor is formed whose rank is two less than the rank of the original tensor.

Pq
(b) We must show that Argp is a tensor. Placing j = n and k = in in equation (1) of part (a) and summing

over j and k , we have
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-jk _ axq azk axr axS axt 1'q
Alkj

axp axq azl azk azk Arst

-ax t ax3 axS azk axr
azk axp azk axq azl

t s ar P q
8 8

xA
1 q axl rst

axr pq

ax l Arqp

Apq
rst

which shows that Arqp is a tensor of rank one and can be denoted by Cr. Note that by contracting
twice, the rank was reduced by 4.

18. Prove that the contraction of the tensor Aq is a scalar or invariant.

We have A = axq axq A p

k axp azk q

AJ = axq axq AP
= S q Ap = ApPutting j= k and summing,

axp axq q
p q p

Then A = Ap and it follows that Al must be an invariant. Since AP

q
is a tensor of rank two and

contraction with respect to a single index lowers the rank by two, we are led to define an invariant as a
tensor of rank zero.

19. Show that the contraction of the outer product of the tensors A0 and Bq is an invariant.

Since Ap and Bq are tensors, T j= axq Ap, Bk = axq
Bq . Then

ax ax

- axq axq
k

A B
axp axk q

By contraction (putting j = k and summing)

A B. = azj axq
Ap B = 8p q Ap Bq = Ap B

I axp axq q p

and so A1B1 is an invariant. The process of multiplying tensors (outer multiplication) and then contract-

ing is called inner multiplication and the result is called an inner product. Since ApB p is a scalar, it is

often called the scalar product of the vectors AP and Bq.

p qs
20. Show that any inner product of the tensors Ar and Bt is a tensor of rank three.

p BOuter product of A and Bts = Ap gst
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Let us contract with respect to indices p and t, i.e. let p = t and sum. We must show that the result-
ing inner product, represented by 0Bgs, is a tensor of rank three.

s
By hypothesis, Ar and Bt are tensors; then

A = a`xj axr
A B

In =
ax I axn ax t Bqs

k -a axk
n

axq axs axn t

Multiplying, letting j = n and summing, we have

axk axr az l axn axt qs

axP axk axq axs axk Ar Bt

8t axr a31 axn AP
BtP axk axq axs r t

axr ail axn AP Bqs
azk axq axs r p

showing that A Bqs is a tensor of rank three. By contracting with respect to q and r or s and r in the
product A Bts, we can similarly show that any inner product is a tensor of rank three.

Another Method. The outer product of two tensors is a tensor whose rank is the sum of the ranks of
the given tensors. Then APBqs is a tensor of rank 3 + 2 = 5 . Since a contraction results in a tensor
whose rank is two less than that of the given tensor, it follows that any contraction of AP Bqs is a tensor
of rank 5-2=3.

21. If X(p, q, r) is a quantity such that X(p, q, r) Bqn = 0 for an arbitrary tensor Bqn, prove that
X(p, q, r) = 0 identically.

n
Since Br

q
is an arbitrary tensor, choose one particular component (say the one with q=: 2, r= 3) not

equal to zero, while all other components are zero. Then X(p,2,3) Ban = 0, so that X(p,2,3) = 0 since
Ban 0. By similar reasoning with all possible combinations of q and r, we have X(p,q,r) = 0 and the
result follows.

22. A quantity A (p, q, r) is such that in the coordinate system x2 A (p, q, r) Brs = C0 where
Brs

is an
arbitrary tensor and C is a tensor. Prove that A(p,q,r) is a tensor.

In the transformed coordinates x2, A(j, k, 1) B
kin

= Cn.j

s
Then A(j,k,l) axk azn axr Bqs = -67 V, axp

Cl,
axq axs axl r axs axk

or axs axk ax Z A (j, k, 1) - axk A(p, q, r) Bqs - 0
-ax s ax azk
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Inner multiplication by ax, (i.e. multiplying by axn and then contracting with t =m) yields
ax ax t

or

n azk axr
-ax'

qs
bS

axq azl
.4(j,k,l) A(p,q,r) Br = 0

axk axr - axk qn

axq axl
A(j,k,l) - axA(p,q,r) Br = 0.

n
Since Br

q
is an arbitrary tensor, we have by Problem 21,

azk axr
k, 1) - ax A(p,q,r) = 0

axq ax l axi

a9 az nInner multiplication by x yields
ax in axr

k n - axp axq ax`nb7n 61 A(j,k,l) - 1 A(p,q,r)
az ax's axr

or 4(j,m,n) axp axq azn
axj azm axr

A(p, q, r)

= 0

which shows that A(p,q,r) is a tensor and justifies use of the notation A q.

In this problem we have established a special case of the quotient law which states that if an inner
product of a quantity X with an arbitrary tensor B is a tensor C, then X is a tensor.

SYMMETRIC AND SKEW-SYMMETRIC TENSORS.

r
23. If a tensor .4Sq is symmetric (skew-symmetric) with respect to indices p and q in one coordinate

system, show that it remains symmetric (skew-symmetric) with respect to p and q in any coordi-
nate system.

Pq
Since only indices p and q are involved we shall prove the results for B

If B
Pq Pq qis symmetric, B = B

.
Then

Bjk = -all azk Bpq = azk azk Bqp = kj

axP axq axq axp

and BPq remains symmetric in the z2 coordinate system.

If Bq is skew-symmetric,

Bjk = axk axk B?'q =
- azk aacl Bqp _

axp axq axq axk

and BPq remains skew-symmetric in the Ti coordinate system.

The above results are, of course, valid for other symmetric (skew-symmetric) tensors.
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24. Show that every tensor can be expressed as the sum of two tensors, one of which is symmetric
and the other skew-symmetric in a pair of covariant or contravariant indices.

Consider, for example, the tensor B. We have
BP9 (BP9 + B9P) + 1(BP4 - B4P

But Rpq = (Bpq+ Bq') = Rq' is symmetric, and SPq = (BPq- Bq') = -Sq' is skew-symmetric.

By similar reasoning the result is seen to be true for any tensor.

25. If = ajk Ai Ak show that we can always write 4) = b k Aj Ak where bk is symmetric.

( D = ajk A Ak =
akJ

Ak A =
ak,.

A Ak

Then 2C = ajk Aj Ak +
ak.1

Ai Ak = (ajk + akj ) Aj Ak

and = z(ajk + aki-) AjAk = bjk A' A k

where b.k = 2(ajk+ ak') = bkj is symmetric.

MATRICES.

26. Write the sum S =A +B, difference D= A- B, and products P= AB, Q= BA of the matrices

3 1 -2 2 0 -1
A = 4 -2 3 , B= -4 1 2

-2 1 -1 1 -1 0

3+2 1+0 -2-1 5 1 -3
S=A+B= 4-4 -2+1 3+2 = 0 -1 5

-2+1 1-1 -1+0 -1 0 -1

3-2 1-0 -2+1 1 1 -1
D=A -B= 4+4 -2-1 3-2 = 8 -3 1

-2-1 1+1 -1-0 -3 2 -1

(3)(2) + (1)(-4) + (-2)(1) (3)(0) + (1)(1) + (-2)(-1) (3)(-1) + (1)(2) + (-2)(0)
P = AB = (4)(2) + (-2)(-4) + (3)(1) (4)(0) + (-2)(1) + (3)(-1) (4)(-1) + (-2)(2) + (3)(0)

(-2)(2) + (1)(-4) + (-1)(1) (--2)(0) + (1)(1) + (-1)(-1) (-2)(-1) + (1)(2) + (-1)(0)

0 3 -1
19 -5 -8
--9 2 4

Q= BA =
8 1 -3

-12 -4 9

1 3 -5

This shows that AB BA, i.e. multiplication of matrices is not commutative in general.
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27. If A = 2
1 and B = (-I 2

, show that (A+B)(A-B) A A2- B2.-1 3 3 -2

A+B = 1 3, A-B = 3 -1 . Then (A+B)(A-B) = 1 3 -2

1 4 5 (_: 5

A2- 2 1 2 1

-1 3 -1 3

Then A2-B2 = 1-4 11

4 -2

3 5 B2 + -1 2 -1 2= 7 -6
y--5 8 ' 3 -2 3 -2 -9 10

Therefore, (A+B)(A-B) A`-B2. However, (A+B)(A-B) = A2-AB+BA-B2.

28. Express in matrix notation the transformation equations for (a) a covariant vector, (b) a contra-
variant tensor of rank two, assuming N = 3 .

a9(a) The transformation equations AP = x- Aq can be written
ax

axI ax2 ax3
ax1 ox ox

ax1 ax2 ax3

ax2 ax2 ax2

ax1 ax2 ax3

ax3 ax3 ax3

in terms of column vectors, or equivalently in terms of row vectors

ax1 -ax' ax1
ax1 ax2 ax3

(A1 A2 A3) _ (A1 A2 A3)
ax2 ax2 ax2
ay1 az2 -3x3

ax3 ax3 ax3

ax1 ax2 ax3

(b) The transformation equations A pr= ax ax qsA can be written
ax q

axs

A
-21

A
-22

A
23 ' _

A
31 A 32 A 33

Extensions of these results can be made for N > 3. For higher rank tensors, however, the matrix nota-
tion fails.
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THE LINE ELEMENT AND METRIC TENSOR.

29. If ds2 = gj
dxk dxk is an invariant, show that 9jk

is a symmetric covariant tensor of rank two.

By Problem 25, 4) = ds2, AJ = dx and Ak = dxk; it follows that 9,jk can be chosen symmetric. Also
since ds2 is an invariant,

g dx' dxq = g,k dxk dxk = g k axp dTP axe d- = g.k
axe axk d 0 dx`q

pq 9 J ax ax 9 ax ax

Then g`pq = gjk a axk and
gjk

is a symmetric covariant tensor of rank two, called the metric tensor.
ax ax

30. Determine the metric tensor in (a) cylindrical and (b) spherical coordinates.

(a) As in Problem 7, Chapter 7, ds2 = dp2+ p2d02+ dz2.

If x=p, x2=0,x3=z then g11=1'g22_p2
g33-I'g12Jg21-0'"23-g32^O'g31=g13=O.

911 g12 g13
In matrix form the metric tensor can be written

921 922 g23

\g21 g32 933

(b) As in Problem 8 (a), Chapter 7, ds2 = dr2+ r2 d82+ r2 sin2 8 dc2.

1 0 0

0 p2 0

0 0 1

f1 0 0

If x1= r, x2 = 8, x3 = the metric tensor can be written 0 r2 0

0 0 r2 sin2 8

In general for orthogonal coordinates, gk = 0 for it k .
j

31. (a) Express the determinant g =
g11 g12 g13

g21 g22 g23

g31 g32 g33

in terms of the elements in the second row and

their corresponding cofactors. (b) Show that gjk G(j,k) = g where G(j,k) is the cofactor of
gk in g and where summation is over k only.j

(a) The cofactor of
g jk

is the determinant obtained from g by (1) deleting the row and column in which
g k appears and (2) associating the sign (-1)j+k to this determinant. Thus,

Cofactor of g = (-1)2+1 g12 g12 , Cofactor of g = (--1)2+2 g11 g13 ,
21

g32 g33 g31 gd3

Cofactor of g _ (-1)2+3 911 912

g31 g32

Denote these cofactors by G(2,1), G(2,2) and G(2,3) respectively. Then by an elementary principle
of determinants

g21 G(2,1) + g22 G(2,2) + gm G(2,3) = g
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(b) By applying the result of (a) to any row or column, we have gjk G(j,k) = g where the summation is
over k only. These results hold where g =

I gjk
I is an Nth order determinant.

32. (a) Prove that
g21

G(3,l) +
g22

G(3,2) + g23 G(3,3) = 0.

(b) Prove that g3k G(p,k) = 0 if j A p .

(a) Consider the determinant
g11 g12 g13

g21 g22 g23

g21 g22 g23

which is zero since its last two rows are identical. Ex-

panding according to elements of the last row we have

g21
G(3,1) + g22 G(3,2) + g23 G(3,3) = 0

(b) By setting the corresponding elements of any two rows (or columns) equal we can show, as in part (a),
that g,jk G(p,k) = 0 if j p. This result holds for Nth order determinants as well.

33. Define
g7k = G(,k) where G(j,k) is the cofactor of gjk in the determinant g = gj k

Prove that g-k 9Ok = 8'.

By Problem 31, igk G(g k) = 1 or
jgk

gjk = 1, where summation is over k only.

By Problem 32, gk G(g
k)

= 0 or gPk = 0 if p j .j

A0.

Then g,k gPk(= 1 if p=j, and 0 if pJ j) = b.

We have used the notation gik although we have not yet shown that the notation is warranted, i.e.
that gjk is a contravariant tensor of rank two. This is established in Problem 34. Note that the cofactor
has been written G(j,k) and not Gjk since we can show that it is not a tensor in the usual sense. How-
ever, it can be shown to be a relative tensor of weight two which is contravariant, and with this extension
of the tensor concept the notation Gjk can be justified (see Supplementary Problem 152).

34. Prove that gjk is a symmetric contravariant tensor of rank two.

Since g
3.k

is symmetric, G(j,k) is symmetric and so gjk = G(j,k)/g is symmetric.

If B0 is an arbitrary contravariant vector, Bq =gq B0 is an arbitrary covariant vector. Multiplying
by gjq,

gJq Bq = gJ q g B ' = 8i BO = Bi or gJq Bq = B,9

q 0

Since Bq is an arbitrary vector, gIq is a contravariant tensor of rank two, by application of the quotient
law. The tensor gjk is called the conjugate metric tensor.
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35. Determine the conjugate metric tensor in (

(a) From Problem 30 (a),

Similarly g
3k

= 0

911

g

922
_

1 0 0

0 p2 0

0 0 1

ylindrical and (b) spherical coordinates.

p2

cofactor of g11 1 p2 0
g p2 0 1

cofactor of g22 1

g p2

cofactor of g 1

9W = g =
2

cofactor of g12 1

g12 = g p2

1 0
0 p2

0 0

0 1

1

P

2

= 0

if j k . In matrix form the conjugate metric tensor can be represented by

1 0 0

0 1/p2 0

0 0 1

(b) From Problem 30 (b), g

As in part (a), we find
this can be written

r2

r4 sin2 &
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1 and gjk = 0 for j k, and in matrix form
r2 sin26

1 0 0

0 1/r2 0

0 0 1/r2 sin2 6

36. Find (a) g and (b) gjk
corresponding to ds2 = 5(dx1)2 + 3(dx2)2 + 4(dx3)2 - 6 dx1 dx2 + 4 dx2 dx3 .

(a) g11=5, g =
5 -3 0

-3 3 2

0. 2 4

= 4.

(b) The cofactors G(j,k) of gJk are

G(1,1)=8, G(2,2)=20, G(3,3)=6, G(1,2)=G(2,1)=12, G(2,3)=G(3,2)=-10, G(1,3)=G(3,1)=-6

Then g11=2, g22=5, g33=3/2, g12=g2.=3, e=g22=-5/2, g13=g31=-3/2

Note that the product of the matrices (gJ.k) and (gjk) is the unit matrix I, i.e.

5 -3 0 2 3 -3/2 1 0 0

-3 3 2 3 5 -5/2 = 0 1 0

0 2 4 -3/2 -5/2 3/2 0 0 1
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ASSOCIATED TENSORS.

37. If A = gjk
Ak, show that Ak = gik A .

Multiply Aj = gJ ,k A k by g" q

Then gJq Aj = gjggjk A"-= 8q Ak = Aq, i.e. Aq = gJq A or Ak = gjk Aj .

The tensors of rank one, Aj and Ak, are called associated. They represent the covariant and contra-
variant components of a vector.

38. (a) Show that L2 = gpq AP Aq is an invariant. (b) Show that L2 = gpg AP Aq .

(a) Let Aj and Ak be the covariant and contravariant components of a vector. Then

Ap = aXA1,

and Ap A
p = axk azp A. A k

ax'p axk

q axgAk
axk

= k A Ak = A. Al

so that Aj AI is an invariant which we call L2. Then we can write

L2 = Aj A'l = gjk Ak AI gpq A0 Aq

(b) From (a), L2 = A. AI = AI gkj Ak = gjk Aj Ak = g,q Ap Aq.

The scalar or invariant quantity L = A P AP is called the magnitude or length of the vector with
covariant components Ap and contravariant components Ap.

39. (a) If AP and Bq are vectors, show that gpq AP Bq is an invariant.

Ap B4
(b) Show that 9pg is an invariant.

(Ap A p) (BgBq )

(a) By Problem 38, A0
B
0

= AP gpq Bg = gpq AIB' is an invariant.

(b) Since ApAP and BgBq are invariants (ApAp) (BgBq) is an invariant and
invariant.

We define
cos 6

gpgAPBg

so

gpgAABq

(A'Ap) (Bq Bq)

is an

(APA p) (Bg Bq)

as the cosine of the angle between vectors Ap and Bq. If gpq A1B' = A1B1 = 0, the vectors are
called orthogonal.
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40. Express the relationship between the associated tensors:
(a) Ajkl and A0gr , (b) and

Agkr (c) A. q.. and
Ajq.sl

t k

(a)
Ajk l

=
gjPgkg glr Apqr or A pqr =

g. gkq g1r A

(b)
A'kl

gjq glr Agkr
or Agkr = g jg91rA'kl

jkl

P.rs. j rk ...sl ...sl ti 5.rs.
or A = gg g g(c) A 9 AA.q..t jgk p jtl rk 9 . q.. t,jgk
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41. Prove that the angles 812, 023 and 631 between the coordinate curves in a three dimensional co-
ordinate system are given by

cos 6 = g12 cos 6 = 923 cos 6 =
931

12 1
g3

V"g11 g22
g --22 33

Along the x1 coordinate curve, x2 = constant and x3 = constant.

Then from the metric form, ds2 = g11(dxi2 or
dx1

= 1ds
791,

Thus a unit tangent vector along the x1 curve is Al = 61. Similarly, unit tangent vectors along

the x2 and x3 coordinate curves are Ar - and Ar = br2- ;7182 3- "r 3
33

The cosine of the angle 612 between Al and A2 is given by

p q 1 1 q g12cos 612 = gpq Al A2
= pq VI'g-11 VI-g;

81 2

g11 g22

Similarly we obtain the other results.

42. Prove that for an orthogonal coordinate system, g12 = g23 = g31 = 0.

This follows at once from Problem 41 by placing 6
1

2= 01 = 9 6 0 .=6 From the fact that 91q = gq j
it also follows that

g21 = g32 = g13 = D.

43. Prove that for an orthogonal coordinate system, g11 =
g11 ' 922 922 ' 933 g33

From Problem 33, gPr9
rq

bq.

If p = q= 1, g1r 9r1 = 1 or

Then using Problem 42,
911

11

9 911
+ g12 g21

+ 913 931

1

= g11.

1.

Similarly if p = q = 2, g = g1 ; and if p = q = 3 , 938 = 13
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CHRISTOFFEL'S SYMBOLS.

44. Prove (a) [pq,r] _ [qp,r],

(a) [pq,r] _

TENSOR ANALYSIS

(b) Pq = 4P ,
(c) [pq,r] = grs {;q}

i(agPr +
aggr

_ iaggr + .._P - aggp) _ [qP,r] .
axq axp axr axp axq axr

(b) pq
= g" [Pq,r] = gsr[ qp,r]

=
f S

qP

(c) gks Pq
= gksgsr [pq,r] = 8k [pq,r] = [Pq,k]

s
or [Pq, k] = gks

pq
rs[pq,r] g

Pq
i.e.

Note that multiplying [ pq, r] by gsr has the effect of replacing r by s, raising this index and re-

placing square brackets by braces to yield
Pq
{;}

. Similarly, multiplying
Fq
s by grs or gsr has the

effect of replacing s by r, lowering this index and replacing braces by square brackets to yield [pq,r] .

45. Prove (a)
agpq

= [Pm, q ] +
ax [qm, P ]

Pn
(b)

agt
=

q
lnV(c)

P = a g
qn pg

axm ma g mn

(a) ] =[ ] + [m m 2
ag (ag +agm _ aggro) =+ agmg _ agPK) + agfig,p,qp q
axm

Z

axp axq axm axq axp 'ax"'

k
J k(b) gi j)

axm
(bi)axm (g = 0. Then

pk ag J
+ ag ..

ax
axik gi

axm

-9tir gik ([irn,j] + [jm,i] )

_ it k jk r
g im g jm

and the result follows on replacing r, k, i, j by p, q, n, n respectively.

0 or

jjk
jk

agiag

gi axm
g

axm

ir .. ag' k it gjk agtijg g2J
axm $ axm

-1 k
8r 19- =j ax

agrk

(c) From Problem 31, g =gjk G(j, k) (sum over k only).
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ag. ag.
ag = ag r = G(j, r) jr

ax's agxm axlnjrJag.

= 99ar
azj = 99 jr [rm,j])

g

Thus

i ag
2 g axq jm

The result follows on replacing j by p and m by q.
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46. Derive transformation laws for the Christoffel symbols of (a) the first kind, (b) the second kind.

(a) Since

(1)

(2)

(3)

Since G(j,k) does not contain gjk explicitly, a = G(j,r). Then, summing over j and r,
9j -r

axp -6.q

gjk
'2

azk axk gpq

agjk = axp axq agpq axr + axj' a2xq g + a2xj' axq

axq axj a`xk axr axj axk axq axk pq axq azj axk
gp9

By cyclic permutation of indices j, k, m and p, q, r

agkln = axq axr agq r axp + axq a2 xr

axq axk axm axq azj axk axq axq

- X1

ax k

,ax -r axk agr ji axq + axr a2 xP

a'm azj axq axk axq' ark axj

qr
a2xq axr

axk azk ax1a 'qr

a2xr ax75
g

azk -3x14 a'xj rr

Subtracting (1) from the sum of (2) and (3) and multiplying by 2, we obtain on using the definition
of the Christoffel symbols of the first kind,

(4)
ax axq axr a2 XP axq

'3V axk -a-% axj ax k azj
gpq

(b) Multiply (4) by -nm = ax n az
axs ax t

to obtain

_ ax, axq axr ax-n azj' st a2xq axq axn azj stPnm [
axj axk axm axs axt g [pq,r] + azj ax'k azm axs axt g gpq
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Then jn
jk }
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axp axq azn r
g
st 72x0 azn q St

azn axk axs t [Pq.r]
-61i axk axs

b g
gpg

axp axq azn j s + 72x1' azn

axk axk axs pq axk azk axp

47. Prove

since s gst [pq,r]

72x2

axq axk
-

From Problem 46 (b),

gsr [pq,r]

n

jk

n

jk

s st s1'q and b g gpq = g ggpq = b
s
P

.

ax's axp axQ m

axn ` axk axk pq

} = axp axq axn s

axk axk axs Pq
+ a2xp axn

-ay j axk axp .

Multiplying by axn

k

ax
=

axp axk
SS

s

ax 1 ax dxj ax Pq

_ axp axq ` m

azn axk Pq

2

Solving for a x , the result follows.
axq axk

+ a2xp

axk azk

+
a2

x

ax ax k

48. Evaluate the Christoffel symbols of (a) the first kind, (b) the second kind, for spaces where
g1'9 = 0 if p,- q.

(a) If P=q=r. [ Pq r]

If P=qtr.

If P=rXq, [Pq,r]

[pp,r]

1 `ego + agpp agpp

2 axp axp axp

1 (agpr + agpr _ Ngpp)
2 axp axp ax'_

1 agpp
2 axr

[ pq. p ] = 1 ('9pp + aggp _ agpg _ 1 agpp

2 axq axp axp 2 axq

If p, q, r are distinct, [ pq, r] = 0.

We have not used the summation convention here.

(b) By Problem 43, gii = g (not summed). Then
1J

pq
= gsr [ pq, r] = 0 if r# s , and = gss [ pq, s ] _ [

gq,
s ] (not summed) if r= s .

ss

By (a) :
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s _ P = [PP' P ] _ 1 agpp In g
Pq = PP

gpp - 2gpp axp axp pp

s s [ PP s ] 1 agpp
Pq PP gss 2gss axs

S

= P [pq,p]
= 1 agpp a In g

Pq Pq gpp 2gpp axq 2 axg pp

If p, q, s are distinct, js
Pq

49. Determine the Christoffel symbols of the second kind in (a) rectangular, (b) cylindrical, and
(c) spherical coordinates.

We can use the results of Problem 48, since for orthogonal coordinates g pq = 0 if p q .

(a) In rectangular coordinates, gpp = 1 so that
i Pq

= 0.

(b) In cylindrical coordinates, x1 = p, x2 = 0, x3 = z, we have by Problem 30 (a), g11 = 1, g22 = p2, g33=1.
The only non-zero Christoffel symbols of the second kind can occur where p = 2. These are

1 1

22
2g11

(C)

The only non-zero Christoffel symbols of the second kind can occur where p = 2 or 3. These

= 0.

-a ag22

ax,
- 2 (p2)

p

2 2 g22 1 a 2
(p

) - 1

21 12 282, axl 2)02 ap p

In spherical coordinates, x1= r, x2 = 6, x3 = 0, we have by Prob. 30 (b), g11= 1, g22= r2, g,= r2 sin26.

1

22

1 g22
2g11

ax1
=

2 _ 2 _ 1

21 12 2g22

2822 axe
=

2 dr

2r2 8 (r2 sin
20) - sin 6 cos 0

3 3 __ 1 ag 1 a 1- (r2 sin2 6) _
31 13 2833 axI 2r2 sin2 6 ar r

3 1 3 1 ag33 _ 1 a 2 2(r sin 6) = cot 6
32 23 2833 axe 2r2 sin2 6 a6

-
2

a (r2) _ -r
2

_ 1 a (r2) = 1

ax1 2r2 ar r

1 a
(r2 sin2 6) r sine 6

are
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GEODESICS.

t
2 F(t, x, z) dt be an extremum (maximum or min-50. Prove that a necessary condition that I = ft

1
imum) is that aF _ d U

ax dt (ax)

Let the curve which makes I an extremum be x = X(t), t1< t< t2. Then x = X(t) + E7](t), where E is
independent of t, is a neighboring curve through t1 and t2 so that 77(t1) = 7)(t2) = 0. The value of I for the
neighboring curve is

1(E) = ft t2 F(t, X+E77, X+E7]) dt
1

This is an extremum for E= 0. A necessary condition that this be so is that dl I = 0. But by differ-
entiation under the integral sign, assuming this valid, a=o

(e? + - 77) dt 0
dE ftIE=1

which can be written as

Jt2
71dt

1 ax

t2 t2,77 d
+ az t1

f
dt (ax)

dt =
1

Since 77 is arbitrary, the integrand aF _ d (-F) = 0.
ax dt ax

t2

ft
t2

1

77
aF d aF dt
ax dt (ax )

F(t, x1, z1, X 2 , 1 2 , ..., xX ac') dtThe result is easily extended to the integral Jt
and yields

1

aF d (aF) _

axk dt azk
0

called Euler's or Lagrange's equations. (See also Problem 73.)

0

2r p q
51. Show that the geodesics in a Riemannian space are given by dd

s2 +
r ) dx d =

ds ds 0
pq

rt2
We must determine the extremum of g

.1p
x dt using Euler's equations (Problem 50) with

F = g pq zp zq . We have

t1 pq

aF = 1 (g zp zq)-1/2 agpq zp zq
axk 2 pq axk

az 2 (gpq xp xq)-1/2 2gPk

Using

dt

= g pg zp zq , Euler's equations can be written
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.p
g x

d

dt S

or

Writing
agpk

axq

gpk

xp

zp + agpk x p zq
axq

a a

1
-39pq

xp zq = 0
2s -axk

agpq p gpk z s
q

=

x
2 axk

this equation becomes

gpk x

.p ..g kx s
zp qk+ [ pq, x =]

S

s

If we use are length as parameter, 1, I S'= 0 and the equation becomes

g
ad_ x-0 + [pq,k] dxp dxq

= 0
pk ds2 ds ds

Multiplying by grk , we obtain

d
2
x
r

+ r dxp dxq

ds2 Pq ds ds

THE COVARIANT DERIVATIVE .

aA
52. If Ap and AP are tensors show that (a) axq

s
As

and (b) Apq = a
-p

+
4S

As are tensors.

(a) Since A . =
x Ar

a-xI

aA axr aAr axt
(1) _ +

From Problem 47,

axk -ax! axt -ax,

a2xr

axj azk

n

jk

Substituting in (1),

A. axr axt aAr

gpk +xq = 1 ( ggk) zp xq
2 axq axp

axk

2
a xr

azk axk Ar

axr _ axz axl r

azn azj axk (i t

n

jk

arx
A} jaxn
r

ax axazj azk at

axp axq aAp

axp azk axq

n axp axq s

1k

An
w axk azk Pq

As

or

aAj n axp axq aAp_ _
An

axk 1 k ax azk axg

axi ax l r
A.

197
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andand - s
A is a covariant tensor of second rank, called the covariant derivative of A with

axq pq s

respect to xq and written

(b) Since Aj =
axJ

r
Ar ,

ax

(2)
aA J

= azj aAr axt + a 71 axt Ar
axk axr axt oxk axr oxt axk

From Problem 47, interchanging x and x coordinates,

Substituting in (2),

aA J
_ ax`s axt aAr

axk axr azk axt

axk axt aAr
axr axk axt

aid axq aAP
axp axk axq

or

n azj
rt axn

antioxl j
axr axt i l

+ n axk axt Ar
rt axn axk

+ n axj axt Ar
rt axn ax k

s+ {p}i,
sq axk axk

53. Write the covariant derivative with respect to xq of each of the following tensors:

(a)Ajk, (b)AJk, (c)Ak, (d)Akl,

(a) Ajk,q

(b) A q

axq

j

s

Ask -
19

/ A
sk +

qs

(c) A j - aAk - s
A j

k, q axq k q } s

(d) Aj
_ aAkl _ {:q}4i

kl,q axq

A
JS

and aAq + p
A

s
is a mixed tensor of second rank, called the covariant derivative of A" with

s

respect to xq and written A,q .

Ajs

aAk
{-T} A

i = az ax (aA + p A s

ax ki axp ax axq qs

-6.41k

axq

jk
aAk

S

kq

{ k

qs

II
qs

s

lq

axe oxl oxt 1

axr axt axk it

' a 7
r

axr k tit

} Ar

As
k

Ai + 1j
ks qs } S

kl
A
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jkl
jkl aAmn

(e) Amn,q axq

s Ajkl _ s Ajkl + j Askl + j k Ajsl +
I

Ajks

mq sn nq ms qs mn qs sn qs mn

54. Prove that the covariant derivatives of (a) (b) gjk, (c) 8k are zero.

(a)
g1k,q

agjk s s

axq j q J gsk - kq is
age

9

axq

(b)
gjk

q

(c) 8k,q

- [jq,k] - [kq,j] = 0 by Problem 45(a).

agjk + {/}gsk
qsaxq

k is
+

qs

g

abk
_ s j +

ax q k{q}6s

= 0 by Problem 45(b).

0

55. Find the covariant derivative of Ak Bum with respect to xq.

I In
(Ak Bn )q

I Is
a (Ak Bn) _ s Aj Bln m _ s

Aj
Blm

nq k skq s
qax

+ As Blm + l AjBsm + rn Aj Bls
qs

k n qs k n qs k n

+ Ak

I s
Aj

kq s
+ j ,4s Blnm

qs k

aBlm
n _ s Blms + l Bsm

axq nq qs n

= A
B l in + AI B lin

k,q n k n,q

+ m Bls

qs n

This illustrates the fact that the covariant derivatives of a product of tensors obey rules like those
of ordinary derivatives of products in elementary calculus.

56. Prove
km

(gjk An ) ,q
_

gjk

Akinnq
km km(jk An m) ,q

since gjk
q

= 0 by Prob. 54(a).

J

g k,q `4 + g k An ,q k An ,q

In covariant differentiation, gjk , gsk and bj can be treated as constants.

km
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AP =
' 3 A

A
axk pk

GRADIENT, DIVERGENCE AND CURL IN TENSOR FORM.

57. Prove that div AP = 1 a (/ A").
axk

The divergence of AP is the contraction of the covariant derivative of AP, i.e. the contraction of

A0,q or A0, p. Then, using Problem 45(c) ,

div A0

TENSOR ANALYSIS

aAk a k aAk 1 -a vg- k 1 a k
a }( A= xk + In ) A =

k
+

( , a xk
-)A

= , ax kaxk ax

58. Prove that V2<p = 1 a
V"g gkr

axk ax

The gradient of (D is grad _ V4) =axr a covariant tensor of rank one (see Problem 6(b)) de-

fined as the covariant derivative of (1), written (D,, r. The contravariant tensor of rank one associated with
k = gkr a

r is A
axr

. Then from Problem 57,

div (gkr )
ax

59. Prove that App q - Aq,p

Ap, q Aq. j, =

aAP aAq

LA, _ s
A

axq pq S

This tensor of rank two is defined to be the curl of AP.

ak(
V'g
-gkr

ax ax

LA

(_{:}AS)
axq r axp

60. Express the divergence of a vector AP in terms of its physical components for (a) cylindrical,
(b) spherical coordinates.

(a), For cylindrical coordinates x1= P. x2 = 0, x3 = z ,

g

1 0 0

0 p2 0
0 0 1

p2 and ' = p (see Problem 30(a))

The physical components, denoted by A. Ao, A. are given by

Ap = Vg_ Al = Al . A = g- A2 = pA2, Az = V A3 = A3
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Then

(b) For spherical coordinates

g

1 0 0

0 r2 0

0

r4 sin2 8 and Irg = r2 sin 8 (see Problem 30(b))

div A0 _
ax k

(4 Ak)

0 r2 sin2 8

The physical components, denoted by Ar, A8, A4) are given by

Ar= uA1=AI

,

Then

Ae = V -g- A2 = rA2 , AO = g33 A3 = r sin 8 A3
22

div A = 1 -6 Ak)
-vlg axk

(v

(r sin 8 AB) + (r A,)]
r2 sin e -6r

(r2 sin 8 Ar) +
-66

1 a (r2 Ar) + 1 a (sin 8 A) + 1

r2 ar r sine a8 e r sine

61. Express the Laplacian of 4>, V2c , in (a) cylindrical coordinates, (b) spherical coordinates.

(a) In cylindrical coordinates g11=1, g22 =1/P2, g =1 (see Problem 35 (a)). Then from Problem 58,

v245 (,rg- gkr
Vg-- axk a
l a a a 1 a a a
P C aP cP aP) + ao c P

az
cP az ) ]

1a a(f) 1D2 A)
P aP cP aP' + p2 22 + az2

(b) In spherical coordinates g11=1, g22=1/r2, g = 1/r2 sin28 (see Problem 35 (b)). Then

v%) _ 7 axk''gkrag

1 a 2 M) a a 1 a4)
r2 sin 8 -6r

(r sin 8 ar) + ae (Sin 8 ae) + V (sin 4 ]

x1=r, x2=8, x3=0,

201

t a r a + 1 a
B

) + 1 a2
r2 ar (2 r' r2 sine ae

(sin a8 2 sin2 8 -42
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INTRINSIC DERIVATIVES.

62. Calculate the intrinsic derivatives of each of the following tensors, assumed to be differentiable
functions of t: (a) an invariant (l), (b) Ai, (c) Ak , (d) Al kn .

4 d q

a
q

d4) th di d i ti_(a) b ,q =

t ax dt
= , e or nary vaer ve.

(b) 8AJ = A dxq aAi + 1 As dxq = aAi dxq + 1 As dxq
8t q dt axq qs dt axq dt qs dt

(c )
SAk

St
Aj dxq
k,q dt

dAI + 1 As dxq
dt qs dt

{;q}4+{}A:) q

dt

dAkj

A j
dz + As dxq

dt kq s dt qs k dt

j k jk
jkk S,. Almn , jk dxq l aAlnn s AA

lq n mq lsn

s Ajk +

{i}
Ask + k Ajs

nq Ins qs Inn qs lmn

dAA

dxq
dt

lmn Is Ajk dxq _ s Ajk dxq s Ajk _dx
dt lq s1nn dt lmqf lsn dt nq ins dt

+ j Ask dxq + £kAJS dxq
qs lmn dt qs Inn dt

63. Prove the intrinsic derivatives of gjk , gjk and areare zero.

89jk

= (g
k

) dxq = 0,
8t ,q dt

RELATIVE TENSORS.

8glk
=

gjk dxq
= 0,

St 'q dt

S bk - 8 dxq = 0
bt k,q dt

by Problem 54.

64. If Aq and Bts are relative tensors of weights w1 and w2 respectively, show that their inner and
outer products are relative tensors of weight w1 + w2-

By hypothesis,

A
k

jw1 az axq A

The outer product is Ak Bnm

B
lm _ jw2 13F-' azm axt Brs

axP axk q' n axr axs axn t

jw, w2 axq axq axl axm axt rs

axp az k axr axs az n
Aq Bt

q

a relative tensor of weight w1 + w2 . Any inner product, which is a contraction of the outer product, is also
a relative tensor of weight w1 + w2.
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65. Prove that Vg- is a relative tensor of weight one, i.e. a tensor density.

The elements of determinant g given by g transform according to gj =
-3.p -3..q

gq k axe axk oq

Taking determinants of both sides, g = axe axe g = J2g or JV , which shows
azj -3-x

66. Prove that dV = Vrg- Al dx2 ... dx1 is an invariant.

By Problem 65, dV = Vg- dx1 dx ... dxy = vrg- J dx1 dx`2 ... dx'A

_ vg ax dz1 dx ... dxN = dx1 dx2 ... dx" = dV
a)

From this it follows that if

f...fdv
is aninvariant, then

= f...fdv
V V

for any coordinate systems where the integration is performed over a volume in N dimensional space. A
similar statement can be made for surface integrals.

MISCELLANEOUS APPLICATIONS.

67. Express in tensor form (a) the velocity and (b) the acceleration of a particle.

(a) If the particle moves along a curve xk = xk(t) where t is the parameter time, then vk =
k

dt
is its ve-

locity and is a contravariant tensor of rank one (see Problem 9).

k 2 k
(b) The quantity dt

= t2
is not in general a tensor and so cannot represent the physical quantity

acceleration in all coordinate systems. We define the acceleration ak as the intrinsic derivative of

the velocity, i.e. ak = Stk which is a contravariant tensor of rank one.

68. Write Newton's law in tensor form.

Assume the mass M of the particle to be an invariant independent of time t. Then Mak = Fk a
contravariant tensor of rank one is called the force on the particle. Thus Newton's law can be written

Fk = Mak = M
S kk
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2 k
69. Prove that ak = 6vk = dx

St dt2

TENSOR ANALYSIS

k dx0 dxq

pq dt dt '

Since vk is a contravariant tensor, we have by Problem 62 (b)

8vk = dvk

St dt

From Problem 67(a), the contravariant components of the velocity are

_ d
2
x k + k dxp dxq

d- i pq dt dt

d
2
xk

+
k

VP
dxq

dt2 qp dt

70. Find the physical components of (a) the velocity and (b) the acceleration of a particle in cylin-
drical coordinates.

(a)

dx1 dp dx2 do dx3

dt dt ' dt dt
and

dt

dz

dt

Then the physical components of the velocity are

v dx1
=

dp dx2 do
and v dx3

=
dz

911 dt d t 922 dt ' dt 933 dt dt

using

+ k vs dxq
qs dt

911=1,g22=p2.g33=1.

(b) From Problems 69 and 49 (b) , the contravariant components of the acceleration are

l d2x1 + dx2 dx2 d2 p do
2a

dt2 22

_

dt dt dt2 _ p( dt
)

2
a

d2 x2

+

2 dxl dx2
+

2 dx2 dxl do
+

2 dp do
dt2 12 dt dt 21 dt dt dt2 p dt dt

d2 x3 d2 zand 3a _
dt2 dt2

Then the physical components of the acceleration are

al = 0 -- p
11 22 a2 = p + 2pq5

where dots denote differentiations with respect to time.

3and 33 a = z

71. If the kinetic energy T of a particle of constant mass M moving with velocity having magnitude v
is given by T = 2Mv2 = 2Mg pq 0 xq, prove that

d (aT) _ aT = Ma
dt axk axk k

where ak denotes the covariant components of the acceleration.

Since T = 2Mgpq zp zq, we have
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aT

axk

Then

I agpq zp zq, aT = Mg zq and
axk '31k kq

d ( aT) - aT = M
(gkq zq +

dt azk axk
agk q

axk

+ j q,,d ('3T =

M(gk 9

zq
ag

dt ax ax

zjzq - 1 agpq zPzq
2 axk

M zq + 1 (agkq +
agkp - agpq) xp(gkq 2 axp axq axk

zq + [pq,k] xp xq)M(gkq

xq

= Mg xr + r zj z q = Mg ar = Mak
kr pq kr

using Problem 69. The result can be used to express the acceleration in different coordinate systems.

205

72. Use Problem 71 to find the physical components of the acceleration of a particle in cylindrical
coordinates.

Since ds2 = dp2+,02dca2+ dz2, v2 = ( )2 = 2+ z2 and T = 2Mv2 = e(;;? + Z2) ,

From Problem 71 with x1 = p, x2 = 0, x3 = z we find

a1 = P a2 = dt a3 z

Then the physical components are given by

a, a2 ag

1V,gj-l 22 33

since g11 = 1, g22 = p2 , g33 = 1. Compare with Problem 70.

73. If the covariant force acting on a particle is given by Fk = - a
k

where V (x1..... xj') is the

potential energy, show that dt (aLk) - a Lk = 0 where L = T -- V.

From L = T -- V, aL
r
_ aT since V is independent of zk. Then from Problem 71,

axk axk

d aT aT _

dt ( azk azk
Mak = Fk = -- aV and d (aL) - aL

axk dt azk axk
0

The function L is called the Lagrangean. The equations involving L, called Lagrange's equations,
are important in mechanics. By Problem 50 it follows that the results of this problem are equivalent to the

statement that a particle moves in such a way that f L dt is an extremum. This is called Hamilton's
t1

principle.
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74. Express the divergence theorem in tensor form.

Let A k define a tensor field of rank one and let vk denote the outward drawn unit normal to any point
of a closed surface S bounding a volume V. Then the divergence theorem states that

fffA kk dV II
V S

A k vk dS

For N dimensional space the triple integral is replaced by an N tuple integral, and the double integral by
an N -1 tuple integral. The invariant A kk is the divergence of Ak (see Problem 57). The invariant
Ak vk is the scalar product of Ak and vk, analogous to An in the vector notation of Chapter 2.

We have been able to express the theorem in tensor form; hence it is true for all coordinate systems
since it is true for rectangular systems (see Chapter 6). Also see Problem 66.

75. Express Maxwell's equations (a) div B = 0, (b) div D = 47rp, (c) Vx E = - aB , (d) VxH = 4Z f
in tensor form.

Define the tensors
can be written

(a) Bkk0

(b) D kk = 47Tp

(c) --- EJkq Ek,q

(d) - Ejkq
Hk , 4

Bk, Dk, Ek, Hk, 1 k and suppose that p and c are invariants. Then the equations

1 aBj
C at

47r1
J

c

or EJWq Ek.q

or Ejkq
Hk, q

1 aBj

c

These equations form the basis for electromagnetic theory.

76. (a) Prove that Al,gr A0,rq = Rngr An where A0 is an arbitrary covariant tensor of rank one.
(b) Prove that R qr is a tensor. (c) Prove that

Rpgrs gns R' is a tensor.

(a) Ap, gr = (AO.q) r
aAM - 1 A. - {'}Aaxr {Pr J.q qr O 9

aAJ,_ i i (BA.j
k PS l

A. - - {}Ak) -
Pq Pr qr axq P1

a2 A Aj
k

A. .- -- + A
{;;iq}

Pq -ax, Pr axq Pr Iq k

1
aAP

+ 1 l
A

qr axq qr P1

By interchanging q and r and subtracting, we find
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A p,qr _
A

i k
p rq

pr jq
Ak

where Rqr

- p
r

kq Aj

=
RpJgr

AI

a j JA. - k

axr P4 I
{pJq}{J}A

r k

a ;
A

xr Pq 9a

_ k j
pq kr Ai

= {:r}{q} _ - {:q}{Lr} +
iaxr P4 axq pr

Replace j by n and the result follows.
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(b) Since Ap,gr - Ap,rq is a tensor, Rqr An is a tensor; and since An is an arbitrary tensor, Rqr is

a tensor by the quotient law. This tensor is called the Riemann-Christoffel tensor, and is sometimes
n n nwritten R, pqr, R pqr , or simply R pqr

(c) Rpgrs = gns Rpgr is an associated tensor of Rpgr and thus is a tensor. It is called the covariant

curvature tensor and is of fundamental importance in Einstein's general theory of relativity.

SUPPLEMENTARY PROBLEMS

Answers to the Supplementary Problems are given at the end of this Chapter.

77. Write each of the following using the summation convention.
(a) a1 x1x3 + a2x2x3 + ... + a) xNx3

(b)
A21 B1 + A22 B2 + A' B3 + +

`42I By

(e) B111 + B122
12

(c) Al B1 + A2 B2 + A3 B3 +

(d) g21 g11 + g22 g21
+ 8221 + 8222

21 22

78. Write the terms in each of the following indicated sums.
k

(a) axk(iAk), N=3 (b) Bp C , N=2 (c)
az,7

a'x k

+ g23 g
31

... + AjV BN

+ g24g
41

79. What locus is represented by akxkxk = 1 where zk, k = 1, 2, ..., N are rectangular coordinates, ak are
positive constants and N = 2, 3 or 4 ?

80. If N = 2, write the system of equations represented by apq xq = b p .

k
81. Write the law of transformation for the tensors (a) Ak , (b) B , (c) Can , (d) An .
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82. Determine whether the quantities B(j,k,m) and C(j,k,m,n) which transform from a coordinate system
xti to another xti according to the rules

k axr axp axq axq axs
(a) B(p.q,r) = ax ax B(j,k,m) (b) C(p,q,r.s) = C(j,k,m,n)

axp axq axx axq azk azr axn
are tensors. If so, write the tensors in suitable notation and give the rank and the covariant and contra-
variant orders.

83. How many components does a tensor of rank 5 have in a space of 4 dimensions ?

84. Prove that if the components of a tensor are zero in one coordinate system they are zero in all coordinate
systems.

85. Prove that if the components of two tensors are equal in one coordinate system they are equal in all co-
ordinate systems.

k k
86. Show that the velocity

t
= vk of a fluid is a tensor, but that v is not a tensor.

87. Find the covariant and contravariant components of a tensor in (a) cylindrical coordinates p, 0, z ,
(b) spherical coordinates r, 6, if its covariant components in rectangular coordinates are 2x --z, x2y,
yz .

88. The contravariant components of a tensor in rectangular coordinates are yz, 3, 2x+y. Find its covariant
components in parabolic cylindrical coordinates.

89. Evaluate (a) 8q Bas, (b) Sq Sr Aqs, (c) 8p 8
q 8s, (d) 8q 8r 8s

8s
.

90. If
Arq is a tensor, show that A

rr is a contravariant tensor of rank one.

91. Show that
1 j = k
0 j#k

is not a covariant tensor as the notation might indicate.

92. If A0 = a Aq prove that Aq =
-axq AP

93. If A = azp axs 'IS prove that As = axq axr .r axq azr s s axp axs
Ar

94. If (D is an invariant, determine whether a is a tensor.
axp axq

95. If Aq and Br are tensors, prove that A0 Br and Aq Bq are tensors and determine the rank of each.

96. Show that if Ars is a tensor, then
Pq

+ ASS is a symmetric tensor and Ars - Asr is a skew-symmetric
tensor.

97. If Apq and Brs are skew-symmetric tensors, show that Cps = Ap4 Brs is symmetric.

98. If a tensor is symmetric (skew-symmetric), are repeated contractions of the tensor also symmetric (skew-
symmetric) ?

99. Prove that Apq xp xq = 0 if Apq is a skew-symmetric tensor.
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100. What is the largest number of different components which a symmetric contravariant tensor of rank two
can have if (a) N = 4. (b) N = 6 ? What is the number for any value of N ?

101. How many distinct non-zero components, apart from a difference in sign, does a skew-symmetric covariant
tensor of the third rank have

102. If AIrs is a tensor, prove that a double contraction yields an invariant.

103. Prove that a necessary and sufficient condition that a tensor of rank R become an invariant by repeated
contraction is that R be even and that the number of covariant and contravariant indices be equal to R/2.

104. If Apq and
Brs

are tensors, show that the outer product is a tensor of rank four and that two inner prod-
ucts can be formed of rank two and zero respectively.

105. If A(p, q) Bq = C where Bq is an arbitrary covariant tensor of rank one and C is a contravariant tensor
of rank one, show that A(p,q) must be a contravariant tensor of rank two.

106. Let AP and Bq be arbitrary tensors. Show that if AP Rq C(p, q) is an invariant then C(p,q) is a tensor
which can be written C C.

107. Find the sum S = A+B, difference D = A-B, and products P = AB and Q = BA, where A and B are the
matrices

3 -1 4 3(a) A =
2 4 '

B
_ -(2-1

2 0 1 1 -i 2

(b) A -1

(
-2 2 B= 3 2 -4

_1 3 -1 -i -2 2

108. Find (3A-2B)(2A-B), where A and B are the matrices in the preceding problem.

109. (a) Verify that det (AB) = {det A } {det B } for the matrices in Problem 107.
(b) Is det (AB) = det (BA) ?

1111. Let A =
I -3 2 -1

B = 1 3 -2
2 1 2

Show that (a) AB is defined and find it, (b) BA and A +B are not defined.

2 -1 3 x 1

111. Find x, y and z such that 1 2 -4 y

=

-.3
-1 3 -2 z 6

112. The inverse of a square matrix A, written A'1 is defined by the equation AA-1 = 1, where 1 is the unit
matrix having ones down the main diagonal and zeros elsewhere.

_
(12

-1 1

Find A-' if (a) A = (_5
4

(b) A = 1 -1 .

1 -1 2

Is A-1 A = 1 in these cases ?
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2 1 -2

113. Prove that A = 1 -2 3 has no inverse.
4 -3 4

114. Prove that (AB) 71- = B-1 A-1, where A and B are non-singular square matrices.

115. Express in matrix notation the transformation equations for
(a) a contravariant vector (b) a covariant tensor of rank two (c) a mixed tensor of rank two.

116. Determine the values of the constant X such that AX = INX, where A = -3
1

and X is an arbi-

trary matrix. These values of X are called characteristic values or eigenvalues of the matrix A.

117. The equation F(X) = 0 of the previous problem for determining the characteristic values of a matrix A is
called the characteristic equation for A. Show that F(A)=0, where F(A) is the matrix obtained by re-
placing A. by A in the characteristic equation and where the constant term c is replaced by the matrix cl,
and 0 is a matrix whose elements are zero (called the null matrix). The result is a special case of the
Hamilton-Cayley theorem which states that a matrix satisfies its own characteristic equation.

118. Prove that (AB) = BT A_T .

119. Determine the metric tensor and conjugate metric tensor in
(a) parabolic cylindrical and (b) elliptic cylindrical coordinates.

120. Prove that under the affine transformation -'r = as xp + br, where ap and br are constants such that
apaq = bq , there is no distinction between the covariant and contravariant components of a tensor. In

the special case where the transformations are from one rectangular coordinate system to another, the
tensors are called cartesian tensors.

121. Find g and gjk corresponding to ds2 = 3 (dx1)2 + 2 (dx2)2

122. If Ak = gikAi , show that AJ = g
J,k

Ak and conversely.

123. Express the relationship between the associated tensors

(a) Apq and q, (b) A qr and Aj ' ql, (c) Apgr and A..,,

+ 4 (dx3)2 - 6 dx1 dx3.

124. Show that (a) APq B.s = A1'gBprs , (b) B7 r = AAgr Bpr = B . Hence demonstrate the gen-

eral result that a dummy symbol in a term may be lowered from its upper position and raised from its
lower position without changing the value of the term.

125. Show that if A B Cr A;
qr

= B; q

a free index in a tensor equation may be raised or lowered without affecting the validity of the equa-
tion.

126. Show that the tensors g
pq' gpq and 89 are associated tensors.

127. Prove (a) Ejk
ax _ g pq axQk , (b) gdk axp = gpq axe

axp ax ax ax

128. If AP is a vector field, find the corresponding unit vector.
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129. Show that the cosines of the angles which the 3 dimensional unit vector

curves are given by
U1 U2 U3

.

g11 y g22 933

211

Uti make with the coordinate

130. Determine the Christoffel symbols of the first kind in (a) rectangular, (b) cylindrical, and (c) spherical
coordinates.

131. Determine the Christoffel symbols of the first and second kinds in (a) parabolic cylindrical, (b) elliptic
cylindrical coordinates.

132. Find differential equations for the geodesics in (a) cylindrical, (b) spherical coordinates.

133. Show that the geodesics on a plane are straight lines.

134. Show that the geodesics on a sphere are arcs of great circles.

135. Write the Christoffel symbols of the second kind for the metric

ds2 = (dx1)2 + [(x2)2 - (x1)2] (dx2)2

and the corresponding geodesic equations.

136. Write the covariant derivative with respect to xq of each of the following tensors:

(a) Aik, (b) Alm' (c) Ak1X, (d)
AXkl'

(e) Ainn

1j from the covariant derivative of Ak.138. Use the relation A -- g Ak to obtain the covariant derivative of A

139. If 4> is an invariant, prove that ,pq= i.e. the order of covariant differentiation of an invariant
is immaterial.

140. Show that Ejgr and Epgr are covariant and contravariant tensors respectively.

141. Express the divergence of a vector AP in terms of its physical components for (a) parabolic cylindrical,
(b) paraboloidal coordinates.

142. Find the physical components of grad in (a) parabolic cylindrical, (b) elliptic cylindrical coordinates.

2
143. Find V 4) in parabolic cylindrical coordinates.

144. Using the tensor notation, show that (a) div curl Ar = 0, (b) curl grad = 0.

145. Calculate the intrinsic derivatives of each of the following tensor fields, assumed to be differentiable
functions of t : , k

(a) Ak, (b) Al , (c) Aj Bk, (d) OAk where 0 is an invariant.

k 9 9 r
146. Find the intrinsic derivative of (a) gjk A , (b) 8k Aj A. (c) gjk r A .

147. Prove dt (gpq A A A q) = 29Pq
A

8A
q

8t

j k



212 TENSOR ANALYSIS

148. Show that if no external force acts, a moving particle of constant mass travels along a geodesic given by
p

as(ds) = a.

149. Prove that the sum and difference of two relative tensors of the same weight and type is also a relative
tensor of the same weight and type.

150. if Apq is a relative tensor of weight w, prove that g-V/2 Apq. is an absolute tensor.

151. If A(p,q) Bqs = where Br is an arbitrary relative tensor of weight wl and Cpr is a known relative
tensor of weight w2, prove that A(p,q) is a relative tensor of weight w2---w1. This is an example of
the quotient law for relative tensors.

152. Show that the quantity G(j,k) of Solved Problem 31 is a relative tensor of weight two.

153. Find the physical components of (a) the velocity and (b) the acceleration of a particle in spherical co-
ordinates.

154. Let Ar and Br be two vectors in three dimensional space. Show that if ,\ and,i are constants,then
Cr = X Ar+ LRr is a vector lying in the plane of Ar and Br. What is the interpretation in higher dimen-
sional space ?

155. Show that a vector normal to the surface 0 (xi, x2, x3) = constant is given by AO = 9 a . Find the
corresponding unit normal.

as
156. The equation of continuity is given by V (0- V) +

ac
= 0 where cr is the density and v is the velocity of

a fluid. Express the equation in tensor form.

157. Express the continuity equation in (a) cylindrical and (b) spherical coordinates.

158. Express Stokes' theorem in tensor form.

159. Prove that the covariant curvature tensor Rpqrs is skew-symmetric in (a) p and q, (b) r ands , (c) q ands.

160. Prove Rpqrs = Rrsjiq

161. Prove (a) Rj,grs + Rpsqr + Rjirsq = 0,

0.(b) R¢grs + Rrgps + Rrspq + R¢srq =

162. Prove that covariant differentiation in a Euclidean space is commutative. Thus show that the Riemann-
Christoffel tensor and curvature tensor are zero in a Euclidean space.

163. Let T 0
= dsP be the tangent vector to curve C whose equation is xP = x '(s) where s is the arc length.

(a) Show that g,g TP Tq - 1. (b) Prove that gig TO T
q

= 0 and thus show that Nq = K &sq is a unit

normal to C for suitable K. (c) Prove that Nq is orthogonal to Nq
as

164. With the notation of the previous problem, prove:

(a) gig T' Nq = 0 (b) gig
TO S Nq

= - K or gpq T (SNq + K Tq) = 0.

r
Hence show that Br = I (6N + K Tr) is a unit vector for suitable T orthogonal to both and Nq .



TENSOR ANALYSIS 213

165. Prove the Frenet-Serret formulas

$s
K Np, S = TB1'- KT 1',

sB
= - TN1'

where T N1' and BP are the unit tangent, unit normal and unit binormal vectors to C, and K and T are
the curvature and torsion of C .

166. Show that ds2 = c2(dx4)2 - dxk dxk (N=3) is invariant under the linear (affine) transformation

x1 = y(x1- vx4) ,
x2 = x2 , x3 = x3 , z4 = y(x4 -- 18

x1)
2

where 'y,,8, c and v are constants, 8 = v/c and y = (1-,8 )71/2 This is the Lorentz transformation
of special relativity. Physically, an observer at the origin of the xi system sees an event occurring at
position x1,x2,x3 at time x4 while an observer at the origin of the 'xi system sees the same event occur-
ring at position 3F1,`x2,`x3 at time z4. It is assumed that (1) the two systems have the x1 and Z1 axes
coincident, (2) the positive x2 and x3 axes are parallel respectively to the positive x2 and x3 axes,
(3) the xi system moves with velocity v relative to the xi system, and (4) the velocity of light c is a
constant.

167. Show that to an observer fixed in the xi ((i) system, a rod fixed in the xi (xi) system lying parallel to
the x1 (xi) axis and of length L in this system appears to have the reduced length LA - This
phenomena is called the Lorentz-Fitzgerald contraction.

ANSWERS TO SUPPLEMENTARY PROBLEMS.

77. (a) akxkx3 (b) A23B (c) Ak Bk (d) g2q gq1 , N=4 (e) Bar, N= 2

78. (a) 21 (vg A1) + ax2 (v g A2) + 2x3 (V -g A3) (c) azj ax 1 + axi axe + ... +
Aax ax

(b) All BP C, + A2' B1' C2 + A12 B2 C, + A22 B2 C2 axi ax-'IR ax2 azm -axl -a--n

79. Ellipse for N= 2, ellipsoid for Nj= 3, hyperellipsoid for N= 4.

80.

xx81. (a) A - Ar
axi -ax, avr

k

(b) B-1'gr = axp azq ax ax's Bijk
S

axi axi axk aTs

axx axn(c) C
q ax1' axq

(d) A
=

axi All
axi

Cxn

82. (a) B(/, k, m) is a tensor of rank three and is covariant of order two and contravariant of order one. It can
be written (b) C(j, k, m, n) is not a tensor.

83. 45 = 1024

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

k ij-pq a-p axq a

87. (a) 2p cos2 c - z cos 0 + p3 sin2 0 cos2o,
2-- 2p sin 0 cos 0 + pz sin 0 + p4 sin 0 cos3

pz sin 0.
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(b) 2 r sin2 6 cos2 0 - r sin 6 cos 6 cos (p + r3 sin46 sin2 0 cos2 0 + r2 sin 6 cos2 6 sink,

2r 2 sin 6 cos 6 cos2 0 - r2 cos2 6 cos 4 + r4 sin3 6 cos (9 sin2 O cos2 O
- r3 sin26 cos 6 sink,

- 2r2 sin2 6 sin cos ) + r2 sine cos 6 sin + r4 sin4 6 sino cos3 o

s P
88. u2vz + 3v , 3u - uv2z , u2 + uv - v2 89. (a) Bq

r,
(b) (c) bs , (d) N

94. It is not a tensor. 95. Rank 3 and rank 1 respectively. 98. Yes.

100. (a) 10 , (b) 21 , (c) N(N+ 1)/2 101. N(N- 1) (N- 2)/6

7 2 -1 -4 14 10 18 8
107. (a) S

0 3 '
D

4 5
P

0 2
Q -8 -2

3 -1 3 1 1 -1 1 -4 6 1 8 -3
(b) S = 2 0 -2 , D = -4 -4 6 , p = -9 -7 10 , Q = 8 -16 11

-2 1 1 0 5 -3 9 9 -16 -2 10 -7

108. (a)
3 -16 20

52 )104 -86 (b) 9 163 -136 110. -4
-61 -135

104
132

111. x=-1, y=3, z=2

(b)

A31 A32 A33

(c)

3 3 3
Al A2 A3

ax1 ax2

ax ax

ax1 ax1

ax1 ax2

ax ax2
ax1 ax2

ax3 ax
ax1 ax2

5 3

17 -2 1

2 1
112. (a) 5/2 3/2

116.\.=4,-1 119. (a)

x1

ax3
-ax'

A12 A13

1/3 1/3 0

(b) 5/3 1/3 1 . Yes-
-1 0 1

ax1 ax1 ax1

ax1 aaG2 az3

A A
ax2 ax2 ax2

22 23
1 - -

A A

ax

ax3

ax2

ax3

az3

'3X3
32 33

ax1 ax2 ax3

2 2+vu 0 0

!

2+v2
U'2

0 0

0
22 + \0

0 01
v11 , 22u +v

0 0 1 0 0 1
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a2(sinh2u + sin2v) 0 0 1 0 0
(a2(sinh2u + sin2v)

(b) 0 a2(sinh2u + sin2v) 0 0 1 0
a2(sinh2u + sin2v)

0 0 1 0 0 1

4/3 0 1

121. g = 6, 0 1/2 0
1 0 1

123. (a) Ap9 _ gPi A 9, (b) A. rq

A A128. or
AY , gig AP A q

0.

130. (a) They are all zero.
(b) [22,1] =-p, [12,2] _ [21,2] = p. All others are zero.
(c) [22,1] _ -r, [33.1] r sin28, [33,2] _ - r2 sin 8 cos 8

[21,2] [12,2] =r, [31,3] = [13,3] = r sin28
[ 32,31 _ [ 23,3] = r2 sin 8 cos e. All others are zero.

131. (a) [ii,1] = u, [22,2] = v, [11,2] _ - v, [ 22,1] -u,
[12,1]= [21,1]=v, [21,2]= [12,2]=u.

1 _ u 2 v 1 -u 2 -v
11 u2 + v2 ' 22 u2 + v2 ' 22 u2 + v2 11 u2 + v2

1 _ 1 v 2 1 2 u All others are zero.
21 12 u2 + v2 21 12 u2 + v2

(b) [11,1] = 2a2 sinh u Cosh u , [22,2] = 2a2 sine cosv , [11,2] _ -2a2 sinv cosv
[22.1] =-2a2sinh u cosh u, [12,1] _ [21,1] = 2a2 sinv cosv, [21,2]= [12,2]= 2a2sinhu coshu
5 1 sinh u coshu 2 _ sinv cosv 1 - sinh u cosh u

11 sinh2u + sin2v ' 22 sinh2u + sin2v ' 122 5 - sinh2u + sin2v

5 2 -sin v cosv 1 1 sinv cos v
1 11 sinh2u + sin2v 21 12 sinh2u + sin2v '

j 2 = 2 sinh u cosh u . All others are zero.
21 12 y sinh2u + sin2v

132. (a) d dsP

- p( d2
d2 0 + 2 do dq
ds2 p ds ds

..r rl Jk
(c)

Ap q = gpj gqk g A..1

d20, ds2z

= 0

d'r d<p
{b)

s2
_ r(d8)2 r sing 0(

d
)2 = 0

d2 B 2 dr !L6
ds2 r ds ds

d24) +2dr d0+
ds2 r ds ds

sin6cos8(dO)2 = 0
ds

2cot8d8d(k = 0

ds ds
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1 _ 1 2 2
135.

J
x

12 2122

d2 x1 + x( dx2 }2 = 0' d 2x2
ds2 ds ds2

136. (a) A

(b)

jk aAl

l,q axq

jk
Aln,q

) A(c
klnc,q

aA
jk
im

axq

a A
i

jk

TENSOR ANALYSIS

x1

(x1)2 - (x2)2

+

x2

(x2)2 - (x 1)2

2

122

2x1 dx1 dx2 + x2 dx2

)

2 = 0(XI)2_(X2)2
ds ds (x2)2 - (x1)2 ds

s

lq

s

lq

( s

kq
k lm.

Ask

+

jk
Asp

Aj

s

mq

jkl
(d) A,n, q -

j k
(e) Aln,q

axq

jk
aAlmn

axq

jkl
As +

k Ajs
{ qs l

+

All others are zero.

s jk {/}sk k js
mq A is + qs Alin + qs Ali

s Aj - s
Aj

+ j As

lq ksm mq k1s qs klm

qs

jk s jk

Asmn - mq Alsn -

137. (a) gjk A q , (b) A1q Bk + Al Bk 0 (C)
kj

A
,9 j,q

141. (a)
u2 + v2 au

Au ) + a ( u2 + v2 Av )
av

jsl l jks

qs

s i
nqf

(b) uv(u2 + v2) au (uv u2 + v2 AU) + ava (uv u2 + v2 AV) +

1 a 1 a a(1)(a)142.

(b)

143.

0

uV
2+v2 au w

s

lq

+ ev +

u2 + v2 av
ez

az

j k

A +
Ins

j Ask +
qs Inn

k

qs

1 a2 Az

uv az2

{

1 ( a(p eu + ai ev) +
a

e2a sinh2u + sin2v au av az

where eu, ev and ez are unit vectors in the directions of increasing u, v and z respectiveiy.

1
a2T

+
a

+ (u2 + v2)
u2 + v2 au2 av2

145. (a)
8Ak

A

dxq
=

aAk
_ s

A

dxq dAk - s
A

dxq
= ) -

8t k,q dt axq kq
AS

dt dt kq
As

dt

(b)
aAjk dAjk + j }ASkdXq +

A5
St dt qs dt qs dt

k(c) 8 (A. Bk) = SAC Bk + A bB

bt St bt

is

Alnnn

dAj - s
Bk +

+ k Bs dxq{.}'4s dt dt qs } dt
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(d)
bt Ak )

8Ak dAk + k
AS

dxq
gjk 8t - gjk dt qs dt

(dAk
+ 1 AS dxq -

dt qs k dt

146. (a)

gjk

d'
dt k

b j
6Aj -

8
j (dAj - s

A

dxq _ dAk - s
A

dxq

() 8
k 8i k dt { jq S dt dt kq S dt

(C)

j6A
8r

8t

153. (a) r, re, r sine 0

LA
+ 6(t

AI
8t 8t k

r
dAp s r dxq_ _ I

grk dt pq
AS dt

{
S Ai dxq
kq S dt

+ r
AS

dxq

qs P dt

156.
a

_
ax 2g ax at

157. (a) a (6-0) ) +
P

(b) ar (crvl) +

0 where v4 are the contravariant components of the velocity.

1

(ov2) + a (crv3) + P a = 0

(O"v2) +
a

(0-v3)a ao
+ 0- (Zv1r

-
+ v2 cote) +

a 0-

'at

where v1, V2 and vs are the contravariant components of the velocity.

d
158. f AP dsP ds

C

0

217

Epgr A dS where dxq is the unit tangent vector to the closed curve C

and v1, is the positive unit normal to the surface S which has C as boundary.

II
S



Index

Absolute derivative, 174
Absolute motion, 53
Absolute tensor, 175
Acceleration, along a space curve, 35,39,40,50,56

centripetal, 43, 50, 53
Coriolis, 53
in cylindrical coordinates, 143, 204
in general coordinates, 204, 205
in polar coordinates, 56
in spherical coordinates, 160, 212
of a particle, 38, 42, 43, 50, 52, 84, 203, 205
relative to fixed and moving observers, 52, 53

Addition, of matrices, 170
of tensors, 169

Addition, of vectors, 2, 4, 5
associative law for, 2, 5
commutative law for, 2, 5
parallelogram law for, 2, 4
triangle law for, 4

Aerodynamics, 82
Affine transformation, 59, 210, 213
Algebra, of matrices, 170

of vectors, 1, 2
Angle, between two surfaces, 63

between two vectors, 19, 172, 190
solid, 124, 125

Angular momentum, 50, 51, 56
Angular speed and velocity, 26, 43, 52
Arbitrary constant vector, 82
Arc length, 37, 56, 136, 148

in curvilinear coordinates, 56, 148
in orthogonal curvilinear coordinates, 136
on a surface, 56

Areal velocity, 85, 86
Area, bounded by a simple closed curve, 111

of ellipse, 112
of parallelogram, 17, 24
of surface, 104, 105, 162
of triangle, 24, 25
vector, 25, 83

Associated tensors, 171, 190, 191, 210
Associative law, 2, 5, 17

Base vectors, 7, 8, 136
unitary, 136

Binormal, 38, 45, 47, 48
Bipolar coordinates, 140, 160

Box product, 17
Brahe, Tycho, 86

Calculus of variations, 173
Cartesian tensors, 210
Central force, 56, 85
Centripetal acceleration, 43, 50, 53
Centroid, 15
Chain rule, 77, 177, 179
Characteristic equation, 210
Characteristic values, 210
Charge density, 126
Christoffel's symbols, 172, 192-195, 211

transformation laws of, 172, 193, 194
Circulation, 82, 131
Circumcenter, 33
Clockwise direction, 89
Cofactor, 171, 187, 188
Collinear vectors, 8, 9

non-, 7, 8
Column matrix or vector, 169
Commutative law, 2, 5, 16, 17
Component vectors, 3, 7, 8

rectangular, 3
Components, contravariant, 136, 156, 157, 167, 168

covariant, 136
of a dyad, 73
of a tensor, 157, 167, 168
of a vector, 3, 136, 156, 157, 158, 167
physical, (see Physical components)

Conductivity, thermal, 126
Conformable matrices, 170
Conic section, 87
Conjugate metric tensor, 171, 188, 189
Conjugate tensors, 171
Conservation of energy, 94
Conservative field, 73, 83, 90, 91, 93

motion of particle in, 93, 94
necessary and sufficient condition for, 90, 91

Continuity, 36, 37
equation of, 67, 126, 212

Contraction, 169, 181, 182
Contravariant components, 136, 156, 157, 167, 168

of a tensor, 157, 167, 168
of a vector, 136, 156, 157, 167

Contravariant tensor, of first rank, 157, 167
of second and higher rank, 168

218
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Contravariant vector, (see Contravariant compo-
nents of a vector)

Coordinate curves or lines, 135
Coordinates, curvilinear, (see Curvilinear coordi-

nates)
Coordinate surfaces, 135
Coordinate transformations, 58, 59, 76, 135, 166
Coplanar vectors, 3

necessary and sufficient condition for, 27
non-, 7, 8

Coriolis acceleration, 53
Cosines, direction, 11, 58

law of, for plane triangles, 20
law of, for spherical triangles, 33

Counterclockwise direction, 89
Covariant components, 136, 157, 158, 167

of a tensor, 167, 168
of a vector, 136, 157, 158, 167

Covariant curvature tensor, 207
Covariant derivative, 173, 197-199, 211
Covariant tensor, of first rank, 158
Covariant vector, (see Covariant components of a

vector)
Cross-cut, 113
Cross product, 16, 17, 22-26

commutative law failure for, 16
determinant form for, 17, 23
distributive law for, 16, 22, 23

Cubic, twisted, 55
Curl, 57, 58, 67-72

in cylindrical coordinates, 153, 154
in orthogonal curvilinear coordinates, 137, 150
in parabolic cylindrical coordinates, 161
in spherical coordinates, 154
integral definition of, 123, 152, 153
invariance of, 81
of the gradient, 58, 69, 211
physical significance of, 72, 131
tensor form of, 174, 200

Current density, 126
Curvature, 38, 45, 47, 113

radius of, 38, 45, 46, 50
Riemann-Christoffel, 206
tensor, 207

Curve, space, (see Space curves)
Curvilinear coordinates, 135-165

acceleration in, 143, 204, 205, 212
arc length in, 56, 136, 148
definition of, 135
general, 148, 156-159
orthogonal, 49, 135
surface, 48, 49, 56, 155
volume elements in, 136, 137, 159

Cycloid, 132
Cylindrical coordinates, 137, 138, 141, 142, 160, 161

arc length in, 143
Christoffel's symbols in, 195, 211
conjugate metric tensor in, 189
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Cylindrical coordinates,
continuity equation in, 212
curl in, 153, 154
divergence in, 153, 200, 201
elliptic, (see Elliptic cylindrical coordinates.
geodesics in, 211
gradient in, 153, 154
Jacobian in, 161
Laplacian in, 153, 154, 201
metric tensor in, 187
parabolic, (see Parabolic cylindrical coordinates)
velocity and acceleration in, 143, 204, 205
volume element in, 144, 145

V, (see Del)
V2, (see Laplacian operator)
Del (p), 57, 58, (see also Gradient, Divergence and

Curl)
formulas involving, 58
integral operator form for, 107, 123
invariance of, 81

Delta, Kronecker, 168, 179, 180, (see also Kron-
ecker's symbol)

Density, 126
charge, 126
current, 126
tensor, 175, 203

Dependence, linear, 10,15
Derivative, absolute, 174

covariant, 173, 197-199, 211
directional, 57, 61-63
intrinsic, 174, 202, 211

Derivatives, of vectors, 35-56
ordinary, 35, 36, 39-43
partial, 36, 37, 44, 45

Descartes, folium of, 132
Determinant, cofactor of, 171, 187, 188

cross product expressed as, 17, 23
curl expressed as, 57, 58
differentiation of, 41
Jacobian, (see Jacobian)
of a matrix, 170, 209
scalar triple product expressed as, 17, 26, 27

Determinants, multiplication of, 159
Dextral system, 3
Diagonal of a square matrix, 169
Difference, of matrices, 170

of tensors, 169
of vectors, 2

Differentiable, scalar field, 57
vector field, 57

Differentiability, 36, 37
Differential equations, 54, 104
Differential geometry, 37, 38, 45-50, 54-56, 166, 212-13
Differentials, 37

exact, (see Exact differentials)
Differentiation of vectors, 35-56

formulas for, 36, 37, 40, 41
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Differentiation of vectors,
order of, 37, 69
ordinary, 35, 36
partial, 36, 37

Diffusivity, 127
Directional derivative, 57, 61-63
Direction cosines, 11, 58
Distance between two points, 11
Distributive law, 2

for cross products, 16, 22, 23
for dot products, 16, 18
for dyadics, 74
for matrices, 170

Div, (see Divergence)
Divergence, 57, 64-67

in curvilinear coordinates, 137, 150
in cylindrical coordinates, 153, 200, 201
in parabolic cylindrical coordinates, 161
in spherical coordinates, 161, 200, 201
invariance of, 81
of the curl, 58, 69, 70, 211
of the gradient, 58, 64
physical significance of, 66, 67, 119, 120
tensor form of, 174, 200, 201
theorem, (see Divergence theorem)

Divergence theorem, 106, 110, 111, 115-127
expressed in words, 115
Green's theorem as a special case of, 106, 110, 111
physical significance of, 116, 117
proof of, 117, 118
rectangular form of, 116
tensor form of, 206

Dot product, 16, 18-21
commutative law for, 16, 18
distributive law for, 16, 18

Dummy index, 167
Dyad, 73
Dyadic, 73-75, 81
Dynamics, 38, (see also Mechanics)

Lagrange's equations in, 196, 205
Newton's law in, (see Newton's law)

Eccentricity, 87
Eigenvalues, 210
Einstein, theory of relativity of, 148, 207, 213
Electromagnetic theory, 54, 72, 206
Element, line, 170, 187-189

volume, 136, 137, 159
Elements, of a matrix, 169
Ellipse, 63, 139

area of, 112
motion of planet in, 86, 87

Ellipsoidal coordinates, 140, 160
Elliptic cylindrical coordinates, 139, 155, 160, 161,

211

Energy, 94
conservation of, 94
kinetic, 94, 204
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Energy,
potential, 94

Equality, of matrices, 170
of vectors, 1

Equilibrant, 6
Euclidean spaces, 170

N dimensional, 171
Euler's equations, 196
Exact differentials, 83, 93, 111

necessary and sufficient condition for, 93
Extremum, 196

Fictitious forces, 53
Field, (see Scalar and Vector field)

conservative, (see Conservative field)
irrotational, 72, 73, 90
sink, 13, (see also Sink)
solenoidal, 67, 73, 120, 126
source, 13, (see also Source)
tensors, 168
vortex, 72

Fixed and moving systems, observers in, 51-53
Fluid mechanics, 82
Fluid motion, 66, 67, 72, 116, 117, 125, 126

incompressible, 67, 126
Flux, 83, 120
Force, central, 56, 85

Coriolis, 53
moment of, 25, 26, 50
on a particle, 203, 205
repulsive, 85
universal gravitational, 86

Forces, fictitious, 53
real, 53
resultant of, 11

Frames of reference, 58, 166
Free index, 167
Frenet-Serret formulas, 38, 45, 213
Fundamental quadratic form, 148
Fundamental tensor, 171

Gauss' divergence theorem, (see Divergence theorem)
Gauss' law, 134
Gauss' theorem, 124, 125
Geodesics, 172, 173, 196, 197, 211
Geometry, differential, (see Differential geometry)
Grad, (see Gradient)
Gradient, 57, 58, 59-63, 177

in cylindrical coordinates, 153, 154
in orthogonal curvilinear coordinates, 137, 148, 149
in parabolic cylindrical coordinates, 161, 211
in spherical coordinates, 161
integral definition of, 122, 123
invariance of, 77
of a vector, 73
tensor form of, 174, 200

Graphical, addition of vectors, 4
representation of a vector, 1
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Gravitation, Newton's universal law of, 86
Green's, first identity or theorem, 107, 121

second identity or symmetrical theorem, 107, 121
theorem in space, (see Divergence theorem)

Green's theorem in the plane, 106, 108-115
as special case of Stokes' theorem, 106, 110
as special case of the divergence theorem, 106,

110, 111
for multiply-connected regions, 112-114
for simply-connected regions, 108-110

Hamilton-Cayley theorem, 210
Hamilton's principle, 205
Heat, 126, 127

specific, 126
Heat equation, 126, 127, 161

in elliptic cylindrical coordinates, 155
in spherical coordinates, 161

Heat flow, steady-state, 127
Helix, circular, 45
Hyperbola, 87
Hyperplane, 176
Hypersphere, 176
Hypersurface, 176
Hypocycloid, 132

Independence, of origin, 9
of path of integration, 83, 89, 90, 111, 114, 129, 130

Independent, linearly, 10, 15
Index, dummy or umbral, 167

free, 167
Inertial systems, 53
Initial point of a vector, 1
Inner multiplication, 169, 182
Inner product, 169, 182
Integral operator form for V, 107, 123
Integrals, of vectors, 82-105

definite, 82
indefinite, 82
line, (see Line integrals)
ordinary, 82
surface, (see Surface integrals)
theorems on, (see Integral theorems)
volume, (see Volume integrals)

Integral theorems, 107, 120, 121, 124, 125, 130,
(see also Stokes' theorem and Divergence theorem)

Integration, (see Integrals, of vectors)
Intrinsic derivative, 174, 202, 211
Invariance, 58, 59, 76, 77, 81, (see also Invariant)
Invariant, 59, 168, 190, (see also Invariance)
Inverse of a matrix, 170
Irrotational field, 72, 73, 90

Jacobian, 79, 133, 146, 147, 148, 159, 161, 162, 175, 202-3

Kepler's laws, 86, 87, 102
Kinematics, 38, (see also Dynamics and Mechanics)
Kinetic energy, 94, 204

Kronecker delta, 168, 179, 180
Kronecker's symbol, 77, 208
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Lagrangean, 205
Lagrange's equations, 196, 205
Laplace's equation, 65, 127, 134

in parabolic cylindrical coordinates, 154, 155
Laplace transforms, 162
Laplacian operator (V2), 58, 64, 81, 200

in curvilinear coordinates, 137, 150, 151
in cylindrical coordinates, 153, 154, 201
in parabolic cylindrical coordinates, 154, 155, 211
in spherical coordinates, 154, 201
invariance of, 81
tensor form of, 174, 200

Laws of vector algebra, 2, 18
Lemniscate, 132
Length, of a vector, 171, 172, 190
Light rays, 63
Light, velocity of, 81
Linearly dependent vectors, 10, 15
Line element, 170, 187-189
Line, equation of, 9, 12

parametric equations of, 12
sink, 13
source, 13
symmetric form for equation of, 9

Line integrals, 82, 87-94, 111
circulation in terms of, 82, 131
evaluation of, 87-89, 111
Green's theorem and evaluation of, 112
independence of path, 83, 89, 90, 111, 114, 129, 130
work expressed in terms of, 82, 88

Lorentz-Fitzgerald contraction, 213
Lorentz transformation, 213

Magnitude, of a vector, 1
Main diagonal, 169
Mapping, 162
Matrices, 169, 170, 185, 186, (see also Matrix)

addition of, 170
conformable, 170
equality of, 170
operations with, 170

Matrix, 73, 169, (see also Matrices)
algebra, 170
column, 169
determinant of, 170, 209
elements of, 169
inverse of, 170, 209, 210
main or principal diagonal of, 169
null, 169
order of, 169
principal diagonal of, 169
row, 169
singular, 170
square, 169
transpose of, 170, 210
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Maxwell's equations, 72, 81
in tensor form, 206

Mechanics, 38, 56, (see also Dynamics)
fluid, 82

Metric coefficients, 148
Metric form, 148
Metric tensor, 170, 171, 187-189
Mixed tensor, 167, 168
Moebius strip, 99
Moment of force, 25, 26,. 50
Momentum, 38

angular, 50, 51, 56
Motion, absolute, 53
Motion, of fluid, (see Fluid motion)

of planets, 85-87
Moving and fixed systems, observers in, 51-53
Moving trihedral, 38
Multiplication, (see Product)
Multiply-connected region, 110, 112-114

Nabla, (see Del)
Negative direction, 89
Newton's law, 38, 50, 53

in tensor form, 203
of universal gravitation, 86

Normal plane, 38, 48
Normal, principal, 38, 45, 47, 48, 50

bi-, 38, 45, 47, 48
Normal, to a surface, 49, 50, 56, 61

positive or outward drawn, 49, 83
Null matrix, 169
Null vector, 2

INDEX

Oblate spheroidal coordinates, 140, 145, 160, 161
Operations, with tensors, 169, 179-184
Operator, del, 57, (see also Del)

Laplacian, (see Laplacian operator)
time derivative, in fixed and moving systems,

51, 52
Order, of a matrix, 169

of a tensor, 167
Orientable surface, 99
Origin, of a vector, 1

independence of vector equation on, 9
Orthocenter, 33
Orthogonal coordinates, special, 137-141

bipolar, 140, 160
cylindrical, 137, 138, (see Cylindrical coordinates)
ellipsoidal, 140, 160
elliptic cylindrical, 139, 155, 160, 161, 211
oblate spheroidal, 140, 145, 160, 161
parabolic cylindrical, 138, (see also Parabolic

cylindrical coordinates)
paraboloidal, 139, 160, 161, 211
prolate spheroidal, 139, 160, 161
spherical, 137, 138, (see Spherical coordinates)
toroidal, 141

Orthogonal curvilinear coordinate systems, 49, 135,
191

special, 137-141
Orthogonal transformation, 59
Osculating plane, 38, 48
Outer multiplication, 169
Outer product, 169
Outward drawn normal, 49, 83

Parabola, 87, 138
Parabolic cylindrical coordinates, 138, 144, 145, 154

155, 160, 161, 211
are length in, 144
Christoffel's symbols in, 211
curl in, 161
divergence in, 161
gradient in, 161, 211
Jacobian in, 161
Laplacian in, 154, 155, 211
Schroedinger's equation in, 161
volume element in, 145

Paraboloidal coordinates, 139, 160, 161, 211
Parallelogram, area of, 17, 24
Parallelogram law of vector addition, 2, 4
Parametric equations, of a curve, 39, 40

of a line, 12
of a surface, 48, 49

Periods, of planets, 102
Permutation symbols and tensors, 173, 174, 211
Physical components, 172, 200, 201, 205, 211
Plane, distance from origin to, 21

equation of, 15, 21, 28
normal, 38, 48
osculating, 38, 48
rectifying, 38, 48
tangent, 49, 50, 61
vector perpendicular to, 28
vectors in a, (see Coplanar vectors)

Planets, motion of, 85-87
Point function, scalar and vector, 3
Poisson's equation, 134
Polar coordinates, 98
Position vector, 3
Positive direction, 89, 106, 113
Positive normal, 83
Potential energy, 94
Potential, scalar, 73, 81, 83, 91, 92

vector, 81
Principal diagonal, 169
Principal normal, 38, 45, 47, 48, 50
Product, box, 17

cross, (see Cross product)
dot, (see Dot product)
inner, 169, 182
of a vector by a scalar, 2
of determinants, 159
of matrices, 170
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Product,
of tensors, 169
outer, 169, 181
scalar, 182, (see also Dot product)
vector, (see Cross product)

Projectile, 102
Projection, of a vector, 18, 20

of surfaces, 95, 96
Prolate spheroidal coordinates, 139, 160, 161
Proper vector, 2
Pythagorean theorem, 10

Quadratic form, fundamental, 148
Quantum mechanics, 161
Quotient law, 169, 184

Radius, of curvature, 38, 45, 46, 50
of torsion, 38, 45

Radius vector, 3
Rank, of a tensor, 167
Rank zero tensor, 168
Real forces, 53
Reciprocal sets or systems of vectors, 17, 30, 31

34, 136, 147
Reciprocal tensors, 171
Rectangular component vectors, 3
Rectangular coordinate systems, 2
Rectifying plane, 38, 48
Region, multiply-connected, 110, 112-114

simply-connected, 110, 113, 114
Relative acceleration, 53
Relative tensor, 175, 202, 203, 212
Relative velocity, 52
Relativity, theory of, 148, 207, 213
Resultant of vectors, 2, 4, 5, 6, 10
Riemann-Christoffel tensor, 207, 212
Riemannian space, 171, 172

geodesics in, 172, 196, 197
Right-handed coordinate systems, 2, 3

localized, 38
Rigid body, motion of, 59

velocity of, 26, 33
Rot, (see Curl)
Rotating coordinate systems, 51, 52
Rotation, invariance under, (see Invariance)

of axes, 58, 76, 77
pure, 59

Row matrix or vector, 169

Scalar, 1, 4, 168
field, 3, 12, 168
function of position, 3
point function, 3
potential, 73, 81, 83, 91, 92
product, 182, (see also Dot product)
triple products, (see Triple products)
variable, 35

Scale factors, 135

Schroedinger's equation, 161
Simple closed curve, 82, 106

area bounded by, 111
Simply-connected region, 110, 113, 114
Sines, law of, for plane triangles, 25

for spherical triangles, 29, 30
Singular matrix, 170
Singular points, 141
Sink, 13, 67, 120
Sink field, 13, (see also Sink)
Solenoidal field, 67, 73, 120, 126
Solid angle, 124, 125
Sound rays, 63
Source, 13, 67, 120
Source field, 13, (see also Source)
Space curves, 35

acceleration along, 35, 39, 40, 50, 56
arc length of, 37, 56, 136, 148
binormal of, 38, 45, 47, 48
curvature of, 38, 45, 47, 113
principal normal of, 38, 45, 47, 48, 50
radius of curvature of, 38, 45, 46, 50
radius of torsion of, 38, 45
tangent to, 37, 38, 40, 45, 47, 48, 50

Space integrals, (see Volume integrals)
Spaces, Euclidean, 170

Riemannian, 171
Space, N dimensional, 166
Special theory of relativity, 213
Speed, 4

angular, 26, 43, 52
Spherical coordinates, 137, 138, 141, 147, 160, 161

are length in, 144
Christoffel's symbols in, 195, 211
conjugate metric tensor in, 189
continuity equation in, 212
covariant components in, 177, 178
curl in, 154
divergence in, 161, 200, 201
geodesics in, 211
gradient in, 161
heat equation in, 161
Jacobian in, 161
Laplacian in, 154, 201
metric tensor in, 187
velocity and acceleration in, 160, 212
volume element in, 144, 145

Spheroidal coordinates, oblate, 140, 145, 160, 161
prolate, 139, 160, 161

Stationary scalar field, 3
Stationary-state, (see Steady-state)
Steady-state, heat flow, 127

scalar field, 3
vector field, 3

Stokes' theorem, 106, 110, 127-131
Green's theorem as special case of, 110
proof of, 127-129
tensor form of, 212
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Subtraction, of tensors, 169
of vectors, 2

Summation convention, 167, 175, 176, 207
Superscripts, 166
Surface, area of, 104, 105, 162
Surface curvilinear coordinates, 48, 49, 56, 155

arc length in, 56, 148
Surface integrals, 83, 94-99

defined as limit of a sum, 94, 95
evaluation of, 83

Surfaces, 37
angle between, 63
arc length on, 56
coordinate, 135
one-sided, 99
orientable, 99
outward drawn normal to, 83
two-sided, 83

Symmetric form, of equation of a line, 9

Tangent, to space curve, 37, 38, 40, 45, 47, 48, 50
Tangent plane, 49, 50, 61
Tensor analysis, 73, 137, 158, 166-217
Tensor, absolute, 175

associated, 171, 190, 191, 210
Cartesian, 210
conjugate, 171
contravariant, (see Contravariant components)
covariant, (see Covariant components)
curvature, 207
density, 175, 203
field, 168
fundamental, 171
metric, 170
mixed, 167, 168
order of, 167
rank of, 167
reciprocal, 171
relative, 175, 202, 203, 212
skew-symmetric, 168, 169
symmetric, 168

Tensors, fundamental operations with, 169, 179-184
Terminal point or Terminus, 1, 2, 5, 11
Thermal conductivity, 126
Toroidal coordinates, 141
Torque, 50, 51
Torsion, 38, 45, 47, 213

radius of, 38, 45
Transformation, affine, 59, 210, 213

of coordinates, 58, 59, 76, 135, 166
orthogonal, 59

Translation, 59
Transpose, of a matrix, 170, 210
Triad, 38
Triadic, 73
Triangle, area of, 24, 25
Triangle law of vector addition, 4
Trihedral, moving, 38

Triple products, 17, 26-31
Twisted cubic, 55

Umbral index, 167
Unit dyads, 73
Unit matrix, 169
Unit vectors, 2, 11

rectangular, 2, 3

Variable, 35, 36
Vector, area, 25, 83

column, 169
equations, 2, 9
field, 3, 12, 13, 168
function of position, 3
magnitude of a, 1, 10
null, 2
operator V, (see Del)
point function, 3
position, 3
potential, 81
product, (see Cross product)
radius, 3
row, 169
time derivative of a, 51, 52
triple product, (see Triple products)

Vectors, 1, 4
addition of, 2, 4
algebra of, 1, 2
analytical representation of, 1
angle between, 19, 172, 190
base, 7, 8, 136
collinear, (see Collinear vectors)
component, 3, 7, 8
contravariant components of, 136, 156, 157, 167
coplanar, (see Coplanar vectors)
covariant components of, 136, 157, 158, 167
differentiation of, 35-56
equality of, 1
graphical representation of, 1, 4
initial point of, 1
origin of, 1
reciprocal, 17
resultant of, 2, 4, 5, 6, 10
terminal point of, 1
terminus of, 1
unit, 2
unitary, 136

Velocity, along a space curve, 35, 39, 40
angular, 26, 43, 52
areal, 85, 86
linear, 26
of a fluid, 179
of a particle, 42, 52, 203, 204
of light, 81
relative to fixed and moving observers, 52, 53

Volume, elements of, 136, 137, 159
in curvilinear coordinates, 136, 137
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Volume, Wave equation, 72
in general coordinates, 159 Weight, of a tensor, 175
of parallelepiped, 17, 26 Work, 21, 82, 88, 89, 90, 91

Volume integrals, 83, 99-101 as a line integral, 88, 89, 90, 91
defined as limit of a sum, 99, 100

Vortex field, 72 Zero vector, 2
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