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Preface

Vector analysis, which had its beginnings in the middle of the 19th century, has in recent
years become an essential part of the mathematical background required of engineers, phy-
sicists, mathematicians and other scientists. This requirement is far from accidental, for not
only does vector analysis provide a concise notation for presenting equations arising from
mathematical formulations of physical and geometrical problems but it is also a natural aid
in forming mental pictures of physical and geometrical ideas. In short, it might very well be
considered a most rewarding language and mode of thought for the physical sciences.

This book is designed to be used either as a textbook for a formal course in vector
analysis or as a very useful supplement to all current standard texts. It should also be of
considerable value to those taking courses in physics, mechanics, electromagnetic theory,
aerodynamics or any of the numerous other fields in which vector methods are employed.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
so vital to effective teaching. Numerous proofs of theorems and derivations of formulas
are included among the solved problems. The large number of supplementary problems
with answers serve as a complete review of the material of each chapter.

Topics covered include the algebra and the differential and integral calculus of vec-
tors, Stokes’ theorem, the divergence theorem and other integral theorems together with
many applications drawn from various fields. Added features are the chapters on curvilin-
ear coordinates and tensor analysis which should prove extremely useful in the study of
advanced engineering, physics and mathematics.

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more flexible, to provide a more useful book
of reference, and to stimulate further interest in the topics.

The author gratefully acknowledges his indebtedness to Mr. Henry Hayden for typo-
graphical layout and art work for the figures. The realism of these figures adds greatly to

the effectiveness of presentation in a subject where spatial visualizations play such an im-
portant role.

M. R. SPIEGEL
Rensselaer Polytechnic Institute

June, 1959
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Chapter 1

A VECTOR is a quantity having both magnitude and direction, such as displacement, velocity, force,

and acceleration.
[

Graphically a Vector is represented by an arrow OP (Fig.1) de-
fining the direction, the magnitude of the vector being indicated by
the length of the arrow. The tail end O of the arrow is called the
origin or initial point of the vector, and the head P is called the v &
terminal point or terminus. >

Analytically a vector is represented by a letter with an arrow
over it, as A in Fig.1, and its magnitude is denoted by |A| or A. In
printed works, bold faced type, such as A, is used to indicate the
vector A while IAI or A indicates its magnitude. We shall use this Pig.1

O sttt .
bold faced notation in this book. The vector OP is also ing_igated as
OP!or OP; in such case we shall denote its magnitude by OP, |OP|.
or |oP|. '

A SCALAR is a quantity having magnitude but @Qdirection, e.g. mass, length, time, @m&_r_a.tm,gl and
any real number. Scalars are indicated by letters in ordinary type as in elementary alge-

bra. Operations with scalars follow the same rules as in elementary algebra.

VECTOR ALGEBRA. The operations of addition, subtraction and multiplication familiar in the alge-
bra of numbers or scalars are, with suitable definition, capable of extension
to an algebra of vectors. The following definitions are fundamental.

1. Two vectors A and B are equal if they have the same magnitude and direction regardless of
the position of their initial points. Thus A=B in Fig.2.

2. A vector having direction opposite to that of vector A but having the same magnitude is de-
noted by --A (Fig.3).

Fig. 2 Fig.3



2 VECTORS and SCALARS

3. The sum or resultant of vectors A and B is a
vector C formed by placing the initial point of B
on the terminal point of A and then joining the
initial point of A to the terminal point of B
(Fig.4). This sum is written A+B, i.e. C =A+B.

The definition here is equivalent to the par-
allelogram law for vector addition (see Prob.3).

Extensions to sums of more than two vectors
are immediate (see Problem 4).

Fig. 4

4. The difference of vectors A and B, represented by A—B, is that vector C which added to B
yields vector A. Equivalently, A—B can be defined as the sum A+(-B).
If A=B, then A—B is defined as the null or zero vector and is represented by the sym-
bol 0 or simply 0. It has zero magnitude and no specific direction. A vector which is not
null is a proper vector. All vectors will be assumed proper unless otherwise stated.

5. The product of a vector A by a scalar m is a vector mA with magnitude lmi times the magni-
tude of A and with direction the same as or opposite to that of A, according as m is positive
or negative. If m=0, mA is the null vector.

LAWS OF VECTOR ALGEBRA. If A,B and C are vectors and m and n are scalars, then

1. A+B =B+A Commutative I.aw for Addition

2. A+ (B+C) = (A+B) + C Associative Law for Addition

3. mA = Am Commutative Law for Multiplication
4. m@A) = (mn)A Associative Law for Multiplication
5. (m+n)A = mA+nA Distributive Law

6. m(A+B) = mA+mB Distributive Law

Note that in these laws only multiplication of a vector by one or more scalars is used. In Chap-
ter 2, products of vectors are defined.

These laws enable us to treat vector equations in the same way as ordinary algebraic equations.
For example, if A+B = C then by transposing A = C-B.

A UNIT VECTOR is a vector having unit magnitude, If
A is a vector with magnitude A#0,

o R SR
then A/A is a unit vector having the same direction as ,

A.

Any vector A can be represented by a unit vector a
in the direction of A multiplied by the magnitude of A.In
symbols, A = Aa.

THE RECTANGULAR UNIT VECTORS i, j, k. Animpor-

tant set of
unit vectors are those having the directions of the pos-
itive x, y, and z axes of a three dimensional rectangu-
lar coordinate system, and are denoted respectively by
i,j, and k (Fig.5).

We shall use right-handed rectangular coordinate
systems unless otherwise stated. Such a system derives

Fig.5
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its name from the fact that a right threaded screw rotat-
ed through 90° from Ox to Oy will advance in the pos-
itive z direction, as in Fig.5 above.

In general, three vectors A, B and C which have
coincident initial points and are not coplanar, i.e. do
not lie in or are not parallel to the same plane, are said
to form a right-handed system or dextral system if a
right threaded screw rotated through an angle less than
180° from A to B will advance in the direction C as
shown in Fig.6.

Fig. 6 810‘* b Ao %

COMPONENTS OF A VECTOR. Any vector A in 3 di-
mensions can be repre- z

sented with initial poipt at the origin O of a Tectangular
coordinate system (Fig.7). Let (A;, Ay, Ai) be the

rectangular coordinates of the terminal point of vector A
with initial point at O. The vectors A,i, A,j, and A3k
are called the rectangular componentvectors or simply
component vectors of A in the x, y and z directions re-
‘spectively. A,, A, and A5 are called the rectangular

components or simply components of A in the x, y and z
directions respectively. -

The sum or resultant of A;i, Ay and Aak is the
vector A so that we can write Fig.7

A = Aji+ Ay + Ak

/2 2 2
The magnitude of A is A = |A| = VA; + A, + A

3
In particular, the position vector or radius vector r from O to the point (x,y,z) is written

r = xi +yj +zk

and has magnitude r = [r| = Va4 y2 + 22,

SCALAR FIELD. If to each point (x,y,z) of a region R in space there corresponds a number or scalar
then ¢ is called a scalar function of position or scalar point function
and we say that a scalar field ¢ has been defined in R.

Examples. (I) The temperature at any point within or on the earth’s surface at a certain time
defines a scalar field.

@) d(x,y,2) = x3y — z2 defines a scalar field.

A scalar field which is independent of time is called a stationary or steady-state scalar field.

VECTOR FIELD. If to each point (x,y,z) of a region R in space there corresponds a vector V(x,y,z),

then V is called a vector function of position or vector point function and we say
that a vector field V has been defined in R.

Examples. (I) If the velocity at any point (x,y,z) within a moving fluid is known at a certain
time, then a vector field is defined. .

2) Vix,y,z) = xyzi - 2yz3j + x2zk defines a vector field.
A ame

A vector field which is independent of time is called a stationary or steady-state vector field.
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SOLVED PROBLEMS

1. State which of the following are scalars and which are vectors.
(a) weight (¢) specific heat (e) density (g) volume (1) speed
(b) calorie  (d) momentum (f) energy (k) distance (j) magnetic field intensity

Ans. (a) vector (c) scalar (e) scalar (g) scalar (i) scalar
(b) scalar  (d) vector (f) scalar (k) scalar  (j) vector

2. Represent graphically (a) a force of 10 lb in a direction 30° north of east
(b) a force of 15 lb in a direction 30° east of north.

N N

Unit =5 1b

s 2

305

Fig.(a) Fig.(b)

Choosing the unit of magnitude shown, the required vectors are as indicated above.

3. An automobile travels 3 miles due north, then 5 miles northeast. Represent these displacements
graphically and determine the resultant displacement (a) graphically, (b) analytically.

Vector OP or A represents displacement of 3 mi due north.

N

Vector PQ or B represents displacement of 5 mi north east.

Vector 0Q or C represents the resultant displacement or
sum of vectors A and B, i.e. € = A+B. This-is the triangle
law of vector addition.

The resultant vector QQ can also be obtained by con-
structing the diagonal of the parallelogram OPQR having vectors
OP =A and OR (equal to vector PQ or B) as sides. This is the
parallelogram law of vector addition.

(a) Graphical Determination of Resultant. Lay off the 1 mile
unit on vector 0Q to find the magnitude 7.4 mi (approximately).
Angle EQOQ=61.5° using a protractor. Then vector 0Q has w

E
magnitude 7.4 mi and direction 61.5° north of east.
(b) Analytical Determination of Resultant. From triangle OPQ, Unit = 1 mile
denoting the magnitudes of A, B, C by A, B,C, we have by S
the law of cosines

c? = A2+ 82 -2ABcos Z0PQ = 32 + 52— 23)(5) cos 135° = 34 + 1572 = 55.21

and C = 7.43 (approximately).

A (o]
By the law of sines, = Then

sin Z0QP ~ sin ZOPQ
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A sin / 3(0.707
sin ZOQP = smc oPQ (7 43) = 02855 and ZOQP = 16°35',

Thus vector 0Q has magnitude 7.43 mi and direction (45° +16°35') = 61°35' north of east.

4. Find the sum or resultant of the following displacements:
A, 10 ft northwest; B, 20 ft 30° north of east; C, 35 ft due south. See Fig. (a)below.

At the terminal point of A place the initial point of B.

At the terminal point of B place the initial point of C.
The resultant D is formed by joining the initial point of A to the terminal point of C, i.e. D = A+B+C.

Graphically the resultant is measured to have magnitude of 4.1 units =20.5ft and direction 60°southofE.

For an analytical method of addition of 3 or more vectors, either in a plane or in space see Problem 26.

Q

N Q
/
O
p 30
A lo]
O,
w 45 > E
60°
 — D
Unit=5ft
S
R
Fig.(a) Fig.(b)

5. Show that addition of vectors is commutative, i.e. A+B = B+A. See Fig.(b)above.

Il

oP +PQ = 0Q or A+B
and OR + RQ = 04Q or B +A

C.

"
Q

Then A+B = B+A.

6. Show that the addition of vectors is associative, i.e. A+(B+C) = (A+B) +C.
OP +PQ = 0Q = (A+B),
and PQ +QR = PR = (B+Q).

OP + PR OR = D, i.e. A+(B+0C)

0Q +QR = OR D, i.e. (A+B) + C

B Q

il
-]

I
=}

Then A+®B+C) = (A+B) +C.

Extensions of the results of Problems 5 and 6 show
that the order of addition of any number of vectors is im-
material.

7. Forces F,,F,, ..., F, act as shown on object P. What force is needed to prevent P from mov-
ing ?
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Since the order of addition of vectors is immaterial, we may start with any vector, say F;. To F, add
F,, then Fy, etc. The vector drawn from the initial point of F, to the terminal point of F¢ is the resultant
R, i.e. R = F1+F2+F3+FQ+F5+F6 .

The force needed to prevent P from moving is —R which is a vector equal in magnitude to R but opposite
in direction and sometimes called the equilibrant.

8. Given vectors A, B and C (Fig.1a), construct (@) A-B +2C (b) 3C ~ 3(2A-B).

(2)

Fig. 1(a) Fig. 2(a)

(&)

Fig. 1(6) Fig. 2(b)



9.

10.
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An airplane moves in a northwesterly direction at -W
125 mi/hr relative to the ground, due to the fact
there is a westerly wind of 50 mi/hr relative to
the ground. How fast and in what direction would
the plane have traveled if there were no wind ?

Let W = wind velocity
Va = velocity of plane with wind .
Vb = velocity of plane without wind Unit = 25 mi/hr

Then V, = V, + W or vV, = V\,-W = v, + (-W)

Vb has magnitude 6.5 units =163 mi/hr and direction 33°north of west.

Given two non-collinear vectors a and b, find an expression for any vector r lying in the plane de-
termined by a and b.

Non-collinear vectors are vectors which are not parallel to
the same line. Hence when their initial points coincide, they
determine & plane. Let r be any vector lying in the plane of a
and b and having its initial point coincident with the initial
points of a and b at 0. From the terminal point R of r construct
lines parallel to the vectors a and b and complete the parallel-
ogram ODRC by extension of the lines of action of a and b if
necessary. From the adjoining figure

oD
ocC

x(0A)
y(OB)

But by the parallelogram law of vector addition
OR =0OD+0C o r =xa+tyb

xa, where x is a scalar
yb, where y is a scalar.

"
n

which is the required expression. The vectors xa and y b are called comporent vectors of rinthe directions
a and b respectively. The scalars x and y may be positive or negative depending on the relative orientations
of the vectors. From the manner of construction it is clear that x and y are unique for a given a, b, andr.
The vectors a and b are called base vectors in a plane.

Given three non-coplanar vectors a, b, and ¢, find an expression for any vector r in three dimen-
sional space.

Non-coplanar vectors are vectors which are not paral-
lel to the same plane. Hence when their initial points co-
incide they do not lie in the same plane.

Let r be any vector in space having its initial point co-
incident with the initial points of a, b and ¢ at 0. Through
the terminal point of r pass planes parallel respectively
to the planes determined by a and b, b and ¢, and a and ¢;
and complete the parallelepiped PQRSTUV by extension of
the lines of action of a, b and ¢ if necessary. From the
adjoining figure,

OV = x(0A) = xa where x is a scalar
OP = y(OB) = yb where y is a scalar
OT = z(0C) = z¢ where z is a scalar.

But OR = OV+VQ+QR = OV+OP+OT or r =xatyb+tze.

From the manner of construction it is clear that x, y and z are unique for a given a, b, ¢ and r.
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The vectors xa, yb and zc are called component vectors of r in directions a, b and ¢ respectively. The
vectors a, b and ¢ are called base vectors in three dimensions.

As a special case, if a, b and c¢ are the unit vectors i, j and k, which are mutually perpendicular, we
see that any vector r can be expressed uniquely in terms of i, j, k by the expression r = xi +yj +zk.

Also, if ¢=0 then r must lie in the plane of a and b so the result of Problem 10 is obtained.

12. Prove that if 2 and b are non-collinear then xa+yb = 0 implies x =y = 0.

Suppose x #0. Then xa+yb = 0 implies xa=-yb or a= - (y/x)b, i.e. a and b mustbe parallel to
to the same line (collinear) contrary to hypothesis. Thus x =0; then yb =0, from which y = 0.

13. If/x,a+y,b = x,a+y,b, where a and b are non-collinear, then x, = x, and y,=y,.

%@ty b= x,a+ ¥,b can be written

xa+yb-(xa+y,b) =0 or (xy=x2)a + (y—y,)b = 0.

Hence by Problem 12, %~ %,=0, y,=%,=0 or x=x), 5 = ¥,.

14. Prove that if a, b and ¢ are non-coplanar then xa +yb +zc = 0 implies x=y=2z=0.

Suppose x#0. Then xa+yb+zc = 0 implies xa = —yb—zc or = —(y/x)b = (2/x)c. But
-(y/x)b = (z/x)c is a vector lying in the plane of b and ¢ (Problem 10), i.e. a lies in the plane of b and ¢
which is clearly a contradiction to the hypothesis that a, b and ¢ are non-coplanar. Hence x =0. By sim-
ilar reasoning, contradictions are obtained upon supposing y #0 and z #0.

15. If %, + ylb +z,c = x,a+ yzb + z,C, where a, b and ¢ are non-coplanar, then X)=%ps ¥17Yps
2,=2
1%

The equation can be written (xl-xz)a + (yl—y2)b + (zl— z2)c = 0. Then by Problem 14, xX=x =0,

yl—y2=0, zl—z2=0 OF Xy=Xp, ¥1=¥p 27=2,.

2

16. Prove that the diagonals of Wother.

Let ABCD be the given parallelogram with diagonals in-
tersecting at P.

Since BD+a =b, BD =b—a. Then BP = x(b-a).
Since AC = a+b, AP = y(a+h).

But AB = AP + PB = AP - BP,
i.e.a = y(a+b) - x(b—-a) = (x +y)a + (y —x)b.

Since a and b are non-collinear we have by Problem 13,
x+y =1 and y—x =0, i.e. x =y =% and P is the mid-
point of both diagonals.

17. If the midpoints of the consecutive sides of any quadrilateral are connected by straight lines,
prove that the resulting quadrilateral is a parallelogram.
Let ABCD be the given quadrilateral and P, Q, R, S the midpoints of its sides. Refer to Fig.(a) below.
Then PQ = 2(a+h), QR = 3(b+c), RS = 3(c+d), SP = 3(d+a).
But at+b+c+d =0. Then
PQ = 3(a+b) = —3(c+d) = SR and QR = 3(b+c) = —3(d+a) = P§

Thus opposite sides are equal and parallel and PQRS is a parallelogram.
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18. Let Py, P,, P3 be points fixed relative to an origin O and let ry, r,, r be position vectors from
O to each point. Show that if the vector equation ayTy + a,fy + asry = 0 holds with respect to
origin O then it will hold with respect to any other origin O’ if and only if a,+a,+ asg = = 0.

Let "1’ r2 and r’;, be the position vectors of Pl, P2 and P, with respect to O’ and let v be the position
vector of O' with respect to 0. We seek conditions under which the equation a1r1+a ro+ aar3 0 will
hold in the new reference system.

From Fig.(b) below, it is clear that I=v+ '1' r,=v+ r2, r3 =V+ r'3 so that ayry +a,r, + azfy = 0
becomes

U 1 !
ayfy + a,r, + agry = a, (v 1)+ a(vr) + aa(v+ ra)
= (a1+ a2+a3)v + alr;_ + a2r'2 + aal"3 =0

The result ayrj +a,r; +azr; = 0 will hold if and only if

(a1+ a2+a3)v =0, i.e. a, +a, + aa = 0.

The result can be generalized.

Fig.(a) Fig.(b)

nd the equation of a straight line which passes through two given points A and B having posi-
on vectors a and b with respect to an origin O.

Let r be the position vector of any point P on the line
through 4 and B.
From the adjoining figure,

OA +AP = OP or a+AP=r, i.e. AP=r-a
and OA +AB =0OB or a+AB=b, i.e. AB=b-a

Since AP and AB are collinear, AP=tAB or r—a=¢(b-—a).
Then the required equation is

r = a+ t(bh—a) or r = (l-pa+¢b

If the equation is written (1—-¢)a+tb—r = 0, the sum
of the coefficients of a, band ris 1-¢+¢—1 = 0. Hence by
Problem 18 it is seen that the point P is always on the line
joining 4 and B and does not depend on the choice of origin
0, which is of course as it should be.

Another Method. Since AP and PB are collinear, we have for scalars m and n:

mAP = nPB or m(r—a) = n(b-r)

a +nb
Solving, r = ——=—""  which is called the symmetric form.

m+tn
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20.

22.

23.

A+ A, i+ Ak is 4= VAZ+ 4D + A

VECTORS and SCALARS

(a) Find the position vectors r, and r, for the
points P(2,4,3) and Q(1, -5, 2) of a rectangular
coordinate system in terms of the unit vectors
i, i, k. (b) Determine graphically and analyti-
cally the resultant of these position vectors. 0(1,~5,2)

(a) r, = OP = 0OC+CB+BP =2i+4j+3k
l‘2=0Q=OD+DE+EQ= i-5j+2k

(b) Graphically, the resultant of r, and r, is obtained
as the diagonal OR of parallelogram OPRQ. Ana-
Iytically, the resultant of r, andr, is given by x

Lt = (2i +4j +3Kk) + (i— 5§ +2k) 3i—j + 5k

bve that the magnitude 4 of the vector A =

By the Pythagorean theorem,
_ @PY = @Q) + @PY
where OP denotes the_magnitu_gg of vector OP, etc.
Similarly, (0Q)2 = (ORY + (RQY.
Then (0OP) = (OR? + (RQ)Y + (QPY or

2 _ 2 2 2 . _ 2 2 2
A = A1+A2+A3, ie. A4 = VA1+A2+A3.

Given r1=3i—2j+k, r2=2i-4n‘—3k, r3=-i+2j+2k, find the magnitudes of
(@)yrg, Gyr+r,+r,, (¢) 2r, = 3r,— brg.

@ gl = |-i+2i+ 2| = V(=124 @2+@° = 3.

B) r+ gt = Gi-214K) + (-4i-3K) + (~i+2j+2K) = 4 -4j + 0k = 4i-4j
Then |r +r,+r,| = [4i-4i+0k| = V(®+ (-9’ + (@7 = v32 = 4/2.

2(3i — 2§ +K) —~ 3(20 —4j —3K) — 5(—1 + 2§ + 2K)
= 6i—4j+ 2k —6i+12j + 9k + 5i —10j — 10k = 5i - 2j + k.
Then |2r —3r -5 | = [si-2i+k| = V(5)%+(-2F+ 1 = v30.

(c) 2r1 - 3r2 —5r8

If r,=2i-j+k, L, = i+3j-2k, r, = -2i+j-3k and r, = 3i+2j +5k, find scalars a,b,c such
that r, = ar, + br, + cr, .

We require 3i+2j+5k = a(2i—j+Kk) + b(i +3j—2Kk) + c(~21 +j —3k)
(2a +b—=2c)i + (—a +3b +c)j + (a—-2b-3c)k.

Since i, j, k are non-coplanar we have by Problem 15,
2a +b~2c = 3, —a+3b+c =2, a—-2b-3c = 5.
Solving, a=-=2, b=1, ¢=-3 and r,=-2r,+r,—3r,.
The vector r, is said to be linearly dependent onr,, r,,and r,; in other words r,, r,, r, and r, constitute a

linearly dependent set of vectors. On the other hand any three (or fewer) of these vectors are linearly in-
dependent.

In general the vectors A, B, C, ... are called linearly dependent if we can find a set of scalars,
a,b,c,..., notall zero, sothat aA+bB+c¢C+ ... =0, otherwise they are linearly independent.
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ind a unit vector parallel to the resultant of vectors r, = 2i + 4j - 5k, I, = i+2j+3k.
Resultant R = Lt = (2i +4j~5k) + 1 +2j +3k) = 3i + 6j — 2k.

R= |R| = |3i+6i-2k] = V(32+ 62+ (-2)% = 7.
6. 2

5:31_-*-6]_-&.: §i+_j—;k.

Then a unit vector parallel to R is 7 = =

3. 6 . 2 3.2 6.2 2.2
Check: it = -= = =Y+ (=) + (-~ = = 1.
ec 7+l 7k| .\/(7) (7) ( 7)

25. Determine the vector having initial point P(x, y,, z,)
and terminal point ()(xQ, % » 2,) and find its magnitude.

The position vector of P is r,=xi+yi+zk.

The position vector of @ is 1, = x,i +y,§ + z,k.
L + PQ = r, or

PQ=r,~r = (x,ity,itz, k)= (xity itz Kk

Slxy=x )it (= )it (z,~z)k.

Magnitude of PQ =@ = ‘/("2""1)2 +(y,— y1)2 +(z, - 21)2.

Note that this is the distance between points P and Q.

26. Forces A, B and C acting on an object are given in terms of their components by the vector equa-
tions A=Ai+A3+Ak, B=Bji+Bj+Bk, C=Ci+C,+Ck. Find the magnitude of the
resultant of these forces.

Resultant force R = A+B+C = (4, + B+ CQi+ (A, +B,+Ci+ (A3+Bs+Cs)k.

Magnitude of resultant = V(4,+ B,+ C,)° + (4,+ By+ C)° + (4+ B, +C,)° .

The result is easily extended to more than three forces.

27. Determine the angles ¢, 8 and v which the vector
r =xi+yj+zk makes with the positive direc- z
tions of the coordinate axes and show that

cos? o + cos? B + cos®y = 1.

Referring to the figure, triangle OAP is a right
triangle with right angle at A; then cos O = % . Sim-

ilarly from right triangles OBP and OCP, cos B = %

and cos?y = ﬁ Also, ll’l=r= Va2 +y2+ 22,
r

x z
Then cosa=7, cosB=%, cosy =~ from

which «, B,’y can be obtained. From these it follows
that
xQ + yQ + 22

r2

= 1.

cos®a + cos?fB + cosQ’y =

The numbers cos ¢, cos B, cos 7y are called the direction cosines of the vector OP.

28. Determine a set of equations for the straight line passing through the points P(x,y,, z,) and
Qx,, ¥, 2,)
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Let r, and r, be the position vectors of P and Q respec-
tively, and r the position vector of any point R on the line
joining P and Q.

r1+ PR r or Plt=r—r1

r, + PQ=1'2 or PQ=I‘2—I'1

But PR = tPQ where ¢ is a scalar. Then r-r, =
t(r2 - '1) is the required vector equation of the straight line
(compare with Problem 19).

In rectangular coordinates we have, since r = xi + yj + zk,

(f +yj +2K) = (i +y,J+2,K) = (20 +y,d + 2,k — (xi+y,]d+2K)]
or
(x=x)i+ (r—y)i+ (z=-z)k = t(x, = x)i + (o, = 30§ + (z, = 2z,)k]
Since i, j, k are non-coplanar vectors we have by Problem 15,
X~ x, = t(xQ— xl), Y-y, = t(yz—yl). z-z, = t(zz-zi)

as the parametric equations of the line, ¢ being the parameter. Eliminating ¢, the equations become

x= % Y=Y _ 2= %

Xy =%y Yo2= 7" I

29. Given the scalar field defined by ¢ (x,y,2) = 3x%z — xy3 + 5, find ¢ at the points
(@) (0,0,0), () (1,-2,2) (e) (-1,-2,-3).

(@) ¢(0,0,0) = 3(0)(0) — (0)0)® + 5 = 0-0+5 = 5
; (b (1, -2,2) = 3122 - (DH(-2°+5 = 6+8+5 = 19

(¢) P(=1,-2,-3) = 3(-1)%(=3) = (-1)(-2° + 5 = -9 -8 +5 = -12

30. Graph the vector fields defined by :
(@ V(x,y) = xi +yj, (b) Vix,y) = —xi-yi, (¢) V(x,y,z) = xi +yj + zk.

(a) At each point (x,y), except (0, 0), of the xy plane there is defined a unique vector xi +yj of magnitude

V% + y§ having direction passing through the origin and outward from it. To simplify graphing proce-

dures, note that all vectors associated with points on the circles x2+yZ2=a2 ¢ > 0 have magnitude

a. The field therefore appears as in Figure (a) where an appropriate scale is used.

G 1
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(b) Here each vector is equal to but opposite in direction to the corresponding one in (a). The field there-
fore appears as in Fig.(b).

In Fig.(a) the field has the appearance of a fluid emerging from a point source O and flowing in the
directions indicated. For this reason the field is called a source field and O is a source.

In Fig.(b) the field seems to be flowing toward O, and the field is therefore called a sink field and O
is a sink.

In three dimensions the corresponding interpretation is that a fluid is emerging radially from (or pro-
ceeding radially toward) a line source (or line sink).

The vector field is called two dimensional since it is independent of z.

(c) Since the magnitude of each vector is Vx? + y2 + z2, all points on the sphere %2+ y2+ 22 = a%, a> 0
have vectors of magnitude a associated with them. The field therefore takes on the appearance of that
of a fluid emerging from source O and proceeding in all directions in space. This is a three dimension-
al source field.

SUPPLEMENTARY PROBLEMS

Which of the following are scalars and which are vectors? (a) Kinetic energy, (b) electric field intensity,
(c) entropy, (d) work, (e) centrifugal force, (f) temperature, (g) gravitational potential, (k) charge, (i) shear-
ing stress, (j) frequency.
Ans. (a) scalar, (b) Vector, (c) scalar, (d) scalar, (e) vector, (f) scalar, (g) scalar, (k) scalar, (i) vector

(j) scalar

An airplane travels 200 miles due west and then 150 miles 60° north of west. Determine the resultant dis-
placement (a) graphically, (b) analytically.
Ans. magnitude 304.1 mi (50v37), direction 25°17' north of east (arc sin 3v111/74)

Find the resultant of the following displacements: A, 20 miles 30°south of east; B, 50 miles due west;
C, 40 miles northeast; D, 30 miles 60° south of west.
Ans. magnitude 20.9 mi, direction 21°39 south of west

Show graphically that —(A-B) = —A + B.

An object P is acted upon by three coplanar forces as shown in Fig.(a) below. Determine the force needed
to prevent P from moving. Ans. 323 1b directly opposite 150 lb force

Given vectors A, B, C and D (Fig.(b) below). Construct (a) 3A=2B~(C-D) (b) %C + -g—(A— B +2D).

\
o
o0
A /
C
\\J

1501b

1001b

Fig.(a) Fig.(b)
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If ABCDEF are the vertices of a regular hexagon, find the resultant of the forces represented by the vec-
tors AB, AC, AD, AE and AF. Ans. 3AD

If A and B are given vectors show that (a) IA+B| < |A|+ |B|, ) ]A—BI 2 IAI—IBI.
show that |A+B+c| < |al +|B|+]cl.

Two towns A and B are situated directly opposite each other on the banks of a river whose width is 8 miles
and which flows at a speed of 4 mi/hr. A man located at 4 wishes to reach town C which is 6 miles up-
stream from and on the same side of the river as town B. If his boat can travel at a maximum speed of 10
mi/hr and if he wishes to reach C in the shortest possible time what course must he follow and how long
will the trip take®?

Ans. A straight line course upstream making an angle of 34°28’ with the shore line. 1 hr 25 min.

A man travelling southward at 15 mi/hr observes that the wind appears to be coming from the west. On in-
creasing his speed to 25 mi/hr it appears to be coming from the southwest. Find the direction and speed of
the wind. Ans. The wind is coming from a direction 56°18' north of west at 18 mi/hr.

A 100 lb weight is suspended from the center of a rope
as shown in the adjoining figure. Determine the ten-
sion T in the rope. Ans. 100 1b

LLLLL LIPS

Simplify 2A+B +3Cc- {A-2B-2(2A-3B-C) }.
Ans. 5A—3B+C

If a and b are non-collinear vectors and A = (x +4y)a +
(2x+y+1b and B = (y—-2x+2)a + (2x—-3y—1)b,
find x and y such that 3A = 2B.

Ans. x=2, y=-~1

1001b

The base vectors a,,a,a, are given in terms of the base vectors bi,bQ, b8 by the relations

a, = 2b1+3b2~b3, a, = b1—2b2+ 2b, , a, = —2b1+b2—2b3

If F= 3b1~ b2 + 2b3 , express F in terms of a,,a, and a, . Ans. 2a1 + 5a2 + 3a3

If a,b,c are non-coplanar vectors determine whether the vectors r, = 2a—3b+c, r, = 3a—5b+2c, and
I, = da-— 5b+ ¢ are linearly independent or dependent. Ans. Linearly dependent since r,= 5r1- 2r2 .
If A and B are given vectors representing the diagonals of a parallelogram, construct the parallelogram.

Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and has one
half of its magnitude.

(a) If O is any point within triangle ABC and P, Q, R are midpoints of the sides AB,BC, CA respectively,
prove that QA +OB +0OC = OP+0Q +OR.
(d) Does the result hold if O is any point outside the triangle? Prove your result. Ans. Yes

In the adjoining figure, ABCD is a parallelogram with

P and Q the midpoints of sides BC and CD respec- 4 B
tively. Prove that AP and AQ trisect diagonal BD at

the points £ and F. F

Prove that the medians of a triangle meet in a common
point which is a point of trisection of the medians.

Prove that the angle bisectors of a triangle meet in a
common point.

Show that there exists a triangle with sides which are 0
equal and parallelto the medians of any given triangle.

Let the position vectors of points P and Q relative to an origin O be given by p and q respectively. If R is
a point which divides line PQ into segments which are in the ratio m:n show that the position vector of R



55.

56.

57.

58.

59.

60.

61.

62.

65.

66.

VECTORS and SCALARS 15

+ P e s
is given by r - mp ¥ nd and that this is independent of the origin.
m+n
if L P L the position vectors of masses My My s eees My respectively relative to an origin O,

show that the position vector of the centroid is given by

mE + myr, + L+ mply

m1+m2+...+mn

and that this is independent of the origin.

A quadrilateral ABCD has masses of 1,2,3 and 4 units located respectively at its vertices A4 (-1, -2, 2),
B(3,2,-1), C(1,-2,4), and D(3,1,2). Find the coordinates of the centroid. Ans. (2,0,2)

Show that the equation of a plane which passes through three given points A4, B, C not in the same straight
line and having position vectors a, b, ¢ relative to an origin O, can be written

ma + nb + pc

“mtntp

where m,n,p are scalars. Verify that the equation is independent of the origin.

The position vectors of points P and @ are given by r= 2i +3j-k, r,= 4i-3j +2k. Determine PQ in
terms of i,j,k and find its magnitude. Ans. 2i-6j +3k, 7

If A=3i-j-4k, B=-2i+4j~3k, C=i+2j—k, find
(@) 2A-B+3C, (b) |A+B+C/|, (¢) |3A-2B+4C|, (d) a unit vector parallel to 3A —2B +4C.
Ans. (a)11i-8k (b) /93 (c)V/308 (d) SA=2B+4C

V398

The following forces act on a particle P: F, = 2i + 3j - 5k, F,= =5i+j+ 3k, F,= i—2j+4k, F,=4i-
3j —2k, measured in pounds. Find {(a) the resultant of the forces, (b) the magnitude of the resultant.
Ans. (@) 2i-j (b) V5

In each case determine whether the vectors are linearly independent or linearly dependent:
(@) A=2i+j—-3k, B=i—4k, C=4i+3j—-k, (b)) A=i-3j+2k, B=2i—-4j—k, C =3i+2j—k.
Ans. {(a) linearly dependent, (b) linearly independent

Prove that any four vectors in three dimensions must be linearly dependent.

Show that a necessary and sufficient condition that the vectors A =4,i+ A,i+Az;k, B=B,i+B,j+B,k,
Ay A, A
B, B, B,

1C2 CS

C=C,i+C,j+C;k be linearly independent is that the determinant be different from zero.

. {(a) Prove that the vectors A=3i+j—2k, B= —i+ 3j+4k, C=4i-2j—6k can form the sides of a triangle.

(b) Find the lengths of the medians of the triangle.
Ans. (b) V6, 3V/114, 5/150

Given the scalar field defined by @ (x,y,z) = dyz° + 3xyz — 22+ 2. Find (a) p(1,-1,-2), (b) H(0,-3,1).
Ans. (a) 36 (b) -11

Graph the vector fields defined by

@) V(x,y) = xi-yi, () V(x,y) =yi-xi, (c) V(x,y,2) = —Aryitzk

vx2+y2+22



Chapter 2

THE DOT OR SCALAR PRODUCT of two vectors A and B, denoted by A-B (read A dot B), is de-
fined as the product of the magnitudes of A and B and the cosine

of the angle & between them. In symbols,

A-B = AR cos G, $6<n
P e i S ~_
Note'that A-B is a scalar and not a vector. —
The following laws are valid:
1. A'‘B = B:A Commutative Law for Dot Products
I ————— e

2. A(B+C) = AB + AC @ibutive Law
3. m(A‘B) = (mA)'B = A-(mB) = (A-B)m, wherem is a scalar.

4. ivi=j.j=kk=1, i-j=jk=ki=0

5. 1f A = A4i+A,j+4k and B = B,i + B,j + Bk, then
AB = AB, +AB, + AB,

TACA =A% = A2 AT+ A2

B?+ BZ + B

6. f A-B=0 and A and B are not null vectors, then A and B are|perpendicular. )

T N e

B-B = B?

THE CROSS OR VECTOR PRODUCT of A and B is a vector C = AxB (read A cross B). The mag-
nitude of A x B is defined as the product of the magnitudes of

A and B and the sine of the angle & between them. The direction of the vector C = A xB is perpen-

dicular to the plane of A and B and such that A,B and C form a right-handed system. In symbols,

AxB = ABsinfu, 0%6<n

where u is a unit vector indicating the direction of AxB. If A=B, or if A is parallel to B, then
sinf =0 and we define AxB=0,.
—————— ey

The following laws are valid:
1. (Commutative Law for Cross Products Fails.)
2. Ax(B+(C) = AXB + AxC Distributive Law

3. m(AXxB) = (mA)xB = Ax (mB) = (AXB)m, wherem is a scalar.

4. ixi = jxj = kxk =0, ixj@ jxk=Si) k><i=gj)

5.1 A =Aji+Aj+A4k and B = Bji+B,j+ Bk, then

16
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i § Kk
AxB = A A, 4,
el

B, B, B

1 2 3

6. The magnitude of AxB is the same as the area of a parallelogram with sides A and B.

7. If AxB =0, and A and B are not null vectors, then A and B are parallel.
q__

TRIPLE PRODUCTS. Dot and cross multiplication of three vectors A,B and C may produce mean-
ingful products of the form (A-B)C, A-(BxC) and Ax (BxC). The follow-

ing laws are valid:
1. (A-B)C # A(B-C)

2. A-(BxC) = B-(CxA) = C+(AxB) = volume of a parallelepiped having A, B and C as edges,
or the negative of this volume, according as A, B and C do or do not form a right-handed sys-
tem, If A = Ali + Agj + Ask, B = Bli + ng + ng and C = Cli + CQj + Cgk, then

4, 4, 4,
A-BxC) = |B, B, B,
FEE— ¢, C, C,
w (BxC) # (AxB)xC (Associative Law for Cross Products Fails)
4. Ax (BxC) = (A-C)B - (A-B)C -
(AxB)xC = (A-C)B - (B-C)A

The product A-(BxC) is sometimes called the scalar triple product or box product and may be
denoted by [ABC]. The product A x (BxC) is called the vector triple product.

In A- (BXC) parentheses are sometimes omitted and we write A+ BxC (see Problem 41). How-
ever, parentheses must be used in Ax (BxC) (see Problems 29 and 47).
C— ———

RECIPROCAL SETS OF VECTORS. The sets of vectors a,b,c and a’,b’,c’ are called reciprocal
— > sets or systems of vectors if

ara’ = b:b' = ¢c-¢' = 1
a-b=a+c=0b-a=b-c=c-a=¢-b=0

The sets a,b,c and a',b’,¢’ are reciprocal sets of vectors if and only if

bxc cxa axb
a' = —_— b' = —— c' = —_
a-bxce a-bxce a-hbxe

where a*bxc # 0. See Problems 53 and 54.
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SOLVED PROBLEMS

THE DOT OR SCALAR PRODUCT.

1. Prove A'B = B'A.

A'B =ABcos @ = BAdcos9 = B-A
Then the commutative law for dot products is valid.
_——
N

2. Prove that the projection of A on B is equal to A-b, where
b is a unit vector in the direction of B.

Through the initial and terminal points of A pass planes per-
pendicular to B at G and H respectively as in the adjacent figure;
then

Projection of Aon B = GH = EF = Acos O = A+ b

3. Prove A'(B+C) = A-B + A-C.

Let a be a unit vector in the direction of A; then

Projection of (B+C) on A = proj. of Bon A + proj. of C on A

(B+C)-a = B-a + C-a
Multipiving by 4,

(B+C)-4Aa = B+:4da + C-Aa
and (B+C)-A = B‘A + C-A

Then by the commutative law for dot products,
A*(B+C) = A*B + A-C

and the distributive law is valid.

4. Provethat (A+B)-(C+D) = A-C+A‘D+B-C+B-D.

By Problem 3, (A+B)-(C+D) = A-(C+D)+ B:-(C+D) = AC +A-D +B-C + B-D

The ordinary laws of algebra are valid for dot products.

V 4
5. Evaluate each of the following.
@ i-i = |i] [i] cos0® = m@@ = 1
® ik = |i] |k] cos 90° = (1))@ = 0
@ k-i = |k| |il cos 90° = (1)@ = 0

@) j-(2i-3j+k) = 2j-i~3j-j+j-k = 0-3+0 = ~3
() (2i~i-@Bi+Kk) = 2i-Bi+k)~j - Bi+k) = 6i*i+2i'k—-3j*i—-jk = 6+0-0-~0 = 6

6. If A = Aji+Aj +Ak and B = Bji+ B,i + B,k, prove that A-B = A,B, + AB,+ A,B,.
A-B = (4,i+A4,i+Ak)-(Bi+B,j+Bk)

i

A)i-(Byi+Bj+Bk) + A,i-(B,i+B,j+Bk) + Ak-(B,i+B,j+BK)

ABji-d + A, Byij + ABji-k + AB i + AB,jvi + A,Byi-k + A,B,k-1 + 4B k-] + A;B k-k
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= A,B, + A,B, + 43B,

since i-i = j+j = k-k = 1 and all other dot products are zero.

CIf A = Aji+ A+ Ak, showthat A = VA-A = VAT + A7 + A7,

A-A = (4)(4)cos 0° = A°. Then A= VA-A.
AlSo, A-A = (A, +A,0+A4K) - (4,0 + 4,0 + AK)
(AD(A) + (A + (A)(A) = A% + A2 + 42

by Problem 6, taking B = A.

Then 4 = VA-A = /Af + Ag + Ag is the magnitude of A. Sometimes A-A is written A%.

. Find the angle between A = 2i+2j—-k and B = 6i-3j+2k.

A-B=ABcos O, A=V@Z+@7+(-12 =3, B = V(6 +(-32+@7° =1
A-B = (2)(6) + (2)(=3)+ (-1)(2) = 12-6-2 = 4

A-B _ 4 4

Then cos 8 = = 5 = 0.1905 and 6 =19° approximately.

AB (€14))

. If A-B =0 and if 4 and B are not zero, show that A is perpendicular to B.

If A'B = ABcos & =0, then cos @=0 or & =90°. Conversely, it &=290°, A-B=0,

Determine the value of e sothat A = 2i+aj+k and B = 4i - 2j — 2k are perpendicular.

From Problem 9, A and B are perpendicular if A-B=0.
Then A-B = (2)(4) +(e)(-2) + (1)(-2) =8—~2¢a -2 =0 for a

1}
w

Show that the vectors A=3i-2j+k, B=1-3j+5k, C=2i+j-4k form a right triangle.

We first have to show that the vectors form a triangle. »
3
(3) (2)
(2) @)
(1 (1)
(a) (%)

From the figures it is seen that the vectors will form a triangle if

(a) one of the vectors, say (3), is the resultant or sum of (1) and (2),
(b) the sum or resultant of the vectors (1) +(2) +(3) is zero,

according as (a) two vectors have a common terminal point or (5) none of the vectors have a common terminal
point. By trial we find A =B +C so that the vectors do form a triangle.

Since A-B = (3)(1) +(~2)(-3)+ (1)(5) =14, A-C = (3)(2) + (=2)(1) + (1)(-4) =0, and

B:C = (1)(2) + (=3)(1) + (5)(—4) = =21, it follows that A and C are perpendicular and the triangle is a
right triangle.
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12. Find the angles which the vector A = 3i —6j + 2k makes with the coordinate axes.
Let 0, 8,7 be the angles which A makes with the positive x,y,z axes respectively.
(A)(1) cos & = V(3)2+(—6)2+(2)2 cos 0 = T cos O

(3i—-6j+2k)-i = 3i-i~6J-i+2k+i = 3

A-i
A-id
Then cos @ = 3/7 = 0.4286, and @ = 64.6° approximately.
Similarly, cos B =—6/7, B=149° and cosy=2/7, y=13.4°.
The cosines of «, B, and 7y are called the direction cosines of A. (See Prob. 27, Chap. 1).

13. Find the projection of the vector A =i —2j +k on the vector B =4i -4j + Tk.

B 4i~4j+17 4. 4. 1
A unit vector in the direction Bis b = 3 = ———-J———k—— = gli- 3] + §k.

V(@2 +(=4)2+ (T

Projection of A on the vector B = A-b

. 4 4. 1
(i-2j+k) (-é-l 3]"'31()

4 4 7. .19
(DG + (D= P+ (P = 5

14. Prove the law of cosines for plane friangles.

From Fig.(a) below, B +C = A or C =A-B.
= (A-B) -(A~-B) = ArA+B-B-2A'B

Then c:-C =
and c2 = A%+ B? -~ 24B cos 6.
P B 0
A A
B C
]
A 0 B R
Fig.(a) Fig.(b) s

15. Prove that the diagonals of a rhombus are perpendicular. Refer to Fig.(b) above.

0Q =0P+PQ = A+B

OR +RP =0P or B+RP=A and RP =A-B
Then OQ-RP = (A+B).(A-B) = A°-B® = 0, since 4=B.
Hence 0Q is perpendicular to RP.

16. Determine a unit vector perpendicular to the plane of A=2i-6j -3k and B =4i+3j-k.
Let vector C = cii + 02j +Cak be perpendicular to the plane of A and B. Then C is perpendicular to A
and also to B. Hence,

3¢,

1]

C-A 261— 6c2— 308 =0 or (1) 2c1— 602

C'B

%

1}

4c, + 3c2 —cy = 0 or 2) 4c, + 302
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Solving (1) and (2) simultaneously: ¢, = %z’s , 6 T~ %Cs , €7 g (—é—i - %j + K.

1 1.
c eglgi-gi+th 3 9 6
Then a unit vector in the direction of C is C = - - = i<7i - ?j + 7k).
‘/cg[(?% (= %+ 7]

17. Find the work done in moving an object along a vector r = 3i + 2j — 5k if the applied force is
F =2i -j -k. Refer to Fig.(a) below.

Work done = (magnitude of force in direction of motion)(distance moved)
= (Fcos OY(r) = F-r
= (2i—-j-k-@i+2i—5k) = 6-2+5 = 9,

&l

f——-~

A 4

Fig.(a)

Fig.(b)

18. Find an equation for the plane perpendicular to the vector A =2i +3j+6k and passing through the
terminal point of the vector B = i + 5j + 3k (see Fig.(b) above).

Let r be the position vector of point P, and Q the terminal point of B.

Since PQ =B -r is perpendicularto A, (B—1r)-A=0 or r-A=B-+A is the required equation of the
plane in vector form. In rectangular form this becomes

(xi +yj +2zK)«(21 +3j +6k) = (i +5j+3Kk)-(2i+3j+6k)

or 2 t3y +6z = (D) + 3B +B)6 = 35

19. In Problem 18 find the distance from the origin to the plane.

The distance from the origin to the plane is the projection of B on A.

A unit vector in direction Ais a = A _2i+3itek = gi + ij + Ek_
A V(2)2 + (32 + (6 T 7 7
o _ e 2, . 3., 6p. _ 4,2 3 6. _
Then, projection of Bon A = B-a = (1+51+3k)'(71 +71 +7k) = 1(7) + 5(7) + 3(7) = 5.

20. If A is any vector, prove that A = (A-D)i + (A-i)j + (A-K)k.
Since A = Ayi + Ay) + Ak, A-i = Agicd + Ayjei + Agked = A4,
Similarly, A.j =4, and A.-k =4; .

Then A = Aji+Aj + 4k = (A-Di+(A-Di+(A-Kk.
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THE CROSS OR VECTOR PRODUCT.

21.

22.

23.

24.

25.

Prove AXB = -BXxA,

Fig.(a) Fig.(d)

AXB =C has magnitude AB sin & and direction such that A, B and C form a right-handed system
(Fig.(a) above).

BXA=D has magnitude BA sin & and direction such that B, A and D form a right-handed system
(F'ig.(b) above).

Then D has the same magnitude as C but is opposite in direction, i.e. C = =D or AXB = —B XA,

The commutative law for cross products is not valid.

If AxB=0 and if A and B are not zero, show that A is parallel to B.

If AXB=A4ABsin@ u=0, then sin@=0 and & =0°or 180°.

2 2 2 2
show that |AxB| + |A-B| = |a| |Bf.
A%B? sin?0 + A2?B? cos?O
AQBQ - lA!2|B'2

leB|2+ 'A-B‘Q = lAB sin9u|2+ fAB cos@‘2

1]

Evaluate each of the following.

(@) ixj =k frixi==o

(b) ixk =1 (g) ixk = —kxi = -}

(¢) kxi = j (h) (2)x(3k) = 6jxk = 6i

@) kxj= —jxk = —i (t) (1) x(-2k) = —-6ixk = 6j
(e) ixi =0 (j) 2jxi=-3k = -2k ~3k = ~5k

Prove that AXx(B+C) = AxXxB + AxC for the
case where A is perpendicular to B and also to
C.

Since A is perpendicular to B, AxXB is a vector
perpendicular to the plane of A and B and having mag-
nitude AB sin 90° = 4B or magnitude of AB. This
is equivalent to multiplying vector B by A and rotating
the resultant vector through 90° to the position
shown in the adjoining diagram.

Similarly, A XC is the vector obtained by multi-
plying C by 4 and rotatingthe resultant vector through
90° to the position shown.

In like manner, Ax (B + C) is the vector obtained
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by multiplying B+ C by 4 and rotating the resultant vector through 90° to the position shown.

Since Ax(B+C) is the diagonal of the parallelogram with AXB and AXC as sides, we have
Ax(B+C) = AxB + AxC.

26. Prove that Ax(B+C) = AxB + AxC in the gen-
eral case where A, B and C are non-coplanar.

Resolve B into two component vectors, one perpen-
dicular to A and the other parallel to A, and denote them
by B, and B, respectively. Then B =B, + B,,.

If @is the angle between A and B, then B,= B sinf.
Thus the magnitude of AXB, is 4B sin &, the same as
the magnitude of A X B. Also, the direction of A XB, is
the same as the direction of AXB. Hence AXB,=AXB.

Similarly if C is resolved into two component vec-
tors Cy, and C,, parallel and perpendicular respectively
to A, then AxC, = AxC.

Also, since B+C = B, +B,,+C,+C,, = (B;+C)) +(B,, +C) it follows that

Ax(B,+C) = Ax(B+C).

Now B, and C, are vectors perpendicular to A and so by Problem 25,
AX(B,+C)) AXB, + AXC,
Then Ax(B+C) = AxXB + AxC

and the distributive law holds. Multiplying by —1, using Prob. 21, this becomes (B+C)X A = BxA + CXA,
Note that the order of factors in cross products is important. The usual laws of algebra apply only if prop-
er order is maintained.

i i Kk
27. If A=A + A,j + Ak and B = Byi + Byj + Bgk, prove that AXB = A, A, As
Bl 32 Bg

AxB = (Aqi+As) +Ask) X (Bqi + Byj + B3k)
A1i X (B4i + Boj + Bgk) + Aoj x(B1i + Boj + Bgk) + Agk x (B4l + Byj + Bgk)
AiBiiXi + AlBQin + A]_Bgixk +A231in + AQngX]. + AQstXk + AgBikXi + ASBQka + Angka

i i k
= (AgBg — AgBo)i + (AgBy — A41Bg)j + (A1By — AoB1)k = (A1 Ap As
By By, Bs

28. If A=2i-3j-k and B=i+4j-2k, find (a)AxB, (b)BxA, (¢)(A+B)x (A-B).

i § Kk
@) AxB = (2i-3j-K) x (i+4j-2k) = |2 -3 -1
1 4 -2
-3 -1 2 -1 2 -3
- - + = 10i + 3§ + 11k
'| 4 —2‘ ’|1 -2 k|1 4' 1+3)

Another Method.
i~3j-k)x(i+4j—2K) = 2ix(i+4j—-2K) — 3j x(i+4j—2k) ~ kx i +4j-2k)

= 2ixi+8ixj—4ixk ~3jxi~12jxj +6jxk —kxi-—4kxj +2kxk

0+8k +4j +3k—-0 +6i—-j+4i+0 = 10i +3j + 11k
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i i k
() BXA = (i+4j-2k) X (2i-3j—-k) = 1 4 <=2
2 -3 -1
4 =2 1 =2 1 4
= i - J k = ~10i — 3j - 11k.
'l—s —1‘ e —1| ‘2 -3‘ 1
Comparing with (@), AXB = -~B XA . Note that this is equivalent to the theorem: If two rows of

a determinant are interchanged, the determinant changes sign.

(¢) A+B = (2i-3j-Kk)+ (i+4j-2k) = 3i +j~3k
A-B = (2i-3j-k)—(i+4i-2k) = i—-Tj +k i i k
Then (A+B)X (A-B) = (Bi+j—3k) x (i-Tj+k) = |3 1 -3
1 -7 1
= i|_,1[ 'i’l - JI? ‘?\ + kI? _;l = -20i — 6j — 22k.
Another Method.
(A+B)X(A-B) = Ax (A-B) + B x (A-B)
= AXA~AxXxB+ BXA—BXB = 0—-AXB—AXB~0 = —2A%xB
= —2(10i +3j +11k) = -20i — 6j — 22k, using (a).

29. If A=3i-j+2k, B=2i+j-k, and C=i-2i+2k, find (a) (AxB)xC, (b) Ax(BxC).

i k
(@) AXB = |3 =1 2 = —i+17j + 5k.
2 1 -1
i ik
Then (AXB)XC = (—-i+T7j+5Kk) x(i-2j+2k) = -1 T 5] = 24i +Tj — 5k.
1 -2 2
i i Kk
() BxC = |2 1 ~-1| =0i~5j -5k = ~5j~— 5k.
1 -2 2
i J k
Then AX(BXxC) = (3i-j+2k) X (~5j-5k) = 3 -1 2} = 15i + 15§ ~ 15k.
0 -5 -5

Thus (AxB)xC #Ax(BXC), showing the need for parentheses in AXB XC to avoid ambiguity.

30. Prove that the area of a parallelogram with sides A
and Bis |AxB].

Area of parallelogram = 4|B|
|A|sin 8 |B|

|AXB].

Note that the area of the triangle with sides A and
B =3|AxB]. B

31. Find the area of the triangle having vertices at P(1,3,2), Q(2,~-1,1), R(-1,2,3).

PQ = 2-Di+(-1-3)j+(1-2)k = i-4j-k
PR = (-1-1)i+(2-3)j+(3~2Dk = -2i—j+k
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From Problem 30,

area of triangle = 3| PQxPR| = z|(i-4j-k) X (~2i~j+K)|
i 5 K .
= 3| 1 -4 -1f] = g|-si+i-9k| = 3V(=5P+(1P+(=97 = 3/107.
-2 -1 1

32. Determine a unit vector perpendicular to the plane of A=2i -6j-3k and B=4i+3j-Kk.

Ax B is a vector perpendicular to the plane of A and B.

i j k
AxXB = |2 -6 =3 = 15i - 10j + 30k
4 3 -1
. 101 +
A unit vector parallel to AX B is AXB . 15~ 10j + 30k S %i - %‘J' + %k .
laxB| V152 + (=107 + 30)°
Another unit vector, opposite in direction, is (-3i + 2j—6k)/7.
Compare with Problem 16.
33. Prove the law of sines for plane triangles.
A
Let a,b and ¢ represent the sides of triangle ABC
as shown in the adjoining figure; then a+b+c = 0. Mul-
tiplying by a X,b X and ¢ X in succession, we find ¢
axXxb = bxc=cxa b
i.e. absinC = bcsinAd = casinB
B
sinA _ sinB _ sinC A
or = = . a =
a b c

34. Consider a tetrahedron with faces F,, 5 .F,F .
Let V,,V,,V;,V, be vectors whose magnitudes are
respectively equal to the areas of Fy ,F,, F5, F, and
whose directions are perpendicular to these faces
in the outward direction. Show that V+V+V;+V, = 0.

By Problem 30, the area of a triangular face deter-
mined by R and S is 5|Rxsl.

The vectors associated with each of the faces of
the tetrahedron are

V,= 5AxB, V,= 3BxC, V;= 3CxA, V,= 5(C—A)x(B—A)
Then Vi+Vo+Vz+V, = 3[AXB + BXC + CxA + (C~A)X(B—A)]
= 3[AXB + BXC + CXxA + CxB — CxA — AxB + AxA] = 0.

This result can be generalized to closed polyhedra and in the limiting case to any closed surface.

Because of the application presented here it is sometimes convenient to assign a direction to area and
we speak of the vector area. X

35. Find an expression for the moment of a force F about a point P.

The moment M of F about P is in magnitude equal to F times the perpendicular distance from P to the
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line of action of F. Then if r is the vector from P to the ini-
tial point Q of F,

M = F(rsin® = rFsin@ = |[rxF|

If we think of a right-threaded screw at P perpendicular
to the plane of r and F, then when the force F acts the screw
will move in the direction of r X F. Because of this it is con-
venient to define the moment as the vector M = rxF.

36. A rigid body rotates about an axis through point O with
angular speed w. Prove that the linear velocity v of a
point P of the body with position vector r is given by
v =wxr, where w is the vector with magnitude w whose
direction is that in which a right-handed screw would
advance under the given rotation.

Since P travels in a circle of radius r sin &, the magni-
tude of the linear velocity v is w(r sin 8) = |@xr|. Also, v
must be perpendicular to both @ and r and is such that r,w and
v form a right-handed system.

Then v agrees both in magnitude and direction with @ xr;
hence v = @ xr. The vector @ is called the engular velocity.

TRIPLE PRODUCTS.

37. Show that A+ (BxC) is in absolute value equal
to the volume of a parallelepiped with sides
A,BandC.

Let n be a unit normal to parallelogram [/,
having the direction of BXC, and let 42 be the
height of the terminal point of A above the par-
allelogram /.

B

i

Volume of parallelepiped (height %) (area of parallelogram [)
(A-m(|BxcC])
A-{ |B><CI n} = A-(BxC)

If A,B and C do not form a right-handed system, A-n < 0 and the volume = |A°(B>< C)| .

38. If A=Aqji+Aj+Ask, B=Bji+Byj+Bsk, C=Cii+C,j+Csk show that

A1 4y As

A- (BxC) = |B, B, Bs

C1 Co Cs
i § Kk
A-(BxC) = A-|B, B, Bs
€1 Cp Cg

I

(A + Agj + Agk) » [(BoCs~BsCo)i + (BsCy—B1Cg)j + (B1Co—BoCy)k]

Ay Ay As
A1(BoC3— BgCs) + Ap(BgCy— B1Cg) + Ag(B1Cp~ByC1) = | By By Bg
C1 CQ Cg
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39. Evaluate (2i-3j) - [(i+j-K)x@Bi-Kk)].

2 -3 0
By Problem 38, the result is 1 1 -1} = 4.
3 0 -1

Another Method. The result is equal to
(2 - 3j) - [ix(3i—k) + jx(3i-k) ~ kx(3i-k)]
(20 =3§)+ [3ixi - ixk + 3ixi — jxKk — 3kxi + kxk]
(2i=3)-(0 + j ~3k — i ~3j +0)
(2i =3§)+ (=i =2j—3K) = (2)(=1) + (=3)(-2) + (0)(-3) = 4.

40. Prove that A-(BxC) = B:(CxA) = C'(AxB).

Ay A, Ag
By Problem 38, A-(BxC) = |B;y By, Bg
C, C, Cs

By a theorem of determinants which states that interchange of two rows of a determinant changes its
sign, we have

Ay A; As B, B, Bj By By Bj
By B, Bal = -14, 4, 45| = |1 G G| = B-(cxa)
C; Cy Cg Ci Cy; Cg Ay Ap As
A, Az As C, C; Cg C, Cy; Cg
B]_ BQ 33 = - B1 B> Bg = A1 AQ Ag = C-(AXB)
Cy C; G Ay A> As By B, Bj

41. Show that A-(BXC) = (AxB)-C.

From Problem 40, A-(BxC) = C-(AxB) = (AxB)-C

Occasionally A- (B XC) is written without parentheses as A- BxC. In such case there cannot be
any ambiguity since the only possible interpretations are A- (BxC) and (A-B) xC. The latter however
has no meaning since the cross product of a scalar with a vector is undefined.

The result A-BXC = AXB-:C is sometimes summarized in the statement that the dot and cross can
be interchanged without affecting the result.

42. Prove that A-(AXC) =0.

From Problem 41, A-(AxC) = (AxA)-C = 0.

43. Prove that a necessary and sufficient condition for the vectors A, B and C to be coplanar is that
A-BxC = 0.
Note that A- Bx C can have no meaning other than A-(B xXC).

If A,B and C are coplanar the volume of the parallelepiped formed by them is zero. Then by Problem
37, A-BxC=0.

Conversely, if A+BXC =0 the volume of the parallelepiped formed by vectors A,B and C is zero,
and so the vectors must lie in a plane.

44. Let r=xi+yj+zk, T=xi+ypji+zk and rz=xi+y;j +23k be the position vectors of
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45.

46.

417.
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points Pi(xy,¥1,21), Pa(%2,%2,22) and PBs(¥s,¥s, 2a).
Find an equation for the plane passing through P,,
P, and P; .

We assume that P;, P, and Pg do not lie in the same
straight line; hence they determine a plane.

Let r=xi +yj +zk denote the position vector of any
point P(x,y,z) in the plane. Consider vectors P, P, =
rp—~ry, PyPg=1g—r; and P;P =r—r; which all lie in
the plane.

By Problem 43, P,P: PsP, X PP = 0 or

(t—ry). (fy=1y) X(r3~1) = 0

In terms of rectangular coordinates this pecomes
[(x=x) 1 + (rmy)d + (2=2k] * [(p=%) 1 + (o =71) + (2~2)k] x [(xg=2 )1 + (ya=y)) + (25~2,)k] =0

x = X4 Yy =y zZ - 24

or, using Problem 38, Xo=%x1 Yyo—Yy1 Z2—21] = 0.

xg =% ¥s—¥y1 23—2y

Find an equation for the plane determined by the points P,(2,~1,1), Fy(3,2,-1) and Pi(~1,3,2).

The position vectors of P, P, P; and any point P(x, y, z) are respectively ry= 2i-j +k, ro=3i+2j-k,
rg=-i+3j+2k and r=xi+yj+zKk.

Then PPy=r-r;, PoP;=ro-11, P3P;=r13—ry all lie in the required plane, so that

(r=r1y) " (rp-1) X(r3—17) = 0
ie. [x=-2i+(+Dj+(z-Dk] - [i+3i—-2k] x[-31+4i+Kk] = 0O
[(x=2i+(y+Dj+(z=1k] - [11i +55 +13k] = 0

11(x~2) +5(y +1) + 13(z~1) = 0 or 11x + 5y + 13z = 30.

If the points P,(Q and R, not all lying on the same straight line, have position vectors a,b and ¢
relative to a given origin, show that axb + bxec + ¢ xa is a vector perpendicular to the plane
of P,QandR.

Let r be the position vector of any point in the plane of P, Q ard R. Then the vectors r—-a, b~a and
c —a are coplanar, so that by Problem 43

(r—a): (bh~-a) X(c—-a) = 0 or (r—a)+ (aXb + bXc + cxa) = 0.

Thus axbh + bxc + cxa is perpendicular to r —a and is therefore perpendicular to the plane of P, Q
and R.

Prove: (a) AXx(BxC) = B(A'C)-C(A*'B), () (AxB)xXC = B(A'C) - A(B*C).
(a) Let A= Aii +A21 +A3k, B= Bli +B2j +Bsk, C= Cil + CQJ + Cak .

i i Kk
(A1l +Aoj +A4sk) X | By By Bs

Cy C, C3

(Al + Apj + Agk) X ([BoCg—BsCo]i + [B3Cy~B,C3]§ + [B1Co—BoCy] k)

Then AX(BXC)
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i i k
= A1 AQ A3
B,C3~B3C,  B3Cy—B1C3  B1Cy—BoCy

= (AoB1Co—AoBoCy —AgBsCy + AgB1Cg)i + (AgByCg— AgB3Co—A3B1Co + A1B5CY) j
+ (A1B3C1 - A31B1C3— A2B5Ca + A2BgCo)k

Also B(A:C) — C(A*B)
= (Bai +Boj + Bgk) (41Cq + AoCo + A3Cq) — (Cqi + Coj + C3k) (4184 + A5B, + A3Bg)
= (AoB1Co+AgB1Cy—AsC1Bo— A3C1Bg)i + (BoA1Cy +BoA3Cs ~ CoA1By — CoA3B3) §
+ (B3A1Cy + B3ApCo— CgAy By —~ C3A2Bo)k
and the result follows.

(b) (AXBYXC = —C X (AXB) = —{A(C*B) -~ B(C-A)} = B(A-C) ~ A(B-C) upon replacing A, B and
C in (a) by C, A and B respectively.

Note that A X (BxXC) # (AxB) x C, i.e. the associative law for vector cross products is not
valid for all vectors A, B, C.

48. Prove: (AxB):(CxD) = (A-C)(B'D) - (A'D)(B-C).

From Problem 41, X.(CXD) = (XXC)-D. Let X = AXB; then

(AxB) : (CxD) {(AxBYxC} - D = {B(A'C)- A(B-C)} - D

(A-C)(B*'D)—- (A-D)(B-C), using Problem 47(b).

49. Prove: AX(BXC) + BX(CxA) + Cx(AxB) = 0.
By Problem 47(a), AX(BXC) B(A-C) - C(A:B)
B X (C X A) C(B-A) - A(B-C)
Cx(AXB) = A(C-B) — B(C-A)

Adding, the result follows.

50. Prove: (AxB) x(CxD) = B(A-CxD) - A(B:CxD) = C(A-BxD) - D(A-BxC).
By Problem 47(a), XX(CxD) = C(X:-D) — D(X:C). Let X=AxB; then
(AxB) x (CxD) = C(AxB-D)~ D(AxB-C)
= C(A-BXD)~ D(A-BXC)
By Problem 47(b), (AxB) xY = B(A-Y)—AMB-Y). Let Y=CxD; then
(AXB) X (CxD) = B(A-CXxD)—- A(B-CXD)

51. Let PQR be a spherical triangle whose sides p.q,r are arcs of great circles. Prove that
sinP _ sin@ _ sinR

sin p sin ¢ sin r

Suppose that the sphere (see figure below) has unit radius, and let unit vectors A,B and C be drawn
from the center O of the sphere to P, Q and R respectively. From Problem 50,

€] (AXB) Xx{AxXC) = (A*BxC)A
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A unit vector perpendicular to AxB and AxXC is A,so

that (1) becomes
(2) sinr sing sinP A (A-BxXOC)A or

A-BxC

1

n

3 sinr sing sin P

By cyclic permutation of p,gq,r, P,Q,R and A,B,C we
obtain

B-CXxA
C-AXB

(4) sinp sinr sin @

5) sing sinp sinR

Then since the right hand sides of (3), (4) and (5) are
equal (Probiem 40)

sinr sing sin P = sinp sinr sinQ = sing sinp sinR

. sinP _ sin@ _ sinR
from which we find sinp sin ¢ sin r

This is called the law of sines for spherical triangles.

. Prove: (AXB)- (BXC)x(CxA) = (A-BxC)y?,
By Problem 47(a), XX(CxXxA) = C(X:.A)—- A(X-C). Let X=BxC; then
(BXC) X (CXxA) = C(BXC-A) - A(BxC:C)
= C(A-BXC)—- A(B-CXxC) = C(A-BXC)
Thus (AXB):(BXC) X (CxA) = (AxXB):-C(A-BxC)
= (AXB-C)A:BxC) = (A-BxC)?

Given the vectors a’ = bxe , b= EX2 g o= 2XD b , show that if a-bxc # 0,
a‘bxc a‘bxe a‘bhxc
() a~a = b'-b = ¢'-¢c =1,

by a*b = a'c =0, b-a =b-¢c =0, c¢’~a =¢c’-b =0,
(¢c) if abxec =V then a-bWxe' = 1/V,

(d) a’,b’,and ¢’ are non-coplanar if a,b and ¢ are non-coplanar,

’ bx c a-bxec _

U
a) a-a = a-a = @a- = = 1
(@) a*bxce a‘bxc
cx a b-cxa a-bxc
bb = b-b = b- = - -1
b a-bxec a-bxec a-bxc
’ ' axb c.axb a.-bxc
c+C = C-C = C = = =1
a-bxec a‘bxc a*bxc
®) b = b-d = b bxc =b-bxc=bxb-c=0

a‘bxe a‘bxe abxc

Similarly the other results follow. The results can also be seen by noting, for example, that a’ has
the direction of bx ¢ and so must be perpendicular to both b and ¢, from which d:b=0 and a-c=o0.

From (a) and (b) we see that the sets of vectors a,b,c and a',b', ¢ are reciprocal vectors, See
also Supplementary Problems 104 and 106.



54. Show that any vector r can be expressed in terms of the reciprocal vectors of Problem 53 as

55.

56.

57.

58.
59.

60.

61.

62.

The DOT and CROSS PRODUCT

(c) a = , b= , €=

/

P (bxc)-(cxa)x(@axh) _ (axb).(bxc)x(cxa)

Then 4a-bxc 3
vV

using Problem 52.

(d)y By Problem 43, if a,b and ¢ are non-coplanar a-bxc # 0.
a.bxc # 0, sothat a,b and ¢ are also non-coplanar.
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Then from part (c¢) it follows that

r = (-a)a+ @-bB)b+(x-c)e.
From Problem 50, B(A*CxD)—A(B-CxD) = C(A-BxD)—D(A-BxC)
Th D - A(B:Cx D) B(A-Cx D) C(A-Bx D)
en = T A.BxC A.BxC A-BxC
ILet A=z=a, B=b, C=c and D=r. Then
r-bxc r-cxa r-axb
r = a + +
arbxc a*bxc abxc
= re( + cxa b+ x b
- a-bxc)a f (a-bxc) r (a-bxc

{3

(r-a')a + (r-b')b + (r-c')c

SUPPLEMENTARY PROBLEMS

Evaluate: (a) k-(i+3j§), (b (i—2K)*(J +3k), (c) (2i—j+ 3Kk)-(3i+2j—k).

Ans. @) 0 (b)—6 (c)1

If A=i+3j—2 and B =4i— 2j + 4k, find:
(@)A-B, (B A, (c)B, @) |3A+2B], (e) (2A+B).(A—-2B).
Ans. (@)—10 (B)V1d (c)6 (d)V150 (e)—14

Find the angle between: (a) A = 3i+2j—6k and B = 4i—3j+k, (b)C =4i—~2j+4k and D = 3i—6j—2k.

Ans. (a) 90° (b) arc cos 8/21 = 67°36'

PFor what values of a are A = ai—2j+k and B = 2¢i +aj—~ 4k perpendicular? Ans.

)c

a=2, -1

Find the acute angles which the line joining the points (1,-3,2) and (3,—5,1) makes with the coordinate
axes. Ans. arc cos 2/3, arc cos 2/3, arc cos 1/3 or 48°12', 48°12', 70°32

Find the direction cosines of the line joining the points (3,2,~4) and (1,~1,2).

Ans. 2/7,3/7,—6/7 or —2/7,-3/17,6/7

Two sides of a triangle are formed by the vectors A = 3i+6j—2k and B = 4i—j+3k. Determine the angles
of the triangle.  Ans. arc cos 7/V75, arc cos v26/V75, 90° or 36°4', 53°56", 90°

The diagonals of a parallelogram are given by A =3i—4j—k and B = 2i +3j—6k. Show that the parallelo-
gram is a rhombus and determine the length of its sides and its angles.
Ans. 5V3/2, arc cos 23/75, 180° — arc cos 23/75 or 4.33, 72°8', 107°52
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63.

64.
65.

66.
67.
68.
69.

70.

1.
72.
3.

4.

5.

6.

7.

8.

9.

80.

81.

82.

The DOT and CROSS PRODUCT

Find the projection of the vector 2i—3j+6k on the vector i+ 2j + 2k. Ans. 8/3

Find the projection of the vector 4i — 3j + k on the line passing through the points (2,3,—1) and (~2,—4,3).
Ans. 1

If A=4i—j+3k and B = —2i +j — 2k, find a unit vector perpendicular to both A and B.
Ans. E(i—2j—2k)/3

Find the acute angle formed by two diagonals of a cube. Ans. arc cos 1/3 or 70°32
Find a unit vector parallel to the xy plane and perpendicular to the vector 4i—3j+k. Ans. 1(3i+4j)/5
Show that A = (2i—2j+k)/3, B = (i+2j+2k)/3 and C = (2i+j— 2k)/3 are mutually orthogonal unit vectors.

Find the work done in moving an object along a straight line from (3,2,~1) to (2,—1,4) in a force field given
by F=4i-3j+2k. Ans. 15

Let F be a constant vector force field. Show that the work done in moving an object around any closed pol-
yeon in this force field is zero.

Prove that an angle inscribed in a semi-circle is a right angle.
Let ABCD be a parallelogram. Prove that 4B2+ BC? + CD? + DA% = AC? + BD?.

If ABCD is any quadrilateral and P and Q are the midpoints of its diagonals, prove that
AB? + BC? + CD? + DA% = AC%+ BD?+ 4P(?
This is a generalization of the preceding problem.

(a) Find an equation of a plane perpendicular to a given vector A and distant p from the origin.
(b) Express the equation of (a) in rectangular coordinates.
Ans. (a)r-m=p, where n=A/A; (b) Ayx + Aoy + Agz = Ap

Let ry and ro be unit vectors in the xy plane making angles @ and B with the positive x-axis.
(a) Prove that ry= cos® i + sind j, ro= cosB i+ sinB J.
(b) By considering ry-1, prove the trigonometric formulas

cos(0l—B) = cos® cosPB+ sind sinB, cos(d+B) = cosd® cosB—sind sinP

Let a be the position vector of a given point (x4,¥4,21), and r the position vector of any point (x,y,z). De-
scribe the locus of r if (e) [r—a| =3, (b) (r—a)-a=0, (c) (r—a)-r=0.
Ans. (a) Sphere, center at (x1,%1, z1) and radius 3.

(b) Plane perpendicular to a and passing through its terminal point.

(c) Sphere with center at (x,/2, y,/2, z,/2) and radius 322+ y2+ 22, or a sphere with a as diameter.

Given that A =3i+j+2k and B = i—2j—4k are the position vectors of points P and Q respectively.
(2) Find an equation for the plane passing through Q and perpendicular to line PQ.

(b) What is the distance from the point (—1,1,1) to the plane ?

Ans. (a) (r—B)*(A—B) = 0 or 2x+3y+6z = —28; (b)5

Evaluate each of the following:
(@) 2i x(3i—4k), (B) (i+2i)xk, (c) (20i—4k)x(i+2j)), (d) (4i+j—2k)x(3i+Kk), (e) (2i+j—Kk)x(3i—2j+4k).
Ans. (a)—8i—6k, (b)2i—j, (c)8i—4j+4k, (d)i—10j—3k, (e) 2i—11j—Tk

If A=3i—j—2k and B = 2i+3j+k, find: (a) |AxB/l, (b) (A+2B)x(2A—B), (c) [(A+B)x(A—B)|.
Ans. (a2)V195, (b) —25i+35j—55k, (c) 2V195

If A=i—2j—3k, B=2i+j—k and C =i+3j—2k, find:

(@) |[(AxBYxCl, (¢) A+ (BxC), (¢) (AxB) x (BxC)

®) 1A x (BxC)|, (d) (AxB)-C, H (AxB)(B-C)

Ans. (a)5V26, (b)3V10, (c)—20, (d)—20, (e)—40i—20j+20k, ((f) 35i—35j+35k

Show that if A# 0 and both of the conditions (a) AB = A-C and (b) AXB = AxC hold simultaneously
then B=C, but if only one of these conditions holds then B# C necessarily.

F'ind the area of a parallelogram having diagonals A = 3i+j—2k and B = i—3j+4k. Ans. 5V3
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Find the area of a triangle with vertices at (3,—1,2), (1,~1,~3) and (4,-3,1). Ans. % 165

If A=2i+j—3k and B =i—2j+k, find a vector of magnitude 5 perpendicular to both A and B.

+ %3_(1+1+k)

Use Problem 75 to derive the formulas
sin(@—P) = sin® cos B — cos@ sinPB, sin(@+P) = sin0® cosP + cos @ sinP

Ans,

A force given by F = 3i + 2j — 4k is applied at the point (1,1, 2). Find the moment of F about the point
2,-1,3). Ans. 2i—Tj~— 2k

The angular velocity of a rotating rigid body about an axis of rotation is given by & =4i+j—2k. Find the
linear velocity of a point P on the body whose position vector relative to a point on the axis of rotation is
2i—3j+k. Ans. —5i— 8j — 14k

Simplify (A+B)* (B+C)x (C +A). Ans. 2A°BxC
A*‘a A*‘b A-c

Prove that (A*BxC)(a-bxe) = B:a B.b B.c
C-a C'b C-'c

Find the volume of the parallelepiped whose edges are represented by A = 2i —3j +4k, B =i +2j—k,
C=3i—j+2k. Ans. 7

If A.BxC =0, show that either (a) A, B and C are coplanar but no two of them are collinear, or (b) two
of the vectors A,B and C are collinear, or (c) all of the vectors A,B and C are collinear.

Find the constant @ such that the vectors 2i—j+k, i+2j—3k and 3i+aj+5k are coplanar. Ans. a = —4
If A=xa+yb+zc, B=xa+yb+z,e and C=x,a +y,b +z,c, prove that

%1 Y1 %
A-BxC = [z, 9y 25| (a-bxc)

X3 Ya %3

Prove that a necessary and sufficient condition that Ax BxC) = (AxB)xC is (AXxC)x B= 0. Dis-
cuss the cases where A-B=0or B-C=0.

Let points P,Q and R have position vectors r,=3i—2j~Kk, r,=i+3j+4k and r;= 2i +j—2k relative to
an origin 0. Find the distance from P to the plane OQR. Ans, 3

Find the shortest distance from (6,—4,4) to the line joining (2,1,2) and (3,~1,4). Ans. 3

Given points P(2,1,3), Q(1,2,1), R(—1,-2,—2) and S(1,—4,0), find the shortest distance between lines PQ and
RS. Ans. 3V2

Prove that the perpendiculars from the vertices of a triangle to the opposite sides (extended if necessary)
meet in a point (the orthocenter of the triangle).

Prove that the perpendicular bisectors of the sides of a triangle meet in a point (the circumcenter of the tri-
angle).

Prove that (AxB).-(CxD) + (BxC):(AxD) + (CxA)-(BxD) = 0.

Let PQR be a spherical triangle whose sides p,q,r are arcs of great circles. Prove the law of cosines for
spherical triangles,

cosp = cosq cosr + sing sinr cos P

withanalogous formulas for cos ¢ and cos r obtained by cyclic permutation of the letters.
[Hint: Interpret both sides of the identity (AxB)-(AxC) = (B*C)(A+A) — (A-C)(B- A).}
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102. Find a set of vectors reciprocal to the set 2i+3j—k, i—j—2k, —i+2j+2Kk.

2 1 8 | T.,: 9
D Si+= —2i+j—= ——itj—=
Ans 31 3k, 31 j 3k, 31 i 3k
103. If a'= bxc '. Cxa and c'=—2—x—ll—, prove that
a-bxc’ abxc asbxc
b'xe’ c'xd axb'
a = R b = A A ¢c = (AU
a-bxc a-b'xc a‘bxc

104. If a,b,c and a’,b’,¢’ are such that

! '] 7 ! !
a“b =ac = bha =bc =cha =c b =0

prove that it necessarily follows that

: bxc ’ cxa ' axb
a = —— b = = —_—

arbxec’ a-bxe’ a-bxc

105. Prove that the only right-handed self-reciprocal sets of vectors are the unit vectors i,j,k.

106. Prove that there is one and only one set of vectors reciprocal to a given set of non-coplanar vectors a, b,c.



Chapter 3

ORDINARY DERIVATIVES OF VECTORS . Let R(u)
be a vector depending on a single scalar variable u.
Then

AR _ R@u+Au) — R(u) AR = R(u+0u) - R(n)

A T Au
where Au denotes an increment in u (see adjoining
figure). 0

The ordinary derivative of the vector R(u) with respect to the scalar u is given by

dR _ 1im AR = lim Rz +Au) — R(u)

du Ay—0 _A_u Au~0 Du

if the limit exists.

Since ‘;—R is itself a vector depending on u, we can consider its derivative with respect to u. If
u

this derivative exists it is denoted by gz—l.; . In like manner higher order derivatives are described.
u

SPACE CURVES. If in particular R(u) is the position vector r(z) joining the origin O of a coordinate
system and any point (x,y, z), then

r{u) = x@)i + yw)j + z(wk

and specification of the vector function r(u) defines x,y and z as(functions of u.

As u changes, the terminal point of r describes
a space curve having parametric equations z

x=x(u), y=y(@m), z=2z@u)

Then &F . Fu*lu) — r(w) is a vector in the di-
Au Au Ar dr
rection of Ar(see adjacent figure). If lim — = —
Au—oDu  du

exists, the limit will be a vector in the direction of
the tangent to the space curve at (x,y, z) and is giv-
en by

If u is the time ¢, Z—: represents the velocity v with

dv _dr
de ~ di?

which the terminal point of r describes the curve. Similarly, represents its acceleration a

along the curve,

35
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CONTINUITY AND DIFFERENTIABILITY. A scalar function ¢(u) is called continuous at u if
Alim ¢ +Au) = ¢(u). Equivalently, ¢(u) is continu-
2%~0
ous at u if for each positive number € we can find some positive number & such that
|¢>(u+Au) - d)(u)' < € whenever ‘Au[ < 3.

A vector function R(u) = Ry(u)i + Ry(u)j + Ry(m)k is called continuous at u if the three scalar

functions R.(u), Ro(xz) and Ry(u) are continuous at u or if Alim R(z +Au) = R(z). Equivalently, R (u)
%=0
is continuous at u if for each positive number € we can find some positive number & such that

|R@u+Au) — Rw)| < € whenever |Au| < 5.

A scalar or vector function of u is called differentiable of order n if its nth derivative exists. A
function which is differentiable is necessarily continuous but the converse is not true. Unless other-
wise stated we assume that all functions considered are differentiable to any order needed in a par-
ticular discussion,

DIFFERENTIATION FORMULAS. If A, B and C are differentiable vector functions of a scalar u, and
¢ is a differentiable scalar function of z, then

d dA dB
1, EZ(A+B) ;i; + E
—
d 4B _dA
2. E(A'B) = A'Eu— + E'B
d dB dA
3. EJ,(AXB) AXT + EXB
4 - »9A , do
4\du((_pf‘) ¢ du * du A
e 4o, - a.px%C .dB dA |
5. du(A BxC) = A Bxdu + A duxc_if_{u BxC

6. i{Ax(BxC)} = Ax(Bx
du '

dc dB dA
du) f__i‘x(du xC) + du x (BxC)

The order in these products may be important.

PARTIAL DERIVATIVES OF VECTORS. If A is a vector depending on more than one scalar variable,

say x,y,z for example, then we write A = A(x,y,z). The
partial derivative of A with respect to x is defined as

9A | AwtDxy,2) — A(xy.2)
Bx AJléTo Ax
if this limit exists. Similarly,

9A . A(x, y+Dy, 2) — A(x,y,2)

— = lim

oy Ay=o Ay

%A . Ay, z+Azy — A(x,y,z)
= lim

x Az—9 AZ
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are the partial derivatives of A with respect to y and z respectively if these limits exist.

The remarks on continuity and differentiability for functions of one variable can be extended to
functions of two or more variables. For example, qS(x,y) is called continuous at (x,y) if
Alim ¢ (x +Ax, y +Ay) = ¢(x,y), or if for each positive number € we can find some positive number
x=0
Ay~o0

$ such that | (x +Ax, y +Ay) — ¢p(x,y)| < € whenever |Ax| < & and |Ay| < 8. similar defi-
nitions hold for vector functions.

For functions of two or more variables we use the term differentiable to mean that the function
has continuous first partial derivatives. (The term is used by others in a slightly weaker sense.)

Higher derivatives can be defined as in the calculus. Thus, for example,

QQA=3(BA 2°A _ 9 ,9A %A 9 %A

Q%2 Ox ax)’ oy - Oy 3y)' 922 9z 32)
A _ 2,24, A _ 2d0oa A _ 2 A
Ox Oy ox oy '’ Jy 9x 9y dx ' Jx 922 Jx 9z2
. . o °A A .
If A has continuous partial derivatives of the second order at least, then 32 v = Svor’ i.e.the
order of differentiation does not matter. x oy yox

Rules for partial differentiation of vectors are similar to those used in elementary calculus for
scalar functions. Thus if A and B are functions of x,y,z then, for example,

s Rn . .3B 0

A PR

LoD B . 2A

13 —_ = —_— —

22, ax(AXB) Axax + axxB

|, _ 3.2 3,8, 2
23' HaAB = gigiaB) - So{agr - 50 B
\ _ B _ OA OB _ OA 3B . A

"3ydx ' dy Ox ' Ox dy | 3yox D oo

DIFFERENTIALS OF VECTORS follow rules similar to those of elementary calculus.
1.

For example,
If A=A4,+A+ Ak, then dA = dA,i + dA,i+ dAk

2. d(A-B) = A-dB + JA-B

3. d(AxB) = AxdB + dAxB

4 If A=A(y.z), then dA = Bax + Qg+ 95 e
, Ox oy oz
~ """7\.//\____.—»——--\.%*._./ ——

b s .

J g

DIFFERENTIAL GEOMETRY involves a study of space curves and surfaces, If C is a space curve

defined by the function r(u), then we have seen that % is a vector in
u
the direction of the tangent to C. If the scalar u is taken as the arc length s measured from some fixed
point on C, then dr

s is a unit tangent vector to C and is denoted by T (see diagram below). The
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rate at which T changes with respect to s is a mea-

sure of the curvature of C and is given by% . The

direction of gl at any given point on C is normal to
S

the curve at that point (see Problem 9). If N is a
unit vector in this normal direction, it is called the

principal normal to the curve. Then %} = kN, where

x is called the curvature of C at the specified point.
The quantity o = 1/k is called the radius of curva-
ture.

A unit vector B perpendicular to the plane of T and N and such that B =T xN, is called the bi-
normal to the curve. It follows that directions T,N, B form a localized right-handed rectangular co-
ordinate system at any specified point of C. This coordinate system is called the trihedral or triad
at the point. As s changes, the coordinate system moves and is known as the moving trikedral.

A set of relations involving derivatives of the fundamental vectors T,N and B is known collec-
tively as the Frenet-Serret formulas given by
dT dN dB

‘K:KN, ‘K=TB—KT, dT=—TN

where 7 is a scalar called the torsion. The quantity o = 1/7 is called the radius of torsion.

The osculating plane to a curve at a point P is the plane containing the tangent and principal
normal at P. The normal plane is the plane through P perpendicular to the tangent. The rectifying
plane is the plane through P which is perpendicular to the principal normal.

MECHANICS often includes a study of the motion of particles along curves, this study being known
as kinematics. In this connection some of the results of differential geometry can be of
value.

A study of forces on moving objects is considered in dynamics. Fundamental to this study is
Newton’s famous law which states that if F is the net force acting on an object of mass m moving
with velocity v, then

d
F = E(mv)

where mv is the momentum of the object. Ifm is constant this becomes F = m‘é—: = ma, Where a is
the acceleration of the object.
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SOLVED PROBLEMS

1. If R(u) = x(u)i +y(u)j +z(u)k, where x,y and z are differentiable functions of a scalar u, prove

R _dx, , dy., dz
that o, @&t @l T wke
dR _ . R@+Bu) — R@)
du Au=0 Ny
- m [xqu +Au)i +y@ +Du)j + z(u +Ou)k] — [x@)i + y@)j + z(u)k]
Au~0 Ay
o x(u +0u) — x(u) y+0u) — y(u) . z(u +Du) — z(u)
Al Ad * Aa U Au k
_ dx, dy . dz
= Zul + L + :i—u_k

2. Given R = sinti + costj + tk, find (a) ZR, ) dg , (¢) IdRI. (d)l I

-

()dR d(S't'+ d( st)j + d(t)k sti—sintj +k
a —_— - —_— _— = —
7t 7 int)i o cost)] i cost i

bﬂ'id_R d i — L ‘+i1k' sint i — cos¢ j
®) Gz = 7,0 ) T gpleosoi — pisini + 221k = —sin os
) |—ZR| Vicost)2 + (—sint)2 + (1)2 = V2
¢

(d) l | 1/(---sinz)2 + (—cost)? = 1

3. A particle moves along a curve whose parametric equations are x = e-t, y =2cos 3t, z = 2sin3t,
where ¢ is the time.
(a) Determine its velocity and acceleration at any time.
(b) Find the magnitudes of the velocity and acceleration at ¢ = 0.

(a) The position vector r of the particleis r = xi+ yj+zk = e~ti+ 2cos3t j+2sin3tk.

Then the velocity is v = Z—r = —eti — 6sin3t j + 6cos3t k
t
2
and the accelerationis a = %—2 = e~tf — 18cos3tj — 18sin3tk
t
dr d’r .
(b) At t =0, - —i + 6k and reie i — 18j. Then

magnitude of velocity at ¢ = 0 is \/(—1)2 + (6)2 = V37

magnitude of acceleration at ¢= 0 is V(1)2+ (—18)° = V325,

4. A particle moves along the curve x = 2%, y =¢t>—4¢, z =3t — 5, where ¢ is the time, Find the
components of its velocity and acceleration at time ¢t =1 in the direction i — 3j + 2k.
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dr
dit

4ti + (26 —4)j + 3k = 4i — 2j + 3k att=1,

Velocity = %[2t2i + (12— 41)j + (3t —5)k]

i—3+2%  _ i—-3i+2%
V()2 + (=3)2+ (2)° V14

Then the component of the velocity in the given direction is

Unit vector in direction i — 3j + 2k is

(4i — 2j +3k): (i — 3j + 2k) @) (1) + (=2)(-=3) + (3)(2) 16 8V 14
V14 ) V14 V14 7
d2r d [ ]
i = — = = — i+ - + = + 2j + .
Acceleration 2 dt( dt) 7 4ti + (2t—4)j + 3k 4i + 2j + Ok
Then the component of the acceleration in the given direction is
(41 + 2j + Ok) - (i — 3j + 2Kk) _ (4)(1) + (2)(—3) + (0)(2) _ :2_ _ = V14
V14 V14 V14 7

A curve C is defined by parametric equations x =x(s), y =y(s), z =z(s), where s is the arc
length of C measured from a fixed point on C. If r is the position vector of any point on C, show
that dr/ds is a unit vector tangent to C .

d
The vector LI —d—(xi +yj+2k) = —1 + -—Z + —k is tangent to the curve x= x(s), y=y(s),
ds ds ds ds
z =2z(s)., To show that it has unit magnitude we note that
dr /dx 2, dyo dz.o Adx)? + (dy)? + (dz)° :
—_ = —_— + + (— = =
I G+ PG =/ o 1

since (ds)® = (dx)2 + (dy)2 + (dz)2 from the calculus.

. (a) Find the unit tangent vector to any point on the curve x =¢2+1, y =4t—3, z = 22— 6¢.

(b) Determine the unit tangent at the point where ¢=2.

(a) A tangent vector to the curve at any point is

% = %[(t2+1)i + (4t—3)j + (2t2—6)k] = 2i + 4j + (4t—6)k
. . dr _ 1/ 2 2
The magnitude of the vector is l E‘ = V(22 + (4)2+ (4t —6)7.

2ti + 4j + (4t—-6)k
V(2e? + (47 + (4t — 6

Then the required unit tangent vectoris T =

dr ds dr/dt dr
N th i = = = = = — .
ote that since I T 2s/dt Is
(b) At t=2, the unit tangent vectoris T = M4tk = Ei +2j + -l-k,

Vap+rap+er 2 % 38

7. If A and B are differentiable functions of a scalar u, prove:

(a) i(A'B)zA'éE‘”(‘iA‘B. (b) (AxB) =A><‘—i—li +@-xB
du u u du du
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@ i(A-B) = lim (A+AAY-B+AB) — A‘B
du Au—0 Au
" A-AB + AA-B + NA-AB
= m
Au~0 Du
. AB | NA JAY.
= BB, 2A LA A
ol W W Wit

Another Method. Let A = Aji + A,j + Ak,

41

= A.d_B +
du

dA g

du

B,i + B,j + Bgk. Then

4 A-By = L (4B, + AB, + AsBs)
du du
dB dB dB. dA dA dA dB dA
= (A —1 + 22 4 228y 4 (2Zip, + 222 + 278 = A.—=— + Z22.B
(A du & du 4 du) (du 1 du B, du B) du du
) & (AxB) = lim AtO8AIxB+OB) - AxB
du Au-oo Au
- 1im AXOB + AAxB + AAXAB
Au—0 Au
. AB | NA AA dB |, dA
= lim Ax—— + =2xB + —=xAB = Ax%2 + 22%xB
Au—0 Au Du Du du du
Another Method. .
i i k
d d
E;(Ax B) = 'd—u A1 A2 As
B, B, Bg
Using a theorem on differentiation of a determinant, this becomes
i i k i k] k
dd; dd; dds| _ 4B dA
A1 A2 s + du du du - X du * du *B
dB; dB, dBg
du du du By Bo Bs

8 If A=52i +tj—°k and B =sinti — cost j, find (a) c%(A- B), (b) %(AxB), (c)d%(A-A).

3

4. .
(a) AP A

Another Method.

4 (a. = 452 _ -
2t (A-B) b (5¢t“ sint t cost) =

d_B+d_A.
dt

A-B =

B
dt

(5t2i + tj — tsk) «{costi + sintj)

5¢t2cost + ¢sint + 10¢sint — cost

5¢2sins — ¢t cost.

5¢2

i i

4 - dB , dA - 2
() 7(AxB) = Ax—" + xB = | 5 ¢
Cos? siné

+ (10ti + § — 3¢°k) - (sinti — cost J)

= (5t°—1)cost + 1ltzsin:

Then

cost + 10¢ sint + ¢t sint — cost

(5t°—1)cos ¢t + 11t sint

k i ¥ k
-3 + 10¢ 1 —3¢2
0 sint —cost 0
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[®sinti — Pcostj + (5¢2sint — ¢ cos )k

+ [—3t2costi — 3:2sintj + (=10t cost — sint)k]

(® sint — 3t2cost)i — (tPcost + 3t2sint)j + (5¢2sint — sin¢ — 11¢ cost)k

Another Method.

i i k
AxB = 5¢2 t —t3] = —t3costi — t3sintj + (—5t2cost — ¢ sint)k
sint —cost 0
d 3 . 2 . 3 2 ) .
Then E;(AXB) = (¢"sint— 3t cost)i— (" cost +3t"sine)j + (5¢°sint — 11z cost — sint)k
d B dA dA _ dA
(c) dz(A'A) = A. a + it A = 2A 4t

= 2(562i + ¢j — £2k) - (10¢i + j — 3¢2k) = 100¢° + 2t + 65

Another Method. A-A = (52° + (¢)2 + (=% = 25¢% + ¢2 + 8

Then 3%(25t4+z2+te) = 1006 + 2t + 665,

9. If A has constant magnitude show that A and dA/dt are perpendicular provided ldA/dtI # 0.

Since A has constant magnitude, A:A = constant.

d _ a.dA _dA , dA
Then d(A'A) = A- 2t + 4t A = 2A- P 0.
Thus A- 'fi': 0 and A is perpendicular to Z—té provided |%| £ 0.
10. Prove £ (A-BxC) = A-Bx9C + A.9Byc + A gy, where A,B,C are differentiable
du du du du
functions of a scalar u.
d d dA
By Problems 7(z) and 7(6), — A*(BxC) = A'— (BxC) + —*BxC
du du du
- [BXdC dBXC] + Q'BXC
du du
dC dB dA
= + + ——
ABxdu AduxC du ‘BxC
dV LV
1 valuate V5
1 E 3.1 d ( dtQ)
dV d’v v 4’V d’v_d’v _dv dav _d°v
- ._ —) = . o — — 4 —
By Problem 10, (v i Ve ae "V e Y a Y de
dV d dV dV
= -—- _— 4+ + = «— —_—
v % de3 0 0 v dt de3

12. A particle moves so that its position vector is given by r = coswti + sinwtj where w is a con-
stant. Show that (a) the velocity v of the particle is perpendicular to r, (b) the acceleration a is

directed toward the origin and has magnitude proportional to the distance fromthe origin, (¢) rxv =
a constant vector.
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dr . . .
(@) v = i c —w sinwti + W coswt j
Then r.v = [coswti + sinwtj] *[—w sinwt i + w cos wt j]

(cos we) (—w sinwt) + (sinwt)(w cos wt) =

and r and v are perpendicular.

2
dv 2 2 o3
(&) = — = —w coswri — wsinwe j
dtQ dt
—w?[coswti + sinwtj] = -r

Then the acceleration is opposite to the direction of r, i.e. it is directed toward the origin. Its
magnitude is proportional to |r| which is the distance from the origin.

(¢) rxv = [coswei + sinwt j] x [—w sinwt i + w cos wt j)
i j k
= cos wt sin wt 0| = w(cos?wt + sinfwi)k = wk, a constant vector.

—w sinwt w coswt 0

Physically, the motion is that of a particle moving on the circumference of a circle with constant
angular speed w. The acceleration, directed toward the center of the circle, is the centripetal accel-

eration.
B _ d°A d,  dB _dA
13. Prove: Axa’—t{ — FXB = Z(sz - EXB).
‘%(Ax%—? - %XB) = (A 'fi? - ;t 44« B)
= Ax%+%x(ld‘: [dA 3?+%§%XB] = Ax‘fIQTQB—-%QE%xB

14. Show that A. %A - 494
dt dt
. . 2 2 2
Let A = Aji +Ayj+Agk. Then A = VA + A2 + A2
j_;“ = —(A1+A +A3)‘1/?(2A ddy 24, dA? + 2A3'M3

dA dA

dA, dA
Ay dt1 + A sz + Ag—-2

@ Ma , d4 A
(A + Ao+ AYV? A

Another Method.

Since A-A = A4°, Ed;(A-A) - j—l(AQ).

d4

dA dA . and 3%(142) = 924 %~

d - za
2AA) = AT dt

dA _ ., d4 dA _ , dd
Then 2“":17'2’487 or  A-; 'Adt’

dA

a 0 as in Problem 8.

Note that if A is a constant vector A-
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9%y — M0 4 (Y — v sing)i + (2 -.B_AEAB_AG_A_B_A_ 9A .
15. If A (2x°y — xM)i + (e y sinx)j + (x* cosy)k, find: Py 3y Py 3x3y ayax
2 3 9 . 3
égA = a—(Zx"’y —xMi + a(e"y-—y sinx)j + a(xzcosy)k
= (dxy — 4x®)i + (ye*Y —y cosx)j + 2x cosy k
2A 2 . 3 . L)
== = —(2x%y —xYi + (¥ —y sinx)j + =—(x2cosy)k
Oy dy Sy Oy
= 22j + (xe¥Y—sinx)j — x2siny k
Cd e e 3
E% = Sy — 91+ 2 geP—y cosn)i + 5 (2 cosyk
= (dy — 1221 + (y2¢¥Y +y sinx)j + 2cosy k
2
%ﬁ = —aa;(zﬁ)i + a%(a«:"ﬁ’—sinx)j — %(x"’siny)k

0 + x2eXY j — x?cosy k= 22eY j — x2cosy k

2
i%y = %(—27“) = —aa;(ZxQ)i + _a%mxy_ sinx)j — a%(x2 siny)k
= 4xi + (xye®¥ +eXY —cosx)j — 2xsiny k
2
a—%‘x = %(%f) = a%my —4x%i + a%(yexy—y cosx)j + %(Zx cosy)k
= dxi + (xyeV+e™ —cosx)j — 2x siny k
A 32A
Note that Ey Bx By , i.e. the order of differentiation is immaterial. This is true in general if A

has continuous partial derivatwes of the second order at least.

3

16. If P(xy,z) = xy2z and A = xzi—xy?j +yz%k, find —2— ($A) at the point (2,—1,1).

Y Y Y y 352 3z

PA = (xy2z)(xzi—xy2j +y22K) = 229222 — x29%zj + x93k

—a-(¢A) = i(:t23/222i—;\¢2y“z Ji+xy%2%K) = 26292z — x2y%j + 3xy%:2k

9z Oz

a 3, (¢A) = .a%a;(Znyzzi—foj+3xy322k) = 4xy?zi — 20y*j + 39322k
¥ 3

523, (PA) = g(4xy2‘z;1—zxy4j+3y3z2k) = 492z — %%]

If x=2,y=—1,z=1 this becomes 4(—12(1)i — 2(-1)*j = 4i — 2j.

17. Let F depend on x,y,z,t where x,y and z depend on ¢. Prove that
dF _ F , ix OFdy  OFd:
dt ~ 9t  Ox dt Oy dt ~ Oz dt
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under suitable assumptions of differentiability.

Suppose that F = Fy(x,y,z,0)i + Fyx,y,z,t)j + F(x,y,z,t)k. Then

dF = dFi + dF,j + dFyk
OF, oF, OF, oF OF, oF, oF, oF,
S2de o+ 2ldx + =2dy + =tdz]i =2dt + =2dx + =2dy + =2dz]j
(5 + 5= o 7T s I x T T T 213
OF; OF, OF, OF;
+ [Bde + Z8dx + =2dy + =2 dz]k
5 x0T T Ty
OF, oF, OF; oF, oF, OF;
= (—i+ =—j+ —Kdt + (—i+ —j+ =—Kk)dx
ST E &R T
+ (_;ﬂi E@j+§.§ik)dy + (_aﬁi+§ﬁj+_a_p_3k)dz
ay ay ay ‘0z Oz Oz
oF oF oF oOF
—dt + —dx + 7 dy + —dz
% % Y
andso 9F o OF , OFdx , OFdy , OFd:
dt O Oxdt Oydt -0t de
DIFFERENTIAL GEOMETRY.
18. Prove the Frenet-Serret formulas (a) T _ kN, (&) dB _ —TN, (¢) dN = T7TB—«T.
ds ds ds
. . dT dT . .
(@) Since T.T =1, it follows from Problem 9 that T'Is— = 0, i.e. 7 is perpendicular to T.
If N is a unit vector in the direction 3%‘ then 3—} = kKN. We call N the principal normal, K the
curvature and O = 1/K the radius of curvature.
(6) Let B =TxN, sothat 2B = TN , 2T, N _ 7x 9N 4 NxN = TxDN.
ds ds ds ds p ds
Then T- L ToTxd—N = 0, so that T is perpendicular to aB
ds ds ds

But from BB =1 it follows that B-—Z—f = 0 (Problem 9), so that 1] is perpendicular to B and

ds
is thus in the plane of T and N.
dB . . ' . dB
Since ds isin the plane of T and N and is perpendicular to T, it must be parallel to N; then .
—TN. We call B the biragrmal, T the torsion, and O = 1/7 the radius of torsion. $

(c) Since T,N,B form a right-handed system, so do N,B and T, i.e. N=BxT.

Then dN = Bxd—T + d—BxT = BXKN — TNXT = —kT + 7B = 7B — KT.
ds ds ds

19. sketch the space curve x =3 cost, y =3 sin¢, z =4t and find
(a) the unit tangent T, (b) the principal normal N, curvature
and radius of curvature o, (c) the binormal B, torsion 7 and
radius of torsion o .

The space curve is a circular helix (see adjacent figure)., Since
t =z/4, the curve has equations x = 3 cos(z/4), y = 3 sin(z/4) and
therefore lies on the cylinder %2 +y2 = 9.

(a) The position vector for any point on the curve is




46

VECTOR DIFFERENTIATION

r = 3costi + 3sintj + 4tk
dr _ s .
Then 7 —3sinti + 3costj + 4k
d_s - ﬂ. ‘_i!.t.i-l: = . i 2 2 2 =
Pl Id: FTRPT V(-3 sint)® + (3 cost)” + 4 5
dr dr/dt 3 .. 3 . 4
= = - - + = + =K.
Thus T 7 Is /ds s sint i 5 costj 5 k
dT d 3 . 3 4 3 3 .
podid = —— = + = 4+ = = —_— —_
) T dt( 5 sinc i 5 cost j 5 k) = costi 5 sint j
df _ dT/dt _ _ 3 . _ 3
ds ds/dt g5 COSE1 — 55 sintd
i dT = ‘_iI >
Since a5 KN, Id I IKHN] as K z 0.
3 1 25
Then « = /(— 7 costfP + (— 35 sint)2 =95 and P =% =3
From 1 KN, weobtain N = 14T | —costi — sintj.
ds K ds
i j k
3 3 4 4 .. 4 . 3
= = — = si - - = = ti — = cost + =~k
(c) B T XN 5 sint 5 cost 5 5 sin¢ i 5 cost j =
— Ccost — sin¢ 0
dB 4 . 4 dB dB/dt 4 . 4 ..
— = - + - — = = _ t + —
I 5 costi = sin¢ j, s a5/t 3 cost i 25 sint j
4 . e 4 1 _25
-— - — i — i = — + — = = ===
TN T(—costi sin¢ §) 35 cost i % sintj or T 25 and o iy

20.

is givenby p

Prove that the radius of curvature of the curve with parametric

equations x =x(s), y = y(s), z = z(s)

[<~) +( 5 + <d_-)2] Ve

The position vector of any point on the curve is r = x(s)i + y(s)j + z(s)k.

dr _ dx dy dz dT _ d%x &Py ., &z
Th = —==-i+Zj+ =Kk d — + — —k.
en B oL TRtk Tt et e
dT dT d?x2  d%y2  d°z2 1
But — = kN sothat <« = | —| = —) + (—=) + (— and theresult follows sin ==
s ld | ‘/(dSQ) (d"’) (52) ce p=—
2 3
dt dr_dr T
1. Showthat =— - -=5X=75 = —-
2 ds ds® ds®  p?
dr dr _dT v . dN | dk dx d
—_ = —_— = ——— = — = -— —_ = Py ._K
- T g =g TKNL Tm Kt e N = K(TB—KT) + ;=N = k7B K2T + o N
2 3
ar dr dr _ o 4 9K
7" ds2xds3 = T KNX(kTB—~k“T + s N)
= T+ (K 27 NxB — kONXT + k ZENxXN) = T-(K2TT +<°B) = K27 = %5

ds
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The result can be written

x ¥y z
T o= [(xn)2 n (}'")2 + (211)2]—1 x” )’" z"
" " 1;

x ¥y z

where primes denote derivatives with respect to s, by using the result of Problem 20.

22. Given the space curve x =¢, y = 2z = %ts, find (a) the curvature «x, (b) the torsion 7.

(@) The position vectoris r = ti + £2§ + %tsk.

Then dr = i + 2tj + 2:2k
de
ds _ |dr] _ dr dr _ 2 B 232 _ 1 4 02
- & = A= VDT @ @B = 1t
_dr _ dr/de _ i+ 2 + 2%k
and T =% ° T 1 + 22
AT (1 +20)(20 + 4k) — (i + 2§+ 27 K)(4e) _ o—4ti# (2 — 49)j + 4tk
de 1+ 29?2 1+ 2692
. 2\ .
Then dT _ dT/dt e 12 U (2—4t2)3 + 4tk .
ds ds/de (1 + 2t%)°
. dT _ dT | _ V(—4)? + @—42? + @Y _ 2
Since -—— = kN, K = l—l = 2 - 2y2
ds ds (1 + 2693 (1 + 2%
. 2\ .
(b) From @), N=- 19T . =21+ A=32) *+ %k
K ds 1+ 2
i j k
2 2 N
Then B = TxN = L 2w . 2i- 25tk
1+ 2t 1+ 2t 1+ 2 1+ 2:2
-2t 1—22 2
1+ 22 1+ %2 1+ 22
. 2 . . 2 .
Now dB _ 4l + (4 —2;32—- 4tk and dB B dB/dt Jui ot (& 22)3:3 4tk
de (1 + 2t ds ds /dt (1 + 2t%)
—2ti + (1—2%j + 2k . dB ) 2
Al —TN = —T — = —7TN, =
so, N [ 1+ 22 ] Since s N, we find 7 1+ 27F

Note that « = 7 for this curve.

23. Find equations in vector and rectangular form for the (a) tangent, (b) principal normal, and (¢)
binormal to the curve of Problem 22 at the point where ¢t = 1.

Let T,,N, and B, denote the tangent, principal normal and binormal vectors at the required point.
Then from Problem 22,
i +2j + 2 -2i — j + 2Kk 2i — 21 + k

Ty = 3 ’ Ny = 3 , By = 3
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24.

25.

VECTOR DIFFERENTIATION

If A denotes a given vector while L and r denote respectively the position vectors of the initial point
and an arbitrary point of A, then r—r_ is parallel to A and so the equation of A is (r-—ro) XA =0.

o]
Equation of tangent is r=rg) XTg=10
Then: Equation of principal normal is  (r—rgy) XN, =0
Equation of binormal is r—15) XB, =0

In rectangular form, with r =xi + yj + zk, rg =1 +j + %k these become respectively

x—=1 _y=1 _z—2/3 x—1_ y—-1 _2z-2/3 xz—1 _ y-—1 _ z2-2/3

1 2 2 -2 —1 2 2 -2 1
These equations can also be written in parametric form (see Problem 28, Chapter 1).

Find equations in vector and rectangular form for the (a) osculating plane, (b) normal plane, and
(¢) rectifying plane to the curve of Problems 22 and 23 at the point where ¢t =1.

(a) The osculating plane is the plane which contains the tangent and principal normal. If r is the position
vector of any point in this plane and r, is the position vector of the point =1, then r—rg is perpendic-
ular to By, the binormal at the point =1, i.e. (r—r,) B, = 0.

(b) The normal plane is the plane which is perpendicular to the tangent vector at the given point. Then
the required equation is (r—ry+Ty=0.

(¢) The rectifying plane is the plane which is perpendicu-
lar to the principal normal at the given point. The
required equation is (r—ro) *Ng = 0.

Osculating Plane

Normal Plane

In rectangular form the equations of (a), (b) and (¢)
become respectively,

26—1) ~2(y—1)+ L(z—2/3) = 0,
Ix—1)+ 2(y—1) + 2(z—2/3) = 0,
—2x—1)—1Uy~1)+ 2(z—2/3) = 0.

The adjoining figure shows the osculating, normal
and rectifying planes to a curve C at the point P.

Rectifying Plane

(a) Show that the equation r = r(u, v) represents a surface.
(b) Show that g—; x B_: represents a vector normal to the surface.
(¢) Determine a unit normal to the following surface, where a > 0:
r = acosu sinv i + a sinu sinv j + acosv k

(@) I we consider u to have a fixed value,
say ug, then r =r(uy,v) represents a
curve which can be denoted by u = u,.
Similarly u =u, defines another curve
r =r(u,,v). As u varies, therefore,r =
r(u,v) represents a curve which moves in
space and generates a surface S. Then
r = r(u,v) represents the surface S thus
generated, as shown in the adjoining fig- g B g

ure.

The curves u =ug, u=u4, ... represent definite curves on the surface. Similarly v =vy, v=v,,

... represent curves on the surface.

By assigning definite values to u and v, we obtain a point on the surface. Thus curves u = ug and
v = vy, for example, intersect and define the point (uy,v,) on the surface. We speak of the pair of num-
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bers (u,v) as defining the curvilinear coordinates on the surface. If all the curves u = constant and
v = constant are perpendicular at each point of intersection, we call the curvilinear coordinate system
orthogonal. For further discussion of curvilinear coordinates see Chapter 7.

(b) Consider point P having coordinates (g5 v5)
on a surface S, as shown in the adjacent dia-
gram. The vector Or/ du at P is obtained by
differentiating r with respect to u, keeping
v =constant =v5. From the theory of space
curves, it follows that Or/Ou at P repre-
sents a vector tangent to the curve v =v, at
P, as shown in the adjoining figure. Similar-

Or/dv at P represents a vector tangent
to the curve u = constant = u. Since Or/ Ou
and Or/ov represent vectors at P tangent
to curves which lie on the surface S at P, it
follows that these vectors are tangent to the

or Or

surface at P. Hence it follows that =— x=
au av

is a vector normal to S at P.

© 9% = _asinu sinv i + acosy sinv j
Ou
Or . . . .
> = acosu cosv i + asinu cosv j — asinv k
v
i i k
ar or . . .
Then 3 ,a = | —a sinu sinv a cosu sinv 0
v
a cosu cosv a sinu cosv —a sinv
N . . 2 . .
= —a? cosu sin?v i — o sinu sin®v i — a®sinv cosv k

represents a vector normal to the surface at any point (u,v).

Br or |§_
du

A unit normal is obtained by dividing 3 X ™ by its magnitude, | , given by

Q)lo)
-

Va* cos?u sin*v + a* sin®u sin*v + a® sin2v cos2v

Va* (cos?u + sinZu)sin*v + a* sin?v cosZv

il

1

= Va* sin?v (sin?v + cos?v) = o . . .
a“ sinv if sinv < 0

{ a2 sinv if sinv > 0
Then there are two unit normals given by
%+ (cosu sinv i + sinu sinv j + cosv k) = *n

It should be noted that the given surface is defined by x=a cosu sinv, y =a sinu sinv, z=a cosv
from which it is seen that x*+ y2+ 22 = &, which is a sphere of radius a. Since r=an, it follows that

n = cosu sinvi + sinu sinv j + cosv k

is the outward drawn unit normal to the sphere at the point (u,v).

26. Find an equation for the tangent plane to the surface z = x? +y2 at the point (1,-1, 2).

Let x=u, y=v, z= 2+v? be parametric equations of the surface. The position vector to any point
on the surface is
r = ui + vj + (u2+02)k
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Thena—=i+2uk=i+2k, §5=j+20k=
Ou v
By Problem 25, a normal n to the surface at this
n = ar or _
%

The position vector to point (1,—1,2) is Ry=i—j+ 2k,

The position vector to any point on the plane is

R = xi+tyj+zk

Then from the adjoining figure, R—R, is perpendicular to

n and the required equation of the plane is (R—Rg)-
or [(xi+yd+zk)—(@~j+2k)]+[—2i+2+Kk]

ie. —2(x—1)+ 2(y+1)+(z—=2) = 0 or 2x —2y —

MECHANICS

i+ 2k)x@—2k) =

j — 2k at the point (1,~1,2), where z =1 and v =-1.

point is

-2 +2j+k

n=90
= 0 -
z =2,

27. Show that the acceleration a of a particle which travels along a space curve with velocity v is

28.

given by
a - dv
dt

— T +

2

—N
J)

where T is the unit tangent vector to the space curve, N is its unit principal normal, and p is the

radius of curvature.

Velocity v = magnitude of v multiplied by unit tangent vector T
or v = vT

. - _dv _ d _ dv dT
Differentiating, a = T 5 (vT) = dt T + dt
dT _ dT ds ds _ _ vN
But by Problem 18(a), 2% - s oa@ KN o KvN = 0
Then a = @ o+ ,eN - dvp 4 2y

de p dt P

This shows that the component of the acceleration is dv/d¢ in a direction tangent to the path and »%/0 in

a direction of the principal normal to the path. The

latter acceleration is often called the centripetal accel-

eration. For a special case of this problem see Problem 12.

If r is the position vector of a particle of mass
on the particle, then rxF =M is the torque or m
H=rxmv and v is the velocity of the particle.

m relative to point O and F is the external force
oment of F about . Show that M =dH/d¢, where

d
M = rxF = rx 2 (mv) by Newton’s law.
But 7@ xmv) = rx—(mv) + ﬂxmv
dt dt
= rx—(mv) + vxmv rxd%(mv) + 0
. 4 - dH
i.e. M dt (l')(mv) = dt

Note that the result holds whether m is

constant or not.

H is called the angular momentum. The result
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states that the torque is equal to the time rate of change of angular momentum.

This result is easily extended to a system of n particles having respective masses m,, my,..., m,
n
and position vectors LIS PN :Lvith external forces F,,F,, ..., F,. For this case,d H =kz=1mk rkx vk
is the total angular momentum, M = > rkx Fk is the total torque, and the result is M = ~d—'t! as before.
k=1

An observer stationed at a point which is fixed rel-
ative to an xyz coordinate system with origin O, as
shown in the adjoining diagram, observes a vector
A =A4;i + A,j + A;k and calculates its time de-
rivative to be d—/h i+ i/—lzj+ ‘—iﬁ{ﬁ k. Later, he
dt dt dt

finds out that he and his coordinate system are ac-
tually rotating with respect to an XYZ coordinate
system taken as fixed in space and having origin
also at 0. He asks, ‘What would be the time de-
rivative of A for an observer who is fixed relative
to the XYZ coordinate system ?’

X x

(a) If % and % denote respectively the time derivatives of A with respect to the fixed
Vi n
and moving systems, show that there exists a vector quantity @ such that
dA| _ dA
dt 5 dt * wxA

(b) Let Df and D, be symbolic time derivative operators in the fixed and moving systems re-
spectively. Demonstrate the operator equivalence

Df = Dy + @wx

(a) To the fixed observer the unit vectors i, j, k actually change with time. Hence such an observer would
compute the time derivative of A as

dA _ dds dd, | A, di dj dk )

M R R A L T T S PR Le.
d_A = dA g_i dj + ii_k

@ dt If dt |m tAg ot A?Z ¥ 4 dt

Since i is a unit vector, di/d¢ is perpendicular to i (see Problem 9) and must therefore lie in the
plane of j and k. Then

di .
(3) Zf =+ 0k
Similarl, di i
v, @ P e ke
® &+ oag

From i.j =0, differentiation yields 1:—1 + Z—IJ =0. But i. ‘? =, from (4), and di ci= 0y
t t

t dt
from (3); then a4 = — oti .

- _ dk  di . _ -y - oo L dk o di o
Similarly from i-k =0, i.-5° + = k=0 and Og=-—0,; from j-k=0, It o k=0 and
Og=—0s.
di . dj . dk . .
Then 5. = ®.§+ @k, = Gk - 0i, Z5 = —0i—0g and
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di dj dk
A5 F g A T (A = O ANE (A — B AT+ (G4 + Ak

which can be written as

i i k
Og =0y 0Oy
4, A4, A,

(%) Wo [OF) = @WxA

where @ = wii + woj + wgk. The quantity @ is the angular velocity vector of the moving system
with respect to the fixed system.

(b) By definition DfA = % = derivative in fixed system
f
DmA = ‘i—l:l = derivative in moving system.
m
From (e), Df.A = D,A + wxA = (D, +wx)A

and shows the equivalence of the operators Df = Dm +@ X .

30. Determine the (a) velocity and (b) acceleration of a moving particle as seen by the two observ-
ers in Problem 29.

(a) Let vector A in Problem 29 be the position vector r of the particle. Using the operator notation of
Problem 29(b), we have

H Dfr = (D, twx)r = Dmr + wxr
But Dfr = va = velocity of particle relative to fixed system
Dmr = v pim = velocity of particle relative to moving system
@Wxr = vm | P = velocity of moving system relative to fixed system.
Then (1) can be written as
2) Voir = Vpim +@xr

or in the suggestive notation

3 . N
© Yor T Ypm T iy

Note that the roles of fixed and moving observers can, of course, be interchanged. Thus the fixed
observer can think of himself as really moving with respect to the other. For this case we must inter-
change subscripts m and f and also change @ to - @ since the relative rotation is reversed. If this is
done, (2) becomes

v = v — WxTr or v = v + @Wxr

plm plf plf plm

so that the result is valid for each observer.



31.

32.

33.

34.

)

If R
Ans.

Find
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The acceleration of the particle as determined by the fixed observer at O is Dfr = Df(Dfr) Take Df
of both sides of (1), using the operator equivalence established in Problem 29(b). Then

Df(Dfr) = Df(Dm r + @xr)
= (Dp+ @x)(Dyr + @xr)
= Dy(Dyr + @xr) + @x(Dyr + @xr)

= Dmr + Dy(@xr) + @ xDyr + @x (@xr)

or ngr = D;r + waDmr + (me)xr + @ x{(@xr)
Let a b7 = D; r = acceleration of particle relative to fixed system
a plm = D;j’lr = acceleration of particle relative to moving system.
Then amlf = 2w xDyr + (D @) xr + @x(@WxT)

= acceleration of moving system relative to fixed system
and we can write amf = ab|7'l + am'f .
For many cases of importance @ is a constant vector, i.e. the rotation proceeds with constant an-
gular velocity. Then me =0 and

amlf = za)xDmr + Wx(wxr) = wavm + @Wx(WXr)

The quantity 2@ xv, is called the Coriolis acceleration and @ x (@ xr) is called the centripetal accel-
eration.

Newton’s laws are strictly valid only in inertial systems, i.e. systems which are either fixed or
which move with constant velocity relative to a fixed system. The earth is not exactly an inertial sys-
tem and this accounts for the presence of the so called ‘fictitious’ extra forces (Coriolis, etc.) which
must be considered. If the mass of a particle is a constant ¥, then Newton’s second law becomes

@) MDpr = F — 2M@xD,r) — M[@x(@xn)]

where Dj denotes ddt as computed by an observer on the earth, and F is the resultant of all real
forces as measured by this observer. The last two terms on the right of (4) are negligible in most
cases and are not used in practice.

The theory of relativity due to Einstein has modified quite radically the concepts of absolute mo-
tion which are implied by Newtonian concepts and has led to revision of Newton’s laws.

SUPPLEMENTARY PROBLEMS

2
= =ty +1n(2+ 1)j — tan¢ k, find (a) dt s (b) dt"’ ,» (€) |4—Rl

@=—i~k, ()i+2j, (c)V2, @)V5

, @) ! [ at £=0.

the velocity and acceleration of a particle which moves along the curve x =2 sin 3¢, y = 2 cos 3¢,

2=8t at any time ¢> 0. Find the magnitude of the velocity and acceleration.

Ans.

Find

cons

If A
(a)d

v=6cos3ti— 6sin3tj+ 8k, a=—18sin3¢i ~ 18cos 3tj, |v|=10, |a]|=

a unit tangent vector to any point on the curve x =a cos wt, y =a sinwt, z = bt where a,b,w are
—aw sinwti + aw coswtj + bk

/aa) + b2

tants. Ans.

=2 — ti + (2t +1)k and B = (2t—-3)i +J - tk, find

(A- B), (b)d (A X B), (c)*|A+B| (d) (Ax t) at t=1. Ans. (a) =86, (b) Ti+3Kk, (c)1,
(d)i+6j + 2k
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35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

VECTOR DIFFERENTIATION

. d
If A=sinui+cosuj+uk, B=cosui—sinuj—3k,and C =2i +3j—k, find E(AX(BXC)) at u=0.
Ans. T+ 6j— 6k

a.’B dA . . ’B  d°A

Find — (A ~ s B) if A and B are differentiable functions of s. Ans. A- 22 T ds2 B

2

. . d
If A@)= 3770 — (t+4)j + (t°—20)k and B(t) = sinti + 3¢’ j — 3cost k, find 47 (AXB) at1=0.
Ans. —30i + 14j + 20k

d2A 2 dA

EF = 6ti— 24t"j + 4 sint k, find A given that A =2i +j and a = —i—3k att=0.

Ans. A = (P —t+2)i + (1—26Mj + (t—4sinn)k

Show that r = e't(ci cos 2t +C, sin2t), where C, and C, are constant vectors, is a solution of the dif-
2

ferential equation ii—,: + 20 4 5 = 9.
dt dt

show that the general solution of the differential equation Z 2 + 2(135 + w’r = 0, where 0 and w are con-

stants, is

’ /S 2_2 /2 2
@ = e e/ Oty e ) g of 0 > 0
() r = e 24C, sinVw? - 02 ¢ + C, cos VwZ—aZ ) if 0°—w? < 0.

ey r = e"at(e, +Cyt) if 02— a? =0,

where C, and C, are arbitrary constant vectors.

2 2 2
dr _ 4dr g5 o LI QU dr 4 4 =
Solve (a) d-_té 4d 5r 0, (b) dt 2d r 0, (¢) 2 0.

Ans. (@) r = Cqe5t + Coe~t, (b) r = e7HCy +Cot), () t = 01 cos 2t + Cyp sin 2¢

Solve '—% =X, % = ~Y. Ans. X =Cqy cost + C,sint, Y =Cq sint — C, cos ¢
9A A A 3 A a
If A =cosxyli + (3xy — Qx )i ~ (3x + 2y)k, find 'ax 'ay 'a 2 'ax ay ay A .
Ans. %;‘ = —y sinxy i + (3y—4x)j — 3k, gy = —xsinxy i +3xj — 2k,
2 2 2
—gx—g = _y2 cosxyi — 4j, '%72 = _x2 €Os xy i, a’ax%y a’i,ax = _(xy cosxy + Smxy)l + 3j
2

If A =x%yzi— 22°j +x2°k and B = 2z1 +yj — %%k, find fé—y (AxB) at (1,0,—2).
Ans., —4i — 8j

If C, and C, are constant vectors and A is a constang scalar, show that H = e")\jc (Cy sin Ay +C5 cos Ay)

satisfies the partial differential equation %_2 + %‘;‘ = 0.

. _ poetw(t— [7.%) ) T
rove that A = = , Where b, is a constant vector, @ and c are constant scalars and { =V -1,

satisfies the equation —%% + %%’% = c% %;—’2 . This result is of importance in electromagnetic theory.

DIFFERENTIAL GEOMETRY

47.

Find (a) the unit tangent T, (&) the curvature K, (c) the pnncipal normal N, (d) the binormal B, and (e¢) the
torsion T for the space curve x=t—¢/3, y= =12, z=t+:3,
Q=i + 2§ + 1+5k 2t 1-7
Ans, (@) T = (¢) N = — i+ ]
Va(l +¢3 1442 1+¢2 © 7
€ = 242
2 . 2 (1 +¢9)
t< — - 2j + 7+
) = 1 @ B = ( i 2t j ( Nk

a+ &Y V2 +7)



VECTOR DIFFERENTIATION 55

48. A space curve is defined in terms of the arc length parameter s by the equations

49.

50.

51.

52.

53.

54.

55.

56.

517.

58.

59.

60.

x = arc tans , y="2\/51n(82 +1), z =s —arctans
Find (@) T, )N, (¢)B, @)k, ()T, (NHp, () C.

i +V2sj + 5%k V2
Ans. (a) T =1_82sil—s @ « = 73y
—_ 2
By N = = 2.si+(1282)j+ 25k (@) T = 2‘/5 @ o= t!
s+ 1 s+ 1 o)
2 . 2
(c)p.:ii:?m ¢ p= £E1
s2+1 V2

3

Find « and 7 for the space curve x=¢, y = tQ, z2=1¢" called the twisted cubic.

2/9t + 92 + 1 3

Aps, K = —L _* T = -
(9t* + 4:2 + 1)3/2 9t + 92 + 1

Show that for a plane curve the torsion 7=10.

Show that the radius of curvature of a plane curve with equations y = f(x), z= 0, i.e. a curve in the xy

1,018/2
plane is given by 0 = [1+_<7)]_ .

n
ly"|
Find the curvature and radius of curvature of the curve with position vector r =a cosu i + b sinu j, where
a and b are positive constants. Interpret the case where a=5.

K=— 2 ab2 282" 5 if a=b, the given curve which is an ellipse, becomes a cir-
(a“ sin“u + b° cos“u) P

cle of radius a and its radius of curvature po=a.

Ans.

d d
Show that the Frenet-Serret formulas can be written in the form Z——: = wxT, f =wxN, Z? = @wxB and
determine @. Ans. @ =TT + B
Prove that the curvature of the space curve r =r(¢) is given numerically by « = —‘L-)lel- , where dots de-
note differentiation with respect to ¢. r
P.TXT
(a) Prove that 7 = —; —IE for the space curve r =r(z).
Ixr
3
dr dr d’r
2
(b) If the parameter ¢ is the arc length s show that 7 = ds 2a's 2,153
(d r/ds )
If @Q=rxr, show that «= |Q|3 , T= %—5 .
r

Find k and 7 for the space curve x = & — sin®, y = 1 —cos &, z = 4 sin(§/2).

Ans. K = lm, ¢ +cosB)cos @2 + 2sinf sinf/2
8 12 cos & — 4

2

2t +1 .t
-1 7 T -1
Ans. T=0. The curve lies on the plane x —3y +3z =5,

Find the torsion of the curve x = z = ¢t + 2, Explain your answer.

Show that the equations of the tangent line, principal normal and binormal to the space curve r =r(¢) at the
point =z, can be written respectively r =r,+tT,, r=r,+tNy, r=1,+:tB,, where ¢ is a parameter.

Find equations for the (a) tangent, (b) principal normal and (c) binormal to the curve x = 3 cos¢, y = 3 sin¢,
z = 4¢ at the point where ¢ =T,

Ans. (a) Tangent: r = —3i + 47k + t(—%j +%k) or x=-3, y= —gz. z =47t+%t.
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61.

62.

63.

VECTOR DIFFERENTIATION

(byNormal: r = —3i +4MWj+¢i or x

—~31+47[j+t(%—j+§-k) or x

—3+¢, y=4T, z=0.

— = -4—
3, ¥ 41[+5t, z

wfeo
o

(c) Binormal: r

Find equations for the (a) osculating plane, () normal plane and (c¢) rectifying plane to the curve x =3t—t3,
y=3t%, z=3t+¢° atthe point where ¢=1. Ans. (@)y—z+1=0, (b)y+z2—T7=0, (c)x=2
(a) Show that the differential of arc length on the surface r =r(,v) is given by
ds? = Fdu? + 2Fdudv + Gdv?
o or _ Oroe o or o o _ oOro
where £ T O Ou _(3u)’ F " %u O’ G = v Ov —(av)

(b) Prove that a necessary and sufficient condition that the u, v curvilinear coordinate system be orthogonal
is F=0.

Find an equation for the tangent plane to the surface z=xy at the point (2,3,6). Ans. 3x +2y —2z =6

64. Find equations for the tangent plane and normal line to the surface 4z =x2—y2 at the point (3,1,2).
Ans. 3x —y —22=4; x=3t+3, y=1—1t, 2=2~2t
2,2
9
65. Prove that a unit normal to the surface r =r(z,v) is n = % /_u_______vz , where E,F, and G are defined as
in Problem 62. EG -~ F
MECHANICS
66. A particle moves along the curve r = (2 — 42)i + (¢2 + 4¢)j + (8:2— 3%k, where ¢ is the time. Find the

67.

68.

69.

70.

magnitudes of the tangential and normal components of its acceleration when ¢=2.
Ans. Tangential, 16 ; normal, 2V 73

If a particle has velocity v and acceleration a along a space curve, prove that the radius of curvature of its

3
path is given numerically by o0 = v

| vxa|

An object is attracted to a fixed point O with a force F = f(r)r, called a central force, where r is the posi-
tion vector of the object relative to 0. Show that rxv = h where h is a constant vector. Prove that the
angular momentum is constant.

Prove that the acceleration vector of a particle moving along a space curve always lies in the osculating
plane.

(a) Pind the acceleratlon of a particle moving in the xy plane in terms of polar coordinates (0, ).
(b) What are the components of the acceleration parallel and perpendicular to p?

dns. @) t = [(P=pdcosd ~ (0P +2pP)sind]i
+ [o—pdsind + (0 +20¢) cos P 1

) p—pd2, pPp+2pd



Chapter 4

THE VECTOR DIFFERENTIAL OPERATOR DEL, written V, is defined by

VEii+§_'+_§.k§i.§_+ i.}.ki

Ox oy ! 9z Ox J Oy 0z
This vector operator possesses properties analogous to those of ordinary vectors. It is useful in de-
fining three quantities which arise in practical applications and are known as the gradient, the diver-

gence and the curl. The operator V is also known as nabla.

THE GRADIENT. Let ¢(x,y, z) be defined and differentiable at each point (x,y, z) in a certain re-
gion of space (i.e. ¢ defines a differentiable scalar field). Then the gradient of ¢,
written V¢ or grad ¢, is defined by
Vo = 3’+_§_'+3k =a_¢.i+iqé'+§_¢_>k
@ ( xl dy J 9z )@ ox oy J 9z
Note that V¢ defines a vector field.

The component of Vq& in the direction of a funit vector a js given byand is called the di-
rectional derivative of ¢ in the direction a. Physically, this is the rate of change of ¢ at (x,v,2) in

fhedirection a.

THE DIVERGENCE. Let V(x,y,z) = Vi + I,j + J/k be defined and differentiable at each point

(x,y,z) in a certain region of space (i.e. V defines a differentiable vector field).
Then the divergence of V, written V+V or div V, is defined by

VeV = (it it e+ R+ R

W, . W, . M
% | 3y | Bz

(]

Note the analogy with A-B = A,B, + A,B, + A4,B,. Also note that V-V # V.V,

THE CURL. If V(x,y,z) is a differentiable vector field then the curl or rotation of V, written Vx V,
curl V or rot V, is defined by

Vxv = (%i + %j + ilc)><(V1i + Vi + Vk

oz
i i k
- |2 2 2
d9x OJy Oz
V1 V2 Vs
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9 9 9 9 9 9
= |9y 9z|; _ ox Oz i+ ox Oy k
VQ VS Vl VS Vl VQ
12 oy .. oV, oW, oV, oW
= (gyﬁ—gf)n Pl T (5 - gk
Note that in the expansion of the determinant the operators 2 , 2 , ] must precede V., V,, V; .
Ox ' 9y’ Oz

FORMULAS INVOLVING V. If A and B are differentiable vector functions, and ¢ and  are differen-

tiable scalar functions of position (x,y, z), then

L Vip+y) =Vp +Vy  or grad (@ +y) = grad ¢ + grad Y
2. V-(A+B) = V-A + V.B or div(A+B) = divA + divB
3. Vx(A+B) = VxA +VxB or curl(A+B) = curl A + curl B
4. V-(@A) = (V¢)-A + $(V-A)
5. Vx (@A) = VdyxA + d(VxA)
6. V-(AxB) = B-(VxA) — A-(VxB)
7. Vx(AxB) = (B-V)A — B(V-A) — (A-V)B + A(V-B)
8. VA-B) = B-V)A + (A-V)B + Bx(VxA) + Ax(VxB)
9.V-(V¢)EV2¢E%Z%+§;?+%Z)§
where V7 = % + %:2 + a@:—Q is called the Laplacian operator.

10. Vx(V¢) = 0. The curl of the gradient of ¢ is zero.
11. V-(VxA) = 0. The divergence of the curl of A is zero.
12. Vx (VxA) = V(V-A) — V°A

In Formulas 9-12, it is supposed that ¢> and A have continuous second partial derivatives.

INVARIANCE. Consider two rectangular coordinate systems or frames of reference xyz and x'y'z'(see
figure below) having the same origin O but with axes rotated with respect to each

other.

A point P in space has coordinates (x,y, z)or
(x,y, z") relative to these coordinate systems. The
equations of transformation between coordinates
or the coordinate transformations are given by

x = lux + lj_Qy + 113 r4
) y' = lgx + lpy + gz
Z, = lsix + 132}’ + l33 z

where ljk, j.k=1,2,3, represent direction cosines
of the x',y' and z' axes with respecttothe x,y, and
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z axes (see Problem 38). In case the origins of the two coordinate systems are not coincident the
equations of transformation become

x' = l11x + l12y + lmz + a{
2) y' = lyx + lpy + lpz + ap
'
V4

= lgyx + lpy + lgz + a3

where origin O of the xyz coordinate system is located at (a3, as, a3) relative to the x'y'z' coordinate
system,

The transformation equations (1) define a pure rotation, while equations (2) define a rotation plus
translation. Any rigid body motion has the effect of a translation followed by a rotation. The trans-
formation (I) is also called an orthogonal transformation. A general linear transformation is called
an affine transformation.

Physically a scalar point function or scalar field ¢ (x,y,z) evaluated at a particular point should
be independent of the coordinates of the point. Thus the temperature at a point is not dependent on
whether coordinates (x,y,z) or (x,y, z') are used. Then if ¢(x,y,z) is the temperature at point P with
coordinates (x,y,z) while ¢'(x,y,z") is the temperature at the same point P with coordinates (x;y z"),
we must have ¢ (x,y,z) = ¢'(x,y,2"). If P(x,y,2) = ¢'(x,y,2"), where x,y,z and x,y, 2 are related
by the transformation equations (I) or (2), we call ¢ (x,y,z) an invariant with respect to the transfor-
mation. For example, x°+y°+z° is invariant under the transformation of rotation (I), since x®+y%+z%=
x,2 +y,2 + 2,2.

Similarly, a vector point function or vector field A(x,y,z) is called an invariant if A(x,y,z) =
A(x,y,z". This will be true if

Axy. i + Axy,0i + A xy,0k = AEyDi + Agxy,Hi’ + Ay, DK

In Chap. 7 and 8, more general transformations are considered and the above concepts are extended.

It can be shown (see Problem 41) that the gradient of an invariant scalar field is an invariant
vector field with respect to the transformations (I) or (2). Similarly, the divergence and curl of an in-
variant vector field are invariant under this transformation.

SOLVED PROBLEMS
THE GRADIENT
1. If ¢ (x,y,2) = 3x°y — y°z%, find V¢ (or grad ¢) at the point (1, -2, —1).

Q.,,0 .. 0 2, .82
Vo ‘ax“ay“’az'”“” y©z%)

Fej o) fe)
= i'é’x(3x2y—y322) + ]—a_y(3x2y—y822) + k'—g(3x2y—y322)

= 6xyi + (3x2—3y222)j - Zyszk
= 61 + {300F¥ =3(=2°1¥}i — 2(-2  (=1k
= —12i — 9§ — 16k
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2. Prove (a) V(F+G) = VF+VG, (b) V(FG) = F VG +G VF whete F and G are differentiable sca-
lar functions of x,y and z.

(@) V(F+GY = ail + ai] + .a%k)(hc)
= ia—i(F+G) + ja%l(F+G) + k—.g;(F+G)
RAEAE SRAL AL
B E
=(lai+,§a—+k§)F+(1§—+j,§+k§)G=VF+VG
®Y VFGy = ,(;a +§;j+a%k)(FG)
= %(FG): + ,(%(FG)j + -.(%(F‘G)k
= (F_(3 +Gy + (F%G +GSF + (F:SG +G%§)k
= BG acj+—a—ck) + G(%El +y3 +ﬂk) = FVG + GVF

Pttt s, ERR

3. Find Vo if (@) ¢p=1n]rl, ) p=1.

(@) r=xi+yj+zk Then |r| =va2+y2+z%2 and @ =In|r| = $In2+y2+2).

Vd) = 3Vin (x2 +y2 +z2)

= %{ig—ln(xhy?n?) + j%ln(x2,+y2+z2) + k.a-% In(x2+y2 +22)}
_ A 2y 2z U oxityj+ zk .
= 2li Frar . x2+y2+z2 FigEneee T k 2 +y2+22} T g2z T2

(b) V = V .l) = V Ql—_) = V{(x2+ 2+22)-1/b}
PoeVD = Vo y

9

= i-a(x2+y2+z2)—1/2 + ji(x2+y2+z,2)~1/2 + k—(x2+y2+22)—1/2
e dy 2z

-3/2

= i{—%(x2+y2+z2>‘3/22x} + j{—%(x2+y2+z2>‘3/22y} + k{= 22?4227 2}

—xi—yj—2zk _r
. XA yI—zIR 5

3
(x2+y2+22) 72

n—-2

4. Show that Vr" = nr”" r.
Vit = V(Va2+y2t22)t = Va2+y2+22)"/2

= iéa;{(x2+y2+z2)n/2} + j'%{(x2+:y2+zg)n/2} + kéa;{(x2+y2+z2)n/2}
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nfe-1 2z}

R LA R ) O S L g

271 xi 4 y§ + 2K)

2=-1 -2
n/ r = nrn r

n
n (x? +y2 + 22)

[}

n (r2)

. . . . . . n n-1
Note that if r =rr, wherer, isa unit vector in the direction r, then Vit= ar r.

~
@ Show that V¢ is a vector perpendicular to the surface ¢(x,y,z) = ¢ where ¢ is a constant.

6.

-

Let r==xi+yj+zk be the position vector to any point P(x,y,z) on the surface. Then dr = dxi +
dyj +dzk lies in the tangent plane to the surface at P.

But d¢p = a,a—fdx + %;Edy + %g—)dz =0 or (a—fi +—g;z§j +g—;¢k)o(dxi +dyj +dzk) = 0

ie. Vép.dr = 0 sothat V¢ is perpendicular to dr and therefore to the surface.

Find a unit normal to the surface ny + 2xz = 4 at the point (2,-2,3).

V(x2y+2xz) = (2xy + 22)i + %2 + 2xk = —2i + 4j + 4k at the point (2,—2,3).
—2i + 4j + 4k 1 2, 2
Then a unit normal to the surface = % = ~—1 + —j + —=k.
V(=2F +(4) +(4) 8 3 3

2k having direction opposite to that above.

. . . 2.
Another unit normal is gl—3l—3

Find an equation for the tangent plane to the surface 2xz2—3xy~4x =7 at the point (1,—1,2).

V(xz2—3xy —4x) = (222—3y—4)i — 3xj + 4xzk
Then a normal to the surface at the point (1,—1,2) is 7i — 3j + 8k.

The equation of a plane passing through a point whose position vector is ry and which is perpendicular
to the normal N is (r—ro) -N =0. (See Chap.2, Prob.18.) Then the required equation is

[(xi+yj+zk)—(@—j+2K)]+ (Ti~3j+8Kk) = 0
or Nx—1) — 3(y+1) + 8(z-2) = 0.

Let ¢(x,y,z) and ¢ (x+Ax, y+Ay, 2+Az) be the temperatures at two neighboring points P(x,y,z)
and Q(x+Ax, y+Ay, z+Az) of a certain region.

(a) Interpret physically the quantity b _ pxthz, y+ALAZ+AZ) = $(®:7.2) where As is the
distance between points P and Q. g

(b) Evaluate 1lim Ao _ do and interpret physically.
As-0 As ds

(c) Show that %@ - V..
ds ds

(a) Since AqS is the change in temperature between points P and Q and As is the distance between these
points, represents the average rate of change in temperature per unit distance in the direction from

P to Q.

Ad
As
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(b) From the calculus,

Ap = g—fo + ——g%bAy + %%)Az + infinitesimals of order higher than Ax,/Ay and Az

Then 1im 89 m 0L 0b Ly | O As

MM T A A Y 3 Bs T3 bBs

i$ _ d By |

or ds ~ Ox ds | Oy ds T 3 ds

o

s represents the rate of change of temperature with respect to distance at point P in a direction

toward Q. This is also called the directional derivative of ¢.

dop Spdx Opdy Opdz 3. b o dx dy | dz
= — + = + (g1+

-— = —= = - = = j+t s Kk)s(—it+t -——j+—Kk
(e) ds Ox ds Oy ds Oz ds oy ] Oz ) (ds ds 1 7 ds )
V.o
qS ds
Note that since %E is a unit vector, ng-gi is the component of V¢ in the direction of this unit

vector.

Show that the greatest rate of change of ¢, i.e. the maximum directional derivative, takes place
in the direction of, and has the magnitude of, the vector Vob.

By Problem 8(c), Z—? = Vd)-j—r is the projection of V¢ in the direction g—: . This projection will be
S

a maximum when qu and g—: have the same direction. Then the maximum value of :—? takes place in the

direction of Vb and its magnitude is | Ve | .

10. Find the directional derivative of ¢ = x%yz + 4x2z2 at (1,—2,—1) in the direction 2i — j — 2k.

Vo

ViPyz + 4x?) = (2xyz + 4220 + 222§ + (O +8xz)k
= 8i—j—10k at (1,-2,—1).
The unit vector in the direction of 2i — j — 2k is

- 2i—j— 2k . 2
V(2)? + (=12 + (=2)?

a

Then the required directional derivative is
. = —_—F - . 2 —_— .]; i — 2 = 1._6. l @ = 3_7
Vo.a (8i — j — 10k) GFi—gi—3k 3 t3t 3

Since this is positive, ¢ is increasing in this direction.

11. (a) Inwhat direction from the point (2,1,~1) is the directional derivative of ¢ = x2yz3 a maximum?

(b) What is the magnitude of this maximum?

Ve

V(x2y28) = nyzsi + P25 + 3x2yz2k

= —4i—4j+12k at (2,1,—1).

Then by Problem 9,



12.

13.

14.
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(@) the directional derivative is a maximum in the direction VqS = —4i —4j + 12k,
(b) the magnitude of this maximum is | Vp | = V(=42 + (=42 + (12¢ = V176 = 4V/11.

Find the angle between the surfaces x?+y2+22=9 and z =x®+y2—3 at the point (2,—1,2).

The angle between the surfaces at the point is the angle between the normals to the surfaces at the
point.
A normal to x2+y2+22 =9 at (2,—-1,2) is
Vo, = Vi2+y2+2%) = 20 + 2y) + 22k = 4i — 2j + 4k
A normal to z = x2+y2—3 or x2+y2—z =3 at (2,~1,2)is

Vo, = Vix2+y%—2) = 220 + 2yj — k = 4i — 2j — k
2 Yy

(V1) (Vo) = | Vepa| | Vb, cos 8, where 6 is the required angle. Then

|4i—2+4k| |4i—2—k]| cos &

(4i — 2j + 4k)- (4i — 2j — k)

16 + 4 ~ 4 = V@R +=2Y+@Y V@aR+=2Y+(—1¥ cos O

16 _8v21
eva1 %

and cos @ = = 0.5819; thus the acute angle is & = arc cos 0.5819 = 54°25',

Let R be the distance from a fixed point A(a,b,c) to any point P(x,y,z). Show that VR is a unit
vector in the direction AP = R.

If r, and rp are the position vectors ai+bj+ck and xi +yj+zk of 4 and P respectively, then
R=1—r, =(x—a)i+(y—b)j+(z—c)k, sothat R=V(x—aP+(y—bP+(z—c¥ . Then

VR = V(Vx—aP +(y=bYP +(z—=c?) = (x—a)i + (y—=b)) + z—c)k _ R
Vix—a¥ + (y=bY +(z—c¥ R

is a unit vector in the direction R.

Let P be any point on an ellipse whose foci are at points 4 and B, as shown in the figure below.
Prove that lines AP and BP make equal angles with the tangent to the ellipse at P.

Let R1= AP and R,=BP denote vectors drawn re-
spectively from foci 4 and B to point P on the ellipse, and
let T be a unit tangent to the ellipse at P.

Since an ellipse is the locus of all points P the sum
of whose distances from two fixed points 4 and B is a

constant p, it is seen that the equation of the ellipse is Rq
Ro

R 1 + RQ =p. /

K

By Problem 5, V(R;+R,) is a normal to the ellipse;
hence [V(R{+R)]-T=0 or (VR))-T=—(VRy).T.

since VR4 and VR, are unit vectors in direction R4
and R, respectively (Problem 13), the cosine of the angle
between VR, and T is equal to the cosine of the angle be-
tween VR1 and —T; hence the angles themselves are equal.

The problem has a physical interpretation. Light rays (or sound waves) originating at focus 4, for
example, will be reflected from the ellipse to focus B.
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15. If A = x%i — 2y%2%j + xy*zk, find V- A (or div A) at the point (1,—1,1).

V-a = (a—ax'l + a—ayj + a%k). (x%2i — 2¥%22§ + xy2%2 k)
= %(x% * a%‘“ %% + :(%(xy"‘z)
= 2z — 6% +xy? = 211 — 6(—12(D7 + (1)(=1F = —3 at(1,~1,1)
16. Given ¢ = 2¢°%°2*. (a) Find V-V (or div grad ¢).
y 2 2 2
(b) Show that V-V¢ = V2q5, where V° = Y- ‘E‘E denotes the Laplacian operator

@) Vo = i—a-(zxsy"’zﬂ +
Ox

4.
= 6x2y22 i

Then V-V

(21 +

Ox

9 %
3 Ox
2

9

by V-V

i

%*  ¥® 9z
:(%(Zxafz“) + k a—az(zx3y2z4)

323

+ 4xsy24j + 8y 2  k

z (%i * 58;1 * a%k) (6% + a2ty + 8% k)
- ﬁ_ 2 4 ﬁ 3, 4 ﬁ 3.2,3
2 BT ¥ g D 5 @
= 1?.«:)'22:4 + 4%+ 24x3y222
3., % 3 3%
ayj+azk).(g. +§;'_j+§z—k)
22, , 3% o Ve, P
' O 2020 T w9 T 2
> 2
+§§)¢ = Vo

2
(2 + 2
W

1. Prove that V(1) =o.

2,1
Ox /x24y2 42

Similarly,

1

)
1% x2+y2+22

r

2 1 g ¥ F
Vi = (g{, +§y—2+—é?)(
ai(x2+y"’+z")"1/2 = —:\:(xQ+y"’+z2)"3/2

X

9 [—x (x2+y2+22)-3/2]
Ox

o %2 — g2 2

(x2+y2+ 22)5/2

5/2

3x2(x2+y2 +22) /7 = (x2+y?+22)
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_?i(_l— - M
92 Va2 +y2422
2 2 2
s 8 3 3 1
Then by addition,
v 32 " 32

equation.

18. Prove: (a) V:(A+ B)
(b) V-(¢A)

=V.-A+V.B
= (Vg)y-A + $(V-A).

)(—*———)
Va2 4424 22

2 .
The equation V'¢b = 0 is called Laplace’s equation.

2
1

222 — 22 — 42

9
and ( 5)
(2 +y2+22)%? 0z2" /2 +y2+7°

= 0.

(@) Let A = Aji + Ay§j + Agk, B = Byi + Byj + Bgk.

(2+y2+2%) 5/2

Then V’(A+B) = _Eil + _3_1 + —_k) [(A1+ )i+ (AFBHI + (A3+Bs)k]
ax Oy
9 9 9
= -_a—x(Al+Bl) + 8_;'(A2+82) + gz'(Aa'*Bs)
.04y o4, 043 OBy OB, _ OBy
Ox Oy Jz Ox By Jz

®) V- (@A)

19. Prove V(

9 0 9

It

S

V-a + Ven

Ve (@A + PAyi + PAgk)

2 9 9

ax<¢A1) * By(¢A2) * az(¢A3)
B, L g2 L B0, M
8xA1+ 8x+ByA2+ 3
% %, , o4y
T Aty e P
(a—¢i + B_qu .

¥ ¥y 2

(Vy-A + ¢$(V-a)

3) = 0.

(0 + == + K« (440 + A0 + A3k)
x

C@i 2y 2

Ox

Oz

= K)+ (A + Agj + Agk) + ¢(———1 +21 + —
x

Oy

Let ¢ =r~8 and A=r in the result of Problem 18(b).

Then V-¢°n)

i

(V3

-5

V.r

0»

yer + (r

—3r °r.r + 3r-:3 =

using Problem 4.

2.y (Byi + Byi + Bok)
3

G K) . (A3i + Aoj + A3k)
Oz

65

1t follows that ¢ = 1/r is a solution of this
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20. Prove V-(UVV -V VU = UVV — V VU,

From Problem 18(b), with @ = U and A = VV,
V-wvVryy = (V. (Vvy + v(V-Vvy = (Viy-(Vry + VAL
Interchanging U and V yields V-(¥ YUy = (VVy-(VUy + v VU.
V. Vv - vVu)
V0y(V¥y + UVEY — [V (Vuy+ v VU]
vV — vV

Then subtracting, V-(U VV) — V(v Vi)

21. A fluid moves so that its velocity at any point is v(x,y,z). Show that the loss of fluid per unit
volume per unit time in a small parallelepiped having center at P(x,y,z) and edges parallel to the
coordinate axes and having magnitude Ax, Ay, Az respectively, is given approximately by div v =

Vev.

Referring to the figure above,

x component of velocity v at P S
10

x component of v at center of face AFED = v, — 3 —ail Ax  approx.

X
x component of v at center of face GHCB = v, + %%ﬂ Ox  approx.

X

o
Then (1) volume of fluid crossing AFED per unit time = (v, — _; §i Axy DNy Nz
X

(2) volume of fluid crossing GHCB per unit time

i

(v, + %% Ay By Bz
X

Loss in volume per unit time in x direction

(2) - (1) = ?ﬂ DxNy Az,
Ox

v
Similarly, loss in volume per unit time in y direction = 8—2 Dx Ny Dz
Y
. G v
loss in volume per unit time in z direction = 3—3 Dx Ny Az
F4

Then, total loss in volume per unit volume per unit time
e 9
(% + %2 + %)&AyAz
x 4 z = divv = V.y
AxDy Dz
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This is true exactly only in the limit as the parallelepiped shrinks to P, i.e. as Ax,/\y and Az approach
zero. If there is no loss of fluid anywhere, then V.v = 0. This is called the continuity equation for an in-
compressible fluid. Since fluid is neither created nor destroyed at any point, it is said to have no sources
or sinks. A vector such as v whose divergence is zero is sometimes called solenoidal.

22. Determine the constant a so that the vector V = (x+3y)i + (y —22)j + (x +az)k is solenoidal,
A vector V is solenoidal if its divergence is zero (Problem 21).
9

V-v = ﬁ(x-»sy) + —(y—2z) + ﬁ(x*‘az) = 1+1+a
x Oy Oz

Then V-V=a+2=0 when a = —2.
THE CURL

23. If A =x2"i — 2®yzj + 2yz*k, find Vx A (or curl A) at the point (1,—1,1).

Vxa = (ii + -Qj +ﬁk)x(xzei — 2a%zj + 2yz*K)

Ox Oy Oz
i J
I ) 9 9
Ox Oy 0z
xz> —2x2yz 2yz4
L) 4 3 . el e ; 9 el
= [==(2 - = (=2 + [ @2® — (M) o+ L (=2Py2) — =—(x2°
[By( yz®) .az( yz)li [Bz (xz%) Bx( yz*)]i [Bx( yz) ay(xz Yk
= (22% + 2%)i + 8x2%j — 4dxyzk = 3j + 4k at (1,—1,1).
24. If A = 2%i — 2xzj + 2yzk, find curl curl A.
culcurlA = Vx(VxA)
i J k
Pl o) Pl v . 2
= — — — = 2 — +2
Vx| 3 5 5 x [(2x+22)i — ®+22)k]
x2y -2z 2yz
i J k
L) L) &
= < < < = (2x+2)]
¥ > 3 @*2)
2% +2z 0 =2z

25. Prove: (a) Vx(A+B) = VxA + VxB
b)Y Vx(pA) = (V) x A + &(VxA).
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(@) Let A = A,i +4,j+A,k, B= B,i+B,j+B k. Then:

9 9 9

Vx(A+B) = (1 + gj + k) x [(A,+Bp1 + (4,#B))] + (Ag+Bk]
i i k
X 9 9
x dy 3z
A+B, A +B, AgtB,
[—(A+B - A+B]i + [aA+B aA+B]'
D — 3, @B ( 3, et Bl
+ [—(A otBy — a(A 4Bk
QA5 04, 04, ’aA3 04, OA,
= [Z=2 - i - = =2 - ]k
ool LI i -5
OBg 9B, 831 OB3 OB, OB,
[ﬁy— az][ + [.az '—-]j + '.—a'x— —57]k
= VXA + VXB
) Vx (@A) = Vx(p4,1+d4,i+ P4k
J k
- | 2 X} 9
x d 3z
P4, P4, P4,
= [Lipay - L@papli + [a @4 — —<¢Ag)]s v [y - 3—<¢~A1>]k
dy 3z x dy

[¢3A3 4y — p2 _ aa—fAQh

Sy oz
o4y, -0 %43 o 04, 9 04, 9¢
A — - —A4 Ay — p— — X4
Fl sty gl e S — bt - S
C p[Ma_ Moy My Vo W Oy
qb[(ay SO (2 - =0 (] ay"‘]

3<—pAg)l + (a¢A1 - %

S 3, -a—As)j + (2¢A2 - -—215141”‘]

i

i k
Vxa 8_q_5 9% a__?
PVxA + 5 3

Ay 4, g

d(Vxa)y + (VpyxaA.
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26. Evaluate V-(Axr) if VxA =0,

Let A=A1i+A2j+Ask, r=xi+yj+zk.

i i k
Then AxXr = Ay AQ As
x ¥ 2z

(zAp = yAan + (xdg—z4)] + (yA1—=xAx)k

and V-(Axr) ,—aa— (zAp — yAg) + K} (xAg — z4,) + ai;(yAl - xA5)
X

dy
- x(%%—-%"f) + y(%%—%’:f) + z(%—’fj—%—’;i)
= [xi+yi+zk]-[<%y@——aa‘f)i+<%§—%’f)j+<aa—’f—%’-;1)k]

i

r-(VxA) = r-curlA. If VxA =g this reduces to zero.

27. Prove: (a) Vx(Vg) =0 (curl grad ¢ =0), (b) V-(VxA) =0 (divcurl A =0).

Vx(a—i)i+a_¢j+2?k)

@) Vx (Vi)

% O o
i i k
S ] 9 9
% O oz
% % 3

X% oy o

[3(3—?)—3<a—¢)]i + [3<a—¢)~3<a—¢’>h + [3<a—¢-’)—3<a—¢)]k

Oy Oz 0z O %z ox  Ox oz O9x Oy Oy ox
32 2 3 2 2 32
(28 _ by (2202, (J2 22, .,
Jydz 0z %20x  Oxoz 9z dy Oy ox
provided we assume that ¢ has continuous second partial derivatives so that the order of differentiation is
immaterial.
i i k
V' = V _a— .a_ i
() V- (VxA) > ¥ o
Ay Ao As
v M, B Ve My
= Vel - hi v g - i g - Sl
D Mg By, D O e D 3y My,
T % 9y o %y 0z o %z ox oy
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_ Yae _ Fay | Fay _ Fa | L4, Fuy _ .
3%y | 3w B Bx x| 20y

assuming that A has continuous second partial derivatives.

Note the similarity between the above results and the results (CxCm) = (CxC)m =0, where m is a
scalar and C+(CxA)=(CxC)+A=0.

28. Find curl(rf(r)) where f(r) is differentiable.

curl @ f(r)) = Vx(rfe)

Vx(xfni+y i+ zfnk

i i k
= | 2 9 9
e o %

x f(r) y f(r) z f(r)

o o, F o, o o
(Zg—y;g;)l " (xaz_zax)] ¥ (yax xay)k
of (A x NI marm . [0 xS fly 2
But g_(.a_r)(ax)_ar ax( x° +y©+2%) x2+y2+_22 — Similarly, > and Py
1 1 ! [ 1 1
Thentheresutt = (=1L —y L2y + L2 2L%yy 4 L2l < .
20. Prove Vx (VxA) = —VA + V(V-A).
i i k
v = 9o 92 2
< (Vxay = Vxds 5 %
Ay Ay As
24 24 04 04 04 94
=V 28 202§ i B G4z _ 941
L Sl LIS il wl B wiil-wtl )
i i
. 9 9 2
Y S 3
Mo By My M2
S o 32 on % o
I VA VA W VR VAN
0 943 _ Oy, _ O Ody O
St T RS TS)
+ [.a_(aAl_%) - _?_(_%_a_.AQ)]k
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U, A, U, VA, Uy A4,
CR TRt T O e T Cge T
2 2 2 2 2 2
(8A2+8A3)i +(3A3+3A1)j +(8,41)(8,42)“
3y ox 0z ox 20y xdy %0z  Oyo:
2 2

SA Ody | Oy

2 2 2 2 2
ody )l+(aA1+’aA2+’aA3 . 3A1+3A2 +3A3
3x2 ayax azax

3xdy Oy2 Jz0y %0z Oydz 07

+( Yk

s . T I
= —(3;+a—f,+§;§)(A1l*A21+Aak)

(0 04; 04y Oy O My My M O Ody Odp Oy
YIRS TS TR TSR Ty TR TR S Ty T

Ly, e, e
Va Vit i)

—VA + V(V-a)

If desired, the labor of writing can be shortened in this as well as other derivations by writing only the i
components since the others can be obtained by symmetry.

The result can also be established formally as follows. From Problem 47(e), Chapter 2,

() Ax (BxC) = B(A-C) — (A-B)C
Placing A=B=V and C =F,
Vx (Vxpy = V(V.-Fpy — (V-BHF = V(V.F) — V'r

Note that the formula (I) must be written so that the operators A and B precede the operand C, otherwise
the formalism fails to apply.

30. If v=wxr, prove @ = 3 curl v where @ is a constant vector.

i j k
culy = Vxv = Vx(@xn = Vx|w, w, w;
x y z

Vx [(0)22 —Cl)ay)i + (wsx —O)ll)j + (wiy—ng)k]

i i k
__a% _a% -agz- = 2(a)1i + (4)21 + wak) = 2@ .

WozZ — gy Wgax — Wy 2 Wy — Wox
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Then @ = 3V xv = 3 curlv.

This problem indicates that the curl of a vector field has something to do with rotational properties of
the field. This is confirmed in Chapter 6. If the field F is that due to a moving fluid, for example, then a
paddle wheel placed at various points in the field would tend to rotate in regions where curl F# 0, while if

curl F = 9 in the region there would be no rotation and the field F is then called irrotational. A field which
is not irrotational is sometimes called a vortex field.

2
31. f V-E=0, V-H =0, VxE=—a—u, VxH=aE, show that E and H satisfy VQu - %u

¢ -
2
- _OoH _ _ D9 . _O/0E, _ OE
Vx(VxE) = Vx( at) B at(VxH) at(az) Q2
2
By Problem 29, Vx (VxE) = _VE +VV-Ey = —V’E. Then VE = %—:%

. E, _ D 3. om R

:V — = —— = —— — — = ——
Similarly, V x (VxH) X(Bt) Bz(VXE) Bz( % 32
2

But Vx (VxH) = —V°R + V(V-m) = —~V°H. Then V'H = %%.
t

The given equations are related to Maxwell’s equations of electromagnetic theory. The equation
2

Ju, Ju, du _ du

52 T 3.2 5—2 = 5—2 is called the wave equation.
x y z t

MISCELLANEOUS PROBLEMS.

32. (a) A vector V is called irrotational if curl V=0 (see Problem 30). Find constants a,b,c so that

V = (x+2 +az)i + (bx — 3y —2)j + (4x +cy + 22)k
is irrotational.

(b) Show that V can be expressed as the gradient of a scalar function.

i i k
(@ curlv = Vxv = a—ax -_(% a% = (c+Di + (a—4)j + (b—2)k

x +2y taz bx —3y—z 4x +cy +2z

This equals zero when a=4, =2, ¢=~1 and

V = (x+2y +42)i + (X —3y —2)j + (4x —y + 22)k

(b) Assume V = V¢ = g—‘fi + %zéj + g_(fk

Then (1)8—?=x+2y+4z, (2)a—¢=2x—3y—~z, (3) aqb_

=— = dx -y + 22,
Ox dy 3z ¥
Integrating (1) partially with respect to x, keeping y and z constant,
%2
4 b = Gt 2wy o+ szt f(y,2)

where f(y,z) is an arbitrary function of ¥ and z. Similarly from (2) and (3),
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32
&y — % — yz + g(x,2)

(5) ¢

(6) b = 4xz — yz + 22 + h(xy).

Comparison of (4), (5) and (6) shows that there will be a common value of qb if we choose

3 2 x2 %2 3 2
fo2) = =% 2%, ewa) =5 +F5, hGay) =5 - F

so that

2 2
¢=%_§2Z—+z2+2xy+4xz—yz

Note that we can also add any constant to ¢b. In general if Vx V =0, then we can find ¢ so that V=V.
A vector field V which can be derived from a scalar field @ so that V= V¢ is called a conservative vector
field and @ is called the scalar potential. Note that conversely if V=V, then Vx V = 0 (see Prob.27a).

33. Show that if ¢(x,y,z) is any solution of Laplace’s equation, then V¢ is a vector which is both
solenoidal and irrotational.

By hypothesis, ¢ satisfies Laplace’s equation V2¢ =0, i.e. V- (V) = 0. Then Vo is solenoidal (see
Problems 21 and 22).

From Problem 27z, V x (V) = 0 so that Vo is also irrotational.

34. Give a possible definition of grad B.

Assume B = B;i + B,j + Bgk. Formally, we can define grad B as

Vs = (a—ii +a%j +:§;k)(81i + Boj + Bgk)
aai:ii + %B—;Qij +%%ik
+%By131 + %ijj + aa_is',k
+ %B;:ki + a—aBzgkj +%kk

The quantities ii, ij, etc., are called unit dyads. (Note that ij, for example, is not the same as ji.)
A quantity of the form

a,ii + o, 1] + a ik + g, ji + a22jj + azzjk + asu.ki + aszkj + akk

is called a dyadic and the coefficients aji, @10, ... are its components. An array of these nine compo-
nents in the form

11 a10 a13
Q21 G20 Qo3

agy Gzo Q33

is called a 3 by 3 matrix. A dyadic is a generalization of a vector. Still further generalization leads to
triadics which are quantities consisting of 27 terms of the form a44q iii +aoy jii +.... A study of how
the components of a dyadic or triadic transform from one system of coordinates to another leads to the sub-
ject of tensor analysis which is taken up in Chapter 8.
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35. Let a vector A be defined by A = A;i + A,i + Agk and a dyadic @ by
D = aydi + apij + aik + andi + axdi + axplk + a;h ki + azki + oagzkk
Give a possible definition of A-®.

Formally, assuming the distributive law to hold,
AdD = (A]_l + AQ] + Aak)'(b = Aii'o + AQj‘d’ + Ask’d)
As an example, consider i-®. This product is formed by taking the dot product of i with each term of

® and adding results. Typical examples are i-aqqii, i-aioij, i+axji, i-agk], etc. If we give mean-
ing to these as follows

ieapqii = ay(i-i = agi since i-i =1
ieappij = app(i-Di = a2 since i-i =1
i-apji = an(-Ni = 0 since i+j = 0
i-agkj = ag(i-k)j = 0 since i-k = 0

and give analogous interpretation to the terms of j-d and k+d, then

A-®

Ar(e11i+ a1 j+ a1z K) + Ao(an i+ am j+ ag k) + Aglasy i+ag i+ agg k)
(A1a11 + Agag + Agag) i + (Aiogo + Apas + Agage) § + (Aiay3 + Aoasg + Agags) kK

which is a vector.
36. (a) Interpret the symbol A-V. (b) Give a possible meaning to (A-V)B. (c) Is it possible to
write this as A-VB without ambiguity?

(@) Let A = Aji + Apj + Agk. Then, formally,

9 ) )

AV = (431 + Apd + Agk) - (5-1 + = + =k)
% Oy z
- 40 9 9
= Ay, oAyt Ay

is an operator. For example,

9

I - R IR . % 9%
AVY = <Aiax+A23y+Asaz)¢ = A + A= + Ao

x
Note that this is the same as A-V¢b.

(b) Formally, using (a) with ¢ replaced by B = B, i + B,j + Bak,

- 49 9 O\p . 4.9B 9B oB
AV)B = A= +Agay tAssO)B = ASo+ 4, > + Aa
OB, 9B, OB, 3B, 9B, OB, OB, OB, OB,

(Al-g + AQTy' + Ast)i + <A1-§x— + Ag.a—y + Asﬁ)l + (A:LE + AQ-a—y— + Azg—)k

k4

(¢) Use the interpretation of VB as given in Problem 34. Then, according to the symbolism established
in Problem 35,

A'VB = (Aqi + Aoj + Agk)- VB = A4,i-VB + A4,j-VB + A;k-VB
3B, , 9B, B 2By, 3B, OB By, 3B, OB
AG It ARG S 0 A+ o T
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which gives the same result as that given in part (b). It follows that (A-V)B = A-VB without ambi-
guity provided the concept of dyadics is introduced with properties as indicated.

37. If A =2yzi— 2’j +x2°k, B =% +yzj —xyk and ¢ = 2¢%2z°, find
(@) (Ao, (b) AV, (c) B-VYA, (@) (AxV)p, (e) Ax Ve,

@ AVD = [2yzi— 2 + 2220+ (21 + 2§ + Li)l
d9x  dy Oz
= (2yza;a:; - nyai; + sz—,;—z) (2x%y2z%)
- L@ty - D@t v e 2
O dy dz
= (22)(xy2®) — (PN (2%2°) + (x2?)(65y2%)
- 8xy224 _ 2x4yzs " 6x3y24
®) A-Vp = (2yzi — 2% ] +xz"‘k).(§91 +a—¢j + %k)
X% dy oz

(2yzi — xzyj + x2°k) - (4xyzsi + 22505 + 6x2y22k)
- 8xy224 _ 2x4yzs + 6x3yz4

Comparison with (a) illustrates the result (A-V)o = A -qu.

o) 9

(621 + yzj — xyby+ (20 + 25 + 2k)]aA
Z

-V
(c) (B-V)A 3 3y

2@ .33, _ .2, o _ 2
e TR, TRIA T TR Ty, Ty,

= x2(-—2xyj + 22k) + yz(2zi ~ x2j) — xy(2yi + 2xzKk)
= (2yz2 - 2xy2)i - (2x3y + x2yz)j + (ac222 - 2x2yz)k

For comparison of this with B-VA, see Problem 36(c).

@ AxWp = [@yz1— Pyg + 22l x (i + 25 + LK)l
w Ty T
i J k
= [ 2z —x%y xz2| ¢
9 o 9
3 S 32
= §(— i —_ 21 2_8_ . i _a_ i
[i¢ x2yaz xZ ay) + j(xz % 2yz az) + k(2yz 3 +x2yax)]¢
e o e ) 0
= “"Qyié +x2"’%—(f)i + (szB—q:-— 2y2"a%)j + (Zyz—aiy5 +x"’y‘ai:)k

— (6x4y222 + 2x32.5)i ¥ (4x2y25 _ 12x2y223 Vi o+ (4)62}’24 ¥ 4x3y223 )k
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(e) AxVp = (2yzi — x%j + szk)x(—a—@i + —afj + éfk)
% T3 T
i h] k
= 2yz -—x2y xz?
o % %9
o 3 3
[ 5 9 Ie; 3 3
= (——xgy—-é%?— ng—f)i + (ng—-a—(-f - 2yz£)j + (2yz—a—(f + ny—a—(f)k

= - (6:\:4)'222 + 2°2%)i + (4x2y25 - 12x2y223)1 + (4::2)/24 + 4x3y2z3)k

Comparison with (d) illustrates the result (AxV)p = A x V.

INVARIANCE

38. Two rectangular xyz and x'y'z’ coordinate systems having the same origin are rotated with re-
spect to each other. Derive the transformation equations between the coordinates of a point in
the two systems.

Let r and r’ be the position vectors of any point P in the two systems (see figure on page 58). Then
. !
since r=r,

() i+ yljl + zlkl = xi + yj +zKk

Now for any vector A we have (Problem 20, Chapter 2),

A = (A-iVi + @AGHT + A-KHK
Then letting A = i, j,k in succession,
io= @i o+ @ KK = b i+ Doy i 4 Ik
(2) io= aihi o+ dehd v GRYK = lpil 4 i+ Ik
k = kei)i' + (ki) i + (kKK = lsi' ¢ bgd 4 Igk'

Substituting equations (2) in (I) and equating coefficients of i', j', k' we find

3 2 = lax + lpy + lgz, y' = lax +ipy + lnz, z' = byx +lgpy + lggz

the required transformation equations.

39. Prove i' = 111i + llgj + llSk
logi + Lo + Lok
Iy i + lgpd + Iygk

=

]
K

For any vector A we have A = (A<i)i + (A<))j + (A-Kk)k.

Then letting A = i', j', k' in succession,

o
n

d-ni o+ d-pi o+ @Kk Lgi + L + ligk
Geii o+ @it GBIk = lgi + bpd + Ik
k'-iyi + &-Hi + G-Kk lggi + lopj + lagk

ol
"
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40. Prove that ¢>2 lpm lpn 1 if m=n, and 0 if m#n, where m and n can assume any of the values
1,2,3.

¥rom equations (2) of Problem 38,

il = 1 = (i + lpyd’ + lggk") + (faad’ + Ipgd' + lnk)
= Uh g+ Uy

ief = 0 = (lygi' + Iogd + lgk') « (aod’ + Iood’ + Lpk))
= lalo + lnle + lgle

Pk = 0 = (lagi' + logd + logK') « (lygi' + Log + Lok’

hiylyg + loglog + la1lss

be proved for m=2 and m=3.

= 3
By writing Smn = { (1) :: :#: the result can be written ﬁz:l li”ﬂ li)n = 81,m.

The symbol &, is called Kronecker’s symbol.

41. If ¢(x,y,z) is a scalar invariant with respect to a rotation of axes, prove that grad¢ is a vector
invariant under this transformation.

By hypothesis ¢(x,y,2) = @'(x',y,2"). To establish the desired result we must prove that

op 3<15 . L ., X, P,
+ + k_a, +a'j+8'

EVL B WE K

Using the chain rule and the transformation equations (3) of Problem 38, we have

§i¢ ‘a¢l ‘axl ‘a¢l ’ayl ‘a¢l ‘azl ‘a¢l ‘a¢l ‘a¢l

% T W m % w e T wm? ?l” v
'a._qb = E@’.‘a_x., + ‘a¢‘ay + L;?.'E - .’ééll + a¢l + %l
dy o' dy dy' Jy 2" Jy ' a' 3 %
9% | A oy P ' oF

3 T W B ¥} T Wt il t ke

Multiplying these equations by i, j, k respectively, adding and using Problem 39, the required result fol-
lows.
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SUPPLEMENTARY PROBLEMS

If ¢

2z* — %, find Vo and | Vb | at the point (2,—2,~1).

Ans. 10i —4j — 16k, 2V 93

If A=2%i—3yzj +xz°k and ¢ = 2z —x°, find A-V and Ax Vb at the point (1,—1,1).

Ans. 5, Ti—j~— 11k

K F = +e”%and G = 22% — xy?, find (@) V(F+G) and (b) V(FG) at the point (1,0,—2).

Ans. (a) —4i +9j +k, (b) —8j
Find Vlrls. Ans. 3rr
finr

Prove Vf(r) =

r

Evaluate V(3" — 477 + ).

r
if VUu=9o*r, findU. Ans.

Find () such that Vo = _rs_
r

Find Vi where Y = (x2+y2+2%) e

If Vob = 2y2®i + x%2° § + 3x%2%k, find P(x,y,2) if P(1,—2,2) = 4.

Ans. (6 — or~%2 _ 2r"7/3) r

r%3 + constant

—Vx2+ 92+ 22

Ans.

and @(1)=0. Ans. P(@)= —;’—(1 —:1;3‘)

2-r) e-rr

Ans. ¢ = ;\:Qyz3 + 20

if Vi = (32— 209231 + (3 + 2xy — x%2%)j + (62° — 3% 2%)k, find .
Ans. Y = xy? — :\:Qyz8 +3y +(3/2)z* + constant

If U is a differentiable function of x,y,z , prove Vu.dr = dU.

If F is a differentiable function of x,y,z,t where x,y,z are differentiable functions of ¢, prove that

dF _ OF Ldr
de 3:+VFdz

If A is a constant vector, prove V(r-A) = A.

If Ax,y,2) = A1i + Aoj + Agk, show that dA = (VA,-dryi + (Vdg-dr)j + (VAz-dnk.

G¢VF — FVG

F
P ViZy =
rove (G) c?

Find a unit vector which is perpendicular to the surface of the paraboloid of revolution z = x2 + y2 at the
2i +4) -k

point (1,2,5). Ans.

+v/21

if G #0.

Find the unit outward drawn normal to the surface (x — 1)2 + yQ +(z+ 2)2 = 9 at the point (3,1,~4).

Ans. (21 +j - 2k)/3

Find an equation for the tangent plane to the surface xz2 + ny

Ans. 22—y —32+1 =0

z — 1 at the point (1,-3,2).

Find equations for the tangent plane and normal line to the surface z = x2+y2 at the point (2,-1,5).

Ans.

4x — 2% —z =5,
x2y25\4

x—2 _y+l1 _z-35
-1

-2

or x =4t+2, y=—=2t—1, z =~t+5

Find the directional derivative of ¢ = 4xz® — 3x2y2z at (2,—1,2) in the direction 2i —3j + 6k.

376/7

Ans,

(—3,5,6). Ans. —20/9

. Find the directional derivative of P =4e2*~Y*Z at the point (1,1,—1) in a direction toward the point
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In what direction from the point (1,3,2) is the directional derivative of ¢ = 2xz—y? a maximum® What is
the magnitude of this maximum ? Ans. In the direction of the vector 4i — 65 + 2k, 2V 14

Find the values of the constants a,b,c so that the directional derivative of ¢ = axy® + byz +¢z°x° at
(1,2,—1) has a maximum of magnitude 64 in a direction parallel to the z axis. Ans. a=6, b=24, c=-8

Find the acute angle between the surfaces xy”z = 3x+z° and 3x°—y°+2z = 1 at the point (1,~2,1).

V6

Ans. arc cos = arc cos ?1 = 79%55'

3

V1a V21

Find the constants a and b so that the surface ax” — byz = (a+2)x will be orthogonal to the surface

4x% +:° = 4 at the point (1,—1,2). Ans. a=5/2, b=1

(2) Let u and v be differentiable functions of x,y and z. Show that a necessary and sufficient condition
that u and v are functionally related by the equation F(u,v) = 0 is that VuxVy =0

(b) Determine whether u = arc tanx + arc tany and v = 1"—:’% are functionally related.

Ans. (b) Yes (v =tan u)

(a) Show that a necessary and sufficient condition that u(x,y,z), v(x,y,z) and w(x,y,z) be functionally re-

lated through the equation F(u,o,w)=0 is Vu-VoxVw =0,
(b) Express Vu-VoxVw in determinant form. This determinant is called the Jacobian of u,v,w with re-

spect to x,y,z and is written 9 (u,v,w) or (LY.

O(x,y,2) %,¥,2
(c) Determine whether u = x+y+z, v =x+y2+z? and w =xy+yz +zx are functionally related.
Ou Ou Ou
ox 9y Oz
dv dv v 2
Ans. (b) . ay 3z (¢) Yes (u“—v=2w =0)
w Jw Ow
d9x OJy Oz

If A=38xy21+2°j~ Pyzk and @ = 322 —yz, find @)V-A, )A-Vp, (&)V-(pA), (@) V- Vo),
at the point (1,-1,1). Ans. (a)4, (b)—15,(c) 1, (d) 6

Evaluate div (2x°zi — xy°zj + 3yz2 k). Ans. 4xz — 2xyz +6yz

I =37 —y%% +4x% + 2 —3y —5, tind V..  Ans. 6z +2axy — 2° — 6y’

Evaluate VQ(ln ry. Ans. 1/r?

Prove V- n(n+1)r™"? where n is a constant.

I F = @3y —2)i + x2°+9M)j — 2%k, find V(V-F) at the point (2,-1,0).  Ans. —6i + 24j — 32k
If @ is a constant vector and v = @xr, prove that divv =0.

Prove V(@yy = ¢V + 2Vp-Vy + y Vo

It U=3x", V=x2 —2y evaluate grad [(grad U)-(grad V)]. Ans. (6yz°—12x)i + 6xz2j + 12xyzk
Evaluate V-(°r). A4ns. 6r°

Evaluate V- [rV(1/®)].  4ns. 3774

Evaluate VQ[V (r/rQ)] . Ans. 2r %

If A=r/r, find grad divA. Adns. —2r % r

2
af .24 (b) Find f(r) such that VQf(r) =0.
dr? rodr

Ans. f(ry= A + B/ where 4 and B are arbitrary constants.

(a) Prove ng(r) =
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84. Prove that the vector A = 3y*z%i + 4x°22j — 3x°y° Kk is solenoidal.

85. Show that A = (2% +8xy%2)i + (3x°y — 3xy)i — (4/%2° + 2°2)k is not solenoidal but B =xyz° A is
solenoidal.

86. Find the most general differentiable function f(r) so that f(r)r is solenoidal.
Ans. f(r)= C/r® where C is an arbitrary constant.

—xi—v]j

1/x2 + y2

88. If U and V are differentiable scalar fields, prove that VU x VV is solenoidal.

87. Show that the vector field V = is a "sink field". Plot and give a physical interpretation.

89. If A = 2xz%i — yzj + 3xz°k and ¢ = x%z, find
@ Vx A, (d) curl (PA), (c)Vx(VxA), @)V[A.cwl Al, (e)curl grad (@A) at the point (1,1,1).
Ans. (@)i+j, (b)51—3j— 4k, (c)5i+3k, (d)—2i+j+8k, ()0

90. It F=x%z, G=2xy—322, find (a) V[VF).(V&)], &) V-[(VF)xV6)], () Vx [(VFYx(V6)].
Ans. (@) (2% +3x%z — 12xyz)i + (dxyz — 6x°2)j + (2uy° +x° — 627y)k
(b) 0
(¢) (x22 — 24xyz)i — (129622 + 2xyz)j + (2.96)'2 + 12yzQ +x3)k

91. Evaluate Vx (r/r?). Ans. 0

92. For what value of the constant a will the vector A = (axy—2z°)i + (a—2)x2j + (1—a)xz°k have its
curl identically equal to zero ? Ans. a =4

93. Prove curl (¢ grad ) = 0.

94. Graph the vector fields A=xi+yj and B=yi—xj. Compute the divergence and curl of each vector
field and explain the physical significance of the results obtained.

95. If A = 2x%2i +yz°j — 3xyk, B'= y°i — yzj + 2xk and & = 2x° +yz, find
@ A-(Vo), &) A-Vyp, () (A-V)B, @) B(A-V), (e) (V-A)B.
Ans. (a) 4x3z + yz*%— 3xy?, (b) 4x3z +yz* — 3xy? (same as (a)),
(¢) 292231 + (3xy2 —yz*)j + 2%k,
)

(d) the operator (x2y221 - x2y22j + 2¢%2 k)ga; + (yszsi - y224j + Zac:yz:3 k)—;;
Yy

+ (=3xy% i + 3xy%zj — 6x% k)ai
z
(€) (2xy%z + y%2°)i — (2xyz® +yz*)i + (42 + 2:2%)k
96. If A =y22i — 3xz°j + 2xyzk, B = 3xi + 42§ — xyk and & = xyz, find
@) Ax (Voy, ) (AxVy¢, (o) (VxA)x B, (@) B-VxA.
Ans. (a) —5x%yz%1i + xy%2%§ + 4xyz®k

(by —5x%221 + xy%22§ + 4xyz°k (same as (a))
(c) 162°1 + (8x%yz — 12x2%)j + 32x2°k (d) 24272 + duys®

97. Find Ax(VxB) and (AxV) 1B at the point (1,—1,2), if A =xz%i +2yj— 3xzk and B = 3xzi + 2yzj — 2°K.
Ans. Ax(VxB) = 181 - 12j + 16k, (AxV)xB = 4j + 76k

98. Prove (v-V)v = 3V — vx (Vxv).

99. Prove V-(AxB) = B-(VxA) — A-(VxB).

100. Prove Vx (AxB) = (B-V)A — B(V-A) — (A-V)B + A(V-B).

101. Prove V(A-B) = B-VYA + (A-V)B + Bx(VxA) + Ax(VxB).

102. Show that A = (6xy +z%)i + (3x2 — z)j + (3x22 — y)k is irrotational. Find ¢> such that A = Vb,
Ans. @ = 3% + xz° — yz + constant
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Show that E = r/r? is irrotational. Find ¢ such that E = — V¢ and such that ¢>(a)=0 where a> 0.
Ans. ¢ = In(a/r)

If A and B are irrotational, prove that AX B is solenoidal.
If f(r) is aifferentiable, prove that f(r)r is irrotational.

Is there a differentiable vector function V such that (a)curl V=r, (b)curl V = 2i +j + 3k? If so, find V.
Ans. (@Y No, (b) V = 3xj + (2y—x)k + Vb, where ¢ is an arbitrary twice differentiable function.

Show that solutions to Maxwell’s equations

Vxm =1 %lt‘: VxE = -1 %? V-a=0, V-E = 4mp

where 0 is a function of x,y,z and c¢ is the velocity of light, assumed constant, are given by
E - -Vo — %%‘} H=VxA

where A and ¢, called the vector and scalar potentials respectively, satisfy the equations

2 2
() V-aA +-‘1??£)— 0, (2)V2q5—1 a¢'=—477[o’ (3)V2A=li_é

ot 2 o ¢? ?

(a) Given the dyadic & = ii+jj+kk, evaluate r-(®-r) and (r-®)-r. (b)Is there any ambiguity in
writing r-®.r? (c) What does r-®-.r =1 represent geometrically ?

Ans. (@)r«(@-r)=(-®)-r = 2x2+y2+2%, (b) No, (c) Sphere of radius one with center at the origin.

(@I A==xzi—9y"j+y22k and B = 22°i — xyj + y° k, give a possible significance to (Ax V)B at
the point (1,~1,1).
(b) Is it possible to write the result as A x (VB) by use of dyadics ?
Ans. (a) —4ii~ ij + 3ik — jj — 4ji + 3kk
(b) Yes, if the operations are suitably performed.

2,.2 . : R .
Prove that ¢ (x,y,2) = %2+ y“ +2z° is a scalar invariant under a rotation of axes.

If A(x,y,z) is an invariant differentiable vector field with respect to a rotation of axes, prove that (a) div A
and (b) curl A are invariant scalar and vector fields respectively under the transformation.

Solve equations (3) of Solved Problem 38 for x,y,z in terms of x',y’, 2",
Ans. x = byx' +byy' v haz', y = box'+ boy +lgpz', 2 = ligx' + Iy + Isg 2’
If A and B are invariant under rotation show that A-B and A X B are also invariant.

Show that under a rotation

vV = i—a—+ji+ki = "i+j'i+k'i—V'

x Y% "o e T RS

Show that the Laplacian operator is invariant under a rotation.



Chapter 5

ORDINARY INTEGRALS OF VECTORS. Let R(u) = Ry(u)i + Ro(u)j + Ra(u)k be a vector depending
on a single scalar variable u, where R;(u), Ro(u), Ra(u) are
supposed continuous in a specified interval. Then

fR(u)du = ile(u)du + ijg(u)du + kfRs(u)du

is called an indefinite integral of R(u). If there exists a vector S(u) such that R(u) = l—l‘{:(S(u)), then

fR(u)du = fjd‘u‘(S(u)) du = S(m) + ¢

where ¢ is an arbitrary constant vector independent of u. The definite integral between limits u=a
and u=b can in such case be written

b b 5
fR(u)du = f FEw)ds = s@ +c| = sk) - s
a
a a

This integral can also be defined as a limit of a sum in a manner analogous to that of elementary in-
tegral calculus.

LINE INTEGRALS. Let r(u) = x(u)i + y(u)j + z(u)k, where r(u) is the position vector of (x,y,2),
define a curve C joining points P, and P,, where u=u, and u=u, respectively.

We assume that C is composed of a finite number of curves for each of which r(z) has a contin-
uous derivative. Let A(x,y,z) = A;i + A,j + A3k Dbe a vector function of position defined and con-
tinuous along C. Then the integral of the tangential component of A along C from P, to P,, written as

P2
f A-dr = fA-dr = fAldx + Agdy + Agdz
P, c c

is an example of a line integral. If A is the force F on a particle moving along C, this line integral
represents the work done by the force, If C is a closed curve (which we shall suppose is a simple
closed curve, i.e. a curve which does not intersect itself anywhere) the integral around C is often

denoted by
fA'dl' = f Aidx + Agdy + Agdz

In aerodynamics and fluid mechanics this integral is called the circulation of A about C, where A
represents the velocity of a fluid.

In general, any integral which is to be evaluated along a curve is called a line integral. Such
integrals can be defined in terms of limits of sums as are the integrals of elementary calculus.

For methods of evaluation of line integrals, see the Solved Problems.

The following theorem is important.

82
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THEOREM. 1f A=V¢ everywhere in a region R of space, defined by a; Sx £ ag, by Sy < bs,
c1 $z2%¢,, where ¢(x,y,z) is single-valued and has continuous derivatives in R,
Po
A-dr is independent of the path C in R joining P; and P,.

then

W

N

A-dr =0 around any closed curve C in R.

Q\.@\

In such case A is called a conservative vector field and ¢ is its scalar potential.

A vector field A is conservative if and only if VxA=0, or equivalently A=V, In such case
A-dr = A;dx + Ay dy + A3dz = d¢, an exact differential. See Problems 10-14.

SURFACE INTEGRALS. Let S be a two-sided surface, such as shown in the figure below. Let one

side of S be considered arbitrarily as the positive side (if S is a closed
surface this is taken as the outer side). A unit normal n to any point of the positive side of S is
called a positive or outward drawn unit normal.

Associate with the differential of surface
area dS a vector dS whose magnitude is dS and
whose direction is that of n. Then dS=ndS.
The integral

[[rs - ffrnss

is an example of a surface integral called the
flux of A over S. Other surface integrals are

ff¢>d$, [fcbndS, ﬂAde

N

where ¢ is a scalar function. Such integrals can
be defined in terms of limits of sums as in ele-
mentary calculus (see Problem 17).

The notation # is sometimes used to indicate integration over the closed surface S. Where

S
no confusion can arise the notation f may also be used.
S

To evaluate surface integrals, it is convenient to express them as double integrals taken over
the projected area of the surface S on one of the coordinate planes. This is possible if any line per-
pendicular to the coordinate plane chosen meets the surface in no more than one point. However, this

does not pose any real problem since we can generally subdivide S into surfaces which do satisfy
this restriction.

VOLUME INTEGRALS. Consider a closed surface in space enclosing a volume V. Then

[[fro ws fffou

are examples of volume integrals or space integrals as they are sometimes called. For evaluation of
such integrals, see the Solved Problems.
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SOLVED PROBLEMS

2
1. If R(z) = (w—u?)i + 2°j — 3k, find (a) fR(u) du and (b)f R(v) du .
1

(a) fR(u)du

f [u—u2)i + 2u°§ — 3k)du

f(u—u)du + jfzusdu + kf-—Sdu

= l( —L+01) + J( +Cz) + k(—3u +c3)
2 .3 4

= ("?—%)i + "71 — 3uk + cqi t+ coj + 3k
2 3 4

= ('—‘2——!3—)1 + %j — 3uk + ¢

where ¢ is the constant vector c4i + co] + c3k.

2 2 3 4
(6) From (a), j; R(u)du = (%—%)i + —2—j — 3uk + cl
9®
= [(—223— i+ —1—3(2)k +e] - [(———)i
= 5 15, _
= 61 + 5§ 3k
Another Method.
2
L R(u)du = iJ- w—u2Ydu + Jf widu + kf —3du
3
= 1("7-"@]1 + J(—z—)l + k(—su)l = -3 . B

2. The acceleration of a particle at any time ¢20 is given by

a = gt! = 12cos2ti — 8sin2¢j + 16tk

If the velocity v and displacement r are zero at ¢=0, find v and r at any time.

Integrating, v if 12cos 2t dt + jf—ssinthz + kf 16t dt

6sin2ti + 4costj + 8Lk + ¢

Putting v=0 when ¢=0, wefind 0 = 0i + 4j + Ok + ¢4 and cy = —4j.

Then v = 6sin2ti + (4cos2t—4)j + 8£°K
so that g{ = 6sin2ti + (dcos2t—4)j + 82k,

ifssinzzdz + jf(4cosZt—4)dt + kf 82 dt

—3cos2ti + (2sin2c—4e)§ + -g-csk + e

Integrating, r

Putting r=0 when t=0, 0 = —3i + 0j + 0k + co and c,=3i.

2]—3(1)'( +c)
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Then r = (3—~3cos2:)i + (2sin2t~—48)j + %tsk.

2
3. Evaluate fA x dA dt .

; - [ Zax®Byg - axiA
Integrating, fo 5 dt = fdt(Ax dt)dt AX 7

2
d . _dA A . dA _dA A
° 4 - 28 4 282 82
aB®%) T A T L de

2
A A ..

de

4. The equation of motion of a particle P of mass m is given by

m 372; = f(r) l'l

where r is the position vector of P measured from an origin O, r, is a unit vector in the direction r,
and f(r) is a function of the distance of P from O.

(a)

(D]
(c)
@)

()

®

©)

g—: = ¢ where ¢ is a constant vector.

Interpret physically the cases f(r) <0 and f(r)>0.
Interpret the result in (a¢) geometrically.
Describe how the results obtained relate to the motion of the planets in our solar system.

Show that r x

2
Multiply both sides of m Z—t; = f(r)ry by rx. Then
2
dr
-3 = X =
mr x 2 f(nrxr 0
since r and rq are collinear and so rxr; = 0. Thus

dr _ 4 dr, _
rxdz2_0 and dt(rxdz)- 0
Integrating, r x g—: = ¢, where ¢ is a constant vector. (Compare with Problem 3).

2
If f(r) <0 the acceleration d—t; has direction opposite to ry; hence the force is directed toward O and

the particle is always attracted toward O.

If f(r)> 0 the force is directed away from O and the particle is under the influence of a repulsive
force at 0.

A force directed toward or away from a fixed point O and having magnitude depending only on the
distance r from O is called a central force.

In time A¢ the particle moves from M to N (see ad-
joining figure). The area swept out by the position
vector in this time is approximately half the area of
a parallelogram with sides r and Ar, or Jr x Ar,
Then the approximate area swept out by the radius

e Ar :
vector per unit time is 3r X = ; hence the instan-

A’
taneous time rate of change in area is
lim érxg = %rxﬂ = 3rxv
At=0 Ae dt

where v is the instantaneous velocity of the parti-
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(d)
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cle. The quantity H = 3r x Z—E = 4rx v is called the areal velocity. From part (a),
Areal Velocity = H = irx % = constant

Since r-H = 0, the motion takes place in a plane, which we take as the xy plane in the figure above.

A planet (such as the earth) is attracted toward the sun according to Newton’s universal law of gravita-
tion, which states that any two objects of mass m and M respectively are attracted toward each other
with a force of magnitude F = G—Afym , Where r is the distance between objects and G is a universal
constant. Let m and M be the masses of the planet and sun respectively and choose a set of coordi~
nate axes with the origin O at the sun. Then the equation of motion of the planet is

dr GMm dr _ _GM

mgz T T gmp T —pn
assuming the influence of the other planets to be negligible.

According to part (c), a planet moves around the sun so that its position vector sweeps out equal
areas in equal times. This result and that of Problem 5 are two of Kepler’s famous three laws which he
deduced empirically from volumes of data compiled by the astronomer Tycho Brahe. These laws ena-
bled Newton to formulate his universal law of gravitation. For Kepler’s third law see Problem 36,

5. Show that the path of a planet around the sun is an ellipse with the sun at one focus.

€3]

&)

€]

From Problems 4(c) and 4(d),

av _ o
& T T rehn

rxv = 2H = h

_ ﬂ _ dl’1 dr
Now r=rr, dt—r717+dtr1 so that
dr dry
h . X = X +._ = —_—
rxv rry (r t r1) rrixdt
From (1), dv xh = —-G—Mrixh = -—G}Llrix(rix—dr1
dt 2 de

= —GM [(ri._)q - (ri.ri) ] = GMdr1

using equation (3) and the fact that ry. %— 0 (Problem 9, Chapter 3).

But since h is a constant vector, s— h = —(v X h) so that

Lwxm = cm i

Integrating, vxh = GMry + p
from which r-(vxhy = GMr-ry + r-p
= GMr + rryep = GMr + rpcos 6

where p is an arbitrary constant vector with magnitude p, and O is the angle between p and ry .

Since r+(vxh) = (rxv)-h = h-h = h2, we have k> = GMr + rpcos & and
K’ K/GM

r = =

GM +p cos O 1+ (p/GM) cos O
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From analytic geometry, the polar equation of a conic

section with focus at the origin and eccentricity € is
a

"= 1+€cos @
with the equation derived, it is seen that the required r
orbit is a conic section with eccentricity € =p/GM.
The orbit is an ellipse, parabola or hyperbola accord- e&ﬂ 0
ing as € is less than, equal to or greater than one.
Since orbits of planets are closed curves it follows
that they must be ellipses.

where a is a constant. Comparing this Planet

a

Ellipse r = m

LINE INTEGRALS

6. If A = (3x2+6y)i — 14yzj + 20xz°k, evaluate f A-dr from (0,0,0) to (1,1,1) along the follow-
ing paths C; c
(@) x =t, y=t2, z=13.
(b) the straight lines from (0,0,0) to (1,0,0), then to (1,1,0), and then to (1,1,1).
(¢) the straight line joining (0,0,0) and (1,1,1).

f A«dr
(o}

i

f[(3x2+6y)i — 14yzj +20x22k ] s(dxi +dyj + dzk)
c

f(3x2+6y) dx — 1l4yzdy + 20xz2 dz
rsd
v

3

(@) If x=¢, y=t2, z=1¢t", points (0,0,0) and (1,1,1) correspond to ¢= 0 and ¢=1 respectively. Then

1
j;A-dr = f B2 +6:2) dt — 14¢2)®) d(?) + 20) (%) ()

t=0
1
= 02 dt — 28° dt + 60¢° dt
=0
1 1
= (92—28:°+60:%ydt = 3°—a’ +6:°| = 5
o
t=0

Another Method.
Along C, A = 9:2i — 14:5j + 20tk and r=xi +yj+zk =¢i +¢%j +1°k and dr=(i+2¢ +3:2k)ds.

Then f A-dr
(o}

1
f (921 — 1465 + 206" kY- (1 + 2t j + 3¢2 K) dt
t=0

1
f (92 — 282+ 60ty dt = 5
(o]

(b) Along the straight line from (0,0,0) to (1,0,0) y=0,2=0, dy=0, dz=0 while x varies from 0 to 1. Then
the integral over this part of the path is

1 1 1
f (3x2+6(0)) dx — 14(0)(0)(0) + 20x(0)°(0) = f 32 dx = x° o = 1
x=0 x=0
Along the straight line from (1,0,0) to (1,1,0) x=1, 2=0, dx=0,dz=0 while y varies from 0 to 1.
Then the integral over this part of the path is —————

1
(3(1%+6y)0 — 14y(0)dy + 20(1)(0° 0 = 0

5=0
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Along the straight line from (1,1,0) to (1,1,1) x=1,y=1, dx=0,dy=0 while z varies from 0 to 1.
Then the integral over this part of the path is

: 1 3 1
f (3(1)2+6(1)) 0 — 14(1) 2(0) + 20(1)z° dz = f 2022dz = 2033 . - 2_39
2=0 220
Adding, fA-dr = 1+0+%° = .23§
c

(¢) The straight line joining (0,0,0) and (1,1,1) is given in parametric form by x=¢, y=¢, z=¢. Then

1
f A-dr f (B2 +6tyde — 14()(t) de + 20(e)(2)° de
c

t%0
1 1
= f (3c%+6t—14t7+20°) dt = f 6—112+20%)de = 22
) #=0

7. Find the total work done in moving a particle in a force field given by F = 3xyi — 5z + 10xk
along the curve x =t2+1, y = 2%, z=¢° from t=1 to t=2.

Y S e

Total work = fF-dr (3xyi—5zJ + 10xk)-(dxi +dyj +dz k)
c

3xy dx — 5zdy + 10x dz

3E2+1)(22)d(®+1) — 5(2)d2%) + 10(2+1) d(>)
t=

[

= f (1265 + 106* + 126 +3062)dr = 303

2
1
8. If F=3xyi— y"’j, evaluate f F-dr where C is the curve in the xy plane, y = 2¢2, from (0,0)
to (1,2). c

Since the integration is performed in the xy plane (z=0), we cantake r = xi + yj. Then

f F-dr
[

f(3xyi—y21>-(dxi+dyj>
c

f 3xy dx — y2 dy
4]

First Method. Let x=¢ in y= 2x2. Then the parametric equations of C are x=¢, y= 2¢2. Points ¢0,0) and
(1,2) correspond to ¢t=0 and t=1 respectively. Then -

1 1
fF-dr = f 3(0)(2t2)de — (22 d(2t?) = f (62—16t%) de = —-;_’-
¢ %0 )
Second Method. Substitute y = 2x2 directly, where x goes from 0 to 1. Then
1 1
fF-dr = f 3222y dx — (22 d(n?) = f (6x°—161"ydx = —%
C

x=0 x:o

Note that if the curve were traversed in the opposite sense, i.e. from (1,2) to (0,0), the value of the integral
would have been 7/6 instead of — 7/6.
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Find the work done in moving a particle once around a circle C in the xy plane, if the circle has
center at the origin and radius 3 and if the force field is given by

F = (x—y+2)i + (x+y—-z2)j + (3x — 2y +42)k

In the plane z=0, F = (2x—y)i + (x +y)j + (3x—2y)k and dr =dxi +dyJ so that the work done is

f F-dr
c

fc [@x—y)i + (x+y)i + Bx—2)k] - [dxi + dyj]

f 2x—y)dx + (x+y)dy
c

Choose the parametric equations of the circle as x=3cost, y =3sint
where ¢ varies from 0 to 27 (see adjoining figure). Then the line integral
equals

2

[23cost) — 3sint] [—3sine)dt + [3cost +3sint) [3cose)de '

t=0 ¢

i

2T 9 27
= f (9 — 9sinc cost)ydt = 9 — Esinzz I = 187
& o]

In traversing C we have chosen the counterclockwise direction indicated
in the adjoining figure. We call this the positive direction, or say that C
has been traversed in the positive sense. If C were traversed in the clock- r=xi+yj

wise (negative) direction the value of the integral would be — 18T, =3 costi+3sintj

() If F=V¢, where ¢ is single-valued and has continuous partial derivatives, show that the
work done in moving a particle from one point Py = (x4, ¥4, z4) in this field to another point
P, = (x5, ¥, 25) is independent of the path joining the two points.

(by Conversely, if F-dr is independent of the path C joining any two points, show that there

C
exists a function ¢ such that F=V¢,

2 P
(@) Work done = f F-dr = Ve -dr
I i<l

f”? 9p.  op. P

—i+==j+= . i tdyj+d
, (Bxi ay] sz) (dxi +dyj zk)
1

B 39 o¢ o9
Ll gdx + a—y—dy + —;;dz

Fo
L dp = PP — PP = D(x2,¥2,22) — P(x1,¥1,21)
1

Then the integral depends only on points P, and P> and not on the path joining them. This is true
of course only if ¢ (x,y,2) is single-valued at all points P; and P;.

(b) Let F = Fji + F,j + F;k. By hypothesis, f F-dr is independent of the path C joining any two
c
points, which we take as (x4,¥1, 21) and (x,y,z) respectively. Then

(x,y,2) (x,y,2)
Py.2) = F-dr = Fidx + Fdy + Fadz

(x1,71, 21) (%1, 71, 21)

is independent of the path joining (x4, ¥4, 21) and (x,y,z). Thus
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(xtAx,y,2) (x,y,2)
f F.dr - f F-dr
(xli Y. zi) (xi' Y1, zl)
(%1, Y1, zi) (x "‘A":}'.Z)
= f Fedr + f F-dr
(x:yvz) (xi'yii Zi)

(x+4x, y,2) (x+lx,y,2)
= f F-dr = Fidx + Fody + F3dz
(x,y,2) (x.y,2)

¢(x+Ax’ Y, Z) - ¢(x'}'."-)

Since the last integral must be independent of the path joining (x,y,z) and (x+Ax,y,z), we may choose

the path to be a straight line joining these points so that dy and dz are zero. Then

d)(x_‘_Ax'y,zA)x__ qb(x,y,Z) B -l_f(X"’AX’yvz) Fldx
(*,y.2)

o)
Taking the limit of both sides as Ax—0, we have é%ﬁ =F.

L.
Similarly, we can show that gy? = F, and g—% =F.

%, ,%,, %, g

- i+Fi+ - P PP
Then F F]_l + 1] ng D I -ay J dz
B

If f F-dr is independent of the path C joining P; and Py, then F is called a conservative field.

21
follows that if F = Vqﬁ then F is conservative, and conversely.

Proof using vectors. If the line integral is independent of the path, then

%.y.2) (x,y,2)
dx,y,2) = f( 4 Fedr = f F-% ds

(%1, 71, 21) (%1, y1, 21)

. 4D dr dp _ dr dr _
By differentiation, 7= = F-2&. But o= = V¢'E§ s0 that (V¢—F)-‘-E = 0.

since this must hold irrespective of gi , we have F= Vo,

11. (a) If F is a conservative field, prove that curlF=VxF =0 (i.e. F is irrotational).
(b) Conversely, if VxF=0 (i.e. F is irrotational), prove that F is conservative.

(@) If F is a conservative field, then by Problem 10, F = V.
Thus curlF = Vx V¢ = 0 (see Problem 27(a), Chapter 4).

i ]
VxF = 9o 9 9.
(b) If VxF=0, then 3 By 32 0 and thus
ay T dz 9z  Oox ' ox ay

We must prove that F = V¢ follows as a consequence of this.

The work done in moving a particle from (x4, y4, 24) to (x,y,2) in the force field F is

It
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f Fi(x,y,zYdx + F(x,y,2)dy + Fa(x,y,2)d:
c

where C is a path joining (x1,y4,21) and (x,y,z). Let us choose as a particular path the straight [ine
segments from (x4, %1, 21) to (x,¥1,21) to (%,y,z1) to (x,y,2z) and call @(x,y,z) the work done along this
particular path. Then

x y z
P(x,y,2) = f Fi(x,y1,21) dx +f Fo(x,y,21) dy +f F(x,y,z) dz
X3 Y1 z

1

It follows that

'az Fs(x.y.z)

z
Qg_ﬁ = Fp(x,y,zy) + f ——an (x,y,z) dz
2y O

2
= FQ(X.}'.‘H) + f -%F_;Q(x.y.z)dz
z z

1

r4
= FQ(x’y'zi) + FQ(x'yvz)lzl = Fz(x:)’.zi) + FQ(xty'z) - FQ(xryvzi) = FQ(x:}'.Z)

y z OF
% = Fi(x,y1,27) + —BFQ(x,y,zi)dy + f ———aa(x,y,z)dz
x 2 x

Ox %,
Y OF Z OF.
= Fy(x,y4,29) +f T)J(x,y,zi)dy + f E-l(x,y,z)dz
no 7 2,

¥ r4
= Fl(xvyi:zl) + F1(x,}'.21)| + Fi(x:}'.z)l
N %

= F1<x’y1'zl) + Fi(x,y’zl) - F1("-}’1:21) + F1(x.)’,z) - F1(X,}’,21) = F1(x.}’-z)
e 9 o
Then F = Fi+Fj+ Rk = a—¢i+§—¢’j+—k = Vop.
x y z

Thus a necessary and sufficient condition that a field F be conservative is that curlF = Vxr=9.

12. (a) Show that F = (2xy+2z°)i + 2%j + 3xz°k is a conservative force field. (b) Find the sca-
lar potential. (c) Find the work done in moving an object in this field from (1,—-2,1) to (3,1,4).

(a) From Problem 11, a necessary and sufficient condition that a force will be conservative is that
curlF = VxF = 0.

i J k
S - R -
Now VxF o= |5 05 | "
2y + 28«2 3xz2

Thus F is a conservative force field.
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(b) First Method.
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9 o
By Problem 10, F = Voo or éi—pi +%;éj +£k = (2xy+z°)1 + x2j + 3xz°K. Then
b _ 3 op _ 2 b, 2
¢)) 5 2y +2 2) ay = x 3) 3. 3xz

Integrating, we find from (I), (2) and (3) respectively,

¢ = %y + 22° + fy,2)
¢ = iFy + gx,z)
d) = xz° + h(x,y)

These agree if we choose f(y,z) = 0, g(x,z) = xz°, h(x,y) = x°y so that ¢ = x%y +xz° to which may

be added any constant.

Second Method.

Since F is conservative, f F-dr is independent of the path C joining (x1,y,21) and (x,y,z).

c
Using the method of Problem 11(b),

x
f (Zxyy + 23y dx + f
X1
2

Y1
x
= (x2y +xz3)| + x
1 17 1%

P(x,y,2)

y
7 by,

= xy1+xzf—x2

1y1

= x2y + st - x2

Third Method. F+dr = Vip-dr =

Ox

Then F.dr =

b =

= (2xy dx +x2 dy)

= d(ny) + d(xzs) -

x%y + xz° + constant.

k
A

P
J;

1

and ¢ =

(c¢) Work done

Fedr

I

1 A

Another Method.
From patt (b), P(x,y,2) = z°y + xz°

Then work done = ¢(3,1,4) — ¢(1,=-2,1)

sz

a—qbdx + g-ibdy + a—qbdz
Y

(2xy +2°) dx

PQ PQ
f d(ny +x2%) = %y + x2°
P

Y 2 z 2
x“dy + 3xz° dz
21

3 z
+ xz l
Z1

3

2 2 3
+ x - X + xz - x2z
11 Y y‘.l 1

2 = x2y + xz° + constant

3. % = 9

+ x2dy + 3xz2dz
+ (2% dx +3xz% dz)

d (x2y +x2°)

(2xy+zs)dx + x? dy + 3xz2 dz

- g (314
= x°y + x2 l(i,-2.1) = 202

+ constant.

= 202.
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Fo
Prove that if F.dr is independent of the path joining any two points P, and P, in a given
P

region, then f F-dr = 0 for all closed paths in the region and conversely.

Let P, AP,BP, (see adjacent figure) be a closed curve. Then

4
fF-dr = f Fedr = f Fedr + f F-dr &
P, AP,BP; Py AP, P,BP,
= fF-dr - fF-dr = 0
P 4P, PBR P
1
since the integral from P; to P, along a path through 4 is the same as B

that along a path through B, by hypothesis.

.

Conversely if §F~dr = 0, then

f Fedr = fF-dr + f Fedr = fF-dr - fF-dr = 0

P,AE,BP, P,AP, P,BP, P AP, P,BP,
so that, f Fedr = f F-dr.
Py AP, P BPR

(a) Show that a necessary and sufficient condition that F, dx + F, dy + F; dz be an exact differ-
ential is that VxF = 0 where F = F,i + F,j + F;k

(b) Show that (y°z® cosx — 4x°z) dx + 2:%y sinx dy + (3y%z® sinx — x*) dz is an exact dif-
ferential of a function ¢ and find ¢.

9
(a) Suppose Fydx + Fody + Fzdz = d¢ = qudx + -.aibd + g—qbdz an exact differential. Then
Y
since x,y and z are independent variables,
op op o¢
Fi"ax: FQ—ayv Fs“az
and so F = F‘li-f-[«‘2_1+l~‘3k--5—1+aq5 qu Thus VxF=VxV¢-_-

Conversely if VxF = 0 then by Problem 11, F =V and so F-dr = Vp.dr = dop,
Fydx + F,dy + F3dz = d¢, an exact differential.

() F = (sz’3 cosx — 4x3z)i + 2z3y sinxj + (3;v2z2 sinx —x‘)k and VXF is computed to be zero,
so that by part (a)

(y223 cosx-—4xaz)dx + 2zsy sinx dy + (3}/222 sinx—x"')dz = do

By any of the methods of Problem 12 we find ¢ = y223 sinx — x*z + constant.

Let F be a conservative force field such that = —Vcb. Suppose a particle of constant mass m
to move in this field. If 4 and B are any two points in space, prove that

b)) + 'szv; = @B + my
where Y, and vy, are the magnitudes of the velocities of the particle at A and B respectively.
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2
S Jar o dr dr _mod dr?
Fema=mye. Then Frop =maap =% a'a’"
B B
: dr o= M2 = L2 1.2
Integrating, J; F-dr 5 ¥ IA 5 ™Y 5mYy -
B B B
¥ F=-Vop, F-dr = — Vp.ar = - dp = P(A4) — P(B).
A 4 4
Then ¢@(4) — P(B) = %mvB2 - %mvj and the result follows.

@(A) is called the potential energy at A and Smv? is the kinetic energy at A. The result states that
the total energy at A equals the total energy at B (conservation of energy). Note the use of the minus sign

in F = —-ng.

16. If ¢ = nyzz, F=xyi-—zj+ x>k and C is the curve x=t2, y=2t, z=t° from t=0 to t=1,
evaluate the line integrals (a) f G dr, (b) f Fxdr.
4 (4

(@) Along C, ¢ 2myz? = 2(2)(20)(®Y = 4,
r = xi+yj+zk = t2i+2tj+tak, and

dr = (2ti + 2§ + 3:°k)dt. Then

1
f ¢ddr = f 4®(2ei + 2§ + 32 k) de
¢ =0

1 1 1
= if 8 °d: + jf 8°dt + kf 1280 ds =
[e] o] 0

(b) AlongC, F=xyi-—2zj + 22k = 2°4 — tsj + k.

oo

i+ 34k

-
-
SIS

Then Fxdr = (251 — 2§ + k) x (2ti + 2§ + 3¢°Kk) de

i ik
= 2 —® de = [(=3P—2hi + 2°—6")j + (@+2M)k] de
2t 2 3
1 1 1
and fodr = if (—35—2u*ydt + jf (-4t5%)de  + kf (4% +26% de
(s} 0 o] [e]

SURFACE INTEGRALS.

17. Give a definition of ff A.n dS over a surface S in terms of limit of a sum.
S
Subdivide the area S into M elements of area As,, where p=1,2,3,..., M. Choose any point P, within

Asﬁ whose coordinates are (%2 ¥p» 2p) - Define A(x7>,y¢,z¢) = Aﬁ. Let n, be the positive unit normal to
ASp at P. Form the sum
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M
D, Ap-mp As,
p=1

where Aj, np is the normal component
of A¢ at P¢,.

Now take the limit of this sum as
M- in such a way that the largest di-
mension of each ASiJ approaches zero.
This limit, if it exists, is called the
surface integral of the normal compo-
nent of A over S and is denoted by

[f A-nds

Suppose that the surface S has projection R on the xy plane (see figure of Prob.17). Show that

{f“'“"s ff o]

By Problem 17, the surface integral is the limit of the sum

)4
(I 2

The projection of AS{’ on the xy plane is l(n¢5 Asf, k] or Inb-klﬁsﬁ which is equal to A"p Ayf’

so that Asf, =___F "% Thus the sum (I) becomes
| Py k|
¥ Dy
o 2TV
@ 2 A " [0y k|

By the fundamental theorem of integral calculus the limit of this sum as M~ in such a manner that

the largest /\x 5 and Ay{) approach Zero is
dx d
ff A o]

and so the required result follows.

Doy Dy

Strictly speaking, the result Asi, = FLI(_T is only approximately true but it can be shown on closer
b

examination that they differ from each other by infinitesimals of order higher than Axi, Ay¢ , and using this

the limits of (1) and (2) can in fact be shown equal.

Evaluate Jf A-ndS, where A = 18zi — 12§ + 3yk and S is that part of the plane

2x +3y +6z = 12 which is located in the first octant.

The surface S and its projection R on the xy plane are shown in the figure below.
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From Problem 17,

f S = dx dy
f A-n = ffA'nln-kl
S R

To obtain n note that a vector perpendicular to the surface 2x +3y +6z = 12 is given by V(2x+3y+62) =
2i + 3j + 6k (see Problem 5 of Chapter 4). Then a unit normal to any point of S (see figure above) is

2i + 3j + 6k
S Braeek g, 3,6,
V2% +3%+6°
Thus nk = (2i+35+8k = & andso =% - Taa
R L T [n-k| 67
36z — 36 + 18 36 — 12¢
Also A-n = (18z2i—12i+3 K- (Fi+3j+ 8K = = e
using the fact that z = —1—2—_——31 from the equation of S. Then
ffA-ndS = ffA-n“‘kI ff 36‘12" dxdy = ff(G-—zx)dxd)’
s R

To evaluate this double integral over R, keep x fixed and integrate with respect to y from y=0 (P in

the figure above)to y = 12— 3 2 (Q in the figure above); then integrate with respect to x from x=0 to
x=6. In this manner R is completely covered. The integral becomes
6 (12-2x)/3 6 42
(6 —2x)dy dx = (24-—12x+T)dx = 24
x=0 y=0 x=0

If we had chosen the positive unit normal n opposite to that in the figure above, we would have obtained
the result —24.

Evaluate ff A-ndS, where A = zi + xj — 3y’zk and S is the surface of the cylinder

x°+y?=16 included in the first octant between z=0 and z=5.

Project S on the xz plane as in the figure below and call the projection R. Note that the projection of
S on the xy plane cannot be used here. Then



VECTOR INTEGRATION 97

A normal to %% +y? = 16 is V(xZ+y?) = 2xi+2j.
Thus the unit normal to S as shown in the adjoining
figure, is

n = 20i+2yj _ oxityj

VixY + (2yY 4

since x?+y?=16 on S.

i+
A'n = (zi+xj—3y22k)- (xl4yj) = %(xz +xy)

4 4
Then the surface integral equals

LR 5
ff"z_“‘y dx dz = (=22 _ +xydrdz = f (4z+8)dz = 90
y \/16—~x2 2o

R z=0 x=0 z

. xi+ .
ﬂ-] :——yjoj —l

21. Evaluate ff ¢n dS where ¢ = %xyz and S is the surface of Problem 20.

S
We have f éndS = ff ®n ii}—d-z—
[n-jl
S R
. xi+yj .y . . .
Using n = — o Mi=qg as in Problem 20, this last integral becomes
5 4 o
ff%xz(xi+)’j) dx dz = % f f (x22i+le/16——x2j)dxdz
R 2=0 x=0
5
= -g f (%zi +§3‘3zj)dz = 100i + 100j
z=0

22. If F=yi+(x—2z)j—xyk, evaluate ff (VxF).n dS where S is the surface of the sphere

s
x?+y?+2% = a? above the xy plane.
i i k
Vsrp = |2 & 2| o Lisyi-
Ox a}’ 9z T

y x—2xz ~—xy

Anormal to x2+y2 +22 = &% is

V(x2+y2+22) = 2xi + 2yj + 2zk
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Then the unit normal n of the figure above is given by

200 +2y§+2zk _ xityj+zk
1/4x2+4y2+422 a

n =
since x2 + yQ +22 = a2,

The projection of S on the xy plane is the region R bounded by the circle x2+y2 = a?, z=0 (see fig-

ure above). Then
ff(VXF)-n dx dy
| n-kl
R

f (VxF).n ds
N
i+tyj+zk dxd
ff(xi+yj—2zk).(x ya - ) :/ay
R

f‘ f 3(x+y)—2a dy dx
a2_x2_y2

X==a

y=- Va? = x?

using the fact that z = Va2~x9—y2. To evaluate the double integral, transform to polar coordinates (o, )
where x = pcos @, y = psing and dydx isreplaced by o do d¢p. The double integral becomes

2w a 22 2 3(/0 —-a)+a
f ‘/ > p dp dp f f L dp dp
22—

$=0 £=0
2m
J e

>dp dp

2m a
= f [(aQ—pQ)S/Q -2V lap

p=0

$=0

2m
= f (@®=d®ydp = 0

®=0

23. If F=4xzi—y2j + yzk, evaluate ff F-n dS

where S is the surface of the cube bounded by x=0,
x=1, y=0, y=1, z=0, z=1.

Face DEFG: n=i, x=1. Then

1,1
ﬂF-ndS ff (4zi—y°j +yzk)-idydz
o Yo
DEFG
fl
(o]

4z dydz = 2

=
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Face ABCO: n=—i,x=0. Then

11
ffF-ndS = ff (—-y2j+yzk)-(—i)dydz = 0
o Yo

ABCO

Face ABEF: n=j,y=1. Then

1,1 1,1
ﬂF-ndS = ff (dxzi—j+zKk)-jdxdz = ff —~dxdz = -1
o Yo o Yo

ABEF

Face OGDC: n=—j, y=0. Then

11
ffF-ndS = ff (4xz i)+ (—j)ydxdz = 0
0 Yo

ey

Face BCDE: n=k, z=1. Then

1 1 1,1
f[F-nds = ff (dxi—y2j+yk)-kdxdy = ff ydxdy = 3
o Yo o Y0

BCDE

Face AFGO: n=—k, z=0. Then

1 1
ffF-ndS = ff (-y? i) (=K)dxdy = 0
(el d¢]

AFGO

Adding, ﬂF-ndS = 2+0+ (=) +0+3 +0
s

oo

In dealing with surface integrals we have restricted ourselves to surfaces which are two-sided.
Give an example of a surface which is not two-sided.

Take a strip of paper such as ABCD as shown in
the adjoining figure. Twist the strip so that points 4 and
B fall on D and C respectively, as in the adjoining fig-
ure. If n is the positive normal at point P of the surface,
we find that as n moves around the surface it reverses
its original direction when it reaches P again. If we
tried to color only one side of the surface we would find
the whole thing colored. This surface, called a Moebius
strip, is an example of a one-sided surface. This is
sometimes called a non-orientable surface. A two-sided
surface is orientable.

VOLUME INTEGRALS

25. Let ¢ =45x?y and let V denote the closed region bounded by the planes 4x+2y+z =8, x=0,

y=0, z=0. (a) Express fffqb dV as the limit of a2 sum. (b) Evaluate the integral in (a).
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(a)

®
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Subdivide region ¥ into M cubes having volume
AVk = AxkAyk Az, k=1,2,..., M as indicated
in the adjoining figure and let (x ,yk,zk) be a
point within this cube. Define <D(xk,yk, zk) =
¢»k. Consider the sum

M
H 2 by AVk
k=1

taken over all possible cubes in the region.
The limit of this sum, when M~® in such a
manner that the largest of the quantities AW,
will approach zero, if it exists, is denoted by

ff @ dV. It can be shown that this limit
V

is independent of the method of subdivision if
¢ is continuous throughout V.

In forming the sum (I) over all possible cubes in the region, it is advisable to proceed in an order-
ly fashion. One possibility is to add first all terms in (1) corresponding to volume elements contained
in a column such as PQ in the above figure. This amounts to keeping x, and y, fixed and adding over
all zk’s. Next, keep xkfixed but sum over all yk's. This amounts to adding all columns such as PQ
contained in a slab RS, and consequently amounts to summing over all cubes contained in such a slab.
Finally, vary xj,. This amounts to addition of all slabs such as RS.

In the process outlined the summation is taken first over z,’s then over y,’s and finally over x,’s .
However, the summation can clearly be taken in any other order.

The ideas involved in the method of summation outlined in (2) can be used in evaluating the integral.
Keeping x and y constant, integrate from z=0 (base of column PQ) to z = 8—4x — 2y (top of column
P(Q). Next keep x constant and integrate with respect to y. This amounts to addition of columns having
bases in the xy plane (z = 0) located anywhere from R (where y=0) to S (where 4x+2y=8 or y=4—2x),
and the integration is from y=0 to y =4 —2x. Finally, we add all slabs parallel to the yz plane, which
amounts to integration from x=0 to x=2. The integration can be written

2 4-2x 8-4x=2y 2 4=2x
f f f 45x2ydzdydx 45f f xzy(8—4x—2y)dydx

x=0 y=0 z=0 x=0 y=0

"

2
45f %x9(4—2x)3 dx = 128

x=0

Note: Physically the result can be interpreted as the mass of the region ¥ in which the density ¢
varies according to the formula ¢ = 45x°y .

26. Let F = 2xzi—xj +y°k. Evaluate fff F dV where V is the region bounded by the sur-

12

faces x=0, y=0, y=6, z=22, z=4.

The region V is covered (a) by keeping x and y fixed and integrating from z =x2toz=4 (base to top of

column P @), (b) then by keeping x fixed and integrating from y=0 to y=6 (R to S in the slab), (c¢) finally
integrating from x=0 to x=2 (where z= x% meets z= 4). Then the required integral is
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1281 - 24j + 384k

27. Find the volume of the region conmon to the intersecting cylinders x*+y® =a® and x®+2% =a®.

Required volume = 8 times volume of region shown in above figure

a a2-x2 a2-x2
8 f f f dz dydx

x=0 y=0 z=0

1]

a Va2-x2 a s
8 f Va2—x? dydx = 8 (a2 —x2)dx = 1—6—;-

x=0 y=0 £=0
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
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SUPPLEMENTARY PROBLEMS
I
If R(¢) = (3t2—t)i +(2—6t)j — 4tk, find (a) fR(t) dt and (b) L R(t) de.

Ans. (a) (£3—t%2)i + (2 —3t%)j — 22k + ¢ (b) 50i — 32j — 24k
/2
Evaluate f (3 sinui + 2 cosuj)du Ans. 3i + 2j
[¢]

2 2
I A@t) = ti—t2j+ (¢—1)k and B(t) = 22i + 6tk, evaluate (a)f A-Bdt, (b)f AXB dt.
40, , 64 ¢ 0

Ans. (a) 12 (b) —24i — ’5‘] + ?k

2 2
Tet A=ti—3j+2tk,B=i—2j+2k, C=3i+tj—Kk. Evaluate (a)f A-BxC dt, (b)f Ax(BXC) dt .

1 1

Ans. @) 0 (b) —3-2'—7i — 445 4 15y

The acceleration a of a particle at any time ¢ 2 0 is given by a = et

ity v and displacement r are zero at ¢=0, find v and r at any time.
Ans. v= (1 —e~b)i — (3:2+6)j + (3—3cost)k, r = (t—1+e—t)i — (£8+362)j + (3t—3 sint)k

i— 6(t+1)j +3 sin¢ k. If the veloc-

The acceleration a of an object at any time ¢ is given by a = —gj, where g is a constant. At ¢=0 the ve-
locity is given by v = vgcosByi + vgsinfyj and the displacement r=0. Find v and r at any time ¢ > 0.
This describes the motion of a projectile fired from a cannon inclined at angle 90 with the positive x-axis
with initial velocity of magnitude vg.

Ans. v=vpcosBol + (vosinbo—gt)j, r= (vocosbBo)ti + [(vosinbo)t — 3g62]j

3
Evaluate f A~%%dz if A(2) = 2i—j+2k and A(3) = 4i — 2j +3k. Ans. 10
2

Find the areal velocity of a particle which moves along the path r = a cos wt i + b sinwt j where a,b,w
are constants and ¢ is time.  Ans. Zabwk

Prove that the squares of the periods of planets in their motion around the sun are proportional to the cubes
of the major axes of their elliptical paths (Kepler’s third law).

If A=(2y+3)i +xzj + (yz—x)k, evaluate f A-dr along the following paths C:
c

(a) x=2¢2, y=¢t, z=t® from ¢=0 to ¢=1,

(b) the straight lines from (0,0,0) to (0,0,1), then to (0,1,1), and then to (2,1,1),

(c) the straight line joining (0,0,0) and (2,1,1).

Ans. (a) 288/35 (b) 10 (c)8

If F = (5xy--6x2)i + (2y —4x)j, evaluate f F-dr along the curve C in the xy plane, y=x3 from the
point (1,1) to (2,8). Ans. 35 ¢

If F=(2x+y)i + (3y—x)j, evaluate f F-dr where C is the curve in the xy plane consisting of the
C

straight lines from (0,0) to (2,0) and then to (3,2). Ans. 11

Find the work done in moving a particle in the force field F = 3x%i + (2xz—y)j + zk along
(a) the straight line from (0,0,0) to (2,1,3).

(b)the space curve x=2t2, y=t, z=4t>—¢ from t=0 tot=1.

(¢) the curve defined by x®=4y, 3x°=8z from x=0to x=2.

Ans. (a) 16 (b) 14.2 (c) 16
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41. Evaluate f F-dr where F = (x—3y)i + (y—2x)j and C is the closed curve in the xy plane, x=2cos¢,
Cc

y =3 sint from ¢=0 to t=277. Ans. 677, if C is traversed in the positive (counterclockwise) direction.

42. If T is a unit tangent vector to the curve C, r=r(z), show that the work done in moving a particle in a force

field F along C is given by f F-Tds where s is the arc length.
c

43. If F = (2% +y2)i + (3y —4x)j, evaluate f F.dr around the triangle C of Figure1, (a) in the indicated
¢

direction, (b) opposite to the indicated direction. Ans. (a) —14/3 (b) 14/3

Fig. 1 Fig.2

44. Evaluate f A-dr around the closed curve C of Fig.2 above if A = (x—y)i + (x +y)}. Ans. 2/3
4

45. If A = (y—2x)i + (3x+2y)j, compute the circulation of A about a circle C in the xy plane with center at
the origin and radius 2, if C is traversed in the positive direction. Ans. 87T

46. (a)If A = (4xy—3x22%)i + %2j — 2¢®zk, prove that l A-dr is independent of the curve C joining

two given points. (b) Show that there is a differentiable function @ such that A = Vb and find it.
Ans. (b) ¢ = 2x%y — x° 2% + constant

47. (a) Prove that F = (y2cosx +z°)i + (2y sinx — 4)j + (3xz2+2)k is a conservative force field.
(b) Find the scalar potential for ¥.
(c) Find the work done in moving an object in this field from (0,1,—1) to (77/2,-1, 2).
Ans. (b) ¢ = y?sinx + x2° — 4y + 2z + constant (c) 15 +47
4
48. Prove that F =r?r is conservative and find the scalar potential. Ans. ¢ = rT + constant
49. Determine whether the force field F = 2xzi + (x?2—y)j + (22 —x2)k is conservative or non-conservative.
Ans. non-conservative

50. Show that the work done on a particle in moving it from 4 to B equals its change in kinetic energies at
these points whether the force field is conservative or not.

51. Evaluate f A-dr along the curve x°+y2=1, z=1 in the positive direction from (0,1,1) to (1,0,1) if
c

———
A= (yz+2) +xzj + (xy+22)k. Ans. 1 *

—-

52, (a)If E=rr, is there a function ¢ such that E = ——V<]5‘> If so, find it. (b) Evaluate f E-dr if C is any
c
3
simple closed curve. Anms. (a) @ = —% + constant (b) 0

53. show that (2x cosy + z siny)dx + (xz cosy — x?siny) dy + x siny dz is an exact differential. Hence
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solve the differential equation (2x cosy +z siny)dx + (xz cosy —x?siny)dy + x siny dz = 0.

2

Ans. x“cosy + xz siny = constant

54. Solve (a) (e~ +3x2y2)dx + (22%y —xe ™ Ndy = 0,
(b) (z —e ®siny)dx + (1 +e Fcosy)dy + (x—82z)dz = 0.

Ans. (a) xe”” + x%y2 = constant (b) xz + e Fsiny +y — 4z2 = constant

55. If ¢ = 2xy2z + x%y, evaluate f @ dr where C
c

(a) is the curve x=¢, y=¢2, z=¢> from ¢t=0 to t=1
(b) consists of the straight lines from (0,0,0) to (1,0,0), then to (1,1,0), and then to (1,1,1).
19, , 11, 75 1.

i+ J+77k (b)2]+2k

Ans. (a) Y3 15

56, If F = 2yi — zj + xk, evaluate f F x dr along the curve x =cost, y =sint, z=2cost¢ from ¢=0
c

to t=7/2. Ans. (2 —%T)i + (T — 5]

57. If A = (3x+y)i —xj + (y—2)k and B = 2i —3j +k, evaluate f (AxB)x dr around the circle in the
4]

xy plane having center at the origin and radius 2 traversed in the positive direction. Ans. 477(7i+3j)

58

b

Evaluate ﬂ A-n dS for each of the following cases.
S

(@) A =yi+ 2¢xj — zk and § is the surface of the plane 2x +y = 6 in the first octant cut off by the plane
z=4,
() A = (x+y2)i — 2xj + 2yzk and S is the surface of the plane 2x+y +2z = 6 in the first octant.

Ans. (a) 108 (b) 81

59. If F = 2yi — zj +x2k and S is the surface of the parabolic cylinder y?=8x in the first octant bounded

by the planes y =4 and z=6, evaluate ﬂ F-ndS. Ans. 132
S

60. Evaluate ﬂ A-ndS over the entire surface S of the region bounded by the cylinder x?+z2=9, x =0,

N
y=0, z=0 and y=8, if A = 6zi + (2x+y)j — xk. Ans. 187

61

Evaluate f[r-n dS over: (a) the surface S of the unit cube bounded by the coordinate planes and the

S
planes x=1, y=1, z=1; (b) the surface of a sphere of radius a with center at (0,0,0).
Ans. (a)3 () 47a®

62

.

Evaluate jf A-ndS over the entire surface of the region above the xy plane bounded by the cone

S
z2=%2+y2 and the plane z=4, if A = 4xzi + xyz2j + 3zk. Ans. 3207

63. (a) Let R be the projection of a surface S on the xy plane. Prove that the surface area of S is given by

ff‘ﬁ + (%i)Q + (’—%::)2 dxdy if the equation for S is z = f(x,y).
R
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(b) What is the surface area if S has the equation F(x,y,z)=0? Ans. |3 | dxdy
9F
& dz

Find the surface area of the plane x + 2y +2z =12 cut off by: (a) x=0,y=0,x=1,y=1; (b) x=0,y=0,
and x2+y2=16. Ans. (a) 3/2 (b) 67

Find the surface area of the region common to the intersecting cylinders x?+y2 =a2 and x2+ 22 = a2,
Ans. 16a?

Evaluate (a) ff(VxF)'ndS and (b) ff(,b ndS if F = (x+2y)i —3zj +xk, ¢ = dx+3y—2z,
S S

and S is the surface of 2x +y +2z = 6 bounded by x=0,x=1,y=0 and y=2.
Ans. (@)1 (b) 2i +j +2k

Solve the preceding problem if S is the surface of 2x+y+2z = 6 bounded by x=0, y =0, and z=0.
Ans. (a) 9/2 (b) T2i + 36j + T2k

Evaluate f[ Vx2+y2 dxdy over the region R in the xy plane bounded by x2+y2 =36. Ans. 1447
R

Evaluate ff (2x +y)dV, where V is the closed region bounded by the cylinder z = 4—x2 and the

14
planes x=0,y=0,y=2 and z=0. Ans. 80/3

If F=(2x2~32)i — 2xyj — 4xk, evaluate (a) fffVFdV and (b) ff VX FdV, where V is
14 7

the closed region bounded by the planes x=0, y=0, z=0 and 2x+2y+z = 4, Ans. (a) % b) %(j—k)



Chapter 6

THE DIVERGENCE THEOREM OF GAUSS states that if ¥ is the volume bounded by a closed sur-
face S and A is a vector function of position with con-
tinuous derivatives, then 4

f}[ V-ady = [f-nds - #A-ds

S

where n is the positive (outward drawn) normal to S.

STOKES’ THEOREM states that if S is an open, two-sided surface bounded by a closed, non-inter-
secting curve C (simple closed curve) then if A has continuous derivatives

fA-dr = f(VxA)-n dS = ff(VxA).ds
¢ s S

w_°%

where C is traversed in the positive direction. The direction of C is called positive if an observer,
walking on the boundary of S in this direction, with his head pointing in the direction of the positive
normal to S, has the surface on his left.

GREEN’S THEOREM IN THE PLANE. If R is a closed region of the xy plane bounded by a simple
closed curve C and if M and N are continuous functions of x
and y having continuous derivatives in R, then

fde+Ndy - ff(f)ﬂ ~ My g ay
A g Ox dy

where C is traversed in the positive (counterclockwise) direction, Unless otherwise stated we shall
always assume f to mean that the integral is described in the positive sense.

Green’s theorem in the plane is a special case of Stokes’ theorem (see Problem 4). Also, it is
of interest to notice that Gauss’ divergence theorem is a generalization of Green’s theorem in the
plane where the (plane) region R and its closed boundary (curve) C are replaced by a (space) region
V and its closed boundary (surface) S. For this reason the divergence theorem is often called Green’s
theorem in space (see Problem 4).

Green’s theorem in the plane also holds for regions bounded by a finite number of simple
closed curves which do not intersect (see Problems 10 and 11).

106
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RELATED INTEGRAL THEOREMS.

L ffﬁ¢v2¢ + (Vo). (Vldv = ff(qﬁVsb)ods
14 S

This is called Green’s first identity or theorem.

2. fff(qsvzsb—wﬁqu = ff<¢V¢—¢V¢>-ds
|4 S

This is called Green’s second identity or symmetrical theorem. See Problem 21.

3. /f VxAdV = f (nxA)dS = fdexA
4 S

S
Note that here the dot product of Gauss’ divergence theorem is replaced by the cross product.
See Problem 23.

4.f¢dr = ff(nqub)dS = fdexV¢
¢ s 5

5. Let  represent either a vector or scalar function according as the symbol o denotes a dot or
cross, or an ordinary multiplication. Then

ff Vouydl = fanl,de = ffdsw
7 s s
fdrm,b = /f(nxV)Ot/JdS = ff(dSXV)°¢
s s

(4

Gauss’ divergence theorem, Stokes’ theorem and the results 3 and 4 are special cases of these.
See Problems 22, 23, and 34.

INTEGRAL OPERATOR FORM FOR V. 1t is of interest that, using the terminology of Problem 19,
the operator V can be expressed symbolically in the form

= i —1— o
Ve %'n—]»o AV # ds
AS

where o denotes a dot, cross or an ordinary multiplication (see Problem 25). The result proves use-
ful in extending the concepts of gradient, divergence and curl to coordinate systems other than rec-
tangular (see Problems 19, 24 and also Chapter 7).
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SOLVED PROBLEMS

GREEN’S THEOREM IN THE PLANE

1. Prove Green’s theorem in the plane if C is a closed F
curve which has the property that any straight line
parallel to the coordinate axes cuts C in at most two
points. A

Let the equations of the curves AEB and AFB (see E
adjoining figure) be y =Y (x) and y=Yx(x) respectively.
If R is the region bounded by C, we have

b Fo(x) b b
M 27 oM Ix)
ffg;dxdy f f gdy dx = f M(x,y)|2y() x = f [M(x,YQ)—M(x,Yl)]dx
R

x=a y= (%) x=a @

[ T — -

b

a
= —f M(x,Yi) dx — f M(x'YQ) dx = - fde
a b (4
Then 1) fde = -—ff%dxdy
c o
R

Similarly let the equations of curves EAF and EBF be x=X4(y) and x =Xy(y) respectively. Then

f Xo() f
f -g—’! dx dy f f %Ndx dy = f [N(Xe.y) - N(Xi.y)] dy
* e

R y=e x=X1(y)

€ f
fN<X1.y)dy +fN(Xg.y)dy = dey
! e C
Then (2) dey = ffg—’vdxdy
X
R

c

Adding (1) and (2), fde +Ndy f (— - —)d xdy .
C

2. Verify Green’s theorem in the plane for ¥

(L1)
ﬁ(xy +y?)dx + x2dy where C is the
C

closed curve of the region bounded by
y=x and y=x2.

y=x and y =« intersect at (0,0) and (1,1).
The positive direction in traversing C is as
shown in the adjacent diagram.
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Along y = x2, the line integral equals

Mbn—-
oo

1
f ((x)(xQ) + x"') dx + (x9(2x)dx = f 3%+ dx =
0 (o]

Along y =x from (1,1) to (0,0) the line integral equals

o] o]
f ((x)(x) +x2) dx + x2dx = f 3x2dx = —1
1 1

. o - 19 . 1
Then the required line integral = 20 -1 = 20

[[&-usy - [[1Zer-Fermalis
R R . x

f (x—2y)dxdy = f f(x-—-2y)dydx

R

x=0 y=x2

I x i x
f [f (x—2)dyldx = f (xy —y?)| , 9%
0 x2 x

0

]

1
= f (x4 =23 dx = fl[_)
0
so that the theorem is verified.
3. Extend the proof of Green’s theorem in the plane y

given in Problem 1 to the curves C for which lines
parallel to the coordinate axes may cut C in more
than two points.

Consider a closed curve C such as shown in the ad-
joining figure, in which lines parallel to the axes may
meet C in more than two points. By constructing line ST
the region is divided into two regions R, and R, which are
of the type considered in Problem 1 and for which Green’s

theorem applies, i.e.,
f f (= aM )dxdy

f f (N E—BM) dx dy
Adding the left hand sides of (I)and (2), we have, omitting the integrand Mdx + Ndy in each case,

I R e N |

STUS STrS ST rgs SVr rgs SVT rysvr

using the fact that f = - f
ST s

Adding the right hand sides of (I) and (2), omitting the integrand,

(1) f Mdx + Ndy
STUS

()} f Mdx + Ndy
SVIS
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[ ]

i

where R consists of regions R4 and R,.

Then f Mdx + Ndy = ff(-_'gﬂ - S—M) dxdy and the theorem is proved.
x o4
TUSVT R

A region R such as considered here and in Problem 1, for which any closed curve lying in R can be
continuously shrunk to a point without leaving R, is called a simply-connected region. A region which is
not simply-connected is called multiply-connected. We have shown here that Green’s theorem in the plane
applies to simply-connected regions bounded by closed curves. In Problem 10 the theorem is extended tc
multiply-connected regions.

For more complicated simply-connected regions it may be necessary to construct more lines, such as
ST, to establish the theorem.

Express Green’s theorem in the plane in vector notation.

We have Mdx + Ndy = (Mi+Nj)-(dxi+dyj) = A-dr, where A = Mi+Nj and r=xi+yj so
that dr = dxi+dyj.

Also, if A = Mi + Nj then

i i Kk
V A - i & i = __a_lv .a.&{‘ _Q._N_%
x > 3 2 2RI TG T30
M N o
sothat (Vx A)«k = g—”:' -%M.

Then Green’s theorem in the plane can be written

§A-dr = ff(VxA)'de
R

C
where dR = dxdy.

A generalization of this to surfaces S in space having a curve C as boundary leads quite naturally to
Stokes’ theorem which is proved in Problem 31.

Another Method.

As above, Mdx + Ndy = A«dr = A-j’ ds = A+Tds, y
S
where :—; = T = unit tangent vector to C (see adjacent fig-

ure). If nis the outward drawn unit normal to C,then T =kxn
so that

Mdx + Ndy = AT ds = A-(kxn)ds = (AxK)+n ds

Since A = Mi+Nj, B = Axk = (Mi+Nj)xk = Ni—Mj and

ON _oM

- 3 =V. B. Then Green’s theorem in the plane becomes
x Y

fB-nds = fV.ndR %
/) 0

R
where dR =dxdy.
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Generalization of this to the case where the differential arc length ds of a closed curve C is replaced by
the differential of surface area dS of a closed surface S, and the corresponding plane region R enclosed by
C is replaced by the volume V enclosed by S, leads to Gauss’ divergence theorem or Green’s theorem in

space.
ff B-ndS = ff V.Bdv
V

S

5. Interpret physically the first result of Problem 4.
If A denotes the force field acting on a particle, then f; A-dr is the work done in moving the particle

around a closed path C and is determined by the value of VxA. It follows in particular that if VxA=0 or
equivalently if A =V¢ , then the integral around a closed path is zero. This amounts to saying that the work
done in moving the particle from one point in the plane to another is independent of the path in the plane
joining the points or that the force field is conservative. These results have already been demonstrated for
force fields and curves in space (see Chapter 5).

Conversely, if the integral is independent of the path joining any two points of a region, i.e. if the
integral around any closed path is zero, then Vxa=0. Inthe plane, the condition VxA:o is equivalent to

the condition o = oN where A = Mi + Nj.
dy o«

(2,1)
6. Evaluate f (10x* — 2xy®) dx — 3x%2 dy along the path x* —6xy® = 452,
(0,0)

A direct evaluation is difficult. However, noting that M = 10x* —2xy%, N = —3x%?2 and S—M = —6xy?
Y

oN

= 5—; , it follows that the integral is independent of the path. Then we can use any path, for example the

path consisting of straight line segments from (0,0) to (2,0) and then from (2,0) to (2,1).
2
Along the straight line path from (0,0) to (2,0), y=0, dy =0 and the integral equals 10x%dx = 64.
x=0
1
Along the straight line path from (2,0) to (2,1), x=2, dx=0 and the integral equals - 12y2 dy = —4,

y=0

Then the required value of the line integral = 64 —4 = 60.

Another Method.

Since g—';l = g—iv , (10x* — 2xy%) dx — 3x%? dy is an exact differential (of 2x® —x2%%). Then

(2,1) (1) @1
f (10x* —2¢y%) dx — 3x%2dy = f d(2x® —22%y%) = 25 — x%° \ 60

(0,0) (0,0) (0,0)

7. Show that the area bounded by a simple closed curve C is given by 3 {x dy —ydx.
+C

In Green’s theorem, put ¥ = —y, N = x. Then

- = 9y — 9 - -
f;xdy ydx = ff(ax(x) ay(y))d:«:dy = Z[fdxdy = 24

R
where 4 is the required area. Thus 4 = %f xdy — ydx.
(4
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8. Find the area of the ellipse x = acosf, y = b sinf.

Area

2
%fg xdy —ydx = %f (a cos O)(b cos O) dO — (b sinB)(—a sinb) dO
0

"

2n 2n
é—f ab (cos20 + sin20)dO = %f abdf = Tab
() 0

9. Evaluate f(y—sinx)dx + cosx dy, where C is the y
(4

triangle of the adjoining figure:
(a) directly,
(b) by using Green’s theorem in the plane.

(a) Along O4, y=0, dy=0 and the integral equals

/2
f — sinx dx
0

/2
cosxl = —1

/2
f (0 — sinx)dx + (cosx)(0)
0

Along AB, x = -72—7, dx=0 and the integral equals

1
f (y—1)0 + 0dy = 0
0

2

Along BO, y = -2—7’7‘ , dy = 7—7dx and the integral equals
0 2% 2 2 2 7 2
i - (X 4 g = =
” e sinx)dx + 7 COSx dx = (,” +cosx + smx)l"/2 1 3 p=
; - T_ 2 _ _T _ 2. g
Then the integral alongC = —~1 + 0 + 1 — = T~

(by M = y — sinx, N = cosx, %% = — sinx, %,M =1 and

f Mdx + Ndy ff(a )dxdy = f (—sinx — 1) dy dx
C x 0

.

/2 2x /1 /2 2x
f [ (—sinx — 1) dy] dx = f (—y sinx —y) | dx
x=0 y=0

(]

x=0

/2 /2
% 2% - 2 i Gl - 2T
jo‘ (—7 sinx — -F)dx = 7—7(-—x cosx +sinx) — = |0 = = n

in agreement with part (a).

Note that although there exist lines parallel to the coordinate axes (coincident with the coordi-
nate axes in this case) which meet C in an infinite number of points, Green’s theorem in the plane still
holds. In general the theorem is valid when C is composed of a finite number of straight line segments.

10. Show that Green’s theorem in the plane is also valid for a multiply-connected region R such as
shown in the figure below.

The shaded region R, shown in the figure below, is multiply-connected since not every closed curve
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lying in R can be shrunk to a point without leaving
R, as is observed by considering a curve surrounding y
DEFGD for example. The boundary of R, which con-
sists of the exterior boundary AH/KLA and the inte-
rior boundary DEFGD, is to be traversed in the pos-
itive direction, so that a person traveling in this di-
rection always has the region on his left. It is seen
that the positive directions are those indicated in the
adjoining figure.

In order to establish the theorem, construct a
line, such as AD, called a cross-cuz, connecting the 0 x
exterior and interior boundaries. The region bounded
by ADEFGDALKJHA is simply-connected, and so

Green’s theorem is valid. Then
Mdx + Ndy = ff( )dxdy
But the integral on the left, leaving out the integrand, is equal to

[« [ ] ] o)

AD DEFGD ALKJTHA DEFGD ALKJHA

since -£D = _jD.A . Thus if C, is the curve ALK/HA, C; is the curve DEFGD and C is the boundary of R
consisting of C, and C, (traversed in the positive directions), then j;, + j(; = fC and so
1 2

= -?lv-—ﬂ
f;de+Ndy .{f(ax .ay)dxdy

11. Show that Green’s theorem in the plane holds for the region R, of the figure below, bounded by
the simple closed curves C1(ABDEFGA). Co(HKLPH), Cs(QSTUQ) and C.(VWXYV).

G

Construct the cross-cuts AH, LQ and TV. Then the region bounded by AHKLQSTVWXYVTUQLPHA-
BDEFGA is simply-connected and Green’s theorem applies. The integral over this boundary is equal to

Sl o Lo fo e fofe ]

HKL Lg osr Iy VRXYV LPH ABDEFGA

Since the integrals along AH and HA, LQ and QL, TV and VT cancel out in pairs, this becomes
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12.

from the continuity of the derivatives it follows that
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N AR

HEL osr VWYYV g LPR ABDEFGA
(D) L)L
HKL  LPH osr ToQ VWYYV ABDEFGA
= + + +
HKLPR osToQ VWYYV ABDEFGA

.
—
-
_
_

where C is the boundary consisting of C4, Co, Cgand C4. Then

fde+Ndy = ff( aM)d dy
c

as required.

Prove that f dx + Ndy = 0 around every closed curve C in a simply-connected region if and

oM _

only if oN everywhere in the region.
By B

Assume that M and N are continuous and have continuous partial derivatives everywhere in the region

R bounded by C, so that Green’s theorem is applicable. Then

fde+Ndy = ff(aN )dxdy
c

1t O - OV i1 R then clearly f Mdx + Ndy =
S o P

Conversely, suppose f Mdx + Ndy = 0 for all curves C. If gN %M > 0 at a point P, then
c * Y
ON _ oM

> 0 in some region A surrounding P. If
9 Oy

T" is the boundary of 4 then

f Mdx + Ndy = ff(?ﬂ—aﬂ)dxdy >0
A 1% Ty

which contradicts the assumption that the line integral is zero around every closed curve. Similarly the

assumption M - @—M < 0 leads to a contradiction. Thus M — -a—M = 0 at all points.
ox oy Ox Oy
Note that the condition g—M = g—"’ is equivalent to the condition VxA = 0 where A = Mi + Nj
}' X

(see Problems 10 and 11, Chapter 5). For a generalization to space curves, see Problem 31.
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—yi+txj

13. Let F =—"%—— (a) Calculate VxF . (b) Evaluate §F-dr around any closed path and
x° Ty

explain the results.

i i k
@) VxF = 9 9 9| = 0 inany region excluding (0,0).
Ox Oy Oz
FiZ  Eiy?

®) f F.dr = §:M . Let x= pcos¢, y= psing, where (0,9) are polar coordinates.

22y
Then
dx = —psing dp + dpcos P, dy = pcos¢ dp + dpsing
—ydx +xdy y
and so 2 +y2 = dp = d(arctan )

For a closed curve ABCDA (see Figure (a) below) surrounding the origzig, ¢$d=0at4 and ¢ =27

after a complete circuit back to 4. In this case the line integral equals [ dp = 271.

y y
B Q p
C
0 2 A &
\ ® R 5
D 5 — x
Fig. (a) Fig. (b)

For a closed curve PQRSP (see Figure (b) above) not surrounding the origin, ¢ =¢g at P and

o
& = ¢bo after a complete circuit back to P. In this case the line integral equals f dp = 0.
%o

Since F = Mi + Ni, VxF =g is equivalent to S—M = %N- and the results would seem to contra-
y % _
dict those of Problem 12. However, no contradiction exists since M = -?—:;,75 and N = ;;:F do

not have continuous derivatives throughout any region including (0,0), and this was assumed in Prob.12.

THE DIVERGENCE THEOREM

14. (a) Express the divergence theorem in words and (b) write it in rectangular form.

(2) The surface integral of the normal component of a vector A taken over a closed surface is equal to the
integral of the divergence of A taken over the volume enclosed by the surface,
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(b) Let A = Aqi+Aoj+Ask. Then divA = V.A = 24—1 + %3 + %
3% | oy = oz
The unit normal to Sis n = ny i + np j + ngk. Then 7y = ni = cosO, ny=N*j = cos,B and
ng= n-k = cosy, where @,/3,7 are the angles which n makes with the positive x,y,z axes or i,j,k
directions respectively. The quantities cos @, cos 3, cos ¥ are the direction cosines of n. Then

i}

A-n (Agi + Ao +A3k) - (cos 0 i + cos B + cosy k)

Aycos O + Apcosf3 + Ascosy

and the divergence theorem can be written

ff (%’%— + %’;—2+ a,;:)dxdydz = f (Aycos @ + Aycos B + Agcosy)dS
v S

15. Demonstrate the divergence theorem physically.

Let A = velocity v at any point of a moving fluid. From Figure (a) below:

Volume of fluid crossing dS in At seconds
= volume contained in cylinder of base dS and slant height v/

(vAt)yndS = vendS /At

Then, volume per second of fluid crossing dS = v+ndS

Fig. (a) Fig. (b)

From Figure (b) above:

Total volume per second of fluid emerging from closed surface S
= ff vendS
S

From Problem 21 of Chapter 4, V-v dV is the volume per second of fluid emerging from a volume ele
ment dV. Then

Total volume per second of fluid emerging from all volume elements in S

; fvf Vevar
Thus [ venas - fyf Vevay

N
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16. Prove the divergence theorem.

Let S be a closed surface which is such that any line parallel to the coordinate axes cuts S in at
most two points. Assume the equations of the lower and upper portions, S; and S5, to be z=f3(x,y) and
z=f(x,y) respectively. Denote the projection of the surface on the xy plane by R. Consider

folxy)
fff g dv fff%dzdydx = ff f2 g dz | dydx
0z 0z
4 R

Z=f1(x»9’)
ffA(x z)lf2 dydx = (4, (x A ] dyd
3 »Y Z=f1 Yy ax - 3( vy’fQ) - g(x'y’fl) yax
R R

For the upper portion S,, dydx = cos ¥, dS, = keny dS, since the normal n, to S, makes an acute
angle 7, with k.

For the lower portion S;. dydx = —cos ¥; dS; = —k-nq dS, since the normal n; to S; makes an ob-

tuse angle 7; with k.
ffAs k'n2 dSQ

Then f f As(x,y,f2) dy dx
R So
ff As(x»}’»ﬁ) dydx hand ffAS k‘nl d51
R

Sy
ff Aa(x,}’:fg) dydx — ff As(x.}’,fl) dy dx
R R

[}

and

j:/'Agk-nQa,’S2 + ffAs keng dS;

Sy Sy

I rowns

S

[[ rns

S

[i]

so that

v Sz

Similarly, by projecting S on the other coordinate planes,
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fffaAidV ffAli-ndS
S
o S S
Adding (1), (2) and (3),

ffAQj'“ dS
v

N
or ff V.Aav ffA-ndS
4 N

The theorem can be extended to surfaces which are such that lines parallel to the coordinate axes
meet them in more than two points. To establish this extension, subdivide the region bounded by S into
subregions whose surfaces do satisfy this condition. The procedure is analogous to that used in Green’s
theorem for the plane.

W

I

17. Evaluate ff F.n dS, whete F = dxzi—y2j +yzk and S is the surface of the cube bounded
S
by x=0,x=1,y=0,y=1,2z=0,z=1.

By the divergence theorem, the required integral is equal to

ff V.Fdv fff [ga;(zm) + a%(—y% + %(yz)] av
4 y
1 i 1
ff (4z —y)dV = f f f (4z—y)dzdydx
4

x=0 y=0 2z=0

I I 1 1 1
2 - . 3
f f 2z% — yz ’z:o dydx = f f (2-y)dydx = 3

x=0 y=0 x=0 y:O

The surface integral may also be evaluated directly as in Problem 23, Chapter 5.

18. Verify the divergence theorem for A = 4xi — 2y’ j + 22k taken over the region bounded by
%2 +y2 =4, z=0 and z=3,

- 9 ) 9
fvf V.adv = fyff [ax“‘") + -ay(—2y2) + 82(22)] dv
V=22
ff (4-4y +2z)dV = f f f(4—4y+22)dzdydx = 847w
14

x=e2 y=— 4= V4-%2 z=0

"

Volume integral

The surface S of the cylinder consists of a base S; (z=0), the top S, (z=3) and the convex portion
Sg (x2+y2=4). Then
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Surface integral = fonn dS = ffAm dS, + ffA-n dS, + ff A+n dSg

S S S S

On S, (z=0), n=—k, A =4xi—2y2j and A.n =0, so that ffA-n dS1=0.
81

OnS,(z2=3), n=k, A = dxi— 2y2j +9k and A'n =29, sothat

ffA-n dS, = s‘:‘fj\dS.2 = 367, since area of S; = 477
S2

On Sg (x2+y2 = 4). A perpendicular to x2+y2 =4 has the direction V(x2+y?) = 2xi + 2yj.
i+ 2vj xi+yi

Then a unit normal is n = e = 2 since x%+y2%=4.
4x“+4y

o
An = (4xi—2y2j+z2k)-(i'—2ll) = 22 —y°

dV =dxdyd:

From the figure above, x = 2cos 6, y = 2 sin 6, dS3 =2 dfdz and so

27 3
ffA-n dSs f f [2(2 cos O) — (2sin OY] 2dz dO

Ss 8=0 z=0

27

277
(48 cos?6 — 48 sin36)dO = f 48 cos?26df = 487
6=0 8 =0

Then the surface integral = 0 + 3677 + 4877 = 8477, agreeing with the volume integral and verify-
ing the divergence theorem.

Note that evaluation of the surface integral over S; could also have been done by projection of Sg on
the xz or yz coordinate planes.

19. If div A denotes the divergence of a vector field A at a point P, show that

gf A'n dS
divA = lim
Ar-0 AV
where AV is the volume enclosed by the surface AS and the limit is obtained by shrinking AV

to the point P.
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By the divergence theorem, fff divAdV = fonn dS

Ay AS

By the mean-value theorem for integrals, the left side can be written
div A fffdv = diva AV
AV

where divA is some value intermediate between the maximum and minimum of divA throughout AV. Then

{Sf A'ndS

diva = =———

Av
Taking the limit as AV—0 such that P is always interior to AV, divA approaches the value div A at

point P; hence
f A'ndS
divAa = lm &
ar-o AV
This result can be taken as a starting point for defining the divergence of A, and from it all the prop-
erties may be derived including proof of the divergence theorem. In Chapter 7 we use this definition to
extend the concept of divergence of a vector to coordinate systems other than rectangular. Physically,

f A-ndS
AS
Av )
represents the flux or net outflow per unit volume of the vector A from the surface AS. If divA is positive
in the neighborhood of a point P it means that the outflow from P is positive and we call P a source. Sim-
ilarly, if divA is negative in the neighborhood of P the outflow is really an inflow and P is called a sink.
If in a region there are no sources or sinks, then divA =0 and we call A a solenoidal vector field.

Evaluate ﬁr-n dS, where S is a closed surface.
S

By the divergence theorem,

ff,...ds fyffv.,dv

s
Qi ., 9, 9y,
ff (51 + 5,0+ 5,0 (xi+yj+zk)dV
4

%+%)dV = 3fffdv = 3V
7

"

"
%
%
¢!

R

!

where V is the volume enclosed by S.

Prove ff @V — YRy dv = ff<¢w - YVy.ds.
4 S

Let A= ¢V&[) in the divergence theorem. Then
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fffv-(qbvk/))dV = ff(qbV\,b)-n s = ff@v‘/ﬂ'ds
14 S )

But VeV = ¢(VVYy + (Vy(Vyy = &V + (Vy-(Vih

Thus ff Ve@Viyav = fff (VY + (Y- (Vi] av
v v

or

) ff (VY + (Vr-(V]dV = f @Vy)-ds
4 S

which proves Green’s first identity. Interchanging ¢ and ¥ in (1),

o [[fwve Sn-Vona - [[yvores
4 S

Subtracting (2) from (I), we have

3) ff @V — YV av = f @VY — YV )-ds
4 N

which is Green’s second identity or symmetrical theorem. In the proof we have assumed that ¢ and ' are
scalar functions of position with continuous derivatives of the second order at least.

22. Prove ff Vo dV = ffqbnds.
14 S

In the divergence theorem, let A = ¢>C where C is a constant vector. Then

ff Vigeydv = ffqbc-nds
4 S

since Ve@c) = (Vé)-c = ¢-Vo and ¢C+n = C+(Pn),

fyffc.qudV = {fc-(qbn)ds

Taking C outside the integrals,

cff Vopdv = C—ffqbnds
v S

and since C is an arbitrary constant vector,

ff Vo dv = ffcbnds
V S
23. Prove ff VdeV=ffandS.
4

S
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In the divergence theorem, let A = Bx C where C is a constant vector. Then

ff V.®xc)dv = f(BxC)-nds
v

S

since V.(BxC) = ¢+ (VxB) and (BxC)'n = B:(Cxn) = (Cxn)*B = C+(nxB),

fffc-(VxB)dV ffc-(an) ds
v s

Taking C outside the integrals,
C: f f nx B dS
S

c-fvffvxw
f,,f Venar = [[axnas

and since C is an arbitrary constant vector,
N

24. Show that at any point P

f én dS AfsfnxAds

(¢ Vp = Aliyr_r}o Ay and () VxA = Ali’inoo AV

where AV is the volume enclosed by the surface AS, and the limit is obtained by shrinking AV
to the point P,

(a) From Problem 22, ff Vo dv = ffq.‘mds. Then ff Vo .idv = f ¢n-i ds.
AV Av

AS AS
Using the same principle employed in Problem 19, we have
f én-i ds

Ve . M
-1 Ay

where Vgb.i is some value intermediate between the maximum and minimum of Vb . i throughout AV.
Taking the limit as AV—0 in such a way that P is always interior to AV, qu-i approaches the value

{f ®n-idS

1 Vi = i
@ ¢ At’To Ay
Similarly we find
f f ®n-j dS
S
2 V of = 1i —_—
@ R AVr-ono Av

ff én-k dS
3) Vé.k = lim S—

AV=0 AV
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Multiplying (1), (2), (3) by i, J,k respectively, and adding, using
Vo = (Vp-pi + (Vooeii + (Vokk, n = @Di + (md)j + @Kk

(see Problem 20, Chapter 2) the result follows.,

(b) From Problem 23, replacing B by A, ff VxAdV = ff nxAdS.
AV AS

Then as in part (¢), we can show that

ff (nxA).i dS
(VxA)«i = lim A

AV=0 AY4

and similar results with j and k replacing i. Multiplying by i,j,k and adding, the result follows.

The results obtained can be taken as starting points for definition of gradient and curl.
these definitions, extensions can be made to coordinate systems other than rectangular.

25. Establish the operator equivalence

= i _1_
Ve Al}fr—r}o [&Vﬁdso

AS

where o indicates a dot product, cross product or ordinary product.

123

Using

To establish the equivalence, the results of the operation on a vector or scalar field must be consist-

ent with already established results.

If o is the dot product, then for a vector A,

VoA = lim —l—fdeOA
Y2 A4
AS
or
div A lim lffds-A
A0 AV
As

L1
lim L f f A-n dS
A0 AV
As

"

established in Problem 19.

Similarly if o is the cross product,

culA = VxA = lim —lfdexA
A0 AV

: 1
= lim ———ffnxAdS
Av-0 AV

Also if o is ordinary multiplication, then for a scalar ¢,

Voo - 1i _l_ffdo Vo - 1 _l_ffd
¢ A;ino Ay So¢ o ¢ Al}—r?o AV ¢ ds
AS AS

established in Problem 24(a).

established in Problem 24 (b).
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26. Let S be a closed surface and let r denote the position vector of any point (x,y,z) measured from

an origin J. Prove that
n-r
= dS
ff s
S

is equal to (a) zero if O lies outside S; (b) 477 if O lies inside S. This result is known as Gauss’
theorem.

(a) By the divergence theorem, ff "—3—' dS = fffvis dv.
r r
S 14

But V-% = 0 (Problem 19, Chapter 4) everywhere within V provided r # 0 in V, i.e. provided O
r

is outside of V and thus outside of S. Then ff "—ré—r dS = 0.
S

(b) If O is inside S, surround O by a small sphere s of radius a. Let 7 denote the region bounded by S and
s. Then by the divergence theorem

n-r = n.r n-r = I =
ffrsds_ ffrsd5+ffr3 ds fffv’adv 0
S+s S s T
since r # 0 in 7. Thus
ner n.r
[ e - - [ e
S s
2
Now ons,r=a, n=—1 sothat P23f - -—r/gw:_u__,_a_ =—-l2 and
a r a a a a
2
ff%ds:-ff%ds:ff%dS:;%fde:‘*——;;“ S
S s s s

27. Interpret Gauss’ theorem (Problem 26) geometrically.

Let dS denote an element of surface area and
connect all points on the boundary of dS to O (see
adjoining figure), thereby forming a cone. Let df) be
the area of that portion of a sphere with O as center
and radius r which is cut out by this cone; then the
solid angle subtended by dS at O is defined as dew =
d

r—2_ and is numerically equal to the area of that por-

tion of a sphere with center O and unit radius cut out
by the cone. Let n be the positive unit normal to dS
and call & the angle between n and r; then cos @ =

nT-r_ Also, d{) = *dScos@ = % "Tr dS so that

dw = + ﬂr?l‘ dS, the + or — being chosen according

as n and r form an acute or an obtuse angle & with
each other.

Let S be a surface, as in Figure (¢) below, such that any line meets S in not more than two points.

If O lies outside S, then at a position such as 1, n—r§! dS = dw; whereas at the corresponding position 2,
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28.
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nr L dS = —dw. An integration over these two regions gives zero, since the contributions to the solid
angle cancel out. When the integration is performed over S it thus follows that ff" £ dS = 0, since for

every positive contribution there is a negative one.

In case O is inside S, however, then at a position such as 3, nTs_r dS = dw and at 4, n?,—l: dS = dw

-so that the contributions add instead of cancel. The total solid angle in this case is equal to the area of a

unit sphere which is 477, so that ff% dS =
S

Fig. (a) Fig. (b)

For surfaces S, such that a line may meet S in more than two points, an exactly similar situation
holds as is seen by reference to Figure (b) above. If O is outside S, for example, then a cone with vertex
at O intersects S at an even number of places and the contribution to the surface integral is zero since the
solid angles subtended at O cancel out in pairs. If O is inside S, however, a cone having vertex at O in-
tersects S at an odd number of places and since cancellation occurs only for an even number of these,
there will always be a contribution of 477 for the entire surface S.

A fluid of density p(x,y,z,¢) moves with velocity v(x,y,z,t). If there are no sources or sinks,
prove that

Vg + o . 0  where J = pv

Consider an arbitrary surface enclosing a volume V of the fluid. At any time the mass of fluid within

Vis
I oo
4
The time rate of increase of this mass is

aM : afffpdV ) ff __d,,

The mass of fluid per unit time leaving V is

f pPven dS
s

(see Problem 15) and the time rate of increase in mass is therefore
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._ffpvon dS = -—ff V.(pv)dV
S 4

by the divergence theorem. Then

fffi"?dv - -ff V. (ov) dv

Ot

7 4

ff (V»(pv)+a_p)dV = 0
. ot

Since V is arbitrary, the integrand, assumed continuous, must be identically zero, by reasoning simi-
lar to that used in Problem 12. Then

or

Ve o+ —gf =0 where J = pv
¢

The equation is called the continuity equation. If O is a constant, the fluid is incompressible and V.v =
0, i.e. v is solenoidal.

The continuity equation also arises in electromagnetic theory, where O is the charge density and
J = pv is the current density.

If the temperature at any point (x,y,z) of a solid at time ¢ is U(x,y,2,¢t) and if , p and ¢ are re-
spectively the thermal conductivity, density and specific heat of the solid, assumed constant,
show that
]
%% = kVU where k= x/pc

Let V be an arbitrary volume lying within the solid, and let S denote its surface. The total flux of
heat across S, or the quantity of heat leaving S per unit time, is

ff(-,<VU).n ds
S

Thus the quantity of heat entering S per unit time is

() f(KVU)-ndS = ff V.« Vuy dav
1

S

by the divergence theorem. The heat contained in a volume V is given by

f ff co UdV
4
Then the time rate of increase of heat is

2 [ffeevar - [ffeo
2) > . coUdV J co . '44

Equating the right hand sides of (1) and (2),

ff [cp%’!_V-(KVw]dV = 0
t
14

and since V is arbitrary, the integrand, assumed continuous, must be identically zero so that
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Cp gg = V- (K VU)
ot

or if K,c, 0 are constants,

o _ k. - 2
5, - chVU = i Vu

The quantity £ is called the diffusivity. For steady-state heat flow (i.e. %g =0 or U is independent of

time) the equation reduces to Laplace’s equation V20 =0.

STOKES’ THEOREM
30. (a) Express Stokes’ theorem in words and (b) write it in rectangular form.
(a) The line integral of the tangential component of a vector A taken around a simple closed curve C is
equal to the surface integral of the normal component of the curl of A taken over any surface S having

C as its boundary.

(b) As in Problem 14 (b),

A = Aji+A,§+ A3k, n = cosdi+cosBj+cosyk
Then
i i k
Via = |2 2 2| . (Mo_ oy, 24134y, M 04y,
XA ox Jy Oz (ay Oz )l+(az ax)j+(ax ay)
A1 AQ Ag
_ 045 04, 0A, J4s 0A, ©OA,
(VxAy-n = (—a—f—?)cos(x tgte 5t cosfB3 + (572 ‘5—) cos’y
A-dr = (Aqi+Agi +Agk)(dxi+dyj+dzk) = Aydx + Aody + Azdz

and Stokes’ theorem becomes

f [(_ais - ;8_42) cos O + (%A_l - .-%_AQ) s + (-a%"’ - §A71) cosyldS = iAidx+A2dy+A3dz

31. Prove Stokes’ theorem.

Let S be a surface which is such that its projections
on the xy, yz and xz planes are regions bounded by simple
closed curves, as indicated in the adjoining figure. As-
sume S to have representation z=f(x,y) or x=g(y,z) or
y=h(x,z), where f, g,k are single-valued, continuous and
differentiable functions. We must show that

ff (VxA).nds
S

(]

f [Vx(4,1 + 4,5 + A3k)]-n dS

fA-dr

C
where C is the boundary of S.

H
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Consider first ff v x(Aii)] *n dS.
S

i i k
, ho= |2 2 2 L M _ M
since. Vx o = |\ 3 5| C o5 i
4, 0 0
0 [Vx 1)) -nds = (a—Aimi—a—Al“"‘)ds
Oz a}'

If z =f(x,y) is taken as the equation of S, then the position vector to any point of Sis r = xi+yj+zk =

xi+yj+f(x,y)k so that _'8_r =j+ k k=j+ §£ k. But ?1 is a vector tangent to S (see Problem 25,

9 ) L) 9
Chapter 3) and thus perpendigular to n,yso that 4 Y
or ., Oz . 9z
ne=— = n+j + =—=nk = 0 or n.j = —=n-k
Oy dy Jy
Substitute in (1) to obtain
aAl aAl aAi az aAi
vj — =—n-k)dS = (-~ — n+k — —=n-k)dS
A -3 3" 3 0
or
QA4, = 0A, 9z
v )] = —(=t+=2=yn-kds
@) [Vx(44i)]+n ds ol bl
Now on S, A4(x,y,2) = Al(x,y,f(x,y)) = F(x,y); hence % + aAl k = y and (2) becomes
ay Oz ay ay
[Vx@,i)]-nds = - OF nwas = -29F dx dy
dy S
Then
f [Vx@i)]l.nds = ff- %ﬁ dx dy
Y
S R

where R is the projection of S on the xy plane. By Green’s theorem for the plane the last integral equals

F dx where I' is the boundary of R. Since at each point (x,y) of [ the value of F is the same as the

value of 4, at each point (x,y,z) of C, and since dx is the same for both curves, we must have

§Fdx = f/hdx
r

C
or

f [Vx (4:1)]+n dS
3

Similarly, by projections on the other coordinate planes,

f [Vx (455)]-n dS

S

f [Vx (4gky] -n ds

S

"
S, o
x
Ky
au
]

il
&6,
h S
(]
o
N
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Thus by addition,

4

ff(VxA)-ndS = fA-dr
h

The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above. For
assume that S can be subdivided into surfaces S,,So, “‘Sk with boundaries Cy4, Co, ...Ck which do satisfy
the restrictions. Then Stokes’ theorem holds for each such surface. Adding these surface integrals, the
total surface integral over S is obtained. Adding the corresponding line integrals over C4,C,,...C  » the
line integral over C is obtained.

32. Verify Stokes’ theorem for A = (2x—y)i - y22j — y?zk, where § is the upper half surface of
the sphere x? +y2 +22 = 1 and C is its boundary.

The boundary C of S is a circle in the xy plane of radius one and center at the origin. Let x = cosz¢,
y=sinz, z=0, 0 < ¢ < 277 be parametric equations of C. Then

f A-dr = f (2 —y)dx — y2dy — y%zdz

C C
27
= f (2 cost — sint) (—sinz)dte = 7
()
i i k
Also, v - 9 - -
=0 A > % o K

Z—y —yz? -y

Then ff(VxA)-n dS = ffk-n ds = ffdx dy
3 S R

since n-k dS =dxdy and R is the projection of S on the xy plane. This last integral equals

! 1-x2 1 pVi-x? 1
f dy dx = 4/[ dydx = 4f Vi—x2dx = 7
= - 0 0 (¢]
LAl RV frx?

and Stokes’ theorem is verified.

33. Prove that a necessary and sufficient condition that f A-dr =0 for every closed curve C is
C

that Vx A =@ identically.

Sufficiency. Suppose Vx A = 0. Then by Stokes’ theorem

fA-dr = ff(VxA)on dS = 0
S

¢

Necessity. Suppose f A-dr =0 around every closed path C, and assume Vx A # 0 at some point
(8
P. Then assuming VxA is continuous there will be a region with P as an interior point, where Vxa 0.
Let S be a surface contained in this region whose normal n at each point has the same direction as Vxa ,
i.e. VxA = an where ¢ is a positive constant. Iet C be the boundary of S. Then by Stokes’ theorem
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fA-dr = ff(VxA)-ndS = Otffn-nds > 0
¢ S S

which contradicts the hypothesis that f A-dr =0 and shows that VxA =0.
(4

P
It follows that VxA = 0 is also a necessary and sufficient condition for a line integral f A.dr

P,
to be independent of the path joining points P, and P2 . (See Problems 10 and 11, Chapter 5.) t

34. Prove fdpr = H(nxV)deS.
S

In Stokes’ theorem, let A = BxC where C is a constant vector, Then

fdr'(BXC) = ff [Vx@®xcC)]-n dS
S

fc-(drxn) = ff [c-V)B - c(V-B)]-n dS
S

C-f drx B

f [cc-VyB]-nds - f [c(V-B)]-n dS

N

s

ffc- [VB-m)] dS — ffc [n(V-B)] dS

s s

Cff [V@B-n) — n(V-B)] dS = C-ff(nxV)deS
s s

Since C is an arbitrary constant vector f drxB = ff (nxV) x B dS
N

35. If AS is a surface bounded by a simple closed curve C, P is any point of AS not on C and n is
a unit normal to AS at P, show that at P
f A.dr
(4

(curlAy.n = lim ——
As—o AS

where the limit is taken in such a way that AS shrinks to P.

By Stokes’ theorem, ff(curl A)'n dS = f A-dr.
AS

4

Using the mean value theorem for integrals as in Problems 19 and 24, this can be written
f A-dr
£

As

(curl Ayemr =
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and the required result follows upon taking the limit as AS—o0.

This can be used as a starting point for defining curl A (see Problem 36) and is useful in obtaining

curl A in coordinate systems other than rectangular. Since f A-dr is called the circulation of A about
C

C, the normal component of the curl can be interpreted physically as the limit of the circulation per unit
area, thus accounting for the synonym rotation of A (rot A) instead of curl of A.

36. If curlA is defined according to the limiting process of Problem 35, find the z component of
curl A.

Let EFGH be a rectangle parallel to the xy plane with interior point P(x,y,z) taken as midpoint, as
shown in the figure above. ILet A; and A, be the components of A at P in the positive x and y directions
respectively.

If C is the boundary of the rectangle, then

fAvdr = fA-dr + fA-dr + fA-dr + fA-dr

¢ EP G CH HE

94 0
But fA-dr = (Al-—%#Ay)Ax fA-dr = —(A1+%ﬂ Dyy Dx
Y
EF GH 4
24 L)
fA-dr = (A2+-1———2Ax)Ay fA-dr = —(Ag—lﬁAx)A
2 o 2 ox
FG HE
except for infinitesimals of higher order than Ax Ay,
Adding, we have approximately f Aedr = 9y - —aﬂ)Ax Ny .
A Ox Oy
Then, since AS = Axly,
A-dr
z component of curlA = (curlA)-k = lim
AS-0 AS
P
(A2 _ 1
= lim [ o
Dx~0 Ax Ny
Ay-o0
04, 04,
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37.

38.

39.

40

-

41.

42.

43.

44.

45.

46.

417.

48.

49.

50.
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SUPPLEMENTARY PROBLEMS

Verify Green’s theorem in the plane for f (3x2—8y2)dx + (4y —6xy)dy, where C is the boundary of the
C

region defined by: (a) y = Vx, y = x2; (b) x=0,y=0, x+y = 1.

Ans. (a) common value = 3/2 (b) common value = 5/3

Evaluate f (3x +4y)dx + (2x —3y)dy where C, a circle of radius two with center at the origin of the xy
4

plane, is traversed in the positive sense. Ans. — 877

Work the previous problem for the line integral f (x2 +y2)dx + 3xy? dy. Ans. 127
[4

Evaluate f (x?—2xy)dx + (»®y +3)dy around the boundary of the region defined by y2= 8x and x = 2
(a) directly, (b) by using Green’s theorem. Ans. 128/5

(m,2)
Evaluate [ , (6xy —y2)dx + (352 — 2xy)dy along the cycloid x = 8—sinf, y = 1 — cos 6.
0

»

Ans. 6TR—477

Evaluate f (3x2+2y)dx — (x +3cosy)dy around the parallelogram having vertices at (0,0), (2,0), (3,1)
and (1,1). Ans. -6

Find the area bounded by one arch of the cycloid x = a(@— sin&), y = a(1 -~ cos &), a>0, and the x axis.
Ans. 37a?

Find the area bounded by the hypocycloid x2® +y%3 = 0?2 4> 0.
Hint: Parametric equations are x =acos®8, y = asin6. Ans. 377a%8

Show that in polar coordinates (0,) the expression xdy —ydx = 0?d¢. Interpret 3 f xdy — ydx,
Find the area of a loop of the four-leafed rose o = 3 sin 2¢. Ans. 977/8

Find the area of both loops of the lemniscate 0° = a®cos 2¢b.  Ans. @

Find the area of the loop of the folium of Descartes y

x%+y% = 3axy, a >0 (see adjoining figure).
Hint: Let y = ¢x and obtain the parametric equa-

tions of the curve. Then use the fact that
Area f xdy — ydx

=3 ¢ 2ad k>

N\
f x2dt o

(3a, 30

N~

i
NI=

Ans. 3a%2

/

Verify Green’s theorem in the plane for f (2x —y%)dx — xydy, where C is the boundary of the region en-
c

closed by the circles x?+y2 =1 and x2+y2=9.  Ars. common value = 6077

(=1,9) _ydx +xd
Evaluate f —ygx—;i-l along the following paths:
('10) X +y
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(a) straight line segments from (1,0) to (1,1), then to (-~1,1), then to (~1,0).
(b) straight line segments from (1,0) to (1,~1), then to (—1,—1), then to (~1,0).
Show that although M = 9N
dy Ox
Ans. (@) m (b) — T

, the line integral is dependent on the path joining (1,0) to (—1,0) and explain,

51. By changing variables from (x,y) to (,v) according to the transformation x = x(u,v), y = y(u,v), show that
the area 4 of a region R bounded by a simple closed curve C is given by

%

= | XY Id xy. _ |Ou Ou
4 = ff J(u'v) udv where ](m) = |, 3
f W W

is the Jacobian of x and y with respect to » and v. What restrictions should you make ? Illustrate the re-
sult where » and v are polar coordinates.
Hint: Use the result 4 = %fxdy-—ydx , transform to u,v coordinates and then use Green’s theorem.

52. Evaluate f F-n dS, where F = 2xyi+y2°j+xzk and S is:
S
(@) the surface of the parallelepiped bounded by x=0,y=0,2=0,x=2,y=1and z=3,
(b) the surface of the region bounded by x=0, y=0, y=3,z=0and x+2z=6.
Ans. (a) 30 (b) 351/2

53. Verify the divergence theorem for A = 2x°y i — y2j + 4xz2k taken over the region in the first octant
bounded by y2+z2=9 and x=2. Ans. 180

54. Evaluate ff r-n dS where (a) S Is the sphere of radius 2 with center at (0,0,0), (b) S is the surface of
S

the cube bounded by x=—1, y=—1, z=—1,x=1,y=1, z=1, (c) S is the surface bounded by the paraboloid
z = 4—(?+9%) and the xy plane.  Ans. (a) 327 (b) 24 (c) 2477

55. If S is any closed surface enclosing a volume ¥ and A = axi + byj +czk, prove that ff A'n dS =
(@at+tb+e) V. S
56. If H= curl A, prove that ff H+n dS = 0 for any closed surface S.
S
57. If n is the unit outward drawn normal to any closed surface of area S, show that f ff divn dV = S.
14

58. Prove ff %’ = ffr;n dsS.

y s T
59, Prove ffrsn ds = fffSrsr dv.

S 4

60. Prove ffn dS = 0 for any closed surface S.
S

61. Show that Green’s second identity can be written fff(qﬁVQ\/J - ¢V2¢)dV = ff (QS%# - t,b%))ds
4 N

62. Prove ffr xdS = 0 for any closed surface S.
S
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63.

64.

65.

66.

67.

68.

69.

70.

1.

2.

3

4.

DIVERGENCE THEOREM, STOKES’ THEOREM, RELATED INTEGRAL THEOREMS

Verify Stokes’ theorem for A = (y—z +2)i + (yz +4)j—xzk, where S is the surface of the cube x=0,
y=0,2=0,x=2,y=2, 2=2 above the xy plane. Ans. common value = ~4

Verify Stokes’ theorem for F = xzi—yj +x%yk, where S is the surface of the region bounded by x=0,
y=0,2=0, 2x +y +2z = 8 which is not included in the xz plane. Ans. common value = 32/3

Evaluate ff(VxA)-n dS, where A = (x2+y—4)i +3xyj+(20z+22)k and S is the surface of (a) the
S

hemisphere x2 +y?+z2 =16 above the xy plane, (b) the paraboloid z = 4 — (%2 +y2) above the xy plane.

Ans. (a) —1677, (b) —477

I A= 2yzi—~(x+3y—-2)j+@x2+z)k, evaluate ff(VxA).n dS over the surface of intersection of the

S

2
2 which is included in the first octant. Ans. — 91—2(377 + 8a)

cylinders x2 +y2 =a?, x%+22= a?

A vector B is always normal to a given closed surface S. Show that ffcurlB dV = @, where V is the
region bounded by S. 7

i f E-+dr = -cl -g— ffll-ds, where S is any surface bounded by the curve C, show that VX E =
(4 ‘ S
_1°m
¢ ot
Prove fqb dr = fdexV¢.
¢ s
Use the operator equivalence of Solved Problem 25 to arrive at (a) Vb, (b) V-A, (¢) Vx A in rectangular

coordinates.
Prove ffqubA v = ffd)A-n dS — fffqﬁVA dv.
4 S 14

Let r be the position vector of any point relative to an origin O. Suppose ¢ has continuous derivatives of
order two, at least, and let S be a closed surface bounding a volume V. Denote ¢ at O by ¢°. Show that

2
JJ Ve -oVdeas = [[[VLar +a
S |4

where 0=0 or 477(]50 according as O is outside or inside S.

The potential ¢ (P) at a point P(x,y,z) due to a system of charges (or masses) 41 9p s 9y, having position
vectors r,,I,, N with respect to P is given by

Prove Gauss?’ law

ffE-ds = 47Q
s

n
where E = —V¢ is the electric field intensity, S is a surface enclosing all the charges and Q= Z I
is the total charge within S. m=1

If a region ¥ bounded by a surface S has a continuous charge (or mass) distribution of density o, the po-

dV
tential ¢(P) at a point P is defined by ¢ = fffp, . Deduce the following under suitable assumptions:

(a) ffE-dS = 47 fffpdV, where E=V—V¢.
N 7

2
® V= —470 (Poisson’s equation) at all points P where charges exist, and V2¢ = 0 (Laplace’s equa-
tion) where no charges exist.




Chapter 7

TRANSFORMATION OF COORDINATES. Let the rectangular coordinates (x,y,z) of any point be
expressed as functions of (u,,us, u3) so that

(1) x = x(up Ug,y us) s y= )’("1. Uy, ua) ’ z = z("’p Ly, "'3)
Suppose that (1) can be solved for u,, u,, 25 in terms of x,v, z, i.e.,,
) Uy = (%, ,2), Uy = U(X,¥,2), Uy = Ug(x,¥,Z)

The functions in (I) and (2) are assumed to be single-valued and to have continuous derivatives so
that the correspondence between (x,y,z) and (u,,u,, us) is unique. In practice this assumption may
not apply at certain points and special consideration is required.

Given a point P with rectangular coordinates (x,y,z) we can, from (2) associate a unique set
of coordinates (uy,u,,u;) called the curvilinear coordinates of P. The sets of equations (I) or (2)
define a transformatior of coordinates.

ORTHOGONAL CURVILINEAR COORDINATES.

The surfaces ui=c¢;, up=¢,, Ug=cy, where
¢ ,c,cy are constants, are called coordinate sur-
faces and each pair of these surfaces intersect in
curves called coordinate curves or lines (see Fig.1).
If the coordinate surfaces intersect at right angles
the curvilinear coordinate system is called orthogo-
nal. The u,,u, and u; coordinate curves of a curvi-
linear system are analogous to the x,y and z coor-
dinate axes of a rectangular system.

Fig. 1

UNIT VECTORS IN CURVILINEAR SYSTEMS. Let r = xi +yj + zk be the position vector of a point
P. Then (I) can be written r = r(u,, uo,u,), A tan-
gent vector to the u; curve at P (for which u, and u; are constants) is o . Then a unit tangent

x /|3 ? ou o

vector in this direction is e, = X /| 2L | sothat 2L = hye, where h, = |2L |. similarly, if
aui au1 aui 3u1 a

e, and e, are unit tangent vectors to the u, and u; curves at P respectively, then X = hoe, and

Ou
i S haez; where h, = [Qr_l and hy= |—§'—| . The quantities k,,h,, ks are called scale factors.
Oug Ouy Oug

The unit vectors e,, e, e; are in the directions of increasing u,, u,, u5 , respectively.

since Vu, is a vector at P normal to the surface u, =c,, a unit vector in this direction is giv-

135
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en by E; = Vu1/| Vu,|. Similarly, the unit vectors E,= Vug/l Vu,| and Eg= Vu3/| Vu,| at P
are normal to the surfaces u,=c¢, and u;=cy respectively.

Thus at each point P of a curvilinear system there
exist, in general, two sets of unit vectors, e;, e, e; tan-
gent to the coordinate curves and Eg4 E,, Ez normal to
the coordinate surfaces (see Fig.2). The sets become
identical if and only if the curvilinear coordinate system
is orthogonal (see Problem 19). Both sets are analogous
to the 1i,j,k unit vectors in rectangular coordinates but
are unlike them in that they may change directions from

point to point. It can be shown (see Problem 15) that the

sets OF O O .4 Vu,, Vu,, Vug constitute recip-

Ou; ' Quy ' Jug Fig. 2
rocal systems of vectors.

A vector A can be represented in terms of the unit base vectors e, e, e; or E4, E,, E5 in the
form

A = Aje + Ao, + A6y = aE, + ,E, + o;F,

where A;,4,,4s and ay,a,, a; are the respective components of A in each system.

We can also represent A in terms of the base vectors g—' , _(?_r 58_1'_ or Vu,,Vu,,Vu, which
u Us Ug
are called unitary base vectors but are not unit vectors in general. In this case
or or or
A = Clgu_l + ng2 + CSa—us = C1¢1 + CQ“Q + Csas
and A = ciVuy + c,Vuy, + ¢3Vug = ey + coo + c3fBs

where C;, C,, C; are called the contravariant components of A and ¢, ¢y, c; are called the covariant
components of A (see Problems 33 and 34). Note that a¢= Bg[_ , ﬁp=Vuﬁ ,p=12,3.

u

P

ARC LENGTH AND VOLUME ELEMENTS. From r = r(uq,u,, u3) we have

or or 9

dl' = 571(1”1 +a—u;du2 +:éuLsdu:3 = hlduiel +h2d112e2 +h3du3e3
Then the differential of atc length ds is determined from
ds®> = dr-dr. For orthogonal systems, e;-e, = ey+e5 =
ez-e; = 0 and

ds? = hi duf + h: a’uz + h: du:

For non-orthogonal or general curvilinear systems see
Problem 17.

Along a u, curve, u, and ug are constants so that
dr = hyduie;. Then the differential of arc length ds,
along u, at P is h,du,. Similarly the differential arc
lengths along #, and ug at P are ds, = h,du,, dsg = hgdug.

Referring to Fig.3 the volume element for an or-
thogonal curvilinear coordinate system is given by Fig. 3
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v = I (hyduseq)« (hoduse,) X (hgduseq) | =

since e1-e2xe3| = 1.

137

hl h2 hg duiduQ dua

THE GRADIENT, DIVERGENCE AND CURL can be expressed in terms of curvilinear coordinates.
If $ is a scalar function and A = 4,e, + A,e, + Age,
a vector function of orthogonal curvilinear coordinates u,, u,, us, then the following results are valid,

- - 1% 1% 1 9%
1. V® = grad & = b, u, e, + . ou, e, + he u e
- - 1 9 o 9
2. V.A = divAa = hihohs [3u1(h2h3A1) + auQ(hshlAQ) + aus(hihQAs)]
h191 h292 hsea
- = 1 9 9 9
3. VxaA curl A ke | 3w 3w
hids  hody  hads
Ve - samomnors - i [2lh 22y, 2 ks 28, 2 ks 29)]
4 LaplaCIano @ hihzhs aul( h1 au:,_ * EUQ( h2 au2) * aus( hs aua)

If hy=h,=hs=1 and e;,e,e; are replaced by i,i,k, these reduce to the usual expressions in

rectangular coordinates where (u4, u,, u3) is replaced by (x,y, z).

Extensions of the above results are achieved by a more general theory of curvilinear systems

using the methods of tensor analysis which is considered in Chapter 8.

SPECIAL ORTHOGONAL COORDINATE SYSTEMS.

1. Cylindrical Coordinates (o, ®, z). See Fig.4 below,

x = pcose, y = psing, z=2z
where p 20, 05 < 27, —w<z<®©
hp=1, h¢=p, hz=1

2. Spherical Coordinates (r, 8, ). See Fig.5 below.

x = rsinf cos¢p, y = rsinf sino, z =
where r20, 0Sp<2m, 0L8<n
ke =1, h9=r' h¢=rsin9

rcos @
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Fig. 5

Fig. 4

3. Parabolic Cylindrical Coordinates (u,v,z). See Fig.6 below.
=2

x = zw?—0v%, y=w, z

—ow<u<®, v20, —o<z<®

where
hy=hy=Vu2+0v2, hy,=1

In cylindrical coordinates, u« = vV 20 cos 922 v = V20 sin % z2 =1z
The traces of the coordinate surfaces on the xy plane are shown in Fig.6 below. They are

confocal parabolas with a common axis.

.y Y o\
5/2 v?
“s, v‘?'
us 2
3/ v=3

N,

.:0’

e
2

A2
®
)

.
(]
(]

u=—1/2 ’
DAL
e “23;
“4,‘1‘ b\\e
ol? %5/3

Fig. 6
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4. Paraboloidal Coordinates (u, v, ).

x = wwcosp, y =uvsing, z = F@u®—1?)
where 220, »20, 0Sp<2m

hy, = h, = Vu? + 02, h¢=uv

Two sets of coordinate surfaces are obtained by revolving the parabolas of Fig.6 above
about the x axis which is relabeled the z axis. 'The third set of coordinate surfaces are planes
passing through this axis.

5. Elliptic Cylindrical Coordinates (u,v,z). See Fig.7 below.

x = a coshucosv, y = a sinhu sinv, z

il
N

where 20, 05 v<27, —®w<z<®
hy = h, = aVsinh® u +sinv, h, =1

The traces of the coordinate surfaces on the xy plane are shown in Fig.7 below. They are
confocal ellipses and hyperbolas.

6. Prolate Spheroidal Coordinates (£,7, ).
% = asinh & sinm cos¢, y = asinh ¢ sinm singg, =z = acoshé cosm
where £20, 057msm, 05¢p<2m
he = h,, = aVsinh’£ + sin’7, hy = a sinh £ sinm
Two sets of coordinate surfaces are obtained by revolving the curves of Fig.7 above about

the x axis which is relabeled the z axis. The third set of coordinate surfaces are planes passing
through this axis.
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a cosh & cos7 singp, 2z = asinh & sinm

where £ 20, -—271_5_77§127-, 0sd<am
hy = by = aV'sinh®£ + sin®7, hy =acosh& cos7

Two sets of coordinate surfaces are obtained by revolving the curves of Fig.7 above about

the ¥ axis which is relabeled the z axis. The third set of coordinate surfaces are planes passing

7. Oblate Spheroidal Coordinates (£,7,®).
acosh & cos7 cospp, y =

x =

through this axis.
A< e2<b?<d?

8. Ellipsoidal Coordinates (A, u, V).
x2 y2 22
+ + = 1,
a®—\ b2 — A 2=\
2 2 2
2:\: +2}’ +22 = 1, e2< u<b2<a?
a®— p b=  f—pu
2 2 2
296 + 2)’ + 2z = 1, c2<b?<v<d®
a —v b —v ¢ —v
he o= L / (=M@ =N po= L ‘/ (V=) A —p)
A2 ¥V o @=ne2-NE-N B2 ¥ (@2= ) (02— wy(c®— )
poo L ‘/ A=) (=)
Yo @—v)B2—v) (2 —1)
9. Bipolar Coordinates (z,v,z). See Fig.8 below.
x2+ (y—a cotu)’ = a?csc®u, (x— acoth») + y?2 = a?2c¢sch?y, z=2
b4
,,“‘\%
v Tl e
)
«‘\b. A
o Y &
Q° k\ e,\\
7/ o P 2
o/’ M )
v==1 . v=1
(—a,0)or v=—@ H (@a,0)orv=o *
2 PN
27 2
N
()
Y n
Gl
\\4'\
®
\\"\\
7

Fig. 8
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or x = a sinh v - a sinu 2=z
coshv — cosu’ 7 coshy — cosu’
where 0Su<27m, —®©®<v<®, —0O<Z<L®
h,=h = —""2 | h =1

% "V coshwv — cosu’

The traces of the coordinate surfaces on the xy plane are shown in Fig.8 above. By re-
volving the curves of Fig.8 about the y axis and relabeling this the z axis a toroidal coordinate
system is obtained.

SOLVED PROBLEMS

1. Describe the coordinate surfaces and coordinate curves for (z) cylindrical and (b) spherical co-
ordinates.

(a) The coordinate surfaces (or level surfaces) are:
P = cq cylinders coaxial with the z axis (or z axis if ¢, =0).
& = ¢y planes through the z axis.
z = ¢z planes perpendicular to the z axis.

The coordinate curves are:
Intersection of 0 = ¢y and ¢ = c, (z curve) is a straight line.
Intersection of 0 = ¢y and z = ¢z (¢ curve) is a circle (or point).
Intersection of ¢ = ¢, and z = ¢z (O curve) is a straight line.

(b) The coordinate surfaces are:
r = ¢; spheres having center at the origin (or origin if ¢4 = 0).
6 = c, cones having vertex at the origin (lines if c,=0 or 77, and the xy plane if c,=77/2).
¢ = c; planes through the z axis.

The coordinate curves are:
Intersection of r = ¢, and & = ¢, (¢ curve) is a circle (or point).
Intersection of r = ¢y and ¢ = ¢5 (O curve) is a semi-circle (¢4 # 0).
Intersection of @ = ¢, and @ = cg (r curve) is a line.

2. Determine the transformation from cylindrical to rectangular coordinates.

The equations defining the transformation from rectangular to cylindrical coordinates are

(Iy x=pcosp, (2 y=psind, (3 z=:
Squaring (1) and (2) and adding, % cos?® +sin?®) = x2 +9% or
P =Vx2+y2, since cos?¢ +sin2¢ = 1 and p is positive.

Dividing equation (2) by (1), % = @2 = tan® or ¢ = arc tan%.
© cos

Then the required transformation is (¢4) o = Vx2+y2 , (5) ¢ = arc tan % , (6)Yz=2z2.

For points on the z axis (x=0, y=0), note that ¢ is indeterminate. Such points are called singular
points of the transformation.
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3. Prove that a cylindrical coordinate system is orthogonal.

The position vector of any point in cylindrical coordinates is

r = xi+y] +z2k = pcosi + psingdij + zk
The tangent vectors to the 0O, qb and z curves are given respectively by ﬁ , i and _B_r where
% X o
or or . or
— = cosPi +sin®j, = —0sin®i + cos P j — =Kk
55 ¢ ¢ o psing i + peospi, I

The unit vectors in these directions are

°or/3p cospi + sing j

e, = e = = = cos 1 + sin¢ j
t P | 3r/3p0| Veos?@ + sin?¢
e =e, = o/ = —psin¢i+pcos¢j= —singdi + cosj
2 ¢ | or/3 | V?sin’p + p?cos®
o = = X% _
° z IBr/le
Then e,ce, = (cosPi +sing j)e(—sin@i+cospi) = 0
e,+e, = (cosPi +sindi)ek) = 0

e,ce; = (—singi+cosd k) = 0

and so ey, e, and eg are mutually perpendicular and the coordinate system is orthogonal.

4. Represent the vector A = zi — 2xj + yk in cylindrical coordinates. Thus determine Ap,A¢ and Az.
From Problem 3,

() e, = cosi + sind j (2) ey = —sinpi + cosP (3) e =k

Solving (1) and (2) simultaneously,

i = cosqbep —sind)ed,, i = sinqbep +cos<;be¢,
Then A = zi — 2¢j + yk
= z(cos ¢ e — sin® ep) — 20 cos P(sin P e, + cosp ey + psinde,
= (2 cos ® — 20 cos ¢ sin Pre, — (zsind + 20 cos’Prey + psin e,
and A, = zcos® — 20cosPpsing, Ay = —zsind — 20 cos?p, 4, = psin.
d _ d _ X . .
5. Prove d_t o = ¢ €y E ey = — b e, where dots denote differentiation with respect to time ¢.

From Problem 3,

e, = cosPi +singd j, e = —sing i + cos §
Then e, = —(sin(b)q‘ﬁi + (cosqb)éj = (—sin¢i + cosqu)(;.b = q.beqs
E‘f—% = —-(00s¢)g?>i—(sin¢)$j = -(cosqbi+sinq5j)ci5 = —-q.bep
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6. Express the velocity v and acceleration a of a particle in cylindrical coordinates.

In rectangular coordinates the position vector is r = xi + yj + zk and the velocity and acceleration
vectors are
d d2 cor aas w
v = d—' = xi+yi+tk and a = —tg = ¥i+%j+7k
t

a

In cylindrical coordinates, using Problem 4,

r = xi+tyj+zk = (0 cos d)(cos @ e, - sin @ ey)
+ (0 sin ®)(sin b e, + cos ¢ ey + zey

= p ep + 2z ez
dp de .
dr 4 dz . .
Then vV = = = —e + 00— + e, = e + pdpe, + ze
de dt P P dt dt 2 P * PP 2
using Problem 5. Differentiating again,
2
d'r d , - H .
a = E = d—t(pep+que¢+zez)

,dep Ve .de¢, ve . . .
=Pt Pt PPt pheyt pPey+ie,

= eyt pe, + ph—dey) + phey + fey e,
= P -pdre, + (pP+2Wdrey+ T e,

using Problem 5.

7. Find the square of the element of arc length in cylindrical coordinates and determine the corre-
sponding scale factors.

First Method.
x = pecosd, y =psing, z=2:z
dx = —psingpdd + cospdp, dy = pcospdp + sinp dp, dz=dz
Then ds? = dx?+dy?+dz2 = (—psing dp + cos d,O)2 + (pcosP dp + sing dp)2 + dz)f

@p) + PAAPY + (dz) = ho@PY + hiddy + ho(dz)

0]
It

and h, = hp= 1, hy= h¢= P, hy=hy,=1 are the scale factors.

Second Method. The position vectoris r = pcos® i + psing j + zk. Then

o o or
apdp + a¢d¢ + Bzdz

= (cospi+sing jdp + (—psindi+ pcosd i)dp + kdz
= (cosPdp —psingd dP)i + (sindpdp + pcosPdPyji + kdz

dr =

Thus ds? = dredr = (cos @ dp — p sing dpy¥ + (sin dp + pcos @ Ay + (dzy?
= @pF + PP’ + (2
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8. Work Problem T for (a) spherical and (b) parabolic cylindrical coordinates.

(@) x = rsinf cos, y = rsinf sing, =z = rcosf
Then dx = —rsinf sing dp + rcos @ cos ¢ d6 + sin G cos ¢ dr
dy = rsin@ cos® dp + rcos & sing df + sin 8 sin dr

dz = —rsin@ df + cos @ dr

and @dsy = (@xy + dyy + @z = @) + r2@0y + r2sin?0 (dpy

The scale factors are hy=h =1, hy=hg=r1, hy=hy=r sin 0.

(®) x = 35@2—v®), y=uw, z=z
Then dx = udy — vdv, dy = udv +vdu, dz=dz
and dsY = @xY + @y’ + @z = @2+vd)du) + @2+ (@dv) + (dz)

The scale factors are h, = hy = Vu2+0%, hy= hy = Vu2+0?, hy=hy=1.

9. Sketch a volume element in (a) cylindrical and (b) spherical coordinates giving the magnitudes
of its edges.
(a) The edges of the volume element in cylindrical coordinates (Fig.(a) below) have magnitudes o dcb, dp
and dz. This could also be seen from the fact that the edges are given by

ds, = hydu, = (1)(dp) = dp, ds, = hyduy= pdp, ds, = (1)(d7) = dz

using the scale factors obtained from Problem 7.

Fig.(a) Volume element in cylindrical coordinates. Fig.(b) Volume element in spherical coordinates.

(b) The edges of the volume element in spherical coordinates (Fig.(b) above) have magnitudes dr, rd@ and
r sin & d®. This could also be seen from the fact that the edges are given by

ds, = hydu, = (1y(dr) = dr, ds, = hydu,=rd0, ds;= hydu,=rsin@ dp

using the scale factors obtained from Problem 8 (a).
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10. Find the volume element dV in (a) cylindrical, (b) spherical and (c¢) parabolic cylindrical coor-
dinates.

The volume element in orthogonal curvilinear coordinates Uy Uy, Ug is

dV = hthha duidu.Qdu.3

(@) In cylindrical coordinates uy=p, upo=®, ug=2z, hy=1, hy= P, hg=1 (see Problem 7). Then
vV = ((E)1)dpdpdz = pdpdp dz
This can also be observed directly from Fig. (a) of Problem 9.

(b) In spherical coordinates uy=r, up=0, ug=®, hy=1, ho=r, hg=r sin & (see Problem 8(a)). Then
dV = ()(r)(rsinB) dr d0 dp = r?sin 8 dr d6 dp

This can also be observed directly from Fig. (b) of Problem 9.

{¢) In parabolic cylindrical coordinates u,=u, up=v, ug=2, hy=VuZ+ 1?2, ho=vVu2+ 12, hy=1 (see Prob-
lem 8(b)). Then

dV = (Vu2+ ) Vul+ () dudvdz = (u2+v?) dudvdz

11. Find (e)the scale factors and (b) the volume element dV in oblate spheroidal coordinates.

(@ x = acosh&cosmncosd, y = acosh&cosmsing, =z = asinh & siny

dx = —acosh & cos7 sing dp — a cosh £ sinm cos @ d7) + a sinh & cos7) cos P d&
dy = acosh £ cos7 cos@ dp — a cosh £ sin7) sing d7) + a sinh & cos7) sin ¢ d&
dz = asinh £ cos7 dn) + a cosh £ sinm d€

Then (ds)° = (dxY + (dy)° + (dz)° = a2(sinh® ¢ + sin?7)(dEY
+ a2(sinh® £ + sin27)(@dn)’
+ a2 cosh® £ cos?m (dpy

and h, = "f = a\/sinh2§+ sin?7, bhy= n = a\/sinh§§+ sin?n, hg= h¢,= a cosh £ cos 7).

b dv

n

(@Vsinh® £ + sin27) (aVsinh? £ + sin?7) (a cosh & cos 7)) d& dm do
a®(sinh®£ + sin?7) cosh & cos7) d& dn) dgp

12. Find expressions for the elements of area in orthogonal curvilinear coordinates.

Referring to Figure 3, p.136, the area elements are given by

4, = I (hodus e) X (hgdugez) | = hohg| ey x eg| dugdug = hyhg du, dug
since I e, X eg i = l e; | = 1. Similarly
dd, = ‘ (hq duy €3) X (hg dug eg) I = hy hg du, dug

dAs | (hyduses) x (hodugey)| = hahy dugdu,
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13. If w4, u, ugz are orthogonal curvilinear coordinates, show that the Jacobian of x,y, z with respect

to U, Ug, Ug is

E dy 3z
OQu; Ou; Ouy
mpz o BGy.s |98 9y Oz |
] Uq, Ug, Ug - a(ui, Uy, ug) - au2 auQ au2 - hi thS
o Iy 2z
Jug OJug Oug

By Problem 38 of Chapter 2, the given determinant equals

B Yy B B By Bl B Yy B
O, ., O o O O O . Ox O Oz
I WL T - TV i - W - Wt I W
> . 3
= hthhS ei * e X (] = h1h2h3
3% dr Or

If the Jacobian equals zero identically then — , — , — are coplanar vectors and the curvi-
aul au2 aus

linear coordinate transformation breaks down, i.e. there is a relation between x,y,z having the form
F(x,y,z) = 0. We shall therefore require the Jacobian to be different from zero.

14. Evaluate /]f(x“ y2+ z2) dx dy dz where V is a sphere having center at the origin and ra-

14
dius equal to a.

Fig. (a) Fig. (b)

The required integral is equal to eight times the integral evaluated over that part of the sphere con-
tained in the first octant (see Fig. (a) above).

Then in rectangular coordinates the integral equals

a Va2~x2 Va2 ~x2—y2
f (x2+y%+ 22) dz dy dx

x=0 y=o z=0

but the evaluation, although possible, is tedious. It is easier to use spherical coordinates for the eval-



15.

16.
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uation. In changing to spherical coordinates, the integrand x2+y2+ 22 is replaced by its equivalent r2
while the volume element dxdydz is replaced by the volume element r?sin 6 drd@d(;b (see Problem
10(b)). To cover the required region in the first octant, fix & and ¢ (see Fig. (b) above) and integrate from
r=0 to r=a; then keep ¢ constant and integrate from &=0 to 7/2; finally integrate with respect to ¢
from ¢=0 to ¢ =7/2. Here we have performed the integration in the order r, &, although any order can
be used. The result is

T2 T2 pa T2 pTf2 pa
8 f f (2 sin 6 drdBdg)y = Bf f fr"'sin@ drdBdg

$=0 H=0 r=0 $=0 H=0 r=0
T2 /2 a /2 /2
= 8 f f § sin 0| _jd0dp = &155 sin 6 d6do
¢=O 8=0 ¢=0 8=0
/2 /2 /2
= 8a° — cos & IB- dp = —8';—5 dp = 4—-775_)'15
5 $=0 =0 d=0

Physically the integral represents the moment of inertia of the sphere with respect to the origin, i.e. the
polar moment of inertia, if the sphere has unit density.

In general, when transforming multiple integrals from rectangular to orthogonal curvilinear coordi-
X,¥,2

nates the volume element dxdydz is replaced by &,hyh; du,du,du, or the equivalent !(u1 Ty

) duldzbdu:3
where J is the Jacobian of the transformation from x,y,z to u,,u,,u, (see Problem 13).

If u,,u,,u; are general coordinates, show that 2L, 9L = 9 and Vu,,Vu,, Vu, are recipro-
aui au2 aus

cal systems of vectors.

We must show that .(?Tr . qu = { (1) g ’; : Z where p and ¢ can have any of the values 1,2,3
We have p
or or or
dr = ~—du, + == du, + === du
Ou, Ou, ° Ou, °

Multiply by Vi, * . Then

Vu1 * dr = du1 = (Vui * 31)(1141 + (Vul ¢ i)dHQ + (Vu1 ¢ —aL)dua
aul BHQ aua
i B Lo Lo
or i Vu1 -aui =1, Vui —au2 =0, vuj_ aus =0

Similarly, upon multiplying by Vu,2 * and Vus * the remaining relations are proved.

o ,or Oor . -
Prove {Bu1 auzxaua} {Vu1 Vu2xVu3} = 1.

From Problem 15, Or Or Or a4 Vu1,Vus, Vug are reciprocal systems of vectors. Then the

aui ’ au2 ) aus
required result follows from Problem 53 (¢) of Chapter 2.

The result is equivalent to 2 theorem on Jacobians for
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Quy Ouy duy
3x ay az
Viuy * Vup x Vug = %’;2 %ﬂyg %u: - J(u;,l;g'.ua)
Jus Qug  Dug
o OJy Oz
and so J(-22:% y jla:E27%sy - 1 ysing Problem 13.

Uq, Us, U3 x,Y,2

17. Show that the square of the element of arc length in general curvilinear coordinates can be ex-

pressed by s s
ds?2 = Z, Z Bpq duﬁ duq
p=1 g=1
We have
dr = idul + iduQ + idua = d,duy + @ydu, + @zdug
au1 BUQ aus
Then ds?2 = dredr = @y°@y duf + @y * @, duy duy, + @ * 0O duy dug

¥ GGy dupduy + Qo0 duy + GOy dug dug
+ O @ dugdu, + @@y dugdu, + G-y dug
3 3
= Z Z g, duydu where g, = ¢¢>° a
A LR $q
This is called the fundemental quadrau'c form or metric form. The quantities g

coefficients and are symmetric. i.e. Bpg =
In this case g,,= B2

are called metric
Z . =0, p# q, then the coordinate system is orthogonal.
2

1? Bop = hyr 8oy = The metnc form extended to higher dimensional space is of
fundamental importance in the theory of relativn;y (see Chapter 8).

GRADIENT, DIVERGENCE AND CURL IN ORTHOGONAL COORDINATES.

18. Derive an expresssion for V& in orthogonal curvilinear coordinates.

Let V& = f e, + f,e,+ f,e, where f,,f,.f, are to be determined.
. or or
Since dr = duq + du, + du
Dug T T e T
= hl €4 du1 + hQ e du2 + hg €3 dus
we have
(1) d@ = V@' dr =, h1f1du1 + h2f2du2 + hefsdlla
But (2) dq) = @ du1 + E du2 + a® dus
3u1 BUQ aus
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Equating () and (2),  f, = ;ll%uq_) = hi—g?' [, = .}i%’
1 1 2 2 3

eq a@ €s a@ [ a@

Then Ve = i Tm th du g u
This indicates the operator equivalence

v oo &0 e3d &3

hy 3wy " by Qup | ho Oug

which reduces to the usual expression for the operator Vin rectangular coordinates.

19. Let u4,u,, ug be orthogonal coordinates. (a) Prove that ]Vuﬁl = h;, p=12,3.
(b) Show that e,= Eﬁ.

e -
(@) Let ® =y in Problem 18. Then Vu, = h—i- and so qu1| = 191 ‘/h1 = k', since feiI = 1. Simi-
. .

-1 -1
larly by letting P = upand us, |Vuo| = 3" and |Vug| = e .
\V/

“p
(b) By definition E; = 7= From part (a), this can be written E, = & Vu, = and the result is proved.
?” [Vay). e

20. Prove e; = hy hgVuu,x Vuy with similar equations for e, and eg, where u,,u,, us are orthogonal
coordinates.

e e e
From Problem 19, Vu, = ﬁ, Vu, = i , Vg = 713
3

e, X e e
hyhg ~ hohg

Then  VupxVuy = and e, = hyhg Vuyx Vg,

Similarly €, = h3h1 Vua x VU1 “and €5 = h1h2 Vulx VMQ.

21. Show that in orthogonal coordinates

V. - 1 9
(@) (Ay eq) hyhohs u, (A1 hohs)
_ e 0O eg O
by Vx (e = 35 o (dih) — = - (Aih)

with similar results for vectors A,e, and Aje;.

(e) From Problem 20,

V. iey = Ve (A3hohgVuyxVug)
= V(AthhG) * VMQXVHS + Aihghgv' (VMQXVUS)
e e e
= Vil hyhy) - ix i + 0 = V(Alhghf;) . K;la
_fe 2 e 9 e O .o
= [hi S, (Arhohg) + ho Ouy (A1h2hs) + ho dug (AthhG)] hroha
1
= (A1hohg)

hyhohg Oug
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®) Vx (d1er) = Vx (434, Vuy)
= Vdihy) xVu, + 438, VYV,

e
= V(Alhi)le + 0
1

N e 0 &
= [h1 Sy (Arhy) + hy Oup (A1hq) + hs

= _92_1(,41};1) _ & O

h3h1 au$ h1h2 BHQ

22. Express div A = V+ A in orthogonal coordinates.

V-a

u

h1 ths _alli Uo

using Problem 21 (a).

23. Express curl A = Vx A in orthogonal coordinates.

VxA

€o a €g 9
= 2k - 2 24
hahs aus( 1hy) hahy au2( 1h1)

+ -2

=— (A1hq)

—au:g

ug

e O

= - A
h1h2 -aul (AQhQ) h2h3 auS( 2h2)

(Y a

+ = == (Aghg) -

ths -aLIQ
N o2
= hohg [ Sy (Ashg) — Su (Aoho) ] +
& [ 9 N
hahy [3111 (A2hy)

using Problem 21 (b). This can be written

h191

Vxa = ——l—- 9
hihohs | Su,

Ay hy

24. Express V°y in orthogonal curvilinear coordinates.

[
From Problem 18, Vi = =% NN
hy Ou, hy Ouy

9

& | o
hshl au:;

)
5;; (A1 hl)]

hoey,  hgeg

9 9o
au2 au:;
Ayhy  Aghg
. &9

h3 au:; )

9 e
= (A1h1)] x i

S [—3— (s hohg) + f—mzhshi) + ai(Aahihz)]

L2 C
h3h1 au (AShS)

1

(A1hy) -

aui

Veidie, + dgey + Ageg) = Ve(die) + Ve (doe) + Vo (dgeq)

VX(A191 + AQQQ + Ases) = VX(Aiel) + VX (A2e2) + VX (Ases)

)
(Ashs)]
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oY 1 oY

f :V A :iz‘l]_ A :i__ Aa = — b

If A=V, then . S 2 e % B and by Problem 22,
Vea = V-Wy = Wy

1 [B hohg O O hghy O . O hyhy, 3‘/1)

hihohg | Our = hy Ouy’  Oup hp Ouy  Oug hs Oug

25. Use the integral definition

divA=V-A= lim —%—-—
AT-0 AV

(see Problem 19, Chapter 6) to express V-A
in orthogonal curvilinear coordinates.

Consider the volume element AV (see adja-
cent figure) having edges hqDuq, holus, hglug.

Let A= Aye; + Ay e; + Az eg and let n be
the outward drawn unit normal to the surface AS of
AV. On face JKLP, n= —e,;. Then we have ap-
proximately,

ff A*ndS = (A-n at point P) (Area of /KLP)
JKLP

[(A1e1+ Ages + Ageg) + (—eq)] (hohg Duplug)

— Ay hohg Duylug

On face EFGH, the surface integral is

A1 h2h3 ARQAU:g + 'i (A1 thg AMQAUS) Au:[

aul
apart from infinitesimals of order higher than Au,; Au,Aus. Then the net contribution to the surface
integral from these two faces is
2 Duplu C! A
5 (Arhohg Duolug) Duy = = (Aq hohg) Dug Duy Dug
aul aul

The contribution from all six faces of AV is

3 3
2 Ay hohe) + 2 (Ag hyhe) + <2 (g huhg) | Duy lup Aug
alq aug a“a

Dividing this by the volume hqhohs Duy Au, Dug and taking the limit as ODuq, Duy, Aug approach zero,
we find

9 9 o)
diva = V-A = : 2 (A hohg) + =2 (Ap hyhg) + =2 (Ag h
iv hahahe [aui( 1 hohg) + -aug( 2 hihg) + -aue( 3 1h2):|

Note that the same result would be obtained had we chosen the volume element AV such that P is
at its center. In this case the calculation would proceed in a manner analogous to that of Problem 21,
Chapter 4.
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26. Use the integral definition

(curlAy-n = (VxA)+.n = lim
AS-0

(see Problem 35, Chapter 6) to express Vx A
in orthogonal curvilinear coordinates.

Let us first calculate (curlA)+e;. Todo
this consider the surface S; normal to e, at P, as
shown in the adjoining figure. Denote the boundary
of S; by C;. Let A= Ajeq + Aye, + Ageg. We

have

jé/\-dr = fA-dr + fA-dr + fA-dr + fA-dr
1

PQ

oL Ly MP

The following approximations hold

H fA-dr

(A at P) « (hy Dus ey)

P
¢ = (Ageq + Ageo + Ageg) * (hglugey) = Apho Luy

Then

fA «dr = AQ hQ AUQ + ai (AQ h2 AILQ) Au:g

ug

ML
or
(2) fA o dr = ond AQ h2 AuQ - "a_ (AQ h2 Aug) Aua

dug

174
Similarly,

fA'dl' = (A atP) . (hsAusea) = AsthlL:;

PY
or
3) fA-dr = = Ag kg Dug

MP
and
4) fA-dr = AghgDug + %(Aathu:g)AUQ

2
0L

Adding (1), (2), (3), (4) we have

f A-dr
c

1

ai (Ag hg Dug) Du, — 'a—a“ (A2 hg Dug) Dug
Us ug

[ 2 (Aghs) — ai (AQhQ)] Dy Dug

aug Ug

apart from infinitesimals of order higher than Au, Aug,
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Dividing by the area of S, equal to hohgAuylus and taking the limit as Au, and Aug approach
zero,

1 9 L)
. [ - =— (Aosh
(curl A) « e hoh [au2 (A3 h3) S (A2 2)]

Similarly, by choosing areas S, and Sz perpendicular to e, and ez at P respectively, we find (curlA) - e,
and (curlA) - e3. This leads to the required result

81 0 3
url A = Aghg) — Aoh
cur hohy [auQ( 3) 3u3( 2 2)]
L2 [a Arhy — = (Ashs)]
hahq | Oug au1 hie; hpe, hges
es el 9 1 9 9 9
h1h2 [aui( 2 2) aUQ( : 1] h1h2h3 aui aUQ au:;

hidy  hodo  hgds

The result could also have been derived by choosing P as the center of area S;; the calculation
would then proceed as in Problem 36, Chapter 6.

27. Express in cylindrical coordinates the quantities (a) V®, (3)V-A, (¢)Vx A, (d) V'D.

For cylindrical coordinates (0,9, z),

U= 0, up=P, ug=z; e,=e,, e,=€;, e;=e, ;

and hy=hy=1, hy=hg=p, hy=hy=1
@ V& = h—t%%e1+h—z%e2+i%:ea
A e 1
2?2, 12, 2,
@ V-ea = h1h12h3 [B-il (hohg Ay) + -5-‘—2(};3};1 A + a%a(hlhg 3)]

(1>(;>(1) [az,)o (w4, + %((1)(1)'44&) + 33 (14, )]

13 e D ]
P [ap(pAp) 5% + 5, (PA2)

where A = Ape1+ A¢62+ Azes, i.e. A1=Ap, A2=A¢, A3=AZ'

h1 eq hQ es hg eg ep ,0e¢ e,
© * hohohg aui Quy aus P 1% 9P 09z

hiAy hods hgda A4, pAy A
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1 P4, 3 y BA 04, 2 04,
- .z < + — P ¢
5 56 % (P4y) | e Bz - P == 3 e % (PAg) 3 ez
@ Vo - 1|3 (mhe32), 3 (hehi 38, 3 (ke 3%
h1h2h3 aul hi aui BMQ h2 au2 au:; ha alla
- 1 (p) (1) 3@ (1)(1) oP o [P 9P
M E) (1) 3(75 t (1) Oz

.13 (,22), L ¥
£ 3o\ o o2 o T o2

28. Express (2) Vx A and (b) V?{ in spherical coordinates.

Here ui=r, up=0, ug=; e;=e,, e;=¢eg, e3= ey ; hi=hy=1, ho=hg=r, hg= h¢=rsin 6.

hie; hoe, hgeg e, re, rsin 6 es

Vxa = 1 | © & of . vt o 23 9

@ hihohg | Ouy Ou, Oug )¢ sinfy | or 96 o
h1A1 hQAQ h3A3 Ar TAe r sin 9 A¢

1
2 sin 6 [{ae ¢ sinGdg) — a¢ 3 e } r
94, 94
{g - —;i(rsmﬁAqs)} + {Bar (rA )y — Sé}rsineeqs]
(b) v2¢ _ 1 i h2h3 a_lll + P h3h1 a¢ + _a— h1h2 _3;/;
h1 hQ h3 aul h1 aul au2 hQ EUQ aus h3 aus
B 1 2 [esinf) oY\ | 3 [rsinb)yy 9y
() (r sin&) | or (1 or 26 r 96
, o [mo 9y
o \rsin 8 9¢
1 . nd [ 29Y d Y 1 Y
= 6L - = 6 —L
7 sin6 [Sm e (’ or ) Y (S‘" 36 ) " sn6 3¢2

- 19 (0¥ 12 oy 1 o2y
2 o (' ar) " P66 (S"‘e %) " o6 3¢2

29. Write Laplace’s equation in parabolic cylindrical coordinates.

From Problem 8(b),

U= U, Up=v, ug=2 ; hq= Viu2+ 02, ho= ViZ+ 02, hg=1
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2 _ 1 oY 3\// oy
L S o [au(au) N (au) 3 ("‘”) az)]

L (aw+a"‘¢) . Py

u2+ 112 3u2 an 322
and Laplace’s equation is Vel,b =0 or
2 2 2
a \p " 9 \p + (u2+ 1}2) 9 \p = 0
Qu? 012 022

30. Express the heat conduction equation %g = KV2U in elliptic cylindrical coordinates.
t

Here wuy=u, up=v, ug=2z ; hy=ho=aVsinh?u + sin®v, hg=1. Then

VQU = 1 3 aU + 3 3U + i a?(sinh® u + sin® v) 3U
a2(sinh2 u+ sinQv) au au av av Oz

1 Sy, ’620] , U
aQ(SinhQu + sin2v) Ou? 902 022

and the heat conduction equation is

Y S, 0 )
Ot aQ(SinhQ u + sin®v) | Ou? ? 022

1]

"

SURFACE CURVILINEAR COORDINATES

31. Show that the square of the element of arc length on the surface r = r(z,v) can be written

ds? = Edu® + 9F dudv + G dv?
We have dr = gz du + -g—: dv
Then ds?2 = dr-edr
) a" u? @! or or dr o
T A TR

= Edu? + 2Fdudv + G dv?

32. show that the element of surface area of the surface r = r(u,v) is given by

dS = VEG - F? dudv

The element of area is given by

Br ar al‘ al' al' al‘ al'
s = =— du) x dv — x — | dud = (== X =) " (= X =) dud
@G, VW Rt % 3 ‘au o) v
The quantity under the square root sign is equal to (see Problem 48, Chapter 2)
(_a!. a')(ﬁ. _a—') - (§[ al')(—-[ @_r) = EG-F? and the result follows,
Ou Ou’ v du Ov Ov Ou
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MISCELLANEOUS PROBLEMS ON GENERAL COORDINATES.

33. Let A be a given vector defined with respect to two general curvilinear coordinate systems
(uq, uy, ug) and (&, i, Gy). Find the relation between the contravariant components of the vector

in the two coordinate systems.

Suppose the transformation equations from a rectangular (x,y,z) system to the (u;,us,us) and

(&1 ,u5,u3) Systems are given by

{

2z

x xl(uiv uo, u3) ’ Yy = yi(ulv Ug, us) ’ zl(u‘l! Uo, uS)

(I

% = %o(ily, o, U3), ¥ = Yolliy, o, ll3), 2 = zo(ilq, U, i3)

Then there exists a transformation directly from the (u4, u,, ug) system to the (i, Z,, ;) system defined by

(2) uq = ul(ﬁlv a2! ES) ’ Up = HQ(EL EQ! ES) ’ ug = us(ﬁit EQ: '73)

and conversely. From (1),

O gy, + O gy

dr = idui + = @ydu, + Qpdu, + Ogdug
aui Uo aug
dr = a—_’d51 + —B_Ld@ + ﬁdia = A,di;, + dydi, + 0ydis
aui au2 ‘aﬂg
Then
3) Qiduy + Oodu, + Ogdug = Q,di; + QpdiE, + Qndi
Ouy ,_ Ouy ,_ Ou
From (2), du; = ,a—ﬂidul + g_—lduQ + éidﬁa
3
duy = =—2dg, + —ai%mg + %dia
o, om. 4
) 9 L)
dug = —2dm + —2gm, + —2dg,
Ty Oy Zg

Substituting into (3) and equating coefficients of diy, diy, dii; on both sides, we find

— aul aUQ aus

a At a, v Oug

t % 37, | 2 om, ok o5,

4) a, a, S—Z_i + %g + A _g_;_a
2 2

= Ouy Ouy Oug

a Sug Ouz Oug

N o s t e ER v Ot

Now A can be expressed in the two coordinate systems as

5) A = C1G1 + C2a2 + Caas and A

Ci@, + Cod, + Cy0,

where C;, Co, C; and C,, Cp, Cs are the contravariant components of A in the two systems. Substituting

(4) into (5),

Cl ai + CQ ag + Ca ag = 61 G—il + 52 a2 + -C_S as

5?21%
(1851

+ G

Sup w2l g, e, e, 62,
o, Caa,za) ! (‘3a1 CZBEQ Caaas’“? (1651

Ou

2 da

s -
= + C4

2

U
aia) d'a
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Then

aul BU1 aul
C = c + C. + C
! 1%, 23, ® 3,
au2 aUQ BUQ
6 C = c + C + C.
6) 2 15 5, 2= 2, 3= =
aus aus aug
C = c + C + C
8 1 38, aui 231, au2 % ta aug
or in shorter notation
— au — au au
7 C = Cc 2. _f’ + _ﬁ p=1,2,3
( ) ﬁ 3&'1 2 u2 8 aus
and in even shorter notation
3 ‘au
@) ¢, = L T2t p=1,23
q:l auq
Similarly, by interchanging the coordinates we see that
3
— uf,
9 C = =1,2,3
9 b qZ=41 q au p

The above results lead us to adopt the following definition. If three quantities C,, C5, C3 of a co-
ordinate system (uy,uo,ug) are related to three other quantities Ci, G, Cg of another coordinate system
(ii4, iy, ug) by the transformation equations (6), (7), (8) or (9), then the quantities are called components of
a contravariant vector OF a contravariant tensor of the first rank.

Work Problem 33 for the covariant components of A.

Write the covariant components of A in the systems (ui, up,ug) and (&,u, 23) 8S cq, cocg and
€4, Cp, €3 respectively. Then

(1) A = Ccq Vu1 + Co VUQ + (o] Vus = Ei Vl_li + 22 V-H.Q + 33 VES

Now since Ep = Ep("i» Uo, ug) With ‘p= 1,2,3,

% - auﬁ au:l + auﬁ auQ + aup auﬂ
Ox Ou, ax Quy Bx Oug ax
@) Smp Oy 0w OB Jwp OBy Oug b= 123
Oy Ouy; Oy Ou, Oy Oug Oy
0z Quy Oz Oup Oz Qug 0z
Also,
3 c1Vug+ coViup + caVug = (cy %"1 + ¢y aa + g %ua)i
aui au aus a au2 'auS

+(01—é;+62*§y—+c:3§—)‘] + (clT*‘L‘Qa—'i'cs a Yk

and
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ou om m
@ 7V + 5,V +5VE, = (& a"1+02 a"'~’+c3 ax)'

O ki, Ju ou on .
+('C'1—éu;1+ zau +Caau8)j+(c1—a + 2;2*’03'8—':3)'(

Equating coefficients of i, j,k in (3) and (4),

9 9 Qug _ °ou _ %u _ Ou
aul au2 aua - aﬁi - Bﬁg - aﬁa
— —= == = -2 4 —= 4 ——2
) cq > + ¢g 3> + ¢g 3 cq 3 Co 3 Ca S
P! 3 L) .. ou _ o . Ou

Qu
Substituting equations (2) with p = 1,2,3 in any of the equations (5) and equating coefficients of =1 ,

X
?ﬂ —a-"—s a—ul- % -a—lig ——aul % % on each side, we find

' dy 'y ' Oy 0z o' oz

aul au2 - a—us
. + ¢ + cg—
c1 %13, 2 du, 3 Buy
aul - BEQ - aﬁa
= + o + cg—/—
© & 43, " %%, T %3,
- 331 + au,2 + - aiza
= Cq T c Cq =
C3 1 'aus 2 aua 3 aus
which can be written
ou o1 o
16, cp = & a:i + 3 a:2 + T a’;" p=1,23
P b P
or
3 -
u
- q
8 = [ =1,2,3
® Cf, q§1 q —an P
Similarly, we can show that 3
_ ) E auq )
(9) ci) = p= 1‘ 203

The above results lead us to adopt the following definition. If three quantities ¢4, c5, cg of a co-
ordinate system (uq,u., u3) are related to three other quantities &, €5, 3 of another coordinate system
(i1, g, Zg) by the transformation equations (6), (7), (8) or (9), then the quantities are called components of
a covariant vector or a covariant tensor of the first rank.

In generalizing the concepts in this Problem and in Problem 33 to higher dimensional spaces, and
in generalizing the concept of vector, we are led to tensor analysis which we treat in Chapter 8. In the
process of generalization it is convenient to use a concise notation in order to express fundamental ideas
in compact form. It should be remembered, however, that despite the notation used, the basic ideas treat-
ed in Chapter 8 are intimately connected with those treated in this chapter.
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35. (a) Prove that in general coordinates (u4, uo, u3),

811 810 8ig
_ - or , or Ore
& Bon B Bi Ou, Ou, Oug
831 83z Bas

where are the coefficients of du, du in ds? (Problem 17).
Epq ]

(b) Show that the volume element in general coordinates is /g du, du, dug.

(a) From Problem 17,

O B _ % V%, Oy 2% %

1 = Gyl = e = —
& gﬁq 4 q 8% auq ’auﬁ auq auﬁ auq auﬁ auq
Then, using the following theorem on multiplication of determinants,
a, ay ag Ay, By C4 ai A+ ay, A+ ag Ay ay By + ay By + agBg ay Cy + ag Cy + ag Cg
by by bg| | 42 B, Cy = by Ay + by Ay + bg Ay by By + by By + bg By by Cy + by Cp + b3 Cy
¢y ¢p cg| |43 Bg Cs c1 Ayt cgdptegdg ey Byt coBytcgBg ¢ Cp +coCo+ cgCy
we have
Oox 9y Oz 2
aui aul aui
o e . | % Oy Oz
au1 aIIQ ‘aUQ au2 au2 allq
O9x Jdy Oz
aus aus au:;

Ox % Oz||3% O . & g
Ouy Ouy Ouy Ou; Oup Oug 11 %12 ®13

Ox _BL Oz Jy ay dy

T | %u Bup Gup||dw Gup S| | P
Or O 0z |0 % 2 . & &
Oug aus Oug aui a112 a"a o1 Tez e
(b) The volume element is given by
or or Or or  Or Or
dV = —d o (— d X (— d = — e —— —| duy dus d
Ga, 0 T}, ) X (3, ) s Dug | Bug| Tl dUs

1/2 duy duodug by part (a).

Note that Vg is the absolute value of the Jacobian of x,y,z with respect to us,uq, ug (See Prob.13).
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SUPPLEMENTARY PROBLEMS

Answers to the Supplementary Problems are given at the end of this Chapter.

36. Describe and sketch the coordinate surfaces and coordinate curves for (a) elliptic cylindrical, (b) bipolar,
and (c) parabolic cylindrical coordinates.

37. Determine the transformation from (a) spherical to rectangular coordinates, (b) spherical to cylindrical
coordinates.

38. Express each of the following loci in spherical coordinates:
(a) the sphere x2+y2+22 = 9 (c) the paraboloid z = x2 +y?2

the plane y==x.
(b) the cone 22 = 3(x2+y?) (d) the plane z=0 () P y=x

39. If p,¢.z are cylindrical coordinates, describe each of the following loci and write the equation of each
locus in rectangular coordinates: (a) 0=4,2z=0; (b)P=4; (c)P=w2; (d)P =7/3, z=1.

40. If u,v,z are elliptic cylindrical coordinates where a = 4, describe each of the following loci and write the
equation of each locus in rectangular coordinates:
@ v=71/4; b)u=0,2z=0; (c)u=1ln2, z=2; (d)v=0, z=0.

41. If u,v,z are parabolic cylindrical coordinates, graph the curves or regions described by each of the fol-
lowing: (@Yu=2, z=0; (b)v=1, 2=2; ()1Suf?2, 2Sv<s3, z=0; @)l<u<?2, 2<v<3, z=0.

42. (a) Find the unit vectors e, eg and ey of a spherical coordinate system in terms of i,j and k.
(b) Solve for i,jand k in terms of e,, e5 and ey.

43. Represent the vector A = 2yi— zj +3xk in spherical coordinates and determine 4,, 45 and A¢ .
44. Prove that a spherical coordinate system is orthogonal.

45. Prove that (a) parabolic cylindrical, (b) elliptic cylindrical, and (c) oblate spheroidal coordinate systems
are orthogonal.

46. Prove e_ = 9e6+sm9¢e . ey = —9er+cos9¢e¢, e

5 = —sinﬁqf;er— cos@ci)eg.

47. Express the velocity v and acceleration a of a particle in spherical coordinates.

48. Find the square of the element of arc length and the corresponding scale factors in (a) paraboloidal,
(b) elliptic cylindrical, and (c) oblate spheroidal coordinates.

49. Find the volume element dV in (a) paraboloidal, (b) elliptic cylindrical, and (c¢) bipolar coordinates.
50. Find (a) the scale factors and (b) the volume element d¥ for prolate spheroidal coordinates.
51. Derive expressions for the scale factors in (a) ellipsoidal and (b) bipolar coordinates.

52. Find the elements of area of a volume element in (a) cylindrical, (b) spherical, and (c) paraboloidal co-
ordinates.

53. Prove that a necessary and sufficient condition that a curvilinear coordinate system be orthogonal is that
gpq= 0 for p#gq.
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s . x:)’,z
Find the Jacobian J(m
1s 40, Ug

cylindrical, and (e) prolate spheroidal coordinates.

) for (a) cylindrical, (b) spherical, (c) parabolic cylindrical, (d) elliptic

Evaluate fff V2 +y2 dxdydz, where V is the region bounded by z = %2 +y2 and z = 8—(x% +%?).
14
Hint: Use cylindrical coordinates.

Find the volume of the smaller of the two regions bounded by the sphere x2+y2+ 22 = 16 and the cone

22 = x2 + 42,

Use spherical coordinates to find the volume of the smaller of the two regions bounded by a sphere of
radius e and a plane intersecting the sphere at a distance 2 from its center.

(a) Describe the coordinate surfaces and coordinate curves for the system

%2 —y2 = 2uq cosup, xy = ugsinuy, z=ug
32
(b) Show that the system is orthogonal. (c) Determine J (%) for the system. (d) Show that u; and
Ujq,y Uoy Ug

uy are related to the cylindrical coordinates © and ¢ and determine the relationship.
Find the moment of inertia of the region bounded by %2 —y2 =2, 22 —y2 =4, xy=1, xy=2, z=1 and
z=3 with respect to the z axis if the density is constant and equal to x. Hint: Let 22 —y? = 2z, xy=v,

Fin 31, -a—', ﬁ, Vi,, Viy, Vug in (a) cylindrical, (b) spherical, and (c) parabolic cylindrical co-
dus dup” Oug

ordinates. Show that e;=E;, e,= E,, eg= E3 for these systems.

Given the coordinate transformation us=xy, 2up=x2+y2, ug=z. (a) Show that the coordinate system is
X3Y,2
Uq, Uo, Uz

not orthogonal. (b) Find J( Y. (c) Find ds?.

Find Vq), divA and curl A in parabolic cylindrical coordinates.
Express (a)V\/J and (b)V° A in spherical coordinates.
Find V2 n oblate spheroidal coordinates.

¥e  To

+ —= = & in elliptic cylindrical coordinates.
xZ | Oy P

Write the equation

Express Maxwell’s equation Vx E=— cl ?ﬂ in prolate spheroidal coordinates.

ot
2 8772m, .
Express Schroedinger’s equation of quantum mechanics V k,b + hT (E — V(x,y,2))y = 0 in parabolic

cylindrical coordinates where m,% and E are constants.

Write Laplace’s equation in paraboloidal coordinates.

2
Express the heat equation %Q =«kVU in spherical coordinates if U is independent of (a) ¢, ®) ¢' and
t

O, (¢c)rande, ), 6 and¢.
Find the element of arc length on a sphere of radius a.

Prove that in any orthogonal curvilinear coordinate system, divcurlA=0 and curl grad P =0.
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79.
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Prove that the surface area of a given region R of the surface r = r(u,v) is ffv EG—F? dudv. Use
R

this to determine the surface area of a sphere.

Prove that a vector of length p which is everywhere normal to the surface r = r(u,v) is given by

A = (%X—)/VEG F?

(a) Describe the plane transformation x =x(u,v), y =y(u,v).
(b) Under what conditions will the u,v coordinate lines be orthogonal?

Let (x,y) be coordinates of a point P in a rectangular xy plane and (u,v) the coordinates of a point Q in
a rectangular zv plane. If x = x(u,v) and y = y(u,v) we say that there is a correspondence or mapping
between points P and Q.

(@)If x = 2u+v and y = u—2v, show that the lines in the xy plane correspond to lines in the uv plane.
(b) What does the square bounded by x=0,x=5,y=0 and y =5 correspond to in the uv plane?

(¢) Compute the Jacobian ](%) and show that this is related to the ratios of the areas of the square
and its image in the uv plane.

x (u —1?), y=un determine the image (or images) in the uv plane of a square bounded by x =0,
:1 b4

G. y=1 in the xy plane.

Il N|-

Show that under suitable conditions on F and G,

© © ® t
f f e™S(X*Y) Fx) Gly)dxdy = f e™ St {f F(u) G(t—u) du}dt
(o] (o] o]

(o]

Hint: Use the transformation x+y = ¢, x =v from the xy plane to the vz plane. The result is important in
the theory of Laplace transforms.

(@)If x = 3uy + up—ug, ¥y = uq + 2up + 2ug, z = 2uq —up— ug, find the volumes of the cube bounded by
x=0, x=15, y=0, y=10, =0 and z=5, and the image of this cube in the ujuyu; rectangular coor-
dinate system.

(b) Relate the ratio of these volumes to the Jacobian of the transformation.

Let (x,y,2z) and (uq,u,,ug) be respectively the rectangular and curvilinear coordinates of a point.
(@)If x = 3uq + up—ug, ¥ = ug + 2up + 2ug, z = 2uy —uy~— ug, is the system uquougorthogonal?
(b) Find ds? and g for the system.

(c) What is the relation between this and the preceding problem?

xX,¥,2 2
If x=uf+2, y=uituog, z=u§—u1 find (a} g and (b) the Jacobian J = —a(—y—) . Verify that j = g.

o(u1, uo, ug)

ANSWERS TO SUPPLEMENTARY PROBLEMS.

36.

(@)u=cy and v=c, are elliptic and hyperbolic cylinders respectively, having z axis as common axis.
z = cq are planes. See Fig.7, page 139.

(bYu=1c, and v=c, are circular cylinders whose intersections with the xy plane are circles with centers
on the y and x axes respectively and intersecting at right angles. The cylinders u=c, all pass
through the points (—«,0,0) and (a,0,0). z=cg are planes. See Fig. 8, page 140.

(c)u=cq and v =c, are parabolic cylinders whose traces on the xy plane are intersecting mutually per-
pendicular coaxial parabolas with vertices on the x axis but on opposite sides of the origin. z=cg
are planes. See Fig. 6, page 138.

The coordinate curves are the intersections of the coordinate surfaces.
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(@) r = 1/x2+y2+22, 6 = arc tan xz Y = arc tan%

(b) r=Vp2+22, 6= arctan;p, d=c

(@) r=3, (b) 8=7/6, (c) rsin?8 =cos 8, d) 8=7/2,

(e) the plane y=x is made up of the two half planes ¢ = 77/4 and ¢ = 577/4 .

(@) Circle in the xy plane x2+y® =16, z=0. (b) Cylinder x%+y2 =16 whose axis coincides with z axis.

(c) The yz plane where y2 0. (d) The straight line y=v3 x, z=1 where x20, y2 0.

(2) Hyperbolic cylinder x2—y?=8. (b) The line joining points (~4,0,0) and (4,0,0), i.e. x=¢t, =0, z=0
2 2

where —-4<= t<= 4. (c) Ellipse %5 + y—g- =1, z=2. (d) The portion of the x axis defined by xZ4, y =0,

z=0.

(a) Parabola y2 = ~8(x—2), z=0. (b) Parabola y2 = 2¢+1, z=2. (c)Region in xy plane bounded by

parabolas y2 = —2(x—1/2), y2 = —8(x—2), y2 = 8(x+2) and y° = 18(x+9/2) including the boundary.

@)

(a)

(d)

(@)
(d)
(c)

(a)

(a)
(®)

Same as (¢) but excluding the boundary.

e, sinf cosp i + sin@sindp j + cosf k
e, cosOcospi + cosB singp j ~ sinfk

]

e, = —singd 1 + cosd j

i = sinfcospe, + cosbcosp e, —~ sing es

i = sinfOsingpe, + cosOsing eg + cos e

k = cosfOe, — sinbey
= A,e. + Ageg + A¢e¢ where
= 2 sin®0 sing cos® — rsin& cos @ singd + 3rsin8 cos O cos P
= 2rsinf cos O singd cosd — rcos28 singd — 3rsin26 cos P

= ~2rsin@ sin?¢ — rcos & cos @

= v.e, + vy ey + v¢e¢ where vr=;, ve=r9, v¢=rsin9¢
.o 22 2
= a,e. + agey + aye;, where a =7 —r@ —r sin?8 ¢,

=;1. i(#é)—r sin @ cos & <,£“,

r

dt
1

% (r? sin?@ qob)

ds? = (W?+v?) (du+dv®) + u202dd2, h, = h = Vu2+1?, h¢= uv

U v

ds? = o?(sinh®u + sin®v) (du?+dv?) + dz2, h, = h, = aVsinh%u + sinfv, A

ds? = aZ(sinh?& + sin?7) (d§2+d772) + a2 cosh?£ cos?m do?,

hg = hyy = aVsinh®¢ + sin?7), hy= acosh £ cos 7

uwv (u2+v2)dudvd®d, (b) a?(sinh2u + sin?v)dudvdz, (c)

hg = hy = aVsinh?¢ + sin?7), hg=asinh £ sin 7y
a®(sinh?¢ + sin?7) sinh € sin 7 d€ dn do

a?dudvdz
(cosh v — cosu)?
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(@) pdpddp, pdpdz, dpdz
(6) r sin @ drddp, r?sin 0 dOd¢, rdrd6O
(¢y (R+v?)dudv, wvVu2+v?dudp, wwVu2+v2dvdd

(@) P,

25677
15

2K

by =

(6)

ve

div A

curl A

1

(&)

—x2'

?sin 8, (c) u?+v2, (d) a?(sinh?u + sin?v), (e) a®(sinh?£ + sin?7) sinh £ sin 7

6477(2—V'2)

56. - 7 %T(zas—sa?mhs) 58. (c) 3; (d) ug =%
xi+ yj
cospi + sind j, Vo = ——== = cospi + sind j
,0 Vx2+y2
—psing i + pcosd i, Vo - —sm¢lp+ cos @ j
K, Vz =k

sinf cospi + sinf@ singpj + cosF k
rcos@ cospi + rcos O singpj — rsinf k
—rsin@ sindi + rsinf cos @ j

i +
xltyivzk _ sin@ cosp i + sinf singp j + cos O k

P2 uy = 2¢

+

Ve w ¢ e v Y
[g_(mv_A)+-—(mA)] v Az

Oz

2+v

u2+v [

V u?+v? Av)} Vu?+12ey

94
o o

2 (74} ]

+ {%(WAU) -

Vx2+y2+ 22
_ xzi+yzj—(x®*+y)k _ cos 6 cosp i +cos O singj—sinf k
(x2+y2+22) V22492 r
_ —yi+2xj  —singpi+ cosj
%2 + 5?2 rsin 8
. Or . . or
= ui+vj, = = —vi+uj, =— =Kk
v Jz
i+ - +
- ui vj. v = vi uj' Vv, - K
u? + 2 u? + 0?2
2. .2 2 2 2 2
(©) ds? (x“+y°) (dug +duy) — 4dxy dusdu, +du2 - uo (dug tdug) — 2u4 duidu2+
(x%—y?)2 ? 2(ug—ud)
1 3P 1 39 3
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1

Ty

Y L3y
@V = e T TG %0 s 5
04

Av - 1 9 o0 1 i i A 1 e
® A r2 iAot rsinf 06 (sinf 4p) + rsinf op
vy - 1 2 (cosn& O¥

v a?cosh £ (sinh2£ + sin7) a§‘°°s & of )

1 —a—(cos -’a—‘f—) +
a2 cos 7)(sinh2£ + sin27) 97 K om a2 cosh2£ cos27) 9?2

¥, P . ,
2 + 502 = a2(sinh2u + sinZ2v)P

L [f2 2
2RS? [{37]<RE¢) - ,a(b(SE.n)} Sef

3 Fe) 3
= —_ l ———aH§ e -— —1— ?i_FI-?’)_ e -— 'l % e
¢ % ¢ c 3 ¢ °

where R = sinh & sin7 and S = Vsinh2£ + sin?7 .

1 [32‘1’ +32¢’] ., oY, §-772—"‘(E_W<u,u,z)) ¢ =

uZ+22 | ou? 2 922 K2
3, 3¥ 3, 3% Y
qu_a—u(u -—a—u—) + uzva—v(v—é:) + (u2+02)£2— 0

U 19 20U 13 ou
@3 = K[r2 3%t Famd 36 Y )]

U _ 190 20U 92 gl U
) 5 - K['2 ar(r Br)] () sm@ae(smﬁae) + >

ds? = a2 [dB% + sin26 d¢?]

% % , oYy

® 53 " W

= 0

(a) 1750, 75; (b) Jacobian = 10

= 2 2 2 _
(a) No. (b) ds® = l‘ldu1 + 6du2 + Sdus + 6du1du2 6¢lu1du3 + 8du2du3,

(@) g=16u2uZ, (b)]=4uu,

9

(SE)}Re]
m 3 ¢

0,

=0

d du
dy — (r2=
@ dr( dr

g = 100

) -
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where W(u,v,z) = V(x,y,z).



Chapter 8

PHYSICAL LAWS must be independent of any particular coordinate systems used in describing them

mathematically, if they are to be valid. A study of the consequences of this re-
quirement leads to tensor analysis, of great use in _general relativity theory, differential geometry,
mechanics, elasticity, hydrodynamics, electromagnetic theory and numerous other fields of science
and engineering.

SPACES OF N DIMENSIONS. In three dimensional space a point is a set of three numbers, called

coordinates, determined by specifying a particular coordinate system
or frame of reference. For example (x,y,2), (0,P,2), (1, 9,@) are coordinates of a point in rectan-
gular, cylindrical and spherical coordinate systems respectively. A point in N dimensional space is,
by analogy, a set of N numbers denoted by (x1,x2, ...,x”) where 1,2,...,N are taken not as expo-
nents but as superscripts, a policy which will prove useful.

The fact that we cannot visualize points in spaces of dimension higher than three has of course
nothing whatsoever to do with their existence.

COORDINATE TRANSFORMATIONS. Let (x%,x2, ....x”) and (¥1,%2, ...,:T:”) be coordinates of a point
in two different frames of reference. Suppose there exists N
independent relations between the coordinates of the two systems having the form

! = :_ci(xl, 2, ..., x”)
2 = 2t
e o Dol
= FHat a2, )
which we can indicate briefly by
(2) ¢ = zRal 42, ..., aF) k=1,2..,N

where it is supposed that the functions involved are single-valued, continuous, and have continuous
derivatives. Then conversely to each set of coordinates (21,22,...,5:-"') there will correspond a
unique set (x%, %2 ...,x¥) given by

3 xk = k@2, %) k=1,2..,N

The relations (2) or (3) define d transformation of coordinatesYrom one frame of reference to another.

166
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THE SUMMATION CONVENTION. In writing an expression such as a,x' + a,x® + ... + a,,x” we can

use the short notation 2 ajxj . An even shorter notation is sim-
. J=1

ply to write it as aij , where we adopt the convention that whenever an index (subscript or super-

script) is repeated in a given term we are to sum over that index from 1 to N unless otherwise spec-

ified. This is called the summation convention. Clearly, instead of using the index j we could have

used another letter, say p, and the sum could be written a xp. Any index which is repeated in a giv-

en term, so that the summation convention applies, is called a dummy index or umbral index.

An index occurring only once in a given term is called a free index and can stand for any of the
numbers 1, 2,...,N such as k in equation (2) or (3), each of which represents N equations.

CONTRAVARIANT AND COVARIANT VECTORS. If N quantities A", 4°,...,4" in a coordinate sys-

tem (x%, %%, ..., x¥) are related to N other quantities
', 4%, ..., 77 in another coordinate system (z%,%2, ...,%") by the transformation equations

p=12..,N

which by the conventions adopted can simply be written as

—p AP 9
A = =224
oz

they are called components of a contravariant vector oI contrgvariant tensor of the first rank or first
order. To provide motivation for this and later transformations, see Problems 33 and 34 of Chapter7.

If N quantities Ay, 4,,...,4; in a coordinate system («*,#,...,x¥) are related to N other

quantities Zl, ZQ, ey A,, in another coordinate system (%!, %2, ...,a_c-”) by the transformation equations
¥ 329
A4 = ox =
A;b Z BiﬁAq p=12..,N
g=1
or
i _ 0aY
Ap = 5pde

they are called components of a covariant vector or covariant tensor of the first rank or first order.

Note that a superscript is used to indicate contravariant components whereas a subscript is
used to indicate covariant components; an exception occurs in the notation for coordinates.

Instead of speaking of a tensor whose components are Af’ or Aﬁ we shall often refer simply to
the tensor 4? or Aﬁ . No confusion should arise from this.

CONTRAVARIANT, COVARIANT AND MIXED TENSORS. If N2 quantities 4% in a coordinate system

B (x% x> ..., x%) are related to N2 other quan-
tities AM in another coordinate system (921, %2, ...,i”) by the transformation equations

3

¥
U

S=1

=7 gs
X Aq p,r=1,2,...,N
x

x
x

T =
Q)’Q)
<l &
o)|o)

1
or
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viad dxP ox" 05
a7 - EE Ty
9x 9 9x°

by the adopted conventions, they are called contravariant components of a tensor of the second rank
or rank two.

2 . . .
The N quantities 4,5 are called covariant components of a tensor of the second rank if

4, - ox%%°
pr dxP oz IS

Similarly the N° quantities AJ are called components of a mixed tensor of the second rank if

= %P aaS 9
Ar 39 257 8

THE KRONECKER DELTA, written 82, is defined by

aj _ {o if jAE
1 if j=k

As its notation indicates, it is a mixed tensor of the second rank.

st
TENSORS OF RANK GREATER THAN TWO are easily defined. For example, A:z are the compo-

nents of a mixed tensor of rank 5, contravariant of order
3 and covariant of order 2, if they transform according to the relations

7™ _ ox? 927 3" 2t al ,*¢
tj 3x9 xS dxt dxt %I kL

SCALARS OR INVARIANTS. Suppose ¢ is a function of the coordinates %x® and let 5 denote the
functional value under a transformation to a new set of coordinate_s r2

Then ¢ is called a scalar or invariant with respect to the coordinate transformationif ¢ = ¢. A
scalar or invariant is also called a tensor of rank zero.

TENSOR FIELDS. If to each point of a region in N dimensional space there corresponds a definite

tensor, we say that a tensor field has been defined. This is a vector field or
a scalar field according as the tensor is of rank one or zero. It should be noted that a tensor or
tensor field is not just the set of its components in one special coordinate system but all the possi-
ble sets under any transformation of coordinates.

SYMMETRIC AND SKEW-SYMMETRIC TENSORS. A tensor is called symmetric with respect to two

contravariant or two covariant indices if its com-
ponents remain unaltered upon interchange of the indices. Thus if Agfr = Aggr the tensor is sym-
metric in m and p. If a tensor is symmetric with respect to any two contravariant and any two co-
variant indices, it is called symmetric.

A tensor is called skew-symmetric with respect to two contravariant or two covariant indices
if its components change sign upon interchange of the indices. Thus if AZ]"SM= -Ags’" the tensor is
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skew-symmetric in m and p. If a tensor is skew-symmetric with respect to any two contravariant and
any two covariant indices it is called skew-symmetric.

FUNDAMENTAL OPERATIONS WITH TENSORS.

1. Addition. The sum of two or more tensors of the same rank and type (i.e. same number of contra-
variant indices and same number of covariant indices) is also a tensor of the same rank and type.
Thus if A;"’> and Bg"> are tensors, then C’g‘¢> = Ag”’ + ng is also a tensor. Addition of tensors
is commutative and associative.

2. Subtraction. The difference of two tensors of the same rank and type is also a tensor of the same
rank and type. Thus if qu and Bq75 are tensors, then D - A‘m75 Bm’5 is also a tensor.

3. Outer Multiplication. The product of two tensors is a tensor whose rank is the sum of the ranks
of the given tensors. This product which involves ordinary multiplication of the components of
the tensor is called the outer product. For example, Ag BT = Cpm is the outer product of Aﬁr
and BZ‘ . However, note that not every tensor can be written as a product of two tensors of lower
rank. For this reason division of tensors is not always possible.

4. Contraction. If one contravariant and one covariant index of a tensor are set equal, the result in-
dicates that a summation over the equal indices is to be taken according to the summation con-
vention. This resulting sum is a tensor of rank two less than that of the original tensor. The
process is called contraction. For example, in the tensor of rank 5, A"‘_f’, set r=s to obtain

A;nfr =B;w a tensor of rank 3. Further, by setting p=¢ we obtain B;w = C™ a tensor of rank 1.

5. Inner Multiplication. By the process of outer multiplication of two tensors followed by a contrac-
tion, we obtain a new tensor called an inner product of the given tensors. The process is called
inner multiplication. For example, given the tensors A ™9 and B , the outer product is A™ Bs’;.
Letting ¢=r, we obtain the inner product A””> B" Letting ¢=r and p =s, another inner product
A”‘f’ B,;; is obtained. Inner and outer multlphcatlon of tensors is commutative and associative.

6. Quotient Law. Suppose it is not known whether a quantity X is a tensor or not. If an inner prod-
uct of X with an arbitrary tensor is itself a tensor, then X is also a tensor. This is called the
quotient law.

e ——

MATRICES. A matrix of order m by n is an array of quantities Gy called elements, arranged in m
rows and n columns and generally denoted by

11 Q15 ... Qip 11 Q1o ... Gyp
Aoy Qoo .ee Qopy A Qoo ... Aoy
. . . or . . .
Apa Gpo ... Gpp apy Gpo ... Gqp

or in abbreviated form by (a7> ) or [%q] p=1,...m; g=1,...,n. If m=n the matrix is a square
matrix of order m by m or s1mp1y m; if m=1 it is a row matrix or row vector; if n=1 it is a column
matrix or column vector.

The diagonal of a square matrix containing the elements ay,, ao, <oy @pn is called the princi-
pal or main diagonal. A square matrix whose elements are equal to one in the principal diagonal and
zero elsewhere is called a unit matrix and is denoted by /. A null matrix, denoted by O, is a matrix
all of whose elements are zero.
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MATRIX ALGEBRA. If 4 = (abq) and B = (bbq) are matrices having the same order (mby n) then

1. A= B if and only if apg = be’

2. The sum S and difference D are the matrices defined by
S = A+B = (abq+b¢q), D = A-B = (apq_ b;}q)

3. The product P =AB is defined only when the number n of columns in 4 equals the number of rows
in B and is then given by

P = AB = (app)(bpy) = (apy by

n . . . .
where appbypg = E appbpg by the summation convention. Matrices whose product is defined
r=1
are called conformable.
In general, multiplication of matrices is not commutative, i.e. AB # BA. However the asso-
ciative law for multiplication of matrices holds, i.e._4(BC) = (AB)C provided the matrices are
conformable. Also the distributive laws hold, i.e. A(B+C) = AB + AC, (A+B)C = AC +BC.

—

4. The determinant of a square matrix 4= (apq) is denoted by [A I det 4, | awl or det(%q)
It P=AB then |P|=|4]||B].

5. The inverse of a square matrix A is a matrix A™* such that A4~! = ], where / is the unit matrix.
A necessary and sufficient condition that A™! exist is that detd #0. If det4d =0, A4 is called
singular.

6. The product of a scalar A by a matrix 4 = () denoted by AA, is the matrix ()xapq) where each
element of A is multiplied by A.

7. The transpose of a matrix A is a matrix AT which is formed from A4 by interchanging 1ts rows and
columns. Thus if 4 = (apq), then Al = (agp). The transpose of 4 is also denoted by A

THE LINE ELEMENT AND METRIC TENSOR. In rectangular coordinates (x,y,z) the differential _Qt
arc length ds is obtained from (ds® = dx? + dy2+
Bg traansforming to general curvilinear cosrdinates (see Problem 17, Chapter 7) this becomes ds? =

Z Z 8pq duydug. Such spaces are called three dimensional Euclidean spaces.
p=1 g=1

A generalization to N dimensional space with coordinates (x*,x2,...,x¥) is immediate. We de-
fine the line element ds in this space to be given by the quadratic form, called the metric form or
metric,

or, using the summation convention,

In the special case where there exists a transformation of coordinates from < to %* such that
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the metric form is transformed into (dz%2 + (d%2? + ... + (dx%? or dx®dx*, then the space is call-
ed N dimensional Euclidean space. 1Inthe general case, however, the space is called Riemannian.

The quantities 8pq are the components of a covariant tensor of rank two called the metric
tensor or fundamental tensor. We can and always will choose this tensor to be symmetric (see Prob- .
lem 29).

CONJUGATE OR RECIPROCAL TENSORS.( Let g = ql denote the determinant with elements
% and SUppoSe g#0. Define g7 by-

pq cofactor of 8pq
g S
g
Then gpq is a symmetric contravariant tensor of rank two called the conjugate or reciprocal tensor
of Bpg (see Problem 34). It can be shown (Problem 33) that N
$q . s
& E&rq = Sr

ASSOCIATED TENSORS. Given a tensor, we can derive other tensors by raising or lowering indices.

For example, given the tensor qu we obtain by raising the index p, the,
tensor qu the dot indicating the original position of the moved index. By raising the index ¢ also
we obtain qu. Where no confusion can arise we shall often omit the dots; thus AM can be written
AP9. These derived tensors can be obtained by forming inner products of the given tensor with the
mefric tensor 8pq or its conjugate gﬁq_ Thus, for example

g 4 r p q

A?q =& pArq’ 47 = g pgsq Aps, Alps = 8rq A?-s
tk k & .St
ATSE = e AL

These become clear if we interpret multiplication by g“b as meaning: let r=p (or p=r) in whatever
follows and raise this index. Similarly we interpret multiplication by grq @s meaning: let r=gq (or
g=r) in whatever follows and lower this index.

All tensors obtained from a given tensor by forming inner products with the metric tensor and
its conjugate are called associated tensors of the given tensor. For example A™ and 4, are asso-

ciated tensors, the first are contravariant and the second covariant components. The relation be-
tween them is given by

A =

p = god o 4 = Py

q

For rectangular coordinates Bpq = =1 if p=g, and 0 if p#g, so that Aﬁ-Aﬁ, which explains why

no distinction was made between contravariant and covariant components of a vector in earlier chap-
ters.

LENGTH OF A VECTOR, ANGLE BETWEEN VECTORS. The quantity AﬁBﬁ , which is the inner

product of A? and B , is a scalar anal-
ogous to the scalar product in rectangular coordinates. We define the length L of the vector A or
Ap as given by
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2

- b _ P _ b 49
We can define the angle & between A¢> and Bﬁ as given by
A8,

cos§ =
AP p
(A7 4,) (B"By)

THE PHYSICAL COMPONENTS of a vector AP or 4 , denoted by Au,Av, and 4, are the projec-

tions of the vector on the tangents to the coordinate curves and are
given in the case of orthogonal coordinates by

1 A:L 2 A2 3 AS
Au=x/g_11A=?u, AU=@A=1/g_22, Aw=‘/§;A=‘/g_33
Similarly the physical components of a tensor AM or qu are given by
Auy = g, A" = A Auy = VB 8, A" = e Ay = Ve 8o A" = s e,
g1 Vente e V81180

CHRISTOFFEL’S SYMBOLS. The symbols

TRANSFORMATION LAWS OF CHRISTOFFEL’S SYMBOLS. If we denote by a bar a symbol in a co-

ordinate system x k, then

P 38 0u 3’ %0
[ik.m] =  [pg.r] Ox” 0x9 9a” | Ox 9 x’
J N N NN P
{} - {S}EMM+§za%xq
jk Pqf 3x5 2zl =k 3x9 ozl oxk

are the laws of transformation of the Christoffel symbols showing that they are not tensors unless
the second terms on the right are zero.

r

GEODESICS. The distance s between two points ¢, and ¢, on a curve x” =x"(t) in a Riemannian

space is given by
b dxﬁ dx?
= ax 8r d
* ./t; /B d de
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That curve in the space which makes the distance a minimum is called a geodesic of the space. By
use of the calculus of variations (see Problems 50 and 51) the geodesics are found from the differen-
tial equation

d.__2 x'r + r d_xz éi] = 0
ds? pq) ds ds

where s is the arc length parameter. As examples, the geodesics on a plane are straight lines where-
as the geodesics on a sphere are arcs of great circles.

THE COVARIANT DERIVATIVE of a tensor Aﬁ with repect to xq is denoted by Aﬁ’q and is de-
fined by .
94 s
Aﬁ,q = —Z; - { }As
Ox pq

a covariant tensor of rank two.

q

The covariant derivative of a tensor A¢> with respect to " is denoted by A?q and is defined by

P
P o4 Pl,s
4 q T Y + {qs}A

For rectangular systems, the Christoffel symbols are zero and the covariant derivatives are the
usual partial derivatives. Covariant derivatives of tensors are also tensors (see Problem52).

a mixed tensor of rank two.

The above results can be extended to covariant derivatives of higher rank tensors. Thus

T O VL
T Tmq 1q n
ox
_ { s }Apl...pm _ { s }Api...pm _ _ {s }Api...pm
STheeal. T, Ta...T, ter cee -
rq 2 Tn rq 1573:4-Tn g TyeeeTneqS

+ Py A8p2...pm . p2 Aplsps...pm N + pm Apl...pm_is
qs TieeeTn qs TieeeTn qs ooy

. Py Pp
is the covariant derivative of A,.1 n with respect to xq.
et

The rules of covariant differentiation for sums and products of tensors are the same as those
for ordinary differentiation. In performing the differentiations, the tensors &p ,gﬁq and Bﬁ may be
treated as constants since their covariant derivatives are zero (see Problem 54). Since covariant
derivatives express rates of change of physical quantities independent of any frames of reference,
they are of great importance in expressing physical laws.

PERMUTATION SYMBOLS AND TENSORS. Define epgr DY the relations
L]

€103 = €0y = €310 = +1, €p13 = €430 T €gpy = — 1, epgr =10 if two or more indices are equal

#q

: 7 i .
and define ¢ in the same manner. The symbols €por and " are called permutation symbols in
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three dimensional space.

Further, let us define

1 7 r
par = Vg har 7 = gt

r . . .
It can be shown that eﬁq,r and eﬁq are covariant and contravariant tensors respectively, called
permutation tensors in three dimensional space. Generalizations to higher dimensions are possible.

TENSOR FORM OF GRADIENT, DIVERGENCE AND CURL.

1. Gradient. If ® is a scalar or invariant the gradient of @ is defined by
2%
Ve = - L
grad & <I>,1b S
where <i>,1> is the covariant derivative of & with respect to x”.

2. Divergence. The divergence of Aﬁ is the contraction of its covariant derivative with respect to

27, i.e. the contraction of 4%,;. Then
giva? = 4P, = L O g4l
4 @axk &
3, 34,

3. Curl. The curl of Aﬁ is A¢>'q - AQ’¢>
defined as —e?7" 4,,, .

a—q - W , a tensor of rank two. The curl is also
X X

4. Laplacian. The Laplacian of & is the divergence of grad @ or

BCID
Ve = divd,, = -L 9 /7 *
4 /_Bx] gJ

In case g <0, Vg must be replaced by v ~g. Both cases g>0 and g <0 can be included by
writing v |g| in place of \/g

Y|
THE INTRINSIC OR ABSOLUTE DERIVATIVE of 4, along a curve x%=x%t), denoted by 8—75, is

defined as the inner product of the covariant deriva-

. dx? . dx?
tive of A, and ==, ie. 4, , 2 and is givenb
P dt $,q dt g y

04, dAp r dxd

ERE R 9 Ee
Similarly, we define

s at {P } e

5 dt gr dt

The vectors A, or AP are said to move parallelly along a curve if their intrinsic derivatives
along the curve are zero, respectively.

Intrinsic derivatives of higher rank tensors are similarly defined.
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bt
RELATIVE AND ABSOLUTE TENSORS. A tensor 4,' ™ is called a relative tensor of weight w
T

if its components transform according to the equation

<% - ox |¥ Aﬁi”‘bﬂl oz dxIm dx"1 o'
31...Sn ai 7’1...'rn ,ax»pl ,axpm 3551 aisn
where [ = g—’f is the Jacobian of the transformation. If w=0 the tensor is called absolute and is
x

the type of tensor with which we have been dealing above. If w=1 the relative tensor is called a
tensor density. The operations of addition, multiplication, etc., of relative tensors are similar to
those of absolute tensors. See for example Problem 64.

SOLVED PROBLEMS

SUMMATION CONVENTION.

1. Write each of the following using the summation convention.

o el [l op . j
a) dp = dxt + —=dx? + ... + = dil . dp = —= dx/
@ df = =3 32 o A AW
(b) ﬁk = aik E + @ éx_z + + aik ii_x_” .tgf_k. = ?i% M
dt dul o 2 de 3 dr ¢ M dt
@ @O+ @+ @ 4 @ FF
@) ds? = g @xY + g (dxD° + g (@, ds? = g, dxPdc*, N=3
3 3
p,q p.q
dx’ dx’ . dx’” dx', N=3
(e) p§1 q2=>1 gpq x” dx qu x" dx

k B _ 1 2
(a) ajkx . k? ajkx = aj1x + a].Qx + ... + aj”x}’
ar u qr 1r Nr
(b) quA . q§1 quA = A;'nA + Ap A + + Af’”
ik
(c¢) & g Ox %._ N=3
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_ 3 % nd 3F

fro J’§1 £ eoEr ozs
e e, W, W
o e e e e e w %
I - R o R )
11 77 xS 21357 d9zs | 813§r xS

ax ax ax ax + ax3 ax

t g7 3% 0% t 8 3% %S 830 7 % %

Ul %, L 2 A, %%
13 %" %5 | Smx” o P8 3x” oxd

3. If xk, k=1,2,...,N are rectangular coordinates, what locus if any, is represented by each of the
following equations for N=2,3 and N24. Assume that the functions are single-valued, have con-
tinuous derivatives and are independent, when necessary.

(a) akxk= 1, where a, are constants.
For N=2, a1x1 + a2x2 =1, aline in two dimensions, i.e. a line in a plane.
For N=3, a,x! +a,x2 +a,%% = 1, aplane in 3 dimensions.
For N2 4, a2 +a,x% + ... + a”x"'= 1 is a hyperplane.
) xRk = 1
For N=2, (:\:1)2 +(x2Y° = 1, a circle of unit radius in the plane.
For N=3, (x1)? + (x2)2 + (x%)2 = 1, a sphere of unit radius.
For N24, (x3? + (x2? + ... + &"? = 1, a hypersphere of unit radius.

(c) = xk(u)-
For N=2, x* = x*u), x2 = x%u), a plane curve with parameter u.
For N=3, x* = x'@), x2 =x%u), x° = x%u), a three dimensional space curve.

For N 24, an N dimensional space curve.

) xF = xk(u,v).
For N=2, x! = xXu,v), x2 = x%u,v) is a transformation of coordinates from (u,v) to (x%,x2).
For N=3, x™ = xi(u,v), %2 = xQ(u,v), % = xa(u,v) is a 3 dimensional surface with parameters u and v.
For N 24, a hypersurface.

CONTRAVARIANT AND COVARIANT VECTORS AND TENSORS.

4. Write the law of transformation for the tensors (a) A L by B k’ (¢) c"

A?b - axp ax] ax

@ O e A

As an aid for remembering the transformation, note that the relative positions of indices p,gq,r on
the left side of the transformation are the same as those on the right side. Since these indices are as-
sociated with the X coordinates and since indices i,j,%k are associated respectively with indices p,q,r
the required transformation is easily written.
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(6)

. A quantity A(j,k,!,m) which is a function of coordinates «* transforms to another coordinate sys-
tem %* according to the rule

7 2 257 2% oz

Ap.q,r, = AG k,L,m

P.q7:9) 3% xF 3 o (L™

(a) Is the quantity a tensor ? (b) If so, write the tensor in suitable notation and (c) give the con-
travariant and covariant order and rank.

(a) Yes. (b) A;lm. (c) Contravariant of order 3, covariant of order 1 and rank 3+1= 4.

. Determine whether each of the following quantities is a tensor. If so, state whether it is contra-
¥

I AP (%t .., x
variant or covariant and give its rank: (a) dxk, (b) ﬁ% .
x
. N
(e¢) Assume the transformation of coordinates 9?] = Ej(x1,...,x”). Then a7 = %‘—k di® and so dx¥ is a
X
contravariant tensor of rank one or a contravariant vector. Note that the location of the index k& is
appropriate.
k

(6) Under the transformation x*= xk(Bc'l, ...,3?,), @ is a function of x® and hence %’ such that Pt ...,x}l) =
b (x, ...,E”), i.e. ¢ is a scalar or invariant (tensor of rank zero). By the chain rule for partial differ-

. qu ‘op 3 dxk xR A ) _ Oxk o
entiation, = /== 4= — = — —— and transforms like A4; A Then —= is
dxJ %] xR %S %] Axk Ak i~ a J duxck
a covariant tensor of rank one or a covariant vector.
o

Note that in =3 the index appears in the denominator and thus acts like a subscript which indi-
X

cates its covariant character. We refer to the tensor % or equivalently, the tensor with components

X

;:d) , as the gradient of ¢, written erad ¢ or Vob.
x

. A covariant tensor has components xy, 2y —z2 xz in rectangular coordinates. Find its covariant
components in spherical coordinates.

Let Aj denote the covariant components in rectangular coordinates x1=x, x’=y, 2%=z2. Then
A = xy = x1x?, Ay = 2y~22 = ZxQ—(xs)Q, Ag = 213

where care must be taken to distinguish between superscripts and exponents.

Let Zk denote the covariant components in spherical coordinates = r, 2= 6, = ¢. Then

i . ¥
1) Ak = a;kA]



178 TENSOR ANALYSIS

The transformation equations between coordinate systems are

3 2 1

1 cos X2, %2 = X%

%t = %!

sin X2 sin X2 sin %2, %3 = %! cos ¥

Then equations (1) yield the required covariant components

- 2 o
Ao hi ekt

= (sin %2 cos %) (x1x2) + (sin %2 sin x°%) (2% — (xa)g) + (cos x?) (x1x%)
= (sin & cos @) (r2 sin?8 sin ¢ cos P)
+ (sin O sin @) (2r sin & sin ® — r? cos?6)
+ (cos O) (r? sin & cos O cos @)

4, = -a-’i/11+ﬁf12+a"S

- oy
2 %2 %2 ox2 °
= (rcos O cos ) (r? sin?F sin ¢ cos P)
+ (r cos O sin @) (2r sin & sin ® — r? cos?60)
+ (—r sin 0) (/2 sin & cos G cos P)

T . o, xT o, 0

= (—r sin @ sin &) (2 sin28 sin ¢ cos P)
+ (r sin O cos @) (2r sin 8 sinp — r? cos?H)
+ (0) (r? sin & cos & cos @)

04
8. Show that —% is not a tensor even though Aﬁ is a covariant tensor of rank one.

X
N . o _k
By hypothesis, Aj = 3 7 Ap . Differentiating with respect to xX~.
X
o7 3P oy F.b
_k = _ ——-E + —k g Aﬁ
o% o=l o% 9x* ox/
axp aAﬁ axq 2x¢>
= — — — + ——— 4
%) ox9 oxF  oxFomd 7P
A - 4
= -_— T e e— /{:,
7 oz 99 Forl P
04
Since the second term on the right is present, —— does not transform as a tensor should. Later we
X
04

shall show how the addition of a suitable quantity to ﬁ causes the result to be a tensor (Problem 52).
X
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9. Show that the velocity of a fluid at any point is a contravariant tensor of rank one.

The velocity of a fluid at any point has components st in the coordinate system xk. In the coor-

- 2]

dinate system x/ the velocity is % . But
&l A ak
dt Ok dt

by the chain rule, and it follows that the velocity is a contravariant tensor of rank one or a contravariant
vector.

THE KRONECKER DELTA.
b qr b9
10. Evaluate (a) Sq AS , (b)Y Sq Sr.

b
Since &, =1 if p=q and 0if p#g, we have

b gr pr ] p
(a) SqAS = A, (b) Sq 6 = &

b
11. Show that 9% - 85.
2%

If p=q, =5 = 1 since xp=x.

E;
axb - . P

== since x
7

%
Then -’-a-—q- = Bq.

X

axp q
7

[
o

If p#gq, and x7 are independent.

axﬁ aiq b
12. Prove that 2 22 = § |
Pl dx” T

Coordinates xj5 are functions of coordinates %7 which are in turn functions of coordinates x". Then
by the chain rule and Problem 11,

o | P m ¢
i =T o T

— =p q q q —p
13. 1f 4 = 9% 4 prove that 4 = ox’ 7°.
x o%
_ b
Multiply equation Aﬁ i by ox"

a9 P
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_¢> r 3P g
mhen 2070 20 ¥,

axﬁ axﬁ ox9
indicates that in the transformation equations for the tensor components the quantities with bars and quan-
tities without bars can be interchanged, a result which can be proved in general.

= 8 A = A" by Prob. 12. Placing r=g the result follows. This

14. Prove that 8? is a mixed tensor of the second rank.

P
If Sq is a mixed tensor of the second rank it must transform accoraing to the rule

gj . ow B
k axﬁ ozk q
=/ 3.7 j
The right side equals 5_x¢ -aik = 3; by Problem 12. Since Bk g 1 if j=k,and 0 if j#%, it fol-
ox” Oz

lows that Sq is a mixed tensor of rank two, justifying the notation used.

Note that we sometimes use §,. =1 if p=¢q and 0 if p#q¢, as the Kronecker delta. This is how-
ever not a covariant tensor of the second rank as the notation would seem to indicate.

FUNDAMENTAL OPERATIONS WITH TENSORS.

15. If Aﬁq and qu are tensors, prove that their sum and difference are tensors.

By hypothesis Af,q and qu are tensors, so that

A—jk - 35:'] a ax
l P n oFt
Ejk - ax] axk axr ¢>q
! aP nI w Br
_jk  _ijk 7 e
Adding, A - S N
! ! uP a9 ot
_jk  _jk =] Nk
Subtracting, (AJ - BJ y = Qx_ é‘— K (Af.q— qu)

pq  pq P pq
Then A4, +B, and Aﬁq— B,,q are tensors of the same rank and type as 4, and B

16. If Af and B are tensors, prove that Cf: AM Bts is also a tensor.

pgs

We must prove that Crt is a tensor whose components are formed by taking the products of compo-
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nents of tensors qu and Bts. Since qu and Bts are tensors,
ik ® mknl M
Ol S
Ox axq o%
- ™ Oxl
B - O=™ Oxt B
xS oz
) =7 ok 7 Jzm t s
Multiplying, "B, - o2 25" -a"—l OFt Oxl 4P9 B;
P 3x7 ozt xS m

which shows that quB: is a tensor of rank 5, with contravariant indices p,g,s and covariant indices

r,t , thus warranting the notation Cfgs. We call Cfgs = quBts the outer product of Af,q and Bf.

Let Af,zt be a tensor. (a) Choose p=¢ and show that Afz , where the summation convention is

employed, is a tensor. What is its rank ? (b) Choose p=¢ and ¢=s and show similarly that Aigi’
is a tensor. What is its rank ?

pq
() Since Arst is a tensor,

o ik oxl ogh 3 D5 Dat 0

lnn P 39 !l dzm zn 7

p
We must show that Arsqﬁ is a tensor. Place the corresponding indices j and n equal to each other
and sum over this index. Then

ik . 2l omk 3 xS et 0

Inj P 09 o5t o opd 7S¢
ot %) 3k o 2 0
%) P I ol oxm !

and so 4 rsp is a tensor of rank 3 and can be denoted by st. The process of placing a contravariant

index equal to a covariant index in a tensor and summing is called contraction. By such a process a
tensor is formed whose rank is two less than the rank of the original tensor.

vq
(b) We must show that Arqﬁ is a tensor. Placing j=n and k=m in equation (1) of part (a) and summing
over j and k&, we have
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oL B e we
Lkj aP I xl wk oxd ¢
Oxt ax] xS Oxk dx” ﬁq
2] %P dzk %I oxl Arst

S T ¢>q
815 8‘7 ‘axl

A" Aﬁq
3 o

bq
which shows that Arqﬁ

twice, the rank was reduced by 4.

is a tensor of rank one and can be denoted by Cr' Note that by contracting

P
18. Prove that the contraction of the tensor Aq is a scalar or invariant.

oo =l

We have A =
k xP w9

Putting j=k and summing, - 3 2f AZ; = 8: A? = Af
J axﬁ o

Then A .]= Ap and it follows that Ap must be an invariant. Since A;b is a tensor of rank two and

contraction with respect to a single index lowers the rank by two, we are led to define an invariant as a
tensor of rank zero.

19. Show that the contraction of the outer product of the tensors Aﬁ and Bq is an invariant.

=] — q
Since Ap and Bq are tensors, A] ax ﬁ B = —ax— B Then
k -5 9
- o%
- = - ax ax A
k axf’ o=k q
By contraction (putting j=% and summing)
_i_ =7 3.9
A'B. = ?z—ai,AﬁBq = SﬁAqu - A8
j 3P 3 p

and so A7:’B¢7 is an invariant., The process of multiplying tensglls (outer multiplication) and then contract-
ing is called inner multiplication and the result is called an inner product. Since AﬁBﬁ is a scalar, it is

often called the scalar product of the vectors Aﬁ and Bq .

P qs
20. Show that any inner product of the tensors Ar and Bt is a tensor of rank three.

P gs P gs
Outer product of Ar and Bt = ArBt .
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Let us contract with respect to indices p and ¢, i.e. let p=¢ and sum. We must show that the result-
S
ing inner product, represented by A,qu , is a tensor of rank three.

S
By hypothesis, Af and BZ are tensors; then

Multiplying, letting j=n and summing, we have

i =J 3or Nzl t S
AEJB.W = @’E_?E__QE_MELAfgz

P 3xk T uS oFd

showing that Aﬁ qu is a tensor of rank three. By contracting with respect to ¢ and r or s and r in the
product Af. BZS, we can similarly show that any inner product is a tensor of rank three.

Another Method. The outer product of two tensors is a tensor whose rank is the sum of the ranks of
the given tensors. Then Af Bgs is a tensor of rank 3+2 =15, Since a contraction results in a tensor
whose rank is two less than that of the given tensor, it follows that any contraction of Af Bgs is a tensor
of rank 5—2 =3,

21. If X(p,q,r) is a quantity such that X(p,q,r)Bin=o for an arbitrary tensor B;m’ prove that
X(p,q,r) =0 identically.

qn

Since Br is an arbitrary tensor, choose one particular component (say the one with ¢=2, r=3) not

equal to zero, while all other components are zero. Then X(p,2,3)B§n= 0, so that X(p,2,3) =0 since

Bgn #0. By similar reasoning with all possible combinations of ¢ and r, we have X(p,¢,r) =0 andthe

result follows.

. s s
22. A quantity A(p,q,r) is such that in the coordinate system x%, A(p,q,r) BZ = C, where Bz,s is an

P
S
arbitrary tensor and C1> is a tensor. Prove that A(p,q,r) is a tensor.
. s = —km  —=n
In the transformed coordinates %%, A(;,Ic,l)Bl = C]. .
_ =k Nom 37 - p - 4
Then A(j,k,l) OF" O™ O BZS - EMOo S "o A(p,g,r) Bis
9x9 xS %! xS 3x/ p xS %/

- ~k — P
o oz" [@L E’_’% Ay = 22 A(p,q.ﬂ] B = 0
x® Lox9 2% ox/
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n n
Inner multiplication by % (i.e. multiplying by ai and then contracting with ¢=m) yields
X

oxt
v [oz% 2 1 P gs
bS A~ -1 4(i:kvl) - 7 A(P:'I") Bar = 0
nd il o/
=k r — b qn
or [ai T Tkl — o A(p.q.r)] B, = 0
29 oxl ox/
qn
Since BT is an arbitrary tensor, we have by Problem 21,
Z2 Ox” —
2 Tkt — 2 A = 0
2 2xl %/
9 yon
Inner multiplication by BL BL yields
ox™ Ox”
kon— %P 2:% oxn
& &, A(j.k.D 2 2 o Ap,q,r) = 0
m o AU 3l oz awr Y
_ p q Nen
or »l(j,m,n) = ai ai ai A(P,q.")

7 %™ o
which shows that A(p,q,r) is a tensor and justifies use of the notation A;q'

In this problem we have established a special case of the quotient law which states that if an inner
product of a quantity X with an arbitrary tensor B is a tensor C, then X is a tensor.

SYMMETRIC AND SKEW-SYMMETRIC TENSORS.

pqr
23. If a tensor Ast is symmetric (skew-symmetric) with respect to indices p and ¢ in one coordinate
system, show that it remains symmetric (skew-symmetric) with respect to p and ¢ in any coordi-
nate system.

pq
Since only indices p and ¢ are involved we shall prove the results for B .

If Bﬁq is symmetric, Bﬁq: qu. Then

B’
85515 7 % axp

o) ok ppg | R g | h

=]

bq . . -i .
and B ' remains symmetric in the x*coordinate system.

If Bﬁq is skew-symmetric, Bbq= - Bq{o. Then
G L w g wra w |y
8x75 qu axq 85’61>

Pq . o ; .
and B’ ' remains skew-symmetric in the ¥* coordinate system.

The above results are, of course, valid for other symmetric (skew-symmetric) tensors.



TENSOR ANALYSIS 185

24. show that every tensor can be expressed as the sum of two tensors, one of which is symmetric
and the other skew-symmetric in a pair of covariant or contravariant indices.

Consider, for example, the tensor BM. We have
BM - %(qu+ B(#:) + é(BM— BQf?)
But Rﬁq = é(BM-t Bqﬁ) = Rqﬁ is symmetric, and Sﬁq = é(qu— Bqﬁ) = -—Sqﬁ is skew-symmetric.

By similar reasoning the result is seen to be true for any tensor.

i Rk ik
25. If &= ajk 47 4% show that we can always write ® = bjk A7 4% where bjk is symmetric.

) ik ki ik
® = ajkAA = aij 4’ = aijA
i & i R ik
Then 20 = ay Al 4”4 aij]A = @t o) 4l 4
i B ik
and D = f@jt o Al a® - by 47 4

where bjk = %(ajk+ akj) = bkj is symmetric.

MATRICES.

26. Write the sum S =4 +B, difference D=A~ B, and products P =AB, Q=BA of the matrices

3 1 —2 2 0 —1
A = 4 -2 3], B = - 2
-2 1 -1 1 -1 0
3+2  1+0 —2—1 5 1 -3
S=A+B=( 4—4 —2+1 3+2) = (o -1 5)
—2+1 1-1 =1+0 -1 0 -1
3—2  1-0 -2+1 1 1 -1
D=A-B= ( 4+4 —2-1 3—-2) = ( 8 -3 1)
—2—1 1+1 —1-0 -3 2 -1
(BX2) + (1)X-9) + (-2)1) (3X0) + (1X1) + (=2)(~1) B)=1) + (1X2) +(-2X0)
P= AB = ( (4X(2) + (=2)}=4) + (3XD) (4X0) +(=2X1) + (3)-1) (4X-1) +(=2)(2) + (3)(0))
=2)2) + (1)=4) +(=1)(1) (=2)0) + (1)(1) + (=1)(~1) («2X~1) + (1X2) +(-1X0)

0 3 -1
= (19 -5 —8)
—9 2 4

8 1 -3
Q= BA = (—12 -4 9)
-1 3 =5

This shows that 4B # B4, i.e. multiplication of matrices is not commutative in general.
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-1 3 3 -2

wn= () aen=(271)- men canmanm = (13) (2 71) - (5 ).
QR e | I O PR e e I e §

Then A?—B?= -+ 1 .
4 -2

21. If A= < 2 1) and B = (-l 2) , show that (4+B)(A—B) # A?— B2.

Therefore, (A+B)(A—B) # A~ —B>. However, (A+B)(A—B) = A2—AB+BA—BZ.

28. Express in matrix notation the transformation equations for (@) a covariant vector, (4) a contra-
variant tensor of rank two, assuming N=3.

_ q
(a) The transformation equations A4, = ai A_ can be written
P

- 'a 1 ’a 2 'a 3
— Al % %R°
A = —_— —_— — A
2 %2 ox2 =2 2
1 At ? %D Aq

ox®  o%° Oox°

in terms of column vectors, or equivalently in terms of row vectors

o % 2t
3% % oF°
3 % A

Ay A, A, = (A, A, A ox_  Ox  Ox
(A1 Ag Ag) (A1 Ay Ag) 321 BEQ E3

% %® oA

o o2 =8

_pr P oxr G5

(b) The transformation equations 4 = — — 4 can be written
NI %S
a2 e oA N PR AN -
Oxl  0x2  Ox® Oxt Ox1 Ol
12 12 = = ox% 0F? 0% 4% 4 = oFt o2 o=
Ox! Ox2 %3 Ox2 Ox2 a2
1% 1% g 0% 9% o A% 4% 4 ozt &% a°
Ox!  0x2  02® 0x® 023 %S

Extensions of these results can be made for N>3. For higher rank tensors, however, the matrix nota-
tion fails.
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THE LINE ELEMENT AND METRIC TENSOR.

29. If ds® = & dx) dx® is an invariant, show that & is a symmetric covariant tensor of rank two.

By Problem 25, ® = ds2, 4’ = dx’ and Ak = dx®

; it follows that gjk can be chosen symmetric. Also
since ds? is an invariant,

; J k 7 3k
g daPax? = g axda® = g L Al Q"—b Ox° 2P s
b Jr P of 7 oz =9
Then g, = Q’-‘—J- M and g. is a symmetric covariant tensor of rank two, called the metric tensor
Spq ~ Sk ob om0 Gk ' '

30. Determine the metric tensor in (a) cylindrical and (b) spherical coordinates.

(a) As in Problem 7, Chapter 7, ds? = d,o2+ p2d¢2+ dz2.

If s'=p, x°= ¢, 2=z then g,=L g22=,02, Bas= 1 8,58, =0 8, =8, =0: 8,7 8,,=0.

811 815 813 1 oo
In matrix form the metric tensor can be written 81 By Bpg = 0 ,02 0
831 Byp By 0 0 1
(b) As in Problem 8(a), Chapter 7, ds2 = dr2+r2d6%+r2sin28 dg’.
1 0 0
If x'=r,x2= 8, 58 =¢ the metric tensor can be written 0 r2 0
0 0 r2sin28
In general for orthogonal coordinates, gjk =0 for j£k.
811 8o 813
31. (o) Express the determinant g = 1 g g _ g | interms of the elements in the second row and
21 22 23
g81 g82 g83

their corresponding cofactors. (b) Show that 8i G(j k) =g where G(j,k) is the cofactor of
gjk in g and where summation is over & only.

(a) The cofactor of g % is the determinant obtained from g by (I) deleting the row and column in which
g " appears and (2) associating the sign (—-1)] h to this determinant. Thus,
J

Cofactor of g, = (17" | B2 Braf, Cofactor of g, = (=112 | 811 Baaf
83p 833 81 Baa
Cofactor of g, = (~1)°** 811 812
gSi g32

Denote these cofactors by G(2,1), G(2,2) and G(2,3) respectively. Then by an elementary principle
of determinants
8y G(2,1) + g,,6(2,2) +g,G(2,3) = g
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(b) By applying the result of (a) to any row or column, we have 8y G(j,k) =g where the summation is
over k& only. These results hold where g = l g kl is an Nth order determinant

32. (e) Prove that g,, G(3,1) + g,, G(3,2) + - G(3,3) = 0.
(b) Prove that gjkG(p,k) =0 if j#p.

g
(a) Consider the determinant | g

g12 giS

8,y Bog which is zero since its last two rows are identical. Ex-

11

21
81 835 8

panding according to elements of the last row we have

g, G(3.1) + g, 6(3,2) + £, 6(33) = 0

(b) By setting the corresponding elements of any two rows (or columns) equal we can show, as in part(a),
that gjk G(p,k) =0 if j# p. This result holds for Nth order determinants as well.

v GGk
33. Define g ° = J;—)

where G(j,k) is the cofactor of En in the determinant g = | gjk‘ £0.

P
Prove that g, g?% =5, .
Ein € J
. .
By Problem 31, ik GGk =1 or gjk gj = 1, where summation is over &k only.
4
G(p,k) Pk .
By Problem 32, . =0 or =0 if .
v m g]k g gjk P#i

g

ph 4

Then g, 8 (=1if p=j,and 0 if p#j) = 5]

J
We have used the notation gjk although we have not yet shown that the notation is warranted, i.e.
that ng is a contravariant tensor of rank two. This is established in Problem 34. Note that the cofactor
has been written G(j,k) and not GJk since we can show that it is not a tensor in the usual sense. How-
ever, it can be shown to be a relau'vg tensor of weight two which is contravariant, and with this extension
of the tensor concept the notation ¢’ k can be justified (see Supplementary Problem 152).

34. Prove that gJ k is a symmetric contravariant tensor of rank two.

Since gjk is symmetric, G(j,k) is symmetric and so gjk = G(j,k)/g is symmetric.
If Bﬁ is an arbitrary contravariant vector, Bq = gﬁ Bp is an arbitrary covariant vector. Multiplying
q
by ng

0, . 39, pb - sipp - gi 9, _
g]Bq—g]gqu-SbB-B or g]Bq-

Since Bq is an arbitrary vector, gJ 9is a contravariant tensor of rank two, by application of the quotient
law. The tensor gjk is called the conjugate metric tensor.
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35. Determine the conjugate metric tensor in (-{)_/&ylindrical and (b) spherical coordinates.

1 0 0
(@) From Problem 30(a), g = [0 p2 0| = p2
0 0 1
2
g1 - cofactor of g,, B 11p%0 -
g e2lo 1
2 cofactor of g,, 1]l1 0 1
8 pQ 0 1 pQ
cofactor of g,, 111 o0
& s — —= = Sl e =t
8 P P
g2 cofactor of g,, =__1_ 0 0 = 0
g p210 1

Similarly ng: 0 if j#k. In matrix form the conjugate metric tensor can be represented by

1 0 0

0 102 0

0 0 1

1 o0 0
(b) From Problem 30(4), g = |0 r? 0 = r*sin? 6
0 r?sin?@
As in part (a), we find gl =1, g2 = 1 g8 = 1 _ ama ng: 0 for j#k, and in matrix form
. . r2 r? sin?6
this can be written

1 0 0
0 1/r? 0

0 o0 1/77 sin?6

36. Find (a) g and (b) gjk corresponding to ds? = 5(dx)’ + 3(dx2f + 4(dx®)? — 6 dxtdx? + 4 dx?dx®.

5 -3 0
@) g11=5, gz=3’ gsa=4’ g12=g21=—3. g23=g32=2, gm:gai:O' Then g = -3 3 2} = 4.
0. 2 4

(b) The cofactors G(j,k) of g].k are
G(1,1)=8, (2,2)=20, G(3,3)=6, G(1,2)=6G(2,1)=12, G(2,3)=G(3,2)=-10, G(1,3)=G(3,1)=—6

Then glt=2, g2=5, g¥=3/2, gl2=g2=3, gB=g82=_5/2, g8=g31=3/2

Note that the product of the matrices (gjk) and (ng) is the unit matrix I, i.e.

5 =3 0 2 3 -3/2 1 00
-3 3 2 3 5 —5/2 = 010
0 2 4 —~3/2 -5/2 3/2 0 01
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ASSOCIATED TENSORS.

k k i
= = ]k
37. 1f Aj gjk A, showthat 4 =g Aj‘

k -
Multiply 4, = g A by 7.
ultiply v gjk yg]
j i B9 k9. q_ gk
Then g]quzg]qg]-kA =8,4°=4, ie. 4 =g7qu or A% = ¢’ 4.

The tensors of rank one, Aj and Ak, are called associated. They represent the covariant and contra-
variant components of a vector.

38. (a) Show that L? = gﬁq A¢> Aq is an invariant. (b) Show that L? = gbq Aﬁ Aq.

(a) Let A, and Ak be the covariant and contravariant components of a vector. Then

7
_ i _ _q
A :aLA., Aq=3LAk
oY ik
e T - N TN j
and a4 - a’?p_axkA].A = 5 447 = 44

so that Aj A’ 1is an invariant which we call L2. Then we can write

i kJ » 9
L2 = A; 4" = g A A4 = A" A
J §in %4

() From (@), L= A; A= A; g* 4, = g% 44, = g 4

p4q-
The scalar or invariant quantity L = V4 b A7b is called the magnitude or length of the vector with
covariant components A{; and contravariant components Aﬁ.

4

39. (a) If Aﬁ and Bq are vectors, show that gﬁq A Bq is an invariant,

P 9
g, A B
(b) Show that _;ﬁ___ is an invariant.
/ q
(A"A4)(B"By)
87 Vg

(a) By Problem 38, AﬁB = A¢) Bq is an invariant.

p pg” = &g

b nq
g. A B
(b) Since AﬁAﬁ and Bqu are invariantsd(AﬁAﬁ)(Bqu) is an invariant and so —ﬂ——— is an

invariant, 12 (ApA,p) (Bq By
We define e, A8
Pq

cos § =
V4?4, BBy

as the cosine of the angle between vectors AP and BI, I 8p APBY = Ai’Bﬁ = 0, the vectors are
called orthogonal.
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40. Express the relationship between the associated tensors:
e 7 Se

kL & gkr b veesl
(@) A’ and AM,{, b) Aj.l and A7, (e) 4 gt and quk .

@ a7t gt gkair 4 A 7

por O Apgr = 8, 8, 8, 4

ko qgkT gkr _ ig lr ok
) 47 = gjge 4 oo A = gllg 451

P TS, kb seeS] sees] Ders,
(@) Agp = 87 ey Aigy  of iy = gpignet A,

41. Prove that the anglés 6 623 and 631 between the coordinate curves in a three dimensional co-

12?
ordinate system are given by
ng ng 531
cos 0,, = ———, cos 6, = ——, cos 6., = ——
® Vs 2 Vg * Ve g
11 “22 22 ¥83 33 Y11

1 2

coordinate curve, x2= constant and 2° = constant.

Then froin the metric form, ds? = g (dxY? or dd 1
11 ds

Along the x

84
Thus a unit tangent vector along the x! curve is A: = /—lg; 8:. Similarly, unit tangent vectors along
11

r r
the x2 and x° coordinate curves are 4, = % 8: and A: = A S, -
822 8
The cosine of the angle &,, between A: and Ag is given by
v 9 1 1 P9 810
cos O, = g Aj Ay, = g == —— & 5, =
12 pg 172 P9 Ve, VB - ° V1 By

Similarly we obtain the other results.

42. Prove that for an orthogonal coordinate system, g =g, =g, =0.

. 3 - o -
This follows at once from Problem 41 by placing 6 =6 =6 =90°. From the fact that 859" &p

it also follows that 81" Bgp™ 815 0.

43. Prove that for an orthogonal coordinate system, g = A y 8. = A , =1 .
11 11 22 22 33 3
g g g
From Problem 33 gprg = 315.
» rq q
=-g= r = 11 2 13 -
It p=g=1, g g, =1 or glg, +8&78, *+8 &, 1
. _ 1
Then using Problem 42, 8, = g—n .
imi =g= -_1 . =g= :i
Similarly if p=g=2, gQQ-g22 ; and if p=¢=3, 8.0 =R
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CHRISTOFFEL’S SYMBOLS.

s s s
44. Prove (a) [pq,r] = [gp,r], (® {Pq} = {qp} . (o) [pg.r] = Ers {P‘]} .

og o 9 og Jg og
pr qr bqy _ ., 9T pr 9, .
(a) P(I”' = l( + - ) - -( + - ) = QPv’]-
lpa.r} = 2 A AP xuT Y Y A e :

®) {:q} = &% [pa.r] = &% [ap.r] = {q:,}

() sks{:q} = gksgsr (pg,r] = 5,: (pe.r] = [pg.k]

or [pg.k] = gks{:q} ie. [pg,r] = g, {:q}.

Note that multiplying [pq,r] by g5" has the effect of replacing r by s, raising this index and re-

. . S < S
placing square brackets by braces to yield { pq} . Similarly, multiplying {PQ} by 8, O B, has the

effect of replacing s by r, lowering this index and replacing braces by square brackets to yield [pq,r] .

9
45. Prove (a) -;%i [pm,q] + [gm,p]
x

3’ mfaq o f P pq X
®) 3 8 {mn} -8 {mn}
O e Og g g og Og
(@) [pm,q] + [gm.p] = ¢ pq Mg _ Pmy i w L my - P9
A - Aa® NI AP A
(b)—a— gjkg) = jL(ésk) = 0. Then
O™ 17 O™ i
g %3 A o o %" 98y
" w8 i % m
. , L oy 08y
Multiplying by 27 ir, 28 = _ir JR %
ultiplying by g*7, g Eij 37 g 8 o0
, .k o
e % %ér =~ g ([im.j] + [jm.i])

%” . irfk i fr
or 38 limf T8 im

and the result follows on replacing r,k,i,j by p,q,n,n respectively.

(¢) From Problem 31, g = gjk G(j, k) (sum over k only).
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Since G(j,k) does not contain gjk explicitly, a_a&_ = G(j,r). Then, summing over j and r,
g.
jr

%,

9
ag ag gjr , ir
-5 = _Z& = G( L) ——

Y

(4 ng , o™

. g .
= gel" < = gl ([imr] + [mai])

I (TARTI TR

l _a_g = I or .i = _a_ 1n]/§
2g O™ jm jm ™

The result follows on replacing j by p and m by ¢q.

Thus

46. Derive transformation laws for the Christoffel symbols of (a) the first kind, (4) the second kind.

YA
(a) Since g] = B’J 3' gpq

o oL W e W T, PP A
oz" %7 9zF 2.7 o= %) ="k g © gmazi agk £sq

By cyclic permutation of indices j,k,m and p,q,r,

@) agk'm - o9 ax qr axi’ + ?53 Ber £ + Gl 9 3x
ox] %k 5" 2P oxd 2 3xiox® 97 ol ozk 35t 97

o o w2 a%’ax NS N A" A
oxk %™ 3/ I P " ozkox) TP RPu™ oml TP

+

Subtracting (1) from the sum of (2) and (3) and multiplying by %. we obtain on using the definition
of the Christoffel symbols of the first kind,

P I n" 3L T
9 9 % pgr] 4 o=

(4) [je,m] = . q,r - g
7 %P x" o/ oxk o™ P9
%" ox™
(b) Multiply (4)by 7™M = —/— — to obtain
v B S
P %I %’ o %P %I HJn :mm
N [ ik 22 A2 2 gst ,
g"® Lik.m] 357 5% 357 s 0t & LUt ST e s 0at & e
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% %J ok uS

3 G %P w9 o
Then {ik} = AL g5t [pg.r] + 5'e 8,
o ox"

o { } P
el ok uS P9 ) xF nP

. T st . _sr = § 9 st = g9 =5
since St g% [pg.r] = g5 [pq.r] = {pq} and Bt g gpq g gpq 315.
‘ 2 m P m p q
47. Prove a.x = {n}ix‘— §x_§x_{m}
%) dzk jk§ azn ox) dxzk lpg

P39 3 f s 3xP

slemagsy, 471 - o &l { } P i

From Problem 46 (b) {ik} %) 3%k 35 \pe 3z 2% P

k
s s Ox™ n Ox™ axﬁ xq my s } _‘anp_ Sm
Multiplying by —3?" { } N7 j % {pq i izl Xk P

957> 9 { m } -anm
= —— —— + - %
=/ gk \pa 27 ox

the result follows,

3"
N _k i}

%7 Ox

Solving for

48. Evaluate the Christoffel symbols of (a) the first kind, (b) the second kind, for spaces where

=0 if .
&g if p#q
%.. . % e
() If p=g=r, 1 = [ppopl = P pp_ ChpY - 1 b
@) If p=q=r, [pq.r ppP.p (Bx e 2 5
%, % og o
p=qftr, [pg.r] = [ppr] = l( Pr oy 2T W) = -1 2
WP WP nuT 2 %’
d%.. %%. % 3%
I p=r¢q, [pg.r] = [pa.p] = l( ph, 9 pq> - L 2
prima P pa-p 2l P o 2 34

If p,q,r are distinet, [pg,r] =o0.

We have not used the summation convention here.

(b) By Problem 43, gJ] = g_ (not summed). Then
77

)8
{ y } = g5"[pg,r] = 0 if r#¢s, and = g5 [ pg,s] = Lpg ](not summed) if r=s
prq s

By (e):
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9
It p=g=s, {S}= {P} - Sty
pq pp &4 2gM, AP 2 3,0 74
9,
s s [pp.s] 1 By
Ifp= R = = ———— = e — R
prats {Pq} {PP} &ss 2855 0x°
[pap] 1 %y 1 3
HP=S#Q.{S}={P}= = — q=———-§lng.
Pq Pq &) ngﬁ A 2 pp

I p,q,s are distinct, { g } = 0.

49, Determine the Christoffel symbols of the second kind in (a) rectangular, (b) cylindrical, and
(c) spherical coordinates.

We can use the results of Problem 48, since for orthogonal coordinates g bq =0 if p#gq.

(a) Inrectangular coordinates, g, , = 1 so that { 3 } = 0.
bp Pq

(b) In cylindrical coordinates, x! =0, x2 =, »® = z, we have by Problem 30 (a), g, 1.8," foka Bye=1-
The only non-zero Christoffel symbols of the second kind can occur where p=2. These are

o)
1 B 1 8o 1 _8_ 2 _
{22} = - = - ap(lo) = =P,

{2}_{2}__L3% S 1 3.p L
21f ~ Q12 28,, Ox' 202 Jp P =D

(¢) In spherical coordinates, xl=r, x2= 6, x3=¢, we have by Prob. 30(5), g,=1.8,,= re, 8gs™ r2sin20.
The only non-zero Christoffel symbols of the second kind can occur where p=2 or 3. These are

F}z_iﬁ%=_liﬁ=_,
22 2g,, Ox 2 or
2}= 2}=;ﬁz=_l__a.(,2)=l
21 12 28y, Ox' 2r? or r
1L 1 Oy _ 190 , ., _ )
{33}- T —Eg;(r sin®fy = —rsin®f
9
{2} - =L Bs —Li(r"’sinQG) = —sinf cos
33 2,, Ox” 2r? 96
9
{3}={3}= 1 T8 __l_z(r?sin%) =1
31 13 284, Ox! 22 sin? 8 or r
9
{3}={3}= 1 s ! i(r2sin25) = cot @
32 23 28,, Ox? 2r? sin?6 90
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GEODESICS.

50.

51.

t
Prove that a necessary condition that [ = / ? F(t,x,%) dt be an extremum (maximum or min-

t
imum) is that gl - i(—i)!i) = 0. !

dt Ox

Let the curve which makes / an extremum be x = X(¢), 4S8 ¢S 2,. Then x = X(¢)+ €7)(¢), Where € is
independent of ¢, is a neighboring curve through ¢, and & so that 7)(¢1) = 7)(¢5) = 0. The value of [ for the
neighboring curve is

t .,
I(€) =/2 F(t, Xt€mn, X+emn)de

(21

This is an extremum for €=0. A necessary condition that this be so is that j% = 0. But by differ-
entiation under the integral sign, assuming this valid, €=0

dl t2 dF OF -

- = =7+ = de = 0

d€ |0 AR RO
which can be written as

to to to 2]
f @.F_‘ndt+§—{"-r] — -r)_d_(@..i)d; = f n E_i(.a_.i) dt = 0
ty x O 12} ty dt  Ox t, Ox dt Ox
Since 7 is arbitrary, the integrand OF -4 (B_f‘) = 0.
Ox dt Ox

t
The result is easily extended to the integral f 2 F(e,xt, 22,22, 22, ..., 28, 30y di
ty

and yields E — id_(_aﬂ) = 0

ik dr ik
called Euler’s or Lagrange’s equations. (See also Problem 73.)

r } ds” dx? _

s . . : dx"
= 4+ =
Show that the geodesics in a Riemannian space are given by 152 pgf ds ds

to /
We must determine the extremum of gﬁq ib 29 4z using Euler’s equations (Problem 50) with
ty

F = ngq 239, We have

9
oF l(g P i9y-1/2 8pq i
Ak 2 19 Ak
oF

= 1 D <y~ b
= 2(gbq x % ) 1/2 zgpkx

Using g—:— = Vg bq P 29 , Euler's equations can be written
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P 3
i(ﬁﬂe_i)~i_€gq£p£q - 0
dt $ 25 axk
. Bk .p 1 % 5 B #3
or g, % ¢+ 2P - 2 _PIPH - -
Pk axq 2 axk s
% 5. 1 Bk, gk b g
Writing 9 = —(—=—=+ ——) x” x' this equation becomes
7 2 %9 %N
5 P
P o+ [pgk]f i = P

gﬁk

If we use arc length as parameter, s=1, s=0 and the equation becomes

2 9 5.9
dx dx” dx'
gﬁk ds? + [pg.k] ds ds 0
Multiplying by g"'k, we obtain
L (i Neet L
ds? Pq ds ds
THE COVARIANT DERIVATIVE.
52. If A, and A’5 are tensors show that (@) 4, , = 8_/4_15 - Sl
TP P9 3x9 paf s
P
and (b) A15 = o4 + { P } 4% are tensors.
g 37 gqs
. - ox”
a) Since A, = = A4,
( Joowi T
aAj ox” aA'r th an'r
@ ¢ 327 o 3E | amiagk T
0% %) W = %/ 3%
From Problem 47,
S e adad()
%) 3xk My 3an ogd gk i
Substituting in (1),
%zéﬁﬁﬂﬂqﬁA_yi(p
s %/ OzF Oxt ity omn T ok Litf T

'yﬁ%*Tf"yny
YA if o opf ok \eaf 7S

or
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94

and é_q - { ® } As is a covariant tensor of second rank, called the covariant derivative of A1> with

% P9
respect to x7 and written A, .

7.q
_i =]
(b) Since A] = @x_ Ar,
Ox"
. . 2 .
@ arf Wl w5 ut e
Bszk " axt aik Ax” Ot aik

From Problem 47, interchanging x and x coordinates,

§ﬂ={q£_££f}
A" it ) out % o il
Substituting in (2),
aﬂ=ﬂﬂﬁ+qyﬁfﬂﬂﬁqw{
Ak A" Oxk At ref 3um gk NT Ut oxk Ll
o atul  fel e w i
%" ;P b ref 3 ok " F il
] Ek@f+vyﬁﬂf_{Wﬂ
xiP %k I $q) 3P dzk ik
or . .
E+7ﬁ=§ﬂﬂy%Pf
%" ki P P\l les
94 P s . - . Lo 12
and =3 + gs A~ is a mixed tensor of second rank, called the covariant derivative of A with
X

14
respect to 7 and written A,q .

53. Write the covariant derivative with respect to x7 of each of the following tensors:

Jjk J J jkl
(a) A]'k s (b) A ’ (C) Ak ’ (d) Akl’ (e) A;.n *
94
_ 7k s s
(@) Ajk.q YA {f‘l A — kq Ajs

, Jk
Jjk _ o4
) A ,q = aq +

X

; 34!
© 4 - £ - {S

k.q 5

. 247
&y A7 - kl
klq oxY
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jkl
i o4]

My, s\ ¥ s ) gkl i\ skl kY sl 1) jks
mn,g 94 - {mq}Asn - {nq}Ams + g Am‘n, + gs A‘m,‘ﬂ. + gs Am‘rl.

54. Prove that the covariant derivatives of (a) gjk, ) gjk, (c) SIZ are zero.

(e) A

(@) - agjk _ s _ s
gjk,q 0l iq 8sk kq 8is
g,
= SJT - [jg.k] - [kqjl = o by Problem 45(a).
x
. ik . .
jk - g/ j sk 4 k B _
®) g . 33 + g5 g gs f 8 0 by Problem 45(b).
J
k

j 33 8 ] ]
© 8¢ = 57 {kq}ss ' {qs}

55. Find the covariant derivative of A: Bim with respect to .

i Im

; (4, B, ) : :
(AiBim)q - akqn _ {S}A]Blm _ {s}A]Bl‘m
' X

1]
N
Q)! Q
R 'S
A <o
[
—
F »
ey
S
Ulk\\.
+
o~
5~
S’
by
b}
S
o
-y

This illustrates the fact that the covariant derivatives of a product of tensors obey rules like those
of ordinary derivatives of products in elementary calculus.

km km
56. Prove (gjk A, ) g g]_k A, q-

km km km km
A = + A =
p " Vg Sng T p

since gjk g =0 by Prob. 54(a). In covariant differentiation, gjk , gﬁe and SIZ can be treated as constants.
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GRADIENT, DIVERGENCE AND CURL IN TENSOR FORM.

57. Prove that div 4” = l(1/§ 4.

a
/g %k

The divergence of A75 is the contraction of the covariant derivative of Aﬁ, i.e. the contraction of

Aﬁ.q or Aﬁ,f, . Then, using Problem45(c),

k
ava? = 4, - o4, {Pk}Ak
’ uk P
Ut 3 k a4 1 g 1 9 3
= + (— InVg)d4 = + (— )4 —-———k(x/EA)
A %F Vg P Vg O
0 0P
58. Prove that V°® = — (V8 & )
Vg ox ox"
The gradient of ® is grad $=Vd= _—a—aif , a covariant tensor of rank one (see Problem 6(b)) de-
X
fined as the covariant derivative of P, written <I>',, . The contravariant tensor of rank one associated with
P, is Ak = ghr -a—q: Then from Problem 57,
3P 1 9 py 0P
Ve = av@ ) = = (e )
n Vg nF -
'aAp BAq
59. Prove that qu - A‘”> = — - —,
’ ’ 27 o

4 4 . ‘aAﬁ { s }A EA_‘Z {s }A ) aAp aAq
%e — “qp N s) ” - s T Sed T Sp
) pg P qp DI P

This tensor of rank two is defined to be the curl of Ap'

60. Express the divergence of a vector A’> in terms of its physical components for (2) cylindrical,
(b) spherical coordinates.

(a), For cylindrical coordinates x'=p, x°=¢, +°=z,

00
p20| = p? and Vg=p (see Problem 30(a))
01

o
H
O O =

The physical components, denoted by 4,, 4y, 4, are given by

Ay = Ve A = A, Ay = Vg A = pA, 4, = Vg A= 4

z
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Then
div 4

LB/’Ak
‘/Zx(g)

S 9 9
= p[ap(pAp) + a¢"’¢” + (P4z2)]

(b) For spherical coordinates xl=r, x°=0, 2®= ¢,

10 0
g = |o 0 = r*sin?0 and Vg =r2sinf (see Problem 30(b))

0 0 r2sin’f
The physical components, denoted by 4,, Ae , A b are given by

= /gnAl =4, 4= 1/g22A2 A, Ay = /gssi = rsin@ 4°

Then
ava - I/L.g_gi—k(@fik)
= r2511n9 [-%(;—2 sinf 4,) + aa—e(r sind 4y) + a%5(”11,)]
) :1"’—3%02/"’) rsian %(sme@ ' rsi1n9 %;%

61. Express the Laplacian of P, V2<I>, in (a) cylindrical coordinates, (b) spherical coordinates.

(@) In cylindrical coordinates g't=1, g2=1/0? g®=1 (see Problem 35(a)). Then from Problem 58,

Ve = L O g g OB
Vg oxF "
19 od 13<I>
- L[l 9%, 9 o ob
P " a¢>‘Pa¢ )

o® 1 P L)
—) + 5 + —
P PP a2

(b) In spherical coordinates g'*=1, g2=1/r2, g®= 1/r?sin?0 (see Problem 35 (b)). Then

2 1 9 3@
- L2 e
ve 7 RE e
1 2 Ce MR, SO 1) 3
= el Psind 50 +5p Ginf 5 + 56 Snd 53]
13 2P 1 2 »® 1 O

= 2
505 Y e 3005 * a3

201
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INTRINSIC DERIVATIVES.

62. Calculate the intrinsic derivatives of each of the followmg tensors, assumed to be differentiable
functions of ¢: (a) an invariant ®, (b) A] (¢) AJ, d) Almn

5% _ i _ 2D _ 4® - ot
(a) 5 - q>,q T 39 T a4 the ordinary derivative.
i iy, . i q . :
VA A . B @A_+{1}As ad @ig.x_+{l},,sgc_
St o g nwd  lgs de NI de gs de

st il sl

dt qs dt

i , Y :
(c) :5.{1& = A] ﬁ’ﬁ?_ = a_Ak I A] L7 A _‘i"_q
5 kg dt o kqf s gsf R ¢

J
M s\ g, i) s
Todt kqf s dt gs§ "k dt

jk jk
@) 8Al'ﬂm . Ajk d_x? _ aAlﬂm - Asjqf _Js A]k
St Inn,q g, 7 lq n mgf “lsn

63. Prove the intrinsic derivatives of g, 5 g and 8 are zero.

Og; q 7 58 i .9

ik dx Sg ik dad § dx
—— = (g )—=0, — =0, —*. — = 0 by Problem 54.
5 kg g =6 dr 5t R4 g

RELATIVE TENSORS.

P
64. If A and B are relative tensors of weights w, and w, respectively, show that their inner and
outer products are relative tensors of weight w, +w,

By hypothesis,

A—] - ™ axj axq Ap Elm T a_i'i ?iﬂ_l E.’i
k ’axp ax n ox” 0xS oF"
. I yem ~ 1
AL w1+u@3x13xq_¥_i_§x_ P g7s
The outer product is Ak B, 7 3P 3% n" %S o 9 Bt

a relative tensor of weight wy + wo. Any inner product, which is a contraction of the outer product, is also
a relative tensor of weight wy +ws.
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65. Prove that vz is a relative tensor of weight one, i.e. a tensor density.

Wi
The elements of determinant g given by gpq transform according to Ejk = g 3 %7 gpq .
, I A 2 - ,
Taking determinants of both sides, g = 71157 = J°g or Vg=1vg, which shows
X

that ‘/,g— is a relative tensor of weight one.

66. Prove that dV = Vg dx® dx? ... dx' is an invariant.

By Problem 65, dV = VE d%l d®® ... d¥¥ = vg J dEtd2? ... d2¥

i
ox

From this it follows that if ¥ is an invariant, then
f...fcid? = f...fcbdv
7 V

for any coordinate systems where the integration is performed over a volume in N dimensional space. A
similar statement can be made for surface integrals.

= Vg a7t d? ... d2' = Vg dxtdx2 ... dx¥ = a¥

MISCELLANEOUS APPLICATIONS.

67. Express in tensor form (a) the velocity and (b) the acceleration of a particle.

3
(a) If the particle moves along a curve xk = xk(t) where ¢ is the parameter time, then vk = d-;-t— is its ve-

locity and is a contravariant tensor of rank one (see Problem 9).

E 2.k
(b) The quantity dst = ddz"i’ is not in general a tensor and so cannot represent the physical quantity

acceleration in all coordinate systems. We define the acceleration ak as the intrinsic derivative of

3
the velocity, i.e. ak = _88%— which is a contravariant tensor of rank one.

68. Write Newton’s law in tensor form.

Assume the mass M of the particle to be an invariant independent of time ¢. Then Mak= F k

a
contravariant tensor of rank one is called the force on the particle. Thus Newton's law can be written

k
Fk=Mak= 8”

5
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Sk P {k } dxp d«7
. that of = °U = ax ax
69. Prove that a s, s + paf d& di

k

Since v" is a contravariant tensor, we have by Problem 62 (b)

k % q 2 & q
L d® RN sdr’ | dx® {" } b 9z
St dt gs de de? qp de

P R
dt pqy dt de

:

70. Find the physical components of (a) the velocity and (b) the acceleration of a particle in cylin-
drical coordinates.

(a) From Problem 67 (a), the contravariant components of the velocity are

dxt _ dp dx? d¢o and dx® _ dz
dt  dt ' dt  dt de dt
Then the physical components of the velocity are
dxt dp dx? do dx® dz
_— = — 14 —_— -_— ]/_ _— = -
81 dt de ' 80 dt de and 8as ds de

2
using g,, =1, g,,= 0", 855=1.

(b) From Problems 69 and 49 (b), the contravariant components of the acceleration are

. &’xt , 1) a e &p (dq,‘))Q

a = —_— ——— = —_— - —_—
dt? 22§ dt dt de? P dt

2 _ d°x? + 2 | dx? dx? + 2 ) dx? dx? _ d2¢ + 2 dp dop

@ = gr wf @ @ afd@ & - @ @ ar
2

and ad = 4 a® = &

de? de?

Then the physical components of the acceleration are

Ve, el = p— pgt VE_a® = pd+2pd and Vg o =%

where dots denote differentiations with respect to time.

71. If the kinetic energy T of a particle of constant mass ¥ moving with velocity having magnitude v
is givenby T = 3Mv2 = éMgpq % %9, prove that

i 32 - B_T = Ma
dt dzk Ak k

where a, denotes the covariant components of the acceleration.

Since T = %Mgfaq i i, we have
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8,
OF _ 4y 2?9 gp59, O M, 7  and _d_(ﬂ) = MG, 2+ 9 9,
Oc® o ik q dr ozF q x
g, o
Then i(?l) - oT . <g 29+ kfl 229 1 P9 4# .q)
dt %k Y kq O/ 2 %

. d%,. O
Y P Wil . . N Y,
kq 2 % %I %k

= M(gkq':éq+ [pq,k]:?’:’cq)

= M, P SR S Y = Mg o = Ma
gkf(x {pq}x Err %

using Problem 69. The result can be used to express the acceleration in different coordinate systems.

72. Use Problem 71 to find the physical components of the acceleration of a particle in cylindrical
coordinates.

ds 2

Since ds? = dp2+ p%dp2+dz?, v? = &Y= P2+ P°FP+ 22 and T = $M? = $M(D°+ P + 12y,

From Problem 71 with x'=p, x2=¢, x®=2z we find
. . d .
0 = P~ pP®  ay = E('o2¢)' ez = z

Then the physical components are given by

aq [+ 2] ag

. 5 d 2' e
T/ /=y ,— or p_p¢2:'l_(p¢)»z
Ve Ve Vs P d

11

since g =1, 8o = o2, 8y = 1. Compare with Problem 70.

73. If the covariant force acting on a particle is given by Fk = —salk where V(«, ..., o ) is the
X
. d oL oL
potential energy, show that —(—-) — —= = 0 where L =T-V.
dt (Ba'ck) Axk
From L=T-V, QL— = ﬂ since V is independent of ik. Then from Problem 71,
dzk  Oxk
d  OT oT oV d ,OL oL
= - 2= = Me, = F, = —~ =L and L£(=%) - =% = 9
dt (B:’ck) Ox® k k Ak dt (aik) dxk

The function L is called the Lagrangean. The equations involving L, called Lagrange’s equations,
are important in mechanics. By Problem 50 it follows that the results of this problem are equivalent to the

)
statement that a particle moves in such a way that j; Ldt is an extremum. This is called Hamilton’s
1

principle.
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74. Express the divergence theorem in tensor form.

Let A k define a tensor field of rank one and let 1, denote the outward drawn unit normal to any point
of a closed surface S bounding a volume V. Then the divergence theorem states that

e - ffee

v N

!

For N dimensional space the triple integral is replaced by an N tuple integral, and the double integral by
an N—1 tuple integral. The invariant 4 B is the divergence of A~ (see Problem 57). The invariant
Ak Vk is the scalar product of Ak and v,, an’alogous to A-n in the vector notation of Chapter 2.

We have been able to express the theorem in tensor form; hence it is true for all coordinate systems
since it is true for rectangular systems (see Chapter 6). Also see Problem 66.

75. Express Maxwell’s equations (a¢) divB =0, (b) divD =47mp, (¢) VXE = — —1— % (d) VxH =

in tensor form.

Define the tensors Bk, Dk, Ek' Hk' lk and suppose that © and c¢ are invariants. Then the equations
can be written

(@) B . =0
3
%y D B = 4mp
J J
kg 1 9B 7kq 1 OB
(c)—eJ E = —-= — or € E = = =
k.q ¢ al kvq ¢ ‘at
, J . J
_ Jkq _ 4ml Jkq __ 4ml
) € Hk,q = . or € Hk,q = -

These equations form the basis for electromagnetic theory.

76. (a) Prove that Ap,qr - Aw.q = qu,. A, where A7> is an arbitrary covariant tensor of rank one.

(b) Prove that R;qr is a tensor. (c) Prove that

aAﬁ . ,

_ \q j J

@ Aﬁ.q" - (Aﬁyq):"’ - {pr}Aj:q - {qr}Aﬁ’f

(s -{a) - (5 -{is) - 3 (2 -4
7 " Vief 2] T =5 " \eif

N r O jq qr ) Pj

R

axr axq ox” paf o« pr P pr

= R"™  is atensor.
g

R{)qrs ns  pgr

u

By interchanging ¢ and r and subtracting, we find



1.

8.

9.

80.

81.
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{f} "}A -2 f}A. _{J ,"}A ; _3_{/'},4.
pry Liaf -l U3 paf \irf * a9 \erf i
K\ fi 3 fi Y fi\ 3 i

{Pr}{kq}Af - 5;7{!"7}/11' - {Pq}{’"}A’ ' SE{P'}A"

j
R A
par J

N £ YA N I DAY L2 U VR NI
where qur = {pr}{kq} i’ {pq} {pq}{kr} ' o {P'}

Replace j by n and the result follows.

Aar Aﬁ.rq

n n
R _ . . A i . R .
(b) Since Ap,qr Ai’.?‘q is a tensor, Rﬁqr A, is a tensor; and since 4, is an arbitrary tensor, pgr 18
a tensor by the quotient law. This tensor is called the Riemarn-Christoffel tensor, and is sometimes

written Rn R n

“pgr or simply qur'

LY A
pgre:

©) qurs = s R;qr is an associated tensor of Rqu and thus is a tensor. It is called the covariant

curvature tensor and is of fundamental importance in Einstein’s general theory of relativity.

SUPPLEMENTARY PROBLEMS

Answers to the Supplementary Problems are given at the end of this Chapter.

Write each of the following using the summation convention.

() 8, x*x% + ayx2x® + ... + a”x”xa (¢) AfBi + AgB2 + Ang + .+ A;B”
21 22 23 2¥
(b) A"B, + A B, + A®B_+ ... +4° By @) gg,, + 8%, *+ &%, + &g,
121 122 221 222
(e) By + B + B)j + B
Write the terms in each of the following indicated sums.
? E it b o) nk
(@) == (Vg 4), N=3 () A°° B, C,, N=2 () = =
3xk k J axk oF™

What locus is represented by akxkxk =1 where xk, k=1,2, ..., N are rectangular coordinates, e, are
positive constants and N=2,3 or 4 ?

If N =2, write the system of equations represented by a b qxq = % .
ij ijk
Write the law of transformation for the tensors (a) Ak ,» B)YBy , (YChpy. (@)YA4, .
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82.

83.

84.

85.

86.

87.

88.

89.

90.

TENSOR ANALYSIS

Determme whether the quantities B(j,k,m) and C(j,k,m,n) which transform from a coordinate system
x* to another z* accordmg to the rules

o) oxk Oz - %P 7 %um %S ..
B(p,g.r) = Z& B(j,k, b) C(p,q,r,8) = — —— = = C(j,k,m,n)
@) B(p,q.r) 3315 327 a7 ( m) b) C(p,q.,r.s 3] g% 37 n ] m,n

are tensors. If so, write the tensors in suitable notation and give the rank and the covariant and contra-
variant orders.

How many components does a tensor of rank 5 have in a space of 4 dimensions ?

Prove that if the components of a tensor are zero in one coordinate system they are zero in all coordinate
systems.

Prove that if the components of two tensors are equal in one coordinate system they are equal in all co-
ordinate systems.
dxk k

k
Show that the velocity s = v of a fluid is a tensor, but that d—dv?- is not a tensor.

Find the covariant and contravariant components of a tensor in (a) cylindrical coordinates P, b,z,
(b) spherical coordinates r,8, ¢ if its covariant components in rectangular coordinates are 2x—z, x2y,
yz.

The contravariant components of a tensor in rectangular coordinates are yz, 3, 2x+y. Find its covariant
components in parabolic cylindrical coordinates.

Aqs, (¢) 3 3

Evaluate (a) 8, B, (&) 8, 8, T, @88l 8

"
If qu is a tensor, show that Ai is a contravariant tensor of rank one.

91. Show that Sjk = {(1) ;; I; is not a covariant tensor as the notation might indicate.
- i -
. A, = = = .
92, If A W Aq prove that Aq o A1>
0 %S g g _ nd % P
93. If 4 X X 4! prove that AL = 22 ZX 4.
r qu B"r S S P74 xS T
°P
94. If & is an invariant, determine whether P is a tensor.
OxP O

95.

96.

97.

98.

99.

P
If Aq and Br are tensors, prove that Af; B" and Ag Bq are tensors and determine the rank of each.

., P9, g qp . P9 qp . .
tShow that if Ars is a tensor, then Ars + Asr is a symmetric tensor and Ars - Asr is a skew-symmetric
ensor.

»q bq_ P9

If A and Br are skew-symmetric tensors, show that C = A Brs is symmetric.

If a tensor is symmetric (skew-symmetric), are repeated contractions of the tensor also symmetric (skew-
symmetric) ?

v

Prove that AM <17 = 0 if Aﬁq is a skew-symmetric tensor.
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100. What is the largest number of different components which a symmetric contravariant tensor of rank two
can have if (@) N=4, (b) N=6? What is the number for any value of N ?

101. How many distinct non-zero components, apart from a difference in sign, does a skew-symmetric covariant
tensor of the third rank have ?

pq

102. If A, is a tensor, prove that a double contraction yields an invariant.

103. Prove that a necessary and sufficient condition that a tensor of rank R become an invariant by repeated
contraction is that R be even and that the number of covariant and contravariant indices be equal to R/2.

rs
104. If A¢ and B ~ are tensors, show that the outer product is a tensor of rank four and that two inner prod-
ucts can be formed of rank two and zero respectively.

105. If A(p.q) Bq = C¢7 where Bq is an arbitrary covariant tensor of rank one and C.'15 is a contravariant tensor
of rank one, show that A(p,q) must be a contravariant tensor of rank two.

106. Let A7> and Bq be arbitrary tensors. Show that if Ap Bq C(p,q) is an invariant then C(p,q) is a tensor
which can be written CZ .

107. Find the sum S=A4+B, difference D= A-—B, and products P=AB and Q= BA, where 4 and B are the

matrices
@ A = 3 -1 ) B = 4 3
2 4 -2 -1
2 0 1 1 -1 2
by A = -1 =2 2], B = 3 2 —4
-1 3 -1 —1 -2 2

108. Find (34—2B)(24A—B), where 4 and B are the matrices in the preceding problem.

109. (a) Verify that det (4B) = {det A} {det B} for the matrices in Problem 107.
(b) Is det (AB) = det (BA) ?

-3 2 -1
3 ~1 2
110. Let 4 = , B = -
(4 0 3) 1 3 -2
2 1 2

Show that (a) AB is defined and find it, (b) B4 and A+B are not defined.

2 -1 3 1
111. Find x, y and z such that 1 2 —4 ¥y = -3
—1 3 =2 z 6

112. The inverse of a square matrix 4, written A~ is defined by the equation AA4~! =], where I is the unit
matrix having ones down the main diagonal and zeros elsewhere.

1 -1 1
Find A”' if (@) 4 = (_2 ":) , 4 =(2 1 <1

Is A=*4 =1 inthese cases ?
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113.

114.

115.

116.

117.

118.

119.

120.

121.
122.

123.

124.

125.

126.

127.

128.
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2 1 -2
Prove that A4 = 1 =2 3 has no inverse.
4 -3 4

Prove that (ABy = B~ 4~1, where 4 and B are non-singular square matrices.

Express in matrix notation the transformation equations for
(a) a contravariant vector (b) a covariant tensor of rank two (c) a mixed tensor of rank two.

2 =2 . .
Determine the values of the constant A\ such that AX =AX, where 4 = (_3 1) and X is an arbi-

trary matrix. These values of \ are called characteristic values or eigenvalues of the matrix 4.

The equation F(A)=0 of the previous problem for determining the characteristic values of a matrix 4 is
called the characteristic equation for A. Show that F(4)=0, where F(4) is the matrix obtained by re-
placing A by 4 in the characteristic equation and where the constant term c is replaced by the matrix ¢/,
and O is a matrix whose elements are zero (called the null matrix). The result is a special case of the
Hamilton-Cavley theorem which states that a matrix satisfies its own characteristic equation.

7 r.r
Prove that (AB) =B A .

Determine the metric tensor and conjugate metric tensor in
(a) parabolic cylindrical and (b) elliptic cylindrical coordinates.

Prove that under the affine transformation %7 = a’ x” + br, where a” and br are constants such that

afa; = 85, there is no distinction between the covariant and contravariant components of a tensor. In
the special case where the transformations are from one rectangular coordinate system to another, the
tensors are called cartesian tensors.

Find g and Jk corresponding to  ds? = 3(dx1? + 2(dx?Y? + 4(dx3Y — 6dxldsB.

If Ak = gjkAj , show that Aj = gjk Ak and conversely.

Express the relationship between the associated tensors
. . . ik
@) 477 and 4%, 47" and Ay @ 4y and 47

oq pq o.l‘

Show that (a) A'qBi> = AﬁqB , (b) A?,qr Bp'r = A;?TBW = A{;qr B,ﬁr . Hence demonstrate the gen-

D Ters prs
eral result that a dummy symbol in a term may be lowered from its upper position and raised from its
lower position without changing the value of the term.

4 -BpC then A

. 'q'r‘ . r
f A = = = .
Show that i “qr qCr» bar B¢>q C?, and Ap Bp Cc Hence demonstrate the result

that a free index in a tensor equation may be raised or lowered without affecting the validity of the equa-

tion.

p
Show that the tensors g, , gpq and & are associated tensors.
bq q

. ; =k
%) A9y GO L peEt

Prove (a) g5 — = -, .
AW I P Y

If Ap is a vector field, find the corresponding unit vector.
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130.

131.

132.

133.

134.

135.

136.

1371.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.
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Show that the cosines of the angles which the 3 dimensional unit vector vt make with the coordinate

U U
curves are given by L , -2 , —=
Ve, Ve, Ve
11 338
Determine the Christoffel symbols of the first kind in (a) rectangular, (b) cylindrical, and (c) spherical

coordinates.

Determine the Christoffel symbols of the first and second kinds in (a) parabolic cylindrical, (b) elliptic
cylindrical coordinates.

Find differential equations for the geodesics in (a) cylindrical, (b) spherical coordinates.
Show that the geodesics on a plane are straight lines,
Show that the geodesics on a sphere are arcs of great circles.

Write the Christoffel symbols of the second kind for the metric
ds? = (daci)2 + [(x2)2 - (x1)2] (dx2)2

and the corresponding geodesic equations.

Write the covariant derivatlve with respect to xq of each of the following tensors:

(a) A]k, (®) A » @) A]kl, @ 4] I

mt ()4 kZm Imn

Find the covariant derivative of (a) gjk Ak, b) A] Bk' (c) SZ A]. with respect to %9,

Use the relation AJ = g] R Ak to obtain the covariant derivative of A] from the covariant derivative of Ak‘

If O is an invariant, prove that P, pq= q)'qﬁ' i.e. the order of covariant differentiation of an invariant
is immaterial.

r
Show that ep qr and eﬁq are covariant and contravariant tensors respectively.

Express the divergence of a vector /!1b in terms of its physical components for (a) parabolic cylindrical,
(b) paraboloidal coordinates.

Find the physical components of grad P in (e) parabolic cylindrical, (b) elliptic cylindrical coordinates.
2
Find V 9 in parabolic cylindrical coordinates.
r
Using the tensor notation, show that (a) div curl 4 =0, (b) curl grad P = 0.
Calculate the intrinsic derivatives of each of the following tensor fields, assumed to be differentiable

functions of ¢ :
(@) 4, (&) 4l , (©) A BF, (d) qu] where ¢ is an invariant.

Find the intrinsic derivative of (a) gjkAk' 1)) 8 , (©) g 8 Af’

4 9 . i, M
Prove dz(g AﬁAq) = 2¢g Aﬁﬁ‘
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148. Show that if no external force acts, a moving particle of constant mass travels along a geodesic given by

149,

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

S dxp _
Ss(ds) =0

Prove that the sum and difference of two relative tensors of the same weight and type is also a relative
tensor of the same weight and type.

pq:

if qu is a relative tensor of weight w, prove that g-w/2 A, is an absolute tensor.

s
If A(p.g) st = C>_, where B:,’ is an arbitrary relative tensor of weight w, and C sr is a known relative
tensor of weight w,, prove that A(p,q) is a relative tensor of weight wo—w,. This is an example of
the quotient law for relative tensors.

Show that the quantity G(j,k) of Solved Problem 31 is a relative tensor of weight two.

Find the physical components of (a) the velocity and (b) the acceleration of a particle in spherical co-
ordinates.

Let A7 and B” be two vectors in three dimensional space. Show that if A and 4 are constants,then
T2 24"+ ;LBT is a vector lying in the plane of A" and B”. what is the interpretation in higher dimen-
sional space ?

Show that a vector normal to the surface ¢ (x?,x2,x% = constant is given by 4P = gﬁq BQ% Find the
corresponding unit normal. 3

o
The equation of continuity is given by V. (ov) + 3—;— 0 where o is the density and v is the velocity of
a fluid. Express the equation in tensor form.

Express the continuity equation in (a) cylindrical and (b) spherical coordinates.
Express Stokes’ theorem in tensor form.

Prove that the covariant curvature tensor qurs is skew-symmetric in (2) pandg, (b) rands, (c) gands.

Prove Rygrs = Rpspg-

Prove (a) Rﬁqrs + Rﬁsqr + Rﬁrsq = 0,
(b) qu,rs + quﬁs + Rrsﬁq + Rf)S'f'q = 0.

Prove that covariant differentiation in a Euclidean space is commutative. Thus show that the Riemann-
Christoffel tensor and curvature tensor are zero in a Euclidean space.

f’ dxﬁ p P

= Is be the tangent vector to curve C whose equation is x” = x"(s) where s is the arc length.

q
(a) Show that 8pq TP 19=1. (b) Prove that 8pq TP %Ts— = 0 and thus show that N7 = ’l( §8TT is a unit
SNY

normal to C for suitable <. (c) Prove that S is orthogonal to Nq.
S

Let T

With the notation of the previous problem, prove:

q b 81v

N'=o0,
@) &g rr'-0, » el Ba
188
T° &8s

—K or gqu:b( +;<Tq)=0.

Hence show that B” = + K T'r) is a unit vector for suitable 7 orthogonal to both Tp and Nq.



TENSOR ANALYSIS 213

165. Prove the Frenet-Serret formulas

# » p
81" _ KN¢>' SN” _ rBi’-KTi’, 8B” _ _ n?
Ss 8s Ss

where Tﬁ, Nﬁ and Bﬁ are the unit tangent, unit normal and unit binormal vectors to C, and « and 7 are
the curvature and torsion of C.

166. Show that ds? = c2(dx?)’ — dx® dx® (N=3) is invariant under the linear (affine) transformation
o= yalovaty, 7 =22, T =2%, % =yat -7 P

2
where “y,3,c and v are constants, 3 =v/c and ¥ = (1—8 )"*/2. This is the Lorentz transformation
of special relativity. Physically, an observer at the origin of the xb system sees an event occurring at
position x1,x2,x3 at time x4 while an observer at the origin of the zt system sees the same event occur-
ring at position #!,%2,%° at time x*. It is assumed that (I) the two systems have the x* and %! axes
coincident, (2) the positive x° and x° axes are parallel respectively to the positive % and %° axes,
(3) the %% system moves with velocity v relative to the x? system, and (4) the velocity of light ¢ is a

constant.

167. Show that to an observer fixed in the x% (:‘c’:) system, a rod fixed in the %t (x "') system lying parallel to
the %' (x!) axis and of length L in this system appears to have the reduced length LvV1—/3° This
phenomena is called the Lorentz-Fitzgerald contraction.

ANSWERS TO SUPPLEMENTARY PROBLEMS.

T @ axkx® by 4798, () A2B® @) g9g . N=a (o) B2, N=2
k J k g1
0 1 9 2 9 3 . . .
@ 370 A) S50 A) 4 S o & %, awe, | wa
1 ¥
®) AanCl + AQiBf c, + Auchi + AQQBfCQ Oxl O™ Ox2 Ox™ Ox¥ Oxm
79. Ellipse for N=2, ellipsoid for N3, hyperellipsoid for N= 4.
80. { anxi + 002 = by
apxt + apa? = b,
—$q P o7 ok i - 2" AP
@A = T T e © Cpg = 5 a7 Con
=pqr P 99 % %l Lijk — o
(b) By = X Ox Ox Ox pgi @ A4, = & 4
y i e Ak @S ? ww "

82. (e2) B(j,k.,m) is a tensor of rank three and is covariant of order two and contravariant of order one. It can

be written B;lk . (b) C(j,k,m,n) is not a tensor.

83. 4°=1024
87. (@) 20c0os’® — zcos®p + pP°sin®P cos?P,

—20°sin pcosp + pzsing + pP*sinc cos®p,
Pz sin @.
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88.
94.

100.

107.

108.

111.

115.

116.
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by 2r sin?0 cos2¢@ -~ rsinf cosf cos® + rBsin*O sin?P cos?d + 2 sinb cos?O sing,

2r2sinf cos @ cos?2¢ — r?cos20 cos® + r*sin®6 cosO sin® b cos2¢p
— r®sin?28 cos 8 sing,

— 2r2sin26 sin® cos@ + r2sinf cosO singd + r*sin*6O sing cos®o

p
wlvz +3v, 3u — uv?z, u? +uv — o2 89. (a) B‘;s. ) Aﬁr' (c) 55, ) N
It is not a tensor. 95. Rank 3 and rank 1 respectively. 98. Yes.
(@) 10, (b)Y 21, (c) N(N+1)/2 101. N(N—-1)y(N—2)/6

(a)5=(7 2)' D=(-1 —4)’ P=(14 10)‘ Q=(18 s)
0 3 4 5 0 2 -8 -2
3 1 3 11 -1 1 -4 6 1 8 -3
2 0-2), D= {-4-4 6), P=[-0-7 10} 0= 8-16 11
-2 1 1 0 5 -3 9 9 —16 -2 10 =7

3 —16 20
(@) (‘lzz '32) (b)( 9 163 —136) 110. ('2 13 2)
—61 —135 132

(b) S

1/3 1
2 1 / /30
x=—1,y=3, z2=2 112. (a) 5/2 3/2 (by {-—5/3 1/3 1 }. Yes
-1 0 1
Al ozt ox! oFt Al
axl ax2 axs
(@) A_? = E ﬁ B_EQ. ,42
Oxl 022 08
o w @ o\,
Ox!  Ox2  OxB
- - T Ox!  Ox? %P oxr  ox!  Ox?
Aaa sz s w o oo | [ [ =
1. 4. 71 Oxt  0x2  0x® Ox2  x? a2
A = ox”  Ox”  Ox X X X
® 2 Aoz Ao w w w2l % ow
- T T Izl  Ox? 018 02 0% OB
Agqy Agp A _— = = Agy Ago A =z X
31 Aszp Ags 3P 970 0P 31 Agp Asg 7 92 90
—y —y — =1 =1 1 1 1 1 1
i 11 A21 A31 %xT %t; _gis Al A; A; @f_l a_x. .BL
x x x % 0%2 %3
—2 —2 —2 972 %2 o2 2 2 2 0x2  0x2  0x2
o 1 4 4. 4 = oxr  oxt oxt R 47 42 4 Ox° Oxt Ox
v it M2 W vt % O O%°
,4_1<3 A~23 A—: ox%  o&® ox° 43 Ag Ag o5 % 957
dxl  0x? ;B 0%t Jx? o=
u2+v2 0 0 2s+2 00
1
A= 4, -1 19. (@) 0 wP+st o f, A

0 0 1 0 0 1
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123.

128.

130.

131.
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1

2 2 2 0 0
a“(sinh“u + sin“v) 0 0 2(sinhZu + sinZv)
2 512 in2 1
) 0 a“(sinh®u +sin“v) 0 |}, 0 a2(sinhZu + sin?v)
0 0 1 0 0 1
% 4/3 0 1
=6, @y ={ o0 120
1 0 1
Pa_ 740 prr_ pi gl T rl 4 *
@A =g Aj , (b) A’q =g g qul’ (c) A bq = gﬁqukg A--],
Ai’ . Af’
V/aP Ve, 4P a7
A 8bq

(a) They are all zero.
¢y [22,1] =—p, [12,2] = [21,2] = p. All others are zero.
) [22,1] = —r, [33,1] = —r sin26, [33,2] =—r2sinf cos &
[21,2] = [12,2] =+, [31,3]= [13,3] = r sin?0
[32,3] = [23,3] = #25in6 cos 6. All others are zero.

@ [11,1)=u, [22,2] = v, [11,2] = —v, [22,1] = —u,
[12,1] = [21,1] = v, [21,2] = [12,2]) = u.

1 - u 2 _ v 1 . —u 2 .=V

11§ w2+2’ 22 u2+ 02’ 22 u2+ 2’ 11 u2+ 02’

b S S G A 28 _ 320 . v ) others are zero.
21 12 uZ+ 02 21 12 u2+ 02

) [11,1] = 202 sinhz coshu, [22,2] = 2e2sinvecosv, [11,2] = —22sinv cosv
(22,1] = —2a2sinh u cosh u, [12,1] = [21,1] = 202 sinv cosv, [21,2]=[12,2] = 2e2sinhu coshu

1 _ Sinhz coshu 2 } _ _sinv cosv { 1 } . —sinhu coshu
11 sinh2u + sin?v 22 sinh2u +sin?v 22 sinh2u + sin?v
_—sinv cosv_ 1 - 1 _ _sinv cosv
sinh"’u +sin?y 21 12 sinh?u + sin?v

{ } } = ﬂ@{'ﬂﬂ . All others are zero.
sinh?u +sin®v

d2p d¢2-0 ¢ L2404 _ 2z _

() ds? p(.d_s) 7 ,0 ds ds vaE 0
d’r do .2, dP
1) pche r(z)2 — r sin G(Z)2 = 0

2
0 , 2.dr df _ sin@cos@(‘—@)"’ =0
T ds ds ds

2
dd,2dr db, 5onp 40 4P
rds ds ds ds
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135.

136.

137.

141.

142,

143.

145.
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faf = 4

} L {2 } =
@ - @ 22 a2 an?

All others are zero.

2 2
d %! 1, dx%% o d x 21 dx! dx? x2 dx? 5
o 0, o —=2 o ax X (¥ =
ds? * (ds ) ds? = — 2% ds ds (x2)% — (:rci)2 ds )
7k
; 94 ; .
Jjk l s jk j sk k Js
A = - A + A A
@4, 7 {lq} s esf 1 gsf 1
ik
i 94 i i i is
by A N S B U A B +{’}A5k+{k}ALJ
Im,q O lq sm mq Is qs Im gs m
J
24 . . )
J kim s J s J s J ] s
= - - — A + A
© Ang = 3.0 {kq}Aslm {lq}Aksm {mq} Rls {qs} kin
ikl
Al oAy s\ LR f Y sk kY st f ) ks
@ Ay, = 50 7 \mg Ay + o5 Ag o5 4, + gs Ap
ik
ik o4 ik k i ;
Y M R S VRS S Ui R TR SR WL
lmn,q Ox lq smn mqf lsn n,qf ims qs lmn qs
k J J J
A5, ) 4, + A4 B, &5 A
@ g, Ag. (®) Aig B, et © 5 A
1 o 3T 04,
@ mp (G ZoERa] -
2
34
)} — [3 (woVu?+2 4,) + —?—(um/u2+v2 Av)] + L z
uv(u?+ v?) Ou dv uv 022
1 od 1 0® 0P
@ 1 9P, . 1 0P, , 0P,
Va2t 02 Ou ¥ Va2 + 2 v v z 2
(b) -1 (E e, + B—CP-eU) + o e,
aVsinh?u +sin?y  Ou ov dz

where e, e, and e, are unit vectors in the directions of increasing u,v and z respectively.

2 2
1 P od + (u2+0vYP
w2+ 02 | 2 002
o wt (Mg, ﬁ_“_{s}Ad_J
ot kg g, Ox kq s de dt kq S dt
i* i . . .
by A dA +{I}Askdi+{k} js dx"
dt de qs dt qs du
k
S k 0Aj B
(¢) = (A; B = _J g* 4+ 4. 28
5 4% T i %
dA; q k q
- i _§s dx’ ) pk | 9B k| psdx’
B (EE_ {/’q}AS dt)B * AJ<dz +{qs B de

is
AJ

Imn
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§ - SAIZ 5P
dy 2@y = -2 + 22y
@ St(q) k) P . 5;
J ,
dA 1 q 7 a9 P J
= _k ] Sdx' _ } s dx’ aP
- q’( : {qs}Ak a {kq}AS dz> YT N
k k q
s4° dA E s dx
146. (a) ik & gjk( . {qs}A dt >

(b)sj_sij_=5jcﬁ_ sAd_"q =d_Ak_ sAd_x_q
E S k\ dt jiaf S dt dt kg f 7S dt
57 5«4; i dA,
@ty ors T Emly T {

153. (@) 7, 10, rsinf ¢

® 7 - 162 — ¢ sin20 q;Q, 1d (129.) — rsinf cos@ qBQ, —1—— 4 (r2sin?6 d;)
rode rsin8 dt

3evh , o % | 3o

+ —— ==

%7 28 R ot

156. = 0 where vq are the contravariant components of the velocity.

1
17, @) = v + (o) + 'aa‘(crvﬁ) N
4

Y Y 0 2
1 9
() -aa—r(avl) + %(O'vg) + i(crv") + 0(27" + v cot@) + a—(: =

where v!, v2 and v® are the contravariant components of the velocity.

= 0

P P
158. f A da” ds = — E¢5qrA v, dS where dx” is the unit tangent vector to the closed curve C
C 4 ds s q,7 P ds

and Vﬁ is the positive unit normal to the surface S which has C as boundary.



Index

Absolute derivative, 174
Absolute motion, 53
Absolute tensor, 175
Acceleration, along a space curve, 35,39,40,50,56
centripetal, 43, 50,53
Coriolis, 53
in cylindrical coordinates, 143, 204
in general coordinates, 204, 205
in polar coordinates, 56
in spherical coordinates, 160, 212
of a particle, 38, 42, 43, 50, 52, 84, 203, 205
relative to fixed and moving observers, 52,53
Addition, of matrices, 170
of tensors, 169
Addition, of vectors, 2,4,5
associative law for, 2,5
commutative law for, 2,5
parallelogram law for, 2, 4
triangle law for, 4
Aerodynamics, 82
Affine transformation, 59, 210, 213
Algebra, of matrices, 170
of vectors, 1,2
Angle, between two surfaces, 63
between two vectors, 19, 172, 190
solid, 124, 125
Angular momentum, 50,51, 56
Angular speed and velocity, 26, 43, 52
Arbitrary constant vector, 82
Arc length, 37, 56, 136, 148
in curvilinear coordinates, 56, 148
in orthogonal curvilinear coordinates, 136
on a surface, 56
Areal velocity, 85, 86
Area, bounded by a simple closed curve, 111
of ellipse, 112
of parallelogram, 17, 24
of surface, 104, 105, 162
of triangle, 24, 25
vector, 25, 83
Associated tensors, 171, 190, 191, 210
Associative law, 2, 5, 17

Base vectors, 7, 8, 136
unitary, 136

Binormal, 38, 45, 47, 48

Bipolar coordinates, 140, 160

218

Box product, 17
Brahe, Tycho, 86

Calculus of variations, 173
Cartesian tensors, 210
Central force, 56, 85
Centripetal acceleration, 43, 50, 53
Centroid, 15
Chain rule, 77, 177, 179
Characteristic equation, 210
Characteristic values, 210
Charge density, 126
Christoffel’s symbols, 172, 192-195, 211
transformation laws of, 172, 193, 194
Circulation, 82, 131
Circumcenter, 33
Clockwise direction, 89
Cofactor, 171, 187, 188
Collinear vectors, 8, 9
non-, 7, 8
Column matrix or vector, 169
Commutative law, 2, 5, 16, 17
Component vectors, 3, 7, 8
rectangular, 3
Components, contravariant, 136, 156, 157, 167, 168
covariant, 136
of a dyad, 73
of a tensor, 157, 167, 168
of a vector, 3, 136, 156, 157, 158, 167
physical, (see Physical components)
Conductivity, thermal, 126
Conformable matrices, 170
Conic section, 87
Conjugate metric tensor, 171, 188, 189
Conjugate tensors, 171
Conservation of energy, 94
Conservative field, 73, 83, 90, 91, 93
motion of particle in, 93, 94
necessary and sufficient condition for, 90, 91
Continuity, 36, 37
equation of, 67, 126, 212
Contraction, 169, 181, 182
Contravariant components, 136, 156, 157, 167, 168
of a tensor, 157, 167, 168
of a vector, 136, 156, 157, 167
Contravariant tensor, of first rank, 157, 167
of second and higher rank, 168
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Contravariant vector, (see Contravariant compo-
nents of a vector)
Coordinate curves or lines, 135
Coordinates, curvilinear, (see Curvilinear coordi-
nates)
Coordinate surfaces, 135
Coordinate transformations, 58, 59, 76, 135, 166
Coplanar vectors, 3
necessary and sufficient condition for, 27
non-, 7, 8
Coriolis acceleration, 53
Cosines, direction, 11, 58
law of, for plane triangles, 20
law of, for spherical triangles, 33
Counterclockwise direction, 89
Covariant components, 136, 157, 158, 167
of a tensor, 167, 168
of a vector, 136, 157, 158, 167
Covariant curvature tensor, 207
Covariant derivative, 173, 197-199, 211
Covariant tensor, of first rank, 158
Covariant vector, (see Covariant components of a
vector)
Cross-cut, 113
Cross product, 16, 17, 22-26
commutative law failure for, 16
determinant form for, 17, 23
distributive law for, 16, 22, 23
Cubic, twisted, 55
Curl, 51, 58, 67-72
in cylindrical coordinates, 153, 154
in orthogonal curvilinear coordinates, 137, 150
in parabolic cylindrical coordinates, 161
in spherical coordinates, 154
integral definition of, 123, 152, 153
invariance of, 81
of the gradient, 58, 69, 211
physical significance of, 72, 131
tensor form of, 174, 200
Current density, 126
Curvature, 38, 45, 47, 113
radius of, 38, 45, 46, 50
Riemann-Christoffel, 206
tensor, 207
Curve, space, (see Space curves)
Curvilinear coordinates, 135-165
acceleration in, 143, 204, 205, 212
arc length in, 56, 136, 148
definition of, 135
general, 148, 156-159
orthogonal, 49, 135
surface, 48, 49, 56, 155
volume elements in, 136, 137, 159
Cycloid, 132
Cylindrical coordinates, 137, 138, 141, 142, 160, 161
arc length in, 143 '
Christoffel’s symbols in, 195, 211
conjugate metric tensor in, 189

Cylindrical coordinates,
continuity equation in, 212
curl in, 153, 154
divergence in, 153, 200, 201
elliptic, (see Elliptic cylindrical coordinates’
geodesics in, 211
gradient in, 153, 154
Jacobian in, 161
Laplacian in, 153, 154, 201
metric tensor in, 187
parabolic, (see Parabolic cylindrical coordinates)
velocity and acceleration in, 143, 204, 205
volume element in, 144, 145

V, (see Del)
, (see Laplacian operator)
Del V), 51,58, (see also Gradient, Divergence and
Curl)
formulas involving, 58
integral operator form for, 107, 123
invariance of, 81
Delta, Kronecker, 168, 179, 180, (see also Kron-
ecker’s symbol)
Density, 126
charge, 126
current, 126
tensor, 175, 203
Dependence, linear, 10,15
Derivative, absolute, 174
covariant, 173, 197-199, 211
directional, 57, 61-63
intrinsic, 174, 202, 211
Derivatives, of vectors, 35-56
ordinary, 35, 36, 39-43
partial, 36, 37, 44, 45
Descartes, folium of, 132
Determinant, cofactor of, 171, 187, 188
cross product expressed as, 17, 23
curl expressed as, 57, 58
differentiation of, 41
Jacobian, (see Jacobian)
of a matrix, 170, 209
scalar triple product expressed as, 17, 26, 27
Determinants, multiplication of, 159
Dextral system, 3
Diagonal of a square matrix, 169
Difference, of matrices, 170
of tensors, 169
of vectors, 2
Differentiable, scalar field, 57
vector field, 57
Differentiability, 36, 37
Differential equations, 54, 104
Differential geometry, 37, 38, 45-50, 54-56, 166, 212-13
Differentials, 37
exact, (see Exact differentials)
Differentiation of vectors, 35-56
formulas for, 36, 37, 40, 41
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Differentiation of vectors,
order of, 37, 69
ordinary, 35, 36
partial, 36, 37
Diffusivity, 127
Directional derivative, 57, 61-63
Direction cosines, 11, 58
Distance between two points, 11
Distributive law, 2
for cross products, 16, 22, 23
for dot products, 16, 18
for dyadics, 74
for matrices, 170
Div, (see Divergence)
Divergence, 57, 64-67
in curvilinear coordinates, 137, 150
in cylindrical coordinates, 153, 200, 201
in parabolic cylindrical coordinates, 161
in spherical coordinates, 161, 200, 201
invariance of, 81
of the curl, 58, 69, 70, 211
of the gradient, 58, 64
physical significance of, 66, 67, 119, 120
tensor form of, 174, 200, 201
theorem, (see Divergence theorem)
Divergence theorem, 106, 110, 111, 115-127
expressed in words, 115
Green’s theorem as a special case of, 106, 110, 111
physical significance of, 116, 117
proof of, 117, 118
rectangular form of, 116
tensor form of, 206
Dot product, 16, 18-21
commutative law for, 16, 18
distributive law for, 16, 18
Dummy index, 167
Dyad, 73
Dyadic, 73-75, 81
Dynamics, 38, (see also Mechanics)
Lagrange’s equations in, 196, 205
Newion’s law in, (see Newton’s law)

Eccentricity, 87
Eigenvalues, 210
Einstein, theory of relativity of, 148, 207, 213
Electromagnetic theory, 54, 72, 206
Element, line, 170, 187-189
volume, 136, 137, 159
Elements, of a matrix, 169
Ellipse, 63, 139
area of, 112
motion of planet in, 86, 87
Ellipsoidal coordinates, 140, 160
Elliptic cylindrical coordinates, 139, 155, 160, 161,
211
Energy, 94
conservation of, 94
kinetic, 94, 204
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Energy,
potential, 94
Equality, of matrices, 170
of vectors, 1
Equilibrant, 6
Euclidean spaces, 170
N dimensional, 171
Euler’s equations, 196
Exact differentials, 83, 93, 111
necessary and sufficient condition for, 93
Extremum, 196

Fictitious forces, 53
Field, (see Scalar and Vector field)
conservative, (see Conservative field)
irrotational, 72, 73, 90
sink, 13, (see also Sink)
solenoidal, 67, 73, 120, 126
source, 13, (see also Source)
tensors, 168
vortex, 72
Fixed and moving systems, observers in, 51-53
Fluid mechanics, 82
Fluid motion, 66, 67, 72, 116, 117, 125, 126
incompressible, 67, 126
Flux, 83, 120
Force, central, 56, 85
Coriolis, 53
moment of, 25, 26, 50
on a particle, 203, 205
repulsive, 85
universal gravitational, 86
Forces, fictitious, 53
real, 53
resultant of, 11
Frames of reference, 58, 166
Free index, 167
Frenet-Serret formulas, 38, 45, 213
Fundamental quadratic form, 148
Fundamental tensor, 171

Gauss’ divergence theorem, (see Divergence theorem)
Gauss’ law, 134
Gauss’ theorem, 124, 125
Geodesics, 172, 173, 196, 197, 211
Geometry, differential, (see Differential geometry)
Grad, (see Gradient)
Gradient, 57, 58, 59-63, 177
in cylindrical coordinates, 153, 154
in orthogonal curvilinear coordinates, 137, 148, 149
in parabolic cylindrical coordinates, 161, 211
in spherical coordinates, 161
integral definition of, 122, 123
invariance of, 77
of a vector, 73
tensor form of, 174, 200
Graphical, addition of vectors, 4
representation of a vector, 1
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Gravitation, Newton’s universal law of, 86
Green’s, first identity or theorem, 107, 121

second identity or symmetrical theorem, 107, 121

theorem in space, (see Divergence theorem)
Green’s theorem in the plane, 106, 108-115

as special case of Stokes’ theorem, 106, 110

as special case of the divergence theorem, 106,

110, 111
for multiply-connected regions, 112-114
for simply-connected regions, 108-110

Hamilton-Cayley theorem, 210
Hamilton’s principle, 205
Heat, 126, 127
specific, 126
Heat equation, 126, 127, 161
in elliptic cylindrical coordinates, 155
in spherical coordinates, 161
Heat flow, steady-state, 127
Helix, circular, 45
Hyperbola, 87
Hyperplane, 176
Hypersphere, 176
Hypersurface, 176
Hypocycloid, 132

Independence, of origin, 9
of path of integration, 83, 89, 90, 111, 114, 129, 130
Independent, linearly, 10, 15
Index, dummy or umbral, 167
free, 167
Inertial systems, 53
Initial point of a vector, 1
Inner multiplication, 169, 182
Inner product, 169, 182
Integral operator form for V. 107, 123
Integrals, of vectors, 82-105
definite, 82
indefinite, 82
line, (see Line integrals)
ordinary, 82
surface, (see Surface integrals)
theorems on, (see Integral theorems)
volume, (see Volume integrals)
Integral theorems, 107, 120, 121, 124, 125, 130,
(see also Stokes’ theorem and Divergence theorem)
Integration, (see Integrals, of vectors)
Intrinsic derivative, 174, 202, 211
Invariance, 58, 59, 76, 77, 81, (see also Invariant)
Invariant, 59, 168, 190, (see also Invariance)
Inverse of a matrix, 170
Irrotational field, 72, 73, 90

Jacobian, 79, 133, 146, 147, 148, 159, 161, 162, 175, 202-3
Kepler’s laws, 86, 87, 102

Kinematics, 38, (see also Dynamics and Mechanics)
Kinetic energy, 94, 204
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Kronecker delta, 168, 179, 180
Kronecker’s symbol, 77, 208

Lagrangean, 205

Lagrange’s equations, 196, 205

Laplace’s equation, 65, 127, 134
in parabolic cylindrical coordinates, 154, 155

Laplace transforms, 162

Laplacian operator (VQ) , 58, 64, 81, 200
in curvilinear coordinates, 137, 150, 151
in cylindrical coordinates, 153, 154, 201
in parabolic cylindrical coordinates, 154, 155, 211
in spherical coordinates; 154, 201
invariance of, 81
tensor form of, 174, 200

Laws of vector algebra, 2, 18

Lemniscate, 132

Length, of a vector, 171, 172, 190

Light rays, 63

Light, velocity of, 81

Linearly dependent vectors, 10, 15

Line element, 170, 187-189

Line, equation of, 9, 12
parametric equations of, 12
sink, 13
source, 13
symmetric form for equation of, 9

Line integrals, 82, 87-94, 111
circulation in terms of, 82, 131
evaluation of, 87-89, 111
Green’s theorem and evaluation of, 112
independence of path, 83, 89,90, 111, 114, 129, 130
work expressed in terms of, 82, 88

Lorentz-F'itzgerald contraction, 213

Lorentz transformation, 213

Magnitude, of a vector, 1
Main diagonal, 169
Mapping, 162
Matrices, 169, 170, 185, 186, (see also Matrix)
addition of, 170
conformable, 170
equality of, 170
operations with, 170
Matrix, 73, 169, (see also Matrices)
algebra, 170
column, 169
determinant of, 170, 209
elements of, 169
inverse of, 170, 209, 210
main or principal diagonal of, 169
null, 169
order of, 169
principal diagonal of, 169
row, 169
singular, 170
square, 169
transpose of, 170, 210
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Maxwell’s equations, 72, 81
in tensor form, 206
Mechanics, 38, 56, (see also Dynamics)
fluid, 82
Metric coefficients, 148
Metric form, 148
Metric tensor, 170, 171, 187-189
Mixed tensor, 167, 168
Moebius strip, 99
Moment of force, 25, 26, 50
Momentum, 38
angular, 50, 51, 56
Motion, absolute, 53
Motion, of fluid, (see Fluid motion)
of planets, 85-87
Moving and fixed systems, observers in, 51-53
Moving trihedral, 38
Multiplication, (see Product)
Multiply-connected region, 110, 112-114

Nabla, (see Del)
Negative direction, 89
Newton’s law, 38, 50, 53
in tensor form, 203
of universal gravitation, 86
Normal plane, 38, 48
Normal, principal, 38, 45, 47, 48, 50
bi-, 38, 45, 47, 48
Normal, to a surface, 49, 50, 56, 61
positive or outward drawn, 49, 83
Null matrix, 169
Null vector, 2

Oblate spheroidal coordinates, 140, 145, 160, 161
Operations, with tensors, 169, 179-184
Operator, del, 57, (see also Del)
Laplacian, (see Laplacian operator)
time derivative, in fixed and moving systems,
51, 52
Order, of a matrix, 169
of a tensor, 167
Orientable surface, 99
Origin, of a vector, 1
independence of vector equation on, 9
Orthocenter, 33
Orthogonal coordinates, special, 137-141
bipolar, 140, 160
cylindrical, 137, 138, (see Cylindrical coordinates)
ellipsoidal, 140, 160
elliptic cylindrical, 139, 155, 160, 161, 211
oblate spheroidal, 140, 145, 160, 161
parabolic cylindrical, 138, (see also Parabolic
cylindrical coordinates)
paraboloidal, 139, 160, 161, 211
prolate spheroidal, 139, 160, 161
spherical, 137, 138, (see Spherical coordinates)
toroidal, 141

Orthogonal curvilinear coordinate systems, 49, 135,
191
special, 137-141
Orthogonal transformation, 59
Osculating plane, 38, 48
Outer multiplication, 169
Outer product, 169
Outward drawn normal, 49, 83

Parabola, 87, 138
Parabolic cylindrical coordinates, 138, 144, 145, 154
155, 160, 161, 211
arc length in, 144
Christoffel’s symbols in, 211
curl in, 161
divergence in, 161
gradient in, 161, 211
Jacobian in, 161
Laplacian in, 154, 155, 211
Schroedinger’s equation in, 161
volume element in, 145
Paraboloidal coordinates, 139, 160, 161, 211
Parallelogram, area of, 17, 24
Parallelogram law of vector addition, 2, 4
Parametric equations, of a curve, 39, 40
of a line, 12
of a surface, 48, 49
Periods, of planets, 102
Permutation symbols and tensors, 173, 174, 211
Physical components, 172, 200, 201, 205, 211
Plane, distance from origin to, 21
equation of, 15, 21, 28
normal, 38, 48
osculating, 38, 48
rectifying, 38, 48
tangent, 49, 50, 61
vector perpendicular to, 28
vectors in a, (see Coplanar vectors)
Planets, motion of, 85-87
Point function, scalar and vector, 3
Poisson’s equation, 134
Polar coordinates, 98
Position vector, 3
Positive direction, 89, 106, 113
Positive normal, 83
Potential energy, 94
Potential, scalar, 73, 81, 83, 91, 92
vector, 81
Principal diagonal, 169
Principal normal, 38, 45, 47, 48, 50
Product, box, 17
cross, (see Cross product)
dot, (see Dot product)
inner, 169, 182
of a vector by a scalar, 2
of determinants, 159
of matrices, 170



Product,
of tensors, 169
outer, 169, 181
scalar, 182, (see also Dot product)
vector, (see Cross product)
Projectile, 102
Projection, of a vector, 18, 20
of surfaces, 95, 96
Prolate spheroidal coordinates, 139, 160, 161
Proper vector, 2
Pythagorean theorem, 10

Quadratic form, fundamental, 148
Quantum mechanics, 161
Quotient law, 169, 184

Radius, of curvature, 38, 45, 46, 50
of torsion, 38, 45

Radius vector, 3

Rank, of a tensor, 167

Rank zero tensor, 168

Real forces, 53

Reciprocal sets or systems of vectors, 17, 30, 31

34, 136, 147

Reciprocal tensors, 171

Rectangular component vectors, 3

Rectangular coordinate systems, 2

Rectifying plane, 38, 48

Region, multiply-connected, 110, 112-114
simply-connected, 110, 113, 114

Relative acceleration, 53

Relative tensor, 175, 202, 203, 212

Relative velocity, 52

Relativity, theory of, 148, 207, 213

Resultant of vectors, 2, 4, 5, 6, 10

Riemann-Christoffel tensor, 207, 212

Riemannian space, 171, 172
geodesics in, 172, 196, 197

Right-handed coordinate systems, 2, 3
localized, 38

Rigid body, motion of, 59
velocity of, 26, 33

Rot, (see Curl)

Rotating coordinate systems, 51, 52

Rotation, invariance under, (see Invariance)
of axes, 58, 76, 77
pure, 59

Row matrix or vector, 169

Scalar, 1, 4, 168
field, 3, 12, 168
function of position, 3
point function, 3
potential, 73, 81, 83, 91, 92
product, 182, (see also Dot product)
triple products, (see Triple products)
variable, 35
Scale factors, 135
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Schroedinger’s equation, 161
Simple closed curve, 82, 106
area bounded by, 111
Simply-connected region, 110, 113, 114
Sines, law of, for plane triangles, 25
for spherical triangles, 29, 30
Singular matrix, 170
Singular points, 141
Sink, 13, 67, 120
Sink field, 13, (see also Sink)
Solenoidal field, 67, 73, 120, 126
Solid angle, 124, 125
Sound rays, 63
Source, 13, 67, 120
Source field, 13, (see also Source)
Space curves, 35
acceleration along, 35, 39, 40, 50, 56
arc length of, 37, 56, 136, 148
binormal of, 38, 45, 47, 48
curvature of, 38, 45, 47, 113
principal normal of, 38, 45, 47, 48, 50
radius of curvature of, 38, 45, 46, 50
radius of torsion of, 38, 45
tangent to, 37, 38, 40, 45, 47, 48, 50
Space integrals, (see Volume integrals)
Spaces, Euclidean, 170
Riemannian, 171
Space, N dimensional, 166
Special theory of relativity, 213
Speed, 4
angular, 26, 43, 52
Spherical coordinates, 137, 138, 141, 147, 160, 161
arc length in, 144
Christoffel’s symbols in, 195, 211
conjugate metric tensor in, 189
continuity equation in, 212
covariant components in, 177, 178
curl in, 154
divergence in, 161, 200, 201
geodesics in, 211
gradient in, 161
heat equation in, 161
Jacobian in, 161
Laplacian in, 154, 201
metric tensor in, 187
velocity and acceleration in, 160, 212
volume element in, 144, 145
Spheroidal coordinates, oblate, 140, 145, 160, 161
prolate, 139, 160, 161
Stationary scalar field, 3
Stationary-state, (see Steady-state)
Steady-state, heat flow, 127
scalar field, 3
vector field, 3
Stokes’ theorem, 106, 110, 127-131
Green’s theorem as special case of, 110
proof of, 127-129
tensor form of, 212
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Subtraction, of tensors, 169
of vectors, 2
Summation convention, 167, 175, 176, 207
Superscripts, 166
Surface, area of, 104, 105, 162
Surface curvilinear coordinates, 48, 49, 56, 155
arc length in, 56, 148
Surface integrals, 83, 94-99
defined as limit of a sum, 94, 95
evaluation of, 83
Surfaces, 37
angle between, 63
arc length on, 56
coordinate, 135
one-sided, 99
orientable, 99
outward drawn normal to, 83
two-sided, 83
Symmetric form, of equation of a line, 9

Tangent, to space curve, 37, 38, 40, 45, 47, 48, 50
Tangent plane, 49, 50, 61
Tensor analysis, 73, 137, 158, 166-217
Tensor, absolute, 175
associated, 171, 190, 191, 210
Cartesian, 210
conjugate, 171
contravariant, (see Contravariant components)
covariant, (see Covariant components)
curvature, 207
density, 175, 203
field, 168
fundamental, 171
metric, 170
mixed, 167, 168
order of, 167
rank of, 167
reciprocal, 171
relative, 175, 202, 203, 212
skew-symmetric, 168, 169
symmetric, 168
Tensors, fundamental operations with, 169, 179-184
Terminal point or Terminus, 1, 2, 5,11
Thermal conductivity, 126
Toroidal coordinates, 141
Torque, 50, 51
Torsion, 38, 45, 47, 213
radius of, 38, 45
Transformation, affine, 59, 210, 213
of coordinates, 58, 59, 76, 135, 166
orthogonal, 59
Translation, 59
Transpose, of a matrix, 170, 210
Triad, 38
Triadic, 73
Triangle, area of, 24, 25
Triangle law of vector addition, 4
Trihedral, moving, 38

Triple products, 17, 26-31
Twisted cubic, 55

Umbral index, 167
Unit dyads, 73
Unit matrix, 169
Unit vectors, 2, 11
rectangular, 2, 3

Variable, 35, 36
Vector, area, 25, 83
column, 169
equations, 2, 9
field, 3, 12, 13, 168
function of position, 3
magnitude of a, 1, 10
null, 2
operator V. (see Del)
point function, 3
position, 3
potential, 81
product, (see Cross product)
radius, 3
row, 169
time derivative of a, 51, 52
triple product, (see Triple products)
Vectors, 1, 4
addition of, 2, 4
algebra of, 1, 2
analytical representation of, 1
angle between, 19, 172, 190
base, 7, 8, 136
collinear, (see Collinear vectors)
component, 3, 7, 8
contravariant components of, 136, 156, 157, 167
coplanar, (see Coplanar vectors)
covariant components of, 136, 157, 158, 167
differentiation of, 35-56
equality of, 1
graphical representation of, 1, 4
initial point of, 1
origin of, 1
reciprocal, 17
resultant of, 2, 4, 5, 6, 10
terminal point of, 1
terminus of, 1
unit, 2
unitary, 136
Velocity, along a space curve, 35, 39, 40
angular, 26, 43, 52
areal, 85, 86
linear, 26
of a fluid, 179
of a particle, 42, 52, 203, 204
of light, 81
relative to fixed and moving observers, 52, 53
Volume, elements of, 136, 137, 159
in curvilinear coordinates, 136, 137
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Volume, Wave equation, 72

in general coordinates, 159 Weight, of a tensor, 175

of parallelepiped, 17, 26 Work, 21, 82, 88, 89, 90, 91
Volume integrals, 83, 99-101 as a line integral, 88, 89, 90, 91

defined as limit of a sum, 99, 100
Vortex field, 72 Zero vector, 2
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