

The Unified
Modeling Language

Reference Manual

The Unified
Modeling Language

Reference Manual

James Rumbaug h
Ivar Jacobson

Grady Booch

ADDISON-WESLEY

An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts • Harlow, England • Menlo Park, California
Berkeley, California • Don Mills, Ontario • Sydney

Bonn • Amsterdam • Tokyo • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Unified Modeling Language, UML, and the UML cube logo are trademarks of the Object Management
Group. Some material in this book is derived from the Object Management Group UML Specification
documentation. Used by permission of the Object Management Group.

The authors and publisher have taken care in the preparation of this book but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information, please contact:

AWL Direct Sales
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867
(781) 944-3700

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

Rumbaugh, James.
The unified modeling language reference manual / James Rumbaugh, Ivar Jacobson, Grady Booch.

p. cm. — (The Addison-Wesley object technology series)
Includes bibliographical references and index.
ISBN 0-201-30998-X
1. Computer software—Development. 2. UML (Computer science) I. Jacobson, Ivar. II. Booch, Grady.

III. Title. IV. Series.
QA76.76.D47R86 1999
005.1—dc21 98-33392

CIP

Copyright © 1999 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

Executive Editor: J. Carter Shanklin Project Editor: Krysia Bebick
Editorial Assistant: Kristin Erickson Production Manager: Jacquelyn Young
Copy Editor: Arlene Richman Compositor: James Rumbaugh
Cover Designer: Simone R. Payment

ISBN 0-201-30998-X
Text printed on recycled and acid-free paper.
1 2 3 4 5 6 7 8 9 10 – MA – 03 02 01 00 99 98

First printing, December 1998

For Madeline, Nick and Alex

—Jim

Contents

Preface . xi
Goals . xi
Outline of the Book . xii
Encyclopedia Article Formatting Conventions .xiii
Syntax Conventions . xiv
CD . xv
For More Information . xv
Acknowledgments . xvi

Part 1: Background
Chapter 1: UML Overview . 3

Brief Summary of UML. 3
UML History . 4
Goals of UML . 8
UML Concept Areas . 9
Syntax of Expressions and Diagrams . 11

Chapter 2: The Nature and Purpose of Models . 13
What Is a Model?. 13
What Are Models For?. 13
Levels of Models . 15
What Is in a Model? . 17
What Does a Model Mean? . 19
vii

viii Contents

Part 2: UML Concepts
Chapter 3: UML Walkthrough . 23

UML Views .23
Static View. .25
Use Case View .26
Interaction View .27
State Machine View .30
Activity View .31
Physical Views .32
Model Management View. .36
Extensibility Constructs .37
Connections Among Views .38

Chapter 4: Static View . 41
Overview .41
Classifiers. .42
Relationships .45
Associations .47
Generalization. .51
Realization. .54
Dependencies .56
Constraint .58
Instances .59

Chapter 5: Use Case View . 63
Overview .63
Actor .63
Use Case .64

Chapter 6: State Machine View . 67
Overview .67
State Machine .67
Event .68
State .70
Transition .71
Composite States .75

Chapter 7: Activity View . 81
Overview .81
Activity Diagram. .81
Activities and Other Views .84

Contents ix

Chapter 8: Interaction View . 85
Overview . 85
Collaboration . 85
Interaction . 86
Sequence Diagram . 87
Activation. 88
Collaboration Diagram . 89
Patterns . 91

Chapter 9: Physical Views . 93
Overview . 93
Component . 93
Node . 94

Chapter 10: Model Management View. 97
Overview . 97
Package. 97
Dependencies on Packages. 98
Access and Import Dependency . 98
Model and Subsystem . 100

Chapter 11: Extension Mechanisms . 101
Overview . 101
Constraint . 101
Tagged Value . 102
Stereotypes . 103
Tailoring UML . 104

Chapter 12: UML Environment . 105
Overview . 105
Semantics Responsibilities . 105
Notation Responsibilities. 106
Programming Language Responsibilities . 107
Modeling with Tools . 108

Part 3: Reference
Chapter 13: Encyclopedia of Terms . 113

Chapter 14: Standard Elements . 499

x Contents

Part 4: Appendices
Appendix A: UML Metamodel . 515

UML Definition Documents. .515
Metamodel Structure .515
Foundation Package .516
Behavioral Elements Package .516
Model Management Package .517

Appendix B: Notation Summary . 519

Appendix C: Process Extensions . 531
Tailoring the UML .531
Software Development Process Extensions .531
Business Modeling Extensions. .534

Bibliography . 537

Index . 539

Preface

Goals

This book is intended to be a complete and useful reference to the Unified Model-
ing Language (UML) for the developer, architect, project manager, system engi-
neer, programmer, analyst, contracting officer, customer, and anyone else who
needs to specify, design, build, or understand complex software systems. It pro-
vides a full reference to the concepts and constructs of UML, including their se-
mantics, syntax, notation, and purpose. It is organized to be a convenient but
thorough reference for the working professional developer. It also attempts to pro-
vide additional detail about issues that may not be clear from the standards docu-
ments and to provide a rationale for many decisions that went into the UML.

This book is not intended as a guide to the UML standards documents or to the
internal structure of the metamodel contained in them. The details of the meta-
model are of interest to methodologists and UML tool builders, but most other
developers have little need for the arcane details of the Object Management Group
(OMG) documents. This book provides all the details of UML that most develop-
ers need; in many cases, it makes information explicit that must otherwise be
sought between the lines of the original documents. For those who do wish to
consult the source documents, they are included on the accompanying CD.

This book is intended as a reference for those who already have some under-
standing of object-oriented technology. For beginners, the original books by us
and by other authors are listed in the bibliography; although some of the notation
has changed, books such as [Rumbaugh-91], [Booch-94], [Jacobson-92], and
[Meyer-88] provide an introduction to object-oriented concepts that is still valid
and therefore unnecessary to duplicate here. For a tutorial introduction to UML
that shows how to model a number of common problems, see The Unified Model-
ing Language User Guide [Booch-99]. Those who already know an object-oriented
method, such as OMT, Booch, Objectory, Coad-Yourdon, or Fusion, should be
able to read the Reference Manual and use it to understand UML notation and
xi

xii Preface

semantics; to learn UML quickly, they may nevertheless find it useful to read the
User Guide.

UML does not require a particular development process, and this book does not
describe one. Although UML may be used with a variety of development
processes, it was designed to support an iterative, incremental, use-case–driven
process with a strong architectural focus—the kind we feel is most suitable for the
development of modern, complex systems. The Unified Software Development Pro-
cess [Jacobson-99] describes the kind of process we believe complements the UML
and best supports software development.

Outline of the Book

The UML Reference Manual is organized into three parts: an overview of UML his-
tory and of modeling, a survey of UML concepts, and an alphabetical encyclopedia
of UML terms and concepts.

The first part is a survey of UML—its history, purposes, and uses—to help you
understand the origin of UML and the need it tries to fill.

The second part is a brief survey of UML views so that you can put all the con-
cepts into perspective. The survey provides a brief overview of the views UML sup-
ports and shows how the various constructs work together. This part begins with
an example that walks through various UML views and then contains one chapter
for each kind of UML view. This survey is not intended as a full tutorial or as a
comprehensive description of concepts. It serves mainly to summarize and relate
the various UML concepts and provides starting points for detailed readings in the
encyclopedia.

The third part contains the reference material organized for easy access to each
topic. The bulk of the book is an alphabetical encyclopedia of all of the concepts
and constructs in UML. Each UML term of any importance has its own entry in
the encyclopedia. The encyclopedia is meant to be complete; therefore, everything
in the concept overview in Part 2 is repeated in more detail in the encyclopedia.
The same or similar information has sometimes been included in multiple ency-
clopedia articles so that the reader can conveniently find it.

The reference part also contains an alphabetic list of UML standard elements. A
standard element is a feature predefined using the UML extensibility mechanisms.
The standard elements are extensions that are felt to be widely useful.

Appendices show the UML metamodel, a summary of UML notation, and some
standard sets of extensions for particular domains. There is a brief bibliography of
major object-oriented books, but no attempt has been made to include a compre-
hensive citation of sources of ideas for UML or other approaches. Many of the
books in the bibliography contain excellent lists of references to books and journal
articles for those interested in tracking the development of the ideas.

Preface xiii

Encyclopedia Article Formatting Conventions

The encyclopedia part of the book is organized as an alphabetical list of entries,
each describing one concept in some detail. The articles represent a flat list of
UML concepts at various conceptual levels. A high-level concept typically contains
a summary of its subordinate concepts, each of which is fully described in a sepa-
rate article. The articles are highly cross-referenced. This flat encyclopedia organi-
zation permits the description of each concept to be presented at a fairly uniform
level of detail, without constant shifts in level for the nested descriptions that
would be necessary for a sequential presentation. The hypertext format of the doc-
ument should also make it convenient for reference. It should not be necessary to
use the index much; instead go directly to the main article in the encyclopedia for
any term of interest and follow cross-references. This format is not necessarily
ideal for learning the language; beginners are advised to read the overview descrip-
tion of UML found in Part 2 or to read introductory books on UML, such as the
UML User Guide [Booch-99].

Encyclopedic articles have the following divisions, although not all divisions ap-
pear in all articles.

Brief definition

The name of the concept appears in boldface, set to the left of the body of the arti-
cle. A brief definition follows in normal type. This definition is intended to cap-
ture the main idea of the concept, but it may simplify the concept for concise
presentation. Refer to the main article for precise semantics.

Semantics

This section contains a detailed description of the meaning of the concept, includ-
ing constraints on its uses and its execution consequences. Notation is not covered
in this section, although examples use the appropriate notation. General semantics
are given first. For concepts with subordinate structural properties, a list of the
properties follows the general semantics, often under the subheading Structure. In
most cases, the properties appear as a table in alphabetical order by property
name, with the description of each property on the right. If a property has a brief
enumerated list of choices, they may be given as an indented sublist. In more com-
plicated cases, the property is given its own article to avoid excessive nesting.
When properties require more explanation than permitted by a table, they are de-
scribed in normal text with run-in headers in boldface italics. In certain cases, the
main concept is best described under several logical subdivisions rather than one
list. In such cases, additional sections follow or replace the Structure subsection.
Although several organizational mechanisms have been used, their structure
should be obvious to the reader.

xiv Preface

Notation

This section contains a detailed description of the notation for the concept. Usu-
ally, the notation section has a form that parallels the preceding semantics section,
which it references, and it often has the same divisions. The notation section usu-
ally includes one or more diagrams to illustrate the concept. The actual notation is
printed in black ink. To help the reader understand the notation, many diagrams
contain annotations in blue ink. Any material in blue is commentary and is not
part of the actual notation.

Example

This subsection contains examples of notation or illustrations of the use of the
concept. Frequently, the examples also treat complicated or potentially confusing
situations.

Discussion

This section describes subtle issues, clarifies tricky and frequently confused points,
and contains other details that would otherwise digress from the more descriptive
semantics section. A minority of articles have a discussion section.

This section also explains certain design decisions that were made in the devel-
opment of the UML, particularly those that may appear counterintuitive or that
have provoked strong controversy. Only a fraction of articles have this section.
Simple differences in taste are generally not covered.

Standard elements

This section lists standard constraints, tags, stereotypes, and other conventions
that are predefined for the concept in the article. This section is fairly rare.

Syntax Conventions

Syntax expressions. Syntax expressions are given in a modified BNF format in a
sans serif font. To avoid confusing literal values and syntax productions, literal val-
ues that appear in the target sentence are printed in black ink, and the names of
syntax variables and special syntax operators are printed in blue ink.

Text printed in black ink appears in that form in the target string.
Punctuation marks (they are always printed in black) appear in the target string.
Any word printed in blue ink represents a variable that must be replaced by an-

other string or another syntax production in the target string. Words may contain
letters and hyphens. If a blue word is italicized or underlined, the actual replace-
ment string must be italicized or underlined.

Preface xv

In code examples, comments are printed in blue ink to the right of the code text.
Subscripts and overbars are used as syntax operators as follows:

expressionopt The expression is optional.

expressionlist, A comma-separated list of the expression may appear. If
there is zero or one repetition, there is no separator. Each
repetition may have a separate substitution. If a different
punctuation mark than a comma appears in the sub-
script, then it is the separator.

= expressionopt An overbar ties together two or more terms that are con-
sidered a unit for optional or repeated occurrences. In
this example, the equal sign and the expression form one
unit that may be omitted or included. The overbar is
unnecessary if there is only one term.

Two-level nesting is avoided.

Literal strings. In running text, language keywords, names of model elements, and
sample strings from models are shown in a sans serif font.

Diagrams. In diagrams, blue text and arrows are annotations, that is, explanations
of the diagram notation that do not appear in an actual diagram. Any text and
symbols in black ink are actual diagram notation.

CD

This book is accompanied by a CD containing the full text of the book in Adobe
Reader (PDF) format. Using Adobe Reader, the viewer can easily search the book
for a word or phrase. The CD version also contains a clickable table of contents, in-
dex, Adobe Reader thumbnails, and extensive hot links in the body of the articles.
Simply click on one of the links to jump to the encyclopedia article for the word or
phrase.

The CD also contains the full text of the OMG UML specifications, included by
the permission of the Object Management Group.

We feel that this CD will be a useful on-line reference to UML for advanced
users.

For More Information

Additional source files and up-to-date information on further work on UML and
related topics can be found on the World Wide Web sites www.rational.com and
www.omg.org.

xvi Preface

Acknowledgments

We want to thank many people who made the UML possible. First, we must thank
Rational Software Corporation, especially Mike Devlin and Paul Levy, who had the
vision to bring us together, start the unification work, and stay the course during
the four years that were required to bring the work to successful completion. We
also thank the Object Management Group for providing the framework that
brought together many diverse viewpoints and merged them together into a broad
consensus that was much greater than any one contribution.

We particularly want to thank Cris Kobryn, who led the technical team that pre-
pared the UML standard and who managed to achieve a consensus among an ex-
tremely strong-willed group of persons (and the three of us were not the least of
his problems). His diplomatic skills and technical balance kept the UML effort
from foundering amid many differences of opinion. Cris also reviewed the book
and provided countless useful suggestions.

We would like to thank Gunnar Övergaard for reviewing the book thoroughly,
as well as for his perseverance in completing many sections of the UML docu-
ments that were not fun to write but were necessary to its formal correctness.

We want to thank Karin Palmkvist for an exceedingly thorough review that un-
covered many bugs in technical content, as well as many flaws in grammar, phras-
ing, and presentation.

We would also like to thank Mike Blaha, Conrad Bock, Perry Cole, Bruce Doug-
lass, Martin Fowler, Eran Gery, Pete McBreen, Guus Ramackers, Tom Schultz, Ed
Seidewitz, and Bran Selic for their helpful reviews.

Most of all, we want to thank the scores or even hundreds of persons who con-
tributed to the community of ideas from which UML was drawn—ideas in object-
oriented technology, software methodology, programming languages, user inter-
faces, visual programming, and numerous other areas of computer science. It is
impossible to list them all, or indeed to track even the major chains of influence,
without a major scholarly effort, and this is an engineering book, not a historical
review. Many are well known, but many good ideas came from those who did not
have the good fortune to be widely recognized.

On a more personal note, I wish to thank Professor Jack Dennis, who inspired
my work in modeling and the work of many other students, more than twenty-five
years ago. The ideas from his Computations Structures Group at MIT have borne
much fruit, and they are not the least of the sources of UML. I must also thank
Mary Loomis and Ashwin Shah, with whom I developed the original ideas of
OMT, and my former colleagues at GE R&D Center, Mike Blaha, Bill Premerlani,
Fred Eddy, and Bill Lorensen, with whom I wrote the OMT book.

Preface xvii

Finally, without the patience of my wife, Madeline, and my sons, Nick and Alex,
there would have been no UML and no book about it.

James Rumbaugh
Cupertino, California
November 1998

Part 1: Background

This part describes general principles underlying UML, including the nature
and purpose of modeling and those aspects of the UML that pervade all functional
areas.
1

1
UML Overview

This chapter is a quick overview of UML and what it is good for.

Brief Summary of UML

The Unified Modeling Language (UML) is a general-purpose visual modeling lan-
guage that is used to specify, visualize, construct, and document the artifacts of a
software system. It captures decisions and understanding about systems that must
be constructed. It is used to understand, design, browse, configure, maintain, and
control information about such systems. It is intended for use with all develop-
ment methods, lifecycle stages, application domains, and media. The modeling
language is intended to unify past experience about modeling techniques and to
incorporate current software best practices into a standard approach. UML in-
cludes semantic concepts, notation, and guidelines. It has static, dynamic, envi-
ronmental, and organizational parts. It is intended to be supported by interactive
visual modeling tools that have code generators and report writers. The UML
specification does not define a standard process but is intended to be useful with
an iterative development process. It is intended to support most existing object-
oriented development processes.

The UML captures information about the static structure and dynamic behav-
ior of a system. A system is modeled as a collection of discrete objects that interact
to perform work that ultimately benefits an outside user. The static structure de-
fines the kinds of objects important to a system and to its implementation, as well
as the relationships among the objects. The dynamic behavior defines the history
of objects over time and the communications among objects to accomplish goals.
Modeling a system from several separate but related viewpoints permits it to be
understood for different purposes.

The UML also contains organizational constructs for arranging models into
packages that permit software teams to partition large systems into workable
pieces, to understand and control dependencies among the packages, and to
3

4 Part 1 • Background

manage the versioning of model units in a complex development environment. It
contains constructs for representing implementation decisions and for organizing
run-time elements into components.

UML is not a programming language. Tools can provide code generators from
UML into a variety of programming languages, as well as construct reverse-
engineered models from existing programs. The UML is not a highly formal lan-
guage intended for theorem proving. There are a number of such languages, but
they are not easy to understand or to use for most purposes. The UML is a gen-
eral-purpose modeling language. For specialized domains, such as GUI layout,
VLSI circuit design, or rule-based artificial intelligence, a more specialized tool
with a special language might be appropriate. UML is a discrete modeling lan-
guage. It is not intended to model continuous systems such as those found in engi-
neering and physics. UML is intended to be a universal general-purpose modeling
language for discrete systems such as those made of software, firmware, or digital
logic.

UML History

UML was developed in an effort to simplify and consolidate the large number of
object-oriented development methods that had emerged.

Object-oriented development methods

Development methods for traditional programming languages, such as Cobol and
Fortran, emerged in the 1970s and became widespread in the 1980s. Foremost
among them was Structured Analysis and Structured Design [Yourdon-79] and its
variants, such as Real-Time Structured Design [Ward-85] and others. These meth-
ods, originally developed by Constantine, DeMarco, Mellor, Ward, Yourdon, and
others, achieved some penetration into the large system area, especially for
government-contracted systems in the aerospace and defense fields, in which con-
tracting officers insisted on an organized development process and ample docu-
mentation of the system design and implementation. The results were not always
as good as hoped for—many computer-aided software engineering (CASE) sys-
tems were little more than report generators that extracted designs after the imple-
mentation was complete—but the methods included good ideas that were
occasionally used effectively in the construction of large systems. Commercial
applications were more reluctant to adopt large CASE systems and development
methods. Most businesses developed software internally for their own needs,
without the adversarial relationship between customer and contractors that char-
acterized large government projects. Commercial systems were perceived to be
simpler, whether or not this was actually true, and there was less need for review
by outside organizations.

Chapter 1 • UML Overview 5

The first object-oriented language is generally acknowledged to be Simula-67,
developed in 1967. This language never had a significant following, although it
greatly influenced the developers of several of the later object-oriented languages.
The object-oriented movement became active with the widespread availability of
Smalltalk in the early 1980s, followed by other object-oriented languages, such as
Objective C, C++, Eiffel, and CLOS. The actual usage of object-oriented languages
was limited at first, but object-orientation attracted a lot of attention. About five
years after Smalltalk became widely known, the first object-oriented development
methods were published by Shlaer/Mellor [Shlaer-88] and Coad/Yourdon
[Coad-91], followed closely by books by Booch [Booch-91], Rumbaugh/Blaha/
Premerlani/Eddy/Lorensen [Rumbaugh-91], and Wirfs-Brock/Wilkerson/Wiener
[Wirfs-Brock-90] (note that copyright years often begin in July of the previous
calendar year). These books, added to earlier programming-language design
books by Goldberg/Robson [Goldberg-83], Cox [Cox-86], and Meyer [Meyer-88],
started the field of object-oriented methodology. The first phase was complete by
the end of 1990. The Objectory book [Jacobson-92] was published slightly later,
based on work that had appeared in earlier papers. This book took a somewhat
different approach, with its focus on use cases and the development process.

Over the next five years, a plethora of books on object-oriented methodology
appeared, each with its own set of concepts, definitions, notation, terminology,
and process. Some added useful new concepts, but overall there was a great simi-
larity among the concepts proposed by different authors. Many of the newer books
started from one or more of the existing methods and made extensions or minor
changes. The original authors were not idle either; most of them updated their
original work, often incorporating good ideas from other authors. In general,
there emerged a pool of common core concepts, together with a wide variety of
concepts embraced by one or two authors but not widely used. Even in the core
concepts, there were minor discrepancies among methods that made detailed
comparison somewhat treacherous, especially for the casual reader.

Unification effort

There were some early attempts to unify concepts among methods. A notable ex-
ample was Fusion by Coleman and his colleagues [Coleman-94], which included
concepts from OMT [Rumbaugh-91], Booch [Booch-91], and CRC [Wirfs-Brock-
90]. As it did not involve the original authors, it must be regarded as another new
method rather than as a replacement of several existing methods. The first success-
ful attempt to combine and replace existing approaches came when Rumbaugh
joined Booch at Rational Software Corporation in 1994. They began combining
the concepts from the OMT and Booch methods, resulting in a first proposal in

6 Part 1 • Background

1995. At that time, Jacobson also joined Rational and began working with Booch
and Rumbaugh. Their joint work was called the Unified Modeling Language
(UML). The momentum gained by having the authors of three of the top methods
working together to unify their approaches shifted the balance in the object-
oriented methodology field, where there had previously been little incentive (or at
least little willingness) for methodologists to abandon some of their own concepts
to achieve harmony.

In 1996, the Object Management Group (OMG) issued a request for proposals
for a standard approach to object-oriented modeling. UML authors Booch, Jacob-
son, and Rumbaugh began working with methodologists and developers from
other companies to produce a proposal attractive to the membership of OMG, as
well as a modeling language that would be widely accepted by tool makers, meth-
odologists, and developers who would be the eventual users. Several competing ef-
forts also were started. Eventually, all the proposals coalesced in the final UML
proposal that was submitted to the OMG in September 1997. The final product is a
collaboration among many people. We began the UML effort and contributed a
few good ideas, but the ideas in it are the product of many minds.

Standardization

The Unified Modeling Language was adopted unanimously by the membership of
the OMG as a standard in November 1997 [UML-98]. The OMG assumed respon-
sibility for the further development of the UML standard. Even before final adop-
tion, a number of books were published outlining the highlights of the UML.
Many tool vendors announced support or planned support for the UML, and sev-
eral methodologists announced that they would use UML notation for further
work. The emergence of the UML appears to be attractive to the general comput-
ing public because it consolidates the experiences of many authors with an official
status that will reduce gratuitous divergence among tools. We hope that standard-
ization will encourage both widespread use of object-oriented modeling among
developers and a robust market in support tools and training, now that neither us-
ers nor vendors have to guess which approaches to use and support.

Core team

The following persons were the core development team of the UML proposal or
served on the Revision Task Force:

Data Access Corporation: Tom Digre

DHR Technologies: Ed Seidewitz

HP: Martin Griss

IBM: Steve Brodsky, Steve Cook, Jos Warmer

Chapter 1 • UML Overview 7

I-Logix: Eran Gery, David Harel

ICON Computing: Desmond D'Souza

IntelliCorp and James Martin & Co.: Conrad Bock, James Odell

MCI Systemhouse: Cris Kobryn, Joaquin Miller

ObjecTime: John Hogg, Bran Selic

Oracle: Guus Ramackers

Platinum Technology: Dilhar DeSilva

Rational Software: Grady Booch, Ed Eykholt, Ivar Jacobson,
Gunnar Övergaard, Karin Palmkvist, James Rumbaugh

SAP: Oliver Wiegert

SOFTEAM: Philippe Desfray

Sterling Software: John Cheesman, Keith Short

Taskon: Trygve Reenskaug

Unisys: Sridhar Iyengar, GK Khalsa

What does unified mean?

The word unified has the following relevant meanings for UML.

Across historical methods and notations. The UML combines the commonly ac-
cepted concepts from many object-oriented methods, selecting a clear definition
for each concept, as well as a notation and terminology. The UML can represent
most existing models as well as or better than the original methods can.

Across the development lifecycle. The UML is seamless from requirements to de-
ployment. The same set of concepts and notation can be used in different stages of
development and even mixed within a single model. It is unnecessary to translate
from one stage to another. This seamlessness is critical for iterative, incremental
development.

Across application domains. The UML is intended to model most application do-
mains, including those involving systems that are large, complex, real-time, dis-
tributed, data or computation intensive, among other properties. There may be
specialized areas in which a special-purpose language is more useful, but UML is
intended to be as good as or better than any other general-purpose modeling lan-
guage for most application areas.

Across implementation languages and platforms. The UML is intended to be
usable for systems implemented in various implementation languages and plat-
forms, including programming languages, databases, 4GLs, organization docu-
ments, firmware, and so on. The front-end work should be identical or similar in
all cases, while the back-end work will differ somewhat for each medium.

8 Part 1 • Background
Across development processes. The UML is a modeling language, not a description
of a detailed development process. It is intended to be usable as the modeling lan-
guage underlying most existing or new development processes, just as a general-
purpose programming language can be used in many styles of programming. It is
particularly intended to support the iterative, incremental style of development
that we recommend.

Across internal concepts. In constructing the UML metamodel, we made a delib-
erate effort to discover and represent underlying relationships among various con-
cepts, trying to capture modeling concepts in a broad way applicable to many
known and unknown situations. This process led to a better understanding of the
concepts and a more general applicability of them. This was not the original pur-
pose of the unification work, but it was one of the most important results.

Goals of UML

There were a number of goals behind the development of the UML. First and most
important, UML is a general-purpose modeling language that all modelers can
use. It is nonproprietary and based on common agreement by much of the com-
puting community. It is meant to include the concepts of the leading methods so
that it can be used as their modeling language. At the very least, it was intended to
supersede the models of OMT, Booch, and Objectory, as well as those of other par-
ticipants of the proposal. It was intended to be as familiar as possible; whenever
possible, we used notation from OMT, Booch, Objectory, and other leading meth-
ods. It is meant to support good practices for design, such as encapsulation, sepa-
ration of concerns, and capture of the intent of a model construct. It is intended to
address current software development issues, such as large scale, distribution, con-
currency, patterns, and team development.

UML is not intended to be a complete development method. It does not include
a step-by-step development process. We believe that a good development process
is crucial to the success of a software development effort, and we propose one in a
companion book [Jacobson-99]. It is important to realize that UML and a process
for using UML are two separate things. UML is intended to support all, or at least
most, of the existing development processes. UML includes all the concepts that
we believe are necessary to support a modern iterative process based on building a
strong architecture to solve user-case–driven requirements.

A final goal of UML was to be as simple as possible while still being capable of
modeling the full range of practical systems that need to be built. UML needs to be
expressive enough to handle all the concepts that arise in a modern system, such as
concurrency and distribution, as well as software engineering mechanisms, such
as encapsulation and components. It must be a universal language, like any gen-
eral-purpose programming language. Unfortunately, that means that it cannot be

Chapter 1 • UML Overview 9
small if we want it to handle things other than toy systems. Modern languages and
modern operating systems are more complicated than those of 40 years ago be-
cause we expect much more of them. UML has several kinds of models; it is not
something you can master in one day. It is more complicated than some of its an-
tecedents because it is intended to be more comprehensive. But you don’t have to
learn it all at once, any more than you would a programming language, an operat-
ing system, or a complex user application.

UML Concept Areas

UML concepts and models can be grouped into the following concept areas.

Static structure. Any precise model must first define the universe of discourse,
that is, the key concepts from the application, their internal properties, and their
relationships to each other. This set of constructs is the static view. The application
concepts are modeled as classes, each of which describes a set of discrete objects
that hold information and communicate to implement behavior. The information
they hold is modeled as attributes; the behavior they perform is modeled as opera-
tions. Several classes can share their common structure using generalization. A
child class adds incremental structure and behavior to the structure and behavior
that it obtains by inheritance from the common parent class. Objects also have
run-time connections to other individual objects. Such object-to-object relation-
ships are modeled as associations among classes. Some relationships among ele-
ments are grouped together as dependency relationships, including relationships
for modeling shifts in levels of abstraction, binding of template parameters, grant-
ing of permission, and usage of one element by another. Other relationships in-
clude combination of use cases and flow of values. The static view is notated using
class diagrams. The static view can be used to generate most data structure decla-
rations in a program. There are several other kinds of elements in UML diagrams,
such as interfaces, data types, use cases, and signals. Collectively, these are called
classifiers, and they behave much like classes with certain restrictions on each kind
of classifier.

Dynamic behavior. There are two ways to model behavior. One is the life history
of one object as it interacts with the rest of the world; the other is the communica-
tion patterns of a set of connected objects as they interact to implement behavior.
The view of an object in isolation is a state machine—a view of an object as it re-
sponds to events based on its current state, performs actions as part of its re-
sponse, and transitions to a new state. State machines are displayed in statechart
diagrams.

The view of a system of interacting objects is a collaboration, a context-
dependent view of objects and their links to each other, together with the flow of
messages between objects across data links. This viewpoint unifies data structure,

10 Part 1 • Background
control flow, and data flow in a single view. Collaborations and interactions are
shown in sequence diagrams and collaboration diagrams. Guiding all the behavior
views is a set of use cases, each a description of a slice of system functionality as
visible to an actor, an external user of the system.

Implementation constructs. UML models are meant for both logical analysis and
physical implementation. Certain constructs represent implementation items. A
component is a physical, replaceable part of a system that conforms to and pro-
vides the realization of a set of interfaces. It is intended to be easily substitutable
for other components that meet the same specification. A node is a run-time com-
puting resource that defines a location. It can hold components and objects. The
deployment view describes the configuration of nodes in a running system and the
arrangement of components and objects on them, including possible migration of
contents among nodes.

Model organization. Computers can deal with large flat models, but humans can-
not. In a large system, the modeling information must be divided into coherent
pieces so that teams can work on different parts concurrently. Even on a smaller
system, human understanding requires the organization of model content into
packages of modest size. Packages are general-purpose hierarchical organizational
units of UML models. They can be used for storage, access control, configuration
management, and constructing libraries that contain reusable model fragments. A
dependency between packages summarizes the dependencies among the package
contents. A dependency among packages can be imposed by the overall system ar-
chitecture. Then the contents of the packages must conform to the package depen-
dencies and to the imposed system architecture.

Extensibility mechanisms. No matter how complete the facilities in a language,
people will want to make extensions. We have provided a limited extensibility ca-
pability within UML that we believe will accommodate most of the day-to-day
needs for extensions, without requiring a change to the basic language. A stereo-
type is a new kind of model element with the same structure as an existing ele-
ment, but with additional constraints, a different interpretation and icon, and
different treatment by code generators and other back-end tools. A tagged value is
an arbitrary tag-value pair of strings that can be attached to any kind of model el-
ement to hold arbitrary information, such as project management information,
code generator guidance, and required values for stereotypes. The tag and the
value are represented as strings. A constraint is a well-formedness condition ex-
pressed as a text string in some constraint language, such as a programming lan-
guage, special constraint language, or natural language. UML includes a constraint
language called OCL. As with any extensibility mechanism, these mechanisms
must be used with care because of the risk of producing a private dialect unintelli-
gible to others. But they can avoid the need for more radical changes.

Chapter 1 • UML Overview 11
Syntax of Expressions and Diagrams

This book contains expressions and diagrams that show examples of actual mod-
els, as well as syntax of expressions and annotations explaining the diagrams. To
reduce the danger of confusing the explanations with the examples, certain for-
matting conventions have been used.

Within diagrams and text expressions, diagram fragments or literal text that
would appear in the actual notation are shown in black in a sans serif typeface
(Myriad). For example, a class name in black is a legal name that could appear in a
model. A parenthesis in a syntax expression is a literal parenthesis that would ap-
pear in an actual expression; it is not part of the syntax machinery. For example:

Order . create (customer, amount)

Within running text, literal keywords from a model and the names of model el-
ements are also shown in the Myriad font, such as Order or customer.

In a syntax expression, the names of syntactical units that are meant to be re-
placed by actual text expansions are shown in blue Myriad font, such as name.
The appearance of black text in an expression represents a literal value that ap-
pears in the target notation. The use of italics or underlining means that the re-
placement text has the given property. For example:

name . operation (argument , . . .)

object-name : class

In a syntax expression, a blue subscript and a blue overbar are used to denote
certain syntactic properties.

expressionopt The expression is optional.

expressionlist, A comma-separated list of the expression may appear. If
there is zero or one repetition, there is no separator. Each
repetition may have a separate substitution. If a different
punctuation mark than a comma appears in the sub-
script, it is the separator.

= expressionopt An overbar ties together two or more terms that are con-
sidered a unit for optional or repeated occurrences. In
this example, the equal sign and the expression form one
unit that may be omitted or included. The overbar is
unnecessary if there is only one term.

In a diagram, text and arrows in blue are annotations. They are not part of the
actual notation but are intended as explanations. The symbols and text in black
are part of the target notation.

2
The Nature and Purpose of Models

This chapter explains what models are, what they are good for, and how they are
used. It also explains the various grades of models: ideal, partial, and tool-based.

What Is a Model?

A model is a representation in a certain medium of something in the same or an-
other medium. The model captures the important aspects of the thing being mod-
eled from a certain point of view and simplifies or omits the rest. Engineering,
architecture, and many other creative fields use models.

A model is expressed in a medium that is convenient for working. Models of
buildings may be drawings on paper, - figures made of cardboard and papier-
mâché, or finite-element equations in a computer. A construction model of a
building shows the appearance of the building but can also be used to make engi-
neering and cost calculations.

A model of a software system is made in a modeling language, such as UML.
The model has both semantics and notation and can take various forms that in-
clude both pictures and text. The model is intended to be easier to use for certain
purposes than the final system.

What Are Models For?

Models are used for several purposes.

To capture and precisely state requirements and domain knowledge so that all
stakeholders may understand and agree on them. Various models of a building
capture requirements about the appearance, traffic patterns, various kinds of util-
ity services, strength against wind and earthquakes, cost, and many other things.
Stakeholders include the architect, structural engineer, general contractor, various
subcontractors, owner, renters, and the city.
13

14 Part 1 • Background
Different models of a software system may capture requirements about its ap-
plication domain, the ways users will use it, its breakdown into modules, common
patterns used in its construction, and other things. Stakeholders include the archi-
tect, analysts, programmers, project manager, customers, funders, end users, and
operators. Various kinds of UML models are used.

To think about the design of a system. An architect uses models on paper, on a
computer, or as - constructs to visualize and experiment with possible designs.
The simplicity of creating and modifying small models permits creative thought
and innovation at little cost.

A model of a software system helps developers explore several architectures and
design solutions easily before writing code. A good modeling language allows the
designer to get the overall architecture right before detailed design begins.

To capture design decisions in a mutable form separate from the requirements.
One model of a building shows the external appearance agreed to with the cus-
tomer. Another model shows the internal routing of wires, pipes, and ventilation
ducts. There are many ways to implement these services. The final model shows a
design that the architect believes is a good one. The customer may verify this in-
formation, but often customers are not concerned about the details, as long as
they work.

One model of a software system can capture the external behavior of a system
and the real-world domain information represented by the system. Another model
shows the internal classes and operations that implement the external behavior.
There are many ways to implement the behavior; the final design model shows one
approach that the designer believes is a good one.

To generate usable work products. A model of a building can be used to generate
various kinds of products. These include a bill of materials, a simulated animated
walkthrough, a table of deflections at various wind speeds, and a visualization of
strain at various points in the frame.

A model of a software system can be used to generate class declarations, proce-
dure bodies, user interfaces, databases, scenarios of legal use, configuration
scripts, and lists of race conditions.

To organize, find, filter, retrieve, examine, and edit information about large sys-
tems. A model of a building organizes information by service: structural, electri-
cal, plumbing, ventilation, decoration, and so on. Unless the model is on a
computer, however, finding things and modifying them are not so easy. If it is on a
computer, changes can be made and recalled easily, and multiple designs can be
easily explored while sharing some common elements.

A model of a software system organizes information into several views: static
structure, state machines, interactions, requirements, and so on. Each view is a

Chapter 2 • The Nature and Purpose of Models 15
projection of the information in the complete model as selected for a purpose.
Keeping a model of any size accurate is impossible without having an editing tool
that manages the model. An interactive graphical model editor can present infor-
mation in different formats, hide information that is unnecessary for a given pur-
pose and show it again later, group related operations together, make changes to
individual elements, as well as change groups of elements with one command, and
so on.

To explore multiple solutions economically. The advantages and risks of different
design methods for buildings may not be clear at first. For example, different sub-
structures may interact in complicated ways that cannot be evaluated in an engi-
neer’s head. Models can explore the various designs and permit calculations of
costs and risks before the actual building is constructed.

Models of a large software system permit several designs to be proposed and
compared. The models are not constructed in full detail, of course, but even a
rough model can expose many issues the final design must deal with. Modeling
permits several designs to be considered, at a small cost of implementing any one
design.

To master complex systems. An engineering model of a tornado approaching a
building provides understanding that is not possible from a real-world building. A
real tornado cannot be produced on demand, and it would destroy the measuring
instruments, anyway. Many fast, small, or violent physical processes can now be
understood using physical models.

A model of a large software system permits dealing with complexity that is too
difficult to deal with directly. A model can abstract to a level that is comprehensi-
ble to humans, without getting lost in details. A computer can perform compli-
cated analyses on a model in an effort to find possible trouble spots, such as timing
errors and resource overruns. A model can determine the potential impact of a
change before it is made, by exploring dependencies in the system. A model can
also show how to restructure a system to reduce such effects.

Levels of Models

Models take on different forms for various purposes and appear at different levels
of abstraction. The amount of detail in the model must be adapted to one of the
following purposes.

Guides to the thought process. High-level models built early in a project serve to
focus the thought process of the stakeholders and highlight options. They capture
requirements and represent a starting point toward a system design. The early
models help the originators explore possible options before converging on a sys-
tem concept. As design progresses, the early models are replaced by more accurate

16 Part 1 • Background
models. There is no need to preserve every twist and turn of the early exploratory
process. Its purpose is to produce ideas. The final “thinking models” should be
preserved even after the focus shifts to design issues, however. Early models do not
require the detail or precision of an implementation model, and they do not re-
quire a full range of implementation concepts. Such models use a subset of UML
constructs, a more limited subset than later design models.

When an early model is a complete view of a system at a given precision—for
example, an analysis model of what must be done—then it should be preserved
when development shifts to the next stage. There is an important difference be-
tween adding detail (in which case, the chain of reasoning should be preserved)
and the normal random-walk process of exploring many dead ends before arriv-
ing at the right solution. In the latter case, it is usually overwhelming and unneces-
sary to save the entire history except in extraordinary situations in which complete
traceability is required.

Abstract specifications of the essential structure of a system. Models in the analy-
sis or preliminary design stages focus on the key concepts and mechanisms of the
eventual system. They correspond in certain ways with the final system. But details
are missing from the model, which must be added explicitly during the design
process. The purpose of the abstract models is to get the high-level pervasive issues
correct before tackling the more localized details. These models are intended to be
evolved into the final models by a careful process that guarantees that the final sys-
tem correctly implements the intent of the earlier models. There must be trace-
ability from these essential models to the full models; otherwise, there is no
assurance that the final system correctly incorporates the key properties that the
essential model sought to show. Essential models focus on semantic intent. They
do not need the full range of implementation options. Indeed, low-level perfor-
mance distinctions often obscure the logical semantics. The path from an essential
model to a complete implementation model must be clear and straightforward,
however, whether it is generated automatically by a code generator or evolved
manually by a designer.

Full specifications of a final system. An implementation model includes enough
information to build the system. It must include not only the logical semantics of
the system and the algorithms, data structures, and mechanisms that ensure
proper performance, but also organizational decisions about the system artifacts
that are necessary for cooperative work by humans and processing by tools. This
kind of model must include constructs for packaging the model for human under-
standing and for computer convenience. These are not properties of the target ap-
plication itself. Rather, they are properties of the construction process.

Exemplars of typical or possible systems. Well-chosen examples can give insight to
humans and can validate system specifications and implementations. Even a large

Chapter 2 • The Nature and Purpose of Models 17
collection of examples, however, necessarily falls short of a definitive description.
Ultimately, we need models that specify the general case; that is what a program is,
after all. Examples of typical data structures, interaction sequences, or object his-
tories can help a human trying to understand a complicated situation, however.
Examples must be used with some care. It is logically impossible to induce the
general case from a set of examples, but well-chosen prototypes are the way most
people think. An example model includes instances rather than general descrip-
tors. It therefore tends to have a different feel than a generic descriptive model. Ex-
ample models usually use only a subset of the UML constructs, those that deal
with instances. Both descriptive models and exemplar models are useful in model-
ing a system.

Complete or partial descriptions of systems. A model can be a complete descrip-
tion of a single system with no outside references. More often, it is organized as a
set of distinct, discrete units, each of which may be stored and manipulated sepa-
rately as a part of the entire description. Such models have “loose ends” that must
be bound to other models in a complete system. Because the pieces have coherence
and meaning, they can be combined with other pieces in various ways to produce
many different systems. Achieving reuse is an important goal of good modeling.

Models evolve over time. Models with greater degrees of detail are derived from
more abstract models, and more concrete models are derived from more logical
models. For example, a model might start as a high-level view of the entire system,
with a few key services in brief detail and no embellishments. Over time, much
more detail is added and variations are introduced. Also over time, the focus shifts
from a front-end, user-centered logical view to a back-end, implementation-
centered physical view. As the developers work with a system and understand it
better, the model must be iterated at all levels to capture that understanding; it is
impossible to understand a large system in a single, linear pass. There is no one
“right” form for a model.

What Is in a Model?

Semantics and presentation. Models have two major aspects: semantic informa-
tion (semantics) and visual presentation (notation).

The semantic aspect captures the meaning of an application as a network of log-
ical constructs, such as classes, associations, states, use cases, and messages. Se-
mantic model elements carry the meaning of the model—that is, they convey the
semantics. The semantic modeling elements are used for code generation, validity
checking, complexity metrics, and so on. The visual appearance is irrelevant to
most tools that process models. The semantic information is often called the
model. A semantic model has a syntactic structure, well-formedness rules, and ex-
ecution dynamics. These aspects are often described separately (as in the UML

18 Part 1 • Background
definition documents), but they are tightly interrelated and part of a single coher-
ent model.

The visual presentation shows semantic information in a form that can be seen,
browsed, and edited by humans. Presentation elements carry the visual presenta-
tion of the model—that is, they show it in a form directly apprehensible by hu-
mans. They do not add meaning, but they do organize the presentation to
emphasize the arrangement of the model in a usable way. They therefore guide hu-
man understanding of a model. Presentation elements derive their semantics from
semantic model elements. But inasmuch as the layout of the diagrams is supplied
by humans, presentation elements are not completely derivable from logical ele-
ments. The arrangement of presentation elements may convey connotations about
semantic relationships that are too weak or ambiguous to formalize in the seman-
tic model but are nevertheless suggestive to humans.

Context. Models are themselves artifacts in a computer system, and they are used
within a larger context that gives them their full meaning. This context includes
the internal organization of the model, annotations about the use of each model in
the overall development process, a set of defaults and assumptions for element
creation and manipulation, and a relationship to the environment in which they
are used.

Models require an internal organization that permits simultaneous use by mul-
tiple work groups without undue interference. This decomposition is not needed
for semantic reasons—a large monolithic model would be as precise as a set of
models organized into coherent packages, maybe even more precise because the
organizational boundaries complicate the job of defining precise semantics. But
teams of workers could not work effectively on a large monolithic model without
constantly getting in each other’s way. Moreover, a monolithic model has no pieces
that can be reused in other situations. Finally, changes to a large model have con-
sequences that are difficult to determine. Changes to a small, isolated piece of a
large model can be tractable if the model is properly structured into subsystems
with well-defined interfaces. In any case, dividing large systems into a hierarchy of
well-chosen pieces is the most reliable way to design large systems that humans
have invented over thousands of years.

Models capture semantic information about an application system, but they
also need to record many kinds of information about the development process it-
self, such as the author of a class, the debug status of a procedure, and the human
access permission of a diagram. Such information is, at best, peripheral to the se-
mantics of the system, but it is important to the development process. A model of
a system therefore needs to include both viewpoints. This is most easily achieved
by regarding the project management information as annotations to the semantic
model—that is, arbitrary descriptions attached to model elements but whose

Chapter 2 • The Nature and Purpose of Models 19
meaning is outside the modeling language. In UML these annotations are imple-
mented as text strings.

The commands used to create and modify a model are not part of the semantics
of the modeling language any more than the commands of a text editor or browser
are part of the semantics of a programming language. Model element properties
do not have default values; in a particular model, they simply have values. For
practical development, however, humans need to build and modify models with-
out having to specify everything in full detail. Default values exist in the boundary
between the modeling language and the editing tool that supports it. They are re-
ally defaults on the tool commands that create a model, although they may tran-
scend an individual tool and become user expectations about the implementation
of the language by tools in general.

Models are not built and used in isolation. They are part of a larger environ-
ment that includes modeling tools, languages and compilers, operating systems,
networks of computers, implementation constraints, and so on. The information
about a system includes information about all parts of the environment. Some of
it will be stored in a model even though it is not semantic information. Examples
include project management annotations (discussed above), code generation hints
and directives, model packaging, and default command settings for an editor tool.
Other information may be stored separately. Examples include program source
code and operating system configuration commands. Even if some information is
part of a model, the responsibility for interpreting it may lie in various places, in-
cluding the modeling language, the modeling tool, the code generator, the com-
piler, a command language, and so on. This book describes the interpretation of
models by the UML itself. But when operating in a physical development environ-
ment, other sources may add additional interpretations to information that is
opaque to UML.

What Does a Model Mean?

A model is a generator of potential configurations of systems; the possible systems
are its extent, or values. Ideally, all configurations consistent with the model
should be possible. Sometimes, however, it is not possible to represent all con-
straints within a model. A model is also a description of the generic structure and
meaning of a system. The descriptions are its intent, or meaning. A model is always
an abstraction at some level. It captures the essential aspects of a system and ig-
nores some of the details. There are the following aspects to consider for models.

Abstraction versus detail. A model captures the essential aspects of a system and
ignores others. Which ones are essential is a matter of judgment that depends on
the purpose of the model. This is not a dichotomy; there may be a spectrum of
models of increasing precision. A modeling language is not a programming

20 Part 1 • Background
language. A modeling language may be less precise on purpose because additional
detail is irrelevant for the purpose at hand. Models at different levels of precision
can be used across the life of a project. A model intended for code generation re-
quires at least some programming language issues to be addressed. Typically,
models have low precision during early analysis. They gain detail as the develop-
ment cycle progresses, so the final models have considerable detail and precision.

Specification versus implementation. A model can tell what something does
(specification), as well as how the function is accomplished (implementation).
These aspects should be separated in modeling. It is important to get the what cor-
rect before investing much time in the how. Abstracting away from implementa-
tion is an important facet of modeling. There may be a chain of several
specification-implementation relationships, in which each implementation de-
fines the specifications for the next layer.

Description versus instance. Models are mostly description. The things they de-
scribe are instances, which usually appear in models only as examples. Most in-
stances exist only as part of the run-time execution. Sometimes, however, run-
time instances are themselves descriptions of other things. We call these hybrid
objects metadata. Looked at more deeply, it is unrealistic to insist that everything
is either an instance or a description. Something is an instance or a description not
in isolation but only in relation to something else, and most things can be ap-
proached from multiple viewpoints.

Variations in interpretation. There are many possible interpretations of models
in a modeling language. One can define certain semantic variation points—places
at which different interpretations are possible—and assign each interpretation a
name as a semantic variation so that one can state which variation is being used.
For example, users of Smalltalk might wish to avoid multiple inheritance in an im-
plementation model because it is not supported by the programming language.
Users of other programming languages would need it. Semantic variation points
permit different execution models to be supported.

Part 2: UML Concepts

This part contains an overview of UML concepts to show how they fit together
in modeling a system. This part is not meant to describe concepts in full detail. For
full details about a UML concept, see the encyclopedia section of this book.
21

3
UML Walkthrough

This chapter presents a brief walkthrough of UML concepts and diagrams using a
simple example. The purpose of the chapter is to organize the high-level UML
concepts into a small set of views and diagrams that present the concepts visually.
It shows how the various concepts are used to describe a system and how the views
fit together. This summary is not intended to be comprehensive; many concepts
are omitted. For more details, see the subsequent chapters that outline the UML
semantic views, as well as the detailed reference material in the encyclopedia chap-
ter.

The example used here is a theater box office that has computerized its opera-
tions. This is a contrived example, the purpose of which is to highlight various
UML constructs in a brief space. It is deliberately simplified and is not presented
in full detail. Presentation of a full model from an implemented system would nei-
ther fit in a small space nor highlight a sufficient range of constructs without ex-
cessive repetition.

UML Views

There is no sharp line between the various concepts and constructs in UML, but,
for convenience, we divide them into several views. A view is simply a subset of
UML modeling constructs that represents one aspect of a system. The division
into different views is somewhat arbitrary, but we hope it is intuitive. One or two
kinds of diagrams provide a visual notation for the concepts in each view.

At the top level, views can be divided into three areas: structural classification,
dynamic behavior, and model management.

Structural classification describes the things in the system and their relation-
ships to other things. Classifiers include classes, use cases, components, and nodes.
Classifiers provide the basis on top of which dynamic behavior is built. Classifica-
tion views include the static view, use case view, and implementation view.
23

24 Part 2 • UML Concepts
Dynamic behavior describes the behavior of a system over time. Behavior can
be described as a series of changes to snapshots of the system drawn from the static
view. Dynamic behavior views include the state machine view, activity view, and
interaction view.

Model management describes the organization of the models themselves into
hierarchical units. The package is the generic organizational unit for models. Spe-

Table 3-1: UML Views and Diagrams

Major Area View Diagrams Main Concepts

structural static view class diagram class, association, gen-
eralization, depen-
dency, realization,
interface

use case view use case dia-
gram

use case, actor, associa-
tion, extend, include,
use case generalization

implementa-
tion view

component dia-
gram

component, interface,
dependency, realization

deployment
view

deployment
diagram

node, component,
dependency, location

dynamic state machine
view

statechart dia-
gram

state, event, transition,
action

activity view activity diagram state, activity, comple-
tion transition, fork,
join

interaction
view

sequence dia-
gram

interaction, object,
message, activation

collaboration
diagram

collaboration, interac-
tion, collaboration role,
message

model man-
agement

model manage-
ment view

class diagram package, subsystem,
model

extensibility all all constraint, stereotype,
tagged values

Chapter 3 • UML Walkthrough 25
cial packages include models and subsystems. The model management view
crosses the other views and organizes them for development work and configura-
tion control.

UML also contains several constructs intended to provide a limited but useful
extensibility capability. These constructs include constraints, stereotypes, and
tagged values. These constructs are applicable to elements of all views.

Table 3-1 shows the UML views and the diagrams that display them, as well as
the main concepts relevant to each view. This table should not be taken as a rigid
set of rules but merely as a guide to normal usage, as mixing of views is permitted.

Static View

The static view models concepts in the application domain, as well as internal con-
cepts invented as part of the implementation of an application. This view is static
because it does not describe the time-dependent behavior of the system, which is
described in other views. The main constituents of the static view are classes and
their relationships: association, generalization, and various kinds of dependency,
such as realization and usage. A class is the description of a concept from the ap-
plication domain or the application solution. Classes are the center around which
the class view is organized; other elements are owned by or attached to classes. The
static view is displayed in class diagrams, so called because their main focus is the
description of classes.

Classes are drawn as rectangles. Lists of attributes and operations are shown in
separate compartments. The compartments can be suppressed when full detail is
not needed. A class may appear on several diagrams. Its attributes and operations
are often suppressed on all but one diagram.

Relationships among classes are drawn as paths connecting class rectangles. The
different kinds of relationships are distinguished by line texture and by adorn-
ments on the paths or their ends.

Figure 3-1 shows a class diagram from the box office application. This diagram
contains part of a ticket-selling domain model. It shows several important classes,
such as Customer, Reservation, Ticket, and Performance. Customers may have
many reservations, but each reservation is made by one customer. Reservations are
of two kinds: subscription series and individual reservations. Both reserve tickets:
in one case, only one ticket; in the other case, several tickets. Every ticket is part of
a subscription series or an individual reservation, but not both. Every perfor-
mance has many tickets available, each with a unique seat number. A performance
can be identified by a show, date, and time.

Classes can be described at various levels of precision and concreteness. In the
early stages of design, the model captures the more logical aspects of the problem.
In the later stages, the model also captures design decisions and implementation
details. Most of the views have a similar evolutionary quality.

26 Part 2 • UML Concepts
Use Case View

The use case view models the functionality of the system as perceived by outside
users, called actors. A use case is a coherent unit of functionality expressed as a
transaction among actors and the system. The purpose of the use case view is to
list the actors and use cases and show which actors participate in each use case.

Figure 3-2 shows a use case diagram for the box office example. Actors include
the clerk, supervisor, and kiosk. The kiosk is another system that accepts orders
from a customer. The customer is not an actor in the box office application be-
cause the customer is not directly connected to the application. Use cases include
buying tickets through the kiosk or the clerk, buying subscriptions (only through
the clerk), and surveying total sales (at the request of the supervisor). Buying tick-

Figure 3-1. Class diagram

Reservation

Ticket

name: String

owner

purchased

1

∗

Subscription
Series

Individual
Reservation

13..6

Customer

phone: String

date: Date

series: Integer
0..1

Performance

date: Date
seat: String

1∗

0..1 {xor}

available:Boolean time: TimeOfDay

Show

1..∗

1 show

performances

name: String

class

sell (c:Customer)
exchange ()

add (name,phone)

association

generalization

qualifier

constraint

attributes

class-scope operation

operations

multiplicities

rolenames

Chapter 3 • UML Walkthrough 27
ets and buying subscriptions include a common fragment—that is, making
charges to the credit card service. (A complete description of a box office system
would involve a number of other use cases, such as exchanging tickets and check-
ing availability.)

Use cases can also be described at various levels of detail. They can be factored
and described in terms of other, simpler use cases. A use case is implemented as a
collaboration in the interaction view.

Interaction View

The interaction view describes sequences of message exchanges among roles that
implement behavior of a system. A classifier role is the description of an object
that plays a particular part within an interaction, as distinguished from other ob-
jects of the same class. This view provides a holistic view of behavior in a system—
that is, it shows the flow of control across many objects. The interaction view is
displayed in two diagrams focused on different aspects: sequence diagrams and
collaboration diagrams.

Figure 3-2. Use case diagram

Kiosk

Supervisor

buy
subscription

survey
sales

buy
tickets

Box Office

make

Credit card service

Clerk

charges

«include»

«include»

system

actor

use case

relationship

28 Part 2 • UML Concepts
Sequence diagram

A sequence diagram shows a set of messages arranged in time sequence. Each clas-
sifier role is shown as a lifeline—that is, a vertical line that represents the role over
time through the entire interaction. Messages are shown as arrows between life-
lines. A sequence diagram can show a scenario—that is, an individual history of a
transaction.

One use of a sequence diagram is to show the behavior sequence of a use case.
When the behavior is implemented, each message on a sequence diagram corre-
sponds to an operation on a class or an event trigger on a transition in a state ma-
chine.

Figure 3-3 shows a sequence diagram for the buy tickets use case. This use case
is initiated by the customer at the kiosk communicating with the box office. The
steps for the make charges use case are included within the sequence, which in-
volves communication with both the kiosk and the credit card service. This se-
quence diagram is at an early stage of development and does not show the full

Figure 3-3. Sequence diagram

kiosk box office

request (count, performance)

show availability (seat-list)

select (seats)

insert card (card number)

credit card

charge (card number, cost)

demand payment (cost)

authorized

print tickets (performance, seats)

service

eject card

active object

lifeline (active)

message

Chapter 3 • UML Walkthrough 29
details of the user interface. For example, the exact form of the seat list and the
mechanism of specifying seats must still be determined, but the essential commu-
nication of the interaction has been specified by the use case.

Collaboration diagram

A collaboration models the objects and links that are meaningful within an inter-
action. The objects and links are meaningful only in the context provided by the
interaction. A classifier role describes an object and an association role describes a
link within a collaboration. A collaboration diagram shows the roles in the inter-
action as a geometric arrangement (Figure 3-4). The messages are shown as ar-
rows attached to the relationship lines connecting classifier roles. The sequence of
messages is indicated by sequence numbers prepended to message descriptions.

One use of a collaboration diagram is to show the implementation of an opera-
tion. The collaboration shows the parameters and local variables of the operation,

Figure 3-4. Collaboration diagram

kiosk

ticketSeller db: PerformanceDB

performanceGuide
dbs

1: request (count, performance)

: PerformanceDB

2: db := findDB (performance)

3: seat-list := lock (count)
6: claim (seats)

4: offer (seat-list)

5: buy (seats)

7: unlock (seat-list)

8: confirm (seats, cost)

«local»db

active object

passive object

link

message

multiobject

transient link

30 Part 2 • UML Concepts
as well as more permanent associations. When the behavior is implemented, the
message sequencing corresponds to the nested calling structure and signal passing
of the program.

Figure 3-4 shows a collaboration diagram for the reserve tickets interaction at a
later stage of development. The collaboration shows the interaction among inter-
nal objects in the application to reserve tickets. The request arrives from the kiosk
and is used to find the database for the particular performance from the set of all
performances. The pointer db that is returned to the ticketSeller object represents
a local transient link to a performance database that is maintained during the in-
teraction and then discarded. The ticket seller requests a number of seats to the
performance; a selection of seats in various price ranges is found, temporarily
locked, and returned to the kiosk for the customer’s selection. When the customer
makes a selection from the list of seats, the selected seats are claimed and the rest
are unlocked.

Both sequence diagrams and collaboration diagrams show interactions, but
they emphasize different aspects. A sequence diagram shows time sequence as a
geometric dimension, but the relationships among roles are implicit. A collabora-
tion diagram shows the relationships among roles geometrically and relates mes-
sages to the relationships, but time sequences are less clear because they are
implied by the sequence numbers. Each diagram should be used when its main as-
pect is the focus of attention.

State Machine View

A state machine models the possible life histories of an object of a class. A state
machine contains states connected by transitions. Each state models a period of
time during the life of an object during which it satisfies certain conditions. When
an event occurs, it may cause the firing of a transition that takes the object to a
new state. When a transition fires, an action attached to the transition may be exe-
cuted. State machines are shown as statechart diagrams.

Figure 3-5 shows a statechart diagram for the history of a ticket to a perfor-
mance. The initial state of a ticket (shown by the black dot) is the Available state.
Before the season starts, seats for season subscribers are assigned. Individual tick-
ets purchased interactively are first locked while the customer makes a selection.
After that, they are either sold or unlocked if they are not chosen. If the customer
takes too long to make a selection, the transaction times out and the seat is re-
leased. Seats sold to season subscribers may be exchanged for other performances,
in which case they become available again.

State machines may be used to describe user interfaces, device controllers, and
other reactive subsystems. They may also be used to describe passive objects that
go through several qualitatively distinct phases during their lifetime, each of which
has its own special behavior.

Chapter 3 • UML Walkthrough 31
Activity View

An activity graph is a variant of a state machine that shows the computational ac-
tivities involved in performing a calculation. An activity state represents an activ-
ity: a workflow step or the execution of an operation. An activity graph describes
both sequential and concurrent groups of activities. Activity graphs are shown on
activity diagrams.

Figure 3-6 shows an activity diagram for the box office. This diagram shows the
activities involved in mounting a show. (Don’t take this example too seriously if
you have theater experience!) Arrows show sequential dependencies—for exam-
ple, shows must be picked before they are scheduled. Heavy bars show forks or
joins of control. For example, after the show is scheduled, the theater can begin to
publicize it, buy scripts, hire artists, build sets, design lighting, and make cos-
tumes, all concurrently. Before rehearsal can begin, however, the scripts must be
ordered and the artist must be hired.

This example shows an activity diagram the purpose of which is to model the
real-world workflows of a human organization. Such business modeling is a major
purpose of activity diagrams, but activity diagrams can also be used for modeling
software activities. An activity diagram is helpful in understanding the high-level
execution behavior of a system, without getting involved in the internal details of
message passing required by a collaboration diagram.

The input and output parameters of an action can be shown using flow rela-
tionships connecting the action and an object flow state.

Figure 3-5. Statechart diagram

Available Locked Sold
lock buy

unlock

timed out

exchange

assign to subscription

state

transition

initial state

trigger event

32 Part 2 • UML Concepts
Physical Views

The previous views model the concepts in the application from a logical view-
point. The physical views model the implementation structure of the application
itself, such as its organization into components and its deployment onto run-time
nodes. These views provide an opportunity to map classes onto implementation

Figure 3-6. Activity diagram

pick show

schedule show

publicize show

sell tickets

hire buy scripts build make design

rehearse

dress rehearsal

perform

artists sets lighting costumesand music

activity

fork

join

completion
transition

Chapter 3 • UML Walkthrough 33
components and nodes. There are two physical views: the implementation view
and the deployment view.

The implementation view models the components in a system—that is, the
software units from which the application is constructed—as well as the depen-
dencies among components so that the impact of a proposed change can be as-
sessed. It also models the assignment of classes and other model elements to
components.

The implementation view is displayed on component diagrams. Figure 3-7
shows a component diagram for the box office system. There are three user

Figure 3-7. Component diagram

TicketSeller

subscriptionSales

ClerkInterface

TicketDB

KioskInterface

groupSales

individualSales

CreditCardCharges

charge purchase status

ManagerInterface

CreditCardAgency

Customer Clerk

«database»

Supervisor

actor

component

supplier

client

interface

34 Part 2 • UML Concepts
interfaces: one each for customers using a kiosk, clerks using the on-line reserva-
tion system, and supervisors making queries about ticket sales. There is a ticket
seller component that sequentializes requests from both kiosks and clerks; a com-
ponent that processes credit card charges; and the database containing the ticket
information. The component diagram shows the kinds of components in the sys-
tem; a particular configuration of the application may have more than one copy of
a component.

A small circle with a name is an interface—a coherent set of services. A solid line
from a component to an interface indicates that the component provides the ser-

Figure 3-8. Deployment diagram (descriptor level)

TicketServer

Kiosk

TicketSeller

ClerkInterface

«database»
TicketDB

CustomerInterface

CreditCardCharges

CreditCardAgency

Customer Clerk

ManagerInterface

Manager

SalesTerminal

1

11

∗ ∗

actor

node

dependency communication
association

component

∗ ∗

multiplicity
of node

Chapter 3 • UML Walkthrough 35
vices listed in the interface. A dashed arrow from a component to an interface in-
dicates that the component requires the services provided by the interface. For
example, subscription sales and group sales are both provided by the ticket seller
component; subscription sales are accessible from both kiosks and clerks, but
group sales are only accessible from a clerk.

The deployment view represents the arrangement of run-time component in-
stances on node instances. A node is a run-time resource, such as a computer, de-
vice, or memory. This view permits the consequences of distribution and resource
allocation to be assessed.

The deployment view is displayed on deployment diagrams. Figure 3-8 shows a
descriptor-level deployment diagram for the box office system. This diagram
shows the kinds of nodes in the system and the kinds of components they hold. A
node is shown as a cube symbol.

Figure 3-9 shows an instance-level deployment diagram for the box office sys-
tem. The diagram shows the individual nodes and their links in a particular ver-
sion of the system. The information in this model is consistent with the
descriptor-level information in Figure 3-8.

Figure 3-9. Deployment diagram (instance level)

River St. box office: SalesTerminal

Valley Mall kiosk: Kiosk

telesales office: SalesTerminal

headquarters: TicketServer

Main St. kiosk: Kiosk
node instance

node typenode name
communication link

36 Part 2 • UML Concepts
Model Management View

The model management view models the organization of the model itself. A
model comprises a set of packages that hold model elements, such as classes, state
machines, and use cases. Packages may contain other packages: therefore, a model
designates a root package that indirectly contains all the contents of the model.
Packages are units for manipulating the contents of a model, as well as units for
access control and configuration control. Every model element is owned by one
package or one other element.

Figure 3-10. Packages

Ticket Sales

PayrollPurchasing Accounting

Publicity

Customer
Records Ticket Records

Scheduling

«subsystem»
Planning

«subsystem»
Box Office

«subsystem»
Operations

dependency

subsystem

package

Chapter 3 • UML Walkthrough 37
A model is a complete description of a system at a given precision from one
viewpoint. There may be several models of a system from various viewpoints—for
example, an analysis model as well as a design model. A model is shown as a spe-
cial kind of package.

A subsystem is another special package. It represents a portion of a system, with
a crisp interface that can be implemented as a distinct component.

Model management information is usually shown on class diagrams.
Figure 3-10 shows the breakdown of the entire theater system into packages and

their dependency relationships. The box office subsystem includes the previous
examples in this chapter; the full system also includes theater operations and plan-
ning subsystems. Each subsystem consists of several packages.

Extensibility Constructs

UML includes three main extensibility constructs: constraints, stereotypes, and
tagged values. A constraint is a textual statement of a semantic relationship ex-
pressed in some formal language or in natural language. A stereotype is a new kind
of model element devised by the modeler and based on an existing kind of model
element. A tagged value is a named piece of information attached to any model el-
ement.

These constructs permit many kinds of extensions to UML without requiring
changes to the basic UML metamodel itself. They may be used to create tailored
versions of the UML for an application area.

Figure 3-11. Extensibility constructs

Show

name: String
{names for one season must be unique}

TicketDB
«database»

Scheduling
{ author = Frank Martin,
due = Dec. 31, 1999 }

constraint

stereotype

tagged values

TicketDB

stereotype icon

38 Part 2 • UML Concepts
Figure 3-11 shows examples of constraints, stereotypes, and tagged values. The
constraint on class Show ensures that the names of shows are unique. Figure 3-1
shows an xor constraint on two associations; an object can have a link from one of
them at a time. Constraints are useful for making statements that can be expressed
in a text language but which are not directly supported by UML constructs.

The stereotype on component TicketDB indicates that the component is a data-
base, which permits the interfaces supported by the component to be omitted as
they are the interfaces supported by all databases. Modelers can add new stereo-
types to represent special elements. A set of implied constraints, tagged values, or
code generation properties can be attached to a stereotype. A modeler can define
an icon for a given stereotype name as a visual aid, as shown in the diagram. The
textual form may always be used, however.

The tagged values on package Scheduling show that Frank Martin is responsible
for finishing it before the end of the millennium. Any arbitrary piece of informa-
tion can be attached to a model element as a tagged value under a name chosen by
the modeler. Text values are especially useful for project management information
and for code generation parameters. Most tagged values would be stored as pop-
up information within an editing tool and would not usually be displayed on
printed pictures.

Connections Among Views

The various views coexist within a single model and their elements have many
connections, some of which are shown in Table 3-2. This table is not meant to be
complete, but it shows some of the major relationships among elements from dif-
ferent views.

Chapter 3 • UML Walkthrough 39
Table 3-2: Some Relationships Among Elements in Different Views

Element Element Relationship

class state machine ownership

operation interaction realization

use case collaboration realization

use case interaction instance sample scenario

component instance node instance location

action operation call

action signal send

activity operation call

message action invocation

package class ownership

role class classification

4
Static View

Overview

The static view is the foundation of UML. The elements of the static view of a
model are the concepts that are meaningful in an application, including real-world
concepts, abstract concepts, implementation concepts, computer concepts—all
kinds of concepts found in systems. For example, a ticket system for a theater has
concepts such as tickets, reservations, subscription plans, seat assignment algo-
rithms, interactive web pages for ordering, and archival data for redundancy.

The static view captures object structure. An object-oriented system unifies data
structure and behavioral features into a single object structure. The static view in-
cludes all the traditional data structure concerns, as well as the organization of the
operations on the data. Both data and operations are quantized into classes. In the
object-oriented perspective, data and behavior are closely related. For example, a
Ticket object carries data, such as its price, date of performance, and seat number,
as well as operations on it, such as reserving itself or computing its price with a
special discount.

The static view describes behavioral entities as discrete modeling elements, but
it does not contain the details of their dynamic behavior. It treats them as things to
be named, owned by classes, and invoked. Their dynamic execution is described
by other views that describe the internal details of their dynamics. These other
views include the interaction view and the state machine view. Dynamic views re-
quire the static view to describe the things that interact dynamically—you can’t
say how something interacts without first saying what is interacting. The static
view is the foundation on which the other views are built.

The key elements in the static view are classifiers and their relationships. A clas-
sifier is a modeling element that describes things. There are several kinds of classi-
fiers, including classes, interfaces, and data types. Behavioral things are reified by
other classifiers, including use cases and signals. Implementation purposes are be-
hind several kinds of classifiers, such as subsystems, components, and nodes.
41

42 Part 2 • UML Concepts
Large models must be organized into smaller units for human understanding
and reusability. A package is a general-purpose organizational unit for owning and
managing the contents of a model. Every element is owned by some package. A
model is a package that describes a complete view of a system and can be used
more or less independently of other models; it is a root for the ownership of the
more detailed packages that describe the system.

An object is a discrete unit out from which the modeler understands and con-
structs a system. It is an instance of a class—that is, an individual with identity
whose structure and behavior are described by the class. An object is an identifi-
able piece of state with well-defined behavior that can be invoked.

Relationships among classifiers are association, generalization, and various
kinds of dependency, including realization and usage.

Classifiers

A classifier is a discrete concept in the model, having identity, state, behavior, and
relationships. Kinds of classifiers include class, interface, and data type. Other
kinds of classifiers are reifications of behavioral concepts, things in the environ-
ment, or implementation structures. These classifiers include use case, actor, com-
ponent, node, and subsystem. Table 4-1 lists the various kinds of classifiers and
their functions. The metamodel term classifier includes all these concepts, but as
class is the most familiar term, we will discuss it first and define the other concepts
by difference from it.

Class. A class represents a discrete concept within the application being mod-
eled—a physical thing (such as an airplane), a business thing (such as an order), a
logical thing (such as a broadcasting schedule), an application thing (such as a
cancel button), a computer thing (such as a hash table), or a behavioral thing
(such as a task). A class is the descriptor for a set of objects with similar structure,
behavior, and relationships. All attributes and operations are attached to classes or
other classifiers. Classes are the foci around which object-oriented systems are or-
ganized.

An object is a discrete entity with identity, state, and invocable behavior. Objects
are the individual pieces out of which a run-time system is constructed; classes are
the individual concepts by which to understand and describe the multitude of in-
dividual objects.

A class defines a set of objects that have state and behavior. State is described by
attributes and associations. Attributes are generally used for pure data values with-
out identity, such as numbers and strings, and associations are used for connec-
tions among objects with identity. Individual pieces of invocable behavior are
described by operations; a method is the implementation of an operation. The
lifetime history of an object is described by a state machine attached to a class. The

Chapter 4 • Static View 43
Table 4-1: Kinds of Classifiers

Classifier Function Notation

actor An outside user of a system

class A concept from the modeled system

class-in-state A class restricted to being in a given state

classifier role A classifier restricted to a particular usage
in a collaboration

component A physical piece of a system

data type A descriptor of a set of primitive values that
lack identity

interface A named set of operations that characterize
behavior

node A computational resource

signal An asynchronous communication among
objects

subsystem A package that is treated as a unit with a
specification, implementation, and identity

use case A specification of the behavior of an entity
in its interaction with outside agents

Name

Name[S]

role:Name

Name

Iname

«signal»

«subsystem»

44 Part 2 • UML Concepts
notation for a class is a rectangle with compartments for the name of the class, at-
tributes, and operations, as shown in Figure 4-1.

A set of classes may use the generalization relationship and the inheritance
mechanism built on it to share common pieces of state and behavior description.
Generalization relates more specific classes (subclasses) to more general classes
(superclasses) that contain properties common to several subclasses. A class may
have zero or more parents (superclasses) and zero or more children (subclasses). A
class inherits state and behavior descriptions from its parents and other ancestors,
and it defines state and behavior descriptions that its children and other descen-
dants inherit.

A class has a unique name within its container, which is usually a package but is
sometimes another class. The class has a visibility with respect to its container; the
visibility specifies how it may be used by other classes outside the container. A
class has a multiplicity that specifies how many instances of it may exist. Most of-
ten, this is many (zero or more, without explicit limit), but singleton classes occur
for which a single instance exists during execution.

Interface. An interface is the description of behavior of objects without giving
their implementation or state; an interface contains operations but not attributes,
and it does not have outgoing associations that are visible to it. One or more
classes or components may realize an interface, and each class implements the op-
erations found in the interface.

Data type. A data type is the description of primitive values that lack identity (in-
dependent existence and the possibility of side effects). Data types include num-
bers, strings, and enumerated values. Data types are passed by value and are
immutable entities. A data type has no attributes but may have operations. Opera-
tions do not modify data values, but they may return data values as results.

Figure 4-1. Class notation

Subscription

series: String
priceCategory: Category
number: Integer

cost (): Money
reserve (series: String, level: SeatLevel)
cancel ()

class name

attributes

operations

Chapter 4 • Static View 45
Levels of meaning. Classes can exist at several levels of meaning in a model, in-
cluding the analysis, design, and implementation levels. When representing real-
world concepts, it is important to capture the real-world state, relationships, and
behavior. But implementation concepts, such as information hiding, efficiency,
visibility, and methods, are not relevant real-world concepts (they are relevant de-
sign concepts). Many potential properties of a class are simply irrelevant at this
level. An analysis-level class represents a logical concept in the application domain
or in the application itself. The analysis model should be a minimal representation
of the system being modeled, sufficient to capture the essential logic of the system
without getting into issues of performance or construction.

When representing a high-level design, concepts such as localization of state to
particular classes, efficiency of navigating among objects, separation of external
behavior and internal implementation, and specification of the precise operations
are relevant to a class. A design-level class represents the decision to package state
information and the operations on it into a discrete unit. It captures the key design
decision, the localization of information and functionality to objects. Design-level
classes contain both real-world content and computer system content.

Finally, when representing programming-language code, the form of a class
closely matches the chosen programming language, and some abilities of a general
class may be forgone if they have no direct implementation in the language. An
implementation-level class maps directly into programming-language code.

The same system can contain more than one level of class; implementation-
oriented classes may realize the more logical classes in the model. An implementa-
tion class represents the declaration of a class as found in a particular program-
ming language. It captures the exact form of a class, as needed by the language. In
many cases, however, analysis, design, and implementation information can be
nested into a single class.

Relationships

Relationships among classifiers are association, generalization, flow, and various
kinds of dependency, including realization and usage (see Table 4-2).

The association relationship describes semantic connections among individual
objects of given classes. Associations provide the connections with which objects
of different classes can interact. The remaining relationships relate the descrip-
tions of classifiers themselves, not their instances.

The generalization relationship relates general descriptions of parent classifiers
(superclasses) to more specialized child classifiers (subclasses). Generalization fa-
cilitates the description of classifiers out of incremental declaration pieces, each of
which adds to the description inherited from its ancestors. The inheritance mech-
anism constructs complete descriptions of classifiers from incremental descrip-
tions using generalization relationships. Generalization and inheritance permit

46 Part 2 • UML Concepts
different classifiers to share the attributes, operations, and relationships that they
have in common, without repetition.

The realization relationship relates a specification to an implementation. An in-
terface is a specification of behavior without implementation; a class includes im-
plementation structure. One or more classes may realize an interface, and each
class implements the operations found in the interface.

The flow relationship relates two versions of an object at successive times. It rep-
resents a transformation of the value, state, or location of an object. The flow rela-
tionship may connect classifier roles in an interaction. Varieties of flow are become
(two versions of the same object) and copy (a new object created from an existing
object).

The dependency relationship relates classes whose behavior or implementation
affects other classes. There are several kinds of dependency in addition to realiza-
tion, including trace (a loose connection among elements in different models), re-
finement (a mapping between two levels of meaning), usage (a requirement for

Table 4-2: Kinds of Relationships

Relationship Function Notation

association A description of a connection among
instances of classes

dependency A relationship between two model elements

flow A relationship between two versions of an
object at successive times

generalization A relationship between a more general
description and a more specific variety of
the general thing, used for inheritance

realization Relationship between a specification and its
implementation

usage A situation in which one element requires
another for its correct functioning

Chapter 4 • Static View 47
the presence of another element within a single model), and binding (the assign-
ment of values to template parameters). Usage dependency is frequently used to
represent implementation relationships, such as code-level relationships. Depen-
dency is particularly useful when summarized on model organization units, such
as packages, on which it shows the architectural structure of a system. Compila-
tion constraints can be shown by dependencies, for example.

Associations

An association describes discrete connections among objects or other instances in
a system. An association relates an ordered list (tuple) of two or more classifiers,
with repetitions permitted. The most common kind of association is a binary as-
sociation between a pair of classifiers. An instance of an association is a link. A link
comprises a tuple (an ordered list) of objects, each drawn from its corresponding
class. A binary link comprises a pair of objects.

Associations carry information about relationships among objects in a system.
As a system executes, links among objects are created and destroyed. Associations
are the “glue” that ties a system together. Without associations, there are nothing
but isolated classes that don’t work together.

Figure 4-2. Association notation

Subscription

Reservation

∗

0..1source

tickets

multiplicityrolename

binary association

next

previous

self association
0..1

0..1

Priority
association name

participating class

48 Part 2 • UML Concepts
A single object may be associated with itself if the same class appears more than
once in an association. If the same class appears twice in an association, the two
instances do not have to be the same object, and usually they are not.

Each connection of an association to a class is called an association end. Most
information about an association is attached to one of its ends. Association ends
can have names (rolenames) and visibility. The most important property they
have is multiplicity—how many instances of one class can be related to one in-
stance of the other class. Multiplicity is most useful for binary associations because
its definition for n-ary associations is complicated.

The notation for a binary association is a line or path connecting the participat-
ing classes. The association name is placed along the line with the rolename and
multiplicity at each end, as shown in Figure 4-2.

An association can also have attributes of its own, in which case it is both an as-
sociation and a class—an association class (see Figure 4-3). If an association at-
tribute is unique within a set of related objects, then it is a qualifier (see
Figure 4-4). A qualifier is a value that selects a unique object from the set of related
objects across an association. Lookup tables and arrays may be modeled as quali-
fied associations. Qualifiers are important for modeling names and identification
codes. Qualifiers also model indexes in a design model.

Figure 4-3. Association class

Figure 4-4. Qualified association

Organization Person
donor

∗ ∗

DonationLevel

yearAmount: Money
lifeAmount: Money

association class (all one element)

participating class

association attributes

Show Ticket
sale

0..1
performance: Date
seat: SeatNumber 1

qualifier

Sales

qualified associationparticipating class

qualifier attributes qualified multiplicity

Chapter 4 • Static View 49
During analysis, associations represent logical relationships among objects.
There is no great need to impose direction or to be concerned about how to imple-
ment them. Redundant associations should be avoided because they add no logi-
cal information. During design, associations capture design decisions about data
structure, as well as separation of responsibilities among classes. Directionality of
associations is important, and redundant associations may be included for effi-
ciency of object access, as well as to localize information in a particular class.
Nevertheless, at this stage of modeling, associations should not be equated with
C++ pointers. A navigable association at the design stage represents state informa-
tion available to a class, but it can be mapped into programming-language code in
various ways. The implementation can be a pointer, a container class embedded in
a class, or even a completely separate table object. Other kinds of design properties
include visibility and changeability of links. Figure 4-5 shows some design proper-
ties of associations.

Aggregation and composition. An aggregation is an association that represents a
part-whole relationship. It is shown by a hollow-diamond adornment on the end
of the path attached to the aggregate class. A composition is a stronger form of as-
sociation in which the composite has sole responsibility for managing its parts—
such as their allocation and deallocation. It is shown by a filled-diamond adorn-
ment on the composite end. There is a separate association between each class rep-
resenting a part and the class representing the whole, but for convenience the
paths attached to the whole may be joined together so that the entire set of associ-
ations is drawn as a tree. Figure 4-6 shows an aggregate and a composite.

Links. An instance of an association is a link. A link is an ordered list of object ref-
erences, each of which must be an instance of the corresponding class in the

Figure 4-5. Design properties of association

Person Address
address

1

TransactionEntry
history

∗ {ordered, addOnly}

1
navigability direction

changeability constraintordering property

50 Part 2 • UML Concepts
association or an instance of a descendant of the class. The links in a system con-
stitute part of the system state. Links do not exist independently of objects; they
take their identity from the objects they relate (in database terms, the list of objects
is the key for the link). Conceptually, an association is distinct from the classes that
it relates. In practice, associations are often implemented using pointers in the
participating classes, but they can be implemented as container objects separate
from the classes they connect.

Bidirectionality. The different ends of an association are distinguishable, even if
two of them involve the same class. This simply means that different objects of the
same class can be related. Because the ends are distinguishable, an association is
not symmetric (except in special cases); the ends cannot be interchanged. This is
only common sense in ordinary discourse; the subject and the object of a verb are
not interchangeable. An association is sometimes said to be bidirectional. This
means that the logical relationships work both ways. This statement is frequently
misunderstood, even by some methodologists. It does not mean that each class
“knows” the other class, or that, in an implementation, it is possible to access each
class from the other. It simply means that any logical relationship has an inverse,
whether or not the inverse is easy to compute. To assert the ability to traverse an
association in one direction but not the other as a design decision, associations
can be marked with navigability.

Why is the basic model relational, rather than the pointer model prevalent in
programming languages? The reason is that a model attempts to capture the intent
behind an implementation. If a relationship between two classes is modeled as a
pair of pointers, the pointers are nevertheless related. The association approach
acknowledges that relationships are meaningful in both directions, regardless of
how they are implemented. It is simple to convert an association into a pair of
pointers for implementation, but very difficult to recognize that two pointers are
inverses of each other unless this fact is part of the model.

Figure 4-6. Aggregation and composition

Order

LineItemCustomerInfo

composite

parts

∗1

1

Subscription

Performance

∗

∗ 1

parts

aggregate

Chapter 4 • Static View 51
Generalization

The generalization relationship is a taxonomic relationship between a more gen-
eral description and a more specific description that builds on it and extends it.
The more specific description is fully consistent with the more general one (it has
all its properties, members, and relationships) and may contain additional infor-
mation. For example, a mortgage is a more specific kind of loan. A mortgage keeps
the basic characteristics of a loan but adds additional characteristics, such as a
house as security for the loan. The more general description is called the parent;
an element in the transitive closure is an ancestor. The more specific description is
called the child; an element in the transitive closure is a descendant. In the exam-
ple, Loan is the parent class and Mortgage is the child class. Generalization is used
for classifiers (classes, interfaces, data types, use cases, actors, signals, and so on),
packages, state machines, and other elements. For classes, the term superclass and
subclass are used for parent and child.

A generalization is drawn as an arrow from the child to the parent, with a large
hollow triangle on the end connected to the parent (Figure 4-7). Several generali-
zation relationships can be drawn as a tree with one arrowhead branching into
several lines to the children.

Purpose of generalization. Generalization has two purposes. The first is to define
the conditions under which an instance of one class (or other element) can be
used when a variable (such as a parameter or procedure variable) is declared as
holding values of a given class. This is called the substitutability principle (from

Figure 4-7. Generalization notation

Order

date: Date

confirm()

MailOrder

confirm()

dateFilled: Date

BoxOfficeOrder

confirm()

hold: Boolean

generalization

superclass (parent)

subclass (child)

abstract operation

52 Part 2 • UML Concepts
Barbara Liskov). The rule is that an instance of a descendant may be used wher-
ever the ancestor is declared. For example, if a variable is declared to hold loans,
then a mortgage object is a legal value.

Generalization enables polymorphic operations—that is, operations whose im-
plementation (method) is determined by the class of object they are applied to
rather than being explicitly stated by the caller. This works because a parent class
may have many possible children, each of which implements its own variation of
an operation, which is defined across the entire set of classes. For example, com-
puting interest would work differently for a mortgage and an automobile loan, but
each of them is a variation on computing interest on the parent Loan class. A vari-
able is declared to hold the parent class, and then an object of any child class can
be used, any of which has its own particular operations. This is particularly useful
because new classes can be added later, without the need to modify existing poly-
morphic calls. For example, a new kind of loan could be added later, and existing
code that uses the compute interest operation would still work. A polymorphic
operation can be declared without an implementation in a parent class with the
intent that an implementation must be supplied by each descendant class. Such an
incomplete operation is abstract (shown by italicizing its name).

The other purpose of generalization is to permit the incremental description of
an element by sharing the descriptions of its ancestors. This is called inheritance.
Inheritance is the mechanism by which a description of the objects of a class is as-
sembled out of declaration fragments from the class and its ancestors. Inheritance
permits shared parts of the description to be declared once and shared by many
classes, rather than be repeated in each class that uses it. This sharing reduces the
size of a model. More importantly, it reduces the number of changes that must be
made on an update to the model and reduces the chance of accidental inconsis-
tency. Inheritance works in a similar way for other kinds of elements, such as
states, signals, and use cases.

Inheritance

Each kind of generalizable element has a set of inheritable properties. For any
model element, these include constraints. For classifiers, they also include features
(attributes, operations, and signal reception) and participation in associations. A
child inherits all the inheritable properties of all its ancestors. Its complete set of
properties is the set of inherited properties together with the properties that it de-
clares directly.

For a classifier, no attribute with the same signature may be declared more than
once (directly or inherited). Otherwise, there is a conflict, and the model is ill
formed. In other words, an attribute declared in an ancestor may not be redeclared
in a descendant. An operation may be declared in more than one classifier, pro-
vided the specifications are consistent (same parameters, constraints, and mean-

Chapter 4 • Static View 53
ing). Additional declarations are simply redundant. A method may be declared by
multiple classes in a hierarchy. A method attached to a descendant supersedes and
replaces (overrides) a method with the same signature declared in any ancestor. If
two or more distinct copies of a method are nevertheless inherited by a class (via
multiple inheritance from different classes), then they conflict and the model is ill
formed. (Some programming languages permit one of the methods to be explic-
itly chosen. We find it simpler and safer just to redefine the method in the child
class.) Constraints on an element are the union of the constraints on the element
itself and all its ancestors; if any of them is inconsistent, then the model is ill
formed.

In a concrete class, each inherited or declared operation must have a method
defined, either directly or by inheritance from an ancestor.

Multiple inheritance

If a classifier has more than one parent, it inherits from each one (Figure 4-8). Its
features (attributes, operations, and signals) are the union of those of its parents.
If the same class appears as an ancestor by more than one path, it nevertheless
contributes only one copy of each of its members. If a feature with the same signa-
ture is declared by two classes that do not inherit it from a common ancestor (in-
dependent declarations), then the declarations conflict and the model is ill
formed. UML does not provide a conflict resolution rule for this situation because
experience has shown that the designer should explicitly resolve it. Some

Figure 4-8. Multiple inheritance

TimeStampedReservation

Reservation

targetDate: Date
TimeStampedTransaction

stamp()

received: Timenumber: Integer

confirm()

This class inherits the attributes
and operations of both of
its parents.

No new features are needed by the child.

parent

child

parent

54 Part 2 • UML Concepts
languages, such as Eiffel, permit conflicts to be explicitly resolved by the program-
mer, which is much safer than implicit conflict resolution rules, which frequently
lead to surprises for the developer.

Single and multiple classification

In the simplest formulation, an object has one direct class. Many object-oriented
languages have that restriction. There is no logical necessity that an object have a
single class—we typically look at real-world objects from many angles simulta-
neously. In the more general formulation of UML, an object may have one or
more direct classes. The object behaves as if it belonged to an implicit class that
was a child of each of the direct classes—effectively, multiple inheritance without
the need to actually declare the new class.

Static and dynamic classification

In the simplest formulation, an object may not change its class after it is created.
Again, there is no logical necessity for this restriction. It is primarily intended to
make the implementation of object-oriented programming languages easier. In
the more general formulation, an object may change its direct class dynamically.
In doing so, it may lose or gain attributes or associations. If it loses them, the in-
formation in them is lost and cannot be recovered later, even if it changes back to
the original class. If it gains attributes or associations, then they must be initialized
at the time of the change, in a similar manner to the initialization of a new object.

When multiple classification is combined with dynamic classification, an object
can gain and lose classes during its life. The dynamic classes are sometimes called
roles or types. One common modeling pattern is to require that each object have a
single static inherent class (one that cannot change during the life of the object)
plus zero or more role classes that may be added or removed over the lifetime of
the object. The inherent class describes its fundamental properties, and the role
classes describe properties that are transient. Although many programming lan-
guages do not support multiple dynamic classification in the class declaration hi-
erarchy, it is nevertheless a valuable modeling concept that can be mapped into
associations.

Realization

The realization relationship connects a model element, such as a class, to another
model element, such as an interface, that supplies its behavioral specification but
not its structure or implementation. The client must support (by inheritance or by
direct declaration) at least all the operations that the supplier has. Although real-
ization is meant to be used with specification elements, such as interfaces, it can
also be used with a concrete implementation element to indicate that its specifica-

Chapter 4 • Static View 55
tion (but not its implementation) must be supported. This might be used to show
the relationship of an optimized version of a class to a simpler but inefficient ver-
sion, for example.

Both generalization and realization relate a more general description to more
detailed versions of it. Generalization relates two elements at the same semantic
level (at the same level of abstraction, for example), usually within the same
model; realization relates two elements at different semantic levels (an analysis
class and a design class, for example, or an interface and a class), often found in
different models. There may be two or more entire class hierarchies at different
stages of development whose elements are related by realization. The two hierar-
chies need not have the same form because the realizing classes may have imple-
mentation dependencies that are not relevant to the specifying classes.

Realization is displayed as a dashed arrow with a closed hollow arrowhead
(Figure 4-9). It is similar to the generalization symbol with a dashed line, to indi-
cate that it is similar to a kind of inheritance.

Figure 4-9. Realization relationship

Figure 4-10. Interface and realization icons

«interface»
ChoiceBlock

PopUpMenu

RadioButtonArray
setDefault (choice: Choice)
getChoice (): Choice

Choice

1..∗ choice

Button

String

setDefault (choice: Button)
getChoice(): Button

1..∗ choice

1..∗choice

setDefault (choice: Button)
getChoice(): Button

realization relationship

specifier implementation

PrintServer
SubmitJob

CheckStatus

SetPrintProperties

realization
interface class

interface name

56 Part 2 • UML Concepts
There is a special collapsed notation to show interfaces (without their contents)
and the classes or components that realize them. The interface is shown as a small
circle attached to the classifier rectangle by a solid line (Figure 4-10).

Dependencies

A dependency indicates a semantic relationship between two or more model ele-
ments. It relates the model elements themselves and does not require a set of in-
stances for its meaning. It indicates a situation in which a change to the supplier
element may require a change to or indicate a change in meaning of the client ele-
ment in the dependency.

The association and generalization relationships are dependencies by this defi-
nition, but they have specific semantics with important consequences. Therefore,
they have their own names and detailed semantics. We normally use the word de-
pendency for all the other relationships that don’t fit the sharper categories.
Table 4-3 lists the kinds of dependency found in the UML base model.

A trace is a conceptual connection among elements in different models, often
models at different stages of development. It lacks detailed semantics. It is typically
used to trace system requirements across models and to keep track of changes
made to models that may affect other models.

A refinement is a relationship between two versions of a concept at different
stages of development or at different levels of abstraction. The two concepts are
not meant to coexist in the final detailed model. One of them is usually a less fin-
ished version of the other. In principle, there is a mapping from the less finished
concept to the more finished concept. This does not mean that translation is auto-
matic. Usually, the more detailed concept contains design decisions that have been
made by the designer, decisions that might be made in many ways. In principle,
changes to one model could be validated against the other, with deviations flagged.
In practice, tools cannot do all this today, although some simpler mappings can be
enforced. Therefore a refinement is mostly a reminder to the modeler that multi-
ple models are related in a predictable way.

A derivation dependency indicates that one element can be computed from an-
other element (but the derived element may be explicitly included in the system to
avoid a costly recomputation). Derivation, realization, refinement, and trace are
abstraction dependencies—they relate two versions of the same underlying thing.

A usage dependency is a statement that the behavior or implementation of one
element affects the behavior or implementation of another element. Frequently,
this comes from implementation concerns, such as compiler requirements that the
definition of one class is needed to compile another class. Most usage dependen-
cies can be derived from the code and do not need to be explicitly declared, unless
they are part of a top-down design style that constrains the organization of the
system (for example, by using predefined components and libraries). The specific

Chapter 4 • Static View 57
Table 4-3: Kinds of Dependencies

Dependency Function Keyword

access Permission for a package to access the con-
tents of another package

access

binding Assignment of values to the parameters of a
template to generate a new model element

bind

call Statement that a method of one class calls
an operation of another class

call

derivation Statement that one instance can be com-
puted from another instance

derive

friend Permission for an element to access the
contents of another element regardless of
visibility

friend

import Permission for a package to access the con-
tents of another package and add aliases of
their names to the importer’s namespace

import

instantiation Statement that a method of one class cre-
ates instances of another class

instantiate

parameter Relationship between an operation and its
parameters

parameter

realization Mapping between a specification and an
implementation of it

realize

refinement Statement that a mapping exists between
elements at two different semantic levels

refine

send Relationship between the sender of a signal
and the receiver of the signal

send

trace Statement that some connection exists
between elements in different models, but
less precise than a mapping

trace

usage Statement that one element requires the
presence of another element for its correct
functioning (includes call, instantiation,
parameter, send, but open to other kinds)

use

58 Part 2 • UML Concepts
kind of usage dependency can be specified, but this is often omitted because the
purpose of the relationship is to highlight the dependency. The exact details can
often be obtained from the implementation code. Stereotypes of usage include call
and instantiation. The call dependency indicates that a method on one class calls
an operation on another class; instantiation indicates that a method on one class
creates an instance of another class.

Several varieties of usage dependency grant permission for elements to access
other elements. The access dependency permits one package to see the contents of
another package. The import dependency goes further and adds the names of the
target package contents to the namespace of the importing package. The friend
dependency is an access dependency that permits the client to see even the private
contents of the supplier.

A binding is the assignment of values to the parameters of a template. It is a
highly structured relationship with precise semantics obtained by substituting the
arguments for the parameters in a copy of the template.

Usage and binding dependencies involve strong semantics among elements at
the same semantic level. They must connect elements in the same level of model
(both analysis or both design, and at the same level of abstraction). Trace and re-
finement dependencies are vaguer and can connect elements from different mod-
els or levels of abstraction.

The instance of relationship (a metarelationship, not strictly a dependency) in-
dicates that one element (such as an object) is an instance of another element
(such as a class).

A dependency is drawn as a dashed arrow from the client to the supplier, with a
stereotype keyword to distinguish its kind, as shown in Figure 4-11.

Constraint

UML supplies a set of concepts and relationships for modeling systems as graphs
of modeling elements. Some things, however, are better expressed linguistically—
that is, using the power of a textual language. A constraint is a Boolean expression
represented as a string to be interpreted in a designated language. Natural lan-
guage, set theoretic notation, constraint languages, or various programming lan-

Figure 4-11. Dependencies

BoxOffice SchedulingEngine
«use»

dependency

keyword for

client supplier

dependency type

Chapter 4 • Static View 59
guages may be used to express constraints. The UML includes the definition of a
constraint language, called OCL, that is convenient for expressing UML con-
straints and is expected to be widely supported. See the entry for OCL and the
book [Warmer-99] for more information on OCL.

Constraints can be used to state various nonlocal relationships, such as restric-
tions on paths of associations. In particular, constraints can be used to state exist-
ence properties (there exists an X such that condition C is true) and universal
properties (for all y in Y, condition D must be true).

Some standard constraints are predefined as UML standard elements, including
associations in an exclusive-or relationship and various constraints on the rela-
tionships of subclasses in generalization.

See Chapter 14, Standard Elements, for more information.
A constraint is shown as a text expression in braces. It may be written in a for-

mal language or natural language. The text string may be placed in a note or at-
tached to a dependency arrow. Figure 4-12 shows some constraints.

Instances

An instance is a run-time entity with identity, that is, something that can be dis-
tinguished from other run-time entities. It has a value at any moment in time.
Over time the value can change in response to operations on it.

One purpose of a model is to describe the possible states of a system and their
behavior. A model is a statement of potentiality, of the possible collections of ob-
jects that might exist and the possible behavior history that the objects might un-
dergo. The static view defines and constrains the possible configurations of values

Figure 4-12. Constraints

Member-of

Chair-of

{subset}Person Committee

Person Company
boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

* *

*

*

* 0..1

1

Represents
an incorporated entity.

constraint on single class

constraint as note

constraint on path

constraint between associations

note

60 Part 2 • UML Concepts
that an executing system may assume. The dynamic view defines the ways in which
an executing system may pass from one configuration to another. Together, the
static view and the various dynamic views based on it define the structure and be-
havior of a system.

A particular static configuration of a system at one instant is called a snapshot.
A snapshot comprises objects and other instances, values, and links. An object is
an instance of a class. Each object is a direct instance of the class that completely
describes it and an indirect instance of the ancestors of that class. (If multiple clas-
sification is allowed, then an object may be the direct instance of more than one
class.) Similarly, each link is an instance of an association, and each value is an in-
stance of a data type.

An object has one data value for each attribute in its class. The value of each at-
tribute must be consistent with the data type of the attribute. If the attribute has
optional or multiple multiplicity, then the attribute may hold zero or multiple val-
ues. A link comprises a tuple of values, each of which is a reference to an object of
a given class (or one of its descendants). Objects and links must obey any con-
straints on the classes or associations of which they are instances (including both
explicit constraints and built-in constraints, such as multiplicity).

The state of a system is a valid system instance if every instance in it is an in-
stance of some element in a well-formed system model and if all the constraints
imposed by the model are satisfied by the instances.

The static view defines the set of objects, values, and links that can exist in a sin-
gle snapshot. In principle, any combination of objects and links that is consistent
with a static view is a possible configuration of the model. This does not mean that
every possible snapshot can or will occur. Some snapshots may be legal statically
but may not be dynamically reachable under the dynamic views in the system.

The behavioral parts of UML describe the valid sequences of snapshots that
may occur as a result of both external and internal behavioral effects. The dynamic
views define how the system moves from one snapshot to another.

Object diagram

A diagram of a snapshot is an image of a system at a point in time. Because it con-
tains images of objects, it is called an object diagram. It can be useful as an exam-
ple of the system, for example, to illustrate complicated data structures or to show
behavior through a sequence of snapshots over time (Figure 4-13). Remember
that all snapshots are examples of systems, not definitions of systems. The defini-
tion of system structure and behavior is found in the definitional views, and con-
structing the definitional views is the goal of modeling and design.

The static view describes the possible instances that can occur. Actual instances
do not usually appear directly in models, except as examples.

Chapter 4 • Static View 61
Figure 4-13. Object diagram

triangle: Polygon

point1: Point

x = 0.0
y = 1.0

point2: Point

x = 3.0
y = 1.0

point3: Point

x = 3.0
y = 5.0

object

linkPartOf PartOf PartOf

attribute values

object

object name

5
Use Case View

Overview

The use case view captures the behavior of a system, subsystem, or class as it ap-
pears to an outside user. It partitions the system functionality into transactions
meaningful to actors—idealized users of a system. The pieces of interactive func-
tionality are called use cases. A use case describes an interaction with actors as a
sequence of messages between the system and one or more actors. The term actor
includes humans, as well as other computer systems and processes. Figure 5-1
shows a use case diagram for a telephone catalog sales application. The model has
been simplified as an example.

Actor

An actor is an idealization of an external person, process, or thing interacting with
a system, subsystem, or class. An actor characterizes the interactions that outside
users may have with the system. At run time, one physical user may be bound to
multiple actors within the system. Different users may be bound to the same actor
and therefore represent multiple instances of the same actor definition.

Each actor participates in one or more use cases. It interacts with the use case
(and therefore with the system or class that owns the use case) by exchanging mes-
sages. The internal implementation of an actor is not relevant in the use case; an
actor may be characterized sufficiently by a set of attributes that define its state.

Actors may be defined in generalization hierarchies, in which an abstract actor
description is shared and augmented by one or more specific actor descriptions.

An actor may be a human, another computer system, or some executable pro-
cess.

An actor is drawn as a small stick person with the name below it.
63

64 Part 2 • UML Concepts
Use Case

A use case is a coherent unit of externally visible functionality provided by a sys-
tem unit and expressed by sequences of messages exchanged by the system unit
and one or more actors of the system unit. The purpose of a use case is to define a
piece of coherent behavior without revealing the internal structure of the system.
The definition of a use case includes all the behavior it entails—the mainline se-
quences, different variations on normal behavior, and all the exceptional condi-
tions that can occur with such behavior, together with the desired response. From
the user’s point of view, these may be abnormal situations. From the system’s
point of view, they are additional variations that must be described and handled.

In the model, the execution of each use case is independent of the others, al-
though an implementation of the use cases may create implicit dependencies
among them due to shared objects. Each use case represents an orthogonal piece
of functionality whose execution can be mixed with the execution of other use
cases.

The dynamics of a use case may be specified by UML interactions, shown as
statechart diagrams, sequence diagrams, collaboration diagrams, or informal text
descriptions. When use cases are implemented, they are realized by collaborations

Figure 5-1. Use case diagram

Customer

Supervisor

Salespersonplace
order

establish
credit

check
status

Telephone Catalog

fill orders

Shipping Clerk

actor

use case

system boundary

actor-use case
 communication

system name

use case name

Chapter 5 • Use Case View 65
among classes in the system. One class may participate in multiple collaborations
and therefore in multiple use cases.

At the system level, use cases represent external behavior of the entire system as
visible to outside users. A use case is like a system operation, an operation invoca-
ble by an outside user. Unlike an operation, however, a use case can continue to re-
ceive input from its actors during its execution. Use cases can also be applied
internally to smaller units of a system, such as subsystems and individual classes.
An internal use case represents behavior that a part of the system presents to the
rest of the system. For example, a use case for a class represents a coherent chunk
of functionality that a class provides to other classes that play certain roles within
the system. A class can have more than one use case.

A use case is a logical description of a slice of system functionality. It is not a
manifest construct in the implementation of a system. Instead, each use case must
be mapped onto the classes that implement a system. The behavior of the use case
is mapped onto the transitions and operations of the classes. Inasmuch as a class
can play multiple roles in the implementation of a system, it may therefore realize
portions of multiple use cases. Part of the design task is to find implementation
classes that cleanly combine the proper roles to implement all the use cases, with-
out introducing unnecessary complications. The implementation of a use case can
be modeled as a set of one or more collaborations. A collaboration is a realization
of a use case.

A use case can participate in several relationships, in addition to association
with actors (Table 5-1).

Table 5-1: Kinds of Use Case Relationships

Relationship Function Notation

association The communication path between an actor
and a use case that it participates in

extend The insertion of additional behavior into a
base use case that does not know about it

use case generali-
zation

A relationship between a general use case
and a more specific use case that inherits
and adds features to it

include The insertion of additional behavior into a
base use case that explicitly describes the
insertion

«extend»

«include»

66 Part 2 • UML Concepts
A use case is drawn as an ellipse with its name inside or below it. It is connected
by solid lines to actors that communicate with it.

Although each use case instance is independent, the description of a use case
can be factored into other, simpler use cases. This is similar to the way the descrip-
tion of a class can be defined incrementally from the description of a superclass. A
use case can simply incorporate the behavior of other use cases as fragments of its
own behavior. This is called an include relationship. In this case, the new use case
is not a special case of the original use case and cannot be substituted for it.

A use case can also be defined as an incremental extension to a base use case.
This is called an extend relationship. There may be several extensions of the same
base use case that may all be applied together. The extensions to a base use case
add to its semantics; it is the base use case that is instantiated, not the extension
use cases.

The include and extend relationships are drawn as dashed arrows with the key-
word «include» or «extend». The include relationship points at the use case to be
included; the extend relationship points at the use case to be extended.

A use case can also be specialized into one or more child use cases. This is use
case generalization. Any child use case may be used in a situation in which the par-
ent use case is expected.

Use case generalization is drawn the same as any generalization, as a line from
the child use case to the parent use case with a large triangular arrowhead on the
parent end. Figure 5-2 shows use case relationships in the catalog sales application.

Figure 5-2. Use case relationships

Place Order

Order
Product

Supply
Customer

Data

Arrange
Payment

«include»
«include»«include»

Request
Catalog

«extend»base use case

extension use case

inclusion use cases

Pay
Cash

Arrange
Credit

parent use case

child use case

6
State Machine View

Overview

The state machine view describes the dynamic behavior of objects over time by
modeling the lifecycles of objects of each class. Each object is treated as an isolated
entity that communicates with the rest of the world by detecting events and re-
sponding to them. Events represent the kinds of changes that an object can de-
tect—the receipt of calls or explicit signals from one object to another, a change in
certain values, or the passage of time. Anything that can affect an object can be
characterized as an event. Real-world happenings are modeled as signals from the
outside world to the system.

A state is a set of object values for a given class that have the same qualitative re-
sponse to events that occur. In other words, all objects with the same state react in
the same general way to an event, so all objects in a given state execute the same
action when they receive the same event. Objects in different states, however, may
react differently to the same event, by performing different actions. For example,
an automatic teller machine reacts to the cancel button one way when it is process-
ing a transaction and another way when it is idle.

State machines describe the behavior of classes, but they also describe the dy-
namic behavior of use cases, collaborations, and methods. For one of these ob-
jects, a state represents a step in its execution. We talk mostly in terms of classes
and objects in describing state machines, but they can be applied to other elements
in a straightforward way.

State Machine

A state machine is a graph of states and transitions. Usually a state machine is at-
tached to a class and describes the response of an instance of the class to events
that it receives. State machines may also be attached to operations, use cases, and
collaborations to describe their execution.
67

68 Part 2 • UML Concepts
A state machine is a model of all possible life histories of an object of a class. The
object is examined in isolation. Any external influence from the rest of the world is
summarized as an event. When the object detects an event, it responds in a way
that depends on its current state. The response may include the execution of an ac-
tion and a change to a new state. State machines can be structured to inherit tran-
sitions, and they can model concurrency.

A state machine is a localized view of an object, a view that separates it from the
rest of the world and examines its behavior in isolation. It is a reductionist view of
a system. This is a good way to specify behavior precisely, but often it is not a good
way to understand the overall operation of a system. For a better idea of the
system-wide effects of behavior, interaction views are often more useful. State ma-
chines are useful for understanding control mechanisms, however, such as user in-
terfaces and device controllers.

Event

An event is a noteworthy occurrence that has a location in time and space. It oc-
curs at a point in time; it does not have duration. Model something as an event if
its occurrence has consequences. When we use the word event by itself, we usually
mean an event descriptor—that is, a description of all the individual event occur-
rences that have the same general form, just as the word class means all the indi-
vidual objects that have the same structure. A specific occurrence of an event is
called an event instance. Events may have parameters that characterize each indi-
vidual event instance, just as classes have attributes that characterize each object.
As with classes, signals can be arranged in generalization hierarchies to share com-
mon structure. Events can be divided into various explicit and implicit kinds: sig-
nal events, call events, change events, and time events. Table 6-1 is a list of event
types and their descriptions.

Table 6-1: Kinds of Events

Event Type Description Syntax

call event Receipt of an explicit synchronous request
among objects that waits for a response

op (a:T)

change event A change in value of a Boolean expression when (exp)

signal event Receipt of an explicit, named, asynchro-
nous communication among objects

sname (a:T)

time event The arrival of an absolute time or the pas-
sage of a relative amount of time

after (time)

Chapter 6 • State Machine View 69
Signal event. A signal is a named entity that is explicitly intended as a communi-
cation vehicle between two objects; the reception of a signal is an event for the re-
ceiving object. The sending object explicitly creates and initializes a signal instance
and sends it to one or a set of explicit objects. Signals embody asynchronous one-
way communication, the most fundamental kind. The sender does not wait for the
receiver to deal with the signal but continues with its own work independently. To
model two-way communication, multiple signals can be used, at least one in each
direction. The sender and the receiver can be the same object.

Signals may be declared in class diagrams as classifiers, using the keyword
«signal»; the parameters of the signal are declared as attributes. As classifiers, sig-
nals can have generalization relationships. Signals may be children of other sig-
nals; they inherit the parameters of their parents, and they trigger transitions that
depend on the parent signal (Figure 6-1).

Figure 6-1. Signal hierarchy

UserInput
device

Mouse

location

Button
Keyboard
Character

character

InputEvent

time

Control Graphic

PunctuationAlphanumericSpace

Mouse Mouse
Button
Down

Button
Up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»

Character Character

abstract signal

concrete signals

70 Part 2 • UML Concepts
Call event. A call event is the reception of a call by an object that chooses to imple-
ment an operation as a state machine transition rather than as a fixed procedure.
To the caller, an ordinary call (implemented by a method) is indistinguishable
from a call event. The receiver chooses whether an operation will be implemented
as a method or a call event trigger in a state machine. The parameters of the oper-
ation are the parameters of the event. Once the receiving object processes the call
event by taking a transition triggered by the event or failing to take any transition,
control returns to the calling object. Unlike an ordinary call, however, the receiver
of a call event may continue its own execution in parallel with the caller.

Change event. A change event is the satisfaction of a Boolean expression that de-
pends on certain attribute values. This is a declarative way to wait until a condition
is satisfied, but it must be used with care, because it represents a continuous and
potentially nonlocal computation (action at a distance, because the value or values
tested may be distant). This is both good and bad. It is good because it focuses the
model on the true dependency—an effect that occurs when a given condition is
satisfied—rather than on the mechanics of testing the condition. It is bad because
it obscures the cause-and-effect relationship between the action that changes an
underlying value and the eventual effect. The cost of testing a change event is po-
tentially large, because in principle it is continuous. In practice, however, there are
ways to avoid unnecessary computation. Change events should be used only when
a more explicit form of communication is unnatural.

Note the difference between a guard condition and a change event. A guard con-
dition is evaluated once when the trigger event on the transition occurs and the re-
ceiver handles the event. If it is false, the transition does not fire and the condition
is not reevaluated. A change event is evaluated continuously until it becomes true,
at which time the transition fires.

Time event. Time events represent the passage of time. A time event can be speci-
fied either in absolute mode (time of day) or relative mode (time elapsed since a
given event). In a high-level model, time events can be thought of as events from
the universe; in an implementation model, they are caused by signals from some
specific object, either the operating system or an object in the application.

State

A state describes a period of time during the life of an object of a class. It can be
characterized in three complementary ways: as a set of object values that are quali-
tatively similar in some respect; as a period of time during which an object waits
for some event or events to occur; or as a period of time during which an object
performs some ongoing activity. A state may have a name, although often it is
anonymous and is described simply by its actions.

Chapter 6 • State Machine View 71
In a state machine, a set of states is connected by transitions. Although transi-
tions connect two states (or more, if there is a fork or join of control), transitions
are processed by the state that they leave. When an object is in a state, it is sensitive
to the trigger events on transitions leaving the state.

A state is shown as a rectangle with rounded corners (Figure 6-2).

Transition

A transition leaving a state defines the response of an object in the state to the oc-
currence of an event. In general, a transition has an event trigger, a guard condi-
tion, an action, and a target state. Table 6-2 shows kinds of transitions and implicit
actions invoked by transitions.

External transition. An external transition is a transition that changes the active
state. This is the most common kind of transition. It is drawn as an arrow from the

Figure 6-2. State

Table 6-2: Kinds of Transitions and Implicit Actions

Transition Kind Description Syntax

entry action An action that is executed when a
state is entered

entry/ action

exit action An action that is executed when a
state is exited

exit/ action

external transition A response to an event that causes a
change of state or a self-transition,
together with a specified action. It
may also cause the execution of exit
and/or entry actions for states that
are exited or entered.

e(a:T)[exp]/action

internal transition A response to an event that causes
the execution of an action but does
not cause a change of state or execu-
tion of exit or entry actions

e(a:T)[exp]/action

Confirm Credit

72 Part 2 • UML Concepts
source state to the target state, with other properties shown as a text string at-
tached to the arrow (Figure 6-3).

Trigger event. The trigger is an event the occurrence of which enables the transi-
tion. The event may have parameters, which are available to an action on the tran-
sition. If a signal has descendants, any descendant of the signal enables the
transition. For example, if a transition has MouseButton as a trigger (see
Figure 6-1), then MouseButtonDown will trigger the transition.

An event is not a continuous thing; it occurs at a point in time. When an object
receives an event, it saves the event if it is not free to handle the event. An object
handles one event at a time. A transition must fire at the time the object handles
the event; the event is not “remembered” until later (except in the special case of
deferred events, which are saved until they trigger a transition or until the object is
in a state where they are not deferred). If two events occur simultaneously, they are
handled one at a time. An event that does not trigger any transition is simply ig-
nored and lost. This is not an error. It is much easier to ignore unwanted events
than to try to specify all of them.

Guard condition. A transition may have a guard condition, which is a Boolean ex-
pression. It may reference attributes of the object that owns the state machine, as
well as parameters of the trigger event. The guard condition is evaluated when a
trigger event occurs. If the expression evaluates as true, then the transitions fires—
that is, its effects occur. If the expression evaluates as false, then the transition does

Figure 6-3. External transitions

Confirm Credit Process Order

Cancel Order

approved/debit account()

rejected

Waiting

receive order
[amount > $25]

receive order
[amount < $25]

action

guard condition

trigger event

transition

trigger
event

transition

transition

transition

Chapter 6 • State Machine View 73
not fire. The guard condition is evaluated only once, at the time the trigger event
occurs. If the condition is false and later becomes true, it is too late to fire the tran-
sition.

The same event can be a trigger for more than one transition leaving a single
state. Each transition with the same event must have a different guard condition. If
the event occurs, a transition triggered by the event may fire if its condition is true.
Often, the set of guard conditions covers all possibilities so that the occurrence of
the event is guaranteed to fire some transition. If all possibilities are not covered
and no transition is enabled, then an event is simply ignored. Only one transition
may fire (within one thread of control) in response to one event occurrence. If an
event enables more than one transition, only one of them fires. A transition on a
nested state takes precedence over a transition on one of its enclosing states. If two
conflicting transitions are enabled at the same time, one of them fires nondeter-
ministically. The choice may be random or it may depend on implementation de-
tails, but the modeler should not count on a predicable result.

Completion transition. A transition that lacks an explicit trigger event is triggered
by the completion of activity in the state that it leaves (this is a completion transi-
tion). A completion transition may have a guard condition, which is evaluated at
the time the activity in the state completes (and not thereafter).

Action. When a transition fires, its action (if any) is executed. An action is an
atomic and normally brief computation, often an assignment statement or simple
arithmetic computation. Other actions include sending a signal to another object,
calling an operation, setting return values, creating or destroying an object, and
undefined control actions specified in an external language. An action may also be
an action sequence—that is, a list of simpler actions. An action or action sequence
cannot be terminated or affected by simultaneous actions. Conceptually, its dura-
tion is negligible compared to outside event timing; therefore, a second event can-
not occur during its execution. In practice, however, actions take some time, and
incoming events must be placed on a queue.

The overall system can perform multiple actions simultaneously. When we call
actions atomic, we do not imply that the entire system is atomic. The system can
process hardware interrupts and time share between several actions. An action is
atomic within its own thread of control. Once started, it must complete and it
must not interact with other simultaneously active actions. But actions should not
be used as a long transaction mechanism. Their duration should be brief com-
pared to the response time needed for external events. Otherwise, the system
might be unable to respond in a timely manner.

An action may use parameters of the trigger event and attributes of the owning
object as part of its expression.

Table 6-3 lists the kinds of actions and their descriptions.

74 Part 2 • UML Concepts
Change of state. When the execution of the action is complete, the target state of
the transition becomes active. This may trigger exit actions or entry actions.

Nested states. States may be nested inside other composite states (see following
entry). A transition leaving an outer state is applicable to all states nested within it.
The transition is eligible to fire whenever any nested state is active. If it fires, the
target state of the transition becomes active. Composite states are useful for ex-
pressing exception and error conditions, because transitions on them apply to all
nested states without the need for each nested state to handle the exception explic-
itly.

Entry and exit actions. A transition across one or more levels of nesting may exit
and enter states. A state may have actions that are performed whenever the state is
entered or exited. Entering the target state executes an entry action attached to the
state. If the transition leaves the original state, then its exit action is executed be-
fore the action on the transition and the entry action on the new state.

Entry actions are often used to perform setup needed within a state. Because an
entry action cannot be evaded, any actions that occur inside the state can assume

Table 6-3: Kinds of Actions

Action Kind Description Syntax

assignment Sets the value of a variable target := expression

call Calls an operation on a target
object; waits for completion of the
operation execution; may return a
value

opname (arg, arg)

create Creates a new object new Cname (arg, arg)

destroy Destroys an object object . destroy ()

return Specifies return values for the
caller

return value

send Creates a signal instance and
sends it to a target object or set of
objects

sname (arg, arg)

terminate Self-destruction of the owning
object

terminate

uninterpreted Language-specific action, such as
conditional or iteration

[language specific]

Chapter 6 • State Machine View 75
that the setup has occurred, regardless of how the state is entered. Similarly, an exit
action is an action that occurs whenever the state is exited, an opportunity to per-
form clean up. It is particularly useful when there are high-level transitions that
represent error conditions that abort nested states. The exit action can clean up
such cases so that the state of the object remains consistent. Entry and exit actions
could in principle be attached to incoming and outgoing transitions, but declaring
them as special actions of the state permits the state to be defined independently of
its transitions and therefore encapsulated.

Internal transition. An internal transition has a source state but no target state.
The firing rules for an internal transition are the same as for a transition that
changes state. An internal transition has no target state, so the active state does not
change as a result of its firing. If an internal transition has an action, it is executed,
but no change of state occurs, and therefore no exit or entry actions are executed.
Internal transitions are useful for modeling interrupt actions that do not change
the state (such as counting occurrences of an event or putting up a help screen).

Entry and exit actions use the same notation as internal transitions, except they
use the reserved words entry and exit in place of the event trigger name, although
these actions are triggered by external transitions that enter or leave the state.

A self-transition invokes exit and entry actions on its state (conceptually, it exits
and then reenters the state); therefore, it is not equivalent to an internal transition.
Figure 6-4 shows entry and exit actions as well as internal transitions.

Composite States

A simple state has no substructure, just a set of transitions and possible entry and
exit actions. A composite state is one that has been decomposed into sequential
substates or concurrent substates. Table 6-4 lists the various kinds of states.

A decomposition into disjoint substates is a kind of specialization of a state. An
outer state is refined into several inner states, each of which inherits the transitions
of the outer state. Only one sequential substate can be active at one time. The
outer state represents the condition of being in any one of the inner states.

Figure 6-4. Internal transitions, and entry and exit actions

Enter Password

entry / set echo to star; password.reset()
exit / set echo normal
digit / handle character
clear / password.reset()
help / display help

entry and exit actions

internal transitions

state name

76 Part 2 • UML Concepts
Transitions into or out of a composite state invoke the entry actions or exit ac-
tions of the state. If there are several composite states, a transition across several
levels may invoke multiple entry actions (outermost first) or several exit actions

Table 6-4: Kinds of States

State Kind Description Notation

simple state A state with no substructure

concurrent com-
posite state

A state that is divided into two or
more concurrent substates, all of
which are concurrently active when
the composite state is active

sequential com-
posite state

A state that contains one or more
disjoint substates, exactly one of
which is active at one time when the
composite state is active

initial state A pseudostate that indicates the
starting state when the enclosing
state in invoked

final state A special state whose activation indi-
cates the enclosing state has com-
pleted activity

junction state A pseudostate that chains transition
segments into a single run-to-
completion transition

history state A pseudostate whose activation
restores the previously active state
within a composite state

submachine refer-
ence state

A state that references a submachine,
which is implicitly inserted in place
of the submachine reference state

stub state A pseudostate within a submachine
reference state that identifies a state
in the referenced state machine

H

include S

T

Chapter 6 • State Machine View 77
(innermost first). If there is an action on the transition itself, the action is executed
after any exit actions and before any entry actions are executed.

A composite state may also have an initial state within it. A transition to the
composite state boundary is implicitly a transition to the initial state. A new object
starts at its initial state of its outermost state. Similarly, a composite state can have
a final state. A transition to the final state triggers a completion transition (trigger-
less transition) on the composite state. If an object reaches the final state of its out-
ermost state, it is destroyed. Initial states, final states, entry actions, and exit
actions permit the definition of a state to be encapsulated independent of transi-
tions to and from it.

Figure 6-5 shows a sequential decomposition of a state, including an initial
state. This is the control for a ticket-selling machine.

Figure 6-5. State machine

include Identify

Idle

Selecting

Confirming

Selling

fail

push “buy”
push “resume”

push “confirm”

insert card

push “cancel”

Purchasing

exit / eject card

pick (seat) / add to selection (seat)

entry / sell ()

initial state

final state

completion
transition

outer transition
aborts internal
activity

submachine reference

normal exit

abnormal
exit

/reset selection action

atomic
 action

internal
transition

event

completion
transition

78 Part 2 • UML Concepts
A decomposition into concurrent substates represents independent computa-
tion. When a concurrent superstate is entered, the number of control threads in-
creases. When it is exited, the number of control threads decreases. Often,
concurrency is implemented by a distinct object for each substate, but concurrent
substates can also represent logical concurrency within a single object. Figure 6-6
shows the concurrent decomposition of taking a university class.

Figure 6-6. State machine with concurrent composite state

Figure 6-7. Submachine state

Lab1 Lab2

Term

lab done

project done

Passed

Incomplete

Project

Final pass

Test

Failed
fail

lab
done

Taking Class
concurrent composite state

abnormal exit

normal
completion
transition

final state of
one thread

concurrent thread

Help

entry / display help screen
exit / remove help screen

quit

query / show answer

include Help

help command

include Run

run
 command

submachine state

submachine

This submachine can be used many times.

submachine state

main machine

CommandWait

Chapter 6 • State Machine View 79
It is often convenient to reuse a fragment of a state machine in other state ma-
chines. A state machine can be given a name and referenced from a state of one or
more other machines. The target state machine is a submachine, and the state ref-
erencing it is called a submachine reference state. It implies the (conceptual) sub-
stitution of a copy of the referenced state machine at the place of reference, a kind
of state machine subroutine. Instead of a submachine, a state can contain an activ-
ity—that is, a computation or continuous occurrence that takes time to complete
and that may be interrupted by events. Figure 6-7 shows a submachine reference.

A transition to a submachine reference state causes activation of the initial state
of the target submachine. To enter a submachine at other states, place one or more
stub states in the submachine reference state. A stub state identifies a state in the
submachine.

7
Activity View

Overview

An activity graph is a special form of state machine intended to model computa-
tions and workflows. The states of the activity graph represent the states of execut-
ing the computation, not the states of an ordinary object. Normally, an activity
graph assumes that computations proceed without external event-based interrup-
tions (otherwise, an ordinary state machine may be preferable).

An activity graph contains activity states. An activity state represents the execu-
tion of a statement in a procedure or the performance of an activity in a workflow.
Instead of waiting for an event, as in a normal wait state, an activity state waits for
the completion of its computation. When the activity completes, then execution
proceeds to the next activity state within the graph. A completion transition in an
activity diagram fires when the preceding activity is complete. Activity states usu-
ally do not have transitions with explicit events, but they may be aborted by transi-
tions on enclosing states.

An activity graph may also contain action states, which are similar to activity
states, except that they are atomic and do not permit transitions while they are ac-
tive. Action states should usually be used for short bookkeeping operations.

An activity diagram may contain branches, as well as forking of control into
concurrent threads. Concurrent threads represent activities that can be performed
concurrently by different objects or persons in an organization. Frequently con-
currency arises from aggregation, in which each object has its own concurrent
thread. Concurrent activities can be performed simultaneously or in any order. An
activity graph is like a traditional flow chart except it permits concurrent control
in addition to sequential control—a big difference.

Activity Diagram

An activity diagram is the notation for an activity graph (Figure 7-1). It includes
some special shorthand symbols for convenience. These symbols can actually be
81

82 Part 2 • UML Concepts
used on any statechart diagram, although mixing notation may be ugly much of
the time.

An activity state is shown as a box with rounded ends containing a description
of the activity. (Normal state boxes have straight sides and rounded corners.) Sim-
ple completion transitions are shown as arrows. Branches are shown as guard con-
ditions on transitions or as diamonds with multiple labeled exit arrows. A fork or
join of control is shown the same way as on a statechart, by multiple arrows enter-
ing or leaving a heavy synchronization bar. Figure 7-1 shows an activity diagram
for processing an order by the box office.

Figure 7-1. Activity diagram

assign
seats award

bonus

[subscription]

set up
order

assign
seats

[single order]

debit
account

mail
packet

BoxOffice::ProcessOrder

charge
credit card

concurrent threads

synch bar (fork)

synch bar (join)

merge (unbranch)

branch

guard condition

activity state

alternative threads

Chapter 7 • Activity View 83
For those situations in which external events must be included, the receipt of an
event can be shown as a trigger on a transition or as a special inline symbol that
denotes waiting for a signal. A similar notation shows sending a signal. If there are
many event-driven transitions, however, an ordinary statechart diagram is proba-
bly preferable.

Swimlanes. It is often useful to organize the activities in a model according to re-
sponsibility—for example, by grouping together all the activities handled by one
business organization. This kind of assignment can be shown by organizing the
activities into distinct regions separated by lines in the diagram. Because of their
appearance, each region is called a swimlane. Figure 7-2 shows swimlanes.

Figure 7-2. Swimlanes and object flows

Request Service

Take Order

Fill Order

Collect Order

Customer Sales Stockroom

Pay

Deliver Order

Order
[Entered]

Order
[Filled]

Order
[Delivered]

Order
[Placed]

84 Part 2 • UML Concepts
Object flows. An activity diagram can show the flow of object values, as well as the
flow of control. An object flow state represents an object that is the input or out-
put of an activity. For an output value, a dashed arrow is drawn from an activity to
an object flow state. For an input value, a dashed arrow is drawn from an object
flow state to an activity. If an activity has more than one output value or successor
control flow, the arrows are drawn from a fork symbol. Similarly, multiple inputs
are drawn to a join symbol.

Figure 7-2 shows an activity diagram in which both activities and object flow
states have been assigned to swimlanes.

Activities and Other Views

Activity graphs do not show the full detail of a computation. They show the flow
of activities but not the objects that perform the activities. Activity graphs are a
starting point for design. To complete a design, each activity must be expanded as
one or more operations, each of which is assigned to a specific class to implement.
Such an assignment results in the design of a collaboration that implements the
activity graph.

8
Interaction View

Overview

Objects interact to implement behavior. This interaction can be described in two
complementary ways, one of them centered on individual objects and the other on
a collection of cooperating objects.

A state machine is a narrow, deep view of behavior, a reductionist view that
looks at each object individually. A state machine specification is precise and leads
immediately to code. It can be difficult to understand the overall functioning of a
system, however, because a state machine focuses on a single object at a time, and
the effects of many state machines must be combined to determine the behavior of
an entire system. The interaction view provides a more holistic view of the behav-
ior of a set of objects. This view is modeled by collaborations.

Collaboration

A collaboration is a description of a collection of objects that interact to imple-
ment some behavior within a context. It describes a society of cooperating objects
assembled to carry out some purpose. A collaboration contains slots that are filled
by objects and links at run time. A collaboration slot is called a role because it de-
scribes the purpose of an object or link within the collaboration. A classifier role
represents a description of the objects that can participate in an execution of the
collaboration; an association role represents a description of the links that can
participate in an execution of the collaboration. A classifier role is a classifier that
is constrained by its part in the collaboration; an association role is an association
that is constrained by its part in the collaboration. Relationships among classifier
roles and association roles inside a collaboration are only meaningful in that con-
text. In general, the same relationships do not apply to the underlying classifiers
and associations apart from the collaboration.

The static view describes the inherent properties of a class. For example, a Vehi-
cle has an owner. A collaboration describes the properties that an instance of a
85

86 Part 2 • UML Concepts
class has because it plays a particular role in a collaboration. For example, a rental-
Vehicle in a RentalCar collaboration has a rentalDriver, something that is not rele-
vant to a Vehicle in general but is an essential part of the collaboration.

An object in a system may participate in more than one collaboration. Collabo-
rations in which it appears need not be directly related, although their execution is
connected through the shared object. For example, one person may be both a
rentalDriver and a hotelGuest as part of a Vacation model. Somewhat less often, an
object may play more than one role in the same collaboration.

A collaboration has both a structural aspect and a behavioral aspect. The struc-
tural aspect is similar to a static view—it contains a set of roles and their relation-
ships that define the context for its behavioral aspect. The behavioral aspect is the
set of messages exchanged by the objects bound to the roles. Such a set of messages
on a collaboration is called an interaction. A collaboration can include one or
more interactions, each of which describes a series of messages exchanged among
the objects in the collaboration to perform a goal.

Whereas a state machine is narrow and deep, a collaboration is broad but more
shallow. It captures a more holistic view of behavior in the exchange of messages
within a network of objects. Collaborations show the unity of the three major
structures underlying computation: data structure, control flow, and data flow.

Interaction

An interaction is a set of messages within a collaboration that are exchanged by
classifier roles across association roles. When a collaboration exists at run time,
objects bound to classifier roles exchange message instances across links bound to
association roles. An interaction models the execution of an operation, use case, or
other behavioral entity.

A message is a one-way communication between two objects, a flow of control
with information from a sender to a receiver. A message may have parameters that
convey values between the objects. A message can be a signal (an explicit, named,
asynchronous interobject communication) or a call (the synchronous invocation
of an operation with a mechanism for later returning control to the sender).

The creation of a new object is modeled as an event caused by the creator object
and received by the class itself. The creation event is available to the new instance
as the current event on the transition from the top-level initial state.

Messages can be arranged into sequential threads of control. Separate threads
represent sets of messages that are concurrent. Synchronization among threads is
modeled by constraints among messages in different threads. One synchroniza-
tion construct can model forks of control, joins of control, and branches.

Sequencing of messages can be shown in two kinds of diagrams: a sequence
diagram (focusing on the time sequences of the messages) and a collaboration

Chapter 8 • Interaction View 87
diagram (focusing on the relationships among the objects that exchange the
messages).

Sequence Diagram

A sequence diagram displays an interaction as a two-dimensional chart. The verti-
cal dimension is the time axis; time proceeds down the page. The horizontal di-
mension shows the classifier roles that represent individual objects in the
collaboration. Each classifier role is represented by a vertical column—the lifeline.
During the time an object exists, the role is shown by a dashed line. During the
time an activation of a procedure on the object is active, the lifeline is drawn as a
double line.

A message is shown as an arrow from the lifeline of one object to that of an-
other. The arrows are arranged in time sequence down the diagram.

Figure 8-1 shows a typical sequence diagram with asynchronous messages.

Figure 8-1. Sequence diagram

: Kiosk

insertCard (customer)

pickDate (date)

offer (seatChoice)

: Server

submit (order)

OK

print (order)

active object

lifeline (active)

message

: CreditService

select (seats)

charge (customer,
amount)

authorize

outside actor

88 Part 2 • UML Concepts
Activation

An activation is the execution of a procedure, including the time it waits for nested
procedures to execute. It is shown by a double line replacing part of the lifeline in a
sequence diagram. A call is shown by an arrow leading to the top of the activation
the call initiates. A recursive call occurs when control reenters an operation on an
object, but the second call is a separate activation from the first. Recursion or a
nested call to another operation on the same object is shown in a sequence dia-
gram by stacking the activation lines. Figure 8-2 shows a sequence diagram with
procedural flow of control, including a recursive call and the creation of an object
during the computation.

An active object is one that holds the root of a stack of activations. Each active
object has its own event-driven thread of control that executes in parallel with
other active objects. The objects that are called by an active object are passive ob-
jects; they receive control only when called, and they yield it up when they return.

If several concurrent threads of control have their own procedural flows of con-
trol using nested calls, the different threads must be distinguished using thread
names, colors, or other means to avoid confusion when two threads come together

Figure 8-2. Sequence diagram with activations

debit (cost)

:Order

:Account:TicketDB

create()

reserve (date,count)

lifeline

object

message

return

activation

creation

destruction

recursive call

an anonymous caller

bonus (date,count)

Chapter 8 • Interaction View 89
on a single object (by a rendezvous, for example). Usually, it is best not to mix pro-
cedure calls with signals on a single diagram.

Collaboration Diagram

A collaboration diagram is a class diagram that contains classifier roles and associ-
ation roles rather than just classifiers and associations. Classifier roles and associa-
tion roles describe the configuration of objects and links that may occur when an
instance of the collaboration is executed. When the collaboration is instantiated,
objects are bound to the classifier roles and links are bound to the association
roles. Association roles may also be played by various kinds of temporary links,
such as procedure arguments or local procedure variables. Link symbols may carry
stereotypes to indicate temporary links («parameter» or «local») or calls to the
same object («self»). Only objects that are involved in the collaboration are repre-
sented, although there may be others in the entire system. In other words, a collab-
oration diagram models the objects and links involved in the implementation of
an interaction and ignores the others. Figure 8-3 shows a collaboration diagram.

It is useful to mark the objects in four groups: those that exist through the entire
interaction; those created during the interaction (constraint {new}); those de-
stroyed during the interaction (constraint {destroyed}); and those that are created
and destroyed during the interaction (constraint {transient}). During design, you
can start by showing the objects and links available at the start of an operation and
then decide how control can flow to the correct objects within the graph to imple-
ment the operation.

Although collaborations directly show the implementation of an operation,
they may also show the realization of an entire class. In this usage, they show the

Figure 8-3. Collaboration diagram

:OrderTaker

: CreditBureau

1: checkCredit(customer)

request(order,customer)
:TicketDB

2: cost:=reserve(order)

3: debit(customer,cost)

requestor
association role

classifier role

sequence number

tickets

credit one-way navigation

message flow

90 Part 2 • UML Concepts
context needed to implement all of the operations of a class. This permits the
modeler to see the multiple roles that objects may play in various operations. This
view can be constructed by taking the union of all the collaborations needed to de-
scribe all the operations of the object.

Messages. Messages are shown as labeled arrows attached to links. Each message
has a sequence number, an optional list of predecessor messages, an optional
guard condition, a name and argument list, and an optional return value name.
The sequence number includes the (optional) name of a thread. All messages in
the same thread are sequentially ordered. Messages in different threads are concur-
rent unless there is an explicit sequencing dependency. Various implementation
details may be added, such as a distinction between asynchronous and synchro-
nous messages.

Flows. Usually, a collaboration diagram contains a symbol for an object during an
entire operation. Sometimes, however, an object has different states that must be
made explicit. For example, an object might change location, or its associations
might differ significantly at different times. An object can be shown with both its
class and its state—an object with a class-in-state. The same object can be shown
multiple times, each with a different location or state.

The various object symbols that represent one object may be connected using
become flows. A become flow is a transition from one object state to another. It is
drawn as a dashed arrow with the stereotype «become» and may be labeled with a
sequence number to show when it occurs (Figure 8-4). A become flow is also used
to show migration of an object from one location to another.

Less commonly, the stereotype «copy» shows an object value produced by copy-
ing another object value.

Table 8-1 shows the kinds of object flow relationships.

Figure 8-4. Become flow

:Controller

:Directory[closed]

:Directory[open]

1.1: «become»

1: expand()

2: sort()

Chapter 8 • Interaction View 91
Collaboration and sequence diagrams. Collaboration diagrams and sequence dia-
grams both show interactions, but they emphasize different aspects. Sequence dia-
grams show time sequences clearly but do not show object relationships explicitly.
Collaboration diagrams show object relationships clearly, but time sequences
must be obtained from sequence numbers. Sequence diagrams are often most use-
ful for showing scenarios; collaboration diagrams are often more useful for show-
ing detailed design of procedures.

Patterns

A pattern is a parameterized collaboration, together with guidelines about when
to use it. A parameter can be replaced by different values to produce different col-
laborations. The parameters usually designate slots for classes. When a pattern is
instantiated, its parameters are bound to actual classes within a class diagram or to
roles within a larger collaboration.

Table 8-1: Kinds of Flow Relationships

Flow Function Notation

become Transformation from one value of
an object to another value

copy Copy of an object that is thereafter
independent

Figure 8-5. Pattern usage

«become»

«copy»

Observer

SlidingBarIcon
handler

CallQueue subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

handler.reading = length (subject.queue)

capacity: Integer

range = (0..capacity)

use of pattern class

pattern rules

92 Part 2 • UML Concepts
The use of a pattern is shown as a dashed ellipse connected to each of its classes
by a dashed line that is labeled with the name of the role. For example, Figure 8-5
shows the use of the Observer pattern from [Gamma-95]. In this use of the pat-
tern, CallQueue replaces the subject role and SlidingBarIcon replaces the handler
role.

Patterns may appear at the analysis, architecture, detailed design, and imple-
mentation levels. They are a way to capture frequently occurring structures for re-
use. Figure 8-5 shows a use of the Observer pattern .

9
Physical Views

Overview

Much of a system model is intended to show the logical and design aspects of the
system independent of its final packaging in an implementation medium. The im-
plementation aspects are important, however, for both reusability and perfor-
mance purposes. UML includes two kinds of views for representing
implementation units: the implementation view and the deployment view.

The implementation view shows the physical packaging of the reusable pieces of
the system into substitutable units, called components. An implementation view
shows the implementation of design elements (such as classes) by components, as
well as interfaces of and dependencies among components. Components are the
high-level reusable pieces out of which systems can be constructed.

The deployment view shows the physical arrangement of run-time computa-
tional resources, such as computers and their interconnections. They are called
nodes. At run time, nodes can contain components and objects. The assignment
of components and objects to nodes can be static, or they can migrate among
nodes. The deployment view may show performance bottlenecks if component in-
stances with dependencies are placed on different nodes.

Component

A component is a physical unit of implementation with well-defined interfaces
that is intended to be used as a replaceable part of a system. Each component
embodies the implementation of certain classes from the system design. Well-
designed components do not depend directly on other components but on
interfaces that components support. In that case, a component in a system can be
replaced by another component that supports the proper interfaces.

Components have interfaces they support and interfaces they require from
other components. An interface is a list of operations supported by a piece of soft-
ware or hardware. The use of named interfaces permits direct dependencies
93

94 Part 2 • UML Concepts
among components to be avoided, facilitating easier substitution of new compo-
nents. The component view shows the network of dependencies among compo-
nents. The component view can appear in two forms. It can show a set of available
components (a component library) with their dependencies; this is the material
out of which a system can be assembled. It can also show a configured system, with
the selection of components (out of the entire library) used to build it. In this
form, each component is wired to other components whose services it uses; these
connections must be consistent with the interfaces of the components.

A component is drawn as a rectangle with two small rectangles on its side. It
may be attached by solid lines to circles that represent its interfaces (Figure 9-1).

A component diagram shows dependencies among components (Figure 9-2).
Each component realizes (supports) some interfaces and uses others. If dependen-
cies among components are mediated through interfaces, components can be re-
placed by other components that realize the same interfaces.

Node

A node is a run-time physical object that represents a computational resource,
generally having at least a memory and often processing capability as well. Nodes
may have stereotypes to distinguish different kinds of resources, such as CPUs, de-
vices, and memories. Nodes may hold objects and component instances.

Figure 9-1. Component with interfaces

Figure 9-2. Component diagram

Dictionary
spell-check

synonyms

component
interfaces

Transactions Update

ATM-GUI

«database»

component

stereotyped

usage dependency

interface

Account component

realization dependency

Chapter 9 • Physical Views 95
A node is shown as a stylized cube with the name of the node and, optionally, its
classification (Figure 9-3).

Associations between nodes represent communication paths. The associations
can have stereotypes to distinguish different kinds of paths.

Nodes may have generalization relationships to relate a general description of a
node to a more specific variation.

The presence of an object on a node is shown by physically nesting the object
symbol inside the node symbol. If that is not convenient, the object symbol may
contain the tag location whose value is the name of the node on which the object
resides (its location). Migration of objects or component instances among nodes
may also be shown.

See become.

Figure 9-3. Deployment diagram

server:BankServer

client: ATMKiosk

:Transactions
update

:ATM-GUI

«database»
accountDB:

component

dependency

interface

Account

node

instance

instance

communication link

10
Model Management View

Overview

Any large system must be divided into smaller units so that humans can work with
a limited amount of information at one time and so that work teams do not inter-
fere with each other’s work. Model management consists of packages (including
special kinds of packages) and dependency relationships among packages.

Package

A package is a piece of a model. Every part of a model must belong to one package.
The modeler may allocate the contents of a model to a set of packages. But to be
workable, the allocation must follow some rational principle, such as common
functionality, tightly coupled implementation, and a common viewpoint. UML
does not impose a rule for composing packages, but a good decomposition into
packages will greatly enhance model maintainability.

Packages contain top-level model elements, such as classes and their relation-
ships, state machines, use case graphs, interactions, and collaborations—anything
not contained in some other element. Elements such as attributes, operations,
states, lifelines, and messages are contained in other elements and do not appear as
direct contents of packages. Every top-level element has one package in which it is
declared. This is its “home” package. It may be referenced in other packages, but
the contents of the element are owned by the home package. In a configuration
control system, a modeler must have access to the home package to modify the
contents of an element. This provides an access control mechanism for working
with large models. Packages are also the units for any versioning mechanisms.

Packages may contain other packages. There is a root package that indirectly
contains the entire model of a system. There are several possible ways to organize
the packages in a system. They may be arranged by view, by functionality, or by
any other basis that the modeler chooses. Packages are general-purpose hierarchi-
cal organizational units of UML models. They can be used for storage, access
97

98 Part 2 • UML Concepts
control, configuration management, and constructing libraries containing reus-
able model fragments.

If the packages are well chosen, they reflect the high-level architecture of a sys-
tem—its decomposition into subsystems and their dependencies. A dependency
among packages summarizes the dependencies among the package contents.

Dependencies on Packages

Dependencies arise among individual elements, but in a system of any size, they
must be viewed at a higher level. Dependencies among packages summarize de-
pendencies among elements in them—that is, package dependencies are derivable
from the dependencies among individual elements.

The presence of a dependency among packages implies that there exists in a
bottom-up approach (an existence statement), or is permitted to exist later in a
top-down approach (a constraint restricting any other relationship), at least one
relationship element of the given kind of dependency among individual elements
within the corresponding packages. It is an “existence statement” and does not im-
ply that all elements of the package have the dependency. It is a flag to the modeler
that there exists further information, but the package-level dependency does not
contain the further information itself; it is only a summary.

The top-down approach reflects the overall system architecture. The bottom-up
approach can be automatically generated from the individual elements. Both ap-
proaches have their place in modeling, even on a single system.

Multiple dependencies of the same kind among individual elements are aggre-
gated to a single package-level dependency among the packages containing the el-
ements. If the dependencies among individual elements contain stereotypes (such
as different kinds of usage), the stereotype may be omitted in the package-level de-
pendency in order to yield a single high-level dependency.

Packages are drawn as rectangles with tabs on them (desktop “folder” icons).
Dependencies are shown as dashed arrows.

Figure 10-1 shows the package structure for a ticket-ordering subsystem. It has
dependencies on outside packages and two variations of the Seat selection pack-
age. Any one implementation of the subsystem would only include one variation.

Access and Import Dependency

A package cannot, in general, access the contents of another package. Packages are
opaque unless they are opened by an access or import dependency. The access de-
pendency applies directly to packages and other containers. On the package level,
the access dependency indicates that the contents of the supplier package may be
referenced by the elements in the client package or by packages embedded within

Chapter 10 • Model Management View 99
the client. An element in the supplier must have sufficient visibility within its
package to enable a client to see it. In general, a package can see only the elements
of other packages that have been given public visibility by the package containing
them. Elements with protected visibility are visible only to packages that are de-
scendants of the package containing the elements. Elements with private visibility
are visible only in the package containing them and any packages nested inside
that package. Visibility also applies to the contents of classes (attributes and opera-
tions). A descendant of a class can see members of its ancestor with public or pro-
tected visibility; any other class may only see members with public visibility. Both
access permission and the proper visibility are needed to reference an element. So
for an element in one package to see an element in an unrelated package, the first
package must access or import the second package, and the target element must
have public visibility within the second package.

A package nested within another package is part of the container and has full
access to its contents without the need of accesses. The container, however, may
not see inside its nested packages without accessing them. Contents are encapsu-
lated.

Figure 10-1. Packages and their relationships

Ordering

Pricing

Seat
selection

Ticketing

Clerk Selection

Kiosk Selection

«subsystem» subsystem made of packages

dependency

package
generalization

These are variations
of the seat selection

abstract
package

packages
outside the
subsystem

dependency
on external
package

package.

Credit Service

package

Seat DB

100 Part 2 • UML Concepts
Note that an access dependency does not modify the namespace of the client or
in any other way automatically create references. It merely grants permission to es-
tablish references. The import dependency is used to add names to the namespace
of the client package as aliases for the full pathnames.

Model and Subsystem

A model is a package that encompasses a complete description of a particular view
of a system. It provides a closed description of a system from one viewpoint. It
does not have strong dependencies on other packages, such as implementation de-
pendencies or inheritance dependencies. The trace relationship is a weak form of
dependency among elements in different models that notes the presence of some
connection without specific semantic implications.

Usually, a model is tree-structured. The root package contains in itself nested
packages that constitute the full detail of the system from the given viewpoint.

A subsystem is a package that has separate specification and realization parts. It
represents a coherent unit of the model with clean interfaces to the rest of the sys-
tem. It usually represents the partition of the system on a functional or implemen-
tation boundary. Both models and subsystems are drawn as packages with
stereotype keywords (Figure 10-1).

11
Extension Mechanisms

Overview

UML provides several extension mechanisms to allow modelers to make some
common extensions without having to modify the underlying modeling language.
These extension mechanisms have been designed so that tools can store and ma-
nipulate the extensions without understanding their full semantics. For this rea-
son, the extensions can be stored and manipulated as strings. To a tool that does
not understand the extension, it is just a string, but it can be entered, stored as part
of a model, and passed to other tools. It is expected that back-end tools and add-
ins will be written to process various kinds of extensions. These tools will define a
particular syntax and semantics for their extensions that only they need under-
stand.

This approach to extensions probably will not meet every need that arises, but
we feel it would accommodate a large portion of the tailoring needed by most
modelers in a simple manner that is easy to implement.

The extensibility mechanisms are constraints, tagged values, and stereotypes.
Keep in mind that an extension, by definition, deviates from the standard form

of UML and may therefore lead to interoperability problems. The modeler should
carefully weigh benefits and costs before using extensions, especially when existing
mechanisms will work reasonably well. Typically, extensions are intended for par-
ticular application domains or programming environments, but they result in a
UML dialect, with the advantages and disadvantages of all dialects.

Constraint

A constraint is a semantic restriction represented as a text expression. Each expres-
sion has an implicit interpretation language, which may be a formal mathematical
notation, such as set-theoretic notation; a computer-based constraint language,
such as OCL; a programming language, such as C++; or pseudocode or informal
natural language. Of course, if the language is informal, then its interpretation is
101

102 Part 2 • UML Concepts
informal also and must be done by a human. Even if a constraint is expressed in a
formal language, it does not mean that it will automatically be enforced. Full truth
maintenance is beyond the state of the art of computing in most cases today, but at
least the semantics will be precise.

Constraints can express restrictions and relationships that cannot be expressed
using UML notation. They are particularly useful for stating global conditions or
conditions that affect a number of elements.

Constraints are shown as expression strings enclosed in braces. They may be ap-
pended to a list element, attached to a dependency, or enclosed in a note.
Figure 11-1 shows several kinds of constraints.

Tagged Value

A tagged value is a pair of strings—a tag string and a value string—that stores a
piece of information about an element. A tagged value may be attached to any in-
dividual element, including model elements and presentation elements. The tag is
a name of some property the modeler wants to record, and the value is the value of
that property for the given element. For example, the tag might be author, and the
value might be the name of the person responsible for the element, such as Charles
Babbage.

Figure 11-1. Constraints

ATM Transaction

amount: Money { value is multiple of $20 }

PersonalAccount

{xor}Account

Person
∗

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1
∗ ∗ 0..1

Constraints are enclosed in braces.

Corporation1CorporateAccount

∗

∗

Chapter 11 • Extension Mechanisms 103
Tagged values can be used to store arbitrary information about elements. They
are particularly useful for storing project management information, such as the
creation date of an element, its development status, due dates, and test status. Any
string may be used as a tag name, except that the names of built-in metamodel at-
tributes should be avoided (because tags and attributes together can be considered
properties of an element and accessed uniformly in a tool), and a number of tag
names are predefined (see Chapter 14, Standard Elements).

Tagged values also provide a way to attach implementation-dependent add-in
information to elements. For example, a code generator needs additional informa-
tion about the kind of code to generate from a model. Often, there are several pos-
sible ways to correctly implement a model; the modeler must provide guidance
about which choices to make. Certain tags can be used as flags to tell the code gen-
erator which implementation to use. Other tags can be used for other kinds of
add-in tools, such as project planners and report writers.

Tagged values can also be used to store information about stereotyped model el-
ements (discussed below).

Tagged values are shown as strings with the tag name, an equal sign, and the
value. They are normally placed in lists inside braces (Figure 11-2). They will often
be omitted on diagrams but shown on pop-up lists and forms.

Stereotypes

Many modelers wish to tailor a modeling language for a particular application do-
main. This carries some risk, because the tailored language will not be universally
understandable, but people nevertheless attempt to do it.

A stereotype is a kind of model element defined in the model itself. The infor-
mation content and form of a stereotype are the same as those of an existing kind
of base model element, but its meaning and usage is different. For example, mod-
elers in the business modeling area often wish to distinguish business objects and

Figure 11-2. Tagged values

KioskTransaction
{author=Mike Pike,
requirement=14.52,
due=12/31/1999,
status=designed}

form=standalone,
optimize=time,
search=random,
library=RW,
index=both

Server

project management
tagged values

code generation tagged values

104 Part 2 • UML Concepts
business processes as special kinds of modeling elements whose usage is distinct
within a given development process. These can be treated as special kinds of
classes—they have attributes and operations, but they have special constraints on
their relationships to other elements and on their usage.

A stereotype is based on an existing model element. The information content of
the stereotyped element is the same as the existing model element. This permits a
tool to store and manipulate the new element the same way it does the existing el-
ement. The stereotyped element may have its own distinct icon—this is easy for a
tool to support. For example, a “business organization” might have an icon that
looks like a group of persons. The stereotype may also have a list of constraints
that apply to its usage. For example, perhaps a “business organization” can be as-
sociated only with another “business organization” and not with any class. Not all
constraints can be automatically verified by a general-purpose tool, but they can
be enforced manually or verified by an add-in tool that understands the stereo-
type.

Stereotypes may use tagged values to store additional properties that are not
supported by the base element.

Stereotypes are shown as text strings surrounded by guillemets (« ») placed in or
near the symbol for the base model element. The modeler may also create an icon
for a particular stereotype, which replaces the base element symbol (Figure 11-3).

Tailoring UML

The extension mechanisms of constraints, tagged values, and stereotypes make it
possible to tailor UML profiles for special application domains. Several profiles
have already been made and are described in Appendix C, Process Extensions.
Others have been proposed by users. The ability to tailor the modeling language
means that application domains can adapt the modeling language to their needs,
yet still share the vast preponderance of concepts that are generic and common to
all domains.

Figure 11-3. Stereotypes

Reservations
«database»

Kiosk Server
«ethernet»

JobScheduler

stereotype icon

communication
stereotype

12
UML Environment

Overview

UML models are used within an environment. Most people use modeling as a
means to an end—namely, the development of good systems—and not an end in
itself. The purpose and interpretation of the model are affected by the rest of the
environment. Other facilities in the wider environment include metamodels that
cross many languages, model-editing tools, programming languages, operating
systems and major system components, and the business and engineering world
within which systems are used. The responsibility for giving meaning to a model
and implementing its intent lies with all these facilities, including UML.

Models occur at various levels of concreteness. UML is a general-purpose mod-
eling language that includes semantics and notation but is usable with different
tools and implementation languages. Each level of usage introduces certain mod-
eling considerations that appear in the UML to various degrees.

Semantics Responsibilities

A metamodel is the description of a model. A modeling language describes mod-
els; therefore, it can be described by a metamodel. A metamodel attempts to make
a language precise by defining its semantics, but there is a tension to permit exten-
sions for new situations. The actual form of the metamodel is important to tool
implementation and model interchange but not very important to most users. We
therefore have not covered it in this book. Those who are interested can consult
the original standards documents [UML-98] available on the companion CD.

A metamodel and a language must cover a lot of ground and accommodate
many interpretations. Existing systems have differing execution and memory
models. It is impossible to choose one of them as the right interpretation. In fact,
it is probably misleading to even consider such a choice. Instead, one can think of
the different interpretations of execution models as semantic variation points. A
semantic variation point is a point of difference about the detailed semantics of
105

106 Part 2 • UML Concepts
execution, but one that is orthogonal to other aspects of a system. For example, an
environment may or may not choose to support dynamic classification, the ability
of an object to change class at run time. Today, most programming languages do
not permit it, mainly for programming-language implementation reasons, but
some do. The difference is indistinguishable in the static semantics. The choice of
static classification or dynamic classification can be identified as a semantic varia-
tion point with two options: static classification or dynamic classification. When
such choices exist, people often argue about which is the right interpretation. Re-
alize instead that this is a choice and give it a name so that either can be used.

A metamodel describes the contents of a well-formed model, just as a program-
ming language describes a well-formed program. Only a well-formed model has a
meaning and proper semantics; it does not make sense to ask the meaning of an
ill-formed model. Much of the time, however, models under development are not
well formed. They are incomplete and possibly inconsistent. But that is what
model-editing tools must support—incomplete models, not just finished models.
The UML metamodel describes correct, well-formed models. A separate meta-
model can describe possible model fragments. We leave it to the tool makers to de-
cide where to draw the line on supporting model fragments, and what kind of
semantic support to give to ill-formed models.

UML includes some built-in extension mechanisms to tailor its use in special-
ized domains. The mechanisms include the ability to define stereotypes and
tagged values. These mechanisms can be used to tailor a UML variant by defining
a set of stereotypes and tags and adopting conventions for their use in order to
build a model. For example, variants could be developed that are focused on the
implementation semantics of various programming languages. Adding extensions
can be powerful, but it carries some inherent dangers. Because their semantics are
not defined within UML, UML cannot supply their meaning; the interpretation is
up to the modeler. Furthermore, if you are not careful, some meanings may be
ambiguous or even inconsistent. Modeling tools can provide automated support
for stereotypes and tags defined by the tools, but not for user-defined extensions.
Regardless of the support for extensions, any extension pulls the user away from
the common center that the language standard provides and undercuts the goals
of interchangeability of models and of the understandability of models. Of course,
whenever you use a particular class library, you diverge from the perfect inter-
changeability of nothingness. So don’t worry about it in the abstract. Use the ex-
tensions when they help, but avoid them when they are not needed.

Notation Responsibilities

Notation does not add meaning to a model, but it does help the user to under-
stand the meaning in it. Notation does not have semantics, but it often adds con-
notations for a user, such as the perceived affinity of two concepts based on their
nearness in a diagram.

Chapter 12 • UML Environment 107
The UML documents [UML-98] and this book define a canonical UML nota-
tion, what might be called the publication format for models. This is similar to
many programming languages in which programs within journal articles are
printed in an attractive format with careful layout, reserved words in boldface, and
separate figures for each procedure. Real compilers have to accept messier input.
We expect that editing tools will extend the notation to a screen format, including
such things as the use of fonts and color to highlight items; the ability to easily
suppress and filter items that are not currently of interest, to zoom into a diagram
to show nested elements, to traverse hot links to other models or views; and ani-
mation. It would be hopeless to try to standardize all these possibilities and foolish
to try, because there is no need and it would limit useful innovation. This kind of
notational extension is the responsibility of a tool builder. In an interactive tool,
there is less danger from ambiguity, because the user can always ask for a clarifica-
tion. This is probably more useful than insisting on a notation that is totally un-
ambiguous at first glance. The point is that a tool must be able to produce the
canonical notation when requested, especially in printed form, but reasonable ex-
tensions should be expected in an interactive tool.

We expect that tools will also permit users to extend notation in limited but use-
ful ways. We have specified that stereotypes can have their own icons. Other kinds
of notational extensions might be permitted, but users need to use some discre-
tion.

Note that notation is more than pictures; it includes information in text-based
forms and the invisible hyperlinks among presentation elements.

Programming Language Responsibilities

UML must work with various implementation languages without incorporating
them explicitly. We felt that UML should permit the use of any (or at least many)
programming languages, for both specification and target-code generation. The
problem is that each programming language has many semantic issues that we did
not want to absorb into UML, because they are better handled as programming-
language issues, and there is considerable variation in execution semantics. For ex-
ample, the semantics of concurrency are handled in diverse ways among the lan-
guages (if they are handled at all).

Primitive data types are not described in detail in UML. This is deliberate as we
did not wish to incorporate the semantics of one programming language in prefer-
ence to all others. For most modeling purposes, this is not a problem. Use the se-
mantic model applicable to your target language. This is an example of a semantic
variation point.

The representation of detailed language properties for implementation raises
the problem of capturing information about implementation properties without
building their semantics into UML. Our approach was to capture language

108 Part 2 • UML Concepts
properties that go beyond UML’s built-in capabilities by means of stereotypes and
tagged values. These can be assigned to language properties and code-generation
options by a tool or code generator. A generic editor need not understand them.
Indeed a user could create a model using a tool that did not support the target lan-
guage and transfer the final model to another tool for final processing. Of course,
if the tool does not understand the stereotypes and tags, it cannot check them for
consistency. But this is no worse than normal practice with text editors and com-
pilers. If necessary, a tool can be created to use a particular set of extensions.

Code generation and reverse engineering for the foreseeable future will require
input from the designer in addition to a UML model. Directives and hints to the
code generator can be supplied as tagged values and stereotypes. For example, the
modeler could indicate which kind of container class should be used to implement
an association. Of course, this means that code-generation settings in tools might
be incompatible, but we do not believe there currently is sufficient agreement on
the right approach to standardize the actual settings. In any case, different tools
will use their code generators as their competitive advantage. Eventually, default
settings may emerge and become ripe for standardization.

Modeling with Tools

Models require tool support for realistic-sized systems. Tools provide interactive
ways to view and edit models. They provide a level of organization that is outside
the scope of the UML itself but that conveys understanding to the user and helps
in accessing information. Tools help to find information in large models by
searching and filtering what is presented.

Tool issues

Tools deal with the physical organization and storage of models. These must sup-
port multiple work teams on a single project, as well as reuse across projects. The
following issues are outside the scope of canonical UML, but must be considered
for actual tool usage.

Ambiguities and unspecified information. At early stages, many things are still
unsaid. Tools must be able to adjust the precision of a model and not force every
value to be specific. See the following sections “Inconsistent models for work in
progress” and “Null and unspecified values.”

Presentation options. Users do not want to see all the information all the time.
Tools must support filtering and hiding of information that is unwanted at a given
time. Tools will also add support for alternate visualizations by using the capabili-
ties of the display hardware. This has been covered above in the section “Notation
Responsibilities.”

Chapter 12 • UML Environment 109
Model management. Configuration control, access control, and versioning of
model units are outside the scope of UML, but they are crucial to the software en-
gineering process and go on top of the metamodel.

Interfaces to other tools. Models need to be handled by code generators, metrics
calculators, report writers, execution engines, and other back-end tools. Informa-
tion for other tools needs to be included in the models, but it is not UML informa-
tion. Tagged values are suitable for holding this information.

Inconsistent models for work in progress

The ultimate goal of modeling is to produce a description of a system at some level
of detail. The final model must satisfy various validity constraints to be meaning-
ful. As in any creative process, however, the result is not necessarily produced in a
linear fashion. Intermediate products will not satisfy all the validity constraints at
every step. In practice, a tool must handle not only semantically valid models,
which satisfy the validity constraints, but also syntactically valid models, which
satisfy certain construction rules but may violate some validity constraints. Se-
mantically invalid models are not directly usable. Instead they may be thought of
as “works in progress” that represent paths to the final result.

Null and unspecified values

A complete model must have values for all the attributes of its elements. In many
cases, null (no value) is one of the possible values, but whether a value may be null
is a part of the type description of the attribute; many types do not have a natural
null value within their range of values. For example, null makes no sense as the
upper bound on the size of a set. Either the set has a fixed upper size or there is no
bound, in which case its maximum size is unlimited, so nullability is really just an
augmentation to the range of possible values of a data type.

On the other hand, during early stages of design, a developer may not care
about the value of a particular property. It might be a value that is not meaningful
at a particular stage, for example, visibility when making a domain model. Or the
value may be meaningful but the modeler may not have specified it yet, and the
developer needs to remember that it still needs to be chosen. In this case, the value
is unspecified. This indicates that a value will eventually be needed but that it has
not yet been specified. It is not the same as a null value, which may be a legitimate
value in the final model. In many cases, particularly with strings, a null value is a
good way to indicate an unspecified value, but they are not the same. An unspeci-
fied value is not meaningful in a well-formed model. The UML definition does not
handle unspecified values. They are the responsibility of tools that support UML
and are considered part of a “work in progress” model that, by necessity, has no
semantic meaning.

Part 3: Reference
111

13
Encyclopedia of Terms

abstract

A class, use case, signal, other classifier, or other generalizable element that cannot
be directly instantiated. Also used to describe an operation that has no implemen-
tation. Antonym: concrete.

See abstract operation, generalizable element.

Semantics
An abstract class is a class that is not instantiable—that is, it may not have direct
instances, either because its description is incomplete (such as lacking methods for
one or more operations) or because it is not intended to be instantiated even
though its description is complete. An abstract class is intended for specialization.
To be useful, an abstract class must have descendants that may have instances; an
abstract leaf class is useless. (It can appear as a leaf in a framework, but eventually,
it must be specialized.)

A concrete class may not have any abstract operations (otherwise, it is necessar-
ily abstract), but an abstract class may have concrete operations. Concrete opera-
tions are those that can be implemented once and used the same across all
subclasses. In their implementation, concrete operations may use only features
(attributes and operations) known to the class in which they are declared. One of
the purposes of inheritance is to factor such operations into abstract superclasses
so that they can be shared by all subclasses. A concrete operation may be polymor-
phic—that is, it can be overridden by a method in a descendant class—but it need
not be polymorphic (it may be a leaf operation). A class, all of whose operations
are implemented, may be abstract, but it must be explicitly declared as such. A
class with one or more unimplemented operations is automatically abstract.

The same semantics apply to use cases. An abstract use case defines a fragment
of behavior that cannot appear by itself, but it can appear in the definition of con-
crete use cases by the generalization, include, or extend relationships. By factoring
113

114 • abstract Encyclopedia of Terms
the common behavior into an abstract use case, the model is made smaller and
easier to understand.

A similar relationship exists with other classifiers and other generalizable ele-
ments.

Notation
The name of an abstract class or an abstract operation is shown in italics. Alter-
nately, the keyword abstract may be placed in a property list below or after the
name, for example, Account {abstract}.

See also class name.

Example
Figure 13-1 shows an abstract class Account with one abstract operation, com-
puteInterest, and one concrete operation, deposit. Two concrete subclasses have
been declared. Because the subclasses are concrete, each of them must implement
the operation computeInterest. Attributes are always concrete.

Discussion
The distinction between modeling a class as abstract or concrete is not as funda-
mental or clear-cut as it might first appear. It is more a design decision about a
model than an inherent property. During the evolution of a design, the status of a
class may change. A concrete class may be modeled as abstract if subclasses that

Figure 13-1. Abstract and concrete classes

Account

balance: Money

deposit (amount: Money)

computeInterest()

CheckingAccount

computeInterest()

SavingsAccount

computeInterest()
overdraftLimit: Money

abstract class

concrete class

concrete operation
abstract operation

concrete (overridden) operation
concrete class

Encyclopedia of Terms abstract • 115
enumerate all its possibilities are added. An abstract class may be modeled as con-
crete if distinctions among subclasses are found to be unnecessary and removed or
are represented by attribute values instead of distinct subclasses.

One way to simplify the decision is to adopt the design principle that all nonleaf
classes must be abstract (and all leaf classes must of necessity be concrete, except
for an abstract leaf class intended for future specialization). This is not a UML
rule; it is a style that may or may not be adopted. The reason for this “abstract su-
perclasses” rule is that an inheritable method on a superclass and a method on a
concrete class often have different needs that are not well served by a single
method. The method on the superclass is forced to do two things: define the gen-
eral case to be observed by all descendants and implement the general case for the
specific class. These goals frequently conflict. Instead, any nonabstract superclass
can be separated mechanically into an abstract superclass and a concrete leaf sub-
class. The abstract superclass contains all methods intended to be inherited by all
subclasses; the concrete subclass contains methods that are needed for the specific
instantiable class. Following the abstract superclass rule also allows a clean distinc-
tion between a variable or parameter that must hold the specific concrete type and
one that can hold any descendant of the superclass.

In Figure 13-2, consider the declaration of class Letter that does not follow the
abstract superclass rule. This class has an operation, getNextSentence, that re-
turns the text for the next unread sentence, as well as an operation, resetCursor,
that sets the cursor to the beginning. However, the subclass EncryptedLetter repre-
sents a letter that has been encrypted. The operation getNextSentence has been

Figure 13-2. Concrete superclass leads to ambiguity

Letter

body: String

EncryptedLetter
encoding: CodeKey

concrete class

concrete class

concrete operation

concrete (overriding) operation

cursor: Integer

getNextSentence (): String

getNextSentence (): String

resetCursor ()

116 • abstract Encyclopedia of Terms
overridden because the text must be decrypted before it is returned. The imple-
mentation of the operation is completely different. Because Letter is a concrete
superclass, it is impossible to distinguish a parameter that must be an ordinary
Letter (nonoverridable) from one that could be either an ordinary Letter or an
EncryptedLetter.

The abstract superclass approach is to distinguish abstract class Letter (which
might be an encrypted letter or a nonencrypted letter) and to add class NonEn-
cryptedLetter to represent the concrete case, as shown in Figure 13-3. In this case,
getNextSentence is an abstract operation that is implemented by each subclass
and resetCursor is a concrete operation that is the same for all subclasses. The
model is symmetrical.

If the abstract superclass rule is followed, the declaration of abstract classes can
be determined automatically from the class hierarchy and showing it on diagrams
is redundant.

There is an exception to the statement that an abstract leaf class is useless: An
abstract class may be declared in order to be a common namespace for a set of glo-
bal class-scope attributes and operations. This is a relatively minor usage, mainly
for programming convenience when dealing with non-object-oriented languages,
and users are advised to avoid it in most cases. Global values violate the spirit of
object-oriented design by introducing global dependencies. A singleton class can
often provide the same functionality in a more extensible way.

See [Gamma-95], Singleton pattern.

Figure 13-3. Abstract superclass avoids ambiguity

Letter

body: String

EncryptedLetter
encoding: CodeKey

abstract class

concrete class

abstract operation

concrete (nonoverridden) operation

cursor: Integer

getNextSentence (): String

getNextSentence (): String

NonEncryptedLetter

getNextSentence (): String

concrete class

resetCursor () concrete (nonoverridden) operation

Encyclopedia of Terms abstract operation • 117
abstract class

A class that may not be instantiated.
See abstract.

Semantics
An abstract class may not have direct instances. It may have indirect instances
through its concrete descendants.

See abstract for a discussion.

abstract operation

An operation that lacks an implementation—that is, one that has a specification
but no method. An implementation must be supplied by any concrete descendant
class.

See abstract, generalizable element, inheritance, polymorphic.

Semantics
If an operation is declared as abstract in a class, it lacks an implementation in the
class, and the class itself is necessarily abstract. An implementation must be sup-
plied for the operation by a concrete descendant. If the class inherits an imple-
mentation of the operation but declares the operation as abstract, the abstract
declaration invalidates the inherited method in the class. If an operation is de-
clared as concrete in a class, then the class must supply or inherit an implementa-
tion (a method or a call event) from an ancestor. If an operation is not declared at
all in a class, then it inherits the operation declaration and implementation (or
lack thereof) from its ancestors.

An operation may be implemented as a method or as a state machine transition
triggered by a call event. Each class may declare its own method or call event for an
operation or inherit a definition from an ancestor.

Notation
The name of an abstract operation is shown in italics (Figure 13-4). Alternately
the keyword abstract may be placed in a property list after the operation signature.

Discussion
The most important use for the concept of inheritance is to support abstract oper-
ations that can be implemented differently by each concrete descendant class. An
abstract operation permits a caller to invoke an operation without knowing
precisely which class of object is the target, provided the target object is known to

118 • abstraction Encyclopedia of Terms
support the operation by being an indirect instance of an abstract class that has a
declaration of the abstract operation. The significance of such polymorphic oper-
ations is that the responsibility for determining the kind of object is shifted from
the caller to the inheritance mechanism. Not only is the caller freed of the bother
and cost of writing case statements, but the caller need not even be aware of which
possible subclasses of an abstract class exist. This means that additional subclasses
may be added later with new operation implementations. Abstract operations,
polymorphism, and inheritance thereby facilitate updating of systems to add new
kinds of objects and behaviors without having to modify the code that invokes the
generic behavior. This greatly reduces the time needed to update a system and,
even more important, it reduces the possibility of accidental inconsistencies.

abstraction

1. The act of identifying the essential characteristics of a thing that distinguish it
from all other kinds of things. Abstraction involves looking for similarities across
sets of things by focusing on their essential common characteristics. An abstrac-
tion always involves the perspective and purpose of the viewer; different purposes
result in different abstractions for the same things. All modeling involves abstrac-
tion, often at many levels for various purposes.

2. A kind of dependency that relates two elements that represent the same concept
at different abstraction levels.

See derivation, realization, refinement, trace.

Figure 13-4. Abstract operation and class

Shape

center: Point

draw ()
move (delta: Vector)

abstract class

abstract operation

concrete operation

Polygon

draw ()

concrete class

concrete operation

Encyclopedia of Terms access • 119
Semantics
An abstraction dependency is a relationship between two elements at different ab-
straction levels, such as representations in different models, at different levels of
precision, at different levels of concreteness, or at different levels of optimization.
Generally the two representations would not be used simultaneously. Normally
one element is more detailed than the other; the more detailed element is the cli-
ent and the less detailed element is the supplier. If there is no clear understanding
that either element is more detailed, then either element can be modeled as the cli-
ent.

The stereotypes of abstraction dependency are trace, refinement (keyword
refine), realization (keyword realize), and derivation (keyword derive).

Notation
An abstraction dependency is shown as a dashed arrow from the client element to
the supplier element with the keyword «trace», «refine», or «derive». The realiza-
tion dependency has its own special notation as a dashed arrow with a closed tri-
angular arrowhead on the supplier element.

The mapping between elements can be attached to the relationship as a con-
straint.

Standard elements
derive, refine, trace

access

A permission dependency that permits one package to reference the elements of
another package.

See friend, import, visibility.

Semantics
A package (the client) that references an element in another package (the supplier)
must import the package containing the element using an «access» or an «import»
dependency from the client package to the supplier package. A package implicitly
gains access to all packages imported by any package within which it is nested (that
is, nested packages can see everything that their containing packages see).

An element in a package has access to all elements that are visible within the
package. The visibility rules may be summarized as follows.

• An element defined in a package is visible within the same package.

• If an element is visible within a package, then it is visible within all packages
nested inside the package.

120 • access Encyclopedia of Terms
• If a package accesses or imports another package, then all elements defined
with public visibility in the accessed or imported package are visible within
the importing package.

• If a package is a child of another package, then all elements defined with pub-
lic or protected visibility in the parent package are visible within the child
package.

• Access and import dependencies are not transitive. If A can see B and B can see
C, it does not necessarily follow that A can see C.

One consequence is that a package cannot see inside its own nested packages un-
less it accesses them and unless their contents are public within the nested pack-
ages.

The following are some further rules on visibility.

• The contents of a classifier, such as its attributes and operations as well as
nested classes, are visible within the package if they have public visibility in the
classifier. Note that the unstructured contents of a subsystem are governed by
the package rules stated above, but any attributes or operations of the sub-
system itself are governed by this rule.

• The contents of a classifier are visible within a descendant classifier if they
have public or protected visibility in the classifier.

• All contents of a classifier are visible to elements within the classifier, includ-
ing within methods or state machines of the classifier.

The normal simple case concerns elements in packages that are peers. In that case,
an element can see all the elements in its own package and all the elements with
public visibility in those packages imported by its package. A class can see the pub-
lic features in other classes that it can see. A class can also see protected features in
its ancestors.

Notation
An access dependency is shown by a dashed arrow, drawn with its tail on the client
package and its head on the supplier package. The arrow uses the keyword
«access» as a label.

Discussion
Figure 13-5 shows an example of peer-level access among two packages. Package P
can access package Q, but package Q cannot access package P. Classes K and L in
package P can see public class M in package Q, but they cannot see private class N.
Classes M and N cannot see any class in package P, regardless of the public visibil-

Encyclopedia of Terms access • 121
ity of class K, because package Q has no access to package P. For a class to be visible
in a peer package, the class must have public visibility and its package must be ac-
cessed or imported by the peer package.

Figure 13-6 shows a more complicated case of visibility and access declarations.
The symbol in front of an element name represents the visibility of the element
outside its own container: + for public, # for protected (visible only to descen-
dants), – for private (not visible outside).

Class A can see C and E because they are in enclosing packages Y and X.
Classes C and A can see D because package Y imports package Z. Class A is

nested inside package Y and can therefore see everything Y can see.

Figure 13-5. Peer access

Figure 13-6. Access rules

+K +M«access»

P Q

–L –N

+A +B

+C +D

+E

–F

«access» «access»

«access»

X

Y Z

U V

122 • action Encyclopedia of Terms
Classes A, C, and E can see B because they are nested in package X, which im-
ports package V containing B. They cannot see F, however, because it has private
visibility within its package V. Class F, therefore, cannot be seen outside package V.

Class E cannot see D because D is in package Z, which has not been imported by
package X.

Class C cannot see A, and E cannot see A. Class A is in package U, which has not
been imported by another package.

Classes B and F can see classes D and E, which are found in enclosing packages.
They can also see C, which is in package Y, which is imported by enclosing package
X. The fact that F is private does not prevent it from seeing other classes, but other
classes cannot see F.

Classes B and F can see each other because they are in the same package. Class F
is private to classes in outer packages, not to classes in its own package.

action

An executable atomic computation that results in a change in the state of the
model or the return of a value. Contrast: activity.

See also entry action, exit action, transition.

Semantics
An action is an atomic computation—that it, it cannot be terminated externally. It
can be attached to a transition in a state machine (between two states or within a
single state) or to a step in an interaction. Usually, it is a primitive or near-
primitive operation on the state of a system, often on the state of a single object.
Typical actions include assignments to attribute values, accessing values of at-
tributes or links, creation of new objects or links, simple arithmetic, and sending
signals to other objects. Actions are the discrete steps out of which behavior is
built. Actions are meant to be “fast” computations so that system response time is
not impaired. The system can execute several actions simultaneously and time
share among them, but their execution should be independent.

Actions may be attached to a transition. They are executed when the transition
fires. They can also appear as entry actions and exit actions of states. These are ac-
tions triggered by transitions that enter or leave a state. All actions are atomic, that
is, they are executed completely without interference from other operations.

An activity is also a computation, but it may have internal structure and may be
terminated by a transition on an external event, therefore it can be attached to a
state but not to a transition. Unlike actions, activities can persist indefinitely until
externally terminated, although they may also terminate on their own. An action
may not be externally terminated and can be attached to a transition or to the en-
try or exit of a state but not to a state itself.

Encyclopedia of Terms action • 123
Structure
An action has a target object set, a reference to the signal to be sent or the opera-
tion to be performed (collectively, these are called a request), a list of argument val-
ues, and an optional recurrence expression specifying possible iteration.

Object set. An object set expression that yields a set of objects. In many cases, the
set contains a single fixed object. A copy of the message with the given list of argu-
ments is sent concurrently to each object in the set (that is, it is “broadcast” to
them). Each target independently receives and handles a separate instance of the
message. If the set is empty, then nothing happens.

Request. Designates a signal or operation declaration. The signal is sent to the ob-
jects, or the operation is called (for an operation with a return value the set must
contain a single object).

Argument list. A list of arguments. When evaluated, the values in the argument list
must match the parameters of the signal or operation. The arguments are supplied
as part of the send or call.

Recurrence. An iteration expression specifying how many times to perform the ac-
tion, optionally specifying iteration variables. This expression can also describe a
conditional action (an iteration with either zero or one repetition).

Kinds of actions
Assignment action. An assignment is an action that sets the value of an attribute in
an object to a given value. The action has an expression for a target object, the
name of an attribute within the object, and an expression for a value to be assigned
to the attribute slot in the object.

Call action. A call action results in the invocation of an operation on an object; it is
a call to an operation on an object. The action has a message name, a list of argu-
ment expressions, and a target object set expression. The target may be a set of ob-
jects. In that case the calls occur concurrently and the operation must not have a
return value. If the operation has a return value, then it must have a single object
as target.

A call action is synchronous. The caller waits for the completion of the invoked
operation before receiving control again. If the operation is implemented as a call
event, then the caller waits until the receiver executes the transition triggered by
the call before receiving control again. If the operation execution returns values,
the caller receives them when it receives control again.

Create action. A create action results in the instantiation and initialization of an
object (see creation). The action has a reference to a class and an optional class-
scope operation with an argument list. Execution of the action creates a new in-
stance of the class; its attributes have the values obtained by evaluating their initial

124 • action Encyclopedia of Terms
value expressions. If an explicit create operation is given, then it is executed. The
operation may override the initialization of the attribute values, usually by using
argument values of the create action.

Destroy action. A destroy action results in the destruction of a target object. The
action has an expression that evaluates to an object. There are no other arguments.
The result of executing the action is the destruction of the object, together with all
links involving it and all composite parts of it (see composition).

Return action. A return action causes a transfer of control to the caller of an oper-
ation. This action is allowed only inside an operation that is invoked by a call. The
action has an optional list of return values that are made available to the caller
when it receives control. If the enclosing operation was invoked asynchronously,
then the caller must explicitly choose to receive the return message (as a signal), or
it is lost.

Send action. A send action creates an instance of a signal and initializes it with the
arguments obtained by evaluating the argument expressions in the action. The sig-
nal is sent to the objects in the object set obtained by evaluating the target expres-
sion in the action. Each object in the set receives its own copy of the signal. The
sender keeps its own thread of control and proceeds; sending a signal is asynchro-
nous. The action has the name of a signal, a list of expressions for arguments of the
signal, and an object set expression for the target objects.

If the object set is omitted, then the signal is sent to one or more objects deter-
mined by the signal and the system configuration. For example, an exception is
sent to an enclosing scope determined by system policies.

Terminate action. A terminate action causes the destruction of the object owning
the state machine that contains the action (that is, it commits suicide). The de-
struction of an object is an event to which other objects may respond.

Uninterpreted action. An uninterpreted action is a control construct or other con-
struct not defined in UML.

Notation
UML does not have a fixed action language. It is expected that many modelers will
choose to use an actual programming language to write actions. The following ad-
aptation of OCL is used in this book to write action pseudocode, but it is not part
of the standard.

Assignment action

target := expression

Call action

object-set . operation-name (argumentlist,)

Encyclopedia of Terms action • 125
Create action

new class-name (argumentlist,)

Destroy action

object . destroy ()

Return action

return expressionlist,

Send action

object-set . signal-name (argumentlist,)

Terminate action

terminate

Uninterpreted action

if (expression) then (action) else (action)

If it is necessary to distinguish call and send explicitly, the keyword call or send
may be prefixed to the expression. They are optional.

Discussion
The UML specification defines a set of actions with the expectation that others will
be added in the actual implementation of support tools. This decision was a result
of a trade-off between the desire for precision and the need for developers to work
with various target languages, which have a wide range of semantic concepts.
There is much more variation in execution semantics among programming lan-
guages than there is in data structure or in the set of available control constructs.
Subtle differences are difficult to map in a practical way among languages, regard-
less of whether it is possible in theory. The selection of one programming language
as the basis for an action language would, therefore, have the effect of discouraging
the others, which we did not want to do. The semantics of actions have therefore
been left somewhat incomplete and ambiguous within UML itself. To make the se-
mantics precise, UML must be joined with the semantics of the action language
(often a standard programming language) that is being used. Some critics have
complained that UML is imprecise because of this freedom, but it is imprecise only
to the degree that the chosen action language is imprecise. The real defect is that
UML does not impose a lingua franca of actions and other expressions, but this is
hardly possible in today’s polyglot world of computation, regardless of its emo-
tional appeal.

126 • action expression Encyclopedia of Terms
action expression

An expression that resolves to an action or an action sequence.

Discussion
The syntax of an action expression is not specified by UML. It is the responsibility
of support tools. It is expected that different users may use programming lan-
guages, pseudocode, or even natural language to express actions. A more precise
syntax is, of course, needed for detailed design, but this is where actual program-
ming languages will be used by most users.

action sequence

A sequence of actions to be executed one after another. It is a kind of action.

Semantics
An action sequence is a list of actions. The actions are executed sequentially. The
entire sequence is considered an atomic unit (that is, it is noninterruptible). An ac-
tion sequence is an action and can therefore be attached to transitions and to in-
teraction steps.

Notation
An action sequence is displayed as a string, which consists of a sequence of action
strings separated by semicolons.

If actions are expressed in a particular programming language, then its syntax
for statement sequences can be used instead.

Example
count := 0; reservations.clear(); send kiosk.firstScreen()

action state

A state whose purpose is to execute an action and then transition to another state.
See also activity state, completion transition.

Semantics
An action state is a state whose purpose is to execute an entry action, after which it
takes a completion transition to another state. An action state is atomic—that is, it
may not be terminated by a transition on an external event. Conceptually, it repre-
sents a computation that completes in negligible time without interacting with
other simultaneous actions. In practice, it may require time to complete, but the

Encyclopedia of Terms activation • 127
time should be shorter than the response times required for events that might oc-
cur. It cannot have transitions triggered by events. An action state has no substruc-
ture, internal activities, or internal transitions. It is a kind of dummy state that is
useful for organizing state machines into logical structures. It usually has an out-
going completion transition. There may be multiple outgoing completion transi-
tions if they have guard conditions (and therefore represent a branch).

Notation
There is no special notation for an action state. It can be shown as an ordinary
state with an entry action. It can also be shown as an activity state.

activation

The execution of an operation. An activation (also known as focus of control) rep-
resents the period during which an object performs an operation either directly or
through a subordinate operation. It models both the duration of the execution in
time and the control relationship between the execution and its callers. In a con-
ventional computer and language, an activation corresponds to a value of the stack
frame.

See call, sequence diagram.

Semantics
An activation is an instance of executing an operation, including the period during
which the operation calls other subordinate operations (see call). Its context com-
prises a set of local variables that are accessible only to the activation, a current lo-
cation within the method (or other behavioral description), and a reference (the
return reference) to the activation that represents the calling context, which regains
control when the current activation terminates. An activation with no return ref-
erence must be the result of a transition on the state machine of an active class ob-
ject; when it completes, the state machine simply waits for the next event.

Note that this definition describes an ordinary procedure as implemented in a
typical von Neumann machine. But it is expressed in a general way meant to apply
also to a distributed environment in which there is no shared memory and in
which the stack frame comprises a linked list of activations in different memory
spaces.

Notation
An activation is shown on a sequence diagram as a tall, thin rectangle (a vertical
hollow bar), the top of which is aligned with its initiation time and whose bottom
is aligned with its completion time. The operation being performed is shown by a
text label next to the activation symbol or in the left margin, depending on style.

128 • activation Encyclopedia of Terms
Alternately, the incoming message symbol may indicate the operation. In that
case, the label may be omitted on the activation itself. If the flow of control is pro-
cedural, then the top of the activation symbol is at the tip of the incoming message
arrow that initiates the action and the bottom of the symbol is at the tail of a re-
turn message arrow.

If there is concurrent activity by multiple objects, then each activation shows the
execution of one concurrent object. Unless the objects communicate, the concur-
rent activations are independent and their relative execution times are irrelevant.

In the case of procedural code, an activation shows the duration during which a
procedure is active in the object or a subordinate procedure called by the original
procedure is active, possibly in some other object. In other words, all the active
nested procedure activations are shown simultaneously. This set of simultaneous
nested activations is the stack frame of the computation in a conventional com-
puter. In the case of a second call to an object with an existing activation, the sec-
ond activation symbol is drawn slightly to the right of the first one, so that they
appear to “stack up” visually. Stacked calls may be nested to an arbitrary depth.
The calls may be to the same operation (a recursive call) or to different operations
on the same object.

Figure 13-7. Activations

compress()

findPattern(t)

compressor:Filter

findPattern(s)

activation for newly created object

stacked activation

object whose activation is shown

activation for existing object

recursive call

recursive return

newly created object

h: Image

Encyclopedia of Terms active • 129
Example
Figure 13-7 shows activations resulting from calls, including a recursive call.

active

A state that has been entered and has not yet been exited; one that is held by an
object.

See also active class, active object.

Semantics
A state becomes active when a transition entering it fires. An active state ceases to
be active when a transition leaving it fires. If an object has a thread of control, then
at least one state is active. (In the degenerate case, a class may have only a single
state. In that case, the response to an event is always the same.) If a state is active
within the state machine for an object’s class, the object is said to hold the state.

An object may hold multiple states at one time. The set of active states is called
the active state configuration. If a nested state is active, then all states that contain
it are active. If the object permits concurrency, then more than one concurrent
substate may be active. Each transition affects, at most, a few states in the active
state configuration. On a transition, unaffected active states remain active.

A composite state may be sequential or concurrent. If it is sequential and active,
then exactly one of its immediate substates is active. If it is concurrent and active,
then each of its immediate substates is active. In other words, a composite state ex-
pands into an - tree of active substates; at each level, certain states are active.

A transition across a composite state boundary must be structured to maintain
these concurrency constraints. A transition into a sequential composite state usu-
ally has one source state and one destination state. Firing such a transition does
not change the number of active states. A transition into a concurrent composite
state usually has one source state and one destination state for each subregion of
the concurrent composite state. Such a transition is called a fork. If one or more
regions are omitted as destinations, the initial state from each omitted region is
implicitly present as a destination; if one of the regions lacks an initial state, then
the model is ill formed. Firing such a transition increases the number of active
states. The situation is reversed on exit from a concurrent composite state.

See state machine, which contains a full discussion of the semantics of concur-
rent states and complex transitions.

Example
The top of Figure 13-8 shows a sample state machine with both sequential and
concurrent composite states. The transitions have been omitted to focus on the
states. The bottom of the figure shows the various configurations of states that can

130 • active class Encyclopedia of Terms
be active concurrently. In this example, there are four possible configurations of
active states. Only the leaf states are concrete; the higher states are abstract—that
is, an object may not be in one of them without also being in a nested leaf state.
For instance, the object may not be in state Q without being in the substates of Q.
Because Q is concurrent, both C and D must be active if Q is active. Each leaf state
corresponds to a thread of control. In a larger example, the number of possible
configurations may grow exponentially and it may be impossible to show them all,
hence the advantage of the notation.

active class

A class whose instances are active objects.
See active object for details.

Semantics
An active class is a class whose instances are active objects. Stereotypes for an ac-
tive class are process and thread.

Figure 13-8. Concurrently active states

A

B

C

D

E

F

A

P

Q R

P

A

P

B

P

Q

P

R

C D E F

possible active state configurations

sequentially active

state machine with composite states

concurrently active states

states

Encyclopedia of Terms active object • 131
Notation
An active class is shown with a heavy border.

Example
Figure 13-9 shows a class diagram with an active class and its passive parts.
Figure 13-10 shows a collaboration that contains active objects corresponding to
this model.

active object

An object that owns a thread of control and can initiate control activity; an in-
stance of an active class.

See also passive object, process, thread.

Semantics
An active object does not run within another thread, stack frame, or state ma-
chine. It has an independent locus of control within the overall execution of a sys-
tem. In a sense, it is the thread. Each active object is a distinct locus of execution;
active objects are not reentrant, and recursive execution is not possible without
the creation of additional objects.

An active object is the root of an execution stack frame in conventional compu-
tational terms. The creation of an active object initiates a new instance of a state
machine. When the state machine performs a transition, an execution stack frame
is created and continues until the action of the transition runs to its completion
and the object waits for external input. An active object therefore does not run in
the scope of another object. It can be created by an action of another object, but
once created, it has an independent existence. The creator may be an active or a
passive object. An active object is driven by events. Operations on it by other ob-
jects should be implemented by the active object as call events.

Figure 13-9. Active class and passive parts

Factory Manager

TransferJob FactoryScheduler FactoryJobManager

1 11

active class

passive class

132 • active object Encyclopedia of Terms
A passive object may be created as part of an action by another object. It has its
own address space. A passive object has no thread of control. Its operations are
called within the stack frame of an active object. It may be modeled by a state ma-
chine, however, to show the changes in its state caused by operations on it.

A conventional operating system process is best equated with an active object.
An operating system thread may or may not be implemented by an active object.

The active-passive distinction is primarily a design decision and does not con-
strain the semantics of the objects. Both active and passive objects may have state
machines and may exchange events.

Notation
A collaboration role for an active object is shown on a collaboration diagram as a
rectangle with a heavy border. Frequently, active object roles are shown as com-
posites with embedded parts.

An active object is also shown as an object symbol with a heavy border, with the
name underlined, but active objects appear only within examples of execution and
therefore are not so common.

The property keyword {active} may also be used to indicate an active object.

Figure 13-10. Collaboration with active objects and concurrent control

job

:Factory
JobMgr

:Factory
Scheduler

currentJob
:TransferJob

1: start(job)

A2,B2 / 2: completed(job)

:Oven:Robot

1 / A1: start(job)1 / B1: start(job)

A2: completedB2: completed

fork of control
(same predecessor
for two threads)

join of control
(two predecessors)

A and B are the names
of two concurrent threads
of control.

:Factory Manager

Encyclopedia of Terms activity • 133
Example
Figure 13-10 shows three active objects in a factory automation system: a robot; an
oven; and a factory manager, which is a control object. All three objects exist and
execute concurrently. The factory manager initiates a thread of control at step 1,
which then forks into two concurrent threads of control (A1 and B1) that are exe-
cuted by the oven and the robot, respectively. When each has finished its execu-
tion, the threads join at step 2, in the factory manager. Each object remains alive
and preserves its state until the next event arrives for it.

active state configuration

The set of states that are active at one time within a state machine. The firing of a
transition changes a few states in the set; the others remain unchanged.

See active, complex transition, state machine.

activity

Ongoing nonatomic execution within a state machine. Contrast: action.
See also completion transition, state.

Semantics
An activity is the execution of substructure within a state machine, that is, sub-
structure that has duration with possible interruption points. A transition that
forces an exit from the controlling region aborts the activity. An activity is not ter-
minated by the firing of an internal transition, because there is no change of state.
The action of the internal transition may explicitly terminate it.

Activity can be modeled by nested states, by a submachine reference, or by an
activity expression.

Example
Figure 13-11 shows an alarm system that illustrates the difference between an ac-
tion and an activity. When the event detect intrusion occurs, the system fires a
transition. As part of the transition, the action call police occurs. This is an action,
therefore it is something that is atomic (and usually fast). No events may be ac-
cepted while the action is being executed. After the action is performed, the system
enters the Sounding state. While the system is in this state, it performs the sound
alarm activity. An activity takes time to complete, during which events might oc-
cur that interrupt the activity. In this case, the sound alarm activity does not termi-
nate on its own; it continues as long as the system is in the Sounding state. When
the reset event occurs, the transition fires and takes the system back to the

134 • activity diagram Encyclopedia of Terms
Monitoring state. When the Sounding state ceases to be active, its activity sound
alarm is terminated.

activity diagram

A diagram that shows an activity graph.
See activity graph.

activity expression

A textual expression for a nonatomic computation, an activity. Such an expression
is conceptually decomposable into atomic fragments, but it is convenient to per-
mit a textual representation of the entire thing. The execution of an activity
expression can be terminated by a transition that deactivates the controlling state.

Semantics
An activity expression is an effective procedure (algorithm) expressed in some lan-
guage, such as a programming language or other formal language. It can also be
expressed in human language. In that case, it will not be executable by tools and
cannot be checked for errors or other properties. But it may be sufficient in the
early stages of work. It may also represent a continuous real-world operation.

Notation
An activity expression is represented as text interpreted in some language.

Example
do / invertMatrix Finite but takes time

do / computeBestMove (time-limit) Compute until time runs out

do / sound siren Continuous until stopped

Figure 13-11. Action and activity

do/ sound alarmMonitoring
detect intrusion / call police

reset

Sounding

Encyclopedia of Terms activity graph • 135
activity graph

A special case of a state machine in which all or most of the states are activity states
or action states and in which all or most of the transitions are triggered by comple-
tion of activity in the source states. An activity graph shows a procedure or a
workflow. An activity graph is a complete unit in the model. An activity diagram is
a diagram showing an activity graph.

See also state machine.

Semantics
An activity graph is a state machine that emphasizes the sequential and concurrent
steps of a computational procedure. Workflows are examples of procedures that
are often modeled by activity graphs. Activity graphs generally appear in the ear-
lier stages of design before all implementation decisions have been made—in par-
ticular, before objects have been assigned to perform all activities. This type of
graph is a variation of a state machine in which a state represents the performance
of an activity, such as a computation or a real-world continuous operation, and
the transitions are triggered by the completion of operations. An activity graph
may be attached to the implementation of an operation as well as to the imple-
mentation of a use case.

In an activity graph the states are primarily activity states or action states. An
activity state is a shorthand for a state with an internal computation and at least
one outgoing completion transition that fires on the completion of activity in the
state. There may be several outgoing transitions if they have guard conditions. Ac-
tivity states should not have internal transitions or outgoing transitions based on
explicit events. Use normal states for this situation. An action state is an atomic
state—that is, one that may not be interrupted by transitions, even those on sur-
rounding states.

The usual use of an activity state is to model a step in the execution of a proce-
dure. If all the states in a model are activity states, then the result of the computa-
tion will not depend on outside events. The computation is deterministic if
concurrent activities do not access the same objects and the relative completion
times of concurrent activities do not affect the results.

Activity graphs may include ordinary wait states, whose exits are triggered by
events, but such usage defeats the purpose of focusing on activities. Use an ordi-
nary state model if there are more than a very few ordinary states.

Dynamic concurrency. An activity state with dynamic concurrency represents con-
current execution of multiple independent computations. The activity is invoked
with a set of argument lists. Each member of the set is the argument list for a con-
current invocation of the activity. The invocations are independent of each other.

136 • activity graph Encyclopedia of Terms
When all invocations have completed, the activity is complete and triggers its com-
pletion transition.

Object flow. Sometimes, it is useful to see the relationships between an operation
and the objects that are its argument values or results. The input to and the out-
puts from an operation may be shown as an object flow state. This is a stereotype
of a state that represents the existence of an object of a given class at a particular
point in the computation. For added precision, the input or output object may be
declared to be in a given state within its class. For example, the output of a “sign
contract” operation will be an object flow state of the Contract class in the
“signed” state. This object flow state may be an input of many other operations.

Swimlanes. The activities of an activity graph can be partitioned into groups,
based on various criteria. Each group represents some meaningful partition of the
responsibilities for the activities—for example, the business organization responsi-
ble for a given workflow step. Because of their graphical notation, the groups are
called swimlanes.

Notation
An activity graph is notated as an activity diagram. Activity graphs are a variety of
state machine, but several shorthand notations are particularly suitable for activity
diagrams: activity states, branches, merges, swimlanes, object flow states, class-in-
state, signal receipt and signal sending notation, and deferred events. See these en-
tries for further details.

See control icons for some optional symbols that can be useful in activity dia-
grams.

Example
Figure 13-12 shows a workflow of the activities involved in processing an order at
a theater box office. It includes a branch and subsequent merge based on whether
the order is for a subscription or for individual tickets. The fork initiates concur-
rent activities that logically occur at the same time. Their actual execution may or
may not overlap. The concurrency is terminated by a subsequent matching join. If
there is only one person involved, then concurrent activities can be performed in
any order (presuming they cannot be performed simultaneously, which is permit-
ted by the model, but might be difficult in practice). For example, the box office
personnel could assign the seats, then award the bonus, then debit the account; or
they could award the bonus, assign the seats, then debit the account—but they
cannot debit the account until after the seats have been assigned.

One output segment from the fork has a guard condition testing whether the
subscriber is a member. This is a conditional thread. It is started only if the guard
condition is satisfied. If the thread is not started, the input segment to the subse-

Encyclopedia of Terms activity graph • 137
quent matching join is considered completed. If the subscriber is not a member,
only one thread is started. It assigns seats and debits the account, but does not wait
for synchronization at the join.

Swimlanes. The activities in an activity graph can be partitioned into regions,
which are called swimlanes from their visual appearance as regions on a diagram
separated by dashed lines. A swimlane is an organizational unit for the contents of
an activity graph. It has no inherent semantics, but can be used as the modeler de-
sires. Often, each swimlane represents an organizational unit within a real-world
organization.

Figure 13-12. Activity diagram

Assign
Award

[subscription]

Set up

Assign
[single order]

Debit

Mail

BoxOffice::ReceiveOrder

activity

fork of control

join of control

start of
overall activity

end of overall activity

branch

merge

[member?]
conditional thread

Assign
seats

Charge
credit card

member
bonus

seats

seats

order

account

packet

138 • activity graph Encyclopedia of Terms
Example
In Figure 13-13, the activities are divided into three partitions by swimlanes, each
one corresponding to a different stakeholder. There is no UML requirement that
the partitions correspond to objects, although in this example, there are obvious
classes that would fall under each partition, and those classes would be the ones
that perform the operations to implement each activity in the finished model.

The figure also shows the use of object flow symbols. The object flows corre-
spond to different states of an order object as it works its way through a network of

Figure 13-13. Activity diagram with swimlanes

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

Order
[entered]

Order
[filled]

Order
[delivered]

Order
[placed]

swimlane

object flow

output
value

input
value

control
flow

activity

swimlane name

Encyclopedia of Terms activity graph • 139
activities. The symbol Order[placed], for example, means that at that place in the
computation, an order has been advanced to the placed state in the Request Ser-
vice activity but has not yet been consumed by the Take Order activity. After the
Take Order activity completes, the order is then in the entered state, as shown by
the object flow symbol on the output of the Take Order activity. All the object
flows in this example represent the same object at different times in its life. Be-
cause they represent the same object, they cannot exist at the same time. A sequen-
tial control path can be drawn through all of them, as is apparent in the diagram.

Object flow. Objects that are input to or output by an action may be shown as ob-
ject symbols. The symbol represents the object at the point in the computation at
which it is suitable as an input or just produced as an output (usually an object
does both). A dashed arrow is drawn from an outgoing transition of an activity
state to an object flow that is one of its outputs, and a dashed arrow is drawn from
an object flow to an incoming transition into an activity state that uses the object
as one of its inputs. The same object may be (and usually is) the output of one ac-
tivity and the input of one or more subsequent activities.

The control flow (solid) arrows may be omitted when the object flow (dashed)
arrows supply a redundant constraint. In other words, when an action produces an
output that is input by a subsequent action, that object flow relationship implies a
control constraint.

Class in state. Frequently, the same object is manipulated by a number of succes-
sive activities that change its state. For greater precision, the object may be dis-
played multiple times on a diagram, each appearance denoting a different state
during its life. To distinguish the various appearances of the same object, the state
of the object at each point may be placed in brackets and appended to the name of
the class—for example, PurchaseOrder[approved]. This notation may also be used
in collaboration diagrams.

See also control icons for other symbols that can be used in activity diagrams.

Deferred events. Sometimes, there is an event whose occurrence must be “de-
ferred” for later use while some other activity is underway. (Usually an event that is
not handled immediately is lost.) A deferred event is an event that is placed on an
internal queue until it is used or until it is discarded. Each state or activity may
specify a set of events that are deferred if they occur during the state or activity.
Other events must be handled immediately or they are lost. When the state ma-
chine enters a new state, all deferred events occur unless the new state also defers
them. If a transition in the new state is triggered by an event that was deferred in
the previous state, then the transition fires immediately. If several transitions are
potentially enabled, it is undefined which of them will fire; imposing a rule to se-
lect one is a semantic variation point.

If an event occurs during a state in which it is deferred, it may trigger a transi-
tion, in which case it is not placed on the queue. If it does not trigger a transition,

140 • activity graph Encyclopedia of Terms
it is placed on the queue. If the active state changes, events on the queue may trig-
ger transitions in the new state, but they remain on the queue if they are still de-
ferred in the new state. The ability to undefer an event to trigger a transition is
useful where an event must be deferred in a composite state but may enable transi-
tions in one or more substates. Otherwise, it would have to be deferred in each
substate in which it does not trigger a transition. Note that if a deferred event
matches a trigger event on a transition but the guard condition is not satisfied, the
event has not triggered the transition, and it is not removed from the queue.

A deferrable event is shown by listing it within the state, followed by a slash and
the special operation defer. If the event occurs and does not trigger a transition, it
is saved and recurs when the object transitions to another state, when it may be de-
ferred again. When the object reaches a state in which the event is not deferred, it
must be accepted or it will be ignored. The absence of a defer statement has the ef-
fect of cancelling a previous deferral. The defer indication may be placed on a
composite state, in which case, the event is deferred throughout the composite
state.

Action states are atomic and, therefore, implicitly defer any events that occur
while they are active. It is unnecessary to mark them for deferral. An event that oc-
curs is deferred until the action is completed, at which time the event may trigger a
transition.

Example
Figure 13-14 shows steps in making a pot of coffee. In this example, the external
object (coffeePot) is not shown, just the activities performed directly by the per-
son. The act of turning on the pot is modeled as an event sent to the pot. The ac-
tivity Get Cups occurs after turning on the coffee pot. After getting the cups, it is
necessary to wait until the light goes out. There is a problem, however. If the light
goes out event occurs before the Get Cups activity is complete, then the event is
lost because the state machine is not ready to handle it. To avoid the danger of los-
ing an event, the activity state Get Cups has been marked to defer the light goes
out event. If the event occurs when the activity is still executing, the event will not
be lost. Instead, it is saved on a queue until the state machine leaves the Get Cups
state, at which point it is processed and triggers the transition.

Note that the light goes out event is not a trigger for the Get Cups state and,
therefore, does not terminate the activity if it occurs. The event is a trigger for the
signal receipt state that follows the completion of the Get Cups activity.

Dynamic concurrency. Dynamic concurrency with a value other than exactly one
is shown by a multiplicity string in the upper-right part of the activity symbol
(Figure 13-15). This indicates that multiple copies of the activity occur concur-
rently. The dynamic activity receives a set of argument lists. The details must be

Encyclopedia of Terms activity graph • 141
Figure 13-14. Defer event and control icons

Figure 13-15. Dynamic concurrency

Turn On
Machine

Pour Coffee

turnOn

Get Cups

light goes out

light goes out / defer

The target of the event is not shown.
This is normal in most activity diagrams
because the focus is on the local activity.

The result of this activity is the event.

This is concurrent with the coffee pot
warming up. Either may finish first,
hence the need for the defer.

This event comes back from the coffee pot.
It might come during the previous activity;
therefore, it is deferred there.

signal send

signal receipt

ordinary state

collect query information

post to search engine

sort results by priority

∗
send to each web searcher

dynamic concurrency

142 • activity state Encyclopedia of Terms
described textually. If the concurrency applies over several activities, they must be
enclosed in a composite activity, which gets the multiplicity indicator.

Graph structure. A state machine must be well nested—that is, it is recursively par-
titioned into concurrent or sequential substates. For an activity graph, branches
and forks must be well nested. Each branch must have a corresponding merge, and
each fork must have a corresponding join. This is not always convenient for an ac-
tivity graph. A common situation is a partial-order graph, in which there are no
directed cycles, but forks and merges do not necessarily match. Such a graph is not
well nested, but it can be transformed into a well-nested graph by assigning activi-
ties to threads and introducing synch state when transitions cross thread bound-
aries. The decomposition is not unique, but for a partial-order graph all
decompositions yield identical executable semantics. Therefore, it is unnecessary
to show an explicit decomposition or synch states for a simple partial-order graph.
For more complicated graphs that involve conditionals and concurrency, it may be
necessary to be more explicit about the decomposition.

activity state

A state that represents the execution of a pure computation with substructure,
typically the invocation of an operation or a statement within it or the perfor-
mance of a real-world procedure. An activity state can be externally terminated by
an event that forces a transition out of the state. An activity state need not termi-
nate on its own. There is no limit on how long it may be active.

See also activity, completion transition.

Semantics
An activity state is a state with an internal computation and, usually, at least one
outgoing completion transition that fires on the completion of activity in the state
(there may be several such transitions if they have guard conditions). Activity
states should not have internal transitions or outgoing transitions based on ex-
plicit events. Use normal states for this situation. The normal use of an activity
state is to model a step in the execution of an algorithm (a procedure). If all the
states in a model are activity states and concurrent activities do not access the same
values, then the computation is deterministic, even if it involves concurrent execu-
tion.

An activity state may reference a submachine, typically another activity graph.
This is equivalent to expanding the activity state into a copy of the submachine
network. It is a state machine subroutine.

Encyclopedia of Terms activity state • 143
An activity state is a state of the process of execution of a procedure rather than
the state of a normal object.

An action state is an activity state that is atomic—that is, it may not be inter-
rupted by a transition while it is active. It may be modeled as an activity state with
only an entry action.

Activity states may be used in ordinary state machines, but they are more com-
monly used in activity graphs.

Transitions leaving an activity state usually should not include an event trigger.
Outgoing transitions are implicitly triggered by the completion of the activity in
the state. The transitions may include guard conditions and actions. Take care that
all possible conditions are covered on the transitions departing an activity, or else
the control may hang. If more than one guard condition evaluates to true, the
choice is undefined. It may be nondeterministic, or a rule may be imposed as a se-
mantic variation point.

For other situations use a normal state.

Notation
An activity state is shown as a shape with straight top and bottom and with convex
arcs on the two sides (Figure 13-16). The activity expression is placed in the sym-
bol. The activity expression need not be unique within the diagram.

Discussion
Action states are intended for short bookkeeping operations and activity states for
computations of any duration or complexity. The implication is that an action
might lock up the system so it must be brief, but an activity can be terminated so
the system is not required to complete it if something urgent happens. UML se-
mantics do not prevent long actions, but a code generator might legitimately
assume that an action is intended to be completed at once, while an activity must
be interruptible for other actions.

Figure 13-16. Activities

matrix.invert (tolerance) drive to work

144 • activity view Encyclopedia of Terms
activity view

That aspect of the system dealing with the specification of behavior as activities
connected by control flows. This view contains activity graphs and is shown on
activity diagrams. It is loosely grouped with other behavioral views as the dynamic
view.

See activity graph.

actor

An abstraction for entities outside a system, subsystem, or class that interact di-
rectly with the system. An actor participates in a use case or coherent set of use
cases to accomplish an overall purpose.

See also use case.

Semantics
An actor characterizes and abstracts an outside user or related set of users that in-
teract with a system or classifier. An actor is an idealization with a focused purpose
and meaning and might not correspond exactly to physical objects. One physical
object may combine disparate purposes and therefore be modeled by several ac-
tors. Different physical objects may include the same purpose, and that aspect of
them would be modeled by the same actor. The user object may be a human, a
computer system, another subsystem, or another kind of object. For example, ac-
tors in a computer network system might include Operator, System Administrator,
Database Administrator, and plain User. There can also be nonhuman actors, such
as RemoteClient, MasterSequencer, and NetworkPrinter.

Each actor defines a set of roles that users of a system may assume when inter-
acting with the system. The complete set of actors describes all the ways in which
outside users communicate with the system. When a system is implemented, the
actors are implemented by physical objects. One physical object can implement
more than one actor if it can fulfill all their roles. For example, one person can be
both a salesclerk and a customer of a store. These actors are not inherently related,
but they can both be implemented by a person. When the design of a system is
performed, the various actors inside the system are realized by design classes (see
realization).

The various interactions of actors with a system are quantized into use cases. A
use case is a coherent piece of functionality involving a system and its actors to ac-
complish something meaningful to the actors. A use case may involve one or more
actors. One actor may participate in one or more use cases. Ultimately, the actors
are determined by the use cases and the roles that actors play in various use cases.
An actor that participates in no use cases would be pointless.

Encyclopedia of Terms actor • 145
A use case model characterizes the kinds of behavior provided by an entity, such
as a system, subsystem, or class, in its interactions with outside entities. Outside
entities are actors of the entity. In the case of a system, the actors may be realized
both by human users and by other systems. In the case of a subsystem or class, the
outside elements may be actors of the overall system, or they may be other ele-
ments within the system, such as other subsystems or classes.

Actor instances communicate with the system by sending and receiving message
instances (signals and calls) to and from use case instances and, at realization level,
to and from the objects that implement the use case. This is expressed by associa-
tions between the actor and the use case.

An actor may list the set of signals that it sends and receives. An actor may also
have a list of interfaces that it supports and requires. The interfaces of an actor
must be compatible with the interfaces of each use case that it communicates with.
In other words, an actor must receive all the signals that a use case can send, and it
must not send signals to a use case that the use case cannot receive. The interfaces
of an actor constrain how the actor can be mapped onto classes. An actor may also
have a list of attributes that characterize its state.

Generalization
Two or more actors may have similarities; that is, they may communicate with the
same set of use cases in the same way. This similarity is expressed with generaliza-
tion to another (possibly abstract) actor, which models the common aspects of the
actors. The descendant actors inherit the roles and the relationships to use cases
held by the ancestor actor. An instance of a descendant actor can always be used in
cases in which an instance of the ancestor is expected (substitutability principle).
A descendant includes the attributes and operations of its ancestors.

Notation
An actor may be shown as a class symbol (rectangle) with the stereotype «actor».
The standard stereotype icon for an actor is the “stick man” figure, with the name
of the actor below the figure. The actor may have compartments that show at-
tributes and events that it receives, and it may have dependencies to show events
that it sends. These are capabilities of a normal classifier (Figure 13-17).

Figure 13-17. Actor symbol

Customer

Customer
«actor» actor stereotype

(normal form of display)

stereotyped
class symbol

146 • actual parameter Encyclopedia of Terms
actual parameter

See argument.

aggregate

A class that represents the whole in an aggregation (whole-part) association.

aggregation

A form of association that specifies a whole-part relationship between an aggre-
gate (a whole) and a constituent part.

See also composition.

Semantics
A binary association may be declared an aggregation—that is, a whole-part rela-
tionship. One end of the association is designated the aggregate while the other
end is unmarked. Both ends may not be aggregates (or composites), but both ends
can be unmarked (in which case, it is not an aggregation).

The links instantiated from aggregation associations obey certain rules. The ag-
gregation relationship is transitive and antisymmetric across all aggregation links,
even across those from different aggregation associations. Transitivity means that
it makes sense to say that “B is part of A” if there is a path of aggregation links from
B to A in the direction of traversal (in this example, from part to whole). Antisym-
metry means that there are no cycles in the directed paths of aggregation links.
That is, an object may not be directly or indirectly part of itself. Putting the two
rules together, the graph of aggregation links from all aggregation associations
forms a partial order graph, a graph without cycles (a tree is a special and common
case of a partial order). Figure 13-18 shows an example.

A directed path of links from object B to object A implies that there is a directed
path of aggregation associations from the class of B to the class of A, but the path
of associations may involve cycles in which the same class appears more than once.
A directed path of aggregation associations from a class to itself is a recursion.

There is a stronger form of aggregation, called composition. A composite is an
aggregate with the additional constraints that an object may be part of only one
composite and that the composite object has responsibility for the disposition of
all its parts—that is, for their creation and destruction.

See composition for details.
In plain aggregation, a part may belong to more than one aggregate, and it may

exist independently of the aggregate. Often the aggregate “needs” the parts, in the
sense that it may be regarded as a collection of parts. But the parts can exist by
themselves, without being regarded only as parts. For example, a path is little more

Encyclopedia of Terms aggregation • 147
Figure 13-18. Aggregations of objects are acyclic

ContainerIcon

Item

a: Container

b: Container c: Containerg: Icon

f: Icone: Icon h: Icon d: Container

i: Icon

a
b

c

i

e

f

g

h

d
the image being modeled

class diagram: recursion using aggregation

This stops This continues

object diagram: no loops among objects

the induction element:

the recursion.the recursion.

either an icon
or a container

148 • aggregation Encyclopedia of Terms
than a collection of segments. But a segment can exist by itself whether or not it is
part of a path, and the same segment may appear in different paths.

See association and association end for most of the properties of aggregation.

Notation
An aggregation is shown as a hollow diamond adornment on the end of an associ-
ation line at which it connects to the aggregate class (Figure 13-19). If the aggrega-
tion is a composition, then the diamond is filled (Figure 13-68). The ends in an
association may not both have aggregation indicators.

An aggregate class can have multiple parts. The relation between the aggregate
class and each part class is a separate association (Figure 13-20).

If there are two or more aggregation associations to the same aggregate class,
they may be drawn as a tree by combining the aggregation ends into a single seg-
ment (Figure 13-21). This requires that all the adornments on the aggregation
ends be consistent; for example, they must all have the same multiplicity. Drawing
aggregations as a tree is purely a presentation option; there are no additional se-
mantics to it.

Discussion
The distinction between aggregation and association is often a matter of taste
rather than a difference in semantics. Keep in mind that aggregation is association.
Aggregation conveys the thought that the aggregate is inherently the sum of its
parts. In fact, the only real semantics that it adds to association is the constraint
that chains of aggregate links may not form cycles, which is often important to
know, however. Other constraints, such as existence dependency, are specified by
the multiplicity, not the aggregation marker. In spite of the few semantics attached
to aggregation, everybody thinks it is necessary (for different reasons). Think of it
as a modeling placebo.

Several secondary properties are connected with aggregation, but not reliably
enough to make them part of its required definition. These include propagation of
operations from aggregate to parts (such as a move operation), and compact
memory assignment (so that the aggregate and its recursive parts can be efficiently
loaded with one memory transfer). Some authors have distinguished several kinds
of aggregation, but the distinctions are fairly subtle and probably unnecessary for
general modeling.

Aggregation is a property that transcends a particular association. One can
compose aggregations over different pairs of classes, and the result is an aggrega-
tion. Aggregation imposes a constraint on the instances of all aggregation associa-
tions (including composition associations) that there may be no cycles of
aggregation links, including links from different associations. In a sense, aggrega-

Encyclopedia of Terms aggregation • 149
tion is a kind of generalization of association in which constraints and some oper-
ations apply to associations of many specific kinds.

Composition has more specific semantics that correspond to physical contain-
ment and various notions of ownership. Composition is appropriate when each
part is owned by one object and when the part does not have an independent life

Figure 13-19. Aggregation notation

Figure 13-20. One aggregate with several parts

Figure 13-21. Tree form of notation for multiple aggregations to the same class

Path

segment

Segment

∗ {ordered}

∗ aggregate end

part end

Mailitem

Body

∗

1

Address

∗

1

aggregate

parts

The aggregate has

Parts can be shared
among aggregates
(multiplicity many).

a fixed structure
(multiplicity 1).

Mailitem

Body

∗

1

Address

1

equivalent to drawing
two separate lines

150 • analysis Encyclopedia of Terms
separate from its owner. It is most useful when parts must be allocated and initial-
ized at the time the owner is created, and the parts do not survive the destruction
of their owner. The attributes of a class have these properties and can be consid-
ered a kind of composition, although they are not explicitly modeled as such. By
using composition, the burden of memory management and the danger of dan-
gling pointers or orphaned objects can be avoided. It is also appropriate for situa-
tions in which a bundle of attributes has been isolated into a distinct class for
encapsulation and manipulation reasons, but the attributes really apply to the
main class. Container classes used to implement associations are also obvious can-
didates for composite parts, although normally, they should be generated by a
code generator and not modeled explicitly. Note that a composite part, such as a
container class, may contain references (pointers) to noncomposite parts, but the
referenced objects are not destroyed when the referencing object is destroyed.

analysis

That stage of a system that captures requirements and the problem domain. Anal-
ysis focuses on what to do; design focuses on how to do it. In an iterative process,
the stages need not be performed sequentially. This results of this stage are repre-
sented by analysis-level models, especially the use case view and the static view.
Contrast analysis, design, implementation, and deployment.

See stages of modeling, development process.

analysis time

A time during which an analysis activity of the software development process is
performed. Do not assume that all the analysis for a system occurs at the same
time or precedes other activities, such as design and implementation. The various
activities are sequential for any single element, but different activities may be in-
termixed for the entire system.

See design time, modeling time.

ancestor

An element found by following a path of one or more parent relationships.
See generalization, parent.

architecture

The organizational structure of a system, including its decomposition into parts,
their connectivity, interaction mechanisms, and the guiding principles that inform
the design of a system.

See also package.

Encyclopedia of Terms argument • 151
Semantics
Architecture is the set of significant decisions about the organization of a software
system. It includes the selection of structural elements and the interfaces through
which they are connected, the large-scale organization of structural elements and
the topology of their connection, their behavior as specified in the collaborations
among those elements, the important mechanisms that are available across the
system, and the architectural style that guides their organization. For example, the
decision to construct a system from two layers in which each layer contains a small
number of subsystems that communicate in a particular way is an architectural
decision. Software architecture is not only concerned with structure and behavior,
but also with usage, functionality, performance, resilience, reuse, comprehensibil-
ity, economic and technology constraints and trade-offs, and aesthetic concerns.

Discussion
Architectural decisions about the decomposition of a system into parts can be cap-
tured using models, subsystems, packages, and components. The dependencies
among these elements are key indicators of the flexibility of the architecture and
the difficulty of modifying the system in the future.

Another major part of an architecture is the mechanisms that it provides to
build upon. These may be captured with collaborations and patterns.

Nonstructural decisions can be captured using tagged values.

argument

A specific value corresponding to a parameter.
See also binding, parameter, substitutability principle.

Semantics
A run-time instance of a message has a list of argument values, each of which is a
value whose type must be consistent with the declared type of the matching pa-
rameter in the signal or operation declaration. A value is consistent if its class or
data type is the same or a descendant of the declared type of the parameter. By the
substitutability principle, a value of a descendant may be used anywhere an ances-
tor type is declared. The implementation of a value depends on the simulator or
execution environment in which it appears.

Within a collaboration or state machine, expressions may appear for actions.
Within these expressions, calls and message sends require argument specifications.
These argument specifications are also expressions. When these expressions are
evaluated at run time, they must evaluate to values that are consistent with the de-
clared parameters they match.

152 • artifact Encyclopedia of Terms
In a template binding, however, arguments appear within a UML model at
modeling time. In these cases, arguments are represented as expressions in some
language, usually a constraint language or programming language. Template argu-
ments can include not only ordinary data values and objects, but also classifiers
themselves. In the latter case, the corresponding parameter type must be Classifier
or some other metatype. The value of a template argument must be fixed at mod-
eling time; it may not be used to represent a run-time argument. Do not use tem-
plates if the parameters are not bound at modeling time.

artifact

A piece of information that is used or produced by a software development pro-
cess, such as an external document or a work product. An artifact can be a model,
description, or software.

association

The semantic relationship between two or more classifiers that involves connec-
tions among their instances.

See also association class, association end, association generalization, binary as-
sociation, n-ary association.

Semantics
An association is a relationship among two or more specified classifiers that de-
scribes connections among their instances. The participating classifiers have or-
dered positions within the association. The same class may appear in more than
one position in an association. Each instance of an association (a link) is a tuple
(an ordered list) of references to objects. The extent of the association is a set of
such links. A given object may appear more than once within the set of links, or
even more than once within the same link (in different positions) if the definition
of the association permits. Associations are the “glue” that holds together a system.
Without associations, there is only a set of unconnected classes.

Structure
An association has a optional name, but most of its description is found in a list of
association ends, each of which describes the participation of objects of a class in
the association. Note that an association end is simply part of the description of an
association and not a separable semantic or notational concept.

Name. An association has an optional name, a string that must be unique among
associations and classes within the containing package. (An association class is
both an association and a class; therefore, associations and classes share a single

Encyclopedia of Terms association • 153
namespace). An association is not required to have a name; rolenames on its ends
provide an alternate way of distinguishing multiple associations among the same
classes. By convention, the name is read in the order that participating classes ap-
pear in the list: A Person works for a Company; a Salesman sells a Car to a Cus-
tomer.

Association ends. An association contains an ordered list of two or more associa-
tion ends. (By ordered, we mean that the ends are distinguishable and are not in-
terchangeable.) Each association end defines the participation of one class at a
given position (role) in the association. The same class may appear in more than
one position; the positions are, in general, not interchangeable. Each association
end specifies properties that apply to the participation of the corresponding ob-
jects, such as how many times a single object may appear in links in the association
(multiplicity). Certain properties, such as navigability, apply only to binary associ-
ations, but most apply to both binary and n-ary associations.

See association end for full details.

Instantiation
A link is an instance of an association. It contains one slot for each association
end. Each slot contains a reference to an object that is an instance (direct or indi-
rect) of the class specified as the class of the corresponding association end. A link
has no identity apart from the list of objects in it. The links in the extent of an as-
sociation form a set; no duplicates may exist. The number of appearances of an
object in the set of links must be compatible with the multiplicity on each end of
the association. For example, if association SoldTickets connects many tickets to
one performance, then each ticket may appear only once in a link, but each perfor-
mance can appear many times, each time with a different ticket.

Links may be created and destroyed as the execution of a system proceeds, sub-
ject to restrictions on changeability of each end of the association. In some cases, a
link can be created or changed from an object on one end of an association but not
the other end. A link is created from a list of object references. A link has no iden-
tity of its own. It therefore makes no sense to talk about changing its value. It may
be destroyed, and a new link may be created to take its place, however. A link of an
association class does have one or more attribute values in addition to the list of
objects that define its identity, and the attribute values can be modified by opera-
tions while preserving the references to the participating objects.

Notation
A binary association is shown as a solid path connecting the borders of two classes
(Figure 13-22). An n-ary association is shown as a diamond connected by paths to
each of its participant classes (Figure 13-129). (In the binary association, the

154 • association Encyclopedia of Terms
diamond is suppressed as extraneous.) More than one end of the path may con-
nect to a single class.

A path consists of one or more connected solid segments—usually straight line
segments, but arcs and other curves are allowed, especially to show a self-
association (an association in which one class appears more than once). The indi-
vidual segments have no semantic significance. The choice of a particular set of
line styles is a user choice.

See path.
The ends of the paths have adornments that describe the participation of a class

in the association. Some adornments are displayed on the end of the path, between
the line segment and the class box. If there are multiple adornments, they are
placed in sequence from the end of the line to the class symbol—navigation arrow,
aggregation/composition diamond, qualifier (Figure 13-23).

Figure 13-22. Associations

Figure 13-23. Adornment order on association end

Cast

Orchestra
Backup

Show

Performer
understudy

lead

∗

∗

∗

∗

∗

0..1

qname:Cname

aggregation/
composition

navigability qualifierassociation
path

0..∗ rolename

rolenamemultiplicity

ClassBClassA

Encyclopedia of Terms association • 155

Other adornments, such as name labels, are placed near the thing they identify.
Rolenames are placed near an end of the path.

See

 association end for full details on the notation of adornments.

Association name

A name for the association is placed near the path but far enough from an end so
that there is no danger of confusion. (The danger of confusion is purely visual for a
human. Within a graphic tool, the related symbols can be connected with unam-
biguous internal hyperlinks. It is a tool responsibility to determine how far is far
enough.) The association name can be dragged from segment to segment of a
multisegment association with no semantic impact. The association name may
have a small filled triangle near it to show the ordering of the classes in the list. In-
tuitively, the name arrow shows which way to “read” the name. In Figure 13-24,
the association

WorksFor

 between class

Person

 and class

Company

 would have the
name triangle pointing from

Person

 to

Company

 and would be read “Person
works for Company.” Note that the ordering triangle on the name is purely a nota-
tional device to indicate the ordering of the association ends. In the model itself,
the ends are inherently ordered; therefore, the name in the model does not require
or have an ordering property.

A stereotype on the association is indicated by showing the stereotype name in
guillemets (« ») in front of or instead of the association name. A property list may
be placed after or below the association name.

Example

Association class

An association class is shown by attaching a class symbol to the association path
with a dashed line. For an

n

-ary association, the dashed line is connected to the as-
sociation diamond. The class-like properties of the association are shown in the
class symbol, and the association-like properties are shown on the path. Note,
however, that the underlying modeling construct is a single element, even though
the image is drawn using two graphic constructs.

See

 association class for more details.

Figure 13-24.

Association name

Person
WorksFor

Company
employeeemployer

1..∗∗

156 • association Encyclopedia of Terms

Xor constraint

The constraint {

xor}

 connects two or more associations that are connected to a sin-
gle class (the base class) at one end. An instance of the base class may participate in
exactly one of association connected by the constraint. The multiplicity of the cho-
sen association must be observed. If any association multiplicity includes the car-
dinality 0, then an instance of the base class might have no link from the
association; otherwise, it must have one.

An xor-constraint is shown as a dashed line connecting two or more associa-
tions, all of which must have a class in common, with the constraint string

{or}

 la-
beling the dashed line (Figure 13-25). The rolenames on the ends away from the
common class must be different. (This is simply a predefined use of the constraint
notation using the standard constraint overlapping.)

Discussion

An association need not have a name. Usually, rolenames are more convenient be-
cause they provide names for navigation and code generation and avoid the prob-
lem of which way to read the name. If it has a name, the name must be unique
within its package. If it does not have a name and there is more than one associa-
tion between a pair (or set) of classes, then rolenames must be present to distin-
guish the associations. If there is only one association between a pair of classes,
then the class names are sufficient to identify the association.

An argument can be made that association names are most useful when the
real-world concept has a name, such as

Marriage

 or

Job

. When an association
name is “directed” by reading in a given direction, it is usually better simply to use
rolenames, which are unambiguous in the way they are read.

See

 transient link for a discussion of modeling instance relationships that exist
only during procedure execution.

See

 composition for an example of generalization involving two associations.

Standard elements

implicit, persistence, xor

Figure 13-25.

Or association

Account

Person

Corporation

{xor}

personalOwner

corporateOwner

account

account

Encyclopedia of Terms association class • 157

association (binary)

See

 binary association.

association (

n

-ary)

See

n

-ary association.

association class

An association class is an association that is also a class. An association class has
both association and class properties. Its instances are links that have attribute val-
ues as well as references to other objects. Even though its notation consists of the
symbols for both an association and a class, it is really a single model element.

See also

 association, class.

Semantics

An association class has the properties of both associations and classes—it con-
nects two or more classes and it also has attributes and operations. An association
class is useful when each link must have its own attribute values, operations, or ref-
erences to objects. It may be regarded as a class with an extra class reference for
each association end, which is the obvious and normal way to implement it. Each
instance of the association class has object references as well as the attribute values
specified by the class part.

An association class C connecting classes A and B is not the same as a class D
with binary associations to A and B (see the discussion section). Like all links, a
link of an association class such as C takes its identity from the object references in
it. The attribute values are not involved in providing identity. Therefore, two links
of C must not have the same pair of (a, b) objects, even if their attribute values dif-
fer, because they would have the same identity. That is, given attribute E, it is not
permitted that (a, b, e1) and (a, b, e2) both be instances of C, because they share
the same identity (a, b). Objects have inherent identity, however, so two objects
can have the same attribute values or links to the same objects. In other words, an
association, including an association class such as C, is a set of tuples and has no
duplicates among its object references; whereas, an implicit relationship such as D
is more like a bag, which can have duplicates. See the discussion for more details.

Association classes may have operations that modify the attributes of the link or
add or remove links to the link itself. Because an association class is a class, it may
participate in associations itself.

An association class may not have itself as one of its participating classes (al-
though someone could undoubtedly find a meaning for this kind of recursive
structure).

158 • association class Encyclopedia of Terms

Notation

An association class is shown as a class symbol (rectangle) attached by a dashed
line to an association path (Figure 13-26). The name in the class symbol and the
name string attached to the association path are redundant. The association path
may have the usual association end adornments. The class symbol may have at-
tributes and operations, as well as participate in associations of its own as a class.
There are no adornments on the dashed line; it is not a relationship but simply
part of the overall association class symbol.

Style guidelines

The attachment point should not be near enough to either end of the path that it
appears to be attached to the end of the path or to any of the role adornments.

Note that the association path and the association class are a single model ele-
ment and therefore have a single name. The name can be shown on the path or the
class symbol or both. If an association class has only attributes but no operations
or other associations, then the name may be displayed on the association path and
omitted from the association class symbol to emphasize its “association nature.” If
it has operations and other associations, then the name may be omitted from the
path and placed in the class rectangle to emphasize its “class nature.” In neither
case is the actual semantics different.

Discussion
Figure 13-26 shows an association class representing employment. The employ-
ment relationship between a company and a person is many-to-many. A person
may have more than one job, but only one job for a given company. The salary is
not an attribute of either the company or the person because the association is
many-to-many. It must be an attribute of the relationship itself.

The boss-worker relationship is not just a relationship between two people. It is
a relationship between a person in one job and a person in another job—it is an
association (Manages) between the association class and itself.

The following example shows the difference between an association class and a
reified relationship modeled as a class. In Figure 13-27, the ownership of stock is
modeled as an association between Person and Company. The association class at-
tribute quantity represents the number of shares held. This relationship is mod-
eled as an association class because there should be only one entry for any pairing
of Person and Company.

To model purchases of stock, as shown in Figure 13-28, we do not use an associ-
ation class, because there can be multiple purchases with the same Person and
Company. Yet they must be distinguished because each purchase is distinct and

Encyclopedia of Terms association class • 159

has its own date and price in addition to quantity. The relationship must be
reified—that is, made into distinct objects with their own identity. An ordinary
class is the right way to model this case, because each purchase has its own iden-
tity, independent of the Person and Company classes that it relates. This is the way
to model a relationship that is a bag rather than a set.

Figure 13-26. Association class

Figure 13-27. Association class with attribute

Figure 13-28. Reified association

Person

Manages

Company

boss

worker

employeeemployer

0..∗

∗

∗

0..1

Job
salary

class part
of association class

association part
of association class

visual tie between parts of
association class

self-association on
the association class

PersonCompany
owner

∗∗

Stock
quantity

holding

PersonCompany
owner

∗∗ Purchase
quantity

holding date
cost

11

160 • association end Encyclopedia of Terms
association end

A structural part of an association that defines the participation of a class in the
association. One class may be connected to more than one end in the same associ-
ation. The association ends within an association have distinct positions, have
names, and, in general, are not interchangeable. An association end has no inde-
pendent existence or meaning apart from its association.

See also association.

Semantics

Structure
An association end holds a reference to a target classifier. It defines the participa-
tion of the classifier in the association. An instance of the association (a link) must
contain an instance of the given class or one of its descendants in the given posi-
tion. Participation in an association is inherited by children of a class.

An association end has the following properties (see the individual entries for
more information).

aggregation Whether the attached object is an aggregate or composite,
an enumeration with the values {none, aggregate, com-
posite}. If the value is not none, then the association is
called an aggregation or a composition. The default is
none. Only a binary association can be an aggregation or
composition, and only one end can be an aggregate or
composite.

changeability Whether the set of links related to an object may change,
an enumeration with the values {changeable, frozen,
addOnly}. The default is changeable.

interface specifier An optional constraint on the specification type of the
related object, a classifier (some people call this a role,
although the term is used in other ways).

multiplicity The possible number of objects that may be related to an
object; normally specified as an integer range.

navigability A Boolean value, indicating whether it is possible to
traverse a binary association to obtain the object or set of
objects associated with an instance of the class. The
default is true (navigable).

ordering Whether (and potentially how) the set of related objects
is ordered, an enumeration with the values {unordered,
ordered}. For design purposes, the value sorted may be
used also.

Encyclopedia of Terms association end • 161
qualifier A list of attributes used as selectors for finding objects
related by an association.

rolename The name of the association end, an identifier string. This
name identifies the particular role of the corresponding
class within the association. The rolename must be
unique within the association and also among direct and
inherited pseudoattributes (attributes and other role-
names visible to the class) of the source class.

target scope Whether the links relate objects or entire classes, an enu-
meration with the values {instance, classifier}. The
default is instance (relates objects).

visibility Whether the link is accessible to classes other than the
one on the opposite end of the association. The visibility
is placed on the end connected to the target class. Each
direction of traversal has its own visibility value.

Notation
The end of the association path is connected to the edge of the rectangle of the cor-
responding class symbol. Association end properties are shown as adornments on
or near the end of the path at which it attaches to a classifier symbol
(Figure 13-29). The following list is a brief summary of adornments for each
property. See the individual articles for more details.

aggregation A small hollow diamond on the aggregate end, a filled
diamond for a composition

changeability The text property {frozen} or {addOnly} near the target
end, usually omitted for {changeable} but permitted for
emphasis

interface specifier Text suffix on rolename, in the form :typename

multiplicity Text label near the end of the path, in the form min..max

navigability An arrowhead on the end of the path showing navigabil-
ity in that direction. If neither end has an arrowhead, the
assumption is that the association is navigable in both
directions (because there is little need for associations
that are not navigable in either direction).

ordering The text property {ordered} near the target end; there is
an ordered list of instances of the target class.

qualifier A small rectangle between the end of the path and the
source class in a traversal. The rectangle contains one or
more attributes of the association—the qualifiers.

162 • association end Encyclopedia of Terms
rolename A text label near the target end

target scope Class scope rolename is underlined, otherwise it is
instance scope.

visibility Visibility symbol (+ # −) prefixed to rolename

If there are multiple adornments on a single role, they are presented in the follow-
ing order, reading from the end of the path attached to the class toward the bulk of
the path (Figure 13-23):

qualifier

aggregation or composition symbol

navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they
are not confused with a different association. They may be placed on either side of
the line. It is tempting to require that they always be placed on one side of the line
(clockwise or counterclockwise), but this is sometimes overridden by the need for
clarity in a crowded layout. A rolename and a multiplicity may be placed on
opposite sides of the same role, or they may be placed together (for example,
* employee).

Standard elements
association, global, local, parameter, self

Figure 13-29. Various adornments on association ends

Polygon Side
Contains

{ordered}

3..∗

1

GraphicsBundle

color
texture
density

1

–bundle

+sides

composition 1

aggregation

(public)
visibility

rolename multiplicity

ordering

navigability
direction

aggregate in
both associations

Encyclopedia of Terms association generalization • 163
association generalization

A generalization relationship between two associations.
See also association, generalization.

Semantics
Generalization among associations is permitted, although it is somewhat uncom-
mon. As with any generalization relationship, the child element must add to the
intent (defining rules) of the parent and must subset the extent (set of instances)
of the parent. Adding to the intent means adding additional constraints. A child
association is more constrained than its parent. For example, in Figure 13-30, if
the parent association connects classes Subject and Symbol, then the child associa-
tion may connect classes Order and OrderSymbol, where Order is a child of Sub-
ject and OrderSymbol is a child of Symbol. Subsetting the extent means that every
link of the child association is a link of the parent association, but not the reverse.
The example obeys this rule. Any link connecting Order and OrderSymbol will
also connect Subject and Symbol, but not all links connecting Subject and Symbol
will connect Order and OrderSymbol.

Notation
A generalization arrow symbol (solid body, triangular hollow arrowhead) con-
nects the child association to the parent association. The arrowhead is on the par-
ent. Because of the lines connecting other lines, association generalization
notation can be confusing and should be used with care.

Example
Figure 13-30 shows two specializations of the general model-view association be-
tween Subject and Symbol: The association between Order and OrderSymbol is a
specialization, as is the association between Customer and CustomerSymbol. Each
of these connects a Subject class to a Symbol class. The general Subject-Symbol
association may be regarded as an abstract association whereas the two child asso-
ciations are concrete.

This pattern of paired class hierarchies connected by associations is fairly
common.

Standard elements
destroyed

164 • association role Encyclopedia of Terms
association role

The connection of two classifier roles within a collaboration; an association be-
tween two classifiers that applies only in a certain context as specified by a
collaboration.

See also association, collaboration.

Semantics
An association role is an association that is meaningful and defined only in the
context described by a collaboration. It is a relationship that is part of the collabo-
ration but not an inherent relationship in other situations. Association roles are
the key structural part of collaborations. They permit the descriptions of contex-
tual relationships.

Within a collaboration, a classifier role denotes an individual appearance of a
classifier, distinct from other appearances of the classifier and from the classifier
declaration itself. It is a classifier in its own right, one that represents a restriction
on the use of the base classifier, based on the context of a collaboration. Similarly,
an association role represents an association that is used in a particular context, of-
ten a restricted use of a normal association. An association role connects two clas-
sifier roles. When a collaboration is instantiated, objects are bound to classifier
roles and links are bound to the association roles. One object can play (be bound
to) more than one role.

An association role connects two or more classifier roles or classifiers within a
collaboration. It has a reference to an association—the base association—and it

Figure 13-30. Association generalization

Subject Symbol

Order OrderSymbol

Customer

model view

model view

viewmodel

association
generalization

CustomerSymbol

Encyclopedia of Terms atomic • 165
may have a multiplicity indicating how many links may play the role in an instance
of the collaboration. In some cases, the connections within the collaboration can
be regarded as uses of a general association between the participating classes. The
collaboration shows one way of using the general association for a purpose within
the collaboration.

In other cases, classifier roles are connected by associations that have no validity
outside the collaboration. If an association role has no explicit base association,
then it defines an implicit association valid only within the collaboration.

Notation
An association role is displayed in the same way as an association—namely, as a
solid line between two classifier role symbols (Figure 13-31). The fact that it is an
association role is clear because it involves classifier roles.

Standard elements
new, transient

asynchronous action

A request in which the sending object does not pause to wait for results; a send.
See send, synchronous action.

atomic

An action or operation whose execution must be completed as a unit; one that
may not be partially executed or terminated by an external event. Usually, atomic
operations are small and simple, such as assignments and simple arithmetic or
string calculations. An atomic computation occurs at a definite point in the execu-
tion sequence.

See also action, activity, run to completion.

Figure 13-31. Association role

main: Server backup: Server

ReliableServer

secondary

primary

collaboration

association role

classifier roleclassifier role

166 • attribute Encyclopedia of Terms
Semantics
The overall system can perform multiple actions simultaneously. When we call ac-
tions atomic, we do not imply that the entire system is atomic. The system can
process hardware interrupts and time share between several actions. An action is
atomic within its own thread of control. Once started, it must complete execution
and it must not interact with other simultaneously active actions. The system can
process interrupts and events, but they must not affect the atomic action. But ac-
tions should not be used as a long transaction mechanism. Their duration should
be brief compared to the response time needed for external events. Otherwise, the
system might be unable to respond in a timely manner.

attribute

An attribute is the description of a named slot of a specified type in a class; each
object of the class separately holds a value of the type.

Semantics
An attribute is a named slot within a classifier that describes the values that in-
stances of the classifier may hold. Every instance of the classifier or one of its de-
scendants has a slot holding a value of the given type. All the slots are distinct and
independent of each other (except for class-scope attributes, which are described
later). As execution proceeds, the value held by a slot within an instance may be re-
placed by a different value of the type, provided the attribute is changeable.

A classifier forms a namespace for its attributes. Also included in the namespace
are pseudoattributes, such as the rolenames of associations leaving the classifier
and discriminators of generalizations involving the classifier.

Structure
An attribute has the following main constituents, which are described in detail un-
der their proper entries.

changeability Whether the value of the slot may change after initializa-
tion, an enumeration. The default is changeable. Possible
values are

changeable No restrictions on modification (the default)

addOnly Additional values may be added to the set of values
for the attribute. But once created, a value may not
be removed or altered. (Meaningful only if the
maximum multiplicity is greater than one.)

Encyclopedia of Terms attribute • 167
frozen The value may not be altered after the object is ini-
tialized. No additional values may be added to a set
of values.

initial value An expression specifying the value that an attribute in an
object holds just after it has been initialized. An expres-
sion is a text string, together with the name of a language
used to evaluate the expression. The expression is evalu-
ated in the context of the language when the object is
instantiated. See expression for additional details. The
initial value is optional. If it is absent, then the static
model does not specify the value held by a new object
(but some other part of the overall model may supply that
information).

Note that an explicit initialization procedure, such as a
constructor, may supersede an initial value expression.

The initial value of a class-scope attribute is used to ini-
tialize it once at the beginning of execution. UML does
not specify the relative order of initialization of different
class-scope attributes.

multiplicity The possible number of values of the attribute that can
exist simultaneously. The most common value “exactly
one” denotes a scalar attribute. The value “zero or one”
denotes an attribute with an optional value. A missing
value is distinguishable from any value in the domain of
the attribute type. (In other words, the absence of a value
is different from the value zero. It is the empty set.) Other
multiplicities denote potentially multivalued attributes. If
the multiplicity is not a single integer, then the number of
values held by the attribute can vary. The multiplicity
“many” denotes an unlimited set of values.

name The name of the attribute, a string, which must be unique
within the class and its ancestors. It must also be unique
among association rolenames reachable from the class.

owner scope The value slot described by an attribute may be distinct in
each object or it may be shared by all the objects of a
class. The former is an instance-scope attribute; the latter
is a class-scope attribute. Most attributes are instance-
scope; they carry state information about a particular
object. Class-scope attributes carry information about an
entire class; there is a single value slot for the entire class.

168 • attribute Encyclopedia of Terms
Whereas an instance-scope attribute is a description of a
value that has no existence until an object is instantiated,
a class-scope attribute represents the declaration of an
individual discrete value that exists for the entire lifetime
of a system.

target scope The value held by an attribute may be an instance or a
class itself. The former is instance scope; it is the default.
The latter is class scope; it is rare and usually involves
some kind of metamodeling.

type Designates a class or data type that the values in the slot
are instances of. A value can be an instance of a descen-
dant of the given class or data type.

visibility Whether the attribute can be seen by other classes, an
enumeration with the choices public, private, and pro-
tected. Additional values might be added to model cer-
tain programming languages.

Notation
An attribute is shown as a text string that can be parsed into various properties.
The default syntax is:

«stereotype»opt visibilityopt name multiplicityopt : typeopt

= initial-valueopt { property-string }opt

Visibility. The visibility is shown as a punctuation mark. Alternately the visibility
can be shown as a keyword within the property string. The latter form must be
used for user-defined or language-dependent choices. The predefined choices are

+ (public) Any class that can see the class can also see the attribute.

(protected) The class or any of its descendents can see the attribute.

– (private) Only the class itself can see the attribute.

Name. The name is shown as an identifier string.

Type. The type is shown as an expression string denoting a classifier. The name of
a class or a data type is a legitimate expression string indicating that the values of
the attribute must be of the given type. Additional type syntax depends on the lan-
guage of the expression. Each language has syntax for constructing new data types
out of simple ones. For example, C++ has syntax for pointers, arrays, and func-
tions. Ada also has syntax for subranges. The language of the expression is part of
the internal model, but it is not usually shown on a diagram. It is assumed that it is
known for the entire diagram or obvious from its syntax.

The type string may be suppressed (but it still exists in the model).

Encyclopedia of Terms attribute • 169
Multiplicity. The multiplicity is shown as a multiplicity expression (see below) en-
closed in square brackets ([]) placed after the attribute name. If the multiplicity is
“exactly one,” then the expression, including the brackets, may be omitted. This
indicates that each object has exactly one slot holding a value of the given type (the
most common case). Otherwise, the multiplicity must be shown. See multiplicity
for a full discussion of its syntax. For example:

colors [3]: Saturation An array of 3 saturations
points [2..*]: Point An array of 2 or more points

Note that a multiplicity of 0..1 provides for the possibility of null values—the ab-
sence of a value, as opposed to a particular value from the range. A null value is not
a value within the domain of most data types; it extends that domain with an extra
value outside the domain. For pointers, however, the null value is often part of the
implementation (although, even then, it is usually by convention—for example,
the value 0 in C or C++, an artifact of memory addressing conventions). The fol-
lowing declaration permits a distinction between the null value and the empty
string, a distinction supported by C++ and other languages.

name [0..1]: String If the name is missing, it is a null value.

Initial value. The initial value is shown as a string. The language of evaluation is
usually not shown explicitly (but it is present in the model). If there is no initial
value, then both the string and the equal sign are omitted. If the attribute multi-
plicity includes the value 0 (that is, optional) and no explicit initial value is given,
then the attribute starts with a null value (zero repetitions).

Changeability. The changeability value is shown by a keyword—the name of the
choice. If no choice is given, then the value is changeable.

Tagged value. Zero or more tagged values may be attached to an attribute (as to
any model element). Each tagged value is shown in the form tag = value, where
tag is the name of a tag and value is a literal value. Tagged values are included
with property keywords as a comma-separated property list enclosed in braces.

Scope. A class-scope attribute is shown by underlining the name and type expres-
sion string; otherwise, the attribute is instance-scope. The notation justification is
that a class-scope attribute is a value in the executing system, just as an object is an
instance value, so both may be designated by underlining.

class-scope-attribute

Figure 13-32 shows the declaration of some attributes.

Presentation options
Programming-language syntax. The syntax of the attribute string can be that of a
programming language, such as C++ or Smalltalk. Specific tagged properties may
be included in the string.

170 • background information Encyclopedia of Terms
Style guidelines
Attribute names are shown in normal typeface.

Discussion
A similar syntax is used to specify qualifiers, template parameters, operation pa-
rameters, and so on (some of these omit certain terms).

Note that an attribute is semantically equivalent to a composition association.
However, the intent and usage are usually different. Use attributes for data types—
that is, for values with no identity. Use associations for classes—that is, for values
with identity. The reason is that for objects with identity, it is important to see the
relationship in both directions; for data types, the data type is usually subordinate
to the object and has no knowledge of it.

Standard elements
persistence

background information

Each appearance of a symbol for a class on a diagram or on different diagrams may
have its own presentation choices. For example, one symbol for a class may show
the attributes and operations and another symbol for the same class may suppress
them. Tools may provide style sheets attached to either individual symbols or en-
tire diagrams. Style sheets would specify the presentation choices, and they would
be applicable to most kinds of symbols, not just classes.

Not all modeling information is most usefully presented in a graphical notation.
Some information is best presented in a textual or tabular format. For example,
detailed programming information is often best presented as text lists. UML does
not assume that all the information in a model will be expressed as diagrams;
some of it may be available only as tables. This document does not attempt to pre-
scribe the format of such tables or the forms that are used to access them. That is
because the underlying information is adequately described in the UML meta-
model, and the responsibility for presenting tabular information is a tool respon-

+size: Area = (100,100)

#visibility: Boolean = invisible

+default-size: Rectangle

maximum-size: Rectangle

–xptr: XWindowPtr {requirement=4.3}

public, initial value
protected, initial value
public
class scope
private, tagged value

Figure 13-32. Attributes

Encyclopedia of Terms become • 171
sibility. It is assumed, however, that hidden links may exist from graphical items to
tabular items.

become

A kind of flow dependency, used in an interaction, in which the target object rep-
resents a new version of the source object and thereafter replaces it.

See also class-in-state, copy, location.

Semantics
A become dependency is a kind of flow dependency that shows the derivation of
one object from another object within an interaction. It represents an action that
transforms an object. After a become flow executes, the new object replaces the
original object within the computation. It is usually unnecessary to use this rela-
tionship just to show a change of value of an object. On the other hand, this
relationship is useful for showing a qualitative change in an object, such as a
change in state, a change in class, or a change in location. In this situation, the
model contains two versions of the object, but the become relationship shows that
they are really two versions of the same object over time; that is, they have the
same identity.

A become transition within an interaction may have a sequence number to indi-
cate when it occurs relative to other actions.

Notation
A become flow is shown by a dashed arrow whose tail is on the earlier version of
the object and whose head is on the later version; the arrow carries the stereotype
keyword «become». The arrow may have a sequence number within an interaction
to show when the change occurs relative to other actions. Become transitions may
appear in collaboration diagrams, sequence diagrams, and activity diagrams.

In an activity diagram, the become transition may be displayed as a dashed ar-
row to or from an object flow symbol. The become keyword may be omitted.

Example
Figure 13-33 shows a command to open a closed directory icon on a desktop, fol-
lowed by a command to sort the items within the now-open directory. The direc-
tory is shown twice as a class-in-state object, with a become transition between the
two versions.

Figure 13-132 in node shows a deployment diagram in which an object mi-
grates between nodes.

172 • behavior Encyclopedia of Terms
behavior

The observable effects of an operation or event, including its results.

behavioral feature

A model element expressing dynamic behavior, such as an operation or method,
that can be part of a classifier. The declaration that a classifier handles a signal is
also a behavioral feature.

Standard elements
create, destroy, leaf

behavioral view

A view of a model that emphasizes the behavior of the instances in a system, in-
cluding their methods, collaborations, and state histories.

binary association

An association between exactly two classes.
See also association, n-ary association.

Semantics
A binary association is an association with exactly two association ends, by far the
most common kind of association. Because an end in a binary association has a
single other end, binary associations are particularly useful for specifying naviga-
tion paths from object to object. An association is navigable in a given direction if
it can be traversed in that direction. Some other properties, such as multiplicity,

Figure 13-33. Become flow

:Controller

:Directory[closed]

:Directory[open]

1.1: «become»

1: expand()

2: sort()

Encyclopedia of Terms binding • 173
are defined for n-ary associations, but they are more intuitive and useful for binary
associations.

Notation
A binary association is shown as a solid path connecting two class symbols.
Adornments can be attached to each end, and an association name may be placed
near the line, far enough from either end so that it is not mistaken for a rolename.
The notation for a binary association is the same as the notation for an n-ary asso-
ciation except for the suppression of the central diamond symbol. Binary associa-
tions, however, can have adornments that are not applicable to n-ary associations,
such as navigability.

See association for details.

bind

Keyword for a binding dependency in the notation.
See binding.

binding

The assignment of values to parameters to produce an individual element from a
parameterized element. The binding relationship is a kind of dependency. It is
used to bind templates to produce new model elements.

See also bound element, template.

Semantics
A parameterized definition, such as an operation, signal, or template, defines the
form of an element. A parameterized element cannot be used directly, however,
because its parameters do not have specific values. Binding is a dependency that
represents the assignment of values to parameters to produce a new, usable ele-
ment. Binding acts on operations to produce calls, on signals to produce sent sig-
nals, and on templates to produce new model elements. The first two are bound
during execution to produce run-time entities. These do not usually figure in
models except as examples or simulation results. The argument values are defined
within the execution system.

A template is bound at modeling time, however, to produce new model ele-
ments for use within the model. The argument values can be other model ele-
ments, such as classes, in addition to data values, such as strings and integers. The
binding relationship binds values to a template, producing an actual model ele-
ment that can be used directly within the model.

A binding relationship has a supplier element (the template), a client element
(the newly generated bound element), and a list of values to bind to template

174 • Boolean Encyclopedia of Terms
parameters. The bound element is defined by substituting each argument value for
its corresponding parameter within a copy of the template body. The classification
of each argument must be the same as or a descendant of the declared classifica-
tion of its parameter.

A binding does not affect the template itself. Each template can be bound many
times, each time producing a new bound element.

Notation
Binding is indicated with the keyword «bind» attached to a dashed arrow that con-
nects the generated element (on the tail of the arrow) to the template (on the ar-
rowhead). The actual argument values are shown as a comma-separated list of text
expressions enclosed in parentheses following the «bind» keyword on the arrow.

An alternative and more compact notation for binding uses name matching to
avoid the need for arrows. To indicate a bound (generated) element, the name of a
template is followed by a comma-separated list of text expressions enclosed in an-
gle brackets (<argumentlist,>).

In either case, each argument is stated as a text string that is evaluated statically
at model-building time. It is not evaluated dynamically as an operation or signal
argument is.

In Figure 13-34, the explicit form using the arrow declares a new class Address-
List, whose name can be used in models and expressions. The implicit inline form
Varray<Point,3> declares an “anonymous class” without a name of its own. It may
be used in expressions using the inline syntax. In neither case can additional at-
tributes or operations be declared. A subclass must be declared if extensions are
needed.

Standard elements
bind

Boolean

An enumeration whose values are true and false.

Boolean expression

An expression that evaluates to a Boolean value. Useful in guard conditions.

bound element

A model element produced by binding argument values to the parameters of a
template.

See also binding, template.

Encyclopedia of Terms bound element • 175
Semantics
A template is a parameterized description of a group of potential elements. To ob-
tain an actual element, the template’s parameters must be bound to actual values.
The actual value for each parameter is an expression supplied by the scope within
which the binding occurs. Most arguments are classes or integers.

If the scope is itself a template, then the parameters of the outer template can be
used as arguments in binding the original template, in effect reparameterizing it.
But parameter names from one template have no meaning outside its body. Pa-
rameters in two templates cannot be assumed to correspond just because they have
the same names, any more than subroutine parameters could be assumed to match
based only on their names.

A bound element is fully specified by its template. Its content, therefore, may
not be extended. Declaration of new attributes or operations for classes is not per-
mitted, for example, but a bound class could be subclassed and the subclass ex-
tended in the usual way.

Example
Figure 13-35 shows the rebinding of a template. PointArray is a template with one
parameter—the size n. We want to make it from the existing template FArray,
which has two parameters—the type of element T and the size k. To make it, the
parameter k from the FArray template is bound to the parameter n from the

Figure 13-34. Template declaration and binding

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList

template parameters

template

binding

bound templates

explicit binding, explicit namename match binding, implicit name

generates an association
between bound template
and class passed as
argument

multiplicity is fixed in
any binding of the template

a parameter with no type
is implicitly a class

176 • bound element Encyclopedia of Terms
PointArray template. The parameter T from the FArray template is bound to the
class Point. This has the effect of removing one parameter from the original tem-
plate. To use the PointArray template to make a Triangle class, the size parameter n
is bound to the value 3. To make a Quadrilateral class, it is bound to the value 4.

Figure 13-35 also shows the template Polygon as a child of class Shape. This
means that each class bound from Template is a subclass of Shape—Triangle and
Quadrilateral are both subclasses of Shape.

Notation
A bound element can be shown using a dashed arrow from the template to the
bound element; the arrow has the keyword «bind». Alternately it can be shown us-
ing the text syntax TemplateName<argumentlist,>, using name matching to
identify the template. The text form avoids the need to show the template or to
draw an arrow to it; this form is particularly useful when the bound element is
used as a classifier for an attribute or operation parameter.

See binding for details. Figure 13-34 shows an example.

Figure 13-35. Rebinding a template

FArray
T,k:Integer

T
k..k

Polygon

n:Integer

Triangle

«bind» (Point, n)

«bind» (3)

Shape

Quadrilateral

«bind» (4)

Encyclopedia of Terms branch • 177
The attribute and operation compartments are usually suppressed within a
bound class because they must not be modified in a bound element.

A bound element name (either the inline “anonymous” form using angle brack-
ets or the explicit “binding arrow” form) may be used anywhere an element name
of the parameterized kind could be used. For example, a bound class name could
be used as an attribute type or as part of an operation signature within a class sym-
bol on a class diagram. Figure 13-36 shows an example.

Discussion
Classifiers are obvious candidates for parameterization. The types of their at-
tributes, operations, or associated classifiers are common parameters in templates.
Parameterized collaborations are patterns. Operations, in a sense, are inherently
parameterized. The usefulness of parameterization of other elements is not so
clear, but uses will likely be found.

branch

An element in a state machine in which a single trigger leads to more than one
possible outcome, each with its own guard condition.

See also fork, join, junction state, merge.

Semantics
If the same event can have different effects that depend on different guard condi-
tions, then they can be modeled as separate transitions with the same event trig-
ger. In practice, however, it is convenient to permit a single trigger to drive

Figure 13-36. Use of bound templates in associations

FArray<Point,3>
AddressList

Notebook

1

0..1

TriangularGrid

∗

1

178 • branch Encyclopedia of Terms
multiple transitions. This is especially true in the common case in which the guard
conditions cover every possibility, so that an occurrence of the event is guaranteed
to trigger one of the transitions. A branch is a part of a transition that splits the
transition path into two or more segments, each with a separate guard condition.
The event trigger is placed on the first, common segment of the transition. The
output of one branch segment can be connected to the input of another branch to
form a tree. Each path through the tree represents a distinct transition. The con-
junction of all the conditions on a path in a transition is equivalent to a single con-
dition that is conceptually evaluated before the transition fires. A transition fires in
a single step, despite its appearance as a tree of branches. The tree is merely a mod-
eling convenience.

Within an activity graph, branches leaving an activity state are, usually, comple-
tion transitions—that is, they lack explicit event triggers, and they are triggered
implicitly on the completion of activity within the state. If there are guard condi-
tions or branches, it is important that they cover all possibilities so that some tran-
sition will fire. Otherwise, the execution of the activity graph would freeze,
because the output transitions would never be reenabled.

Notation
A branch may be shown by repeating an event trigger on multiple transition arcs
with different guard conditions. This may also be done with completion transi-
tions, as in an activity diagram.

For greater convenience, however, the head of a transition arrow may be con-
nected to a diamond symbol, which indicates a branch. The transition arrow is la-
beled with the trigger event, if any, but it should not have an action on it. Any
actions go on the final segment of the transition.

A diamond symbol may have two or more arrows leaving it. Each arrow is la-
beled with a guard condition. The reserved word else can be used as a guard con-
dition. Its value is true if all the other (explicit) guard conditions are false. The
head of each arrow may be connected to another branch or to a state. An arrow
connected to a state may have an action label attached.

The effect of a tree of branches is the same as expanding the tree into a separate
transition arc for each path through the tree, all sharing the same trigger event but
each with its own conjunction of guard conditions, action, and target state.
Figure 13-37 shows two ways to draw the same situation.

Note that the diamond symbol can also be used for a merge (the inverse of a
branch), in which two alternate paths come together, as shown in Figure 13-38. In
the case of a merge, there are two or more input arrows and a single output arrow.
No guard conditions are necessary.

Encyclopedia of Terms branch • 179
Figure 13-37. Two ways to show a branch

Figure 13-38. Branch and merge

Calculate
total cost

[cost < $50] Charge
customer’s
account

Get
authorization

[cost ≥ $50]

Calculate
total cost

Charge
customer’s
account

Get
authorization

[cost < $50] [cost ≥ $50]

separate transitions explicit branch

Get

[existing customer]

Verify
customer’s
data

Get
order

[cost ≥ $50]

customer

Verify
customer’s
data

branch

merge

name

180 • call Encyclopedia of Terms
call

To invoke an operation.
See also activation, call event, send.

Semantics
A call is the invocation of an operation at a point during the execution of a proce-
dure. It moves a thread of control temporarily from the calling procedure to the
called procedure. The execution of the calling procedure is blocked during the call.
The caller yields control during the execution of the operation and regains it when
the operation returns. The called procedure receives a list of arguments from the
caller and also an implicit return pointer to the calling procedure, just past the
point of the call. When the called procedure returns, it may supply a list of return
values.

Often, a call is executed within the address space of the caller, but this is not nec-
essary to the semantics of a call. Indeed, it is impossible in a distributed system, in
which the receiver of the call may be physically separated from the caller. More im-
portant is the establishment of an implicit return link to the calling procedure lo-
cation and environment, which enables control to be restored to the caller on a
return. The calling procedure location may be modeled as a text line within a tex-
tual procedure or a state within a state machine. The calling environment may be
modeled as an activation.

A call usage dependency models a situation in which an operation of the client
class (or the operation itself) calls an operation of the supplier class (or the opera-
tion itself). It is represented with the «call» stereotype.

Notation
On a sequence diagram or a collaboration diagram, a call is shown as a text mes-
sage directed to a target object or class.

A call dependency is shown as a dashed arrow from the caller to the called class
or operation with the stereotype «call».

Most calls will be represented as part of text procedures in a programming lan-
guage.

call event

The event of receiving a call for an operation that is implemented by actions on
state machine transitions.

See also call, signal.

Encyclopedia of Terms call event • 181
Semantics
A call event is a way of implementing an operation that is an alternative to the exe-
cution of a procedure. If a class specifies implementation of an operation as a call
event, then a call of the operation is treated as an event that triggers a transition in
the class’s state machine. This permits a more dispersed implementation of an op-
eration than a monolithic method procedure, which always does the same thing.
(A procedure can have a case statement on the state of the object, so there is no
real difference in power between the two approaches.)

If a class uses call events to implement an operation, then its state machine must
have transitions triggered by the call event. The signature of a call event is the same
as the operation: The name of the call event is the name of the operation; the pa-
rameters of the call event are the parameters of the operation.

When a call of the operation occurs, the state machine of the target object is
consulted and the call event triggers a transition if it matches a trigger event on an
active transition (one that departs from a currently active state). If a transition
fires, its effect is executed. The effect may include any sequence of actions, includ-
ing a return(value) action, whose purpose is to return a value to the caller.

When execution of the transition is complete, the caller regains control and may
continue execution. If the operation requires a return value and the caller does not
receive one, or if it receives a return value inconsistent with the declared type in
the operation, then the model is in error. If the operation does not require a return
value, then there is no problem. Note that if no transition is triggered by a call
event, then control returns immediately to the caller. If the operation requires a re-
turn value, then the model is in error. Otherwise, the caller simply resumes imme-
diately.

If the receiver is an active object, then a call event is handled when the state ma-
chine of the receiver is quiescent—that is, when any run-to-completion steps have
been completed.

Notation
A call event is shown by an event trigger in a state diagram that matches an opera-
tion on the corresponding class. The action sequence on the transition may have a
return statement in it; if so, the statement indicates the return value.

Example
Figure 13-39 shows an account that can be Locked and Unlocked. The deposit op-
eration always adds money to the account, regardless of its state. The withdraw
operation takes all of the money if the account is unlocked or none of the money if

182 • canonical notation Encyclopedia of Terms
it is locked. The withdraw operation is implemented as a call event that triggers in-
ternal transitions in each state. When the call occurs, one or the other action se-
quence is executed, depending on the active state. If the system is locked, zero is
returned; if the system is unlocked, all of the money in the account is returned and
the count is reset to zero.

canonical notation

UML defines a canonical notation that uses monochromatic line drawings and
text for displaying any model. This is the standard “publication format” of UML
models and is suitable for printed diagrams.

Graphical editing tools can extend the canonical notation for convenience and
to provide interactive capabilities. For example, a tool might provide the capability
to highlight selected elements on the screen. Other interactive capabilities include
navigation within the model and filtering of the displayed model according to se-
lected properties. This kind of formatting is ephemeral and is not mandated by
UML. With an interactive display, there is little danger of ambiguity as the user can
simply ask for a clarification. Therefore, the focus of the UML standard is the
printed canonical form, which every tool must support, with the understanding
that an interactive tool may and should provide interactive extensions.

cardinality

The number of elements in a set. It is a specific number. Contrast with multiplic-
ity, which is the range of possible cardinalities a set may hold.

Figure 13-39. Call events

unlocklock

Locked
deposit (n) / count := count + n
withdraw / return 0

deposit (n) / count := count + n

Unlocked

withdraw / return count; count := 0

deposit (10);
. . .
amount := withdraw ()

Get all or nothing
depending on whether
the account is locked.

Account

calling procedure text

Encyclopedia of Terms change event • 183
Discussion
Note that the term cardinality is misused by many authors to mean what we call
multiplicity, but the term cardinality has a long-standing mathematical definition
as a number, not a range of numbers. This is the definition we use.

change event

The event of a Boolean expression becoming satisfied because of a change to one
or more of the values it references.

See also guard condition.

Semantics
A change event contains a condition specified by a Boolean expression. There are
no parameters to the event. The event occurs when the condition becomes true
(after having been false) because of a change to one or more variables on which the
condition depends.

This kind of event implies a continuous test for the condition. In practice, how-
ever, by analyzing the times at which the inputs to the condition can change, the
developer can often perform the test at well-defined, discrete times so that contin-
uous polling is usually not required.

The event occurs when the value of the expression changes from false to true (a
positive-going state change). The event occurs once when this happens and does
not recur unless the value first becomes false again.

Note the difference from a guard condition. A guard condition is evaluated once
whenever the event on its transition occurs. If the condition is false, then the tran-
sition does not fire and the event is lost (unless it triggers some other transition). A
change event is implicitly evaluated continuously and occurs once at the time
when the value becomes true. At that time, it may trigger a transition or it may be
ignored. If it is ignored, the change event does not trigger a transition in a subse-
quent state simply because the condition is still true. The change event has already
occurred and been discarded. The condition must become false and then true
again to cause another change event.

The values in the Boolean expression must be attributes of the object that owns
the state machine containing the transition or values reachable from it.

Notation
Unlike signals, change events do not have names and are not declared. They are
simply used as the triggers of transitions. A change event is shown by the keyword
when followed by a Boolean expression in parentheses. For example:

when (self.waitingCustomers > 6)

184 • changeability Encyclopedia of Terms
Discussion
A change event is a test for the satisfaction of a condition. It may be expensive to
implement, although there are often techniques to compile it so that it need not be
tested continuously. Nevertheless, it is potentially expensive and also hides the di-
rect cause-and-effect relationship between the change of a value and the effects
that are triggered by it. Sometimes, this is desirable because it encapsulates the ef-
fects, but change events should be used with caution.

A change event is meant to represent the test for values visible to an object. If a
change to an attribute within an object is meant to trigger a change in another ob-
ject that is unaware of the attribute itself, then the situation should be modeled as
a change event on the attribute’s owner that triggers an internal transition to send
a signal to the second object.

Note that a change event is not explicitly sent anywhere. If an explicit communi-
cation with another object is intended, a signal should be used instead.

The implementation of a change event can be done in various ways, some of
them by making tests within the application itself at appropriate times and some
of them by means of underlying operating system facilities.

changeability

A property that indicates whether the value of an attribute or link can change.

Semantics
The property may be placed on an association end or an attribute. The property
may also be applied to a class with the meaning that all its attributes and associa-
tions satisfy the property (for example, a value of frozen means that the value of an
object of the class is unchangeable after initialization). Changeability is notated us-
ing a keyword in a property list with the following possible enumerated values.

changeable Attribute values can change freely, including the addition
and deletion of values if the multiplicity permits. Links
can change freely and can be added and removed freely
consistent with the multiplicity and other constraints.
This is the default if another choice is not specified.

frozen Attribute values may not change after initialization; no
values can be added or deleted. No links may be added,
deleted, or modified after the initialization of the object
on the opposite end of the association (that is, the end
opposite the end having the frozen value). However,
when an object on the opposite end is created, new links

Encyclopedia of Terms class • 185
to the frozen end may be added as part of its initializa-
tion.

addOnly Additional attribute values may be added if the multiplic-
ity is not a fixed number or already at maximum. After
creation, values may not be modified or deleted while the
containing object lives. New links may be added, but no
links may be deleted or modified after their creation. If a
participating object is destroyed, then the links contain-
ing it are deleted, despite its add-only status.

child

The more specific element in a generalization relationship. Called subclass for a
class. A chain of one or more child relationships is a descendant. Antonym: parent.

Semantics
A child element inherits the features of its parent (and indirectly those of its ances-
tors) and may declare additional features of its own. It also inherits any associa-
tions and constraints that its ancestors participate in. A child element obeys the
substitutability principle—that is, an instance of a descriptor satisfies any variable
declaration classified as one of the ancestors of the descriptor. An instance of a
child is an indirect instance of the parent.

class

The descriptor for a set of objects that share the same attributes, operations, meth-
ods, relationships, and behavior. A class represents a concept within the system
being modeled. Depending on the kind of model, the concept may be real-world
(for an analysis model), or it may also contain algorithmic and computer imple-
mentation concepts (for a design model). A classifier is a generalization of class
that includes other class-like elements, such as data type, actor, and component.

Semantics
A class is the named description of both the data structure and the behavior of a
set of objects. A class is used to declare variables. An object that is the value of a
variable must have a class that is compatible with the declared class of the vari-
able—that is, it must be the same class as the declared class or a descendant of it. A
class is also used to instantiate objects. A creation operation produces a new in-
stance of the given class.

An object instantiated from a class is a direct instance of the class and an indi-
rect instance of the ancestors of the class. The object contains a slot to hold a value

186 • class Encyclopedia of Terms
for each attribute; it accepts all the operations and signals of its class, and it may
appear in links of associations involving the class or an ancestor of the class.

Some classes may not be directly instantiated, but instead are used only to de-
scribe structure shared among their descendants; such a class is an abstract class. A
class that may be instantiated is a concrete class.

A class may also be regarded as a global object. Any class-scope attributes of the
class are attributes of this implicit object. Such attributes have global scope, and
each has a single value across the system. A class-scope operation is one that ap-
plies to the class itself, not to an object. The most common class-scope operations
are creation operations.

In UML, a class is a kind of classifier. Classifier includes a number of class-like
elements, but it finds its fullest expression in class.

Structure
A class has a class name and lists of operations, methods, and attributes. A class
may participate in association, generalization, dependency, and constraint rela-
tionships. A class is declared within a namespace, such as a package or another
class, and has various properties within its namespace, such as multiplicity and
visibility. A class has various other properties, such as whether it is abstract or an
active class. It may have a state machine that specifies its reactive behavior—that
is, its response to the reception of events. A class may declare the set of events (in-
cluding exceptions) that it is prepared to handle. It may provide the realization of
the behavior specified by zero or more interfaces or types by providing an imple-
mentation for the behavior. An interface lists a set of operations that a class realiz-
ing the interface promises to support.

A class contains a list of attributes and a list of operations that each form a
namespace within the class. Inherited attributes and inherited operations also ap-
pear within the respective namespaces. The namespace for attributes also includes
pseudoattributes, such as rolenames of associations leaving the class and discrimi-
nators for generalizations involving the class or one of its ancestors. Each name
must be declared only once within the class and its ancestors. Otherwise there is a
conflict, and the model is ill formed. Operation names may be repeated provided
they represent the same operation, otherwise there is a conflict.

A class is also a namespace and establishes the scope for nested classifier decla-
rations. Nested classifiers are not structural parts of instances of the class. There is
no data relationship between objects of a class and objects of nested classes. A
nested class is a declaration of a class that may be used by the methods of the outer
class. Classes declared within a class are private to it and are not accessible outside
the class unless explicitly made visible. There is no visual notation to show nested
class declarations. The expectation is that they will be made accessible within a
tool by hyperlinks. Nested names must be referenced using pathnames.

Encyclopedia of Terms class • 187
Notation
A class is shown as a solid-outline rectangle with three compartments separated by
horizontal lines. The top compartment holds the class name and other properties
that apply to the entire class. The middle compartment holds a list of attributes.
The bottom compartment contains a list of operations. The middle and bottom
compartments can be suppressed in a class symbol.

Usage. Classes are declared in class diagrams and used in many other diagrams.
UML provides a graphical notation for declaring and using classes, as well as a tex-
tual notation for referencing classes within the descriptions of other model ele-
ments. The declaration of a class in a class diagram defines the contents of the
class: its attributes, operations, and other properties. Other diagrams define addi-
tional relationships and attachments to a class.

Figure 13-40 shows a basic class declaration with attributes and operations.
Figure 13-41 shows the same class declaration with additional detail, much of it

information of an implementation nature, such as visibility, class-level source
scope creation operations, and implementation-dependent operations.

All internal information about the class is suppressed in Figure 13-42. The in-
formation is still present in the internal model and would usually be shown on at
least one diagram.

Presentation options
Suppressing compartments. Either or both of the attribute and operation compart-
ments may be suppressed (Figure 13-43). A separator line is not drawn for a miss-
ing compartment. If a compartment is suppressed, no inference can be drawn
about the presence or absence of elements in it. Note that an empty compartment
(that is, one with separator lines but no content) implies that there are no elements
in the corresponding list. If some kind of filtering is in effect, then there are no ele-
ments that satisfy the filter. For example, if only public operations are visible, then
the presence of an empty operation compartment indicates that there are no pub-
lic operations. No conclusion can be drawn about private operations.

Figure 13-40. Basic class declaration

Window

display (location: Point)

size: Area
visibility: Boolean

hide ()

class name

attributes

operations

188 • class Encyclopedia of Terms

Additional compartments

. Additional compartments may be supplied to show
other predefined or user-defined model properties—for example, to show busi-
ness rules, responsibilities, variations, signals handled, exceptions raised, and so
on. An additional compartment is drawn with a compartment name at the top,
shown in a distinctive font to identify its contents (Figure 13-44). The standard
compartments (attribute, operation) do not require compartment names, al-
though they may have names for emphasis or clarity if only one compartment is
visible. Most compartments are simply lists of strings, in which each string en-
codes a property. Note that “string” includes the possibility of icons or embedded

Figure 13-41.

Detailed class declaration with visibilities of features

Figure 13-42.

Class symbol with all details suppressed

Figure 13-43.

Class declaration with attributes and non-public operations suppressed

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display (location: Point)

+size: Area = (100,100)
#visibility: Boolean = invisible

+hide ()

–xptr: XWindow*

–attachXWindow(xwin:Xwindow*)

{author=Joe,
status=tested}

tagged values:

class name
name compartment

attribute compartment

operation compartment

initialization value

class-scope operation

class-wide properties

Window

Window

create ()

display ()
hide ()

class namename compartment

operation compartment public operations

Encyclopedia of Terms class • 189

documents, such as spreadsheets and graphs. More complicated formats are possi-
ble, but UML does not specify such formats. They are a user and tool responsibil-
ity. If the nature of the compartment can be determined from the form of its
contents, then the compartment name may be omitted.

See

 font usage, string.

Stereotype

. A stereotype is shown as a text string in guillemets (« ») above the class
name (Figure 13-45). Instead of the text string, an icon can be place in the upper
right corner of the name compartment. A class symbol with a stereotype icon may
be “collapsed” to show just the stereotype icon, with the name of the class either
inside or below the icon (Figure 13-170). Other contents of the class are sup-
pressed.

See

 stereotype.

Style guidelines

• Center a stereotype name in normal typeface within guillemets above the class
name.

• Center or left-justify a class name in boldface.

• Left justify attributes and operations in normal typeface.

Figure 13-44.

Class declaration additional named compartment

Figure 13-45.

Class with stereotype

Window

create ()

display ()
hide ()

class namename compartment

operation compartment public operations

offScreen(location: Point)

exceptions

exceptions generated by classadditional compartment

Cancel
«signal»Cancel

«signal»

priority: Integer

full declaration details suppressed

190 • class diagram Encyclopedia of Terms

• Show the names of abstract classes or the signatures of abstract operations in
italics.

• Show the attribute and operation compartments when needed (at least once in
the diagram set) and suppress them in other contexts or in references. It is useful
to define a “home” location for a class once in a set of diagrams and to give its
full description there. In other locations, the minimal form is used.

Discussion

The concept of class applies to a range of usages in logical modeling, as well as im-
plementation. It includes both the concept of type and the concept of implemen-
tation class. In UML, under certain semantic variation points, an object may have
multiple classes, as well as be able to change its class at run time. Various more re-
strictive notions of class found in most programming languages can be thought of
as special kinds of classes.

Standard elements

implementationClass, type

class diagram

A class diagram is a graphic presentation of the static view that shows a collection
of declarative (static) model elements, such as classes, types, and their contents
and relationships. A class diagram may show a view of a package and may contain
symbols for nested packages. A class diagram contains certain reified behavioral
elements, such as operations, but their dynamics are expressed in other diagrams,
such as statechart diagrams and collaboration diagrams.

See also

classifier

,

object diagram.

Notation

A class diagram shows a graphic presentation of the static view. Usually several
class diagrams are required to show an entire static view. Individual class diagrams
do not necessarily indicate divisions in the underlying model, although logical di-
visions, such as packages, are natural boundaries for forming diagrams.

class-in-state

A class, together with a state that objects of the class can hold.

See also

 activity graph.

Encyclopedia of Terms class-in-state • 191

Semantics

A class with a state machine has many states, each of which characterizes the be-
havior, values, and constraints of instances that are in the state. In some cases cer-
tain attributes, associations, or operations are valid only when an object is in a
certain state or set of states. In other cases, an argument to an operation must be
an object in a particular state. Often, these distinctions are simply part of the be-
havioral models. But sometimes, it is useful to model them directly on static views
or interaction views.

A class-in-state is a class, together with a valid state that objects of the class can
hold. If the class has concurrent substates, the state specification may be a set of
substates that an object of the class can hold simultaneously. A class-in-state may
be used as a classifier. It behaves like a subclass of the class itself. It may be used as
the class of a variable or of a parameter. It may participate in associations that are
valid only for objects in the given state. In Figure 13-46, consider the association

Assignment

 between

SubmittedPaper

 and

ConferenceSession

. This association is
valid for a

SubmittedPaper

 in the

accepted

 state (target multiplicity one) but not
in the

rejected

 state. For any

SubmittedPaper,

 the target multiplicity is zero-or-
one, because the class includes both

accepted

 and

rejected

 papers. However, if the
association is modeled between

SubmittedPaper

 in state

accepted

 and

ConferenceSession

, it has target multiplicity exactly one.

Figure 13-46.

Class-in-state

SubmittedPaper

ConferenceSession

0..1

1..*

SubmittedPaper

SubmittedPaper RejectedPaper
[accepted] [rejected]

without class-in-state:
multiplicity is not precise

with class-in-state:
multiplicity is preciseConferenceSession

1

1..*

192 • class name Encyclopedia of Terms

Class-in-state elements are also useful for showing the input and output values
of operations in activity graphs.

Notation

 A class-in-state is shown as a class symbol in which the name of the class is fol-
lowed by its state name within brackets (

Classname

[

statename

]

). The brackets

may also contain a comma-separated list of names of concurrent states to indicate
that an object holds several of them.

Discussion
Class-in-state and dynamic classification are two ways to accomplish the same goal
of allowing changes to the structure of an object during its life. Depending on the
implementation environment, one or the other may be the more convenient
mechanism.

class name

Each class must have a non-null name that is unique among classifiers within its
container (such as a package or containing class). The scope of a name is its con-
taining package and other packages that can see the containing package.

See name for a full discussion of naming and uniqueness rules.

Notation
The class name is shown in the top compartment of a class rectangle. The name
compartment may also contain a keyword or stereotype name and/or a stereotype
icon and a list of tagged values within braces (Figure 13-47).

An optional stereotype keyword may be placed above the class name within
guillemets, and/or a stereotype icon may be placed in the upper-right corner of the
compartment. The stereotype name must not match a predefined keyword, such
as enumeration.

Figure 13-47. Name compartment

PenTracker
«controller»

{ leaf, author=“Mary Jones” }

stereotype iconstereotype name

tagged values

(don’t need both
stereotype name and icon)

Encyclopedia of Terms classifier • 193

The name of the class appears next. The class name is centered horizontally in
boldface. If the class is abstract, its name appears in italics. But note that any ex-
plicit specification of generalization status (such as abstract or concrete) takes pre-
cedence over the name font.

An optional list of strings denoting properties (metamodel attributes or tagged
values) may be placed in braces below the class name. The list may show class-level
attributes for which there is no UML notation, and it may also show tagged values.
Some keywords may be used without a value to denote a particular combination of
property and value. For example, a leaf class shows the property {leaf }, which is
equivalent to {isLeaf=true}.

By default a class shown within a package is assumed to be defined within that
package. To show a reference to a class defined in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment (Figure 13-48). A full pathname can
be specified by chaining together package names separated by double colons (::).
The same class name can be used for different classes in different packages, pro-
vided pathnames are used to distinguish them, but this duplication of names can
lead to error and should be avoided if possible.

References to classes also appear in text expressions, most notably in type speci-
fications for attributes and variables. In text expressions, a reference to a class is in-
dicated simply by using the name of the class itself, including a possible package
name, subject to the syntax rules of the expression.

classifier

A model element that describes behavioral and structural features. Kinds of classi-
fiers include class, actor, component, data type, interface, node, signal, subsystem,
and use case. Classes are the most general kind of classifier. Others can be intu-
itively understood as similar to classes, with certain restrictions on content or

Figure 13-48. Pathnames for classes in other packages

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash

194 • classifier role Encyclopedia of Terms
usage, although each kind of classifier is represented by its own metamodel class.
Most properties of classes apply to classifiers, in general, with certain restrictions
for each kind of classifier.

See also generalizable element, static view.

Standard elements
enumeration, location, metaclass, persistence, powertype, process, semantics, ste-
reotype, thread, utility

classifier role

A slot in a collaboration that describes the role played by a participant in a
collaboration.

See also collaboration.

Semantics
A collaboration describes a pattern of interaction among a set of participants,
which are instances of classes or data types. A classifier role is the description of a
participant. Each role is a distinct usage of the classifier in its own unique context.
There may be multiple roles for the same classifier, each having a different set of
relationships to other roles within a collaboration. A role is not an individual ob-
ject, however, but a description of all the objects that may play a part in a collabo-
ration instance. Each time the collaboration is instantiated, a different set of
objects and links may play the roles.

A classifier role has a reference to a classifier (the base) and a multiplicity. The
base classifier constrains the kind of object that can play the classifier role. The ob-
ject’s class can be the same as or a descendant of the base classifier. The multiplicity
indicates how many objects can play the role at one time in one instance of the col-
laboration.

A classifier role may have a name, or it may be anonymous. It may have multiple
base classifiers if multiple classification is intended.

A classifier role can be connected to other classifier roles by association roles.

Objects. A collaboration represents a group of objects that work together to ac-
complish a goal. A role represents the part of one of the objects (or a set of the ob-
jects) in carrying out that goal. An object is a direct or indirect instance of the base
class of its role. All objects of the base class do not necessarily appear in collabora-
tions, and objects of the same base class may play multiple roles in the same collab-
oration.

The same object may play different roles in different collaborations. A collabo-
ration represents a facet of an object. A single physical object may combine differ-
ent facets, thereby implicitly connecting the collaborations in which it plays roles.

Encyclopedia of Terms collaboration • 195
Notation
A classifier role is shown by using the symbol for a classifier (a rectangle) with a
role name and classifier name separated by a colon, that is, rolename: BaseClass.
A role is not an object, however. It is a classifier that describes many objects that
appear in different instances of the collaboration.

Either the role name or the classifier name may be omitted, but the colon must
be included to distinguish it from an ordinary class. Within a collaboration there is
little danger of confusion, as all the participants are roles.

A classifier role may display a subset of the features of the classifier, that is, the
attributes and operations used in the given context. The rest of the features can be
suppressed if they are not used.

Figure 13-49 shows various forms that a classifier role may take.

Standard elements
destroyed, new, transient

client

An element that requests a service from another element. The term is used to de-
scribe a role within a dependency. In the notation, the client appears at the tail of a
dependency arrow. Antonym: supplier.

See dependency.

collaboration

A description of a general arrangement of objects and links that interact within a
context to implement a behavior, such as a use case or operation. A collaboration
has a static and a dynamic part. The static part describes the roles that objects and
links may play in an instantiation of the collaboration. The dynamic part consists
of one or more dynamic interactions that show message flows over time in the col-
laboration to perform computations.

See also association role, classifier role, interaction, message.

Figure 13-49. Classifier role

buyer: Company bidder: Company
∗

: Company

named role, multiplicity 1 unnamed role, multiplicity 1 named role, multiplicity many

196 • collaboration Encyclopedia of Terms
Semantics
Behavior is implemented by groups of objects that exchange messages within a
context to accomplish a purpose. To understand the mechanisms used in a design,
it is important to focus on the objects and messages involved in accomplishing a
purpose or a related set of purposes, projected from the larger system within
which they fulfill other purposes as well. An arrangement of objects and links that
work together to accomplish a purpose is called a collaboration; a sequence of
messages within a collaboration that implements behavior is called an interaction.
A collaboration is a description of a “society of objects.” It is a fragment of a larger,
complete model, within which the collaboration is intended for a purpose.

For example, a commercial sale represents an arrangement of objects that have
certain relationships to each other within the transaction. The relationships are
not meaningful outside the transaction. Sale participants include a buyer, a seller,
and a broker. To perform a specific interaction, such as selling a house, the partici-
pants exchange a certain sequence of messages, such as making an offer or signing
a contract.

The message flows within the collaboration may optionally be specified by a
state machine, which specifies legal behavior sequences. The events on the state
machine represent messages exchanged among roles within the collaboration.

A collaboration consists of roles. A role is a part that a classifier or an associa-
tion plays within the collaboration. A role is a slot that may hold an instance of a
classifier or an association when instantiated. There may be different roles played
by the same classifier or association; each would be filled by a different object or
link. For example, within a commercial transaction, one party may be the seller
and the other may be the buyer, even though they are both companies. The seller
and buyer are roles of class Company within the collaboration Sale. Roles are
meaningful only within a collaboration; outside they have no meaning. Indeed, in
another collaboration, the roles may be reversed. An object may be a buyer in one
instance of collaboration and a seller in another. The same object may play multi-
ple roles in different collaborations. Contrast the restricted scope of a role with an
association. An association describes a relationship that is globally meaningful for
a class in all contexts, whether or not an object actually participates in the associa-
tion. A collaboration defines relationships that are restricted to a context and
which are meaningless outside of that context.

Realization. A collaboration realizes an operation or a use case. It describes the
context in which the implementation of an operation or use case executes—that is,
the arrangement of objects and links that exist when the execution begins, and the
instances that are created or destroyed during execution. The behavior sequences
may be specified in interactions, shown as sequence diagrams or collaboration di-
agrams.

Encyclopedia of Terms collaboration • 197
A collaboration may also realize the implementation of a class. A collaboration
for a class is the union of the collaborations for its operations. Different collabora-
tions may be devised for the same class, system, or subsystem; each collaboration
shows the subset of attributes, operators, and related objects that are relevant to
one view of the entity, such as the implementation of a particular operation.

Patterns. A parameterized collaboration represents a design construct that can be
reused in various designs. Usually the base classifiers are parameters. Such a pa-
rameterized collaboration captures the structure of a pattern.

See template.
A design pattern is instantiated by supplying actual classifiers for the base classi-

fier parameters. Each instantiation yields a collaboration among a specific set of
classifiers in the model. A pattern can be bound more than once to different sets of
classifiers within a model, avoiding the need to define a collaboration for each oc-
currence. For example, a model-view pattern defines a general relationship among
model elements; it can be bound to many pairs of classes that represent model-
view pairs. Each pair of actual model-view classes represents one binding of the
pattern. One such pair would be a house and a picture of the house, another pair
would be a stock and a graphic showing the current price of the stock.

Note that a pattern also involves guidelines for use and explicit advantages and
disadvantages. These can be put in notes or in separate text documents.

Layers of collaborations. A collaboration may be expressed at various levels of
granularity. A coarse-grained collaboration may be refined to produce another
collaboration that has a finer granularity. This is accomplished by expanding one
or more operations from a high-level collaboration into distinct lower-level col-
laborations, one for each operation.

A collaboration may be implemented in terms of subordinate collaborations.
Each subordinate collaboration implements a part of the overall functionality and
has its own set of roles. Each role of the overall collaboration may be bound to one
or more roles of the nested compositions. If an outer-level role is bound to more
than one inner-level role, then it implicitly connects the behavior of the lower-
level collaborations. This is the only way that use cases interact. One design ap-
proach is to work from the inside out. First construct the inner, narrow roles, and
then combine them to produce outer, broader roles that have multiple responsibil-
ities.

Run-time binding. At run time, objects and links are bound to the roles of the col-
laboration. An object can be bound to one or more roles, usually in different col-
laborations. If an object is bound to multiple roles, then it represents an
“accidental” interaction between the roles—that is, an interaction that is not in-
herent in the roles themselves, but only a side effect of their use in a wider context.
Often, one object plays roles in more than one collaboration as part of a larger col-
laboration. Such overlap between collaborations provides an implicit flow of con-
trol and information between them.

198 • collaboration Encyclopedia of Terms
Structure
Roles. A collaboration contains a set of roles, each of which is a reference to one or
more base classifiers (classifier role) or base associations (association role). A role
is a slot in the collaboration that describes a use of a classifier or an association
within the collaboration. A role is also a classifier itself; an object bound to the role
in an instance of the collaboration is a transient instance of the role. Within an in-
stance of the collaboration, an object is bound to each classifier role and a link is
bound to each association role. One object may be bound to more than one classi-
fier role in the same collaboration instance, although this is uncommon and can
be prevented by a suitable constraint. Objects of the same class may appear in mul-
tiple roles in the same collaboration instance. Each object has the relationships ap-
propriate to its role. Each classifier role may list a subset of the classifier’s features
that are used in the collaboration. The other features are irrelevant in the collabo-
ration, although they may be used in other collaborations. If there are multiple
roles involving the same base classifier, the roles should have names to distinguish
them. If there is a single use of a base classifier in a collaboration, the role can be
anonymous, as the classifier is sufficient to identify it. The roles define the struc-
ture of the collaboration.

If multiple classification is supported, then the role may have multiple base clas-
sifiers. An object bound to the classifier role is an instance of each of them.

Generalizations. A collaboration can also include generalizations and constraints.
These are in addition to any relationships the participating classifiers may have on
their own outside the collaboration. A generalization in a collaboration is neces-
sary only when the classifiers in the collaboration are parameters. Otherwise, their
generalization structure is specified as part of their definition as classifiers and may
not be altered by a collaboration. In a parameterized collaboration (a pattern)
some of the classifier roles may be parameters. A generalization between two pa-
rameterized classifier roles indicates that any classifiers that are bound to the roles
must satisfy the generalization relationship. (The classifier bound to the parent
role must be an ancestor of the classifier bound to the child role. They need not be
parent and child.)

For example, the pattern Composite from [Gamma-95] represents a recursive
tree of objects in which class Component is a generic element of the tree, Compos-
ite is a recursive element, and Leaf is a leaf element (Figure 13-50). Component is
the parent of Leaf and Composite, the latter of which is an aggregate of Compo-
nent elements (the recursion). Component, Composite, and Leaf are parameters
within the pattern. They are replaced by actual classes when the pattern is used.
Any set of actual classes bound to the pattern must observe the ancestor-descen-
dant relationship between Component and its children Composite and Leaf. Sam-
ple substitutions would include Graphic, Picture, and Rectangle; DirectoryEntry,

Encyclopedia of Terms collaboration • 199
Directory, and File; and any other recursive classes. If a binding does not fulfill the
generalization constraint, it is ill formed.

Constraints. Constraints may be specified on parameterized and nonparameter-
ized roles. These constraints are in addition to any that may exist on classifiers
bound to the roles. The constraints apply to each instance of the collaboration.

Messages. A collaboration may have a set of messages to describe its dynamic be-
havior. A collaboration with messages is an interaction. There may be multiple in-
teractions, each describing part of the same collaboration. One interaction can
describe the implementation of one operation and another interaction can de-
scribe another operation, for example. Messages have sequencing information

Figure 13-50. Pattern: a parameterized collaboration

Composite

Component

Leaf

parameters

collaboration body

Picture

Graphic

Rectangle

Component

Component

Leaf

Composite

pattern binding

actual classes in model

with parameterized
classes

pattern parameter binding

pattern =
required
generalization

generalization
consistent
with pattern

Component, Composite, Leaf

200 • collaboration Encyclopedia of Terms
among them; the sequencing information is equivalent to specifying a state ma-
chine triggered by messages.

Source. A collaboration may represent a class, use case, or method (a collaboration
is the implementation of an operation, not the specification of an operation). The
collaboration describes the behavior of the source element.

Notation
A collaboration diagram is a graph of class symbols (rectangles) representing clas-
sifier roles and association paths (solid lines) representing association roles, with
message symbols attached to its association role paths. A collaboration diagram
without messages shows the context in which interactions can occur, without
showing any interactions. It may be used to show the context for a single operation
or even for all the operations of a class or group of classes. If messages are attached
to the association lines, the diagram shows an interaction. Typically, an interaction
represents the implementation of an operation or use case.

A collaboration diagram shows the slots for objects involved as classifier roles in
an interaction. A classifier role is distinguished from a classifier because it has both
a name and a class, with the syntax rolename : classname. Either the rolename or
the class name may be omitted, but the colon is required. A diagram also shows the
links among the objects as association roles, including transient links representing
procedure arguments, local variables, and self-links. Multiple association roles can
have the same association name, provided they connect different classifier roles.
Arrows on link lines indicate navigability in the direction of the arrow. (An arrow-
head on a line between object boxes indicates a link with one-way navigability. An
arrow next to a line indicates a message flowing in the given direction over the link.
A message cannot flow backward over a one-way link, so message flows must be
compatible with navigability arrows.)

Individual attribute values in classifier roles are usually not shown explicitly. If
messages must be sent to attribute values, the attributes should be modeled as ob-
jects using associations.

Tools may use other graphic markers in addition to or in place of the keywords.
For example, each kind of lifetime might be shown in a different color. A tool may
also use animation to show the creation and destruction of elements and the state
of the system at various times.

Implementation of an operation
A collaboration that shows the implementation of an operation includes symbols
for the target object role and the roles of other objects the target object uses, di-
rectly or indirectly, to perform the operation. Messages on association roles show

Encyclopedia of Terms collaboration • 201
the flow of control in an interaction. Each message shows a step within the
method for the operation.

A collaboration describing an operation also includes role symbols representing
arguments of the operation, and local variables created during its execution. Ob-
jects created during the execution may be designated as {new}; objects destroyed
during the execution may be designated as {destroyed}; objects created during the
execution and then destroyed may be designated as {transient}. Objects without a
keyword exist when the operation begins and still exist when it is complete.

The internal messages that implement a method are numbered, starting with
number 1. For a procedural flow of control, the subsequent message numbers use
“dot” sequences nested in accordance with call nesting. For example, the second
top-level step is message 2; the first subordinate step inside that step is message
2.1. For asynchronous messages exchanged among concurrent objects, all the se-
quence numbers are at the same level (that is, they are not nested).

See message for a full description of message syntax including sequencing.
A complete collaboration diagram shows the roles of all the objects and links

used by the operation. If an object is not shown, the assumption is that it is not
used. It is not safe to assume that all the objects on a collaboration diagram are
used by the operation, however.

Example
In Figure 13-51, an operation redisplay is called on a Controller object. At the time
when the operation is called, it already has a link to the Window object, where the
picture will be displayed. It also has a link to a Wire object, the object whose image
will be displayed in the window.

The top-level implementation of the redisplay operation has only one step—the
calling of operation displayPositions on the wire object. This operation has se-
quence number 1, because it is the first step in the top-most method. This message
flow passes along a reference to the Window object that will be needed later.

The displayPositions operation calls the drawSegment operation on the same
wire object. The call, labeled with sequence number 1.1, is dispatched along the
implicit self link. The star indicates an iterative call of the operation; the details are
supplied in the brackets.

Each drawSegment operation accesses two Bead objects, one indexed by quali-
fier value i-1 and one by value i. Although there is only one association from Wire
to Bead, within the context of this operation, two links to two Wire objects are
needed. The objects are labeled left and right (these are the classifier roles in the
collaboration). One message is dispatched along each link. The messages are la-
beled 1.1.1a and 1.1.1b. This indicates that they are steps of operation 1.1; the let-
ters at the end indicate that the two messages can be dispatched concurrently. In a

202 • collaboration Encyclopedia of Terms
normal implementation, they would probably not be executed in parallel, but be-
cause they are declared as concurrent, they can be executed in any convenient se-
quential order.

When both values (r0 and r1) have been returned, the next step under operation
1.1 can proceed. Message 1.2 is a create message sent to a Line object. Actually it
goes to the Line class itself (in principle, at least), which creates a new Line object
linked to the sender. The new object has the label {new} to indicate that it is cre-
ated during the operation but lives on afterward. The new link has the label «lo-
cal», indicating that it is not an association but a local variable within the
procedure. Local variables are inherently transient and disappear with the termi-
nation of the procedure. Therefore, it is unnecessary to label it with the keyword
{transient}.

Step 1.3 uses the newly created link to send a display message to the newly cre-
ated Line object. The pointer to the window object is passed along as an argument,
making it accessible to the Line object as a «parameter» link. Note that the Line ob-
ject has a link to the same window object that is associated with the original Con-
troller object; this is important to the operation and it is shown by the diagram. In
the final step 1.3.1, the Window object is requested to create a link to the Line ob-
ject. This link is an association, so it has rolename contents, and is labeled {new}.

Figure 13-51. Collaboration diagram with message flows

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*[i:=1..n]: drawSegment(i) :Line {new}
«local»line

1.1.3: display(window)

1.1.3.1: link(self)

 contents {new}

«self»

invoker of operation

operation being described

message flow

association

self-link for recursive calls

local variable object
created
during
operation

link
creation

concurrent thread name

iteration specifier

sequence number
return
value

operation

Encyclopedia of Terms collaboration role • 203
The final state of the system can be observed by mentally erasing all the tempo-
rary links. There is a link from Controller to wire and from wire to its Bead parts,
from Controller to window and from window to its contents. Once the operation
is complete, however, a Line has no access to the Window that contains it. The link
in that direction is transient and disappears when the operation is complete. Simi-
larly, a Wire object no longer has access to the Line objects used to display it.

Instance-level collaborations
Collaborations can be expressed as descriptors and as instances, similar to many
model elements. A descriptor-level collaboration shows a potential relationship
among objects; the collaboration can be instantiated many times to produce col-
laboration instances. Each collaboration instance shows a relationship among spe-
cific objects.

Which form should be used to model a situation? If the diagram shows contin-
gency, then it must be a descriptor-level diagram. Object diagrams do not have
contingency. They do not have conditionals or loops; such things are part of a ge-
neric description. An instance does not have a range of values or a set of possible
control paths; it has a value and a history.

If the diagram shows specific values of attributes or arguments, if it shows a spe-
cific number of objects or links out of a variable-size multiplicity, or if it shows a
particular choice of branches and loops during execution, then it must be an
instance-level diagram.

In many cases either form can be used. This is true when the computation has
no branches. Then any execution is prototypical, and there is not much difference
between the descriptor form and the instance form.

collaboration diagram

A diagram that shows interactions organized around roles—that is, slots for in-
stances and their links within a collaboration. Unlike a sequence diagram, a
collaboration diagram explicitly shows the relationships among the roles. On the
other hand, a collaboration diagram does not show time as a separate dimension,
so the sequence of messages and the concurrent threads must be determined using
sequence numbers. Sequence diagrams and collaboration diagrams express similar
information, but show it in different ways.

See collaboration, pattern, sequence diagram.

collaboration role

A slot for an object or link within a collaboration. It specifies the kind of object or
link that may appear in an instance of the collaboration.

See also association role, classifier role, collaboration.

204 • collaboration role Encyclopedia of Terms
Semantics
A collaboration role describes an object or a link. It does not, however, represent a
single object or link, but rather a place where an object or link may be substituted
when the collaboration is instantiated. A collaboration is either a classifier role or
an association role. A classifier role has one or more base classifiers and may be in-
stantiated as an object, which is an instance of the classifiers or one of their de-
scendants. An association role may have a base association and may be
instantiated as a link, which is an instance of the association or one of its descen-
dants. In many cases, the association is defined only within the collaboration—
that is, it occurs only for objects playing the roles and is not meaningful apart
from the collaboration. In such a case, the base association can be omitted. The as-
sociation is defined implicitly by its appearance in the collaboration, with the con-
straint that it is not usable elsewhere.

Notation
Collaboration roles may be classifier roles or association roles.

Classifier role. A classifier role is a classifier and is shown as a class rectangle sym-
bol. Often, only the name compartment is shown. The name compartment con-
tains the string

classifierRoleName : BaseClassifierNamelist,

The base classifier name can include a full pathname of enclosing packages, if
necessary (a tool will normally permit shortened pathnames to be used when they
are unambiguous). The package names precede the class name and are separated
by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for a classifier role may be shown textually in guillemets above the
name string or as an icon in the upper-right corner. The stereotype for a classifier
role must match the stereotype for its base classifier.

A classifier role representing a set of objects includes a multiplicity indicator
(such as ‘∗ ’) in the upper-right corner of the class box. This specifies the number
of objects that may be bound to the role in one instance of the collaboration. If the
indicator is omitted, the value is exactly one.

The name of the classifier role may be omitted. In this case, the colon should be
kept with the class name. This represents an anonymous object of the class.

If multiple classification is supported, the role may have more than one classi-
fier. The object is an instance of each of them.

The class of the classifier role may be suppressed (together with the colon).
An object or link that is created during an interaction has the keyword new as a

constraint on its role. An object or link that is destroyed during an interaction has

Encyclopedia of Terms combination • 205
the keyword destroyed as a constraint on its role. The keywords may be used even
if an element has no name. Both keywords may be used together, but the keyword
transient may be used in place of new destroyed.

Association role. An association role is an association and is shown as a path be-
tween two classifier role symbols. The path may have an attached name of the
form

associationRoleName : BaseAssociationName

If the name of the base association is omitted, then there is no base association.
The rolenames and other adornments of the base association may be shown on the
path.

If one end of the association role path is connected to a class role with a multi-
plicity other than one, then a multiplicity indicator may be placed on that end of
the association to emphasize the multiplicity.

Figure 13-51 shows an example of collaboration roles.

combination

A kind of relationship that relates two parts of the description of a classifier that
combine to make the full descriptor for the element.

See extend, include.

Semantics
One of the powerful capabilities of object orientation is the ability to combine de-
scription of model elements out of incremental pieces. Inheritance combines clas-
sifiers related by generalization to produce the effective full descriptor of a class.

Other ways of combining descriptors are the extend and include relationships.
These are modeled as varieties of the combination relationship. (Generalization
might well be considered in the same category, but because of its importance it is
treated as a distinct fundamental relationship.)

Notation
A combination relationship is shown as a dashed arrow with a stereotype keyword
attached. See extend and include for specific details of each one.

Discussion
Other kinds of combination relationship are possible. Some programming lan-
guages, such as CLOS, implement several powerful varieties of method combi-
nation.

206 • comment Encyclopedia of Terms
comment

An annotation attached to an element or a collection of elements. A comment has
no direct semantics, but it may display semantic information or other information
meaningful to the modeler or to a tool, such as a constraint or method body.

See also note.

Semantics
A comment contains a text string but it may also include embedded documents if a
modeling tool permits. A comment may be attached to a model element, a presen-
tation element, or a set of elements. It provides a text description of arbitrary in-
formation, but it has no semantic impact. Comments provide information to
modelers and may be used to search models.

Notation
Comments are displayed in note symbols, which are shown as rectangles with bent
upper-right corners (“dog ears”) attached by a dashed line or lines to the element
or elements that the comment applies to (Figure 13-52). Modeling tools are free to
provide additional formats for displaying comments and browsing them, such as
pop-ups, special fonts, and so on.

Standard elements
requirement, responsibility

communication association

An association that describes a communication relationship between instances of
the connected elements. In a deployment view, it is an association between nodes
that implies a communication. In a use case model, it is an association between a
use case and an actor that is a communication association.

See actor, use case.

Figure 13-52. Comment

Due for testing July 29.
Last changes by Joe.

Reservation

comment
target of comment

Encyclopedia of Terms compartment • 207
compartment

A graphical division of a closed shape symbol, such as a class rectangle divided
vertically into smaller rectangles. Each compartment shows properties of the ele-
ment that it represents. Compartments come in three kinds: fixed, lists, and re-
gions.

See also class, classifier.

Notation
A fixed compartment has a fixed format of graphical and text parts to represent a
fixed set of properties. The format depends on the kind of element. An example is
a class name compartment, which contains a stereotype symbol and/or name, a
class name, and a property string that shows various class properties. Depending
on the element, some of the information may be suppressible.

A list compartment contains a list of strings that encode constituents of the ele-
ment. An example is an attribute list. The encoding depends on the constituent
type. The list elements may be shown in their natural order within the model, or
they may be sorted by one or more of their properties (in which case, the natural
order will not be visible). For example, a list of attributes could be sorted first on
visibility and then on name. List entries can be displayed or suppressed based on
the properties of the model elements. An attribute compartment, for instance,
might show only public attributes. Stereotypes and keywords may be applied to in-
dividual constituents by prepending them to the list entry. Stereotypes and key-
words may be applied to all subsequent constituents by placing them on list entry
by themselves. They affect all subsequent list entries until the end of the list or an-
other such running declaration. The string «constructor» placed on a separate line
in an operation list would stereotype the subsequent operations as constructors,
but the string «query» further down the list would revoke the first declaration and
replace it by the «query» stereotype.

A region is an area that contains a graphic subpicture showing substructure of
the element, often potentially recursive. An example is a nested state region. The
nature of the subpicture is peculiar to the model element. Including both regions
and text compartments in a single symbol is legal, but can be messy. Regions are
often used for recursive elements, and text is used for leaf elements with no recur-
sive substructure.

A class has three predefined compartments: name, a fixed compartment; at-
tributes, a list compartment; and operations, another list compartment. A mod-
eler can add another compartment to the rectangle and place its name at the head
of the compartment, in a distinctive font (for example, small boldface).

The graphical syntax depends on the element and the kind of compartment.
Figure 13-53 shows a compartment for signals. Figure 13-157 shows a compart-
ment for responsibilities.

208 • compile time Encyclopedia of Terms
compile time

Refers to something that occurs during the compilation of a software module.
See modeling time, run time.

completion transition

A transition that lacks an explicit trigger event and is triggered by the completion
of activity in the source state.

See also activity, transition, trigger.

Semantics
A completion transition is represented as a transition that has no explicit trigger
event. The transition is triggered implicitly when its source state has completed
any activity (including nested states). In a composite state, completion of activity
is indicated by reaching the final state. If a state lacks internal activity or nested
states, then the completion transition is triggered immediately after the entry ac-
tion and exit action are executed, but no other events can intervene.

If a state has nested states or activity but lacks outgoing transitions with trigger
events, the completion transition is not guaranteed to fire. An event might cause a
triggered transition on one of the nested states to fire while the enclosing state is
waiting to complete its activity, so the completion transition might be bypassed.

A completion transition may have a guard condition and an action. Usually, it is
undesirable to have an isolated guarded completion transition, because if the
guard condition is false, the transition will never fire (because the implicit trigger
occurs only once). Occasionally, this may be useful to represent some kind of fail-
ure, provided a triggered transition eventually pulls the object out of the dead
state. More commonly a set of guarded completion transitions have conditions
that cover all possibilities so that one of them will fire immediately when the state
terminates.

Figure 13-53. Named compartment in a class

TradingRegulator

timeout: Time
limit: Real

suspendTrading(time: Time)
resumeTrading()

signals
marketCrash (amount: Real)

compartment name

list element
user-defined compartment

attribute compartment

operation compartment

Encyclopedia of Terms complex transition • 209
Completion transitions are also used to connect initial states and history states
to their successor states, because these pseudostates may not remain active after
the completion of activity.

Example
Figure 13-54 shows a state machine fragment of ticket-ordering application. The
Selecting state remains active as long as the customer keeps picking dates. When
the customer presses the “done” button, then the Selecting state reaches its final
state. This triggers the completion transition, which goes to the Selected state.

complex transition

A transition with more than one source state and/or more than one target state. It
represents a response to an event that causes a change in the amount of concur-
rency. It is a sychronization of control, a forking of control, or both, depending on
the number of sources and targets.

See also branch, composite state, fork, join, merge.

Figure 13-54. Completion transition

Selecting
pick date / add to selection

push “done”/ reset selection

Idle

insert card cancel / eject card

Selected

completion transition

Choose

210 • complex transition Encyclopedia of Terms
Semantics
At a high level, a system passes through a series of states, but the monolithic view
that a system has a single state is too restrictive for large systems with distribution
and concurrency. A system may hold multiple states at one time. The set of active
states is called the active state configuration. If a nested state is active, then all
states that contain it are active. If the object permits concurrency, then more than
one concurrent substate may be active.

In many cases, the activity of a system can be modeled as a set of threads of con-
trol that evolve independently of each other or that interact in limited ways. Each
transition affects, at most, a few states in the active state configuration. When a
transition fires, unaffected active states remain active. The progress of the threads
at a moment can be captured as a subset of states within the active state configura-
tion, one subset for each thread. Each set of states evolves independently in re-
sponse to events. If the number of active states is constant, the state model is
nothing but a fixed collection of state machines that interact. In general, however,
the number of states (and therefore the number of threads of control) can vary
over time. A state can transition to two or more concurrent states (a fork of con-
trol), and two or more concurrent states can transition to one state (a join of con-
trol). The number of concurrent states and their evolution is controlled by the
state machine for the system.

A complex transition is a transition into or from a set of concurrent substates. A
complex transition has more than one source state and/or target state. If it has
multiple source states, it represents a join of control. If it has multiple target states,
it represents a fork of control. If it has multiple source and target states, it repre-
sents a synchronization of parallel threads.

If a complex transition has multiple source states, all of them must be active be-
fore the transition is a candidate for triggering. The order in which they become
active is irrelevant. If all the source states are active and the event occurs, the tran-
sition is triggered and may fire if its guard condition is true. Each transition is trig-
gered by a single event, even if there are multiple source states. The concept of
simultaneous occurrence of events is not supported by UML; each event must trig-
ger a separate transition and then the resultant states can be followed by a join.

If a complex transition with multiple source states lacks a trigger event (that is,
if it is a completion transition) then it is triggered when all its explicit source states
become active. If its guard condition is satisfied at that time, it fires.

When a complex transition fires, all the source states and all their peers within
the same composite state cease to be active, and all the target states and all their
peers become active.

In more complicated situations, the guard condition may be expanded to per-
mit firing when some subset of the states is active.

Encyclopedia of Terms complex transition • 211
Example
Figure 13-55 shows a typical concurrent composite state with complex transitions
entering and leaving it. Figure 13-56 shows a typical execution history of this ma-
chine (the active states are shown in blue). The history shows the variation in
number of active states over time.

Concurrent states
Unless a state machine is carefully structured, a set of complex transitions can lead
to inconsistencies, including deadlocks, multiple occupation of a state, and other
problems. The problem has been extensively studied under Petri net theory, and
the usual solution is to impose well-formedness rules on the state machine to
avoid the danger of inconsistencies. These are “structured programming” rules for
state machines. There are a number of approaches, each with advantages and dis-
advantages. The rules adopted by UML require that a state machine decompose
into finer states using a kind of and-or tree. The advantage is that a well-nested
structure is easy to establish, maintain, and understand. The disadvantage is that
certain meaningful configurations are prohibited. On balance, this is similar to the
trade-off in giving up goto’s to get structured programming.

A complex state may be decomposed into a set of mutually exclusive substates
(an “or” decomposition) or into a set of concurrently held substates (an “and” de-
composition). The structure is recursive. Generally, “and” layers alternate with
“or” layers. An “and” layer represents concurrent decomposition—all of the sub-
states are active concurrently. An “or” state represents a sequential decomposi-
tion—one substate is active at a time. A legal set of concurrent states can be
obtained by recursively expanding the nodes in the tree, starting with the root. Re-
place an “and” state by all of its children; replace an “or” state by one of its chil-
dren. This corresponds to the nested structure of statecharts.

Figure 13-55. Fork and join

Setup Cleanup

A1 A2

B2B1

fork
join

concurrent composite state

e1

When e1 occurs,
A1 and B1 become active.

When A2 and B2 terminate,
the completion transition
makes Cleanup active.

212 • complex transition Encyclopedia of Terms
Figure 13-56. History of active states in a concurrent state machine

Setup Cleanup

A1 A2

B2B1e1

e1 occurs

A1 completes

B1 completes

A2 and B2 complete

(Active states shown in blue)

Setup Cleanup

A1 A2

B2B1e1

Setup Cleanup

A1 A2

B2B1e1

Setup Cleanup

A1 A2

B2B1e1

Setup Cleanup

A1 A2

B2B1e1

Encyclopedia of Terms complex transition • 213
Example
Figure 13-57 shows an and-or tree of states corresponding to the state machine in
Figure 13-55. A typical set of concurrently active states is colored in blue. This cor-
responds to the third step in Figure 13-56.

If a transition enters a concurrent region, it enters all the substates. If a transi-
tion enters a sequential region, it enters exactly one substate. The active state
within a sequential region can change. With a concurrent region all concurrent
substates remain active as long as the region is active, but generally each concur-
rent substate is decomposed further as a sequential region.

Therefore, a simple transition (one that has one input and one output) must
connect two states in the same sequential region or two states separated by or-
levels only. A complex transition must connect all the substates within a concur-
rent region with a state outside the concurrent region (we omit more complicated
cases, but they must follow the principles above). In other words, a transition en-
tering a concurrent region must enter each substate; a transition leaving a concur-
rent region must leave each substate.

A shortcut representation is available: If a complex transition enters a concur-
rent region but omits one or more of the subregions, then there is implicitly a

Figure 13-57. And-or tree of nested states

or

andSetup Cleanup

or or

A1 A2 B2B1

(Typical set of active states shown in blue)

214 • complex transition Encyclopedia of Terms
transition to the initial state of each omitted subregion. If some subregion has no
initial state, the model is ill formed. If a complex transition leaves a concurrent re-
gion, there is an implicit transition from each omitted subregion. If the transition
fires, any activity within the subregion is terminated—that is, it represents a forced
exit. A transition can be connected to the enclosing concurrent region itself. It im-
plies a transition to the initial state of each subregion—a common modeling situa-
tion. Similarly, a transition from an enclosing concurrent region implies the forced
exit of each subregion (if it has an event trigger) or waiting for each subregion to
complete (if it is triggerless).

The rules on complex transitions ensure that meaningless combinations of
states cannot be active concurrently. A set of concurrent substates is a partition of
the enclosing composite state. Either all of them are active or none of them is ac-
tive.

Conditional thread
In an activity graph, a segment leaving a fork may have a guard condition. This is a
conditional thread. When the transition fires, the thread headed by the guarded
segment is initiated only if the guard condition is satisfied. Unguarded segments
are always initiated when the transition fires. The concurrency in an activity graph
must be well nested—each fork must correspond to a subsequent join. When a
conditional thread fails to start because its guard condition is false, the activity at
the corresponding input segment on the matching join is considered complete—
that is, the transition does not wait for a flow of control on the conditional thread.
If all the threads on a fork fail to start, then control resumes immediately at the
matching join.

A conditional thread is equivalent to a graph with a branch and merge sur-
rounding the conditional portion of the activity graph.

Example
Figure 13-58 shows an activity graph with two conditional threads. It represents
the check-in procedure for an airline. Before anything can happen, the customer
must present a ticket. Then there are three concurrent threads, two of which are
conditional. Seat assignment is always performed, but baggage is checked only if
the customer has baggage, and the passport is examined only if the flight is inter-
national. When all three threads are complete, control joins to a single thread in
which the ticket and boarding pass are returned to the customer. If a conditional
thread does not start, it is considered complete for the subsequent join.

Notation
A complex transition is shown as a short heavy bar (a synchronization bar, which
can represent synchronization, forking, or both). The bar may have one or more

Encyclopedia of Terms complex transition • 215
solid transition arrows from states to the bar (the states are the source states); the
bar may have one or more solid arrows from the bar to states (the states are the tar-
get states). A transition label may be shown near the bar, describing the trigger
event, guard condition, and actions, as described under transition. Individual ar-
rows do not have their own transition strings; they are merely part of the overall
single transition.

Example
Figure 13-59 shows the state machine from Figure 13-55 with an additional exit
transition. It also shows an implicit fork from state Setup to the initial states in
each subregion and an implicit join from the final states in each subregion to state
Cleanup.

If event f1 occurs when state B2 is active, then the transition to state Cleanup oc-
curs. This transition is an implicit join; it terminates state A2 as well as state B2.

Figure 13-58. Conditional threads

Check
baggage

Attach
claim check

fork of control

join of control

[international?]

Take
ticket

Return ticket and

Examine passport

File blue lane
information

[baggage?]

Assign
seat

Print
boarding card

boarding card

unconditional guard condition
on conditional threadthread

216 • component Encyclopedia of Terms
component

A physical, replaceable part of a system that packages implementation and con-
forms to and provides the realization of a set of interfaces.

Semantics
A component represents a physical piece of implementation of a system, including
software code (source, binary, or executable) or equivalents, such as scripts or
command files. Some components have identity and may own physical entities,
which include run-time objects, documents, databases, and so on. Components
exist in the implementation domain—they are physical units on computers that
can be connected to other components, replaced by equivalent components,
moved around, archived, and so on. Models may show dependencies among com-
ponents, such as compiler and run-time dependencies or information dependen-
cies in a human organization. A component instance may be used to show
implementation units that exist at run time, including their location on node in-
stances.

Components have two aspects. They package the code that implements the
functionality of a system, and some of them own instances of objects that consti-
tute the system state. We call the latter identity components, because their in-
stances have identity and state.

Code aspect. A component contains the code for implementation classes and
other elements. (Code is taken broadly and includes scripts, hypertext structures,
and other forms of executable descriptions.) A source-code component is a pack-
age for the source code of implementation classes. Some languages (such as C++)
distinguish declaration files from method files, but they are all components. A
binary-code component is a package for compiled code. A binary-code library is a

Figure 13-59. Complex transitions (fork, join)

Setup Cleanup

A1 A2

B2B1

concurrent composite state

Cleanup

f1

e1

initial state
final state

Encyclopedia of Terms component • 217
component. An executable component contains executable code. Each kind of
component contains the code for implementation classes that realize some logical
classes and interfaces. The realization relationship relates a component to the logi-
cal classes and interfaces that its implementation classes implement.

The interfaces of a component describe the functionality that it supports. Each
operation in the interface must eventually map to an implementation element
supported by the component.

The static, executable structure of a system implementation can be represented
as an interconnected set of components. Dependencies among components mean
that implementation elements in one component require the services of imple-
mentation elements in other components. Such usage requires the supplier ele-
ments to be publicly visible in their components. A component may also have
private elements, but these cannot be direct suppliers of services to other compo-
nents.

Components may be contained by other components. A contained component
is just another implementation element within its container.

A component instance is an instance of a component on a node instance.
Source-code and binary-code component instances may reside on particular node
instances, but executable component instances are most useful. If an executable
component instance is located on a node instance, objects of implementation
classes supported by the component can execute operations when they are located
on the node instance. Otherwise, an object located on a node instance cannot exe-
cute operations and must be moved or copied to another node instance to execute
operations.

If a component lacks identity, all instances of it are the same. It does not matter
which of them supports the execution of a run-time object. All of them behave the
same. Because they have no identity, the component instances themselves do not
have values or state.

Identity aspect. An identity component has identity and state. It owns physical
objects, which are located on it (and, therefore, on the node instance containing
the component instance). It may have attributes, composition relationships to
owned objects, and associations to other components. From this point of view, it is
a class. However, all of its state must map onto its owned instances. That’s what
makes it a component, rather than an ordinary class. Often an implementation
class is provided to represent the component as a whole. This is called a dominant
class and is often equated with the component itself, although they are not the
same thing.

An object requesting services of an identity component must select a specific in-
stance of the component, usually by having an association to one of the objects
owned by the component. Because each identity component instance has state, re-
quests to different instances may produce different results.

218 • component Encyclopedia of Terms
Example
For example, a spelling checker may be a component. If it has a fixed dictionary, it
can be modeled as a nonidentity component. All instances of it produce the same
results and there is no memory of past requests. If the dictionary can be updated,
however, then it must be modeled as an identity component. There can be differ-
ent versions of the dictionary, corresponding to different instances of the spelling
checker component. A requestor must address its request to a specific instance of
the component. Often the target component is implicit within a particular con-
text, but it is a choice that must be part of the design.

Structure
A component supports a set of implementation elements, such as implementation
classes. This means that the component provides the code for the elements. An im-
plementation element may be supported by multiple components.

A component may have operations and interfaces, which must be implemented
by its implementation elements.

An identity component is a physical container for physical entities, such as run-
time objects and databases. To provide handles to its contained elements, it may
have attributes and outgoing associations, which must be implemented by its im-
plementation elements. An identity component may designate a dominant class
that supports all its public attributes and operations, but such a class is just one of
its implementation elements.

Notation
A component is displayed as a rectangle with two smaller rectangles protruding
from its side. The name of the component type is placed inside (Figure 13-60).

A component instance has an individual name separated from a component
type name by a colon. The name string is underlined to distinguish it from a com-
ponent type (Figure 13-61). A component instance symbol may be drawn inside a

Figure 13-60. Component

Dictionary
Spell-check

Synonyms

component interfaces

realization relationships

Encyclopedia of Terms component • 219
node symbol to show that the component instance is located on the node instance
(Figure 13-62). If the component does not have identity, the instance name is usu-
ally omitted. Objects owned by an identity component instance may be drawn in-
side it. A component with attributes or contained objects is automatically an
identity component.

A dominant class subsumes the interface of the component. It may be drawn as
a class with a component symbol in the upper right as a stereotype icon. In this

Figure 13-61. Identity component instance with resident objects

Figure 13-62. Component instances on nodes

mymailer: Mailer

:Mailbox
:RoutingList

object on component

component

AdminServer:HostMachine

Joe’sMachine:PC

:Scheduler reservations

:Planner

«database»
meetingsDB

node

component
interface

dependency
between
components

object

on node

on node

220 • component Encyclopedia of Terms
case, the component and its dominant class share the same interface, and any ob-
jects contained in the component are reachable from the dominant class by com-
position links. Figure 13-63 shows an example.

Operations and interfaces available to outside objects may be shown directly in
the class symbol. These are its class-like behavior. The contents of the subsystem
are shown on a separate diagram. When the instantiable aspect of a subsystem
need not be shown, the ordinary package notation can be used.

Dependencies from a component to other components or model elements are
shown using dashed lines with arrowheads on the supplier elements
(Figure 13-64). If a component is the realization of an interface, the shorthand no-
tation of a circle attached to the component symbol by a line segment may be
used. Realizing an interface means that the implementation elements in the com-
ponent supply all the operations in the interface, at least. If a component uses an
interface of another element, the dependency may be shown by a dashed line with
an arrowhead on the interface symbol. Using an interface means that the imple-
mentation elements in the component require no more operations from a supplier
component than the ones listed in the interface (but the client may depend on
other interfaces, as well).

Discussion
The following expanded definition explains the intent behind a component and
the considerations involved in deciding whether a piece of a system should be con-
sidered an interesting component.

• A component is nontrivial. It is functionally and conceptually larger than a sin-
gle class or a single line of code. Typically, a component encompasses the struc-
ture and behavior of a collaboration of classes.

• A component is nearly independent of other components. It rarely stands alone,
however. Rather, a given component collaborates with other components and in
so doing, assumes an architectural context.

Figure 13-63. Dominant class for a component

PrintSpooler
submitJob

checkStatus

interface of class
and component dominant class that implements a component

Encyclopedia of Terms component • 221
• A component is a replaceable part of a system. It is substitutable, making it pos-
sible to replace it with another one that conforms to the same interfaces. The
mechanism of inserting or replacing a component to form a running system is
typically transparent to the component user, enabled by object models that re-
quire little or no intervening transformation or by tools that automate the
mechanism.

• A component fulfills a clear function and is logically and physically cohesive. It
thus denotes a meaningful structural and/or behavioral chunk of a larger system.

• A component exists in the context of a well-defined architecture. It represents a
fundamental building block on which systems can be designed and composed.
This definition is recursive. A system at one level of abstraction may simply be a
component at a higher level of abstraction.

• A component never stands alone. Every component presupposes an architec-
tural and or technology context in which it is intended to be used.

• A component conforms to a set of interfaces. A component that conforms to an
interface satisfies the contract specified by the interface and may be substituted
in any context in which that interface applies.

Standard elements
document, executable, file, library, location, table

Figure 13-64. Dependencies between components

Planner

Scheduler

GUI

reservations

update

222 • component diagram Encyclopedia of Terms
component diagram

A diagram that shows the organizations and dependencies among component
types.

Semantics
A component diagram shows the dependencies among software components, in-
cluding source code components, binary code components, and executable com-
ponents (Figure 13-64). A software module may be represented as a component.
Some components exist at compile time, some exist at link time, and some exist at
run time; some exist at more than one time. A compile-only component is one
that is meaningful only at compile time. The run-time component, in this case,
would be an executable program.

A component diagram has only a descriptor form, not an instance form. To
show component instances, use a deployment diagram.

Notation
A component diagram shows component classifiers, classes defined in them, and
the relationships among them. Component classifiers may also be nested inside
other component classifiers to show definition relationships.

A class defined within a component may be displayed inside it, although for sys-
tems of any size, it might be more convenient to provide a list of classes defined
within a component, instead of showing symbols.

A diagram containing component classifiers and node classifiers may be used to
show compiler dependencies, which are shown as dashed arrows (dependencies)
from a client component to a supplier component that it depends on in some way.
The kinds of dependencies are language-specific and may be shown as stereotypes
of the dependencies.

The diagram may also be used to show interfaces and calling dependencies
among components, using dashed arrows from components to interfaces on other
components.

See component for examples of component diagrams.

composite aggregation

See composition.

composite class

A class that is related to one or more classes by a composition relationship.
See composition.

Encyclopedia of Terms composite state • 223
composite object

A composite object represents a high-level object made of tightly bound parts. It is
an instance of a composite class, which implies the composition aggregation be-
tween the class and its parts. A composite object is similar to (but simpler and
more restricted than) a collaboration. It is defined by composition in a static
model, however, rather than by the context-dependent relationships of a collabo-
ration.

See also composition.

Semantics
A composite object has a composition relationship to all of its composite parts.
This means that it is responsible for their creation and destruction, and that no
other object is similarly responsible. In other words, there are no garbage collec-
tion issues with the parts; the composite object can and must destroy them when it
dies, or else it must hand over responsibility for them to another object.

The composition relationship is often implemented by physical containment
within the same data structure as the composite object itself (usually a record).
Physical containment ensures that the lifetime of the parts matches the lifetime of
the composite object.

Notation
A network of objects and links may be nested within a graphic compartment in-
side an object symbol. The graphic compartment is shown as an addition com-
partment below the attribute compartment (the attribute compartment may be
suppressed). The objects and links contained in the graphics region are composite
parts of the composite object. A link whose path breaks the boundary of the ob-
ject, however, is not a composite part of it; it is a link between separate objects.

Example
Figure 13-65 shows a composite object, namely a desktop window, composed of
various parts. It contains multiple instances of the ScrollBar class. Each instance
has its own name and role within the composite object. For example, the horizon-
talBar and the verticalBar are both scrollbars, but they behave differently within
the composite. In this respect, they are like collaboration roles.

composite state

A state that consists of either concurrent (orthogonal) substates or sequential (dis-
joint) substates.

See also complex transition, simple state, state.

224 • composite state Encyclopedia of Terms
Semantics
A composite state can be decomposed, using and-relationships, into concurrent
substates, or, using or-relationships, into mutually exclusive disjoint substates. A
state can be refined only in one of these two ways. Its substates can be refined in ei-
ther way. If a sequential composite state is active, exactly one of its disjoint sub-
states is active. If a concurrent composite state is active, all its orthogonal substates
are active. The net effect is an and-or tree. Each state machine has a top-level state,
which is a composite state.

A system may hold multiple states at one time. The set of active states is called
the active state configuration. If a nested state is active, then all composite states
that contain it are active. If the object permits concurrency, then more than one
concurrent substate may be active.

See complex transition for a discussion of concurrent execution; Figure 13-57
shows an and-or tree.

A newly created object starts in its initial state, which the outermost composite
state must have. The event that creates the object may be used to trigger a transi-
tion from the initial state. The arguments of the creation event are available to this
initial transition.

Figure 13-65. Composite object

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves

composite object
name

nested object

nested
link

Encyclopedia of Terms composite state • 225
An object that transitions to its outermost final state is destroyed and ceases to
exist.

Structure
A composite state contains a set of substates. A composite state is either concurrent
or sequential.

A sequential composite state may have, at most, one initial state and one final
state. It may also have, at most, one shallow history state and one deep history
state.

A concurrent composite state may not have an initial state, a final state, or his-
tory states, but any sequential composite states nested inside them may have such
pseudostates.

Notation
A composite state is a state with subordinate detail. It has a name compartment, an
internal transition compartment, and a graphic compartment that contains a
nested diagram showing the subordinate detail. All of the compartments are op-
tional. For convenience and appearance, the text compartments (name and inter-
nal transitions) may be shrunk as tabs within the graphic region, instead of
spanning it horizontally.

An expansion of a concurrent composite state into concurrent substates is
shown by tiling the graphic compartment of the state using dashed lines to divide
it into subregions. Each subregion is a concurrent substate, which may have an op-
tional name and must contain a nested state diagram with disjoint substates. The
text compartments of the entire state are separated from the concurrent substates
by a solid line.

An expansion of a state into disjoint substates is shown by a nested statechart
diagram within the graphic region.

An initial state is shown as a small solid filled circle. In a top-level state machine,
the transition from an initial state may be labeled with the event that creates the
object. Otherwise, it must be unlabeled. If it is unlabeled, it represents any transi-
tion to the enclosing state. The initial transition may have an action. The initial
state is a notational device. An object may not be in such a state but must transi-
tion to an actual state.

A final state is shown as a circle surrounding a small solid filled circle (a bull’s
eye). It represents the completion of activity in the enclosing state, and it triggers a
transition on the enclosing state labeled by the implicit activity completion event
(usually displayed as an unlabeled transition).

226 • composition Encyclopedia of Terms
Example
Figure 13-66 shows a sequential composite state containing two disjoint substates,
an initial state, and a final state. When the composite state becomes active, the
substate Start (the target of the initial state) is activated first.

Figure 13-67 shows a concurrent composite state containing three orthogonal
substates. Each concurrent substate is further decomposed into sequential sub-
states. When the composite state Incomplete becomes active, the targets of the ini-
tial states become active. When all three subregions reach the final state, then the
completion transition on the outer composite state Incomplete fires and the
Passed state becomes active. If the fail event occurs while the Incomplete state is
active, then all three concurrent subregions are terminated and the Failed state be-
comes active.

composition

A form of aggregation association with strong ownership and coincident lifetime
of parts by the whole. A part may belong to only one composite. Parts with non-
fixed multiplicity may be created after the composite itself. But once created, they
live and die with it (that is, they share lifetimes). Such parts can also be explicitly
removed before the death of the composite. Composition may be recursive.

See also aggregation, association, composite object.

Semantics
There is a strong form of aggregation association called composition. A composite
is an aggregate association with the additional constraints that an object may be
part of only one composite at a time and that the composite object has sole re-

Figure 13-66. Sequential composite state

Start

entry/start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/stop dial tone

Encyclopedia of Terms composition • 227
sponsibility for the disposition of all its parts. As a consequence of the first con-
straint, the set of all composition relationships (over all associations with the
composition property) forms a forest of trees made of objects and composition
links. A composite part may not be shared by two composite objects. This accords
with the normal intuition of physical composition of parts—one part cannot be a
direct part of two objects (although it can indirectly be part of multiple objects at
different levels of granularity in the tree).

By having responsibility for the disposition of its parts, we mean that the com-
posite is responsible for their creation and destruction. In implementation terms,
it is responsible for their memory allocation. During its instantiation, a composite
must ensure that all its parts have been instantiated and correctly attached to it. It
can create a part itself or it can assume responsibility for an existing part. But dur-
ing the life of the composite, no other object may have responsibility for it. This
means that the behavior for a composite class can be designed with the knowledge
that no other class will destroy or deallocate the parts. A composite may add addi-
tional parts during its life (if the multiplicities permit), provided it assumes sole
responsibility for them. It may remove parts, provided the multiplicities permit
and responsibility for them is assumed by another object. If the composite is de-
stroyed, it must either destroy all its parts or else give responsibility for them to
other objects.

Figure 13-67. Concurrent composite state

Lab1 Lab2

Term

lab done

project done

Passed

Incomplete

Project

Final pass
Test

Failedfail

lab
done

Taking Class

228 • composition Encyclopedia of Terms
This definition encompasses most of the common logical and implementation
intuitions of composition. For example, a record containing a list of values is a
common implementation of an object and its attributes. When the record is allo-
cated, memory for the attributes is automatically allocated also, but the values of
the attributes may need to be initialized. While the record exists, no attribute can
be removed from it. When the record is deallocated, the memory for the attributes
is deallocated also. No other object can affect the allocation of a single attribute
within the record. The physical properties of a record enforce the constraints of a
composite.

This definition of composition works well with garbage collection. If the com-
posite itself is destroyed, the only pointer to the part is destroyed and the part be-
comes inaccessible and subject to garbage collection. Recovery of inaccessible parts
is simple even with garbage collection, however, which is one reason for distin-
guishing composition from other aggregation.

Note that a part need not be implemented as a physical part of a single memory
block with the composite. If the part is separate from the composite, then the com-
posite has responsibility for allocating and deallocating memory for the part, as
needed. In C++, for example, constructors and destructors facilitate implementa-
tion of composites.

An object may be part of only one composite object at a time. This does not pre-
clude a class from being a composite part of more than one class at different times
or in different instances, but only one composition link may exist at one time for
one object. In other words, there is an or-constraint among the possible compos-
ites that a part might belong to. Also, one object may be part of different compos-
ite objects during its life, but only one at a time.

Structure
The aggregation property on an association end may have the following values.

none The attached classifier is not an aggregate or composite.

aggregate The attached classifier is an aggregate.
The other end is a part.

composite The attached classifier is a composite.
The other end is a part.

At least one end of an association must have the value none.

Notation
Composition is shown by a solid-filled diamond adornment on the end of an asso-
ciation path attached to the composite element (Figure 13-68). The multiplicity
may be shown in the normal way. It must be 1 or 0..1.

Encyclopedia of Terms composition • 229
Alternately, composition may be shown by graphically nesting the symbols of
the parts within the symbol of the composite (Figure 13-69). A nested classifier
may have a multiplicity within its composite element. The multiplicity is shown by
a multiplicity string in the upper-right corner of the symbol for the part. If the
multiplicity mark is omitted, the default multiplicity is many. A nested element
may have a rolename within the composition. The name is shown in front of its
type in the syntax

rolename : classname

The rolename is the rolename on an implicit composition association from the
composite to the part.

An association drawn entirely within a border of the composite is considered to
be part of the composition. Any objects connected by a single link of the associa-
tion must belong to the same composite. An association drawn so that its path
breaks the border of the composite is not considered to be part of the composition.
Any objects on a single link of the association may belong to the same or different
composites (Figure 13-70).

Figure 13-68. Composition notation

Window

scrollbar title
body

Header Panel

2 0..1
1

Slider

111 composition adornment

composite class

part classes

rolename often omitted on the composite

rolenames for multiple parts

Window

scrollbar title body

Header Panel

2 0..1 1

Slider

1

alternate notation: grouping paths as a tree

composition notation: oblique paths

230 • composition Encyclopedia of Terms
Note that attributes are, in effect, composition relationships between a class and
the classes of its attributes (Figure 13-71). In general, however, attributes should
be reserved for primitive data values (such as numbers, strings, and dates) and not
references to classes, because any other relationships of the part classes cannot be
seen in the attribute notation.

Note that the notation for composition resembles the notation for collabora-
tion. A composition may be thought of as a collaboration in which all the partici-
pants are parts of a single composite object.

Figure 13-72 shows multilevel composition.

Figure 13-69. Composition as graphical nesting

Figure 13-70. Association within and among composites

scrollbar:Slider

Window

2

title:Header
0..1

body:Panel
1

composite name

parts

multiplicity of part within composite

composite

class of part

rolename
of part

Server

Kiosk

Cluster

Controls

Communicates
1

∗

∗

∗

∗

∗

1

association between clusters

association within a cluster

composite

Encyclopedia of Terms composition • 231
Discussion
(See also the discussion under aggregation for guidelines on when aggregation,
composition, and plain association are appropriate.)

Composition and aggregation are metarelationships—they transcend individ-
ual associations to impose constraints in the entire set of associations. Composi-
tion is meaningful across composition relationships. An object may have at most
one composition link (to a composite) although it might potentially come from
more than one composition association. The entire graph of composition and ag-
gregation links and objects must be acyclic, even if the links come from different
associations. Note that these constraints apply to the instance domain—the aggre-
gation associations themselves often form cycles, and recursive structures always
require cycles of associations.

Consider the model in Figure 13-73. Every Authentication is a composite part
of exactly one Transaction, which can be either a Purchase or a Sale. Every Trans-
action need not have an Authentication, however. From this fragment, we have

Figure 13-71. Attributes are a form of composition

Figure 13-72. Multilevel composition

Window

scrollbar [2]: Slider
title [0..1]: Header
body: Panel

Avoid attributes for objects unless
they are unshared and
implementation-based.

1

Company

Division

Department

1

∗

∗

Composition is transitive:

Department is an indirect composite part of Company.

232 • composition Encyclopedia of Terms
enough information to conclude that an Authentication has no other composition
associations. Every authentication object must be part of a transaction object (the
multiplicity is one); an object can be part of at most one composite (by defini-
tion); it is already part of one composite (as shown); so Authentication may not be
part of any other composition association. There is no danger that an Authentica-
tion may have to manage its own storage. A Transaction is always available to take
the responsibility, although not all Transactions have Authentications that they
need to manage. (Of course, the Authentication can manage itself if the designer
wants.)

Now consider Figure 13-74. An Autograph may optionally be part of either a
Transaction or a Letter. It can’t be part of both at one time (by the rules of compo-
sition). This model does not prevent an Autograph from starting as part of a Let-
ter and then becoming part of a Transaction (at which time, it must cease being
part of the Letter). In fact, an Autograph need not be part of anything. Also, from
this model fragment, we cannot preclude the possibility that Autograph is option-
ally part of some other class that is not shown on the diagram or that might be
added later.

What if it is necessary to state that every Autograph must be part of either a Let-
ter or a Transaction? Then the model should be reformulated, as in Figure 13-73. A

Figure 13-73. Composition to an abstract composite class

Figure 13-74. Shared part class

Transaction

SalePurchase

1
Authentication

0..1

TransactionLetter
0..1

Autograph
0..1 1 0..1

Encyclopedia of Terms concrete • 233
new abstract superclass over Letter and Transaction can be added (call it Docu-
ment), and the composition association with Autograph moved to it from the
original classes. At the same time, the multiplicity from Autograph to Document is
made one.

There is one minor problem with this approach: The multiplicity from Docu-
ment to Autograph must be made optional, which weakens the original manda-
tory inclusion of Autograph within Transaction. The situation can be modeled
using generalization of the composition association itself, as in Figure 13-75. The
composition association between Autograph and Transaction is modeled as a child
of the composition association between Autograph and Document. But its multi-
plicities are clarified for the child (note that they remain consistent with the inher-
ited ones, so the child is substitutable for the parent). Alternately, the original
model can be used by adding a constraint between the two compositions that one
of them must always hold.

concrete

A generalizable element (such as a class) that can be directly instantiated. Of ne-
cessity, its implementation must be fully specified. For a class, all its operations
must be implemented (by the class or an ancestor). Antonym: abstract.

See also direct class, instantiation.

Semantics
Only concrete classifiers can be instantiated. Therefore all the leaves of a generali-
zation hierarchy must be concrete. In other words, all abstract operations and
other abstract properties must eventually be implemented in some descendant.
(Of course, an abstract class might have no concrete descendants if the program is
incomplete, such as a framework intended for user extension, but such a class can-
not be used in an implementation until concrete descendants are provided.)

Figure 13-75. Generalization of composition association

Document

TransactionLetter

1
Autograph

0..1

1

0..1

generalization
of associations

234 • concurrency Encyclopedia of Terms
Notation
The name of a concrete element appears in normal type. The name of an abstract
element appears in italic type.

concurrency

The performance of two or more activities during the same time interval. There is
no implication that the activities are synchronized. In general, they operate inde-
pendently except for explicit synchronization points. Concurrency can be
achieved by interleaving or simultaneously executing two or more threads.

See complex transition, composite state, thread.

concurrent substate

A substate that can be held simultaneously with other substates contained in the
same composite state.

See composite state, disjoint substate.

conditional thread

A region of an activity graph that is started by a guarded output segment of a fork
and concluded by an input segment of the corresponding join.

See composite state, complex transition.

conflict

The situation when the same-named attribute or operation is inherited from more
than one class, or when the same event enables more than one transition, or any
similar situation in which the normal rules yield potentially contradictory results.
Depending on the semantics for each kind of model element, a conflict may be re-
solved by a conflict resolution rule, it may be legal but yield a nondeterministic
result, or it may indicate that the model is ill formed.

Discussion
It is possible to avoid conflicts by defining them away with conflict resolution
rules, such as: If the same feature is defined by more than one superclass, use the
definition found in the earlier superclass (this requires that the superclasses be or-
dered). UML does not generally specify rules for resolving conflict on the principle
that it is dangerous to count on such rules. They are easy to overlook and fre-
quently are the symptom of deeper problems with a model. It is better to force the

Encyclopedia of Terms constraint • 235
modeler to be explicit rather than depend on subtle and possibly confusing rules.
In a tool or programming language, such rules have their place, if only to make the
meaning deterministic. But it would be helpful for the tools to provide warnings
when rules are used so that the modeler is aware of the conflict.

constraint

A semantic condition or restriction represented as an expression. Certain con-
straints are predefined in the UML, others may be defined by modelers.
Constraints are one of three extensibility mechanisms in UML.

See also expression, stereotype, tagged value.
See Chapter 14, Standard Elements, for a list of predefined constraints.

Semantics
A constraint is a semantic condition or restriction expressed as a linguistic state-
ment in some textual language.

In general, a constraint can be attached to any model element or list of model
elements. It represents semantic information attached to a model element, not just
to a view of it. Each constraint has a body and a language of interpretation. The
body is a string encoding a Boolean expression for the condition in the constraint
language. A constraint applies to an ordered list of one or more model elements.
Note that the specification language may be a formal language or it may be a natu-
ral language. In the latter case, the constraint will be informal and not subject to
automatic enforcement (which is not to say that automatic enforcement is always
practical for all formal languages). UML provides the constraint language OCL
[Warmer-99], but other languages can also be used.

Some common constraints have names to avoid writing a full statement each
time they are needed. For example, the constraint xor between two associations
that share a common class means that a single object of the shared class may be-
long to only one of the associations at one time.

See Chapter 14, Standard Elements, for a list of predefined UML constraints.
A constraint is an assertion, not an executable mechanism. It indicates a restric-

tion that must be enforced by correct design of the system. How to guarantee a
constraint is a design decision. Run-time constraints are meant to be evaluated at
moments when an instantiated system is “stable”—that is, between the execution
of operations and not in the middle of any atomic transactions. During the execu-
tion of an operation, there may be moments when the constraints are temporarily
violated.

A constraint cannot be applied to itself.

236 • constraint Encyclopedia of Terms
An inherited constraint—a constraint on an ancestor model element or stereo-
type—must be observed even though additional constraints are defined on de-
scendants. An inherited constraint may not be set aside or superseded. If you need
to do this, the model is poorly constructed and must be reformulated. An inher-
ited constraint can be tightened, however, by adding additional restrictions. If con-
straints inherited by an element conflict, then the model is ill formed.

Notation
A constraint is shown as a text string enclosed in braces ({ }). The text string is the
encoded body written in a constraint language.

Tools are expected to provide one or more languages in which formal con-
straints may be written. One predefined language for writing constraints is OCL.
Depending on the model, a computer language such as C++ may be useful for
some constraints. Otherwise, the constraint may be written in natural language,
with interpretation and enforcement remaining human responsibilities. The lan-
guage of each constraint is part of the constraint itself, although the language is
not generally displayed on the diagram (the tool keeps track of it).

For a list of elements represented by text strings in a compartment (such as the
attributes within a class): A constraint string may appear as an entry in the list
(Figure 13-76). The entry does not represent a model element. It is a running con-
straint that applies to all succeeding elements of the list until another constraint
list element or the end of the list. The running constraint may be replaced by an-
other running constraint later in the list. To clear the running constraint, replace it
by an empty constraint. A constraint attached to an individual list element does
not replace the running constraint but may augment it with additional restric-
tions.

For a single graphical symbol (such as a class or an association path): The con-
straint string may be placed near the symbol, preferably near the name of the sym-
bol, if any.

Figure 13-76. Constraints within lists

ATM Transaction

{ value ≥ 0 }

amount: Money { value is multiple of $20 }

balance: Money

running constraint

individual constraint and running constraint

only running constraint applies

Encyclopedia of Terms constraint • 237
For two graphical symbols (such as two classes or two associations): The con-
straint is shown as a dashed arrow from one element to the other element labeled
by the constraint string (in braces). The direction of the arrow is relevant informa-
tion within the constraint (Figure 13-77).

For three or more graphical symbols: The constraint string is placed in a note
symbol and attached to each symbol by a dashed line (Figure 13-77). This nota-
tion may also be used for the other cases. For three or more paths of the same kind
(such as generalization paths or association paths), the constraint may be attached
to a dashed line crossing all the paths. In case of ambiguity, the various lines may
be numbered or labeled to establish their correspondence to the constraint.

Discussion
A constraint makes a semantic statement about the model itself, whereas a com-
ment is a text statement without semantic force and may be attached to either a
model element or a presentation element. Both constraints and comments may be
displayed using notes. In principle, constraints are enforceable by tools. In prac-
tice, some may be difficult to state formally and may require human enforcement.
In the broad sense of the word, many elements in a model are constraints, but the
word is used to indicate semantic statements that are difficult to express using the
built-in model elements and that must be stated linguistically.

Constraints may be expressed in any suitable language or even in human lan-
guage, although a human-language constraint cannot be verified by a tool. The

Figure 13-77. Constraint notation

Member-of

Chair-of

{subset}Person Committee

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

∗ ∗

∗

∗

∗ 0..1

1

Represents
an incorporated entity.

constraint in a note:
lines to the affected associations

comment,
not a constraintbinary constraint: attached to dashed arrow

238 • construction Encyclopedia of Terms
OCL language [Warmer-99] is designed for specifying UML constraints, but un-
der some circumstances a programming language may be more appropriate.

Because constraints are expressed as text strings, a generic modeling tool can
enter and maintain them without understanding their meaning. Of course, a tool
or an add-in that verifies or enforces the constraint must understand the syntax
and semantics of the target language.

A list of constraints can be attached to the definition of a stereotype. This indi-
cates that all elements bearing the stereotype are subject to the constraint.

Enforcement. When the model contains constraints, it does not necessarily tell
what to do if they are violated. A model is a declaration of what is supposed to
happen. It is the job of the implementation to make it happen. A program might
well contain assertions and other validation mechanisms, but a failure of a con-
straint must be considered a programming failure. Of course, if a model can help
to produce a program that is correct by construction or can be verified as correct,
then it has served its purpose.

Standard elements
invariant, postcondition, precondition

construction

The third phase of a software development process, during which the detailed de-
sign is made and the system is implemented and tested in software, firmware, and
hardware. During this phase, the analysis view and the design view are substan-
tially completed, together with most of the implementation view and some of the
deployment view.

See development process.

constructor

A class-scope operation that creates and initializes an instance of a class. May be
used as an operation stereotype.

See creation, instantiation.

container

An object that exists to contain other objects, and which provides operations to
access or iterate over its contents, or a class describing such objects. For example,
arrays, lists, and sets.

See also aggregation, composition.

Encyclopedia of Terms control flow • 239
Discussion
It is usually unnecessary to model containers explicitly. They are most often the
implementation for the “many” end of an association. In most models, a multi-
plicity greater than one is enough to indicate the correct semantics. When a design
model is used to generate code, the container class used to implement the associa-
tion can be specified for a code generator using tagged values.

context

A view of a set of modeling elements that are related for a purpose, such as to exe-
cute an operation or form a pattern. A context is a piece of a model that constrains
or provides the environment for its elements. A collaboration provides a context
for its contents.

See collaboration.

control flow

A relationship among successive loci of control within an interaction, such as an
activity graph or a collaboration.

See also action, activity graph, collaboration, completion transition, message,
object flow state, transition.

Semantics
An interaction view graph represents the flow of control during a computation.
The primitive elements of an interaction are simple actions and objects. A control
flow represents the relationship between an action and its predecessor and succes-
sor actions, as well as between the action and its input and output objects. In an
elided form, a control flow represents the computational derivation of one object
from another or two versions of one object over time. (A control flow that involves
an object as input or output is called an object flow.)

Notation
In a collaboration diagram, control flow is shown by messages attached to associa-
tion roles (representing links) that connect classifier roles (representing objects
and other instances). In an activity diagram, control flow is shown by the solid ar-
rows between activity symbols. Object flow is shown by dashed arrows between an
activity symbol or control flow arrow and an object flow state symbol. See those
articles for more details.

240 • control icons Encyclopedia of Terms
control icons

Optional symbols that provide convenient shortcut notation for various control
patterns.

See also activity graph, collaboration, state machine.

Notation
The following symbols are intended for use in activity diagrams, but they can also
be used in statechart diagrams, if desired. These symbols do not permit anything
that could not be shown using the basic symbols, but they may be convenient for
certain common control patterns.

Branch. A branch is a set of transitions leaving a single state such that exactly one
guard condition on one of the transitions must always be satisfied. In other words,
if the trigger event occurs, exactly one transition is enabled to fire. The guard con-
ditions essentially represent a branch of control. If the transition is a completion
transition, then a branch is a pure decision. For convenience, one output of the
branch may be labeled with the keyword else. This path is taken if no other path is
taken.

A branch is notated as a diamond with one input arrow and two or more output
arrows. The input transition arrow is labeled with the event trigger (if any). Each
output is labeled with a guard condition (Figure 13-78).

Merge. A merge is a place at which two or more alternate paths of control come to-
gether. It is the inverse of a branch. A diamond is the symbol for either a branch or
merge. It is a merge if there are multiple input arrows; it is a branch if there are
multiple output arrows (Figure 13-78). Merges are not strictly necessary (multiple
transitions that enter a single state are a merge), but they can be visually useful to
show the match to previous branches.

Signal receipt. The receipt of a signal may be shown as a concave pentagon that
looks like a rectangle with a triangular notch in its side (either side). The signature
of the signal is shown inside the symbol. An unlabeled transition arrow is drawn
from the previous action state to the pentagon, and another unlabeled transition
arrow is drawn from the pentagon to the next action state. This symbol replaces
the event label on the transition, which fires when the previous activity is complete
and the event then occurs (Figure 13-79). Optionally, a dashed arrow may be
drawn from an object symbol to the notch on the pentagon to show the sender of
the signal.

Signal sending. The sending of a signal may be shown as a convex pentagon that
looks like a rectangle with a triangular point on one side (either side). The signa-
ture of the signal is shown inside the symbol. An unlabeled transition arrow is
drawn from the previous action state to the pentagon, and another unlabeled

Encyclopedia of Terms control icons • 241
Figure 13-78. Branch and merge

Figure 13-79. Signal receipt

Figure 13-80. Signal send

do/ post charges

[credit account] [cash account]

branch

merge
payment received

entry/ request payment

button pushed
This is the trigger event
on the transition.

alarm securityCenter

This is a send action.

The target object is optional.

It is part of the
overall transition.

sensor activated
This is the transition trigger event.

242 • control icons Encyclopedia of Terms
transition arrow is drawn from the pentagon to the next action state. This symbol
replaces the send-signal label on the transition (Figure 13-80). Optionally, a
dashed arrow may be drawn from the point on the pentagon to an object symbol
to show the receiver of the signal.

Example
In Figure 13-81, EnterCreditCardData and ChargeCard are activities. When they
are completed, processing moves on to the next step. After EnterCreditCardData is
completed, there is a branch on the amount of the request; if it is greater than $25,
authorization must be obtained. A signal request is sent to the credit center. On a
plain state machine, this would be shown as an action attached to the transition
leaving EnterCreditCardData; they mean the same thing. AwaitAuthorization is a
real wait state, however. It is not an activity that completes internally. Instead, it

Figure 13-81. Activity diagram showing sending and receiving of signals

Enter
Credit Card

Await Authorization

request

authorize

creditCenter
sending a signal
on completion of an
activity

external object that receives the event,
does something, and sends an event

signal reception
that triggers a
transition from

ordinary (wait) state

a wait state

Data

[amount ≤ $25]

[amount > $25]

branch

external control flow

Charge Card

merge

Encyclopedia of Terms copy • 243
must wait for an external signal from the credit center (authorize). When the sig-
nal occurs, a normal transition fires and the system goes to the ChargeCard activ-
ity. The trigger event could have been shown as a label on the transition from
AwaitAuthorization to ChargeCard. It is merely a variant notation that means the
same thing.

Figure 13-82 shows the same example, without the special control symbols.

copy

A kind of flow relationship used in an interaction, in which the target object repre-
sents a copy of the source object, both of which are thereafter independent.

See also become.

Semantics
A copy relationship is a kind of flow relationship that shows the derivation of one
object from another object within an interaction. It represents the action of mak-
ing a copy. After a copy flow executes, there are two independent objects whose
values can evolve independently.

A copy transition within an interaction may have a sequence number to indicate
when it occurs relative to other actions.

Figure 13-82. Activity diagram without special symbols

Enter
Credit Card

Await Authorization

authorize

Data[amount ≤ $25]

[amount > $25] / send creditCenter.request()

Charge Card

244 • creation Encyclopedia of Terms
Notation
A copy flow is shown by a dashed arrow from the original object to the newly pro-
duced copy (on the arrowhead). The arrow carries the stereotype keyword «copy»
and may have a sequence number. Copy transitions may appear in collaboration
diagrams, sequence diagrams, and activity diagrams.

Example
Figure 13-83 shows a file that has a backup on another node. First a copy is made
(«copy»), then the copy is moved to the secondary node («become» with a change
of location).

creation

The instantiation and initialization of an object or other instance (such as a use
case instance). Antonym: destruction.

See also instantiation.

Semantics
Creation of an object is the result of a message that instantiates the object. A cre-
ation operation may have parameters that are used for initialization of the new in-

Figure 13-83. Copy and become flow

index:FilePtr

original:File {location=primary}

backup:File {location=primary}

1.1: «copy»

1: duplicate()

2: move(secondary)

backup:File {location=secondary}

2.1: «become»

master

backup

backup

backup()

Encyclopedia of Terms creation • 245
stance. At the conclusion of the creation operation, the new object obeys the
constraints of its class and may receive messages.

A creation operation, or constructor, may be declared as a class-scope opera-
tion. The target of such an operation is (conceptually, at least) the class itself. In a
programming language such as Smalltalk, a class is implemented as an actual run-
time object and creation is therefore implemented as a normal message to such an
object. In a language such as C++, there is no actual run-time object. The opera-
tion may be thought of as a conceptual message that has been optimized away at
run time. The C++ approach precludes the opportunity to compute the class to be
instantiated. Otherwise, each approach can be modeled as a message sent to a
class.

The initial value expressions for the attributes of a class are (conceptually) eval-
uated at creation, and the results are used to initialize the attributes. The code for a
creation operation can explicitly replace these values, so initial value expressions
should be regarded as overridable defaults.

Within a state machine, the parameters of the constructor operation that cre-
ated an object are available as an implicit current event on the transition leaving
the top-level initial state.

Notation
In a class diagram, a creation operation (constructor) declaration is included as
one of the operations in the operation list of the class. It may have a parameter list,
but the return value is implicitly an instance of the class and may be omitted. As a
class-scope operation, its name string must be underlined (Figure 13-84). It may
show the «constructor» stereotype.

A creation operation execution within a sequence diagram is shown by drawing
a message arrow, with its arrowhead on an object symbol (rectangle with under-
lined object name). Below the object symbol is the lifeline for the object (dashed
line or double solid line, depending on whether it is active), which continues until
the destruction of the object or the end of the diagram (Figure 13-85).

Figure 13-84. Creation operation

Account

balance: Money = 0

name: String

open (name: String) creation operation

initial value

246 • current event Encyclopedia of Terms
The execution of a creation operation within a collaboration diagram is shown
by including an object symbol with the property {new}. The first message to the
object implicitly is the message that creates the object. Although the message is ac-
tually directed to the class itself, this flow is usually elided and the message is
shown initializing the (newly instantiated, but uninitialized) instance, as shown in
Figure 13-86.

See also collaboration and sequence diagram for notation to show creation
within the implementation of a procedure.

current event

The event that triggered a run-to-completion step in the execution of a state
machine.

See also run to completion, state machine, transition.

Semantics
For convenience, a state machine may traverse several connected transition seg-
ments in response to an event. All but the final transition segment go to pseu-
dostates—that is, dummy states whose purpose is to help structure the state
machine, but which do not wait for outside events. In principle, all the segments
could be gathered into one transition, but the separation into multiple segments

Figure 13-85. Creation sequence diagram

Figure 13-86. Creation in a collaboration diagram

a: Account

creation

activation

open (name)

lifeline

return

new object

a: Account {new}
1.3: open (name)

: Controller

Encyclopedia of Terms data type • 247
using pseudostates permits common subsequences to be shared among multiple
transitions.

The execution of a chain of transition segments is atomic—that is, it is part of a
single run-to-completion step that may not be interrupted by an outside event.
During the execution of such a chain of transitions, actions and guard conditions
attached to segments have implicit access to the event that triggered the first tran-
sition and to the parameters of that event. This event is known as the current event
during a transition. The type of the current event may be discriminated by a poly-
morphic operation or a case statement. Once the exact type is known, then its pa-
rameters may be accessed.

The current event is particularly useful for the initial transition of a new object
to obtain the creation parameters. When a new object is created, the event creating
it becomes the current event and its parameters are available during the initial
transition of the new object’s state machine.

Example
Figure 13-87 shows a transition from the Idle state to the Purchase state triggered
by the request event. The entry action of Purchase calls the setup operation,
which uses the current event. The program can access the current event to obtain
the request event and its parameter, product. If there are multiple possible bind-
ings of the current event, the program may require a case statement to obtain the
right trigger event. The syntax is programming-language specific.

Notation
The current event may be designated in an expression by the keyword
currentEvent. A particular expression language may provide a more detailed syn-
tax.

data type

A descriptor of a set of values that lack identity (independent existence and the
possibility of side effects). Data types include primitive predefined types and user-
definable types. Primitive types are numbers, strings, and time. User-definable

Figure 13-87. Use of current event

entry / setup (currentEvent)

Purchase
Idle

request (product)

248 • data value Encyclopedia of Terms
types are enumerations. Anonymous data types intended for implementation in a
programming language may be defined using language types.

See also classifier, identity.

Semantics
Data types are the predefined primitives needed as the foundation of user-
definable types. Their semantics are mathematically defined outside the type-
building mechanisms in a language. Numbers are predefined. They include inte-
gers and reals. Strings are also predefined. These data types are not user-definable.

Enumeration types are user-definable finite sets of named elements that have a
defined ordering among themselves but no other computational properties. An
enumeration type has a name and a list of enumeration constants. The enumera-
tion type Boolean is predefined with the enumeration literals false and true.

Operations may be defined on data types, and operations may have data types
as parameters. Because a data type has no identity and is just a pure value, opera-
tions on data types do not modify them; instead, they just return values. It makes
no sense to talk of creating a new data type value, because they lack identity. All
data type values are (conceptually) predefined. An operation on a data type is a
query that may not change the state of the system but may return a value.

A data type may also be described by a language type—a data type expression in
a programming language. Such an expression designates an anonymous data type
in a target programming language. For example, the expression Person* (*) (String)
denotes a type expression in C++ that does not correspond to a simple data type
with a name.

data value

An instance of a data type, a value without identity.
See also data type, object.

Semantics
A data value is a member of a mathematical domain—a pure value. Two data val-
ues with the same representation are indistinguishable; data values have no iden-
tity. Data values are passed by value in a programming language. It makes no sense
to pass them by reference. It is meaningless to talk about changing a data value; its
value is fixed permanently. In fact, it is its value. Usually, when one talks of chang-
ing a data value, one means changing a variable that holds a data value so that it
holds a new data value. But data values themselves are invariable.

Encyclopedia of Terms delegation • 249
default value

A value supplied automatically as part of some programming language or tool ac-
tion. Default values for element properties are not part of the UML semantics and
do not appear in models.

See also initial value, parameter, unspecified value.

deferred event

An event whose recognition is deferred while an object is in a certain state.
See also state machine, transition.

Semantics
A state may designate a set of events as deferred. If an event occurs while an object
is in a state that defers the event and the event does not trigger a transition, the
event has no immediate effect. It is saved until the object enters a state in which the
given event is not deferred. If other events occur while the state is active, they are
handled in the usual way. When the object enters a new state, saved events that are
no longer deferred then occur one at a time and may trigger transitions in the new
state (the order of occurrence of previously deferred events is indeterminate, and it
is risky to depend on a particular order of occurrence). If no transition in the un-
deferred state is triggered by an event, it is ignored and lost.

Deferred events should be used with care in ordinary state machines. They can
often be modeled more directly by a concurrent state that responds to them while
the main computation is doing something else. They can be useful in activity
states in which they allow computations to be sequentialized without losing asyn-
chronous messages.

If a state has a transition triggered by a deferred event, then the transition over-
rides the deferral and the event triggers the transition.

Notation
A deferred event is indicated by an internal transition on the event with the special
reserved action defer. The deferral applies to the state and its nested substates
(Figure 13-88).

delegation

The ability of an object to issue a message to another object in response to a mes-
sage. Delegation can be used as an alternative to inheritance. In some languages
(such as self), it is supported by inheritance mechanisms in the language itself. In
most other languages, such as C++ and Smalltalk, it can be implemented with an

250 • dependency Encyclopedia of Terms
association or aggregation to another object. An operation on the first object in-
vokes an operation on the second object to accomplish its work. Contrast:
inheritance.

See also association.

dependency

A relationship between two elements in which a change to one element (the sup-
plier) may affect or supply information needed by the other element (the client).
This is a term of convenience that groups together several different kinds of mod-
eling relationships.

See relationship: Table 13-2 for a full chart of UML relationships.

Semantics
A dependency is a statement of relationship between two elements in a model or
different models. The term, somewhat arbitrarily, groups together several different
kinds of relationships, much as the biological term invertebrate groups together all
phyla except Vertebrata.

In a case in which the relationship represents an asymmetry of knowledge, the
independent elements are called suppliers and the dependent elements are called
clients.

A dependency may have a name to indicate its role in the model. Usually, how-
ever, the presence of the dependency itself is sufficient to make the meaning clear,
and a name is redundant. A dependency may have a stereotype to establish the
precise nature of the dependency, and it may have a text description to describe it-
self in full detail, albeit informally.

A dependency between two packages indicates the presence of at least one de-
pendency of the given kind between an element in each of the packages (except for
access and import that relate packages directly). For example, a usage dependency
between two classes may be shown as a usage dependency between the packages
that contain them. A dependency among packages does not mean that all elements
in the packages have the dependency—in fact, such a situation would be rare.

Figure 13-88. Deferred event

Wait Processorder ready
order ready / defer

order processed

do / process order

If order ready occurs here,
it is deferred until the transition to Wait.

Encyclopedia of Terms dependency • 251
See package.
A dependency may contain a set of references to subordinate dependencies. For

example, a dependency between two packages can reference the underlying depen-
dencies among classes.

Dependencies are not necessarily transitive.
Note that association and generalization fit within the general definition of de-

pendency, but they have their own model representation and notation and are not
usually considered to be dependencies. A realization relationship has its own spe-
cial notation, but it is considered a dependency.

Dependency comes in several varieties that represent different kinds of relation-
ships: abstraction, binding, combination, permission, and usage.

Abstraction. An abstraction dependency represents a shift in the level of abstrac-
tion of a concept. Both elements represent the same concept in different ways.
Usually one of the elements is more abstract, and the other is more concrete, al-
though situations are possible when both elements are alternative representations
at the same level of abstraction. From least specific to most specific relationships,
abstraction includes the stereotypes trace, refinement (keyword refine), realization
(which has its own special notation), and derivation (keyword derive).

Binding. A binding dependency relates an element bound from a template to the
template itself. The arguments for the template parameters are attached to the
binding dependency as a list.

Permission. A permission dependency (always shown as a specific stereotype) re-
lates a package or class to a package or class to which it is granted some category of
permission to use contents. The stereotypes of permission dependency are access,
friend, and import.

Usage. A usage dependency (keyword «use») connects a client element to a sup-
plier element, the change of which may require a change to the client element. Us-
age often represents an implementation dependency, in which one element makes
use of the services of another element to implement its behavior. Stereotypes of us-
age include call, instantiation (keyword instantiate), parameter, and send. This is
an open list. Other kinds of usage dependency may occur in various programming
languages.

Notation
A dependency is shown as a dashed arrow between two model elements. The
model element at the tail of the arrow (the client) depends on the model element
at the arrowhead (the supplier). The arrow may be labeled with an optional key-
word, to indicate the kind of dependency, and an optional name (Figure 13-89).

252 • deployment Encyclopedia of Terms
Several other kinds of relationships use a dashed arrow with a keyword, al-
though they do not fit the definition of dependency. These include flow (become
and copy), combination (extend and include), and the attachment of a note or
constraint to the model element that it describes. If a note or constraint is one of
the elements, the arrow may be suppressed because the note or constraint is always
the source of the arrow.

Standard elements
become, bind, call, copy, create, derive, extend, friend, import, include,
instanceOf, instantiate, powertype, send, trace, use

deployment

That stage of development that describes the configuration of the running system
in a real-world environment. For deployment, decisions must be made about con-
figuration parameters, performance, resource allocation, distribution, and con-
currency. The results of this phase are captured in configuration files as well as the
deployment view. Contrast analysis, design, implementation, and deployment.

See development process, stages of modeling.

deployment diagram

A diagram that shows the configuration of run-time processing nodes and the
component instances and objects that live on them. Components represent run-
time manifestations of code units. Components that do not exist as run-time enti-
ties (because they have been compiled away) do not appear on these diagrams;
they should be shown on component diagrams. A deployment diagram shows in-
stances whereas a component diagram shows the definition of component types
themselves.

See also component, interface, node.

Figure 13-89. Some dependencies among classes

«friend»
ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()
«friend»

dependency from
an operation to a class

Encyclopedia of Terms deployment diagram • 253
Semantics
The deployment view contains node instances connected by communication links.
The node instances may contain run-time instances, such as component instances
and objects. Component instances and objects can also contain other objects. The
model may show dependencies among the instances and their interfaces, and may
also model the migration of entities among nodes or other containers.

A deployment view has a descriptor form and an instance form. The instance
form (described above) shows the location of specific component instances on
specific node instances as part of a system configuration. This is the more com-
mon kind of deployment view. The descriptor form shows which kinds of compo-
nents may live on which kinds of nodes and which kinds of nodes may be
connected, similar to a class diagram.

Notation
A deployment diagram is a network of node symbols connected by paths showing
communication associations (Figure 13-90). Node symbols may contain compo-
nent instances, indicating that the component lives or runs on the node. Compo-
nent symbols may contain objects, indicating that the object is part of the
component. Components are connected to other components by dashed depen-

Figure 13-90. Deployment diagram of client-server system

server:HostMachine

clientMachine:PC

:Scheduler reservations

:Planner

«database»
meetingsDB

This dependency involves internode communication.«direct channel»

254 • deployment view Encyclopedia of Terms
dency arrows (possibly through interfaces). This indicates that one component
uses the services of another component. A stereotype may be used to indicate the
precise dependency, if needed.

Deployment diagrams are much like object diagrams. Usually, they show the in-
dividual node instances involved in a system. It is far less common to show a de-
ployment diagram that defines the kinds of nodes that exist and their possible
relationships to other kinds of nodes, like a class diagram.

Migration of components from node to node or objects from component to
component may be shown using the «become» keyword on a dashed arrow. In this
case, the component or object is resident on its node or component only part of
the time. Figure 13-133 shows a deployment diagram in which an object moves
between nodes.

See become.

deployment view

A view that shows the nodes in a distributed system, the components that are
stored on each node, and the objects that are stored on components and nodes.

See deployment, deployment diagram.

derivation

A relationship between an element and another element that can be computed
from it. Derivation is modeled as a stereotype of an abstraction dependency with
the keyword derive.

See derived element.

derived element

A element that can be computed from other elements and is included for clarity or
for design purposes even though it adds no semantic information.

See also constraint, dependency.

Semantics
A derived element is logically redundant within a model because it can be com-
puted from one or more other elements. The formula for computing a derived el-
ement may be given as a constraint.

A derived element may be included in a model for several reasons. At the analy-
sis level, a derived element is semantically unnecessary, but it may be used to pro-
vide a name or a definition for a meaningful concept, as a kind of macro. It is
important to remember that a derived element adds nothing to the semantics of a
model.

Encyclopedia of Terms derived element • 255
In a design-level model, a derived element represents an optimization—an ele-
ment that could be computed from other elements but is physically present in the
model to avoid the cost or trouble of recomputing it. Examples are an intermedi-
ate value of a computation and an index to a set of values. The presence of a de-
rived element implies the responsibility to update it if the values it depends on
change.

Notation
A derived element is shown by placing a slash (/) in front of the name of the de-
rived element, such as an attribute, a rolename, or an association name
(Figure 13-91).

The details of computing a derived element can be specified by a dependency
with the stereotype «derive». Usually, it is convenient in the notation to suppress
the dependency arrow from the constraint to the element and simply place a con-
straint string near the derived element, although the arrow can be included when
it is helpful.

Discussion
Derived associations are probably the most common kind of derived element.
They represent virtual associations that can be computed from two or more fun-
damental associations. In Figure 13-91, for instance, derived association Works-
ForCompany can be computed by composing WorksForDepartment with the

Figure 13-91. Derived attribute and derived association

Person

birthdate
/age{age = currentDate - birthdate}

Company

Person

Department

WorksForDepartment

/WorksForCompany

{ Person.employer=Person.department.employer }

∗

1

1

1
employer

employer
department

∗

∗

This association can
be computed from
two others.

The age attribute can be computed.

256 • descendant Encyclopedia of Terms
employer composition. An implementation might explicitly include Works-
ForCompany to avoid recomputing it, but it does not represent any additional in-
formation.

There is a difference with association generalization (Figure 13-30), which rep-
resents two levels of detail for an association. It would not usually be implemented
at both levels. Usually only the child associations would be implemented. Some-
times only the parent association would be implemented, with the child associa-
tions constraining the kinds of objects that can be related.

descendant

A child or an element found by a chain of child relationships; the transitive closure
of the specialization relationship. Antonym: ancestor.

See generalization.

descriptor

A model element that describes the common properties of a set of instances, in-
cluding their structure, relationships, behavior, constraints, purpose, and so on.
Contrast: instance.

Semantics
The word descriptor characterizes model elements that describe sets of instances.
Most elements in a model are descriptors. The word includes all the elements of a
model—classes, associations, states, use cases, collaborations, and so on. Some-
times, the word type is used in this meaning, but that word is often used in a more
narrow sense to mean only class-like things. The word descriptor is meant to in-
clude every kind of descriptive element. A descriptor has an intent and an extent.
The structure description and other general rules are the intent. Each descriptor
characterizes a set of instances, which are its extent. There is no assumption that
the extent is physically accessible at run time. The major dichotomy in a model is
the descriptor-instance distinction.

Notation
The relationship between a descriptor and its instances is reflected by using the
same geometric symbol for both, but underlining the name string of an instance.
A descriptor has a name, whereas an instance has both an individual name and a
descriptor name, separated by a colon, and the name string is underlined.

Encyclopedia of Terms destruction • 257
design

That stage of a system that describes how the system will be implemented, at a log-
ical level above actual code. For design, strategic and tactical decisions are made to
meet the required functional and quality requirements of a system. The results of
this stage are represented by design-level models, especially the static view, state
machine view, and interaction view. Contrast: analysis, design, implementation,
and deployment.

See stages of modeling, development process.

design time

Refers to what occurs during a design activity of the software development pro-
cess. Contrast: analysis time.

See modeling time, stages of modeling.

destroy

To eliminate an object and reclaim its resources. Usually this is an explicit action,
although it may be the consequence of another action or constraint or of garbage
collection.

See destruction.

destruction

The elimination of an object and the reclaiming of its resources. The destruction
of a composite object leads to the destruction of its composite parts. Destruction
of an object does not automatically destroy objects related by ordinary association
or even by aggregation, but any links involving the object are destroyed with the
object.

See also composition, final state, instantiation.

Notation
See collaboration and sequence diagram (Figure 13-162) for notation to show de-
struction within the implementation of a procedure. On a sequence diagram, the
destruction of an object is shown by a large X on the lifeline of the object
(Figure 13-92). It is placed at the message that causes the object to be destroyed or
at the point where the object terminates itself. A message that destroys an object
may be shown with the stereotype «destroy». On a collaboration diagram, the de-
struction of an object during an interaction is shown by the constraint {destroyed}
on the object. If the object is created and destroyed in the interaction, the con-
straint {transient} is used instead.

258 • development process Encyclopedia of Terms
development process

A set of guidelines and a partially ordered set of work activities intended to pro-
duce software in a controlled, reproducible manner. The purpose of a software
development process is to ensure the success and quality of a finished system.

See also stages of modeling.

Discussion
UML is a modeling language, not a process, and its purpose is to describe models
that may be produced by various development processes. For standardization, it is
more important to describe the resultant artifacts of a development than the pro-
cess of producing them. That’s because there are many good ways of building a
model, and a finished model can be used without knowing how it was produced.
Nevertheless, UML is intended to support a wide range of processes.

For more details of the iterative, incremental, use-case-driven, architectural-
centric development process that the authors of this book endorse, see [Jacobson-
99].

Relationship of modeling stages and development phases
The stages of modeling fit within an iterative development process, which has the
phases inception, elaboration, construction, and transition (phase). The phases
are sequential within one release of an application, but each phase includes one or
more iterations. Within an iteration, individual model elements are moved along
the path from analysis toward deployment, each at its own appropriate pace. Al-
though the development phases and the modeling stages are not synchronized,

Figure 13-92. Creation and destruction

ob1:C1
«create»

«destroy»

m1()

Encyclopedia of Terms development process • 259
there is a correlation. In the earlier development phases and the earlier iterations
of a phase, there is more emphasis on the earlier model stages.

Figure 13-93. Progress after each development phase

Analysis

Design

Implementation

Deployment

Analysis

Design

Implementation

Deployment

Analysis

Design

Implementation

Deployment

Analysis

Design

Implementation

Deployment

Fraction complete Modeling stage

Inception

Elaboration

Construction

Transition

Development phase

260 • diagram Encyclopedia of Terms
Figure 13-93 shows the balance of effort during successive phases and iterations.
During inception, the focus is mainly on analysis, with a skeleton of elements pro-
gressing toward design and implementation during elaboration. During construc-
tion and transition, all the elements must eventually be moved to completion.

diagram

A graphical presentation of a collection of model elements, most often rendered as
a connected graph of arcs (relationships) and vertices (other model elements).
UML supports class diagram, object diagram, use case diagram, sequence dia-
gram, collaboration diagram, statechart diagram, activity diagram, component
diagram, and deployment diagram.

See also background information, font usage, hyperlink, keyword, label, pack-
age, path, presentation element, property list.

Semantics
A diagram is not a semantic element. A diagram shows presentations of semantic
model elements, but their meaning is unaffected by the way they are presented.

A diagram is contained within a package.

Notation
Most UML diagrams and some complex symbols are graphs that contain shapes
connected by paths. The information is mostly in the topology, not in the size or
placement of the symbols (there are some exceptions, such as a sequence diagram
with a metric time axis). There are three important kinds of visual relationships:
connection (usually of lines to 2-dimensional shapes), containment (of symbols
by 2-dimensional closed shapes), and visual attachment (one symbol being “near”
another one on a diagram). These geometric relationships map into connections
of nodes in a graph in the parsed form of the notation.

UML notation is intended to be drawn on 2- surfaces. Some shapes are 2-

projections of 3- shapes, such as cubes, but they are still rendered as icons on a
2- surface. In the near future, true 3- layout and navigation may be possible on
desktop machines but it is not currently common.

There are four kinds of graphical constructs used in UML notation: icons, 2-

symbols, paths, and strings.
An icon is a graphical figure of a fixed size and shape. It does not expand to hold

contents. Icons may appear within area symbols, as terminators on paths, or as
stand-alone symbols that may or may not be connected to paths. For example, the
symbols for aggregation (a diamond), navigability (an arrowhead), final state (a
bull’s eye), and object destruction (a large X) are icons.

Encyclopedia of Terms direct class • 261
Two-dimensional symbols have variable height and width, and they can expand
to hold other things, such as lists of strings or other symbols. Many of them are di-
vided into compartments of similar or different kinds. Paths are connected to 2-

symbols by terminating the path on the boundary of the symbol. Dragging or de-
leting a 2- symbol affects its contents and any paths connected to it. For example,
the symbols for class (a rectangle), state (a rounded rectangle), and note (a dog-
eared rectangle) are 2- symbols.

A path is a sequence of line or curve segments whose endpoints are attached.
Conceptually, a path is a single topological entity, although its segments may be
manipulated graphically. A segment may not exist apart from its path. Paths are al-
ways attached to other graphic symbols at both ends (no dangling lines). Paths
may have terminators—that is, icons that appear in a sequence on the end of the
path and that qualify the meaning of the path symbol. For example, the symbols
for association (solid lines), generalization (solid lines with a triangle icon), and
dependency (dashed lines) are paths.

Strings present various kinds of information in an “unparsed” form. UML as-
sumes that each usage of a string in the notation has a syntax by which it can be
parsed into underlying model information. For example, syntaxes are given for at-
tributes, operations, and transitions. These syntaxes are subject to extension by
tools as a presentation option. Strings may exist as the content of a compartment,
as elements in lists (in which case the position in the list conveys information), as
labels attached to symbols or paths, or as stand-alone elements on a diagram. For
example, class names, transition labels, multiplicity indications, and constraints
are strings.

direct class

The class that most completely describes an object.
See also class, generalization, inheritance, multiple classification, multiple in-

heritance.

Semantics
An object may be an instance of many classes—if it is an instance of a class, then it
is also an instance of the ancestors of the class. The direct class is the most specific
description of an object, the one that most completely describes it. An object is a
direct instance of its direct class and an indirect instance of the ancestors of the di-
rect class. An object is not an instance of any descendants of the direct class (by
definition).

If multiple classification is allowed in a system, no single direct class may com-
pletely describe an object. The object may be the combined direct instance of
more than one class. An object is a direct instance of each class that contains part

262 • direct instance Encyclopedia of Terms
of its description, provided no descendant also describes the object. In other
words, none of the direct classes of an object have an ancestor relationship to each
other.

If a class is instantiated to produce an object, the object is a direct instance of the
class.

direct instance

An instance, such as an object, whose most specific descriptor, such as a class, is a
given class. Used in a phrase like, “Object O is a direct instance of class C.” In this
case, class C is the direct class of object O.

See direct class.

discriminator

A pseudoattribute that selects a child element from a set of children in a generali-
zation relationship. All of the children represent a given quality by which to
specialize the parent, in contrast to other potential qualities by which to specialize
the same parent; it represents a dimension of specialization.

See also generalization, powertype, pseudoattribute.

Semantics
Sometimes, a model element can be specialized on the basis of different qualities.
Each quality represents an independent orthogonal dimension of specialization.
For example, a vehicle can be specialized on propulsion (gasoline motor, rocket
engine, wind, animal, human), as well as on venue of travel (land, water, air, outer
space). A discriminator is the name of a dimension of specialization. An element
may be specialized on multiple dimensions, all of which must be present in a con-
crete instance.

A generalization relationship may have a discriminator, a string that represents
a dimension of classifying the children of the parent. All the specialization rela-
tionships from a single parent with the same discriminator name form a group;
each group is a separate dimension of specialization. The complete set of discrim-
inator names represents the entire set of dimensions of specializing the parent. An
instance must be simultaneously an instance of one child from each discriminator
group. For example, a vehicle must have a propulsion and a venue.

Each discriminator represents an abstract quality of the parent, a quality that is
specialized by the children bearing that discriminator relationship to the parent.
But a parent with multiple discriminators has multiple dimensions, all of which
must be specialized to produce a concrete element. Therefore, children within a
discriminator group are inherently abstract. Each of them is only a partial descrip-
tion of the parent, a description that emphasizes one quality and ignores the rest.

Encyclopedia of Terms discriminator • 263
For example, a subclass of vehicle that focuses on propulsion omits venue. A con-
crete element requires specializing all the dimensions simultaneously. This can oc-
cur by multiple inheritance of the concrete model element from a child in each of
the dimensions, or by multiple classification of an instance from a child in each of
the dimensions. Until all the discriminators are combined, the description re-
mains abstract.

For example, an actual vehicle must have a means of propulsion and a venue. A
wind-powered water vehicle is a sailboat. There is no particular name for an ani-
mal-powered air vehicle, but instances of the combination exist in fantasy and my-
thology.

The absence of a discriminator label indicates the “empty” discriminator, which
is also considered a valid discriminator (the “default” discriminator). This conven-
tion permits the usual nondiscriminator case to be treated uniformly. In effect, if
none of the generalization paths have discriminators, then all the children are in
the same discriminator. In other words, there is one discriminator to which all the
specializations belong, and it yields the same semantics as the discriminator-free
case.

Structure
Each specialization (generalization) arc has a discriminator string, which may be
the empty string.

The discriminator is a pseudoattribute of the parent. It must be unique among
the attributes and association roles of the parent. The domain for the pseudoat-
tribute is the set of child classes. Multiple occurrences of the same discriminator
name are permitted among different children and the parent and indicate that the
children belong to the same partition.

Notation
A discriminator is shown as a text label on a generalization arrow (Figure 13-94).
If two generalization arcs with the same discriminator share an arrowhead, the
discriminator may be placed on the arrowhead.

Example
Figure 13-94 shows a specialization of Employee on two dimensions: employee
status and locality. Each dimension has a range of values represented by sub-
classes. But both dimensions are required to produce an instantiable subclass. Liai-
son, for example, is a class that is both a Supervisor and an Expatriate.

Any descendant of a single dimension is abstract, until the two dimensions are
recombined in a multiply-inherited descendant.

264 • disjoint substate Encyclopedia of Terms
disjoint substate

A substate that cannot be held simultaneously with other substates contained in
the same composite state. Contrast: concurrent substate.

See complex transition, composite state.

distribution unit

A set of objects or components that are allocated to an operating-system process
or a processor as a group. A distribution unit can be represented by a run-time
composite or by an aggregate. This is a design concept in the deployment view.

dynamic classification

A semantic variation of generalization in which an object may change type or role.
Contrast: static classification.

See also multiple classification.

Semantics
In many programming languages, an object may not change the class from which
it is instantiated. This static classification restriction simplifies implementation
and optimization of compilers, but it is not a logical necessity. For example, under
the static classification assumption, an object instantiated as a circle must remain a
circle; it may not be scaled in the x-dimension, for example. Under the dynamic
classification assumption, a circle that is scaled in one dimension becomes an el-
lipse. This is not regarded as a problem.

Figure 13-94. Discriminators

Employee

Supervisor Worker Native Expatriate

locality

localitystatus
status

LiaisonRunner

These two arcs and
subclasses form
one dimension
of Employee.

These two arcs and
subclasses form a separate
dimension of Employee.

These classes include both the
status and locality discriminator
and are therefore complete.

None of
these classes
is complete.
They are all
abstract until
the discriminators
are recombined.

Encyclopedia of Terms element • 265
Either assumption may be used in a UML model. This is an example of a se-
mantic variation point. The choice affects surprisingly little of a model, although
the differences are important for execution. The same classes must be defined in
either case, but the operations they support may differ in the two cases.

dynamic concurrency

An activity state that represents multiple concurrent executions when it is active.
See activity graph.

dynamic view

That aspect of a model dealing with the specification and implementation of be-
havior over time, as distinguished from static structure found in the static view.
The dynamic view is a grouping term that includes the use case view, state ma-
chine view, activity view, and interaction view.

elaboration

The second phase of a software development process, during which the design for
the system is begun and the architecture is developed and tested. During this
phase, most of the analysis view is completed, together with the architectural parts
of the design view. If an executable prototype is constructed, some of the imple-
mentation view is done.

See development process.

element

An atomic constituent of a model. This book describes elements that may be used
in UML models—model elements, which express semantic information, and pre-
sentation elements, which provide graphic presentations of model-element
information.

See also diagram, model element.

Semantics
The term element is so broad that it has little specific semantics.

All elements may have the following property.

tagged value Zero or more tag-value pairs may be attached to any ele-
ment. The tag is a name that identifies the meaning of the
value. Tags are not fixed in UML but can be extended to
denote various kinds of information meaningful to the
modeler or to an editing tool.

266 • entry action Encyclopedia of Terms
Standard elements
documentation

entry action

An action performed when a state is entered.
See also exit action, run to completion, state machine, transition.

Semantics
A state may have an optional entry action attached to it. Whenever the state is en-
tered in any way, the entry action is executed after any actions attached to outer
states or transitions and before any actions attached to inner states. The entry ac-
tion may not be evaded by any means. It is guaranteed to have been executed
whenever the owning state or a state nested within it is active.

Execution order. On a transition between two states with exit and entry actions in
which the transition also has an action, the execution order is: Any exit actions are
executed on the source state and its enclosing states out to, but not including, the
state that encloses both the source and target states. Then the action on the transi-
tion is executed, after which the entry actions are executed (outermost first) on the
enclosing states inside the common state, down to and including the target state.
Figure 13-117 shows some transitions with multiple actions.

Notation
An entry action is coded using the syntax for an internal transition with the
dummy event name entry (which is therefore a reserved word and may not be
used as an actual event name).

entry / action-sequence

Only one entry action may be attached to a state, but the action may be a sequence
so no generality is lost.

Discussion
Entry and exit actions are not semantically essential (the entry action could be at-
tached to all incoming transitions) but they facilitate the encapsulation of a state
so that the external use of it can be separated from its internal construction. They
make it possible to define initialization and termination actions, without concern
that they might be avoided. They are particularly useful with exceptions, because
they define actions that must be performed even if an exception occurs.

An entry action is useful for performing an initialization that must be done
when a state is first entered. One use is to initialize variables that capture informa-

Encyclopedia of Terms event • 267
tion accumulated during a state. For example, a user interface to allow keypad in-
put of a telephone number or an account number would clear the number on
entry. Resetting an error counter, such as the number of password failures, is an-
other example. Allocating temporary storage needed during the state is another
use for an entry action.

Often, an entry action and an exit action are used together. The entry action al-
locates resources, and the exit action releases them. Even if an external transition
occurs, the resources are released. This is a good way to handle user errors and ex-
ceptions. User-level errors trigger high-level transitions that abort nested states,
but the nested states have an opportunity to clean up before they lose control.

enumeration

A data type whose instances form a list of named literal values. Usually, both the
enumeration name and its literal values are declared.

See also classifier, data type.

Semantics
An enumeration is a user-definable data type. It has a name and an ordered list of
enumeration literal names, each of which is a value in the range of the data type—
that is, it is a predefined instance of the data type. For example, RGBColor = {red,
green, blue}. The data type Boolean is a predefined enumeration with the literals
false and true.

Notation
An enumeration is shown as a rectangle with the keyword «enum» above the enu-
meration name in the upper compartment (Figure 13-95). The second compart-
ment contains a list of enumeration-literal names. The third compartment (if
present) contains a set of operations on the type. They must all be queries (which,
therefore, do not need to be explicitly declared as such).

event

The specification of a noteworthy occurrence that has a location in time and space.
See also state machine, transition, trigger.

Semantics
Within a state machine, an occurrence of an event can trigger a state transition. An
event has a (possibly empty) list of parameters that convey information from the
creator of the event to its receiver. The time at which the event occurred is

268 • event Encyclopedia of Terms
implicitly a parameter of every event. Other parameters are part of the definition
of an event.

An occurrence (instance) of an event has an argument (actual value) corre-
sponding to each event parameter. The value of each argument is available to an
action attached to a transition triggered by the event.

There are four kinds of events.

call event The receipt of a request to invoke an operation. The
expected result is the execution of the operation by trig-
gering a transition in the receiver. The parameters of the
event are a reference to the operation and the parameters
of the operation and, implicitly, a return pointer. The
caller regains control when the transition is complete (or
immediately if no transition fires).

change event The satisfaction of a Boolean condition specified by an
expression in the event. There are no parameters. This
kind of event implies a continuous test for the condition.
The event occurs when the condition changes from false
to true. In practice, however, the times at which the con-
dition can be satisfied can often be restricted to the
occurrence of other events, so that polling is usually not
required.

signal event The receipt of a signal, which is an explicit named entity
intended for explicit communication between objects. A
signal has an explicit list of parameters. It is explicitly sent
by an object to another object or set of objects. A general
broadcast of an event can be regarded as the sending of a
signal to the set of all objects, although in practice, it

Figure 13-95. Enumeration declaration

Boolean

false
true

and(with:Boolean):Boolean
or(with:Boolean):Boolean
not():Boolean

«enumeration»
enumeration name

enumeration literals, in order

operations on the enumeration (all queries)

unary operation, returns another enumeration value

Encyclopedia of Terms exception • 269
might be implemented differently for efficiency. The
sender explicitly specifies the arguments of the signal at
the time it is sent. A signal sent to a set of objects may
trigger zero or one transition in each of them.

Signals are explicit means by which objects may com-
municate with each other asynchronously. To perform
synchronous communication, two asynchronous signals
must be used, one in each direction of communication.

Signals are generalizable. A child signal is derived
from a parent signal; it inherits the parameters of the par-
ent and may add additional parameters of its own. A child
signal satisfies a trigger that requires one of its ancestors.

time event The satisfaction of a time expression, such as the occur-
rence of an absolute time or the passage of a given
amount of time after an object enters a state. Note that
both absolute time and elapsed time may be defined with
respect to a real-world clock or a virtual internal clock (in
which case, it may differ for different objects).

Notation
See the specific kind of event for details on notation.

Standard elements
create, destroy

exception

A signal raised in response to behavioral faults by the underlying execution
machinery.

See also composite state, signal.

Semantics
An exception is usually generated implicitly by underlying implementation mech-
anisms in response to a failure during execution. It may be regarded as a signal to
the active object or procedure activation that caused the execution. The state ma-
chine of the object can take an appropriate action to deal with the exception, in-
cluding aborting current processing and going to a known place in execution,
executing an operation without a change of state, or ignoring the event. The ability
to attach transitions to high-level states makes exception handling flexible and
powerful.

270 • exit action Encyclopedia of Terms
An exception is a signal and therefore has a list of parameters that are bound to
values when the exception occurs. The parameter values are set by the execution
machinery that detects the fault, such as the operating system. The operation that
handles the exception can read the parameters. In most languages, exceptions can
be manipulated and retransmitted by operations that handle them.

Notation
The stereotype «exception» may be used to distinguish the declaration of an ex-
ception. No stereotype is necessary to use the event name in a state machine.

exit action

An action performed when a state is exited.
See also entry action, run to completion, state machine, transition.

Semantics
A state may have an optional exit action attached to it. Whenever the state is exited
in any way, the exit action is executed after any actions attached to inner states or
transitions and before any actions attached to outer states. The exit action may not
be evaded by any means. It is guaranteed to be executed before control leaves the
owning state.

Entry and exit actions are not semantically essential (the exit action could be at-
tached to all outgoing transitions), but they facilitate the encapsulation of a state
so that the external use of it can be separated from its internal construction. They
make it possible to define initialization and termination actions, without concern
that they might be avoided. They are particularly useful with exceptions, because
they define actions that must be performed even if an exception occurs.

Notation
An exit action is coded using the syntax for an internal transition with the dummy
event name exit (which is, therefore, a reserved word and may not be used as an
actual event name).

exit / action-sequence

Only one exit action may be attached to a state. But the action may be an action
sequence, so no generality is lost.

Discussion
An exit action is useful for performing a cleanup that must be done when a state is
exited. The most significant use of exit actions is to release temporary storage and
other resources allocated during execution of the state (usually, a state with nested
detail).

Encyclopedia of Terms expression • 271
Often, an entry action and an exit action are used together. The entry action al-
locates resources, and the exit action releases them. Even if an exception occurs,
the resources are released.

export

In the context of packages, to make an element accessible outside its enclosing
namespace by adjusting its visibility. Contrast with access and import, which
make outside elements accessible within a package.

See also access, import, visibility.

Semantics
A package exports an element by setting its visibility to a level that permits it to be
seen by other packages (public for packages importing it, protected for its own
children).

Discussion
Two things are necessary for an element (such as a class) to be able to see an ele-
ment in a peer package. The package containing the target element must export it
by giving it public visibility. In addition, the package referencing the target ele-
ment must access or import the package containing the target element. Both steps
are necessary.

expression

A string that encodes a statement to be interpreted by a given language. Many
kinds of expression yield values when interpreted; other kinds perform specific ac-
tions. For example, the expression “(7 + 5 * 3)” evaluates to a value of type
number.

Semantics
An expression defines a statement that evaluates to a (possibly empty) set of in-
stances or values or the performance of a specific action when executed in a con-
text. An expression does not modify the environment in which it is evaluated. An
expression consists of a string and the name of the language of evaluation.

An expression element contains the name of the language of interpretation and
the string that encodes the expression in the syntax of the designated language. It is
assumed that an interpreter is available for the language. Supplying an interpreter
is the responsibility of the modeling tool. The language may be a constraint-speci-
fication language, such as OCL; it may be a programming language, such as C++
or Smalltalk; or it may be a human language. Of course, if an expression is written

272 • extend Encyclopedia of Terms
in a human language, then it cannot be evaluated automatically by a tool and it
must be purely for human consumption.

Various subclasses of expressions yield different types of values. These include
Boolean expressions, object set expressions, time expressions, and procedure ex-
pressions.

Expressions appear in UML models as actions, constraints, guard conditions,
and others.

Notation
An expression is displayed as a string defined in a language. The syntax of the
string is the responsibility of a tool and a linguistic analyzer for the language. The
assumption is that the analyzer can evaluate strings at run time to yield values of
the appropriate type, or can yield semantic structures to capture the meaning of
the expression. For example, a type expression evaluates to a classifier reference,
and a Boolean expression evaluates to a true or false value. The language itself is
known to a modeling tool but is generally implicit on the diagram under the as-
sumption that the form of the expression makes its purpose clear.

Example
self.cost < authorization.maxCost

forall (k in targets) { k.update () }

extend

A relationship from an extension use case to a base use case, specifying how the be-
havior defined for the extension use case can be inserted into the behavior defined
for the base use case. The extension use case incrementally modifies the base use
case in a modular way.

See also extension point, include, use case, use case generalization.

Semantics
The extend relationship connects an extension use case to a base use case. The ex-
tension use case in this relationship is not necessarily a separate instantiable classi-
fier. Instead, it consists of one or more segments that describe additional behavior
sequences that incrementally modify the behavior of the base use case. Each seg-
ment in an extension use case may be inserted at a separate location in the base use
case. The extend relationship has a list of extension point names, equal in number
to the number of segments in the extension use case. Each extension point must be
defined in the base use case. When the execution of a use case instance reaches a
location in the base use case referenced by the extension point and any condition
on the extension is satisfied, then execution of the instance may transfer to the be-

Encyclopedia of Terms extend • 273
havior sequence of the corresponding segment of the extension use case; when the
execution of the extension segment is complete, control returns to the original use
case at the referenced point.

Multiple extend relationships may be applied to the same base use case. An in-
stance of a use case may execute more than one extension during its lifetime. If
several use cases extend one base use case at the same extension point, then their
relative order of execution is nondeterministic. There may even be multiple extend
relationships between the same extension and base use cases, provided the exten-
sion is inserted at a different location in the base. Extensions may even extend
other extensions in a nested manner.

An extension use case in an extend relationship may access and modify at-
tributes defined by the base use case. The base use case, however, cannot see the
extensions and may not access their attributes or operations. The base use case de-
fines a modular framework into which extensions can be added, but the base does
not have visibility of the extensions. The extensions implicitly modify the behavior
of the base use case. Note the difference with use case generalization. With exten-
sion, the effects of the extension use case are added to the effects of the base use
case in an instantiation of the base use case. With generalization, the effects of the
child use case are added to the effects of the parent use case in an instantiation of
the child use case, whereas an instantiation of the parent use case does not get the
effects of the child use case.

An extension use case may extend more than one base use case, and a base use
case may be extended by more than one extension use case. This does not indicate
any relationship among the base use cases.

An extension use case may itself be the base in an extend, include, or generaliza-
tion relationship.

Structure (of extension use case)
An extension use case contains a list of one or more insertion segments, each of
which is a behavior sequence.

Structure (of base use case)
A base use case defines a set of extension points, each of which references a loca-
tion or set of locations in the base use case where additional behavior may be in-
serted.

Structure (of extend relationship)
The extend relationship has a list of extension point names, which must be present
in the base use case. The number of names must equal the number of segments in
the extension use case.

274 • extend Encyclopedia of Terms
The extend relationship may have a condition, an expression in terms of at-
tributes of the base use case, or the occurrence of events such as the receipt of a
signal. The condition determines whether the extension use case is performed
when the execution of a use case instance reaches a location referenced by the first
extension point. If the condition is absent, then it is deemed to be always true. If
the condition for an extension use case is satisfied, then execution of the extension
use case proceeds. If the extension point references several locations in the base
use case, the extension use case may be executed at any one of them.

The extension may be performed more than once, if the condition remains true.
All segments of the extension use case are executed the same number of times. If
the number of executions must be restricted, the condition can be defined accord-
ingly.

Execution semantics
When a use case instance performing the base use case reaches a location in the
base use case that is referenced by an extend relationship, then the condition on
the extend relationship is evaluated. If it is true or if it is absent, then the extension
use case is performed. In many cases, the condition includes the occurrence of an
event or the availability of values needed by the extension use case segment itself—
for example, a signal from an actor that begins the extension segment. The condi-
tion may depend on the state of the use case instance, including attribute values of
the base use case. If the event does not occur or the condition is false, the execu-
tion of the extension use case does not start. When the performance of an exten-
sion segment is complete, the use case instance resumes performing the base use
case at the location at which it left off.

Additional insertions of the extension use case may be performed immediately
if the condition is satisfied. If the extension point references multiple locations in
the base use case, the condition may be satisfied at any of them. The condition
may become true at any location within the set.

If there is more than one insertion sequence in an extension use case, then all
the insertion segments are executed if the condition is true at the first extension
point. The condition is not reevaluated for subsequent segments., which are in-
serted when the use case instance reaches the corresponding locations within the
base use case. The use case instance resumes execution of the base between inser-
tions at different extension points. Once started, all the segments must be per-
formed.

Note that, in general, a use case is a nondeterministic state machine (as in a
grammar), rather than an executable procedure. That is because the conditions
may include the occurrence of external events. To realize a use case as a collabora-
tion of classes may require a transformation into explicit control mechanisms, just
as the implementation of a grammar requires a transformation to an executable
form that is efficient but harder to understand.

Encyclopedia of Terms extend • 275
Note that base and extension are relative terms. An extension can itself serve as a
base for a further extension. This does not present any difficulty, and the previous
rules still apply—the insertions are nested. For example, suppose use case B ex-
tends use case A at extension point x, and suppose use case C extends use case B at
extension point y (Figure 13-96). When an instance of A comes to extension point
x, it begins performing use case B. When the instance then comes to extension
point y within B, it begins performing use case C. When the execution of C is com-
plete, it resumes performing use case B. When the execution of B is complete, it re-
sumes performing A. It is similar to nested procedure calls or any other nested
construct

Notation
A dashed arrow is drawn from the extension use case symbol to the base use case
symbol with a stick arrowhead on the base.. The keyword «extend» is placed on

Figure 13-96. Nested extends

Figure 13-97. Extend relationship

C

B
extension points

y

A
extension points

x «extend» (x)

«extend» (y)

ATM session
extension points

transaction possible
receipt details

Query Withdrawal

«extend»

base use case

extension use cases Seize card

«extend»

request made

(transaction possible,

(request made)

receipt details)

[suspicious history]

extension point references extension point definitions

condition

[request withdrawal]

«extend»
(transaction possible,
receipt details)
[request query]

276 • extend Encyclopedia of Terms
the arrow. A list of extension point names may appear in parentheses after the key-
word.

Figure 13-97 shows use cases with extend relationships, and Figure 13-98 shows
the behavior sequences of the use cases.

Discussion
The extend, include, and generalization relationships all add behavior to an initial
use case. They have many similarities, but it is convenient to separate them in
practice. Table 13-1 compares the three viewpoints.

Figure 13-98. Behavior sequences for use cases

Base use case for ATM session:

show advertisement of the day
include (identify customer) inclusion
include (validate account) inclusion
 (extension point references here)<--------- <transaction possible>
print receipt header
 (another extension point target) <--------- <receipt details>
log out

Extension use case for query:

segment first segment
 receive request query
 display query information

segment second segment
 print withdrawal information

Extension use case for withdrawal:

segment first segment
 receive request withdrawal
 specify amount
 (another extension point target) <--------- <request made>
segment second segment
 disburse cash

Extension use case for seize card:

segment only segment
 swallow the card
 end the session

Encyclopedia of Terms extend • 277
Table 13-1: Comparison of Use Case Relationships

Property Extend Include Generalization

Base behavior Base use case Base use case Parent use case

Added behavior Extension use case Inclusion use case Child use case

Direction of
reference

Extension use case
references the base
use case.

Base use case refer-
ences the inclusion
use case.

Child use case ref-
erences the parent
use case.

Base modified
by the addition?

The extension im-
plicitly modifies the
behavior of the
base. The base must
be well formed
without the exten-
sion, but if the ex-
tension is present,
an instantiation of
the base may exe-
cute the extension.

The inclusion ex-
plicitly modifies
the effect of the
base. The base may
or may not be well
formed without
the inclusion, but
an instantiation of
the base executes
the inclusion.

The effect of exe-
cuting the parent
is unaffected by
the child. To ob-
tain the effects of
the addition, the
child, not the par-
ent, must be in-
stantiated.

Is the addition
instantiable?

Extension is not
necessarily instan-
tiable. It may be a
fragment.

Inclusion is not
necessarily instan-
tiable. It may be a
fragment.

Child is not neces-
sarily instantiable.
It may be abstract.

Can the addi-
tion access at-
tributes of the
base?

The extension may
access and modify
the state of the base.

The inclusion may
access the state of
the base. The base
must provide ap-
propriate attributes
expected by the in-
clusion.

The child may ac-
cess and modify
the state of the
base (by the usual
mechanisms of in-
heritance).

Can the base
see the addi-
tion?

The base cannot see
the extension and
must be well
formed in its ab-
sence.

The base sees the
inclusion and may
depend on its ef-
fects but may not
access its attri-
butes.

The parent can-
not see the child
and must be well
formed in its ab-
sence.

Repetition Depends on condi-
tion

Exactly one repeti-
tion

Child controls its
own execution

278 • extension point Encyclopedia of Terms
extension point

A named marker that references a location or set of locations within the behav-
ioral sequence for a use case, at which additional behavior can be inserted. An
extension point declaration opens up the use case to the possibility of extension.
An insertion segment is a behavior sequence in an extension use case (a use case
related to a base use case by an extend relationship). The extend relationship con-
tains a list of extension point names that indicate where the insertion segments
from the extension use case insert their behavior.

See also extend, use case.

Semantics
An extension point has a name and references a set of one or more locations
within a use case behavior sequence. An extension point may reference a single lo-
cation between two behavior steps within a use case. In addition, it may reference
a set of discrete locations. It may also reference a region within a behavior se-
quence (this is nothing more than the set of all locations between steps in the se-
quence).

A location is a state within a state machine description of a use case, or the
equivalent in a different description—between two statements in a list of state-
ments or between two messages in an interaction.

An extend relationship contains an optional condition and a list of extension
point references equal in number to the number of insertion segments in the ex-
tension use case. An insertion segment may be performed if the condition is satis-
fied while a use case instance is executing the base use case at any location in the
extension point corresponding to the insertion segment.

The location of an extension point can be changed without affecting its identity.
The use of named extension points separates the specification of extension behav-
ior sequences from the internal details of the base use case. The base use case can
be modified or rearranged without affecting the extensions. Moreover, an exten-
sion point can be moved within the base without affecting the relationship or the
extension use case. As with all kinds of modularity, this independence requires a
good choice of extension points and is not guaranteed under all circumstances.

Notation
The extension points for a use case may be listed in a compartment named exten-
sion points.

The extension points must also reference locations within the behavior se-
quence of the use case. The net result is that extension point names serve as labels
for states, statements, and regions within the behavior sequence. This does not

Encyclopedia of Terms extent • 279
mean that they should be present in the original behavior sequence text. Extension
points are names that permit separating the location from the choice to perform
an insertion. An editing tool can place an extension point on an overlay of the be-
havior sequence text without modifying the original text, or it can have a separate
table of extension point names mapped into statements (by statement number, in-
ternal labels, or direct graphics). In any case, the net effect corresponds to locating
each extension point name between one or more steps in the behavior sequences.
In the pseudocode example in Figure 13-99 an extension point name in single an-
gle brackets references a location in the behavior sequence. There are many possi-
ble syntaxes for locating extension points within behavior sequences, depending
on the language used to specify the sequence. This is an example, but not the only
way.

extent

The set of instances described by a descriptor. Also sometimes called extension.
Contrast: intent.

Semantics
A descriptor, such as a class or an association, has both a description (its intent)
and a set of instances that it describes (its extent). The purpose of the intent is to
specify the properties of the instances that compose the extent. There is no as-
sumption that the extent is physically manifest or that it can be obtained at run

Figure 13-99. Extension point declarations

show advertisement of the day

include (identify customer)

include (validate account)

print receipt header

log out

<abortable>

<receipt details>

<transaction possible>

a region

Extension PointsBase use case for ATM session Bindings

location

ATM session
extension points

transaction possible
receipt details

abortable

280 • feature Encyclopedia of Terms
time. For example, a modeler should not assume that the set of objects that are in-
stances of a class can be obtained even in principle.

feature

A property, such as operation or attribute, which is encapsulated as part of a list
within a classifier, such as an interface, a class, or a datatype.

final state

A special state within a composite state that, when active, indicates that the execu-
tion of the composite state has been completed. When a composite state reaches its
final state, a completion transition leaving the composite state is triggered and
may fire if its guard condition is satisfied.

See also activity, completion transition, destruction.

Semantics
To promote encapsulation, it is desirable to separate the outside view of a compos-
ite state from the inside details as much as possible. From the outside, the state is
viewed as an opaque entity with an internal structure that is hidden. From the out-
side viewpoint, transitions go to and from the state itself. From the inside view-
point, they connect to substates within the state. An initial state or a final state is a
mechanism to support encapsulation of states.

A final state is a special state that indicates that the activity of the composite
state is complete and that a completion transition leaving the composite state is
enabled. A final state is not a pseudostate. A final state may be active for a period of
time, unlike an initial state that immediately transitions to its successor. Control
may remain within a final state while waiting for the completion of other concur-
rent substates of the composite state—that is, while waiting for sychronization of
multiple threads of control to join together. Outgoing event-triggered transitions
are not allowed from a final state, however (otherwise, it is just a normal state). A
final state may have any number of incoming transitions from within the enclosing
composite state, but no transitions from outside the enclosing state. The incoming
transitions are normal transitions and may have the full complement of triggers,
guard conditions, and actions.

If an object reaches its top-level final state, the state machine terminates and the
object is destroyed.

Notation
A final state is displayed as a bull’s-eye icon—that is, a small filled black disk sur-
rounded by a small circle. The symbol is placed inside the enclosing composite

Encyclopedia of Terms fire • 281
state whose completion it represents (Figure 13-100). Only one final state may oc-
cur (directly) within a composite state. Additional final states may occur, however,
within nested composite states. For convenience, the final state symbol may be re-
peated within a state, but each copy represents the same final state.

fire

To execute a transition.
See also run to completion, trigger.

Semantics
When an event required by a transition occurs, and the guard condition on the
transition is satisfied, the transition performs its action and the active state
changes.

When an object receives an event, the event is saved if the state machine is exe-
cuting a run-to-completion step. When the step is completed, the state machine
handles an event that has occurred. A transition is triggered if its event is handled
while the owning object is in the state containing the transition or is in a substate
nested inside the state containing the transition. An event satisfies a trigger event
that is an ancestor of the occurring event type. If a complex transition has multiple
source states, all of them must be active for the transition to be enabled. A comple-
tion transition is enabled when its source state completes activity. If it is a com-
posite state, it is enabled when all its direct substates have completed or reached
their final states.

When the event is handled, the guard condition (if any) is evaluated. If the
Boolean expression in the guard condition evaluates to true, then the transition is
said to fire. The action on the transition is executed, and the state of the object

Figure 13-100. Final state

e

final state

Event e causes the transition to the final state that causes the completion transition.

282 • flow Encyclopedia of Terms
becomes the target state of the transition (no change of state occurs for an internal
transition, however). During the state change, any exit actions and entry actions
on the minimal path from the original state of the object to the target state of the
transition are executed. Note that the original state may be a nested substate of the
source state of the transition.

If the guard condition is not satisfied, nothing happens as a result of this transi-
tion, although some other transition might fire if its conditions are satisfied.

If more than one transition is eligible to fire, only one of them will fire. A transi-
tion in a nested state takes precedence over a transition in an enclosing state. Oth-
erwise, the choice of transitions is undefined and may be nondeterministic. This is
often a realistic real-world situation.

As a practical matter, an implementation may provide an ordering of transi-
tions for firing. This does not change the semantics, as the same effect could be
achieved by organizing the guard conditions so that they do not overlap. But it is
often simpler to be able to say, “This transition fires only if no other transition
fires.”

Deferred events. If the event or one of its ancestors is marked for deferral in the
state or in an enclosing state, and the event does not trigger a transition, the event
is a deferred event until the object enters a state in which the event is not deferred.
When the object enters a new state, any previously deferred events that are no
longer deferred become pending and they occur in an indeterminate order. If the
first pending event does not cause a transition to fire, it is ignored and another
pending event occurs. If a previously deferred event is marked for deferral in the
new state, it may trigger a transition, but it remains deferred if it fails to trigger a
transition. If the occurrence of an event causes a transition to a new state, any re-
maining pending and deferred events are reevaluated according to the deferral sta-
tus of the new state and a new set of pending events is established.

An implementation might impose stricter rules on the order in which deferred
events are processed or supply operations to manipulate their order.

flow

A kind of relationship that relates two versions of the same object at successive
points in time.

See also become, copy.

Semantics
A flow relationship relates two versions of the same object at successive points in
time. It may relate two values of an object in an instance-level interaction, or it
may relate two classifier roles describing the same object in a descriptor-level

Encyclopedia of Terms font usage • 283
interaction. It represents the transformation of one state of an object into another.
It may represent a change in value, of control state, or of location.

The stereotypes of flow dependency are become and copy. Other stereotypes
may be added by users.

Notation
A flow relationship is shown as a dashed arrow with the appropriate stereotype
keyword attached. A naked flow relationship without a stereotype may not be
used.

Standard elements
become, copy

focus of control

A symbol on a sequence diagram that shows the period of time during which an
object is performing an action, either directly or through a subordinate procedure.

See activation.

font usage

Text may be distinguished through the use of different fonts and other graphic
markers.

See also graphic marker.

Discussion
Italics are used to indicate an abstract class, attribute, or operation. Other font dis-
tinctions are primarily for highlighting or to distinguish parts of the notation. It is
recommended that names of classifiers and associations be shown in boldface and
subsidiary elements, such as attributes, operations, rolename, and so on, be shown
in normal type. Compartment names should be shown in a distinctive font, such
as small boldface, but the choice is left to an editing tool. A tool is also free to use
font distinctions for highlighting selected elements, to distinguish reserved words
and keywords, and to encode selected properties of an element, or it may enable
the use of such distinctions under user control. Similar considerations apply to
color, although its use should be optional because many persons are color blind.
All such uses are convenience extensions to the canonical notation described in
this book, which is sufficient to display any model.

284 • fork Encyclopedia of Terms
fork

A complex transition in which one source state is replaced by two or more target
states, resulting in an increase in the number of active states. Antonym: join.

See also complex transition, composite state, join.

Semantics
A fork is a transition with one source state and two or more target states. If the
source state is active and the trigger event occurs, the transition action is executed
and all the target states become active. The target states must be in different re-
gions of a concurrent composite state.

Notation
A fork is shown as a heavy bar with one incoming transition arrow and two or
more outgoing transition arrows It may have a transition label (guard condition,
trigger event, and action). Figure 13-101 shows an explicit fork into a concurrent
composite state.

formal argument

See parameter.

framework

A generic architecture that provides an extensible template for applications within
a domain.

See package.

Figure 13-101. Fork

S
A1 A2

B2B1

fork

concurrent composite state

e1

When e1 occurs,
A1 and B1 become active.

T

Encyclopedia of Terms functional view • 285
friend

A usage dependency that grants the client permission to access the supplier, even
though the client otherwise does not have sufficient visibility to access the
supplier.

See also access, import, visibility.

Semantics
A friend dependency is used to grant an operation or a class permission to use the
contents of a class, although there would otherwise be insufficient permission. It is
an explicit exception to the usual permission rules between the affected elements.
This capability should be used carefully and sparingly.

Notation
A friend dependency is shown as a dashed arrow from the operation or class gain-
ing permission to the class whose contents are made available; the stereotype key-
word «friend» is attached to the arrow.

full descriptor

The complete implicit description of a direct instance. The full descriptor is im-
plicitly assembled by inheritance from all the ancestors.

See also direct class, inheritance, multiple classification.

Semantics
A declaration of a class or other model element is, in fact, only a partial descrip-
tion of its instances; call it the class segment. In general, an object contains more
structure than described by the class segment of its direct class. The rest of the
structure is obtained by inheritance from the ancestor classes. The complete de-
scription of all its attributes, operations, and associations is called the full descrip-
tor. The full descriptor is usually not manifest in a model or program. The purpose
of inheritance rules is to provide a way to automatically construct the full descrip-
tor from the segments. In principle, there are various ways to do this, often called
metaobject protocols. UML defines one set of rules for inheritance that cover most
popular programming languages and are also useful for conceptual modeling. Be
aware, however, that other possibilities exist—for example, the CLOS language.

functional view

A view dealing with the breakdown of a system into functions or operations that
provide its functionality. A functional view is not usually considered object-
oriented and can lead to an architecture that is hard to maintain. In traditional

286 • generalizable element Encyclopedia of Terms
development methods, the data flow diagram is the heart of the functional view.
UML does not directly support a functional view, although activity graphs have
some functional characteristics.

generalizable element

A model element that may participate in a generalization relationship.
See also generalization, inheritance.

Semantics
A generalizable element may have parents and children. A variable that is classified
with an element may hold an instance of a descendant of the element.

Generalizable elements include classes, use cases, other classifiers, associations,
states, events, and collaborations. A generalizable element inherits the features of
its ancestors. The definition of which parts of each kind of generalizable element
are inherited depends on the kind of element. Classes, for instance, inherit at-
tributes, operations, methods, participation in associations, and constraints. Asso-
ciations inherit the participating classes (these may themselves be specialized) and
the association-end properties. Use cases inherit attributes and operations, associ-
ations to actors, extend and include relationships to other use cases, and behavior
sequences. States inherit transitions.

See generalization, association generalization, use case generalization.

Structure
A generalizable element has properties that declare where it may appear within a
generalization hierarchy.

abstraction Specifies whether the generalizable element describes
direct instances or is an abstract element that must be
specialized before it can be instantiated. True indicates
that the element is abstract (may not have direct
instances); false indicates that it is concrete (may have
direct instances). To be usable, an abstract element must
have concrete descendants. A class with an operation
lacking a method is of necessity abstract.

leaf Specifies whether the generalizable element may be spe-
cialized. True indicates that it may not have descendants
(that is, it must be a leaf), false indicates that it may have
descendants (whether or not it actually has any descen-
dants at the moment). An abstract class that is a leaf is
useless for anything but grouping global attributes and
operations.

Encyclopedia of Terms generalization • 287
root Specifies whether the element must be a root with no
ancestors. True indicates that it must be a root and may
not have ancestors; false indicates that it need not be a
root and may have ancestors (whether or not it actually
has any ancestors at the moment).

Note that declaring leaf and root classes does not affect the semantics, but such
declarations may provide a statement of the designer’s intent. They may also per-
mit more efficient compilation of separate packages by avoiding the need for a glo-
bal analysis or overly conservative assumptions about polymorphic operations.

Standard elements
leaf

generalization

A taxonomic relationship between a more general element and a more specific ele-
ment. The more specific element is fully consistent with the more general element
and contains additional information. An instance of the more specific element
may be used where the more general element is allowed.

See also association generalization, inheritance, substitutability principle, use
case generalization.

Semantics
A generalization relationship is a directed relationship between two generalizable
elements of the same kind, such as classes, packages, or other kinds of elements.
One element is called the parent, and the other is called the child. For classes, the
parent is called the superclass and the child is called the subclass. The parent is the
description of a set of (indirect) instances with common properties over all chil-
dren; the child is a description of a subset of those instances that have the proper-
ties of the parent but that also have additional properties peculiar to the child.

Generalization is a transitive, antisymmetric relationship. One direction of tra-
versal leads to the parent; the other direction leads to the child. An element related
in the parent direction across one or more generalizations is called an ancestor; an
element related in the child direction across one or more generalizations is called a
descendant. No directed generalization cycles are allowed. A class may not have it-
self for an ancestor or descendant.

In the simplest case, a class (or other generalizable element) has a single parent.
In a more complicated situation, a child may have more than one parent. The
child inherits structure, behavior, and constraints from all its parents. This is
called multiple inheritance (it might better be called multiple generalization). A
child element references its parent and must have visibility to it.

288 • generalization Encyclopedia of Terms
Generalization may be applied to associations, as well as to classifiers, states,
events, and collaborations.

For the application of generalization to associations, see association generaliza-
tion.

For the application of generalization to use cases, see use case generalization.
Nodes and components are much like classes, and generalization applied to

them behaves the same as it does for classes.

Constraints
A constraint may be applied to a set of generalization relationships and their chil-
dren that share a common parent. The following properties can be specified.

disjoint No element may have two children in the set as ancestors
(in a multiple inheritance situation). No instance may be
a direct or indirect instance of two of the children (in a
multiple classification semantics).

overlapping An element may have two or more children in the set as
ancestors. An instance may be an instance of two or more
children.

complete All possible children have been enumerated in the set and
no more may be added.

incomplete All possible children have not been enumerated yet in the
set. More are expected or known but not declared yet.

Notation
Generalization between classifiers is shown as a solid-line path from the child ele-
ment (such as a subclass) to the parent element (such as a superclass), with a large
hollow triangle at the end of the path where it meets the more general element
(Figure 13-102). The lines to the parent may be combined to produce a tree
(Figure 13-103).

Figure 13-102. Generalization

Shape

SplineEllipsePolygon . . .

superclass

subclasses
unseen
subclasses

generalizations

Encyclopedia of Terms generalization • 289
Generalization may be applied to associations, as well as to classifiers, although
the notation may be messy because of the multiple lines. An association can be
shown as an association class for the purpose of attaching generalization arrows.

The existence of additional classes in the model that are not shown on a diagram
may be shown using an ellipsis (…) in place of a class. (Note that this is not an in-
dication that additional classes might be added in the future. It indicates that addi-
tional classes exist right now but are not being shown. This is a notational
convention that means information has been suppressed. It is not a semantic ele-
ment.) The presence of an ellipsis (…) as a subclass node of a class indicates that
the semantic model contains at least one subclass of the class that is not visible on
the current diagram. The ellipsis may have a discriminator. This indicator is in-
tended to be automatically maintained by an editing tool, not entered manually.

Presentation options
A group of generalization paths for a given superclass may be shown as a tree with
a shared segment (including triangle) to the superclass, branching into multiple
paths to each subclass. This is merely a notational device. It does not indicate an n-
ary relationship. In the underlying model, there is one generalization for each
subclass-superclass pair. There is no semantic difference if the arcs are drawn sep-
arately.

If a text label is placed on a generalization triangle shared by several generaliza-
tion paths to subclasses, the label applies to all the paths. In other words, all the
subclasses share the given properties.

Example
Figure 13-104 shows the declaration of constraints on generalizations. It also illus-
trates the use of the “tree style” of generalization, in which the paths are drawn on
an orthogonal grid and share a common parent arrow, as well as the “binary style,”
in which each parent-child relationship has its own oblique arrow.

Figure 13-103. Generalization using tree style

Shape

SplineEllipsePolygon . . .

generalization shown as tree

subclasses

290 • generalization Encyclopedia of Terms
Discussion
The parent element in a generalization relationship can be defined without knowl-
edge of the children, but the children must generally know the structure of their
parents in order to work correctly. In many cases, however, the parent is designed
to be extended by children and includes more or less knowledge of the expected
children. One of the glories of generalization, however, is that new children are of-
ten discovered that had not been anticipated by the designer of the parent element,
leading to an expansion in power that is compatible in spirit with the original in-
tent.

The realization relationship is like a generalization in which only behavior spec-
ification is inherited rather than structure or implementation. If the specification
element is an abstract class with no attributes, no associations, and only abstract
operations, then generalization and realization are roughly equivalent as there is
nothing to inherit but behavior specification. Note that realization does not actu-
ally populate the client, however; therefore, the operations must be in the client or
inherited from some other element.

Standard elements
complete, disjoint, implementation, incomplete, overlapping

Figure 13-104. Generalization constraints

Worker

Butcher Baker

{disjoint, incomplete}

Candlestick

occupation

Athlete

Swimmer Golfer

{overlapping, incomplete}

constraint on tree root:
applies to all the children

constraint applied to

Maker

discriminator

A worker may have only one occupation.
This is not a complete list of occupations.

An athlete may play more than one sport.
This is not a complete list of athletic pursuits.explicit set of arcs

Encyclopedia of Terms guard condition • 291
graphic marker

A notational element such as geometry, texture, fill pattern, font, color, and so on.
See also font usage.

Notation
Symbols for notation are constructed from various graphic markers. No one
graphic marker has semantic significance by itself, but the goal of notation is to use
graphic markers in a consistent and orthogonal way as much as possible.

Some graphic markers are used to construct predefined UML symbols, while
other graphic markers are not used in the canonical notation. For example, no
meaning has been assigned to color because many printers do not render it and
some people cannot distinguish all colors. Unassigned graphic markers, such as
colors, can be used within editing tools for whatever purpose the modeler or tool
wishes.

UML permits limited graphical extension of its notation. A graphic icon or a
graphic marker (such as texture or color) can be associated with a stereotype. The
UML does not specify the form of the graphic specification. But many bitmap and
stroked formats exist and might be used by a graphical editor (although their port-
ability is a difficult problem).

More general forms of icon specification and substitution are conceivable, but
we leave these to the ingenuity of tool builders—with the warning that excessive
use of extensibility capabilities may lead to loss of portability among tools.

guard condition

A condition that must be satisfied in order to enable an associated transition to
fire.

See also branch, conditional thread, junction state, transition.

Semantics
A guard condition is a Boolean expression that is part of the specification of a
transition. When the trigger event for a transition is received, it is saved until the
state machine has completed any current run-to-completion step. Then it is han-
dled and the guard condition is evaluated. If the condition is true, the transition is
enabled to fire (but if more than one transition is enabled, only one will fire). The
test occurs at the moment the trigger event is handled. If the guard condition eval-
uates to false when the event is handled, it is not reevaluated unless the trigger
event occurs again, even if the condition later becomes true.

A guard condition must be a query—that is, it may not modify the value of the
system or its state; it may not have side effects.

292 • guillemets Encyclopedia of Terms
A guard condition may appear on a completion transition. In that case, it selects
one arm of a branch.

Notation
A guard condition is part of the string for a transition. It has the form of a Boolean
expression enclosed in square brackets.

[boolean-expression]

Names used within the expression must be available to the transition. They are
either parameters of the trigger event or attributes of the owning object.

guillemets

Small double angle marks (« ») used as quotation marks in French, Italian, Span-
ish, and other languages. In UML notation they are used to enclose keywords and
stereotype names. For example: «bind», «instanceOf». Guillemets are available in
most fonts, so there is really no excuse for not using them, but the typographically
challenged could substitute two angle brackets (<< >>) if necessary.

See also font usage.

history state

A pseudostate that indicates that the enclosing composite state remembers its pre-
viously active substate after it exits.

See also composite state, pseudostate, state machine, transition.

Semantics
A history state allows a sequential composite state to remember the last substate
that was active in it prior to a transition from the composite state. A transition to
the history state causes the former active substate to be made active again. Any
necessary entry actions are performed. A history state may have incoming transi-
tions from outside the composite state or from the initial state. A history state may
have one outgoing unlabeled transition. This transition indicates the initial stored
history state. It is used if a transition goes to the history state when no stored state
is present. The history state may not have incoming transitions from other states
within the composite state because it is already active.

A history state may remember shallow history or deep history. A shallow history
state remembers and reactivates a state at the same nesting depth as the history
state itself. If a transition from a nested substate directly exited the composite
state, the enclosing substate at the top level within the composite state is activated.
A deep history state remembers a state that may have been nested at some depth
within the composite state. To remember a deep state, a transition must have taken

Encyclopedia of Terms hyperlink • 293
the deep state directly out of the composite state. If a transition from a deep state
goes to a shallower state, which then transitions out of the composite state, then
the shallower state is the one that is remembered. A transition to a deep history
state restores the previously active state at any depth. In the process, entry actions
are executed if they are present on inner states containing the remembered state. A
composite state may have both a shallow history state and a deep history state. An
incoming transition must be connected to one or the other.

If a composite state reaches its final state, then it loses its stored history and be-
haves as if it had not been entered for the first time.

Notation
A shallow history state is shown as a small circle containing the letter H, as in
Figure 13-105. A deep history state is shown as a circle containing the letters H*.

hyperlink

An invisible connection between two notation elements that can be traversed by
some command.

See also diagram.

Notation
A notation on a piece of paper contains no hidden information. A notation on a
computer screen, however, may contain additional invisible hyperlinks that are
not apparent in a static view but that can be invoked dynamically to access some
other piece of information, either in a graphical view or in a textual table. Such dy-
namic links are as much a part of a dynamic notation as the visible information,

Figure 13-105. History state

A C

H

A1

A2

interrupt

resume
This transition does not

This transition invokes the
stored history state.
If it is the first transition,
it invokes state A2.

invoke history.

This indicates the stored history state
to use before the composite state
has been first entered.

294 • identity Encyclopedia of Terms
but this document does not prescribe their form. We regard them as a tool respon-
sibility. This document attempts to define a static notation for UML, with the un-
derstanding that some useful and interesting information may show up poorly or
not at all in such a view. On the other hand, we do not know enough to specify the
behavior of all dynamic tools, nor do we want to stifle innovation in dynamic pre-
sentation. Eventually, some dynamic notations may become well enough estab-
lished to standardize, but we do not feel we should do so now.

identity

An object’s inherent property of being distinguishable from all other objects.
See also data value, object.

Semantics
Objects are discrete and distinguishable from each other. The identity of an object
is its conceptual handle, the inherent characteristic that allows it to be identified
and referenced by other objects. Conceptually, an object does not need a key or
other mechanism to identify itself, and such mechanisms should not be included
in models. In an implementation, identity may be implemented by addresses or
keys, but they are part of the underlying implementation infrastructure and need
not be explicitly included as attributes in most models.

ill formed

Designation of a model that is incorrectly constructed, one that violates one or
more predefined or model-specified rules or constraints. Antonym: well formed.

See also conflict, constraint.

Semantics
A model that violates well-formedness rules and constraints is not a valid model
and therefore has inconsistent semantics. To attempt to use such a model may
yield meaningless results. It is the responsibility of a modeling tool to detect ill-
formed models and prevent their use in situations that might be troublesome. Be-
cause the use of some constructs extends the built-in UML semantics, automatic
verification may not be possible in all cases. Also, automatic checking cannot be
expected to verify consistency of operations, because that would involve solving
the halting problem. Therefore, in practical situations, a combination of auto-
matic verification and human verification is necessary.

Although a finished model must be well formed, intermediate versions of a
model may be ill formed at times because they might be incomplete fragments of a
final model. Editing a valid model to produce another valid model may require

ill-formed

Encyclopedia of Terms implementation inheritance • 295
passing through intermediate models that are ill formed. This is no different from
editing computer programs—the final program given to a compiler must be valid,
but working copies in a text editor are often invalid. Therefore ill-formed models
must be editable and storable by support tools.

implementation

1. A definition of how something is constructed or computed. For example, a class
is an implementation of a type; a method is an implementation of an operation.
Contrast: specification. The realization relationship relates an implementation to
its specification.

See realization.

2. That stage of a system that describes the functioning of the system in an execut-
able medium (such as a programming language, database, or digital hardware).
For implementation, low-level tactical decisions must be made to fit the design to
the particular implementation medium and to work around its limitations (all
languages have some arbitrary limitations). If the design is done well, however, the
implementation decisions will be local and none of them will affect a large portion
of the system. This stage is captured by implementation-level models, especially
the static view and code. Contrast analysis, design, implementation, and
deployment.

See development process, stages of modeling.

implementation class

A stereotype for a class that provides a physical implementation, including at-
tributes, associations to other classes, and methods for operations. An implemen-
tation class is intended for a traditional object-oriented language with static single
classification. An object in such a system must have exactly one implementation
class as its direct class. Contrast with type, a stereotype for a class that permits
multiple classification. In a conventional language, such as Java, an object can have
one implementation class and many types. The implementation class must be
consistent with the types.

See type, which compares type and implementation class.

implementation inheritance

The inheritance of the implementation of a parent element—that is, its structure
(such as attributes and operations) and its code (such as methods). By contrast,
interface inheritance involves inheritance of interface specifications (that is, opera-
tions) but not methods or data structure (attributes and associations).

296 • implementation view Encyclopedia of Terms
The normal meaning of generalization in UML includes the inheritance of both
interface and implementation. To inherit just the implementation (private inherit-
ance), use the «implementation» stereotype on a generalization. To support an in-
terface without a commitment to implementation, use a realization relationship to
an interface.

See also generalization, inheritance, interface inheritance, private inheritance.

implementation view

A view of a model that contains a static declaration of the components in a system,
their dependencies, and possibly the classes that are implemented by the
component.

See component diagram.

import

A stereotype of the permission dependency in which the names of the elements in
the supplier package are added to the namespace of the client package.

See also access, package, visibility.

Semantics
The names found in the namespace of the supplier package are added to the
namespace of the client package, under the same visibility rules as specified for ac-
cess. If there are any conflicts between imported names and names already in the
client namespace, the model is ill formed.

See access for the visibility rules for both access and import.

Notation
An import dependency is shown as a dashed arrow from the package gaining ac-
cess to the package supplying elements; the stereotype keyword «import» is at-
tached to the arrow.

inactive

A state that is not active; one that is not held by an object.

inception

The first phase of a software development process, during which the initial ideas
for a system are conceived and evaluated. During this phase, some of the analysis
view and small portions of other views are developed.

See development process.

Encyclopedia of Terms include • 297
include

A relationship from a base use case to an inclusion use case, specifying how the be-
havior defined for the inclusion use case can be inserted into the behavior defined
for the base use case. The base use case can see the inclusion and can depend on
the effects of performing the inclusion, but neither the base nor the inclusion may
access each other’s attributes.

See also extend, use case, use case generalization.

Semantics
The include relationship connects a base use case to an inclusion use case. The in-
clusion use case in this relationship is not a separate instantiable classifier. Instead,
it explicitly describes an additional behavior sequence that is inserted into a use
case instance that is executing the base use case. Multiple include relationships
may be applied to the same base use case. The same inclusion use case may be in-
cluded in multiple base use cases. This does not indicate any relationship among
the base use cases. There may even be multiple include relationships between the
same inclusion base case and base use cases, provided each insertion is at a differ-
ent location in the base.

The inclusion use case may access attributes or operations of the base use case.
The inclusion represents encapsulated behavior that potentially can be reused in
multiple base use cases. The base use case sees the inclusion use case, which may
set attribute values in the base use case. But the base use case must not access the
attributes of the inclusion use case, because the inclusion use case will have termi-
nated when the base use case regains control.

Note that additions (of all kinds) may be nested. An inclusion, therefore, may
serve as the base for a further inclusion, extension, or generalization.

Structure
The include relationship has the following property.

location A location within the body of the behavior sequence of
the base use case, where the inclusion is to be inserted.
When a use case instance reaches the location while per-
forming the base use case, it performs the inclusion use
case before resuming the base use case.

The inclusion is an explicit statement within the behavior
sequence of the base use case. The location is therefore
implicit, unlike the situation with the extend relationship.

The inclusion is performed once. Other multiplicities can be achieved by loops in
the behavior sequence for the base case that references the inclusion.

298 • include Encyclopedia of Terms
Notation
A dashed arrow is drawn from the base use case symbol to the inclusion use case
symbol with a stick arrowhead on the inclusion. The keyword «include» is placed
on the arrow (Figure 13-106). The location can be attached to the arrow as a prop-
erty list in braces, but usually it is referenced as part of the text for the base use case
and need not be shown on the diagram. Figure 13-107 shows the behavior se-
quences for these use cases.

Figure 13-106. Include relationship

Figure 13-107. Behavior sequences for use cases

ATM session

Validate accountIdentify customer

«include»«include»

Base use case for ATM session:

show advertisement of the day behavior step
include identify customer inclusion
include validate account another inclusion
print receipt header behavior step
log out behavior step

Inclusion use case for Identify Customer:

get customer name
include verify identity
if verification failed then abort the session
obtain account numbers for the customer

Inclusion use case for Validate Account:

establish connection with account database
obtain account status and limits

Encyclopedia of Terms inheritance • 299
incremental development

The development of a model and other artifacts of a system as a series of versions,
each complete to some degree of precision and functionality, but each adding in-
cremental detail to the previous version. The advantage is that each version of the
model can be evaluated and debugged based on the relatively small changes to the
previous version, making it easier to make changes correctly. The term is closely al-
lied with the concept of iterative development.

See development process.

indirect instance

An entity that is an instance of an element, such as a class, and is also an instance
of a child of the element. That is, it is an instance but not a direct instance.

inheritance

The mechanism by which more specific elements incorporate structure and be-
havior defined by more general elements.

See also full descriptor, generalization.

Semantics
Inheritance allows a full description of a generalizable element to be automatically
constructed by assembling declaration fragments from a generalization hierarchy.
A generalization hierarchy is a tree (actually, a partial order) of declarations of
model elements, such as classes. Each declaration is not the declaration of a com-
plete, usable element, however. Instead, each declaration is an incremental decla-
ration describing what the element declaration adds to the declarations of its
ancestors in the generalization hierarchy. Inheritance is the (implicit) process of
combining those incremental declarations into full descriptors that describe actual
instances.

Think of each generalizable element as having two descriptions, a segment dec-
laration and a full descriptor. The segment declaration is the incremental list of
features that the element declares in the model—the attributes and operations de-
clared by a class, for example. The segment declaration is the difference between
the element and its parents. The full descriptor does not appear explicitly within
the model. It is the full description of an instance of the element—for example, the
complete list of attributes and operations held by an object of a class. The full de-
scriptor is the union of the contents of the segment declarations in an element and
all its ancestors.

That is inheritance. It is the incremental definition of an element. Other details,
such as method lookup algorithms, vtables, and so on, are merely implementation

300 • initial state Encyclopedia of Terms
mechanisms to make it work in a particular language, not part of the essential def-
inition. Although this description may seem strange at first, it is free of the imple-
mentation entailments found in most other definitions, yet is compatible with
them.

Conflicts
If the same feature appears more than once among the set of inherited segments,
there may be a conflict. No attribute may be declared more than once in an inher-
ited set. If this occurs, the declarations conflict and the model is ill formed. (This
restriction is not essential for logical reasons. It is present to avoid the certain con-
fusion that would occur if attributes had to be distinguished by pathnames.)

The same operation may be declared more than once, provided the declaration
is exactly the same (the methods may differ, however) or a child declaration
strengthens an inherited declaration (for example, by declaring a child to be a
query or increasing its concurrency status). A method declaration on a child re-
places (overrides) a method declaration on an ancestor. There is no conflict. If dis-
tinct methods are inherited from two different ancestors that are not themselves in
an ancestor relationship, then the methods conflict and the model is ill formed.

Discussion
Generalization is a taxonomic relationship among elements. It describes what an
element is. Inheritance is a mechanism for combining shared incremental descrip-
tions to form a full description of an element. They are not the same thing, al-
though they are closely related. The inheritance mechanism applied to the
generalization relationship enables factoring and sharing of descriptions and poly-
morphic behavior. This is the approach taken by most object-oriented languages
and by UML. But keep in mind that there are other approaches that could have
been taken and that are used by some programming languages.

initial state

A pseudostate that indicates the default starting place for a transition whose target
is the boundary of a composite state.

See also composite state, creation, entry action, initialization, junction state.

Semantics
To promote encapsulation, it is desirable to separate the outside view of a compos-
ite state from the inside details as much as possible. From the outside, the state is
viewed as an opaque entity with hidden internal structure. From the outside view-
point, transitions go to and from the state itself. From the inside viewpoint, they
connect to substates within the state.

Encyclopedia of Terms initial state • 301
An initial state is a dummy state (pseudostate) that represents a connection
point for an incoming transition to the boundary of the composite state. It is not a
real state; control may not remain within it. Rather, it is a syntactic means of indi-
cating where the control should go. An initial state must have an outgoing trigger-
less transition (a transition with no event trigger, therefore automatically enabled
as soon as the initial state is entered). The completion transition connects to a real
state in the composite state. The completion transition may have an action on it.
The action is executed when the state is entered after the entry action (if any) of
the composite state. This allows an action to be associated with the default entry,
in addition to the entry action (which is performed on all entries, default or other-
wise). This action may access the implicit current event—that is, the event that
triggered the first segment in the transition that ultimately caused the transition to
the initial state.

An initial state may not have an outgoing transition with an event trigger. An in-
coming transition is equivalent to an incoming transition to the enclosing com-
posite state and should be avoided. Connect such transitions to the composite
state.

Most often the transition on the initial state is unguarded. In that case, it must
be the only transition from the initial state. A set of outgoing transitions may be
provided with guard conditions, but the guard conditions must completely cover
all possible cases (or, more simply, one of them can have the guard condition else).
The point is that control must leave the initial state immediately. It is not a real
state, and some transition must fire.

The initial state in the top-level state of a class represents the creation of a new
instance of the class. When its outgoing transition is taken, the implicit current
event is the creation event of the object and has the argument values passed by the
constructor operation. These values are available within actions on the outgoing
transition.

Object creation
The initial state of the topmost composite state of a class is slightly different. It may
have a trigger with the stereotype «create», together with a named event trigger
with parameters. There may be multiple transitions of this kind with different
triggers. The signature of each trigger must match a creation operation on the
class. When a new object of the class is instantiated, the transition corresponding
to its creation operation fires and receives the arguments from the call to the cre-
ation operation.

Notation
An initial state is displayed as a small filled black circle inside the symbol of its
composite state. Outgoing transition arrows may be connected to it. Only one

302 • initial state Encyclopedia of Terms
initial state may occur (directly) within a composite state. However, additional ini-
tial states may occur within nested composite states.

Example
In Figure 13-108, we start in state X. When event e occurs, the transition fires and
action a is performed. The transition goes to state Y. Entry action b is performed,
and the initial state becomes active. The outgoing transition immediately fires,
performing action c and changing to state Z.

Instead, if event f occurs when the system is in state X, then the other transition
fires and action d is performed. This transition goes directly to state Z. The initial
state is not involved. Because control passes into state Y, action b is performed, but
action c is not performed in this case.

In Figure 13-109, the initial state has a branch. Again, suppose the system starts
in state X. When event e occurs, actions a is performed, the system changes to state
Y, and the entry action b is performed. Control goes to the initial state. The size at-
tribute of the owning object is tested. If it is 0, control goes to state Z; if it is not 0,
control goes to state W.

Figure 13-108. Initial state

Figure 13-109. Initial state with branch

initial state no event trigger allowed actual first state

e / a

owner of the initial state

/ c

entry / b

X
Y

Z

f / d

This is a direct transition to an inner state.

This is a transition
to the initial state.

initial state branch condition allowed

e / a [self.size = 0]
X

Y

Z

This is a transition
to the initial state.

W
[else]

entry / b

here equivalent to ‘size ≠ 0’

Encyclopedia of Terms initialization • 303
initial value

An expression specifying the value that an attribute in an object holds just after it
has been initialized.

See also default value, initialization.

Semantics
An initial value is an expression attached to an attribute. The expression is a text
string that also designates a language for interpreting the expression. When an ob-
ject holding the attribute is instantiated, the expression is evaluated according to
the given language and the current value of the system. The result of the evalua-
tion is used to initialize the value of the attribute in the new object.

The initial value is optional. If it is absent, then the attribute declaration does
not specify the value held by a new object (but some other part of the overall
model may supply that information).

Note that an explicit initialization procedure for an object (such as a construc-
tor) may supersede an initial value expression and overwrite the attribute value.

The initial value of a class-scope attribute is used to initialize it once at the be-
ginning of execution. UML does not specify the relative order of initialization of
different class-scope attributes.

initialization

Setting the value of a newly created object—namely, the values of its attributes,
links of associations that it belongs to, and its control state.

See also instantiation.

Semantics
Conceptually, a new object is created complete in one step. It is easier, however, to
think about the instantiation process in two steps: creation and initialization. First
a new empty shell object is allocated with the proper structure of attribute slots,
and the new raw object is given identity. Identity can be implemented in various
ways, such as by the address of the memory block containing the object or by an
integer counter. In any case, it is something that is unique across the system and
can be used as a handle to find and access the object. At this point, the object is not
yet legal—it may violate the constraints on its values and relationships. The next
step is initialization. Any declared initial value expressions for attributes are evalu-
ated, and the results are assigned to the attribute slots. The creation method may
explicitly calculate the values for attributes, thereby overriding the default initial
values. The resultant values must satisfy any constraints on the class. The creation
method may also create links containing the new object. They must satisfy the

304 • instance Encyclopedia of Terms
declared multiplicity of any associations that the class participates in. When the
initialization is complete, the object must be a legal object and must obey any con-
straints on its class. After initialization is complete, attributes or associations
whose changeability property is frozen or addOnly may not be altered until the
object is destroyed. The entire initialization process is atomic and may not be in-
terrupted or interleaved.

instance

An individual entity with its own identity and value. A descriptor specifies the
form and behavior of a set of instances with similar properties. An instance has
identity and values that are consistent with the specification in the descriptor. In-
stances appear in models mainly as examples consistent with descriptor-level
models.

See also descriptor, identity, link, object.

Semantics
An instance has identity. In other words, at different points in time during the ex-
ecution of a system, the instance can be identified with the same instance at other
points in time, even though the value of the instance changes. At any time, an in-
stance has a value expressible in terms of data values and references to other in-
stances. A data value is a degenerate case. Its identity is the same as its value, or
considered from a different viewpoint, it has no identity.

In addition to identity and value, each instance has a descriptor that constrains
the values that the instance can have. A descriptor is a model element that de-
scribes instances. This is the descriptor-instance dichotomy. Most modeling con-
cepts in UML have this dual character. The main content of most models is
descriptors of various kinds. The purpose of the model is to describe the possible
values of a system in terms of its instances and their values.

Each kind of descriptor describes one kind of instance. An object is an instance
of a class; a link is an instance of an association. A use case describes possible use
case instances; a parameter describes a possible argument value; and so on. Some
instances do not have familial names and are usually overlooked except in very
formal settings, but they nevertheless exist. For example, a state describes possible
occurrences of the state during an execution trace.

A model describes the possible values of a system and its behavior in progress-
ing from value to value during execution. The value of a system is the set of all in-
stances in it and their values. The system value is valid if every instance is the in-
stance of some descriptor in the model, and if all the explicit and implicit
constraints in the model are satisfied by the set of instances.

Encyclopedia of Terms instance • 305
The behavior elements in a model describe how the system and the instances in
it progress from value to value. The concept of identity of instances is essential to
this description. Each behavioral step is the description of the change of the values
of a small number of instances in terms of their previous values. The remainder of
the instances in the system preserve their values unchanged. For example, a local
operation on one object can be described by expressions for the new values of each
attribute of the object without changes to the rest of the system. A nonlocal func-
tion can be decomposed into local functions on several objects.

Note that the instances in an executing system are not model elements. Usually,
they are not part of the model at all. When instances appear in a model, they ap-
pear as illustrations or examples of typical structure and behavior, snapshots of
system value or execution traces of its history. These are useful for human insight,
but they are usually points in a large or infinite set of possible values and do not
define anything.

Direct instance. Each object is the direct instance of some class and the indirect
instance of the ancestors of the class. This is also the case for instances of other
generalizable elements. An object is a direct instance of a class if the class describes
the instance and no descendant class also describes the object. In the case of multi-
ple classification, an instance may be a direct instance of more than one classifier,
none of which is an ancestor of any of the others. Under some execution seman-
tics, one of the classifiers is designated the implementation class and the others are
designated types or roles. The full descriptor is the implicit full description of an
instance—all its attributes, operations, associations, and other properties—
whether obtained by an instance from its direct classifier or from an ancestor clas-
sifier by inheritance. In case of multiple classification, the full descriptor is the
union of the properties defined by each direct classifier.

Creation. See instantiation for a description of how instances are created.

Notation
Although descriptors and instances are not the same, they share many properties,
including the same form (because the descriptor must describe the form of the in-
stances). Therefore, it is convenient to choose notation for each descriptor-
instance pair so that the correspondence is immediately visually obvious. There
are a limited number of ways to do this, each with its advantages and disadvan-
tages. In UML the descriptor-instance distinction is shown by using the same geo-
metrical symbol for each pair of elements and by underlining the name string of
an instance element. This visual distinction is generally easily apparent without
being overpowering even when an entire diagram contains instance elements.

Although Figure 13-110 shows objects, the underlining convention can be used
for other kinds of instances, such as use case instances, component instances, and
node instances.

306 • instance of Encyclopedia of Terms
Because instances appear in models as examples, usually only details relevant to
a particular example are included. For example, the entire list of attribute values
need not be included; or the entire list of values can be omitted if the focus is on
something else, such as message flow between objects.

instance of

Relationship between an instance and its descriptor.
See instance.

instantiable

Able to have instances. Synonym: concrete.
See also abstract, direct instance, generalizable element.

Semantics
Generalizable elements may be declared as abstract or instantiable. If they are in-
stantiable, then direct instances can be created.

instantiate

To create an instance of a descriptor.
See instantiation.

Figure 13-110. Descriptor and instances

Point

x: Real
y: Real

rotate (angle: Real)
scale (factor: Real)

p1: Point

x = 3.14
y = 2.718

:Point

x = 1
y = 1.414

descriptor (a class)

instances (two objects)
The instances may show values.
No need to show fixed parts such as operations
shared by all instances.

Point object named p1

anonymous Point object

Encyclopedia of Terms instantiation • 307
instantiation

The creation of new instances of model elements.
See also initialization.

Semantics
Instances are created at run time as a result of primitive create actions or creation
operations. First an identity is created for the new instance; then its data structure
is allocated as prescribed by its descriptor; and then its property values are initial-
ized as prescribed by the descriptor and the creation operator.

The instantiation usage dependency shows the relationship between an opera-
tion that creates instances or a class containing such an operation and the class of
objects being instantiated.

Objects. When a new object is instantiated (created), it is created with identity and
memory and it is initialized. The initialization of an object defines the values of its
attribute, its association, and its control state.

Usually, each concrete class has one or more class-scope constructor operations
the purpose of which is to create new objects of the class. Underlying all the con-
structor operations is an implicit primitive operation that creates a new raw in-
stance that is then initialized by the constructor operations. After a raw instance
has been created, it has the form prescribed by its descriptor, but its values have
not yet been initialized, so they may be semantically inconsistent. An instance is
therefore not available to the rest of the system until it has been initialized, which
occurs immediately after creation of the raw instance.

Links. Similarly, links are created by creation actions or operations, usually by in-
stance-scope operations attached to one of the participating classes, rather than by
constructor operations on the association element itself (although this is a possi-
ble implementation technique under some circumstances). Again, there is an un-
derlying implicit primitive operation that creates a new link among a specific tuple
of objects. This operation has no effect if a link of the same association already ex-
ists among the tuple of objects (because the extent of an association is a set and
may not contain duplicate values). With an ordinary association, there is nothing
more to do. A link of an association class, however, requires initialization of its at-
tribute values.

Use case instances. The instantiation of a use case means that a use case instance is
created, and the use case instance begins executing at the beginning of the use case
controlling it. The use case instance may temporarily follow another use case re-
lated by extend or include relationships before it resumes executing the original
use case. When the use case instance comes to the end of the use case it is follow-
ing, the use case instance terminates.

308 • intent Encyclopedia of Terms
Other instances. Instances of other descriptors may be created in a similar two-step
process: First perform a raw creation to establish identity and to allocate data
structure, then initialize the values of the new instance so that it obeys all relevant
constraints. For example, an activation is created implicitly as the direct conse-
quence of a call to an operation.

The exact mechanisms of creating instances are the responsibility of the run-
time environment.

Notation
An instantiation dependency is shown as a dashed arrow from the operation or
class performing the instantiation to the class being instantiated; the stereotype
«instantiate» is attached to the arrow.

Discussion
Instantiation is sometimes used to mean binding a template to produce a bound
element, but binding is more specific for this relationship.

intent

The formal specification of the structural and behavioral properties of a descrip-
tor. Sometimes called intension. Contrast: extent.

See also descriptor.

Semantics
A descriptor, such as a class or an association, has both a description (its intent)
and a set of instances that it describes (its extent). The purpose of the intent is to
specify the structural and behavioral properties of the instances in an executable
manner.

interaction

A specification of how messages are sent between objects or other instances to per-
form a task. The interaction is defined in the context of a collaboration.

See also interaction diagram.

Semantics
Objects or other instances in a collaboration communicate to accomplish a pur-
pose (such as performing an operation) by exchanging messages. The messages
may include signals and calls, as well as more implicit interactions through condi-
tions and time events. A pattern of message exchanges to accomplish a specific
purpose is called an interaction.

Encyclopedia of Terms interaction diagram • 309
Structure
An interaction is a behavioral specification that comprises a sequence of message
exchanges among a set of objects to accomplish a purpose, such as the implemen-
tation of an operation. An interaction is a collaboration plus a sequenced set of
message flows imposed on the links in the collaboration. To specify an interaction,
it is first necessary to specify a collaboration—that is, to define the objects that in-
teract and their relationships to each other. Then the possible interaction se-
quences are specified, in a single description containing conditionals (branches or
conditional signals), or as multiple descriptions, each describing one path among
the possible execution paths. The complete description of the behavior of a collab-
oration can be given as a state machine, whose states are the states of the execution
of an operation or other procedure.

Notation
Interactions are shown as sequence diagrams or as collaboration diagrams. Both
diagram formats show the execution of collaborations. Sequence diagrams show
the behavioral view of collaborations explicitly, including the time sequencing of
messages and an explicit representation of method activations. However, sequence
diagrams show only the participating objects and not their relationships to other
objects or their attributes. Therefore, they do not fully show the contextual view of
a collaboration. Collaboration diagrams show the full context of an interaction,
including the objects and their relationships relevant to an interaction, so they are
often better for design purposes than sequence diagrams.

interaction diagram

A generic term that applies to several types of diagrams that emphasize object in-
teractions. These include collaboration diagrams and sequence diagrams. Closely
related are activity diagrams.

See also collaboration, interaction.

Notation
A pattern of interaction among objects is shown on an interaction diagram. Inter-
action diagrams come in various forms all based on the same underlying informa-
tion but each emphasizing one view of it: sequence diagrams, collaboration
diagrams, and activity diagrams.

A sequence diagram shows an interaction arranged in time sequence. In partic-
ular, it shows the objects participating in the interaction by their lifelines and the
messages they exchange, arranged in time sequence. A sequence diagram does not
show the links among the objects. Sequence diagrams come in several formats in-
tended for different purposes.

310 • interaction view Encyclopedia of Terms
A sequence diagram can exist in a generic form (describing all possible se-
quences) and in an instance form (describing one execution sequence consistent
with the generic form). In cases without loops or branches, the two forms are iso-
morphic; the descriptor is a prototype for its instances.

A collaboration diagram shows an interaction arranged around the objects that
perform operations. It is similar to an object diagram that shows the objects and
the links among them needed to implement a higher-level operation.

The time sequence of messages is indicated by sequence numbers on message
flow arrows. Both sequential and concurrent sequences can be shown using appro-
priate syntax. Sequence diagrams show time sequences using the geometric order
of the arrows in the diagram. Therefore, they do not require sequence numbers, al-
though sequence numbers may be included for convenience or to permit switch-
ing to a collaboration diagram.

Sequence diagrams and collaboration diagrams express similar information but
show it in different ways. Sequence diagrams show the explicit sequence of mes-
sages and are better for real-time specifications and for complex scenarios. Collab-
oration diagrams show the relationships among objects and are better for
understanding all the effects on an object and for procedural design.

Discussion
An activity diagram shows the procedural steps involved in performing a high-
level operation. It is not an interaction diagram, as it shows the flow of control be-
tween procedural steps rather than the flow of control between objects. An activity
diagram is primarily focused on the steps in the procedure. It does not show as-
signment of operations to target classes. An activity graph is a form a state ma-
chine; it models the state of execution of a procedure. A number of special icons
used in activity diagrams are equivalent to basic UML constructs subject to some
additional constraints, but they are provided for convenience.

interaction view

A view of a model that shows the exchange of messages among objects to accom-
plish some purpose. It consists of collaborations and interactions and is shown
using collaboration diagrams and sequence diagrams.

interface

A named set of operations that characterize the behavior of an element.
See also classifier, realization.

Encyclopedia of Terms interface • 311
Semantics
An interface is a descriptor for the externally visible operations of a class, compo-
nent, or other entity (including summarization units, such as packages) without
specification of internal structure. Each interface often specifies only a limited part
of the behavior of an actual class. A class may support many interfaces, either dis-
joint or overlapping in their effect. Interfaces do not have implementation; they
lack attributes, states, and associations; they have only operations and signals re-
ceived. Interfaces may have generalization relationships. A child interface includes
all the operations and signals of its ancestors but may add additional operations.
An interface is essentially equivalent to an abstract class with no attributes and no
methods and only abstract operations. All the operations in an interface have pub-
lic visibility (otherwise, there would be no point to including them, as an interface
has no “inside” that could use them).

The following extended definition indicates the purpose of an interface.

• An interface is a collection of operations used to specify a service of a class or a
component.

• An interface serves to name a collection of operations and to specify their signa-
tures and their effects. An interface focuses upon the effects, not the structure, of
a given service. An interface offers no implementation for any of its operations.
The operation list may also include signals the class is prepared to handle.

• An interface is used for specifying a service the supplier provides and that other
elements can request. An interface gives a name to a collection of operations that
work together to carry out some logically interesting behavior of a system or a
part of a system.

• An interface defines a service offered by a class or a component. It defines a ser-
vice that is in turn implemented by a class or a component. As such, an interface
spans the logical and physical boundaries of a system. One or more classes
(which are likely a part of some component subsystem) may provide a logical
implementation of an interface. One or more components may provide a physi-
cal packaging that conforms to that same interface.

• If a class realizes (implements) an interface, then it must declare or inherit all the
operations in the interface. It may contain additional operations (see realiza-
tion). If the class realizes more than one interface, it must contain each opera-
tion found in any of its interfaces. The same operation may appear in more than
one interface. If their signatures match, they must represent the same operation
or they are in conflict and the model is ill formed. (An implementation may
adopt language-specific rules for matching signatures. For example, in C++, pa-
rameter names and return types are ignored.) An interface makes no statement

312 • interface Encyclopedia of Terms
about the attributes or associations of a class; they are part of its implementa-
tion.

• An interface is a generalizable element. A child interface inherits all the opera-
tions of its parent and may add some operations. Realization may be considered
behavior inheritance; a class inherits the operations of another classifier, but not
its structure. A class may realize another class. The class serving as the specifica-
tion acts as an interface in that only its operations affect the relationship.

• Interfaces do participate in associations. An interface may not have an associa-
tion that is navigable starting from the interface. An interface may be the target
of an association, however, provided the association is navigable only toward the
interface.

Notation
An interface is a classifier and may be shown using the rectangle symbol with the
keyword «interface». A list of operations supported by the interface is placed in the
operation compartment. Signals bearing the «signal» stereotype may also be in-
cluded in the operation list, or they may be listed in their own compartment. The
attribute compartment may be omitted because it is always empty.

An interface may also be displayed as a small circle with the name of the inter-
face placed below the symbol. The circle may be attached by a solid line to classes
(or to other elements) that support it. It may also be attached to higher-level con-
tainers, such as packages, that contain the classes. This indicates that the class pro-
vides all the operations in the interface type (and possibly more). The circle
notation does not show the list of operations that the interface supports. Use the
full rectangle symbol to show the list of operations. A class that uses or requires
operations supplied by the interface may be attached to the circle by a dashed ar-
row pointing to the circle. The dashed arrow implies that the class requires the op-
erations specified in the interface for some purpose, but the client class is not
required to use all the interface operations. A service is usually specified by a suffi-
ciency test. If a supplier provides the operations contained in a set of interfaces,
then it satisfies the requirements of the clients.

The realization relationship is shown by a dashed line with a solid triangular ar-
rowhead (a “dashed generalization symbol”) from a class to an interface it sup-
ports. This is the same notation used to indicate realization of a type by an
implementation class. In fact, this symbol can be used between any two classifier
symbols, indicating that the client (at the tail of the arrow) supports all the opera-
tions defined in the supplier (at the head of the arrow), but with no necessity to
support any data structure of the supplier (attributes and associations).

Encyclopedia of Terms interface • 313
Example
Figure 13-111 shows a simplified view of financial components that deal with
prices of securities. The FinancialPlanner is a personal finance application that
keeps track of investments, as well as personal expenses. It needs the ability to up-
date securities prices. The MutualFundAnalyzer examines mutual funds in detail.
It needs the ability to update the prices of the underlying securities, as well as the
prices of the funds. The ability to update securities prices is shown by the interface
UpdatePrices. There are two components that implement this interface, shown by
the solid lines connecting them to the interface symbol. Component ManualPri-
ceEntry allows a user to manually enter prices of selected securities. Component
QuoteQuery retrieves security prices from a quote server using a modem or the
Internet.

Figure 13-112 shows the full notation for an interface as a keyword on a class
symbol. We see that this interface involves two operations—asking the price of a
security and getting a value; and submitting a list of securities and receiving a list
of prices that have changed. In this diagram the QuoteQuery component is con-
nected to the interface using a realization arrow, but it is the same relationship
shown in the previous diagram, just a more explicit notation.

This diagram also shows a new interface, PeriodicUpdatePrices, which is a child
of the original interface. It inherits the two operations and adds a third operation
that submits a request for a periodic, automatic update of prices. This interface is
realized by the component QuoteServer, a subscription service. It implements the
same two operations as QuoteQuery but in a different way. It does not share the
implementation of QuoteQuery (in this example) and therefore does not inherit
implementation from it.

Figure 13-112 shows the difference between interface inheritance and full inher-
itance. The latter implies the former, but a child interface may be implemented in

Figure 13-111. Interface suppliers and clients

FinancialPlanner

MutualFundAnalyzer

ManualPriceEntry

QuoteQuery

UpdatePrices

314 • interface inheritance Encyclopedia of Terms
a different way than the parent interface. QuoteServer supports the interface that
QuoteQuery implements, namely UpdatePrices, but it does not inherit the imple-
mentation of QuoteQuery. (In general, it is convenient to inherit implementation,
as well as interface, so the two hierarchies are often identical.)

An interface may also contain a list of the signals it handles (Figure 13-113).
Interfaces are used to define the behavior of classes, as well as components,

without restricting the implementation. This permits distinguishing interface in-
heritance, as declared in Java, from implementation inheritance.

interface inheritance

The inheritance of the interface of a parent element but not its implementation or
data structure. The intention to support an interface without a commitment to
implementation is modeled using realization.

Figure 13-112. Full interface notation

Figure 13-113. Interface with signals

«interface»
UpdatePrices

getPrice(name:String):Money
updateChanges(list:SecurityList)

«interface»
PeriodicUpdatePrices

periodicUpdate(list:SecurityList, period:Time)

QuoteQuery

QuoteServer

This could equally well be realization,
because there is no implementation to inherit.

«interface»
DoorOpener

signals
close
open
stop

Encyclopedia of Terms interface specifier • 315
Note that in UML, generalization implies inheritance of both interface and im-
plementation. To inherit just the implementation without the interface, use pri-
vate inheritance.

See also implementation inheritance, inheritance, private inheritance, realiza-
tion.

interface specifier

A specification of the behavior required of an associated class to satisfy the intent
of the association. It consists of a reference to an interface, class, or other classifier
that specifies the required behavior.

See also association role, rolename, type.

Semantics
In many cases, an associated class may have more functionality than needed to
support a particular association. For example, the class may participate in other
associations, and its overall behavior is the behavior needed to support all of them
together. It may be desirable to specify more precisely the functionality needed
from a class to support an association. An interface specifier is a classifier attached
to an association end that indicates the functionality needed to support the associ-
ation, without regard for uses of the target class by other associations.

An interface specifier is not required. In many or even most cases, a class partic-
ipating in an association has just the functionality required and nothing more
need be said. If an interface specifier is omitted, the association may be used to ob-
tain full access to the functionality of the associated class.

The specifier can be a set of classifiers, each of which states behavior the target
class must support. The target class must support all of them but may do more
than is required by the specifiers.

Notation
An interface specifier is shown by the syntax

rolename : inamelist,

in place of a plain rolename, where iname is the name of an interface or other clas-
sifier. If there is more than one specifier, their names are given as a comma-
separated list.

Example
In Figure 13-114, class Server stores requests in an Array class. For this purpose,
however, it requires only the functionality of a Queue class. It doesn’t make ran-
dom access to the information, for example. The actual class Array satisfies the

316 • internal transition Encyclopedia of Terms
needs of the interface specifier Queue—an array includes the functionality of a
queue. The Monitor, however, has an Array that it uses to display the status of re-
quests. The Monitor uses the full functionality of an Array.

Discussion
The use of a rolename and an interface specifier are equivalent to creating a small
collaboration that includes just an association role and two classifier roles, the
structure of which is defined by the rolename and role classifier on the original as-
sociation. The original association and classes are therefore a use of the collabora-
tion. The original class must be compatible with the interface specifier (which can
be an interface or a type).

internal transition

A transition attached to a state that has an action but does not involve a change of
state.

See also state machine.

Semantics
An internal transition allows an event to cause an action without a change of state.
An internal transition has a source state but no target state. If it fires, its action is
executed but the state does not change, even if the internal transition is attached to
and inherited from an enclosing state of the current state. Therefore, no entry ac-
tion or exit action are executed. In this respect, it differs from a self-transition,
which causes the exit of nested states and the execution of exit and entry actions.

Figure 13-114. Interface specifier

Array Server
requests:Queue

Monitor

watchList

interface specifierrolename

underlying class

This class needs an array.

This class just needs a queue.

Encyclopedia of Terms invariant • 317
Notation
An internal transition is shown as a text entry within the internal transition com-
partment of a state. The entry has the same syntax as the text label for an external
transition. Because there is no target state, there is no need to attach it to an arrow.

event-name / action-expression

The event names entry, exit, do, and include are reserved words and may not be
used as event names. These reserved words are used to declare an entry action, an
exit action, the execution of an activity, or the execution of a submachine, respec-
tively. For uniformity, these special actions use internal transition syntax to specify
the action. They are not internal transitions, however, and the reserved words are
not event names.

Figure 13-115 shows the notation.

Discussion
An internal transition may be thought of as an “interrupt” that causes an action
but does not affect the current state, and therefore does not invoke exit or entry ac-
tions. Attaching an internal transition to a composite state is a good way to model
an action that must occur over a number of states but must not change the active
state—for example, displaying a help message or counting the number of occur-
rences of an event. It is not the right way to model an abort or an exception. These
should be modeled by transitions to a new state, as their occurrence invalidates the
current state.

invariant

A constraint that must be true at all times (or, at least, at all times when no opera-
tion is incomplete).

Semantics
An invariant is a Boolean expression that must be true at all times that no opera-
tion is active. It is an assertion, not an executable statement. Depending on the

Figure 13-115. Internal transition syntax

Typing Password

help / display help
entry / set echo invisible
exit / set echo normal

internal transition

entry action

exit action

318 • iteration expression Encyclopedia of Terms
exact form of the expression, it might or might not be possible to verify it auto-
matically in advance.

See also precondition, postcondition.

Structure
An invariant is modeled as a constraint with the stereotype «invariant» attached to
an element.

Notation
A postcondition can be shown in a note with the keyword «invariant». The note is
attached to a classifier, attribute, or other element.

iteration expression

An expression that yields a set of iteration cases. Each iteration case specifies an
execution of an action within an iteration. An iteration case may include the as-
signment of values to an iteration variable. The action is performed once for each
iteration case.

See also message.

Semantics
The iteration expression represents conditional or iterative execution. It represents
the execution of zero or more messages depending on the conditions involved. The
choices are

* [iteration-clause] An iteration

[condition-clause] A branch

An iteration represents a sequence of messages. The iteration-clause shows the
details of the iteration variable and test, but it may be omitted (in which case the
iteration conditions are unspecified). The iteration-clause is meant to be ex-
pressed in pseudocode or an actual programming language. UML does not pre-
scribe its format. An example would be

*[i := 1..n]

A condition represents a message whose execution is contingent on the truth of the
condition-clause. The condition-clause is meant to be expressed in pseudocode
or an actual programming language. UML does not prescribe its format. An exam-
ple would be

[x > y]

Note that a branch is notated the same as an iteration without a star. You can think
of it as an iteration restricted to a single occurrence.

Encyclopedia of Terms join • 319
The iteration notation assumes that the messages in the iteration will be exe-
cuted sequentially. There is also the possibility of executing them concurrently.
That notation is a star followed by a double vertical line, for parallelism (*||). For
example,

*[i:=1..n]|| q[i].calculateScore ()

Note that in a nested control structure, the iteration expression is not repeated at
inner levels of the sequence number. Each level of structure specifies its own itera-
tion within its enclosing context.

iterative development

The development of a system by a process broken into a series of steps, or itera-
tions, each of which provides a better approximation to the desired system than
the previous iteration. The result of each step must be an executable system that
can be executed, tested, and debugged. Iterative development is closely allied with
the concept of incremental development. In iterative incremental development,
each iteration adds incremental functionality to the previous iteration. The order
of adding functionality is chosen to balance the size of the iterations and to attack
potential sources of risk early, before the cost of fixing problems is large.

See development process.

join

A place in a state machine, activity diagram, or sequence diagram at which two or
more concurrent threads or states combine to yield one thread or state; an and-
join or “unfork.” Antonym: fork.

See complex transition, composite state.

Semantics
A join is a transition with two or more source states and one target state. If all the
source states are active and the trigger event occurs, the transition action is exe-
cuted and the target state becomes active. The source states must be in different re-
gions of a concurrent composite state.

Notation
A join is shown as a heavy bar with two or more incoming transition arrows and
one outgoing transition arrow. It may have a transition label (guard condition,
trigger event, and action). Figure 13-116 shows an explicit join from states in a
concurrent composite state.

320 • junction state Encyclopedia of Terms
Discussion
See merge.

junction state

A pseudostate that is part of a single overall transition in a state machine. It does
not break a single run-to-completion step in the execution of a transition.

See also branch, merge.

Semantics
A transition in a state machine can cross several composite state boundaries from
the source state to the target state. In executing such a transition, one or more en-
try actions or exit actions may be invoked. Sometimes, it is necessary to interleave
one or more actions on the transition with the entry actions and exit actions at-
tached to the nested states. This is not possible with a simple transition, which has
a single action attached.

It is also convenient to allow several triggers to have a single outcome, or to al-
low a single trigger to have several possible outcomes with different guard condi-
tions.

A junction state is a pseudostate that makes it possible to build a single overall
transition from a series of transition fragments. A junction state may have one or
more incoming transition segments and one or more outgoing transition seg-
ments. It may not have an internal activity, a submachine, or any outgoing transi-
tions with event triggers. It is a dummy state to structure transitions and not a
state that can be active for any finite time.

A junction state is used to structure a transition from several segments. Only the
first segment in a chain of junction states may have an event trigger, but all of them
may have guard conditions. Subsequent segments must be triggerless. The effec-
tive guard condition is the conjunction of all the individual guard conditions. The
transition does not fire unless the entire set of conditions is met. In other words,
the state machine may not remain at the junction state.

Figure 13-116. Join

T

A2A1

B1 B2

join

e1

S

Encyclopedia of Terms junction state • 321
If multiple transitions enter a single junction state, they may each have a differ-
ent trigger or may be triggerless. Each path through a set of junction states repre-
sents a distinct transition.

An outgoing transition may have a guard condition. If there are multiple outgo-
ing transitions, each must have a distinct guard condition. This is a branch.

An outgoing transition may have an action attached. (The junction state may
have an internal action, but this is equivalent to attaching an action to the outgo-
ing transition, which is the preferred form.) The action is executed provided all
guard conditions are satisfied, even those found in subsequent segments. A transi-
tion may not “partially fire” so that it stops at a junction state. It must reach a nor-
mal state.

When an incoming transition fires, the outgoing transition will fire immedi-
ately. Any attached action is then executed. The execution of the incoming transi-
tion and the outgoing transition are part of a single atomic step (a run-to-
completion step)—that is, they are not interruptible by an event or other actions.

Notation
A junction state is shown in a state machine as a small circle. It has no name. It
may have incoming and outgoing transition arrows.

Example
Figure 13-117 shows two complete transitions from state S to state T—a single-
segment transition triggered by event f, and a multisegment transition triggered
by event e, which is structured using two junction states. The annotations show
the interleaving of the transition actions with the exit and entry actions.

Note that the placement of the action label on the transition line has no signifi-
cance. If action d had been placed inside state X, it would nevertheless be executed
after state X is exited and before state Y is entered. Therefore, it should be drawn at
the outermost location along the transition.

Figure 13-117. Junction states

S T
e / a / b / c

f / dexit / p entry / q

X Y

e / a; p; b; q; c

f / p; d; q

effective result
junction states

322 • keyword Encyclopedia of Terms
For other examples, see Figure 13-179 and Figure 13-184.
See also control icons for other shortcut symbols that may be included in state-

chart diagrams and activity diagrams.

keyword

A keyword is a textual adornment that categorizes a model element that lacks its
own distinct syntax.

See also graphic marker, stereotype.

Notation
Keywords are used for built-in model elements that lack a unique notation, as well
as for user-definable stereotypes. The general notation for the use of a keyword is
to enclose it in guillemets (« »).

«keyword»

When the keyword is part of an area symbol, such as a class rectangle, the keyword
is placed within the symbol boundary.

Some predefined keywords are described in the text of this document and are
treated as reserved words in the notation. Other names are available for users to
employ as stereotype names. The use of a stereotype name that matches a pre-
defined keyword is not allowed.

Discussion
The number of easily distinguishable visual symbols is limited. The UML notation
therefore makes use of text keywords to distinguish variations on a common
theme, including metamodel subclasses of a base class, stereotypes of a metamodel
base class, and groups of list elements. From the user’s perspective, the metamodel
distinction between metamodel subclasses and stereotypes is often unimportant,
although it is, of course, important to tool builders and others who implement the
metamodel.

label

A term for a use of a string on a diagram. It is purely a notational term.
See also diagram.

Notation
A label is a graphic string that is logically attached to another symbol on a dia-
gram. Visually, the attachment is usually a matter of containing the string in a
closed region or placing the string near the symbol. For some symbols the string is

Encyclopedia of Terms leaf • 323
placed in a definite position (such as below a line), but for most symbols, the
string must be “near” a line or icon. An editing tool can maintain an explicit inter-
nal graphic linkage between a label and a graphic symbol so that the label remains
logically connected to the symbol even if they become separated visually. But the
final appearance of the diagram is a matter of aesthetic judgment and should be
made so that there is no confusion about which symbol a label is attached to. Al-
though the attachment may not be obvious from a visual inspection of a diagram,
the attachment is clear and unambiguous at the graphic structure level (and there-
fore poses no ambiguity in the semantic mapping). A tool may visually show the
attachment of a label to another symbol using various aids (such as a colored line
or flashing of matched elements) as a convenience.

language type

An anonymous data type defined in the syntax of a programming language.
See also data type.

Semantics
A language type is an expression to be interpreted as a programming-language
data type. It may be used as the type of an attribute, variable, or parameter. It does
not have a name and does not declare a new data type.

For example, the C++ data type “Person* (*)(Contract*, int)” could be defined as
a C++ language type.

The intent of a language type is implementation in a programming language.
Associations should be used for more logical relationships.

layer

An architectural pattern of grouping packages in a model at the same level of ab-
straction. Each layer represents a virtual world at some level of reality.

leaf

A generalizable element that has no children in the generalization hierarchy. It
must be concrete (fully implemented) to be of any use.

See also abstract, concrete.

Semantics
The leaf property declares that an element must be a leaf. The model is ill formed if
it declares a child of such an element. The purpose is to guarantee that a class can-
not be modified, for example, because the behavior of the class must be well estab-
lished for reliability. The leaf declaration also permits separate compilation of

324 • lifeline Encyclopedia of Terms
parts of a system by ensuring that methods cannot be overridden and facilitating
inlining of method code. An element for which the property is false may indeed be
a leaf but might have children in the future if the model is modified. Being a leaf or
being constrained to be a leaf are not fundamental semantic properties.

lifeline

A dashed line in a sequence diagram that shows the existence of an object over a
period of time. The line is parallel to the time axis.

See also sequence diagram.

Semantics
The lifeline indicates the period during which an object exists. An object is active if
it owns a thread of control—that is, if it is the root of the thread. A passive object is
temporarily active during the time when it has a thread of control passing through
it—that is, during the period of time during which it has a procedure call out-
standing. The latter is called an activation. It includes the time during which a
procedure is calling a lower-level procedure.

Notation
An object or a classifier role is shown on a sequence diagram as a vertical dashed
line, called the lifeline. The lifeline represents the existence of the object at a par-
ticular time.

Arrows between lifelines indicate messages between objects. An arrow with its
head on a lifeline is a message received by the object, an operation that it has re-
sponsibility for; an arrow with its tail on a lifeline is a message sent by the object,
an operation that it invokes. The geometric order of the message arrows along the
lifeline indicates the relative time order of the messages.

If the object is created or destroyed during the period of time shown on the dia-
gram, then its lifeline starts or stops at the appropriate point. Otherwise, it goes
from the top to the bottom of the diagram. An object symbol is drawn at the head
of the lifeline. If the object is created during the time shown on the diagram, then
the object symbol is drawn at the head of the message that creates it. Otherwise,
the object symbol is drawn above any message arrows. If the object is destroyed
during the diagram, then its destruction is marked by a large X, either at the ar-
rowhead of the message that causes the destruction or (in the case of self-destruc-
tion) at the final return message from the destroyed object. An object that exists
when the transaction starts is shown at the top of the diagram (above the first ar-
row). An object that exists when the transaction finishes has its lifeline continue
beyond the final arrow.

Encyclopedia of Terms link • 325
The lifeline may split into two or more concurrent lifelines to show conditional-
ity. Each track corresponds to a conditional branch in the message flow. The life-
lines may join at some subsequent point. See Figure 13-162 for an example. This
notation can be confusing and should be used sparingly.

The period of time during which an object is permanently or temporarily active
is shown by a solid double line that hides the lifeline. A second double line is over-
laid to show recursion. See activation for more details. Because an active object is
always active, the double line is sometimes omitted because it adds no informa-
tion.

A lifeline may be interrupted by a state symbol to show a change of state. This
corresponds to a become transition within a collaboration diagram. An arrow may
be drawn to the state symbol to indicate the message that caused the change of
state. See Figure 13-163 for an example.

link

A tuple of object references that is an instance of an association or an association
role.

Semantics
A link is an individual connection among two or more objects. It is a tuple (or-
dered list) of object references. It is an instance of an association. The objects must
be direct or indirect instances of the classes at corresponding positions in the asso-
ciation. An association may not contain duplicate links from the same associa-
tion—that is, two identical tuples of object references.

A link that is an instance of an association class may have a list of attribute val-
ues in addition to the tuple of object references. Duplicate links with the same tu-
ple object references are not permitted, even if their attribute values are distinct.
The identity of a link comes from its tuple of object references, which must be
unique.

A link may be used for navigation. In other words, an object appearing in one
position in a link may obtain the set of objects appearing in another position. It
may then send them messages (called “sending a message across an association”).
This process is efficient if the association has the navigability property in the target
direction. Access may or may not be possible if the association is nonnavigable,
but it will probably be inefficient. Navigability in opposite directions is specified
independently.

Within a collaboration, an association role is a contextual, often transient, rela-
tionship between classifiers. An instance of an association role is also a link, but
typically one whose life is limited to the duration of the collaboration.

326 • link Encyclopedia of Terms
Notation
A binary link is shown as a path between two objects—that is, one or more con-
nected line segments or arcs. In the case of a reflexive association, the path is a
loop, with both ends on a single object.

See association for details of paths.
A rolename may be shown at each end of the link. An association name may be

shown near the path. If present, the name is underlined to indicate an instance.
Links do not have instance names. They take their identity from the objects they
relate. Multiplicity is not shown for links because instances do not have multiplic-
ity; multiplicity is a property of the descriptor that limits how many instances can
exist. Other association adornments (aggregation, composition, and navigation)
may be shown on the link roles.

A qualifier may be shown on a link. The value of the qualifier may be shown in
its box. Figure 13-118 shows both ordinary and qualified links.

Other adornments on links can show properties of their associations, including
directionality of navigation, aggregation or composition, implementation stereo-
types, and visibility.

N-ary link. An n-ary link is shown as a diamond with a path to each participating
object. The other adornments on the association and the adornments on the roles
have the same possibilities as the binary link.

Discussion
How should a dependency be shown on an object diagram? In general, a depen-
dency represents a relationship among classes, not among objects and belongs on a
class diagram, not an object diagram. What about procedure arguments, local
variables of procedures, and the caller of an operation? These must exist as actual

Figure 13-118. Links

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer
link object

qualifier value

Encyclopedia of Terms list • 327
data structures, not simply dependencies. Therefore, they can be shown as links.
The caller of a procedure requires a reference to the target object—this is a link.
Some links may be instances of association roles in collaborations, such as most
parameters and local variables. Remaining dependencies are relevant to the class
itself and not its individual objects.

link end

An instance of an association end.

list

An ordered variable-length collection of model elements owned by and nested
within another model element.

See also classifier, state.

Semantics
A classifier contains several lists of subordinate elements, including attributes, op-
erations, and methods. A state contains a list of internal transitions. Other kinds of
elements contain lists of other elements. Each kind of list is described individually.
This article describes the properties of embedded lists, in general. In addition to
lists of attributes and operations, optional lists can show other predefined or user-
defined values, such as responsibilities, rules, or modification histories. UML does
not define these optional lists. The manipulation of user-defined lists is tool-de-
pendent.

An embedded list and the elements in the list belong exclusively to the contain-
ing class or other container element. Ownership is not shared among multiple
containers. Other classes may be able to access the list elements—for example, by
inheritance or association—but ownership of the contained lists for model editing
belongs to the immediate container. Owned elements are stored, copied, and de-
stroyed along with their containers.

The elements in a list have an order determined by the modeler. The order may
be useful to the modeler—for example, it may be used by a code generator to gen-
erate a list of declarations in a programming language. If the modeler doesn’t care
about the order, maybe because the model is in the analysis stage or because the
language ignores the ordering, then the order still exists in the model but can sim-
ply be ignored as irrelevant.

Notation
An embedded list appears within its own compartment as a list of strings, one
string per line for each list element. Each string is the encoded representation of a
feature, such as an attribute, operation, internal transition, and so on. The nature
of the encoding is described in the article for each kind of element.

328 • list Encyclopedia of Terms
Ordering. The canonical order of the strings is the same as for the list elements
within the model, but the internal ordering may be optionally overridden and the
strings sorted according to some internal property, such as name, visibility, or ste-
reotype. Note, however, that the items maintain their original order in the under-
lying model. The ordering information is merely suppressed in the view.

Ellipsis. An ellipsis (. . .) as the final element of a list or the final element of a de-
limited section of a list indicates that there are additional elements in the model
that meet the selection criteria but are not shown in that list. In a different view of
the list, such elements may appear.

Stereotype. A stereotype may be applied to a list element. A stereotype keyword
enclosed in guillemets (« ») precedes the element string.

Property string. A property string may specify a list of properties of an element. A
comma-separated list of properties or constraints, all enclosed in braces ({ }), fol-
lows the element.

Group properties. Stereotypes and other properties may also be applied to groups
of list elements. If a stereotype, keyword, property string, or constraint appears on
a line by itself, then the line does not represent a list element. Instead, the restric-
tions apply to each successive list element as if they had been placed directly on
each line. This default applies until another group property line occurs in the list.
All group properties can be cancelled by inserting a line with an empty keyword
(«»), but it is generally clearer to place all entries that are not subject to group
properties at the head of the list. Figure 13-119 shows the application of stereo-
types to multiple list elements

Note that group properties are merely a notational convenience and that each
model element has its own distinct value for each property.

Compartment name. A compartment may display a name indicating which kind
of compartment it is. The name is displayed in a distinctive font (such as boldface
in a smaller size) centered at the top of the compartment. This capability is useful
if some compartments are omitted or if additional user-defined compartments are
added. For a class, the predefined compartments are named attributes and opera-
tions. An example of a user-defined compartment might be requirements. The
name compartment in a class must always be present and therefore does not re-
quire or permit a compartment name. Figure 13-119 and Figure 13-120 show
named compartments.

Presentation options
Ordering. A tool may present the list elements in a sorted order. In that case, the
inherent ordering of the elements is not visible. A sort is based on some internal
property and does not indicate additional model information. Typical sort rules
include alphabetical order, ordering by stereotype (such as constructors, destruc-

Encyclopedia of Terms list • 329
tors, then ordinary methods), ordering by visibility (public, then protected, then
private), and so on.

Filtering. The elements in the list may be filtered according to some selection rule.
The specification of selection rules is a tool responsibility. If a filtered list shows no
elements, there are no elements that meet the filter criterion, but the original list
may or may not contain other elements that do not meet the criterion and are
therefore invisible. It is a tool responsibility whether and how to indicate the

Figure 13-119. Stereotype keyword applied to groups of list elements

Figure 13-120. Compartments with names

«constructor»
Rectangle(p1:Point, p2:Point)
«query»
area (): Real
aspect (): Real

«update»
move (delta: Point)
scale (ratio: Real)
. . .

. . .

Rectangle

p1:Point
p2:Point

keyword
constructor operations

unshown items exist

constraints
Area must be greater than 0.

named compartment

keyword
query operations

bill no-shows

Reservation

guarantee()
cancel ()
change (newDate: Date)

responsibilities

match to available rooms

exceptions
invalid credit card

predefined operation compartment

user-defined compartment

compartment name

330 • location Encyclopedia of Terms
presence of either local or global filtering, although a stand-alone diagram should
have some indication of such filtering if it is to be understandable.

If a compartment is suppressed, no inference can be drawn about the presence
or absence of its elements. An empty compartment indicates that no elements
meet the selection filter (if any).

Note that attributes may also be shown by composition (see Figure 13-71).

location

The physical placement of a run-time entity, such as an object or a component,
within a distributed environment. In UML, location is discrete and the units of lo-
cation are nodes.

See also component, node.

Semantics
The concept of location requires the concept of a space within which things can
exist. UML does not model the full complexity of the three-dimensional universe.
Instead, it supports a topological model of spaces connected by communications
paths. A node is a computing resource at which a run-time entity can live. Nodes
are connected by communications paths modeled as associations. The location of
an entity is specified by referencing a node. Within a node, some entities live inside
other nested entities. For example, an object lives inside a component or inside an-
other object. The location of these entities is the containing entity.

An object or component instance may move to a new location. This may be
modeled using the become relationship, which indicates that at some point the
first entity is replaced by the second entity, which has a different location.

Notation
The location of an instance (including objects, component instances, and node in-
stances) within another instance may be shown by physical nesting, as shown in
Figure 13-121. Containment may also be shown by composition arrows. Alter-
nately, an instance may have a property tag location the value of which is the name
of the containing instance.

If an object moves during an interaction, it may appear as two or more versions
with a become transition between the versions, as in Figure 13-121. The become
arrow may have a sequence number attached to it to show the time when the ob-
ject moves. Each object symbol represents a version of the object during a portion
of the overall time. Messages must be connected to the correct version of the ob-
ject (Figure 13-117).

Encyclopedia of Terms merge • 331
many

An abbreviation for the multiplicity 0..*—that is, zero or more without limit. In
other words, totally unrestricted in size.

See multiplicity.

member

Name for a named structural inheritable constituent of a classifier, either an at-
tribute, operation, or method. Each classifier may have a list of zero or more of
each kind of member. A list of members of a given kind is notated as a list of
strings within a compartment of the classifier symbol.

See also list.

merge

A place in a state machine, activity diagram, or sequence diagram where two or
more alternate control paths come together; an or-merge or “unbranch.” Ant-
onym: branch.

See also junction state.

Figure 13-121. Nodes and migration of objects

Node1

Node2

«cluster»

x y

«cluster»

x y

«become»

«database»

w z
the object before migration

the object after migration

332 • merge Encyclopedia of Terms
Semantics
A merge is simply a situation in which two or more control paths come together.
In a state machine, one state has more than one input transition. No special model
construct is required or provided to indicate a merge. It may be indicated by a
junction state if it is part of a single run to completion path.

Notation
A merge may be indicated in a statechart diagram, activity diagram, or sequence
diagram by a diamond with two or more input transitions and a single output
transition. No conditions are necessary. Figure 13-122 shows an example.

A diamond is also used for a branch (the inverse of a merge), but a branch is
clearly distinguished because it has one input transition and multiple output tran-
sitions, each with its own guard condition.

Figure 13-122. Merge

Assign
seats

Hold in
will-call

Mail
tickets

branch

merge

Charge
credit card

[today ≥ 7 days before show] [today < 7 days before show]

Customer
picks up
tickets

Customer
attends
show

Encyclopedia of Terms message • 333
A combination branch and merge is legal but of limited usefulness. It would
have multiple input transitions and multiple, labeled output transitions.

Note that a merge is merely a notational convenience and can be omitted with-
out loss of information. A branch and merge are usually paired in a nested fashion.

Discussion
Be sure to distinguish merge and join. Merge combines two or more alternate
paths of control. In any execution, only one path will be taken at a time. No syn-
chronization is necessary.

Join combines two or more concurrent paths of control. In any execution, all
the paths will be taken, and the join will fire only when all of them have reached
the source states of the join.

message

The conveyance of information from one object (or other instance) to another,
with the expectation that activity will ensue. A message may be a signal or the call
of an operation. The receipt of a message instance is normally considered an in-
stance of an event.

See also call, collaboration, interaction, operation, send, signal.

Semantics
A message is the sending of a signal from one object (the sender) to one or more
other objects (the receivers), or it is the call of an operation on one object (the re-
ceiver) by another object (the sender or caller). The implementation of a message
may take various forms, such as a procedure call, interprocess communication be-
tween active threads, explicit raising of events, and so on. At a logical level, sending
a signal and calling an operation are similar. They both involve a communication
from a sender to a receiver that passes information by value that the receiver uses
to determine what to do. A call can be considered a pattern of signals that involves
a send with an implicit return pointer argument that is later used to send a return
signal to the caller. A call can be modeled as two messages, a call message and a
later return message. At an implementation level, signals and calls have different
properties and detailed behavior, so they are distinguished as UML elements.

The receipt of a signal may trigger a state machine transition for the receiver. A
call may be handled in two possible ways at the choice of the receiver (the choice
must be made in the model for the receiver). An operation may be implemented as
a procedure body (method) that is invoked when a call arrives. When execution of
the procedure is complete, then the caller resumes control, with an optional return
value. Alternately, for an active object, a call of an operation may cause a call event,
which triggers a state machine transition. In this case there is no method body,

334 • message Encyclopedia of Terms
instead transition can have actions. The transition can also supply a return value
for the caller. When the transition is complete, or immediately if the call event
does not trigger a transition, the caller resumes control.

A message includes an expression for a set of target objects. The message is sent
to each object in the set. Unless specified otherwise (by a constraint), the messages
are sent concurrently to all the objects in the set. This means that the execution or-
der is completely arbitrary and could be parallel. If messages must be sent in a par-
ticular order, they should be sent within a loop. In case of a call, the caller regains
control when all the calls have completed.

The time a message is sent or received may be represented by an expression on
the message name.

See timing mark.

Structure
A message has a sender, a receiver, and an action.

Within an interaction, the sender is the classifier role that sends the message.
The receiver is the classifier role that receives the message. The action is a call; a
signal; a local operation on the sender; or a primitive action, such as a create or de-
stroy. The action includes a list of arguments, an expression for a set of receivers,
and a reference to the operation or signal involved. It may also include a specifica-
tion of conditionality and iteration of the message execution.

Within an interaction, messages are related by the predecessor-successor rela-
tionship and the caller-called relationship. The latter relationship is applicable to
procedural methods. Each call adds a level of nesting to the sequence. Within a
call, messages are ordered sequentially, with the possibility of concurrent subse-
quences.

The predecessor-successor (sequencing) relationship organizes the messages of
a thread into a linear sequence. A message can have multiple predecessors or suc-
cessors. If two messages have a common predecessor and are not otherwise se-
quenced, then they may be executed concurrently. If a message has multiple
predecessors, it must wait until all of them complete. Such a message is a synchro-
nization point.

The caller-called (activator) relationship defines nested procedure structure.
The message that calls a procedure (using a call action) is the activator of all of the
messages that make up the body of the called procedure. Among themselves the
called messages have a predecessor-successor relationship to establish their relative
order (which may permit concurrency).

If a message is a call, then the caller is blocked until the called procedure com-
pletes and returns. If the receiver handles the operation as a call event, however,
the return occurs when the initial transition completes, after which the caller re-
sumes control and the receiver can continue its own execution.

Encyclopedia of Terms message • 335
The sequencing and activator relationships relate messages within the same in-
teraction only.

Notation
The notation for sequence diagrams and collaboration diagrams is different.

Sequence diagrams
On a sequence diagram, a message is shown as a solid arrow from the lifeline of
one object (the sender) to the lifeline of another object (the target). If the arrow is
perpendicular to the lifelines, the message transmission is regarded as instanta-
neous or at least fast, compared with external messages. If the arrow is slanted,
then the message transmission is regarded as having duration, during which other
messages might be sent. In case of a message from an object to itself, the arrow
may start and finish on the same lifeline. The message arrows are arranged in se-
quential order from top to bottom, vertically. If two messages are concurrent, their
relative order is not significant. Messages may have sequence numbers, but be-
cause the relative order of messages in shown visually, the sequence numbers are
often omitted.

Transmission delay. Usually message arrows are drawn horizontally, indicating the
duration required to send the message is atomic—that is, it is brief compared with
the granularity of the interaction and that nothing else can “happen” during the
message transmission. This is the correct assumption within many computers. If
the message requires some time to deliver, during which something else can occur
(such as a message in the opposite direction), then the message arrow may be
slanted downward so that the arrowhead is below the arrow tail.

Branching. A branch is shown by multiple arrows leaving a single point, each la-
beled by a guard condition. Depending on whether the guard conditions are mu-
tually exclusive, the construct may represent conditionality or concurrency.

Iteration. A connected set of messages may be enclosed and marked as an itera-
tion. An iteration marker indicates that the set of messages can occur multiple
times. For a procedure, the continuation condition for the iteration may be speci-
fied at the bottom of the iteration. If there is concurrency, then some messages in
the diagram may be part of the iteration and others may be singly executed.

Collaboration diagrams
On a collaboration diagram, a message is shown as a small labeled arrow attached
to a path between the sender and the receiver objects. The path is the one used to
access the target object. The arrow points along the path in the direction of the tar-
get object. In the case of a message from an object to itself, the message appears on
a path looping back to the same object and the target end has the keyword «self».

336 • message Encyclopedia of Terms
More than one message may be attached to one link, in the same or different direc-
tions. The relative order of messages is shown by the sequence number portion of
the message label.

Both diagrams
The message arrow is labeled with the name of the message (operation or signal
name) and its argument values. The arrow may also be labeled with a sequence
number to show the sequence of the message in the overall interaction. Sequence
numbers may be omitted in sequence diagrams, in which the physical location of
the arrow shows the relative sequence, but they are necessary in collaboration dia-
grams. Sequence numbers are useful on both kinds of diagrams for identifying
concurrent threads of control. A message may also be labeled with a guard condi-
tion.

Control flow type. The following arrowhead variations may be used to show vari-
ous kinds of message control flow.

Filled solid arrowhead
Procedure call or other nested flow of control. The entire
nested sequence is completed before the outer-level
sequence resumes. May be used with ordinary procedure
calls. May also be used with concurrently active objects
when one of them sends a signal and waits for a nested
sequence of behavior to complete.

Stick arrowhead
Flat flow of control. Each arrow shows the progression to
the next step in sequence. In the case of nested proce-
dures, this corresponds to a bottom-across scan of the
leaves of the tree of actions.

Half stick arrowhead
Asynchronous flow of control. Used instead of the stick
arrowhead to show explicitly an asynchronous message
between two objects in a procedural sequence.

Dashed arrow with stick arrowhead
Return from a procedure call. The return arrow may be
suppressed as it is implicit at the end of an activation.

Other variations
Other kinds of control may be shown, such as “balking”
or “time-out,” but these are treated as extensions to the
UML core.

Encyclopedia of Terms message • 337
Message label. The label has the following syntax:

predecessoropt guard-conditionopt sequence-expressionopt

return-value-list :=opt message-name (argumentlist,)

The label indicates the message sent, its arguments and return values, and the
sequencing of the message within the larger interaction, including call nesting, it-
eration, branching, concurrency, and synchronization.

Predecessor. In a collaboration, the predecessor is a comma-separated list of se-
quence numbers followed by a slash (/).

sequence-numberlist, /

The clause is omitted if the list is empty.
Each sequence-number is a sequence-expression without any recurrence

terms. It must match the sequence-number of another message.
The meaning is that the message flow is not enabled until all the message flows

whose sequence numbers are listed have occurred (a thread can go beyond the re-
quired message flow and the guard remains satisfied). Therefore, the guard condi-
tion represents a synchronization of threads.

Note that the message corresponding to the numerically preceding sequence
number is an implicit predecessor and need not be explicitly listed. All the se-
quence numbers with the same prefix form a sequence. The numerical predecessor
is the one in which the final term is one less. That is, number 3.1.4.5 is the prede-
cessor of 3.1.4.6.

In a sequence diagram the visual ordering determines the sequencing, and a
synchronization is shown by the presence of multiple messages to the same object
before the object sends any messages of its own.

Sequence expression. The sequence-expression is a dot-separated list of sequence-
terms followed by a colon (‘:’). Each term represents a level of procedural nesting
within the overall interaction. If all the control is concurrent, then nesting does
not occur. Each sequence-term has the following syntax.

label recurrenceopt

where label is

integer

or

name

The integer represents the sequential order of the message within the next higher
level of procedural calling. Messages that differ in one integer term are sequentially
related at that level of nesting. An example is: Message 3.1.4 follows message 3.1.3
within activation 3.1.

338 • message Encyclopedia of Terms
The name represents a concurrent thread of control. Messages that differ in the
final name are concurrent at that level of nesting. An example is: Message 3.1a and
message 3.1b are concurrent within activation 3.1. All threads of control are equal
within the nesting depth.

The recurrence represents conditional or iterative execution. This represents
zero or more messages that are executed, depending on the conditions. The
choices are

* [iteration-clause] an iteration

[condition-clause] a branch

An iteration represents a sequence of messages at the given nesting depth. The
iteration-clause may be omitted (in which case, the iteration conditions are un-
specified). The iteration-clause is meant to be expressed in pseudocode or an ac-
tual programming language; UML does not prescribe its format. An example
would be: *[i := 1..n].

A condition represents a message whose execution is contingent on the truth of
the condition clause. The condition-clause is meant to be expressed in
pseudocode or an actual programming language; UML does not prescribe its for-
mat. An example would be: [x > y].

Note that a branch is notated the same as an iteration without a star. One might
think of it as an iteration restricted to a single occurrence.

The iteration notation assumes that the messages in the iteration will be exe-
cuted sequentially. There is also the possibility of executing them concurrently.
The notation for this is to follow the star with a double vertical line, for parallelism
(*||).

Note that in a nested control structure, the recurrence is not repeated at inner
levels. Each level of structure specifies its own iteration within the enclosing con-
text.

Signature. A signature is a string that indicates the name, arguments, and return
value of an operation, message, or signal. These have the following properties.

return-value-list A comma-separated list of names that designates the val-
ues returned by the message within the subsequent execu-
tion of the overall interaction. These identifiers can be
used as arguments to subsequent messages. If the message
does not return a value, then the return value and the
assignment operator are omitted.

message-name The name of the event raised in the target object (often
the event of requesting an operation to be performed). It
may be implemented in various ways, one of which is an
operation call. If it is implemented as a procedure call,

Encyclopedia of Terms message • 339
then this is the name of the operation and the operation
must be defined on the class of the receiver or inherited
by it. In other cases, it may be the name of an event that is
raised on the receiving object. In normal practice with
procedural overloading, both the message name and the
argument list types are required to identify an operation.

argument-list A comma-separated list of arguments enclosed in paren-
theses. The parentheses can be used even if the list is
empty. Each argument is an expression in pseudocode or
an appropriate programming language (UML does not
prescribe). The expressions may use return values of pre-
vious messages (in the same scope) and navigation
expressions starting from the source object (that is,
attributes of it and links from it and paths reachable from
them).

Example
The following are samples of control message label syntax.

2: display (x, y) Simple message

1.3.1: p:= find(specs) Nested call with return value

[x < 0] 4: invert (x, color) Conditional message

3.1*: update () Iteration

A3,B4/ C2: copy(a,b) Synchronization with other threads

Presentation options
Instead of text expressions for arguments and return values, data tokens may be
shown near a message (Figure 13-123). A token is a small circle labeled with the
argument expression or return value name. It has a small arrow on it that points
along the message (for an argument) or opposite the message (for a return value).
Tokens represent arguments and return values. The choice of text syntax or tokens
is a presentation option, but text is more compact and is recommended for most
purposes.

Figure 13-123. Value flow tokens

namelist
search

namelistdialer

340 • metaclass Encyclopedia of Terms
The syntax of messages may be expressed in the syntax of a programming lan-
guage, such as C++ or Smalltalk. All the expressions on a single diagram should
use the same syntax, however.

metaclass

A class whose instances are classes. Metaclasses are typically used to construct
metamodels. A metaclass can be modeled as a stereotype of a class using the key-
word «metaclass».

See also powertype.

meta-metamodel

A model that defines the language for expressing a metamodel. The relationship
between a meta-metamodel and a metamodel is analogous to the relationship be-
tween a metamodel and a model. This level of indirection is usually relevant only
to tool builders, database builders, and the like. UML is defined in terms of a meta-
metamodel, called the Meta-Object Facility (MOF).

metamodel

A model that defines the language for expressing a model; an instance of a meta-
metamodel. The UML metamodel defines the structure of UML models.

metaobject

A generic term for all entities in a metamodeling language. For example,
metatypes, metaclasses, meta-attributes, and meta-associations.

metarelationship

A term grouping relationships that connect descriptors to their instances. These
include the instance relationship and the powertype relationship.

method

The implementation of an operation. It specifies the algorithm or procedure that
produces the results of an operation.

See also concrete, operation, realization.

Semantics
A method is an implementation of an operation. If an operation is not abstract, it
must have a method or a call event, either defined on the class with the operation
or inherited from an ancestor. A method is specified as a procedural expression, a

Encyclopedia of Terms method • 341
linguistic string in a designated language (such as C++, Smalltalk, or a human lan-
guage) that describes an algorithm. The language must be matched to the purpose,
of course. A human language, for instance, may be adequate for early analysis but
not suitable for code generation.

An operation declaration implies the presence of a method unless the operation
is declared as abstract. In a generalization hierarchy, each repeated declaration of
the operation implies a new method that overrides any inherited method of the
same operation. Two declarations represent the same operation if their signatures
match.

Note that a method is an executable procedure—an algorithm—not simply a
specification of results. A before-and-after specification is not a method, for exam-
ple. A method is a commitment to implementation and addresses issues of algo-
rithm, computational complexity, and encapsulation.

In some respects, a method may have stricter properties than its operation. A
method can be a query even though the operation is not declared as a query. But if
the operation is a query, then the method must be a query. Similarly, a method
may strengthen the concurrency property. A sequential operation may be imple-
mented as a guarded or concurrent method. In these cases, the method is consis-
tent with the declarations of its operation. It just strengthens the constraints.

Notation
The presence of a method is indicated by an operation declaration that lacks the
abstract property (Figure 13-124). If the operation is inherited, the method can be
shown by repeating the operation declaration in normal (nonitalic) text to show a
concrete operation. The text of the method body may be shown as a note attached

Figure 13-124. Method on nonabstract operation

Shape

draw ()

Rectangle

draw ()

center: Point
height: Real
width: Real

abstract operation

operation with method

generalization

342 • model Encyclopedia of Terms
to the operation list entry, but usually method bodies are not shown at all on dia-
grams. They remain hidden for a text editor to show on command.

model

A semantically complete abstraction of a system.
See also package, subsystem.

Semantics
A model is a more or less complete abstraction of a system from a particular view-
point. It is complete in the sense that it fully describes the system or entity, at the
chosen level of precision and viewpoint. Different models provide mostly inde-
pendent viewpoints that can be manipulated separately.

A model may comprise a containment hierarchy of packages in which the top-
level package corresponds to the entire system. The contents of a model are the
transitive closure of its containment (ownership) relationships from top-level
packages to model elements.

A model may also include relevant parts of the system’s environment, repre-
sented, for example, by actors and their interfaces. In particular, the relationship
of the environment to the system elements may be modeled. A system and its envi-
ronment form a larger system at a higher level of scope. Therefore, it is possible to
relate elements at various levels of detail in a smooth way.

Elements in different models do not directly affect each other, but they often
represent the same concepts at different levels of detail or stages of development.
Therefore, relationships among them, such as trace and refinement, are important
to the development process itself and often capture important design decisions.

Notation
A model can be shown as a package with the stereotype «model». There is little no-
tational detail to show about models, however. Tools can show lists of models, but
models have few relationships among themselves. Most useful is the ability to
traverse from a model name to its top package or to a map of its overall contents.

Discussion
No one view of a system, or indeed no system itself, is ever complete in and of it-
self. There are always connections to the wider world, and a model always falls
short of reality. Therefore, the concept of a closed model is always an approxima-
tion in which arbitrary lines must be drawn for practical work.

A UML model is represented as a package hierarchy that emphasizes one view of
a system. Each model may have its own leveling hierarchy that may be similar or
different to the leveling hierarchy of other views of the system.

Encyclopedia of Terms model management view • 343
model element

An element that is an abstraction drawn from the system being modeled. Contrast
with presentation element, which is a (generally visual) presentation of one or
more modeling elements for human interaction.

Semantics
All elements that have semantics are model elements, including real-world con-
cepts and computer-system implementation concepts. Graphic elements whose
purpose is to visualize a model are presentation elements. They are not model ele-
ments, as they do not add semantics to the model.

Model elements may have names, but the use and constraints on names vary by
kind of model element and are discussed with each kind. Each model element be-
longs to a namespace appropriate to the kind of element. All model elements may
have the following attached properties.

tagged value Zero or more tag-value pairs may be attached to any
model element or presentation element. The tag is a
name that identifies the meaning of the value. The tags
are not fixed in UML but can be extended to denote vari-
ous kinds of information meaningful to the modeler or to
an editing tool.

constraint Zero or more constraints may be attached to a model ele-
ment. Constraints are restrictions that are expressed as
linguistic strings in a constraint language.

stereotype Zero or one stereotype name may be attached to a model
element, provided the stereotype is applicable to the base
model element. The stereotype does not alter the struc-
ture of the base class, but it may add constraints and
tagged values that apply to the model elements bearing
the stereotype.

In addition, model elements may participate in dependency relationships.
See Chapter 14, Standard Elements, for a list of predefined tags, constraints, and

stereotypes.

model management view

That aspect of a model dealing with the organization of the model itself into struc-
tured parts—namely, packages, subsystems, and models. The model management
view is sometimes considered to be a part of the static view and is often combined
with the static view on class diagrams.

344 • modeling time Encyclopedia of Terms
modeling time

Refers to something that occurs during a modeling activity of the software devel-
opment process. It includes analysis and design. Usage note: When discussing
object systems, it is often important to distinguish between modeling-time and
run-time concerns.

See also development process, stages of modeling.

module

A software unit of storage and manipulation. Modules include source code mod-
ules, binary code modules, and executable code modules. The word does not
correspond to a single UML construct, but rather includes several constructs.

See component, package, subsystem.

multiobject

A classifier role that denotes a set of objects rather than a single object.
See also classifier role, collaboration, message.

Semantics
A multiobject is a classifier role that denotes a set of objects, usually the set of ob-
jects on the many side of an association. A multiobject is used within a collabora-
tion to show operations that address the entire set of objects as a unit rather than a
single object in it. For example, an operation to find an object within a set operates
on the entire set, not on an individual object. The underlying static model is unaf-
fected by this grouping.

Notation
A multiobject is shown as two rectangles in which the top rectangle is shifted
slightly vertically and horizontally to suggest a stack of rectangles (Figure 13-125).
A message arrow to the multiobject symbol indicates a message to the set of ob-
jects—for example, a selection operation to find an individual object.

To perform an operation on each object in a set of associated objects requires
two messages: an iteration to the multiobject to extract links to the individual ob-
jects, then a message sent to each object using the (temporary) link. This may be
elided on a diagram by combining the messages into one that includes an iteration
and an application to each object. The target rolename takes a many indicator (∗)
to show that many links are implied. Although this may be written as a single mes-
sage, in the underlying model (and in any actual code), it requires the two layers of
structure (iteration to find links, message using each link) mentioned previously.

Encyclopedia of Terms multiple inheritance • 345
An object from the set is shown as a normal object symbol, but it may be at-
tached to the multiobject symbol using a composition link to indicate that it is
part of the set. A message arrow to the simple object symbol indicates a message to
an individual object.

Typically, a selection message to a multiobject returns a reference to an individ-
ual object, to which the original sender then sends a message.

multiple classification

A semantic variation of generalization in which an object may belong directly to
more than one class.

Semantics
This is a semantic variation point under which an object may be a direct instance
of more than one class. When used with dynamic classification, objects may ac-
quire and lose classes during run time. This allows classes to be used to represent
temporary roles an object may play.

Although multiple classification matches logic and everyday discourse well, it
complicates implementation of a programming language and is not supported by
the popular programming languages.

multiple inheritance

A semantic variation point of generalization in which an element may have more
than one parent. This is the default assumption within UML and is necessary for
proper modeling of many situations, although modelers may choose to restrict its
use for certain kinds of elements. Contrast: single inheritance.

Figure 13-125. Multiobject

servers
:Server

:Server
aServer «local»

client

1: aServer:=find(specs)

2: process(request)

multiobject set queried by operation 1

object from the set selected by message 1
and targeted by message 2

The object is part of the set.

346 • multiplicity Encyclopedia of Terms
multiplicity

A specification of the range of allowable cardinality values—the size—that a set
may assume. Multiplicity specifications may be given for association ends, parts
within composite classes, repetitions of messages, and other purposes. Essentially,
a multiplicity is a (possibly infinite) subset of the nonnegative integers. Contrast:
cardinality.

See also multiplicity (of association), multiplicity (of class).

Semantics
Multiplicity is a constraint on the cardinality (size) of a set. In principle, it is a sub-
set of the nonnegative integers. In practice, it is usually a finite set of integer inter-
vals, most often a single interval with a minimum and a maximum value. Any set
must be finite, but the upper bound can be finite or unbounded (an unbounded
multiplicity is called “many”). The upper bound must be greater than zero; or, at
any rate, a multiplicity comprising only zero is not very useful, as it permits only
the empty set. Multiplicity is coded as a string.

In most cases, a multiplicity may be specified as an integer range—a minimum
and a maximum cardinality—but in general, it may be a discontinuous subset of
the nonnegative integers. The set of integers may be infinite—that is, the upper
bound may be unlimited (but note that any particular cardinality in the set is fi-
nite).

For most practical purposes, this set of integers can be specified as a finite list of
disjoint, disconnected integer intervals. An interval is a set of contiguous integers
characterized by its minimum and maximum values. Some infinite sets cannot be
specified this way—for example, the set of even integers—but usually little is lost
by simply including the gaps. For most design purposes, in fact, a single interval
with a minimum and maximum value suffices for the entire multiplicity specifica-
tion, because a major purpose of the multiplicity is to bound the amount of stor-
age that might be needed.

See multiplicity (of association) and multiplicity (of class) for specific details of
using multiplicity with these elements.

Notation
Multiplicity is specified by a text expression consisting of a comma-separated list
of integer intervals, each in the form

minimum..maximum

where minimum and maximum are integers, or maximum can be a “∗ ” which
indicates an unbounded upper limit. An expression such as 2..* is read “2 or
more.”

Encyclopedia of Terms multiplicity • 347
An interval can also have the form

number

where number is an integer representing an interval of a single size.

The multiplicity expression consisting of a single star

∗
is equivalent to the expression 0..*—that is, it indicates that the cardinality is unre-
stricted (“zero or more, without limit”). This frequently encountered multiplicity
is read “many.”

Example
0..1

1

0..∗
∗
1..∗
1..6

1..3,7..10,15,19..∗

Style guidelines
• Preferably intervals should monotonically increase. For example, 1..3,7,10 is

preferable to 7,10,1..3.

• Two contiguous intervals should be combined into a single interval. For exam-
ple, 0..1 is preferable to 0,1.

Discussion
A multiplicity expression can include variables, but they must resolve to integer
values when the model is complete—that is, they must be parameters or con-
stants. Multiplicity is not meant to be dynamically evaluated within a run-time
scope like a dynamic array bound. It is meant to specify the possible range of val-
ues (worst case) a set might assume and the application must therefore accommo-
date in its data structures and operations. It is a model-time constant. If the bound
is variable at run time, then the proper choice of multiplicity is many (0..∗).

The multiplicity may be suppressed on a diagram, but it exists in the underlying
model. In a finished model, there is no meaning to an “unspecified” multiplicity.
Not knowing the multiplicity is no different from saying that it is many, because in
the absence of any knowledge, the cardinality might take any value, which is just
the meaning of many.

See unspecified value.

348 • multiplicity (of association) Encyclopedia of Terms
multiplicity (of association)

The multiplicity specified on an association end.
See multiplicity.

Semantics
The multiplicity attached to an association end declares how many objects may fill
the position defined by the association end.

For a binary association, the multiplicity on the target end constrains how many
objects of the target class may be associated with a given single object from the
other (source) end. Multiplicity is typically given as a range of integers. (See multi-
plicity for a more general definition.) Common multiplicities include exactly one;
zero or one; zero or more, without limit; and one or more, without limit. The
phrase “zero or more, without limit” is usually called many.

In an n-ary association, the multiplicity is defined with respect to the other n-1
ends. For example, given a ternary association among classes (A, B, C), then the
multiplicity of the C end states how many C objects may appear in association
with a particular pair of A and B objects. If the multiplicity of this association is
(many, many, one), then for each possible (A, B) pair, there is a unique value of C.
For a given (B, C) pair, there may be many A values, however, and many values of
A, B, and C may participate in the association.

See n-ary association for a discussion of n-ary multiplicity.

Notation
The multiplicity is shown by a multiplicity string near the end of the path to which
it applies (Figure 13-126). A range of numbers has the form n1..n2.

See multiplicity for further details on syntax and more general forms for speci-
fying it (although these are probably more general than needed for most practice).

Figure 13-126. Multiplicity of association

Polygon Point
vertexshape

3..∗∗

number of pointsnumber of polygons
(unlimited) (3 or more)

Encyclopedia of Terms multiplicity (of class) • 349
multiplicity (of attribute)

The possible number of values of an attribute in each object.

Semantics
The multiplicity attached to an attribute declares how many values may be held by
an object having the attribute.

The usual multiplicity is exactly one (1..1), meaning that every object has one
value for the attribute. Other common multiplicities include zero or one (an op-
tional, or “nullable,” value); zero or more, without limit (a set of values); and one
or more, without limit (a nonempty set of values). The phrase “zero or more,
without limit” is usually called many.

Notation
The multiplicity is shown by a multiplicity string in brackets after the attribute
name and preceding the colon (Figure 13-127). If there are no brackets, then the
multiplicity is exactly one (a scalar value, the default).

multiplicity (of class)

The range of possible cardinalities of the instances of a class—that is, how many
instances may legitimately exist at one time.

Semantics
When applied to a class, multiplicity declares how many instances of the class may
exist. The usual default is unlimited, but a finite multiplicity is useful in some
cases, particularly to declare a singleton class—that is, a class that may have only
one instance, usually needed to establish the context and parameters of the entire
system.

The other use of multiplicity with classes is within a collaboration, in which it
may be attached to a classifier role to specify how many instances may be bound to
the role in an instance of the collaboration.

Figure 13-127. Multiplicity of attributes

Customer

name: Name
phone [*]: String
references [1..3]: Customer

exactly one name
any number of phones
1 to 3 references

350 • n-ary association Encyclopedia of Terms
Notation
Multiplicity of a class or classifier role is shown by placing a multiplicity string in
the upper right corner of the rectangle symbol (Figure 13-128). The string may be
omitted if the multiplicity is many (unlimited).

n-ary association

An association among three or more classes. Contrast: binary association.

Semantics
Each instance of the association is an n-tuple of values from the respective classes.
A single class may appear in more than one position in the association. A binary
association is a special case with its own simpler notation and certain additional
properties (such as navigability) that are meaningless (or at least hopelessly com-
plicated) for an n-ary association.

Multiplicity for n-ary associations may be specified but is less obvious than bi-
nary multiplicity. The multiplicity on an association end represents the potential
number of values at the end, when the values at the other n-1 ends are fixed. Note
that this definition is compatible with binary multiplicity.

Aggregation (including composition) is meaningful only for binary associa-
tions. An n-ary association may not contain the aggregation or composition
marker on any role.

There is no semantic difference between a binary association and an n-ary asso-
ciation with two ends, regardless of representation. An association with two ends is
deemed to be a binary association, and one with more than two ends is deemed to
be an n-ary association.

Notation
An n-ary association is shown as a large diamond (that is, large compared with a
terminator on a path), with a path from the diamond to each participant class. The
name of the association (if any) is shown near the diamond. Adornments may ap-
pear on the end of each path as with a binary association. Multiplicity may be indi-
cated, but qualifiers and aggregation are not permitted.

Figure 13-128. Multiplicity of class

Registry
1

singleton class

number of registries

Encyclopedia of Terms n-ary association • 351
An association class symbol may be attached to the diamond by a dashed line.
This indicates an n-ary association that has attributes, operations, and/or associa-
tions.

Example
Figure 13-129 shows the record of a team in each season with a particular goal-
keeper. It is assumed that the goalkeeper might be traded during the season and
might have a record with different teams. In a record book, each link would be a
separate line.

Style guidelines
Usually, the lines are drawn from the points on the diamond or from the midpoint
of a side.

Discussion
In an n-ary association, the multiplicity is defined with respect to the other n-1
ends. For example, given a ternary association among classes (A, B, C), the multi-
plicity of the C end states how many C objects may appear in association with a
particular pair of A and B objects. If the multiplicity of this association is (many,
many, one), then for each possible (A, B) pair there is a unique C value. For a given
(B, C) pair, there may be many A values, however, and individually many values of

Figure 13-129. Ternary association that is also an association class

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

∗

∗

∗

season

team

ties

352 • n-ary association Encyclopedia of Terms
A, B, and C may participate in the association. In a binary association this rule re-
duces to the multiplicity of each end defined with respect to the other end.

There is no point in defining multiplicity with respect to one end only (as some
authors have proposed) because the multiplicity would be many for any meaning-
ful n-ary association. If not, the association could be partitioned into a binary as-
sociation between the single class and an association class that includes all the
remaining classes, with a gain in both precision and efficiency of implementation.
In general it is best to avoid n-ary associations, because binary associations are
simpler to implement and they permit navigation. Generally, n-ary associations
are useful only when all the values are needed to uniquely determine a link. An n-
ary association will almost always be implemented as a class whose attributes in-
clude pointers to the participant objects. The advantage of modeling it as an asso-
ciation is the constraint that there can be no duplicate links within an association.

Consider the example of a student taking a course from a professor during a
term (Figure 13-130). A student will not take the same course from more than one
professor, but a student may take more than one course from a single professor,
and a professor may teach more than one course. The multiplicities are shown in
the diagram. The multiplicity on Professor is optional (0..1), the other multiplici-
ties are many (0..∗).

Each multiplicity value is relative to a pair of objects from other ends. For a
(course, student) pair, there is zero or one professor. For a (student, professor)
pair, there are many courses. For a (course, professor) pair, there are many stu-
dents.

Note that if this association is reified into a class, then it would be possible to
have more than one copy of the same (student, course, professor) combination,
which is not desirable.

Figure 13-130. Multiplicity on n-ary association

ProfessorCourse

Student

∗

∗

0..1

Registration

Encyclopedia of Terms namespace • 353
name

A string used to identify a model element.
See also namespace.

Semantics
A name is an identifier—a sequence of characters from a finite, predefined alpha-
bet in some defined language. An implementation may impose restrictions on the
form of names, such as the exclusion of certain characters (for example, punctua-
tion marks), restrictions on initial characters, and so on. In particular, it is as-
sumed that names are usable as selectors and search keys within various data sets.
For example, names from the Roman alphabet usually include upper and lower
case letters; numerals; and one or more separators, such as underscore and hy-
phen, while other punctuation marks are implementation-dependent.

Tools and languages may impose reasonable limits on the length of strings and
the character set they use for names, possibly more restrictive than those for arbi-
trary strings, such as comments.

Names are defined within a namespace, such as a package or class. Within a
namespace, a name must be unique within its own semantic group, such as classi-
fiers, states, attributes, and so on, but names of different groups may coincide (al-
though this should be avoided to prevent confusion). Each namespace, except the
entire system, is contained within another namespace. The names of all the nested
namespaces and the final element name are composable into a single pathname
string.

Notation
A name is displayed as a string. A name is usually displayed on a single line and
contains only nonprintable characters. The canonical notation for names includes
alphabetic characters, numerals, and underscores. If additional characters are al-
lowed within a particular implementation, then it is possible that certain charac-
ters may have to be encoded for display to avoid confusion. This is an
implementation responsibility of a tool.

Individual names from a namespace hierarchy separated by double colons may
be composed into a pathname.

namespace

A part of the model in which the names may be defined and used. Within a
namespace, each name has a unique meaning.

354 • navigability Encyclopedia of Terms
Semantics
All named elements are declared in a namespace, and their names have scope
within it. The top-level namespaces are packages (including subsystems), contain-
ers whose purpose is to group elements primarily for human access and under-
standability, and also to organize models for computer storage and manipulation
during development. Primary model elements, including classes, associations,
state machines, and collaborations, act as namespaces for their contents, such as
attributes, association ends, states, and collaboration roles. The scope of each
model element is discussed as part of its description. Each of these model elements
has its own distinct namespace.

Names defined within a namespace must be unique (after all, that is its pur-
pose). Given a namespace and a name, a particular element in the namespace can
be found (if it has a name—some elements are anonymous and must be found by
relationship to named elements). Namespaces can be nested. It is possible to
search inward over a list of nested namespaces by giving their names.

To gain access to other namespaces, a package can access or import another
package.

The system itself defines the outermost namespace that provides the base for all
absolute names. It is a package, usually with packages nested within it to several
levels until primitive elements are finally obtained.

Notation
The notation for a pathname, a path over several nested namespaces, is obtained
by concatenating the names of the namespaces (such as packages or classes) sepa-
rated by pairs of double colons (::).

UserInterface::HelpFacility::HelpScreen

navigability

Navigability indicates whether it is possible to traverse a binary association within
expressions of a class to obtain the object or set of objects associated with an in-
stance of the class. The concept does not apply to n-ary associations (see text). The
navigability property is an enumeration with the values true (navigable) and false
(not navigable).

See also navigation efficiency.

Semantics
Navigability indicates whether a rolename may be used in expressions to traverse
an association from an object to an object or set of objects of the class attached to
the end of the association bearing the rolename. If navigability is true, then the
association defines a pseudoattribute of the class that is on the end opposite the

Encyclopedia of Terms navigability • 355
rolename—that is, the rolename may be used in expressions similar to an attribute
of the class to obtain values. The rolename may also be used to express constraints.

A lack of navigability implies that the class opposite the rolename cannot “see”
the association and therefore cannot use it to form an expression. An association
without navigability does not create a dependency from the source to the target
class, but a dependency may be created by some other cause.

Lack of navigability does not imply that there is no way to traverse the associa-
tion. If it is possible to traverse the association in the other direction, it may be
possible to search all the instances of the other class to find those that lead to an
object, thereby inverting the association. This approach may even be practical in
small cases.

Navigability is not defined on n-ary associations, because it would require spec-
ifying sets of classes from which or to which to navigate. This could be done, but it
is too complicated to be useful as a basic property. This does not mean that n-ary
associations cannot be traversed, but merely that the specification of their traversal
is complicated and not suited to a simple Boolean definition.

Navigation usually carries the connotation of navigation efficiency, although
this is not strictly required by the UML rules.

Notation
A navigable association is shown with an arrowhead on the end of the association
path attached to the target class. The arrow indicates the direction of traversal
(Figure 13-131). The navigability adornment may be suppressed (usually, on all
associations in a diagram). Arrowheads may be attached to zero, one, or both ends
of an association.

As a convenience, the arrowheads may be omitted on associations that are navi-
gable in both directions. In theory, this can be confused with an association that is
not navigable in either direction, but such an association is unlikely in practice and
can be explicitly noted if it occurs.

There is no need for a notation for “undecided” navigability. If navigability has
not been decided, then it is bidirectional in the general case. Any decision on navi-
gability can only restrict it or leave it fully general.

Figure 13-131. Navigability

Order Product
line item

∗∗

Each order hasA product does not
store a list of orders. a list of products.

You can find the orders for a product, but you must search for them external to Product.

Navigable:Not navigable:

356 • navigable Encyclopedia of Terms
navigable

An association or link that can be traversed in an expression. Its navigability prop-
erty is true. Such a link is often implemented as a pointer or set of pointers.

See navigability, navigation efficiency.

navigation

To traverse connections in a graph, especially to traverse binary links and at-
tributes in an object model to map an object into a value. In the latter case, the
navigation path can be expressed as a sequence of attribute names or rolenames.

See navigability.

navigation efficiency

Indicates whether it is possible to efficiently traverse a binary association starting
from one object to obtain the object or set of objects associated with it. The con-
cept does not apply to n-ary associations. Navigation efficiency is related to
navigability but not its defining property.

See also navigability.

Semantics
Navigation efficiency can be defined in a general manner so that it is applicable to
abstract design, as well as to various programming languages. A binary association
is efficiently navigable if the average cost of obtaining the set of associated objects
is proportional to the number of objects in the set (not to the upper limit on
multiplicity, which may be unlimited) plus a fixed constant. In computational
complexity terms, the cost is O(n). If the multiplicity is one or zero-one, then the
access cost must be constant, which precludes searching a variable-length list. A
slightly looser definition of navigation efficiency would permit a minimum cost of
log(n).

Although a navigable association of multiplicity-one is usually implemented us-
ing a pointer embedded in the block containing the attributes of the object, an ex-
ternal implementation is possible using hash tables, which have a constant average
access cost. Thus, an association can be implemented as a look-up-table object ex-
ternal to the participating classes and can still be considered navigable. (In some
real-time situations, the worst-case cost rather than the average cost must be lim-
ited. This doesn’t require a change to the basic definition other than substituting
the worst-case time, but probabilistic algorithms such as hash tables may be ruled
out.)

Encyclopedia of Terms node • 357
If an association is not navigable in a given direction, it does not mean that it
cannot be traversed at all but that the cost of traversal may be significant—for ex-
ample, requiring a search through a large list. If access in one direction is infre-
quent, a search may be a reasonable choice. Navigation efficiency is a design
concept that allows a designer to design object access paths with an understanding
of the computational complexity costs. Usually, navigability implies navigational
efficiency.

It is possible (if somewhat rare) to have an association that is not efficiently nav-
igable in either direction. Such an association might be implemented as a list of
links that must be searched to perform a traversal in either direction. It would be
possible but inefficient to traverse it. Nevertheless, the use for such an association
is small.

Discussion
Navigation efficiency indicates the efficiency of obtaining the set of related objects
to a given object. When the multiplicity is 0..1 or 1, then the obvious implementa-
tion is a pointer in the source object. When the multiplicity is many, then the usual
implementation is a container class containing a set of pointers. The container
class itself may or may not reside within the data record for an object of the class,
depending on whether it can be obtained at constant cost (the usual situation for
pointer access). The container class must be efficient to navigate. For example, a
simple list of all the links for an association would not be efficient, because the
links for an object would be mixed with many other uninteresting links and would
require a search. A list of links stored with each object would be efficient, because
no unnecessary search is required.

In a qualified association, a navigable setting in the direction away from the
qualifier usually indicates that it is efficient to obtain the object or set of objects se-
lected by a source object and qualifier value. This is consistent with an implemen-
tation using hash tables or perhaps a binary tree search indexed by the qualifier
value (which is exactly the point of including qualifiers as a modeling concept.

node

A node is a run-time physical object that represents a computational resource,
which generally has at least a memory and often processing capability. Run-time
objects and run-time component instances may reside on nodes.

See also location.

Semantics
Nodes include computing devices but also (in a business model, at least) human
resources or mechanical processing resources. Nodes may be represented as

358 • node Encyclopedia of Terms
descriptors and as instances. A node defines a location at which run-time compu-
tational instances, both objects and component instances, may reside.

Physical nodes have many additional properties, such as capacity, throughput,
and reliability. UML does not predefine these properties, as there are a great num-
ber of possibilities, but they can be modeled in UML using stereotypes and tagged
values.

Nodes may be connected by associations to show communication paths. The as-
sociations can be given stereotypes to distinguish various kinds of communication
paths or various implementations of them.

A node is inherently part of the implementation view and not the analysis view.
Node instances rather than node types generally appear in deployment models.
Although node types are potentially meaningful, the types of the individual nodes
often remain anonymous.

A node is a classifier and may have attributes. Most of the time, node instances
are shown in deployment diagrams. Node descriptors have a more limited use.

Notation
A node is shown as a figure that looks like an off-center projection of a cube.

A node descriptor has the syntax

node-type

where node-type is a classifier name.
A node instance has a name and a type name. The node may have an underlined

name string in it or below it. The name string has the syntax

name : node-type

The name is the name of the individual node (if any). The node-type says
what kind of a node it is. Either or both elements are optional.

Dependency arrows (dashed arrows with the arrowhead on the component)
may be used show the ability of a node type to support a component type. A
stereotype may be used to state the precise kind of dependency.

Component instances and objects may be contained within node instance sym-
bols. This indicates that the items reside on the node instances. Containment may
also be shown by aggregation and composition association paths.

Nodes may be connected by association symbols to other nodes. An association
between two nodes indicates a communication path between them. The associa-
tion may have a stereotype to indicate the nature of the communication path (for
example, the kind of channel or network).

Example
Figure 13-132 shows two nodes containing an object (cluster) that migrates from a
component in one node to a component in the other.

Encyclopedia of Terms note • 359
note

A symbol for displaying a comment or other textual information, such as a
method body or a constraint.

Notation
A note is a dog-eared rectangle with its upper-right corner bent over. It contains
text or extended text (such as an embedded document) that is not interpreted by
UML. A note can present information from various kinds of model elements, such
as a comment, a constraint, or a method. The note does not usually explicitly indi-
cate the kind of element represented, but that is generally apparent from its form
and usage. Within a modeling tool, the underlying element will be explicit in the
model. A note can be attached with a dashed line to the element that it describes. If
the note describes multiple elements, a dashed line is drawn to each of them.

A note may have a keyword in guillemets to clarify its meaning. The keyword
«constraint» indicates a constraint.

Example
Figure 13-133 shows notes used for several purposes, including a constraint on an
operation, a constraint on a class, and a comment.

Figure 13-132. Migration between nodes

fieldServer

mainServer

«become»

leads:Customers

c1:Customer

buyers:Customers

c1:Customer

360 • object Encyclopedia of Terms
object

A discrete entity with a well-defined boundary and identity that encapsulates state
and behavior; an instance of a class.

See also class, identity, instance.

Semantics
An object is an instance of a class, which describes the set of possible objects that
can exist. An object can be viewed from two related perspectives: as an entity at a
particular point in time with a specific value and as a holder of identity that has
different values over time. The first view is appropriate to a snapshot, which repre-
sents a system at a point in time. An object in a snapshot has a location (in a dis-
tributed system) and has values for each of its attributes. An object is attached to a
set of links that connect it to other objects.

Each object has its own unique identity and may be referenced by a unique han-
dle that identifies it and provides access to it. The view of an object as an identity is
appropriate to a collaboration instance, in which the object has run-time relation-
ships to other objects that it uses to exchange message instances.

An object contains one attribute slot for each attribute in its full descriptor—
that is, for each attribute declared in its direct class and in every ancestor class.
When instantiation and initialization of an object are complete, each slot contains
a value that is an instance of the classifier declared as the attribute type. As the sys-

Figure 13-133. Notes

This class has
been discussed
with engineering.

{ return

sqrt (b*b - 4 * a * c) /(2 * a) }

Solver

quadratic

«constraint»
Only one solver
of each kind may
exist at one time.

Encyclopedia of Terms object • 361
tem executes, the value in an attribute slot may change unless the attribute
changeability property forbids it to change. At all times between the execution of
operations, the values in an object must satisfy all implicit and explicit constraints
imposed by the model. During execution of an operation, constraints may be tem-
porarily violated.

If multiple classification is allowed in an execution environment, then an object
may be the direct instance of more than one class. The object contains one at-
tribute slot for each attribute declared in any of its direct classes or any of their an-
cestors. The same attribute may not appear more than once, but if two direct
classes are descendants of a common ancestor, only one copy of each attribute
from the ancestor is inherited, regardless of the multiple paths to it.

If dynamic classification is allowed, an object may change its direct class during
execution. If attributes are gained in the process, then their values must be speci-
fied by the operation that changes the direct class.

If both multiple classification and dynamic classification are allowed, then an
object may gain and lose direct classes during execution. However, the number of
direct classes may never be less than one (it must have some structure, even if it is
transient).

An object may be called to execute any operation that appears in the full de-
scriptor of any direct class—that is, it has both direct and inherited operations.

An object may be used as the value of any variable or parameter whose declared
type is the same class or an ancestor of the direct class of the object. In other
words, an instance of any descendant of a class may appear as the value of a vari-
able whose type is declared to be the class. This is the substitutability principle.
This principle is not a logical necessity but exists to simplify the implementation
of programming languages.

Notation
An object is an instance of a class. The general rule for the notation for instances is
to use the same geometrical symbol as the descriptor but to underline the name of
the instance to distinguish it as an individual. Any values are shown in the in-
stance, but properties shared by all instances are notated only in the descriptor.

The canonical notation for an object is a rectangle with two compartments. The
top compartment contains the object name and class, and the bottom compart-
ment contains a list of attribute names and values (Figure 13-134). There is no
need to show operations because they are the same for all objects of a class.

The top compartment shows the name of the object and its class, all underlined,
using the syntax

objectname : classname

362 • object Encyclopedia of Terms
The classname can include the full pathname of the enclosing package, if neces-
sary. The package names precede the classname and are separated by double co-
lons. For example

displayWindow: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name
string) or as an icon in the upper-right corner. The stereotype for an object must
match the stereotype for its class.

To show multiple classes of which the object is an instance, use a comma-
separated list of classnames. Some of the classes can be transient roles that the ob-
ject plays during a collaboration. For example

aPerson: Professor, Skier

To show the presence of an object in a particular state of a class, use the syntax

objectname : classname [statename-list]

The list must be a comma-separated list of names of states that can legally occur
concurrently.

To show a change of class (dynamic classification), the object must be displayed
twice, once with each class. The two symbols are connected by a become relation-
ship to show that they represent the same object.

The second compartment shows the attributes for the object and their values as
a list. Each value line has the syntax

attributename : type = value

The type is redundant with the attribute declaration in the class and may be omit-
ted. The value is specified as a string that represents the value. The attribute names
are not underlined.

The name of the object may be omitted. In this case, the colon should be kept
with the class name. This represents an anonymous object of the class, given iden-

Figure 13-134. Object notation

triangle: Polygon

center = (0,0)
vertices = ((0,0),(4,0),(4,3))
borderColor = black
fillColor = white

triangle: Polygon

triangle

:Polygon

scheduler

Encyclopedia of Terms object flow • 363
tity by its relationships. Each symbol that contains an anonymous object denotes a
distinct object distinguished by its relationships to other objects.

The class of the object may be suppressed (together with the colon), but it
should be shown when possible to avoid confusion.

The attribute value compartment as a whole may be suppressed.
Attributes whose values are not of interest may be suppressed.
To show the changes in value of attributes during a computation, show two ver-

sions of the same object with a become relationship between them.

object diagram

A diagram that shows objects and their relationships at a point in time. An object
diagram may be considered a special case of a class diagram in which instances, as
well as classes, may be shown. Also related is a collaboration diagram, which
shows prototypical objects (classifier roles) within a context.

See also diagram.

Notation
Tools need not support a separate format for object diagrams. Class diagrams can
contain objects, so a class diagram with objects and no classes is an “object dia-
gram.” The phrase is useful, however, to characterize a particular usage achievable
in various ways.

Discussion
An object diagram shows a set of objects and links that represent the state of a sys-
tem at a particular moment in time. It contains objects with values, not descrip-
tors, although they can, of course, be prototypical in many cases. To show a general
pattern of objects and relationships that can be instantiated many times, use a col-
laboration diagram, which contains descriptors (classifier roles and association
roles) for objects and links. If a collaboration diagram is instantiated, it yields an
object diagram.

An object diagram does not show the evolution of the system over time. For that
purpose, use a collaboration diagram with messages, or a sequence diagram to
represent an interaction.

object flow

A variety of control flow that represents the relationship between an object and the
object, operation, or transition that creates it (as an output) or uses it (as an
input).

See also control flow, object flow state.

364 • object flow state Encyclopedia of Terms
Semantics
An object flow is a kind of control flow with an object flow state as an input or an
output.

Notation
An object flow is shown as a dashed line from the source entity to the target entity.
One or both entities may be object flow states, displayed as object symbols. The ar-
row may have a keyword to indicate what kind of object flow it is (become or
copy). If there is no label on the arrow, it is a become relationship.

See object flow state, become, and copy for examples.

object flow state

A state that represents the existence of an object of a particular class at a point
within a computation, such as an interaction view or an activity graph.

See also control flow, class-in-state.

Semantics
Both activity graphs and interaction views represent the flow of control among
operations in target objects by messages, but messages do not show the flow of the
objects that are arguments to operations. This kind of information flow can be
represented in behavioral models using object flow states.

An object flow state represents an object of a class that exists at a point within a
computation, such as an activity graph or an interaction view. The object may be
the output of one activity and the input of many other activities. In an activity
graph, it may be the target of a transition (often a fork, the other branch being the
main control path), and it may be the source of a completion transition to an ac-
tivity. When the preceding transition fires, the object flow state becomes active.
This represents the creation of on object of the class. To show the passage of an ob-
ject into a state, rather than the creation of a new object, an object flow state can be
declared as a class in a state, a class-in-state.

An object flow state must match the type of the result or parameter that it repre-
sents. If it is the output of an operation, it must match the type of the result. If it is
the input of an operation, it must match the type of a parameter.

If the object flow state is followed by a completion transition to an activity, then
the activity can be performed as soon as the object value is available. No additional
control input is necessary. In other words, the creation of data in the right form is
the trigger for performing the activity.

To show that an activity requires both a control path and the presence of a value,
the previous action of the control path and an object flow state for the value can

Encyclopedia of Terms object flow state • 365
lead into a complex transition. The activity is performed when all the input transi-
tions are ready. Multiple paths to a transition indicate synchronization.

Object flow states are usually useful to document input-output relationships for
human understanding rather than to specify a computation precisely. The infor-
mation shown by object flow states is already available.

The production of an event by an activity in an activity graph can be modeled as
an object flow state whose classifier is a signal. The stereotype «signal» may be
used. The object flow state is an output of the activity. If the activity produces mul-
tiple events, the object flow states are targets of a fork.

Notation
An object of a class in a state is shown in an activity diagram by a rectangle con-
taining the underlined class name followed by the state name in square brackets

Classname [Statename]

An example is

Order [Placed]

An object flow symbol represents the existence of the object in a state of the proce-
dure itself and not simply the object itself, as data. The object flow symbol (which
represents a state) may appear as the target of one transition arrow and as the
source of multiple transition arrows. To distinguish these from ordinary transi-
tions in an activity diagram, they are drawn as dashed arrows rather than solid ar-
rows. They represent object flows.

Example
Figure 13-135 shows object flow states in an activity diagram. An object flow state
is created by the completion of an operation. For example, Order[Placed] is cre-
ated by the completion of Request Service. Because that activity is followed by an-
other activity, the object flow state Order[Placed] is an output of a fork symbol.
State Order[Entered], on the other hand, is the result of completing activity Take
Order, which has no other successor activities.

Figure 13-136 shows a portion of an activity diagram concerned with building a
house. When the frame has been built, the carpenter is free to work on the roof
and the house is ready for the plumbing to be installed. These events are modeled
as object flow states of signals—Carpenter free and Frame ready. As a result of
these events, the roof can be built and the plumbing can be installed. Therefore the
object flow states are shown as inputs of the activities. In the model, the produc-
tion of an event by the completion of one activity and its use to trigger the next ac-
tivity are implicit in the connection of the activities. The need for a manifest event
has been elided. Therefore, the appearance of the signals as object flow states is for
information, rather than implementation structure.

366 • object flow state Encyclopedia of Terms
Figure 13-135. Object flow states in an activity diagram

Figure 13-136. Signal production in activity diagram

Request Service

Take Order

Fill Order

Collect Order

Customer Sales Stockroom

Pay

Deliver Order

Order
[Entered]

Order
[Filled]

Order
[Delivered]

Order
[Placed]

Build frame

Build roof

Install plumbing

«signal»
Carpenter free

«signal»
Frame ready

Encyclopedia of Terms OCL • 367
Discussion
An object flow state represents the data flow view of a computation. Unlike tradi-
tional data flow, however, it exists at a definite point within a control flow model (a
state machine or an activity graph), rather than within a data flow model. This
places it squarely into an object-oriented framework. Object orientation unites the
data structure, control flow, and data flow viewpoints into a single model.

object lifeline

A line in a sequence diagram that represents the existence of an object over a pe-
riod of time.

object set expression

An expression that yields a set of objects when evaluated at run time.

Semantics
The target of a send action is an object set expression. When such an expression is
evaluated at run time, it yields a set of objects to which a designated signal is sent
in parallel. An object set expression may yield a single element, in which case the
send action is an ordinary sequential action. It may even yield no element (that is,
an empty set) in which case no send occurs.

OCL

Object Constraint Language, a text language for specifying constraints and que-
ries. OCL is not intended for writing actions or executable code. For a full
definition, see the book [Warmer-99].

Semantics
The Object Constrain Language (OCL) is a text language for writing navigation
expressions, Boolean expressions, and other queries. It may be used to construct
expressions for constraints, guard conditions, actions, preconditions and postcon-
ditions, assertions, and other kinds of UML expressions. A complete description of
the OCL syntax and semantics can be found in [Warmer-99]. The following se-
lected summary contains the most useful OCL syntax for creating navigation ex-
pressions and Boolean conditions. The full language contains a large number of
predefined operators on collections and on primitive types.

368 • OCL Encyclopedia of Terms
Notation
Syntax for some common navigation expressions is shown below. These forms can
be chained together. The left-most element must be an expression for an object or
a set of objects. The expressions are meant to work on sets of values when applica-
ble. For more details and syntax, see the OCL description.

item . selector
selector is the name of an attribute in the item or the
name of a role of the target end of a link attached to the
item. The result is the value of the attribute or the
related object(s). The result is a value or a set of values,
depending on the multiplicities of the item and the
association.

item . selector (argumentlist,)

selector is the name of an operation on the item. The
result is the return value of the operation applied to the
item.

item . selector [qualifier-value]
selector designates a qualified association that quali-
fies the item. qualifier-value is a value for the qualifier
attribute. The result is the related object selected by the
qualifier. Note that this syntax is applicable to array
indexing as a form of qualification.

set -> set-property
set-property is the name of a built-in OCL function
on sets. The result is the property of the set. Illegal if
set-property is not a predefined OCL function. Sev-
eral of the properties are listed below.

set -> select (boolean-expression)
boolean-expression is written in terms of objects
within the set. The result is the subset of objects in the
set for which the Boolean expression is true.

set -> size The number of elements in the set.

self Denotes the current object (may be omitted if the con-
text is clear).

operator The usual arithmetic and Boolean operators:
= < > <= >= <> + – * / not

Encyclopedia of Terms operation • 369
Example
flight.pilot.training_hours >= flight.plane.minimum_hours
The set of pilots who have enough training hours

company.employees−>select (title = “Boss” and self.reports−>size > 10)
The number of bosses who have more than 10 reports

operation

An operation is a specification of a transformation or query that an object may be
called to execute. It has a name and a list of parameters. A method is a procedure
that implements an operation. It has an algorithm or procedure description. An
operation on an active class may also be implemented using a call event.

See also call, call event, method.

Semantics
An operation specifies a transformation on the state of the target object (and pos-
sibly the state of the rest of the system reachable from the target object) or a query
that returns a value to the caller of the operation. An operation may be imple-
mented as a a method or as a call event that causes a transition in the state ma-
chine of an active object. An operation is invoked by a call, which suspends the
caller until the execution of the operation is complete, after which the caller re-
sumes control beyond the point of the call, receiving a return value if one is sup-
plied by the operation.

An operation is declared in a class. The declaration is inherited by the descen-
dants of the class. If another declaration has the same “matching signature,” it is
the same operation. An implementation may specify a rule for matching signa-
tures to test for conflict, but by default, it includes the name of the operation and
the classes (but not the names or directions) of the parameters, not including re-
turn parameters. The same operation can appear in a descendant class. In that
case, it is treated as a repetition of the inherited declaration and ignored. The pur-
pose is to permit an operation to be declared multiple times in classes that are de-
veloped in different packages, using name matching. The operation declaration
that is the common ancestor of all other declarations of it is called the origin (after
Bertrand Meyer). It represents the governing declaration of the operation that is
inherited by the others.

If two operation declarations have the same name and ordered list of parameter
types (not including return parameters) but the other properties differ (for exam-
ple, a parameter is an in-parameter in one operation and is an out-parameter in
another), then the declarations conflict and the model is ill formed.

370 • operation Encyclopedia of Terms
A method is the implementation of an operation (it may also be implemented
by a call event). If an operation is declared in a class without the abstract property,
then it has a method definition in the class. Otherwise, the operation may be ab-
stract (and there is no method), or it may be concrete with an inherited method.

Structure
An operation has the following main constituents.

concurrency The semantics of concurrent calls to the same passive
instance, an enumeration. Possible values are

sequential Callers must coordinate so that only one call to an
object (on any sequential operation) may execute at
once. If concurrent calls occur, then the semantics
and integrity of the system cannot be guaranteed.

guarded Multiple calls from concurrent threads may occur
simultaneously to one object (on any guarded op-
eration), but only one is allowed to commence at a
time. The others are blocked until the execution of
the first operation is complete. It is the responsibil-
ity of the modeler to ensure that deadlocks do not
occur because of simultaneous blocks. Guarded op-
erations must perform correctly (or block them-
selves) in the case of a simultaneous sequential
operation, or guarded semantics cannot be
claimed.

concurrent Multiple calls from concurrent threads may occur
simultaneously to one object (on concurrent oper-
ations). All of them may proceed concurrently with
correct semantics. Concurrent operations must be
designed so that they perform correctly in the case
of a concurrent, sequential, or guarded operation
on the same object. Otherwise, concurrent seman-
tics cannot be claimed.

polymorphism Whether the implementation of the operation (the
method or call event) may be overridden by descendant
classes. If true, the implementation can be overridden by
a descendant class that provides a new definition of the
method or a different state machine transition. The

Encyclopedia of Terms operation • 371
implementation takes on different forms—that is, it is
polymorphic. If false, the current implementation is
inherited unchanged by all descendants. It has a single
form.

query Whether the execution of the operation leaves the state of
the system unchanged—that is, whether it is a query. If
true, the operation returns a value, but it has no side
effects. If false, it may alter the state of the system, but a
change is not guaranteed.

name The name of the operation, a string. The name together
with the list of parameter types (not including parameter
names or return types), is called the matching signature
of the operation. The matching signature must be unique
within the class and its ancestors. If there is a duplication,
it is taken as a redeclaration of the operation, which must
match completely. If they match, all but the operation
declaration in the highest ancestor are ignored. If they do
not match, the model is ill formed.

parameter list The list of declarations of the parameters of the opera-
tion. See parameter list.

return type A list of the types of the values returned by a call of the
operation, if any. If the operation does not return values,
then this property has the value null. Note that many lan-
guages do not support multiple return values, but it
remains a valid modeling concept that can be imple-
mented in various ways, such as by treating one or more
of the parameters as output values.

scope Whether the operation applies to individual objects or to
the class itself (owner scope). Possible values are

instance The operation may be applied to individual objects.

class The operation applies to the class itself—for exam-
ple, an operation that creates an instance of a class.

specification An expression describing the effects produced by execut-
ing the operation—for example, a before-and-after con-
dition. The format of the specification is not prescribed
by UML and can take various forms.

visibility The visibility of the operation by classes other than the
one defining it. See visibility.

372 • operation Encyclopedia of Terms
A method has the same constituents as an operation. In addition, it may have one
or more of

behavior An optional state machine describing the implementation
of the method.

body An expression describing the procedure for the method.
This may be represented as a string or possibly a parsed
format. Usually, this would be expressed in a program-
ming language, although a natural language expression is
possible for informal specifications. Generally, this value
would not be supplied if the state machine is supplied.

collaboration A set of collaborations describing the implementation of
the method as an ordered set of messages among roles
(an interaction).

A call event has the same constituents as an operation. The implementation of the
operation must be specified by one or more transitions that have the call event as a
trigger.

Notation
An operation is shown as a text string that can be parsed into properties of the op-
eration. The default syntax is

«stereotype»opt visibilityopt name (parameter-list) : return-typeopt

{ property-string }opt

The stereotype, visibility, return-type-expression, and property string are op-
tional (together with their delimiters). The parameter list may be empty.
Figure 13-137 shows some typical operations.

Name. A string that is the name of the operation (not including parameters).

Parameter list. A comma-separated list of parameter declarations, each compris-
ing a direction, name, and type. The entire list is enclosed in parentheses (includ-
ing an empty list). See parameter list and parameter for full details.

Figure 13-137. Operation list with a variety of operations

+display (): Location
+hide ()
«constructor» +create ()
-attachXWindow(xwin:Xwindow*)

Encyclopedia of Terms operation • 373
Return type. A string containing a comma-separated list of names of classifiers
(classes, data types, or interfaces). The type string follows a colon (:) that follows
the parameter list of the operation. The colon and return-type string are omitted if
the operation does not return any values (e.g., C++ void). Some, but not all, pro-
gramming languages support multiple return values.

Visibility. The visibility is shown as one of the punctuation marks ‘+’, ‘#’, or ‘–’,
representing public, protected, or private. Alternately, visibility can be shown as a
keyword within the property string (for example, {visibility=private}). This form
must be used for user-defined or language-dependent choices.

Method. An operation and a method are declared using the same syntax. The top-
most appearance of an operation signature within a generalization hierarchy is the
declaration of an operation. Identical signatures in descendant classes are redun-
dant declarations of the operation, but these may be useful for declaring methods
or for declaring operations when the classes are developed separately. If an opera-
tion declaration has the abstract property (notated by operation name in italics or
the keyword abstract), then there is no method corresponding to the declaration.
Otherwise, the declaration represents both an operation declaration and a method
implementing it.

In matching operations and methods, the name of the operation and the or-
dered list of parameter types are used, not including return parameters. If the re-
maining properties are inconsistent (for example, an in-parameter is matched to
an out-parameter), then there is a conflict and the model is ill formed.

If two identical operation declarations have no common ancestor operation
declaration, yet are inherited by a common class, then the model is ill formed. In
this situation, the declarations would yield a conflict in a class that inherits both of
them.

Method body. The body of a method may be shown as a string within a note at-
tached to an operation declaration. The text of the specification should be en-
closed in braces if it is a formal specification in some language (a semantic
constraint). Otherwise, it should be normal text if it is just a natural-language de-
scription of the behavior (a comment). The connection of a method declaration
and its state machine or collaboration has no visual representation, but it would
generally be represented by a hyperlink within an editing tool.

Specification. An expression describing the effects of performing the operation.
This may be stated in various ways, including text, before-after conditions, and in-
variants. In any case, the specification should be expressed in terms of the observ-
able effects of the operation on the state of the system, not in terms of the
execution algorithm. The algorithm is the business of the method.

The specification is shown by a string constraint within a note attached to the
operation entry.

374 • ordering Encyclopedia of Terms
Query. The choice is shown by a property string of the form isQuery=true or
isQuery=false. The choice true may also be shown by the keyword query. The
absence of an explicit choice indicates the choice false—that is, the operation may
alter the system state (but it does not guarantee to alter it).

Polymorphism. The choice is shown by a property string of the form
isPolymorphic=true (overridable) or isPolymorphic=false (not overridable). The
absence of an explicit choice indicates the choice true—that is, overridable.

Scope. An instance-scope operation is indicated by not underlining the operation
string. A class-scope operation is indicated by underlining the name string.

Concurrency. The choice is shown by a property string of the form concur-
rency=value, where the value is one of sequential, guarded, or concurrent.

Signals. To indicate that a class accepts a signal, the keyword «signal» is placed in
front of an operation declaration within the list of operations. The parameters are
the parameters of the signal. The declaration may not have a return type. The re-
sponse of the object to the reception of the signal is shown with a state machine.
Among other uses, this notation can show the response of objects of a class to er-
ror conditions and exceptions, which should be modeled as signals.

Presentation options
The argument list and return type may be suppressed (together, not separately).

A tool may show the visibility indication in a different way, such as by using a spe-
cial icon or by sorting the elements by group.

The syntax of the operation signature string can be that of a particular program-
ming language, such as C++ or Smalltalk. Specific tagged properties may be in-
cluded in the string.

Style guidelines
• Operation names typically begin with a lowercase letter.

• Operation names are shown in plain face.

• An abstract operation is shown in italics.

Standard elements
semantics

ordering

A property of a set of values, such as the set of objects related to an object across an
association, stating whether the set is ordered or unordered.

See also association, association end, multiplicity.

Encyclopedia of Terms ordering • 375
Semantics
If the multiplicity upper bound on an association end is greater than one, then a
set of objects is associated with each object on the other end of a binary associa-
tion. The ordering property declares whether the set is ordered or unordered. If it
is unordered, the objects in the set have no explicit order; they form an ordinary
set. If it is ordered, the elements in the set have an explicitly imposed order. The el-
ement order is part of the information represented by the association—that is, it is
additional information beyond the information in the elements themselves. The
elements can be obtained in that order. When a new link is added to the associa-
tion, its position in the sequence must be specified by the operation adding it. The
position may be an argument of the operation or it may be implicit. For example, a
given operation may place a new link at the end of the existing list of links, but the
location of the new link must be specified somehow.

Note that an ordered set is not the same as a set whose elements are sorted by
one or more attributes of the elements. A sorting is totally determined by the val-
ues of the objects in the set. Therefore, it adds no information, although it may
certainly be useful for access purposes. The information in an ordered association,
on the other hand, is additional to the information in the elements themselves.

The ordering property applies to any element that takes a multiplicity, such as
an attribute with a multiplicity greater than one.

An ordered relationship may be implemented in various ways, but the imple-
mentation is usually stated as a language-specified code generation property. An
implementation extension might substitute the data structure to hold the elements
for the generic specification ordered.

A sorted set requires a separate specification of the sorting rule itself, which is
best given as a constraint.

Notation
Ordering is specified by a keyword in braces near the end of the path to which it
applies (Figure 13-138). The absence of a keyword indicates unordered. The key-
word {ordered} indicates an ordered set. For design purposes, the keyword
{sorted} may be used to indicate a set arranged by internal values.

For an attribute with multiplicity greater than one, one of the ordering key-
words may be placed after the attribute string, in braces, as part of a property
string.

If an ordering keyword is omitted, then the set is unordered.

Discussion
An ordered set has information in the ordering, information that is additional to
the entities in the set itself. This is real information. Therefore, it is not derivable
but must be specified when an entity is added. In other words, on any operation

376 • ordering Encyclopedia of Terms
that adds an entity, its position within the list of entities must be specified. Of
course, an operation can be implemented so that the new entity is inserted in an
implicit location, such as the beginning or the end of the list. And just because a
set is ordered does not mean that any ordering of entities will be allowed. These are
decisions that the modeler must make. In general, the position of the new entity
within the list is a parameter of the creation operation.

Note that the ordering of a binary association must be specified independently
for each direction. Ordering is meaningless unless the multiplicity in a direction is
greater than one. An association can be completely unordered, it can be ordered in
one direction and not the other, or it can be ordered in both directions.

Assume an association between classes A and B that is ordered in the B direc-
tion. Then, usually, a new link will be added as an operation on an A object, speci-
fying a B object and a position in the list of existing B objects for the new link.
Frequently, an operation on an A object creates a new B object and also creates a
link between A and B. The list must be added to the list of links maintained by A. It
is possible to create a new link from the B side, but generally the new link is in-
serted at a default position in the A-to-B list, because the position within that list
has little meaning from the B end. Of course, a programmer can implement more
complicated situations if needed.

An association that is ordered in both directions is somewhat unusual, because
it can be awkward to specify the insertion point in both directions. But it is possi-
ble, especially if the new links are added at default locations in either direction.

Note that a sorted set does not contain any extra information beyond the infor-
mation in the set of entities. Sorting saves time in an algorithm, but it does not
add information. It may be regarded as a design optimization and need not be in-
cluded in an analysis model. It may be specified as a value of the ordering property,
but it does not require that an operation specify a location for a new entity added
to the set. The location of the new entity must be determined automatically by the
method by examining the attributes on which the list is sorted.

Figure 13-138. Ordered and unordered sets

PerformanceRequest
1∗

{ordered}
Reservation

∗1

The list of requests is ordered. The set of reservations is unordered.

Encyclopedia of Terms owner scope • 377
orthogonal substate

One of a set of states that partition a composite state into substates, all of which are
concurrently active.

See composite state, concurrent substate.

owner scope

An indication of whether the feature applies to an individual object or is shared by
an entire class.

See also scope, target scope.

Semantics
Owner scope indicates whether there is a distinct attribute slot for each instance of
a class, or if there is one slot for the entire class itself. For an operator, owner scope
indicates whether an operation applies to an instance or to the class itself (such as a
creation operator). Sometimes called simply scope. Possible values are

instance Each classifier instance has its own distinct copy of an
attribute slot. Values in one slot are independent of values
in other slots. This is the normal situation.

For an operator, the operator applies to an individual
object.

class The classifier itself has one copy of the attribute slot. All
the instances of the classifier share access to the one slot.
If the language permits classes as real objects, then this is
an attribute of the class itself as an object.

For an operator, the operator applies to the entire class,
such as a creation operator or an operator that returns
statistics about the entire set of instances.

Notation
A class-scope attribute or operator is underlined (Figure 13-139). An instance-
scope attribute or operator is not underlined.

Discussion
For an association, this would say whether the source position of a link holds in-
stances or classifiers. But this information can be specified as the target scope in
the other direction, so the owner scope is unnecessary and therefore not used for
associations.

378 • package Encyclopedia of Terms
package

A general-purpose mechanism for organizing elements into groups. Packages may
be nested within other packages. A system may correspond to a single high-level
package, with everything else in the model contained in it recursively. Both model
elements and diagrams may appear in a package.

See also access, dependency, import, model, namespace, subsystem.

Semantics
A package is a grouping of model elements and diagrams. Every model element
that is not part of another model element must be declared within exactly one
namespace; the namespace containing the declaration of an element is said to own
the element. A package is a general-purpose namespace that can own any kind of
model element that is not restricted to one kind of owner. Each diagram must be
owned by exactly one package, which may be nested within (and therefore owned
by) another package. A package may contain subordinate packages and ordinary
model elements. Some packages may be subsystems or models. The entire system
description can be thought of as a single high-level subsystem package with every-
thing else in it. All kinds of UML model elements and diagrams can be organized
into packages.

Packages own model elements, subsets of the model, and diagrams. Packages are
the basis for configuration control, storage, and access control. Each element can
be directly owned by another model element or by a single package, so the owner-
ship hierarchy is a strict tree. However, model elements (including packages) can
reference other elements in other packages, so the usage network is a graph.

The special kinds of package are model, subsystem, and system. A system de-
notes a subsystem that is the root of the package hierarchy. It is the only model el-
ement not owned by some other model element. It indirectly includes everything
in the model. There are several predefined stereotypes of model and subsystem.

See Chapter 14, Standard Elements, for details.
Packages may have dependency relationships to other packages. In most cases

these summarize dependencies among the contents of the packages. A usage de-

Figure 13-139. Class-scope attribute and operation

Reservation

date: Date
maxAdvance: Time

create(date: Date)
destroy()

Encyclopedia of Terms package • 379
pendency between two packages means that there exists at least one usage depen-
dency between elements of the two packages (not that every pair of elements has
the dependency).

The access dependency is particular to packages themselves and is not a sum-
marization of dependencies on their elements. It indicates that elements in the cli-
ent package are granted permission to have relationships to elements in the
supplier package. The relationships are also subject to visibility specifications. Ac-
cess does not mean that the names of the elements in the target package occupy
the namespace of the source package—the namespaces are distinct and elements
can be uniquely identified by pathnames that include nested packages. The access
dependency variation import is like an Ada uses statement. It adds the names
from the supplier namespace to the client namespace (they must not conflict). But
the access dependency does not alter the client namespace. It is mainly an access
control mechanism in larger development projects, rather than a fundamental se-
mantic relationship.

A nested package has access to any elements directly contained in outer pack-
ages (to any degree of nesting), without needing either import dependencies or
visibility. A package must import its contained packages to see inside them, how-
ever. A contained package is, in general, an encapsulation boundary.

A package defines the visibility of its contained elements as private, protected,
or public. Private elements are not available at all outside the containing package
(regardless of imports). Protected elements are available only to packages with
generalizations to the containing package, and public elements are available to im-
porting packages and to descendants of the package.

See access for a full description of the visibility rules for elements in various
packages.

Notation
A package is shown as a large rectangle with a small rectangle (a “tab”) attached on
one corner (usually, the left side of the upper side of the large rectangle). It is a
folder icon.

If contents of the package are not shown, then the name of the package is placed
within the large rectangle. If contents of the package are shown, then the name of
the package may be placed within the tab.

A keyword string may be placed above the package name. Keywords may in-
clude subsystem, system, and model. User-defined stereotypes are also notated
with keywords, but they must not conflict with the predefined keywords.

A list of properties may be placed in braces after or below the package name. Ex-
ample: {abstract}.

The contents of the package may be shown within the large rectangle.

380 • package Encyclopedia of Terms
The visibility of a package element outside the package may be indicated by pre-
ceding the name of the element by a visibility symbol (‘+’ for public, ‘–’ for private,
‘#’ for protected).

Relationships may be drawn between package symbols to show relationships
among at least some of the elements in the packages. In particular, dependency
among packages (other than permission dependencies, such as access and import)
implies that there exist one or more dependencies among the elements.

Presentation options
A tool may also show visibility by selectively displaying those elements that meet a
chosen visibility level, for instance, all the public elements only.

A tool may show visibility by a graphic marker, such as color or font.

Style guidelines
It is expected that packages with large contents will be shown as simple icons with
names, in which the contents may be dynamically accessed by “zooming” to a de-
tailed view.

Figure 13-140. Packages and their relationships

UserInterface

Order
Processing

Storage
Management

Price
Calculator

External
Storage

Ordering

FileStorage

Repository

StreamStorage

RandomStorage

«subsystem»
subsystem package made of packages

dependency

package
generalization

These are variations
of the external store

abstract
package

abstract package,
must be specialized

packages
outside the
system

concrete
dependency
on external
package

package.

GUIManagerpackage

external package

Encyclopedia of Terms parameter • 381
Example
Figure 13-140 shows the package structure of an order-processing subsystem. The
subsystem itself is shown as a package with a stereotype. It contains several ordi-
nary packages. The dependencies among the packages are shown by dashed ar-
rows. The figure also shows some external packages on which the subsystem
depends. These may be off-the-shelf components or library elements.

Generalization among packages shows variations of a generic package. For in-
stance, the ExternalStore package may be implemented as a RandomStore or a
StreamStore.

Discussion
Packages are primarily intended as access and configuration control mechanisms
to permit developers, particularly in large work groups, to organize large models
and evolve them without getting in each other’s way. Inherently, they mean what
the developers want them to mean. More practically, packages should follow some
kind of semantic boundary if they are to be useful. Because they are intended as
configuration control units, they should contain elements that will likely evolve to-
gether. Packages also group elements that must be compiled together. If a change
to one element forces the recompilation of other elements, then they might also be
placed in one package.

Every model element must be owned by exactly one package or other model ele-
ment. Otherwise, model maintenance, versioning, and configuration control be-
come impossible. The package that owns a model element controls its definition.
It can be referenced and used in other packages, but a change to it requires access
permission and update right to the package that owns it.

Standard elements
access, extend, facade, framework, stub, system

parameter

The specification of a variable that can be changed, passed, or returned. A param-
eter may include a name, type, and direction. Parameters are used for operations,
messages, events, and templates. Contrast: argument.

A parameter usage dependency relates an operation having a parameter or a
class containing such an operation to the class of the parameter.

See also argument, binding.

382 • parameter Encyclopedia of Terms
Semantics
A parameter is a placeholder for an argument that is bound to it when the enclos-
ing element is used. It constrains the values that the argument can take. It has the
following parts.

default value An expression for a value to be used if no argument is
supplied for the parameter. The expression is evaluated
when the parameter list is bound to arguments.

direction The direction of information flow of the parameter, an
enumeration with the following values.

in An input parameter passed by value. Changes to
the parameter are not available to the caller.

out An output parameter. There is no input value. The
final value is available to the caller.

inout An input parameter that may be modified. The fi-
nal value is available to the caller.

return A return value of a call. The value is available to the
caller. Semantically, no different from an out pa-
rameter, but the result is available for use in an in-
line expression.

The preceding choices may not all be directly available in every programming lan-
guage, but the concept behind each of them makes sense in most languages and
can be mapped into a sensible implementation.

name The name of the parameter. It must be unique within its
parameter list.

type A reference to a classifier (a class, data type, or interface
in most procedures). An argument bound to the parame-
ter must be an instance of the classifier or one of its
descendants.

Notation
Each parameter is shown as a text string that can be parsed into the various prop-
erties of a parameter. The default syntax is

direction name : type = default-value

Direction. The direction is shown as a keyword preceding the operation name. If
the keyword is absent, then the direction is in. The choices are in, out, inout, and
return. Return parameters are usually shown in a different position in an opera-
tion signature, where they need not be marked for direction.

Encyclopedia of Terms parent • 383
Name. The name is shown as a string.

Type. The type is notated as a string that is the name of a class, an interface, or a
data type.

Default value. The value is shown as an expression string. The language of the ex-
pression would be known by (and specifiable to) a tool but is not shown in the ca-
nonical format.

Scope. If the scope is class, then the operation string is underlined. If the scope is
instance, the operation string is not underlined.

Parameter dependency. A parameter dependency is shown as a dashed arrow
from the operation having the parameter or the class containing the operation to
the class of the parameter; the arrow has the stereotype «parameter» attached.

Example
Matrix::transform (in distance: Vector, in angle: Real = 0): return Matrix

All of the direction labels here may be omitted.

parameter list

A specification of the values that an operation or template receives. A parameter
list is an ordered list of parameter declarations. The list may be empty, in which
case the operation is called with no parameters.

See parameter.

Notation
A parameter list is a comma-separated list of parameter declarations enclosed in
parentheses.

(parameter list,)

The parentheses are shown even if the list is empty.

()

parameterized element

See template.

parent

The more general element in a generalization relationship. Called superclass for a
class. A chain of one or more parent relationships (that is, the transitive closure) is
an ancestor. The opposite is child.

See generalization.

384 • participates Encyclopedia of Terms
participates

The connection of a model element to a relationship or to a reified relationship.
For example, a class participates in an association, a classifier role participates in a
collaboration.

passive object

An object that does not have its own thread of control. Its operations execute un-
der a control thread anchored in an active object.

Semantics
An active object is one that owns a thread of control and may initiate control ac-
tivity. A passive object is one that has a value but does not initiate control. How-
ever, an operation on a passive object may send messages while processing a
request that it has received on an existing thread.

Notation
A passive object is shown as a class rectangle with the object name underlined. A
passive class is shown as a class rectangle with the class name not underlined. The
rectangle has a normal border (not bold). An active object or class is drawn with a
bold border.

path

A connected series of graphic segments that connects one symbol to another, usu-
ally used to show a relationship.

Notation
A path is a graphical connection between symbols on a diagram. Paths are used in
the notation for relationships of various kinds, such as associations, generaliza-
tions, and dependencies. The endpoints of two connected segments coincide. A
segment may be a straight line segment, an arc, or some other shape, although
many tools support only lines and arcs (Figure 13-141). Lines can be drawn at any
angle, although some modelers prefer to restrict lines to orthogonal angles and
possibly force them onto a regular grid for appearance and ease of layout. Gener-
ally, the routing of a path has no significance, although paths should avoid cross-
ing closed regions, because crossing the boundary of a graphic region may have
semantic significance. (For example, an association between two classes in a col-
laboration should be drawn within the collaboration region to indicate an associa-
tion between objects from the same collaboration instance; whereas, a path that
made an excursion from the region would indicate an association between objects

Encyclopedia of Terms path • 385
from different collaboration instances.) More precisely, a path is topological. Its
exact routing has no semantics, but its connection to and intersection with other
symbols has significance. The exact layout of paths matter greatly to understand-
ability and aesthetics, of course, and may subtly connote the importance of rela-
tionships and other things. But such considerations are for humans and not
computers. Tools are expected to support the easy routing and rerouting of paths.

On most diagrams, the crossing of lines has no significance. To avoid ambiguity
about the identity of crossing lines, a small semicircle or gap can be drawn in one
of them at the crossing point (Figure 13-142). More commonly, modelers just
treat a crossing as two independent lines and agree to avoid the confusion of hav-
ing two right angles touch at their corners.

Figure 13-141. Paths

Figure 13-142. Path crossings

orthogonal lines

oblique lines

arcs

crossing lines explicit crossing lines

Bad to join the corners.
Reroute to avoid ambiguity with crossing case.

a
b

a

b
a

b

a

b

a
a

b

b

overlapping corners

386 • pathname Encyclopedia of Terms
In some relationships (such as aggregation and generalization), several paths of
the same kind may connect to a single symbol. If the properties of the various
model elements match, then the line segments connected to the symbol can be
combined into a single line segment so that the path from that symbol branches
into several paths as a kind of tree (Figure 13-143). This is purely a graphical pre-
sentation option. Conceptually, the individual paths are distinct. This presenta-
tion option may not be used when the modeling information on the various
segments is not identical.

pathname

A string composed by concatenating the names of the nested namespaces contain-
ing an element, starting from the implicit unnamed namespace that contains the
entire system and ending with the name of the element itself.

Semantics
A pathname uniquely identifies a model element, such as an attribute or a state,
within a system and may be used within an expression to reference an element.
Not every kind of element has a name.

Figure 13-143. Paths with shared segment

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

shared common segment

equivalent diagram with separate paths

Encyclopedia of Terms pattern • 387
Notation
A pathname is displayed as a list of nested namespace and element names sepa-
rated by double colons (::). A namespace is a package or an element with nested
declarations.

Accounting::Personnel::Employee::address
An attribute address in class Employee in package Personnel in package Accounting

A pathname is a reference to an element in the package named by the path prefix.

pattern

A parameterized collaboration that represents a set of parameterized classifiers, re-
lationships, and behavior that can be applied to multiple situations by binding
elements from the model (usually classes) to the roles of the pattern. It is a collab-
oration template.

Semantics
A pattern represents a parameterized collaboration that can be used multiple
times within one or more systems. To be a pattern, the collaboration must be us-
able in a wide range of situations to justify giving it a name. A pattern is a solution
that has been shown to work in a number of situations. It is not necessarily the
only solution to a problem, but it is a solution that has been effective in the past.
Most patterns have advantages and disadvantages that depend on various aspects
of the wider system. The modeler must consider these advantages and disadvan-
tages before making a decision to use a pattern.

A UML parameterized collaboration represents the structural and behavioral
views of certain kinds of patterns. Patterns involve other aspects that are not mod-
eled directly by UML, such as the list of advantages and disadvantages and exam-
ples of previous use. Many of these other aspects can be expressed in words. See
[Gamma-95] for a fuller treatment of patterns, as well as a catalog of some proven
design patterns.

Generating collaborations from patterns. A collaboration can be used to specify
the implementation of design constructs. The same kind of collaboration may be
used many times by parameterizing its constituents. A pattern is a parameterized
collaboration. Generally, the classes of the roles in the collaboration are parame-
ters. A pattern is instantiated as a collaboration by binding values, usually classes,
to its parameters. For the common case of parameterized roles, the template is
bound by specifying a class for each role. Typically, the association roles in a pat-
tern are not parameterized. When the template is bound, they represent implicit
associations between the classes bound to the collaboration—that is, the binding
of the template to make a collaboration generates additional associations.

388 • permission Encyclopedia of Terms
Notation
The binding of a pattern to produce a collaboration is shown as a dashed ellipse
containing the name of the pattern (Figure 13-144). A dashed line is drawn from
the pattern binding symbol to each of the classes (or other model elements) that
participate in the collaboration. Each line is labeled by the name of the parameter.
In most cases, the name of a role in the collaboration can be used as a parameter
name. Therefore, a pattern binding symbol can show the use of a design pattern,
together with the actual classes that occur in that use of the pattern. The pattern
binding usually does not show the internal structure of the collaboration that is
generated by the binding. This is implied by the binding symbol.

permission

A kind of dependency that grants the client element permission to use the con-
tents of the supplier element (subject to visibility declarations of the content
elements).

Semantics
The stereotypes of permission dependency are access, friend, and import. A naked
permission dependency without a stereotype is never used. The access and import
dependencies are used with packages. The friend dependency is used with classes
or operations as clients and classes as suppliers.

Figure 13-144. Binding of a pattern to make a collaboration

Observer

SlidingBarIcon
handler

CallQueue subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

{ handler.reading = length (subject.queue)

capacity: Integer

range = (0 .. capacity) }

binding of the

The CallQueue class plays
the subject role in the
collaboration.

Observer pattern

The SlidingBarIcon class plays
the handler role.

some constraints
on the pattern

Encyclopedia of Terms polymorphic • 389
Notation
A permission dependency is shown as a dashed arrow from the client (the element
gaining permission) to the supplier (the element granting permission) with the
appropriate stereotype keyword attached to the arrow.

Standard elements
friend, import

persistent object

An object that exists after the thread that created it has ceased to exist.

polymorphic

Indicates an operation whose implementation (a method or state machine trig-
gered by a call event) may be supplied by a descendant class. An operation that is
not polymorphic is a leaf operation.

See also abstract operation, generalization, inheritance, method.

Semantics
If an operation is polymorphic, then a method may be supplied for it in a descen-
dant class (whether or not a method has already been supplied by the original
class). Otherwise, a method must be available for the operation in the class declar-
ing the operation, and the method cannot be overridden in a descendant class. A
method is available if it is declared by a class or inherited from an ancestor. An ab-
stract operation must be polymorphic (because it has no direct implementation).
An operation is nonpolymorphic if it is declared to be a leaf operation.

If an operation is declared polymorphic in a class—that is, if it is not declared as
a leaf—it may be declared to be a leaf in a descendant class. This prevents it from
being overridden in a further descendant. A leaf operation may not be declared
polymorphic in a descendant class. It may not be overridden at any depth.

UML does not mandate the rules for method combination if a method is de-
clared in a class and overridden in a descendant class (see discussion following).
Mechanisms, such as declaring before, after, and around methods, may be handled
in a language-specific manner using tagged values. Actions such as explicitly call-
ing the inherited method are, of course, dependent on the action language in any
case.

Notation
A nonpolymorphic operation is declared using the keyword {leaf }. Otherwise, it is
assumed to be polymorphic.

390 • polymorphic Encyclopedia of Terms
Discussion
An abstract operation is necessarily polymorphic. Otherwise, it could not be im-
plemented at all. Bertrand Meyer calls this a deferred operation, because its speci-
fication is defined in a class but its implementation is deferred to subclasses. This is
an essential, probably the most essential, use of inheritance in both modeling and
programming. Using inheritance, operations can be applied to sets of objects of
mixed classes. The caller need not know or determine the class of each object. It is
only necessary that all of the objects conform to an ancestor class defining the de-
sired operations. The ancestor class need not implement the operations. It must
simply define their signatures. The caller need not know even the list of possible
subclasses. This means that new subclasses can be added later, without disrupting
polymorphic operations on them. Source code that invokes operations need not
change when new subclasses are added. The ability to add new classes after the
original code is written is one of the key pillars of object-oriented technology.

A more problematic use of polymorphism is the replacement (overriding) of a
method defined in a class by a different method defined in a subclass. This is often
cited as a form of sharing, but it is dangerous. Overriding is not incremental, so
everything in the original method must be reproduced in the child method, even
to make a small change. This kind of repetition is error-prone. In particular, if the
original method is changed later, there is no guarantee that the child method will
be changed also. There are times when a subclass can use a completely different
implementation of an operation, but many experts would discourage such over-
riding because of the inherent danger. In general, methods should be either com-
pletely inherited without overriding or deferred; in the latter case there is no
implementation in the superclass, so there is no danger of redundancy or inconsis-
tency.

To permit a subclass to extend the implementation of an operation without los-
ing the inherited method, most programming languages provide some form of
method combination that uses the inherited method but allows additional code to
be added to it. In C++, an inherited method must be explicitly invoked by class
and operation name, which builds the class hierarchy into the code rigidly—not a
very object-oriented approach. In Smalltalk, a method can invoke an operation on
super, which causes the operation to be handled by the inherited method. If the
class hierarchy changes, then the inheritance still works, possibly with a method
from a different class. However, the overriding method must explicitly provide a
call to super. Errors can and do happen, because programmers forget to insert the
calls when a change occurs. Finally, CLOS provides very general and complicated
automatic method combination rules that may invoke several methods during the
execution of a single operation call. The overall operation is implemented from
several fragments rather than being forced to be a single method. This is very gen-
eral but harder to manage for the user.

Encyclopedia of Terms postcondition • 391
UML does not force a single method combination approach. Method combina-
tion is a semantic variation point. Any of these approaches may be used. If the
programming language is weak on method combination, then a modeling tool
may be able to provide help in generating the appropriate programming-language
code or in warning about possible oversights if method overriding is used.

postcondition

A constraint that must be true at the completion of an operation.

Semantics
A postcondition is a Boolean expression that must be true after the execution of an
operation completes. It is an assertion, not an executable statement. Depending on
the exact form of the expression, it might be possible to verify it automatically in
advance. It can be useful to test the postcondition after the operation, but this is in
the nature of debugging a program. The condition is supposed to be true, and
anything else is a programming error. A postcondition is a constraint on the im-
plementor of an operation. If it is not satisfied, then the operation has been imple-
mented incorrectly.

See also invariant, precondition.

Structure
A postcondition is modeled as a constraint with the stereotype «postcondition»,
which is attached to an operation.

Notation
A postcondition can be shown in a note with the keyword «postcondition». The
note is attached to the affected operation.

Example
Figure 13-145 shows a postcondition on an array sort operation. The new value of
the array (a’) is related to the original value (a). This example is expressed in struc-
tured natural language. Specification in a more formal language is also possible.

Figure 13-145. Postcondition

{ a’.size = a.size;
any value in a appears the same number of times in a and a’;
for each successive values x and y in a’, x ≤ y }

Array

sort ()
. . . «postcondition»

392 • powertype Encyclopedia of Terms
powertype

A metaclass whose instances are subclasses of a given class.
See also metaclass.

Semantics
The subclasses of a given class may themselves be considered instances of a meta-
class. Such a metaclass is called a powertype. For example, class Tree may have sub-
classes Oak, Elm, and Willow. Considered as objects, those subclasses are instances
of metaclass TreeSpecies. TreeSpecies is a powertype that ranges over Tree.

Notation
A powertype is shown as a class with the stereotype «powertype». It is connected
to a set of generalization paths by a dashed arrow with the stereotype «powertype»
on the arrow (Figure 13-146).

precondition

A constraint that must be true when an operation is invoked.

Semantics
A precondition is a Boolean expression that must be true when an operation is
called. It is the responsibility of the caller to satisfy the condition. It is not a condi-
tion that the receiver should have to check. A precondition is not a guard condi-
tion; it is a condition that must be true, not a way to optionally execute an
operation. It can be useful to test the precondition at the beginning of the opera-
tion for reliability, but this is in the nature of debugging a program. The condition
is supposed to be true, and anything else is a programming error. If the condition
is not satisfied, no statement can be made about the integrity of the operation or
the system. It is liable to utter failure. In practice, explicitly checking preconditions
by the receiver may detect many errors.

Figure 13-146. Powertype

Tree

Oak WillowElm

«powertype»
TreeSpecies

Encyclopedia of Terms presentation element • 393
See also invariant, postcondition.

Structure
A precondition is modeled as a constraint with the stereotype «precondition»,
which is attached to an operation.

Notation
A precondition can be shown in a note with the keyword «precondition». The note
is attached to the affected operation.

Example
Figure 13-147 shows a precondition on a matrix product operator.

presentation element

A textual or graphical projection of one or more model elements.
See also diagram.

Semantics
Presentation elements (sometimes called view elements, although they include
nongraphical forms of presentation) present the information in a model for hu-
man perception. They are the notation. They show part or all of the semantic in-
formation about a model element. They may also add aesthetic information useful
to humans, for example, by grouping conceptually related elements together. But
the added information has no semantic content. The expectation is that a presen-
tation element is responsible for maintaining itself correctly despite changes to the
underlying model elements; whereas, the model elements need not be aware of
presentation elements to operate correctly.

Figure 13-147. Precondition

{ number of rows of self = number of columns of m1 }

Matrix

product (m1): Matrix
. . .

«precondition»

394 • primitive type Encyclopedia of Terms
The descriptions of UML notation in this book define the mapping from model
elements to graphical presentations on a screen. The implementation of presenta-
tion elements as objects is the responsibility of a tool implementation.

primitive type

A predefined basic data type, such as an integer or a string.
See also enumeration.

Semantics
Instances of primitive types do not have identity. If two instances have the same
representation, then they are indistinguishable and can be passed by value with no
loss of information.

Primitive types include numbers and strings, and possibly other system-
dependent data types, for example, dates, and money, whose semantics are pre-
defined outside UML.

It is expected that primitive types will correspond closely to those found in the
target programming language.

See also enumerations, which are user-definable data types that are not pre-
defined primitive types.

private

A visibility value indicating that the given element is not visible outside its own
namespace even to descendants of the namespace.

private inheritance

The inheritance of structure in a situation in which behavioral specification is not
inherited.

See also implementation inheritance, interface inheritance, substitutability
principle.

Semantics
A generalization may have the stereotype «implementation». This indicates that
the client element (usually a class) inherits the structure (attributes, associations,
and operations) of the supplier element but does not necessarily make this struc-
ture available to its own clients. Because the ancestry of such a class (or other ele-
ment) is not visible to other classes, an instance of the class may not be used for a
variable or parameter declared with the supplier class. In other words, the class is
not substitutable for its privately inherited suppliers. Private inheritance does not
follow the substitutability principle.

Encyclopedia of Terms product • 395
Notation
Private inheritance is indicated by the keyword «implementation» on a generaliza-
tion arrow from the inheriting element (the client) to the element supplying the
structure to be inherited (the supplier).

Discussion
Private inheritance is purely an implementation mechanism and should not be
thought of as a use of generalization. Generalization requires substitutability. Pri-
vate inheritance is not particularly meaningful in an analysis model, which does
not involve implementation structure. Even for implementation, it should be used
with care, as it involves a nonsemantic use of inheritance. A cleaner alternative is
often an association to the supplier class. Many authors (including this one) would
argue that it should never be used at all, because it uses inheritance in a nonse-
mantic way that is dangerous when changes are made to a model.

procedure expression

An expression whose evaluation represents the execution of a procedure that may
affect the state of the running system.

Semantics
A procedure expression is an encoding of an executable algorithm. Its execution
may (and usually does) affect the state of the system—that is, it has side effects. A
procedure expression does not generally return a value. The purpose of its execu-
tion is to alter the system state.

process

1. A heavyweight unit of concurrency and execution in an operating system. See
thread, which includes heavyweight and lightweight processes. If necessary, an
implementation distinction can be made using stereotypes.
2. A software development process—the steps and guidelines by which to develop
a system.
3. To execute an algorithm or otherwise handle something dynamically.

product

The artifacts of development, such as models, code, documentation, work plans; a
work product.

396 • projection Encyclopedia of Terms
projection

A mapping from a set to a subset of it. Most models and diagrams are projections
from the full set of information that is potentially available.

property

A generic term denoting a named value conveying information about a model ele-
ment. A property has semantic impact. Certain properties are predefined in the
UML; others may be user defined.

See attribute, relationship, tagged value.

Semantics
Properties include built-in attributes (UML defined), as well as tagged values (user
defined) and relationships (user defined) attached to an element. From a user’s
viewpoint, it often doesn’t matter if a property is built in or it is implemented as a
tagged value.

Discussion
Note that we use property in a general sense to mean any value attached to a model
element, including attributes, associations, and tagged values. In this sense, it can
include indirectly reachable values that can be found starting at a given element.

property list

A text syntax for showing a property or properties attached to an element, espe-
cially tagged values, but also including built-in attributes of model elements.

Notation
One or more comma-separated property specifications enclosed in braces ({ }).
Each property declaration has the form

property-name = value

or

property-literal

where the property literal is a unique enumerated value whose appearance implies
a unique property name.

Example
{ abstract, author=Joe, visibility=private }

Encyclopedia of Terms pseudostate • 397
Presentation options
A tool may present property specifications on separate lines with or without the
enclosing braces, provided they are appropriately marked to distinguish them
from other information. For example, properties for a class might be listed under
the class name in a distinctive typeface, such as italics or a different font family.
This is a tool issue.

Note that property strings may be used to display built-in attributes, as well as
tagged values, but such usage should be avoided if the canonical form is simple.

protected

A visibility value indicating that the given element is visible outside its own
namespace only to descendants of the namespace.

pseudoattribute

A value related to a class that behaves like an attribute—namely, it has a unique
value for each instance.

See also discriminator, rolename.

Semantics
Pseudoattributes include association rolenames and generalization discriminators.
An association rolename is a pseudoattribute in the class on the other end of the
association. A generalization discriminator is a pseudoattribute in the parent ele-
ment. In each child element, the value of the discriminator is the name of the child
element.

A pseudoattribute can be used as a name in an expression to retrieve a value
from an object. Because attribute names and pseudoattribute names may be used
in expressions, they are in the same namespace and must be unique in that
namespace. The names must also be unique with respect to inherited attribute and
pseudoattribute names.

pseudostate

A vertex in a state machine that has the form of a state but does not behave as a full
state. See history state, initial state, junction state, stub state.

Semantics
When a pseudostate is active, a state machine has not completed its run to com-
pletion step and will not process events. Pseudostates include initial state, junction
state, stub state, and history state. Pseudostates are used to chain transition

398 • public Encyclopedia of Terms
segments, and a transition to one implies a further automatic transition to an-
other state without requiring an event.

A final state and a synch state are not pseudostates. They are special states that
may remain active when a state machine has completed its run to completion step,
but they have restrictions on the transitions that can depart from them.

public

A visibility value indicating that the given element is visible outside its own
namespace.

qualifier

A slot for an attribute or list of attributes on a binary association, in which the val-
ues of the attributes select a unique related object or a set of related objects from
the entire set of objects related to an object by the association. It is an index on the
traversal of an association.

See association class, association end.

Semantics
A binary association maps an object to a set of related objects. Sometimes, it is de-
sirable to select an object from the set by supplying a value that distinguishes the
objects in the set. This value could be an attribute of the target class. In general,
however, the selector value may be part of the association itself, an association at-
tribute whose value is supplied by the creator when a new link is added to the asso-
ciation class. Such an attribute on a binary association is called a qualifier. An
object, together with a qualifier value, determines a unique related object or
(somewhat less often) a subset of related objects. The value qualifies the associa-
tion. In an implementation context, such an attribute has been called an index
value.

A qualifier is used to select an object or objects from the set of objects related to
a object (called the qualified object) by an association (Figure 13-148). The object
selected by the qualifier value is called the target object. A qualifier always acts on
an association whose multiplicity is many in the target direction. In the simplest
case, each qualifier value selects a single object from the target set of related ob-
jects. In other words, a qualified object and a qualifier value yield a unique related
target object. Given a qualified object, each qualifier value maps into a unique tar-
get object.

Many kinds of names are qualifiers. Such a name within a context maps to a
unique value. The qualified object supplies the context, the qualifier is the name,
and the target object is the result. Any ID or other unique code is a qualifier; its
purpose is to uniquely select a value. An array can be modeled as a qualified asso-

Encyclopedia of Terms qualifier • 399
ciation. The array is the qualified object, the array index is the qualifier, and the ar-
ray element is the target object. For an array, the qualifier type is an integer range.

A qualifier may be used in a navigation expression to select a subset of objects
related to an object across an association—namely, those bearing a particular
value for the qualifier attribute value or list of values. The qualifier serves as a se-
lector within the set of objects related by the association. It partitions the set into
subsets by qualifier value. In most cases, the purpose of a qualifier is to select a
unique object from the set of related objects so that a qualified association behaves
like a lookup table.

Structure
Qualifier. A qualifier attribute is an optional part of a binary association end. The
qualifier qualifies the class attached to the association end. An object of the class
and a qualifier value select an object or set of objects from the class at the other
end of the binary association. It is possible for both ends of a binary association to
have qualifiers, but it is rare.

A qualifier is an association attribute or list of attributes. Each attribute has a
name and a type but no initial value, as qualifiers are not free-standing objects,
and each qualifier value must be explicit when a link is added to the association.

Qualifiers are not used with n-ary associations.

Multiplicity. The multiplicity of the qualified relationship is placed on the oppo-
site end of the binary association from the qualifier. (The mnemonic is that the
qualified class and qualifier together form a composite value that is related to the
target class.) In other words, the qualifier is attached to the “near end” of the asso-
ciation, and the multiplicity and rolename are attached to the “far end.”

Figure 13-148. Qualified associations

Square

Chessboard

rank:Rank
file:File

Person

Bank

account #

∗

0..1

1

1

qualifier

qualified class

target class

multiplicity after qualification

(bank, account #) → 0 or 1 person

person → many (bank, account #)

(chessboard, rank, file) → 1 square

square → 1 (chessboard, rank, file)

400 • qualifier Encyclopedia of Terms
The multiplicity attached to the target association end denotes how many target
objects might be selected by a (source object, qualifier value) pair. Common mul-
tiplicity values include 0..1 (a unique value may be selected, but every possible
qualifier value does not necessarily select a value), 1 (every possible qualifier value
selects a unique target object, therefore the domain of qualifier values must be fi-
nite), and * (the qualifier value is an index that partitions the target objects into
subsets).

In the majority of cases, the multiplicity is zero-or-one. This choice means that
an object and qualifier value may yield, at most, one related object. A multiplicity
of one means that every possible qualifier value yields exactly one object. This ob-
viously requires the qualifier type to be a finite domain (in a computer implemen-
tation anyway). This multiplicity can be useful for mapping finite enumerated
types—for example, a Pixel qualified by PrimaryColor (enumeration of red, green,
and blue) would yield the red-green-blue value triplet for each pixel in an image.

The multiplicity of the unqualified association is not stated explicitly. But it is
usually assumed to be many, or at least more than one. Otherwise, there would be
no need for a qualifier.

A multiplicity of many on a qualified association has no significant semantic
impact, because the qualifier does not reduce the multiplicity of the target set.
Such a multiplicity represents a design statement that an index to traverse the asso-
ciation must be provided. In that case, the qualifier partitions the set of target ob-
jects into subsets. Semantically, this adds nothing beyond having an association
attribute, which also (implicitly) partitions the links. The design connotation of a
qualifier in a design model is that the traversal should be efficient—that is, it must
not require a linear search among all the target values. Usually it is implemented
by some kind of lookup table. An index in a database or data structure is properly
modeled as a qualifier.

In the reverse direction across a qualified association (that is, going from the
target class to the qualified object), the multiplicity indicates the number of (qual-
ified object, qualifier) pairs that can relate to a target object, not the number of
qualified objects. In other words, if several (qualified object, qualifier) pairs map
into the same target object, then the reverse multiplicity is many. A reverse multi-
plicity of one from target to qualifier means that there is exactly one pairing of
qualified object and qualifier value that relates to the target object.

Notation
A qualifier is shown as a small rectangle attached to the end of an association path
between the final path segment and the symbol of the qualified class. The qualifier
rectangle is part of the association path, not part of the class. The qualifier is at-
tached to the class that it qualifies—that is, an object of the qualified class together

Encyclopedia of Terms qualifier • 401
with a value of the qualifier uniquely selects a set of target class objects on the
other end of the association.

Qualifier attributes are listed within the qualifier box. There may be one or
more attributes in the list. Qualifier attributes have the same notation as class at-
tributes, except that initial value expressions are not meaningful.

Presentation options
A qualifier may not be suppressed (it provides essential detail, the omission of
which would modify the inherent character of the relationship).

A tool may use a thinner line for qualifier rectangles than for class rectangles to
distinguish them clearly.

The qualifier rectangle, preferably, should be smaller than the class rectangle to
which it is attached, although this is not always practical.

Discussion
The multiplicities on a qualified association are treated as if the qualified object
and the qualifier are a single entity, a composite key. In the forward direction, the
multiplicity on the target end represents the number of objects related to the com-
posite value (qualified object + qualifier value). In the reverse direction, the multi-
plicity describes the number of composite values (qualified object + qualifier)
related to each target object, not the number of qualified objects related to each
target object. This is why the qualifier is placed on the very end of the association
path adjacent to the class symbol—you can think of the association path connect-
ing the composite value to the target class.

There is no provision for specifying the multiplicity of the unqualified relation-
ship. In practice, however, it is usually many in the forward direction. There is no
point to have a qualified association unless many target objects are related to one
qualified object. For logical modeling, the purpose of the qualifier is to reduce the
multiplicity to one by adding the qualifier so that a query can be assured of return-
ing a single value rather than a set of values. The uniqueness of the qualifier value
is frequently a crucial semantic condition that is difficult to capture without quali-
fiers. Almost all applications have many qualified associations. Many names are re-
ally qualifiers. If a name is unique within some context, it is a qualifier and the
context should be identified and modeled appropriately. Not all names are qualifi-
ers. Names of persons, for example, are not unique. Because personal names are
ambiguous, most data processing applications use some kind of identification
number, such as a customer number, a Social Security number, or an employee
number. If an application requires the lookup of information or the retrieval of
data based on search keys, the model should generally use qualified associations.
Any context in which names or identification codes are defined to select things out
of sets should usually be modeled as a qualified association.

402 • qualifier Encyclopedia of Terms
Note that the qualifier value is a property of the link, not of the target object.
Consider a Unix file system, in which each directory is a list of entries whose
names are unique within the directory, although the same names can be used in
other directories. Each entry points to a file, which may be a data file or another
directory. More than one entry can point to the same file. If this happens, the file
has several aliases. The Unix directory system is modeled as a many-to-one associ-
ation in which the directory qualified by the filename yields a file. Note that the
filename is not part of the file; it is part of the relationship between a directory and
a file. A file does not have a single name. It may have many names in many directo-
ries (or even several names in the same directory). The filename is not an attribute
of the file.

A major motivation for qualified associations is the need to model an important
semantic situation that has a natural and important implementation data struc-
ture. In the forward direction, a qualified association is a lookup table—for a qual-
ified object, each qualifier value yields a single target object (or a null value if the
qualifier value is absent in the set of values). Lookup tables are implementable by
data structures, such as hash tables, b-trees, and sorted lists that provide much
greater efficiency than unsorted lists, which must be searched linearly. In almost all
cases, it is poor design to use a linked list or other unsorted data structure for
searches on names or codes, although, sadly, many programmers use them. Mod-
eling appropriate situations with qualified associations and using efficient data
structures to implement them is crucial to good programming.

For a logical model, there is little point in having a qualified association with a
multiplicity of many in the forward direction, because the qualifier does not add
any semantic information that an association attribute could not show. In a model
intended for the design of algorithms and data structures, however, a qualifier car-
ries an additional connotation—namely, the intent that the selection be efficient.
In other words, a qualified association denotes an indexed data structure opti-
mized for lookup on the qualifier value. In this case, a multiplicity of many can be
useful to represent a set of values that must be accessible together under a common
index value, without having to search other values.

A qualifier attribute should, generally, not be included as an attribute of the tar-
get class, as its presence in the association is sufficient. In case of an index value,
however, it may be necessary to take a value that is inherently an attribute of the
target class and make it a redundant qualifier value. Index values are inherently re-
dundant.

Constraints
Some complicated situations are not straightforward to model with any set of
nonredundant relationships. They are best modeled using qualified associations to
capture the basic access paths with additional constraints stated explicitly. Because

Encyclopedia of Terms qualifier • 403
these situations are uncommon, we felt that trying to include them in a notation
that could capture all possible multiplicity constraints directly was not worth the
added complexity.

For example, consider a directory in which each filename identifies a unique
file. A file may correspond to multiple directory-filename pairs. This is the basic
model we have seen before. This model is shown in Figure 13-149.

Now, however, we wish to add additional constraints. Suppose that each file
must be in just one directory, but within that directory it could have many
names—that is, there is more than one way to name the same file. This can be
modeled with a redundant association between File and Directory, with multiplic-
ity one on Directory (Figure 13-150). The redundancy of the two associations is
indicated by the constraint {same}, which implies that the two elements are the
same but at different levels of detail. Because these associations are redundant,
only the qualified association would be implemented; the other would be treated
as a run-time constraint on its contents.

A similar constraint is that each file may appear in multiple directories, but it al-
ways has the same name wherever it appears. Other files can have the same name,
but they must be in different directories. This can be modeled by making filename
an attribute of File but constraining the class attribute and the qualifier to be the

Figure 13-149. Simple qualifier

Figure 13-150. File with multiple names in one directory

File

Directory

filename: Name
∗

0..1

(directory, filename) → 0 or 1 file
directory → many files
file → many (directory, filename)
file → many directories
file → many filenames

File

Directory

filename: Name
∗

0..1
{same}

(directory, filename) → 0 or 1 file
directory → many files
file → many (directory, filename)
file → 1 directory
file → many filenames

1

∗

404 • query Encyclopedia of Terms
same (Figure 13-151). This pattern occurs frequently as a search index, although
in a general index the multiplicity of the qualified target would be many. This situ-
ation, therefore, has more semantic content than an index, which is an implemen-
tation device.

A third case would allow a file to appear in multiple directories under various
names, but the file could appear only once within a single directory. This could be
modeled with redundant qualified association and association class that share the
same attribute filename (Figure 13-152).

These examples have been shown with redundant relations to illustrate the na-
ture of the constraints. In practice, however, it is usually satisfactory to state the
constraint textually, with the qualified association shown graphically.

query

An operation that returns a value but does not alter the state of the system; an op-
eration without side effects.

Figure 13-151. File with same name in all directories

Figure 13-152. File with at most one name in any directory

File

Directory

filename: Name
∗

0..1 {same}

filename: Name

(directory, filename) → 0 or 1 file
directory → many files
file → many (directory, filename)
file → many directories
file → 1 filename

File

Directory

filename: Name
∗

0..1
{same} filename: Name

1

∗

(directory, filename) → 0 or 1 file
directory → many files
file → many (directory, filename)
file → many directories
file → many filenames
(file, directory) → 0 or 1 filename

Encyclopedia of Terms realization • 405
realization

The relationship between a specification and its implementation; an indication of
the inheritance of behavior without the inheritance of structure.

See also interface.

Semantics
A specification describes the behavior or structure of something without deter-
mining how the behavior will be implemented. An implementation provides the
details about how to implement behavior in an effectively computable way. The re-
lationship between an element that specifies behavior and one that provides an
implementation is called realization. In general, there are many ways to realize a
specification. Similarly, an element can realize more than one specification. Real-
ization is therefore a many-to-many relationship among elements.

The meaning of realization is that the client element must support all the behav-
ior of the supplier element but need not match its structure or implementation. A
client classifier, for example, must support the operations of the supplier classifier,
and it must support all state machines that specify external behavior of the sup-
plier. But any attributes, associations, methods, or state machines of the supplier
that specify implementation are irrelevant to the client. Note that the client does
not actually inherit the operations from the supplier. It must declare them itself or
inherit them from an ancestor so that all the operations of the supplier are cov-
ered. In other words, the supplier in a realization indicates which operations must
be present in the client, but the client is responsible for providing them.

Certain kinds of elements, such as interfaces and use cases, are intended for
specifying behavior, and they contain no implementation information. Other
kinds of elements, such as classes, are intended for implementing behavior. They
contain implementation information, but they can also be used in a more abstract
way as specifiers. Usually, realization relates a specification element, such as a use
case or an interface, to an implementation element, such as a collaboration or a
class. It is possible to use an implementation element, such as a class, for specifica-
tion. It can be placed on the specification side of a realization relationship. In this
case, only the specification parts of the supplier class affect the client. The imple-
mentation parts are irrelevant for the realization relationship. More precisely,
then, realization is a relationship between two elements in which the external be-
havior specification parts of one constrain the implementation of the other. It
might be thought of as inheritance of behavior specification without inheritance
of structure or implementation (and with the need to actually declare the opera-
tions by the client).

406 • realization Encyclopedia of Terms
If the specification element is an abstract class with no attributes, no associa-
tions, and only abstract operations, any specialization of the abstract class realizes
the abstract class, as there is nothing to inherit but specification.

The implementing element must support all of the behavior included in the
specifying element. For example, a class must contain all the operations of the in-
terfaces that it realizes, with semantics that are consistent with all the specifications
required by the interfaces. The class can implement additional operations, and the
implementation of the operations can do additional things, provided the opera-
tion specifications of the interfaces are not violated.

Notation
The realization relationship is shown by a dashed path with a closed triangular ar-
rowhead on the end adjacent to the element supplying the specification and with
its tail on the element supplying the implementation (Figure 13-153).

Discussion
Another important case is the realization of a use case by a collaboration
(Figure 13-154). A use case specifies externally visible functionality and behavioral
sequences, but it does not supply an implementation. A collaboration describes
the objects that implement the use case behavior and the way that they interact to
do it. Usually, one collaboration implements one use case, but a collaboration can
be implemented using subordinate collaborations, each of which does part of the
job. The objects and classes used to implement a collaboration usually appear in

Figure 13-153. Realization relationship

«interface»
ChoiceBlock

PopUpMenu

RadioButtonArray
setDefault(choice: Choice)
getChoice(): Choice

Choice

1..∗ choices

Button

String

setDefault (choice: Button)
getChoice(): Button

1..∗ choices

1..∗

setDefault (choice: Button)
getChoice(): Button

realization

specifier implementation

choices

Encyclopedia of Terms reception • 407
other collaborations as well. Each class in the collaboration devotes part of its
functionality to the use case being implemented. Therefore, a use case is eventually
implemented by slices through several classes.

realize

To provide the implementation for a specification element.
See realization.

receive

To handle a message instance passed from a sender object.
See sender, receiver.

receiver

The object that handles a message instance passed from a sender object.

reception

A declaration that a classifier is prepared to react to the receipt of a signal. It is a
member of a classifier.

Semantics
A reception is a declaration that a classifier is prepared to accept and react to an in-
stance of a signal. A reception is similar to an operation. It declares the signature
of a message that the classifier supports and specifies its meaning.

Structure
A reception has the following properties.

polymorphism Whether the response of the classifier to the signal is
always the same. Coded by the property isPolymorphic
with the following values.

true The response is polymorphic: It may depend on
state, and it can also be overridden by a descendant.

Figure 13-154. Realization of use case by collaboration

Fill order Fill order

408 • reference Encyclopedia of Terms
false The response must be the same, regardless of state,
and may not be overridden by a descendant. The
net effect is that there must be a single transition on
the entire state machine that handles the event.

signal Designates the signal that the classifier is prepared to
respond to.

specification An expression stating the effects that reception of the sig-
nal causes.

Notation
A reception may be shown in the operation list of a class or interface using the syn-
tax for an operation with the keyword «signal» in front of the signal name.

Alternately, a list of signal signatures may be placed in its own compartment; the
compartment has the name Signals. Both ways are shown in Figure 13-155.

reference

A denotation of a model element; commonly called a pointer.

Semantics
Model elements are connected by two metarelationships: ownership and reference.
Ownership is the relationship between an element and its constituent parts, the
parts that are defined within it and owned by it. The ownership relationship forms
a strict tree. The contained elements are subordinate to the container element.
Ownership, configuration control, and storage of models are based on the con-
tainment hierarchy.

Reference is a relationship between elements at the same level of detail or be-
tween elements in different containers. For example, reference is the relationship
between an association and its participant classes, between an attribute and the

Figure 13-155. Two ways to notate signal reception

PrintSpooler

changeSettings(settings)
«signal» print(job:PrintJob)
«signal» printerFree()

PrintSpooler

changeSettings(settings)

print(job:PrintJob)
printerFree()

Signals

Encyclopedia of Terms refinement • 409
class or data type that is its type property, between a bound template and its argu-
ment values. For a reference to be possible, the element performing the reference
must have visibility to the element being referenced. Generally this means that the
package containing the source of the reference must have visibility to the package
containing the target of the reference. This requires an appropriate access or im-
port relationship between the packages. It also requires that the element being ref-
erenced have a visibility setting that allows it to be seen outside its package, unless
the source of the reference is in the same package.

Note that reference is an internal metamodel relationship, not a user-visible
relationship; it is used to construct the other relationships.

refine

Keyword for a refinement dependency in the notation.

refinement

A relationship that represents a fuller specification of something that has already
been specified at a certain level of detail or at a different semantic level.

See also abstraction.

Semantics
A refinement is a historical or computable connection between two elements with
a mapping (not necessarily complete) between them. Often, the two elements are
in different models. For example, a design class may be a refinement of an analysis
class; it has the same logical attributes, but their classes may come from a specific
class library. An element can refine an element in the same model, however. For
example, an optimized version of a class is a refinement of the simple but ineffi-
cient version of the class. The refinement relationship may contain a description of
the mapping, which may be written in a formal language (such as OCL or a pro-
gramming or logic language). Or it may be informal text (which, obviously, pre-
cludes any automatic computation but may be useful in early stages of
development). Refinement may be used to model stepwise development, optimi-
zation, transformation, and framework elaboration.

Structure
Refinement is a kind of dependency. It relates a client (the element that is more
developed) to a supplier (the element that is the base for the refinement).

410 • reification Encyclopedia of Terms
Notation
A refinement is indicated by a dependency arrow (a dashed arrow with its head on
the more general element and tail on the more specific element) with the keyword
«refine». The mapping may be attached to the dependency path by a dashed line
connected to a note. Various kinds of refinement have been proposed and can be
indicated by further stereotyping. In many cases, refinement connects elements in
different models and will therefore not be visible graphically. Often, it is only im-
plicit.

Example
Optimization is a typical kind of refinement. Figure 13-156 shows a chessboard
that has a simple representation in the analysis model, but it has a much more
elaborate and obscure representation in the design model. The design class is not a
specialization of the analysis class, because it has a totally different form. The class
in the analysis model and the one in the design model have the same name, be-
cause they represent the same concept at two different semantic levels.

reification

The act of reifying something.
See reify.

Figure 13-156. Refinement

Chessboard Chessboard
«refine»

simple
 implementation

optimized for
 parallel processing

«analysis model»

mapped cells to
bitmap implementation

«design model»

Encyclopedia of Terms relationship • 411
reify

To treat as an object something that is not usually regarded as an object.

Discussion
Reification has a long-standing philosophical and literary meaning. It is used to
describe the characterization of abstract concepts as things or persons in mythol-
ogy and poetry. For example, the god Thor was a reification of thunder. Plato’s
theory of ideals turned things around from the prevalent perception. He regarded
pure concepts, such as Beauty, Good, and Courage, as the true eternal reality, and
regarded the physical instantiations as imperfect copies—reification carried to its
ultimate limit.

Reification is one of the most useful ideas for object orientation, and it under-
lies almost every aspect of modeling. Building a model in the first place requires
the imposition of objects onto a continuous world. Humans do this naturally in
every sentence they speak—a noun is a reification of a thing and a verb is a reifica-
tion of an action. Reification is particularly useful when applied to things in mod-
els or programs that do not start out treated as objects, such as dynamic behavior.
Most persons think of an operation as an object, but what about the execution
(the word itself is a reification) of an operation? Generally people think of that as a
process. But reify it and give it a name—call it an activation—and you can sud-
denly give it properties, form relationships to other objects, manipulate it, and
store it. Reification of behavior transforms dynamic processes into data structures
that can be stored and manipulated. This is a powerful concept for modeling and
programming.

relationship

A reified semantic connection among model elements. Kinds of relationships in-
clude association, generalization, metarelationship, flow, and several kinds
grouped under dependency.

Semantics
Table 13-2 shows the various kinds of UML relationships. The first column (kind)
shows the groupings under which they are arranged in the metamodel. The sec-
ond column (variety) shows the different kinds of relationships. The third column
(notation) shows the base notation for each relationship: Association is a solid
path, dependency is a dashed arrow, and generalization is a solid path with trian-
gular arrowhead. The fourth column (keyword) shows the text keywords and
additional syntax for those relationships that require it.

412 • repository Encyclopedia of Terms
repository

A storage place for models, interfaces, and implementations, part of an environ-
ment for manipulating development artifacts.

request

The specification of a stimulus sent to instances. It can be the call of an operation
or the sending of a signal.

Table 13-2: UML Relationships

Kind Variety Notation Keyword or Symbol

abstraction derivation dependency «derive»

realization realization

refinement dependency «refine»

trace dependency «trace»

association association

binding dependency «bind» (parameter list,)

extend dependency «extend» (extension pointlist,)

flow become dependency sequence-number: «become»

copy dependency sequence-number : «copy»

generalization generalization

include dependency «include»

metarelationship instance dependency «instanceOf»

powertype dependency «powertype»

permission access dependency «access»

friend dependency «friend»

import dependency «import»

usage call dependency «call»

instantiation dependency «instantiate»

parameter dependency «parameter»

send dependency «send»

Encyclopedia of Terms responsibility • 413
requirement

A desired feature, property, or behavior of a system.

Semantics
A text requirement may be modeled as a comment with the stereotype «require-
ment».

Discussion
The term requirement is a natural language word that corresponds to a variety of
UML constructs that are intended to specify the desired characteristics of a system.
Most commonly, requirements corresponding to user-visible transactions will be
captured as use cases. Nonfunctional requirements, such as performance and
quality metrics, may be captured as text statements that eventually trace to ele-
ments of the final design. UML comments and constraints may be used to repre-
sent nonfunctional requirements.

responsibility

A contract or obligation of a class or other element.

Semantics
A responsibility can be represented as a stereotype on a comment. The comment is
attached to a class or other element that has the responsibility. The responsibility
is expressed as a text string.

Figure 13-157. Compartment for responsibilities

debit charges

CreditLine

charge (): Boolean
pay ()
adjust (limit: Money, code: String)

responsibilities

credit payments

predefined operation compartment

user-defined responsibility compartment

list of responsibilitiesreject over-limit charges
adjust limit with authorization
notify accounting when overdue
keep track of credit limit
keep track of current charges

414 • reuse Encyclopedia of Terms
Notation
Responsibilities can be shown in a named compartment within a classifier symbol
rectangle (Figure 13-157).

reuse

The use of a pre-existing artifact.

role

A named slot within an object structure that represents behavior of an element
that participates in a context (as opposed to the inherent qualities of the element
across all usages). A role may be static (such as an association end) or dynamic
(such as a collaboration role). Collaboration roles include classifier roles and asso-
ciation roles.

See collaboration.

rolename

A name for a particular association end within an association.
See also pseudoattribute.

Semantics
A rolename provides a name to identify an association end within an association,
as well as to navigate from one object to another using the association. Because a
rolename can be used in these two complementary ways, the name must be
unique in two namespaces simultaneously.

All the rolenames in an association must be different. Within a self-association
(an association involving the same class more than once), rolenames are necessary
to disambiguate the ends attached to the same class. Otherwise, rolenames are op-
tional, because the class names can be used to disambiguate the ends.

A rolename is also used to navigate from an object to neighboring related ob-
jects. Each class “sees” the associations attached to it and can use them to find ob-
jects related to one of its instances. By convention, the rolename on the association
end attached to a neighboring class is used to form a navigation expression to ac-
cess the object or set of objects related by that association. In Figure 13-158, con-
sider class B that is associated to class A by a one-to-many association and to class
C by a one-to-one association. Given an object bb of class B, the expression
bb.theA yields a set of objects of class A, and the expression bb.theC yields an ob-
ject of class C. In effect, the rolename on the far side of the association is like a

Encyclopedia of Terms rolename • 415
pseudoattribute of a class—that is, it may be used as a term in an access expression
to traverse the association.

Because a rolename can be used like an attribute name to extract values, a role-
name enters the namespace of the class on the far side of the association. It goes in
the same namespace as attribute names. Both attributes names and rolenames
must be unique within that namespace. Attributes and association rolenames are
inherited, and the attribute names and pseudoattribute names must be unique
among inherited names also. A rolename attached to an ancestor class can be used
for navigation in a descendant. In Figure 13-158, the expression bb.anE is legiti-
mate, because class B inherits the rolename anE from class D.

Rolenames and association names are optional if each association can be
uniquely identified. Either an association name or the rolenames on its ends can
identify an association. It is not necessary to have both, although it is permitted to
do so. If it is the only association between two classes, both the association name
and the rolenames may be omitted. In principle a rolename is required for a navi-
gation expression. In practice, a tool may provide a default rule for creating im-
plicit rolenames from the names of the associated classes.

Notation
A rolename is shown by a graphic string placed near the end of an association
path, at which it meets a class box. If it exists, the rolename may not be suppressed.

The rolename may bear a visibility marker—an arrowhead—that indicates
whether the element at the far end of the association can see the element attached
to the rolename.

Figure 13-158. Navigation over associations

B CA
1

theA

∗

theCtheBtheB

11

‘bb.theA’ is a set of A’s ‘bb.theC’ is one C

Given bb: B and dd: D

D E
1

anE

∗

‘bb.anE’ is one E ‘dd.theC’ is illegal unless dd is a B

416 • run time Encyclopedia of Terms
run time

The period of time during which a computer program executes. Contrast: model-
ing time.

run to completion

A transition or series of actions that must be completed in its entirety.
See also action, atomic, state machine, transition.

Semantics
In a state machine, certain actions or series of actions are atomic—that is, they
may not be terminated, aborted, or interrupted by other actions. When a transi-
tion fires, all the actions attached to it or invoked by it must be completed as a
group, including entry actions and exit actions on states that it enters or leaves.
The execution of a transition is said to run to completion, because it does not wait
to accept other events.

Run-to-completion semantics may be contrasted with the wait semantics of
normal states. When a state is active, an event may cause a transition to another
state. Any activity in the state is aborted by the transition.

A transition may be composed of multiple segments arranged as a chain and
separated by pseudostates. Several chains may merge together or branch apart, so
the overall model may contain a graph of segments separated by pseudostates.
Only the first segment in a chain may have a trigger event. The transition is trig-
gered when the trigger event is handled by the state machine. If the guard condi-
tions on all the segments are satisfied, the transition is enabled, and it fires,
provided no other transition fires. The actions on the successive segments are exe-
cuted. Once execution begins, the actions on all of the segments in the chain must
be executed before the run-to-completion step is complete.

During execution of a run-to-completion transition, the trigger event that initi-
ated the transition is available to actions as the current event. Entry and exit ac-
tions can therefore obtain the arguments of the trigger event. Various events may
cause execution of an entry or exit action, but an action can discriminate the type
of the current event in a case statement.

Because of the run-to-completion semantics of actions, they should be used to
model assignments, testing flags, simple arithmetic, and other kinds of bookkeep-
ing operations. Long computations should be modeled as interruptible activities.

scenario

A sequence of actions that illustrates behavior. A scenario may be used to illustrate
an interaction or the execution of a use case instance.

run-time

run-to-completion

Encyclopedia of Terms scope • 417
scope

The extent of a classifier member, such as an attribute, operation, or rolename—
that is, whether it represents a value in each instance or a value shared by all in-
stances of the classifier. When used by itself without qualification, indicates owner
scope.

See creation, owner scope, target scope.

Semantics
Scope is either owner scope or target scope.

Owner scope. An indication of whether there is a distinct attribute slot for each in-
stance of a class or if there is one slot of the given name for the entire class.

instance Each classifier instance has its own distinct copy of an
attribute slot or its own set of associated objects. Values in
one slot are independent of values in other slots. This is
the default situation.

For an operation, the operation applies to an individual
object (a normal operation).

class The classifier itself has one copy of the attribute slot or set
of associated objects. All instances of the classifier share
access to the one slot.

For an operation, the operation applies to the entire class,
such as a creation operation or an operation that returns
statistics about the entire set of instances. Such an opera-
tion may not be applied to an instance.

Target scope. A choice indicating whether the values of an attribute or the target
values in an association are instances (the default) or classifiers.

instance Each attribute slot or each link of the association contains
a reference to an instance of the target classifier. The
number of links is constrained by the multiplicity. This is
the default situation.

class Each attribute slot or each link of the association contains
a reference to the target class itself. The information in
the association is therefore fixed at modeling time and
does not change at run time, and it need not be stored in
each object. In effect, the links involve the class itself, not
its instances. This may be useful for some implementa-
tion information, but for most modeling purposes, this
capability can be ignored.

418 • self-transition Encyclopedia of Terms
Discussion
Class-scope attributes or associations provide global values for an entire class and
should be used with care or avoided entirely, even though they are provided by
most object-oriented programming languages. The problem is that they imply
global information, which violates the spirit of object-oriented design. Moreover,
global information becomes problematic in a distributed system, as it forces cen-
tral accesses in a situation in which objects of a class may be distributed over many
machines. Rather than use a class as an object with state, it is better to introduce
explicit objects to hold any shared information that is needed. Both the model and
costs are more apparent.

Constructors (creation operations, factory operations) necessarily have class-
level source scope because there is no instance (yet) on which they may operate.
This is a necessary and proper use of class scope. Other kinds of class-level source
scope operations have the same difficulties as attributes—namely, they imply cen-
tralized global information about the instances of a class, which is impractical in a
distributed system.

Target scope has a limited usefulness and should be used only in special circum-
stances—generally, only for detailed programming purposes.

self-transition

A transition in which the source state and the target state are the same. It is consid-
ered a state change. When it fires, the source state is exited and reentered so exit
actions and entry actions are invoked. It is not equivalent to an internal transition,
in which no change of state occurs.

semantic variation point

A point of variation in the semantics of a metamodel. It provides an intentional
degree of freedom for the interpretation of the metamodel semantics.

Discussion
The same execution semantics is not suitable for all possible applications. Differ-
ent programming languages and different purposes require variations in seman-
tics, some subtle, some gross. A semantic variation point is an issue on which
various modelers or various execution environments disagree about the specific
semantics, often for good reasons. By simply identifying and naming semantic
variation points, arguments about the “right” semantics of a system can be
avoided.

For example, the choice of whether to permit multiple classification or dynamic
classification is a semantic variation point. Each choice is a semantic variation.

Encyclopedia of Terms send • 419
Other examples of semantic variation points include whether a call can return
more than one value and whether classes exist at run time as actual objects.

semantics

The formal specification of the meaning and behavior of something.

send

To create a signal instance by a sender object and to transfer it to a receiver object
in order to convey information.

A send usage dependency relates an operation or method sending a signal or a
class containing such an operation or method and the class receiving the signal.

See also signal.

Semantics
A send is a special operation that an object can perform. It specifies a signal to
send, a list of arguments for the signal, and a set of target objects to receive the sig-
nal.

An object sends a signal to a set of objects—frequently, a set containing only a
single object. A “broadcast” can be regarded as sending a message to the set of all
objects, although, in practice, it might be implemented as a special case for effi-
ciency. If the set of target objects contains more than one object, one copy of the
signal is sent to each object in the set concurrently. If the set is empty, no signal is
sent. This is not an error.

Creating a new object may be regarded as sending a message to a factory object,
such as a class, which creates the new instance and then passes the message to it as
its “birth event.” This provides a mechanism for a creator to communicate with its
creation—the birth event may be regarded as going from the creator to the new
object, with the side-effect of instantiating the new object along the way.
Figure 13-159 shows creation of an object using both text syntax and graphical
syntax.

This model can be used even if the target language, such as C++, does not sup-
port classes as run-time objects. In that case, the creation action is compiled
(which imposes some restrictions on its generality—for example, the name of the
class must be a literal value) but the underlying intent is the same.

A send dependency is a stereotype of a usage dependency from the sender of the
signal to the class receiving the signal.

420 • send Encyclopedia of Terms
Text notation
Within a transition, sending a signal has its own syntax, although it is really just a
special case of an action. Within the action sequence, the send expression has the
syntax

send destination-expression . destination-message-name (argumentlist,)

Figure 13-159. Creation of new object by sending a message

Trial Account

after(180 days)

create(name,CCnumber)

purchase

Active Account

Inactive Account

cancel after(90 days)

Data gathered

Account opened

open account / send Account.create (name, card number)

Account

create(name, card number)

This send action creates an account object
and sends it two arguments.

The arrow is an alternate to the text notation on the transition.

This is a fragment of a state diagram for the user interface.

The outer rectangle
denotes the class
itself with an
embedded
statechart.

Encyclopedia of Terms send • 421
The keyword send is optional. A call and a send can be distinguished by the dec-
laration of the message name. Sometimes, however, an explicit distinction is help-
ful.

The destination-expression must evaluate to a set of objects. A set with a sin-
gle object is legal. The message is sent to each object in the set.

The destination-message-name is the name of a signal or an operation ac-
cepted by the target objects. The arguments are expressions that evaluate to values
that must be compatible with the declared parameters of the event or operation.
The distinction between a signal and an operation is based on the declarations of
signals in the package and operations in the target class. There is no ambiguity in
the internal model.

Example
This internal transition selects an object within a window using the cursor loca-
tion, and then it sends a highlight signal to it.

right-mouse-down (location) [location in window]
/ object := pick-object (location) ; send object.highlight ()

Diagram notation
Sending a message can also be shown by diagram symbols.

Sending a message between state machines may be shown by drawing a dashed
arrow from the sender to the receiver. The arrow is labeled with the signal name
and argument expressions of the message. A state diagram must be contained
within a rectangle that represents an object or class within the system. Graphically,
state diagrams may be nested physically within an object symbol, or they may be
implicit and shown elsewhere. State diagrams represent the control of the collabo-
rating objects. The interactors may be roles of a collaboration, or they may be
classes indicating the general ways in which objects of the classes communicate.
Figure 13-160 contains state diagrams showing the sending of signals between
three objects.

Note that this notation may also be used on other kinds of diagrams to show the
sending of events between classes or objects.

The sender symbol (at the tail of the arrow) may be a

class The message is sent by an object of the class at some point
in its life, but the details are unspecified.

transition The message is sent as part of the action of firing the tran-
sition (Figure 13-159 and Figure 13-160). This is an alter-
nate presentation to the text syntax for sending messages.

422 • send Encyclopedia of Terms
The receiver symbol (at the arrowhead) may be a

class The message is received by the object and may trigger a
transition within the object. The class symbol may con-
tain a statechart diagram (Figure 13-160). The receiver
object may have multiple transitions that use the same
event as a trigger. This notation is not possible when the
target object is computed dynamically. In that case, a text
expression must be used.

metaclass This notation would be used to model the invocation of
class-scope operations, such as the creation of a new
instance. The receipt of such a message causes the instan-
tiation of a new object in its default initial state. The event
seen by the receiver may be used to trigger a transition
from its default initial state and therefore represents a way
to pass information from the creator to the new object.

Figure 13-160. Sending signals between objects

Controlling

OnOff

Controlling

Television

Remote Control

“power” button

TV VCR

/send television.togglePower

toggle Power

“VCR”

“TV”

toggle Power

“power” button
/send VCR.togglePower

togglePower

OnOff

VCR toggle Power

toggle Power

toggle Power

This signal turns the TV off or on,
depending on its current state.

This signal turns the VCR off or on,
depending on its current state.

Each signal is directed to a specific object.

This is a
text syntax.
You don’t
need both
text and
graphic.

Encyclopedia of Terms sequence diagram • 423
transition The transition must be the only transition in the class
using the event, or at least the only transition that could
be triggered by the particular sending of the message
(Figure 13-159). This notation is not possible when the
triggered transition depends on the state of the receiving
object. In that case, the arrow must be drawn to the class.

Send dependency. A send dependency is shown as a dashed arrow from the opera-
tion or class sending a signal to the class receiving the signal; the stereotype «send»
is attached to the arrow.

sender

The object passing a message instance to a receiver object.
See call, send.

sequence diagram

A diagram that shows object interactions arranged in time sequence. In particular,
it shows the objects participating in an interaction and the sequence of messages
exchanged.

See also activation, collaboration, lifeline, message.

Semantics
A sequence diagram represents an interaction—a set of communications among
objects arranged visually in time order. Unlike a collaboration diagram, a se-
quence diagram does include time sequences but does not include object relation-
ships. It can exist in a descriptor form (describing all possible scenarios) and in an
instance form (describing one actual scenario). Sequence diagrams and collabora-
tion diagrams express similar information, but they show it in different ways.

Notation
A sequence diagram has two dimensions: the vertical dimension represents time;
the horizontal dimension represents objects participating in the interaction
(Figure 13-161 and Figure 13-162). Generally, time proceeds down the page (the
axes may be reversed if desired). Often, only the sequences of messages are impor-
tant, but in real-time applications, the time axis can be an actual metric. There is
no significance to the horizontal ordering of the objects.

Each object is shown in a separate column. An object symbol (a rectangle with
the underlined name of the object) is placed at the end of an arrow representing
the message that created the object, at the vertical point that indicates the time at
which the object is first created. If an object exists before the first operation of the

424 • sequence diagram Encyclopedia of Terms
diagram, the object symbol is drawn at the top of the diagram before any message.
A dashed line is drawn from the object symbol to the point at which the object is
destroyed (if that happens during the time shown by the diagram). This line is
called the lifeline. A large X is placed at the point at which the object ceases to ex-
ist, either at the head of the arrow for the message that destroys the object or at the
point at which the object destroys itself. For any period during which the object is
active, the lifeline is broadened to a double solid line. This includes the entire life
of an active object or an activation of a passive object—a period during which an
operation of the object is in execution, including the time during which the opera-
tion waits for the return of an operation that it called. If the object calls itself re-
cursively, directly or indirectly, then another copy of the double solid line is
overlapped on it to show the double activation (potentially it could be more than
two copies). The relative ordering of objects has no significance, although it is
helpful to arrange them to minimize the distance that message arrows must cover.
A comment about the activation may be placed in the margin near it.

Each message is shown as a horizontal arrow from the lifeline of the object that
sent the message to the lifeline of the object that received the message. A label may
be placed in the margin opposite an arrow to denote the time at which the message
is sent. In many models, messages are assumed to be instantaneous, or at least
atomic. If a message requires some time to reach its destination, then the message

Figure 13-161. Sequence diagram with asynchronous control

caller exchange

lift receiver

dial tone

dial digit

a

b

c

{b – a < 1 sec.}

{c – b < 10 sec.}

. . .

d

d'

route

{d' – d< 5 sec.}

receiver

phone ringsringing tone

answer phone

stop ringingstop tone

The call is
routed through
the network.

At this point,
the parties
can talk.

active

message with duration

message
constraints

comment

objects

Encyclopedia of Terms sequence diagram • 425
arrow is drawn diagonally downward so that the receiving time is later than the
sending time. Both ends can have labels to denote the time the message was sent or
received.

For asynchronous flow of control among active objects, the objects are repre-
sented by double solid lines and the messages are shown as arrows. Two messages

Figure 13-162. Sequence diagram with procedural flow of control

[x>0] create(x)

[x<0] callC(x)

doit(z)
doit(w)

recurse()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()

These objects
exist before the
first operation
and continue after
the last.

This object
is created by
the operation.

The object
destroys itself
at this point.

The object
destroys itself
at this point
and returns to
the caller.

call to the
same object

branch of
control

merge of
control

fork of
concurrent
control

join of
concurrent
control

lifeline continues

lifeline ends

call

return

This object
is created by
the operation.

426 • sequence diagram Encyclopedia of Terms
can be sent simultaneously, but two messages cannot be received simultaneously—
there is no way to guarantee simultaneous reception. Figure 13-161 shows an
asynchronous sequence diagram.

Figure 13-162 shows procedural flow of control on a sequence diagram. When
modeling procedural flow of control, an object yields control on a call until a sub-
sequent return. A call is shown with a solid filled arrowhead. The head of a call ar-
row may start an activation or a new object. A return is shown with a dashed line.
The tail of a return arrow may finish an activation or an object.

Branching is shown by splitting the lifeline of an object. Each branch may send
and receive messages. Usually, each branch sends different messages. Eventually,
the lifelines for one object must merge again.

Figure 13-163 shows the states during the life of a theater ticket. A lifeline may
be interrupted by a state symbol to show a change of state. This corresponds to a
become transition within a collaboration diagram. An arrow may be drawn to the
state symbol to indicate the message that caused the change of state.

Note that much of this notation is drawn directly from the Object Message Se-
quence Chart notation of Buschmann, Meunier, Rohnert, Sommerlad, and Stal
[Buschmann-96], which is itself derived with modifications from Message Se-
quence Chart notation.

Figure 13-163. Object states on a sequence diagram

:Scheduler :Ticket

unreleased

available
release()

locked

sold

lock()

buy()

initial state

new state

passive object

Encyclopedia of Terms signal • 427
A sequence diagram can also be shown in a descriptor form, in which the con-
stituents are roles rather than objects. Such a diagram shows the general case, not a
single execution of it. Descriptor-level diagrams are drawn without underlines, as
the symbols represent roles and not individual objects.

sequence number

A text part of a message label on a collaboration diagram that indicates the relative
execution order of the messages in an interaction. A sequence number may show
the location of the message within a nested calling sequence, the name of a thread
of control, and a specification of conditional and iterative execution.

See collaboration, message.

signal

The specification of an asynchronous communication between objects. Signals
may have parameters expressed as attributes.

See also event, message, send.

Semantics
A signal is an explicit named classifier intended for explicit communication be-
tween objects. It has an explicit list of parameters, represented as its attributes. It is
explicitly sent by an object to another object or set of objects. A general broadcast
of a signal can be regarded as the sending of a signal to the set of all objects—al-
though, in practice, it would be implemented differently for efficiency. The sender
specifies the arguments of the signal at the time it is sent. Sending a signal is equiv-
alent to instantiating a signal object and transmitting it to the set of target objects.
The receipt of a signal is an event that is intended to trigger transitions in the re-
ceiver’s state machine. A signal sent to a set of objects may trigger zero or one tran-
sition in each object independently. Signals are explicit means by which objects
may communicate with each other asynchronously. To perform synchronous com-
munication, two signals must be used, one in each direction.

Signals are generalizable elements. A child signal is derived from a parent signal.
It inherits the attributes of the parent and may add additional attributes of its own.
A child signal triggers a transition declared to use one of its ancestor signals.

A signal declaration has scope within the package in which it is declared. It is
not restricted to a single class.

A class or interface may declare the signals it is prepared to handle. Such a decla-
ration is a reception, which may include a specification of the results expected
when the signal is received. The declaration has a property stating whether it is
polymorphic. If it is polymorphic, then a descendant class can handle the signal,

428 • signal Encyclopedia of Terms
perhaps preventing the signal from reaching the current class. If it is not polymor-
phic, then no descendant may intercept handling of the signal.

A signal is a classifier and may have operations that may access and modify its
attributes. All signals also share the implicit operation send.

send (targetSet)

The signal is sent to each object in the target set.

Notation
The stereotype keyword «signal» is placed in front of an operation declaration that
has the name of a signal to indicate that a class or interface accepts the signal. The
parameters of the signal are included in the declaration. The declaration may not
have a return type.

The declaration of a signal may be expressed as a stereotype of a class symbol.
The keyword «signal» appears in a rectangle above the name of the signal. The sig-
nal’s parameters appear as attributes within the attribute compartment. The oper-
ation compartment may contain access operations.

Figure 13-164 shows the use of generalization notation to relate a child signal to
its parent. The child inherits the parameters of its ancestors and may add addi-
tional parameters of its own. For example, the MouseButtonDown signal has the
attributes time, device, and location.

To use a signal as a trigger of a transition, use the syntax

event-name (parameter list,)

A parameter has the syntax

parameter-name : type-expression

A signal parameter is declared as an attribute that may have an initial value,
which can be overridden during initialization or sending. The initial value is used
if a signal instance is created, initialized, and then sent to an object. If a signal is
sent using operation-calling syntax, the initial values are default values of the sig-
nal’s parameters.

Discussion
A signal is the most fundamental communication among objects, having simpler
and cleaner semantics than do procedure calls. A signal is inherently a one-way
asynchronous communication from one object to another in which all informa-
tion is passed by value. It is a suitable model for communication in distributed,
concurrent systems.

To build synchronous communication, use pairs of signals, one in each direc-
tion. A call may be viewed as a signal with an implicit return pointer parameter.

Encyclopedia of Terms signature • 429
signal event

An event that is the receipt by an object of a signal sent to it, which may trigger a
transition in its state machine.

signature

The name and parameter properties of a behavioral feature, such as an operation
or signal. A signature may include optional return types (for operations, not for
signals).

Semantics
The signature of an operation is part of its declaration. Some (but not all) of the
signature is used for matching operations and methods to check for conflict or
overriding. For this purpose, we include the name of the operation and the

Figure 13-164. Signal declarations

UserInput
device

Mouse

location

Button
Keyboard
Character
character

InputEvent

time

Control Graphic

PunctuationAlphanumericSpace

Mouse Mouse
Button
Down

Button
Up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»

Character Character

This is the most general event.
In this system, all events have a time value.

These are more specific events.
They trigger any transition marked
with UserInput events.
These events add attributes.

MouseButtonDown
would trigger a
transition declared
with MouseButton.

430 • simple state Encyclopedia of Terms
ordered list of types of the parameters, but not their names or directions, and re-
turn parameters are excluded. If two signatures match but the remaining proper-
ties are inconsistent (for example, an in parameter corresponds to an out
parameter), then the declarations conflict and the model is ill formed.

simple state

A state that has no nested states within it. A set of nested states forms a tree and the
simple states are the leaves. A simple state has no substructure. It may have inter-
nal transitions, entry actions, and exit actions. Contrast: composite state.

simple transition

A transition with one source state and one target state. It represents a response to
an event with a change of state within a region of mutually exclusive states. The
amount of concurrency does not change as a result of executing it.

single classification

An execution regime in which each object has exactly one direct class. The is the
execution model in most object-oriented programming languages. Whether to al-
low single classification or multiple classification is a semantic variation point.

single inheritance

A semantic variation of generalization in which an element may have only one
parent. Whether to allow single inheritance or multiple inheritance is a semantic
variation point.

singleton

A class that has (by declaration) exactly one instance. A singleton is a way to repre-
sent global knowledge in an application, yet keep it within an object-oriented
framework.

Semantics
Every application must have at least one singleton class (often implicitly) to estab-
lish the context for the application. Often, the singleton class equates to the appli-
cation itself and is implemented by the control stack and address space on a
computer.

Encyclopedia of Terms specialization • 431
Notation
A singleton is shown as a class symbol with a small ‘1’ in the upper right corner
(Figure 13-165). This value represents the multiplicity of the class within the sys-
tem.

snapshot

A collection of objects, links, and values that forms the configuration of a system
at an instant during its execution.

source scope

An indicator of whether a slot is owned by an instance or by a class.
See scope.

source state

The state within a state machine from which a transition departs. The transition
applies to the source state. If an object is in the state or a state nested within it,
then the transition is a candidate for firing.

specialization

To produce a more specific description of a model element by adding children.
The opposite relationship is generalization, which is also used as the name of the
relationship between the more specific element and the more general element, as
there is no good term for the relationship that is undirected. A child element is the
specialization of a parent element. Conversely, the parent is the generalization of
the child.

See generalization.

Figure 13-165. Singleton class

PrintSpooler

1
Printer

1 ∗

The application has a unique print spooler,
but many printers are controlled by it.

singleton class

432 • specification Encyclopedia of Terms
specification

A declarative description of what something is or does. For example, a use case or
an interface is a specification. Contrast: implementation.

stages of modeling

Development states an element or a model goes through during the process of de-
signing and building a system.

See also development process.

Discussion
The overall development effort can be divided into activities focused on different
ends. These activities are not performed in sequence; rather, they are performed
iteratively during the phases of the development process. Analysis deals with cap-
turing requirements and understanding the needs of a system. Design deals with
devising a practical approach to the problem within the constraints of data struc-
tures, algorithms, and existing system pieces. Implementation deals with con-
structing the solution in an executable language or medium (such as a data base or
digital hardware). Deployment deals with putting the solution into practice in a
specific physical environment. These divisions are somewhat arbitrary and not al-
ways clear, but they remain useful guidelines.

These views of development should not be equated with sequential phases of the
development process, however. In the traditional Waterfall Process they were in-
deed treated as distinct phases. In a more modern iterative development process,
however, they are not distinct phases. At a given point in time, development activ-
ities may exist at various levels, and they may best be understood as different tasks
that need to be performed on each element of the system, not all at the same time.

Think of a group of buildings, each with a foundation, walls, and roof; all of
them must be completed for all of the buildings, but not all at the same time. Usu-
ally, the parts of each building are completed more or less in order. Sometimes,
however, the roof can be started before all the walls are complete. Occasionally, the
distinction between walls and roof is lost—consider a dome set on the ground.

Some UML elements are intended for all stages of development. Others are in-
tended for design or implementation purposes and would appear only when a
model is sufficiently complete. For example, visibility specifications on attributes
and operations would tend to appear during the design stage. During the analysis
stage mainly public members are included.

Encyclopedia of Terms state • 433
Discussion
A waterfall development process is divided into stages, each of which is carried out
on the whole system at once. Traditional stages include analysis, design, imple-
mentation, and deployment. In an iterative process, however, development of the
entire system does not proceed in lock step. Elements may be developed at differ-
ent paces. Nevertheless, each individual element passes through the same stages
during development, but different elements proceed at different rates, so the sys-
tem as a whole is not in any one stage.

Each modeling stage characterizes an area of concern that must understood and
modeled. The earlier stages capture more logical and more abstract properties.
The later stages are more focused on implementation and performance. Analysis
captures the requirements and the expert vocabulary of a system. Design captures
the algorithms and data structures of the abstracted implementation under ideal-
ized, but physically plausible, conditions. It is also concerned with efficiency, com-
putational complexity, and software-engineering considerations necessary to build
a supportable system. Implementation creates an operational description of a sys-
tem under real conditions in a real programming language, including the imper-
fections of real languages and the partitioning of the system artifacts into parts
that can be separately developed and stored. Run-time deals with issues of concur-
rency of resources, the computational environment, and large-scale performance.

UML contains a range of constructs suitable for various stages of development.
Some constructs (such as association and state) are meaningful at all stages. Some
constructs (such as navigability and visibility) are meaningful during design but
represent unnecessary implementation detail during analysis. This does not pre-
clude their definition at an early stage of work. Some constructs (such as specific
programming-language syntax) are meaningful only during implementation and
impair the development process if introduced prematurely.

Models change during development. A UML model takes a different form at
each stage of development, with an emphasis on various UML constructs. Model-
ing should be performed with the understanding that all constructs are not useful
at all stages.

See development process for a discussion of the relationship of modeling stages
and development phases.

state

A condition or situation during the life of an object during which it satisfies some
condition, performs some activity, or waits for some event.

See also activity, activity graph, composite state, entry action, exit action, final
state, internal transition, pseudostate, state machine, submachine, synch state,
transition.

434 • state Encyclopedia of Terms
Semantics
An object holds a series of states during its lifetime. An object remains in a state for
a finite (noninstantaneous) time. Dummy states may be introduced for conve-
nience, which perform trivial actions and exit. But these are not the main purpose
of states, and dummy states can, in principle, be eliminated, although they are use-
ful for avoiding duplication.

States are contained in a state machine that describes how the history of an ob-
ject evolves over time in response to events. Each state machine describes the be-
havior of the objects of a class. Each class may have a state machine. A transition
describes the response of an object in a state to the reception of a an event: The ob-
ject executes an optional action attached to the transition and changes to a new
state. Each state has its own set of transitions.

An action is atomic and noninterruptible. An action is attached to a transi-
tion—a change of state, which is also atomic and noninterruptible. Ongoing activ-
ity may be associated with a state. Such activity is stated as a nested state machine
or a do expression. Alternately, ongoing activity may be represented by a pair of
actions, an entry action that starts the activity on entry to the state and an exit ac-
tion that terminates the activity on exit from the state.

States may be grouped together into composite states. Any transition on a com-
posite state affects all of the states within it, so events that affect many substates in
the same way can be handled by a single transition. A composite state can be se-
quential or concurrent. Only one substate of a sequential composite state is active
at a time. All substates of a concurrent composite state are active simultaneously.

To promote encapsulation, a composite state may contain initial states and final
states. These are pseudostates, the purpose of which is to help structure the state
machine. A transition to the composite state represents a transition to its initial
state. It is equivalent to making a transition directly to the initial state, but the state
can be used externally without knowledge of its internal structure.

A transition to a final state within the composite state represents the completion
of activity in the enclosing state. Completion of activity in an enclosing state trig-
gers a completion of activity event on the enclosing state and causes a completion
transition on the enclosing state to fire. A completion transition is a transition
with no explicit trigger event (or, more precisely, one with the completion event as
its implicit trigger, although it is not explicitly modeled). Completion of the outer-
most state of an object corresponds to its death.

If a state is a concurrent composite state, then all its concurrent subregions must
complete before the completion event on the composite state occurs. In other
words, a completion transition from a composite concurrent state represents a join
of control from all its concurrent subthreads. It waits for all of them to complete
before proceeding.

Encyclopedia of Terms state • 435
Structure
A state has the following parts.

Name. The name of the state, which must be unique within the enclosing state.
The name can be omitted, producing an anonymous state. Any number of distinct
anonymous states can coexist. A nested state can be identified by its pathname (if
all the enclosing states have names).

Substates. If a state machine has nested substructure, it is called a composite state.
A composite state is either a network of disjoint substates (that is, substates that
are sequentially active) or a set of concurrent substates (that is, substates that are
all active concurrently). A state with no substructure (except possible internal ac-
tions) is a simple state.

Entry and exit actions. A state may have an entry action and an exit action. The
purpose of these actions is to encapsulate the state so that it can be used externally
without knowledge of its internal structure. An entry action is executed when the
state is entered, after any action attached to the incoming transition and before
any other internal activity. An exit action is executed when the state is exited, after
the completion of any internal activity and before any action attached to the out-
going transition. On a transition that crosses several state boundaries, several exit
and entry actions may be executed in a nested fashion. First, exit actions are exe-
cuted, starting with the innermost state and progressing to outermost state, then
the action on the transition is executed, then entry actions are executed, starting
with the outermost and finishing with the innermost. Figure 13-166 shows the re-
sult of firing a transition across state boundaries. Entry and exit actions may not
be evaded by any means, including the occurrence of exceptions. They provide an
encapsulation mechanism for the specification of state machine behavior, with a
guarantee that necessary actions will be performed under all circumstances.

Internal activity. A state may contain internal activity described as an expression.
When the state is entered, the activity begins after the entry action is complete. If
the activity terminates, the state is complete. A completion transition that departs

Figure 13-166. Transition across state boundaries, with exit and entry actions

S T
f / d

exit / p entry / q

X Y

effective result: f / p; d; q

436 • state Encyclopedia of Terms
the state is then triggered. Otherwise, the state waits for a triggered transition to
cause a change of state. If a transition fires while the activity is being performed,
the activity is terminated and the exit action on the state is executed.

Internal transitions. A state may have a list of internal transitions, which are like
normal transitions except that they do not have target states and do not cause a
change of state. If its event occurs while an object is in the state owning the transi-
tion, then the action on the internal transition is executed, but no change of state
occurs nor are entry or exit actions executed, even if the internal transition is de-
clared in an enclosing state (because the current state has not changed). This dif-
ferentiates it from a self-transition, in which an external transition from a state to
the same state occurs, resulting in execution of the exit actions of all states nested
within the state with the self-transition, the execution of its exit action, and the ex-
ecution of its entry action. The actions are executed even on a self-transition to the
current state, which is exited and then reentered. If a self-transition on an enclos-
ing state of the current state fires, then the final state is the enclosing state itself,
not the current state. In other words, a self-transition may force an exit from a
nested state, but an internal transition does not.

Submachine. The body of a state may represent a copy of a separate state machine
referenced by name. The referenced state machine is called a submachine because
it is nested within the larger state machine, and the state making the reference is
called a submachine state. A submachine may be attached to a class that provides
the context for actions within it, such as attributes that may be read and written. A
submachine is intended to be reused in many state machines to avoid repetition of
the same state machine fragment. A submachine is a kind of state machine sub-
routine.

Within the submachine reference state, the submachine is referenced by name
with a possible argument list. The name must be the name of a state machine that
has an initial and final state. If the submachine has parameters on its initial transi-
tion, then the argument list must have matching arguments. When the subma-
chine state is entered, its entry action is performed first, then execution of the
submachine begins with its initial state. When the submachine reaches its final
state, any exit action in the submachine state is performed. The submachine state
is then considered completed and may take a transition based on implicit comple-
tion of activity.

A transition to a submachine reference state activates the initial state of the tar-
get submachine. But sometimes a transition to a different state in the submachine
is desired. A stub state is a pseudostate placed within a submachine reference state
that identifies a state within the submachine. Transitions can be connected to the
stub state from other states in the main state machine. If a transition to a stub state
fires, the referenced state in the copy of the submachine becomes active.

Encyclopedia of Terms state • 437
A submachine represents nested, interruptible activity within a state. It is equiv-
alent to replacing the submachine state with a unique copy of the submachine. In-
stead of supplying a state machine, a procedural expression can be attached to the
submachine (this is an activity). An activity can be regarded as defining a series of
states, one per primitive expression, that is interruptible between any two steps. It
is not the same as an action, which is atomic and noninterruptible.

Dynamic concurrency. An activity state or submachine state may have a multiplic-
ity and a concurrency expression. The multiplicity specifies how many copies of
the state may execute concurrently. The normal case is a multiplicity of exactly
one, meaning that the state represents a normal thread of control. If the multiplic-
ity value is not fixed, it means that the number of execution tokens is determined
dynamically at run time. For example, the value 1..5 means that from one to five
copies of the activity are executed concurrently. If the concurrency expression ex-
ists (it is required if the concurrency is not exactly one), then at run time it must
evaluate to a set of argument lists. The cardinality of the set indicates the number
of concurrent activations of the state. Each state receives a distinct list of argument
values as its value of the implicit current event. Actions in the activity can access
the values of the current event. When all the executions have completed, the dy-
namically concurrent state is considered to have completed and execution passes
to the next state.

This capability is intended for activity diagrams.

Deferrable events. A list of events whose occurrence in the state is postponed, if
they do not trigger a transition, until they trigger a transition or the system makes
a transition to a state in which they are not deferred, at which time they are con-
sumed. The implementation of such deferred events would involve an internal
queue of events.

Notation
A state is shown as a rectangle with rounded corners. It may have one or more
compartments. The compartments are optional. The following compartments
may be included.

Name compartment. Holds the (optional) name of the state as a string. States
without names are anonymous and are all distinct. It is undesirable to repeat the
same named state symbol twice in the same diagram, however, as it is confusing.

Nested state. Shows a state diagram of a composite state itself as composed of sub-
ordinate nested states. The state diagram is drawn within the boundary of the
outer state. Transitions may connect directly to nested states, as well as to the
boundary of the outer state. In a disjoint region, the substates are drawn directly
inside the composite state. In a concurrent region, the concurrent state symbol is
divided into subregions by dashed lines (that is, it is tiled).

See composite state for details and examples.

438 • state Encyclopedia of Terms
Internal transition compartment. Holds a list of internal actions or activities per-
formed in response to events received while the object is in the state, without
changing state. An internal transition has the format

Action expressions may use attributes and links of the owning object and pa-
rameters of incoming transitions (if they appear on all incoming transitions).

The argument list (including parentheses) may be omitted if there are no pa-
rameters. The guard condition (including brackets) and the action expression (in-
cluding slash) are optional.

Entry and exit actions have the same form but use reserved words entry and exit
that cannot be used for event names.

entry / action-expression

exit / action-expression

Entry and exit actions may not have arguments or guard conditions (because
they are invoked implicitly, not explicitly). To obtain parameters on an entry ac-
tion, the current event may be accessed by the action. This is particularly useful for
obtaining the creation parameters by a new object.

The reserved action name defer indicates an event that is deferrable in a state
and its substates. The internal transition must not have a guard condition or ac-
tions.

event-name / defer

The reserved word do represents an expression for a nonatomic activity.

do / activity-expression

Submachine reference state. The invocation of a nested submachine is shown by a
string of the following form in the body of the state symbol:

include

Both do-activities and submachines describe nonatomic computations that
usually run until they are complete but that can be aborted by an event that trig-
gers a transition.

Example
Figure 13-167 shows a state with internal transitions. Figure 13-168 shows the
declaration and use of a submachine.

Dynamic concurrency. Dynamic concurrency with a value other than exactly one
is shown by a multiplicity string in the upper-right part of the state symbol. The
string should not be included for normal sequential execution. This notation is
mainly intended for activity diagrams and should generally be avoided in state-
chart diagrams.

event-nameopt argumentlist,()opt guard-condition[] opt/action-expressionopt

machine-name argumentlist,()opt

Encyclopedia of Terms state machine • 439
state machine

A specification of the sequences of states that an object or an interaction goes
through in response to events during its life, together with its responsive actions. A
state machine is attached to a source class, collaboration, or method and specifies
the behavior of the instances of the source element.

See also activity graph, composite state, event, pseudostate, state, transition.

Semantics
A state machine is a graph of states and transitions that describes the response of
an instance of a classifier to the receipt of events. State machines may be attached
to classifiers, such as classes and use cases, as well as to collaborations and

Figure 13-167. Internal transitions, with entry and exit actions and deferred event

Figure 13-168. Submachine

Enter Password

entry / password.reset()
exit / password.test()
digit / handle character
clear / password.reset()
help / display help

entry and exit actions

internal transitions

print / deferdeferred event

state name

do / suppress echointernal activity

Help

entry / display help screen
exit / remove help screen

quit

query / show answer

CommandWait

include Help

help command

include Run

run
 command

submachine reference state

submachine definition

Completion transition fires
when submachine completes.

This submachine can be used many times.

440 • state machine Encyclopedia of Terms
methods. The element that the state machine is attached to is called the master of
the state machine.

An entire state machine is a composite state that has been decomposed recur-
sively into substates. The innermost simple states have no substates.

State machine execution semantics
The semantics of state machine execution are discussed in the remainder of this ar-
ticle. Note that the following section describes the semantic effects of state ma-
chine execution and should not be taken as an implementation approach. There
are many ways to implement these semantics, many of which compile away some
of the explicit steps described here. Most of these semantics are described in other
articles, but they are gathered here for convenience.

At any moment, one or more states are active in the active state configuration of
the state machine of an object or other instance. If a state is active, then a transi-
tion leaving the state may fire, causing the execution of an action and the activa-
tion of another state or states in place of the original state. More than one active
leaf state indicates internal concurrency. There are constraints on the states that
can be active concurrently, imposed by the structure of the state machine and its
transitions. Briefly, if a sequential composite state is active, exactly one direct dis-
joint substate must be active; if a concurrent composite state is active, each direct
concurrent substate must be active.

Transition firing and actions
The basic assumption is that a state machine processes one event at a time and fin-
ishes all the consequences of that event before processing another event. In other
words, events do not interact with other events during event processing. This is
known as “run to completion” processing. It does not mean that all computation
is noninterruptible. An ordinary extended computation can be broken into a se-
ries of atomic steps, and the computation can be interrupted by an outside event
between any steps. This is very close to the physical situation within a computer,
where interrupts can occur at discrete, but small, steps.

A corollary assumption is that events are asynchronous. Two events never occur
at exactly the same time—or, more precisely, if two events occur at the exact same
time, it is a coincidence and they can be processed as if they had occurred in either
order, with no loss of generality. The results of the different orders of execution
may be different—race conditions are an essential property of concurrent sys-
tems—but you may not assume simultaneity in a distributed world. Any computa-
tion making such an assumption is logically and physically flawed. Concurrent
execution requires independence in a distributed world.

Conceptually, actions are instantaneous and events are never simultaneous. In
an implementation, execution of actions requires some time, but the important

Encyclopedia of Terms state machine • 441
thing is that actions are (conceptually) atomic and noninterruptible. If an object
receives an event while it is executing an action, the event is placed on a queue un-
til the execution is complete. Events are handled only when no actions are being
executed. If an action sends a signal to another object, then the reception of the
signal is not synchronous. It is handled like any other event, after the completion
of the action and the transition that it is part of. A call to an operation suspends
the caller until the operation has been executed. It may be implemented, at the
choice of the receiver, as a method or as a call event that triggers the state machine
of the receiver. To avoid problems with long periods during which events cannot
be processed, actions should be brief. Actions are not intended for modeling pro-
tected regions or long interruptible computations, which should be modeled as
submachines or nested activity states. This permits event processing and permits
nested computations to be interrupted. If long actions are included in real sys-
tems, events may not be processed in a timely manner. This is a consequence of a
bad model. Actions must be short, compared to the required response time to
events that might occur.

When an object is not performing an action, it will immediately handle an event
that it receives. Conceptually, actions are instantaneous, but in practice they take
some time; therefore, new events must be stored on a queue for an object. If there
are no events in the queue, the object waits until it receives an event and then han-
dles it. Conceptually, an object handles a single event at a time. This is not a limi-
tation, because the actions are assumed to be atomic and brief. In an actual
implementation, events may be queued in a definite order. UML semantics, how-
ever, do not specify an order of processing concurrent events, and a modeler
should not assume one. If events must be processed in a certain order, the state
machine should be constructed to enforce the order. A physical implementation
would probably select some simple ordering rule.

At the time that an object handles an event, its active state configuration may
contain one or more concurrent states. Each state receives a separate copy of the
event and acts on it independently. Transitions in concurrent states fire indepen-
dently. One substate can change without affecting the others, except in the case of
a complex transition, such as a fork or join (described later).

For each active state of an object, the outgoing transitions of the state are candi-
dates to fire. A candidate transition is triggered if an event is handled whose type is
the same or a descendant of the trigger event on the transition. A transition is not
triggered by an ancestor event. When an event is handled and triggers a transition,
the guard condition of the transition is evaluated. If the value of the guard condi-
tion is true, then the transition is enabled. The guard condition Boolean expres-
sion may involve arguments of the trigger event, as well as attributes of the object.
Note that guard expressions may not produce side effects. That is, they may not al-
ter the state of the object or the rest of the system. Therefore, the order in which

442 • state machine Encyclopedia of Terms
they are evaluated is irrelevant to the outcome. A guard condition is evaluated only
when an event is handled. If it evaluates to false, it is not reevaluated if some of its
variables change value later.

To structure complex conditions, a transition may be modeled with multiple
segments. The first segment has a trigger event and is followed by a branching tree
of segments with guard conditions. The intermediate nodes in the tree are pseu-
dostates, dummy states that are present for structuring the transitions but that
may not remain active at the end of a run-to-completion step. Each possible path
through the tree of segments is regarded as a separate transition and is indepen-
dently eligible for execution. An individual segment may not fire alone. All the
guard conditions along a series of segments must be true or the transition (includ-
ing any of its segments) does not fire at all. In practice, guard conditions at a
branch point often partition the possible outcomes.Therefore, an implementation
could process the multisegment transition one step at a time, but not always.

If no transition is enabled, an event is simply ignored. This is not an error. If ex-
actly one transition is enabled, it fires. If more than one transition from a single
state is enabled, then only one of them fires. If no constraint is specified, then the
choice is nondeterministic. No assumptions should be made that the choice will be
fair, predictable, or random. An actual implementation may provide rules for re-
solving conflicts, but modelers are advised to make their intent explicit rather than
rely on such rules. Whether or not any transition fires, the event is consumed.

The transitions leaving an active state are eligible for firing. In addition, transi-
tions on any composite state containing an active state are candidates for firing.
This may be regarded as the inheritance of transitions by nested states, similar to
the inheritance of operations by subclasses. A transition on an outer state is eligi-
ble to fire only if no transition on an inner state fires. Otherwise, it is masked by
the inner transition.

When a transition fires, any action attached to it is executed. An action expres-
sion may use the arguments of the triggering event, as well as attributes of the
owning object or values reachable from it. An action is atomic and is completed
before any additional events are processed. If a transition has multiple segments,
the parameters of the trigger event are available as the implicit current event.

If an object has concurrent states, then they should not interact through shared
memory. Concurrent states are meant to be independent and should act on differ-
ent sets of values. Any interactions should be explicit by sending signals. If two
concurrent states must access a shared resource, they should explicitly send signals
to the resource, which can then act as an arbiter. An implementation may compile
away such explicit communication, but care must then be taken to ensure that
meaningless or dangerous conflicts do not ensue. If concurrent actions do access
shared values, the result is nondeterministic.

Encyclopedia of Terms state machine • 443
If a transition that crosses the boundary of a composite state fires, entry actions
or exit actions may be executed. A boundary crossing may occur because the
source state and target state on the transition itself are in different composite
states. It may also occur because the transition that fires is inherited from an outer
composite state, thereby forcing the object to exit one or more inner states. Note
that an internal transition does not cause a change of state and so never invokes
entry or exit actions.

To determine the exit and entry actions that are executed, find the current active
state of the object (this might be nested within the composite state that has the
transition) and the target state of the transition. Then find the innermost compos-
ite state that encloses both the current state and the target state. Call this the com-
mon ancestor. The exit actions of the current state and any enclosing states up to,
but not including, the common ancestor are executed, innermost first. Then the
action on the transition is executed. After that, the entry actions of the target state
and any enclosing states up to, but not including, the common ancestor are exe-
cuted, outermost first. In other words, states are exited one at a time until the com-
mon ancestor is reached and then states are entered until the target state is
reached. The exit and entry actions on the common ancestor are not executed, be-
cause it has not changed. This procedure ensures that each state is strongly encap-
sulated.

The action on the transition is executed after any exit actions have been exe-
cuted and before any entry actions are performed.

Note that the firing of a self-transition (a transition from a state to itself) will
cause the exit of any nested states within the source state that may be active (the
transition may have been inherited from an enclosing composite state). It also
causes the execution of the exit action of the source state followed by the execution
of its entry action. In other words, the state is exited and then reentered. If this ef-
fect is not desired, then an internal transition in the state should be used instead.
This will not cause a change of state, even if the active state is nested within the
state with the transition.

During the execution of a run-to-completion step, all actions have access to an
implicit current event, which is the event that triggered the first transition in the
run-to-completion sequence. Because there may be more than one event that
could result in the execution of an action, the action may discriminate on the type
of the current event (as in Ada or by a polymorphic operation) to execute alternate
code branches.

After all the actions are performed, the original current state is inactive (unless
it is the target state), the target state of the transition is active, and additional
events can then be processed.

A transition may be structured with several segments whose intermediate nodes
are junction states. Each segment may have its own action. The actions may be

444 • state machine Encyclopedia of Terms
interleaved with entry and exit actions for the overall transition. With respect to
entry and exit actions, each action on a transition segment occurs where it would
occur if the segment were a complete transition. See Figure 13-117 for an example.

Internal transitions
An internal transition has a source state but no target state. Its firing does not
cause a change of state, even if the transition that fires is inherited from an enclos-
ing state. Because the state does not change, no exit or entry actions are per-
formed. The only effect of an internal transition is the execution of its action. The
conditions for firing an internal transition are exactly the same as for an external
transition.

Note that the firing of an internal transition may mask an external transition us-
ing the same event. Therefore, there can be a purpose for defining an internal tran-
sition with no action. As stated above, only one transition fires per event within a
sequential region, and an inner transition has priority over an outer transition.

Internal transitions are useful for processing events without changing state.

Initial and final states
For encapsulation of states, it is often desirable to separate the inside of a state
from the outside. It is also desirable to connect transitions to a composite state,
without knowing about the internal structure of the state. This can be accom-
plished using initial states and final states within a composite state.

A state may have an initial and a final state. An initial state is a pseudostate—a
dummy state with the connectivity of normal states—and an object may not re-
main in an initial state. An object may remain in a final state, but a final state may
not have any explicit triggered transitions; its purpose is to invoke a completion
transition on an enclosing state. An initial state must have an outgoing completion
transition. If there is more than one outgoing transition, then they must all lack
triggers and their guard conditions must partition the possible values. In other
words, exactly one outgoing transition must fire when the initial state is invoked.
An object may never remain in the initial state, therefore, but will immediately
transition to a normal state.

If a composite state has an initial state, then transitions may be connected di-
rectly to the composite state as target. Any transition to the composite state is im-
plicitly a transition to the initial state within the composite state. If a composite
state lacks an initial state, then transitions may not be targeted at the composite
state; they must be connected directly to substates. A state with an initial state may
also have transitions connected directly to inner states, as well as to the composite
state.

If a composite state has a final state, then it may be the source of one or more
outgoing completion transitions, that is, transitions that lack explicit event trig-

Encyclopedia of Terms state machine • 445
gers. A completion transition is really a transition that is implicitly enabled by the
completion of activity within the state. A transition to a final state is therefore a
statement that execution of the composite state is complete. When an object tran-
sitions to a final state, then the completion transitions leaving its enclosing com-
posite state are enabled to fire if their guard conditions are satisfied.

A composite state may also have labeled outgoing transitions—that is, transi-
tions with explicit event triggers. If an event occurs that causes such a transition to
fire, then any ongoing activity within the state (at any nesting depth) is termi-
nated, the exit actions of the terminated nested states are executed, and the transi-
tion is processed. Such transitions are often used to model exceptions and error
conditions.

Complex transitions
A transition into a concurrent composite state implies a transition into all its con-
current substates. This can happen in two ways.

A transition may have multiple target states, one within each concurrent sub-
state. Note that such a forking transition still has a single trigger event, guard con-
dition, and action. This is an explicit transition into a composite state that specifies
each target directly. This represents an explicit fork of control into concurrent sub-
threads.

Alternately, a transition may omit targets within one or more concurrent sub-
states, or it may have the composite state itself as the target. In this case, each omit-
ted concurrent substate must have an initial state within it to indicate its default
starting state. Otherwise, the state machine is ill formed. If the complex transition
fires, the explicit target concurrent substates become active, as do the initial states
of the other concurrent substates. In short, any transition into any concurrent sub-
state implies a transition to the initial states of any other peer concurrent substates
not explicitly mentioned. A transition to a composite state itself implies a transi-
tion to the initial states of each of its concurrent regions. If a concurrent composite
state is active, each of its subregions is also active.

Similarly, a transition from any concurrent substate implies a transition from
them all. If the occurrence of an event causes such a transition to fire, the activity
in the remaining substates is terminated, they execute their exit actions, the action
of the transition itself is executed, and the target state becomes active, thereby re-
ducing the number of active concurrent states.

The transition to the final state of a concurrent substate does not force the ter-
mination of other concurrent substates (this is not a transition out of the sub-
state). When all the concurrent substates have reached their final states, the
enclosing composite state is deemed to have completed its activity and any com-
pletion transitions leaving the composite state are enabled to fire.

446 • state machine Encyclopedia of Terms
A complex transition may have multiple source states and multiple target states.
In that case, its behavior is the combination of the fork and join described above.

History state
A composite state may contain a history state, which is a pseudostate. If an inher-
ited transition causes an automatic exit from the composite state, the state “re-
members” the substate that was active when the forced exit occurred. A transition
to the history pseudostate within the composite state indicates that the remem-
bered substate is to be reestablished. An explicit transition to another state or to
the enclosing state itself does not enable the history mechanism, and the usual
transition rules apply. However, the initial state of the composite state can be con-
nected to the history state. In that case, a transition to the composite state does
(indirectly) invoke the history mechanism. The history state may have a single out-
going completion transition without guard condition; the target of this transition
is the default history state. If the state region has never been entered or if it was ex-
ited normally, then a transition to the history state goes to the default history state.

There are two kinds of history state: a shallow history state and a deep history
state. The shallow history state restores states contained directly (depth one) in the
same composite state as the history state. The deep history state restores the state
or states that were active prior to the last explicit transition that caused the enclos-
ing composite state to be exited. It may include states nested within the composite
state to any depth. A composite state can have at most one of each kind of history
state. Each may have its own default history state.

The history mechanism should be avoided if the situation can be modeled more
directly, as it is complicated and not necessarily a good match to implementation
mechanisms. The deep history mechanism is particularly problematical and
should be avoided in favor of more explicit (and more implementable) mecha-
nisms.

Notation
A statechart diagram shows a state machine or a nested portion of a state machine.
The states are represented by state symbols, and the transitions are represented by
arrows connecting the state symbols. States may also contain subdiagrams by
physical containment and tiling. Figure 13-169 shows an example.

The statechart notation was invented by David Harel and incorporates aspects
of Moore machines (actions on entry) and Mealy machines (actions on transi-
tions), as well as adding the concepts of nested states and concurrent states.

For more details, see state, composite state, submachine, pseudostate, entry ac-
tion, exit action, transition, internal transition, and activity. For a variant form of
notation suitable for flow of activity, see activity graph. See also control icons for

Encyclopedia of Terms state machine • 447
some optional symbols intended for use within activity diagrams but that may be
used in statechart diagrams.

Discussion
State machines can be used in two ways. Therefore, their meaning can be under-
stood in either way. In one case, the state machine may specify executable behavior
of its master element—typically, a class. In that case, the state machine describes
the response of the master as it receives events from the rest of the universe. The
response is described by transitions, each of which indicates what happens when
the master receives an event while in a given state. The effect is expressed as an ac-
tion and a change of state. Actions can include sending signals to other objects,
which trigger their state machines. State machines provide a reductionist specifica-
tion of the behavior of a system.

In the second case, the state machine may be used as a protocol specification,
showing the legal order in which operations may be invoked on a class or interface.

Figure 13-169. State diagram

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing tone
/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Timeout

do/ play message

dial digit(n)[invalid]

/connectInvalid

do/ play message

[incomplete]after (15 sec.)

after (15 sec.)

448 • state machine view Encyclopedia of Terms
In such a state machine, transitions are triggered by call events and their actions
invoke the desired operation. This means that a caller is allowed to invoke the op-
eration at that point. The protocol state machine does not include actions to spec-
ify the behavior of the operation itself. It shows which operations can be invoked
in a particular order. Such a state machine specifies valid operation sequences.
This is a use of a state machine as a generator of sequences in a language (from
computer science language theory). Such a machine is meant as a constraint on the
design of the system. It is not directly executable and does not indicate what hap-
pens if an illegal sequence occurs—because it is not supposed to occur. It is the re-
sponsibility of the system designer to ensure that only legal sequences occur. This
second usage is more abstract than the first form, which specifies, in an executable
form, what happens in all cases. But it is often convenient, especially at a high level
and with procedural coding.

state machine view

That aspect of the system dealing with the specification of the behavior of individ-
ual elements over their lifetimes. This view contains state machines. It is loosely
grouped with other behavioral views in the dynamic view.

statechart diagram

A diagram that shows a state machine, including simple states, transitions, and
nested composite states. The original concept was invented by David Harel.

See state machine.

static classification

A semantic variation of generalization in which an object may not change type or
may not change role. The choice of static classification or dynamic classification is
a semantic variation point.

static view

A view of the overall model that characterizes the things in a system and their
static relationships to each other. It includes classifiers and their relationships: as-
sociation, generalization, dependency, and realization. Sometimes called class
view.

Semantics
The static view shows the static structure of a system, in particular, the kinds of
things that exist (such as classes and types), their internal structure, and their rela-
tionships to other things. Static views do not show temporal information, al-

Encyclopedia of Terms stereotype • 449
though they may contain reified occurrences of things that have or describe
temporal behavior, such as specifications of operations or events.

The top-level constituents of a static view include classifiers (class, interface,
data type), relationships (association, generalization, dependency, realization),
constraints, and comments. It also contains packages and subsystems as organiza-
tional units. Other constituents are subordinate to and contained within the top-
level elements.

Related to the static view and often combined with it on diagrams are the im-
plementation view, deployment view, and model management view.

The static view may be contrasted with the dynamic view, which complements
it and builds upon it.

stereotype

A new kind of model element defined within the model based on an existing kind
of model element. Stereotypes may extend the semantics but not the structure of
pre-existing metamodel classes.

See also constraint, tagged value.
See Chapter 14, Standard Elements, for a list of predefined stereotypes.

Semantics
A stereotype represents a variation of an existing model element with the same
form (such as attributes and relationships) but with a different intent. Generally, a
stereotype represents a usage distinction. A stereotyped element may have addi-
tional constraints, beyond those of the base element, as well as a distinct visual im-
age. It is expected that code generators and other tools will treat stereotyped
elements specially, by generating different code, for example. The intent is that a
generic modeling tool, such as a model editor or a repository, should treat a stereo-
typed element for most purposes as an ordinary element with some additional text
information, while differentiating the element for certain semantic operations,
such as well-formedness checking, code generation, and report writing. Stereo-
types represent one of the built-in extensibility mechanisms of UML.

Each stereotype is derived from a base model element class. All elements bearing
the stereotype have the properties of the base model element class.

A stereotype can also be specialized from another stereotype. Stereotype defini-
tions are generalizable elements. The child stereotype has the properties of the
parent stereotype. Ultimately, each stereotype is based on some model element
class.

A stereotype may have a list of required tags and some of them may have default
values that are used if no explicit tagged value is supplied. The permitted range of
values for each tag may also be specified. Each element bearing the stereotype

450 • stereotype Encyclopedia of Terms
must have tagged values with the listed tags. Tags with default values are automati-
cally implied if they are not explicit on a stereotyped element.

A stereotype may have a list of constraints that add conditions beyond those im-
plied by the base element. Each constraint applies to each model element bearing
the stereotype. Each model element is also subject to the constraints applicable to
the base element.

A stereotype is a kind of virtual metamodel class (that is, it is not manifest in the
metamodel) that is added within a model rather than by modifying the predefined
UML metamodel. For that reason, the names of new stereotypes must differ from
existing UML metaclass names or other stereotypes or keywords.

Any model element can have at most one stereotype. This rule may not be logi-
cally essential, but it simplifies the semantics and the notation for stereotypes
without any real loss in power, as multiple inheritance of stereotypes themselves is
permitted. Stereotypes may be children of other stereotypes. Any situation in
which an element has multiple stereotypes can therefore be recast as having a sin-
gle stereotype that is a child of the others. Occasionally this may force the modeler
to create an extra dummy stereotype to combine other stereotypes, but we feel that
the greater simplicity in the average case compensates for this inconvenience.

Certain stereotypes are predefined in UML; others may be user defined. Stereo-
types are one of three extensibility mechanisms in UML.

See Chapter 14, Encyclopedia of Terms, for a list of predefined stereotypes,
See constraint, tagged value.

Notation
The general notation for the use of a stereotype is to use the symbol for the base el-
ement but to place a keyword string above the name of the element (if any). The
keyword string is the name of the stereotype within matched guillemets, which are
the quotation mark symbols used in French and some other languages—for exam-
ple: «foo». (Note that a guillemet looks like a double angle-bracket, but it is a single
character in most extended fonts. Most computers have a character map utility in
which special symbols can be found. Double angle-brackets may be used as a sub-
stitute by the typographically challenged.) The keyword string is generally placed
above or in front of the name of the model element being described. The keyword
string may also be used as an element in a list. In that case, it applies to subsequent
list elements until another stereotype string replaces it, or until an empty stereo-
type string («») nullifies it. Note that a stereotype name should not be identical to a
predefined keyword applicable to the same element type. (To avoid confusion, a
predefined keyword name should be avoided for any stereotype even if it applies to
separate elements and is distinguishable in principle.)

To permit limited graphical extension of the UML notation, a graphic icon or a
graphic marker (such as texture or color) can be associated with a stereotype.

Encyclopedia of Terms stereotype • 451
UML does not specify the form of the graphic specification, but many bitmap and
stroked formats exist and might be used by a graphical editor (although their port-
ability is a difficult problem). An icon can be used in two ways. In one case, it may
be used instead of or in addition to the stereotype keyword string within the sym-
bol for the base model element on which the stereotype is based. For example, in a
class rectangle it is placed in the upper-right corner of the name compartment. In
this form, the normal contents of the item can be seen in its symbol. Alternately,
the entire element symbol may be “collapsed” into an icon that contains the ele-
ment name or has the name above or below the icon. Other information con-
tained by the base model element symbol is suppressed.

Figure 13-170 shows various ways of drawing a stereotyped class.
UML avoids the use of graphic markers, such as color, that present challenges

for certain persons (the color blind) and for important kinds of equipment (such
as printers, copiers, and fax machines). None of the UML symbols require the use
of such graphic markers. Users may use graphic markers freely for their own pur-
poses (such as for highlighting within a tool) but should be aware of their limita-
tions for interchange, and they should be prepared to use the canonical forms
when necessary.

Stereotype declaration. The classification hierarchy of the stereotypes themselves
can be displayed on a class diagram. However, this is a metamodel diagram and
must be distinguished (by user and tool) from an ordinary model diagram. In
such a diagram, each stereotype is shown as a class symbol (rectangle) with the

Figure 13-170. Varieties of stereotype notation

PenTracker
«control»

PenTracker
«control»

PenTracker

PenTracker

JobManager Scheduler
«call»

location: Point

enable (Mode)

location: Point

enable (Mode)

location: Point

enable (Mode)

452 • string Encyclopedia of Terms
keyword «stereotype». Generalization relationships may show the extended meta-
model hierarchy (Figure 13-171). Because of the danger of extending the internal
metamodel hierarchy, a tool may, but need not, expose this capability on class dia-
grams. Declaration of stereotype names is not a capability required by ordinary
modelers, but it might be performed as a support task.

string

A sequence of text characters. The details of string representation depend on im-
plementation and may include character sets that support international characters
and graphics.

Semantics
Many semantic properties, especially names, have strings as their values. A string
is a sequence of characters in some suitable character set used to display informa-
tion about the model. Character sets may include non-Roman alphabets and char-
acters. UML does not specify the encoding of a string, but it assumes that the
encoding is sufficiently general to permit any reasonable usage. In principle, the
length of a string should be unlimited; any practical limit should be large enough
to be nonrestrictive. Strings should also include the possibility of characters in
various human languages. Identifiers (names) should consist entirely of characters

Figure 13-171. Stereotype declaration

UsageDependency

CallDependency

«stereotype»

«stereotype»

{ client and supplier
must be in same model }

Dependency

Encyclopedia of Terms structural view • 453
in a finite character set. Comments and similar kinds of descriptive strings with-
out direct semantic content might contain other kinds of media elements, such as
diagrams, graphs, pictures or video clips, and other kinds of embedded docu-
ments.

Notation
A graphic string is a primitive notation element with some implementation flexi-
bility. It is assumed to be a linear sequence of characters in some language, with
the possible inclusion of embedded documents of various kinds. It is desirable to
support the use of various human languages, but the details are left to editing tools
to implement. Graphic strings can be one to a line, in lists, or they can be labels at-
tached to other symbols.

Strings are used to display semantic properties that have string values and also
to encode the values of other semantic properties for display. Mapping from se-
mantic strings to notational strings is direct. Mapping of other properties to nota-
tional strings is governed by grammars, described in the articles for various
elements. For example, the display notation for an attribute encodes the name,
type, initial value, visibility, and scope into a single display string.

Noncanonical extensions to the encodings are possible—for example, an attri-
bute might be displayed using C++ notation. Some of these encodings may lose
some model information, however, so a tool should support them as user-
selectable options while maintaining support for the canonical UML notation.

Typeface and font size are graphic markers that are normally independent of the
string itself. They may code for various model properties, some of which are sug-
gested in this document and some of which are left open for the tool or the user.
For example, italics show abstract classes and abstract operations, and underlining
shows class-scope features.

Tools may treat long strings in various ways, such as truncation to a fixed size,
automatic wrapping, and insertion of scroll bars. It is assumed that there is a way
to obtain the full string when desired.

structural feature

A static feature of a model element, such as an attribute or an operation.

structural view

A view of an overall model that emphasizes the structure of the objects in a system,
including their types, classes, relationships, attributes, and operations.

454 • stub state Encyclopedia of Terms
stub state

A pseudostate within a submachine reference state that identifies a state in the ref-
erenced submachine.

See also stubbed transition, submachine, submachine reference state.

Semantics
A transition to a submachine reference state activates the initial state of the target
submachine. But sometimes a transition to a different state in the submachine is
desired. A stub state is placed within a submachine reference state and identifies a
state within the submachine. Transitions can be connected between the stub state
and states in the containing state machine. If a transition to a stub state fires, the
identified state in the submachine becomes active. If a state in the submachine is
active, then a transition from a stub state that identifies it is a candidate for trigger-
ing. Connections among stub states in the same submachine reference state are not
permitted.

Notation
A transition to or from a stub state is drawn as a stubbed transition into or from
the submachine reference state—that is, as an arrow that finishes or begins on a
short bar inside the state symbol for the submachine reference state. The bar is la-
beled with a name, which must match the name of a state in the referenced subma-
chine.

Figure 13-173 shows a stub within a subroutine reference state. Figure 13-174
shows the corresponding submachine definition.

stubbed transition

A notation indicating that a transition explicitly transfers into a composite state,
but the details are suppressed.

See also stub state.

Notation
A stub is shown as a small vertical line drawn inside the boundary of the enclosing
state (Figure 13-172). The stub may be labeled with the name of the state, but it is
often omitted when details are being suppressed. It indicates that a transition is
connected to a suppressed internal state. Stubs are not used for transitions to ini-
tial states or leaving final states. A stub shows that additional substates are present
in the model but are missing from the diagram.

Encyclopedia of Terms submachine • 455
A stub state in a submachine reference state (Figure 13-173) references a state
within the corresponding submachine definition (Figure 13-174). This is not a
case of suppressed detail and the stub name must be included.

subclass

The child of another class in a generalization relationship—that is, the more spe-
cific description. The child class is called the subclass. The parent class is called the
superclass.

See generalization, inheritance.

Semantics
A subclass inherits the structure, relationships, and behavior of its superclass and
may add to it.

submachine

A state machine that may be invoked as part of another state machine. It is not at-
tached to a class but instead is a kind of state machine subroutine. It has semantics
as if its contents were duplicated and inserted at the state that references it.

See state, state machine, submachine reference state.

Figure 13-172. Stubbed transition

A C

A C

B
D

E

F

p s

t

B

r

p

r

D

W

W

may be abstracted as

u

s

s

456 • submachine reference state Encyclopedia of Terms
submachine reference state

A state that references a submachine, a copy of which is implicitly part of the en-
closing state machine in place of the submachine reference state. It may contain
stub states, which identify states in the submachine.

See also state, state machine, stub state.

Semantics
A submachine reference state is equivalent to inserting a copy of the submachine
in place of the reference state.

Notation
A submachine reference state is drawn as a state symbol with a label of the form

include submachine-name

Transition arrows may be drawn to stub states in the submachine reference state.
They are drawn as stubbed transitions—that is, arrows that terminate on a cross-
bar. The crossbar is labeled with the name of a state in the referenced submachine.

Example
Figure 13-173 shows part of a state machine containing a submachine reference
state. The containing state machine sells tickets to customers with accounts. It
must identify the customer as part of its job. Identifying the customer is a require-
ment of other state machines so it has been made into a separate state machine.
Figure 13-174 shows the definition of state machine Identify, which is used as a
submachine by other state machines. The normal entry to the submachine pro-
vides for reading the customer’s card, but there is an explicit entry state that pro-
vides for manual entry of the customer’s name by the box office clerk. If the
identification process is successful, the submachine terminates at its final state.
Otherwise, it goes to state Failure.

In Figure 13-173, the submachine reference is shown by a state icon with the
include keyword and the name of the submachine. Normal entry to the subma-
chine is shown by an arrow to its boundary. This transition activates the initial
state of the submachine. Normal exit is shown by a completion transition from the
boundary. This transition fires if the submachine terminates normally.

Entry to explicit state ManualEntry is shown by a transition to a stub inside the
submachine reference symbol. The stub is labeled with the name of the target state
in the submachine. Similarly, exit from explicit state Failure is shown by a comple-
tion transition from a stub. Transitions to stubs may be triggered or triggerless.

Encyclopedia of Terms submachine reference state • 457
Figure 13-173. Submachine reference state

Figure 13-174. Submachine definition

Idle

Proceed

include Identify

Failure

Cancel

request
transaction

stub states

submachine reference state

normal exit

default entry
referenced submachine name

ManualEntry

[at kiosk]

do/
get clerk data

[at box office]

entry / get card
card in

entry / get password

Failure
[bad card]

[good card]

password entered

[good password]

[bad password]

Verifying

Identify

Manual Entry

entered

submachine name

target for entry stub

target for exit stub

submachine boundary

default exit

default entry

458 • substate Encyclopedia of Terms
substate

A state that is part of a composite state.
See composite state, concurrent substate, disjoint substate.

substitutability principle

The principle that, given a declaration of a variable or parameter whose type is de-
clared as X, any instance of an element that is a descendant of X may be used as the
actual value without violating the semantics of the declaration and its use. In other
words, an instance of a descendant element may be substituted for an instance of
an ancestor element. (Attributed to Barbara Liskov.)

See also generalization, implementation inheritance, inheritance, interface in-
heritance, polymorphic, private inheritance.

Discussion
The purpose is to ensure that polymorphic operations work freely. This is not a
principle of logic but rather a pragmatic rule of programming that provides a de-
gree of encapsulation. The generalization relationship supports substitutability.

The consequence of the substitutability principle is that a child may not remove
or renounce properties of its parent. Otherwise, the child will not be substitutable
in a situation in which a use of the parent is declared.

subsystem

A package of elements treated as a unit, including a specification of the behavior of
the entire package contents treated as a coherent unit. A subsystem is modeled
both as a package and as a class. A subsystem has a set of interfaces that describe its
relationship to the rest of the system and the circumstances under which it can be
used.

See also interface, package, realization.

Semantics
A subsystem is a coherent piece of a system that can be treated as an abstract single
unit. It represents emergent behavior of a piece of the system. As a unit, it has its
own behavior specification and implementation portion. The behavior specifica-
tion defines its emergent behavior as a unit that can interact with other sub-
systems. The behavior specification is given in terms of use cases and other
behavioral elements. The implementation portion describes the implementation
of the behavior in terms of the subordinate elements that comprise its contents
and is given as a set of collaborations among the contained elements.

Encyclopedia of Terms subsystem • 459
The system itself constitutes the top-level subsystem. The implementation of
one subsystem may be written as a collaboration of lower-level subsystems. In this
way, the entire system may be expanded as a hierarchy of subsystems until the
bottom-level subsystems are defined in terms of ordinary classes.

A subsystem may include structural elements and specification elements, such
as use cases and operations exported by the subsystem. Subsystem specifications
are implemented by structural elements. The behavior of the subsystem is the be-
havior of the elements in it.

Structure
The specification on a subsystem comprises elements designated as specification
elements, together with operations and interfaces defined on the subsystem as a
whole. Specification elements include use cases, constraints, relationships between
use cases, and so on. These elements and operations define the behavior per-
formed by the subsystem as an emergent entity, the net result of its parts working
together. Use cases specify complete sequences of interactions of the subsystem
with outside actors. Interfaces specify operations that the subsystem or its use
cases must supply. The specification does not reveal what the parts are or how the
parts interact to accomplish the necessary behavior.

The remainder of the elements in the subsystem realize its behavior. These may
include various kinds of classifiers and their relationships. A set of collaborations
among realization elements of the subsystem realize the specifications. In general,
one or more collaborations realize each use case. Each collaboration describes how
instances of the implementation elements cooperate to jointly perform the behav-
ior specified by a use case or operation. All messages to and from the subsystem at
the specification level must be mapped onto messages between its implementation
elements and those of other subsystems.

A subsystem is a package and has package properties. In particular, the importa-
tion of subsystems works as described for packages, and generalization among
subsystems has the same consequences for visibility of its contents.

Notation
A subsystem is notated as a package symbol (rectangle with small tab) containing
the keyword «subsystem» above the subsystem name (Figure 13-175).

Discussion
A subsystem in an emergent grouping of design elements, such as logical classes. A
component is an emergent grouping of implementation elements, such as imple-
mentation-level classes. In many cases, subsystems are implemented as compo-
nents. This simplifies the mapping from design to implementation; therefore, it is

460 • subtype Encyclopedia of Terms
a common architectural approach. Furthermore, many components are imple-
mented as dominant classes that directly implement the component interfaces. In
this case, a subsystem, component, and class may all have the same interface.

subtype

A type that is a child of another type. The more neutral term child may be used for
any generalizable element.

See generalization.

summarization

To filter, combine, and abstract the properties of a set of elements onto their con-
tainer in order to give a higher level, more abstract view of a system.

See package.

Semantics
Containers, such as packages and classes, can have derived properties and relation-
ships that summarize the properties and relationships of their contents. This per-
mits the modeler to get a better understanding of a system at a higher, less detailed
level that is easier to understand. For example, a dependency between two pack-
ages indicates that the dependency exists between at least one pair of elements
from the two packages. The summary has less detail than the original information.
There may be one or many pairs of individual dependencies represented by
package-level dependencies. In any case, the modeler knows that a change to one
package may affect the other. If more details are needed, the modeler can always
examine the contents in detail once the high-level summary has been noticed.

Figure 13-175. Subsystems

OrderEntry

«subsystem»

Shipping

«subsystem»

Stockroom

«subsystem»

dependencies
among subsystems

Encyclopedia of Terms swimlane • 461
Similarly, a usage dependency between two classes usually indicates a depen-
dency between their operations, such as a method on one class calling an opera-
tion (not a method!) on another class. Many dependencies at the class level derive
from dependencies among operations or attributes.

In general, relationships that are summarized on a container indicate the exist-
ence of at least one occurrence of the relationship among the contents. They do
not usually indicate that all the contained elements participate in the relationship.

superclass

The parent of another class in a generalization relationship—that is, the more gen-
eral element specification. The child class is classed the subclass. The parent class is
called the superclass.

See generalization.

Semantics
A subclass inherits the structure, relationships, and behavior of its superclass and
may add to it.

supertype

Synonym for superclass. The more neutral term parent may be used for any gener-
alizable element.

See generalization.

supplier

An element that provides services that can be invoked by others. Contrast: client.
In the notation, the supplier appears at the arrowhead of a dashed dependency
arrow.

See dependency.

swimlane

A partition on activity graphs for organizing responsibilities for activities. Swim-
lanes do not have a fixed meaning, but they often correspond to organizational
units in a business model.

See also activity graph.

Semantics
The activity states within an activity graph may be organized into partitions called
swimlanes because of their notation. Swimlanes are groupings of states for orga-
nizing an activity graph. Each swimlane represents some meaningful partition of

462 • swimlane Encyclopedia of Terms
the responsibilities for the states—for example, the business organization respon-
sible for a workflow step. They may be used in any way that suits the modeler. If
swimlanes are present, they divide the states of the activity graph among them.

Each swimlane has a name that is distinct from other swimlanes. It has no addi-
tional semantics within UML but it may carry some real-world implications.

Figure 13-176. Swimlanes on an activity diagram

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

another swimlanea swimlane

This service is
provided by the

stockroom.

name of the swimlane

Encyclopedia of Terms synch state • 463
Notation
An activity diagram may be divided visually into swimlanes, each separated from
its neighboring swimlanes by vertical solid lines (Figure 13-176). Each swimlane
represents high-level responsibility for part of the overall activity, which may
eventually be implemented by one or more objects. The relative ordering of the
swimlanes has no semantic significance but might indicate some real-world affin-
ity. Each activity state is assigned to one swimlane and placed within it visually.
Transitions may cross lanes; there is no significance to the routing of a transition
path.

Because swimlanes are just partitions into arbitrary categories, they may be in-
dicated by other means if a geometrical arrangement into regions is impractical.
Possibilities include the use of color or simply the use of tagged values to show the
partition.

synch state

A special state that enables synchronization of control between two concurrent re-
gions in a state machine.

See also complex transition, composite state, fork, join, state machine, transi-
tion.

Semantics
A composite state can consist of several concurrent regions, each with its own se-
quential set of states. When a concurrent composite state is entered, each concur-
rent region becomes active. There is one thread of control in each concurrent
region, and each executes independently of the others (the meaning of concur-
rency). Occasionally, however, control must be synchronized among concurrent
regions. One approach is for a transition in one region to have a guard condition
that depends on the state of another region. This can be useful for mutual exclu-
sion, including shared resources, but it does not capture situations in which an ac-
tivity in one region has subsequent consequences in another region (even though
the first region may then move on). To capture the latter situation, synch states can
be used.

A synch state is a special state that connects two concurrent regions. The regions
may be peers—that is, two concurrent regions that belong to the same composite
state—or they may be nested within peers at any depth. The regions may not be se-
quentially related.

One transition connects the output of a fork in one region to the input of the
synch state, and another transition connects the output of the synch state to the
input of a join in the other region. In other words, a synch state is a buffer that
indirectly connects a fork in one region to a join in another region. The fork and

464 • synch state Encyclopedia of Terms
the join must each have one input state and one output state within their own re-
gions.

The firing of a transition in the first region is remembered by the synch state un-
til the join transition fires in the second region. If the conditions on the join tran-
sition are satisfied before the synch state is active, then the join must wait until the
transition in the first region fires. In other words, it represents a transition in the
second region that cannot fire until a transition in the first region has fired. Other-
wise, it blocks until the first transition fires. Note that because each fork and join
must have one input and one output within its own region, synch states do not
change the fundamental sequential behavior of each concurrent region, nor do
they alter the nesting rules for forming composite states (except that a synch state
and its arcs do not belong to either concurrent region, but rather to their compos-
ite superstate).

A producer-consumer situation is a typical example of a synch state. The pro-
ducer fires a transition that activates the synch state; the consumer has a transition
that requires the synch state before it can fire.

If the input transition to the synch state is part of a loop, it is possible that the
first region can get ahead of the second region. In other words, the synch state
might have more than one token on it (to use the Petri net term). Therefore, a
synch state, unlike a normal state, represents a counter or a queue (the latter if in-
formation flows between the regions—if the synch state is an object flow state, for
example). By default, a synch state can hold an unlimited number of tokens, but
the modeler may specify an upper bound on the number a synch state may hold. If
the capacity of the synch state is exceeded, it represents a run-time error. Most of-
ten, the bound is unlimited or 1, the latter representing a simple latch. A bound of
1 would generally be used only if it can be guaranteed than overrun will not occur.
This is the modeler’s responsibility.

If there are tokens on a synch state when the enclosing composite state exits,
they are destroyed. Each time the composite region is entered, the synch state is
empty.

There may be more than one input arc entering a synch state, but all of them
must come from forks in the same sequential region. Similarly, there may be more
than one output arc leaving a synch state to merges in the sequential region. Be-
cause each region is sequential, there is no danger of conflict from multiple arcs.

A synch state can be an object flow state. In that case, it represents a queue of
values that pass from one region to the other.

Notation
A synch state is displayed as a small circle with a single upper bound inside it, ei-
ther an integer or a star (∗) indicating unlimited. There is a transition arrow from

Encyclopedia of Terms synch state • 465
a synch bar symbol (a heavy bar) into the synch state, and another transition ar-
row from the synch state to a synch bar symbol in another region (Figure 13-177).

The synch state is preferably drawn on the boundary between two regions, but
this is not always possible (the regions may not be adjacent), and the topology of
the connection is unambiguous, in any case.

Within an activity diagram, each transition arc implicitly represents a state.
Therefore, an arrow can be drawn from the output of a fork to the input of a join
without explicitly showing the synch state (but the synch state is needed to show
an explicit bound).

Example
Figure 13-178 shows a state diagram of a ticket-purchasing situation. Ticketing
and charging proceed concurrently, except the seats must be selected before the
changes can be computed and posted. This synchronization is shown by inserting
a synch state between Pick seats and Post charges. There is a fork after Pick seats,
because it is followed by both Print tickets and the synch state. Print charges does
not have to wait for the synchronization. There is a join before Post charges, be-
cause it must wait for both Validate account and the synch state. When both Print
tickets and Post charges are complete, the composite state terminates and Mail
tickets is performed.

The synch state has a bound of one. A larger bound is unnecessary, because
there is only one synchronization per execution of the composite state.

Figure 13-179 shows a batch-processing version of the order-filling process. In
this variation, many orders are filled off line. The orders are filled by one server
and the changes are made by another server. A change cannot be made before its
order is filled, but orders can get ahead of charges so the synch state has an unlim-
ited bound. This is a classic producer-consumer situation.

Figure 13-177. Synch state configuration

∗
synch state (unlimited)

fork

join

concurrent regions

466 • synch state Encyclopedia of Terms
Discussion
Synch states provide the ability to model producer-consumer situations with min-
imal overhead and with greater safety than more general concurrency constructs,
because each concurrent region maintains a single thread of control at all times.

Figure 13-178. Synch state for single order

Figure 13-179. Producer-consumer situation with unlimited synch state

Request
purchase

Pick
seats

Validate
account

Print
tickets

Post
charges

Mail
tickets

1
synch state

Ticketing

Charging

Fill

Charge
account

∗

Ticketing

Charging

order

[more]

[done]

[done]

[more]

unlimited synch state

junction state

branch

fork

join

Encyclopedia of Terms tagged value • 467
There is no danger of overrun (if the synch state bound is unlimited), because the
synch state is emptied whenever the concurrent superstate is exited. If synch states
are used within loops that contain branches, there is a danger of hang-up, however,
in which one region has terminated but the other region is waiting for a synch to-
ken that will never arrive. Deadlock is also a possibility if each region is in a branch
that waits for a token from the other region. There is no way to entirely avoid such
situations in concurrent systems that permit decisions. Even without synch states,
termination cannot be guaranteed because of the halting problem.

synchronous action

A request in which the sending object pauses to wait for a response; a call. Con-
trast: asynchronous action.

system

A collection of connected units organized to accomplish a purpose. A system can
be described by one or more models, possibly from different viewpoints. The sys-
tem is the “complete model.”

Semantics
The system is modeled by a top-level subsystem that indirectly contains the entire
set of model elements that work together to accomplish a complete real-world
purpose.

Notation
A system can be shown as a package with the stereotype «system». It is rarely nec-
essary to show a system as a unit, however.

tag

The selector value in a tagged value pair. It represents the name of a property de-
fined at modeling time.

tagged value

A tag-value pair attached to an element to hold some piece of information.
See also constraint, stereotype.
See Chapter 14, Standard Elements, for a list of predefined tags.

468 • tagged value Encyclopedia of Terms
Semantics
A tagged value is a selector-value pair that may be attached to any element (includ-
ing model elements and presentation elements) to carry various kinds of informa-
tion, generally secondary to the element semantics but possibly important to the
modeling enterprise. The selector is called a tag; it is a string value. Each tag repre-
sents a property that may be applicable to one kind of element or to many kinds.
On any element in a model, a tag name may appear at most once. The value may
be of various types, but it is encoded as a string. The interpretation of the value is
a convention between the modeler and the modeling tool. It is expected that
tagged values will be implemented as lookup tables indexed by tags for efficient ac-
cess.

Tagged values represent arbitrary information expressed in text form and are
commonly use to store project management information, such as the author of an
element, the testing status, or the importance of the element to a final system (the
tags might be author, status, and importance).

Tagged values represent a modest extension to the meta-attributes of UML
metaclasses. This is not a fully general extension mechanism but can be used to
add information to existing metamodel classes for the benefit of back-end tools,
such as code generators, report writers, and simulators. To avoid confusion, tags
should differ from existing meta-attributes of model elements to which they are
applied. This check can be facilitated by a modeling tool.

Certain tags are predefined in the UML; others may be user defined. Tagged val-
ues are an extensibility mechanism permitting arbitrary information to be at-
tached to models.

Notation
Each tagged value is shown in the form

tag = value

where tag is the name of a tag and value is a literal value. Tagged values may be
included with other property keywords in a comma-separated property list en-
closed in braces.

A keyword may be declared to stand for a tag with a particular value. In that case
the keyword can be used alone. The absence of the tag is treated as equivalent to
one of the other legal values for the tag.

tag

Example
{ author=Joe, status=tested, requirement=3.563.2a, suppress }

Encyclopedia of Terms target scope • 469
Discussion
Most model editor programs provide basic facilities for defining, displaying, and
searching tagged values as strings, but they do not use them to extend the UML se-
mantics. However, back-end tools, such as code generators, report writers, and the
like, can read tagged values to alter their semantics in flexible ways. Note that
tagged value lists are an old idea—for example, property lists in the Lisp language.

Tagged values are a means of attaching nonsemantic project management and
tracking information to models. For example, tag author might hold the author of
an element and tag status might hold the development status, such as incomplete,
tested, buggy, and complete.

Tagged values are also a way to attach implementation-language-dependent
controls to a UML model without building the details of the language into UML.
Code generator flags, hints, and pragmas can be encoded as tagged values without
affecting the underlying model. Multiple sets of tags are possible for various lan-
guages on the same model. Neither a model editor nor a semantic analyzer need
understand the tags—they can be manipulated as strings. A back-end tool, such as
a code generator, can understand and process the tagged values. For example, a
tagged value might name the container class used to override the default imple-
mentation of an association with multiplicity many.

Tagged values accommodate the need for many kinds of information that must
be attached to models, but they are not intended as a full metamodel extensibility
mechanism. Tags form a flat namespace that must be managed by adopting con-
ventions to avoid naming conflicts. They do not include a provision for specifying
the types of values in them. Neither are they intended for serious semantic exten-
sions to the modeling language itself. Tags are somewhat similar to metamodel at-
tributes, but they are not metamodel attributes and have not been formalized as
such.

The use of tags, like the use of procedures in programming language libraries,
may require a period of evolution during which there may be conflict among de-
velopers. Over time, some standard uses will develop. UML does not include a
“registry” of tags nor does it offer the expectation that early users of tags may “re-
serve” them to prevent other uses in the future.

target scope

A specification of whether a value is an instance or a classifier.
See scope.

Discussion
Target scope is used mainly for storing classes as attribute values or association tar-
gets. Its usefulness is limited. The word scope by itself means owner scope.

470 • target state Encyclopedia of Terms
target state

The state machine state that results from the firing of the transition. After an ob-
ject handles an event that causes a transition to fire, the object is in the target state
of the transition (or target states if it is a complex transition with multiple target
states). Not applicable to an internal transition, which does not cause a change of
state.

See transition.

template

A parameterized model element. To use it, the parameters must be bound (at
model time) to actual values. Synonym: parameterized element.

See also binding, bound element.

Semantics
A template is the descriptor for an element with one or more unbound formal pa-
rameters. It therefore defines a family of potential elements, each element specified
by binding the parameters to actual values. Typically, the parameters are classifiers
that represent attribute types, but they can also represent integers or even opera-
tions. Subordinate elements within the template are defined in terms of the formal
parameters, so they too become bound when the template itself is bound to actual
values.

A template class is the descriptor for a parameterized class. The body of a tem-
plate may contain occurrences of the formal parameters, as well as a default ele-
ment that represents the template itself. An actual class is produced by binding the
parameters to values. Attributes and operations within the template class can be
defined in terms of the formal parameters. The template class can also have rela-
tionships, such as associations and generalization, between itself and one of its pa-
rameters. When the template is bound, the result is a relationship between the
bound template class and the classes bound to the relationship parameters.

A template class is not a directly usable class because it has unbound parame-
ters. Its parameters must be bound to actual values to create a real class. Only a real
class can be the parent or the target of an association (a one-way association from
the template to another class is permissible, however). A template class may be a
subclass of an ordinary class, which implies that all classes formed by binding the
template are subclasses of the given class. It can also be a child of one of the tem-
plate parameters; this implies that the bound template class is a child of the class
passed as the argument.

Parameterization can be applied to other model elements, such as collabora-
tions and even entire packages. The description given here for classes applies to
other modeling elements in the obvious way.

Encyclopedia of Terms template • 471
The contents of a template are not directly subject to the well-formedness rules
of models. That is because they include parameters that do not have full semantics
until they are bound. A template is a kind of second-level model element—not one
that models systems directly, but one that models other model elements. The con-
tents of a template are therefore outside the semantics of the system. The results of
binding a template are ordinary model elements that are subject to well-formed-
ness rules and are normal elements in the target system. Certain well-formedness
rules for templates could be derived from the considerations that their bound re-
sults must be well formed, but we will not attempt to list them. In a sense, when a
template is bound, its contents are duplicated and the parameters are replaced by
the arguments. The result becomes part of the effective model as if it had been in-
cluded directly.

Other kinds of classifiers, such as use cases and signals, can be parameterized.
Collaborations can also be parameterized; they are then patterns.

Notation
A small dashed rectangle is superimposed on the upper-right corner of the class
rectangle or another modeling element. The dashed rectangle contains a list of for-
mal parameters for the class. Each parameter has a name and a classifier. The list
must not be empty (otherwise, there is no template), although it might be sup-
pressed in the presentation. The name, attributes, and operations of the parame-
terized class appear as normal in the class rectangle, but occurrences of the formal
parameters may also be included. Other kinds of parameterized elements are
treated similarly. Occurrences of the formal parameters can occur inside the tem-
plate body, for example, to show a related class identified by one of the parameters.

Parameters have the syntax

name : type

where name is an identifier for the parameter, with scope inside the tem-
plate; and

where type is a string designating a type expression for the parameter.

If the type name is omitted, it is assumed to be a type expression that resolves to a
classifier, such as a class name or a data type. Other parameter types (such as Inte-
ger) must be shown explicitly and must resolve to valid type expressions.

Figure 13-180 shows a template with an integer parameter and a class parame-
ter. The template has an association to one of its parameters.

Discussion
The effective model is the implicit model resulting from binding all templates; it is
the implicit model that describes a system. Template parameters have no meaning
within the effective model itself, because they will have been bound. They may be

472 • template Encyclopedia of Terms
used only within the scope of the template body itself. This is adequate to handle
constituent elements contained within the parameterized element, for example,
for attributes or operations within a parameterized class.

There is more difficulty with elements that are usually external to the parame-
terized element. For example, a class may have associations or generalizations to
other classes. If those classes are parameters of the template, they cannot be part of
the effective model, yet they are not part of an ordinary class either. Therefore, a
parameterized element includes a body that represents a model fragment. The
model fragment is not part of the effective model. It is part of the template itself,
and it may include template parameters, such as a parameter that represents a (as
yet unspecified) class. When the template is bound, the body is implicitly copied,
the parameters are replaced by arguments, and the copy becomes part of the effec-
tive model. Each instantiation of the template produces an addition to the effective
model. Figure 13-181 shows an example.

The body of the template implicitly contains an element that represents the in-
stantiated template element itself—for example, the class produced by binding a
template. This implicit element may be used to construct relationships, such as as-
sociations and generalizations, to template parameters. In the notation, the pa-
rameters are drawn inside the template boundary, and a connection to the inside
of the template boundary denotes a relationship to the implicit instantiated tem-
plate element. When the template is instantiated, these become relationships in
the effective model between the (newly instantiated) bound template element and
the (previously existing) elements that are template arguments.

A template can be a child of another element. This means that each bound ele-
ment generated from it is a child of the given element. For example, in
Figure 13-181, every variable array (VArray) is an array (Array). Therefore,
VArray<Point> is a child of Array, VArray<Address> is a child of Array, and so on.

Figure 13-180. Template notation with use of parameter as a reference

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList

template parameters

T has type Classifier

explicit binding

This class has
its own name.

Implicit binding.
This class has an
anonymous name.

The parameters are used
in the template body.

In this template, the
multiplicity of the array
is fixed by the binding.

by default.

Encyclopedia of Terms template • 473
A template usually cannot be a parent of another element. This would mean
that each element generated by binding the template is the parent of the other ele-
ment. Although someone could perhaps assign a meaning to such a situation, it is
implausible.

Two templates do not have associations to each other simply because they share
the same parameter name. (Trying to do this would mean that every instantiation
of the first template is related to every instantiation of the second template, which
is not what is usually desired. This point has been misunderstood frequently by
authors in the past.) A parameter has scope only inside its own template. Using the
same name for a parameter in two templates does not make it the same parameter.
Generally, if two templates have parameterized elements that must be related, one
of the templates must be instantiated inside the body of the other. (Recall that a
template is implicitly instantiated inside its own body. Therefore, both templates
are effectively instantiated inside the body, and relationships are therefore between
the instantiated elements.) Figure 13-182 shows an incorrect and a correct attempt
to define such a relationship—in this case, with a parameterized “pointer” class
that points to a parameterized array of the same kind.

A similar approach can be used to declare a parameterized class that is a child of
another template class bound with the same parameter. Another approach is to in-
stantiate both templates inside a third template that has a parameter. The parame-
ter is used to bind a copy of each of the other templates. An association may then
be constructed between the instantiated copies of the templates. In most practical
cases, this is not needed because the relationship can be declared in the body of
one of the templates.

Figure 13-181. Template with relationship to one of its parameters

VArray

T

∗

T

Array

VArray<Point>

Point

∗

Array

the template definition the implicit result of
binding T to Point

VArray<Point>

the template binding,
as shown in the modelin the model

474 • thread Encyclopedia of Terms
thread

(from thread of control) A single path of execution through a program, dynamic
model, or other representation of control flow. Also a stereotype for the imple-
mentation of an active object as a lightweight process.

See active object, complex transition, composite state, state machine, synch
state.

time

A value representing an absolute or relative moment in time.
See time expression.

time event

An event that denotes the satisfaction of a time expression, such as the occurrence
of an absolute time or the passage of a given amount of time after an object enters
a state.

Figure 13-182. Associations between templates

VArray

T

∗

T

VArrayPtr

T
1

RIGHT! A template must be instantiated to construct an association.

VArray

T

∗

T VArrayPtr

U

VArray<U>

1

WRONG! This is meaningless. The T’s are unrelated because they are in different scopes.

T

Encyclopedia of Terms time expression • 475
Semantics
A time event is an event that depends on the passage of time and therefore on the
existence of a clock. In the real world, the clock is implicit. In a computer, it is a
physical entity, and there may be different clocks in different computers. The time
event is a message from the clock to the system. Note that both absolute time and
elapsed time may be defined with respect to a real-world clock or to a virtual inter-
nal clock (in the latter case, it may differ for various objects).

Time events may be based on absolute time (the time of day or a clock setting
within a system) or relative time (the elapsed time since the entry to a certain state
or the occurrence of an event).

Notation
Time events are not declared as named events the way signals are. Instead, a time
expression is simply used as the trigger of a transition.

Discussion
In any real implementation, time events do not come from the universe—they
come from some clock object inside or outside the system. As such, they become
almost indistinguishable from signals, especially in real-time and distributed sys-
tems. In such systems, the issue of which clock is used must also be determined—
there is no such thing as the “real time.” (It doesn’t exist in the real universe ei-
ther—just ask Einstein.)

time expression

An expression that resolves to an absolute or relative value of time. Used in defin-
ing a time event.

Semantics
Most time expressions are either elapsed time after the entry to a state or the oc-
currence of a particular absolute time. Other time expressions must be defined in
an ad hoc way.

Notation
Elapsed time. An event denoting the passage of some amount of time after entry to
the state containing the transition is notated with the keyword after followed by an
expression that evaluates (at modeling time) to an amount of time.

after (10 seconds)

after (10 seconds since exit from state A)

476 • timing mark Encyclopedia of Terms
If no starting point is specified, then it is the elapsed time since entry to the state
containing the transition.

Absolute time. An event denoting the occurrence of an absolute time is notated
with the keyword when, followed by a parenthetical Boolean expression involving
time.

when (date = Jan. 1, 2000)

timing mark

A denotation for the time at which an event or message occurs. Timing marks may
be used in constraints.

Semantics
A timing mark is formed as an expression from the name of a message. A message
may be given a name in an interaction so that timing mark expressions can be
formed from it. In the following expressions, message is the name of a message.

message.sendTime () Time that message is sent

message.receiveTime () Time that message is received

Notation
Timing mark expressions are shown as text.

Example
The following constraint limits the time required to produce a dial tone.

{ dialtone.sendTime () – offhook.sendTime () < 1 second }

trace

A dependency that indicates a historical development process or other extra-
model relationship between two elements that represent the same concept without
specific rules for deriving one from the other. This is the least specific kind of de-
pendency, and it has minimal semantics. It is mostly of use as a reminder for
human thought during development.

See dependency, model.

Semantics
A trace is a variety of dependency that indicates a connection between two ele-
ments that represent the same concept at different levels of meaning. It does not
represent semantics within a model. Rather, it represents connections between ele-
ments with different semantics—that is, between elements from different models

Encyclopedia of Terms transient link • 477
on different planes of meaning. There is no explicit mapping between the ele-
ments. Often, it represents a connection between two ways of capturing a concept
at different stages of development. For example, two elements that are variations
of the same theme might be related by a trace. A trace does not represent a rela-
tionship between run-time instances. Rather, it is a dependency between model el-
ements themselves.

A major use of trace is for tracking requirements that have been changed
throughout the development of a system. The trace dependencies may relate ele-
ments in two kinds of models (such as a use case model and a design model) or in
two versions of the same kind of model.

Notation
A trace is indicated by a dependency arrow (a dashed arrow with its tail on the
newer element and its head on the older element) with the keyword «trace». Usu-
ally, however, the elements are in different models that are not displayed simulta-
neously, so in practice, the relationship would most often be implemented in a tool
as a hyperlink.

transient link

A link that exists for a limited duration, such as for the execution of an operation.
See also association, collaboration, usage.

Semantics
During execution, some links exist for a limited duration. Of course, almost any
object or link has a limited lifespan, if the time period is great enough. Some links,
however, exist only in certain limited contexts, such as during the execution of a
method. Procedure arguments and local variables can be represented by transient
links. It is possible to model all such links as associations, but then the conditions
on the associations must be stated very broadly, and they lose much of their preci-
sion in constraining combinations of objects. Such situations can instead be mod-
eled using collaborations, which are configurations of objects and links that exist
within special contexts.

An association role from a collaboration can be regarded as a transient link that
exists only within the execution of a behavioral entity, such as a procedure. It ap-
pears within a class model as a usage dependency. For full details it is necessary to
consult the behavioral model.

478 • transient object Encyclopedia of Terms
Notation
A transient link is shown as an association with a stereotype attached to the link
role to indicate various kinds of implementation. The following stereotypes may
be used:

«parameter» Procedure parameter

«local» Local variable of a procedure

«global» Global variable (something visible within an entire model
or package); avoid, if possible, as it violates the spirit of
object-orientation

«self» Self-link (the ability of an object to send a message to
itself, implicit in objects and useful to show only in
dynamic situations with message flows)

«association» Association (default, unnecessary to specify except for
emphasis); not a transient link but listed for completeness

transient object

An object that exists only during the execution of the thread that created it.

transition (phase)

The fourth phase of a software development process, during which the imple-
mented system is configured for execution in a real-world context. During this
phase, the deployment view is completed, together with any of the remaining
views that were not completed in previous phases.

See development process.

transition

A relationship within a state machine between two states indicating that an object
in the first state will perform specified actions and enter the second state when a
specified event occurs and specified guard conditions are satisfied. On such a
change of state, the transition is said to fire. A simple transition has a single source
state and a single target state. A complex transition has more than one source state
and/or more than one target state. It represents a change in the number of concur-
rently active states, or a fork or join of control. An internal transition has a source
state but no target state. It represents a response to an event without a change of
state. States and transitions are the vertices and nodes of state machines.

See also state machine.

Encyclopedia of Terms transition • 479
Semantics
Transitions represent the potential paths among the states in the life history of an
object, as well as the actions performed in changing state. A transition indicates
the way an object in a state responds to the occurrence of an event. States and tran-
sitions are the vertices and arcs of a state machine that describes the possible life
histories of the instances of a classifier.

Structure
A transition has a source state, an event trigger, a guard condition, an action, and a
target state. Some of these may be absent in a transition.

Source state. The source state is the state that is affected by the transition. If an ob-
ject is in the source state, an outgoing transition of the state may fire if the object
receives the trigger event of the transition and if the guard condition (if any) is sat-
isfied.

Target state. The target state is the state that is active after the completion of the
transition. It is the state to which the master object changes. The target state is not
used in an internal transition, which does not perform a change of state.

Event trigger. The event trigger is the event whose reception by the object in the
source state makes the transition eligible to fire, provided its guard condition is
satisfied. If the event has parameters, their values are available to the transition
and may be used in expressions for the guard condition and actions. The event
triggering a transition becomes the current event and may be accessed by subse-
quent actions that are part of the run to completion step initiated by the event.

A transition without an explicit trigger event is called a completion transition
(or a triggerless transition) and is implicitly triggered on the completion of any in-
ternal activity in the state. A composite state indicates its completion by reaching
its final state. If a state has no internal activity or nested states, then a completion
transition is triggered immediately when the state is entered after any entry action
is executed. Note that a completion transition must satisfy its guard condition to
fire. If the guard condition is false when the completion occurs, then the implicit
completion event is consumed and the transition will not fire later even if the
guard condition becomes true. (This kind of behavior can be modeled instead
with a change event.)

Note that all appearances of an event within a state machine must have the same
signature.

Guard condition. The guard condition is a Boolean expression that is evaluated
when a transition is triggered by the handling of an event, including an implicit
completion event on a completion transition. If the state machine is performing a
run-to-completion step when an event occurs, the event is saved until the step is
complete and the state machine is quiescent. Otherwise the event is handled

480 • transition Encyclopedia of Terms
immediately. If the expression evaluates to true, the transition is eligible to fire. If
the expression evaluates to false, then the transition does not fire. If no transition
becomes eligible to fire, the event is ignored. This is not an error. Multiple transi-
tions having different guard conditions may be triggered by the same event. If the
event occurs, all the guard conditions are tested. If more than one guard condition
is true, only one transition will fire. The choice of transition to fire is nondeter-
ministic if no priority rule is given.

Note that the guard condition is evaluated only once, at the time when the event
is handled. If the condition evaluates to false and later becomes true, the transition
will not fire unless another event occurs and the condition is true at that time.
Note that a guard condition is not the appropriate way to continuously monitor a
value. A change event should be used for such a situation.

If a transition has no guard condition, then the guard condition is treated as
true and the transition is enabled if its trigger event occurs. If several transitions
are enabled, only one will fire. The choice may be nondeterministic.

For convenience, a guard condition can be broken into a series of simpler guard
conditions. In fact, several guard conditions may branch from a single trigger
event or guard condition. Each path through the tree represents a single transition
triggered by the (single) trigger event with a different effective guard condition
that is the conjunction (“and”) of the guard conditions along its path. All the ex-
pressions along such a path are evaluated before a transition is chosen to fire. A
transition cannot partially fire. In effect, a set of independent transitions may
share part of their description. Figure 13-183 shows an example.

Note that trees of guard conditions and the ability to order transitions for eligi-
bility are merely conveniences, as the same effect could be achieved by a set of in-
dependent transitions, each with its own disjoint guard condition.

Action. A transition may contain an action expression that describes an action.
This is an expression for procedural computation that may affect the object that
owns the state machine (and, indirectly, other objects that it can reach). This ex-
pression may use parameters of the trigger event, as well as attributes and associa-
tions of the owning object. The trigger event is available as the current event
during the entire run-to-completion step initiated by the event, including later
triggerless segments and entry and exit actions.

An action may be an action sequence. An action is atomic—that is, it may not
be externally terminated and must be executed completely before any other ac-
tions or events may be handled. Actions should be of minimal duration to avoid
hanging the state machine. Any events received during execution of an action are
saved until the action is completed, at which time they are evaluated.

Branches. For convenience, several transitions that share the same trigger event
but have different guard conditions can be grouped together in the model and no-
tation to avoid duplication of the trigger or the common part of the guard condi-

Encyclopedia of Terms transition • 481
tion. This is merely a representational convenience and does not affect the
semantics of transitions.

See branch for details of representation and notation.

Notation
A transition is shown as a solid arrow from one state (the source state) to another
state (the target state), labeled by a transition string. Figure 13-184 shows a transi-
tion between two states and one split into segments.

Figure 13-183. Tree of guard conditions

Figure 13-184. Transitions

[balance < 0]

[balance = 0]

[balance < 1000]

withdraw (amount)

[else]

[else]

[else]

SelectMode SelectMode

double-click [self.selection exists] / launch (self.selection)

[nothing selected]

[something selected]

SelectMode

click (point) / select (point)

junction state

branch condition

trigger action

trigger guard condition action

source state
target statebranch condition

target state

target state

482 • transition Encyclopedia of Terms
An internal transition is shown as a transition string inside a state symbol. A
transition string has the following format:

name :opt event-nameopt (parameter-list)opt [guard-condition]opt

/ action-listopt

The name may be used to reference the transition in expressions, particularly
for forming timing marks. It is followed by a colon.

The event-name names an event and is followed by its parameters. The parame-
ter list may be omitted if there are no parameters. The event name and parameter
list are omitted for a completion transition. The parameter-list has the format:

name : typelist,

The guard-condition is a Boolean expression written in terms of parameters of
the triggering event and attributes and links of the object described by the state
machine. The guard condition may also involve tests of the status of concurrent
states of the current machine or explicitly designated states of some reachable
object—[in State1] and [not in State2] are examples. State names may be fully
qualified by the nested states that contain them, yielding pathnames of the form
State1::State2::State3. This may be used if the same state name occurs in different
composite state regions of the overall machine.

The action-list is a procedural expression that is executed if and when the transi-
tion fires. It may be written in terms of operations, attributes, and links of the
owning object and the parameters of the triggering event. Actions may include
call, send, and other kinds of actions. The action-list may contain more than one
action clause separated by semicolon delimiters:

actionlist;

Branches. A transition may include a segment with a trigger event followed by a
tree of junction states, drawn as small circles. This is equivalent to a set of individ-
ual transitions, one for each path through the tree, whose guard condition is the
“and” of all the conditions along the path. Only the final segment of any path may
have an action.

A junction state may alternately be drawn as a diamond if it represents a branch
or a merge. There is no difference in meaning.

Discussion
A transition represents an atomic change from one state to another, possibly ac-
companied by an atomic action. A transition is noninterruptible. The actions on a
transition should be short, usually trivial, computations, such as assignment state-
ments and simple arithmetic calculations.

Encyclopedia of Terms trigger • 483
transition time

See timing mark.

trigger

An event whose occurrence makes a transition eligible to fire. The word may be
used as a noun (for the event itself) or as a verb (for the occurrence of the event).

See also completion transition, transition.

Semantics
Each transition (except a completion transition that fires on the completion of in-
ternal activity) has a reference to an event as part of its structure. If the event oc-
curs when an object is in a state containing an outgoing transition whose trigger is
the event or an ancestor of the event, then the guard condition on the transition is
tested. If the condition is satisfied, then the transition is enabled to fire. If the
guard condition is absent, then it is deemed to be satisfied. If more than one tran-
sition is eligible to fire, only one will actually fire. The choice may be nondeter-
ministic. (If the object has more than one concurrent state, one transition from
each state may fire. But at most one transition from each state may fire.)

Note that the guard condition is tested once, at the moment when the triggering
event occurs (including an implicit completion event). If no transition is enabled
to fire by the occurrence of an event, the event is simply ignored. This is not an er-
ror.

The parameters of the trigger event are available for use in a guard condition or
an action attached to the transition or to an entry action on the target state.

Throughout the execution of a run-to-completion step after a transition, the
trigger event remains available to the actions of the substeps of the transition as
the current event. The exact type of this event may be unknown in an entry action
or in a later segment in a multiple-segment transition. Therefore, the type of event
may be discriminated in an action using a polymorphic operation or a case state-
ment. Once the exact event type is known, its parameters can be used.

Notation
The name and signature of the trigger event are part of the label on a transition.

See transition.
The trigger event may be accessed in an expression by the reserved word

currentEvent. This keyword references the trigger event on the first segment of a
multiple-segment transition.

484 • triggerless transition Encyclopedia of Terms
triggerless transition

A transition without an explicit event trigger. When it leaves a normal state, it rep-
resents a completion transition, that is, a transition that is triggered by the
completion of activity rather than by an explicit event. When it leaves a pseu-
dostate, it represents a transition segment that is automatically traversed when the
preceding segment has completed its action. Triggerless transitions are used to
connect initial states and history states to their target states.

tuple

An ordered list of values. Generally, the term implies that there is a set of such lists
of similar form. (This is a standard mathematical term.)

type

As an adjective: The declared classifier that the value of an attribute, parameter, or
variable must hold. The actual value must be an instance of the type or one of its
descendants.

As a noun: A stereotype of class used to specify a set of instances (such as objects)
together with the operations applicable to the objects. A type may not contain any
method. Contrast: interface, implementation class.

Type and implementation class
Classes can be stereotyped as types or implementation classes (although they can
be left undifferentiated as well). A type is used to specify a domain of objects, to-
gether with operations applicable to the objects, without defining the physical im-
plementation of the objects or operations. A type may not include methods, but it
may provide behavioral specifications for its operations. It may also include at-
tributes and associations in order to specify the behavior of operations. A type’s
attributes and associations do not determine the implementation of its objects.

An implementation class defines the physical data structure and methods of ob-
jects, as implemented in traditional languages, such as C++ and Smalltalk. An im-
plementation class is said to realize a type if the implementation class includes all
the operations as the type with the same behavior. An implementation class may
realize multiple types, and multiple implementation classes may realize the same
type. The attributes and associations of an implementation class do not have to be
the same as those of a type it realizes. The implementation class may provide
methods for its operations in terms of its physical attributes and associations, and
may declare additional operations not found in any types.

An object must be an instance of no more than one implementation class, which
specifies the physical implementation of the object. However, an object be an in-

Encyclopedia of Terms type • 485
stance of multiple types. If the object is an instance of an implementation class,
then the implementation class must realize the types of which the object is an in-
stance. If dynamic classification is available, then an object may gain and lose types
over its lifetime. A type used in this way characterizes a changeable role that an ob-
ject may adopt and later abandon.

Although the use of types and implementation classes differs, their internal
structure is the same, so they are modeled as class stereotypes. They fully support
generalization; the substitutability principle; and the inheritance of attributes, as-
sociations and operations. Types may only specialize types, however, and imple-
mentation classes may only specialize implementation classes. Types may be
related to implementation classes only by realization.

Notation
An undifferentiated class is shown with no keyword. A type is shown with the key-
word «type», and an implementation class is shown with «implementation class».
Figure 13-185 shows an example.

The implementation of a type by an implementation class is modeled using the
realization relationship, shown as a dashed line with a solid triangular arrowhead
(a “dashed generalization arrow” or a “dependency with solid arrowhead”). This
symbol implies inheritance of operations but not of structure (attributes or associ-
ations). Realization may be used between any two classifiers for which one sup-
ports the operations of the other, but implementation of a type by an
implementation class is a common use of it.

Figure 13-185. Notation for types and implementation classes

Set
«type»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

Collection
«type»

HashTableSet
«implementation class»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

elements: HashTable

setTableSize(Integer)

486 • type expression Encyclopedia of Terms
Discussion
Type and implementation class are somewhat limited concepts aimed at conven-
tional programming languages, such as C++ and Smalltalk. The UML concept of
class can be used directly in a more general way. UML supports both multiple clas-
sification and dynamic classification, which remove the need for distinctions be-
tween types and implementation classes. The distinctions are useful, however, for
designing code for conventional languages.

type expression

An expression that evaluates to a reference to one or more data types. For example,
an attribute type declaration in a typical programming language is a type
expression.

Example
In C++ the following are type expressions:

Person*

Order[24]

Boolean (*) (String, int)

uninterpreted

A placeholder for a type or types whose implementation is not specified by the
UML. Every uninterpreted value has a corresponding string representation. In any
physical implementation, such as a model editor, the implementation would have
to be complete, so there would be no uninterpreted values.

unspecified value

A value that has not yet been specified by the modeler.

Discussion
An unspecified value is not a value at all in the proper sense and cannot appear
within a complete model except for properties whose value is unnecessary or irrel-
evant. For example, multiplicity cannot be unknown; it must have some value. A
lack of any knowledge is tantamount to a multiplicity of many. The semantics of
UML therefore do not allow or deal with the absence of values or unspecified val-
ues.

There is another sense in which “unspecified” is a useful part of an unfinished
model. It has the meaning: “I have not yet thought about this value, and I have
made a note of it so that I will remember to give it a value later.” It is an explicit

Encyclopedia of Terms usage • 487
statement that the model is incomplete. This is a useful capability and one that
tools may support. By its very nature, such a value cannot appear in a finished
model, and it makes no sense to define its semantics. A tool can automatically sup-
ply a default value for an unspecified value when a value is needed—for example,
during code generation—but this is simply a convenience and not part of the se-
mantics. Unspecified values are outside the semantics of UML.

Similarly, there is no semantic meaning to a default value for a property. A prop-
erty in the model simply has a value. A tool may automatically supply values for
properties of newly created elements. But again, this is just an operational conve-
nience within the tool, not part of UML semantics. Semantically-complete UML
models do not have default or unspecified values; they simply have values.

usage

A dependency in which one element (the client) requires the presence of another
element (the supplier) for its correct functioning or implementation—generally,
for implementation reasons.

See also collaboration, dependency, transient link.

Semantics
A usage dependency is a situation in which one element requires the presence of
another element for its correct implementation or functioning. All the elements
must exist at the same level of meaning—that is, they do not involve a shift in the
level of abstraction or realization (such as a mapping between an analysis-level
class and an implementation-level class). Frequently, a usage dependency involves
implementation-level elements, such as a C++ include file, for which it implies
compiler consequences. A usage may be stereotyped further to indicate the exact
nature of the dependency, such as calling an operation of another class or instanti-
ating an object of another class.

Notation
A usage is indicated by a dashed arrow (dependency) with the keyword «use». The
arrowhead is on the supplier (independent) element, and the tail is on the client
(dependent) element.

Discussion
A usage usually corresponds to a transient link—that is, a connection between in-
stances of classes that is not meaningful or present all the time, but only in some
context, such as the execution of a subroutine procedure. The dependency con-
struct does not model the full information in this situation, only the fact of its

488 • use Encyclopedia of Terms
existence. The collaboration construct provides the capability to model such rela-
tionships in full detail.

Standard elements
call, create, instantiate, send

use

Keyword for the usage dependency in the notation.

use case

The specification of sequences of actions, including variant sequences and error
sequences, that a system, subsystem, or class can perform by interacting with out-
side actors.

See also actor, classifier.

Semantics
A use case is a coherent unit of functionality provided by a classifier (a system,
subsystem, or class) as manifested by sequences of messages exchanged among the
system and one or more outside users (represented as actors), together with ac-
tions performed by the system.

The purpose of a use case is to define a piece of behavior of a classifier (includ-
ing a subsystem or the entire system), without revealing the internal structure of
the classifier. Each use case specifies a service the classifier provides to its users—
that is, a specific way of using the classifier that is visible from the outside. It de-
scribes a complete sequence initiated by a user (as modeled by an actor) in terms
of the interaction between users and classifier, as well as the responses performed
by the classifier. The interaction includes only the communications between the
system and the actors. The internal behavior or implementation is hidden. The en-
tire set of use cases of a classifier or system partition and cover its behavior. Each
use case represents a meaningful quantized piece of functionality available to
users. Note that user includes humans, as well as computers and other objects. An
actor is an idealization of the purpose of a user, not a representation of a physical
user. One physical user can map to many actors, and an actor can represent the
same aspect of multiple physical users.

See actor.
A use case includes normal mainline behavior in response to a user request, as

well as possible variants of the normal sequence, such as alternate sequences, ex-
ceptional behavior, and error handling. The goal is to describe a piece of coherent
functionality in all its variations, including all the error conditions. The complete

Encyclopedia of Terms use case • 489
set of use cases for a classifier specifies all the different ways to use the classifier.
Use cases can be grouped into packages for convenience.

A use case is a descriptor; it describes potential behavior. An execution of a use
case is a use case instance. The behavior of a use case can be specified by an at-
tached state machine or by text code (which is equivalent to a state machine). It
can also be described by an informal text description. Behavior can be illustrated,
but not formally specified, by a set of scenarios. But at early stages of development,
this may be sufficient.

A use case instance is an execution of a use case, initiated by a message from an
instance of an actor. As a response to the message, the use case instance executes a
sequence of actions specified by the use case, such as sending messages to actor in-
stances, not necessarily only to the initiating actor. The actor instances may send
messages to the use case instance, and the interaction continues until the instance
has responded to all input. When it does not expect any more input, it ends.

A use case is a specification of the behavior of a system (or other classifier) as a
whole in its interactions with outside actors. The internal interactions among in-
ternal objects in a system that implements the behavior is described by a collabo-
ration that realizes a use case.

Structure
A use case may have classifier features and relationships.

Features. A use case is a classifier and therefore has attributes and operations. The
attributes are used to represent the state of the use case—that is, the progress of
executing it. An operation represents a piece of work the use case can perform. It is
not directly callable from the outside, but may be used to describe the effect of the
use case on the system. The execution of an operation may be associated with the
receipt of a message from an actor. The operations act on the attributes of the use
case, and indirectly on the system or class that the use case is attached to.

Associations to actors. An association between an actor and a use case indicates
that the actor instance communicates with the system instance or classifier in-
stance to effect some result that is of interest to the actor. Actors model external us-
ers of a classifier. Thus, if the classifier is a system, its actors are the external users
of the system. Actors of lower-level subsystems may be other classes within the
overall system.

One actor may communicate with several use cases—that is, the actor may re-
quest several different services of the system—and one use case may communicate
with one or more actors when providing its service. Note that two use cases that
specify the same system cannot communicate with each other because each of
them individually describes a complete usage of the system. They may interact in-
directly through shared actors.

490 • use case Encyclopedia of Terms
The interaction between actors and use cases can be defined with interfaces. An
interface defines the operations an actor or a use case may support or use. Differ-
ent interfaces offered by the same use case need not be disjoint.

Use cases are related to other use cases by generalization, extend, and include rela-
tionships.

Generalization. A generalization relationship relates a specialized use case to the
more general use case. The child inherits the attributes, operations, and behavior
sequences of the parent and may add additional attributes and operations of its
own. The child use case adds incremental behavior to the parent use case by insert-
ing additional action sequences into the parent sequence at arbitrary points. It
may also modify some inherited operations and sequences, but this must be done
with the same care as any overriding so that the intent of the parent is preserved.
Any include or extend relationships to the child use case also effectively modify the
behavior inherited from the parent use case.

Extend. An extend relationship is a kind of dependency. The client use case adds
incremental behavior to the base use case by inserting additional action sequences
into the base sequence. The client use case contains one or more separate behavior
sequence segments. The extend relationship contains a list of extension point
names from the base use case, equal in number to the number of segments in the
client use case. An extension point represents a location or set of locations in the
base use case at which the extension could be inserted. An extend relationship may
also have a condition on it, which may use attributes from the parent use case.
When an instance of the parent use case reaches a location referenced by an exten-
sion point in an extend relationship, the condition is evaluated; if the condition is
true, the corresponding behavior segment of the child use case is performed. If
there is no condition, it is deemed to be always true. If the extend relationship has
more than one extension point, the condition is evaluated only at the first exten-
sion point prior to execution of the first segment.

An extend relationship does not create a new instantiable use case. Instead, it
implicitly adds behavior to the original base use case. The base use case implicitly
includes the extended behavior. The nonextended original base use case is not
available in its unaltered form. In other words, if you extend a use case, you cannot
explicitly instantiate the base use case without the possibility of extensions. A use
case may have multiple extensions which all apply to the same base use case and
can be inserted into one use case instance, if their separate conditions are satisfied.
On the other hand, an extension use case may extend several base use cases (or the
same one at different extension points), each at its own proper extension point (or
list of extension points). If there are several extensions at the same extension point,
their relative execution order is nondeterministic.

Note that the extension use case is not to be instantiated, the base use case must
be instantiated to obtain the combined base-plus-extensions behavior. The exten-

Encyclopedia of Terms use case • 491
sion use case may or may not be instantiable, but in any case it does not include
the base use case behavior.

Include. An include relationship denotes the inclusion of the behavior sequence of
the supplier use case into the interaction sequence of a client use case, under the
control of the client use case at a location the client specifies in its description. This
is a dependency, not a generalization, because the supplier use case cannot be sub-
stituted in places at which the client use case appears. The client may access the at-
tributes of the base to obtain values and communicate results. The use case
instance is executing the client use case. When it reaches the inclusion point, it be-
gins executing the supplier use case until it is complete. Then it resumes executing
the client use case beyond the inclusion location. The attributes of the supplier use
case do not have values that persist between executions.

A use case may be abstract, which means that it cannot be directly instantiated
in a system execution. It defines a fragment of behavior that is specialized by or in-
cluded in concrete use cases, or it may be an extension of a base use case. It may
also be concrete if it can be instantiated by itself.

Behavior. The behavior sequence of a use case can be described using a state ma-
chine, activity graph, or text code in some executable language. The actions of the
state machine or the statements of the code may call on the internal operations of
the use case to specify the effects of execution. The actions may also indicate send-
ing messages to actors.

A use case may be described informally using scenarios or plain text, but such
descriptions are imprecise and meant for human interpretation only.

The actions of a use case may be specified in terms of calls to operations of the
classifier that the use case describes. One operation may be called by more than
one use case.

Realization. The realization of a use case may be specified by a set of collabora-
tions. A collaboration describes the implementation of the use case by objects in
the classifier the use case describes. Each collaboration describes the context
among the constituents of the system within which one or more interaction se-
quences occur. Collaborations and their interactions define how objects within the
system interact to achieve the specified external behavior of the use case.

A system can be specified with use cases at various levels of abstraction. A use
case specifying a system, for example, may be refined into a set of subordinate use
cases, each specifying a service of a subsystem. The functionality specified by the
superordinate (higher-level) use case is completely traceable to the functionality of
the subordinate (lower-level) use cases. A superordinate use case and a set of sub-
ordinate use cases specify the same behavior at two levels of abstraction. The sub-
ordinate use cases cooperate to provide the behavior of the superordinate use case.
The cooperation of the subordinate use cases is specified by collaborations of the

492 • use case Encyclopedia of Terms
superordinate use case and may be presented in collaboration diagrams. The ac-
tors of a superordinate use case appear as actors of the subordinate use cases.
Moreover, the subordinate use cases are actors of each other. This layered realiza-
tion results in a nested set of use cases and collaborations that implement the en-
tire system.

Notation
A use case is shown as an ellipse containing the name of the use case. If attributes
or operations of the use case must be shown, the use case can be drawn as a classi-
fier rectangle with the keyword «use case». Figure 13-186 shows a use case dia-
gram.

An extension point is a named entity within a use case that describes locations
at which action sequences from other use cases may be inserted. It provides a level
of indirection between the extensions and the behavior sequence text. An exten-
sion point references a location or set of locations within the behavior sequence of
the use case. The reference can be changed independently of extend relationships
that use the extension point. Each extension point must have a unique name
within a use case. Extension points may be listed in a compartment of the use case
with the heading extension points (Figure 13-187).

Figure 13-186. Use cases and actors

Customer

Supervisor

Salespersonplace
order

establish
credit

check
status

Telephone Catalog

fill orders

Shipping Clerk

actor

system

use case

actor-use case
communication

Encyclopedia of Terms use case • 493
A communication relationship between a use case and an actor is shown using
an association symbol—a solid path between the use case and the actor symbols.
The «communication» keyword can usually be omitted, because this is the only
kind of association between actors and use cases. Generally, no name or role
names are placed on the line, as the actor and the use case define the relationship
uniquely.

A generalization relationship is shown by a generalization arrow—a solid path
from the child use case to the parent use case, with a closed triangular arrowhead
on the parent use case.

An extend relationship or an include relationship is shown by a dependency ar-
row with the keyword «extend» or «include»—a dashed line with a stick arrow-
head on the client use case. An extend relationship also has a list of extension point
names on it (they may be suppressed in the diagram).

Figure 13-187 shows various kinds of use case relationships.

Behavior specification. The relationship between a use case and its external inter-
action sequences is usually represented by a hyperlink to sequence diagrams. The
hyperlink is invisible but it can be traversed in an editor. The behavior may also be
specified by a state machine or by programming language text attached to the use
case. Natural language text may be used as an informal specification.

See extend for a sample of some behavior sequences.

Figure 13-187. Use case relationships

Place Order

more requests

Order
Product

Supply
Customer

Data

Arrange
Payment

«include»«include»«include»

Request
Catalog

«extend»

extension points
(more requests)

Cash
Payment

Credit
Payment

These insertions
are explicit
in Place Order.

Request Catalog
knows where it goes
in Place Order, but Place Order

These use cases
are varieties of
Arrange Payment.

doesn’t know about it.

Place Order has
one extension point
for insertions.

generalization

494 • use case diagram Encyclopedia of Terms
The relationship between a use case and its implementation may be shown as a
realization relationship from a use case to a collaboration. But because these are
often in separate models, it is usually represented as an invisible hyperlink. The ex-
pectation is that a tool will support the ability to “zoom into” a use case to see its
scenarios and/or implementation as a collaboration.

use case diagram

A diagram that shows the relationships among actors and use cases within a
system.

See actor, use case.

Notation
A use case diagram is a graph of actors, a set of use cases enclosed by a system
boundary (a rectangle), associations between the actors and the use cases, relation-
ships among the use cases, and generalization among the actors. Use case diagrams
show elements from the use case model (use cases, actors).

use case generalization

A taxonomic relationship between a use case (the child) and the use case (the par-
ent) that describes the characteristics the child shares with other use cases that
have the same parent. This is generalization as applicable to use cases.

Semantics
A parent use case may be specialized into one or more child use cases that repre-
sent more specific forms of the parent (Figure 13-188). A child inherits all the at-
tributes, operations, and relationships of its parent, because a use case is a
classifier. The implementation of an inherited operation may be overridden by a
collaboration that realizes a child use case.

Figure 13-188. Use case generalization

Verify identity

Retinal scanCheck password

Encyclopedia of Terms use case generalization • 495
The child inherits the behavior sequence of the parent and may insert addi-
tional behavior into it (Figure 13-189). The parent and the child are potentially in-
stantiable (if they are not abstract), and different specializations of the same
parent are independent, unlike an extend relationship, in which multiple extends
all implicitly modify the same base use case. Behavior may be added to the child
use case by adding steps into the behavior sequence inherited from the parent, as
well as by declaring extend and include relationships to the child. If the parent is
abstract, its behavior sequence may have sections that are explicitly incomplete in
the parent and must be provided by the child. The child may modify steps inher-
ited from the parent, but as with the overriding of methods, this capability must
be used with care because the intent of the parent must be preserved.

The generalization relationship connects a child use case to a parent use case. A
child use case may access and modify attributes defined by the parent use case.

Substitutability for use cases means that the behavior sequence of a child use
case must include the behavior sequence of its parent. The steps in the parent’s se-
quence need not be contiguous, however; the child can interleave additional steps
among the steps of the behavior sequence inherited from the parent.

The use of multiple inheritance with use cases requires an explicit specification
of how the behavior sequences of the parents are interleaved to make the sequence
for the child.

Use case generalization may use private inheritance to share the implementa-
tion of a base use case without full substitutability, but this capability should be
used sparingly.

Figure 13-189. Behavior sequences for parent and child use cases

Use case behavior for parent Verify Identity:

The parent is abstract, there is no behavior sequence.
A concrete descendant must supply the behavior as shown below.

Use case behavior for child Check Password:

Obtain password from master database
Ask use for password
User supplies password
Check password against user entry

Use case behavior for child Retinal Scan

Obtain retinal signature from master database
Scan user’s retina and obtain signature
Compare master signature against scanned signature

496 • use case instance Encyclopedia of Terms
Notation
The normal generalization symbol is used—a solid line from the child to the par-
ent with a hollow triangular arrowhead on the line touching the parent symbol.

Example
Figure 13-188 shows abstract use case Verify identity and its specialization as two
concrete use cases, whose behavior is shown in Figure 13-189.

use case instance

The execution of a sequence of actions specified in a use case. An instance of a use
case.

See use case.

use case model

A model that describes the functional requirements of a system or other classifier
in terms of use cases.

See actor, use case.

Semantics
The use case model represents functionality of a system or other classifier as man-
ifested to external interactors with the system. A use case model is shown on a use
case diagram.

use case view

That aspect of the system concerned with specifying behavior in terms of use
cases. A use case model is a model focused on this view. The use case view is part
of the set of modeling concepts loosely grouped together as the dynamic view.

utility

A stereotype of Class that groups global variables and procedures in the form of a
class declaration. The attributes and operations of the utility become global vari-
ables and global procedures, respectively. A utility is not a fundamental modeling
construct, but a programming convenience. It has no instances.

Semantics
The attributes of the utility are global variables, and the operations of the utility
are global operations. Utilities are unnecessary for object-oriented programming,
as global attributes and operations can be better modeled as class-scope members.

Encyclopedia of Terms visibility • 497
The construct is provided for compatibility with non-object-oriented languages,
such as C.

Notation
A utility is shown as a class symbol with the stereotype keyword «utility» above the
class-name string. The attributes and operations represent global members. No
class-scope members may be declared in the symbol.

value

See data value.

vertex

A source or a target for a transition in a state machine. A vertex can be either a
state or a pseudostate.

view

A projection of a model, which is seen from one perspective or vantage point and
omits entities that are not relevant to this perspective. The word is not used here to
denote a presentation element. Instead, it includes projections in both the seman-
tic model and the visual notation.

visibility

An enumeration whose value (public, protected, or private) denotes whether the
model element to which it refers may be seen outside its enclosing namespace.

See also access for a discussion of visibility rules applied to interpackage refer-
ences.

Semantics
Visibility declares the ability of a modeling element to reference an element that is
in a different namespace from the referencing element. Visibility is part of the rela-
tionship between an element and the container that holds it. The container may be
a package, class, or some other namespace. There are three predefined visibilities.

public Any element that can see the container can also see the
indicated element.

protected Only an element within the container or a descendant of
the container can see the indicated element. Other ele-
ments may not reference it or otherwise use it.

498 • well formed Encyclopedia of Terms
private Only an element within the container can see the ele-
ment. Other elements, including elements in descendants
of the container, may not reference it or otherwise use it.

Additional kinds of visibility might be defined for some programming languages,
such as C++ implementation visibility (actually, all forms of nonpublic visibility
are language-dependent). The use of additional choices must be by convention be-
tween the user and any modeling tools and code generators.

Notation
Visibility can be shown by a property keyword or by a punctuation mark placed in
front of the name of a model element.

public +

protected #

private –

The visibility marker may be suppressed. The absence of a visibility marker indi-
cates that the visibility is not shown, not that it is undefined or public. A tool
should assign visibilities to new elements even if the visibility is not shown. The
visibility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private). This form
is often used as an inline list element that applies to an entire block of attributes or
other list elements.

Any language-specific or user-defined visibility choices must be specified by a
property string or by a tool-specific convention.

Classes. In a class, the visibility marker is placed on list elements, such as attributes
and operations. It shows whether another class can access the elements.

Associations. In an association, the visibility marker is placed on the rolename of
the target class (the end that would be accessed using the visibility setting). It
shows whether the class at the far end can traverse the association toward the end
with the visibility marker.

Packages. In a package, the visibility marker is placed on elements contained di-
rectly within the package, such as classes, associations, and nested packages. It
shows whether another package that accesses or imports the first package can see
the elements.

well formed

Designates a model that is correctly constructed, one that satisfies all the pre-
defined and model-specified rules and constraints. Such a model has meaningful
semantics. A model that is not well formed is called ill formed.

well-formed

14
Standard Elements

Standard elements are predefined keywords for constraints, stereotypes, and tags.
They represent concepts of general utility that are not significant enough or not
different enough from core concepts to include as UML core concepts. They have
the same relation to UML core concepts as a built-in subroutine library has to a
programming language. They are not part of the core language itself, but they are
part of the environment a user can count on when using the language. The list also
includes notation keywords—keywords that appear on the symbol for another
model element but that denote built-in model elements, not stereotypes. For key-
words, the notation symbol is listed.

The cross-references are to articles in Chapter 13, Encyclopedia of Terms.

access

(stereotype of Permission dependency)

A stereotyped dependency between two packages, denoting that the public con-
tents of the target package are accessible to the namespace of the source package.

See access.

association

(stereotype of AssociationEnd)

A constraint applied to an association end (including a link end or an end of an as-
sociation role), specifying that the corresponding instance is visible via an actual
association, rather than via a transient link, such as a parameter or local variable.

See association, association end, association role.
499

500 • become Standard Elements
become

(stereotype of Flow relationship)

A stereotyped dependency the source and target of which represent the same in-
stance at different points in time, but each with potentially different values, state
instance, and roles. A become dependency from A to B means that instance A be-
comes B with possibly new values, state instance, and roles at a different moment
in time/space. Become notation is a dashed arrow from the source to the target
with the «become» keyword.

See become.

bind

(keyword on Dependency symbol)

A keyword on dependency that denotes a binding relationship. It is followed by a
comma-separated argument list in parentheses.

See binding, bound element, template.

call

(stereotype of Usage dependency)

A stereotyped dependency the source of which is an operation and the target of
which is an operation. A call dependency specifies that the source invokes the tar-
get operation. A call dependency may connect a source operation to any target
operation that is within scope, including, but not limited to, operations of the en-
closing classifier and operations of other visible classifiers.

See call, usage.

complete

(constraint on Generalization)

A constraint applied to a set of generalizations, specifying that all children have
been specified (although some may be elided) and additional children are not ex-
pected to be declared later.

See generalization.

copy

(stereotype of Flow relationship)

A stereotyped flow relationship the source and target of which are different in-
stances, but each with the same values, state instance, and roles (but a distinct

Standard Elements destroy • 501
identity). A copy dependency from A to B means that B is an exact copy of A. Fu-
ture changes in A are not necessarily reflected in B. Copy notation is a dashed
arrow from the source to the target with the «copy» keyword.

See access, copy.

create

(stereotype of BehavioralFeature)

A stereotyped behavioral feature denoting that the designated feature creates an
instance of the classifier to which the feature is attached.

(stereotype of Event)

A stereotyped event denoting that the instance enclosing the state machine to
which the event type applies is created. Create may be applied only to an initial
transition at the top-most level of this state machine. In fact, this is the only kind
of trigger that may be applied to an initial transition.

(stereotype of usage Dependency)

Create is a stereotyped dependency denoting that the client classifier creates in-
stances of the supplier classifier.

See creation, usage.

derive

(stereotype of Abstraction dependency)

A stereotyped dependency the source and target of which are elements, usually,
but not necessarily, of the same type. A derive dependency specifies that the source
may be computed from the target. The source may be implemented for design rea-
sons, such as efficiency, even though it is logically redundant.

See derivation, derived element.

destroy

(stereotype of BehavioralFeature)

A stereotyped behavioral feature denoting that the designated feature destroys an
instance of the classifier to which the feature is attached.

(stereotype of Event)

A stereotyped event denoting that the instance enclosing the state machine to
which the event type applies is destroyed.

See destruction.

502 • destroyed Standard Elements
destroyed

(constraint on ClassifierRole and AssociationRole)

Denotes that an instance of the role exists at the beginning of execution of the en-
closing interaction but is destroyed prior to completion of execution.

See association role, classifier role, collaboration, destruction.

disjoint

(constraint on Generalization)

A constraint applied to a set of generalizations, specifying that one object may not
be an instance of more than one child in the set of generalizations. This situation
would arise only with multiple inheritance.

See generalization.

document

(stereotype of Component)

A stereotyped component representing a document.
See component.

documentation

(tag on Element)

A comment, description, or explanation of the element to which it is attached.
See comment, string.

enumeration

(keyword on Classifier symbol)

A keyword for an enumeration data type, the details of which specify a domain
consisting of a set of identifiers that are the possible values of an instance of the
data type.

See enumeration.

executable

(stereotype of Component)

A stereotyped component denoting a program that may be run on a node.
See component.

Standard Elements friend • 503
extend

(keyword on Dependency symbol)

A keyword on dependency symbol denoting an extend relationship among use
cases.

See extend.

facade

(stereotype of Package)

A stereotyped package containing nothing but references to model elements
owned by another package. It is used to provide a public view of some of the con-
tents of a package. A facade does not contain any model elements of its own.

See package.

file

(stereotype of Component)

File is a stereotyped component representing a document containing source code
or data.

See component.

framework

(stereotype of Package)

A stereotyped package consisting mainly of patterns.
See package.

friend

(stereotype of Permission dependency)

A stereotyped dependency the source of which is a model element, such as an op-
eration, class, or package, and the target of which is a different package model
element, such as a class or package. A friend relationship grants the source access
to the target, regardless of the declared visibility. It extends the visibility of the
source so that the target can see into the source.

See access, friend, visibility.

504 • global Standard Elements
global

(stereotype of AssociationEnd)

A constraint applied to an association end (including link ends and ends of associ-
ation roles), specifying that the attached object is visible because it is in a global
scope relative to the object at the other end of the link.

See association, association end, collaboration.

implementation

(stereotype of Generalization)

A stereotyped generalization denoting that the client inherits the implementation
of the supplier (its attributes, operations, and methods) but does not make public
the supplier’s interfaces nor guarantee to support them, thereby violating substi-
tutability. This is private inheritance.

See generalization, private inheritance.

implementationClass

(stereotype of Class)

A stereotyped class that is not a type and that represents the implementation of a
class in some programming language. An object may be an instance of, at most,
one implementation class. By contrast, an object be an instance of multiple ordi-
nary classes at one time and may gain or lose classes over time. An instance of an
implementationClass may also be an instance of zero or more types.

See implementation class, type.

implicit

(stereotype of Association)

A stereotype of an association, specifying that the association is not manifest (im-
plemented), only conceptual.

See association.

import

(stereotype of Permission dependency)

A stereotyped dependency between two packages, denoting that the public con-
tents of the target package are added to the namespace of the source package.

See access, import.

Standard Elements invariant • 505
include

(keyword on Dependency symbol)

A keyword on dependency symbols denoting an include relationship among use
cases.

See include.

incomplete

(constraint on Generalization)

Incomplete is a constraint applied to a set of generalizations, specifying that not all
children have been specified and that additional children are expected to be added.

See generalization.

instanceOf

(keyword on Dependency symbol)

A metarelationship the client of which is an instance and the supplier of which is a
classifier. An instanceOf dependency from A to B means that A is an instance of B.
The notation for instanceOf is a dashed arrow with the keyword «instanceOf».

See descriptor, instance, instance of.

instantiate

(stereotype of Usage dependency)

A stereotyped dependency among classifiers indicating that operations on the cli-
ent create instances of the supplier.

See instantiation, usage.

invariant

(stereotype of Constraint)

A stereotyped constraint that must be attached to a set of classifiers or relation-
ships. It denotes that the conditions of the constraint must hold for the classifiers
or relationships and their instances.

See invariant.

506 • leaf Standard Elements
leaf

(keyword on GeneralizableElement and BehavioralFeature)

Indicates an element that may not have descendants or may not be overridden—
that is, one that is not polymorphic.

See leaf, polymorphic.

library

(stereotype of Component)

A stereotyped component representing a static or dynamic library.
See component.

local

(stereotype of AssociationEnd)

A stereotype of an association end, link end, or association role end, specifying
that the attached object is in a local scope of the object on the other end.

See association, association end, collaboration, transient link.

location

(tag on Classifier symbol)

The component that supports the classifier.

(keyword on Component instance symbol)

The node instance on which the component instance resides.
See component, location, node.

metaclass

(stereotype of Classifier)

A stereotyped classifier denoting that the class is a metaclass of some other class.
See metaclass.

new

(constraint on ClassifierRole and AssociationRole)

Denotes that an instance of the role is created during execution of the enclosing in-
teraction and still exists at the completion of execution.

See association role, classifier role, collaboration, creation.

Standard Elements powertype • 507
overlapping

(constraint on Generalization)

A constraint applied to a set of generalizations, specifying that an object may be an
instance of more than one child in the set of generalizations. The situation can
arise only with multiple inheritance or multiple classification.

See generalization.

parameter

(stereotype of AssociationEnd)

A stereotype of association end (including link end and the end of an association
role), specifying that an attached object is an argument of a call to an operation on
the object on the other end.

See association role, classifier role, collaboration, parameter, transient link.

persistence

(tag on Classifier, Association, and Attribute)

Denotes whether an instance value should outlive the process that created it. Val-
ues are persistent and transient. If used on attributes, allows a finer discrimination
about which attribute values should be preserved within a classifier.

See persistent object.

postcondition

(stereotype of Constraint)

A stereotyped constraint that must be attached to an operation. It denotes the
conditions that must hold after the invocation of the operation.

See postcondition.

powertype

(stereotype of Classifier)

A stereotyped classifier denoting that the classifier is a metaclass whose instances
are subclasses of another class.

(keyword on Dependency symbol)

A relationship whose client is a set of generalizations and whose supplier is a pow-
ertype. The supplier is the powertype of the client.

See powertype.

508 • precondition Standard Elements
precondition

(stereotype of Constraint)

A stereotyped constraint that must be attached to an operation. It denotes the con-
ditions that must hold at the time of invocation of the operation.

See precondition.

process

(stereotype of Classifier)

A stereotyped classifier that is an active class representing a heavyweight process.
See active class, process, thread.

refine

(stereotype on Abstraction dependency)

A stereotype on dependency that denotes a refinement relationship.
See refinement.

requirement

(stereotype of Comment)

A stereotyped comment that states a responsibility or obligation.
See requirement, responsibility.

responsibility

(stereotype on Comment)

A contract by or an obligation of the classifier. It is expressed as a text string.
See responsibility.

self

(stereotype of AssociationEnd)

A stereotype of an association end (including link end and the end of an associa-
tion role), specifying a pseudolink from an object to itself for the purpose of
calling an operation on the same object within an interaction. It does not imply an
actual data structure.

See association role, classifier role, collaboration, parameter, transient link.

Standard Elements system • 509
semantics

(tag on Classifier)

The specification of the meaning of the classifier.

(tag on Operation)

The specification of the meaning of the operation.
See semantics.

send

(stereotype of Usage dependency)

A stereotyped dependency the client of which is an operation or a classifier and the
supplier of which is a signal, specifying that the client sends the signal to some un-
specified target.

See send, signal.

stereotype

(keyword on Classifier symbol)

A keyword for the definition of a stereotype. The name may be used as a stereotype
name on other model elements.

See stereotype.

stub

(stereotype of Package)

A stereotyped package representing a package that provides the public parts of an-
other package, but nothing more.

Note that the word is also used in UML to describe stubbed transitions.
See package.

system

(stereotype of Package)

A stereotyped package containing a set of models of a system, describing it from
different viewpoints, not necessarily disjoint—the top-most construct in the spec-
ification of the system. It also contains relationships and constraints among model
elements from different models. These relationships and constraints add no se-
mantic information to the models. Instead they describe the relationships of the
models themselves, for instance, requirements tracking and development history.

510 • table Standard Elements
A system may be realized by a set of subordinate systems, each described by its own
set of models collected in a separate system package. A system package can only be
contained in a system package.

See package, model, system.

table

(stereotype of Component)

A stereotyped component representing a database table.
See component.

thread

(stereotype of Classifier)

A stereotyped classifier that is an active class, representing a lightweight flow of
control.

Note that the word is used in a broader sense in this book to mean any indepen-
dent, concurrent locus of execution.

See active class, thread.

trace

(keyword on Abstraction dependency)

A keyword on a dependency symbol that denotes a trace relationship.
See trace.

transient

(constraint on ClassifierRole and AssociationRole)

States that an instance of the role is created during execution of the enclosing in-
teraction but is destroyed before completion of execution.

See association role, classifier role, collaboration, creation, destruction, tran-
sient link.

type

(stereotype of Class)

A stereotyped class used for specification of a domain of instances (objects), to-
gether with the operations applicable to the objects. A type may not contain any
methods, but it may have attributes and associations.

See implementation class, type.

Standard Elements xor • 511
use

(keyword on Dependency symbol)

A keyword on dependency that denotes a usage relationship.
See usage.

utility

(stereotype of Classifier)

A stereotyped classifier that has no instances. It describes a named collection of
nonmember attributes and operations, all of which are class scope.

See utility.

xor

(constraint on Association)

A constraint applied to a set of associations that share a connection to one class,
specifying that any object of the shared class will have links from only one of the
associations. It is an exclusive-or (not inclusive-or) constraint.

See association.

Part 4: Appendices
513

Appendix A

UML Metamodel

UML Definition Documents
The UML is defined by a set of documents published by the Object Management
Group [UML-98]. These documents are included on the companion CD to this
book. This chapter explains the structure of the UML semantic model described in
the documents.

The UML is formally defined using a metamodel—that is, a model of the con-
structs in UML. The metamodel itself is expressed in UML. This is an example of a
metacircular interpreter—that is, a language defined in terms of itself. Things are
not completely circular. Only a small subset of UML is used to define the meta-
model. In principle, this fixed point of the definition could be bootstrapped from
a more basic definition. In practice, going to such lengths is unnecessary.

Each section of the semantic document contains a class diagram showing a por-
tion of the metamodel; a text description of the metamodel classes defined in that
section, with their attributes and relationships; a list of constraints on elements ex-
pressed in natural language and in OCL; and a text description of the dynamic se-
mantics of the UML constructs defined in the section. The dynamic semantics are
therefore informal, but a fully formal description would be both impractical and
unreadable by most.

Notation is described in a separate chapter that references the semantics chapter
and maps symbols to metamodel classes.

Metamodel Structure
The metamodel is divided into three main packages (Figure A-1).

• The foundation package defines the static structure of the UML.

• The behavioral elements package defines the dynamic structure of the UML.

• The model management package defines the organizational structure of UML
models.
515

516 Appendix A
Foundation Package
The foundation package contains four subpackages.

Core
The core package describes the main static constructs of the UML. These include
classifiers, their contents, and their relationships. Their contents include attribute,
operation, method, and parameter. Their relationships include generalization, as-
sociation, and dependency. Several abstract metaclasses are also defined, such as
generalizable element, namespace, and model element. The package also defines
template and various kinds of dependency subclasses, as well as component, node,
and comment.

Data types
The data types package describes the data type classes used in the metamodel.

Extension mechanisms
The extension mechanisms package describes the constraint, stereotype, and
tagged value mechanisms.

Behavioral Elements Package
The behavioral package has a subpackage for each major view plus a package for
behavior constructs that are shared by the three major views.

Common behavior
The common behavior package describes signal, operation, and action. It also de-
scribes instance classes corresponding to various descriptors.

Collaborations
The collaborations package describes collaboration, interaction, message, classifier
role, and association.

Use cases
The use cases package describes actor and use case.

State machines
The state machines package describes state machine structure, including state and
various kinds of pseudostate, event, signal, transition, and guard condition. It also
describes additional constructs for activity models, such as action state, activity
state, and object flow state.

UML Metamodel 517
Model Management Package
The model management package describes package, model, and subsystem. It also
describes the ownership and visibility properties of namespaces and packages. It
has no subpackages.

Figure A-1. Package structure of the UML metamodel

Common
Behavior

Use
Cases

Collaborations State
Machines

Behavioral Elements

Model
Management

Data
Types

Foundation

Extension
MechanismsCore

Appendix B

Notation Summary

This chapter contains a brief visual summary of notation. The major notational
elements are included, but not every variation or option is shown. For full details,
see the encyclopedia entry for each element.
519

520 Appendix B
Figure B-1. Icons on class, component, deployment, and collaboration diagrams

Cname

attr: Atype

op (par: Type): Rtype

oname: Class Iname

Cname

Cname

Cname

Nname

text

Pname

«kind»

Aname

oname: Class[Role]

name: Class

Tname

p:Type

{ expression }

class

active class

role

note

object

multiobject

association

generalization

realization

 dependency

component

node

constraint

template

collaboration

interface

package

template
parameter

Notation Summary 521
Figure B-2. Class contents

Figure B-3. Association adornments within a class diagram

«stereotypeName«
Cname

{tag = value}

+ attrName: Cname = expression
attrName: Cname
– attrName[*]: Cname

+ opName (p:C1,q:C2):C3

Responsibilities
text description

«constructor»
opName (v:Cname=default)

visibility

stereotype icon

class

class name (italics for abstract)
tagged values

stereotype name

public attribute with initial value

optional named
compartment

public attribute with initial value
protected attribute
private attribute with multiplicity many

public abstract operation with return type
stereotype on subsequent operations
concrete operation with default value

compartment name
compartment list element

qname:Cname
0.1 name{ordered} ∗ oname

Aname

name
direction

∗

1

ACname

class

ordering multiplicity rolename

qualifieraggregation

association name

composition

association path

association class
(all one element)

class

association

522 Appendix B

Figure B-4.

Generalization

Figure B-5.

Realization of an interface

direct style tree style

parent superclass

child subclass

generalizations

«call»«interface»

Iname

Iname

«call»

explicit
style

implicit
style

usagesupplier realization interface client

Notation Summary 523

Figure B-6.

Template

Figure B-7.

Package notation

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList

T has type Classifier by default.

This class has
its own name.This class has an

anonymous name.

The parameters are used
in the template body.

In this template, the
multiplicity of the array
is fixed by the binding.

template

explicit binding

template parameters

implicit binding

+A –B

+C +D

+C

«import»

«access»

Y Z

U

–G

+E

+F

X

package Y can see public contents of package Z

package Z adds public contents of package X to Z’s namespace

class G is private and accessible only inside package X

package with nested subpackage and class

524 Appendix B

Figure B-8.

Component and node notation

nodeName1:NodeType

nodeName2:NodeType

c1:CompType interfaceName

c2:CompType

«connectionType»

interface

node instance

usage dependency on interface

node instancerealization of interface

component instance

Notation Summary 525

Figure B-9.

Icons on use case diagrams

Figure B-10.

Use case diagram notation

«include»

«extend»

system boundary

communication
association

generalization

extend

include

use case

actor

«extend»(ep1)

«include»

ActorA

SystemB

UCBase UCExt

UCVar1 UCVar2

UCIncl

system boundary

ActorB

abstract parent use case abstract extension use case

extension point
generalization

concrete inclusion use case

actors

526 Appendix B

Figure B-11.

Icons on statechart and activity diagrams

Ename

Ename

name: Type

Sname

Sname

fork or join
branch or merge

output event

input event

transition

history state

final state

initial state

concurrent composite state

state

object flow state

activity state

H*

deep history state

 H

junction state

include / submachinename

S1

submachine reference state

stub state

Notation Summary 527

Figure B-12.

Statechart notation

StateA StateB

StateC

e1 (p:C) [cond] / action1; action2

entry / action3
exit / action4
e1 / action5e2

StateA

e3

guard
condition

transition

event
parameters

event name actions

internal transition
exit action
entry action

completion transition lacks a trigger event
fires on completion of activity

final stateinitial state substate

concurrent composite state

explicit transition
(aborts nested activity)

528 Appendix B

Figure B-13.

Activity diagram notation

activity

[choice1]

[choice2]

Cname::Operationname

start of overall activity

join (unbranch)

merge of control
(unfork)

fork of control

activityguard condition

branch

end of overall activity

activity

activity

activityactivity

activity

activity

Notation Summary 529

Figure B-14.

Sequence diagram notation

[x>0] create(x)

[x<0] callC(x)

doit(z)
doit(w)

recurse()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()

These objects
exist before the
first operation
and continue after
the last.

The object
destroys itself
at this point.

The object
destroys itself
at this point
and returns to
the caller.

return

object created
by the operation

fork of
concurrent
control

branch of control

join of control

call

merge of
concurrent
control

lifeline ends

lifeline continues

recursive
call

530 Appendix B

Figure B-15.

Collaboration diagram notation

Figure B-16.

Message notation

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*[i:=1..n]: drawSegment(i) :Line {new}
«local»line

1.1.3: display(window)

1.1.3.1: link(self)

 contents {new}

«self»

invoker of operation

self-link for self-calls

local variable

object
created
during
operation

return
value

operation

association

sequence number

iteration expression

link
creation

operation being described

concurrent thread name

message flow

sequential message

asynchronous message

call

Appendix C

Process Extensions

Tailoring the UML

The UML is intended to be usable for many purposes. Although UML is a univer-
sal language that can express a large number of fundamental modeling properties,
there are times when a language tailored to a particular domain area is desirable.
In natural languages, cant, jargon, and specialized vocabularies often facilitate
communication within a specialized craft or discipline, but impede it with outsid-
ers. The UML can be tailored in a similar way, using various mechanisms, such as
naming conventions, style rules, predefined classes, and implicit mappings to soft-
ware. In particular, a UML extension can be defined using predefined stereotypes,
constraints, and tagged values.

The UML has many expressive constructs, so a specialized extension should be
avoided unless absolutely necessary. By definition, an extension serves a limited
community and can lead to misunderstanding and confusion by those outside.
Nevertheless, if a target community is tightly focused, the expressive power of an
extension can sometimes outweigh the loss of uniformity. Over time, some exten-
sions may be useful enough to add to standard UML; others may fall into disuse.

This chapter describes two extensions packaged with the UML documents
themselves. Their use is not mandatory or even recommended necessarily, but
they indicate how an extension can be defined for a development process. A num-
ber of similar extensions have been defined in the literature.

Software Development Process Extensions

These extensions are based on the Objectory development process, a precursor to
the Unified Process. They are intended for use during a software development pro-
cess that consists of four stages: use case capture, analysis, design, and implemen-
tation.

These extensions include stereotypes on packaging units, classes, and associa-
tions, as well as some constraints on connecting elements. There are no new tags.
531

532 Appendix C

Organizational Stereotypes

Table C-1 shows the organizational stereotypes—that is, the stereotypes on model,
package, and subsystem. There are various stereotypes applicable to each stage of
development. In the Objectory process, each stage has a distinct model, with trace
relationships among elements in different models. From top to bottom, the terms
system, subsystem, and service package describe layers of packaging.

The organizational stereotypes do not have special icons. They are shown as
folder icons, with the stereotype name in guillemets, as shown in Figure C-1.

Class stereotypes

Three stereotypes are defined on class: control, boundary, and entity. They are
shown in Figure C-2.

A control class describes objects that manage interactions, such as a transaction
manager, a device controller, or an operating system monitor. It has behavior spe-
cific to a use case. A control class usually does not outlive the use case that it sup-
ports. A control class is displayed as a circle with an arrowhead on it.

A boundary class describes objects that mediate between a system and outside
actors, such as an order entry form or a sensor. It is displayed as a circle with a
T-bar attached to it. Boundary objects often exist for the life of a system.

An entity class describes objects that are passive. They do not initiate interac-
tions. Entity objects may participate in many use cases and usually outlive single
interactions. It is displayed as a circle with a line under it.

Table C-1: Organizational Stereotypes for Software Development Process

Base Class
Stereotypes by Process Stage

Use Case Analysis Design Implementation

model use case model analysis model design model implementation
model

package use case system

use case
package

implementation
system

implementation
subsystem

subsystem analysis system

analysis subsystem

analysis service
package

design system

design subsystem

design service
package

Process Extensions 533

Association stereotypes

There are two stereotypes on association: communicate and subscribe. The nota-
tion is an association path with the stereotype name in guillemets.

A communicate association connects an actor to a use case with which it com-
municates. This is the only association between actors and use cases, so the key-
word may be omitted.

A subscribe association connects a client class (the subscriber) to a supplier class
(the publisher). The subscriber specifies a set of events the publisher may produce.
The subscriber is notified when one of the events occurs.

Figure C-1. Organizational stereotype notation for software development process

Figure C-2. Class stereotypes for software development process

«design subsystem»

Accounting
stereotype name

subsystem name

«control»
JobScheduler

«boundary»
CardReader

«entity»
Ticket

icon full form

JobScheduler

CardReader

Ticket

control class

boundary class

entity class

534 Appendix C
Business Modeling Extensions

These extensions are intended for modeling real-world business organizations and
for understanding real-world situations, rather than the implementation of soft-
ware. These stereotypes are not necessary for business modeling, but they cover
some common situations.

These extensions include stereotypes on packaging units, classes, and associa-
tions, as well as some constraints on connecting elements. There are no new tags.

Organizational stereotypes

Table C-2 shows the organizational stereotypes for business process modeling.
The use case model is a model of the use case view. The use case system and use

case package are two layers of organization of its content.
The object model is a model of the internal structure of the business system.

The object system is its top-level subsystem that contains organizational units and
work units as lower layers. An organizational unit corresponds to an organiza-
tional unit of the actual business, and a work unit is a smaller, but meaningful,
grouping.

There are no special icons for business modeling organizational units; they use
the folder symbol with a stereotype in guillemets.

Class stereotypes

In addition to actors (defined in standard UML), business objects have several
stereotypes on class—worker, case worker, internal worker, entity. They are shown
in Figure C-3.

A worker represents a human who acts within the system. A case worker is a
worker who interacts directly with outside actors. An internal worker is a worker
who interacts with workers and entities within the system.

Table C-2: Organizational Stereotypes for Business Modeling

Base Class Use Case Capture Object Model

model use case model object model

package use case system

use case package

subsystem object system

organization unit

work unit

Process Extensions 535
An entity class describes objects that are passive. They do not initiate interac-
tions. Entity objects may participate in many use cases and usually outlive single
interactions. In a work situation, entities usually represent work products.

Association stereotypes

There are two stereotypes on association: communicate and subscribe. These are
the same as for the software development process. The notation is an association
path with the stereotype keyword in guillemets.

A communicate association connects an actor to a use case with which it com-
municates. This is the only association between actors and use cases, so the key-
word may be omitted.

A subscribe association connects a client class (the subscriber) to a supplier class
(the publisher). The subscriber specifies a set of events that the publisher may pro-
duce. The subscriber is notified when one of the events occurs.

Figure C-3. Class stereotypes for business modeling

«internal worker»
Set Designer

«case worker»
SalesClerk

«entity»
Proposal

icon full form

Set Designer

SalesClerk

Proposal

internal worker

case worker

entity class

«worker»
Conductor

Conductor
worker

Bibliography

[Blaha-98] Michael Blaha, William Premerlani. Object-Oriented Modeling and Design for Database
Applications. Prentice Hall, Upper Saddle River, N.J., 1998.

[Booch-91] Grady Booch. Object-Oriented Analysis and Design with Applications, 1st ed. Benjamin/
Cummings, Redwood City, Calif., 1991.

[Booch-94] Grady Booch. Object-Oriented Analysis and Design with Applications, 2nd ed.
Benjamin/Cummings, Redwood City, Calif., 1994.

[Booch-96a] Grady Booch. Object Solutions: Managing the Object-Oriented Project. Addison-
Wesley, Menlo Park, Calif., 1996.

[Booch-96b] Grady Booch. Best of Booch: Designing Strategies for Object Technology. SIGS Books,
New York, N.Y., 1996.

[Booch-99] Grady Booch, James Rumbaugh, Ivar Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, Mass., 1999.

[Buschmann-96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. Wiley, Chichester,
U.K., 1996.

[Coad-91] Peter Coad, Edward Yourdon. Object-Oriented Analysis, 2nd ed. Yourdon Press,
Englewood Cliffs, N.J., 1991.

[Coleman-94] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist,
Fiona Hayes, Paul Jeremaes. Object-Oriented Development: The Fusion Method. Prentice Hall,
Englewood Cliffs, N.J., 1994.

[Cox-86] Brad J. Cox. Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley,
Reading, Mass., 1986.

[Embley-92] Brian W. Embley, Barry D. Kurtz, Scott N. Woodfield. Object-Oriented Systems
Analysis: A Model-Driven Approach. Yourdon Press, Englewood Cliffs, N.J., 1992.

[Gamma-95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.
537

538 Bibliography
[Goldberg-83] Adele Goldberg, David Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, Mass., 1983.

[Harel-98] David Harel, Michal Politi. Modeling Reactive Systems With Statecharts: The
STATEMATE Approach. McGraw-Hill, New York, N.Y., 1998.

[Jacobson-92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Övergaard. Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley, Wokingham,
England, 1992.

[Jacobson-95] Ivar Jacobson, Maria Ericsson, Agneta Jacobson. The Object Advantage: Business
Process Reengineering with Object Technology. Addison-Wesley, Wokingham, England, 1995.

[Jacobson-97] Ivar Jacobson, Martin Griss, Patrik Jonsson. Software Reuse: Architecture, Process
and Organization for Business Success. Addison-Wesley, Harlow, England, 1997.

[Jacobson-99] Ivar Jacobson, Grady Booch, James Rumbaugh. The Unified Software Development
Process. Addison-Wesley, Reading, Mass., 1999.

[Martin-92] James Martin, James Odell. Object-Oriented Analysis and Design. Prentice Hall,
Englewood Cliffs, N.J., 1992.

[Meyer-88] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, New York, N.Y.,
1988.

[Rumbaugh-91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William
Lorensen. Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, N.J., 1991.

[Rumbaugh-96] James Rumbaugh. OMT Insights: Perspectives on Modeling from the Journal of
Object-Oriented Technology. SIGS Books, New York, N.Y., 1996.

[Rumbaugh-99] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, Reading, Mass., 1999.

[Selic-94] Bran Selic, Garth Gullekson, Paul T. Ward. Real-Time Object-Oriented Modeling. Wiley,
New York, N.Y., 1994.

[Shlaer-88] Sally Shlaer, Stephen J. Mellor. Object-Oriented Systems Analysis: Modeling the World in
Data. Yourdon Press, Englewood Cliffs, N.J., 1988.

 [Shlaer-92] Sally Shlaer, Stephen J. Mellor. Object Lifecycles: Modeling the World in States. Yourdon
Press, Englewood Cliffs, N.J., 1992.

[UML-98] Unified Modeling Language Specification. Object Management Group, Framingham,
Mass., 1998. Internet: www.omg.org.

[Ward-85] Paul Ward, Stephen J. Mellor. Structured Development for Real-Time Systems:
Introduction and Tools. Yourdon Press, Englewood Cliffs, N.J., 1985.

[Warmer-99] Jos B. Warmer, Anneke G. Kleppe. The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, Reading, Mass., 1999.

[Wirfs-Brock-90] Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener. Designing Object-
Oriented Software. Prentice Hall, Englewood Cliffs, N.J., 1990.

[Yourdon-79] Edward Yourdon, Larry L. Constantine. Structured Design: Fundamentals of a Disci-
pline of Computer Program and Systems Design. Yourdon Press, Englewood Cliffs, N.J., 1979.

Index
Main entries are in boldface; references to figures are in italics.
A

absolute time 476
abstract 113, 286

class 117
notation 193

operation 117
abstract superclasses rule 115
abstraction 118
access 98, 119, 379
action 73, 122

expression 126
implicit 71
language 124–125
sequence 126
state 126
table of 74
on transition 480

activation 88, 88, 127
active 129

class 130
object 131

active state configuration 129, 133, 441
activity 133

diagram 32, 81, 82, 83, 134
expression 134
graph 135
state 142
view 31, 81, 144

actor 63, 144
actual parameter, see argument
addOnly (keyword) 185
aggregate 146
aggregation 146

composition 226
allocation

of memory 257
responsibility for 227

analysis 150
time 150

ancestor 150
architecture 150
argument 151
Arnold, Patrick 537
539

540 Index
artifact 152
assertion 317, 391–392
assignment 123
association 47, 47, 49, 152

class 48, 157
to class in state 191
end 160
generalization 163
keyword 478
n-ary 350
navigation efficiency 357
qualified 398
role 164

asynchronous
action 165
control 425
event 440
message 336

atomic 165
attribute 166

as composite part 228, 230

B

background information 170
balking message 336
base use case 272, 297
become 90, 171
behavior 172

sequence 491
specification 493

behavioral
elements package 516
feature 172
view 172

bidirectionality 50
binary association 172
bind 173
binding 173
birth event 419

Blaha, Michael 5, 537–538
Bock, Conrad 7
Bodoff, Stephanie 537
Booch, Grady 5–7, 537–538
Booch Method 5, 8
books, object-oriented 5
Boolean 174

expression 174
bound element 174
branch 177, 318, 321, 481

sequence diagram notation 335
statechart notation 240, 480

broadcast of signal 427
Brodsky, Steve 6
Buschmann, Frank 537
business modeling

extensions 534
stereotypes, table of 534

business organization as swimlane 462

C

C++ 5, 168–169, 216, 228, 236, 245,
248–249, 271, 311, 340–341, 373–
374, 390, 419, 453, 484, 486–487,
498

data type syntax 323
call 127, 180

action 123
event 70, 180, 268
as two signals 428

canonical notation 107, 182
cardinality 182
change event 70, 183, 268
changeability 166, 184
Cheesman, John 7
child 185
Christerson, Magnus 538

Index 541
class 42, 44, 185
diagram 26, 190
name 192, 192
in state 139, 190
supported by component 218
and type 484

class-level scope 417
classification

single and multiple 54
static and dynamic 54

classifier 42, 193
role 194
table of 43

client 195
clock 475
CLOS 5, 205, 285, 390
Coad, Peter 5, 537
Cobol 4
code 295

in component 216, 218
generation 108

Coleman, Derek 5, 537
collaboration 85, 195

diagram 29, 29, 89, 89, 203
and sequence diagram 91

realization of use case 65
role 203

combination 205
comment 206
communication association 206
compartment 207

additional 188
named 328, 413
suppressing 187

compile time 208
complete

constraint 288
completion transition 73, 208
complex transition 209

execution semantics 445

component 93, 94, 216
diagram 33, 222

composite
aggregation 222
class 222
key 399
object 223
state 75, 223

history state in 292
composition 223, 226
concrete 233
concurrency 234

concurrent substates 210
dynamic 135
message sends 334
property 370, 374
rules on transitions 129

concurrent
composite state 78
keyword 370
substate 224, 234, 463

execution semantics 445
independent of others 442
rules for 211

thread message syntax 338
conditional thread 214, 234, 338
configuration control 381
conflict 234, 300
Constantine, Larry 4, 538
constraint 58, 59, 101, 102, 235

language 59, 236, 271, 367
predefined 499

construction phase 238
constructor 238, 245

for composite 228
container 238
context 200, 239, 398
control

flow 239
icons 240

Cook, Steve 6

542 Index
copy 243
Cox, Brad 5, 537
CRC 5
create

action 123
creation 244, 303, 307

event 301, 419
crossing lines notation 385
current event 246, 301, 483

execution semantics 443

D

D'Souza, Desmond 7
data

token notation 339
type 247
value 248

deadlock 467
default value 19, 249, 382
deferred

event 139, 249, 282
operation 390

delegation 249
DeMarco, Tom 4
dependency 56, 58, 250

among packages 98
table of 57, 412

deployment 252
diagram 34, 35, 94, 95, 252
view 35, 93, 254

derivation 254
derived element 254
descendant 256
descriptor 256, 304

full 285
Desfray, Philippe 7
design 257

pattern 387
time 257

DeSilva, Dilhar 7
destroy 257

action 124

destruction 257
development

methods
object-oriented 5
traditional 4

process 258
extensions 531
stereotypes, table of 532

diagram 260
diamond symbol

aggregation 148
branch 178
composition 228
n-ary association 350

Digre, Tom 6
direct

class 261
instance 262, 305

direction of parameter 382
discriminator 262
disjoint

constraint on generalization 288
substate 264

distribution unit 264
Dollin, Chris 537
dominant class 217, 219
dynamic

classification 54, 106, 264, 361, 418
concurrency 135, 140, 265, 437
view 9, 60, 265

E

Eddy, Frederick 5, 538
effective model 471
Eiffel 5
elaboration phase 265
elapsed time 475
element list 327
ellipsis in lists 328
embedded document 453
Embley, Brian 537

Index 543
entry action 74, 75, 266, 435
execution semantics 443

enumeration 267
environment 105
Ericsson, Maria 538
event 68, 267

handling 441
table of 68

exception 269
execution semantics 440
exit action 74, 75, 270, 435

execution semantics 443
export 271
expression 271
extend 272, 490

condition 274
extensibility mechanisms 10, 37, 101,

531
extension point 278
extent 19, 279
external transition 71
Eykholt, Ed 7

F

facade 503
feature 280
file stereotype 503
filtering of lists 329
final state 280

execution semantics 444
fire 281
flow 90, 282

table of 91
focus of control 283
font usage 283
fork 210, 284, 463
formal argument, see parameter
Fortran 4
foundation package 516
framework 284, 503
friend 285

frozen (keyword) 184
full descriptor 285, 299, 305, 360
functional view 285
Fusion 5

G

Gamma, Erich 537
garbage collection 228
generalizable element 286
generalization 51, 51, 53, 287

compared to realization 54
dimension of 262
discriminator 262
use case 490, 494

generator state machine 448
Gery, Eran 7
Gilchrist, Helena 537
global

keyword 478
variable 496

Goldberg, Adele 5, 538
graphic marker 291, 451
Griss, Martin 6, 538
group property in list 328
guard condition 72, 291, 479
guarded (keyword) 370
guillemets 292
Gullekson, Garth 538

H

halting problem 467
Harel, David 7, 446, 448, 538
hash table 402
Hayes, Fiona 537
Helm, Richard 537
history state 292

execution semantics 446
Hogg, John 7
hyperlink 293

544 Index
I

identity 247, 294, 304, 360, 394
of component 217

ill-formed model 106, 294
implementation 295

class 295
inheritance 295
view 10, 33, 93, 296

import 98, 296
in (keyword) 382
inactive 296
inception phase 296
include 297, 491
incomplete

constraint 288
model 294

inconsistent model 109
incremental development 299
index value 398
indirect instance 299, 305
inheritance 52, 299

polymorphic operation 390
private 394

initial
state 300

execution semantics 444
value 167, 303

evaluation 245
initialization 303
inout (keyword) 382
instance 304

direct 261
instance-level scope 417
instance of 58, 306
instantiable 306
instantiate 306
instantiation 307

of model 59
intent 19, 308
interaction 86, 308

diagram 309
view 27, 85, 310

interface 55, 310
inheritance 314
specifier 315

internal transition 75, 75, 316, 436
execution semantics 444
syntax 482

invariant 317
iteration

expression 318
message send 335

iterative development 258, 259, 319
process 433

Iyengar, Shridar 7

J

Jacobson, Agneta 538
Jacobson, Ivar 5–7, 537–538
Jeremaes, Paul 537
Johnson, Ralph 537
join 210, 319, 463
Jonsson, Patrik 538
junction state 320

K

keyword 322
in note 359
predefined 499

Khalsa, G. K. 7
Kleppe, Anneke 538
Kobryn, Cris 7
Kurtz, Barry 537

L

label 322
language

object-oriented 5
type 323

layer 323

Index 545
leaf 286, 323
operation 389

lifeline 88, 324
link 325

creation 307
end 327
transient 477

Liskov, Barbara 52, 458
list

compartment 207
elements 236, 327

local (keyword) 478
location 330
lookup table 399, 402
Lorensen, William 5, 538

M

many 331
Martin, James 538
Mealy machine 446
Mellor, Stephen 4–5, 538
member 331
memory allocation 257

by composite 227
merge 331

notation 240
message 90, 333
meta-metamodel 340
Meta-Object Facility 340
metaclass 340
metamodel 105, 340

UML 515, 517
metaobject 340
metarelationship 340
method 340

combination 205, 389–391
Meunier, Regine 537
Meyer, Bertrand 5, 390, 538
migration of objects 254
Miller, Joaquin 7

model 100, 342
contents 17
definition 13
element 343
inconsistent 106, 109
levels of 15
management

package 517
view 10, 36, 97, 343

meaning 19
purpose 13

modeling
overview 13
time 344
tool 108

module 344
MOF, see Meta-Object Facility
Moore machine 446
multiobject 344
multiple

classification 54, 261, 345, 361, 418
inheritance 53, 53, 287, 345

multiplicity 167, 346
association 348
attribute 349
class 349
n-ary association 351
qualified association 400–401

N

n-ary association 350
name 353

as qualifier 401
namespace 353, 353
navigability 354
navigable 356
navigation 356

efficiency 356, 402
expression 156, 339, 354, 367–368,

399, 414–415, 415
using links 325

546 Index
nesting for composition 229
node 94, 357
notation

canonical 107
considerations 106
summary 519

note 359
null value 109

O

object 360
creation 307
diagram 60, 363
flow 136, 139, 363

state 364
lifeline 367
playing multiple roles 197
playing role 194
set 123
set expression 367

Object Constraint Language, see OCL
object diagram 61
Object Management Group 6, 515, 538
object-oriented, history of 5
Objective C 5
Objectory 5, 8, 531
OCL 59, 124, 236, 271, 367, 409, 515
Odell, James 7, 538
OMG, see Object Management Group
OMT 5, 8
operation 369

realization by collaboration 200
optimization as refinement 409
ordering 374, 374

of lists 328
orthogonal substate 377
out (keyword) 382
Övergaard, Gunnar 7, 538
overlapping (constraint) 288
overriding operations 390
owner scope 167, 377, 417

ownership 378

P

package 97, 99, 378
dependency 98, 250

Palmkvist, Karin 7
parameter 381

keyword 478
list 383

parameterized element, see template
parent 383
part, composite 227
participates 384
passive object 384
path 384
pathname 353–354, 386

notation 193
pattern 91, 91, 387

parameterized collaboration 197
permission 388
persistent object 389
Petri net token 464
physical views 32, 93
Plato 411
Politi, Michal 538
polymorphic 52, 118, 389

attribute property 374
polymorphism property 370, 407
postcondition 391
powertype 392
precondition 392
Premerlani, William 5, 537–538
presentation element 393
primitive type 394
private 394

inheritance 394
procedural

control 426
message 336

procedure expression 395

Index 547
process 395
extensions 531

producer-consumer 464
product 395
profile 104
programming language

considerations 107
projection 396
property 396

list 396
notation for on class 193
string in list 328

protected 397
pseudoattribute 354, 397
pseudostate 397
public 398

Q

qualified association 48, 398
navigational efficiency 357

qualifier 398
query 371, 404

attribute property 374

R

Ramackers, Guus 7
Rational Software Corporation 5
Real-Time Structured Design 4
realization 55, 55, 405

of class by interface 311
compared to generalization 54
of operation 196
of use case 196, 406, 491

receiver 407
reception 407

of signal 427
record as composite 228
recurrence 123
Reenskaug, Trygve 7

reference 408
notation for 193

refinement 56, 409
reification 411

of association 159
relationship 45, 411

table of 46, 412
repository 412
request 412
requirement 413

tracking 477
responsibility 413, 413
return

action 124
keyword 382
message 336
type 371

reuse 414
reverse engineering 108
risk

minimizing 319
Robson, David 5, 538
Rohnert, Hans 537
role 414
rolename 414
root 287
Rumbaugh, James 5–7, 537–538
run time 416
run to completion 416

current event 247

S

scenario 416
scope 371, 417

of operation 374
Seidewitz, Ed 6
self

keyword 478
language 249
transition 418

execution semantics 443

548 Index
Selic, Bran 7, 538
semantic

levels 45
variation point 20, 105–107, 418

semantics 419
send 333, 419

action 124
dependency 423
notation 240

sender 423
sequence

diagram 28, 87, 87, 88
and collaboration diagram 91

number 427
sequence diagram 28
sequential

keyword 370
message 336

Shlaer, Sally 5, 538
Short, Keith 7
signal 69, 427

declaration 69
event 268, 429
notation 240

signature 429
matching 369

simple
state 430
transition 430

Simula-67 5
single

classification 54, 430
inheritance 430

singleton 430
Smalltalk 5, 169, 245, 249, 271, 340–341,

374, 390, 484, 486
snapshot 60, 360, 431
society of cooperating objects 85
software development process

extensions 531

Sommerlad, Peter 537
source

scope 431
state 431

specialization 431
dimension of 262

specification 432
of operation 373

stages of modeling 432
Stal, Michael 537
state 70, 433

table of 76
state machine 67, 77, 78, 439

execution semantics 440
nesting rules 142
specifying behavior of class 447
specifying execution order 447
view 30, 67, 448

statechart diagram 31, 448
static

classification 54, 106, 448
view 9, 25, 41, 60, 448

stereotype 103, 104, 108, 449
icon 189
notation in list 328
predefined 499

string 452
structural

feature 453
view 453

Structured Analysis 4
Structured Design 4
stub state 454
stubbed transition 454
subclass 455
submachine 78, 436, 455

reference state 456
substate 458
substitutability principle 51, 151, 394,

458

Index 549
subsystem 100, 458
subtype 460
summarization 460
superclass 461
supertype 461
supplier 461
swimlane 83, 136–137, 461
synch

bar 214
state 463

synchronization 210
bar 214

synchronous
action 467
control 426, 428
message 336

syntax of book 11
system 467

stereotype 509

T

table
actions 74
business modeling stereotypes 534
classifiers 43
dependencies 57, 412
development process stereotypes 532
events 68
flows 91
relationships 46, 412

across views 39
states 76
transitions 71
use case relationships 65, 277
views and diagrams 24

tag 467
predefined 499

tagged value 102, 103, 108, 467

target
object set 334
scope 168, 417, 469
state 470

template 173, 470
instantiated 174

terminate action 124
thread 474
time 474

event 70, 269, 474, 475
time-out message 336
timing mark 476
token, Petri net 464
tool for modeling 108
trace 56, 476
transient

link 325, 477
object 478

transition 71, 72, 478, 481
complex 209
concurrency rules 129
firing rules 440
internal 436
phase 478
segment 442–443
table of 71
time 483

transmission delay 335
tree notation

aggregation 148
composition 229
for generalization 289

trigger 479, 483
event 72

triggerless transition 484
tuple 484
type 256, 484

expression 168, 486
and implementation class 484

550 Index
U

UML
concept areas 9
definition 3
environment 105
goals 8
history 4
metamodel 515, 517
notation summary 519
process extensions 531
specification documents 515
standardization 6
tailoring 104
views 23

table of 24
unbranch, see merge
unfork, see join
unified, definition of 7
Unified Modeling Language, see UML
uninterpreted 486

action 124
unspecified value 109, 486
usage 56, 487
use case 488

creation 307
diagram 27, 64, 494
generalization 494
instance 496
model 496
relationships 66

table of 65, 277
view 26, 63, 496

utility 496

V

valid system instance 60
value, see data value 497
vertex 497

view 497
connections among 38
summary 23
table of 24

visibility 379, 497
rules 99, 119

Vlissides, John 537

W

Ward, Paul 4, 538
Warmer, Jos 6, 538
waterfall development process 433
well formed 60, 106, 109, 211, 294, 449,

471, 498
Wiegert, Oliver 7
Wiener, Lauren 5, 538
Wilkerson, Brian 5, 538
Wirfs-Brock, Rebecca 5, 538
Woodfield, Scott 537
work in progress 109

X

xor 156

Y

Yourdon, Edward 4–5, 537–538

Z

zero, different from absence of
value 167

	Contents
	Preface
	Goals
	Outline of the Book
	Encyclopedia Article Formatting Conventions
	Brief definition
	Semantics
	Notation
	Example
	Discussion
	Standard elements

	Syntax Conventions
	CD
	For More Information
	Acknowledgments

	Part 1: Background
	UML Overview
	Brief Summary of UML
	UML History
	Object-oriented development methods
	Unification effort
	Standardization
	Core team
	What does unified mean?

	Goals of UML
	UML Concept Areas
	Syntax of Expressions and Diagrams

	The Nature and Purpose of Models
	What Is a Model?
	What Are Models For?
	Levels of Models
	What Is in a Model?
	What Does a Model Mean?

	Part 2: UML Concepts
	UML Walkthrough
	UML Views
	Static View
	Use Case View
	Interaction View
	Sequence diagram
	Collaboration diagram

	State Machine View
	Activity View
	Physical Views
	Model Management View
	Extensibility Constructs
	Connections Among Views

	Static View
	Overview
	Classifiers
	Relationships
	Associations
	Generalization
	Inheritance
	Multiple inheritance
	Single and multiple classification
	Static and dynamic classification

	Realization
	Dependencies
	Constraint
	Instances
	Object diagram

	Use Case View
	Overview
	Actor
	Use Case

	State Machine View
	Overview
	State Machine
	Event
	State
	Transition
	Composite States

	Activity View
	Overview
	Activity Diagram
	Activities and Other Views

	Interaction View
	Overview
	Collaboration
	Interaction
	Sequence Diagram
	Activation
	Collaboration Diagram
	Patterns

	Physical Views
	Overview
	Component
	Node

	Model Management View
	Overview
	Package
	Dependencies on Packages
	Access and Import Dependency
	Model and Subsystem

	Extension Mechanisms
	Overview
	Constraint
	Tagged Value
	Stereotypes
	Tailoring UML

	UML Environment
	Overview
	Semantics Responsibilities
	Notation Responsibilities
	Programming Language Responsibilities
	Modeling with Tools
	Tool issues
	Inconsistent models for work in progress
	Null and unspecified values

	Part 3: Reference
	Encyclopedia of Terms
	abstract
	abstract class
	abstract operation
	abstraction
	access
	action
	action expression
	action sequence
	action state
	activation
	active
	active class
	active object
	active state configuration
	activity
	 activity diagram
	activity expression
	activity graph
	activity state
	activity view
	actor
	actual parameter
	aggregate
	aggregation
	analysis
	analysis time
	ancestor
	architecture
	argument
	artifact
	association
	association (binary)
	association (n-ary)
	association class
	association end
	association generalization
	association role
	asynchronous action
	atomic
	attribute
	background information
	become
	behavior
	behavioral feature
	behavioral view
	binary association
	bind
	binding
	Boolean
	Boolean expression
	bound element
	branch
	call
	call event
	canonical notation
	cardinality
	change event
	changeability
	child
	class
	class diagram
	class-in-state
	class name
	classifier
	classifier role
	client
	collaboration
	collaboration diagram
	collaboration role
	combination
	comment
	communication association
	compartment
	compile time
	completion transition
	complex transition
	component
	component diagram
	composite aggregation
	composite class
	composite object
	composite state
	composition
	concrete
	concurrency
	concurrent substate
	conditional thread
	conflict
	constraint
	construction
	constructor
	container
	context
	control flow
	control icons
	copy
	creation
	current event
	data type
	data value
	default value
	deferred event
	delegation
	dependency
	deployment
	deployment diagram
	deployment view
	derivation
	derived element
	descendant
	descriptor
	design
	design time
	destroy
	destruction
	development process
	diagram
	direct class
	direct instance
	discriminator
	disjoint substate
	distribution unit
	dynamic classification
	dynamic concurrency
	dynamic view
	elaboration
	element
	entry action
	enumeration
	event
	exception
	exit action
	export
	expression
	extend
	extension point
	extent
	feature
	final state
	fire
	flow
	focus of control
	font usage
	fork
	formal argument
	framework
	friend
	full descriptor
	functional view
	generalizable element
	generalization
	graphic marker
	guard condition
	guillemets
	history state
	hyperlink
	identity
	ill formed
	ill-formed
	implementation
	implementation class
	implementation inheritance
	implementation view
	import
	inactive
	inception
	include
	incremental development
	indirect instance
	inheritance
	initial state
	initial value
	initialization
	instance
	instance of
	instantiable
	instantiate
	instantiation
	intent
	interaction
	interaction diagram
	interaction view
	interface
	interface inheritance
	interface specifier
	internal transition
	invariant
	iteration expression
	iterative development
	join
	junction state
	keyword
	label
	language type
	layer
	leaf
	lifeline
	link
	link end
	list
	location
	many
	member
	merge
	message
	metaclass
	meta-metamodel
	metamodel
	metaobject
	metarelationship
	method
	model
	model element
	model management view
	modeling time
	module
	multiobject
	multiple classification
	multiple inheritance
	multiplicity
	multiplicity (of association)
	multiplicity (of attribute)
	multiplicity (of class)
	n-ary association
	name
	namespace
	navigability
	navigable
	navigation
	navigation efficiency
	node
	note
	object
	object diagram
	object flow
	object flow state
	object lifeline
	object set expression
	OCL
	operation
	ordering
	orthogonal substate
	owner scope
	package
	parameter
	parameter list
	parameterized element
	parent
	participates
	passive object
	path
	pathname
	 pattern
	permission
	persistent object
	polymorphic
	postcondition
	powertype
	precondition
	presentation element
	primitive type
	private
	private inheritance
	procedure expression
	process
	product
	projection
	property
	property list
	protected
	pseudoattribute
	pseudostate
	public
	qualifier
	query
	realization
	realize
	receive
	receiver
	reception
	reference
	refine
	refinement
	reification
	reify
	relationship
	repository
	request
	requirement
	responsibility
	reuse
	role
	rolename
	run time
	run-time
	run to completion
	run-to-completion
	scenario
	scope
	self-transition
	semantic variation point
	semantics
	send
	sender
	sequence diagram
	sequence number
	signal
	signal event
	signature
	simple state
	simple transition
	single classification
	single inheritance
	singleton
	snapshot
	source scope
	source state
	specialization
	specification
	stages of modeling
	state
	state machine
	state machine view
	statechart diagram
	static classification
	static view
	stereotype
	string
	structural feature
	structural view
	stub state
	stubbed transition
	subclass
	submachine
	submachine reference state
	substate
	substitutability principle
	subsystem
	subtype
	summarization
	superclass
	supertype
	supplier
	swimlane
	synch state
	synchronous action
	system
	tag
	tagged value
	target scope
	target state
	template
	thread
	time
	time event
	time expression
	timing mark
	trace
	transient link
	transient object
	transition (phase)
	transition
	transition time
	trigger
	triggerless transition
	tuple
	type
	type expression
	uninterpreted
	unspecified value
	usage
	use
	use case
	use case diagram
	use case generalization
	use case instance
	use case model
	use case view
	utility
	value
	vertex
	view
	visibility
	well formed
	well-formed

	Standard Elements
	access
	association
	become
	bind
	call
	complete
	copy
	create
	derive
	destroy
	destroyed
	disjoint
	document
	documentation
	enumeration
	executable
	extend
	facade
	file
	framework
	friend
	global
	implementation
	implementationClass
	implicit
	import
	include
	incomplete
	instanceOf
	instantiate
	invariant
	leaf
	library
	local
	location
	metaclass
	new
	overlapping
	parameter
	persistence
	postcondition
	powertype
	precondition
	process
	refine
	requirement
	responsibility
	self
	semantics
	send
	stereotype
	stub
	system
	table
	thread
	trace
	transient
	type
	use
	utility
	xor

	Part 4: Appendices
	UML Metamodel
	UML Definition Documents
	Metamodel Structure
	Foundation Package
	Core
	Data types
	Extension mechanisms

	Behavioral Elements Package
	Common behavior
	Collaborations
	Use cases
	State machines

	Model Management Package

	Notation Summary
	Process Extensions
	Tailoring the UML
	Software Development Process Extensions
	Organizational Stereotypes
	Class stereotypes
	Association stereotypes

	Business Modeling Extensions
	Organizational stereotypes
	Class stereotypes
	Association stereotypes

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

