

Microcontroller
Programming
The Microchip PIC®

7189_C000a.indd 1 10/30/06 3:00:15 PM

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Microcontroller
Programming
The Microchip PIC®

Julio Sanchez
Minnesota State University, Mankato

Maria P. Canton
South Central College, North Mankato, Minnesota

7189_C000a.indd 2 10/30/06 3:00:15 PM

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Microcontroller
Programming
The Microchip PIC®

Julio Sanchez
Minnesota State University, Mankato

Maria P. Canton
South Central College, North Mankato, Minnesota

7189_C000a.indd 3 10/30/06 3:00:15 PM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2007 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑10: 0‑8493‑7189‑9 (Hardcover)
International Standard Book Number‑13: 978‑0‑8493‑7189‑9 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to
publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of
all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa‑
tion storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923,
978‑750‑8400. CCC is a not‑for‑profit organization that provides licenses and registration for a variety of users. For orga‑
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

7189_C000a.indd 4 10/30/06 3:00:16 PM

Table of Contents

Preface xv

Chapter 1 - Basic Electronics 1
1.0 The Atom 1
1.1 Isotopes and Ions 2
1.2 Static Electricity 3
1.3 Electrical Charge 4

1.3.1 Voltage 4
1.3.2 Current 4
1.3.3 Power 5
1.3.4 Ohm's Law 5

1.4 Electrical Circuits 6
1.4.1 Types of Circuits 6

1.5 Circuit Elements 8
1.5.1 Resistors 9
1.5.2 Revisiting Ohm's Law 9
1.5.3 Resistors in Series and Parallel 10
1.5.4 Capacitors 12
1.5.5 Capacitors in Series and in Parallel 13
1.5.6 Inductors 14
1.5.7 Transformers 15

1.6 Semiconductors 15
1.6.1 Integrated Circuits 16
1.6.2 Semiconductor Electronics 16
1.6.3 P-Type and N-Type Silicon 17
1.6.4 The Diode 17

Chapter 2 - Number Systems 19
2.0 Counting 19

2.0.1 The Tally System 19
2.0.2 Roman Numerals 20

2.1 The Origins of the Decimal System 20
2.1.1 Number Systems for Digital-Electronics 22
2.1.2 Positional Characteristics 22
2.1.3 Radix or Base of a Number System 23

v

2.2 Types of Numbers 23
2.2.1 Whole Numbers 24
2.2.2 Signed Numbers 24
2.2.3 Rational, Irrational, and Imaginary Numbers 24

2.3 Radix Representations 25
2.3.1 Decimal versus Binary Numbers 25
2.3.2 Hexadecimal and Octal 26

2.4 Number System Conversions 27
2.4.1 Binary-to-ASCII-Decimal 28
2.4.2 Binary-to-Hexadecimal Conversion 29
2.4.3 Decimal-to-Binary Conversion 29

Chapter 3 - Data Types and Data Storage 33
3.0 Electronic-Digital Machines 33
3.1 Character Representations 33

3.1.1 ASCII 34
3.1.2 EBCDIC and IBM 36
3.1.3 Unicode 36

3.2 Storage and Encoding of Integers 37
3.2.1 Signed and Unsigned Representations 37
3.2.2 Word Size 38
3.2.3 Byte Ordering 39
3.2.4 Sign-Magnitude Representation 40
3.2.5 Radix Complement Representation 41

3.3 Encoding of Fractional Numbers 44
3.3.1 Fixed-Point Representations 45
3.3.2 Floating-Point Representations 46
3.3.3 Standardized Floating-Point Representations 47
3.3.4 IEEE 754 Single Format 48
3.3.5 Encoding and Decoding Floating-Point Numbers 50

3.4 Binary-Coded Decimals (BCD) 51
3.4.1 Floating-Point BCD 52

Chapter 4 - Digital Logic, Arithmetic, and Conversions 55
4.0 Microcontroller Logic and Arithmetic 55

4.0.1 CPU Flags 55
4.0.2 Word Size 56

4.1 Logical Instructions 56
4.1.1 Logical AND 57
4.1.2 Logical OR 57
4.1.3 Logical XOR 57
4.1.4 Logical NOT 58

4.2 Microcontroller Arithmetic 58
4.2.1 Unsigned and Two’s Complement Arithmetic 58
4.2.2 Operations on Decimal Numbers 60

4.3 Bit Manipulations and Auxiliary Operations 62
4.3.1 Bit Shift and Rotate 62
4.3.2 Comparison Operations 63
4.3.3 Other Support Operations 63

vi Microcontroller Programming

4.4 Unsigned Binary Arithmetic 64
4.4.1 Multi-byte Unsigned Addition 64
4.4.2 Unsigned Multiplication 65
4.4.3 Unsigned Division 67

4.5 Signed Binary Arithmetic 67
4.5.1 Overflow Detection in Signed Arithmetic 69
4.5.2 Sign Extension Operations 70
4.5.3 Multi-byte Signed Operations 71

4.6 Data Format Conversions 72
4.6.1 BCD Digits to ASCII Decimal 72
4.6.2 Unsigned Binary to ASCII Decimal Digits 73
4.6.3 ASCII Decimal String to Unsigned Binary 73
4.6.4 Unsigned Binary to ASCII Hexadecimal Digits 75
4.6.6 Signed Numerical Conversions 76

Chapter 5 - Circuits and Logic Gates 77
5.0 Digital Circuits 77
5.1 The Diode Revisited 78

5.1.1 The Light-Emitting Diode (LED) 79

5.2 The Transistor 81
5.2.1 Bipolar Transistor 81
5.2.2 MOS Transistor 83

5.3 Logic Gates 84
5.4 Transistor-Transistor Logic 85

5.4.1 Inverter Gates 86
5.4.2 The AND Gate 87
5.4.3 The NAND Gate 87
5.4.4 The OR Gate 88
5.4.5 The NOR Gate 88
5.4.6 Positive and Negative Logic 89
5.4.7 The XOR Gate 90
5.4.8 Schmitt Trigger Inverter 91

5.5 Other TTL Logic Families 93
5.6 CMOS Logic Gates 93

Chapter 6 - Circuit Components 95
6.0 Power Supplies 95
6.1 Clocked Logic and Flip-flops 96

6.1.1 The RS Flip-flop 96
6.1.2 Clocked RS Flip-flop 98
6.1.3 The D Flip-flop 99
6.1.4 The Edge-triggered D Flip-flop 100
6.1.5 Preset and Clear Signals 101
6.1.6 D Flip-flop Waveform Action 102
6.1.7 Flip-flop Applications 103

6.2 Clocks 103
6.2.1 Clock Waveforms 104
6.2.2 The TTL Clock 105
6.2.3 The 555 Timer 106

Contents vii

6.2.4 Microcontroller Clocks 106

6.3 Frequency Dividers and Counters 107
6.3.1 Frequency Dividers 107
6.3.2 The JK Flip-flop Counter 107
6.3.3 Ripple Counters 108
6.3.4 Decoding Gates 110
6.3.5 Synchronous Counters 110
6.3.6 Counter ICs 112
6.3.7 Shift Registers 113

6.4 Multiplexers and Demultiplexers 115
6.4.1 Multiplexers 115
6.4.2 Demultiplexers 118
6.4.3 Multiplexer and Demultiplexer ICs 118

6.5 Input Devices 118
6.5.1 Switches 118
6.5.2 Switch Contact Bounce 120
6.5.3 Keypads 121
6.6 Output Devices 122
6.6.1 Seven-segment LED 122
6.6.2 Liquid Crystal Displays 124
6.6.3 LCD Technologies 125

Chapter 7 - The Microchip PIC 129
7.0 The PICMicro Microcontroller 129

7.0.1 Programming the PIC 130
PIC Programmers 131
Development Boards 131

7.0.2 Prototyping the PIC Circuit 132

7.1 PIC Architecture 134
7.1.1 Baseline PIC Family 134

PIC10 Devices 135
PIC12 Devices 135
PIC14 Devices 138

7.1.2 Mid-range PIC Family 138
PIC16 Devices 139

7.1.3 High-Performance PIC Family 139
PIC18 Devices 139

Chapter 8 - Mid-range PIC Architecture 141
8.0 Processor Architecture and Design 142

8.0.1 Harvard Architecture 142
8.0.2 RISC CPU Design 143
8.0.3 Single-word Instructions 143
8.0.4 Instruction Format 144
8.0.5 Mid-Range Device Versions 145

8.1 The Mid-range Core Features 145
8.1.1 Oscillator 145
8.1.2 System Reset 147
8.1.3 Interrupts 148

8.2 Mid-Range CPU and Instruction Set 149

viii Microcontroller Programming

8.2.1 Mid-Range Instruction Set 149
8.2.2 STATUS and OPTION Registers 151

8.3 EEPROM Data Storage 153
8.3.1 EEPROM in Mid-Range PICs 153

8.4 Data Memory Organization 154
8.4.1 The w Register 154
8.4.2 The Data Registers 154

Memory Banks 154
The SFRs 155
The GPRs 157

8.4.3 Indirect Addressing 158

8.5 Mid-range I/O and Peripheral Modules 158
8.5.1 I/O Ports 159
8.5.2 Timer Modules 160
8.5.3 Capture-and-Compare Module 160
8.5.4 Master Synchronous Serial Port (MSSP) Module 161
8.5.5 USART Module 161
8.5.6 A/D Module 161

Chapter 9 - PIC Programming: Tools and Techniques 163
9.0 Microchip’s MPLAB 163

9.0.1 Embedded Systems 164

9.1 Integrated Development Environment 165
9.1.1 Installing MPLAB 165
9.1.2 Creating the Project 167
9.1.3 Project Build Options 169
9.1.4 Building the Project 169

9.2 Simulators and Debuggers 170
9.2.1 MPLAB SIM 171
9.2.2 MPLAB Hardware Debuggers 172
9.2.3 A “Quick-and-Dirty” Debugger 174

9.3 Programmers 174
9.4 Engineering PIC Software 175

9.4.1 Using Program Comments 176
Program Header 176
Commented Banners 177
Commented Bitmaps 178

9.4.2 Defining Data Elements 179
The cblock Directive 179

9.4.3 Banking Techniques 180
The banksel Directive 180
Bank Selection Macros 180
Deprecated Banking Instructions 181

9.4.4 Processor and Configuration Controls 182
Configuration Bits 182

9.4.5 Naming Conventions 184
9.4.6 Errorlevel Directive 186

9.5 Pseudo Instructions 186

Contents ix

Chapter 10 - Programming Essentials: Input and Output 189
10.0 16F84A Programming Template 189
10.1 Introducing the 16F84A 191

10.1.1 Template Circuit for 16F84A 191
10.1.2 Power Supplies 191

Voltage Regulator 192
10.1.3 Comparisons in PIC Programming 193

The Infamous PIC Carry Flag 194

10.2 Simple Circuits and Programs 194
10.2.1 A Single LED Circuit 194

LED Flasher Program 196
10.2.2 LED/Pushbutton Circuit 199
10.2.3 Multiple LED Circuit 202

10.3 Programming the Seven-segment LED 204
10.4 A Demonstration Board 206

10.4.1 PCB Images for Demo Board 206
10.4.2 TestDemo1 Program 208

Chapter 11 - Interrupts 211
11.0 Interrupts on the 16F84 211

11.0.1 The Interrupt Control Register 211
11.0.2 The OPTION Register 212

11.1 Interrupt Sources 213
11.1.1 Port-B External Interrupt 214
11.1.2 Timer0 Interrupt 214
11.1.3 Port-B Line Change Interrupt 215

Multiple External Interrupts 217
11.1.4 EEPROM Data Write Interrupt 217

11.2 Interrupt Handlers 217
11.2.1 Context Saving Operations 218

Saving w and STATUS Registers 218

11.3 Interrupt Programming 218
11.3.1 Programming the External Interrupt 219

RB0 Interrupt Initialization 220
RB0 Interrupt Service Routine 221

11.3.2 Wakeup from SLEEP Using the RB0 Interrupt 222
The SleepDemo Program 223

11.3.3 Port-B Bits 4-7 Status Change Interrupt 224
RB4-7 Interrupt Initialization 225
RB4-7 Change Interrupt Service Routine 227

11.4 Sample Programs 229
11.4.1 The RB0Int Program 229
11.4.2 The SleepDemo Program 232
11.4.3 The RB4to7Int Program 235

Chapter 12 - Timers and Counters 241
12.0 The 16F84 Timer0 Module 241

12.0.1 Timer0 Operation 241

x Microcontroller Programming

Timer0 Interrupt 242
Timer0 Prescaler 242

12.1 Delays Using Timer0 243
12.1.1 Long Delay Loops 244

How Accurate the Delay? 245
The Black-Ammerman Method 245

12.2 Timer0 as a Counter 246
12.3 Timer0 Programming 247

12.3.1 Programming a Counter 247
A Timer/Counter Test Circuit 248
The Tmr0Counter Program 248

12.3.2 Timer0 as a Simple Delay Timer 250
12.3.3 Measured Time Lapse 252

Interrupt-driven Timer 255

12.4 The Watchdog Timer 259
12.4.1 Watchdog Timer Programming 260

12.5 Sample Programs 260
12.5.1 The Tmr0Counter program 260
12.5.2 The Timer0 Program 263
12.5.3 The LapseTimer Program 265
12.5.4 The LapseTmrInt Program 269

Chapter 13 - LCD Interfacing and Programming 275
13.0 LCD Features and Architecture 275

13.0.1 LCD Functions and Components 276
Internal Registers 276
Busy Flag 276
Address Counter 276
Display Data RAM (DDRAM) 276
Character Generator ROM (CGROM) 276
Character Generator RAM (CGRAM) 277
Timing Generation Circuit 277
Liquid Crystal Display Driver Circuit 278
Cursor/Blink Control Circuit 278

13.0.2 Connectivity and Pin-Out 278

13.1 Interfacing with the HD44780 279
13.1.1 Busy Flag or Timed Delay Options 280
13.1.2 Contrast Control 281
13.1.3 Display Backlight 281
13.1.4 Display Memory Mapping 281

13.2 HD44780 Instruction Set 283
13.2.1 Instruction Set Overview 283

Clearing the Display 283
Return home 284
Entry mode set 284
Display and Cursor ON/OFF 284
Cursor/display shift 284
Function set 285
Set CGRAM address 285
Set DDRAM address 285
Read busy flag and Address register 285

Contents xi

Write data 285
Read data 286

13.2.2 A 16F84 8-bit Data Mode Circuit 286

13.3 LCD Programming 287
13.3.1 Defining Constants and Variables 287

Using MPLAB Data Directives 289
13.3.2 LCD Initialization 290

Function Set Command 290
Display Off 291
Display and Cursor On 291
Set Entry Mode 292
Cursor and Display Shift 292
Clear Display 293

13.3.3 Auxiliary Operations 293
Time Delay Routine 293
Pulsing the E Line 295
Reading the Busy Flag 295
Bit Merging Operations 296

13.3.4 Text Data Storage and Display 298
Generating and Storing a Text String 299
Displaying the Text String 301

13.3.5 Data Compression Techniques 302
4-bit Data Transfer Mode 302
Master/Slave Systems 304

13.4 Sample Programs 306
13.4.1 LCDTest1 306
13.4.2 LCDTest2 Program 316
13.4.3 LCDTest3 Program 327

Chapter 14 - Communications 339
14.0 PIC Communications Overview 339
14.1 Serial Data Transmission 340

14.1.1 Asynchronous Serial Transmission 340
14.1.2 Synchronous Serial Transmission 342
14.1.3 PIC Serial Communications 342
14.1.4 The RS-232-C Standard 343

Essential Concepts 344
The Serial Bit Stream 344
Parity Testing 345
Connectors and Wiring 345
The Null Modem 346
The Null Modem Cable 347

14.1.5 The EIA-485 Standard 349
EIA-485 in PIC-based Systems 350

14.2 Parallel Data Transmission 350
14.2.1 PIC Parallel Slave Port (PSP) 351

14.3 PIC “Free-style” Serial Programming 351
14.3.1 PIC-to-PIC Serial Communications 352

PIC-to-PIC Serial Communications Circuits 352
PIC-to-PIC Serial Communications Programs 354

14.3.2 Program Using Shift Register ICs 360

xii Microcontroller Programming

The 74HC165 Parallel-to-Serial Shift Register 361
74HC164 Serial-to-Parallel Shift Register 364

14.4 PIC Protocol-based Serial Programming 366
14.4.1 RS-232-C Communications on the 16F84 366

The RS-232-C Transceiver IC 367
PIC to PC Communications 368
An RS-232-C TTY Board 368
A 16F84A UART Emulation 369
An LCD Scrolling Routine 371

14.4.2 RS-232-C Communications on the 16F87x 375
The 16F87x USART Module 376
The USART Baud Rate Generator 376
16F87x USART Asynchronous Transmitter 379
16F87x USART Asynchronous Receiver 380
PIC-to-PC RS-232-C Communications Circuit 381
16F877 PIC Initialization Code 381
USART Receive and Transmit Routines 384
The USART Receive Interrupt 386

14.5 Sample Programs 389
14.5.1 SerialSnd Program 389
14.5.2 SerialRcv Program 394
14.5.3 Serial6465 Program 400
14.5.4 TTYUsart Program 404
14.5.5 SerComLCD Program 420
14.5.6 SerIntLCD Program 438

Chapter 15 - Data EEPROM Programming 459
15.0 PIC Internal EEPROM Memory 460

15.0.1 EEPROM Programming on the 16F84 460
Reading EEPROM Data Memory on the 16F84 460

16F84 EEPROM Data Memory Write 461
16F84 EEPROM Demonstration Program 462

15.0.2 EEPROM Programming on the 16F87x 465
Reading EEPROM Data Memory on the 16F87x 467
Writing to EEPROM Data Memory in the 16F87x 467
GFR Access Issue in the 16F87x 469

15.0.3 16F87x EEPROM Circuit and Program 469

15.1 EEPROM Devices and Interfaces 475
15.1.1 The I2C Serial Interface 476
15.1.2 I2C Communications 476
15.1.3 EEPROM Communications Conditions 477
15.1.4 EEPROM Write Operation 478
15.1.5 EEPROM Read Operation 478
15.1.6 I2C EEPROM Devices 479
15.1.7 PIC Master Synchronous Serial Port (MSSP) 480

MSSP in Master Mode 482
15.1.8 I2C Serial EEPROM Programming on the 16F877 486

IC2 Initialization Procedure 486
I2C Write Byte Procedure 488
I2C Read Byte Procedure 490

15.2 Sample Programs 492

Contents xiii

15.2.1 EECounter Program 492
15.2.2 Ser2EEP Program 504
15.2.3 I2CEEP Program 521

Chapter 16 - Analog to Digital and Realtime Clocks 543
16.0 A/D Converters 544

16.0.1 Converter Resolution 544
16.0.2 ADC Implementation 545

16.1 A/D Integrated Circuits 546
16.1.1 ADC0331 Sample Circuit and Program 547

16.2 PIC On-Board A/D Hardware 549
16.2.1 A/D Module on the 16F87x 549

The ADCON0 Register 550
The ADCON1 Register 552
SLEEP Mode Operation 554

16.2.2 A/D Module Sample Circuit and Program 554

16.3 Realtime Clocks 558
16.3.1 The NJU6355 Realtime Clock 558
16.3.2 RTC Demonstration Circuit and Program 560

BCD Conversion Procedures 565

16.4 Sample Programs 568
16.4.1 ADF84 Program 568
16.4.2 A2DinLCD Program 580
16.4.3 RTC2LCD Program 595

Appendix A - Resistor Color Codes 613

Appendix B - Building Your Own Circuit Boards 615

Appendix C - Mid-range Instruction Set 621

Appendix D - Supplementary Programs 659

Index 795

xiv Microcontroller Programming

Preface

There are two sides to the computer revolution: one is represented by the PC on your
desktop and the second one by the device that remote-controls your TV, monitors and
operates your car engine, and allows you to set up your answering machine and your
microwave oven. At the core of the PC you find a microprocessor, while at the heart of
a self-contained programmable device (also called an embedded system) is a
microcontroller.

Microcontrollers are virtually everywhere in our modern society. They are found
in automobiles, airplanes, toys, kitchen appliances, computers, TVs and VCRs,
phones and answering machines, space telescopes, and practically every electronic
digital device that furnishes an independent functionality to its user. In this sense a
microcontroller is a self-contained computer system that includes a processor,
memory, and some way of communicating with the outside world, all in a single chip
that can be smaller than a postage stamp.

A microcontroller (sometimes called an MCU) is actually a computer on a chip.
Essentially it is a control device and its design places emphasis on being self-suffi-
cient and inexpensive. The typical microcontroller contains all the components and
features necessary to perform its functions, such as a central processor, input/out-
put facilities, timers, RAM memory for storing program data and executable code,
and a clock or oscil lator that provides a timing beat. In addition, some
microcontrollers include a variety of additional modules and circuits. Some com-
mon ones are serial and parallel communications, analog-to-digital converters,
realtime clocks, and flash memory.

Engineers, inventors, experimenters, students, and device designers in general
deal with microcontrollers on an everyday basis. In fact, interest in microcontrollers
is not limited to electrical, electronic, and computer engineers. Mechanical and au-
tomotive engineers, among many others, often design devices or components that
contain microcontrollers. The system that controls the hatch of a ballistic missile
silo and the one that operates the doglike toy that barks and rolls on its back, both
contain microcontrollers.

The Microchip PIC

Microcontrollers include an enormous array of models and variations of general- and
special-purpose devices. Discussing all of them in a single volume would have forced a
superficial scope. Even the products of a single manufacturer can have a mind-bog-

XV

gling variety, which sometimes include hundreds of different MCU models in a
half-dozen families, all with very different applications and features.

For this reason we have focused the book on a single type of microcontroller: the
M i c r o c h i p P I C . N o t o n l y a r e t h e P I C t h e m o s t u s e d a n d b e s t k n o w n
microcontrollers, they are also the best supported. In fact, PIC system design and
programming has become a powerful specialization with a large number of profes-
sional and amateur specialists. There are hundreds of WEB sites devoted to PIC-re-
lated topics. An entire cottage industry of PIC software and hardware has flourished
around this technology.

For practical reasons we have limited the book's scope to 8-bit PICs. In fact, the
book concentrates on a particular type of 8-bit PIC known as the mid-range family.
We have chosen this approach partly because of space limitations and partly due to
the fact that 16- and 32-bit microcontrollers (sometimes called external memory
microcontrollers) are more related to microprocessor technology than to the topic
at hand.

The Book's Design

The book is intended as a resource kit for PIC microcontroller programming. But pro-
gramming microcontrollers is a different paradigm from microprocessor program-
ming. PIC programming requires a set of skills and a knowledge base quite different
from the one needed by a computer programmer. The reason is that the designer/pro-
grammer is responsible for the entire system. A typical embedded system has no DOS,
Windows, or UNIX software to handle the operational and housekeeping chores.
Thus, the PIC programmer provides all the functionality needed by the application
with very little assistance from other programs. This makes the microcontroller pro-
grammer an application developer, a system's programmer, and an input/output spe-
cialist, all at the same time.

For these reasons, the microcontroller programmer must be familiar with a host
of computer science topics, including low-level data representations, binary arith-
metic, computer organization, input/output programming, concurrency and schedul-
ing, memory management, timing operations, and system functions. At the same
time, he or she must be quite conversant with digital electronics and circuit design
since the object of the program is a hardware device.

In the first six chapters of the book we have attempted to provide the necessary
background both in digital electronics and in computer science. Chapters 7, 8, and 9
are an overview of PIC architecture and programming tools. The remainder of the
book deals with programming the various functions, modules, and devices. The ap-
pendices contain supplementary materials and expand the coding contained in the
text. Readers familiar with electronics and circuit design can skip over Chapters 1,
5, and 6. Those well versed in computer science can do the same with Chapters 2, 3,
and 4.

Mapleton, Minnesota Julio Sanchez

June 28, 2006 Maria P. Canton

XVI Preface

Additional Material

Additional material is available from the CRC Web site:

www.crcpress.com

Under the menu Electronic Products (located on the left side of the screen), click on
Downloads & Updates. A list of books in alphabetical order with Web downloads will
appear. Locate this book by a search, or scroll down to it. After clicking on the book ti-
tle, a brief summary of the book will appear. Go to the bottom of this screen and click
on the hyperlinked “Download” that is in a zip file.

Preface XVII

Chapter 1

Basic Electronics

1.0 The Atom
Until the end of the nineteenth century it was assumed that matter was composed of
small, indivisible particles called atoms. The work of J.J. Thompson, Daniel
Rutheford, and Neils Bohr proved that atoms were complex structures that contained
both positive and negative particles. The positive ones were called protons and the
negative ones electrons.

Several models of the atom were proposed: the one by Thompson assumed that
there were equal numbers of protons and electrons inside the atom and that these
elements were scattered at random, as in the leftmost drawing in Figure 1-1. Later,
in 1913, Daniel Rutheford's experiments led him to believe that atoms contained a
heavy central positive nucleus with the electrons scattered randomly. So he modi-
fied Thompson's model as shown in the center drawing. Finally, Neils Bohr
theorized that electrons had different energy levels, as if they moved around the nu-
cleus in different orbits, like planets around a sun. The rightmost drawing repre-
sents this orbital model.

Figure 1-1 Models of the Atom

+

+

+

+

+

-

-

-

-

-

+
+

+

+

+

-

-

-

-

-

+
+

+

+

+

-

-

-

-

-

1

Investigations also showed that the normal atom is electrically neutral. Protons
(positively charged particles) have a mass of 1.673 X 10-24 grams. Electrons (nega-
tively charged particles) have a mass of 9.109 X 10-28 grams. Furthermore, the orbital
model of the atom is not actually valid since orbits have little meaning at the atomic
level. A more accurate representation is based on concentric spherical shells about
the nucleus. An active area of research deals with atomic and sub-atomic struc-
tures.

The number of protons in an atom determines its atomic number; for example,
the hydrogen atom has a single proton and an atomic number of 1, helium has 2 pro-
tons, carbon has 6, and uranium has 92. But when we compare the ratio of mass to
electrical charge in different atoms we find that the nucleus must be made up of
more than protons. For example, the helium nucleus has twice the charge of the hy-
drogen nucleus, but four times the mass. The additional mass is explained by assum-
ing that there is another particle in the nucleus, called a neutron, which has the
same mass as the proton but no electrical charge. Figure 1-2 shows a model of the
helium atom with two protons, two electrons, and two neutrons.

Figure 1-2 Model of the Helium Atom

1.1 Isotopes and Ions

But nature is not always consistent with such neat models. Whereas in a neutral atom,
the number of protons in the atomic nucleus exactly matches the number of electrons,
the number of protons need not match the number of neutrons. For example, most hy-
drogen atoms have a single proton, but no neutrons, while a small percentage have one
neutron, and an even smaller one have two neutrons. In this sense, atoms of an ele-
ment that contains different number of neutrons are isotopes of the element; for exam-
ple water (H2O) containing hydrogen atoms with two neutrons (deuterium) is called
"heavy water."

An atom that is electrically charged due to an excess or deficiency of electrons is
called an ion. When the dislodged elements are one or more electrons the atom
takes a positive charge. In this case it is called a positive ion. When a stray electron
combines with a normal atom the result is called a negative ion.

2 Chapter 1

+

+

-

-

1.2 Static Electricity
Free electrons can travel through matter or remain at rest on a surface. When elec-
trons are at rest, the surface is said to have a static electrical charge that can be posi-
tive or negative. When electrons are moving in a stream-like manner we call this
movement an electrical current. Electrons can be removed from a surface by means of
friction, heat, light, or a chemical reaction. In this case the surface becomes positively
charged.

The ancient Greeks discovered that when amber was rubbed with wool the amber
became electrically charged and would attract small pieces of material. In this case,
the charge is a positive one. Friction can cause other materials, such as hard rubber
or plastic, to become negatively charged. Observing objects that have positive and
negative charges we note that like charges repel and unlike charges attract each
other, as shown in Figure 1-3.

Figure 1-3 Like and Unlike Charges

Friction causes loosely-held electrons to be transferred from one surface to the
other. This results in a net negative charge on the surface that has gained electrons,
and a net positive charge on the surface that has lost electrons. If there is no path
for the electrons to take to restore the balance of electrical charges, these charges
remain until they gradually leak off. If the electrical charge continues building it
eventually reaches the point where it can no longer be contained. In this case it dis-
charges itself over any available path, as is the case with lightning.

Static electricity does not move from one place to another. While some interest-
ing experiments can be performed with it, it does not serve the practical purpose of
providing energy to do sustained work.

Static electricity certainly exists, and under certain circumstances we must allow
for it and account for its possible presence, but it will not be the main theme of
these pages.

Basic Electronics 3

+ + +- - -

1.3 Electrical Charge
Physicists often resort to models and theories to describe and represent some force
that can be measured in the real world. But very often these models and representa-
tions are no more than concepts that fail to physically represent the object. In this
sense, no one knows exactly what gravity is, or what is an electrical charge. Gravity,
which can be felt and measured, is the force between masses.

By the same token, bodies in "certain electrical conditions" also exert measurable
forces on one another. The term "electrical charge" was coined to explain these ob-
servations.

Three simple postulates or assumptions serve to explain all electrical phenom-
ena:

1. Electrical charge exists and can be measured. Charge is measured in Coulombs, a unit
named for the French scientist Charles Agustin Coulomb.

2. Charge can be positive or negative.

3. Charge can neither be created nor destroyed. If two objects with equal amounts of pos-
itive and negative charge are combined on some object, the resulting object will be
electrically neutral and will have zero net charge.

1.3.1 Voltage
Objects with opposite charges attract, that is, they exert a force upon each other that
pulls them together. In this case, the magnitude of the force is proportional to the prod-
uct of the charge on each mass. Like gravity, electrical force depends inversely on the
distance squared between the two bodies; the closer the bodies the greater the force.
Consequently, it takes energy to pull apart objects that are positively and negatively
charged, in the same manner that it takes energy to raise a big mass against the pull of
gravity.

The potential that separate objects with opposite charges have for doing work is
called voltage. Voltage is measured in units of volts (V). The unit is named for the
Italian scientist Alessandro Volta.

The greater the charge and the greater the separation, the greater the stored en-
ergy, or voltage. By the same token, the greater the voltage, the greater the force
that drives the charges together.

Voltage is always measured between two points that represent the positive and
negative charges. In order to compare voltages of several charged bodies a common
reference point is necessary. This point is usually called "ground."

1.3.2 Current
Electrical charge flows freely in certain materials, called conductors, but not in oth-
ers, called insulators. Metals and a few other elements and compounds are good con-
ductors, while air, glass, plastics, and rubber are insulators. In addition, there is a third
category of materials called semiconductors; sometimes they seem to be good con-

4 Chapter 1

ductors but much less so other times. Silicon and Germanium are two such semicon-
ductors. We discuss semiconductors in the context of integrated circuits later in the
book.

Figure 1-4 shows two connected, oppositely charged bodies. The force between
them has the potential for work; therefore, there is voltage. If the two bodies are
connected by a conductor, as in the illustration, the positive charge moves along the
wire to the other sphere. On the other end, the negative charge flows out on the wire
towards the positive side. In this case, positive and negative charges combine to
neutralize each other until there are no charge differences between any points in the
system.

Figure 1-4 Connected Opposite Charges

The flow of an electrical charge is called a current. Current is measured in am-

peres (a), also called amps, after Andre Ampere, a French mathematician and physi-
cist. An ampere is defined as a flow of one Coulomb of charge in one second.

Electrical current is directional; therefore, a positive current is the flow current
from a positive point A to a negative point B. However, most current results from the
flow of negative-to-positive charges.

1.3.3 Power

Current flowing through a conductor produces heat. The heat is the result of the en-
ergy that comes from the charge traveling across the voltage difference. The work in-
volved in producing this heat is electrical power. Power is measured in units of watts

(W), named after the Englishman James Watt, who invented the steam engine.

1.3.4 Ohm's Law

The relationship between voltage, current, and power is described by Ohm's Law,
named after the German physicist Georg Simon Ohm. Using equipment of his own cre-
ation, Ohm determined that the current that flows through a wire is proportional to its
cross-sectional area and inversely proportional to its length. This allowed defining the
relationship between voltage, current, and power, as expressed by the equation:

Basic Electronics 5

+ +

+ -

-

-
-

-

-
-

+ +

+ -

++

current flow

P V I= ×

Where P represents the power in watts, V is the voltage in volts, and I is the cur-
rent in amperes. Ohm's Law can also be formulated in terms of voltage, current, and
resistance as shown later in this chapter.

1.4 Electrical Circuits
An electrical network is an interconnection of electrical elements. An electrical cir-

cuit is a network in a closed loop, giving a return path for the current. A network is a
connection of two or more simple elements, and may not necessarily be a circuit.

Although there are several types of electrical circuits they all have some of the
following elements:

1. A power source, which can be a battery, alternator, etc., produces an electrical poten-
tial.

2. Conductors, in the form of wires or circuit boards, provide a path for the current.

3. Loads, in the form of devices such as lamps, motors, etc., use the electrical energy to
produce some form of work.

4. Control devices, such as potentiometers and switches, regulate the amount of current
flow or turn it on and off.

5. Protection devices, such as fuses or circuit breakers, prevent damage to the system in
case of overload.

6. A common ground.

Figure 1-5 shows a simple circuit that contains all of these elements.

Figure 1-5 Simple Circuit

1.4.1 Types of Circuits
There are three common types of circuits: series, parallel, and series-parallel. The cir-
cuit type is determined by how the components are connected. In other words, by how
the circuit elements, power source, load, and control and protection devices are inter-
connected. The simplest circuit is one in which the components offer a single current
path. In this case, although the loads may be different, the amount of current flowing
through each one is the same. Figure 1.6 shows a series circuit with two light bulbs.

6 Chapter 1

+

-

Figure 1-6 Series Circuit

In the series circuit in Figure 1-6 if one of the light bulbs burn out, the circuit
flow is interrupted and the other one will not light. Some Christmas lights are wired
in this manner, and if a single bulb fails the whole string will not light.

In a parallel circuit there is more than one path for current flow. Figure 1-7
shows a circuit wired in parallel.

Figure 1-7 Parallel Circuit

In the circuit of Figure 1-7, if one of the light bulbs burns out, the other one will
still light. Also, if the load is the same in each circuit branch, so will be the current
flow in that branch. By the same token, if the load in each branch is different, so will
be the current flow in each branch.

The series-parallel circuit has some components wired in series and others in par-
allel. Therefore, the circuit shares the characteristics of both series and parallel cir-
cuits. Figure 1-8 shows the same parallel circuit to which a series rheostat (dimmer)
has been added in series.

Basic Electronics 7

+

-

+

-

Figure 1-8 Series-Parallel Circuit

In the circuit of Figure 1-8 the two light bulbs are wired in parallel, so if one fails
the other one will not. However, the rheostat (dimmer) is wired in series with the
circuit, so its action affects both light bulbs.

1.5 Circuit Elements
So far we have represented circuits using a pictorial style. Circuit diagrams are more
often used since they achieve the same purpose with much less artistic effort and are
easier to read. Figure 1-9 is a diagrammatic representation of the circuit in Figure 1-8.

Figure 1-9 Diagram of a Series-Parallel Circuit

Certain components are commonly used in electrical circuits. These include
power sources, resistors, capacitors, inductors, and several forms of semiconductor
devices.

8 Chapter 1

+

-

VARIABLE RESISTOR

(DIMMER)

+

-

1.5.1 Resistors
If the current flow from, say, a battery is not controlled, a short-circuit takes place and
the wires can melt or the battery may even explode. Resistors provide a way of con-
trolling the flow of current from a source. A resistor is to current flow in an electrical
circuit as a valve is to water flow: both elements "resist" flow. Resistors are typically
made of materials that are poor conductors. The most common ones are made from
powdered carbon and some sort of binder. Such carbon composition resistors usually
have a dark-colored cylindrical body with a wire lead on each end. Color bands on the
body of the resistor indicate its value, measured in ohms and represented by the Greek
letter ω. The color code for resistor bands can be found in Appendix A.

The potentiometer and the rheostat are variable resistors. When the knob of a po-
tentiometer or rheostat is turned, a slider moves along the resistance element and
reduces or increases the resistance. A potentiometer is used as a dimmer in the cir-
cuits of Figure 1-8 and Figure 1-9. The photoresistor or photocell is composed of a
light sensitive material whose resistance decreases when exposed to light.
Photoresistors can be used as light sensors.

1.5.2 Revisiting Ohm's Law
We have seen how Ohm's Law describes the relationship between voltage, current,
and power. The law is reformulated in terms of resistance so as to express the relation-
ship between voltage, current, and resistance, as follows:

In this case V represents voltage, I is the current, and R is the resistance in the cir-
cuit. Ohm's Law equation can be manipulated in order to find current or resistance
in terms of the other variables, as follows:

Note that the voltage value in Ohm's Law refers to the voltage across the resistor,
in other words, the voltage between the two terminal wires. In this sense the voltage
is actually produced by the resistor, since the resistor is restricting the flow of
charge much as a valve or nozzle restricts the flow of water. It is the restriction cre-
ated by the resistor that forms an excess of charge with respect to the other side of
the circuit. The charge difference results in a voltage between the two points. Ohm's
Law is used to calculate the voltage if we know the resistor value and the current
flow.

Basic Electronics 9

V I R= ×

I
V

R

R
V

I

=

=

Figure 1-10 Ohm's Law Pyramid

A popular mnemonics for Ohm's Law consists of drawing a pyramid with the volt-
age symbol at the top and current and resistance in the lower level. Then, it is easy
to solve for each of the values by observing the position of the other two symbols in
the pyramid, as shown in Figure 1-10.

1.5.3 Resistors in Series and Parallel
When resistors are in series the total resistance equals the sum of the individual
resistances. The diagram in Figure 1-11 shows two resistors (R1 and R2) wired in se-
ries in a simple circuit.

Figure 1-11 Resistors in Series

In Figure 1-11 the total resistance (RT) is calculated by adding the resistance val-
ues of R1 and R2, thus, RT = R1 + R2.

In terms of water flow, a series of partially closed valves in a pipe add up to slow
the flow of water.

Resistors can also be connected in parallel, as shown in Figure 1-12.

10 Chapter 1

V

V

V

V=IR

I=V/R

R=V/I

I

I

I

R

R

R

+

-

R1 R2

Figure 1-12 Resistors in Parallel

When resistors are placed in parallel, the combination has less resistance than
any one of the resistors. If the resistors have different values, then more current
flows through the path of least resistance. The total resistance in a parallel circuit is
obtained by dividing the product of the individual resistors by their sum, as in the
formula:

If more than two resistors are connected in parallel, then the formula can be ex-
pressed as follows:

Also note that the diagram representation of resistors in parallel can have differ-
ent appearances. For example, the circuit in Figure 1-13 is electrically identical to
the one in Figure 1-12.

Figure 1-13 Alternative Circuit of Parallel Resistors

Basic Electronics 11

+

-

R1

R2

RT
R R

R R
= ×

+
1 2

1 2

RT

R R R

=
+ +

1
1
1

1
2

1
3

...

+

-

R1 R2

Figure 1-14 Resistors

Figure 1-14 shows several commercial resistors. The integrated circuit at the cen-
ter of the image combines eight resistors of the same value. These devices are con-
venient when the circuit design calls for several identical resistors. The color-coded
cylindrical resistors in the image are made of carbon

Appendix A contains the color codes used in identifying resistors whose surface
area does not allow printing its value.

1.5.4 Capacitors
An element often used in the control of the flow of an electrical charge is a capacitor.
The name originated in the notion of a "capacity" to store charge. In that sense a capac-
itor functions as a small battery. Capacitors are made of two conducting surfaces sep-
arated by an insulator. A wire lead is usually connected to each surface. Two large
metal plates separated by air would perform as a capacitor. More frequently capaci-
tors are made of thin metal foils separated by a plastic film or another form of solid in-
sulator. Figure 1-15 shows a circuit which contains both a capacitor and a resistor.

In Figure 1-15 charge flows from the battery terminals, along the conductor wire,
onto the capacitor plates. Positive charges collect on one plate and negative charges
on the other plate. The initial current is limited only by the resistance of the wires
and by the resistor in the circuit. As charge builds up on the plates, charge repulsion
resists the flow and the current is reduced. At some point the repulsive force from
charge on the plates is strong enough to balance the force from charge on the bat-
tery, and the current stops.

Figure 1-15 Capacitor Circuit

12 Chapter 1

+

-

The existence of charges on the capacitor plates means there must be a voltage
between the plates. When the current stops this voltage is equal to the voltage in the
battery. Since the points in the circuit are connected by conductors, then they have
the same voltage, even if there is a resistor in the circuit. If the current is zero, there
is no voltage across the resistor, according to Ohm's law.

The amount of charge on the plates of the capacitor is a measure of the value of
the capacitor. This "capacitance" is measured in farads (f), named in honor of the
English scientist Michael Faraday.

The relationship is expressed by the equation:

where C is the capacitance in farads, Q is the charge in Coulombs, and V is the voltage.
Capacitors of one farad or more are rare. Generally capacitors are rated in
microfarads (µf), one-millionth of a farad, or picofarads (pf), one-trillionth of a farad.

Consider the circuit of Figure 1-15 after the current has stabilized. If we now re-
move the capacitor from the circuit it still holds a charge on its plates. That is, there
is a voltage between the capacitor terminals. In one sense, the charged capacitor ap-
pears somewhat like a battery. If we were to short-circuit the capacitor's terminals a
current would flow as the positive and negative charges neutralize each other. But
unlike a battery, the capacitor does not replace its charge. So the voltage drops, the
current drops, and finally there is no net charge and no voltage difference anywhere
in the circuit.

1.5.5 Capacitors in Series and in Parallel
Like resistors, capacitors can be joined together in series and in parallel. Connecting
two capacitors in parallel results in a bigger capacitance value, since there is a larger
plate area. Thus, the formula for total capacitance (CT) in a parallel circuit containing
capacitors C1 and C2 is:

Note that the formula for calculating capacitance in parallel is similar to the one
for calculating series resistance. By the same token, where several capacitors are
connected in series the formula for calculating the total capacitance is:

Basic Electronics 13

C
Q

V
=

CT C C= +1 2

CT

C C C

=
+ +

1
1
1

1
2

1
3

...

Figure 1-16 Assorted Commercial Capacitors

Note that the total capacitance of a connection in series is lower than for any ca-
pacitor in the series, considering that for a given voltage across the entire group
there is less charge on each plate.

There are several types of commercial capacitors, including mylar, ceramic, disk,
and electrolytic. Figure 1-16 shows several commercial capacitors.

1.5.6 Inductors
Inductors are the third type of basic circuit components. An inductor is a coil of wire
with many windings. The wire windings are often made around a core of a magnetic
material, such as iron. The properties of inductors are derived from magnetic rather
than electric forces.

When current flows through a coil it produces a magnetic field in the space out-
side the wire. This makes the coil behave just like a natural, permanent magnet.
Moving a wire through a magnetic field generates a current in the wire, and this cur-
rent will flow through the associated circuit. Since it takes mechanical energy to
move the wire through the field, then it is the mechanical energy that is transformed
into electrical energy. A generator is a device that converts mechanical to electrical
energy by means of induction. An electric motor is the opposite of a generator. In
the motor electrical energy is converted to mechanical energy by means of induc-
tion.

The current in an inductor is similar to the voltage across a capacitor. In both
cases it takes time to change the voltage from an initially high current flow. Such in-
duced voltages can be very high and can damage other circuit components, so it is
common to connect a resistor or a capacitor across the inductor to provide a cur-
rent path to absorb the induced voltage. In combination inductors behave just like
resistors: inductance adds in series. By the same token, parallel connection reduces
induction. Induction is measured in henrys (h), but more commonly in mh, and µh.

14 Chapter 1

Figure 1-17 Transformer Schematics

1.5.7 Transformers

The transformer is an induction device that changes voltage or current levels. The typ-
ical transformer has two or more windings wrapped around a core made of laminated
iron sheets. One of the windings, called the primary, receives a fluctuating current.
The other winding, called the secondary, produces a current induced by the primary.
Figure 1-17 shows the schematics of a transformer.

The device in Figure 1-17 is a step-up transformer. This is determined by the num-
ber of windings in the primary and secondary coils. The ratio of the number of turns
in each winding determines the voltage increase. A transformer with an equal num-
ber of turns in the primary and secondary transfers the current unaltered. This type
of device is sometimes called an isolation transformer. A transformer with less turns
in the secondary than in the primary is a step-down transformer and its effect is to
reduce the primary voltage at the secondary.

Transformers require an alternating or fluctuating current since it is the fluctua-
tions in the current flow in the primary that induce a current in the secondary. The
ignition coil in an automobile is a transformer that converts the low-level battery
voltage to the high voltage level necessary to produce a spark.

1.6 Semiconductors
The name semiconductor stems from the property of some materials that act either as
a conductor or as an insulator depending on certain conditions. Several elements are
classified as semiconductors including Silicon, Zinc, and Germanium. Silicon is the
most widely used semiconductor material because it is easily obtained.

In the ultra-pure form of silicon the addition of minute amounts of certain impuri-
ties (called dopants) alters the atomic structure of the silicon. This determines
whether the Silicon can then be made to act as a conductor or as a nonconductor,
depending upon the polarity of an electrical charge applied to it.

In the early days of radio, receivers required a device called a rectifier to detect
signals. Ferdinand Braun used the rectifying properties of the galena crystal, a semi-
conductor material composed of lead sulfide, to create a "cat's whisker" diode that
served this purpose. This was the first semiconductor device.

Basic Electronics 15

PRIMARY

WINDING

SECONDARY

WINDING

1.6.1 Integrated Circuits
Until 1959, electronic components performed a single function; therefore, many of
them had to be wired together to create a functional circuit. Transistors were individu-
ally packaged in small cans. Packaging and hand wiring the components into circuits
was extremely inefficient.

In 1959, at Fairchild Semiconductor, Jean Hoerni and Robert Noyce developed a
process which made it possible to diffuse various layers onto the surface of a silicon
wafer, while leaving a layer of protective oxide on the junctions. By allowing the
metal interconnections to be evaporated onto the flat transistor surface the process
replaced hand wiring. By 1961, nearly 90% of all the components manufactured were
integrated circuits.

1.6.2 Semiconductor Electronics
To understand the workings of semiconductor devices we need to re-consider the na-
ture of the electrical charge. Electrons are one of the components of atoms, and atoms
are the building blocks of all matter. Atoms bond with each other to form molecules.
Molecules of just one type of atom are called elements. In this sense gold, oxygen, and
plutonium are elements since they all consist of only one type of atom. When a mole-
cule contains more than one atom it is known as a compound. Water, which has both
hydrogen and oxygen atoms, is a compound. Figure 1-18 represents an orbital model
of an atom with five protons and three electrons.

Figure 1-18 Orbital Model of the Boron Atom with its Valence Electrons

In Figure 1-18, protons carry positive charge and electrons carry negative charge.
Neutrons, not represented in the illustration, are not electrically charged. Atoms
that have the same number of protons and electrons have no net electrical charge.

Electrons that are far from the nucleus are relatively free to move around since
the attraction from the positive charge in the nucleus is weak at large distances. In
fact, it takes little force to completely remove an outer electron from an atom, leav-
ing an ion with a net positive charge. A free electron can move at speeds approach-
ing the speed of light (approximately 186,282 miles per second).

Electric current takes place in metal conductors due to the flow of free electrons.
Because electrons have negative charge, the flow is in a direction opposite to the

16 Chapter 1

+
+

+

+

+

--

-

positive current. Free electrons traveling through a conductor drift until they hit
other electrons attached to atoms. These electrons are then dislodged from their or-
bits and replaced by the formerly free electrons. The newly freed electrons then
start the process anew.

1.6.3 P-Type and N-Type Silicon
Semiconductor devices are made primarily of silicon. Pure silicon forms rigid crystals
because of its four outermost electrons. Since it contains no free electrons it is not a
conductor. But silicon can be made conductive by combining it with other elements
(doping) such as boron and phosphorus. The boron atom has three outer valence elec-
trons (Figure 1-18) and the phosphorus atom has five. When three silicon atoms and
one phosphorus atom bind together, creating a structure of four atoms, there is an ex-
tra electron and a net negative charge.

The combination of silicon and phosphorous, with the extra phosphorus electron,
is called an N-type silicon. In this case the N stands for the extra negative electron.
The extra electron donated by the phosphorus atom can easily move through the
crystal; therefore N-type silicon can carry an electrical current.

When a boron atom combines with a cluster of silicon atoms there is a deficiency
of one electron in the resulting crystal. Silicon with a deficient electron is called
P-type silicon (P stands for positive). The vacant electron position is sometimes
called a "hole." An electron from another nearby atom can "fall" into this hole,
thereby moving the hole to a new location. In this case, the hole can carry a current
in the P-type silicon.

1.6.4 The Diode
Both P-type and N-type silicon conduct electricity. In either case, the conductivity is
determined by the proportion of holes or the surplus of electrons. By forming some
P-type silicon in a chip of N-type silicon it is possible to control electron flow so that it
takes place in a single direction. This is the principle of the diode, and the p-n action is
called a pn-junction.

A diode is said to have a forward bias if it has a positive voltage across it from the
P- to N-type material. In this condition, the diode acts rather like a good conductor,
and current can flow, as in Figure 1-19.

Figure 1-19 A Forward Biased Diode

Basic Electronics 17

+

-

e e

e

e e

electron flow

hole flow

If the polarity of the voltage applied to the silicon is reversed, then the diode is re-

verse-biased and appears nonconducting. This nonsymmetric behavior is due to the
properties of the pn-junction. The fact that a diode acts like a one-way valve for cur-
rent is a very useful characteristic. One application is to convert alternating cur-

rent (AC) into direct current (DC). Diodes are so often used for this purpose that
they are sometimes called rectifiers.

18 Chapter 1

Chapter 2

Number Systems

In order to perform more efficient digital operations on numeric data, mathematicians
have devised systems and structures that differ from those used traditionally. This
chapter presents the background material necessary for understanding and using the
number systems and numeric data storage structures employed in digital devices.

2.0 Counting
The fundamental application of a number system is counting. A stone-age hunter uses
his or her fingers to show other members of the tribe how many mammoths were spot-
ted at the bottom of the ravine. In this manner the hunter is able to transmit a unique
type of information that does not relate to the species, size, or color of the animals, but
to their numbers. Our minds have the ability to capture this notion of "oneness" inde-
pendently from other properties of objects.

The most primitive method of counting consists of using objects to represent de-
grees of oneness. The stone-age hunter uses fingers to represent individual mam-
moth. Alternatively, the hunter could have resorted to pebbles, sticks, lines on the
ground, or scratches on the cave wall to show how many units there were of the ob-
ject.

2.0.1 The Tally System

The tally system probably originated from notches on a stick or scratches on a cave
wall. In its simplest form each scratch, notch, or line represents an object. The method
is so simple and intuitive that we still resort to it occasionally. Tallying requires no
knowledge of quantity and no elaborate symbols. Had there been 12 mammoth in the
ravine the cave wall would have appeared as follows:

||||||||||||

A logical evolution of the tally system consists of grouping the marks. Since we
have five fingers in each hand, the 12 mammoth may have been grouped as follows:

||||| ||||| ||

19

Perhaps a primitive mathematical genius added one final sophistication to the
tally system. By drawing one tally line diagonally the visualization is further im-
proved, as in this familiar style:

2.0.2 Roman Numerals

Roman numerals show how a simple graphical tally system evolved into a symbolic
numeric representation. The first five digits were encoded with the symbols:

I, II, III, IIII, and V

The Roman symbol V is conceivably a simplification of the tally encoding using a diag-
onal line to complete the grouping.

Table 2.1

Symbols in the Roman Numeration System

ROMAN DECIMAL

I 1
V 5
X 10
L 50
C 100
D 500
M 1000

The Roman numeral system is based on an add-subtract rule whereby the elements of
a number, read left-to-right, are either added or subtracted to the previous sum ac-
cording to its value. Thereby the decimal number 1994 is represented in Roman nu-
merals as follows:

MCMXCIV = M + (C - M) + (X - C) + (I - V)

= 1000 + (1000 - 100) + (100 - 10) + (5 - 1)

= 1000 + 900 + 90 + 4

= 1994

The uncertainty in the positional value of each digit, the absence of a symbol for
zero, and the fact that some numbers require either one or two symbols (I, IV, V, IX,
and X) complicate the rules of arithmetic using Roman numerals.

2.1 The Origins of the Decimal System
The one element of our civilization which has transcended all cultural and social dif-
ferences is our decimal system of numbers. While mankind is yet to agree on the most
desirable political order, on generally acceptable rules of moral behavior, or on a uni-
versal language, the Hindu-Arabic numerals have been adopted by practically all the
nations and cultures of the world.

20 Chapter 2

By the 9th century A.D. the Arabs were using a ten-symbol positional system of
numbers which included the special symbol for 0. The Latin title of the first book on
the subject of "Indian numbers" is Liber Algorismi de Numero Indorum. The author
is the Arab mathematician al-Khowarizmi.

In spite of the evident advantages of this number system its adoption in Europe
took place only after considerable debate and controversy. Many scholars of the
time still considered Roman numerals to be easier to learn and more convenient for
operations on the abacus. The supporters of the Roman numeral system, called
abacists, engaged in intellectual combat with the algorists, who were in favor of the
Hindu-Arabic numerals as described by al-Khowarizmi. For several centuries
abacists and algorists debated about the advantages of their systems, with the Cath-
olic church often siding with the abacists. This controversy explains why the
Hindu-Arabic numerals were not accepted into general use in Europe until the be-
ginning of the 16th century.

It is sometimes said that the reason for there being ten symbols in the
Hindu-Arabic numerals is related to the fact that we have ten fingers. However, if we
make a one-to-one correlation between the Hindu-Arabic numerals and our fingers,
we find that the last finger must be represented by a combination of two symbols,
10. Also, one Hindu-Arabic symbol, 0, cannot be matched to an individual finger. In
fact, the decimal system of numbers, as used in a positional notation that includes a
zero digit, is a refined and abstract scheme which should be considered one of the
greatest achievements of human intelligence. We will never know for certain if the
Hindu-Arabic numerals are related to the fact that we have ten fingers, but its pro-
foundness and usefulness clearly transcends this biological fact.

The most significant feature of the Hindu-Arabic numerals is the presence of a
special symbol, 0, which by itself represents no quantity. Nevertheless, the special
symbol 0 is combined with the other ones. In this manner the nine other symbols are
reused to represent larger quantities. Another characteristic of decimal numbers is
that the value of each digit depends on its position in a digit string. This positional
characteristic, in conjunction with the use of the special symbol 0 as a placeholder,
allows the following representations:

1 = one

10 = ten

100 = hundred

1000 = thousand

The result is a counting scheme where the value of each symbol is determined by
its column position. This positional feature requires the use of the special symbol, 0,
which does not correspond to any unit-amount, but is used as a place-holder in
multicolumn representations. We must marvel at the intelligence, capability for ab-
straction, and even the sense of humor of the mind that conceived a counting system
that has a symbol that represents nothing. We must also wonder about the evolution
of mathematics, science, and technology had this system not been invented. One in-
triguing question is whether a positional counting system that includes the zero
symbol is a natural and predictable step in the evolution of our mathematical

Number Systems 21

thought, or whether its invention was a stroke of genius that could have been
missed for the next two thousand years.

2.1.1 Number Systems for Digital-Electronics

The computers built in the United States during the early 1940s operated on decimal
numbers. However, in 1946, von Neumann, Burks, and Goldstine published a
trend-setting paper titled Preliminary Discussion of the Logical Design of an Elec-
tronic Computing Instrument, in which they state:

"In a discussion of the arithmetic organs of a computing machine one is natu-

rally led to a consideration of the number system to be adopted. In spite of the

long-standing tradition of building digital machines in the decimal system,

we must feel strongly in favor of the binary system for our device."

In their paper, von Neumann, Burks, and Goldstine also consider the possibility
of a computing device that uses binary-coded decimal numbers. However, the idea is
discarded in favor of a pure binary encoding. The argument is that binary numbers
are more compact than binary-coded decimals. Later in this book you will see that
binary-coded decimal numbers (called BCD) are used today in some types of com-
puter calculations.

In 1941, Konrad Zuse, a German who had done pioneering work in computing ma-
chines, released the first programmable computer designed to solve complex engi-
neering equations. The machine, called the Z3, was controlled by perforated strips
of discarded movie film and used the binary number system.

The use of the binary number system in digital calculators and computers was
made possible by previous research on number systems and on numerical represen-
tations, starting with an article by G.W. Leibnitz published in Paris in 1703. Re-
searchers concluded that it is possible to count and perform arithmetic operations
using any set of symbols as long as the set contains at least two symbols, one of
which must be zero.

In digital electronics the binary symbol 1 is equated with the electronic state ON,
and the binary symbol 0 with the state OFF. The two symbols of the binary system
can also represent conducting and nonconducting states, positive or negative, or
any other bi-valued condition. It was the binary system that presented the
Hindu-Arabic decimal number system with the first challenge in 800 years. In digi-
tal-electronics two steady states are easier to implement and more reliable than a
ten-digit encoding.

2.1.2 Positional Characteristics

All modern number systems, including decimal, hexadecimal, and binary, are posi-
tional and include the digit zero. It is the positional feature that is used to determine
the total value of a multi-digit representation. For example, the digits in the decimal
number 4359 have the following positional weights:

22 Chapter 2

4 3 5 9

| | | |_________________ units

| | |___________________ ten units

| |_____________________ hundred units

|_______________________ thousand units

The total value is obtained by adding the column weights of each unit:

4000 --- 4 thousand units

300 --- 3 hundred units

+ 50 --- 5 ten units

9 --- 9 unit

4359

2.1.3 Radix or Base of a Number System
In any positional number system the weight of each column is determined by the total
number of symbols in the set, including zero. This is called the base or radix of the sys-
tem. The base of the decimal system is 10 and the base of the binary system is 2. The po-
sitional value or weight (P) of a digit in a multi-digit number is determined by the
formula:

where d is the digit, B is the base or radix, and c is the zero-based column number, start-
ing from right to left. Note that the increase in column weight from right to left is
purely conventional. You could construct a number system in which the column
weights increase in the opposite direction. In fact, in the original Hindu notation the
most significant digit was placed at the right.

In radix-positional terms a decimal number can be expressed as a sum of digits by
the formula:

where i is the system's range and n is its limit.

2.2 Types of Numbers

By the adoption of special representations for different types of numbers the useful-
ness of a positional number system can be extended beyond the simple counting func-
tion.

Number Systems 23

P d Bc= ×

di
i

i m

n

×
=−
∑ 10

2.2.1 Whole Numbers

The digits of a number system, called the positive integers or natural numbers, are an
ordered set of symbols. The notion of an ordered set means that the numerical symbols
are assigned a predetermined sequence. A positional system of numbers also requires
the special digit zero which, by itself, represents the absence of oneness, or nothing,
and thus is not included in the set of natural numbers. However, 0 assumes a cardinal
function when it is combined with other digits, for instance, 10 or 30. The whole num-

bers are the set of natural numbers, including the number zero.

2.2.2 Signed Numbers

A number system can also encode direction. We generally use the + and - signs to repre-
sent opposite numerical directions. The typical illustration for a set of signed numbers
is as follows:

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9

negative numbers <- zero -> positive numbers

The number zero, which separates the positive and the negative numbers, has no
sign of its own, although in some binary encodings we can end up with a negative
and a positive zero.

2.2.3 Rational, Irrational, and Imaginary Numbers

A number system also represents parts of a whole. For example, when a carpenter cuts
one board into two boards of equal length we can represent the result with the fraction
1/2; the fraction 1/2 represents one of the two parts which make up the object. Rational
numbers are those expressed as a ratio of two integers, for example, 1/2, 2/3, 5/248.
Note that this use of the word rational is related to the mathematical concept of a ratio,
and not to reason.

The denominator of a rational number expresses the number of potential parts. In
this sense 2/5 indicates two of five possible parts. There is no reason why the num-
ber 1 cannot be used to indicate the number of potential parts, for example 2/1,
128/1. In this case the ratio x/1 indicates x elements of an undivided part. Therefore,
it follows that x/1 = x. The implication is that the set of rational numbers includes
the integers, since an integer can be expressed as a ratio by using a unit denomina-
tor.

But not all non-integer numbers can be written as an exact ratio of two integers.
The discovery of the first irrational number is usually associated with the investiga-
tion of a right triangle by the Greek mathematician Pythagoras (approximately 600
BC). The Pythagorean Theorem states that in any right triangle the square of the
longest side (hypotenuse) is equal to the sum of the squares of the other two sides.

24 Chapter 2

C

a = 1

b = 1

For this triangle, the Pythagorean theorem states that

Therefore, the length of the hypotenuse in a right triangle with unit sides is a number
that, when multiplied by itself, gives 2. This number (approximately 1.414213562) can-
not be expressed as the exact ratio of two integers. Other irrational numbers are the
square roots of 3 and 5, as well as the mathematical constants π and e.

The set of numbers that includes the natural numbers, the whole numbers, and
the rational and irrational numbers is called the real numbers. Most common mathe-
matical problems are solved using real numbers. However, during the investigation
of squares and roots we notice that there can be no real number whose square is
negative. Mathematicians of the 18th century extended the number system to in-
clude operations with roots of negative numbers. They did this by defining an imagi-
nary unit as follows:

The imaginary unit makes possible a new set of numbers, called complex num-
bers, that consist of a real part and an imaginary part. One of the uses of complex
numbers is in finding the solution of a quadratic equation. Complex numbers are
also useful in vector analysis, graphics, and in solving many engineering, scientific,
and mathematical problems.

2.3 Radix Representations

The radix of a number system is the number of symbols in the set, including zero. Thus,
the radix of the decimal system is 10, and the radix of the binary system is 2. Digital
electronics is based on circuits that can be in one of two stable states. Therefore, a
number system based on two symbols is better suited for work in digital electronics,
since each state can be represented by a digit.

2.3.1 Decimal versus Binary Numbers

The binary system of numbers uses two symbols, 1 and 0. It is the simplest possible set
of symbols with which we can count and perform arithmetic. Most of the difficulties in
learning and using the binary system arise from this simplicity. Figure 2.1 shows six-
teen groups of four electronic cells each in all possible combinations of two states.

Number Systems 25

a b c

c

c c

c

2 2 2

22

2

2

+ =

=
= ×

=

i = −1

Figure 2-1 Electronic Cells and Binary Numbers

It is interesting to note that binary numbers match the physical state of each elec-
tronic cell. If we think of each cell as a miniature light bulb, then the binary number
1 can be used to represent the state of a charged cell (light ON) and the binary num-
ber 0 to represent the state of an uncharged cell (light OFF).

2.3.2 Hexadecimal and Octal
Binary numbers are convenient in digital electronics; however, one of their draw-
backs is the number of symbols required to encode a large value. For example, the
number 9134 is represented in four decimal digits. However, the binary equivalent
10001110101110 requires fourteen digits. In addition, large binary numbers are diffi-
cult to remember.

One possible way of compensating for these limitations of binary numbers is to
use individual symbols to represent groups of binary digits. For example, a group of
three binary numbers allows eight possible combinations. In this case, we can use
the decimal digits 0 to 7 to represent each possible combination of three binary dig-
its. This grouping of three binary digits gives rise to the following table:

binary octal

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

26 Chapter 2

0 0 0 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 0 0 1

0 0 1 0

0 0 1 1

The octal encoding serves as a shorthand representation for groups of 3-digit bi-
nary numbers.

Hexadecimal numbers (base 16) are used for representing values encoded in four
binary digits. Since there are only ten decimal digits, the hexadecimal system bor-
rows the first six letters of the alphabet (A, B, C, D, E, and F). The result is a set of
sixteen symbols, as follows:

0 1 2 3 4 5 6 7 8 9 A B C D E F

Most modern computers are designed with memory cells, registers, and data
paths in multiples of four binary digits. Table 2.2 lists some common units of mem-
ory storage.

Table 2.2

Units of Memory Storage

UNIT BITS HEX DIGITS HEX RANGE

Nibble 4 1 0 to F
Byte 8 2 0 to FF
Word 16 4 0 to FFFF
Doubleword 32 8 0 to FFFFFFFF

In most digital-electronic devices memory addressing is organized in multiples of
four binary digits. Here again, the hexadecimal number system provides a conve-
nient way to represent addresses. Table 2.3 lists some common memory addressing
units and their hexadecimal and decimal range.

Table 2.3

Units of Memory Addressing

UNIT DATA PATH ADDRESS RANGE
IN BITS DECIMAL HEX

1 paragraph 4 0 to 15 0-F
1 page 8 0 to 255 0-FF
1 kilobyte 16 0 to 65,535 0-FFFF
1 megabyte 20 0 to 1,048,575 0-FFFFF
4 gigabytes 32 0 to 4,294,967,295 0-FFFFFFFF

2.4 Number System Conversions
We use decimal numbers in our everyday life because they meaningfully represent
common units used in the real world. To state that a certain historical event took place
in the year 7C6 hexadecimal would convey little information to the average person.
However, in computer systems based on two-state electronic cells binary representa-
tions are more convenient. Also note that hexadecimal and octal numbers are handy
shorthand for representing groups of binary digits.

Numerical conversions between positional systems of different radices are based
on the number of symbols in the respective sets and on the positional value (weight)
of each column. But methods used for manual conversions are not always suitable
for machine conversions, as we will see in the forthcoming sections.

Number Systems 27

2.4.1 Binary-to-ASCII-Decimal
To manually convert a binary number to its decimal equivalent we take into account
the positional weight of each binary digit, as shown in Figure 2-2.

Figure 2-2 Binary to ASCII Decimal Conversion Example

The positional weight table in Figure 2-2 lists the decimal value of each binary
column. These weights are powers of the system's base (2 in the binary system). In
the digit value table, also in Figure 2-2, the decimal values of the binary columns
holding a 1 digit are added. The sum of the weights of all the one-digits in the oper-
and is the decimal equivalent of the binary number. In this case 10010101 binary =
149 decimal.

The method in Figure 2-2, although useful in manual conversions, is not an algo-
rithm for computer conversions. Figure 2-3 is a flowchart of a low-level bi-
nary-to-decimal conversion routine.

Figure 2-3 Flowchart for a Binary to ASCII Decimal Conversion

28 Chapter 2

1 0 0 1 0 1 0 1

DIGIT VALUE TABLE

(digit x weight)

1 x 1 = 1

1 x 4 = 4

1 x 16 = 16

1 x 128 = 128

total 149

POSITIONAL WEIGHT TABLE

(decimal values)

2 = 128

2 = 64

2 = 32

2 = 16

2 = 8

2 = 4

2 = 2

2 = 1

7

6

5

4

3

2

1

0

START

END

YES

NO

SETUP ASCII DIGIT STORAGE

INITIALIZE POINTER TO STORAGE

BINARY / 10

REMAINDER + 30H

= ASCII DIGIT

ASCII DIGIT TO STORAGE

STORAGE POINTER TO NEXT DIGIT

QUOTIENT = BINARY

QUOTIENT = 0

?

The algorithm for the processing in Figure 2-3 can be written as follows:

1. Set up and initialize a string storage area (sometimes called a buffer) to hold the ASCII
decimal digits of the result. Set up the buffer pointer to the right-most digit position of
the result.

2. Obtain the remainder of the value divided by 10.

3. Add 30H to remainder digit to convert to ASCII representation.

4. Store remainder digit in buffer and index the buffer pointer to the preceding digit.

5. Quotient of division by 10 becomes the new binary value.

6. End conversion routine if quotient is equal to 0. Otherwise, continue at step 2.

Note that the numerical digits are located from 30H to 39H in the ASCII table.
This makes is easy to convert a binary digit to ASCII simply by adding 30H. Like-
wise, an ASCII digit is converted to binary by subtracting 30H.

2.4.2 Binary-to-Hexadecimal Conversion
The method described in Section 2.4.1 for a binary to ASCII decimal conversion can be
adapted to other radices by representing the positional weight of each binary digit in
the number system to which the conversion is to be made. In the case of a binary to
ASCII hexadecimal conversion the positional weight of each binary digit is a hexadeci-
mal value. Figure 2-4 shows the conversion of the binary value 10010101 into hexadeci-
mal by using the corresponding positional weights.

Figure 2-4 Binary to ASCII Hexadecimal Conversion Example

The machine conversion binary to ASCII hexadecimal is similar to the binary to
ASCII decimal algorithm described previously. In the case of the conversion into
ASCII hexadecimal digits the buffer need only hold four ASCII characters, since a
16-bit binary cannot exceed the value FFFFH. In the case of binary to ASCII hex the
divisor for obtaining the digits is 16 instead of 10.

2.4.3 Decimal-to-Binary Conversion

Longhand conversion of decimal into binary can be performed by using the positional
weights to find the binary 1-digits and then subtracting this positional weight from the
decimal value. The process is shown in Figure 2-5.

Number Systems 29

1 0 0 1 0 1 0 1

DIGIT VALUE TABLE

(digit x weight)

1 x 1H = 1H

1 x 4H = 4H

1 x 10H = 10H

1 x 80H = 80H

total 95H

POSITIONAL WEIGHT TABLE

(hexadecimal values)

2 = 80H

2 = 40H

2 = 20H

2 = 10H

2 = 8H

2 = 4H

2 = 2H

2 = 1H

7

6

5

4

3

2

1

0

Figure 2-5 Example of Decimal to Binary Conversion

In the example of Figure 2-5 we start with the decimal value 149. Since the high-
est power of 2 smaller than 149 is 128, which corresponds to bit 7, we set bit 7 in the
result and perform the subtraction:

149 - 128 = 21

At this point the highest positional weight smaller than 21 is 16, which corre-
sponds to bit 4. Therefore we set bit 4, and perform the subtraction:

21 - 16 = 5

The remaining steps in the conversion can be seen in the illustration. The conver-
sion is finished when the result of the subtraction is 0.

Suppose there is a numerical value in the form of a string of ASCII decimal, octal,
or hexadecimal digits. In order for a processor to perform simple arithmetic opera-
tions on such data, the data must first be converted to binary. The binary value is
then loaded into machine registers or memory cells. However, methods suited for
manual conversion do not always make a good computer algorithm. Figure 2.6
shows two decimal-to-binary conversion algorithms that are suited for machine cod-
ing.

Using the first method of Figure 2-6, the individual decimal digits are multiplied
by their corresponding positional values. The final result is obtained by adding all
the partial products. Although this method is frequently used, it has the disadvan-
tage that a different multiplier is used during each iteration (1, 10, 100, 1000). The
second method in Figure 2-6 starts with the high-order ASCII-decimal digit. The cal-
culations consist of multiplying an accumulated value by 10. Initially, this accumu-
lated value is set to 0. After multiplication by 10, the value of the digit is added to the
accumulated value. The following algorithm is based on the second method in Fig-
ure 2-6.
.

30 Chapter 2

1 0 0 1 0 1 0 1

149 - 128 = 21 1 0 0 0 0 0 0 0

21 - 16 = 5 0 0 0 1 0 0 0 0

5 - 4 = 1 0 0 0 0 0 1 0 0

1 - 1 = 0 0 0 0 0 0 0 0 1

binary result 1 0 0 1 0 1 0 1

POSITIONAL WEIGHTS

(decimal values)

2 = 128

2 = 64

2 = 32

2 = 16

2 = 8

2 = 4

2 = 2

2 = 1

7

6

5

4

3

2

1

0

Figure 2-6 Machine Conversion of ASCII Decimal to Binary

1. Set up and initialize to binary zero a storage location for holding the value accumulated
during conversion. Set up a pointer to the highest order ASCII digit in the source string.

2. Test the ASCII digit for a value in the range 0 to 9. End of routine if the ASCII digit is not
in this range.

3. Subtract 30H from ASCII decimal digit.

4. Multiply accumulated value by 10.

5. Add digit to accumulated value.

6. Increment the pointer to the next digit and continue at step 2.

Figure 2-7 is a flowchart of the conversion algorithm.

Figure 2-7 Flowchart for ASCII to Machine Register Conversion

Number Systems 31

3 4 5 9

3 4 5 9

9 x 1 = 9

5 x 10 = 50

4 x 100 = 400

3 x 1000 = 3000

binary = 3459

0 x 10 + 3 = 3

3 x 10 + 4 = 34

34 x 10 + 5 = 345

345 x 10 + 9 = 3459

METHOD NUMBER 1

METHOD NUMBER 2

ASCII DECIMAL DIGITS

ASCII DECIMAL DIGITS

START

END

YES

NO

SETUP BINARY ACCUMULATOR

INITIALIZE POINTER TO FIRST SOURCE DIGIT

ASCII DIGIT - 30H

POINTER TO NEXT DIGIT

ACCUMULATOR X 10

ACCUMULATOR + DIGIT

VALID DIGIT

?

Chapter 3

Data Types and Data Storage

In this chapter we review the various encodings and formats used for representing
character and numeric data in digital systems. Tha character formats are used for en-
coding the letters, symbols, and control codes of the various alphabets. The numeric
formats allow representing binary numbers as signed and unsigned integers in several
forms, binary floating-point numbers, and decimal floating-point numbers, usually
called binary-coded decimals or BCD.

3.0 Electronic-Digital Machines
The mechanization of arithmetic is often traced back to the abacus, slide rule, me-
chanical calculators, and punch card machines. The work of John von Neumann at
Princeton’s Institute for Advanced Study and Research marks the first highlight in
the design and construction of a digital-electronic calculating machine. In von
Neumann’s design, data and instructions are stored in a common memory area. An al-
ternative approach, known as Harvard architecture, was discarded at first but has re-
cently been re-validated and is in use in several microcontroller families.

The calculating power of the first computer was approximately 2000 operations
per second, while previous electro-mechanical devices were capable of performing
only 3 or 4 operations. Today’s digital machines can execute more than 1 billion in-
structions per second. Technological advances and miniaturization techniques have
reduced the cost and size of computing machinery.

3.1 Character Representations
Over the years, data representation issues have often been determined by the various
conventions used by the different hardware manufacturer. Machines have had differ-
ent word lengths and different character sets and have used various schemes for stor-
ing character and data. Fortunately, in microprocessor and microcontroller design,
the encoding of character data has not been subject to major disagreements.

Historically, the methods used to represent characters have varied widely, but the
basic approach has always been to choose a fixed number of bits and then map the

33

various bit combinations to the various characters. Clearly, the number of bits of the
storage format limits the total number of distinct characters that can be repre-
sented. In this manner, the 6-bit codes used on a number of earlier computing ma-
chines allow representing 64 characters. This range allows including the uppercase
letters, the decimal digits, some special characters, but not the lowercase letters.
Computer manufacturers that used the 6-bit format often argued that their custom-
ers had no need for lower-case letters. Nowadays 7- and 8-bit codes that allow repre-
senting the lower-case letters have been adopted almost universally.

Most of the world (except IBM) has standardized character representations by
using the ISO (International Standards Organization) code. ISO exists in several
national variants; the one used in the United States is called ASCII, which stands for
American Standard Code for Information Interchange. All microcomputers and
microcontrollers use ASCII as the code for character representation.

3.1.1 ASCII
ASCII is a character encoding based on the English alphabet. ASCII was first pub-
lished as a standard in 1967 and was last updated in 1986. The first 33 codes, referred to
as non-printing codes, are mostly obsolete control characters. The remaining 95 print-
able characters (starting with the space character) include the common characters
found in a standard keyboard, the decimal digits, and the upper- and lower-case char-
acters of the English alphabet. Table 3.1 lists the ASCII characters in decimal, hexa-
decimal, and binary.

Table 3.1

ASCII Character Representation

DECIMAL HEX BINARY VALUE

000 000 00000000 annual (Null character)
001 001 00000001 SOH (Start of Header)
002 002 00000010 STX (Start of Text)
003 003 00000011 ETX (End of Text)
004 004 00000100 EOT (End of Transmission)
005 005 00000101 ENQ (Enquiry)
006 006 00000110 ACK (Acknowledgment)
007 007 00000111 BEL (Bell)
008 008 00001000 BS (Backspace)
009 009 00001001 HT (Horizontal Tab)
010 00A 00001010 LF (Line Feed)
011 00B 00001011 VT (Vertical Tab)
012 00C 00001100 FF (Form Feed)
013 00D 00001101 CR (Carriage Return)
014 00E 00001110 SO (Shift Out)
015 00F 00001111 SI (Shift In)
016 010 00010000 DLE (Data Link Escape)
017 011 00010001 DC1 (XON)(Device Control 1)
018 012 00010010 DC2 (Device Control 2)
019 013 00010011 DC3 (XOFF)(Device Control 3)
020 014 00010100 DC4 (Device Control 4)
021 015 00010101 NAK (- Acknowledge)
022 016 00010110 SYN (Synchronous Idle)

(continues)

34 Chapter 3

Table 3.1

ASCII Character Representation (conitnued)

DECIMAL HEX BINARY VALUE

000 000 00000000 annual (Null character)
023 017 00010111 ETB (End of Trans. Block)
024 018 00011000 CAN (Cancel)
025 019 00011001 EM (End of Medium)
026 01A 00011010 SUB (Substitute)
027 01B 00011011 ESC (Escape)
028 01C 00011100 FS (File Separator)
029 01D 00011101 GS (Group Separator)
030 01E 00011110 RS (Request to Send)
031 01F 00011111 US (Unit Separator)
032 020 00100000 SP (Space)
033 021 00100001 ! (exclamation mark)
034 022 00100010 “ (double quote)
035 023 00100011 # (number sign)
036 024 00100100 $ (dollar sign)
037 025 00100101 % (percent)
038 026 00100110 & (ampersand)
039 027 00100111 ‘ (single quote)
040 028 00101000 ((left/opening parenthesis)
041 029 00101001) (right/closing parenthesis)
042 02A 00101010 * (asterisk)
043 02B 00101011 + (plus)
044 02C 00101100 , (comma)
045 02D 00101101 - (minus or dash)
046 02E 00101110 . (dot)
047 02F 00101111 / (forward slash)
048 030 00110000 0 (decimal digits ...)
049 031 00110001 1
050 032 00110010 2
051 033 00110011 3
052 034 00110100 4
053 035 00110101 5
054 036 00110110 6
055 037 00110111 7
056 038 00111000 8
057 039 00111001 9
058 03A 00111010 : (colon)
059 03B 00111011 ; (semi-colon)
060 03C 00111100 < (less than)
061 03D 00111101 = (equal sign)
062 03E 00111110 > (greater than)
063 03F 00111111 ? (question mark)
064 040 01000000 @ (AT symbol)
065 041 01000001 A
066 042 01000010 B
067 043 01000011 C
. . .
090 05A 01011010 Z
091 05B 01011011 [(left/opening bracket)
092 05C 01011100 \ (back slash)
093 05D 01011101] (right/closing bracket)

(continues)

Data Types and Data Storage 35

Table 3.1

ASCII Character Representation (conitnued)

DECIMAL HEX BINARY VALUE

094 05E 01011110 ^ (circumflex)
095 05F 01011111 _ (underscore)
096 060 01100000 ` (accent)
097 061 01100001 a
098 062 01100010 b
099 063 01100011 c
...
122 07A 01111010 z
123 07B 01111011 { (left/opening brace)
124 07C 01111100 | (vertical bar)
125 07D 01111101 } (right/closing brace)
126 07E 01111110 ~ (tilde)
127 07F 01111111 DEL (delete)

3.1.2 EBCDIC and IBM

In spite of ASCII’s general acceptance, IBM continues to use EBCDIC (Extended Bi-

nary Coded Decimal Interchange Code) for character encoding. IBM mainframes and
midrange systems such as the AS/400 use a wholly incompatible character set primar-
ily designed for punched cards.

EBCDIC uses the full eight bits available to it, so there is no place left to imple-
ment parity checking. On the other hand, EBCDIC has a wider range of control char-
acters than ASCII.

EBCDIC character encoding is based on Binary Coded Decimal (BCD), which we
discuss later in this chapter. There are four main blocks in the EBCDIC code page:

1. The range 0000 0000 to 0011 1111 is reserved for control characters.

2. The range 0100 0000 to 0111 1111 is for punctuation.

3. The range 1000 0000 to 1011 1111 is for lowercase characters.

4. The range 1100 0000 to 1111 1111 is for uppercase characters and numbers.

Actually, microprocessor and microcontroller design need not address how char-
acter data is encoded. Usually a set of instructions allows manipulating 8-bit quanti-
ties, but the processor need not be concerned with what the encodings represent.
On the other hand, some mainframe processors do have instructions that manipu-
late character codes. For example, the EDIT instruction on the IBM 370 implements
the kind of picture conversion that appears in COBOL programs.

3.1.3 Unicode

One of the limitations of the ASCII code is that eight bits are not enough for represent-
ing characters sets in languages such as Japanese or Chinese which use large charac-
ter sets. This has led to the development of encodings which allow representing large
character sets. Unicode has been proposed as a universal character encoding stan-
dard that can be used for representation of text for computer processing.

36 Chapter 3

Unicode attempts to provide a consistent way of encoding multilingual text and
thus make it possible to exchange text files internationally. The design of Unicode is
based on the ASCII code, but goes beyond the Latin alphabet to which ASCII is lim-
ited. The Unicode Standard provides the capacity to encode all of the characters
used for the written languages of the world. Like ASCII, Unicode assigns each char-
acter a unique numeric value and name. Unicode uses three encoding forms that use
a common repertoire of characters. These forms allow encoding as many as a mil-
lion characters.

The three encoding forms of the Unicode Standard allow the same data to be
transmitted in a byte, word, or double word format, that is, in 8-, 16- or 32-bits per
character.

• UTF-8 is a way of transforming all Unicode characters into a variable length encoding
of bytes. In this format the Unicode characters corresponding to the familiar ASCII set
have the same byte values as ASCII. By the same token, Unicode characters trans-
formed into UTF-8 can be used with existing software.

• UTF-16 is designed to balance efficient access to characters with economical use of
storage. It is reasonably compact and all the heavily used characters fit into a single
16-bit code unit, while all other characters are accessible via pairs of 16-bit code units.

• UTF-32 is used where memory space is no concern, but fixed width, single code unit ac-
cess to characters is desired. In UTF-32 each Unicode character is represented by a sin-
gle 32-bit code.

3.2 Storage and Encoding of Integers
The Indian mathematician Pingala first described binary numbers in the fifth century
B.C. The modern system of binary numbers first appears in the work of Gottfried
Leibniz during the seventeenth century. During the mid-nineteenth century the British
logician George Boole described a logical system which used binary numbers to repre-
sent logical true and false. In 1937, Claude Shannon published his master’s thesis that
used Boolean algebra and binary arithmetic to implement electronic relays and
switches. The thesis paper entitled A Symbolic Analysis of Relay and Switching Cir-

cuits is usually considered to be the origin of modern digital circuit design.

Also in 1937, George Stibitz completed a relay-based computer which could per-
form binary addition. The Bell Labs Complex Number Computer, also designed by
Stibitz, was completed in January 1940. The system was demonstrated to the Ameri-

can Mathematical Society in September 1940. The attendants included John Von
Neumann, John Mauchly, and Norbert Wiener. In 1945, von Neumann wrote a semi-
nal paper in which he stated that binary numbers were the ideal computational for-
mat.

3.2.1 Signed and Unsigned Representations

For unsigned integers there is little doubt that the binary representation is ideal. Suc-
cessive bits indicate powers of 2, with the most significant bit at the left and the least
significant one on the right, as is customary in decimal representations. Figure 3-1
shows the digit weights and the conventional bit numbering in the binary encoding.

Data Types and Data Storage 37

Figure 3-1 Binary Digit Weights and Numbering

In order to perform arithmetic operations, the digital machine must be capable of
storing and retrieving numerical data. Numerical data is stored in standard formats,
designed to minimize space and optimize processing. Historically, numeric data was
stored in data structures devised to fit the characteristics of a specific machine, or
the preferences of its designers. It was in 1985 that the Institute of Electrical and

Electronics Engineers (IEEE) and the American National Standards Institute

(ANSI) formally approved mathematical standards for encoding and storing numeri-
cal data in digital devices.

The electronic and physical mechanisms used for storing data have evolved with
technology. One common feature of many devices, from punched tape to integrated
circuits, is that the encoding is represented in two possible states. In paper tape the
two states are holes or no holes, while in electronic media they are usually the pres-
ence or absence of an electrical charge.

Data stored in processor registers, in magnetic media, in optical devices, or in
punched tape is usually encoded in binary. Thus, the programmer and the operator
can usually ignore the physical characteristics of the storage medium. In other
words, the bit pattern 10010011 can be encoded as holes in a strip of paper tape, as
magnetic charges on a mylar-coated disk, as positive voltages in an integrated cir-
cuit memory cell, or as minute craters on the surface of the CD. In all cases
10010011 represents the decimal number 147.

3.2.2 Word Size

In electronic digital devices the bistable states are represented by a binary digit, or
bit. Circuit designers group several individual cells to form a unit of storage that holds

38 Chapter 3

DIGIT POSITIONAL WEIGHT

2 = 128

2 = 64

2 = 32

2 = 16

2 = 8

2 = 4

2 = 2

2 = 1

7

6

5

4

3

2

1

0

0 (LEAST SIGNIFICANT BIT)

1

2

3

4

5

6

7 (MOST SIGNIFICANT BIT)

several bits. In a particular machine the basic unit of data storage is called the word
size. Word size in computers often ranges from 8 to 128 bits, in powers of 2.
Microcontrollers and other digital devices sometimes use word-sizes that are deter-
mined by their specific architectures. For example, some PIC microcontrollers use a
14-bit word size.

In most digital machines the smallest unit of storage individually addressable is
eight bits (one byte). Individual bits are not directly addressable and must be manip-
ulated as part of larger units of data storage.

3.2.3 Byte Ordering
The storage of a single-byte integer can be done according to the scheme in Figure 3-1.
However, the maximum value that can be represented in eight bits is the decimal num-
ber 255. To represent larger binary integers requires additional storage area. Since
memory is usually organized in byte-size units, any decimal number larger than 255 re-
quires more than one byte of storage. In this case the encoding is padded with the nec-
essary leading zeros. Figure 3-2 is a representation of the decimal number 21,141
stored in two consecutive data bytes.

Figure 3-2 Representation of an Unsigned Integer

One issue related to using multiple memory bytes to encode binary integers is the
successive layout of the various byte-size units. In other words, does the representa-
tion store the most significant byte at the lowest numbered memory location, or
viceversa. For example, when a 32-bit binary integer is stored in a 32-bit storage
area we can follow the conventional pattern of placing the low-order bit on the
right-hand side and the high-order bit on the left, as we did in Figure 3-1. However, if
the 32-bit number is to be stored into four byte size memory cells, then two possible
storage schemes are possible, as shown in Figure 3-3.

Figure 3-3 Byte Ordering Schemes

Data Types and Data Storage 39

= 01010010 10010101 = 21,141

binary

machine storage

decimal

32 bits 32 bits

memory bytes
memory bytes

low low

low
low

high

LOW-TO-LOW STORAGE SCHEME HIGH-TO-LOW STORAGE SCHEME

high

high

high

In the low-to-low storage scheme the low-order 8-bits of the operand are stored in
the low-order memory byte, the next group of 8-bits are moved to the following
memory byte in low-to-high order, and so on. Conceivably, this scheme can be de-
scribed by saying that the “little end” of the operand is stored first, that is, in lowest
memory. According to this notion, the storage scheme is described as the lit-

tle-endian format. If the “big-end” of the operand, that is, the highest valued bits, is
stored in the low memory addresses then the byte ordering is said to be in
big-endian format. Some Intel processors (like those of 80x86 family) follow the lit-
tle-endian format. Some Motorola processors (like those of the 68030 family) follow
the big-endian format, while others (such as the MIPS 2000) can be configured to
store data in either format.

In many situations the programmer needs to be aware of the byte-ordering
scheme; for example, to retrieve memory data into processor registers so as to per-
form multi-byte arithmetic, or to convert data stored in one format to the other one.
This last operation is a simple byte-swap. For example, if the hex value 01020304 is
stored in four consecutive memory cells in low-to-high order (little-endian format) it
appears in memory (low-to-high) as the values 04030201. Converting this data to the
big-endian format consists of swapping the individual bytes so that they are stored
in the order 01010304. Figure 3-4 is a diagram of a byte swap operation.

Figure 3-4 Data Format Conversion by Byte Swapping

3.2.4 Sign-Magnitude Representation

Representing signed numbers requires differentiating between positive and negative
magnitudes. One possible scheme is to devote one bit to represent the sign. Typically
the high-order bit is set (1) to denote negatives and reset (0) to denote positives. Using
this convention the decimal numbers 93 and -93 are represented as follows:

01011101 binary = 93 decimal

11011101 binary = -93 decimal

|

|—————————- sign bit

This way of designating negative numbers, called a sign-magnitude representa-
tion, corresponds to the conventional way in which we write negative and positive
numbers longhand, that is, we precede the number by its sign. Sign-magnitude rep-
resentation has the following characteristics:

40 Chapter 3

23 16

23 16

31 24

31 24

15 8

15 8

7 0

7 0

1. The absolute value of positive and negative numbers is the same.

2. Positive numbers can be distinguished from negative numbers by examining the
high-order bit.

3. There are two possible representations for zero, one negative (10000000B) and one
positive (00000000B).

But a major limitation of sign-magnitude representation is that the processing re-
quired to perform addition is different from that for subtraction. Complicated rules
are required for the addition of signed numbers. For example, considering two
operands labeled x and y, the following rules must be observed for performing
signed addition:

1. If x and y have the same sign, they are added directly and the result is given the com-
mon sign.

2. If x is larger than y, then y is subtracted from x and the result is given the sign of x.

3. If y is larger than x then x is subtracted from y and the result is given the sign of y.

4. If either x or y is 0 or -0 the result is the non-zero element.

5. If both x and y are -0, then the sum is 0.

However, there are other numeric representations that avoid this situation. A
consequence of sign-magnitude representation is that, in some cases, it is necessary
to take into account the magnitude of the operands in order to determine the sign of
the result. Also, the presence of an encoding for negative zero reduces the numeri-
cal range of the representation and is, for most practical uses, an unnecessary com-
plication. An important limitation of using the high-order bit for representing the
sign is the resulting halving of the numerical range.

3.2.5 Radix Complement Representation

The radix complement of a number is defined as the difference between the number
and the next integer power of the base that is larger than the number. In decimal num-
bers the radix complement is called the ten’s complement. In the binary system the ra-
dix complement is called the two’s complement. For example, the radix complement
of the decimal number 89 (ten’s complement) is calculated as follows:

100 = higher power of 10

- 89

11 = ten’s complement of 89

The use of radix complements to simplify machine subtraction operations can
best be seen in an example. The operation x = a - b with the following values:

a = 602

b = 353

602

- 353

x = 249

Data Types and Data Storage 41

Note that in the process of performing longhand subtraction we had to perform
two borrow operations. Now consider that the radix complement (ten’s comple-
ment) of 353 is:

1000 - 353 = 647

Using complements we can reformulate subtraction as the addition of the ten’s
complement of the subtrahend, as follows:

602
+ 647

1249
|____________ discarded digit

The result is adjusted by discarding the digit that overflows the number of digits
in the operands.

In performing longhand decimal arithmetic there is little advantage in replacing
subtraction with ten’s complement addition. The work of calculating the ten’s com-
plement cancels out any other possible benefit. However, in binary arithmetic the
use of radix complements entails significant computational advantages because bi-
nary machines can calculate complements efficiently.

The two’s complement of a binary number is obtained in the same manner as the
ten’s complement of a decimal number, that is, by subtracting the number from an
integer power of the base that is larger than the number. For example, the two’s
complement of the binary number 101 is:

1000B = 2^3 = 8 decimal (higher power of 2)
- 101B = 5 decimal
_________ _________

011B = 3 decimal

While the two’s complement of 10110B is calculated as follows:

100000B = 2^5 = 32 decimal (higher power of 2)
- 10110B = 22 decimal

_______ __________
01010B 10 decimal

You can perform the binary subtraction of 11111B (31 decimal) minus 10110B (22
decimal) by finding the two’s complement of the subtrahend, adding the two
operands, and discarding any overflow digit, as follows:

11111B = 31 decimal
+ 01010B = 10 decimal (two’s complement of 22)

101001B

discard______|
01001B = 9 decimal (31 minus 22 = 9)

In addition to the radix complement representation, there is a diminished radix
representation that is often useful. This encoding, sometimes called the radix-mi-

nus-one form, is created by subtracting 1 from an integer power of the base that is
larger than the number, then subtracting the operand from this value. In the decimal

42 Chapter 3

system the diminished radix representation is sometimes called the nine’s complement.
This is due to the fact that an integer power of ten, minus one, results in one or more
9-digits. In the binary system the diminished radix representation is called the one’s com-
plement. The nine’s complement of the decimal number 76 is calculated as follows:

100 = next highest integer power of 10

99 = 100 minus 1
- 76

23 = nine’s complement of 89

The one’s complement of a binary number is obtained by subtracting the number from
an integer power of the base that is larger than the number, minus one. For example, the
one’s complement of the binary number 101 (5 decimal) can be calculated as follows:

1000B = 2^3 = 8 decimal

111B = 1000B minus 1 = 7 decimal
- 101B 5 decimal

------ ---------
010B = 2 decimal

An interesting feature of one’s complement is that it can be obtained changing every 1
binary digit to a 0 and every 0 binary digit to a 1. In this example 010B is the one’s comple-
ment of 101B. In this context the 0 binary digit is often said to be the complement of the 1
binary digit, and vice versa. Most modern computers contain an instruction that inverts
all the digits of a value by changing all 1 digits into 0, and all 0 digits into 1. The operation
is also known as logical negation.

Furthermore, the two’s complement can be obtained by adding 1 to the one’s comple-
ment of a number. Therefore, instead of calculating

100000B
- 10110B

01010B

we can find the two’s complement of 10110B as follows:

10110B = number
01001B = change 0 to 1 and 1 to 0 (one’s complement)

+ 1B then add 1

01010B = two’s complement

This algorithm provides a convenient way of calculating the two’s complement in a
machine equipped with a complement instruction. Finally, the two’s complement can be
obtained by subtracting the operand from zero and discarding the overflow.

The radix complement of a number is the difference between the number and an inte-
ger power of the base that is larger than the number. Following this rule, we calculate the
radix complement of the binary number 10110 as follows:

100000B = 2^5 = 32 decimal
- 10110B = 22 decimal

------- ----------
01010B 10 decimal

Data Types and Data Storage 43

However, the machine calculation of the two’s complement of the same value of-
ten produces a different result, for example:

100000000B = 28 = 256 decimal

- 00010110B = 22 decimal

__________ ___________

11101010B 234 decimal

The difference is due to the fact that in the longhand method we have used the
next higher integer power of the base compared to the value of the subtrahend (in
this case 100000B) while the machine calculations use the next higher integer power
of the base compared to the operand’s word size, which is normally either 8 or 16
bits. In this example the operand’s word size is eight bits and the next highest inte-
ger power of 2 is 100000000B. In either case, the results from two’s complement sub-
traction are valid as long as the minuend is an integer power of the base that is
larger than the subtrahend.

For example, to perform the binary subtraction of 00011111B (31 decimal) minus
00010110B (22 decimal) we can find the two’s complement of the subtrahend and
add, discarding any overflow digit, as follows:

00011111B = 31 decimal

+ 11101010B = 234 decimal (two’s complement of 22)

100001001B

discard____|

00001001B = 9 decimal (31 minus 22 = 9)

In addition to the simplification of subtraction, two’s complement arithmetic has
the advantage that there is no representation for negative 0. It can be argued that
there are cases in which a negative zero notation could be useful, but in fact this is
usually unnecessary. While both the two’s complement and the one’s complement
schemes can be used to implement binary arithmetic, system designers usually pre-
fer the two’s complement.

3.3 Encoding of Fractional Numbers
In any positional number system the weight of each integer digit is determined by the
formula:

P = d * BC

where d is the digit, B is the base or radix, and C is the zero-based column number,
starting from right to left. Therefore, the value of a multi-digit positive integer to n dig-
its can be expressed as a sum of the digit values:

dn*Bn + dn-1*Bn-1 + dn-2*Bn-2 + ... + d0*B0

where d is the value of the digit and B is the base or radix of the number system. This
representation can be extended to represent fractional values. Recalling that we can

44 Chapter 3

extend the sequence to the right of the radix point, as follows:

Figure 3-5 Positional Weights in a Binary Fraction

In the decimal system the value of each digit to the right of the decimal point is
calculated as 1/10, 1/100, 1/1000, and so on. The value of each successive digit of a
binary fraction is the reciprocal of a power of 2; therefore, the sequence is: 1/2, 1/4,
1/8, 1/16, Figure 3-5 shows the positional weight of the integer and fractional dig-
its in a binary number.

In Chapter 2 we used the positional weights of the binary digits to convert a bi-
nary number to its decimal equivalent. A similar method can be used to convert the
fractional part of a binary number. Using the decimal equivalents shown in Figure
3-5 we convert the binary fraction .10101 to a decimal fraction as follows

.1 0 1 0 1

| | |

.500 _____________________| | |

.125 _________________________| |

.03125 ____________________________|

.65625

3.3.1 Fixed-Point Representations

The encoding and storage of fractional numbers (also called real numbers) in binary
form presents several difficulties. The first one is related to the representation of the
radix point. Since there are only two symbols in the binary set, and both are used to
represent the numerical value of the number, there is no other symbol available for the
decimal point.

Data Types and Data Storage 45

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

INTEGER PART

2 = 128

2 = 64

2 = 32

2 = 16

2 = 8

2 = 4

2 = 2

2 = 1

7

6

5

4

3

2

1

0

FRACTIONAL PART

.500 1/2 2

.250 1/4 2

.125 1/8 2

.0625 1/16 2

.03125 1/32 2

.015625 1/64 2

.0078125 1/128 2

.00390625 1/256 2

-1

-2

-3

-4

-5

-6

-7

-8

radix point

x
x

n
n

− = 1

Figure 3-6 Binary Fixed-Point Representation

One possible solution is to predefine the digit field that represents the integer
part and the one that represents the fractional part. For example, if a real number is
to be encoded in two data bytes we can assign the high-order byte to encode the in-
teger part and the low-order byte for the fractional part. In this case, the positive
decimal number 58.125 could be encoded as shown in Figure 3-6.

In Figure 3-6 we assumed that the binary point is positioned between the eighth
and the ninth digit of the encoding. Fixed-point representations assume that what-
ever distribution of digits is selected for the integer and the fractional part of the
representation is maintained in all cases. This is the greatest limitation of the
fixed-point formats.

Suppose we want to store the value 312.250. This number is represented in binary
as follows:

312 = 100111000
.250 = .01

In this case, the total number of binary digits required for the binary encoding is
11. The number can be physically stored in a 16-digit structure (as the one in Figure
3-6) leaving five cells to spare. However, since the fixed-point format we have
adopted assigns eight cells to the integer part of the number, 312.250 cannot be en-
coded because the integer part requires nine binary digits. In spite of this limitation,
the-fixed point format was the only one used in early computers.

3.3.2 Floating-Point Representations
An alternative to fixed-point is not to assume that the radix point has a fixed position
in the encoding, but to allow it to float, hence the name floating-point. The idea of sep-
arately encoding the position of the radix point originated in scientific notation,
where a number is written as a base greater than or equal to 1 and smaller than 10, mul-
tiplied by a power of 10. For example, the value 310.25 in scientific notation is written:

A number in scientific notation has a real part and an exponent part. Using the
terminology of logarithms these two parts are sometimes called the mantissa and
the characteristic. The following simplification of scientific notation is often used
in computer work:

3.1025 E2

46 Chapter 3

= 00111010 00100000 = 58.125

binary decimal

implied binary point

31025 102. ×

In the computer version of scientific notation the multiplication symbol and the
base are implied. The letter E, which is used to signal the start of the exponent part
of the representations, accounts for the name “exponential form.” Numbers smaller
than 1 can be represented in scientific notation or in exponential form by using neg-
ative powers. For example, the number .0004256 can be written:

or as

4.256 E-4

Floating-point representations provide a more efficient use of the machine’s stor-
age space. For example, the numerical range of the fixed point encoding shown in
Figure 3-6 is from 255.99609375 to 0.00390625. To improve this range we can
re-assign the sixteen bits of storage so that four bits are used for encoding the expo-
nent and twelve bits for the fractional part, called the significand. In this case the
encoded number appears as follows:

0000 000000000000

+--+ +----------+

|__________ 12-bit fractional part

(significand)

|___________________ 4-bit exponent part

If we were to use the first bit of the exponent to indicate the sign of the exponent,
then the range of the remaining three digits would be 0 to 7. Note that the sign of the
exponent indicates the direction in which the decimal point is to be moved; this is
unrelated to the sign of the number. In this example, the fractional part (or
significand) could hold values in the range 1,048,575 to 1. The combined range of ex-
ponent and significand allows representing decimal numbers in the range 4095 to
0.00000001 that considerably exceeds the range in the same storage space in
fixed-point format.

3.3.3 Standardized Floating-Point Representations

Both the significand and the exponent of a floating-point number can be stored as an
integer, in sign-magnitude, or in radix complement form. The number of bits assigned
to each field varies according to the range and the precision required. For example,
the computers of the CDC 6000, 7000, and CYBER series used a 96-digit significand
with an 11-digit exponent, while the PDP 11 series used 55-digit significands and
8-digit exponents in their extended precision formats.

Variations, incompatibilities, and inconsistencies in floating-point formats led to
the development of a standard format. In March and July 1985, the Computer Soci-

ety of the Institute of Electric and Electronic Engineers (IEEE) and the American

National Standards Institute (ANSI) approved a standard for binary floating-point
arithmetic (ANSI/IEEE Standard 754-1985). This standard establishes four formats
for encoding binary floating-point numbers. Table 3.1 summarizes the characteris-
tics of these formats.

Data Types and Data Storage 47

4 256 10 4. × −

Table 3.1

ANSI/IEEE Floating Point Formats

PARAMETER SINGLE SINGLE DOUBLE DOUBLE
EXTENDED EXTENDED

total bits 32 43 64 79
significand bits 24 32 53 64
maximum exponent +127 1023 1023 16383
minimum exponent -126 1022 -1022 16382
exponent width 8 11 11 15
exponent bias +127 --- +1023 ---

3.3.4 IEEE 754 Single Format
Figure 3-7 shows the IEEE floating-point single format.

Figure 3-7 IEEE Floating-Point Single Format

If a floating-point encoding is to allow the representation of signed numbers it
must devote one binary digit to encode the number’s sign. In the IEEE 754 single for-
mat in Figure 3-7 the high-order bit represents the sign of the number. A value of 1
indicates a negative number.

The exponent of a binary floating-point number represents the integer power of
the base with which the significand must be multiplied. The exponent can be stored
in integer, sign magnitude, or radix complement representations. The IEEE 754 stan-
dard for floating-point arithmetic establishes that the exponent be stored in biased
form, although the bias is not defined in all formats defined in the standard.

The word bias, in this context, means a constant that is added to the exponent in
order to determine its final value. The term excess-n notation has also been used in
this context. The constant is usually calculated to be approximately one-half the nu-
merical range of the exponent field. For example, the IEEE single format devotes
eight digits for the exponent field (see Figure 3-7). The numerical range of eight bi-
nary digits is 0 to 255 decimal and one-half of this range is approximately 127.
Adding the constant 127 to all positive exponents places them in the range 127 to
255. The lower half of the range (1 to 126) is used for negative exponents. A 0-value
in the exponent field is reserved to encode zero and denormals. Denormals are a
special type of number discussed in the following paragraph. Table 3.2 shows the
values of the exponent and the biased representation in the IEEE single format for
floating-point numbers.

48 Chapter 3

31

30 22 0 bits

mantissa (23 bits)exponent (8 bits)

sign of the number (1 bit)

Table 3.2

Interpretation of Exponent in the IEEE Single Format

BIASED SIGN OF TRUE
EXPONENT NUMBER EXPONENT SIGNIFICAND CLASS

0000 0000 + - 00 ... 00 positive zero
- - 00 ... 00 negative zero

11 ... 11
to
00 ... 01 denormals

0000 0001 - -126 00 ... 00 normals
to to to
0111 1111 0 11 ... 11
1000 0000 - 1 00 ... 00 normals
to to to
1111 1110 127 11 ... 11

1111 1111 + - 00 ... 00 + infinity
- 00 ... 00 - infinity
- 10 ... 00 indefinite
- 00 ... 01

to
11 ... 11 not-a-number

Note in Table 3.2 that the exponent value 00000000B is used to represent zero and
denormal numbers. Denormals, or denormalized numbers, occur when the exponent
of the number is too small to represent in the corresponding floating-point format.
On the other hand, the exponent 11111111B is used to encode numbers that are too
large for the single format, or to represent error conditions. The exponent range
00000001B to 11111110B (decimal values 1 to 254) is used to represent normal num-
bers, that is, numbers that are within the range of the format.

In IEEE 754 floating-point formats the high bit of the exponent field does not en-
code the sign, as is the case in the sign-magnitude form. Instead, the bias 127
scheme, mentioned previously, is used to represent negative and positive expo-
nents. Negative exponents are in the range 1 to 127 (see Table 3.2) and positive ex-
ponents are in the range 128 to 254. In contrast with fixed point conventions, the
high bit of the exponent is set to indicate a positive exponent, and is zero to indicate
negative exponent. The main advantage of a biased exponent is that the numbers
can be compared bitwise, from left to right, to determine the larger one. The num-
ber’s true exponent is obtained by subtracting the bias.

The third field of the floating-point representation is known by several names:
fractional part, mantissa, characteristic, and significand (see Figure 3-7). The word
significand is the one most commonly used in the literature. Like the exponent, the
significand can be stored as an integer, or in sign-magnitude or radix complement
representations.

A floating-point binary number is said to be in normalized form when the first
digit of its significand is 1. An un-normalized binary floating-point number can be
normalized by successively shifting the digits of the significand to the left, while si-
multaneously subtracting one from the exponent. This process is continued until the

Data Types and Data Storage 49

high-order bit of the significand is a binary 1. The process does not change the value
of the number, since shifting the significand bits to the left effectively multiplies the
number by 2, while subtracting one from the exponent divides the number by 2.
Clearly, the value of a number does not change if it is multiplied and divided by the
same value. Also, note that normalization applies to the entire encoded number
since it requires adjustments of both the exponent and the significand. Therefore, it
is not correct to speak of a normalized significand or a normalized mantissa; we
should refer to the significand of a normalized floating-point number.

One advantage of the normalized form is that the significand contains a maximum
number of significant bits. However, addition and subtraction of floating-point num-
bers require that both operands have the same exponent. Therefore, before perform-
ing these operations it is often necessary to shift the significand digits to the right or
to the left so that the exponents are equal.

The IEEE standard takes advantage of the fact that a normalized significand of a
binary floating-point starts with a 1-digit. In the single- and double-precision for-
mats this leading bit of the significand is assumed, in effect doubling the range of
the representation. Not so in the extended formats, in which the digit must be ex-
plicitly coded. Note that this assumption is not valid if the exponent is all zeros. A
zero exponent and a non-zero significand indicate a denormal, as shown in Table
3.2. Also, the use of an implicit bit makes necessary a special representation for zero
(see Table 3.2). This special zero must be handled separately during arithmetic oper-
ations.

3.3.5 Encoding and Decoding Floating-Point Numbers

The formats in the IEEE 754 standard for binary floating-point arithmetic were de-
signed to provide maximum storage capacity and processing efficiency. For example,
the exponent in the IEEE single format, stored in biased form, takes up eight bits; how-
ever, these eight bits do not fall on a byte boundary. The exponent bits take up seven
bit positions in the high-order byte, and one bit position in the next byte, as shown in
Figure 3-7. In the same IEEE single encoding the significand takes up seven bits of the
second byte as well as the third and fourth bytes. The sign of the number is the
high-order bit of the high-order byte. Figure 3-8 shows the number 127.375 stored in
the IEEE floating-point single format.

The encoding in Figure 3-8 is interpreted as follows:

sign of number = 0 (positive)

biased exponent = 10000101B = 133 decimal

real exponent = 133 - bias = 133 - 127 = 6

significand = 1.1111110 11000000 00000000 (adding explicit digit)

significand is adjusted by moving the radix point six places

to the right

new significand = 1111111.01100...000

The significand bits are intepreted as follows::

integer part = 1111111 = 127

fractional part = .01100..00 = .375

50 Chapter 3

bit value: 11111110-11000000-00000000 = 16,695,296

|------| |---------------|

| |

| |________ fractional part

|____________________ integer part

number: 127.375

3.4 Binary-Coded Decimals (BCD)
Floating-point encodings are the most efficient format for storing numerical data in a
digital device and binary arithmetic is the fastest way to perform numerical calcula-
tions. But other representations are also useful. BCD (binary-coded decimal) is a way
of representing decimal digits in binary form. There are two common ways of encod-
ing decimal digits in binary format. One is known as the packed BCD format and the
other one as unpacked. In the unpacked format each BCD digit is stored in one byte. In
packed form two BCD digits are encoded per byte. The unpacked BCD format does not
use the four high-order bits of each byte, which is wasted storage space. On the other
hand, the unpacked format facilitates conversions and arithmetic operations on some
machines. Figure 3.9 shows the memory storage of a packed and unpacked BCD num-
ber.

Data Types and Data Storage 51

Figure 3-8 Encoding of the Number 127.375 in IEEE Single Format

0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0

1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

m m m m m m m m

e m m m m m m m

s e e e e e e e

m m m m m m m m

significand
field

implied leading digit

exponent
field

sign of number
field

10000101 1.1111110 1100000 00000000

42H

42H

FEH

FEH

C0H

C0H

00H

00H

MEMORY LAYOUT OF 127.375
IN LITTLE-ENDIAN FORMAT

MEMORY LAYOUT MAP FOR
IEEE SINGLE FORMAT

LOW ADDRESS
LOW ADDRESS

HIGH ADDRESS

HIGH ADDRESS

16 17 18 19 20 21 22 23

8 1 2 3 4 5 6 7

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

legend:
s = sign bit
e = exponent bit
m = mantissa bit

Figure 3-9 Packed and Unpacked BCD

3.4.1 Floating-Point BCD
Unlike the floating-point binary numbers, binary-coded decimal representations and
BCD arithmetic have not been explicitly described in a formal standard. Each machine
or software package stores and manipulates BCD numbers in a unique and often in-
compatible way. Some machines include packed decimal formats, which are
sign-magnitude BCD representations. These integer formats are useful for conver-
sions and input-output operations. For performing arithmetic calculations a float-
ing-point BCD encoding is required. This approach provides all the advantages of
floating-point as well as the accuracy of decimal encodings.

The BCD floating-point format which we call BCD12 is shown Figure 3-8.

Figure 3-10 Map of the BCD12 Format

BCD12 requires 12 bytes of storage and is described as follows:

1. The sign of the number (S) is encoded in the left-most packed BCD digit. Therefore, the
first four bits are either 0000B (positive number) or 0001B (negative number).

2. The sign of the exponent is represented in the four low-order bits of the first byte. The
sign of the exponent is also encoded in one packed BCD digit. As is the case with the
sign of the number field, the sign of the exponent is either 0000B (positive exponent)
or 0001B (negative exponent)

3. The following two bytes encode the exponent in four packed BCD digits. The decimal
range of the exponent is 0000 to 9999.

4. The remaining nine bytes are devoted to the significand field, consisting of 18 packed
BCD digits. Positive and negative numbers are represented with a significand normal-

52 Chapter 3

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1

9

7

3 79

2 23

UNPACKED BCD PACKED BCD

S s e e e e m m m m m m m m m m m m m m m m m m

sign of exponent (1 BCD digit)

sign of number (1 BCD digit)

exponent (4 BCD digits)

significand (18 BCD digits)

ized to the range 1.00...00 to 9.00...99. The decimal point following the first significand
digit is implied. The special value 0 has an all-zero significand.

5. The special value FF hexadecimal in the number’s sign byte indicates an invalid num-
ber.

The structure of the BCD12 format is described in Table 3.4.

Table 3.4

Field Structure of the BCD12 Format

CODE FIELD NAME BITS WIDE BCD DIGITS RANGE

S sign of number 4 1 0 - 1 (BCD)
S sign of exponent 4 1 0 - 1 (BCD)
E exponent 16 4 0 - 9999
M significand 72 18 0 - 99..99 (18 digits)

Format size 96 (12 bytes)

Notes:
1. The significand is scaled (normalized) to a number

in the range 1.00..00 to 9.99..99.
2. The encoding for the value zero (0.00..00) is a

special case.
3. The special value FFH in the sign byte indicates

an invalid number.

The BCD12 format, as is the case in all BCD encodings, does not make ideal use
of the available storage space. In the first place, each packed BCD digit requires
four bits, which in binary could serve to encode six additional combinations. At a
byte level the wasted space is of 100 encodings (BCD 0 to 99) out of a possible 256 (0
to FFH). The sign field in the BCD12 format is wasteful since only one binary digit is
actually required for storing the sign. Regarding efficient use of storage, BCD for-
mats cannot compete with floating-point binary encodings. The advantages of BCD
representations are a greater ease of conversion into decimal forms, and the possi-
bility of using the processors’ BCD arithmetic instructions.

Data Types and Data Storage 53

Chapter 4

Digital Logic, Arithmetic, and Conversions

This chapter is about the fundamental arithmetic and logical operations of digital ma-
chines. It serves as a background for developing processing routines which involve de-
cisions, data filtering and processing, and number crunching. Here we discuss logical
and arithmetic operations in general, that is, without reference to any individual pro-
cessor. There are so many different hardware versions of microcontrollers that it is
not feasible to develop an actual routine for each device. On the other hand, once the
logic is understood, the actual coding is a simple process of finding a way of imple-
menting it in a specific instruction set. The chapter also includes material related to
data type conversions since these operations are closely related to the other material
in this chapter.

4.0 Microcontroller Logic and Arithmetic
All microcontrollers contain instructions to perform arithmetic and logic transforma-
tions on binary or decimal operands. These instructions can be classified into three
groups:

1. Logical instructions. Sometimes these are called Boolean operators. The group in-
cludes instructions with mnemonics such as AND, NOT, OR, and XOR. They perform
the logical functions that correspond to their names.

2. Arithmetic instructions. Typically this group of instructions performs integer addition
and subtraction. Occasionally, the instruction set includes multiplication and division.
The operands can be signed or unsigned binary and binary coded decimal numbers.

3. Auxiliary and bit manipulation instructions. This group includes instructions to shift
and rotate bits, to compare operands, to test, set, and reset individual binary digits,
and to perform various auxiliary operations.

4.0.1 CPU Flags

All microcontrollers are equipped with a special register that reflects the current pro-
cessing status. This register, sometimes called the status register or the flags register,
contains individual bits, usually called flags, that are meaningful during the execution
of logic and arithmetic operations. The most common flags are:

55

1. The zero flag. This flag is set if a previous operation produces a value of zero.

2. The carry/overflow flag. This flag is set if there has been a carry or a borrow-out of the
high-order bit of the operand.

3. The half-carry or digit-carry flag. This flag is set if there has been a carry or a bor-

row-out of the low-order nibble of the operand.

Not all instructions affect all the flags. For example, loading a zero constant into
a register may be said to produce a zero value; however, such an instruction may or
may not affect the zero flag, according to the implementation on each particular de-
vice. More powerful and sophisticated microcontrollers sometimes implement other
flags, such as flags to indicate a negative operand, an arithmetic overflow, or an in-
terrupt.

4.0.2 Word Size

The word-size of a computer or a digital device refers to the number of bits used in
storing data and in moving data in and out of the various machine units. In other
words, a machine’s word-size is the native data unit for a particular architecture. In
this manner we speak of the Pentium having a 32-bit word size or the PIC16x84 having
an 8-bit word-size for data operations and 14-bit program words.

In the context of digital arithmetic and logic the data word-size determines the
processing capabilities of each device. For example, a machine with an 8-bit
word-size can perform unsigned addition of operands whose sum does not exceed
the decimal value 255, since 255 is the largest unsigned integer that can be stored in
eight bits. However, a machine with 16-bit words can perform unsigned additions up
to a sum of 65,535 since it is the largest number that can be stored in 16 bits.

Therefore, the coding of numerical routines is determined by the word size of the
machine or device. A device with 8-bit word-size requires multi-byte arithmetic to
perform addition that exceeds a sum of 255, while a machine with a 16-bit word can
do direct addition up to the sum 65,535. Considering that most popular
microcontrollers have 8-bit word-sizes, we assume this limit in the arithmetic and
logic algorithms and routines developed in this chapter.

4.1 Logical Instructions
The logical instructions include the Boolean operators, AND, OR, NOT, and XOR, as
well as instructions to shift and rotate individual bits.

The logical instructions operate on a bit-by-bit basis; therefore, in the AND, OR,
NOT, and XOR there is no interaction between bits. The action performed by the log-
ical instructions is as follows:

1. AND, OR, and XOR logically combine each bit in the source operand with the corre-
sponding bit in the destination operand. The result does not affect the neighboring
bits.

2. The NOT operator inverts all bits in the destination operand.

56 Chapter 4

These actions explain the term bitwise operation sometimes used to describe the
instructions.

4.1.1 Logical AND
The AND instruction performs a bitwise logical AND of two operands. This deter-
mines that a bit in the result is set if and only if the corresponding bits are set in both
operands. A frequent use of the AND operation is to clear one or more bits without af-
fecting the remaining ones. This action is possible because ANDing with a 0 bit always
clears the result bit and ANDing with a 1 bit preserves the original value of the first op-
erand.

For example, if we have the binary coded decimal number 34 packed into a single
byte, we can isolate the four low-order bits as follows:

hexadecimal binary
34 0011 0100

AND 0F 0000 1111 mask
------------- ---------

04 0000 0100

The second operand, in this case 0FH, is called a mask. The AND operation pre-
serves the 1-bits in the mask and clears the bits that are 0. Consequently, the mask
00000001B clears the seven high-order bits and preserves the original value of the
low-order bit.

4.1.2 Logical OR
The OR operation performs the bitwise logical inclusive OR of two operands. After a
logical OR, a bit in the result is set if one or both of the corresponding bits in the
operands were set. A frequent use for the OR is to selectively set one or more bits. The
action takes place because ORing with a 1-bit always sets the result bit, while ORing
with a 0-bit preserves the original value in the first operand.

For example, to set the high-order bit (bit number 7) we can OR with a 1 bit, as
follows:

hexadecimal binary
34 0011 0100

OR 80 1000 0000 mask
---- ---------
B4 1011 0100

The OR operation sets the bits that are 1 in the mask and preserves the bits that
are masked 0.

4.1.3 Logical XOR
The XOR operator performs the bitwise logical exclusive OR of the two operands.
Therefore, a bit in the result is set if the corresponding bits in the operands have oppo-
site values. For this reason, XORing a value with itself always generates a zero result
since all bits necessarily have the same value. On the other hand, XORing with a 1-bit
inverts the value of the other operand, since 0 XOR 1 is 1 and 1 XOR 1 is 0. This toggling
action of XORing with a 1 bit generates identical bitwise results as the NOT operation,

Digital Logic, Arithmetic, and Conversions 57

but by selecting the XOR mask, the programmer can control which bits of the operand
are inverted and which are preserved.

In this manner it is possible to invert the four high-order bits of an operand by
XORing with a mask that has these bits set. If the four low-order bits of the mask are
clear, then the original values of the bits in the other operand are preserved in the
result. For example:

hexadecimal binary

55 0101 0101

XOR F0 1111 0000 mask

---- ---------

A5 1010 0101

In the previous example, the XOR operation inverts the bits that are 1 in the mask
and preserves the bits that are masked 0. Consequently, the XOR mask 11110000B
inverts the four high-order bits.

4.1.4 Logical NOT

In contrast with the other logical operators which require two operands, the NOT in-
struction acts on a single value. Its action is consistent with a Boolean NOT function,
which converts all 1-bits to 0 and all 0-bits to 1. Arithmetically, the result is the one’s
complement of the original value. This instruction can be useful in obtaining the two’s
complement representation by performing the logical NOT and then adding one to the
results.

4.2 Microcontroller Arithmetic
Microcontrollers are not designed for intensive numeric processing; therefore, they
are not equipped with many arithmetic operators usually found in microprocessors. A
typical mid-range microcontroller has instructions to add and subtract integers and
perhaps to increment and decrement. Hardware multiplication is rarely available and
even more so is division. Likewise, there is usually no hardware support for decimal
and floating-point arithmetic. For this reason the microcontroller programmer is of-
ten challenged to provide most arithmetic and data processing operations in software.

In this discussion we assume a mid-range microcontroller, such as the PIC 16f8x.
These devices contain primitives for adding and subtracting integers, shifting and
rotating bits, incrementing and decrementing machine registers, some support for
decimal operations and conversions, as well as the basic logic primitives AND, OR,
XOR, and NOT. Multiplication and division operators, as well as floating-point oper-
ators, are not available in the mid-range devices.

4.2.1 Unsigned and Two’s Complement Arithmetic

In Chapter 3 we discussed the various representations for signed and unsigned binary
and decimal numbers. Arithmetic operations of unsigned operands are the simplest.
In this case we assume that the encoding always represents a positive number and that
all bits relate to the number’s magnitude.

58 Chapter 4

Unsigned arithmetic can be binary or decimal. In a machine with 8-bit words bi-
nary arithmetic on unsigned numbers use the entire range of the format. This is true
even when the primitive operations are valid in two’s complement form; in fact, it is
one of the great advantages of two’s complement representation. Table 4.1 shows a
4-bit binary in several numeric formats.

Table 4.1

Interpretations of 4-bit Binary Numbers

DECIMAL VALUES
BINARY 1’S COMPLEMENT 2’S COMPLEMENT UNSIGNED

0111 7 7 7
0110 6 6 6
0101 5 5 5
0100 4 4 4
0011 3 3 3
0010 2 2 2
0001 1 1 1
0000 0 0 0
1111 -0 -1 15
1110 -1 -2 14
1101 -2 -3 13
1100 -3 -4 12
1011 -4 -5 11
1010 -5 -6 10
1001 -6 -7 9
1000 -7 -8 8

Assume a machine with a 4-bit word size and consider addition of two unsigned
numbers:

BINARY DECIMAL
0111 7

+ 0110 6
------ ----
1101 13

Note, in the previous example, that if the encoding were in two’s complement
form, the addition of the positive values 6 plus 7 would produce a result that over-
flows the capacity of the representation. In 4-bit two’s complement representation
there is no way of encoding the value 13.

The question that arises is: in a device that performs two’s complement addition,
must we always assume that the operands are in two’s complement form? The an-
swer is: no. Signed addition of two’s complement operands and the unsigned addi-
tion of integer operands can be performed with identical processing and by the
same electronic circuitry. It is the software that must take into account the encoding
of the operands in order to interpret the results. For example, in the 4-binary digit
device previously considered, the two’s complement addition of the values 6 and 7
produce an overflow, which can be detected by observing the change in the
high-order bit (the sign bit) of the result. Therefore, in this case, the result of the ad-
dition operation is invalid. However, if the same decimal values represent unsigned
operands, then the addition of 7 plus 6 produce the valid result 13. In either case the
binary values of the operands, as well as the result, are the same.

Digital Logic, Arithmetic, and Conversions 59

Microcontrollers usually support the fundamental operations of addition and sub-
traction on signed and unsigned integer operands with a single primitive operation.
The addition and subtraction operators in low- and mid-range devices allow two
operands. The more powerful microcontrollers support addition and subtraction of
three operands, which is useful in implementing multi-digit routines. In either case,
the software determines if the result is signed or unsigned by interpreting the
changes in the high-order bit of the operands and by evaluating the status flags if
these are available.

4.2.2 Operations on Decimal Numbers

Although microcontrollers are binary devices, the instruction set often includes oper-
ations for performing arithmetic on binary coded decimal numbers. In Chapter 3 we
saw that BCD numbers can be stored in packed or unpacked form. In packed format
two BCD digits are contained in each byte. The low-order BCD digit takes up bits 0 to 3
and the high-order BCD digit takes up bits 4 to 7. Unpacked BCD digits are stored one
digit per byte; in this case the high-order nibble is unused. The packed and unpacked
binary coded decimal formats can be seen in Figure 3-9.

Microcontroller designers usually adopt the packed BCD format for representing
decimal operands. One advantage of packed BCDs is that the two decimal digits en-
coded in a single byte can be represented as hexadecimal digits. For example, the
values H24 and H99 represent the packed BCD digits 24 and 99 respectively. Note
that each hex digit is preceded by the letter H to indicate radix 16. In actual
microcontroller programming other ways are often used for representing numbers
in hexadecimal notation.

The addition and subtraction of decimal numbers represented in packed BCD can
be performed with binary primitive operations, complemented with some additional
adjustments. In some cases the addition of two BCD numbers in packed format may
produce a valid result, for example:

H23 H31 H56

+ H12 H38 H22

---- ---- ----

H35 H69 H78

In the previous examples the results are valid because the sum of each digit does
not exceed the range of the BCD format. However, the following additions do not
produce valid BCD results:

H33 H31 H56

+ H27 H59 H27

---- ---- ----

H5A H8A H7D

In the case of the first operation the valid BCD result would be: 33 + 27 = 60, in
the second one 31 + 59 = 90, and in the third one 56 + 27 = 83. A simple adjustment
corrects the error, as follows:

60 Chapter 4

H33 H31 H56
+ H27 H59 H27

--- --- ---
H5A H8A H7D

+ H 6 H 6 H 6
--- --- ---
H60 H90 H83

In all three cases adding 6 to the previous sum produces the expected result. The
logic for deciding when the value 6 must be added is simple: if the sum of the
low-order digit is greater than 9 or if the sum produced a carry out of the low-order
nibble, then add 6 to the sum to perform the decimal adjustment. Some high-end
microcontrollers contain a primitive instruction that executes the decimal adjust-
ment automatically, that is, without having to test the sum. However, this instruc-
tion is not available in low- and mid-range devices.

Also note that the largest number that can be encoded in packed BCD format is
the decimal 99. When adding two BCD digits the high-order digit of the sum cannot
be greater than 9. If so, then the capacity of the format has been exceeded and the
result cannot be adjusted by the simple addition of 6. Here again, a multi-byte pro-
cessing routine can be developed in order to accommodate the result of BCD addi-
tion when the sum exceeds a single byte.

Many microcontrollers are equipped with a flag that indicates overflow from bi-
nary digit number 3. This flag, sometimes called the digit carry or the half carry

flag, can be used to detect that a calculation has overflowed the storage capacity of
four binary digits. The availability of this flag simplifies the logic necessary for ad-
justing binary addition of decimal operands since the value 6 must be added when
the digit in the low-order nibble is larger than 9, or when there has been a carry to
the next digit. The following flowchart shows this processing.

Figure 4-1 Flowchart for Two-byte BCD Addition

Digital Logic, Arithmetic, and Conversions 61

START

END

ERROR

YES

YES

YES

NO

NO

NO

A = FIRST PACKED BCD

B = SECOND PACKED BCD

PERFORM C = A + B

C = C + 6LOW-ORDER NIBBLE

> 9

?

HIGH-ORDER NIBBLE

> 9

?

LOW-ORDER NIBBLE

OVERFLOW

?

4.3 Bit Manipulations and Auxiliary Operations
In addition to basic logic and arithmetic, microcontrollers contain primitive operators
to manipulate individual bits, to compare operands, to make decision based on the
state of individual bits and flags, and to convert data to other formats. As always, pres-
ence or absence of some of these operations, as well as their degree of power and so-
phistication, varies with the individual microcontroller. In the following subsections
we describe the most commonly available primitives.

4.3.1 Bit Shift and Rotate
The fundamental operators to shift and rotate are useful in developing BCD and binary
arithmetic routines. One interesting use of bit shifting is in implementing binary multi-
plication and division routines.

Shift operations consist of transposing to the left or right all the bits in the oper-
and. In microcontrollers the operand is usually a processor register. For example,
after a right shift operation all the bits in the value 01110101B (75H) are moved one
position to the right, resulting in the value 00111010B (3AH). Note that on a right
shift the right-most bit disappears and a zero comes into the high-order bit. By the
same token, in a left shift the high-order bit disappears and a zero comes into the
low-order bit. Figure 4-2 shows the action of a left-shift operation.

Figure 4-2 Left Shift Operation

The rotate operation differs from the shift in that in the rotate the low-order bit is
either a copy of the high-order bit or of the carry flag. In the first case the operation
is a pure rotate, in the second case the rotate is referred to as rotate-through-carry.
Figure 4-3 shows the action of a left-rotate-through-carry flag.

Figure 4-3 Rotate-through-carry Left Operation

62 Chapter 4

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0

BEFORE SHIFTlost
bit

AFTER SHIFT

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

CF

CF

FIRST STEP

SECOND STEP

Note in Figure 4-3 that the contents of the carry flag are first copied to the
low-order bit of the destination operand, then the individual bits of the source (in
gray in the illustration) are shifted left and moved to the destination. Finally the
high-order bit of the source is copied to the carry flag.

There are several possible variations of the rotate operation. The Intel micropro-
cessors distinguish between arithmetic and logic rotates. In the arithmetic rotation
the high-order bit is preserved in order to maintain the sign of the operand. The ro-
tate shown in Figure 4-3 is the one most common in microcontroller hardware.
Clearing the carry flag before the rotate takes place makes the operation identical to
a shift.

4.3.2 Comparison Operations
An interesting property of subtraction is its use in finding the relative size of two
operands. This interesting action of subtraction is based on the following logic:

1. If the result of a subtraction is zero, then both operands were of the same size.

2. If the result of a subtraction is a positive number, then the subtrahend was smaller than
the minuend.

3. If the result of a subtraction is a negative number, the subtrahend was larger than the
minuend.

In a binary/digital device the result of a subtraction operation can be determined
by observing the flags. If the zero flag is set, then the operands were the same (case
1, above). If the carry flag is set, then the subtrahend was larger than the minuend
(case 3, above). If neither the carry nor the zero flag is set, then resulting subtra-
hend was smaller than the minuend (case 2, above). Since all microcontrollers offer
some mechanism for re-directing execution according to the state of the flags, a pro-
gram can use subtraction to make these decisions.

The one objection to the use of subtraction in comparing the size of two operands
is that the process will change one of them. To use subtraction in comparison opera-
tions the programmer has to find some way of preserving the minuend. Alterna-
tively, some devices contain a comparison operator that sets the flags as if a
subtraction had taken place but without changing the operands. High-end
microcontrollers are equipped with dedicated comparison operators, but the mid-
dle- and low-range devices usually are not.

4.3.3 Other Support Operations
Mid- and high-range microcontrollers contain other auxiliary bitwise, arithmetic, and
logic operators that can be useful to the programmer. These include instructions to:

1. Increment and decrement operands

2. Clear registers or storage locations

3. Swap nibbles

4. Clear and set individual bits

5. Test individual bits

Digital Logic, Arithmetic, and Conversions 63

Usually instructions to increment and decrement and to test individual bits are
also capable of redirecting execution according to the result. For example, a special
decrement can be followed by a jump if decrementing sets the zero flag. Or a bit test
instruction can include a jump that is taken if the tested bit is set or reset.

4.4 Unsigned Binary Arithmetic
Since microcontrollers are not used in data processing, microcontroller programming
does not usually require the development of powerful or sophisticated numerical rou-
tines. At the same time, because microcontrollers often lack primitive support for
even the most essential calculations, the programmer makes up for this deficiency.
For example, mid-range PIC microcontrollers contain primitive instructions for
signed and unsigned addition and subtraction of byte-size operands. Unsigned addi-
tion and subtraction operations that exceed one byte, as well as unsigned multiplica-
tion and division, must be provided in software.

In unsigned arithmetic all bits of the binary encoding are interpreted as magni-
tude bits and all numbers are positive. Addition of unsigned binary numbers is lim-
ited by the machine’s word size. For example, a mid-range PIC microcontroller
performs unsigned addition on 8-bit operands. An overflow of the sum is reported
by the carry flag set. In this case the carry flag clear indicates that the sum is within
the storage capacity of the format. In unsigned arithmetic processing, routines for
extending operations to multiple bytes are straightforward and relatively simple.

4.4.1 Multi-byte Unsigned Addition
Many microcontrollers are one-byte machines, so operands and results for arithmetic
operations must be contained within eight bits. The largest unsigned value that can be
represented in a single byte is the decimal number 255. But often applications require
adding operands that are larger than a single byte and storing results that exceed this
limit. In these cases multi-byte routines become necessary.

The simplest case is the addition of two unsigned byte-size operands whose sum
exceeds 255 decimal. This case requires storing the result in a two-byte area and de-
tecting those cases in which there is a carry into the high-order byte. In this case the
largest possible operands for byte addition are the hexadecimal numbers FF. Addi-
tion is as follows:

Binary:
1 1 1 1 1 1 1 1

+ 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

C <=

In this example the symbol C <= represents a carry out of the high-order bit, the
case when the sum exceeds the capacity of a single byte. In hexadecimal, the sum of
HFF + HFF = H1FE. You can add two byte-size operands into a two-byte storage
area by using byte addition to determine the low-order byte of the result and testing
for a carry out of the high-order bit. If there is a carry, then the high-order byte of the
result is 1; otherwise the high-order byte is 0.

64 Chapter 4

Figure 4-4 Unsigned Multi-byte Addition

The same logic can be generalized to add more than two byte-size operands as
long as the storage area for the result exceeds the size of the operands by one byte.
For example, two word-size operands (16 bits each) can be added into a 3-byte
(24-bit) storage area, or two double-word operands (32 bits) into a 5-byte storage
area. The general algorithm for multi-byte addition is shown in Figure 4-4.

The case shown in Figure 4-4 consists of adding two, 4-byte operands into a
5-byte sum. The addition of the first two operands assumes that there is no carry. In
the remaining stages there can be a possible carry from the previous stage if the sum
of the two byte-size operands, plus the previous carry, exceed the storage capacity
of eight bits. The last byte of the result is determined solely by the possible carry
from the previous stage.

In Figure 4-4 we see that multi-byte addition requires the sum of three values in
all stages except the first and the last one. Some high-end microcontrollers have ad-
dition operators that accept a three-byte operand. Others have special addition
opcodes that automatically add-in the carry flag. The latter operators are referred to
as add-with-carry. However, in most low- and mid-range devices the software must
take care of incrementing the sum if there is a carry from the previous stage. The ac-
tual multi-byte addition routines are developed in the context of programming the
various microcontrollers, discussed later in this book.

4.4.2 Unsigned Multiplication

The case for multiplication cannot be generalized since high-end microcontrollers
usually contain one or more multiplication operators; this is not the case in low- and
mid-range devices. In the first case implementation is simply by using the correspond-

Digital Logic, Arithmetic, and Conversions 65

first 4-byte
operand

second 4-byte
operand

5-byte
result

possible
carry

+

+

+

+

+

+

+

+

+

=

=

=

=

=

0

0/1

0/1

0/1

0/1

ing operator. This section explains multiplication in devices that lack a dedicated mul-
tiplication operation code.

Arithmetically, multiplication is performed by repeated addition. The multiplier
represents the number of times that the multiplicand must be added to itself. There-
fore, 3 times 4 is the same as 3 + 3 + 3 + 3. This fact allows implementing multiplica-
tion routines in software as long as the device contains an addition operator. The
logic is based on using the multiplier as a counter. This counter is decremented each
time that the multiplicand is added to itself. The routine ends when the counter is
exhausted, as shown in the flowchart in Figure 4-5.

Figure 4-5 Unsigned Multiplication Flowchart

The beauty of the repeated addition algorithm is its simplicity and its main short-
coming is its slowness. An alternative way of performing multiplication is by shift-
ing the bits of the operand. This method is based on the properties of a binary
positional system, in which the value of each digit is a successive power of 2. There-
fore, by shifting all digits to the left, the value 0001B (1 decimal) successively be-
comes 0010B (2 decimal), 0100B (4 decimal), 1000B (8 decimal), and so on.

Binary multiplication by means of bit shifting has the downside that the multi-
plier must be a power of 2. Otherwise, the software must shift by a power of 2 that is
smaller than the multiplier and then add the multiplier as many times as necessary
to complete the product. In this manner, to multiply by 5 we can shift left twice and
add once the value of the multiplicand. To multiply by 7 we would shift left twice
and then add three times the value of the multiplicand. As the multiplier gets larger
and more distant from the smaller power of 2, the number of addition operations re-
quired is also larger, and the effectiveness of the algorithm diminishes.

66 Chapter 4

START

DONE
YES

YES

NO

A = MULTIPLICAND

B = MULTIPLIER

PERFORM P = A * B

P (PRODUCT) = 0

C (COUNTER) = B

P = P + A

C = C - 1

COUNTER = 0

?

A third approach is based on the manipulations performed during longhand multi-
plication. For example, the multiplication of 00101101B (45 decimal) by 01101101B
(109 decimal) can be expressed as a series of products and shifts, in the following
manner:

0 0 1 0 1 1 0 1 B = 45 decimal
times 0 1 1 0 1 1 0 1 B = 109 decimal

0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1

0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 1
0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 B = 4905 decimal

The actual calculations in this method of binary multiplication are quite simple
since the product by a 0 digit is zero and the product by a 1 digit is the multiplicand
itself. Consequently, the multiplication routine simply tests each digit in the multi-
plier. If the digit is zero no action need be performed; if the digit is one, the multipli-
cand is shifted left and added into an accumulator.

The storage allocation to hold the product of a multiplication operation is not the
same as that to hold the sum. In multi-byte addition one additional byte is required
to hold the sum. In multiplication the storage allocation must be twice the size of
the operands. For example, byte multiplication requires a two-byte storage, while
multiplying two double-byte operands requires a four-byte storage allocation.

4.4.3 Unsigned Division
If multiplication can be reduced to repeated addition, then division can be conceptual-
ized as repeated subtraction. In the case of division, the quotient (result) is the number
of times the divisor must be subtracted from the dividend before zero or a negative
value results from the subtraction. The flowchart in Figure 4-6 (in the following page)
shows the logic steps in unsigned division.

In Figure 4-6 note that the logic tests for a zero divisor, since division by zero is
mathematically undefined. Also, since the operation is unsigned, the result cannot
be negative; therefore, the divisor must be larger than the dividend. Finally, the logic
must consider the case in which subtracting the divisor from the reminder produces
a negative value, in which case an adjustment is necessary to produce a valid quo-
tient. This adjustment avoids the need for searching for a trial divisor, as in the case
in the common longhand division algorithm. In machine code the negative result is
detected as an overflow (carry flag set) from the subtraction.

4.5 Signed Binary Arithmetic
In two’s complement and sign-magnitude representations the high-order bit repre-
sents the sign of the operand, while its magnitude is represented in the remaining bits.
Therefore, in the case of signed numbers, a carry out of the high-order bit is meaning-

Digital Logic, Arithmetic, and Conversions 67

less since the high-order bit is not a magnitude bit. For example, consider the follow-
ing operation in an 8-bit device that performs unsigned and two’s complement addi-
tion:

80 = 0101 0000B

+ 90 = 0101 1010B

170 = 1010 1010B

If the operands are assumed to be in unsigned binary format the result is valid.
However, if the operands (the decimal values 80 and 90) are assumed to be positive
numbers in two’s complement form, then the result is invalid since the positive num-
ber 170 cannot be represented in an 8-bit two’s complement encoding.

Clearly, multi-byte operations on signed representations cannot be performed
identically as with unsigned operands. Table 4.2 shows the unsigned and two’s com-
plement representations of one-byte numbers.

68 Chapter 4

Figure 4-6 Unsigned Division Flowchart

START

DONE

ERROR

YES

YES

YES

YES

NO

NO

NO

A = DIVIDEND

B = DIVISOR

PERFORM Q = A / B

Q (QUOTIENT) = 0

R (REMAINDER) = A

Q = Q - 1

R = R + B

R = R - B

Q = Q + 1

REMINDER < 0

?

REMINDER = 0

?

DIVISOR = 0

?

DIVIDEND <

DIVISOR

?

Table 4.2

Signed and Unsigned Representations of One-Byte Numbers

BINARY 2’S COMPLEMENT UNSIGNED

0000 0000 0 0
0000 0001 1 1
0000 0010 2 2
0000 0011 3 3

. . .

. . .

. . .
0111 1111 127 127
1000 0000 -128 128
1000 0001 -127 129
1000 0010 -126 130
1000 0011 -125 131

. . .

. . .
1111 1110 -2 254
1111 1111 -1 255

4.5.1 Overflow Detection in Signed Arithmetic

In unsigned addition the carry flag is magnitude-related. It is set when there is a carry
out of the high-order bit of the destination operand, which takes place when its capac-
ity has been exceeded. This is usually described as an overflow condition. However, a
carry out of the high-order bit of the result is not always meaningful in signed arithme-
tic. For example, suppose the following two’s complement addition:

Decimal binary

127 0111 1111

+ 127 0111 1111

---- ---------

?? 1111 1110

In this case the sum clearly exceeds the capacity of the format, since the largest
positive value that can be represented in a two’s complement 8-bit format is 127 (see
Table 4-2). However, the operation did not generate a carry out of the high-order bit.
Therefore, the carry flag could not have been used to detect the overflow error in
this case.

Now consider the addition of two negative numbers in two’s complement form:

Decimal binary

-4 1111 1100

+ -5 1111 1011

---- ---------

-9 C <= 1111 0111

In this case the addition operation generated a carry out of the high-order bit;
however, the sum is arithmetically correct. In fact, any addition of negative
operands in two’s complement notation generates a carry out of the most significant
bit.

Digital Logic, Arithmetic, and Conversions 69

These two examples show that the carry flag, by itself, cannot be used to detect
an error or no-error condition in two’s complement arithmetic. Detecting an over-
flow condition in two’s complement representations requires observing the carry
into the high-order bit of the encoding as well as the carry out. In both previous ex-
amples we note that there was a carry into the high-order bit of the result. However,
in the first case there was no carry out. The general rule is: two’s complement over-

flow takes place when the carry into and the carry out of the high-order bit have

opposite values. Figure 4-7 is a flowchart to detect overflow in signed arithmetic.

Figure 4-7 Detecting Overflow in Two’s Complement Arithmetic

Most microprocessors and some high-end microcontrollers contain hardware fa-
cilities for detecting signed arithmetic overflow. In some cases the hardware sup-
port consists of a single overflow flag that is set whenever the result of an
arithmetic operation exceeds the capacity of the format. In other cases, as in the
PIC 18CXX2 family, the status register contains a negative bit flag that indicates a
1-bit in the sign bit position, as well as an overflow bit that is set whenever there is
an overflow from the magnitude bits (0 to 6) into the sign bit (bit 7) of the destina-
tion operand. In this device, software can test one or both of these flags to detect
two’s complement overflow.

In low- and mid-range devices, with no hardware support for signed arithmetic,
detecting a two’s complement overflow is by no means simple. Without a hardware
flag to report a carry condition into a particular bit position, software is confronted
with several possible alternatives, but none is simple or straightforward.

4.5.2 Sign Extension Operations

Observing the carry into and the carry out of the most significant bit is a valid way of
detecting overflow of a two’s complement arithmetic operation. In theory, the logic
described in the flowchart of Figure 4-7 can be implemented in devices without hard-

70 Chapter 4

START

OVERFLOW

NO

OVERFLOW

YES

YES

YESNO

NO

NO

A = FIRST SIGNED ADDEND

B = SECOND SIGNED ADDEND

PERFORM C = A + B

CARRY OUT

OF BIT 7

?

CARRY INTO

BIT 7

?

CARRY OUT

OF BIT 7

?

ware support for signed overflow; however, the processing is complicated and there-
fore costly in execution time. An alternative approach is to ensure that the format has
sufficient capacity to store the arithmetic result. The rule developed previously lets us
determine that, for addition and subtraction, the destination format must have at least
one more byte than the operands. In multiplication, the destination operand must be at
least twice the size of the source operands.

A simple mechanism for extending the capacity of two’s complement encoding is
called sign extension. The process consists of copying the sign bit into the
high-order bit positions of the extended encoding. For example, to extend a two’s
complement 8-bit number into 16 bits, copy the sign bit of the original value (bit
number 7) into all the bits of the extended byte. The process is shown in Figure 4-8
for both positive and negative operands.

Figure 4-8 Sign Extension of Two’s Complement Numbers

4.5.3 Multi-byte Signed Operations

Signed operations on two’s complement numbers encoded in multiple bytes can be
performed using the processor’s arithmetic primitives. Consider the addition of the
numbers -513 and -523, each one encoded in 16-bit two’s complement form:

decimal binary

HOB LOB

-513 1111 1101 1111 1111

-523 1111 1101 1111 0101

----- ---------------------

-1036 1111 1011 1111 0100

In the preceding example, adding the low-order bytes produces the sum shown,
plus a carry. Adding the high-order bytes plus the carry, and discarding the overflow,
produces the sum of high-order bytes shown above. The result is the correct value in
two’s complement form. The fact that the result did not overflow the capacity of the
16-bit format can be ascertained by observing that there was a carry into the fif-

Digital Logic, Arithmetic, and Conversions 71

1 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

Sign extension of
a negative number

Sign extension of
a positive number

Extended
bit

Extended
bit

teenth digit but also a carry out. Carry in and carry out of the sign bit is one of the
conditions for no overflow in the flowchart of Figure 4-7.

4.6 Data Format Conversions
Quite often code needs to convert data into and from different numeric formats; for
example, to display ASCII digits in an output device, or to convert numeric keyboard
input in ASCII into binary or BCD encodings for processing. In this section we con-
sider the logic for the following cases:

1. BCD digits to ASCII decimal

2. Binary to string of ASCII decimal digits

3. String of ASCII decimal digits to binary

4. Binary to string of ASCII hexadecimal digits

As in the previous cases, implementation of these conversions is de-
vice-dependent and varies in the different hardware.

4.6.1 BCD Digits to ASCII Decimal

Packed BCD digits are encoded in one digit-per nibble, as shown in Section 4.2.2.
Thus, each digit is a binary value in the range 0 to 9. Converting each digit to ASCII con-
sists of isolating each nibble and then changing the binary into an ASCII representa-
tion. Note in Table 3.1 that the numeric ASCII digits start at 30H for the digit zero and
extend to 39H for the digit 9. For this reason converting a numeric digit from binary
into ASCII consists of adding 30H. By the same token, subtracting 30H converts a sin-
gle ASCII digit to binary.

Assume four packed BCD digits in two consecutive memory bytes, labeled A and
B, where A holds the two low-order digits; also, a four-digit storage buffer to which
the variable P is a pointer. The conversion algorithm can be described as follows:

1. Initialize buffer pointer P to the first storage location.

2. Copy digit A to temporary digit T.

3. Mask out four high-order bits of T.

4. Add 30H to value in T and store in buffer by pointer P.

5. Bump buffer pointer to next digit storage.

6. Copy digit A to temporary digit T.

7. Mask out four low-order bits in T.

8. Shift four high-order bits to the right by 4 bits.

9. Add 30H to value in T and store in buffer by pointer P.

10. Bump buffer pointer to next digit.

11. Proceed with digit B in the same manner.

72 Chapter 4

4.6.2 Unsigned Binary to ASCII Decimal Digits
Often we hold an unsigned binary number in memory or a machine register and need to
display its value to some ASCII-based output device. The process requires converting
the binary value to a string of ASCII decimal digits. The number of decimal digits de-
pends on the number of bits in the binary representation. A one-byte unsigned binary
requires three ASCII decimal digits since the value ranges from 0 to 255. A two-byte un-
signed binary requires a string of five ASCII decimal digits since the range of a
two-byte representation is from 0 to 65,535, and so on. The storage area for the ASCII
digits is sometimes referred to as a buffer.

The process of converting binary to ASCII decimal consists of dividing the binary
by 10 to obtain each decimal digit, then adding 30H to the remainder in order to turn
the digit into ASCII. The process continues until the original dividend is reduced to
zero, as shown in the flowchart of Figure 4-9.

Figure 4-9 Unsigned Binary to ASCII Decimal String

4.6.3 ASCII Decimal String to Unsigned Binary

Another conversion operation frequently needed in software is the transformation of
a string of ASCII decimal digits into binary. This type of conversion typically arises
when the program needs to receive input which must later be processed by the device.
For example, the user enters a numeric value from a keyboard and the application
must process this data in binary form.

In designing the conversion routine we must first delimit the value range of the in-
put data so as to allocate a sufficiently large binary format to store the result. For
example, code can store in a single unsigned byte a binary in the range 0 to 255, but
it requires two bytes to store one in the range 0 to 65,535. Once the binary storage
size is determined, the conversion logic is based on converting each ASCII digit to
binary, high-to-low, and adding its value to a previous sum multiplied by 10. The fol-
lowing flowchart describes the conversion logic.

Digital Logic, Arithmetic, and Conversions 73

START

DONE
YES

NO

B = BINARY NUMBER

R (REMAINDER) = 0

BUFFER to HOLD ASCII DIGITS

P = BUFFER POINTER

INIT TO LOWEST SIGNIFICANT DIGIT

B = B / 10

DIGIT = R + 30H

STORE DIGIT BY P

UPDATE P TO NEXT DIGIT

B = 0

?

Figure 4-10 Decimal String to Unsigned Binary

The logic in the flowchart of Figure 4-10 assumes that there is some way of de-
tecting the end of the string of ASCII digits. This could be a terminator character em-
bedded in the string or a counter for the number of digits. Here again we use a buffer
pointer that is initialized to the least significant digit in the ASCII string. The ASCII
digit is converted to binary by subtracting 30H and then added to the previous sum,
multiplied by 10. For example, assume the ASCII string of the decimal digits 564.

STRING = ‘564’

FIRST ITERATION:
STEP 1: B = 0

P => HIGH DIGIT IN STRING ‘564’
STEP 2: A = ‘5’
STEP 3: END OF STRING?

NO
STEP 4: A = 4 (‘5’ – 30H = 5)

B = (0 * 10) + A = 5
P TO NEXT LOWER DIGIT

SECOND ITERATION:
STEP 2: A = ‘6’
STEP 3: END OF STRING?

NO
STEP 4: A = 6 (‘6’ – 30H = 6)

B = (5 * 10) + A = 56
P TO NEXT LOWER DIGIT

THIRD ITERATION:
STEP 2: A = ‘4’
STEP 3: END OF STRING?

NO
STEP 4: A = 4 (‘4’ – 30H = 4)

B = (56 * 10) + A = 564

74 Chapter 4

START

DONE
YES

NO

B = BINARY NUMBER

A = ASCII DECIMAL DIGIT

BUFFER HOLDS ASCII DIGITS

P = BUFFER POINTER

INIT TO HIGHEST SIGNIFICANT DIGIT

A = A - 30H

B = (B * 10) + A

UPDATE P TO NEXT DIGIT

A = DIGIT => BY P

END OF

ASCII STRING

?

P TO NEXT LOWER DIGIT
FOURTH ITERATION:
STEP 2: A = ??
STEP 3: END OF STRING?

YES
RESULT: B = 564

4.6.4 Unsigned Binary to ASCII Hexadecimal Digits
Converting a binary number to a string of ASCII hex digits is quite similar to converting
from binary to an ASCII decimal string, as described in Section 4.6.2. Here again, the
digit space to allocate for the ASCII string depends on the size of the binary operand.
An 8-bit binary is represented in two ASCII hex digits, a 16-bit binary into four ASCII
hex digits, and so on.

The process of converting binary to ASCII hexadecimal consists of dividing the
binary by 16 to obtain each hex digit. If the remaining hexadecimal digit is in the
range 0 to 9 we add 30H to turn it into the corresponding ASCII digit. If it is in the
range A to F then we must add 40H to convert into ASCII. The process continues un-
til the original dividend is reduced to zero, as shown in the flowchart of Figure 4-11.

Figure 4-11 Unsigned Binary to ASCII Hexadecimal String

Digital Logic, Arithmetic, and Conversions 75

START

DONE
YES

YES

NO

NO

B = BINARY NUMBER

R (REMAINDER) = 0

BUFFER TO HOLD ASCII HEX DIGITS

P = BUFFER POINTER

INIT TO LOWEST SIGNIFICANT DIGIT

R = R + 30H

PERFORM B = B / 16

R = REMAINDER

R = R + 40H

STORE R (DIGIT) BY P

UPDATE P TO NEXT DIGIT

B = 0

?

0 =< R =< 9

?

4.6.6 Signed Numerical Conversions
Conversion routines that use signed operands are usually a variation of the unsigned
ones described in previous sections. Although logic can be developed that directly en-
codes to and from two’s complement format, the more convenient approach is to de-
termine the sign of the operand then use unsigned conversion for the digit values. For
example, to convert a signed binary in two’s complement form into a string of ASCII
decimal digits the logic first determines if the binary operand is negative or positive. If
a positive number, then the unsigned conversion routine can be used directly. If the bi-
nary operand is a negative number, the minus sign is placed in the storage buffer. Then
the two’s complement binary is converted to an unsigned number so that the ASCII
digits can be obtained with the conversion routine described in Section 4.6.2.

76 Chapter 4

Chapter 5

Circuits and Logic Gates

In Chapter 1 we covered basic electronics and elementary circuit components such as
resistors, capacitors, inductors, transformers, and simple semiconductors. In this
chapter we expand these topics and introduce new ones so as to provide a basic back-
ground in digital electronics and in the electronic circuits that are often used in
microcontroller-based systems. The chapter also contains information on some of the
simpler electronic devices often found in electronic circuit boards, such as diodes,
LEDs, and logic gates. Chapter 6 covers other circuit components including switches,
seven-segment displays, LCDs (liquid crystal displays), buzzers, motors, and
flip-flops.

5.0 Digital Circuits
Digital circuits are the basic building blocks from which microprocessors,
microcontrollers, computer systems, and virtually all digital electronic devices are
constructed. These building blocks are essential and perform elementary functions. A
single device can contain thousands of these primitive components. Knowing about
these elementary building blocks is necessary if you are to design or program digital
circuitry.

Understanding these components requires viewing them at the proper level of ab-
straction. To understand a simple digital device you must know how the simpler
transistors that make up the device operate. To understand how a shift register
works it is useful to visualize it in term of the logic gates from which it is built. Simi-
larly, once you understand how counters and registers work it is easy to grasp how a
complex large-scale integrated circuit, such as a serial port, operates.

Fortunately, at any given level of abstraction, it is not necessary to consider every
single device of that class, because knowing about one or two representative de-
vices is usually sufficient. For example, once you understand the operation of a few
different logic gates you can assume that others work in a similar manner. So we
start by explaining the basic facts about diodes and transistors, then we consider
logic gates that are built from transistors, then the more complex circuits that are
built from elementary logic gates, and so on.

77

5.1 The Diode Revisited
Chapter 1 concluded with a brief discussion of diodes and p-type and n-type silicon
junctions. The diode acts as a very useful one-way valve for electrical current and is
one of the most powerful developments in semiconductor physics.

But in order to use the diode it is not necessary to comprehend the physical and
electrical principles that make it work. Rather, the diode can be treated as a device
made from two pieces of silicon and it has the property of passing current in one di-
rection.

When a voltage is applied to the diode that makes the n-type end more positive
than its p-type end, electrons flow from the n to the p direction, but not from the p to
n direction. In this manner the diode behaves as a one-way filter that allows elec-
trons to flow in one direction but not in the other one. Figure 5-1 shows the p-n junc-
tion in a diode and its electrical symbol.

Figure 5-1 Diode Construction and Symbol

The general convention is that current flows from positive to negative, although
in reality electrons flow from negative to positive. Benjamin Franklin is usually held
responsible for this erroneous convention. Therefore, current in the diode in Figure
5-1 flows from the anode to the cathode, but not vice versa.

The electrical symbol for a diode, in Figure 5-1, resembles an arrow pointing in
the direction of current flow. When the anode voltage of a diode exceeds the cath-
ode voltage the diode is said to be forward-biased. A forward-biased diode acts like
a short circuit. To prevent too much current from flowing a resistor is usually in-
serted in series with the diode, as in Figure 5-2.

Figure 5-2 Diode and Resistor in a Circuit

78 Chapter 5

+

- cathode

anode

symbol

p-type

n-type

+

-

Current

flow

Figure 5-3 I/V Plot in a Diode

The diode’s behavior can be also be represented by a curve that shows cur-
rent-versus-voltage, sometimes called an I/V curve. If the voltage is represented on
the abscissa of the Cartesian coordinate plane (x-axis) and current on the ordinate
(y-axis), then the plot resembles the one in Figure 5-3.

In Figure 5-3 the current is non-linear; that is, it becomes very large if a positive
voltage difference across the diode exceeds about 0.6 volts. This point is called the
forward breakover point. If the diode is reverse-biased and the voltage is progres-
sively increased, a point is reached in which the junction suddenly begins to con-
duct. This is called the avalanche point. The effect is similar to an internal short and
the diode can be destroyed. Note that the I-V plot of a resistor is quite different from
that of a diode. Since the resistor obeys Ohm’s Law its I/V curve would be a straight
line.

The typical diode, such as the ones used in logic and display circuits, can handle a
current of 10 to 20 milliamps. For a 5-volt supply a 300-ohm series resistor limits the
current through the diode to a reasonable value.

5.1.1 The Light-Emitting Diode (LED)

One of the most useful types of diodes is an LED (light emitting diode). The LED pro-
duces light when it is forward-biased. The most common LEDs have a distinctive red
color, although they may be amber, green, blue, or white.

The LED is a semiconductor device that emits incoherent light when for-
ward-biased. The color of the light depends on the chemical composition of the
semiconducting material. The first practical LEDs were developed in 1962. LEDs are

Circuits and Logic Gates 79

I

V
x

Forward

breakover

point

Avalanche

point

y

used in many electronic devices to signal the presence of an electric current. Like
any diode, the LED consists of a chip of semiconducting material impregnated with
impurities to create a p-n junction. As is the case in all diodes, current flows easily
from the p-side, or anode, to the n-side, or cathode, but not in reverse.

The first LEDs were made of gallium arsenide. Today LEDs are made of a variety
of materials so as to produce light of different colors.

Advances in materials science have made possible the production of devices with
ever shorter wavelengths, producing light in a variety of colors.

Because LEDs are diodes they light only with positive electrical polarity, that is,
when forward-biased. When the polarity is reversed very little or no light is emitted
by the LED. Figure 5-4 shows a typical LED.

Figure 5-4 A Typical LED

The correct polarity of a new LED can usually be determined by observing that
the longest terminal is the anode. If the terminals have been altered, then it is risky
to try to determine polarity by observing the LED’s internals. Although in most LEDs
the larger internal tab is the cathode, there are others in which it is not. A more de-
pendable clue to the LED’s polarity is the flat tab on the LED’s base, which indicates
the cathode, as in Figure 5-4.

Ratings vary among the different sizes and types of LEDs. Most LEDs are rated to
operate between 1.7 and 3.8 volts and at currents of 10 to 40 mA. The light-emitting
capacity of an LED is measured in megacandela or mcd. Small commercial LEDs
range from 10 to about 5000 mcd.

Once the LED’s ratings and circuit’s voltage are known it is necessary to calculate
the value of the series resistor so that the current does not exceed the LED’s capac-
ity. For example, the series resistor for wiring a commercial red LED rated at 2.6
VDC and 28 mA on a 5 volt circuit is calculated as follows:

STEP 1: Calculate the voltage across the resistor by subtracting the LED’s forward volt-
age from the supply voltage, in this case:

STEP 2: Apply Ohm’s Law to calculate the required resistor:

The electronic symbol for an LED is somewhat similar to that for a diode, as
shown in Figure 5-5.

80 Chapter 5

+

-

Flat tab

Figure 5-5 Electrical Symbol for LED

As a simple experiment, connect an LED in series with a 330-ohm resistor to a
5-volt power supply and see how light is emitted for one orientation of the diode and
not emitted for the other. This little circuit makes a convenient probe for logic cir-
cuits. If the LED’s cathode is touched to some point in a circuit, the LED lights up if
the voltage at that point is less than about one or two volts. The LED remains dark if
the voltage is greater than this value. This is a 1-bit binary digital voltmeter.

In addition to LEDs, there are logic diodes such as the 1N4148 or its equivalent,
the IN914. These are used simply to ensure that the current in some circuit can flow
in only one direction. There are also much heftier diodes that are used to manufac-
ture the DC power supplies needed for computers and other electronic equipment.
They take the 110-volt AC that comes out of wall outlets and converts it to a unidi-
rectional DC voltage.

5.2 The Transistor
The transistor is a solid state semiconductor device that is used for signal amplifica-
tion, voltage stabilization, switching, signal modulation, and many other functions. It
can be considered as a variable valve which controls the current it draws from a volt-
age source. Transistors are manufactured as individual components or as part of an in-
tegrated circuit. Transistors come in two basic varieties: bipolar and MOS.

5.2.1 Bipolar Transistor
The bipolar transistor was the first type of transistor to be commercially
mass-produced. The terminals of a bipolar transistor are named emitter, base, and col-
lector. Physically, the bipolar transistor consists of two n-type regions separated by a
thin p-type region or, alternatively, by two p-type regions separated by a thin n-type.
When a transistor has two n-type regions, the device is called an NPN transistor. One
of the n-type regions is called the collector, the other the emitter, and the central
p-type region the base. The NPN bipolar transistor is shown in Figure 5-6.

Figure 5-6 Bipolar NPN Transistor andSymbol

Circuits and Logic Gates 81

Current

flow

collector

collectoremitter

emitter

base

base

NPN

TRANSISTOR

SYMBOLn-type

p-type
n-type

Simply, a bipolar transistor consists of two diodes connected back to back so that they
share a common end. Since the central base region between the collector and emitter
is very thin, the device has the unique property of serving as an amplifier. When the
transistor's base-to-emitter p-n junction is forward-biased (this could be called the p-n
diode) it creates a low resistance in the thin base region. This allows a much larger cur-
rent to flow from the collector to the emitter. If the base-emitter current is turned off,
then the collector-emitter current is also completely turned off. In this case the tran-
sistor is said to be cut off.

Over a given range, the collector-emitter current is directly proportional to the
base-emitter current. In this manner the transistor amplifies small currents into
larger ones, as in radios and other sound amplifying applications. For larger base
currents the transistor acts as if there were nearly a short circuit between the col-
lector and the emitter. In this case the transistor is said to be in saturation.

The effect is that a positive voltage on the base turns on the transistor and pulls
the output low (to about 0.5 volts). When this voltage is removed, the transistor is
turned off and the output is high (+5 volts). The action is that of a current controlled
switch, as shown in Figure 5-7.

Figure 5-7 NPN Transistor Used as a Switch

The circuit in Figure 5-7 operates as follows: if the input voltage is held at zero
volts, the p-n base-emitter junction has no current flowing through it and the output
voltage is +5 volts. However, if the input voltage is raised to any value between +2
and +5 volts, a base-emitter current flows. This in turn allows a collector-emitter
current to flow and the output voltage is pulled down to ground (typically between
0.5 and 1 V).

An alternative architecture for a bipolar transistor is called PNP. In this case the
n-type silicon is sandwiched between two p-types, as shown in Figure 5-8.

82 Chapter 5

+5 V

input

output

Current

flow

Figure 5-8 PNP Transistor and Symbol

The PNP transistor in Figure 5-8 works in the same way as the NPN transistor, except
that in the PNP design the base has to have a negative voltage with respect to the emit-
ter in order to turn on the transistor.

5.2.2 MOS Transistor
The second major type of transistor is the metal oxide semiconductor transistor, or
MOS. It consists of two separate n-type regions embedded in p-type silicon. Alterna-
tively, the MOS can consist of two p-type regions embedded in n-type silicon. In the
first case the device is called an n-channel MOS (or NMOS) transistor; in the second
case it is called a PMOS.

One of the two n-type regions is called the source, and the other is called the
drain. An area between the source and the drain consists of a metal contact sepa-
rated from the p-type body by a thin layer of non-conductive silicon dioxide. This
area is called the gate. When a positive voltage is applied to the gate, the electric
field attracts a thin layer of electrons into the p-type region underneath the gate.
This provides a low resistance path between the two n-type regions. Figure 5-9
shows the construction of an NMOS transistor and the symbols for the NMOS and
PMOS.

Figure 5-9 MOS Transistor and Symbols

Circuits and Logic Gates 83

collector
collector

emitter emitter

base

base

PNP

TRANSISTOR

SYMBOLp-type

p-type
n-type

sourcesource

source

source

insulating

oxide

layer drain

drain

gate

gate

gate

N-CHANNEL MOS

TRANSISTOR

SYMBOL

P-CHANNEL MOS

TRANSISTOR

SYMBOL

p-type

n-type n-type

In construction of the MOS transistor the body is connected internally to the
source. In the electrical symbols this is indicated by the central wire with an arrow.
In the NMOS transistor the direction of the arrow indicates that electrons in the
body are attracted to the gate when a positive voltage is applied. This same voltage
repels electrons in the PMOS.

One of the most valuable features of the MOS transistors is that they require very
small currents to turn on. This makes the MOS transistors behave like volt-
age-controlled switches in a digital circuit. Recall that the bipolar transistors oper-
ate as current-controlled switches.

5.3 Logic Gates
A logic gate is an electronic device that takes one or more binary signals as inputs and
produces a binary output that is a logical function of the input or inputs. The basic logi-
cal operations of AND, OR, XOR, and NOT were covered in Section 4.1. Although logic
gates can be made from electromagnetic relays, mechanical switches, or optical com-
ponents, nowadays they are normally implemented using diodes and transistors.

Charles Babbage’s Analytical Engine, developed around 1837, used mechanical
logic gates based on gears. Electromagnetic relays were later used for logic gates,
and these were eventually replaced by vacuum tubes, since Lee De Forest’s modifi-
cation of the Fleming valve can be used as an AND logic gate. In 1937, Claude E.
Shannon wrote a thesis paper that introduced the use of Boolean algebra in the anal-
ysis and design of switching circuits. The first modern electronic gate was invented
by Walther Bothe in 1924, for which he received part of the 1954 Nobel Prize in phys-
ics.

The primitive types of gate are AND, OR, and NOT; in addition, the XOR gate of-
fers an alternative version of the OR. The other Boolean operations can be imple-
mented by combining the three primitive types. However, for convenience, other
combined types have been developed. These are called NAND (NOT plus AND),
NOR (NOT plus OR), and XNOR (XOR plus NOT). The advantage of these secondary
logic gates is that they require fewer circuit elements for a given function. In fact,
the NAND gate is the simplest of all gates, except for the NOT gate. Also, a NAND
can implement both a NOT and an OR function; therefore, it can replace AND, OR,
and NOT. The NAND gate is the only type actually needed in a real system. Program-
mable logic arrays very often contain nothing but NAND gates. The symbols for
logic gates are shown in Figure 5-10.

The notion of a binary signal is accomplished by allowing it to be in only one of
two states. These states are designated as high and low. Conventionally, we repre-
sent a high signal with binary digit “1” and a low with a binary digit “0.” True and
false and high and low are also associated with binary signals, binary 0 representing
false or low and binary 1 representing true or high. In digital electronics, voltage is
used to encode binary 0 and 1. A voltage of about 0.5 volts (actually 0 to 0.8 volts) is
interpreted as logic 0 and a voltage of about 3.5 volts (actually 2.4 to 5.0 volts) is in-
terpreted as logic 1. Voltages from 0.8 to 2.4 volts are not allowed. This voltage con-
vention is referred to as TTL (transistor-transistor logic).

84 Chapter 5

Figure 5-10 Logic Gate Symbols

5.4 Transistor-Transistor Logic

Transistor-Transistor Logic is a class of digital circuits built from bipolar transistors
and resistors. TTL is used in a popular family of integrated circuits originally devel-
oped by Texas Instruments in 1962. These are known as the 7400 series of ICs. Compo-
nents of the 7400 family are used in computers, industrial controllers, music
synthesizers, and electronic test and measurement instruments. TTL provided a
low-cost digital option to the expensive analog methods of the day.

TTL integrated circuit are available to perform the following functions:

1. logic gates such as AND, OR, NAND, NOR, and XOR

2. flip-flops

3. latch elements

4. counters and adders

5. shift registers

6. timing circuits

7. data bus drivers and buffers

8. display drivers

9. multifunction logic

10. memory

11. programmable logic arrays

Circuits and Logic Gates 85

Y

Y

Y

Y

Y

Y

Y

B

B

B

B

B

B

A

A

A

A

A

A

A

AND

NAND

OR

NOR

XOR

XNOR

NOT

The TTL logic gates require a 5-volt DC power supply regulated to within 5% (5V ±
0.25V). They are available in a variety of packages. For prototyping and manually
built applications the most-used package is the dual inline package (DIP). DIP inte-
grated circuits have 14, 16, 20, 24, 28, or 40 pins arranged in a row along two sides of
a rectangular plastic package containing the silicon chip. The ground pin is usually
the last in the first row. For example, pin 7 of a 14-pin DIP. The 5-volt power pin is
usually the highest numbered pin. For example, pin 14 on the 14-pin DIP. The pins in
a DIP package are spaced 0.1" apart. DIP components are mounted on a printed cir-
cuit board by inserting the pins through a set of holes and then soldering the pins in
place. Figure 5-11 shows two integrated circuits in a DIP package.

Figure 5-11 Dual Inline Packaged (DIP) Integrated Circuits

One objection to DIP packages is that they become too large if more than 40 pins
are required. The pin grid array (PGA) is one solution to this problem. PGAs are
square packages with an array of pins coming out of the bottom. Microprocessors
are sometimes implemented in PGAs. Surface mount technologies are often used in
commercial electronic boards, since they allow fitting more circuitry into a smaller
space. The pins on surface mount packages are bent out horizontally and soldered
to the top surface of the board. In surface mount ICs the pin spacing is .05 inch or
less. But surface mount packages are difficult to handle outside of commercial pro-
duction, since the smaller pins spacing require special soldering irons and inspec-
tion microscopes. For non-manufactured projects, such as the ones in this book, the
DIP is the most suitable.

In the present context we discuss TTL logic gates furnished as integrated circuits
constructed using semiconductor electronics. The part number of logic gate ICs is
in the format 74XXX, where XXX refers to the specific gate implementation.

5.4.1 Inverter Gates
IC number 7404 is a hex inverter. Here the term hex refers to the six inverters included
in the circuit. Figure 5-12 shows the schematics of the 7404 hex inverter.

Figure 5-12 7404 TTL Hex Inverter IC

86 Chapter 5

notch dot

mark

pin 1

7404

14

1

13

2

12

3

11

4

10

5

9

6

8

7

GND

In Out

H L

L H

+5V

The function of a given logic gate can be shown in a truth table, such as the one in
Figure 5-12. The truth table lists the outputs (high or low) for the given inputs (also
high or low).

5.4.2 The AND Gate
The 7408 is an AND gate that includes four individual gates per package. The 7408 AND
gate and its truth table are shown in Figure 5-13.

Figure 5-13 7408 Quad 2-input AND Gate

The AND gate in Figure 5-13 is described as quad 2-input. Four individual AND
gates are contained in the circuit and each one has two input lines. The gate logic
corresponds to the Boolean AND: if both inputs are high, then the output is high,
otherwise the output is low. If the input lines are designated as A and B, and the out-
put as Y, then the AND operation can be expressed in the equation:

In this case the dot operator represents the AND function, not arithmetic multipli-
cation.

5.4.3 The NAND Gate
A variation of the AND gate is the 7400 NAND gate. In this case the AND operation is re-
placed with the inverted AND, or NAND. Thus, if both inputs are high, the output is
low, otherwise the output is high. The 7400 NAND gate is shown in Figure 5-14.

Figure 5-14 7400 Quad 2-input NAND Gate

Circuits and Logic Gates 87

7408

14

1

13

2

12

3

11

4

10

5

9

6

8

7

GND

In1 In2 Out

L L L

L H L

H L L

H H H

+5V

Y A B= •

7400

14

1

13

2

12

3

11

4

10

5

9

6

8

7

GND

In1 In2 Out

L L H

L H H

H L H

H H L

+5V

Note that in the NAND gate of Figure 5-14, the AND symbol has been replaced
with the NAND symbol as in Figure 5-10. The logic equation for the NAND gate is the
combination of the AND and NOT operations, as follows:

Here the vertical bar over the equation’s right-hand side indicates negation.

5.4.4 The OR Gate
The 7432 OR gate performs the Boolean OR of the two input lines. If either line A or line
B is high, then line Y is high, otherwise line Y is low. Figure 5-15 is a diagram of the 7432
quad 2-input OR gate.

Figure 5-15 7432 Quad 2-Input OR Gate

The equation of the OR operation with two inputs is:

The plus sign in the previous equation indicates the Boolean OR operation, not
arithmetic addition.

5.4.5 The NOR Gate
Another version of the OR gate is the 7402 NOR quad 2-input NOR gate. Here the
Boolean OR is negated, as shown in Figure 5-16.

Figure 5-16 7402 Quad 2-input NOR gate

88 Chapter 5

7432

14

1

13

2

12

3

11

4

10

5

9

6

8

7

GND

In1 In2 Out

L L L

L H H

H L H

H H H

+5V

Y A B= •

7402

14

1

13

2

12

3

11

4

10

5

9

6

8

7

GND

In1 In2 Out

L L H

L H L

H L L

H H L

+5V

Y A B= +

The equation for the NOR gate consists of negating the inputs of the OR gate,
as follows:

The gates shown in this section contain two input lines, labeled A and B. Logic
gates are also available that contain more than two inputs, for example, the 7410 is a
three 3-input NAND gate. Other logic gates with 3, 4, and 8 inputs are available. For
example, the 7410 is a three 3-input NAND gate, the 7420 a two 4-input NAND gate,
and the 7430 is a single 8-input NAND gate.

5.4.6 Positive and Negative Logic
The gates discussed so far assume that logic high is regarded as true and logic low as
false. This is called positive logic. If we were to invert these assumptions so that logic
high is regarded as true and logic low as false we would have a system based on nega-

tive logic. In this case the AND and the OR functions would be exchanged in regards to
positive logic.

Digital circuit designers can often reduce the number of required integrated cir-
cuits by switching between positive and negative logic. For example, if an extra
AND gate is available but the circuit requires an OR gate, the AND gate can be used
by assuming negative logic. Circuit diagrams can be shown to use positive or nega-
tive logic by the position of the inverting circles. By convention, a circle on the input
lines indicates negative logic and positive logic if it is placed on the output line. Fig-
ure 5-17 shows the equivalent circuits for gates using positive and negative logic.

Figure 5-17 Circuit Symbols for Positive and Negative Logic Gates

The position of the inverting circles in the circuit diagrams is consistent with the
notion that inverting the inputs changes the gate function. Thus, a negative logic
AND gate functions as an OR gate and vice versa. In this manner a circle on the input
line is read as the signal on that line being active low. An active low signal is as-
serted as true when it is electrically low. For example, the output of the 2-input
NAND gates of Figure 5-14 is low when inputs A and B are both high, as shown in the

Circuits and Logic Gates 89

Y A B= +

POSITIVE

LOGIC

NEGATIVE

LOGIC

=
=
=

circuit truth table. But the NAND gate can also be interpreted as a negative logic OR
gate as in Figure 5-17. The one logic operation that is the same in negative or posi-
tive logic is NOT, as also shown in Figure 5-17.

An alternative explanation of positive and negative logic can be based on the
truth table for the Boolean OR, as follows:

A B	Y
T T | T
T F | T
F T | T
F F | F

In binary form and positive logic the OR truth table is as follows:

A B	Y
1 1 | 1
1 0 | 1
0 1 | 1
0 0 | 0

If we now invert the binary values in the second table, the results are as follows:

A B	Y
0 0 | 0
0 1 | 0
1 0 | 0
1 1 | 1

Note that the last truth table matches that of the AND function. Thus, by inverting
the truth table for the logical OR we produced the truth table for logical AND, vali-
dating the previous assertion that a negative logic AND gate is equivalent to an OR
gate.

5.4.7 The XOR Gate
The last elementary logic gate is called the XOR or exclusive OR gate. In the XOR func-
tion the output is high if the inputs have opposite values, otherwise the output is low.
Figure 5-18 shows the 7486 quad 2-input XOR gate and the corresponding truth table.

Figure 5-18 7486 Quad 2-input XOR gate

90 Chapter 5

7486

14

1

13

2

12

3

11

4

10

5

9

6

8

7

GND

In1 In2 Out

L L L

L H H

H L H

H H L

+5V

Since an XOR gate’s output is high if the inputs are different it can serve as a dif-
ference detector for logic levels. The following equation expresses the XOR rela-
tionship for two inputs (labeled A and B) and one output (labeled Y).

The logic symbol for XOR is the symbol for OR (+) enclosed in a circle. The XOR
function can also be expressed in terms of Boolean OR and AND operations, as in
the following equation:

Figure 5-19 is the circuit diagram for the XOR gate constructed from OR, AND,
and NOR gates.

Figure 5-19 XOR Gate Circuit Diagram

Note in the XOR truth table in Figure 5-18 that if one of the inputs is forced high,
then the gate functions as an inverter for the other input. Also, note in the truth ta-
ble for the NOR gate (Figure 5-16) that if both inputs are low or high, then the circuit
also functions as an inverter. If the inputs of a NOR gate are tied together the gate
performs as an inverter. Often a circuit designer can take advantage of these identi-
ties in order to use an available gate for a function other than the one originally in-
tended, thus saving having to use an additional IC.

5.4.8 Schmitt Trigger Inverter

Digital signals used in operating electronic devices consist of pulses. Conceptually,
the pulses instantly fluctuate between a high and a low voltage level, ideally generat-
ing a square waveform. But signal noise in a circuit often contaminates the waveform
into a non-rectangular shape. This noise can be the cause of circuit problems. For ex-
ample, consider a plot of output voltage versus input voltage for a simple inverter, as
shown in Figure 5-20.

Circuits and Logic Gates 91

Y A B= ⊕

Y A B A B= • + •() ()

Y

B

A

Figure 5-20 TTL Input and Output Voltage

In Figure 5-20 you notice that as the input voltage is raised from zero, the output
voltage stays high. However, when the input voltage reaches about 1.4 volts (dashed
line in Figure 5-20) the output switches sharply from high to low. Now suppose there
is noise on the input line and that this noise causes the voltage to go above 1.4 volts
and then below this value. In this case, the inverter’s output may also switch its logic
state several times during the transition period following the voltage fluctuations.

One common solution to this problem is based on a property of physical systems
called hysteresis. Although the term derives from a Greek work meaning deficiency,
it can also be related to “history.” In this sense hysteresis refers to the property of an
object that does not instantly follow the forces applied to it, but reacts “historically”
to these forces. In other words, the new state depends on the object’s immediate his-
tory. Adding hysteresis to a circuit’s input makes it so that the point at which the
output changes state depends on the current state of the output. For example, if out-
put is high, it does not go low until the input voltage is raised above 1.7 volts. On the
other hand, once the output goes low it will not change back to high until the input
falls below 0.9 volt. This “lag” before changing to a new state makes the output
much less susceptible to being inadvertently switched by noise. Figure 5-21 shows a
plot of the input versus the output currents on a circuit with hysteresis.

Figure 5-21 Effect of Hysteresis in an Inverter Circuit

92 Chapter 5

1

1

3

3

Volts

input

Volts

output

1.4 volts

5

5

1

1

3

3

Volts

input

Volts

output

5

5

Logic gates whose input has hysteresis are often known as a Schmitt trigger. Fig-
ure 5-22 shows a 7414 hex Schmitt trigger inverter.

Figure 5-22 7414 Hex Schmitt Trigger Inverter

Note in Figure 5-22 that there is a small hysteresis curve inside each inverter sym-
bol. This indicates that the inverters are the Schmitt triggers.

5.5 Other TTL Logic Families
In 1971 a major advance in TTL logic occurred with the introduction of TTL devices
that incorporate Schottky diodes. They are based on the property of aluminum to act
much like a p-type semiconductor when in contact with n-type silicon. The Schottky
diode acts like an ordinary p-n diode except that it has a faster response time and the
voltage drop is about 0.3 volts instead of 0.6 volts. When a Schottky diode is connected
between the base and the collector of a bipolar transistor, the transistor is prevented
from going into saturation. The Schottky diode/transistor combination, known as a
Schottky transistor, has a significantly faster switching speed. Schottky TTL logic de-
vices have part numbers 74SXXX and give three times the speed of standard TTL using
only twice the power.

By increasing the resistor sizes, low-power Schottky TTL was developed giving
the same speed as standard TTL, but using only 1/5 the power. These devices, whose
part numbers are in the format 74LSXXX, were the standard TTL logic parts for
many years. In 1980, more sophisticated Schottky-type logic circuits using smaller,
higher performance transistors were developed by Texas Instruments. These are the
advanced Schottky and advanced low-power Schottky logic families. Their part
numbers are 74ASXXX and 74ALSXXX respectively.

5.6 CMOS Logic Gates
Around the same time that the original TTL circuits using bipolar transistors were

introduced, a line of logic circuits using CMOS (complementary metal-oxide semi-
conductor) technology became available. A line of TTL-compatible CMOS ICs have
part numbers 74XXX. TTL series pinouts are also available with part numbers
74CXXX.

CMOS logic circuits have two significant advantages over TTL. In the first place,
CMOS circuits operate with very low power dissipation. A CMOS input requires vir-
tually no current to remain at a given logic level. In fact, the entire circuit draws in-
significant current when it is not switching between logic levels. In CMOS, power is

Circuits and Logic Gates 93

7414

14

1

13

2

12

3

11

4

10

5

9

6

8

7

GND

In Out

H L

L H

+5V

consumed only during switching, while bipolar logic power dissipation is only
weakly dependent on the switching rate. At low switching rates, CMOS provides
huge savings in power dissipation.

A second advantage of CMOS is the smaller size of the circuits. Since no resistors
and only two simple types of transistors are needed, the resulting logic gates require
less area on a silicon wafer than their bipolar counterparts. The combined advan-
tages of less power consumption and less area make CMOS the choice for VLSI

(very large scale integration) integrated circuits such as microprocessors.

However, there are also significant drawbacks to CMOS which have prevented it
from completely replacing bipolar logic. One of them is that CMOS circuits have
slower switching speeds and propagation delays compared to bipolar circuits. The
original CMOS logic gates had switching speeds that were about five to ten times
slower than the 74XXX bipolar logic gates. High-speed CMOS, introduced in 1980,
have improved processing technology and smaller transistor sizes, resulting in
higher switching speeds and improved output drive current capability.

The CMOS 74HCT parts are completely TTL-compatible and can be freely inter-
mixed with bipolar TTL parts. The 74HC series, on the other hand, have a logic tran-
sition threshold of 2.5 V when using a 5-volt power supply, compared to the 1.4 volts
TTL standard. Since CMOS outputs have 5-volt and 0-volt logic levels, a 2.5-volt
threshold provides better noise immunity than TTL; however, 74HC series parts can-
not be mixed with standard TTL parts. For this reason, in mixed circuits, it is prefer-
able to use the 74HCT parts.

An advanced CMOS technology family was introduced in 1985 having part num-
bers 74ACXXX. The TTL-compatible versions have part numbers 74ACTXXX. These
new ICs have about double the speed of HC and HCT with yet another increase in
drive power. The result is that the propagation delays for 74ACT parts approach
those of bipolar TTL, although they are not quite equal to the fastest TTL families.
To further increase CMOS speeds manufacturers turned to a process known as
BiCMOS, which uses a mixture of bipolar and MOS transistors on the same chip. By
strategically placing bipolar transistors at critical points in the circuit, the switching
speed can be improved with only a small increase in power dissipation. The most
popular BiCMOS logic family is the 74FCTXXX (fast CMOS) series of logic ICs.

Still another drawback to CMOS logic is that the circuits are susceptible to static
electricity. The static discharge of the human body in a dry environment can destroy
a CMOS transistor. Although protective diodes on CMOS circuit inputs provide
some protection to static breakdown, all CMOS circuits are susceptible. For this
reason ICs and circuits boards should be stored in conductive pouches and not han-
dled until you have discharged yourself by touching a good electrical ground.

94 Chapter 5

Chapter 6

Circuit Components

This chapter covers the most common general-purpose circuit components often
found in microcontroller boards. Some simpler circuit devices such as diodes, LEDs,
and logic gates, were discussed in chapter 5. Here we mention other common compo-
nents including power supplies, switches, clocks and timers, flip-flops, decoders,
seven-segment displays, and liquid crystal displays (LCDs). Other components some-
times found in microcontroller-based digital circuits are not discussed either because
of their simplicity (buzzers and relays), their passive nature (connectors, adapters,
batteries, and wiring), or their specialized features (motors, digital-to-analog and ana-
log-to-digital converters, and memory).

6.0 Power Supplies

Standard logic circuits usually require a power source of +5 VDC. One possible source
of +5 VDC is in one or more batteries. A D- cell battery generates 1.5 volts, so three of
them can be connected in series to produce 4.5 VDC. An alternative power source can
be from the standard wall outlet. Household electrical service in the United States is in
the form of 110 volt AC (alternating current) power. Actually, 110 volts is the root
mean square value of a sine wave that oscillates 60 times per second from about +155
volts to about -155 volts. The circuitry required to convert 110 VAC into 5 VDC is
known as a power supply.

To obtain +5 VDC from 110 VAC requires scaling down the voltage and converting
alternating current to direct current. In addition, most power supplies include a
voltage regulator component that ensures that the circuit voltage is exactly +5 volts.
The circuit in Figure 6-1 (in the following page) is a regulated 5-VDC power supply.
The transformer reduces the household voltage from 110 to about 12 VAC. The di-
odes rectify the input to an oscillating signal of about +12 VDC. The 100mF electro-
lytic capacitor smoothes out the oscillation producing a largely DC voltage with lit-
tle ripple. The 7805 is a voltage regulator that accepts an input voltage from about 8
volts to about 35 volts and produces a constant 5V output. Voltage regulator ICs are
Zener diodes with a precise, reverse-biased breakdown voltage.

95

Figure 6-1 Regulated +5 VDC Power Supply

The 7805 is usually mounted on a metal base with a drilled hole so that a heat sink
can be attached to it. With a heat sink the 7805 can produce up to 1 amp output. Fig-
ure 6-2 shows a 7805 voltage regulator IC.

Figure 6-2 7805 Voltage Regulator IC

6.1 Clocked Logic and Flip-flops
In the digital circuits considered so far the outputs are entirely determined by the in-
puts to these circuits. In other words, if the inputs change so do the outputs. However,
we often need a digital component whose output remains unchanged even if there is a
change in input, for example, to store a binary number. A flip-flop is such a circuit
since it performs as a 1-bit memory that stores either the value 0 or 1.

6.1.1 The RS Flip-flop

A circuit is said to be bistable if it has two, and only two, stable states. For example, a
toggle switch which can be either OPEN or CLOSED is a bistable device. In a sense the
toggle switch has memory since it remains in any one of the two positions until
changed.

A flip-flop is an electronic circuit with two stable states, since its output is either
0 or +5 VDC. In this context we say that a flip-flop is set if it stores a binary 1 and re-
set otherwise. The RS designation refers to the Reset and Set stages. The flip-flop
can also be said to have memory since its output remains set or reset until it is inten-
tionally changed. When the flip-flop output is 0 VDC it can be regarded as storing a
logic 0 and when its output is +5 VDC as storing a logic 1.

96 Chapter 6

12.5V
CENTER-TAPPED
TRANSFORMER

110V AC
INPUT

+5V DC
REGULATED

OUTPUT

0.1mF100mF

78L05

IN OUT

+

output

ground

input

Flip-flops can be constructed using primary logic gates. One possibility is using
two NAND gates, as in Figure 6-3.

Figure 6-3 NOR Gate-based RS Flip-flop

Recall from Chapter 5 that a NAND gate is equivalent to a negative logic OR gate;
this makes the flip-flop easier to understand. Looking at Figure 6-3, first consider
that the Set input is pulled low by flipping the switch counterclockwise and sending
the input to ground. In this case the output of the upper gate (1) is forced high since
the gate’s output goes high if either input 1 or input 2 is low. Since the Reset input to
the lower gate is high (4), then neither input of the lower gate (3 or 4) is low and its
output is low. Note that input 3 is low because the bubble on the lower OR gate in-
verts the value fed back from the upper OR gate. Now the feedback line from the
lower gate (6) sends low to input 2 on the upper gate, which is inverted by the upper
gate bubble. So both inputs to the upper gate are high, determining that the upper
gate’s output remains high even when the Set input returns to a logic high, as would
be the case if the switch were turned back to the neutral position. Thus, the Q out-
put of the flip-flop stays high (and the inverted Q output remains low). When the
flip-flop is in this state, it is set. The flip-flop is placed in the cleared state by mo-
mentarily pulling the Reset input low. This forces the lower gate’s output to be high
and the upper gate’s to be low.

The action of the flip-flop in Figure 6-3 is consistent with the description of a de-
vice with two steady states, labeled Set and Reset, and controlled by two corre-
sponding input lines. Once a device is in either state, it remains in that state until the
opposite state is enabled, thus “remembering” its set or reset status. The rotary
switch mechanism ensures that the device will have either two high input lines or
one high and one low. The condition of two low input lines is not allowed in this
flip-flop, as shown in the truth table.

All mechanical switches used in electronic devices contain a spring of some sort.
It is this spring that maintains the switch’s contact in either position, but it also
makes the switch electrically “bounce” whenever it is activated. Although the
bounce only takes a few milliseconds, the logic level can change between high and

Circuit Components 97

Set Reset Q R

H H no change

L H H L

H L L H

L L disallowed

+5V

1

2

3

4

6 8

75

+5V

Set
Q

RReset

low several times during this period. If an RS flip-flop is connected to the switch, the
first contact switches the flip-flop and subsequent ones have no effect, thus effec-
tively “debouncing” the switch.

6.1.2 Clocked RS Flip-flop
So far the circuits discussed are examples of combinatorial or asynchronous logic. If
we ignore a few nanoseconds of propagation delay, in combinatorial circuits the out-
puts change as soon as the inputs change. Although in theory you can build complex
logic circuits using combinatorial logic, it is more convenient to use clocked logic
pulses to ensure high reliability and noise immunity. Circuits that use clocked im-
pulses are said to use synchronous logic.

In synchronous circuits unconstrained changes in logic gate outputs are not al-
lowed. Instead, the logic is designed so that logic level changes can progress
through the circuitry one stage at a time under control of a clock. Between the clock
pulses that cause changes to take place, the temporary state of the system is stored
in memory elements or flip-flops.

In clocked or synchronous logic all the gates in the system change outputs at the
same time. The output state of each gate depends only on the state of the gate inputs
at the time of the clock pulse. In combinatorial circuits the gates may briefly “see”
the wrong logic level and cause incorrect operation of the circuit. With clocked
logic, the gate outputs “settle down” during the time between clock pulses so that
only valid logic levels are present by the time the next clock pulse arrives.

The RS flip-flop in Figure 6-3 is not suitable for use in a clocked logic circuit be-
cause its output changes immediately whenever the Set or Reset inputs change.
However, the circuit can be made into a clocked RS flip-flop by adding two NAND
gates, as shown in Figure 6-4.

Figure 6-4 Clocked RS Flip-flop

98 Chapter 6

Set

Q

RReset

Clock

In the clocked flip-flop of Figure 6-4 the Set and Reset inputs can change at any
time, but those changes are ignored by the flip-flop except during the interval when
the logic high of a clock pulse is present. During the clock pulse the state of the Set
or Reset line is stored by the flip-flop.

6.1.3 The D Flip-flop
One of the objections to the flip-flops in Figures 6-3 and 6-4 is that there are two data in-
put lines, labeled Set and Reset in the illustrations. One possible solution is to only use
one of the inputs by connecting an inverter between the Set line and the Reset input.
The circuits for a D Flip-flop are shown in Figure 6-5.

Figure 6-5 The D Flip-flop

The name D (or data) flip-flop originates in the fact that it contains a single data
line. The D flip-flop is also called a transparent latch, or a D latch. In the D flip-flop
the state of the input line, called the D input, is stored in the flip-flop when a clock
pulse occurs. An advantage of this design is that the disallowed state (see Figure
6-3), in which both Set and Reset are simultaneously low, cannot be reached acci-
dentally.

A flip-flop can be used for storing binary data. To visualize how this can be done,
imagine four D flip-flops driven by the same clock signal. When the clock goes high,
input data is loaded into the flip-flops and appears at the output. When the clock
goes low, the output retains the data. For example, consider four data inputs, as fol-
lows:

When the clock signal goes high, these four bits are loaded into the D latches, re-
sulting in the output:

This operation is represented in Figure 6-6.

Circuit Components 99

Q

R

Clock

Data

D D D D0 1 2 3 0101=

Q Q Q Q0 1 2 3 0101=

Figure 6-6 4 Data Bits Stored in D Latches

In the 4-bit D latch of Figure 6-6 the output data is stored as soon as the clock
goes low. For as long as the clock is low, the D values can change without affecting
the Q values. The 7475 IC contains four D flip-flops and is called a quad bistable

latch. This circuit is well suited for handling 4-bit data bits simultaneously (one nib-
ble).

6.1.4 The Edge-triggered D Flip-flop
The D flip-flop or transparent latch is available in several versions in addition to the
7475. Although the pure D flip-flop is a useful IC, for some applications it has the draw-
back that outputs follow the D input during the entire time that the clock line is high. In
some circuits it would be ideal to have a flip-flop that stores data at a unique point in
time. The edge-triggered D-type flip-flop approaches this behavior. In this device, the
flip-flop stores the state of the data line at the instant the clock signal makes a transi-
tion from low to high and ignores it otherwise. Figure 6-7 shows an edge-triggered D
flip-flop.

Figure 6-7 Edge-Triggered D Latch

The circuit in Figure 6-7 is sometimes called an RC differentiated clock input

latch. In this case RC stands for the resistor/capacitor combination at the input of
the D latch. By design, the RC time constant is made smaller than the clock’s pulse
width. This determines that the capacitor fully charges when the clock goes high,

100 Chapter 6

D3

CLKD D D D

Q Q Q QQ Q Q Q

CLK CLK

Clock

CLK

D2
D1 D0

Q3
Q2

Q1
Q0

QS

R Q

Clock

Data

producing a narrow positive voltage spike across the resistor. Later, the trailing
edge of the pulse results in a narrow negative spike, enabling the AND gates for a
brief period. The effect is to activate the AND gates only during the positive spike;
the negative spike does nothing in this circuit. The result is equivalent to sampling
the value of D for an instant. At this point in time, D and its complement hit the
flip-flop inputs, forcing Q to set or reset (unless Q is already equal to D).

6.1.5 Preset and Clear Signals
The use of flip-flops in digital circuits usually requires some way of placing the signals
in a known state. In this sense a Preset signal is used to make sure that the Set line is
high, and a Clear signal to make sure that the Reset line is high. Alternatively, these sig-
nals are referred to as Preset R and Preset S. Figure 6-8 shows how the Preset and Clear
functions can be implemented in an RS flip-flop.

Figure 6-8 Implementing Preset and Clear

The OR gates in the circuit of Figure 6-8 allow selectively setting the S or the R

lines of the edge-triggered D flip-flop. The Preset and Clear signals are called asyn-

chronous inputs since they activate the R or S lines of the flip-flop independently of
the clock. The D input, on the other hand, is synchronous since it has an effect only
when the clock edge signal is high. Figure 6-9 shows the electrical symbol for a posi-
tive edge-triggered flip-flop with active high Preset and Clear lines.

Figure 6-9 D-Type Edge-triggered Flip-flop Symbol

Circuit Components 101

QS

R Q

Clock

Data

Preset

Clear

QD

CLK

Q

PR

CLR

In the normal mode of operation, a D-type flip-flop has the Set and Clear inputs
high (not active), so that a transition of the clock input from low to high (called a
positive edge) clocks the value of D into Q and the inverse of D into not-Q. The clock
transition is required; D can do anything it wants to, but nothing happens to Q and
not-Q until a positive edge occurs on the clock line.

6.1.6 D Flip-flop Waveform Action
An easy way of understanding the interaction of the various signals in a clocked RS
flip-flop is by means of a waveform diagram. The reference circuit is the one in Figure
6-8. This includes a clock signal, a data input line, Preset and Clear lines, Set and Reset
input lines into the flip-flop, and Q and not-Q output lines. The signals are described as
follows:

1. The clock signal (CLK) is a square wave that oscillates between a high and a low state.
It provides a synchronized beat that coordinates the various digital devices present in
the circuit.

2. The data signal is used as a single input line into the flip-flop. Setting the data signal
high also sets high the flip-flop’s Set line. A low data signal makes the flip-flop Reset
line high.

3. The Set signal or line is one of the two inputs into the flip-flop. The other one is the Re-
set line.

4. The Preset line is used to make the flip-flop set line active. The Clear signal has the ef-
fect of setting high the Reset line into the flip-flop.

5. The Q and not-Q lines provide the flip-flop output. Q is high if the Set line is high; other-
wise the not-Q line is high.

Figure 6-10 is a waveform diagram for a clocked RS flip-flop.

Figure 6-10 Waveform Diagram for Clocked RS Flip-flop

102 Chapter 6

1 2 3 4 5 6 7 8

S

Q

Q

R

CLK

Clear

Reset

Preset

Set

0

0

0

0

0

1

1

1

1

1

In reference to Figure 6-10 note that the clock input (at the top of the illustration)
provides the synchronization beat for the flip-flop inputs (R and S) and the outputs
(Q and not-Q). However, the Preset and Clear signals are asynchronous, that is, they
operate independently of the clock pulse. Therefore, when the Preset line is set
high, the S input line into the flip-flop immediately follows. However, the Q output
line must wait until the next rising clock pulse, which corresponds to the dot-dash
line labeled Set in the illustration. Similarly, the Clear signal immediately sets the R
line; however, the not-Q output is not set until the next rising clock pulse. Note that
during clock pulse number 4 both the R and S lines are held low. This corresponds to
the hold state and the output on lines Q and not-Q remains unchanged.

6.1.7 Flip-flop Applications

The D-type flip-flop finds many uses in digital technology. Perhaps the most obvious
one is as a memory. The flip-flop stores the value clocked into it from the D line; said
value can be read on the output lines Q and not-Q. A type of memory known as static

RAM is implemented as a large array of flip-flops with address decoding circuitry that
allows selecting which flip-flop is being accessed by a read or write operation. Proces-
sors and microcontrollers contain many flip-flops, usually in the form of registers,
which are just a group of 8, 16, 32, or 64 flip-flops. Flags are also flip-flops that are set
or cleared by the results of the CPU’s internal operations.

Digital devices interface with the outside world by means of input and output
ports. These elements are implemented as flip-flops. For example, supporting the
logic requires turning on a LED so as to signal that some event has occurred. To
achieve this, a data line from the digital device can be connected to the D input of a
flip-flop. Then a pulse is sent on another line to the clock input. When the clock
pulse goes from low to high, the state of the data line at that instant is clocked into
the flip-flop. This state remains on the Q output until a new value is clocked in. An-
other example is the 74374 IC, which contains 8 flip-flops in a single 20-pin DIP
package. The chip is called an octal latch because data is latched into all eight
flip-flops all at once by a single clock line.

D-type flip-flops are also used in implementing digital interfaces; for example, to
have a digital device read in data from some external source, such as a switch. Each
time new data is produced by the switch, a flip-flop is set and the output of this
flip-flop is connected to an interrupt request line (IRQ) on the device. When the IRQ
line goes high, the microcontroller saves its current state and branches off to an in-
put routine that takes some action according to the state of the switch; for example,
turns on a LED if the switch is high. To prevent the microcontroller from getting in-
terrupted again by the same input, the same signal is also used to clear the flip-flop
until the next data byte comes along.

6.2 Clocks
A clock signal consists of a sequence of regularly spaced pulses, typically in the form
of a square wave. Digital devices use the rising or the falling edges of the square wave
to run logic circuits. Clocks provide the heartbeat without which the system would
cease to function.

Circuit Components 103

6.2.1 Clock Waveforms
In a digital device, such as a microcontroller system, the clock provides a periodic
waveform that is used as a synchronizing signal. Although the typical clock waveform
is depicted as a square wave (as in Figure 6-10) it need not be perfectly symmetrical. In
fact, a series of positive or negative waves could serve as a timing pulse in a digital cir-
cuit. The one requirement of a clock pulse is that it be perfectly periodic.

The basic timing interval for a digital circuit, which is equal to one full waveform
period, is called the clock cycle. This determines that all logic elements in the cir-
cuit, including gates and flip-flops, complete their transitions in a complete clock
cycle or less.

We can assume that the ideal clock produces a perfectly square waveform that is
absolutely stable, as the one shown in Figure 6-11.

Figure 6-11 Ideal Waveform

A stable and uniform waveform reaches exactly the same voltage every time the
clock is high; for example, +5 volts. By the same token, every time the clock signal
goes low the voltage level must be the same, typically 0 volts. In addition, the clock
signal must remain at the high and low levels for the same time and the time be-
tween each high and low cycle must be exactly the same. This last element is usually
called the frequency stability of the clock. In Figure 6-11 the frequency stability re-
fers to the time it takes for the signal to transition from point a to point c during
each clock cycle. In practice, the stability and uniformity of the clock signal are
more important than the absolute value. For example, it is usually acceptable that
the high voltage level of the clock signal be 4.8 volts instead of 5 volts, as long as the
4.8 volts level is exactly reproduced at every clock cycle. Figure 6-11 shows an ideal
waveform.

Another characteristic of the clock signal is the time required for clock levels to
change from high to low and vice versa. Ideally this transition could be represented
by a vertical line, as in Figure 6-11. This would mean that the transition is instanta-
neous, which is not achievable in actual circuits. In practice some time is required
for the waveform to transition from low to high and vice versa. So the actual graph
of the waveform, as can be seen in an oscilloscope, shows a slightly sloping side.
Customarily, the actual measurement of the transition time is referred to as the 10
and 90 percent points. For example, in a 5 volt waveform, the rise time is the time it
takes for the voltage to go from 0.5 to 4.5 volts, which are the 10 and 90 percent
points for that waveform.

104 Chapter 6

Time

a b c

0V

+5V

6.2.2 The TTL Clock
A much used TTL-compatible clock can be built around a 7404 hex inverter IC such as
the one in Figure 5-12. The idea is to use two inverters to build a two-stage amplifier
with an overall shift of 360 degrees. The output signal at one of the inverters is fed
back, through a crystal, to the first inverter; this determines that the circuit oscillates
at a frequency determined by the crystal. Thus, the frequency of this clock signal is de-
termined by the crystal: values between 1 and 20 MHz are common. The TTL clock cir-
cuit is shown in Figure 6-12.

Figure 6-12 TTL Clock Circuit

The crystal in the circuit of Figure 6-12 makes the frequency of oscillation very
stable. The third inverter is used as an output buffer and allows driving the load sim-
ulated by the RC circuit.

The clocks used in digital systems need to be stable and uniform so that the fre-
quency is the same and each pulse is the same as every other one. To achieve this, a
narrow band frequency-selective filter whose center frequency does not change is
required. Quartz crystals are a good choice since they provide a stable, precision os-
cillation. A quartz crystal is actually a thin piece of polished crystalline quartz with
contacts plated on each surface and a lead attached to each contact. Quartz is a pi-
ezoelectric material, which means that there is one particular electrical frequency
that excites the crystal’s resonance. It is this narrow resonant frequency that is used
to build a frequency-selective filter whose center frequency changes very little as
the components age or with changes in temperature. Crystal oscillators are avail-
able with frequencies that range from 10 KHz up to 600 MHz or more. They are typi-
cally housed in small metal cases with the frequency printed on the outside.

Circuit Components 105

Clock

output

Simulated

load

Crystal

GND

+5V

6.2.3 The 555 Timer
One of the most versatile timer ICs is the TTL-compatible 555 timer. This chip can be
used to make many different kinds of oscillators, pulse generators, and timers. As an
oscillator, the 555 can be made to produce square, sawtooth, or triangle waves, and its
frequency can be modulated by an external input. Although the 555 is not a TTL part,
its output is TTL-compatible when it is used with a 5-volt power supply.

The 555 timer has two distinct output levels that continuously switch back and
forth between two unstable states. Because of this oscillation, the circuit output is a
periodic, rectangular waveform. The fact that neither output is stable accounts for
the circuit being astable or bistable. The frequency of oscillation as well as the duty
cycle are accurately controlled by two external resistors and a single timing capaci-
tor. Figure 6-13 shows the logic symbol for a 555 timer as well as the wiring to imple-
ment an asymmetric square wave generator.

Figure 6-13 555 Timer as a Square Wave Generator.

6.2.4 Microcontroller Clocks

Microcontrollers, like most digital components, require a synchronizing timing pulse
provided by some form of clocking device.

There are five common ways of implementing a timer in a microcontroller:

1. Internal clock

2. RC network

3. Crystal oscillator

4. Ceramic resonator

5. External oscillator

106 Chapter 6

TTL

compatible

output

Bypass

capacitor

OUT
3

4

7

8

2

6

1

5

Discharge

+5V

Threshold

Trigger

555

The selection depends on the specific microcontroller, the circuit requirements,
and the cost of each available option. The least expensive option is the resistor/ca-

pacitor oscillator circuit (RC network). The disadvantages are its slow speed and
inherent inaccuracies. Some of the newer generations of microcontrollers come
equipped with an internal RC oscillator that operate as a programmable timer. Typi-
cal speeds are 4 MHz with a 1.5 percent error. The actual use and implementation of
microcontroller clocks is discussed in relation to each specific device.

6.3 Frequency Dividers and Counters
Frequency dividers and counters are actually the same circuitry used in different
ways. Counters are one of the most useful and versatile digital devices. Counters can
be used to count the number of clock cycles and as an instrument for measuring time
and therefore period or frequency. The two different types of counters are synchro-
nous and asynchronous.

6.3.1 Frequency Dividers
Circuit designers often needed to reduce the frequency of a wave clock signal. One
easy way of doing it is to divide the frequency by two, which is done by feeding back
the not-Q output of a D-type flip-flop to its data line. Figure 6-14 shows a divide-by-2
circuit and its effect on the resulting wave.

Figure 6-14 A Divide-by-two Circuit

In the circuit of Figure 6-14 the frequency division occurs because each input
clock rising edge toggles the flip-flop’s output. When the Q output goes low, the
not-Q line goes high and the high feedback signal is fed back to the data line, thus
canceling out the next high wave of the f signal.

6.3.2 The JK Flip-flop Counter

One type of specialized flip-flop that we did not cover in Section 6.2 is the JK flip-flop.
The JK flip-flop is an ideal component to build a circuit that keeps track of the number
of positive or negative clock edges on the input clock. The name of this flip-flop relates
to the two variables, J and K, that are used as inputs to the circuit. Figure 6-15 shows
one possible circuit implementation for the JK flip-flop.

Circuit Components 107

f/2

output

time

f/2

f

f

input

D

Q

Q

Figure 6-15 A JK Flip-Flop Circuit

In Figure 6-15 the RC circuit converts the rectangular wave clock pulse into a nar-
row spike. The three-input AND gates make the circuit positive-edge-triggered.
When J and K are low, both AND gates are disabled; therefore, clock pulses have no
effect. This corresponds to the first entry in the truth table. When J is low and K is
high (second entry in the truth table) the upper gate is disabled, so the flip-flop can-
not be set; it must be reset. When Q is high, the lower gate passes a Reset trigger as
soon as the next positive clock edge arrives. This forces Q to become low (the same
second entry in the truth table). Therefore, J low and K high means that the next
positive clock edge resets the flip-flop.

When J is high and K is low (third entry in the truth table) the lower gate is dis-
abled, so it is impossible to reset the flip-flop. However, the flip-flop can be reset
when Q is low because not-Q is high; therefore, the upper gate passes a Set trigger
on the next positive clock edge. This drives Q into the high state (the third entry in
the truth table). As you can see, J = 1 and K = 0 means that the next positive clock
edge sets the flip-flop (unless Q is already high). When J and K are both high it is
possible to set or reset the flip-flop. If Q is high, the lower gate passes a RESET trig-
ger on the next positive clock edge. On the other hand, when Q is low, the upper gate
passes a SET trigger on the next positive clock edge. Either way, Q changes to the
complement of the last state (see last entry in the truth table). Therefore, when J = 1
and K = 1 the flip-flop will toggle on the next positive clock edge.

6.3.3 Ripple Counters

The simplest of all counters is called a ripple counter. A two-bit ripple counter can be
constructed by wiring together two divide-by-two circuits, as in Figure 6-16.

108 Chapter 6

QS

R Q

CLK

J

K

CLK J K Q

X L L last state

H L H L

H H L H

H H H toggle

Figure 6-16 Two-Bit Ripple Counter

Stringing together two divide-by-two circuits, as in Figure 6-16, produces a di-
vide-by-four circuit. Stringing together three flip-flops produces a divide-by-eight
circuit, four flip-flops create a divide-by-sixteen circuit, and so on. The counting ac-
tion of the connected flip-flops is based on the fact that each flip-flop changes state
before triggering the next one in line. Thus, each stage performs as a bit in a binary
counter, the first stage being the LSB and the last stage the MSB. Since the preced-
ing flip-flop acts as a clock for the next one in line, the flip-flop to the right toggles
each time its neighbor to the left goes low. In Figure 6-15 the signal labeled Q0 is the
LSB of a two-bit counter, while the signal labeled Q1 is the most significant bit.

In this design each flip-flop is triggered by the previous one; thus the count is said
to “ripple” down the device. One objection to the ripple counter is that the change in
each output is determined by the previous output in the flip-flop chain; this pro-
duces a few nanoseconds of time lag from output line to output line. This cumula-
tive settling time is why these counters are called serial or asynchronous.

Note that the ripple counter of Figure 6-16 uses the not-Q line to drive the follow-
ing flip-flop. If a ripple counter is wired so that the Q line drives each next stage,
then the transitions take place not when the previous waveform goes low, but when
it goes high. The result is that the counter counts down instead of up. In other
words, in the down counter, the count is reduced by one during each clock transi-
tion. Commercial counters, such as the 74193, can be made to operate as
up-counters or down-counters by selecting the corresponding input line.

Circuit Components 109

Q0

Q0

Q1

Q1

clock

0/0 0/1 1/0 1/1 0/0 ...

wave

input

D D

Q Q

Q Q

6.3.4 Decoding Gates
A decoding gate is a way of connecting the output of a counter so that it signals a given
state. For example, if four D-type flip-flops are wired so as to produce a four-bit ripple
counter similar to the one in Figure 6-15, the counter represents binary digits 0000 to
1111. If we wanted to detect the value 1101 (16 decimal) the resulting circuit could be
designed as in Figure 6-17.

Figure 6-17 Decoding Gate

The circuit of Figure 6-17 uses a NOR gate to invert the value of bit number 1.
Then the AND gate serves to trigger the output when bits 0, 2, and 3 are high and bit
1 is low. This corresponds to the binary value 1011.

6.3.5 Synchronous Counters

Although the ripple counter is the simplest one, it has the previously mentioned disad-
vantage that each flip-flop has to wait for its neighbor to switch states. This means that
in a ripple counter the delay times are additive, and also that the total “settling” time
for the counter is approximately the delay multiplied by the total number of flip-flops.
In addition, with ripple counters the resulting delay creates the possibility of glitches
occurring at the output of decoding gates. These problems can be overcome by the use
of a synchronous or parallel counter.

By observing how counting takes place in binary numbers, a counter in which
each flip-flop is triggered at every clock beat can be built. Binary counting has the
property that when a bit changes from high to low (1 to 0) it sends a toggle com-
mand to its neighbor to the left. So assuming that the low-order bit changes consec-
utively from one state to its complement, and starting from all bits initialized to 0,
binary counting can be visualized as in Figure 6-18.

110 Chapter 6

Q0
Q2 Q3

Q1

wave

input

D D D D

1101

Q Q Q Q

Q Q Q Q

Figure 6-18 The Binary Counting Mechanism

Note in Figure 6-18 that the arrows indicate the transition from high to low, which
is the command for the column to the left to change to its complement (toggle).
Using this property of binary counting, it is possible to wire four JK flip-flops so that
every high-to-low transition of a flip-flop triggers its higher-order neighbor to toggle
its state. Figure 6-19 shows such a system.

Figure 6-19 Synchronous Four-Bit Up Counter

Circuit Components 111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Q0 Q2 Q3
Q1

wave

input

J J J J

K

wrap-around point

K K K

+5V

Q Q Q Q

Q Q Q Q

Q0

Q1

Q2

Q3

In Figure 6-19 note that the first flip-flop (the one with the Q0 output) has a posi-
tive-edge triggered clock input. The lowest-order flip-flop toggles with each rising
edge of the clock signal (not shown in the illustration). The second flip-flop to the
right toggles with every falling edge of the signal from its neighbor to the left. And so
on to the last flip-flop in the chain. The arrows in the waveform portion of Figure
6-19 show that each succeeding output bit is toggled by the transition from high to
low of its lower-ordered neighbor. Also note the dashed line that marks the point
where all found counters are transitioning from high-to-low. At this point all four
counters wrap around to zero and a new count begins.

Observe that the not-Q output line transitions opposite to the Q output. That is,
when the Q output line goes high, not-Q goes low, and viceversa. So if the pulse into
each successive flip-flop originated in the not-Q line, instead of the Q line, then the
resulting circuit would be a synchronous counter that transitions on the positive
edge (low-to-high) instead of in the negative edge, as is the case with the counter in
Figure 6-19. Furthermore, the not-Q line provides a set of negated outputs in refer-
ence to the Q lines; therefore, it is possible to come up with a circuit that serves
both as an up- and down-counter according to the selected set of outputs. Such a cir-
cuit is shown in Figure 6-20.

Figure 6-20 Synchronous 4-bit Up- and Down-counter

In the counter of Figure 6-20 the Q outputs generate the up-count series while the
not-Q outputs produce the down-count series.

6.3.6 Counter ICs

Counters are available as standard TTL components. The 7493 is an asynchronous
4-bit ripple counter that counts from 0 to 15. The 7490 is another version of the ripple
counter, called a decade counter, since the count output is in the range 0 to 9. The
74193 is a 4-bit synchronous up/down counter in the range 0 to 15. Figure 6-21 is a pin
diagram of the 74193.

112 Chapter 6

Q0

Q0

Q2

Q2

Q3

Q3

Q1

Q1

wave

input

J J J J

K K K K

+5V

Q Q Q Q

Q Q Q Q

Figure 6-21 74193 Asynchronous Up/Down Counter Pin Diagram

The 74193 is a synchronous counter, so its output changes precisely at each clock
pulse. This is convenient since it allows connecting its output to other logic gates
and avoids the glitches associated with ripple counters. Note from Figure 6-21 that
the 74194 has separate clock inputs for counting up and counting down. The count
increases as the up clock input becomes high (on the rising-edge). The count de-
creases as the down clock input becomes high (on the rising-edge). In both cases
the other clock input should be high. For normal operation the Preset input should
be high and the Reset input low. When the Reset input is high it resets the count to
zero, that is, lines QA to QD are low. The counter can be preset by placing any de-
sired binary number on inputs A to D and making the Preset input low. These inputs
may be left unconnected if not required.

Several 74193 counters can be chained by wiring a common Reset line, connect-
ing the carry to the up clock line of the next counter and the borrow to the down
line.

6.3.7 Shift Registers

In chapter 4 we discussed logical operations that shift and rotate the operand bits.
These manipulations are useful in inspecting individual bits, in performing fast multi-
plications, in implementing time delays, and in converting parallel input to serial out-
put, and vice versa. The hardware implementation of shift-and-rotate operations are
called shift counters or shift registers.

Shift counters are often based on the D-type flip-flop. Actually, several D-type
flip-flops can be chained together so that the D output of one goes into the D input
of the next one. If all the flip-flops are driven by the same clock signal, then the ef-
fect would be to shift the bits from one flip-flop into the next one at each rising
clock pulse.

A common implementation of a shift counter is called a parallel-in/serial-out

shift register, as the one in Figure 6-22.

Circuit Components 113

74193

14

15

161

13

2

12

3

11

4

10

5

9

6

7

8

+5Vinput B

input A

input D

input C

carry out

borrow out

reset

preset (active low)

output QB

output QA

down clock

up clock

output QC

output QD

0V

Figure 6-22 Four-Bit Parallel-In/Serial-Out Shift Counter

The circuit in Figure 6-22 shows four flip-flops connected so that the output of
one feeds into the input of the next one. Also, a set of NAND gates allow parallel
data input. When the load signal is set high the flip-flops in the shift register are
loaded simultaneously with the logic values at the inputs A, B, C, and D. The 74165
IC is an 8-bit parallel-in/serial-out shift register with asynchronous parallel load and
two OR-gated clock inputs. Figure 6-23 is a pin diagram of the 74165 IC.

Figure 6-23 Pin Diagram of IC 74165

The serial input line in the diagram of Figure 6-22 and in the 74165 IC in Figure
6-23 allows cascading multiple chips.

Parallel-in/serial-out shift registers find common use in the implementation of se-
rial ports. In serial communications data is sent one bit at a time over a single wire.

114 Chapter 6

CLOCK

serial

in

load

serial

out

CLR

SET

A B C D

D Q

CLR

SET
D Q

CLR

SET
D Q

CLR

SET
D Q

74165

14

15

161

13

2

12

3

11

4

10

5

9

6

7

8

+5Vshift/load

clock inhibit

input D

output Q

clock

input E input D

input F input C

input G input B

input H

serial inputoutput Q

GND

In order to accomplish this, data is first loaded into a parallel-in/serial-out shift reg-
ister. The individual bits are then shifted out one at a time. The frequency of the driv-
ing clock in this case corresponds to the baud rate being used. To receive the data
on a serial communications line a second type of shift register is used. In this case
the operation is serial-in/parallel-out. The circuit that accomplishes this is based on
D-type flip-flops in which the Q outputs are connected to the D input lines.

The 74164 IC is one such device. In actual serial ports, the transmitting and re-
ceiving shift registers are contained in a single device called a UART (universal
asynchronous receiver/transmitter).

6.4 Multiplexers and Demultiplexers
There are many situations in digital electronics where different signals must be sent
out on a single output line, or several signals must be received in a single input line.
The digital circuits that perform these operations are called multiplexers and
demultiplexers. Multiplexers and demultiplexers are TTL analogs of the many-to-one
and one-to-many mechanical switches.

6.4.1 Multiplexers
Multiplexing (also called muxing) is a way of combining data of two or more input
channels into a single output channel. The hardware multiplexer, also called a mux,
combines several electrical signals into a single one. In other words, the multiplexer
performs a many-into-one function while the demultiplexer performs one-into-many.
Sometimes multiplexers and demultiplexers are combined into a single device, which
is still referred to as a “multiplexer.” Figure 6-24 shows the schematics diagram of a
multiplexer.

Figure 6-24 Multiplexer Schematics

The truth table in Figure 6-24 describes the multiplexer operation. The line la-
beled “sel” in the illustration is the selector line. If the selector is low (S = 0) then in-
put line, B, is mirrored in the output line O. Otherwise, input line A is vectored to the
output.

Circuit Components 115

A

A B S O

0 0 0 B (0)

0 0 1 A (0)

0 1 0 B (1)

0 1 1 A (0)

1 0 0 B (0)

1 0 1 A (1)

1 1 0 B (1)

1 1 1 A (1)

B

sel (S)

out (O)

The Boolean expression for the multiplexer in Figure 6-24 is:

Often, a multiplexer circuit is preceded by a decoder circuit so that input can be
compressed into fewer lines. For example, a four-to-one multiplexer receives a bi-
nary value in the range 0 to 3 (00 to 11) on two input lines and sets high one of four
output lines accordingly. Figure 6-25 shows the circuit diagram for such a device.

Figure 6-25 Two-Bit to One-of-Four Multiplexer

In the circuit of Figure 6-25 there are four input lines. Which one of these four
lines is copied to the multiplexer output depends on the binary value in the two S
lines at the top of the illustration. The 2-to-4 line decoder converts this value into
one of four selector lines, which are in one of these four states:

LLLL LLHL LHLL HLLL

Whichever line is high from the decoder output selects the corresponding input
line. By analogy to the circuit in Figure 6-25, an 8-input multiplexer has eight data in-
puts and three binary selection inputs, which are converted into one-of-eight selec-
tion lines by the decoder. By the same token, a 16-input multiplexer requires four
binary digits in the decoder input, which are converted into one-of-sixteen selection
lines.

Alternatively, the decoder circuit can be eliminated by using multiple AND gates
and negating the input signals, as shown in Figure 6-26.

In Figure 6-26 assume that the input bits are both low, that is, S1 = 0 and S2 = 0.
The first-level NOR gates change the L signals to H. The two high signals go into the
first multiple AND gate, as shown by the solid lines in the illustration. This deter-
mines that the first input line (I0) is copied to the circuit output. In fact, the four in-
verters at the top of the illustration perform the function of the two-to-four decoder
in the circuit of Figure 6-25.

116 Chapter 6

O A S B S= ∧ ∨ ∧ ¬() ()

S1

I1

I2

I3

S0

I0

O

2-to-4 line

decoder

Figure 6-26 Multiplexer with Multiple AND Gates

6.4.2 Demultiplexers
A demultiplexer takes one data input and a number of selection inputs, and returns
multiple outputs. So while the multiplexer performs a many-into-one operation, the
demultiplexer performs a one-into-many. For example, a 4-output demultiplexer has
one data input line, two selection inputs, and four data output lines. Figure 6-27 shows
such a circuit.

Figure 6-27 Two-Bit into Four-of-One Demultiplexer

Circuit Components 117

I0

I1

I2

I3

O

S1 S0

O0I

O1

O2

O3

S1 S0

Demultiplexers can be made to act as decoders by holding the input line high. For
example, the circuit in Figure 6-27 performs as a binary to four-line decoder if the I
line is held high. The binary bit patterns on the two input lines are converted into a
single output in one of the four output lines. Thus, if there were four devices, each
one connected to one of the output lines, the demultiplexer circuit would select
which one is enabled according to the binary value of the input.

6.4.3 Multiplexer and Demultiplexer ICs

Several ICs are available that perform multiplexing and demultiplexing operations.
For example, the 74138 is a 3-line to 8-line decoder and demultiplexer. With this IC any
of eight inputs can be selected by placing the corresponding 3-bit number on the de-
vice’s three address lines. The 74151 is a 1-of-8 data selector/multiplexer. This device
routes data from eight sources to a single output line. Here again, a 3-bit selector is
used to determine which of the eight inputs is routed to the output.

An important use of the multiplexer ICs is to encode row and column addresses
into the address lines of dynamic RAM, although more often tristate buffers such as
the 74541 are used. Another important use of multiplexers is in implementing
dual-port memories for video displays.

6.5 Input Devices
Electronic devices, including computers and microcontrollers, often receive the data
and commands required for their operation. In computer technology the most com-
mon input device is the keyboard, which allows entering text data as well as keystroke
orders. Alternate computer input devices are the mouse, trackballs, light pens, graphi-
cal tablets, scanners, speech recognition devices, optical character recognition de-
vices, and many others. Although these devices are not excluded from use in
microcontroller-based systems, a more typical case is that microcontroller input de-
vices are much simpler and limited. In this section we discuss the two most commonly
used devices for microcontrollers: the switch and the keypad. Keep in mind that spe-
cialized systems often use special input devices; for example, a radio receiver could be
the input device for a radio-controller microcontroller system.

6.5.1 Switches

The electrical switch is a device for changing current flow in a circuit. Although me-
chanical switches find use in fields such as railroads and fluid flow control, here we re-
fer to switches used in controlling electrical power or electronic telecommunications.

In abstract terms the switch is often referred to as a “gate”, in the same sense as
the logic gates discussed in Chapter 5. In this sense an electronic device can be
viewed as a system of logic gates. The simplest electrical switch has two compo-
nents, called contacts, that touch to make the circuit and separate to break the cir-
cuit. The terms make and break are commonly used in this context. The selection of
material for the contacts is important since corrosion can form an insulating layer
that prevents the switch from performing its function. One possible solution is plat-
ing the contacts with noble metals, such as gold or silver.

118 Chapter 6

In a switch, the actuator is the part that applies the operating force to the con-
tacts. Common switch types are rocker, toggle, push-button, DIP, rotary, tactile,
slide, keylock, snap-action, thumbwheel, and several others. Figure 6-28 shows sev-
eral switches commonly found in microcontroller circuit boards.

Figure 6-28 Electrical Switches

In switches, contacts are “closed” when there is no space between them, thus al-
lowing electricity to flow. When the contacts are separated by a space, they are
“open.” In this case no electricity flows through the switch.

Switches are classified according to the various contact arrangements. In the nor-
mally open switch the contacts are separated until some force causes them to close.
In the normally closed switch the contacts are held together until some force sepa-
rates them. Some switches can be selected to operate as either normally open or
normally closed. The term pole is used in reference to a single set of contacts on a
switch. The term throw refers to the positions that a switch can adopt. Figure 6-29,
on the following page, shows some common switch designs and their electrical sym-
bols.

A multi-throw switch can have two possible transient behaviors as it transits
from one position to the other one. One possibility is that the new contact is made
before the old one is broken. This make-before-break action ensures that the line is
never an open circuit. Alternatively, there is a break-before-make action, where the
old contact is broken before the new one is made. This mode of switch operations
ensures that the two fixed contacts are never shorted. Both designs are in common
use.

Circuit Components 119

Figure 6-29 Switch Symbols and Types

A biased switch is one in which the actuator is automatically returned to a cer-
tain position, usually by the action of a spring. A push-button switch is a type of bi-
ased switch, of which the most common type is a push-to-make switch. In this case,
the contact makes when the button is pressed and breaks when it is released. A
push-to-break switch, on the other hand, breaks contact when the button is pressed.
Many other special function switches are available; for example, tilt switches, such
as the mercury switch, in which contact is made by a blob of mercury inside a glass
bulb as the switch is tilted. Other specialized switches are activated by vibration,
pressure, fluid level (as in the float switch), linear or rotary movement, the turning
of a key, a radio signal, or a magnetic field.

6.5.2 Switch Contact Bounce
Switch contact bounce is a common problem of electrical switches. Switch contacts
are metal surfaces that are forced into contact by an actuator. Due to momentum and
elasticity, the striking action of the contacts causes a rapidly pulsating electrical cur-
rent instead of a clean transition from zero to full current. Parasitic inductance and ca-
pacitance in the circuit can further modify the waveform resulting in a series of
sinusoidal oscillations.

Switch bounce sometimes causes problems in logic circuits that are not designed
to cope with oscillating voltages, particularly in sequential digital logic circuits. Sev-

120 Chapter 6

Diagram Electronic Description

abbreviation

SPST Single pole, single throw.

On-off switch such as

a household light switch.

SPDT Single pole, double throw.

SPCO Single pole, changeover.

Changeover switch. C is

connected to either L1 or

L2.

DPST Double pole, single throw.

Equivalent to two SPST

switches operated by the

same mechanism.

DPDT Double pole, double throw.

Equivalent to two SPDT

switches operated by the

same mechanism.

L1

L2

C

eral methods of switch debouncing have been developed. These can be divided into
timing-based schemes and hysteresis-based schemes. Timing-based techniques are
based on adding sufficient delays so as to prevent the bounce from being detected.
The main advantage of using timing to control bouncing is that it does not require
any special switch design. Alternatively, it is possible to use hysteresis to separate
the positions where the make and break actions are detected. We discussed
hysterisis in the context of Schmitt trigger inverters, which are actually switches, in
Section 5.6.8.

The actual hardware circuits used in switch debouncing belong to three common
types: RS flip-flops, CMOS gate debouncers, and integrated RC circuit debouncers.
The debouncing action of the RS flip-flop is obvious from its operation, that is, when
the key is in a position in which neither contact is touched (key bouncing) the in-
puts are pulled low by the pull-down resistors. In this case, the key appears as being
pressed. Before being pressed, the key is touching the set input and appears as an
RS flip-flop, which was covered in Section 6.1.2.

Alternatively, switch debouncing can be accomplished by means of CMOS buffer
circuit with high input impedance. One such circuit is the 4050 hex buffer IC, with
eight input and eight output gates. When the switch is pressed, the input line of the
4050 chip is gounded, and output is forced low. The output voltage, by means of an
internal resistor, is also kept low when the switch is bouncing. The effect is that the
switch action is debounced.

Finally, switch debouncing can be implemented by means of a simple resis-
tor-capacitor circuit. The circuit action is based on the rate at which the capacitor
recharges once the ground connection is broken by the switch. As long as the capac-
itor voltage is below the threshold level of the logic zero value, the output signal
continues to appear as logic zero.

6.5.3 Keypads
In the context of microcontroller-based circuits, a keypad (also called a numeric key-
pad) is a set of pushbutton switches sometimes labeled with digits, mathematical sym-
bols, or letters of the alphabet. For example, a calculator keypad contains the decimal
(occasionally hexadecimal) digits, the decimal point, and keys for the mathematical
features of the calculator. Although in theory the computer keyboard is a keypad, the
keypad is usually limited to a smaller arrangement of buttons or to part of a computer
keyboard consisting mainly of numeric keys.

By convention, the keys on calculator-style keypads and keypads on computer
keyboards are arranged such that the keys 123 are on the bottom row. On the other
hand, telephone keypads have the 123 keys on the top row.

Keypads are usually implemented as pushbutton switches located in a row and
column matrix. The location of any key on the keypad can be based on two coordi-
nates: the row and column position for that key. Therefore only eight outputs are re-
quired from the keypad: one for each row and one for each column. Determining
which switch on a keypad has been activated can be done either by polling or by
means of an interrupt routine. In the polling approach the controller checks the sta-

Circuit Components 121

tus of each switch in a loop. A more efficient approach is to implement and inter-
rupt-driven routine that notifies the processor of a keystroke.

Keypads, like the switches that they incorporate, require debouncing. The three
methods of switch debouncing described in Section 6.5.2 apply to keypads.

6.6 Output Devices

As is the case with input devices, electronic systems, including computers and
microcontrollers, must provide data output in a human-readable form. Here again,
computer technology uses many different types of output devices, including video dis-
plays, printers, plotters, film recorders, projectors, sound systems, and even holo-
graphic devices. Although these output devices cannot be excluded from use in
microcontroller systems, they use simpler and limited output means. In this section
we discuss two common output devices used in microcontroller-based circuits: the
seven-segment LED and the liquid crystal display. Simple devices, such as LEDs and
buzzers, are sometimes used as output devices. LEDs were covered in Chapter 5.
Buzzers are such simple components that their operation does not require a detailed
explanation.

6.6.1 Seven-segment LED

Digital devices often need to output a numeric value. Although individual LEDs can be
combined to represent binary, decimal, or hexadecimal digits, a far more convenient
device consists of seven built-in LEDs which can be combined to represent all ten dec-
imal digits and even the six letters of the hex character set. Such a circuit is furnished
in a single IC, called a seven-segment LED, that is common in clocks, watches, calcula-
tors, and household appliances.

Seven-segment displays have been in use since the first generation of calculators
came to market. The scheme consists of placing lighted bars in a figure-eight pat-
tern. By selecting which bars are lighted, all the digits and some letters of the alpha-
bet can be represented. In addition, seven-segment LEDs are usually capable of
displaying one or two decimal points. Figure 6-30 shows the layout of a
seven-segment LED and the combinations to generate the decimal and hex digit
sets.

Note in Figure 6-30 that two of the letters (b and d) of the hexadecimal set are dis-
played in lower-case while the others are in upper-case. This is a limitation of the
seven-segment LED since an upper-case letter “D” would coincide with the digit “0",
and an upper-case letter ”B" with the digit “8.”

Some seven-segment LED displays are slanted to make the digits appear in italics.
It is used in clock displays where the two digits are inverted so that the decimal
points appear like a colon between the digits. In addition seven-segment displays
are packaged in several different ways. Sometimes several digits are combined in a
single IC. Another packaging is in the form of a 14-pin DIP.

122 Chapter 6

Figure 6-30 Seven-Segment LED Layout and Digit Patterns

Seven-segment displays are also furnished using display technologies other than
LEDs. Many line-powered devices and home appliances, such as clocks and micro-
wave ovens, use fluorescent seven-segment displays. Battery-powered devices, such
as watches and miniature digital instruments, use seven-segment liquid crystal dis-
plays. Liquid crystal technologies are covered in sections that follow.

The LEDs in a seven-segment display are interconnected. The two interconnec-
tion modes are to wire together the cathodes of all individual LEDs, or to do so with
the anodes. In one case the device is said to have a common-cathode and in the
other one a common-anode. This circuit scheme simplifies the wiring and reduces
the number of connections, since only one line is necessary for controlling each
LED. There is no intrinsic advantage to either system since each one is suited to dif-
ferent applications. Figure 6-31, on the following page, shows the pin diagram for a
common-cathode seven-segment LED in a DIP package.

Circuit Components 123

a

b

c

a-b-c-d-e-f a-b-c

a-b-c-g-f-e f-g-e-c-d a-f-e-d b-c-d-e-g a-f-g-e-d a-f-g-ea-b-c-f-ga-b-c-d-e-f-g

a-b a-b-g-e-d a-b-g-c-d f-g-b-c a-f-g-c-d a-f-g-e-c-d

e

d

f

g

Figure 6-31 Pin Diagram for a Common Cathode Seven-Segment LED

6.6.2 Liquid Crystal Displays

A liquid crystal display (LCD) is a pixilated output device capable of displaying ASCII
characters and dot-based graphics. LCDs can be color or monochrome according to
their construction. One of the advantages of LCD displays is their very small consump-
tion of electrical power, making them suitable for battery-powered devices. In opera-
tion the liquid crystal display consists of two pieces of polarized glass with
perpendicular axes of polarity. Sandwiched between the polarizers is a layer of ne-
matic crystals, as shown schematically in Figure 6-32.

In the top image of Figure 6-32 light cannot pass through the system since the liq-
uid crystal layer preserves the original angle of vibration of the light which cannot
pass through the polarizer. In the lower image the various molecular layers of the
liquid crystal are twisted approximately 90 degrees. This twisting of the liquid crys-
tal also changes the light’s pane of vibration. So when light reaches the second po-
larized filter it vibrates at the same angle as the final molecule layer of the liquid
crystal and can pass through the polarizer. Note that the electrical current applied
to the crystals has the effect of straightening the various molecular layers. When the
current is released, the various molecular layers resume their twisted form. By vary-
ing the amount of twist in the liquid crystals the amount of light that passes through
can be controlled.

124 Chapter 6

1Anode F

Anode G

Anode E

Anode D

Anode A

Anode B

Anode C

Anode DP

Common cathode

Common cathode

14

2 13

4

12

6 9

7 8

Figure 6-32 Schematic Representation of a LCD Display

6.6.3 LCD Technologies

Depending on the positioning of the light source LCDs can be either transmissive or re-
flective. A transmissive LCD is illuminated from the back and viewed from the front.
This type is common in applications that require high levels of illumination, as is the
case with computer displays and television sets. Reflective LCDs, on the other hand,
are illuminated by an external source. This type finds use in digital watches and calcu-

Circuit Components 125

Light

Light

Polarizers

Polarizers

Liquid

crystal

lators. Reflective technology produces a darker black color than the transmissive
type, since light is forced to pass twice through the liquid crystal layer. Since reflective
LCDs do not require a light source they consume less power than the transmissive
ones. A third type, called transflective LCDs, work as either transmissive or reflective
LCDs, depending on the ambient light.

LCDs can be color or monochrome. In color systems each individual pixel con-
sists of three cells, which are colored red, green, and blue. These cells, sometimes
called subpixels, are controlled independently to yield thousands (or even millions)
of possible colors for each pixel. Most LCDs used in microcontroller systems are
monochrome.

According to display technology, LCDs are alphanumeric or dot-addressable. The
alphanumeric type, most frequently used in microcontroller applications, uses a ma-
trix composed of linear segments. Figure 6-33 shows several possible electrode con-
figurations of LCDs.

The first two electrode configurations in Figure 6-33 are based on linear segments
similar to the ones in seven-segment LEDs. Segmented electrodes are suitable for
simple alphanumeric displays as are often required in small digital devices such as
watches or calculators. To display entire character sets or graphics, a dot-address-
able matrix of electrodes is necessary. This setup is shown in the rightmost image in
Figure 6-34. However, such power comes at a price, since the more addressable ele-
ments in the display, the greater the number of connections and the more complex
the driver logic required to operate the system. Note that the 5 x 7 matrix display in
Figure 6-34 actually contains eight dot rows. The reason is that the lowest row is
used for displaying the cursor. Most popular LCD displays for microcontroller cir-
cuits use the 5 x 7 matrix format.

Figure 6-33 Electrode Configurations in LCD Displays

126 Chapter 6

7 segments 16 segments 5 x 7 matrix

One way of reducing the number of electrical connections in an LCD is by means
of a method called passive matrix display. Here the pixels to be lighted are deter-
mined by the crossing points between the row and the column selector electrodes.
For example, in the 5 x 7 matrix display in Figure 6-34, the pixel at the center of the
character is selected by picking row number 4 and column number 3. The name pas-
sive matrix originates in the fact that each pixel must retain its state between re-
freshes. As the number of pixels to be refreshed increases so does the time required
for the refresh cycle. As a consequence of their design, passive matrix displays usu-
ally have slow response times and poor contrast.

In high-resolution and color LCDs an active matrix display is used. In this design
a grid of thin-film transistors is added to the polarizing and color filters. Each pixel
contains its own dedicated transistor and each row line and column line is ad-
dressed individually. During the refresh cycle each pixel row is activated sequen-
tially. Active matrix displays are brighter and sharper and have quicker response
t i m e t h a n p a s s i v e m a t r i x . A c t i v e m a t r i x d i s p l a y s a r e a l s o k n o w n a s
thin-film-transistor or TFT displays.

Circuit Components 127

Chapter 7

The Microchip PIC

A microcontroller is a type of microprocessor furnished in a single integrated circuit
and needing a minimum of support chips. Its principal nature is self-sufficiency and
low cost. It is not intended to be used as a computing device in the conventional sense;
that is, a microcontroller is not designed to be a data processing machine, but rather
an intelligent core for a specialized dedicated system.

Microcontrollers are embedded in many control, monitoring, and processing sys-
tems. Some are general-purpose devices but most microcontrollers are used in spe-
cialized systems such as washing machines, telephones, microwave ovens,
automobiles, and weapons of many kinds. A microcontroller usually includes a cen-
tral processor, input and output ports, memory for program and data storage, an in-
ternal clock, and one or more peripheral devices such as timers, counters,
analog-to-digital converters, serial communication facilities, and watchdog circuits.

More than two dozen companies in the world manufacture and market
microcontrollers. They range from 8- to 32-bit devices. Those at the low end are in-
tended for very simple circuits and provide limited functions and program space,
while those at the high end have many of the features associated with microproces-
sors. The most popular ones include several from Intel (such as the 8051), Zilog (de-
rivatives of their famous Z-80 microprocessor), Motorola (such as the 68HC05),
Atmel (the AVR), Parallax (the BASIC Stamp), and Microchip. Some of the latter
ones are the main topic of this book.

7.0 The PICMicro Microcontroller
PIC is a family of microcontrollers made by Microchip Technology. The original one
was the PIC1650 developed by General Instruments. This device was called PIC for
“Programmable Intelligent Computer” although it is now associated with “Program-

mable Interface Controller.” Microchip does not use PIC as an acronym. Instead they
prefer the brand name PICmicro. Popular wisdom relates that PIC is a registered
brand in Germany and Microchip is unable to use it internationally.

129

The original PIC was built to be used with General Instruments’ CP1600 processor,
which had poor I/O performance. The PIC was designed to take over the I/O tasks for
the CPU, thus improving performance. In 1985, the PIC was upgraded with EPROM to
produce a programmable controller. Today, a huge variety of PICs are available with
many different on-board peripherals and program memories ranging from a few hun-
dred words to 32K.

PICs use an instruction set that varies in length from about 35 instructions for the
low-end PICs to more than 70 for the high-end devices. The accumulator, which is
known as the work register in PIC documentation, is part of many instructions since
the PIC contains no other internal registers accessible to the programmer. The PICs are
programmable in their native Assembly Language, which is straightforward and not dif-
ficult to learn. In addition, C language and BASIC compilers have been developed for
the PIC. Open-source Pascal, JAL, and Forth compilers are also available for PIC pro-
gramming.

One of the reasons for the success of the PIC is the support provided by Microchip.
This includes a professional-quality development environment called MPLAB which
can be downloaded free from the company’s website (). The MPLAB package includes
an assembler, a linker, a debugger, and a simulator. Microchip also sells a low-cost
in-circuit debugger called MPLAB ICD 2. Other development products intended for the
professional market are available from Microchip. The Microchip website furnishes
hundreds of free support documents, including data sheets, application notes, and sam-
ple code.

In addition to the documents and products in the Microchip website, the PIC
microcontrollers have gained the support of many hobbyists, enthusiasts, and entrepre-
neurs who develop code and support products and publish their results on the Internet.
This community of PIC users is a treasure trove of information and know-how easily ac-
cessible to the beginner and useful even to the professional. One such Internet resource
is an open-source collection of PIC tools named GPUTILS, which is distributed under
the GNU General Public License. GPUTILS includes an assembler and a linker. The
software works on Linux, Mac OS, OS/2, and Windows. Another product named GPSIM
is an Open Source simulator featuring PIC hardware modules.

7.0.1 Programming the PIC

Programming a PIC microcontroller requires the following tools and components:

1. An Assembler or high-level language compiler. The software package usually includes a
debugger, simulator, and other support programs.

2. A computer (usually a PC) in which to run the development software.

3. A hardware device called a programmer that connects to the computer through the serial,
parallel, or USB line. The PIC is inserted in the programmer and “blown” by downloading
the executable code generated by the development system. The hardware programmer
usually includes the support software.

4. A cable or connector for connecting the programmer to the computer.

5. A PIC microcontroller.

130 Chapter 7

Figure 7-1 USB PIC Programmer by MicroPro

PIC Programmers

The development system (assembler or compiler) and the programmer driver are the
software components. The computer, programmer, and connectors are the hardware
elements. Figure 7-1 shows a commercial programmer that connects to the USB port
of a PC. The one in the illustration is made by MicroPro.

Many other programmers are available on the market. Microchip offers several
high-end models with in circuit serial programming (ICSP) and low voltage pro-

gramming (LVP) capabilities. These devices allow the PIC to be programmed in the
target circuit. Some PICs can write to their own program memory. This makes possi-
ble the use of so-called bootloaders, which are small resident programs that allow
loading user software over the RS-232 or USB lines. Programmer/debugger combina-
tions are also offered by Microchip and other vendors.

Development Boards

A development board is a demonstration circuit that usually contains an array of con-
nected and connectable components. Their main purpose is as a learning and experi-
mental tool. Like programmers, PIC development boards come in a wide range of
prices and levels of complexity. Most boards target a specific PIC microcontroller or a
PIC family of related devices. Lacking a development board the other option is to build
the circuits oneself, a time-consuming but valuable experience. Figure 7-2 (in the fol-
lowing page) shows the LAB-X1 development board for the 16F87x PIC family.

The LAX-X1 board, as wel l as several other models , is a product of
microEngineering Labs, Inc. Some of the sample programs developed for this book
were tested on a LAB-X1 board. Development boards from Microchip and other ven-
dors are also available.

The Microchip PIC 131

Figure 7-2 LAB-X1 Development Board

7.0.2 Prototyping the PIC Circuit

Very few of us are satisfied with writing a PIC program and assuming that it works cor-
rectly. Testing software is a simple matter if there happens to be a development board
at hand, if the board is compatible with the PIC, and if it provides the hardware that we
need to test. But often one of these elements is missing and it becomes necessary to
build the circuit for which the program was designed. Here again, there are several op-
tions. These range from having the circuit built for us by a professional engineering
firm, to using a breadboard to prototype the circuit ourselves.

Breadboarding a prototype circuit is one of the options. A breadboard is a reus-
able, solderless device that allows building a prototype circuit, usually for tempo-
rary use. Breadboards have strips down one or both sides that are used as power
rails. One strip carries the circuit’s positive voltage and the other one is wired to the
ground of the power supply. Wire jumper kits provide connectors of different
lengths and colors for making the circuit connections on the breadboard. For com-
plex circuits several breadboards can be easily interconnected. Figure 7-3 shows
two interconnected breadboards used to test one of the programs developed for this
book.

132 Chapter 7

Figure 7-3 Circuits in Two Interconnected Breadboards

Once a circuit and the software have been tested, there are several available tech-
nologies for building a more permanent prototype. These include wire wrap,
stripboards, and several other circuit board building tools and techniques, including
prototyping boards specially designed for PIC circuits.

Finally, one can build a semi-professional quality printed circuit board (called a
PCB) and solder the components to it. A PCB is used to mechanically support the
electronic components and provides conductive pathways, called traces, that imple-
ment the circuit. The components are soldered to the PCB board using either sur-
face mount or through-the-board technology. The PCB board is made of a
non-conductive material and the conductive pathways are etched out of copper
sheets laminated on one or both sides of the board. Once the board has been popu-
lated with electronic components it becomes a printed circuit assembly, or PCA.
Industrial quality PCB boards are suited to high-volume production. The circuits of
the development board in Figure 7-2 are on a commercial PCB.

Building one’s own PCB is quite possible and requires few tools and resources.
Appendix B describes one technique that has been used successfully. Figure 7-4, in
the followng page, shows a drawing of both sides of a simple PCB board.

The Microchip PIC 133

Figure 7-4 Drawing for Etching a PCB Board

The PCB in Figure 7-4 is intended for a copper-plated single-sided blank. The
left-side image shows the actual circuit that is etched on the copper side of the
board. The text and diagrams on the right-hand image are engraved (usually by silk
screening) on the back side of the board and serve as a guide for welding the compo-
nents. Refer to Appendix B for details on designing and building PCBs at the ama-
teur level.

Several firms on the Internet offer PCB prototyping services from the circuit dia-
grams. In some cases the advertised turnaround time is a couple of days. One of
these companies furnishes software tools for drawing the PCB in a format that they
can use directly in manufacturing the prototypes. Googling “PCB prototypes” pro-
duces many hits.

7.1 PIC Architecture
PIC controllers are roughly classified by Microchip into three groups: baseline,
mid-range, and high-performance. Within each of the groups the PICs are classified
based on the first two digits of the PIC’s family type. However, the subclassification is
not very strict, since there is some overlap. For this reason we find PICs with 16X des-
ignations that belong to the baseline family and others that belong to the mid-range
group. In the following subsections we describe the basic characteristics of the vari-
ous subgroups of the three major PIC families with 8-bit architectures.

7.1.1 Baseline PIC Family

This group includes members of the PIC10, PIC12, and PIC16 families. The devices in
the Baseline group have 12-bit program words and are supplied in 6- to 28-pin pack-
ages. The microcontrollers in the baseline group are described as being suited for bat-
tery-operated applications since they have low power requirements. The typical
member of the Baseline group has a low pin count, flash program memory, and low
power requirements. The following types are in the Baseline group.

134 Chapter 7

1
6
F
8
4

R1
L1

L2

L3

L4

L5

L6

L7

L8

C1 O1

L
e

d
F

la
s
h

e
r

1
.0

+
9

-1
2

v

G
n

d

C2

R9

R2

R3

R4

R5

R6

R7

R8

PIC10 Devices

The PIC10 devices are low-cost, 8-bit, flash-based CMOS microcontrollers. They use
33 single-word, single-cycle instructions (except for program branches, which take
two cycles). The instructions are 12-bits wide. The PIC10 devices feature power-on re-
set, an internal oscillator mode that saves having to use ports for an external oscilla-
tor. They have a power-saving SLEEP mode, a Watchdog Timer, and optional code pro-
tection.

The recommended applications of the PIC10 family range from personal care ap-
pliances and security systems to low-power remote transmitters and receivers. The
PICs of this family have a small footprint and are manufactured in formats suitable
for both through-hole and surface mount technologies. Table 7.1 summarizes the
characteristics of PIC10 devices.

Table 7.1

PIC10F Devices

10F200 10F202 10F204 10F206

Clock:
Maximum Frequency
of Operation (MHz) 4 4 4 4

Memory:
Flash Program
Memory 256 512 256 512
Data Memory (bytes) 16 24 16 24

Peripherals:
Timer Module(s) TMR0 TMR0 TMR0 TMR0
Wake-up from Sleep Yes Yes Yes Yes
Comparators 0 0 1 1

Features:
I/O Pins 3 3 3 3
Input Only Pins 1 1 1 1
Internal Pull-ups Yes Yes Yes Yes
In-Circuit Serial
Programming Yes Yes Yes Yes
Instructions 33 33 33 33

Packages:
6-pin SOT-23
8-pin PDIP

Two other PICs of this series are the 10F220 and the 10F222. These versions in-
clude four I/O pins and two analog-to-digital converter channels. Program memory
is 256 words on the 10F220 and 512 in the 10F222. Data memory is 16 bytes on the
F220 and 23 in the F222.

PIC12 Devices

The PIC12C5XX family are 8-bit, fully static, EEPROM/EPROM/ROM-based CMOS
microcontrollers. They use RISC architecture and have 33 single-word, single-cycle
instructions (except for program branches, which take two cycles). Like the PIC10
family, the PIC12C5XX chips have power-on reset, device reset, and internal timer.
Four oscillator options can be selected, including a port-saving internal oscillator and

The Microchip PIC 135

a low-power oscillator. These devices can operate in SLEEP mode and have Watchdog
Timer and code-protection features.

Table 7.2

PIC 12Cxxx and 12CExxx Devices

The PIC12C5XX devices are recommended for applications including personal
care appliances, security systems, and low-power remote transmitters and receiv-
ers. The internal EEPROM memory makes possible the storage of user-defined
codes and passwords as well as appliance setting and receiver frequencies. The vari-
ous packages allow through-hole or surface mounting technologies. Table 7.2 lists
the characteristics of some selected members of this PIC family.

Two other members of the PIC12 family are the 12F510 and the 16F506. In most re-
spects these devices are similar to the other members of the PIC12 family previously
described, except that the 12F510 and 16F506 both have flash program memory. Ta-
ble 7.3 lists the most important features of these two PICs.

136 Chapter 7

12C508(A) 12C518 12CE519 12C671 12CE674
12C509A 12C672
12CR509A

Clock:
Maximum
Frequency
of Operation
(MHz) 4 4 4 10 10

Memory:
EPROM
Program
Memory 512/1024/1024 512x12 1024x12 1024/2048/ 2048x14

x12 1024x12
RAM Data
Memory
(bytes) 25/41/41 25 41 128 128

Peripherals:
EEPROM
Data Memory
(bytes) — 16 16 0/0/16 16
Timer
Module(s) TMR0 TMR0 TMR0 TMR0 TMR0
A/D Converter
(8-bit)
Channels — — — 4 4

Features:
Wake-up
from SLEEP
on pin
change Yes Yes Yes Yes Yes
Interrupt
Sources — — — 4 4
I/O Pins 5 5 5 5 5
Input Pins 1 1 1 1 1
Internal
Pull-ups Yes/Yes/No Yes Yes Yes Yes
In-Circuit
Serial
Programming Yes/No Yes Yes Yes Yes
Number of
Instructions 33 33 33 35 35

Packages 8-pin DIP 8-pin DIP 8-pin DIP 8-pin DIP 8-pin DIP
SOIC JW,SOIC JW. SOIC SOIC JW

Table 7.3

PIC12F510 and 12F506

Two other members of the PIC12F are the 12F629 and 12F675. The only difference
between these two devices is that the 12F675 has a 10-bit analog-to-digital converter
while the 629 has no A/D converter. Table 7.4 lists some important features of both
PICs.

Table 7.4

PIC12F629 and 12F675

The Microchip PIC 137

16F506 12F510
Clock:

Maximum Frequency of Operation (MHz) 20 8

Memory:
Flash Program Memory 1024 1024
Data Memory (bytes) 67 38

Peripherals:
Timer Module(s) TMR0 TMR0
Wake-up from Sleep on Pin Change Yes Yes

Features:
I/O Pins 11 5
Input Only Pin 1 1
Internal Pull-ups Yes Yes
In-Circuit Serial Programming Yes Yes
Number of Instructions 33 33
Packages 14-pin PDIP, 8-pin PDIP

SOIC, SOIC,
TSSOP MSOP

12F629 12F675
Clock:

Maximum Frequency of Operation (MHz) 20 20
Memory:

Flash Program Memory 1024 1024
Data Memory (SRAM bytes) 64 64

Peripherals:
Timers 8/16 bits 1/1 1/1
Wake-up from Sleep on Pin Change Yes Yes

Features:
I/O Pins 6 6
Analog comparator module Yes Yes
Analog-to-digital converter No 10-bit
In-Circuit Serial Programming Yes Yes
Enhanced Timer1 module Yes Yes
Interrupt capability Yes Yes
Number of Instructions 35 35
Relative addressing Yes Yes
Packages 8-pin PDIP, 8-pin PDIP

SOIC, SOIC,
DFN-S DFN-S

Several members of the PIC12 family; the 12F635, 12F636, 12F639, and 12F683, are
equipped with special power-management features (called nano-watt technology).
These devices were especially designed for systems that require extended battery
life.

PIC14 Devices
The single member of this family is the PIC14000. The 14000 is built with CMOS
technology; this makes it fully static and gives the PIC an industrial temperature
range. The 14000 is recommended for battery chargers, power supply controllers,
power management system controllers, HVAC controllers, and for sensing and data
acquisition applications. Table 7.5 lists the most important characteristics of this
PIC.

Table 7.5

PIC14000

7.1.2 Mid-range PIC Family

The mid-range PIC family includes members of the PIC12 and PIC16 groups. Accord-
ing to Microchip, the mid-range PICs all have 14-bit program words with either flash or
OTP program memory. Those with flash program memory have EEPROM data mem-
ory and support interrupts. Some members of the mid-range group have USB, I2C,
LCD, USART, and A/D converters. Implementations range from 8 to 64 pins. In the fol-
lowing subsections the basic characteristics of some mid-range PICs are listed.

138 Chapter 7

Clock:
Maximum Frequency of Operation (MHz) 20

Memory:
Flash Program Memory 4096
Data Memory (SRAM bytes) 192

Peripherals:
Timers (16 bits with capture) 1
Wake-up from Sleep on Pin Change Yes

Features:
I/O Pins 22
Analog-to-digital converter 2 channels
On-chip temperature sensor 1
On-chip comparator modules 2
In-Circuit Serial Programming Yes

Interrupt capability:
Internal 6 sources
External 5 sources
I2C-compatible serial port 1
Number of Instructions 35
Relative addressing Yes
Packages 22-pin PDIP,

SOIC, SSOP,
Windowed CERDIOP

PIC16 Devices
This is by far the most extensive PIC family. Currently, over 80 versions of the PIC16
are listed in production by Microchip. The remainder of this book is devoted to pro-
gramming two of these PICs: the 16F84 and the 16F877. Here we listed a few of the
most prominent members of the PIC16 family and their most important features. The
Microchip website has more detailed information on these devices.

Table 7.6

PIC16 Devices

7.1.3 High-Performance PIC Family

The high-performance PICs belong to the PIC18 group. They have 16-bit program
words, flash program memory, a linear memory space of up to two Mbytes, and proto-
col-based communications facilities. They all support internal and external interrupts
and have a much larger instruction set than members of the baseline and mid-range
families.

PIC18 Devices

The PIC18 family is also a large one, with over 70 different variations currently in pro-
duction. The PIC18 family uses 16-bit program words and are furnished in 18 to 80 pin
packages. Microchip describes the PICs in this family as high-performance with inte-
grated A/D converters. They have 32-level stacks and support interrupts. The instruc-
tion set is much larger and starts at 79 instructions. The PICs in this family have flash
program memory, a linear memory space of up to 2 Mbytes, 8-by-8 bit hardware multi-
plier, and communications peripherals and protocols. Table 7.7 lists some members of
the PIC18 family.

The Microchip PIC 139

16C432 16C58 16C770 16F54 16F84A 16F946
Clock:

Maximum Frequency MHz 20 40 20 20 20 20

Memory:
Program memory type OTP OTP OTP Flash Flash Flash
K-bytes 3.5 3 3.5 0.75 1.75 14
K-words 2 2 2 0.5 1 8
Data EEPROM 0 0 0 0 64 256

Peripherals:
I/O channels 12 12 16 12 13 53
ADC channels 0 0 6 0 0 8
Comparators 0 0 0 0 0 2
Timers 1/8-bit 1/8-bit 2/8-bit 1/8-bit 1/8-bit 2/8-bit

1/16-bit 1/16-bit
Watchdog timer Yes Yes Yes Yes Yes Yes

Features:
ICSP Yes No Yes No Yes Yes
ICD No No No No 0 1
Pin count 20 18 20 18 18 64
Communications - - MPC/SPI - - AUSART
Packages 20/CERDIP, 18/CERDIP 20/CERDIP 18/PDIP 18/PDIp 64/TQFP

20/SSOP 18/PDIP 20/PDIP 18/SOIC 18/SOIC
208mil 18/SOIC 20/SOIC 300mil 300mil

300mil 300mil

Table 7.7

PIC18 Devices

140 Chapter 7

18F222 18F2455 18F2580 18F4580 18F8622
Clock:

Maximum Frequency MHz 40 48 40 40 40

Memory:
Program memory type flash flash flash flash flash
K-bytes 4 24 32 32 64
K-words 2 12 16 16 321
Data EEPROM 256 256 256 256 1024

Peripherals:
I/O channels 25 23 25 36 70
ADC channels 10 10 8 11 16
Comparators 2 2 0 2 2
Timers 1/8-bit 1/8-bit 1/8-bit 1/8-bit 2/8-bit

3/16-bit 3/16-bit 3/16-bit 3/16-bit 3/16-bit
Watchdog timer Yes Yes Yes Yes Yes

Features:
EUSART Yes Yes Yes Yes 2
ICSP Yes Yes Yes Yes Yes
ICD 1 3 3 3 3
Pin count 28 28 28 44 80
Communications MPC/SPI MPC/SPI/USB MPC/SPI MPC/SPI 2-MPC/SPI

Packages 28/PDIP, 28/SOIC 28/QFN 40/PDIP 80/TQFP
28/SOIC 28/PDIP 20/PDIP 44/QFN

300mil 300mil 300mil 44/TQFP

Chapter 8

Mid-range PIC Architecture

In Chapter 7 we encountered the three major PIC families of 8-bit devices. In the re-
mainder of this book we focus on the mid-range family. Our reason for concentrating
our attention on this group is that it is the mid-range PICs that have achieved greater
success and popularity.

In addition, as the PIC architecture increases in complexity and power, so does
the size, intricacy, and cost of the devices. For many purposes an 80-pin PIC with
64Kbytes of program memory, 1K EERPOM, 70 I/O ports, 16 A/D channels, is more
complex than necessary. In fact, some high-end PICs appear to be closer to micro-
processors than to microcontrollers. Furthermore, the programming complexity of
these high-end PICs is also much greater than their mid-range counterparts because
their instruction set has double the number of instructions and the assembly lan-
guage itself is more difficult to learn and follow. Finally, the circuits in which we
typically find the high-end devices are more advanced and elaborate and their de-
sign requires greater engineering skills. For these reasons, and for the natural space
limitations of a single volume, we do not discuss the high-performance family or
8-bit PICs nor any of the 16-bit products.

It can be argued that the baseline PICs do find extensive use and are quite practi-
cal for many applications. Although this is true, the baseline PICs are quite similar in
architecture and programming to their mid-range relatives. In most cases the differ-
ence between a baseline and mid-range device is that the low-end one lacks some
features or has less program space or storage. So someone familiar with the
mid-range devices can easily port their knowledge to any of the simpler baseline
products.

Our conclusion has been to limit the coverage to the mid-range family of PICs.
Within this family we have concentrated our attention on the two most used, docu-
mented, and popular PICs: the 16F84 (also 16F84A) and the 16F877. The F84 sets the
lower limit of complexity and sophistications and the F877 the higher limit.

141

8.0 Processor Architecture and Design
PIC microcontrollers are unique in many ways. We start by mentioning several general
characteristics of the PIC: Harvard architecture, RISC processor design, single-word
instructions, machine and data memory configuration, and characteristic instruction
formats.

8.0.1 Harvard Architecture
The PIC microcontrollers do not use the conventional von Neumann architecture but
a different hardware design often referred to as Harvard architecture. Originally, Har-
vard architecture referred to a computer design in which data and instruction used dif-
ferent signal paths and storage areas. In other words, data and instructions are not
located in the same memory area but in separate ones. One consequence of the tradi-
tional von Neumann architecture is that the processor can either read or write instruc-
tions or data but cannot do both at the same time, since both instructions and data use
the same signal lines. In a machine with a Harvard architecture, on the other hand, the
processor can read and write instructions and data to and from memory at the same
time. This results in a faster, albeit more complex, machine. Figure 8-1 shows the pro-
gram and data memory space in a mid-range PIC.

Figure 8-1 Mid-range PIC Memory (Harvard Architecture)

The most recent arguments in favor of the Harvard architecture are based on the
access speed to main memory. Making a CPU faster while memory accesses remain
at the same speed represents little total gain, especially if many memory accesses
are required. This situation is often referred to as the von Neumann bottleneck and
machines that suffer from it are said to be memory bound.

Several generations of microcontrollers, including the Microchip PICs, have been
based on the Harvard architecture. These processors have separate storage for pro-
gram and data and a reduced instruction set. The midrange PICs, in particular, have

142 Chapter 8

PIC

mid-range

CPU

Data

memory

space

RAM

Program

memory

space

DATA

ADDRESS

PROGRAM

ADDRESS

DATA

BUS

INSTRUCTION

BUS

8-bit data words but either 12-, 14-, or 16-bit program instructions. Since the instruc-
tion size is much wider than the data size, an instruction can contain a full-size data
constant.

8.0.2 RISC CPU Design

The CISC (Complete Instruction Set Computer) design is based on each low-level in-
struction performing several operations. For example, one Intel 80x86 opcode can
decrement a counter register, determine the state of a processor flag, and execute a
jump instruction if the flag is set or cleared. Another CISC instruction moves a number
of bytes of data contained in a counter register from an area pointed at by a source reg-
ister, into another area pointed at by a destination register. Any popular Intel CISC
CPU contains about 120 primitive operations in its instruction set. The original design
idea of the CISC architecture was to provide high-level instructions in order to facili-
tate the implementation of high-level languages. Supposedly, this would be achieved
through complex instruction sets, multiple addressing modes, and primitive opera-
tions that performed multiple functions.

However, some argued that the CISC architecture did not result in better perfor-
mance. Furthermore, the more complex the instruction set resulted in greater de-
coding time. At the same time, implementing large instruction sets required more
silicon space and considerably more design effort. Some CISC processors devel-
oped in the 1960s and 70s are the IBM System/360, the PDP-11, the Motorola 68000
family, and Intel 80x86 CPUs.

In contrast, a RISC (Reduced Instruction Set Computer) machine contains fewer
instructions and each instruction performs more elementary operations. Conse-
quences of this are a smaller silicon area, faster execution, and reduced program
size with fewer accesses to main memory. The PIC designers have followed the RISC
route. Other CPUs with RISC design are the MIPS, the IBM Power PC, and the DEC
Alpha.

8.0.3 Single-word Instructions

One of the consequences of the PIC’s Harvard architecture is that the instructions can
be wider than the 8-bit data size. Since the device has separate buses for instructions
and data, it is possible for instructions to be sized differently than data items. Being
able to vary the number of bits in each instruction opcode makes possible the optimi-
zation of program memory and the use of single-word instructions that can be fetched
in one bus cycle.

In the mid-range PICs each instruction is 14-bits wide and every fetch operation
brings into the execution unit one complete operation code. Since each instruction
takes up one 14-bit word, the number of words of program memory in a device ex-
actly equals the number of program instructions that can be stored. In a von
Neumann machine, instruction storage and fetching becomes a much more compli-
cated issue. Since von Neumann instructions can span multiple bytes, there is no as-
surance that each program memory location contains the first opcode of a
multi-byte instruction.

Mid-range PIC Architecture 143

As in conventional processors, the PIC architecture has a two-stage instruction
pipeline; however, since the fetch of the current instruction and the execution of the
previous one can overlap in time, one complete instruction is fetched and executed
at every machine cycle. This is known as instruction pipelining. Since each in-
struction is 14-bits wide and the program memory bus is also 14-bits wide, each in-
struction contains all the necessary information, so it can be executed without any
additional fetching. The one exception is when an instruction modifies the contents
of the Program Counter. In this case, a new instruction must be fetched, requiring an
additional machine cycle.

The PIC clocking system is designed so that an instruction is fetched, decoded,
and executed every four clock cycles. In this manner, a PIC equipped with a 4MHz
oscillator clock beats at a rate of 0.25 µs. Since each instruction executes at every
four clock cycles, each instruction takes 1 µs.

8.0.4 Instruction Format
All members of the mid-range family of PICs have 14-bit instructions and a set of 35 in-
structions. The format for the instructions follows three different patterns:
byte-oriented, bit-oriented, and literal and control instructions. Figure 8-2 shows the
bitmaps for the three types.

Figure 8-2 Mid-Range Instruction Formats

144 Chapter 8

0

0

0

0

<== bits

<== bits

<== bits

<== bits

7 bit file register address

d bit (0 = w, 1 = f)

OPCODE

8-bit immediate value (literal)

OPCODE

11-bit immediate value

OPCODE

7 bit file register address

bit number (3 bits)

OPCODE

Byte-oriented instructions

Literal and control instructions

CALL and GOTO instructions

Bit-oriented instructions

8

8

8

10

7

7

10

7

6

6

13

13

13

13

Note that the opcode field has variable number of bits in the PIC instruction set.
This scheme allows implementing 35 different instructions while using a minimum
of the 14 available opcode bits. Also note that instructions that reference a file regis-
ter do so in a 7-bit field. The numerical range of seven bits is 128 values. For this rea-
son, the mid-range PICs that address more than 128 data memory locations must
resort to banking techniques. In this case, a bit or bit field in the STATUS register
serves to select the bank currently addressed.

A similar situation arises when addressing program memory with an 11-bit field.
Eleven bits allow 2048 addresses, so if a PIC is to have more than 2K program mem-
ory it is necessary to adopt a paging scheme in which a special function register is
used to select the memory page where the instruction is located. Paging is required
only in devices that exceed the 2K program space limit that can be encoded in 11
bits.

8.0.5 Mid-Range Device Versions

The device names used by Microchip use different encodings to represent different
versions of the various devices. For example, the first letter following the family affili-
ation designator represents the memory type of the device, as follows:

1. The letter C, as in PIC16Cxxx, refers to devices with EPROM type memory.

2. The letters CR, as in PIC16CRxxx, refer to devices with ROM type memory.

3. The letter F, as in PIC16Fxxx, refers to devices with flash memory.

The letter L immediately following the affiliation designator refers to devices
with an extended voltage range. For example, the PIC16LFxxx designation corre-
sponds to devices with extended voltage range.

8.1 The Mid-range Core Features
Core features refer to the device oscillator, reset mechanism, CPU architecture and
operation, Arithmetic-Logic Unit, memory organization, interrupts, and instruction
set. We have already referred to the architecture and general features of the CPU.
Memory organization is discussed in a separate section later in this chapter. The re-
maining topics are covered in the following subsections.

8.1.1 Oscillator

Mid-range PICs require an external device to produce the clock cycles required for its
operation. The PIC executes an instruction every four clock cycles, so the oscillator

speed determines the device performance.

Mid-range PICs support up to eight different oscillator modes. For example, in
the 16F877, any of the eight modes can be used, while in the 16F84 only four oscilla-
tor modes are available. The oscillator mode is selected at device programming time
and cannot be changed at runtime. The configuration bits, which are non-volatile
flags set during device programming, determine which oscillator mode is used by
the program, among the following:

Mid-range PIC Architecture 145

1. LP Low Frequency Crystal

2. XT Crystal Resonator

3. HS High Speed Crystal Resonator

4. RC External Resistor/Capacitor

5. EXTRC External Resistor/Capacitor

6. EXTRC External Resistor/Capacitor with CLKOUT

7. INTRC Internal 4 MHz Resistor/Capacitor

8. INTRC Internal 4 MHz Resistor/Capacitor with CLKOUT

The resistor/capacitor oscillator option is the least expensive to implement, but
also the least accurate one. This option is used only in systems where clock accu-
racy and consistency are not issues. The low-power frequency crystal option is the
one with lowest power consumption and can be used in systems where the power
consumption element is important.

The first three oscillator modes (LP, XT, and HS) allow selecting different fre-
quency ranges. The HS option has the highest frequency range and consumes the
most power. The XT option is based on a standard crystal resonator and has a
mid-range power consumption. The LP option has low gain and consumes the least
power of the three crystal modes. The general rule is to use the oscillator with the
lowest possible gain that still meets the circuit requirements. The RC mode with
EXTRC and CLKOUT features has the same functionality as the straight RC oscilla-
tor option.

The XT option (crystal resonator) can be purchased in a ceramic package. This
device, called a ceramic resonator, contains three pins. The ones on the extremes
are connected to the corresponding oscillator input lines on the PIC, labeled OSC1
and OSC2. The center pin is connected to ground. Figure 8-3 shows the circuit dia-
gram for an oscillator and a crystal resonator.

Figure 8-3 Circuit Diagram for Oscillators

146 Chapter 8

XTAL

C1

C2

OSC

Alternatively, the oscillator function is provided by an integrated circuit (such as
the ICS502) that can generate several different clock frequencies. Some circuits, es-
pecially in PIC demonstration boards, contain jumper pins that allow selecting
among several clock rates.

8.1.2 System Reset
The reset mechanism places the PIC in a known condition. The reset mechanism is
used to gain control of a runaway or hung-up program, as a forced interrupt in program
execution, or to make the device ready at program load time. The processor’s !MCLR
pin produces the reset action when it reads logic zero. The exclamation sign preceding
the pin’s name (or a line over it) indicates that the action is active-low. To prevent acci-
dental resets the !MCLR pin must be connected to the positive voltage supply through
a 5K or 10K resistor. When a resistor serves to place a logic one on a line it is called a
pull-up resistor.

The mid-range PICs are capable of several reset actions:

1. Reset during power on (POR).

2. !MCLR reset during normal operation.

3. Reset during SLEEP mode.

4. Watchdog timer reset (WDT).

5. Brown-out reset (BOR).

6. Parity error reset.

The first two reset sources in the preceding list are the most common. POR reset
serves to bring all PIC registers to an initial state, including the program counter
register. The second source of reset action takes place when the !MCLR line is inten-
tionally brought down, usually by the action of a push-button reset switch. This
switch is useful during program development since it provides a way of forcefully
restarting execution. Figure 8-4 shows a typical wiring of the !MCLR line to provide
a reset action.

Figure 8-4 Typical Wiring of the Reset Switch

Mid-range PIC Architecture 147

+5V

R
=

1
0

K

RESET

16F84

RA2

RA3

RA4/TOCKI

!MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

The second one is a product of purposefully bringing-in a logical zero to the
MCLR pin during normal operation of the microcontroller. This second one is often
used in program development.

User RAM memory is not affected by a reset. The GPRs (general purpose register)
are in an unknown state during power-up and are not changed by reset. SFR regis-
ters, on the other hand, are reset to an initial state. The initialization conditions for
each of the SFRs are found in the device data sheet. The most important of these is
the program count (PC) which is reset to zero. This action directs execution to the
first instruction and effectively restarts the program.

During power-up the processor itself initiates a reset and the power supply volt-
age increases from 1.2 to 1.8V. Several bits in various registers are related to the re-
set action, but these are not available in all mid-range devices. For example, some
high-end devices in the mid-range group, such as the 16F87x, contain two re-
set-related bits in the PCON register. One of them (named !POR) determines the
power-on reset status. The other one (named !BOR) informs about the brown-out re-
set status. However, the PCON register does not exist in the 16F84 or 16F84A.

8.1.3 Interrupts

The interrupt mechanism provides a way of having the microcontroller respond to
events as they occur, rather than having to poll devices in order to determine their
state. Thus, the interrupt works like a “tap on the shoulder” on the microcontroller,
calling its attention to an event that requires an action or device that needs servicing.
After responding to or ignoring the interrupt, the CPU resumes processing where it
left off.

In computer technologies the interrupt mechanism is a complicated hard-
ware/software system that often includes programmable interrupt controller ICs.
Processors and microprocessors usually support hardware and software interrupts
and maskable and non-maskable interrupts; interrupts originate in practically any
device connected to the system. In the PICs, the interrupt mechanism is much sim-
pler and varies considerably even among members of the same PIC family.

All PICs of the mid-range family to some degree support interrupts. The interrupt
source usually originates in one of the hardware modules, although some sources
generate more than one interrupt. The following are interrupt sources in the
mid-range family, although not all are supported by every PIC.

• INT Pin Interrupt (external interrupt)

• TMR0 Overflow Interrupt

• PORTB Change Interrupt

• Comparator Change Interrupt

• Parallel Slave Port Interrupt

• USART Interrupts

• Receive and Transmit Interrupt

148 Chapter 8

• A/D Conversion Complete Interrupt

• LCD Interrupt

• Data EEPROM Write Complete Interrupt

• Timer Overflow Interrupt

• CCP Interrupt

• SSP Interrupt

Several SFRs are related to the interrupt systems. The INTCON register provides
interrupt enabling and control and the PIE1, PIE2, PIR1, and PIR2 registers have
specific device-related functions. Programming interrupts is discussed in the con-
text of the corresponding operations later in this book.

8.2 Mid-Range CPU and Instruction Set
In a digital system, the central processing unit (CPU) is the component that executes
the program instructions and processes data. It provides the fundamental functional-
ity of a digital system and is responsible for its programmability. In the PIC architec-
ture, the CPU is the part of the device which fetches and executes the instructions con-
tained in a program.

The arithmetic-logic unit (ALU) is the CPU element that performs arithmetic,
bitwise, and logical operations. It also controls the bits in the STATUS register as
they are changed by the execution of the various program instructions. For exam-
ple, if the result of executing an instruction is zero, the ALU sets the zero bit in the
STATUS register.

8.2.1 Mid-Range Instruction Set
The mid-range PIC instruction set consists of 35 instructions, divided into three gen-
eral groups:

1. Byte-oriented and byte-wise file register operations

2. Bit-oriented and bit-wise file register operations

3. Literal and control instructions

Table 8.1 lists and briefly describes each instruction in the mid-range set.

Table 8.1

Mid-range PIC Instruction Set

BITS
MNEMONIC OPERAND DESCRIPTION CYCLES AFFECTED

BYTE-ORIENTED OPERATIONS:
ADDWF f,d Add w and f 1 C,DC,Z
ANDWF f,d AND w with f 1 Z
CLRF f Clear f 1 Z
CLRW - Clear w 1 Z
COMF f,d Complement f 1 Z
DECF f,d Decrement f 1 Z

(continues)

Mid-range PIC Architecture 149

Table 8.1

Mid-range PIC Instruction Set (continued)

BITS
MNEMONIC OPERAND DESCRIPTION CYCLES AFFECTED

BYTE-ORIENTED OPERATIONS
DECFSZ f,d Decrement, skip if 0 1(2) -
INCF f,d Increment f 1 Z
INCFSZ f,d Increment, skip if 0 1(2) -
IORWF f,d Inclusive OR w and f 1 Z
MOVF f,d Move f 1 Z
MOVWF f Move w to f 1 -
NOP - No operation 1 -
RLF f,d Rotate left 1 C

through carry
RRF f,d Rotate right 1 C

through carry
SUBWF f,d Subtract w from f 1 C,DC,Z
SWAPF f,d Swap nibbles in f 1 -
XORWF

BIT-ORIENTED OPERATIONS
BCF f,b Bit clear in f 1 -
BSF f,b Bit set in f 1 -
BTFSC f,b Bit test, skip 1 -

if clear
BTFSS f,b Bit test, skip 1 -

if set

LITERAL AND CONTROL OPERATIONS
ADDLW k Add literal and w 1 C,DC,Z
ANDLW k AND literal and w 1 Z
CALL k Call procedure 2 -
CLRWDT - Clear watchdog timer 1 TO,PD
GOTO k Go to address 2 -
IORLW k Inclusive OR literal 1 Z

with w
MOVLW k Move literal to w 1 -
RETFIE - Return from interrupt 2 -
RETLWk - Return literal in w 2 -
RETURN - Return from procedure 2 -
SLEEP - Go into SLEEP mode 1 TO,PD
SUBLW k Subtract literal and w 1 C,DC,Z
XORLW k Exclusive OR literal 1 Z

with w

Legend:
f = file register
d = destination: 0 = w register

1 = file register
b = bit position
k = 8-bit constant

150 Chapter 8

8.2.2 STATUS and OPTION Registers
The STATUS register is one of the SFRs in the mid-range PICs. The bits in this register
reflect the arithmetic status of the ALU, the RESET status, and the bits that select
which memory bank is currently being accessed. Because the bank selection bits are
in the STATUS register it must be present and at the same relative position in every
bank. Figure 8-5 is a bitmap of the STATUS register.

Figure 8-5 STATUS Register Bitmap

Mid-range PIC Architecture 151

IRP RP-1 RP-0 TO PD Z DC C

7 6 5 4 3 2 1 0bits:

bit 7 Register Bank Select bit (used for indirect

addressing)

1 = Bank 2, 3 (0x100 - 0x1ff)

0 = Bank 0, 1 (0x000 - 0xff)

For devices with only Bank0 and Bank1 the

IRP bit is reserved, always maintain this

bit clear.

bit 6:5

Register Bank Select bits (used for direct

addressing)

11 = Bank 3 (0x180 - 0x1ff)

10 = Bank 2 (0x100 - 0xx17f)

01 = Bank 1 (0x80 - 0xff)

00 = Bank 0 (0x00 - 0x7f)

Each bank is 128 bytes. For devices with only

Bank0 and Bank1 the IRP bit is reserved,

always maintain this bit clear.

bit 4 Time-out bit

1 = After power-up, CLRWDT instruction, or

SLEEP instruction

0 = A WDT time-out occurred

bit 3 Power-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

bit2 Zero bit

1 = The result of an operation is zero

0 = The result of an operation is not zero

bit 1 Digit carry/borrow bit for ADDWF, ADDLW, SUBLW,

and SUBWF instructions. For borrow the polarity

is reversed.

1 = A carry-out from the 4th bit of the result

0 = No carry-out from the 4th bit of the result

bit 0 Carry/borrow bit for ADDWF, ADDLW, SUBLW, and

SUBWF instructions

1 = A carry-out from the most significant bit

0 = No carry-out from the most significant bit

IRP:

RP1:RP0:

TO:

PD:

Z:

DC:

C:

The STATUS register can be the destination for any instruction. If it is, and the Z,
DC, or C bits are affected, then the write operation to these bits is disabled. In addi-
tion, the TO and PD bits are not writable.

Some instructions may have an unexpected action on the STATUS register bits,
for example, the instruction

Clrf STATUS

clears the upper 3 bits, sets the Z bit, and leaves all other bits unchanged. For this rea-
son, it is recommended that only instructions that do not change the Z, C, and DC bits
be used to alter the STATUS register. The only ones that qualify are BCF, BSF, SWAPF,
and MOVWF.

The OPTION register is actually named the OPTION_REG to avoid name clash
with the option instruction. The OPTION_REG register contains several bits related
to interrupts, the internal timers, and the watchdog timer. Figure 8-6 is a bitmap of
the OPTION_REG register.

Figure 8-6 Bitmap of the OPTION_REG Register

152 Chapter 8

RPBU INTEDG TOCS TOSE PSA PS2 PS1 PS0

7 6 5 4 3 2 1 0bits:

bit 7 PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual

port latch values

bit 6 Interrupt Edge Select bit

1 = Interrupt on rising edge of INT pin

0 = Interrupt on falling edge of INT pin

bit 5 TMR0 Clock Source Select bit

1 = Transition on T0CKI pin

0 = Internal instruction cycle clock

(CLKOUT)

bit 4 TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on

T0CKI pin

0 = Increment on low-to-high transition on

T0CKI pin

bit 3 Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0

bit 2-0

Prescaler Rate Select bits

RBPU:

INTEDG:

T0CS:

T0SE:

PSA:

PS2:PS0:

8.3 EEPROM Data Storage

EEPROM (pronounced double-e PROM or e-squared PROM) stands for electri-
cally-erasable programmable read-only memory. EEPROM is used in computers and
digital devices as non-volatile storage. EEPROM is not RAM, since RAM is volatile and
EEPROM retains its data after power is removed. EEPROM is found in USB flash
drives and in the non-volatile storage of several microcontrollers, including many
PICs.

One advantage of EEPROM is that it can be erased and written electrically, with-
out removing the chip. The predecessor technology, named EPROM, required that
the chip be removed from the circuit and placed under ultraviolet light. EEPROM
simplifies the erasing and re-writing process.

EEPROM data memory refers to both on-board EEPROM memory and to
EEPROM memory ICs as separate circuit components. In general, EEPROM ele-
ments are classified according to their electrical interfaces into serial and parallel.
Most EEPROM memories used in PICs are serial EEPROMs, also called SEEPROMs.
The typical use of serial EEPROM on-board memory and EEPROM on ICs is in the
storage of passwords, codes, configuration settings, and other information to be re-
membered after the system is turned off. For example, a PIC-based security system
can use EEPROM memory to store the system password. Since EEPROM can be
written, the user can change this password and the new one will also be remem-
bered.

8.3.1 EEPROM in Mid-Range PICs

The mid-range PICs are equipped with EEPROM memory in three possible sizes: 64
bytes, 128 bytes, and 256 bytes. EEPROM memory allows read and write operations.
This memory is not mapped into the processor’s data or program area, but in a sepa-
rate block that is addressed through some SFRs. The registers related to EEPROM op-
erations are:

1. EECON1

2. EECON2 (not a physically implemented register)

3. EEDATA

4. EEADR

EECON1 contains the control bits, and EECON2 is used to initiate the EEPROM
read and write operations. The 8-bit data item to be written must first be stored in
the EEDATA register, while the address of the location in EEPROM memory is
stored in the EEADR register. The EEPROM address space always starts at 0x00 and
extends linearly to maximum in the device.

When a write operation is performed, the contents of the EEPROM location are
automatically erased. The EEPROM memory used in PICs is rated for high
erase/write cycles. EEPROM programming is the topic of Chapter 15.

Mid-range PIC Architecture 153

8.4 Data Memory Organization
The structure and organization of data memory in the PIC hardware also has some
unique and interesting features. The programmer accustomed to the flat, addressable
memory space of the von Neumann computer with its multiple machine registers may
require some time in order to gain familiarity with the PIC’s data formats.

8.4.1 The w Register

PICs have only one addressable register called the work register or the w register. The
CISC programmer who is used to having multiple general purpose registers into which
data can be moved and later retrieved has to become used to a single machine register
that takes part in practically every instruction. Add to this the lack of an addressable
stack into which data can be pushed and popped, and you see that PIC programming is
a different paradigm.

8.4.2 The Data Registers

PIC’s data memory consists of registers, also called file registers. These behave more
like conventional variables, and can be addressed directly and indirectly. All data reg-
isters are 8-bits. Data registers come in two types: general purpose registers (GPRs)
and special function registers (SFRs).

Memory Banks

The PIC instruction format devotes seven bits to the address field (see Figure 8-2, Sec-
tion 8.0.4). A 7-bit address allows access to only 128 memory locations. Since many
PICs of the mid-range family have more than 128 bytes of data memory, an addressing
scheme based on memory banks must be implemented. The memory banking mecha-
nism adopted by the PICs is effective, although not very user-friendly.

The number of banks vary according to the amount of available RAM, always in
multiples of 128-bytes. All mid-range PICs have banked memory. Banking is accom-
plished through the special bank-select bits in the STATUS register (see Figure 8-5).
Not all banking bits are implemented in all devices. For example, the 16F84/16F84A
contain two memory banks; therefore, bank shifting requires a single bank-select bit
(RP0). In this case the RP1 bit is not implemented. In devices with more than two
memory banks bank selection is as shown in Table 8.2.

Table 8.2

Mid-Range Bank Selection Options in Direct Addressing

BANK STATUS REGISTER
ACCESSED BITS (RP1:RP0)

0 0 : 0
1 0 : 1
2 1 : 0
3 1 : 1

Figure 8-7 shows how banked memory is accessed in direct addressing. The illus-
tration refers to a mid-range PIC with four banks, as is the case with the 16F87x.

154 Chapter 8

Figure 8-7 Memory Access in Direct Addressing

The SFRs

The special function registers are defined by the device architecture and have re-
served names. For example, the TMR0 register is part of the system timer, the STATUS
register holds several processor flags, and the INTCON register is used in controlling
interrupts. Some SFRs can be written and read and others are read-only. Some re-
served and not-implemented SFR bits always read as zero. Two SFR registers, which
are used in indirect addressing, have special characteristics: one of them (the indirect
address register) is not a physical register, and the other one (the FSR register) is used
to initialize the indirect pointer. The SFR are allocated starting at the lowest RAM ad-
dress (address 0).

Figure 8-8 (in the following page) is a map of the register file in the 16F87x fam-
ily. Note in Figure 8-8 that the general purpose registers do not start at the same ad-
dress offset in each bank. However, there is a common area that extends from 0x70
to 0x7f that is accessible no matter which bank is selected. In applications that re-
quire frequent bank switching, this 16-byte area is very valuable real-estate since
user variables created in it are accessible no matter which bank is currently se-
lected. GPRs created outside this common area are only accessible when the corre-
sponding bank is selected.

Mid-range PIC Architecture 155

0

RP0

<== offset in bank

RP1

00

Bank 0 Bank 1 Bank 2 Bank 3

0x00 0x00 0x00 0x00

0x7f 0x7f 0x7f 0x7f

01 10 11

6

Figure 8-8 16F87x File Register Map

The registers in boldface in Figure 8-8 are accessible from any bank. These regis-
ters, such as STATUS and the indirect addressing registers FSR and INDF, are
bank-independent. Also, some registers are mirrored in more than one bank. For ex-
ample, the PORTB register is accessible in bank 0 and in bank 2, and the TRISB reg-
ister in bank 1 and bank 3. The mirrored registers are designed to simplify data
access and minimize bank changes in applications.

156 Chapter 8

INDF

PCL

STATUS

FSR

PCLATH

INTCON

TMR0

PORTA

PORTB

PORTC

PORTD

PORTE

PIR1

PIR2

TMR1L

TMR1H

T1CON

TMR2

T2CON

SSPBUF

SSPCON

CCPR1L

CCPR1H

CCP1CON

RCSTA

TXREG

RCREG

CCPR2L

CCPR2H

CCP2CON

ADRESH

ADCON0

INDF

PCL

STATUS

FSR

PCLATH

INTCON

OPTION*

TRISA

TRISB

TRISC

TRISD

TRISE

PIE1

PIE2

PCON

SSPCON2

PR2

SSPADD

SSPTAT

TXSTA

SPBRG

ADRESL

ADCON1

INDF

PCL

STATUS

FSR

PCLATH

INTCON

TMR0

PORTB

EEDATA

EEADR

EEDATH

EEADRH

INDF

PCL

STATUS

FSR

PCLATH

INTCON

OPTION*

TRISB

EECON1

EECON2

Reserved

Reserved

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0a

0x0b

0x0c

0x0d

0x0e

0x0f

0x10

0x11

0x12

0x13

0x14

0x15

0x16

0x17

0x18

0x19

0x1a

0x1b

0x1c

0x1d

0x1e

0x1f

0x20

0x80

0x81

0x82

0x83

0x84

0x85

0x86

0x87

0x88

0x89

0x8a

0x8b

0x8c

0x8d

0x8e

0x8f

0x90

0x91

0x92

0x93

0x94

0x95

0x96

0x97

0x98

0x99

0x9a

0x9b

0x9c

0x9d

0x9e

0x9f

0xA0

0x100

0x101

0x102

0x103

0x104

0x105

0x106

0x107

0x108

0x109

0x10a

0X10b

0x10c

0x10d

0x10e

0x10f

0x110

0x180

0x181

0x182

0x183

0x184

0x185

0x186

0x187

0x188

0x189

0x18a

0x18b

0x18c

0x18d

0x18e

0x18f

0x190

General

Purpose

Registers

0x7f 0xff

0xef

0xf0

0x16f

0x170

0x1ef

0x1f0

0x17f 0x1ff

General

Purpose

Registers

Common

area

0x70-0x7f

Common

area

0x70-0x7f

Common

area

0x70-0x7f

Common

area

0x70-0x7f

General

Purpose

Registers

General

Purpose

Registers

Bank 0 Bank 1 Bank 2 Bank 3

* Actual name is OPTION_REG

Other members of the mid-range PIC group, such as the 16F84 and 16F84A, have a
different memory footprint. Figure 8-9 is a bitmap of the 16F84A.

Figure 8-9 16F84A File Register Map

Here again, the general purpose registers do not start at the same address offset
in each bank. Also note that all GPRs are mapped to bank 0. In the 16F84A, this
means that user-defined registers created in bank 0 are accessible no matter which
bank is currently selected.

The GPRs

General purpose registers are created and named by the programmer and must be allo-
cated in the reserved memory space. In the 16F84A all GPRs are mapped to the same
memory area, no matter in which bank they are defined. The GPR memory space actu-
ally extends from 0x0c to 0x4f (68 bytes). A different situation exists in the 16F87x
PICs, in which only 16 bytes of GPR space is mirrored in all three banks. This is the
memory referred to as the common area in Figure 8-8. In the 16F87x the total available
GPR space is as follows:

Mid-range PIC Architecture 157

INDF

PCL

STATUS

FSR

PCLATH

INTCON

TMR0

PORTA

PORTB

EEDATA

EEADR

INDF

PCL

STATUS

FSR

PCLATH

INTCON

OPTION*

TRISA

TRISB

EECON1

EECON2

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0a

0x0b

0x0c

0x80

0x81

0x82

0x83

0x84

0x85

0x86

0x87

0x88

0x89

0x8a

0x8b

0x8c

General

Purpose

Registers

0x4f 0xcf

General

Purpose

Registers

-

mapped to

bank 0

-

Bank 0 Bank 1

* Actual name is OPTION_REG

BANK 0 BANK 1 BANK2 BANK3

96 bytes 80 bytes 96 bytes 96 bytes

Total = 368 bytes

8.4.3 Indirect Addressing

The instruction set of most processors, including the PICs, provides a mechanism for
accessing memory operands indirectly. Indirect addressing is based on the following
capabilities:

1. The address of a memory operand is loaded into a register. This register is called the
pointer.

2. The pointer register is then used to indirectly access the memory location at the ad-
dress it “points to.”

3. The value in the pointer register can be modified (usually incremented or decrement-
ed) so as to allow access to other memory operands.

In the PIC architecture indirect addressing is implemented using two registers:
INDF and FSR. The INDF register, always located at memory address 0x00 and mir-
rored in all banks, is not a physical register, in the sense that it cannot be directly ac-
cessed by code. The FSR register is the pointer register that is initialized to the
address of a memory operand. Once a memory address is placed in FSR, any action
on the INDF register takes place at the memory location pointed at by FSR. For ex-
ample, if the FSR register is initialized to memory address 0x20, then clearing the
INDF register has the effect of clearing the memory location at address 0x20. In
other words, the action on the INDF register actually takes place at the address con-
tained in the FSR register. Now, if FSR (the pointer register) is incremented and
INDF is again cleared, the memory location at address 0x21 is cleared. Indirect ad-
dressing is covered in detail in the programming chapters.

8.5 Mid-range I/O and Peripheral Modules

Mid-range devices contain special modules to implement peripheral and I/O func-
tions. The more complex the device the more peripheral modules are likely to be pres-
ent. For example, a simple mid-range PIC like the 16F84A contains few peripheral
modules, specifically, EEPROM data memory, I/O ports, and a timer module. The
16F87x PICs, on the other hand, in addition to I/O ports, EEPROM, and three individ-
ual timers, have a parallel slave port, a WPM (capture and compare) module, an MSSP
(master synchronous serial port) module, a USART (universal asynchronous/syn-
chronous receiver and transmitter) module, and an A/D (analog-to-digital converter)
module.

Other members of the mid-range family have additional or different peripheral
and I/O modules. In the following sections, we briefly describe the architecture of
the most common peripheral modules. The programming details are covered else-
where in the book.

158 Chapter 8

Implementation of many different functions in a device with a small footprint re-
quires multiplexing many of the PIC’s access connections. Figure 8-10 shows the
pinout of the 16F84A and the 16F877 and the multiple functions of most pins in both
devices.

Figure 8-10 16F84A and 16F877 Pin Diagrams

8.5.1 I/O Ports

Ports provide PICs access to the outside world and are mapped to physical pins on the
device. In some mid-range PICs (see Figure 8-10) some port pins for I/O ports are mul-
tiplexed with alternate functions of peripheral modules. When a peripheral module is
enabled, that pin ceases to be a general purpose I/O.

Port pins can be configured either as input or output, that is, general ports are
bidirectional. Each port has a corresponding TRIS register which determines if a
port is designated as input or output. A value of 1 in the port’s TRIS register makes
the port an input and a value of 0 makes the mapped port an output. Typically, input
ports are used in communicating with input devices, such as switches, keypads, and
input data lines from hardware devices. Output ports are used in communicating
with output devices, such as LEDs, seven-segment displays, LCDs (liquid-crystal dis-
plays), and data output lines to hardware devices.

Mid-range PIC Architecture 159

16F84
RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

16F877

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RB7/PGD

RG6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

!MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2.VREF-

RA3/AN3/VREF+

RA4/TOCKI

RA5/AN4/SS

RE0/!RD/AN5

RE1/!WR/AN6

RE2/!CS/AN7

VDD

VSS

OSC1/CLKIN

OS2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

Although port pins are bitmapped, they are read and written as a unit. For exam-
ple, the PORTA register holds the status of the eight pins possibly mapped to Port-A,
while writing to PORTA writes to the port latches. Write operations to ports are ac-
tually read-modify-write operations. In other words, the port pins are first read, then
the value is modified, and then written to the port’s data latch. Some of the port pins
are multiplexed; for example, pin RA4 is multiplexed with the Timer0 module clock
input; therefore, it is labeled RA4/T0CKI pin. Other PORTA pins are multiplexed
with analog inputs and with other peripheral functions. The device data sheets con-
tain information about the functions assigned to each device pin.

8.5.2 Timer Modules
Timer modules are available in all mid-range devices. The TIMER0 module is present
in all PICs of this family. It has the following features:

1. 8-bit timer/counter

2. Readable and writable

3. 8-bit software programmable prescaler

4. Internal or external clock select

5. Interrupt on overflow from FFh to 00h

6. Edge select for external clock

Chapter 12 is devoted entirely to the architecture and programming of timers and
counters.

8.5.3 Capture-and-Compare Module
Some mid-range devices contain one or more capture-and-compare modules, desig-
nated as Capture/Compare/PWM modules. In Figure 8-10 you can see that one of the
functions multiplexed onto pin 17 of the 16F877 is labeled CCP1 (cap-
ture-and-compare module number 1). The CCP2 module is multiplexed onto pin num-
ber 16. The principal function of the capture-and-compare modules is to enhance
timer operations. Each module contains the following elements:

• A 16-bit register which can operate as:

a 16-bit capture register or a 16-bit compare register

• A PWM Master/Slave Duty Cycle register

When more than one capture-and-compare module is implemented in a single de-
vice, they are all identical in operation. In the 16F877, the two available modules are
designated as CCP1 and CCP2 respectively. In each module a Capture/Com-
pare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low
byte) and CCPR1H (high byte). The CCP1CON register controls the operation of
CCP1.

The CCP modules find use in recording events, measuring time periods, counting,
generating pulses and periodic waveforms, and voltage averaging, among others.
However, since these applications are not commonly found in the simple PIC cir-
cuits covered in this book we make no further reference to this topic.

160 Chapter 8

8.5.4 Master Synchronous Serial Port (MSSP) Module
Some mid-range PICs come equipped with hardware modules to implement serial pro-
tocols, including SPI and I2C. The module that provides these interfaces is named the
Master Synchronous Serial Port, or MSSP. The MSSP module can operate in either the
slave or the master mode, as well as in a free-bus mode, also called the multi-master
function.

The MSSP module is useful for communicating with other peripheral or
microcontroller devices. The peripheral devices can be serial EEPROMs, shift regis-
ters, display drivers, A/D converters, etc. The MSSP module is discussed in Chapter
8, in the context of EEPROM data memory programming.

8.5.5 USART Module
The Universal Synchronous Asynchronous Receiver Transmitter (USART) module
in the 16F87x family is also known as a Serial Communications Interface, or SCI. The
USART module is used in communicating with devices and systems that support
RS-232 communications, including computers and terminals. It can be configured as
an asynchronous full duplex device, as a synchronous half-duplex master, or as a syn-
chronous half-duplex slave. In the synchronous mode, the USART is useful in commu-
nicating with analog-to-digital and digital-to-analog integrated circuits or for
accessing serial EEPROMS. The USART is discussed extensively in Chapter 14 and, in
the context of programming serial EEPROMS, in Chapter 15.

8.5.6 A/D Module
Until recently, A/D conversions required the use of dedicated devices, usually in the
form of an integrated circuit component. Mid-range PICs now come with on-board A/D
hardware. One of the advantages of using on-board A/D converters is saving interface
lines. Interfacing with a hardware IC usually requires three to four lines. A similar
function can be implemented with on-board A/C hardware with a single line. Since I/O
lines are often needed in PIC circuits, the advantage of on board A/C hardware is sig-
nificant.

Mid-range PICs equipped with A/D converters have either 8- or 10-bit resolution
and can receive analog input in 2 to 16 different channels. For example, the 16F877
contains eight analog input channels at a 10-bit resolution. An A/D converter uses a
sample-and-hold capacitor to store the analog charge and performs a successive ap-
proximation algorithm to produce the digital result. When the converter resolution
is 10 bits these are stored in two 8-bit registers, one of them having only four signifi-
cant bits.

The A/D module has high- and low-voltage reference inputs which are selected by
software. The module can operate while the processor is in the SLEEP mode, but
only if the A/D clock pulse is derived from its internal RC oscillator. The A/D con-
verter module is discussed in detail in Chapter 16.

Mid-range PIC Architecture 161

Chapter 9

PIC Programming: Tools and Techniques

PIC microcontrollers can be programmed in high-level languages or in their native ma-
chine language. Machine language programming is facilitated by the use of an assem-
bler program, and thus becomes assembly language programming. Although assembly
language is the most used and popular way of PIC programming, there is an ongoing
debate regarding the use of high-level languages.

The major argument in favor of high-level languages is their ease of use and their
faster learning curve. The advantages of assembly language, on the other hand, are
better control and greater efficiency. It is true that arguments that favor high-level
languages find some justification in the computer world, but these reasons are not
as valid regarding PIC programming. In the first place, the PIC programmer cannot
avoid complications and technical details by resorting to a high-level language,
since PIC programs relate closely to hardware devices and to electronic circuits.
These devices and circuits must be understood at their most essential level if they
are to be controlled and operated by software. For example, consider a PIC program
to provide some sort of thermostatic control. In this case, the programmer must be-
come familiar with temperature sensors, analog-to-digital conversions, motor con-
trols, and so on. This is true whether the program is written in a low- or a high-level
language.

Another reason for using assembly language in PIC programming is that the lan-
guage itself is quite simple. The mid-range PICs have 35 instructions in their instruc-
tion sets and many of them are quite similar; so learning assembly language for PIC
programming takes no great effort. Additionally, assembly language development
tools are free from Microchip, while most high-level languages must be purchased
from their developers. For these reasons we have excluded all high-level languages
from consideration in this book.

9.0 Microchip’s MPLAB
The PIC assembly language development system provided by Microchip is named
MPLAB. The package is furnished as an IDE (integrated development environment)

and can be downloaded from the company’s web site at www.microchip.com.

163

One limitation of the MPLAB package is that it is furnished only for the PC. If you
are a Mac, UNIX, or Linux user you cannot use MPLAB. Development packages for
other operating systems are available on the Web.

The MPLAB IDE is intended for software development of embedded systems. An
embedded system is designed for a specific purpose, in contrast with a computer
system which is a general purpose machine. The embedded system is designed to
perform specific and predefined tasks; for example, control a microwave oven, con-
trol a TV receiver, or operate a model railroad. The software of a general-purpose
computer can be easily changed. You may, at will, run a word processor, a web
browser, or a database management system on your computer. The software in an
embedded system is usually fixed and cannot be easily changed; for this reason it is
called “firmware.”

9.0.1 Embedded Systems

At the heart of an embedded system is a microcontroller (such as a PIC), sometimes
several of them. These devices are programmed to perform one, or at most a few,
tasks. In the most typical case, an embedded system also includes one or more “pe-
ripheral” circuits which are operated by dedicated ICs or by functionality contained in
the microcontroller itself. The term “embedded system” refers to the fact that the de-
vice is often found inside another one; for instance, the control circuit is embedded in
a microwave oven. Furthermore, embedded systems do not have (in most cases) gen-
eral purpose devices such as hard disk drives, video controllers, printers, and network
cards.

A typical embedded system is a control for a microwave oven. In this case, the
controller includes a timer to clock various operations, a temperature sensor to pro-
vide information about the oven’s operation, a motor to rotate the oven’s tray, a sen-
sor to detect when the oven door is open, and a set of pushbutton switches to select
the operational options. A program running on the embedded microcontroller reads
the commands and parameters input through the keyboard, programs the timer and
the rotating table, detects the state of the door, and turns the heating element on and
off as required by the user’s selection. Many other daily devices including automo-
biles, digital cameras, cell phones, and home appliances use embedded systems and
many of them are PIC-based.

The development process of an embedded system consists of the following steps:

1. Define the system specifications. This step includes listing the functions that the sys-
tem is to perform and determining the tests that are to validate their operations.

2. Select the system components according to the specifications. This step includes lo-
cating the microcontroller that best suits the system as well as the other hardware
components.

3. Design the system hardware. This step includes drawing the circuit diagrams.

4. Implement a prototype of the system hardware by means of breadboards, wire boards,
or any other changeable implementation technology.

164 Chapter 9

5. Develop, load, and test the software. Loading software into a PIC is referred to as
“burning” or “blowing” the PIC.

6. Implement the final system and test hardware and software.

9.1 Integrated Development Environment
The MPLAB development system consists of a system of programs that run on a PC.
This software package is designed to help develop, edit, test, and debug PIC code.

Installing the MPLAB package is straightforward and simple. The package in-
cludes the following components:

1. MPLAB editor. This tool allows creating and editing the assembly language source
code. It behaves like any Windows editor and contains the standard editor functions,
including cut-and-paste, search-and-replace, and undo and redo functions.

2. MPLAB assembler. The assembler reads the source file produced in the editor and gen-
erates either absolute or relocatable code. Absolute code executes directly in the PIC.
Relocatable code can be linked with other separately assembled modules or with li-
braries.

3. MPLAB linker. This component combines modules generated by the assembler with li-
braries or other object files, into a single executable file in .hex format.

4. MPLAB debuggers. Several debuggers are compatible with the MPLAB development
system. Debuggers are used to single-step through the code, breakpoint at critical
places in the program, and watch variables and registers as the program executes. In
addition to being a powerful tool for detecting and fixing program errors, debuggers
provide an internal view of the processor; this is a valuable learning tool.

5. MPLAB In-circuit emulators. These are development tools that allow performing ba-
sic debugging functions while the processor is installed in the circuit.

Figure 9-1 (in the following page) is a screen image of the MPLAB program. The
application on the editor window is one of the programs developed later in this
book.

9.1.1 Installing MPLAB

In normal installation, the MPLAB executable is placed in the following path:

C:\Program Files\Microchip\MPASM Suite

Once the development environment is installed, the software is executed by
clicking the MPLAB IDE icon. It is usually a good idea to drag and drop the icon onto
the desktop so that the program can be easily activated.

With the MPLAB software installed, it may be a good idea to check that the appli-
cations were placed in the correct paths and folders. Failure to do so produces as-
sembly-time failure errors with cryptic messages. To check the correct path for the
software, open the Project menu and select the Select Language Toolsuite com-
mand. Figure 9-2 shows the command screen.

PIC Programming: Tools and Techniques 165

Figure 9-1 Screen Image of the MPLAB IDE

In the toolsuite window make sure that the file location coincides with the actual
installation path for the software. If in doubt, use the <Browse> button to navigate
through the installation directories until the executable program is located. In this
case, mpasmwin.exe. Follow the same process for all the executables in the
Toolsuite Contents window.

Figure 9-2 MPLAB Select Language Toolsuite Screen

166 Chapter 9

Figure 9-3 MPLAB Set Language Tools Locations Screen

A more detailed control over the location of the various individual tools is pro-
vided by the Set Language Tools Location command, also in the Project menu.
This command allows setting the installation path not only to the major suites, but
also to the individual tools. Figure 9-3 shows the display screen of this command.

9.1.2 Creating the Project
In MPLAB, a project is a group of files generated or recognized by the IDE. Figure 9-4
shows the structure of an assembly language project.

Figure 9-4 MPLAB Project Files

PIC Programming: Tools and Techniques 167

prog1.asm

PxxFyy.inc

sup.lib device.lkr

prog1.lst prog1.mapprog1.hex prog1.err

prog1.o

MPASM

(assembler)

MPLINK

(linker)

MPLIB

(librarian)

Figure 9-4 shows an assembly language source file (prog1.asm) and an optional
processor-specific include file which are used by the assembler program (MPASM)
to produce an object file (prog1.o). Optionally, other sources and other include

files may form part of the project. The resulting object file, as well as one or more
optional libraries, and a device-specific script file (device.lkr) are then fed to the
linker program (MPLINK). MPLINK generates a machine code file (prog1.hex) and
several support files with listings, error reports, and map files. The .hex file is used
to blow the PIC.

In addition to the files in Figure 9-4, others may also be produced by the develop-
ment environment according to the selected tools and options. For example, the as-
sembler or the linker can generate a file with the extension .cod that contains
symbols and references used in debugging.

Projects can be created using the <New> command in the Project menu. The
programmer then proceeds to configure the project manually and add to it the re-
quired files. An alternative option, much to be preferred when learning the environ-
ment, is using the <Project Wizard> command in the Project menu. The wizard
prompts you for all the decisions and options that are required, as follows:

1. Device selection. Here the programmer selects the PIC hardware for the project, for
example 16F84A.

2. Select language toolsuite. This screen is the same one shown in Figure 9-2. Its purpose
is to make sure that the proper development tools and paths are active.

3. Next, the wizard prompts the user for a project name and directory. It is possible to cre-
ate a new directory at this time.

4. In the next step, the user is given the option of adding existing files to the project and
renaming these files if necessary. This can be a useful option, since most projects re-
use a template, an include file, or other preexisting resources.

5. Finally, the wizard displays a summary of the project parameters. When the user clicks
on the <Finish> button, the project is created and programming can begin.

Figure 9-5 Final Screen of the Project Creation Wizard

168 Chapter 9

9.1.3 Project Build Options
The <Build Options: Project> command in the Project menu allows the user to

customize the development environment. Of the tabs available on the Build Op-

tions screen, the MPASM Assembler is probably the most used. The screen is
shown in Figure 9-6.

Figure 9-6 MPASM Assembler Tab in the Build Options Screen

The MPASM Assembler tab allows performing the following customizations:

1. Disable/enable case sensitivity. Normally the assembler is case-sensitive. Enabling
this option turns all variables and labels to upper case.

2. Select the default radix. Numbers without formatting codes are assumed to be hex,
decimal, or octal according to the selected option.

3. The Macro Definition window allows adding macro directives. Macros are discussed
later in this chapter.

4. The Use Alternate Settings text box is provided for command line commands in
non-GUI environments.

5. The Restore Defaults box turns off all custom configurations.

9.1.4 Building the Project

Once all the options have been selected, the installation checked, and the assembly
language source file written or imported, the development environment builds the
project. Building consists of calling the assembler, the linker, and any other support

PIC Programming: Tools and Techniques 169

program in order to generate the files shown in Figure 9-4 and any others that result
from a particular project or IDE configuration.

The build process is initiated by selecting the <Build All> command in the Pro-

ject menu. Once the building concludes, a screen labeled Output is displayed
showing the results of the build operation. If the build succeeded, the last line of the
Output screen shows this result. Figure 9-7 shows the output screen after a suc-
cessful build.

Figure 9-7 Output Window showing the Build Command Result

9.2 Simulators and Debuggers

In the context of MPLAB documentation the term debugger is reserved for hardware
debuggers while the software versions are called simulators. Although this distinc-
tion is not always enforceable, we will abide by this terminology (whenever possible)
in order to avoid confusion. The reader should note that there are MPLAB functions in
which the IDE considers a simulator as a debugger.

The MPLAB standard simulator is called MPLAB SIM. SIM is part of the Inte-
grated Development Environment and can be selected at any time. The hardware
debuggers currently offered by Microchip are named ICD 2, ICE 2000, and ICE 4000.
A simulator, as the term implies, allows simulating the execution of a program one
instruction at a time and viewing file registers and symbols defined in the code.
Debuggers, on the other hand, allow executing a program one step at a time or to a
predefined breakpoint while the PIC is installed in the target system. This makes

170 Chapter 9

possible realtime viewing of the processor’s internals, and also the state of circuit
components.

In the sections that follow we present an overview of PIC simulators and
debuggers and their use.

9.2.1 MPLAB SIM
Microchip documentation describes the SIM program as a discrete-event simulator.
SIM is part of the MPLAB IDE and is selected by clicking on the <Select Tool> com-
mand in the Debugger menu. The command offers several options, one of them being
MPLAB SIM. Once the SIM program is selected, a special debug toolbar is displayed.
The toolbar and its functions is shown in Figure 9-8.

Figure 9-8 SIM Toolbar

In order for the simulator to work the program must first be successfully built.
The most commonly used simulator methods are single-stepping through the code
and breakpoints. A breakpoint is a mark at a program line at which the simulator
stops and waits for user actions.

Breakpoints provide a way of inspecting program results at a particular place in
the code. Single-stepping is executing the program one instruction at a time. The
three buttons labeled <Step...> are used in single-stepping. The first one allows
breaking out of a subroutine or procedure. The second one is for bypassing a proce-
dure or subroutine while in step mode. The third one single steps into whatever line
follows.

Breakpoints are set by double-clicking at the desired line while using the editor.
The same action removes an existing breakpoint. Lines in which breakpoints have
been placed are marked, on the left document margin, by a letter “B” enclosed in a
red circle. Right-clicking while the cursor is on the program editor screen provides a
context menu with several simulator-related commands. These include commands
to set and clear breakpoints, to run to the cursor, and to set the program counter to
the code location at the cursor.

PIC Programming: Tools and Techniques 171

Reset

Step out (of subroutine)

Step over (subroutine)

Step into (subroutine)

Animate

Halt

Run (to breakpoint)

The View menu contains several commands that provide useful features during
program simulation and debugging. These include commands to program memory,
file registers, EEPROM, and special function registers. One command in particular,
named <Watch>, provides a way of inspecting the contents of FSRs and GPRs on
the same screen. The <Watch> command displays a program window that contains
references to all file registers used by the program. The user then selects which reg-
isters to view and these are shown in the Watch window. The Watch window is
shown in Figure 9-9.

Figure 9-9 Use of Watch Window in MPLAB SIM

When the program is in the single-step mode or breakpoint modes, the contents
of the various registers can be observed in the Watch window. Those that have
changed since the last step or breakpoint are displayed in red. The user can click the
corresponding arrows on the Watch window to display all the symbols or registers.
The <Add Symbol> or <Add FSR> button is then used to display the item on the
Watch screen. Four different Watch windows can be enabled, labeled Watch 1 to
Watch 4 at the bottom of the screen in Figure 9-9.

Another valuable tool available from the View menu is the one labeled <Simulator
Trace>. The Simulator Trace window provides a view of the machine instruction
combined with a window that displays the source code. The Simulator Trace win-
dow is shown in Figure 9-10.

9.2.2 MPLAB Hardware Debuggers

A more powerful and versatile debugging tool is a hardware or in-circuit
debugger. Hardware debuggers allow tracing, breakpointing, and single-stepping
through code while the PIC is installed in the target circuit. The typical in-circuit
debugger requires several hardware components, as shown in Figure 9-11.

172 Chapter 9

Figure 9-10 MPLAB SIM Simulator Trace Window

Figure 9-11 Components of a Typical Hardware Debugger

PIC Programming: Tools and Techniques 173

Power cable

Emulator pod

Processor

module

Cable to

circuit

Adapter

Transition

socket

Logic

probe

connector

Communications cable

The emulator pod with power supply and communications cable provides the ba-
sic communications and functionality of the debugger. The communications line be-
tween the PC and the debugger can be an RS-232, a USB, or a parallel port line. The
processor module fits into a slot at the front of the pod module. The processor is de-
vice-specific and provides these functions to the debugger. A flex cable connects the
processor module to an interchangeable device adapter that allows connecting to
the several PICs supported by the system. The transition socket allows connecting
the device adapter to the target hardware. A separate socket allows connecting
logic probes to the debugger.

Microchip provides two models of their in-circuit hardware debuggers, which
they call In-Circuit Emulators, or ICEs. The ICE 2000 is designed to work with
most PICs of the mid-range and lower series, while the ICE 4000 is for the PIC18x
high-end family of PICs. Recently Microchip has released an in-circuit debugger des-
ignated as ICD 2 that offers many of the features of their full-fledged in-circuit emu-
lators at a much reduced price. One of the disadvantages of the ICD 2 system is that
it requires the exclusive use of some hardware and software resources in the target.
Furthermore, the ICD requires that the system be fully functional. The ICEs, on the
other hand, provide memory and clocks so that the processor can run code even if it
is not connected to the application board.

9.2.3 A “Quick-and-Dirty” Debugger

The functionality of an actual hardware debugger can be replaced with a little ingenu-
ity and a few lines of code. Most PICs are equipped with EEPROM memory. Program-
mers (covered in the following section) have the ability to read all the data stored in
the PIC, including EEPROM. These two facts can be combined to obtain run-time in-
formation without resorting to a hardware debugger.

Suppose a defective application is suspected of not finding the expected value in
a PIC port. The developer can write a few lines of code to store the port value on an
EEPROM memory cell. An endless loop following this operation ensures that the
stored value is not changed. Now the PIC is inserted in the circuit and the applica-
tion executed. When the endless loop is reached, the PIC is removed from the circuit
and placed back in the programmer. The value stored in EEPROM can now be in-
spected so as to determine the run-time state of the machine. In many cases, this
simple trick is less complicated and time consuming than setting up a hardware
debugger, even if such a device is available.

9.3 Programmers
In the context of microcontroller technology, a programmer is a device that allows
transferring the program onto the chip. The process is called “burning” a PIC, or more
commonly “blowing” a PIC. Most programmers have three components:

1. A software package that runs on the PC

2. A cable connecting the PC to the programmer

3. A programmer device

174 Chapter 9

Dozens of PIC programmers are available on the Internet. When Microchip re-
leased the programming specifications of the PIC to the public without requiring a
nondisclosure agreement, they originated a cottage industry. The commercial pro-
grammers on the Internet range from a “no parts” PIC programmer that has been
around since 1998, to sophisticated devices costing hundreds of dollars and provid-
ing many additional features and refinements. For the average new PIC user, a nice
USB programmer with a ZIF (zero insertion-force) socket and the required software
can be purchased for about $50.00. Build-it-yourself versions are available for about
half this amount.

An alternative programmer is made possible by the fact that some of the newer
flash-based PICs can write to their own program memory. This allows placing a
small bootloader program in PIC memory which loads an application over the
RS-232 or USB lines.

Figure 9-12 is a screen capture of the driver software for a popular programmer
from MicroPro.

Figure 9-12 Control Program for the DIY MicroPro Programmer

9.4 Engineering PIC Software

The program developer’s main challenge is writing code that performs the task at
hand. In this context this means writing a PIC assembly language program that assem-
bles without errors (usually after some effort) and makes the circuit perform as in-
tended. We have already reviewed the IDE (integrated development environment) and

PIC Programming: Tools and Techniques 175

the various hardware components and software tools. We now focus on the various el-
ements that are used in developing the program itself.

9.4.1 Using Program Comments

One of the first realizations of beginning programmers is how quickly we forget the
reasoning and logic that went into our code. It is common that a few weeks, even a few
hours, after we coded a routine we find that what was obvious then is now undecipher-
able and that the ideas that were clear in our minds a short time ago now evade our un-
derstanding. The only solution is to write good program comments that explain, not
the elementary, but the trains of thought behind our code.

In PIC assembly language, the comment symbol is the semicolon (;). The pres-
ence of a semicolon indicates to the assembler that everything that follows, to the
end of the line, must be ignored. Using comments judiciously and with good taste is
the mark of the expert software engineer. Programs with few, cryptic, or confusing
comments fall into the category of “spaghetti code.” In programming lingo, “spa-
ghetti code” refers to a coding style that cannot be deciphered or understood. One
of the worst offenses that can be said about one’s programming style is that it is spa-
ghetti code.

How we use comments to explain our code or even to embellish it is a matter of
personal preference. However, there are certain common sense rules that should al-
ways be considered:

1. Do not use program comments to explain the programming language or reflect on the
obvious.

2. Abstain from humor in comments. Comedy has a place in the world but it is not in pro-
grams. By the same token, stay away from vulgarity, racial or sexist remarks, and any-
thing that could be offensive. You can never anticipate who will read your code.

3. Write short, clear, readable comments that explain how the program works. Decorate
or embellish your code using comments according to your tastes.

Program Header

Every program should have a commented header that contains the following informa-
tion:

1. Program name

2. Programmer’s or software company’s name

3. Copyright notice, if pertinent

4. Target device or hardware

5. Development environment

6. Development dates

7. Program description

176 Chapter 9

Some of these elements allow various levels of detail. For example, the target de-
vice can be a simple reference to the PIC for which the program is written, a
more-or-less detailed description of the target system, or a reference to a circuit dia-
gram or board drawing. The development environment can also be described briefly
or in detail. The date element can be a single entry that lists the first or the last pro-
gram change, or a detailed description of all program changes, tests, and updates.
The program description can be a short sentence or a mini-manual on using the ap-
plication. In any case, the level of detail and the contents of each category are deter-
mined by the programmer’s style and the complexity and purpose of the application.

The following lines show the header of one of the programs developed for this
book:

; File name: RTC2LCD.asm
; Last Update: June 6, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to demonstrate use of the NJU6355 Real Time Clock
; IC. Program uses LCD to display results in hours, minutes,
; and seconds, as follows:
;
; Top LCD line: H:xx M:yy S:zz
;
; Initialization values are in #define statements that start
; with i, such as iYear, iMonth, etc.
;
; For LCD display parameters see the LCDTest2 program.
;
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock

Commented Banners

Often, we need to scroll through the code in search of a particular line or routine. Hav-
ing banners that signal critical places in the program facilitates this search. Banners
are created using comments and a framing symbol, as in the following code fragment:

;===============================
; first text string procedure
;===============================
storeMS1:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer

PIC Programming: Tools and Techniques 177

Sometimes, the programmer needs to emphasize a program area with a large ban-
ner that extends from margin to margin, as follows:

;==
;==
; L O C A L P R O C E D U R E S
;==
;==
;==========================
; init LCD for 4-bit mode
;==========================
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 20 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift

Commented Bitmaps

It is also possible to use comments to signal the function of bit fields and individual
bits of an operand, as in the following code fragment:

; OPTION_REG bitmap
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | *0 = increment on low-to-high
; | | | 1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; *0 = enabled
; 1 = disabled
; * indicates options selected

movlw b’00001000’ ; Value installed
movwf OPTION_REG

Clearly commented bitmaps, banners, and many other code embellishments do
not add to the quality and functionality of the code. It is quite possible to write very
sober and functional programs without using them. The decision of how to com-
ment and embellish programs is one of style.

178 Chapter 9

9.4.2 Defining Data Elements
Most programs require the use of general purpose file registers. These registers are al-
located to memory addresses reserved for this purpose in the PIC architecture, as
shown in Figure 8-8 and Figure 8-9. Since the areas at these memory locations are al-
ready reserved for use as GPRs, the program can access the location either by address
or by assigning to that address a name. The equ (equate) directory performs this func-
tion, as follows:

var1 equ 0x0c ; Name var1 is assigned to location 0x0c

Actually, the name (in this case var1) becomes an alias for the memory address to
which it is linked. From this point on, program code can access the memory cell at
address 0x0c as follows:

movf var1,w ; Contents of var1 to w

or:

movf 0x0c,w ; Same variable to w

In addition to the equ directive, PIC assembly language recognizes the C-like
#define directive, so the name assignation could be done as follows:

#define var1 0x0c

Although most of the time-named variables are to be preferred to hard-coding ad-
dresses, there are times when we need to access an internal element of some
multi-byte structure. In these cases, the hard-coded form could be convenient, al-
though not absolutely necessary.

The cblock Directive
Another way of defining memory data is by using one of the data directives available in
PIC assembly language. Although there are several of these, perhaps the most useful is
the cblock directive. The cblock directive specifies an address for the first item and
other items listed are allocated from this first address. The group ends with the endc
directive. The following code fragment shows the use of the cblock/endc directives.

; Reserve 20 bytes for string buffer
cblock 0x20
strData
endc

; Reserve three bytes for ASCII digits
cblock 0x34
asc100
asc10
asc1
endc

In reality, the cblock directive defines a group of constants which are assigned
consecutive addresses in RAM. In the previous code fragment the allocation of 20
bytes for the buffer named strData is illusory since no memory is actually reserved.
The illusion works because the second cblock starts at address 0x34 which is 20
bytes after strData, and also because the programmer abstains from allocating
other variables in the buffer space.

PIC Programming: Tools and Techniques 179

9.4.3 Banking Techniques

Having to deal with memory banks is one of the aggravations of PIC programming.
Banks are numbered starting with bank 0. All PICs of the mid-range family have at
least two banks, so bank shifting operations are virtually unavoidable. The issue is
more how to switch bank designation since there are several possible techniques.

Bank selection is by means of bit RP0 and RP1 in the STATUS register. In
mid-range PICs with four banks, the various combinations are as shown in Table 9.1.

Table 9.1

STATUS Register Bank Selection Bits

RP1 RP0 BANK ADDRESS RANGE

1 1 *Bank 3 0x180 - 0x1ff
1 0 *Bank 2 0x100 - 0xx17f
0 1 Bank 1 0x80 - 0xff
0 0 Bank 0 0x00 - 0x7f

* RP1 bit is not used in devices with two banks

The most direct way to select the current bank is by clearing or setting the corre-
sponding bits in the STATUS register. For example, to select bank 2 in a 4-bank de-
vice you could code:

bsf STATUS,6 ; Set bit 6 in STATUS register

bcf STATUS,5 ; Clear bit 5

The banksel Directive

Alternatively the application can use the banksel directive which selects the bank in
which a particular register is located. For example, to select the bank in which the
ADCON1 register is located code could be as follows:

banksel ADCON1

The banksel directive also works with registers defined by the user (GPRs).

Bank Selection Macros

An alternative way of performing bank selection is by coding the corresponding bank
select macros. A macro is an assembler structure that allows defining a series of in-
structions inserted in the code every time the macro is referenced. The PIC macro lan-
guage defines the following format:

label macro [arg1, arg2... argn]

.

.

.

endm

The ellipses are placeholders for the PIC instructions, assembler directives,
macro directives, and macro calls. Macros are usually defined at the beginning of
the program since forward references to macros are not allowed. The optional argu-
ments passed to the macro (arg1, arg2, etc) are assigned values when the macro is

180 Chapter 9

invoked. For example, the following macros make the corresponding bank selec-
tions in a mid-range PIC with four banks.

; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

Once the bank switching macros have been defined, the application can change
banks simply by calling the macro name; for example, if we know that the ADCON1

register is in bank 1 we can select the bank by calling:

Bank1

At this point in the code the macro expansion inserts the corresponding opera-
tions to make the switch.

Which method to use when switching banks is a matter of personal preference
and program constraints. Setting and clearing the RP1/RP0 bits is simple enough,
but can be error-prone. Using the banksel directive is convenient since we do not
need to know in which bank the item is located. The objection to using banksel is
that some unnecessary bank changes may take place. For example, if the program is
already in bank 1 and the banksel directive appears with a register file in that same
bank, bank switching is generated.

The use of bank selection macros seems like a suitable method for most condi-
tions. One advantage of the macro approach is that programs for different PICs can
have their own banking macros. This way code can be easily ported to a different ar-
chitecture.

Deprecated Banking Instructions
Several instructions in the mid-range instruction set have been deprecated and are no
longer recommended by Microchip. These instructions are tris and option. Micro-
chip’s reason for not recommending these instructions is to maintain compatibility
with future mid-range products. From a programmer’s viewpoint, it is difficult to see
why using these instructions may be undesirable. In the unlikely case that code using
tris or option is ported to a future device that does not support them, it will be easy
enough to modify.

PIC Programming: Tools and Techniques 181

The tris and option instructions are convenient since they allow loading the con-
tents of the w register to the OPTION, TRISA, and TRISB registers directly, without
bank concerns. For example, the following code fragment sets port line 1 to input
and all others to output:

movlw b’00000010’ ; Line 1 is input

tris PORTA

We continue to use the deprecated instructions in programs in which there is no
concern about future consequences. In programs in which portability is an issue, we
use the banking macros discussed previously.

9.4.4 Processor and Configuration Controls

PIC programs must define the processor to be used by the development software. The
processor directive assembler (and also the list directive) allows defining the PIC
type. For example, a program for the 16F877 would contain the following line:

processor 16f877

Configuration Bits

The PIC microcontrollers contain a special register called the configuration register.
The bits in this register allow customizing certain processor features. These bits are
mapped to program memory location 0x2007. This memory location can be accessed
only during the programming mode, so the bits cannot be changed during normal pro-
gram operation. The configuration bits cannot be read at runtime.

Microchip recommends that the configuration bits be set by means of the
__config directive. The bits are mapped as follows:

CP1:CP0: Code Protection bits

11 = Code protection off

10 = See device data sheet

01 = See device data sheet

00 = All memory is code protected

Some devices use different numbers of bits to determine the level of code protec-
tion. Some use a single bit. In this case, the encoding is as follows:

1 = Code protection off

0 = Code protection on

DP: Data EEPROM Memory Code Protection bit

1 = Code protection off

0 = Data EEPROM Memory is code protected

BODEN: Brown-Out Reset Enable bit

1 = BOR enabled

0 = BOR disabled

182 Chapter 9

Enabling Brown-out Reset automatically enables PWRT (the Power-up Timer) re-
gardless of the value of bit PWRTE. The Power-up Timer must be enabled any time
that the Brown-out Reset is enabled.

PWRTE: Power-up Timer Enable bit
1 = PWRT disabled
0 = PWRT enabled

See note about the BODEN bit.
MCLRE: MCLR Pin Function Select bit

1 = Pin’s function is MCLR
0 = Pin’s function is as a digital I/O.

MCLR is internally tied to VDD.
WDTE: Watchdog Timer Enable bit

1 = WDT enabled
0 = WDT disabled

FOSC1:FOSC0: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

FOSC2:FOSC0: Oscillator Selection bits
111 = EXTRC oscillator, with CLKOUT
110 = EXTRC oscillator
101 = INTRC oscillator, with CLKOUT
100 = INTRC oscillator
011 = Reserved
010 = HS oscillator
001 = XT oscillator
000 = LP oscillator

The __config directive is used to embed configuration data in the source file. Al-
ternatively, the configuration bits can be set at the time the PIC is blown. The fol-
lowing code fragment shows setting the configuration bits for a 16F877 PIC:

; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal osccillator
; _XT_OSC External parallel resonator/crystal ocillator
; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |_____ * indicates setup values presently selected

__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON & _HS_OSC &
_WDT_OFF & _LVP_OFF & _CPD_OFF

PIC Programming: Tools and Techniques 183

9.4.5 Naming Conventions
The programmer must decide on the conventions to be followed for program labels
and variable (register) names. The MPLAB assembler is case sensitive by default, so
PORTB and portb can refer to different registers.

Using the equ or #define directives, the programmer can define all of the regis-
ters (SFRs and GPRs) used by an application. A safer approach is to import an in-

clude file (.inc extension) furnished in the MPALB package for each different PIC.
The include files have the names of all SFRs and bits used by a particular device.
The following code fragment is a listing of the MPLAB include file for the 16f84a:

LIST
; P16F84A.INC Standard Header File, Version 2.00
; Microchip Technology, Inc.

NOLIST
; This header file defines configurations, registers, and other
; useful bits of information for the PIC16F84 microcontroller.
; These names are taken to match the data sheets as closely as
; possible.
; Note that the processor must be selected before this file is
; included. The processor is selected by using:
; 1. Command line switch:
; C:\ MPASM MYFILE.ASM /PIC16F84A
; 2. LIST directive in the source file
; LIST P=PIC16F84A
; 3. Processor Type entry in the MPASM full-screen interface
;==
;
; Revision History
;
;===

;Rev: Date: Reason:

;1.00 2/15/99 Initial Release

;===
;
; Verify Processor
;
;===

IFNDEF __16F84A
MESSG “Processor-header file mismatch. Verify selected

processor."
ENDIF

;===
;
; Register Definitions
;
;===

W EQU H’0000’
F EQU H’0001’

;—- Register Files————————————————————————-

184 Chapter 9

INDF EQU H’0000’
TMR0 EQU H’0001’
PCL EQU H’0002’
STATUS EQU H’0003’
FSR EQU H’0004’
PORTA EQU H’0005’
PORTB EQU H’0006’
EEDATA EQU H’0008’
EEADR EQU H’0009’
PCLATH EQU H’000A’
INTCON EQU H’000B’

OPTION_REG EQU H’0081’
TRISA EQU H’0085’
TRISB EQU H’0086’
EECON1 EQU H’0088’
EE
Z EQU H’0002’
DC EQU H’0001’
C EQU H’0000’

;——- INTCON Bits —————————————————————————

GIE EQU H’0007’
EEIE EQU H’0006’
T0IE EQU H’0005’
INTE EQU H’0004’
RBIE EQU H’0003’
T0IF EQU H’0002’
INTF EQU H’0001’
RBIF EQU H’0000’

;——- OPTION_REG Bits———————————————————————-

NOT_RBPU EQU H’0007’
INTEDG EQU H’0006’
T0CS EQU H’0005’
T0SE EQU H’0004’
PSA EQU H’0003’
PS2 EQU H’0002’
PS1 EQU H’0001’
PS0 EQU H’0000’

;——- EECON1 Bits —————————————————————————

EEIF EQU H’0004’
WRERR EQU H’0003’
WREN EQU H’0002’
WR EQU H’0001’
RD EQU H’0000’

;==
;
; RAM Definition
;
;==

__MAXRAM H’CF’
__BADRAM H’07’, H’50’-H’7F’, H’87’

PIC Programming: Tools and Techniques 185

;===
;
; Configuration Bits
;
;===

_CP_ON EQU H’000F’
_CP_OFF EQU H’3FFF’
_PWRTE_ON EQU H’3FF7’
_PWRTE_OFF EQU H’3FFF’
_WDT_ON EQU H’3FFF’
_WDT_OFF EQU H’3FFB’
_LP_OSC EQU H’3FFC’
_XT_OSC EQU H’3FFD’
_HS_OSC EQU H’3FFE’
_RC_OSC EQU H’3FFF’

Names in the include file are defined in all-capital letters. It is probably a good
idea to adhere to this style instead of creating alternate names in lower case. The
C-like #include directive is used to refer the .inc files at assembly time, for exam-
ple:

#include <p16f84a.inc>

9.4.6 Errorlevel Directive
This directive allows controlling the warning and error messages produced at assem-
bly and link times. One particular type of warning can be disturbing: those that refer to
bank changes. Applications often turn off bank change related warning with the fol-
lowing line:

errorlevel -302

9.5 Pseudo Instructions
Sometimes a code listing contains instructions that are not part of the standard set for
the particular device. The reason this happens is that MPLAB includes a set of
pseudo- ins t ruc t ions for 12 - and 14 -b i t dev ices . Tab le 9 .2 l i s t s these
pseudo-instructions and their standard equivalents:

Table 9.2

PIC Pseudo Instructions

MNEMONIC DESCRIPTION EQUIVALENT STATUS BIT
OPERATION(S) CHANGED

ADDCF f,d Add Carry to File BTFSC 3,0 Z
Register

INCF f,d
ADDDCF f,d Add Digit Carry

to File Register BTFSC 3,1 Z
INCF f,d

B k Branch GOTO k -
BC k Branch on Carry BTFSC 3,0

GOTO k -

(continues)

186 Chapter 9

Table 9.2

PIC Pseudo Instructions

MNEMONIC DESCRIPTION EQUIVALENT STATUS BIT
OPERATION(S) CHANGED

BDC k Branch on Digit
Carry BTFSC 3,1

GOTO k -
BNC k Branch on No Carry BTFSS 3,0

GOTO k -
BNDC k Branch on No Digit

Carry BTFSS 3,1
GOTO k -

BNZ k Branch on No Zero BTFSS 3,2
GOTO k, 2 -

BZ k Branch on Zero BTFSC 3,2
GOTO k -

CLRC Clear Carry BCF 3,0 -
CLRDC Clear Digit Carry BCF 3,1 -
CLRZ Clear Zero BCF 3,2 -
LCALL k Long Call BCF/BSF 0x0a,3

BCF/BSF 0x0a,4
CALL k

LGOTO k Long GOTO BCF/BSF 0x0a,3
BCF/BSF 0x0a,4
GOTO k

MOVFW f Move File to W MOVF f,0 Z
NEGF f,d Negate File COMF f,1

INCF f,d -
SETC Set Carry BSF 3,0 -
SETDC Set Digit Carry BSF 3,1 -
SETZ Set Zero BSF 3,2 -
SKPC Skip on Carry BTFSS 3,0 -
SKPDC Skip on Digit Carry BTFSS 3,1 -
SKPNC Skip on No Carry BTFSC 3,0 -
SKPNDC Skip on No Digit

Carry BTFSC 3,1 -
SKPNZ Skip on Non Zero BTFSC 3,2 -
SKPZ Skip on Zero BTFSS 3,2 -
SUBCF f,d Subtract Carry from

File BTFSC 3,0
DECF f,d Z

SUBDCF f,d Subtract Digit Carry
from File BTFSC 3,1

DECF f,d Z
TSTF f Test File MOVF f,1 Z

We have listed the PIC pseudo-instructions to provide a reference. In our pro-
gramming we prefer to stay away from using them since they tend to make code less
readable. Microchip recommends not using the pseudo-instructions.

PIC Programming: Tools and Techniques 187

Chapter 10

Programming Essentials: Input and Output

In this chapter, we discuss the simplest circuits and programming operations. Using a
PIC to control an LED or read a switch is as elementary as it gets. However, neither of
these operations is trivial, since there is more to it than a few lines of code. Other in-
put/output devices that are also considered are seven-segment LED displays and mul-
tiple switches, sometimes called toggle switches. A bank of multiple LEDs can also
function as a binary output device.

10.0 16F84A Programming Template
We have found that program development can be simplified considerably by using
code templates. A code template is a program devoid of functionality that serves to im-
plement the most common and typical features of an application. The template not
only saves the effort of redoing the same tasks, but reminds the programmer of pro-
gram elements that could otherwise be forgotten. A professional developer will have
collected many different templates over the years for different types of applications
on various processors. The following template is for the 16F84A PIC:

;==
; File name:
; Date:
; Author:
; Processor:
; Reference circuit:
;==
; Copyright notice:
;==
; Program Description:
;
;===========================
; configuration switches
;===========================
; Switches used in __config directive:

189

; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal osccillator
; * _XT_OSC External parallel resonator
; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; _RC_OSC Resistor/capacitor oscillator
; (simplest, 20% error)
; |
; |_____ * indicates setup values

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; constant definitions
;===
;===
; PIC register equates
;===
;===
; variables in PIC RAM
;===

cblock 0x0c
endc

;==
; program
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:

;==
end ; END OF PROGRAM

;==

190 Chapter 10

In addition to the template file the program developer should keep at hand the
necessary include files. In this case, p16f84a.inc.

10.1 Introducing the 16F84A
The circuits and programs in this chapter use the 16F84A, probably the most popular
of all mid-range PIC microcontrollers. Although we have discussed the mid-range ar-
chitecture, we start with a review of this processor in order to establish a base for the
material that follows.

10.1.1 Template Circuit for 16F84A
Like the programmer uses a programming template for developing 16F84A code, the
circuit designer uses a template circuit. This circuit contains the components that
most 16F84A boards require. The elements include a diagram of the PIC itself with the
pin-out, as well as the wiring of the standard components, including the power source,
ground, the reset pin (MCLR), and the most commonly used oscillator. Figure 10-1
shows a circuit template for the 16F84A.

Figure 10-1 16F84A Circuit Template

The circuit template in Figure 10-1 does not suit every possible circuit. Even the
simplest components must sometimes be configured differently; for example, the re-
set line could be wired to a pushbutton switch, or a different oscillator may be used.
In any case, it is always easier to make modifications to an existing base than to
start from scratch every time.

10.1.2 Power Supplies

Every PIC-based circuit board requires a +5V power source. A possible source of
power is one or more batteries. There is an enormous selection of battery types, sizes,
and qualities. The most common ones for use in experimental circuits are listed in Ta-
ble 10.1.

Programming Essentials: Input and Output 191

16F84A
R=10K

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Osc

+5v

+5v

Table 10.1

Common Dry Cell Alkaline Battery Types

DESIGNATION VOLTAGE LENGTH DIAMETER
MM. MM.

D 1.5 61.5 34.2
C 1.5 50 26.2
AA 1.5 50 14.2
AAA 1.5 44.5 10.4
AAAA 1.5 42.5 8.3

All of the batteries in Table 10.1 produce 1.5V. A PIC with a supply voltage of 2 to
6 volts uses two to four batteries. Note that in selecting the battery power source for
a PIC-based circuit, other elements beside the microcontroller itself must be consid-
ered, such as the oscillator. Holders for several interconnected batteries are avail-
able at electronic supply sources.

Alternatively, the power supply can be a transformer with 120VAC input and 3 to
12VDC called AC/DC adapters. The most useful type for the experimenter are the
ones with an ON/OFF switch and several selectable output voltages. Color-coded al-
ligator clips at the output wires are convenient.

Voltage Regulator
A useful device for a typical PIC-based power source is a voltage regulator IC. The
7805 voltage regulator is ubiquitous in most PIC-based boards with AC/DC adapter
sources. The IC is a three-pin device whose purpose is to ensure a stable voltage
source which does not exceed the device rating. The 7805 is rated for 5V and produces
this output from any input source in the range 8 to 35V. Since the excess voltage is dis-
sipated as heat the 7805 is equipped with a metallic plate intended for attaching a heat

sink. The heat sink is not required in a typical PIC application but it is a good idea to
maintain the supply voltage closer to the device minimum rather than its maximum.

The voltage regulator circuit requires two capacitors: one electrolytic and the
other one not. Figure 10-2 shows a power source circuit using the 7805.

Figure 10-2 Voltage Stabilizer Circuit

192 Chapter 10

C=0.1mFEC=100mF

78L05

INOUT

9 -35v DC
input

+5v DC
output

+

10.1.3 Comparisons in PIC Programming
The power and usefulness of programs is due, in great measure, to their deci-
sion-making ability, and decisions are based on comparison. In a comparison code, it
is able to make decisions based on the relative values of two operands. For example,
compare the values a and b. If a is greater than b execute a certain code routine. If b is
greater than a, execute another one. If both operands have the same value then pro-
ceed to a third code branch.

CISC and even some RISC microprocessors contain a compare operator in their
instruction set. However, the compare can be substituted, with some inconvenience,
by a subtraction. Since there is no compare operation in the PIC instruction set, we
have to simulate the comparison by subtracting the w register from a literal value or
from a file register. The sublw and subwf instructions can be used. After the sub-
traction takes place, code can make decisions based on the state of the zero and the
carry flags. For example, the following code fragment compares the value in the two
registers, labeled OP1 and OP2 respectively, and directs execution to three possible
routines:

; Declare variables at 2 memory locations
OP1 equ 0x0c ; First operand
OP2 equ 0x0d ; second operand
.
.
.
main:

movlw 0x30 ; First operand
movwf OP1 ; to OP1 register
movlw 0x50 ; Second operand
movwf OP2 ; To OP2 register
movf OP2,w ; OP2 to w register (not really

; necessary)
subwf OP1,w ; Subtract w (OP2) from OP1
btfsc STATUS,2 ; 2 is zero bit. Test zero flag.

; Skip next instruction if Z bit = 0,
; that is if both numbers are not the
; same

goto ops_are_eq ; OP2 = w routine
; At this point the zero flag is not set. Therefore the two
operands
; are not equal
; Now test the carry flag for OP1 < OP2, in this case C = 1

btfss STATUS,0 ; 0 is carry bit. Test carry flag
; and skip next instruction if
; C bit = 1

goto op2big ; OP2 > w routine
; Processing for the case OP1 > OP2

nop
goto done

Programming Essentials: Input and Output 193

ops_are_eq:
; Processing for the case OP1 = OP2l

nop
nop
goto done

op2big:
; Processing for the case OP1 < OP2

nop
nop

done:
goto done
end

The Infamous PIC Carry Flag

In PIC programming, the effects on the carry flag are different in addition than in sub-
traction. During addition (addwf and addlw) the carry flag indicates a carry-out of the
most significant bit of the result. In this case, C = 1 if there was a carry out, and C = 0
otherwise. However, in subtraction the carry flag is described in the Microchip docu-
mentation as behaving as an inverted borrow. This means that when two numbers are
subtracted and the result is too big to fit in the destination operand, then the carry flag
is clear. What this amounts to is that in PIC subtraction (sublw and subwf operations)
the carry bit is set if there is no carry-out of the high-order bit. This unusual behavior is
shown in the preceding code fragment.

10.2 Simple Circuits and Programs
In the following sections we describe very simple PIC-based circuits that can be as-
sembled with few components on a breadboard. The corresponding programs exer-
cise the circuit components. The beginner should not skip building these circuits and
coding the programs since they demonstrate essential hardware and software ele-
ments.

As a learning experience, it is a good idea to reverse engineer the code in these
sample programs. With the processor’s instruction set at hand, listed in Appendix C,
proceed to follow the code one instruction at a time until you can understand every
processing detail.

10.2.1 A Single LED Circuit
One of the simplest circuits consists of a single LED lamp wired to Port-B, line 0,

of a 16F84A PIC, as shown in Figure 10-3.

The power source for the circuit in Figure 10-3 is not shown in the diagram.
Typically, a battery source or an AC/DC converter and a voltage stabilizer circuit as
in the one in Figure 10-2 are used.

A program to turn on the LED on Port-B, line 0, requires a few but essential pro-
cessing operations. Code must perform the following operations:

194 Chapter 10

Figure 10-3 Simple LED Circuit

1. Define and select processor (in this case 16F84A).

2. Link-in the corresponding include file (p16f84A.inc).

3. Select the oscillator type (here external resonator, _XT type).

4. Direct execution to the main label.

5. Initialize Port-B for output.

6. Set line 0 in Port-B high.

The entire program is as follows:

; File: LEDOn.asm
; Date: June 1, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Turn on LED wired to Port-B, line 0
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)

Programming Essentials: Input and Output 195

1
6

F
8

4
A

R=10K

R=330Ohm

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Osc

LED

+5v

+5v

; Resonator: Murate Erie CSA8.00MG = 8 MHz

; _RC_OSC Resistor/capacitor oscillator

; |

; |_____ * indicates setup values

processor 16f84A

include <p16f84A.inc>

__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;==

; variables in PIC RAM

;==

; None used

;==

; m a i n p r o g r a m

;==

org 0 ; start at address 0

goto main

;=============================

; space for interrupt handler

;=============================

org 0x04

;=============================

; main program

;=============================

main:

; Initialize all line in Port-B for output

movlw B’00000000’ ; w = 00000000 binary

tris PORTB ; Set up Port-B for output

; Turn on line 0 in Port-B. All others remain off

movlw B’00000001’

; ———-|

; | |____ Line 0 ON

; |________ All others off

movwf PORTB

; Endless loop intentionally hangs up program

wait:

goto wait

end

The preceding program, named LEDOn, can be found in the book’s online software.

LED Flasher Program

A different program makes the LED in the circuit in Figure 10-3 flash on and off. All
that is necessary is a delay loop using a file register counter. The logic turns on the LED
and counts down to zero. Then it turns the LED off and counts down again.

196 Chapter 10

The counter routine demonstrates the creation of a procedure in PIC program-
ming. In fact, a procedure is nothing more than a routine called by a label at its entry
point and terminated with a return statement. The procedure is executed by a call

statement to its initial label, as follows:

call delay ; Call to procedure
.
.
.

; Elsewhere in the program
delay:

; procedure instructions go here
return ; End of procedure

The simplest delay loop consists of wasting processor time. Since each instruc-
tion takes four clock cycles, the delay can be calculated by multiplying the number
of instructions in the loop by the device’s clock speed divided by four. The details of
delay loops are discussed in Chapter 12, on timers and counters. Here we just pres-
ent a double-counter loop without entering into timing details.

The timer loop requires two counters, since the maximum value that can be
stored in a register file is 255 and a delay of 255 machine cycles is very short. In this
example, we get around this limitation by creating double counters: an inner loop
counts down 200 cycles and an outer loop repeats the inner loop 200 times. The re-
sult is that the routine repeats 200 multiplied by 200 times, or 40,000 iterations,
which is sufficient for the purpose at hand. Code is as follows:

delay:
movlw .200 ; w = 200 decimal
movwf j ; j = w

jloop:
movwf k ; k = w

kloop:
decfsz k,f ; k = k-1, skip next if zero
goto kloop
decfsz j,f ; j = j-1, skip next if zero
goto jloop
return

Code assumes that two variables were created in the processor’s GPR space, as
follows:

; Declare variables at 2 memory locations
j equ 0x0c
k equ 0x0d

The listing for the entire LEDFlash program, contained in the book’s online soft-
ware, is as follows:

Programming Essentials: Input and Output 197

; File: LEDFlash.asm
; Date: June 2, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Turn on and off LED wired to Port-B, line 0
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; |
; |_____ * indicates setup values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===
; Declare variables at 2 memory locations
j equ 0x0c
k equ 0x0d
;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;=============================
; space for interrupt handler
;=============================

org 0x04
;=============================
; main program
;=============================
main:

198 Chapter 10

; Initialize all line in Port-B for output

movlw B’00000000’ ; w = 00000000 binary

tris PORTB ; Set up Port-B for output

;

; Program loop to turn LED on and off

LEDonoff:

; Turn on line 0 in Port-B. All others remain off

movlw B’00000001’ ; LED ON

movwf PORTB

call delay ; Local delay routine

; Turn off line 0 in Port-B.

movlw B’00000000’ ; LED OFF

movwf PORTB

call delay

goto LEDonoff

;================================

; delay subroutine

;================================

delay:

movlw .200 ; w = 200 decimal

movwf j ; j = w

jloop:

movwf k ; k = w

kloop:

decfsz k,f ; k = k-1, skip next if zero

goto kloop

decfsz j,f ; j = j-1, skip next if zero

goto jloop

return

End

10.2.2 LED/Pushbutton Circuit
A slightly more complex circuit contains a pushbutton switch. In this case, the pro-
gram monitors the state of the pushbutton and lights the LED accordingly. Figure 10-4
(in the following page) shows one possible wiring for the LED/pushbutton circuit.

If a switch reports a zero bit when active, it is described as active-low. A switch
that reports a one-bit when pressed is said to be active-high. The pushbutton switch
on the preceding figure is active-low. In the same manner, an output device can be
wired so that it is turned on with a logic 0 and off with logic 1 on the port pin. A de-
vice turned on by the port current is said to be a source current device. When the de-
vice is turned on when the port reports logic 0 the line is said to sink the current.
PICs and other CMOS devices operate better sinking than sourcing current. Table
10.2 shows the maximum sink and source currents for the 16F84 ports.

Programming Essentials: Input and Output 199

Figure 10-4 LED/pushbutton Experimental Circuit

Table 10.2

Sink and Source Current for 16F84 Ports

SOURCE ANY I/O PIN PORT A PORT-B

sink current 25 mA 80 mA 150 mA
source current 20 mA 50 mA 100 mA

The 4.7K Ohm resistor in the circuit of Figure 10-4 keeps RA0 high until the
switch is pressed. This switch action determines that RA0 reads binary one when
the switch is released and binary zero (low) when the switch is pressed (active).

To test if the switch in the circuit of Figure 10-4 is closed, the application can read
RA0. If the value in the port is 1, then the switch is open (released). If 0, then the
switch is closed. The following program, named LEDandPb, exercises the circuit in
Figure 10-4:

; File: LEDandPb.asm

; Date: June 2, 2006

; Author: Julio Sanchez

; Processor: 16F84A

;

; Description:

; Circuit with LED wired to RB0 and pushbutton switch,

; active low, wired to RA0. Pushbutton action turns LED

; OFF when pressed and ON when released.

200 Chapter 10

16F84

4 MHz
Osc

10K Ohms

R=4.7K Ohm

R=330 Ohm

LED

+5 V

+5 V

+5 V

RA2 RA3 T0Tkl MCLR Vss RB0/INT RB1 RB2 RB3

1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

RA1 RA0 OSC1 OSC2 Vdd RB7 RB6 RB5 RB4

;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates setup values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===
; Not used in this program
;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;=============================
; space for interrupt handler
;=============================

org 0x04
;=============================
; main program
;=============================
main:
; Initialize all lines in Port-B for output

movlw B’00000000’ ; w = 00000000 binary
tris PORTB ; Set up Port-B for output

; Initialize Port-A, line 0, for input
movlw B’00000001’ ; w = 00000001 binary
tris PORTA ; Set up RA0 for input

; Program loop to test state of pushbutton switch
;==============================

Programming Essentials: Input and Output 201

; read PB switch state
;==============================
LEDctrl:
; Push button switch on demo board is wired to Port-A bit 0
; Switch logic is active low

btfss PORTA,0 ; Test. Skip next line if
; bit is set

goto turnOFF ; Turn LED off routine
; At this point Port-A bit 0 is not set
; Switch is pressed (active low action)
; Turn ON line 0 in Port-B

bsf PORTB,0 ; RB0 high
goto LEDctrl

turnOFF:
; Routine to turn OFF LED

bcf PORTB,0 ; RB0 low
goto LEDctrl

End

10.2.3 Multiple LED Circuit
The following circuit allows a few more programming complications since it contains
a battery of eight LEDs, all wired to Port-B.

Figure 10-5 Multiple LED Circuit

202 Chapter 10

16F84

R=10K

R=330x8 Ohm

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Osc

+5v

+5v

The circuit in Figure 10-5 can be programmed to do different functions. For exam-
ple, the eight LEDs can be visualized as representing an 8-bit binary number and the
circuit can be programmed to count in binary from 0 to 255. Since the eight LEDs are
all wired to Port-B, the binary count can be directly echoed on the port. The follow-
ing program, named LEDCount, performs this operation:

; File: LEDCount.asm
; Date: June 3, 2006
; Author: Julio Sanchez
; Processor: 16F84A
; Description:
; Circuit with eight LEDs wired to RB0 to RB7.
; Program displays a binary count from 0 to 255 on
; LEDs.
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; |
; |_____ * indicates setup values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===
; Declare variables at 2 memory locations
j equ 0x0c
k equ 0x0d
;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;=============================
; space for interrupt handler
;=============================

Programming Essentials: Input and Output 203

org 0x04
;=============================
; main program
;=============================
main:
; Initialize all lines in Port-B for output

movlw B’00000000’ ; w = 00000000 binary
tris PORTB ; Set up Port-B for output

; Set Port-B bit 0 ON
movlw B’00000000’ ; w := 0 binary
movwf PORTB ; Port-B itself := w

; Clear the carry bit
bcf STATUS,C

mloop:
incf PORTB,f ; Add 1 to register value
call delay
goto mloop

;================================
; delay sub-routine
;================================
delay:

movlw .200 ; w = 200 decimal
movwf j ; j = w

jloop:
movwf k ; k = w

kloop:
decfsz k,f ; k = k-1, skip next if zero
goto kloop
decfsz j,f ; j = j-1, skip next if zero
goto jloop
return

end

10.3 Programming the Seven-segment LED
A 7-segment display can be connected to output ports on the PIC and used to display
numbers and some digits. The circuit in Figure 10-6 shows one possible wiring
scheme.

As the name indicates, the seven-segment display has seven linear LEDs that al-
low forming all the decimal and hex digits and some symbols and letters. Once the
mapping of the individual bars of the display to the PIC ports has been established,
digits and letters are shown by selecting which port lines are set and which are not.
For example, in the seven-segment LED of Figure 10-5, the digit 2 is displayed by set-
ting segments a, b, g, e, and d. In this particular wiring, these segments correspond
to Port-B lines 0, 1, 6, 4, and 5.

204 Chapter 10

Figure 10-6 Seven-segment LED Circuit

As the name indicates, the seven-segment display has seven linear LEDs that al-
low forming all the decimal and hex digits and some symbols and letters. Once the
mapping of the individual bars of the display to the PIC ports has been established,
digits and letters are shown by selecting which port lines are set and which are not.
For example, in the seven-segment LED of Figure 10-6, the digit 2 is displayed by set-
ting segments a, b, g, e, and d. In this particular wiring, these segments correspond
to Port-B lines 0, 1, 6, 4, and 5.

Conversion of the individual digits to port display codes is easily accomplished
by means of a lookup table. The processing depends on three special features of PIC
assembly language:

• The program counter file register (labeled PC and located at offset 0x02) holds the ad-
dress in memory of the current instruction. Since each PIC instruction takes up a single
byte (except for those that modify the PC), one can jump to consecutive entries in a ta-
ble by adding an integer value to the program counter.

• The addwf instruction is used to add a value in the w register to the program counter.

• The retlw instruction returns to the caller a literal value stored in the w register. In the
case of retlw the literal value is the instruction operand.

If the lookup table is located at a subroutine called getcode, then the processing
can be implemented as follows:

Programming Essentials: Input and Output 205

16F84

Osc

a

PWR
ON

b

cd

e e

f

f

g

g

d

c

b

a

+5v

+5v

+5v

R
=

1
0

K

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

220 R

X 7

7-segment

LED

getcode:

addwf PC,f ; Add value in w register to program
counter

retlw 0x3f ; code for number 0

retlw 0x06 ; code for number 1

retlw 0x5b ; code for number 2

...

retlw 0x6f ; code for number 9

The calling routine places in the w register the numeric value whose code is de-
sired, and then calls the table lookup, as follows:

movlw 0x03 ; Code for number 3 desired

call getcode

movwf PORTB ; Display 3 in 7-segment display

10.4 A Demonstration Board
A demonstration board, also known as a demo board, is a useful tool in mastering PIC
programming. Many are available commercially; like programmers, there is a cottage
industry of PIC demo boards on the internet. Constructing your own demo boards and
circuits is not difficult. The components can be placed on a breadboard, or
wire-wrapped onto a special circuit board, or a printed circuit board can be home-
made, or ordered through the internet. These options have been previously discussed
and Appendix B contains instructions on how to build your own PCBs.

Figure 10-7 shows a simple 16F84A-based demo board with a seven-segment LED,
buzzer, pushbutton switch, and a bank of four toggle switches.

10.4.1 PCB Images for Demo Board

Some PCBs contain circuit etchings on both sides. In this case two circuit board im-
ages are required. In addition, most boards contain a top-side image of the compo-
nents, company logos, model numbers, and other information. Commercially, this
image is silk-screened onto the board.

The homemade board (see Appendix B) usually contains a single etched image
and a top-side image with informational text and graphics. Both images can be cre-
ated with a conventional drawing program, such as Corel Draw, Adobe Illustrator, or
Windows Paint, or with a specialized application, several of which are available free
and for purchase on the Web. Figure 10-7 shows the images used for making the PCB
for the circuit in Figure 10-8.

Note that the top-side (text) image has been mirrored on the horizontal plane.
This is necessary so that the text and graphics coincide with the circuit etchings
once the images are transferred to the board. The process for making your own
PCBs is described in Appendix B.

206 Chapter 10

Figure 10-7 PIC 16F87A Demo Board

Figure 10-8 Bottom- and Top-side images of a PCB.

Programming Essentials: Input and Output 207

1
6

F
8

4
A

Osc

a

PWR
ON

b

cd

e e

f

f

g

g

d

c

b

a

+5v

+5v

R
=

1
0

K

R
=

1
0

K

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

220 R

X 7

10k R

X 4
DIP SW

PB SW

Piezo

Buzzer

7-segment

LED

10.4.2 TestDemo1 Program
The following program exercises some of the experiments that can be implemented on
the demo boards in Figure 10-7:

; File: TestDemo1.asm
; Date: June 2, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to exercise the demonstration circuit and board
; number 1
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal oscillator
; * _XT_OSC External parallel resonator/crystal
; oscillator
; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; |
; |_____ * indicates setup values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===

cblock 0x0c ; Start of block
count1 ; Counter # 1
j ; counter J
k ; counter K
endc

;===
; P R O G R A M
;===

org 0 ; start at address 0
goto main

;

208 Chapter 10

; Space for interrupt handlers
org 0x08

main:
; Port A (5 lob) for input

movlw B’00011111’ ; w := 00001111 binary
tris PORTA ; Port-A (lines 0 to 4) to

input
; Port-Bit (8 lines) for output

movlw B’00000000’ ; w := 00000000 binary
tris PORTB ; Port-B to output

;==============================
; Pushbutton switch processing
;==============================
pbutton:
; Push button switch on demo board is wired to RA4
; Switch logic is active low

btfss PORTA,4 ; Test and skip if bit is set
goto buzzit ; Buz if switch ON

; At this point Port-A bit 4 is set (switch is off)
call buzoff ; Buzzer off
goto readdip ; Read DIP switches

buzzit:
call buzon ; Turn on buzzer
goto pbutton

;==============================
; DIP switch processing
;==============================
; Read all bits of Port-A
readdip:

movf PORTA,w ; Port A bits to w
; If board uses active low then all switch bits must be negated
; This is done by XORing with 1-bits

xorlw b’11111111’ ; Invert all bits in w
; Eliminate all 4 high order bits

andlw b’00001111’ ; And with mask
; Get digit into w

call segment ; get digit code
movwf PORTB ; Display digit
call delay ; Give time

; Update digit and loop counter
goto pbutton

;*******************************
; 7-segment table of hex codes
;*******************************
segment:

addwf PCL,f ; PCL is program counter latch
retlw 0x3f ; 0 code

Programming Essentials: Input and Output 209

retlw 0x06 ; 1
retlw 0x5b ; 2
retlw 0x4f ; 3
retlw 0x66 ; 4
retlw 0x6d ; 5
retlw 0x7d ; 6
retlw 0x07 ; 7
retlw 0x7f ; 8
retlw 0x6f ; 9
retlw 0x77 ; A
retlw 0x7c ; B
retlw 0x39 ; C
retlw 0x5b ; D
retlw 0x79 ; E
retlw 0x71 ; F
retlw 0x7f ; Just in case all on

;****************************
; piezo buzzer ON
;****************************
; Routine to turn on piezo buzzer on Port-B bit 7
buzon:

bsf PORTB,7 ; Tune on bit 7, Port-B
return

;****************************
; piezo buzzer OFF
;****************************
; Routine to turn off piezo buzzer on Port-B bit 7
buzoff:

bcf PORTB,7 ; Bit 7 Port-B clear
return

;================================
; delay subroutine
;================================
delay:

movlw .200 ; w = 200 decimal
movwf j ; j = w

jloop:
movwf k ; k = w

kloop:
decfsz k,f ; k = k-1, skip next if zero
goto kloop
decfsz j,f ; j = j-1, skip next if zero
goto jloop
return
end

210 Chapter 10

Chapter 11

Interrupts

An interrupt is an asynchronous signal calling for processor attention. Interrupts can orig-
inate in hardware or in software. The interrupt mechanism is a way to avoid wasting pro-
cessor time, since without interrupts code has to poll hardware devices in ineffective,
closed loops. With interrupts, the processor can continue to do its work since the inter-
rupt mechanism ensures that the CPU receives a signal whenever an event occurs that re-
quires its attention. PIC microcontrollers provide varying levels of support for interrupts.
We focus on interrupts on the 16F84.

11.0 Interrupts on the 16F84
Four different sources of interrupts are available in the 16F84. These are discussed in
Section 11.1. One instruction (RETFIE for return-from-interrupt) is specifically related
to interrupt processing. Its purpose is to return to the program counter the address of the
instruction that follows the location in code where the interrupt took place. It does so by
loading into the program counter register the 13-bit address saved at the top of the stack.
In addition, RETFIE sets the Global Interrupt Enable bit in the INTCON register (dis-
cussed in Section 11.0.1) automatically re-enabling interrupts.

In addition to the RETFIE instruction, two PIC hardware elements relate directly to
interrupts: the OPTION register and the INTCON register. Both registers are readable
and writeable and contain bits that allow setting up, controlling, and detecting the vari-
ous interrupts. INTCON records individual interrupt requests in flag bits. It also con-
tains the individual and global interrupt enable bits. The OPTION register has several
bits that must be accessed in order to initialize interrupts.

11.0.1 The Interrupt Control Register
INTCON (the Interrupt Control Register) is a readable and writeable register located at
offset 0x08 in bank 0. The INTCON register contains two classes of bits: bits to enable and
disable the various interrupt sources, and flag bits that allow detecting the occurrence of
the various interrupts. The bits to enable and disable interrupts have names that end with
the letter E, while the interrupt flag bit names end with the letter F. They are known col-
lectively as the INTCON E and INTCON F bits. Figure 11-1 is a bitmap of the INTCON
Register.

211

Figure 11-1 INTCON Register Bitmap

11.0.2 The OPTION Register

The OPTION Register is a readable and writeable register that contains controls for
configuring the prescaler bits and assigning them to either TIMER0 or the Watchdog
Timer, for selecting the increment mode on the RA4/TOCKI pin, the TIMER0 source
clock, the rising or falling edge in the RB0 interrupt, and for enabling and disabling the
internal Port-B’s pull-up resistors. The OPTION register is located in Bank1, at address
0x81. Although this register is not directly related to interrupts, several of its bits are
related to the various interrupts. Figure 11-2 is a bitmap of the OPTION register.

212 Chapter 11

GIE

bit 0bit 7

EEIE TOIE INTE RBIE TOIF INTF RBIF

bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

bit 6 EEIE: EE Write Complete Interrupt Enable bit

1 = Enables the EE Write Complete interrupts

0 = Disables the EE Write Complete interrupt

bit 5 T0IE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt

bit 4 INTE: RB0 Interrupt Enable bit

1 = Enables the RB0 external interrupt

0 = Disables the RB0 external interrupt

bit 3 RBIE: Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt

0 = Disables the RB port change interrupt

bit 2 T0IF: TIMER0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed

0 = TMR0 register did not overflow

bit 1 INTF: RB0 External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred

0 = The RB0/INT external interrupt did not

occur

bit 0 RBIF: RB0-RB3 Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed

state

0 = None of the RB7:RB4 pins have changed

state

Figure 11-2 OPTION Register Bitmap

11.1 Interrupt Sources

The 16F8X supports four different sources of interrupt:

1. External interrupt detected by line 0 of Port-B

2. Interrupts that originate in the timer (TMR0 overflow interrupt)

3. Interrupts that originate in changes of lines RB7 to RB4 in Port-B

4. EEPROM complete data write interrupt

Interrupts 213

RBPU

bit 0

Prescaler bits

bit 7

INTEDG TOCS TOSE RBIE PS2 PS1 PS0

bit 7 RBPU: Port B Pull-up Enable bit

1 = Port B pull-ups are disabled

0 = Port B pull-ups are enabled by individual

port latch values

bit 6 INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RB0

0 = Interrupt on falling edge of RB0

bit 5 T0CS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI pin

0 = Internal instruction cycle clock (CLKOUT)

bit 4 T0SE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on

RA4/T0CKI pin

0 = Increment on low-to-high transition on

RA4/T0CKI pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the Watchdog Timer

0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS2:PS0: Prescaler Rate Select bits

Value Timer0 Rate WDT Rate

000 1:2 1:1

001 1:4 1:2

010 1:8 1:4

011 1:16 1:8

100 1:32 1:16

101 1:64 1:32

110 1:128 1:64

111 1:256 1:128

11.1.1 Port-B External Interrupt

This external interrupt is triggered by either the rising or falling signal edge on port-B,
line 0. Whether it is the rising or the falling edge of the signal depends on the setting of
the INTEDG bit of the OPTION register.

The Port-B interrupt is useful in detecting and responding to external events; for
example, in measuring the frequency of a signal or in responding with some PIC ac-
tion to a change in the state of a hardware device. This interrupt can be disabled by
clearing the corresponding bit in the INTCON register. If enabled, once the interrupt
takes place, code must clear the corresponding flag bit before re-enabling the inter-
rupt.

Suppose there is a circuit that contains an emergency switch that is activated by
some critical event. One possible approach is to check the state of the switch by
continuously polling the port to which it is wired. But in a complex program it may
be difficult to ensure that the switch polling routine is called with sufficient fre-
quency so that an emergency event is detected immediately. A more effective solu-
tion is to connect the emergency switch to line number 0 of Port-B and set up the
Port-B external interrupt source. Now, whenever the emergency switch is activated,
the program immediately responds via the interrupt mechanism. Furthermore, once
the interrupt code has been developed and debugged it continues to function cor-
rectly no matter what changes are made to the rest of the program.

11.1.2 Timer0 Interrupt

The 16F84 is equipped with a special timer module, named Timer0, which serves both
as a timer and as a counter. The Timer0 module, which is discussed in greater detail in
Chapter 12, consists of an 8-bit readable register operated by an internal or external
clock and attached to an 8-bit programmable prescaler. The prescaler is used to delay
the timer by dividing the previous clock signal. The timer0 module can be set up to in-
terrupt on overflow. In this case, an interrupt is generated whenever the counter goes
from 0xff to 0x00.

The Timer0 counter interrupt can be used to measure events and to respond to
elapsed periods. For example, the timer is used to measure events by determining
the number of timer interrupts that have taken place since an event occurred. The
timer of each interrupt is determined from the processor clock speed and the
prescaler set up. The event time is calculated by multiplying the time of each inter-
rupt by the number of interrupts that have occurred. In this case, the interrupt rou-
tine increments a counter register that is accessible to code anywhere in the
program; so the actual count can be reset from inside or outside the service routine.

In responding to an elapsed period, the Timer0 interrupt service routine not only
keeps track of the time elapsed since the event, but also tests for a certain counter
value that represents the desired time limit. Once the timer counter reaches this
pre-set limit, the service routine responds directly with the required action.

214 Chapter 11

One powerful and common application of a Timer0 interrupt is in implementing
serial communications. In this case, the timer interrupt is set up to take place at the
baud rate at which the serial line is polled for data or at which individual data bits
are sent. The sample program LapseTmrInt, developed in Chapter 12, demonstrates
this use of the timer interrupt.

11.1.3 Port-B Line Change Interrupt

The third 16F84 interrupt source relates to a change in the values stored in Port-B lines
4 to 7. When this interrupt is enabled, any change in status in any of the four Port-B pins
labeled RB7, RB6, RB5, and RB4 can trigger an interrupt. The interrupt is set up to take
place when their status changes from logic one to logic zero, or vice versa. For this in-
terrupt to take place, Port-B pins 4 to 7 must be defined as input. Otherwise, the inter-
rupt does not take place.

The Port-B line-change interrupt provides a mechanism for monitoring up to four
different interrupt sources, typically originating in hardware devices. When the in-
terrupt is enabled, the current state of the Port-B lines is constantly compared to the
old values. If there is a change in state in any of the four lines the interrupt is gener-
ated.

Implementation of the line change interrupt is not without complications. The
characteristics of the external signal are necessary to develop code that correctly
handles the various possible sources. Two pieces of information that are necessary
in this case are:

1. The signal’s rising and falling edges

2. The pulse width of the interrupt trigger

The signal’s rising and falling edges determine the service routine’s entry point.
For example, if the device is an active-low pushbutton switch, an interrupt typically
is desired on the signal’s falling edge, that is, when it goes from high-to-low.

Knowledge about the signal’s width determines the processing required by the
service routine. This is due to the fact that both the rising and the falling edge of the
signal can trigger the interrupt. So, if the triggering signal has a small pulse width
compared to the time of execution of the interrupt handler, then the interrupt line
has returned to the inactive state before the service routine completes and a possi-
ble false interrupt on the signal’s falling edge is not possible. On the other hand, if
the pulse width of the interrupt signal is large and the service routine completes be-
fore the signal returns to the inactive state, then the signal’s falling edge can trigger
a false interrupt. Figure 11-3 (in the following page) shows both situations.

In the context of Figure 11-3, the period between the edge that triggers the inter-
rupt and the termination of the interrupt handler is called the mismatch period. The
mismatch period terminates when the service routine completes and the corre-
sponding interrupt is re-enabled. If this happens after the interrupt signal is reset,
no possible false interrupt takes place and no special provision is required in the
handler. In fact, the interrupt handler runs correctly as long as the service routine
takes longer to execute than the interrupt frequency. However, if the handler termi-

Interrupts 215

nates before the signal returns to its original state, then the handler must make spe-
cial provisions to handle a possible false interrupt. In order to do this, the handler
must first determine if the interrupt took place on the rising or the falling signal
edge, which can be done by examining the corresponding port-B line. For example,
if the interrupt is to take place on the rising edge only, and the line is low, then it can
be ignored since it takes place on the falling edge.

Figure 11-3 Signal Pulse Width and Interrupt Latency

When an interrupt can take place on either the rising or the falling edge of the
triggering signal, the interrupt source must have a minimum pulse width in order to
ensure that both edges are detected. In this case, the minimum pulse width is the
maximum time from the edge that triggered the interrupt to the moment when the
interrupt flag is cleared. Otherwise, the interrupt is lost since the interrupt mecha-
nism is disabled at the time it takes place.

The preceding discussion leads directly to the possibility of an interrupt taking
place while the service routine of a previous interrupt is still in progress. These are
called reentrant or nested interrupts. Several things must happen to allow
reentrant interrupts. One of them is that interrupts must be re-enabled before the
handler terminates. In addition, the service routine must be able to create different
instances of the variables in use, usually allocated in the stack. The lack of a pro-
gram-accessible stack and the PIC interrupt mechanism itself forces the conclusion
that reentrant interrupts should not be attempted in PIC programs.

216 Chapter 11

Signal

Signal

CASE 1: relatively small pulse width

CASE 2: relatively large pulse width

Raising edge
triggers interrupt

Raising edge
triggers interrupt

Interrupt handler
progress

Interrupt handler
in progress

Service routine complete
Interrupt flag clear
No possible false interrupt

Service routine complete
Interrupt flag cleared

Falling edge can trigger
false interrupt

Multiple External Interrupts
One of the practical applications of the port-B line-change interrupt is in handling sev-
eral different interrupt sources; for example, a circuit containing four push-button
switches that activate four different circuit responses. If the switches are wired to the
corresponding pins in Port-B (RB4 to RB7) and the line-change interrupt is enabled,
the interrupt takes place when any one of the four switches changes level, that is,
when any one of the interrupt lines go from high to low or from low to high. The inter-
rupt handler software can easily determine which of the switches changed state and if
the change took place on the signal’s rising or falling edge. The corresponding soft-
ware routines then handle each case.

Later in this chapter we develop a sample program that uses the Port-B
line-change interrupt to respond to action on four pushbutton switches.

11.1.4 EEPROM Data Write Interrupt
The origin of this interrupt relates to the relative slowness of the EEPROM data write
operation, which is of 10 ms. The interrupt serves no other function than to allow the
microcontroller to continue execution while the data write operation is in progress.
The interrupt service routine informs the microcontroller when writing has ended
through the EEIF bit located in the EECON1 register. The use of this interrupt is con-
sidered in Chapter 15, in the context of EEPROM data memory access and program-
ming.

11.2 Interrupt Handlers
The interrupt handler, also called the interrupt service routine or the ISR, is the code
that receives control upon occurrence of the interrupt. Most of the programming that
goes into the service routine is specific to the application; however, there are certain
housekeeping operations that should be included. The following list describes the
structure of an interrupt service routine for the mid-range PICs:

1. Preserve the value in the w register.

2. Preserve the value of the STATUS register.

3. Execute the application-specific operations.

4. Restore the value of the STATUS register at the time of the interrupt.

5. Restore the value of the w register at the time of the interrupt.

6. Issue the RETFIE instruction to end the interrupt handler.

In the PIC 16F84, the interrupt service routine must be located at offset 0x004 in
code memory. A simple org directive takes care of ensuring this location, as in the
following code fragment:

org 0x000 ; Beginning of code area
goto start ; Jump to program start
org 0x004 ; Start of Service routine
.
. ; SERVICE ROUTINE GOES HERE
.

Interrupts 217

retfie ; End of ISR

start: ; Program starts here

Alternatively, code can place a jump at offset 0x004 and locate the Service Rou-
tine elsewhere in the code. In this case, it is important to remember not to call the
Service Routine, but to access it with a goto instruction. The reason is that the call

opcode places a return address in the stack, which then polls for the retfie instruc-
tion.

11.2.1 Context Saving Operations
The only value automatically preserved by the interrupt mechanism is PC (the Pro-
gram Counter), which is stored in the stack. Applications often need to restore the pro-
cessor to the same state as when the interrupt took place, so the first operation of most
interrupt handlers is saving the processor’s context. This usually includes the w and
the STATUS registers and occasionally others used by the specific implementation.

Saving w and STATUS Registers
Saving the w and the STATUS registers requires using register variables, but the pro-
cess requires special care. Saving the w register is simple enough: its value at the start
of the Service Routine is stored in a local variable from which it is restored at termina-
tion. But saving the STATUS register cannot be done with the MOVF instruction, since
this instruction changes the zero flag. The solution is to use the SWAPF instruction
which does not affect any of the flags. Of course, SWAPF inverts the nibbles in the op-
erand, so it must be repeated so as to restore the original state. The following code
fragment assumes that file register variables named old_w and old_status were previ-
ously created.

save_cntx:
movwf old_w ; Save w register
swapf STATUS,w ; STATUS to w
movwf old_status ; Save STATUS

;
; Interrupt handler operations go here
;

swapf old_status,w ; Saved status to w
movfw STATUS ; To STATUS register

; At this point all operations that change the
; STATUS register must be avoided, but swapf does not.

swapf old_w,f ; Swap file register in itself
swapf old_w,w ; reswap back to w
retfie

11.3 Interrupt Programming
In the sections that follow, we discuss programming interrupts that originate in
Port-B, line 0, and those that originate in changes of port-B lines RB4 to RB7. Inter-
rupts that relate to the Timer0 overflow or to EEPROM data write operations are cov-

218 Chapter 11

ered in the chapter on Serial Communications and the one on EEPROM Data
Operations, respectively.

11.3.1 Programming the External Interrupt
Port-B, line 0, is referred to as the External Interrupt source. The name is not the most
adequate since other interrupts can also have external sources. One of the important
uses of this interrupt source is to wake the processor from the SLEEP mode. This al-
lows developing applications that can run on a small power source (such as batteries)
since the program uses almost no power until some action associated with the inter-
rupt source wakes up the PIC. A sample program using the RB0 interrupt is developed
later in this chapter. Our first sample program is a simple demonstration of the instal-
lation and action of the interrupt. The program is based on the circuit in Figure 11-4.

Figure 11-4 Circuit for RB0 Interrupt Demonstration

In the circuit of Figure 11-4, a pushbutton switch is wired to the RB0 port. It is
this switch which produces the interrupt when pressed. A red LED is wired to port
RB1 and a green LED to port RB2. The main program flashes the green LED on and
off at a rate of approximately one-half second. The red LED is toggled on and off
when the pushbutton switch is pressed. The switch contains a 4.7K Ohm resistor
that keeps the port high until the contact is made and sent to ground. This makes the

Interrupts 219

16F84

4 MHz
Osc

10K Ohms

4.7K Ohms

2x470 Ohms

green red

+5 V

+5 V

+5 V

RA2 RA3 T0Tkl MCLR Vss RB0/INT RB1 RB2 RB3

1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

RA1 RA0 OSC1 OSC2 Vdd RB7 RB6 RB5 RB4

switch active low and the interrupt is programmed on the falling edge of the signal,
which takes place when the contact is made.

RB0 Interrupt Initialization
In order to initialize the RB0 interrupt, the following operations must take place:

1. Port-B, line 0, must be initialized for input.

2. The interrupt source must be set to take place either on the falling or the rising edge of
the signal.

3. The external interrupt flag (INTF in the INTCON Register) must be initially cleared.

4. Global interrupts must be enabled by setting the GIE bit in the INTCON Register.

5. The External Interrupt on RB0 must be enabled by setting the INTE bit in the INTCON
Register.

The following code fragment, from the program RB0Int in the book’s online soft-
ware package, performs these operations:

;=============================
; interrupt handler
;=============================

org 0x04
goto IntServ

;=============================
; main program
;=============================
main:
; Set up interrupt on falling edge
; by clearing OPTION register bit 6

movlw b’10111111’
option
movlw b’11111111’ ; Set Port-A for input
tris porta ; (not necessary for this program)
movlw b’00000001’ ; Port-B bit 0 is input
tris portb ; all others are output
clrf portb ; All Port-B to 0

; Initially turn on LED
bsf portb,0 ; Set line 0 bit

;============================
; setup interrupts
;============================
; Clear external interrupt flag (intf = bit 1)

bcf INTCON,intf ; Clear flag
; Enable global interrupts (gie = bit 7)
; Enable RB0 interrupt (inte = bit 4)

bsf INTCON,gie ; Enable global int (bit 7)
bsf INTCON,inte ; Enable RB0 int (bit 4)

;============================
; flash LED

220 Chapter 11

;============================
; Program flashes LED wired to Port-B, line 2
lights:

movlw b’00000010’ ; Mask with bit 1 set
xorwf portb,f ; Complement bit 1
call long_delay ; Local delay routine
call long_delay
call long_delay
goto lights

RB0 Interrupt Service Routine
The Service Routine for the RB0 interrupt depends on the specific application. Never-
theless, the following processing steps should be considered:

1. Determine if the source is an RB0 interrupt.

2. Clear the RB0 interrupt flag (INTF bit) in the INTCON Register.

3. Save the context. Which registers and variables need to be saved depends on the spe-
cific application.

4. Perform the interrupt action.

5. Restore the context.

6. Return from the interrupt with the retfie instruction.

In addition, the interrupt handler may have to perform operations that are spe-
cific to the application. For example, debounce a switch or initialize local variables.
The following Interrupt Service routine is from the program RB0Int in the book’s on-
line software:

;===
; Interrupt Service Routine
;===
; Service routine receives control when there is
; action on pushbutton switch wired to port-B, line 0
IntServ:
; First test if source is an RB0 interrupt

btfss INTCON,INTF ; INTF flag is RB0 interrupt
goto notRB0 ; Go if not RB0 origin

; Save context
movwf old_w ; Save w register
swapf STATUS,w ; STATUS to w
movwf old_status ; Save STATUS

;=========================
; interrupt action
;=========================
; Debounce switch
; Logic:
; Debounce algorithm consists in waiting until the
; same level is repeated on a number of samplings of the

Interrupts 221

; switch. At this point the RB0 line is clear since the

; interrupt takes place on the falling edge. The routine

; waits until the low value is read several times.

movlw D’10’ ; Number of repetitions

movwf count2 ; To counter

wait:

; Check to see that port-B bit 0 is still 0

; If not, wait until it changes

btfsc portb,0 ; Is bit set?

goto exitISR ; Go if bit not 0

; At this point RB0 bit is clear

decfsz count2,f ; Count this iteration

goto wait ; Continue if not zero

; Interrupt action consists of toggling bit 2 of

; port-B to turn LED on and off

movlw b’00000100’; Xoring with a 1-bit produces

; the complement

xorwf portb,f ; Complement bit 2, port-B

;=========================

; exit ISR

;=========================

exitISR:

; Restore context

swapf old_status,w ; Saved status to w

movfw STATUS ; To STATUS register

swapf old_w,f ; Swap file register in itself

swapf old_w,w ; re-swap back to w

notRB0:

; Reset interrupt

bcf INTCON,intf ; Clear INTCON bit 1

retfie

Note that the interrupt handler listed previously contains a debouncing routine
that cleans the switch’s signal. In this particular implementation the detection of a
signal of the wrong value determines that the interrupt is aborted. For the particular
switch used in the test circuit this approach seemed to work better. Alternatively,
the routine can be designed so that if a wrong edge is detected, execution continues
in the wait loop. In any case, the entire complication of software debouncing can be
avoided by debouncing the switch in hardware.

11.3.2 Wakeup from SLEEP Using the RB0 Interrupt
The PIC microcontroller sleep mode provides a useful mechanism for saving

power. It is particularly useful in battery-operated devices.

The sleep mode is activated by executing the SLEEP instruction; it suspends all
normal operations and switches of the clock oscillator.

222 Chapter 11

The sleep mode is suitable for applications that are not required to run continu-
ously. For example, a device that records temperature at daybreak can be designed
so that a light-sensitive switch generates an interrupt that turns the device on each
morning. Once the data is recorded, the device goes into the sleep mode until the
next daybreak.

Several events can make the device wake up from the sleep mode:

1. A device reset on the !MCLR pin

2. Watchdog timer wake-up signal, if WDT is enabled

3. Interrupt on RB0 line

4. Port change interrupt on RB4 to RB7 lines

5. EEPROM write complete interrupt

In the sleep mode, the device is placed on a power-down state that generates the
lowest power consumption. The system clock is turned off in the sleep mode so sig-
nals that depend on the clock cannot be used to terminate the sleep. If enabled, the
Watchdog Timer is cleared by the sleep instruction but keeps running. The PD bit in
the STATUS register is also cleared and the TO bit is set. The ports maintain the sta-
tus they had before the SLEEP instruction was executed.

The TO and PD bits in the STATUS register can be used to determine the cause of
wake-up, since the TO bit is cleared if a Watchdog Timer wake-up took place. The
corresponding interrupt enable bit must be set for the device to wake-up up due to
an interrupt. Wake-up takes place regardless of the state of the General Interrupt

Enable (GIE) bit. If the bit is clear, the device continues execution at the instruction
following SLEEP. Otherwise, the device executes the instruction after the SLEEP

instruction and then branches to the interrupt address. If the execution of the in-
struction following SLEEP is undesirable, the program should contain a NOP in-
struction after the SLEEP instruction.

The SleepDemo Program

The program named SleepDemo in the book’s online software package is a trivial dem-
onstration of using the RB0 interrupt to wake the processor from sleep mode. The pro-
gram can be tested using the circuit in Figure 11-4. SleepDemo flashes the green LED
at ½ second intervals during 20 iterations and then goes into sleep mode. Pressing the
pushbutton switch on line RB0 generates an interrupt that wakes the processor from
sleep mode. The following code fragment shows the coding of the main loop in the pro-
gram:

;============================

; flash LED 20 times

;============================

wakeUp:

; Program flashes LED wired to port-B, line 2

; 20 times before entering the sleep state

movlw D’20’ ; Number of iterations

movwf count2 ; To counter

Interrupts 223

lights:

movlw b’00000010’; Mask with bit 1 set

xorwf portb,f ; Complement bit 1

call long_delay

call long_delay

call long_delay

decfsz count2 ; Decrement counter

goto lights

; 20 iterations have taken place

clrwdt ; Clear WDT

sleep

nop ; Recommended!

goto wakeUp ; Resume execution

In the SleepDemo program the Interrupt Service Routine does nothing. Its coding
is as follows:

;===

; Interrupt Service Routine

;===

; The interrupt service routine performs no operation

IntServ:

bcf INTCON,INTF ; Clear flag

retfie

The initialization of the RB0 interrupt is identical to the one in the RB0Int pro-
gram previously listed.

11.3.3 Port-B Bits 4-7 Status Change Interrupt

In the PIC 16F84 microcontroller, a change of input signal on Port-B, lines 4 to 7, gener-
ates an interrupt. This interrupt sets the RBIF bit in the INTCON Register to indicate
that at least one of the ports have changed value. The port change takes place when the
port’s previous value changes from logic one to logic zero or vice versa. In order for
port pins to recognize this interrupt, they must have been defined as input. If any one
of the port pins (4 to 7) is defined as output the interrupt takes place. The status
change of the ports is in reference to the last time port-B was read.

The principal application of this interrupt source is in detecting several different
interrupt sources. Its principal disadvantage is that it forces the declaration of four
port-B lines as input, although during processing not all lines need be recognized as
interrupt sources. The conclusion is that applications that only need a single exter-
nal interrupt source should use the RB0 interrupt described in previous sections.
Only applications that require more than one external interrupt should use the
Port-B lines 4 to 7 interrupt on change source.

224 Chapter 11

Since the interrupt takes place on any status change (high-to-low or low-to-high)
the service routine executes on both signal edges. If interrupt processing is required
on only one edge, that is, either when the port goes high or low, then the filtering
must be performed in software. The circuit in Figure 11-5 allows testing the Port-B
Status Change Interrupt.

Figure 11-5 Circuit for Testing the Port-B Status Change Interrupt

In the circuit of Figure 11-5, a pushbutton switch is wired to the RB7 port and an-
other one to RB4. Both of these switches produce the interrupt when pressed. A red
LED is wired to port RA1 and a green LED to port RA0. The red and green LEDs are
toggled on and off when the corresponding pushbutton switches are pressed. The
switches contain a 4.7K Ohm resistor that keeps the port high until the contact is
made and sent to ground. This makes both switches active low and the interrupt is
programmed on the falling edge of the signal.

RB4-7 Interrupt Initialization

In order to initialize the RB4-7 change interrupt the following operations must take
place:

1. Port-B lines 4 to 7 must be initialized for input.

2. The interrupt source must be set to take place either on the falling or the rising edge of
the signal.

Interrupts 225

16F84

4 MHz
Osc

10K Ohm

4.7K Ohm 4.7K Ohm

2x470 Ohm

greenred

+5 V

+5 V +5 V

+5 V

RA2 RA3 T0Tkl MCLR Vss RB0/INT RB1 RB2 RB3

1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

RA1 RA0 OSC1 OSC2 Vdd RB7 RB6 RB5 RB4

3. The RB port change interrupt flag (RBIF in the INTCON Register) must be initially
cleared.

4. Global interrupts must be enabled by setting the GIE bit in the INTCON Register.

5. The RB port change interrupt must be enabled by setting the RBIE bit in the INTCON
Register.

6. Internal pull-ups on port-B should be disabled in the OPTION register.

The following code fragment from the program RB4to7Int in the book’s online
software package shows the required processing:

;=============================
; main program
;=============================
main:
; Disable port-B internal pull-ups
; Interrupts on falling edge of pushbutton action

Movlw b’10111111’
option

; Wiring:
; 7 6 5 4 3 2 1 0 <= port-B
; | |_______________ red pushbutton
; |________________________ black pushbutton
;
; 7 6 5 4 3 2 1 0 <= Port-A
; | |_____ red LED
; |________ green LED
;

movlw b’00000000’ ; Set Port-A for ouput
tris porta
movlw b’11110000’ ; Port-B bit 0-3 are output

; bits 4-7 are input
tris portb ; all others are output
clrf portb ; All port-B to 0
movlw b’00000000’ ; Zero to w
movwf bitsB47 ; Store in local variable

; Initially turn on LEDs
bsf porta,0 ; Set LEDs on line 0
bsf porta,1 ; and on line 1

;============================
; setup interrupts
;============================
; Clear external interrupt flag (intf = bit 1)

bcf INTCON,rbif ; Clear flag
; Enable global interrupts (gie = bit 7)
; Enable RB0 interrupt (inte = bit 4)

bsf INTCON,gie ; Enable global int (bit 7)
bsf INTCON,rbie ; Enable RB0 int (bit 3)

226 Chapter 11

RB4-7 Change Interrupt Service Routine
The Service Routine for the RB4-7 change interrupt depends on the specific applica-
tion. Nevertheless, the following processing steps should be considered:

1. Determine if the source is an RB4-7 change interrupt.

2. Clear the RBIF interrupt flag in the INTCON Register.

3. Save the context. Which registers and variables need to be saved depends on the spe-
cific application.

4. Perform the interrupt action.

5. Restore the context.

6. Return from the interrupt with the retfie instruction.

In addition, the interrupt handler may have to perform operations that are spe-
cific to the application; for example, debounce a switch or initialize local variables.
The following Interrupt Service routine is from the program RB4to7Int in the book’s
online software:

;===
; Interrupt Service Routine
;===
; Service routine receives control whenever any of
; port-B lines 4 to 7 change state
IntServ:
; First test: make sure source is an RB4-7 interrupt

btfss INTCON,rbif ; RBIF flag is interrupt
goto notRBIF ; Go if not RBIF origin

; Save context
movwf old_w ; Save w register
swapf STATUS,w ; STATUS to w
movwf old_status ; Save STATUS

;=========================
; interrupt action
;=========================
; The interrupt occurs when any of port-B bits 4 to 7
; have changed status.

movf portb,w ; Read port-B bits
movwf temp ; Save reading
xorwf bitsB47,f ; Xor with old bits,

; result in f
; Test each meaningful bit (4 and 7 in this example)

btfsc bitsB47,4 ; Test bit 4
goto bit4Chng ; Routine for changed bit 4

; At this point bit 4 did not change
btfsc bitsB47,7 ; Test bit 7
goto bit7Chng ; Routine for changed bit 7

; Invalid port line change. Exit
goto pbRelease

Interrupts 227

;========================
; bit 4 change routine
;========================
; Check for signal falling edge, ignore if not
bit4Chng:

btfsc portb,4 ; Is bit 4 high
goto pbRelease ; Bit is high. Ignore

; Toggling bit 1 of Port-A turns LED on and off
movlw b’00000010’ ; Xoring with a 1-bit produces

; the complement
xorwf porta,f ; Complement bit 1, Port-A
goto pbRelease

;========================
; bit 7 change routine
;========================
; Check for signal falling edge, ignore if not
bit7Chng:

btfsc portb,7 ; Is bit 7 high
goto exitISR ; Bit is high. Ignore

; Toggling bit 0 of Port-A turns LED on and off
movlw b’00000001’ ; Xoring with a 1-bit produces

; the complement
xorwf porta,f ; Complement bit 1, Port-A

;
pbRelease:

call delay ; Debounce switch
movf portb,w ; Read port-B into w
andlw b’10010000’ ; Eliminate unused bits
btfsc STATUS,z ; Check for zero
goto pbRelease ; Wait

; At this point all port-B pushbuttons are released
;=========================
; exit ISR
;=========================
exitISR:
; Store new value of port-B

movf temp,w ; This port-B value to w
movwf bitsB47 ; Store

; Restore context
swapf old_status,w ; Saved status to w
movfw STATUS ; To STATUS register
swapf old_w,f ; Swap file register in itself
swapf old_w,w ; re-swap back to w

; Reset,interrupt
notRBIF:

bcf INTCON,rbif ; Clear INTCON bit 0
retfie

228 Chapter 11

Processing by the interrupt service routine is straightforward. The code first de-
termines which line caused the interrupt and takes the corresponding action in each
case. In either case, the handler waits until all pushbuttons have been released be-
fore returning from the interrupt. This serves to debounce the switches.

11.4 Sample Programs
The following programs demonstrate the programming discussed in this chapter.

11.4.1 The RB0Int Program
; File: RB0Int.ASM
; Date: April 22, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to test interrupt on port RB0
; A pushbutton switch is connected to port RB0.
; The pushbutton toggles a LED on port-B, line 2
; Another LED on port-B, line 1, flashes on and off
; at 1/2 second intervals
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates setup values

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===

Interrupts 229

; variables in PIC RAM
;===
; Local variables

cblock 0x0d ; Start of block
J ; counter J
K ; counter K
count1 ; Auxiliary counter
count2 ; ISR counter
old_w ; Context saving
old_STATUS ; Idem
endc

;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x04
goto IntServ

;=============================
; main program
;=============================
main:
; Set up interrupt on falling edge
; by clearing OPTION register bit 6

movlw b’10111111’
option
movlw b’11111111’ ; Set port a for input
tris PORTA
movlw b’00000001’ ; Port-B bit 0 is input
tris PORTB ; all others are output
clrf PORTB ; All port-B to 0

; Initially turn on LED
bsf PORTB,0 ; Set line 0 bit

;============================
; setup interrupts
;============================
; Clear external interrupt flag (INTF = bit 1)

bcf INTCON,INTF ; Clear flag
; Enable global interrupts (GIE = bit 7)
; Enable RB0 interrupt (INTE = bit 4)

bsf INTCON,GIE ; Enable global int (bit 7)
bsf INTCON,INTE ; Enable RB0 int (bit 4)

;============================

230 Chapter 11

; flash LED
;============================
; Program flashes LED wired to Port-B, line 2
lights:

movlw b’00000010’ ; Mask with bit 1 set
xorwf PORTB,f ; Complement bit 1
call long_delay
call long_delay
call long_delay
goto lights

;===
; Interrupt Service Routine
;===
; Service routine receives control when there is
; action on pushbutton switch wired to Port-B, line 0
IntServ:
; First test if source is an RB0 interrupt

btfss INTCON,INTF ; INTF flag is RB0 interrupt
goto notRB0 ; Go if not RB0 origin

; Save context
movwf old_w ; Save w register
swapf STATUS,w ; STATUS to w
movwf old_STATUS ; Save STATUS

; Make sure that interrupt occurred on the falling edge
; of the signal. If not, abort handler

btfsc PORTB,0 ; Is bit set?
goto exitISR ; Go if clear

;=========================
; interrupt action
;=========================
; Debounce switch
; Logic:
; Debounce algorithm consists in waiting until the
; same level is repeated on a number of samplings of the
; switch. At this point the RB0 line is clear since the
; interrupt takes place on the falling edge. An initial
; short delay makes sure that spikes are ignored.

movlw D’10’ ; Number of repetitions
movwf count2 ; To counter

wait:
; Check to see that port-B bit 0 is still 0
; If not, wait until it changes

btfsc PORTB,0 ; Is bit set?
goto exitISR ; Go if bit not 0

; At this point RB0 bit is clear
decfsz count2,f ; Count this iteration
goto wait ; Continue if not zero

; Interrupt action consists of toggling bit 2 of

Interrupts 231

; port-B to turn LED on and off
movlw b’00000100’ ; Xoring with a 1-bit produces

; the complement
xorwf PORTB,f ; Complement bit 2, port-B

;=========================
; exit ISR
;=========================
exitISR:
; Restore context

swapf old_STATUS,w ; Saved STATUS to w
movfw STATUS ; To STATUS register
swapf old_w,f ; Swap file register in itself
swapf old_w,w ; re-swap back to w

; Reset,interrupt
notRB0:

bcf INTCON,INTF ; Clear INTCON bit 1
retfie

;=======================
; Procedure to delay
; 10 machine cycles
;=======================
delay:

movlw D’4’ ; Repeat 12 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return

;=============================
; long delay sub-routine
; (for debugging)
;=============================
long_delay

movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return
end

11.4.2 The SleepDemo Program

; File: SleepDemo
; Date: April 25, 2006

232 Chapter 11

; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to use the External Interrupt on port RB0
; to terminate the power-down state caused by the
; SLEEP instruction. A pushbutton switch is connected to
; port RB0. The pushbutton generates the interrupt that
; ends the SLEEP conditions.
; Demonstration:
; A LED on port-B, line 1, flashes on and off at 1/2
; second intervals for 20 iterations. At that time the
; program enters the SLEEP condition. Pressing the
; pushbutton switch on line RB0 generates the interrupt
; that ends the SLEEP.
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates setup values

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===
; Local variables

cblock 0x0d ; Start of block
J ; counter J

Interrupts 233

K ; counter K
count1 ; Auxiliary counter
count2 ; Second auxiliary counter
old_w ; Context saving
old_STATUS ; Idem
endc

;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x04
goto IntServ

;=============================
; main program
;=============================
main:
; Set up interrupt on falling edge
; by clearing OPTION register bit 6

movlw b’10111111’
option
movlw b’11111111’ ; Set port a for input
tris PORTA
movlw b’00000001’ ; Port-B bit 0 is input
tris PORTB ; all others are output
clrf PORTB ; All port-B to 0

;============================
; setup interrupts
;============================
; Clear external interrupt flag (INTF = bit 1)

bcf INTCON,INTF ; Clear flag
; Enable global interrupts (GIE = bit 7)
; Enable RB0 interrupt (INTE = bit 4)

bsf INTCON,GIE ; Enable global int (bit 7)
bsf INTCON,INTE ; Enable RB0 int (bit 4)

;============================
; flash LED 20 times
;============================
wakeUp:
; Program flashes LED wired to port-B, line 2
; 20 times before entering the sleep state

movlw D’20’ ; Number of iterations
movwf count2 ; To counter

234 Chapter 11

lights:
movlw b’00000010’ ; Mask with bit 1 set
xorwf PORTB,f ; Complement bit 1
call long_delay
call long_delay
call long_delay
decfsz count2,f ; Decrement counter
goto lights

; 20 iterations have taken place
sleep
nop ; Recommended!
goto wakeUp ; Resume execution

;===
; Interrupt Service Routine
;===
; The interrupt service routine performs no operation
IntServ:

bcf INTCON,INTF ; Clear flag
retfie

;=============================
; long delay sub-routine
;=============================
long_delay

movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

end

11.4.3 The RB4to7Int Program

; File: RB4to7Int.ASM
; Date: April 26, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to test the port-B, bits 4 to 7, STATUS

Interrupts 235

; change interrupt. Pushbutton switches are connected
; to port-B lines 4 and 7. A red LED is wired to port
; RA1 and a green LED to port RA0. The pushbuttons
; generate interrupts that toggle a LEDs on and off.
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates setup values

;=========================
; set up and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===
; Local variables

cblock 0x0d ; Start of block
J ; counter J
K ; counter K
count1 ; Auxiliary counter
count2 ; ISR counter
old_w ; Context saving
old_STATUS ; Idem
bitsB47 ; Storage for previous value

; in port-B bits 4-7
temp ; Temporary storage
endc

;==
; m a i n p r o g r a m

236 Chapter 11

;==
org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x04
goto IntServ

;=============================
; main program
;=============================
main:
; Disable port-B internal pullups
; Interrupts on falling edge of pushbutton action

movlw b’10111111’
option

; Wiring:
; 7 6 5 4 3 2 1 0 <= port-B
; | |_______________ red pushbutton
; |________________________ black pushbutton
;
; 7 6 5 4 3 2 1 0 <= Port-A
; | |_____ red LED
; |________ green LED
;

movlw b’00000000’ ; Set Port-A for ouput
tris PORTA
movlw b’11110000’ ; Port-B bit 0-3 are output

; bits 4-7 are input
tris PORTB ; all others are output
clrf PORTB ; All Port-B to 0
movlw b’00000000’ ; Zero to w
movwf bitsB47 ; Store in local variable

; Initially turn on LEDs
bsf PORTA,0 ; Set LEDs on line 0
bsf PORTA,1 ; and on line 1

;============================
; set up interrupts
;============================
; Clear external interrupt flag (intf = bit 1)

bcf INTCON,RBIF ; Clear flag
; Enable global interrupts (GIE = bit 7)
; Enable RB0 interrupt (inte = bit 4)

bsf INTCON,GIE ; Enable global int (bit 7)
bsf INTCON,RBIE ; Enable RB0 int (bit 3)

;============================
; flash LED

Interrupts 237

;============================
; Main program does nothing. All action takes place in
; Interrupt Service Routine
lights:

nop
goto lights

;===
; Interrupt Service Routine
;===
; Service routine receives control whenever any of
; port-B lines 4 to 7 change state
IntServ:
; First test: make sure source is an RB4-7 interrupt

btfss INTCON,RBIF ; RBIF flag is interrupt
goto notRBIF ; Go if not RBIF origin

; Save context
movwf old_w ; Save w register
swapf STATUS,w ; STATUS to w
movwf old_STATUS ; Save STATUS

;=========================
; interrupt action
;=========================
; The interrupt occurs when any of Port-B bits 4 to 7
; have changed STATUS.

movf PORTB,w ; Read Port-B bits
movwf temp ; Save reading
xorwf bitsB47,f ; Xor with old bits,

; result in f
; Test each meaningful bit (4 and 7 in this example)

btfsc bitsB47,4 ; Test bit 4
goto bit4Chng ; Routine for changed bit 4

; At this point bit 4 did not change
btfsc bitsB47,7 ; Test bit 7
goto bit7Chng ; Routine for changed bit 7

; Invalid port line change. Exit
goto pbRelease

;========================
; bit 4 change routine
;========================
; Check for signal falling edge, ignore if not
bit4Chng:

btfsc PORTB,4 ; Is bit 4 high
goto pbRelease ; Bit is high. Ignore

; Toggling bit 1 of Port-A turns LED on and off
movlw b’00000010’ ; Xoring with a 1-bit produces

; the complement
xorwf PORTA,f ; Complement bit 1, Port-A
goto pbRelease

238 Chapter 11

;========================
; bit 7 change routine
;========================
; Check for signal falling edge, ignore if not
bit7Chng:

btfsc PORTB,7 ; Is bit 7 high
goto exitISR ; Bit is high. Ignore

; Toggling bit 0 of Port-A turns LED on and off
movlw b’00000001’ ; Xoring with a 1-bit produces

; the complement
xorwf PORTA,f ; Complement bit 1, Port-A

;
pbRelease:

call delay ; Debounce switch
movf PORTB,w ; Read port-B into w
andlw b’10010000’ ; Eliminate unused bits
btfsc STATUS,Z ; Check for zero
goto pbRelease ; Wait

; At this point all port-B pushbuttons are released
;=========================
; exit ISR
;=========================
exitISR:
; Store new value of port-B

movf temp,w ; This port-B value to w
movwf bitsB47 ; Store

; Restore context
swapf old_STATUS,w ; Saved STATUS to w
movfw STATUS ; To STATUS register
swapf old_w,f ; Swap file register in itself
swapf old_w,w ; re-swap back to w

; Reset,interrupt
notRBIF:

bcf INTCON,RBIF ; Clear INTCON bit 0
retfie

;=======================
; Procedure to delay
; 10 machine cycles
;=======================
delay:

movlw D’6’ ; Repeat 18 machine cycles
movwf count1 ; Store value in counter

repeat:
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return

;=============================

Interrupts 239

; long delay sub-routine
; (for debugging)
;=============================
long_delay

movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

end

240 Chapter 11

Chapter 12

Timers and Counters

This chapter is about using the built-in timing and counting circuits on the 16F84. It re-
lates to Chapter 11 since timing and counting operations can be set up to generate in-
terrupts. The material also serves as background for Chapter 14, on serial
communications, since these require precise pulses that are usually obtained through
the timers.

12.0 The 16F84 Timer0 Module
One of the timers on the 16F84 PIC is known as the Timer0 module, the free-running

timer, the timer/counter, or as TMR0. Timer0 is an internal 8-bit register that incre-
ments automatically with every PIC instruction cycle until the count overflows timer
capacity. This takes place when the timer count goes from 0xff to 0x00. At that time,
the timer restarts the count. The timer has the following characteristics:

1. A timer register that is readable and writeable by software

2. Can be powered by an external or internal clock

3. Timing edge for external clock can be selected

4. 8-bit software programmable prescaler

5. Interrupt capability

6. Can be used as a timer or as a counter

12.0.1 Timer0 Operation
Timer operation can be assigned to the internal clock or to the PIC’s RA4/TOCKI pin.
Bit 5 of the OPTION register (labeled TOCS) performs this selection. If TOCS is set,
then the timer is linked to the RA4/TOCKI pin. In this mode, the timer is used as a coun-
ter. If TOCS is reset, then the timer uses the PIC’s instruction cycle clock signal. If an
external source is selected by setting the TOCS bit, then bit 4 of the OPTION register
(labeled TOSE) allows selecting whether the timer increments on the high-to-low or
low-to-high transition of the signal on the RA4/TOCKI pin. As shown in Figure 12-1,
bits 6 and 7 of the OPTION register are not used in configuring the Timer0 module.

241

Figure 12-1 Timer0 Block Diagram

When used as a timer, Timer0 can be visualized as a register that increments with
every instruction cycle at ¼ the clock rate, without using the prescaler. In a PIC
equipped with a 4 Mhz oscillator the timer register increments at a rate of one pulse
per millisecond. Since there are eight bits in the counter register, the value stored is
in the range 0 to 255 decimal. When the counter overflows the register is reset. Fig-
ure 12-1 is a simplified block diagram of the Timer0 hardware.

Timer0 Interrupt

Software can read the timer register directly or set up the timer to generate an inter-
rupt at every transition from 0xff to 0x00. The timer register can be accessed in bank 0,
offset 0x01. The timer interrupt is enabled by setting bit 5 (labeled TOIE) of the
INTCON register. In this case the Global Interrupt Enable bit (labeled GIE) of
INTCON register must also be set. Once the timer interrupt is enabled, the Timer In-

terrupt Flag, assigned to bit 2 of the INTCON Register and labled TOIF, is set on every
overflow of the timer register. At that time an interrupt takes place. The TOIF bit
(Timer0 flag) must be cleared by the interrupt handler so that the timer interrupt can
take place again. Later in this chapter we develop a sample program that uses Timer0
as an interrupt source.

Timer0 Prescaler

The counter prescaler consists of the three low-order bits in the OPTION register.
These bits allow selecting eight possible values that serve as a divisor for the counter
rate. When the prescaler is disabled, the counter rate is one-fourth the processor’s
clock speed. If the prescaler is set to the maximum value (255) then one of 255 clock
signals actually reach the timer. Table 12-1 shows the prescaler settings and their ac-
tion on the rate of the Timer0 module and the Watchdog Timer, covered later in this
chapter.

242 Chapter 12

OPTION7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

TOSE (Source edge select)
TOCS
(Clock source select)

PS2-PS0 (Prescaler)

PSA (Prescaler assignment)

TOCKI

INTCON

TOIE

TOIF (TMR0 interrupt)

GIE

TMR0

data bus

OSC/4

Table 12.1

Prescaled Bits Selected Rates

BIT VALUE TMR0 RATE WDT RATE

000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1:256 1:128

The prescaler can be assigned to either Timer0 or the Watchdog Timer, but not to
both. If bit 3 of the OPTION register is set, then the prescaler is assigned to the
Watchdog Timer if it is clear it is assigned to the Timer0 module.

12.1 Delays Using Timer0
The simplest application of the Timer0 module is as an instruction cycle counter in im-
plementing delay loops. Applications in which the Timer0 register is polled directly
are said to use a free running timer. There are two advantages of using free running
timers over conventional delay loops: the prescaler provides a way of slowing down
the count, and the delay is independent of the number of machine cycles in the loop
body. In most cases, it is easier to implement an accurate time delay using the Timer0
module than by counting instruction cycles.

Calculating the time taken by each counter iteration consists of dividing the clock
speed by four. For example, a PIC running on a 4 Mhz oscillator clock increments
the counter every 1 Mhz. If the prescaler is not used, the counter register is incre-
mented at a rate of 1 µs; the timer beats at a rate of 1,000,000 times per second. If the
prescaler is set to the maximum divisor value (256) then each increment of the timer
takes place at a rate of 1,000,000/256 µs, which is approximately 3.906 ms. Since this
is the slowest possible rate of the timer in a machine running at 4 Mhz, it is often
necessary to employ supplementary counters in order to achieve larger delays.

The fact that the timer register (Tmr0) is both readable and writeable makes pos-
sible some interesting timing techniques. For example, an application can set the
Timer register to an initial value and then count until a predetermined limit is
reached. For example, if the difference between the limit and the initial value is 100,
then the routine counts 100 times the timer rate per beat. In another example, if a
routine allows the timer to start from zero and count unrestrictedly, then when the
count reaches the maximum value (0xff) the routine would have introduced a delay
of 256 times the timer beat rate, as is the case in the previous example, in which a
maximum value was used in the prescaler and the timer ran at a rate of 1,000,000
beats per second. Applying the prescaler, each timer beat takes place at a rate of
1,000,000/256, or approximately 3,906 timer beats per second. If we develop a rou-
tine that delays execution until the maximum value has been reached in the counter
register, then the delay can be calculated by dividing the number of beats per second

Timers and Counters 243

(3,906) by the number of counts in the delay loop. In this case, 3,906/256 results in a
delay of approximately 15.26 iterations of the delay routine per second.

A general formula for calculating the number of timer beats per second is as fol-
lows:

where T is the number of clock beats per second, C is the system clock speed in Hz, P is
the value stored in the prescaler, and R is the number of iterations counted in the
TMR0 register. The range of both P and R in this formula is 1 to 256. Also, note that the
reciprocal of T (1/T) gives the time delay, in seconds, per iteration of the delay routine.

12.1.1 Long Delay Loops

In the previous section we saw that even when using the largest possible prescaler and
counting the maximum number of timer beats, the longest possible timer delay in a 4
Mhz system is approximately 1/15th of a second. Also consider that applications must
sometimes devote the prescaler to the Watchdog Timer, which impedes its use in
Timer0. Without the prescaler, the maximum delay is of approximately 3,906 timer
beats per second. Applications that measure time in seconds or in minutes must find
ways for keeping count of large numbers of repetitions of the timer beat.

In implementing counters for larger delays we have to be careful not to introduce
round-off errors. For instance, in the previous example a timer cycles at the rate of
15.26 times per second. The closest integer to 15.26 is 15, so if we now set up a sec-
onds counter that counts 15 iterations, the counter would introduce an error of ap-
proximately 2 percent.

Considering that in the previous example each iteration of the timer contains 256
individual beats, there are 3,906.25 individual timer beats per second at the maxi-
mum prescaled rate. So if we were to implement a counter to keep track of individ-
ual prescaled beats, instead of timer iterations, the count would proceed from 0 to
3,906 instead of from 0 to 15. Approximating 3,906.25 to the closest integer, 3,906, in-
troduces a much smaller round-off error than approximating 15.26 with 15.

Finally, in this same example, we could eliminate the prescaler so that the timer
beats at the clock rate, that is, at 1,000,000 beats per second. In this option, a coun-
ter that counts from 0 to 1,000,000 would have no intrinsic error due to round off.

Which solution is more adequate depends on the accuracy required by the appli-
cation and the complexity tolerated. A timer counter in the range of 0 to 15 can be
implemented in a single 8-bit register. A counter in the range 0 to 3,906 requires two
bytes. One to count from 0 to 1,000,000 requires three bytes. Since arithmetic opera-
tions in the 16F84 are 8-bits, manipulating multiple-register counters requires more
complicated processing.

244 Chapter 12

T
C

PR
=

4

How Accurate the Delay?

The actual implementation of a delay routine based on multi-byte counters presents
some difficulties. If the timer register (TMR0) is used to keep track of timer beats, then
detecting the end of the count poses a subtle problem. Intuitively, our program could
detect timer overflow by reading the TMR0 and testing the zero flag in the status regis-
ter. Since the movf instruction affects the zero flag, one could be tempted to code:

wait:

movf tmr0,w ; Timer value into w

btfss status,z ; Was it zero?

goto wait

; If this point is reached TMR0 has overflowed

But there is a problem: the timer ticks as each instruction executes. Since the
goto instruction takes two machine cycles, it is possible that the timer overflows
while the goto instruction is in progress; therefore the overflow condition would
not be detected. One possible solution found in the Microchip documentation is to
check for less than a nominal value by testing the carry flag, as follows:

wait1:

movlw 0x03 ; 3 to w

subwf tmr0,w ; Subtract w – TMR0

btfsc status,c ; Test carry

goto wait1

One adjustment that is sometimes necessary in free running timers arises from
the fact that when the TMR0 register is written, the count is inhibited for the follow-
ing two instruction cycles. Software compensates for the skip by writing an ad-
justed value to the timer register. If the prescaler is assigned to Timer0, then a write
operation to the timer register determines that the timer does not increment for four
clock cycles.

The Black-Ammerman Method

A more elegant and accurate solution has been described by Roman Black in a Web ar-
ticle titled Zero-Error One Second Timer. Black credits Bob Ammerman with the sug-
gestion of using Bresenham’s algorithm for creating accurate PIC timer periods. In the
Black-Ammerman method, the counter works in the background, either by being
polled or interrupt-driven, so the program can continue executing while the counter
runs. In both cases, the timer-count value is stored in a 3-byte register decremented by
the software.

In their interrupt-driven version, TMR0 generates an interrupt whenever the
counter register overflows, that is, every 256th timer beat (assuming no prescaler).
The interrupt handler routine decrements the mid-order register that holds the
3-byte timer count. This is appropriate since every unit in the mid-order register rep-
resents 256 units of the low-order counter, which in this case is the TMR0 register. If
the mid-order register underflows when decremented, then the high-order one is
decremented. If the high-order one underflows, then the count has reached zero and

Timers and Counters 245

the delay ends. Since the counter is interrupt-driven, the processor continues to do
other work in the foreground.

An even more ingenious option proposed by Black is a background counter that
does not rely on interrupts. This is accomplished by introducing a 1:2 delay in the
timer by means of the prescaler. Since now the timer beats at one-half the instruc-
tion rate, 128 timer cycles are required for one complete iteration at the full instruc-
tion rate. By testing the high-order bit of the timer counter, the routine detects when
the count reaches 128. At that time the mid-range and high-range counter variables
are updated (as in the non-interrupt version of the software described in the previ-
ous paragraph). The high-order bit of the timer is then cleared, but the low-order
bits are not changed. This allows the timer counter not to lose step in the count,
which remains valid until the next time the high-order bit is again set. During the pe-
riod between the updating of the 3-byte counter and the next polling of the timer
register, the program continues to perform other tasks.

Many of the details of the Black-Ammerman method are missing in our descrip-
tion. The reader should refer to the Internet article for a thorough coverage of this
algorithm.

12.2 Timer0 as a Counter

In Section 12.0.1, we saw that Timer0 operation can be assigned to the PIC’s
RA4/TOCKI pin by setting bit 5 of the OPTION register (labeled TOCS). This mode is
referred to as the counter mode. When the timer is set up to work as a counter, then bit
4 of the OPTION register (labeled TOSE) allows selecting whether the counter incre-
ments on the high-to-low or low-to-high transition of the signal.

When an external clock input is present in the RA4/TOCKI pin, it must meet cer-
tain requirements. Used for Timer0, these requirements ensure that the external
source can be synchronized with the internal phase clock. When no prescaler is
used, the external clock input must be high and low for at least twice the internal
clock rate. In addition, there must be a resistor-capacitor induced delay of 20 ns on
both the high and the low cycles.

When a prescaler is used, the external clock input must be high and low for at
least four times the rate of the internal clock rate. In addition, there must be a resis-
tor-capacitor induced delay of 40 ns on both the high and the low cycles.

Once the counter mode is enabled, any pulse on pin RA4/TOCKI is automatically
counted in the TMR0 register. The mechanism can be compared to an automatic in-
terrupt since no program action is required to keep track of the number of pulses.
The routine can be coded so that when the timer count overflows, an interrupt is
generated. The interrupt handler then increments a supplementary counter so that
events that exceed 256 pulses are recorded. The program named Tmr0Counter de-
veloped later in this chapter and contained in the book’s online software is an exam-
ple of using the counter function of the Timer0 module.

246 Chapter 12

12.3 Timer0 Programming
Software routines that use the Timer0 module range in complexity from simple ap-
proximate delay loops to configurable, interrupt-driven counters that must meet very
high timing accuracy requirements. When the time period to be measured does not ex-
ceed the one obtained with the prescaler and the timer register count, then the coding
is straightforward and the processing is uncomplicated. But often this is not the case.
The following elements should be examined before attempting to design and code a
Timer0-based routine:

1. What is the required accuracy of the timer delay?

2. Can the prescaler be used or is the prescaler devoted to the Watchdog Timer?

3. Does the program suspend execution while the delay is in progress, or does the appli-
cation continue executing in the foreground?

4. Can the timer be interrupt-driven or must it be polled?

5. Will the delay be the same on all calls to the timer routine, or must the routine provide
delays of different magnitude?

6. How long must the delay last?

In this section we explore several timer routines of different complexity and re-
quirements. The first one uses the Timer0 module as a counter, as described in Sec-
tion 12.2. Later, we develop a simple delay loop that uses the Timer0 register instead
of an instruction count. We conclude with an interrupt-driven timer routine that can
be changed to implement different delays.

12.3.1 Programming a Counter

The 16F84 can be programmed so that port RA4/TOCKI is used to count events or
pulses by initializing the Timer0 module as a counter. Without interrupts, the process
requires the following preparatory steps:

1. Port-A, line 4, (RA4/TOCKI) is defined for input.

2. The Timer0 register (TMR0) is cleared.

3. The Watchdog Timer internal register is cleared by means of the clrwdt instruction.

4. The OPTION register bits PSA and PSO:PS2 are initialized if the prescaler is to be used.

5. The OPTION register bit TOSE is set so as to increment the count on the high-to-low
transition of the port pin if the port source is active low. Otherwise the bit is cleared.

6. The OPTION register bit TOCS is set to select action on the RA4/TOCKI pin.

Once the timer is set up as a counter, any pulse received on the RA4/TOCKI pin
that meets the restrictions mentioned in Section 12.2 is counted in the TMR0 regis-
ter. Software can read and write to the TMR0 register, located at address 0x01 in
bank 0, in order to obtain or change the event count. If the timer interrupt is enabled
when the timer is defined as a counter, the interrupt takes place every time the
counter overflows, that is, when the count cycles from 0xff to 0x00.

Timers and Counters 247

Figure 12-2 Test Circuit for Timer/Counter Program

A Timer/Counter Test Circuit
The circuit shown in Figure 12-2 contains a pushbutton switch wired to port
RA4/TOCKI and a seven-segment LED display wired to Port-B lines 0 to 6.

The Tmr0Counter Program
The program named Tmr0Counter in the book’s online software package uses the cir-
cuit in Figure 12-2 to demonstrate the programming of the Timer0 module in the coun-
ter mode. The program detects and counts action on the pushbutton switch wired to
port RA4/TOCKI. The value of the count in hex digits ranging 0x00 to 0x0f is displayed
in the seven-segment LED connected to Port-B.

The following code fragment shows the program’s initialization routine to set up
the ports and the timer:

main:
; Clear the Watchdog Timer and reset prescaler

clrwdt
; Set up the OPTION regiser bit map

movlw b’10111000’
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0

248 Chapter 12

16F84

Osc

a

PWR
ON

b

cd

e e

f

f

g

g

d

c

b

a

+5v

+5v

+5v

R
=

1
0

K

R
=

1
0

K

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

220 R

X 7

PB SW

7-segment

LED

; | | | | | *000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | 0 = internal clock
; | | *1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
; Set up ports

movlw 0x00 ; Set Port-B to output
tris portb
clrf portb ; All Port-B to 0

; Port-A. Five low-order lines set for input
movlw B’00011111’ ; w = 00011111 binary
tris porta ; Port-A (lines 0 to 4) to input

Once the hardware is initialized, program operation consists of reading the value
stored in TMR0, scaling this value to the display range 0 to 15, and displaying it on
the seven-segment LED. Processing is as follows:

;=================================
; Check value in TMR0 and display
;=================================
; Every press of the pushbutton switch connected to line
; RA4/TOCKI adds one to the value in the TMR0 register.
; Loop checks this value, adjusts to the range 0 to 15
; and displays the result in the seven-segment LED on
; Port-B
;
checkTmr0:

movf mr0,w ; Timer register to w
; Eliminate four high order bits

andlw b’00001111’ ; Mask off high bits
; At this point the w register contains a 4-bit value
; in the range 0 to 0xf. Use this value (in w) to
; obtain seven-segment display code
;

call segment

Timers and Counters 249

movwf portb ; Display switch bits

goto checkTmr0 ; Endless loop

;

;================================

; routine to return 7-segment

; codes

;================================

segment:

addwf PCL,f ; PCL is program counter latch

retlw 0x3f ; 0 code

retlw 0x06 ; 1

retlw 0x5b ; 2

retlw 0x4f ; 3

retlw 0x66 ; 4

retlw 0x6d ; 5

retlw 0x7d ; 6

retlw 0x07 ; 7

retlw 0x7f ; 8

retlw 0x6f ; 9

retlw 0x77 ; A

retlw 0x7c ; B

retlw 0x39 ; C

retlw 0x5b ; D

retlw 0x79 ; E

retlw 0x71 ; F

retlw 0x7f ; Just in case all on

The programming of seven-segment LEDs was discussed in Chapter 10.

12.3.2 Timer0 as a Simple Delay Timer

Perhaps the simplest use of the Timer0 module is to implement a delay loop. In this ap-
plication, the Timer0 module is initialized to use the internal clock by setting the TOSE
bit of the OPTION register. If the prescaler is to be used, as is most likely, the PSA bit is
cleared and the desired prescaling is entered in bits PS2 to PS0 of the OPTION register.
The circuit in Figure 12-3 allows testing several timer-related programs developed in
this chapter.

The program named Timer0, in the book’s online software package, uses a
timer-based delay loop to flash in sequence eight LEDs that display the binary values
from 0x00 to 0xff. The delay routine executes in the foreground, so that processing
is suspended while the count is in progress. The initialization requires clearing the
TOCS bit in the OPTION register to select the internal clock. The prescaler is as-
signed to Timer0 by clearing the PSA bit and bits PS2 to PS0 are set to assign a 1:256
prescale to the timer. The following code fragment shows the processing.

250 Chapter 12

Figure 12-3 Circuit for Testing Several Timer Programs

main:
; Clear the Watchdog Timer and reset prescaler

clrwdt
; Set up the OPTION register

movlw b’11010111’
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | 1 = to WDT
; | | | | *0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock

Timers and Counters 251

16F84

R=10K

R=330x8 Ohm

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Osc

+5v

+5v

; | | 1 = RA4/TOCKI bit source

; | |_______________________ INTEDG (Edge select)

; | 0 = falling edge

; | *1 = raising edge

; |__________________________ RBPU (Pullup enable)

; 0 = enabled

; *1 = disabled

option

; Set up ports

movlw 0x00 ; Set Port-B to output

tris portb

clrf portb ; All Port-B to 0

; Port-A is not used in this program

mloop:

incf portb,f ; Add 1 to register value

call TM0delay

goto mloop

The delay procedure named TM0delay provides the necessary time lapse between
successive increments in the count displayed. The code is as follows:

;******************************

; delay sub-routine

; uses Timer0

;******************************

TM0delay:

; Initialize the timer register

clrf tmr0 ; Clear SFR for Timer0

; Routine tests the value in the TMR0 register by

; subtracting 0xff from the value in TMR0. The zero flag

; is set if TMR0 = 0xff

cycle:

movf tmr0,w ; Timer to w

; w has TMR0 register value

sublw 0xff ; Subtract max value

; Zero flag is set if value in TMR0 = 0xff

btfss status,z ; Test for zero

goto cycle ; Repeat

Return

12.3.3 Measured Time Lapse
A variable time-lapse routine that can be edited or adjusted to produce delays within a
specific time range is a useful tool in any programmer’s library. In previous sections,
we developed delay routines that do so by counting timer pulses. This same idea can
be used to develop a routine that produces accurate delays within a range.

252 Chapter 12

The routine can be implemented to varying degrees of sophistication. One ex-
treme would be a procedure that receives the desired time lapse as a parameter. An-
other option would be a procedure that reads the desired time lapse from program
constants. In the program named LapseTimer contained in the book’s online soft-
ware we develop a procedure in which the calling code passes the desired time de-
lay in three variables containing the number of machine cycles necessary for the
desired wait period. By using machine cycles instead of time units (such as micro-
seconds or milliseconds), the procedure becomes easily adaptable to devices run-
ning at different clock speeds. Since each instruction requires four clock cycles, the
device’s clock speed in Hz is divided by four in order to determine the number of
machine cycles per time unit.

For example, a processor equipped with an 8 Mhz clock executes at a rate of
8,000,000/4 machine cycles per second; that is, 2,000,000 instruction cycles per sec-
ond. To produce a one-quarter second delay requires a wait period of 2,000,000/4 or
500,000 instruction cycles. By the same token, the 16F84 running at 4 Mhz executes
1,000,000 instructions per second. In this case a one-quarter second delay would re-
quire waiting 250,000 instruction cycles.

The program titled lapseTimer in the book’s online software package uses Timer0
to produce a variable-lapse delay. The delay is calculated based on the number of
machine cycles necessary for the desired wait period, as described in the preceding
paragraph. The program uses the Black-Ammerman methods, which require a
prescaler of 1:2 so that each timer iteration takes place at one-half the clock rate.
The program initializes the OPTION register and the ports as follows:

main:
; Clear the Watchdog Timer and reset prescaler

clrf tmr0
clrwdt

; Set up the OPTION regiser bit map
movlw b’11010000’

; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | *000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | 1 = to WDT
; | | | | *0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)

Timers and Counters 253

; | *0 = falling edge

; |__________________________ RBPU (Pullup enable)

; 0 = enabled

; *1 = disabled

option

; Set up ports

movlw 0x00 ; Set Port-B to output

tris portb

clrf portb ; All Port-B to 0

; Port-A is not used in this program

The LapseTimer program is designed to produce a one-half second delay on a
16F84 running at 4 Mhz; therefore, the delay requires 500,000 clock beats. The value
is converted to hexadecimal and stored in a 3-byte counter, as follows:

500,000 = 0x07a120 or

countL = 0x20

countM = 0xa1

countH = 0x07

The variables countL, countM, and countH are defined locally and initialized by a
procedure named onehalfSec, as follows:

; Procedure to initialize local variables for a

; delay of one-half second on a 16F84 at 4 Mhz.

; Timer is set up for 500,000 clock beats as

; follows: 500,000 = 0x07 0xa1 0x20

; 500,000 = 0x07 0xa1 0x20

; —— —— ——

; | | |___ countL)

; | |________ countM

; |_____________ countH

onehalfSec:

movlw 0x07

movwf countH

movlw 0xa1

movwf countM

movlw 0x20

movwf countL

return

The delay routine uses the Timer0 register to provide the low-order level of the
count. Since the counter counts up from zero to ensure that the initial low-level de-
lay count is correct—the value 128 - (xx/2) must be calculated, where xx is the value
in the original countL register. The program performs the division by 2 by shifting
bits to the right by one position. The resulting value is subtracted from 128 and the
result stored in TMR0, as follows:

254 Chapter 12

; First calculate xx/2 by bit shifting

bcf status,c ; Clear carry flag

rrf countL,f ; Divide by 2

; now subtract 128 - (xx/2)

movf countL,w ; w holds low-order byte

sublw d’128’

; Now w has adjusted result. Store in TMR0

movwf tmr0

The delay routine detects timer overflow by testing bit 7 of the TMR0 register. If
the bit is set, then 256 time cycles have elapsed and the mid-order counter register is
decremented. If the mid-order register underflows when it is decremented, then the
high-order register is decremented. If it underflows, the counter has gone to zero
and the delay routine ends. Processing is as follows:

cycle:

btfss tmr0,7 ; Is bit 7 set?

goto cycle ; Wait if not set

;

; At this point TMR0 bit 7 is set

; Clear the bit

bcf tmr0,7 ; All other bits are preserved

; Subtract 256 from beat counter by decrementing the

; mid-order byte

;

decfsz countM,f

goto cycle ; Continue if mid-byte not zero

; At this point the mid-order byte has overflowed.

; High-order byte must be decremented.

decfsz countH,f

goto cycle

; At this point the time cycle has elapsed

return

The circuit in Figure 12-3 can be used to test the lapseTimer program.

Interrupt-driven Timer

Interrupt-driven timers and counters have several advantages over polled routines:
first, the time lapse counting takes place in the background so that the application can
continue to do other work in the foreground. Another advantage of an interrupt-driven
counter is that the prescaler is unnecessary and can be used for the Watchdog Timer.
Developing a timer routine that is interrupt-driven presents no additional challenges
over the conventional interrupt-driven examples covered in Chapter 11. The initializa-
tion consists of configuring the OPTION and the INTCON register bits for the task at
hand. In the particular case of an interrupt-driven timer, the following are necessary:

Timers and Counters 255

1. The external interrupt flag (INTF in the INTCON Register) must be initially cleared.

2. Global interrupts must be enabled by setting the GIE bit in the INTCON Register.

3. The Timer0 overflow interrupt must be enabled by setting the TOIE bit in the INTCON
register.

In this example program, named LapseTmrInt, the prescaler is not used with the
timer, so the initialization code sets the PSA bit in the OPTION register and the
prescaler is assigned to the Watchdog Timer. The following code fragment is from
the LapseTmrInt program:

main:
; Clear the Watchdog Timer and reset prescaler

clrf tmr0
clrwdt

; Set up the OPTION register bit map
movlw b’11011000’

; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
; Set up ports

movlw 0x00 ; Set Port-B to output
tris portb
clrf portb ; All Port-B to 0

; Port-A is not used in this program
;============================
; set up interrupts
;============================
; Clear external interrupt flag (intf = bit 1)

bcf INTCON,intf ; Clear flag

256 Chapter 12

; Enable global interrupts (gie = bit 7)
; Enable RB0 interrupt (inte = bit 4)

bsf INTCON,gie ; Enable global int (bit 7)
bsf INTCON,toie ; Enable TMR0 overflow

; interrupt

As in the program LapseTimer, developed previously in this chapter, the timer op-
erates by decrementing a 3-byte counter that holds the number of timer beats re-
quired for the programmed delay. In the case of the LapseTmrInt program, the
routine that initializes the register variables for a one-half second delay also cor-
rectly adjusts the initial value loaded into the TMR0 register. The code is as follows:

;==============================
; set register variables for
; one-half second delay
;==============================
; Procedure to initialize local variables for a delay of
; one-half second on a 16F84 at 4 Mhz. Timer is set up for a
; 500,000 clock beats as follows: 500,000 = 0x07 0xa1 0x20
; 500,000 = 0x07 0xa1 0x20
; —— —— ——
; | | |___ countL)
; | |________ countM
; |_____________ countH
onehalfSec:

movlw 0x07
movwf countH
movlw 0xa1
movwf countM
movlw 0x20
movwf countL

; The TMR0 register provides the low-order level of
; the count. Since the counter counts up from zero,
; in order to ensure that the initial low-level delay
; count is correct, the value 256 - xx must be calculated
; where xx is the value in the original countL variable.

movf countL,w ; w holds low-order byte
sublw d’256’

; Now w has adjusted result. Store in TMR0
movwf tmr0
return

The interrupt service routine in the LapseTmrInt program receives control when
the TMR0 register underflows, that is, when the count goes from 0xff to 0x00. The
service routine then proceeds to decrement the mid-range counter register and ad-
just, if necessary, the high-order counter. If the count goes to zero, the handler tog-
gles the LED on Port-B, line 0, and re-initializes the counter variables by calling the
onehalfSec procedure described previously. The interrupt handler is coded as fol-
lows:

Timers and Counters 257

;===
; Interrupt Service Routine
;===
; Service routine receives control when there the timer
; register TMR0 overflows, that is, when 256 timer beats
; have elapsed
IntServ:
; First test if source is a Timer0 interrupt

btfss INTCON,toif ; TOIF is Timer0 interrupt
goto notTOIF ; Go if not RB0 origin

; If so clear the timer interrupt flag so that count continues
bcf INTCON,toif ; Clear interrupt flag

; Save context
movwf old_w ; Save w register
swapf STATUS,w ; STATUS to w
movwf old_status ; Save STATUS

;=========================
; interrupt action
;=========================
; Subtract 256 from beat counter by decrementing the
; mid-order byte

decfsz countM,f
goto exitISR ; Continue if mid-byte not

; zero
; At this point the mid-order byte has overflowed.
; High-order byte must be decremented.

decfsz countH,f
goto exitISR

; At this point count has expired so the programmed time
; has elapsed. Service routine turns the LED on line 0,
; Port-B on and off at every conclusion of the count.
; This is done by XORing a mask with a one-bit at the
; Port-B line 0 position

movlw b’00000001’ ; XORing with a 1-bit produces
; the complement

xorwf portb,f ; Complement bit 2, Port-B
; Reset one-half second counter

call onehalfSec
;=========================
; exit ISR
;=========================
exitISR:
; Restore context

swapf old_status,w ; Saved status to w
movfw STATUS ; To STATUS register
swapf old_w,f ; Swap file register in itself
swapf old_w,w ; re-swap back to w

; Return from interrupt

258 Chapter 12

notTOIF:

retfie

One of the initial operations of the service routine is to clear the TOIF bit in the
INTCON register. This action re-enables the timer interrupt and prevents counting
cycles to be lost. Since the interrupt is generated every 256 beats of the timer, there
is no risk that by enabling the timer interrupt flag a re-entrant interrupt will take
place.

The interrupt-based timer program named LapseTmrInt can be tested on the
same circuit shown in Figure 12-3.

12.4 The Watchdog Timer
The 16F84 contains an independent timer with its own clock source called the Watch-

dog Timer, or WDT. The Watchdog Timer provides a way for the processor to recover
from a software error that impedes program continuation, such as an endless loop. The
Watchdog Timer is not designed to recover from hardware faults, such as a brown-out.

The Watchdog Timer hardware is independent of the PIC’s internal clock. Its
time-out period lasts approximately 18ms to 2.3s, depending on whether the
prescaler is used and on its setting. It is not very accurate due to its sensitivity to
temperature. According to Microchip’s documentation, under worst-case condi-
tions, its time-out period can take up to several seconds. The following program ele-
ments relate to Watchdog Timer operation:

1. Configuration bit 2, labeled WDTE, enables and disables the Watchdog Timer during
system configuration. The WDT cannot be set or reset at runtime. It is enabled and dis-
abled during programming.

2. The PSA bit in the OPTION register selects whether the prescaler is assigned to the
Watchdog Timer or to the Timer0 module.

3. Bits PS2 to PS0 in the OPTION register allow assigning eight rates to the Watchdog
Timer, from 1:1 to 1:128.

4. Bit 4 of the STATUS register, named the TO bit, is cleared when a time-out condition oc-
curred that originated in the WDT.

5. The power-down bit (PD) in the STATUS register is set after the execution of the clrwdt
instruction.

6. The clrwdt instruction clears the Watchdog Timer. It also clears the prescaler count (if
the prescaler is assigned to the Watchdog Timer) and sets STATUS bits TO and PD.

The WDT provides a recovery mechanism for software errors. When the WDT
times-out, the TO flag in the STATUS register is cleared and the program counter is
reset to 0000 so that the program restarts. Applications can prevent the reset by is-
suing the clrwdt instruction before the time-out period ends. When clrwdt executes
the WDT time-out period restarts.

Timers and Counters 259

12.4.1 Watchdog Timer Programming
Not much information is available regarding the details of operation of the Watchdog
Timer in the 16F84. Using the WDT in applications is not just a simple matter of restart-
ing the counter with the clrwdt instruction. The timer is designed to detect software
errors that can hang up a program, but how it detects these errors and which condi-
tions trigger the WDT operation are not clear from the information provided by Micro-
chip. For example, an application that contains a long delay loop may find that the
Watchdog Timer forces an untimely break out of the loop. The Watchdog Timer pro-
vides a powerful error-recovery mechanism, but its use requires careful consideration
of program conditions that could make the timer malfunction.

12.5 Sample Programs
The following programs demonstrate the programming discussed in this chapter.

12.5.1 The Tmr0Counter program
; File name: Tmr0Counter.asm
; Date: April 30, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Reference: SevenSeg Circuit and Board
;
; Description:
; Test program for the Timer0 counter. The program counts
; the number of presses of the pushbutton switch on port
; RA4/TOCKI and displays the count on a seven segment LED.
; Switch is wired active low.
;
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog Timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; |
; |_____ * indicates set up values
;
;=========================
; set up and configuration
;=========================

260 Chapter 12

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;
;===
; constant definitions
; (per circuit wiring diagram)
;===
#define Pb_sw 4 ; Port-A line 4 to push button switch
;
;============================
; local variables
;============================

cblock 0x0c ; Start of block
J ; counter J
K ; counter K
endc

;==
; program
;==

org 0 ; start at address 0
goto main

;
; Space for interrupt handlers

org 0x08

main:
; Clear the timer and the watchdog

clrf TMR0
clrwdt

; Set up the OPTION register bit map
movlw b’10111000’

; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | *000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | 0 = internal clock
; | | *1 = RA4/TOCKI bit source

Timers and Counters 261

; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
; Set up ports

movlw 0x00 ; Set Port-B to output
tris PORTB
clrf PORTB ; All Port-B to 0

; Port-A. Five low-order lines set for for input
movlw B’00011111’ ; w = 00011111 binary
tris PORTA ; Port-A (lines 0 to 4) to

; input
;=================================
; Check value in TMR0 and display
;=================================
; Every press of the pushbutton switch connected to line
; RA4/TOCKI adds one to the value in the TMR0 register.
; Loop checks this value, adjusts to the range 0 to 15
; and displays the result in the seven-segment LED on
; Port-B
checkTmr0:

movf TMR0,w ; Timer register to w
; Eliminate four high order bits

andlw b’00001111’ ; Mask off high bits
; At this point the w register contains a 4-bit value
; in the range 0 to 0xf. Use this value (in w) to
; obtain seven-segment display code

call segment
movwf PORTB ; Display switch bits
goto checkTmr0 ; Endless loop

;
;================================
; routine to returns 7-segment
; codes
;================================
segment:

addwf PCL,f ; PCL is program counter latch
retlw 0x3f ; 0 code
retlw 0x06 ; 1
retlw 0x5b ; 2
retlw 0x4f ; 3
retlw 0x66 ; 4
retlw 0x6d ; 5
retlw 0x7d ; 6
retlw 0x07 ; 7
retlw 0x7f ; 8

262 Chapter 12

retlw 0x6f ; 9
retlw 0x77 ; A
retlw 0x7c ; B
retlw 0x39 ; C
retlw 0x5b ; D
retlw 0x79 ; E
retlw 0x71 ; F
retlw 0x7f ; Just in case all on
end

12.5.2 The Timer0 Program
; File: Timer0.ASM
; Date: April 27, 2006
; Author: Julio Sanchez
; Processor: a6F84A
;
; Description:
; Program to demonstrate programming of the 16F84A
; TIMER0 module. Program flashes eight LEDs in sequence
; counting from 0 to 0xff. Timer0 is used to delay
; the count.
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog Timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates set up values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===

Timers and Counters 263

; None in this application
;
;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x08
;=============================
; main program
;=============================
main:
; Clear the Watchdog Timer and reset prescaler

clrwdt
; Set up the OPTION register bit map

movlw b’11010111’
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | 1 = to WDT
; | | | | *0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
; Set up ports

movlw 0x00 ; Set Port-B to output
tris PORTB
clrf PORTB ; All Port-B to 0

; Port-A is not used in this program
mloop:

264 Chapter 12

incf PORTB,f ; Add 1 to register value
call TM0delay
goto mloop

;******************************
; delay sub-routine
; uses Timer0
;******************************
TM0delay:
; Initialize the timer register

clrf TMR0 ; Clear SFR for Timer0
; Routine tests the value in the TMR0 register by
; subtracting 0xff from the value in TMR0. The zero flag
; is set if TMR0 = 0xff
cycle:

movf TMR0,w ; Timer to w
; w has TMR0 register value

sublw 0xff ; Subtract max value
; Zero flag is set if value in TMR0 = 0xff

btfss STATUS,Z ; Test for zero
goto cycle ; Repeat
return

end

12.5.3 The LapseTimer Program
; File: LapseTimer.ASM
; Date: May 1, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Using Timer0 to produce a variable-lapse delay.
; The delay is calculated based on the number of machine
; cycles necessary for the desired wait period. For
; example, a machine running at a 4 Mhz clock rate
; executes 1,000,000 instructions per second. In this
; case a 1/2 second delay requires 500,000 instructions.
; The wait period is passed to the delay routine in three
; program registers which hold the high-, middle-, and
; low-order bytes of the counter.
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF

Timers and Counters 265

; _PWRTE_OFF
; _WDT_ON Watchdog Timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; |
; |_____ * indicates set up values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===
; Local variables

cblock 0x0d ; Start of block
; 3-byte auxiliary counter for delay.

countH ; High-order byte
countM ; Medium-order byte
countL ; Low-order byte
endc

;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x04
; goto IntServ
;=============================
; main program
;=============================
main:
; Clear the Watchdog Timer and reset prescaler

clrf TMR0
clrwdt

; Set up the OPTION register bit map
movlw b’11010000’

; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0

266 Chapter 12

; | | | | | *000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | 1 = to WDT
; | | | | *0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
; Set up ports

movlw 0x00 ; Set Port-B to output
tris PORTB
clrf PORTB ; All Port-B to 0

; Port-A is not used in this program
;============================
; display loop
;============================
mloop:
; Turn on LED

bsf PORTB,0
; Initialize counters and delay

call onehalfSec
call TM0delay

; Turn off LED
bcf PORTB,0

; Re-initialize counter and delay
call onehalfSec
call TM0delay
goto mloop

;==================================
; variable-lapse delay procedure
; using Timer0
;==================================
; ON ENTRY:
; Variables countL, countM, and countH hold
; the low-, middle-, and high-order bytes
; of the delay period, in timer units
; Routine logic:

Timers and Counters 267

; The prescaler is assigned to Timer0 and set up so
; that the timer runs at 1:2 rate. This means that
; every time the counter reaches 128 (0x80) a total
; of 256 machine cycles have elapsed. The value 0x80
; is detected by testing bit 7 of the counter
; register.
; Note:
; The Timer0 register provides the low-order level
; of the count. Since the counter counts up from zero,
; in order to ensure that the initial low-level delay
; count is correct the value 128 - (xx/2) must be calculated
; where xx is the value in the original countL register.
; First calculate xx/2 by bit shifting
TM0delay:

bcf STATUS,C ; Clear carry flag
rrf countL,f ; Divide by 2

; now subtract 128 - (xx/2)
movf countL,w ; w holds low-order byte
sublw d’128’

; Now w has adjusted result. Store in TMR0
movwf TMR0

; Routine tests timer overflow by testing bit 7 of
; the TMR0 register.
cycle:

btfss TMR0,7 ; Is bit 7 set?
goto cycle ; Wait if not set

; At this point TMR0 bit 7 is set
; Clear the bit

bcf TMR0,7 ; All other bits are preserved
; Subtract 256 from beat counter by decrementing the
; mid-order byte

decfsz countM,f
goto cycle ; Continue if mid-byte not

zero
; At this point the mid-order byte has overflowed.
; High-order byte must be decremented.

decfsz countH,f
goto cycle

; At this point the time cycle has elapsed
return

;==============================
; set register variables for
; one-half second delay
;==============================
; Procedure to initialize local variables for a
; delay of one-half second on a 16F84 at 4 Mhz.
; Timer is set up for 500,000 clock beats as
; follows: 500,000 = 0x07 0xa1 0x20

268 Chapter 12

; 500,000 = 0x07 0xa1 0x20
; —— —— ——
; | | |___ countL)
; | |________ countM
; |_____________ countH
onehalfSec:

movlw 0x07
movwf countH
movlw 0xa1
movwf countM
movlw 0x20
movwf countL
return

end

12.5.4 The LapseTmrInt Program
; File: LapseTmrInt.ASM
; Date: May 1, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Interrupt-driven version of the LapseTimer program.
; Using Timer0 to produce a variable-lapse delay.
; The delay is calculated based on the number of machine
; cycles necessary for the desired wait period. For
; example, a machine running at a 4 Mhz clock rate
; executes 1,000,000 instructions per second. In this
; case a 1/2 second delay requires 500,000 instructions.
; The wait period is passed to the delay routine in three
; register variables which hold the high-, middle-, and
; low-order bytes of the counter.
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog Timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)

Timers and Counters 269

; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; |
; |_____ * indicates set up values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===
; Local variables

cblock 0x0d ; Start of block
; 3-byte auxiliary counter for delay.

countH ; High-order byte
countM ; Medium-order byte
countL ; Low-order byte
old_w ; Context saving
old_STATUS ; Idem
endc

;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x04
goto IntServ

;=============================
; main program
;=============================
main:
; Clear the Watchdog Timer and reset prescaler

clrf TMR0
clrwdt

; Set up the OPTION register bit map
movlw b’11011000’

; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256

270 Chapter 12

; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
; Set up ports

movlw 0x00 ; Set Port-B to output
tris PORTB
clrf PORTB ; All Port-B to 0

; Port-A is not used in this program
;============================
; set up interrupts
;============================
; Clear external interrupt flag (INTF = bit 1)

bcf INTCON,INTF ; Clear flag
; Enable global interrupts (GIE = bit 7)
; Enable RB0 interrupt (inte = bit 4)

bsf INTCON,GIE ; Enable global int (bit 7)
bsf INTCON,T0IE ; Enable TMR0 overflow

; interrupt
; Init count

call onehalfSec
;============================
; do-nothing loop
;============================
; All work is performed by the interrupt handler
mloop:

goto mloop
;==============================
; set register variables for
; one-half second delay
;==============================
; Procedure to initialize local variables for a
; delay of one-half second on a 16F84 at 4 Mhz.
; Timer is set up for 500,000 clock beats as
; follows: 500,000 = 0x07 0xa1 0x20
; 500,000 = 0x07 0xa1 0x20
; —— —— ——

Timers and Counters 271

; | | |___ countL)
; | |________ countM
; |_____________ countH
onehalfSec:

movlw 0x07
movwf countH
movlw 0xa1
movwf countM
movlw 0x20
movwf countL

; The Timer0 register provides the low-order level
; of the count. Since the counter counts up from zero,
; in order to ensure that the initial low-level delay
; count is correct the value 256 - xx must be calculated
; where xx is the value in the original countL register.

movf countL,w ; w holds low-order byte
sublw d’255’

; Now w has adjusted result. Store in TMR0
movwf TMR0
return

;===
; Interrupt Service Routine
;===
; Service routine receives control when the timer
; register TMR0 overflows, that is, when 256 timer beats
; have elapsed
IntServ:
; First test if source is a Timer0 interrupt

btfss INTCON,T0IF ; T0IF is Timer0 interrupt
goto notTOIF ; Go if not RB0 origin

; If so clear the timer interrupt flag so that count continues
bcf INTCON,T0IF ; Clear interrupt flag

; Save context
movwf old_w ; Save w register
swapf STATUS,w ; STATUS to w
movwf old_STATUS ; Save STATUS

;=========================
; interrupt action
;=========================
; Subtract 256 from beat counter by decrementing the
; mid-order byte

decfsz countM,f
goto exitISR ; Continue if mid-byte not

zero
; At this point the mid-order byte has overflowed.
; High-order byte must be decremented.

decfsz countH,f
goto exitISR

272 Chapter 12

; At this point count has expired so the programmed time
; has elapsed. Service routine turns the LED on line 0,
; Port-B on and off at every conclusion of the count.
; This is done by xoring a mask with a one-bit at the
; Port-B line 0 position

movlw b’00000001’ ; Xoring with a 1-bit produces
; the complement

xorwf PORTB,f ; Complement bit 2, Port-B
; Reset one-half second counter

call onehalfSec
;=========================
; exit ISR
;=========================
exitISR:
; Restore context

swapf old_STATUS,w ; Saved STATUS to w
movfw STATUS ; To STATUS register
swapf old_w,f ; Swap file register in itself
swapf old_w,w ; re-swap back to w

; Reset,interrupt
notTOIF:

retfie

end

Timers and Counters 273

Chapter 13

LCD Interfacing and Programming

This chapter is about programming liquid crystal displays and interfacing the LCD

with the PIC 16f84 microcontroller. LCDs are one of the most used devices for alpha-
numeric output in microcontroller-based circuits. Their advantages are their reduced
size and cost and the convenience of mounting the LCD directly on the circuit board.

LCDs are classified according to their interface into serial and parallel. Serial

LCDs require less I/O resources but execute slower than their parallel counterparts.
In addition, they are considerably more expensive. In this chapter we discuss paral-
lel-driven LCD devices based on the Hitachi HD44780 character-based controller,
which is by far the most popular controller for PIC-driven LCDs. Serial interface
with LCD devices is discussed in Chapter 13.

13.0 LCD Features and Architecture
The HD44780 is a dot-matrix liquid crystal display controller and driver. The device
displays ASCII alphanumeric characters, Japanese kana characters, and some sym-
bols. A single HD44780 can display up to two 28-character lines. An available exten-
sion diver makes possible addressing up to 80 characters.

The HD44780U contains a 9,920 bit character-generator ROM that produces a to-
tal of 240 characters: 208 characters with a 5 × 8 dot resolution and 32 characters at
a 5 × 10 dot resolution. The device is capable of storing 64 x 8-bit character data in
its character generator RAM. This corresponds to eight custom characters in 5 x
8-dot resolution or four characters in 5 x 10-dot resolution.

The controller is programmable to three different dy cycles: 1/8 for one line of 5 ×
8 dots with cursor, 1/11 for one line of 5 × 10 dots with cursor, and 1/16 for two lines
of 5 × 8 dots with cursor. The built-in commands include clearing the display, hom-
ing the cursor, turning the display on and off, turning the cursor on and off, setting
display characters to blink, shifting the cursor and the display left-to-right or
right-to-left, and reading and writing data to the character generator and to display
data ROM.

275

13.0.1 LCD Functions and Components

The following hardware elements form part of the HD44780 controller: two internal
registers labeled the data register and the instruction register, a busy flag, an address
counter, a RAM area of display data (DDRAM), a character generator ROM, a charac-
ter generator RAM, a timing generation circuit, a liquid crystal display driver circuit,
and a cursor and blink control circuit. The controller itself is often referred to as the
MPU in the Hitachi literature.

Internal Registers

The HD44780 contains an IR (instruction register) and a DR (data register). The IR is
used to store instruction codes, such as those to clear the display, define an address, or
store a bit-map in character generator RAM. The IR is written only from the controller.

The data register, DR, is used to temporarily store data to be written into DDRAM
or CGRAM as well as temporarily store data read from DDRAM or CGRAM. Data
placed in the data register is automatically written into DDRAM or CGRAM by an in-
ternal operation.

Busy Flag

When BF (the busy flag) is 1, the HD44780U is in the internal operation mode, and the
next instruction not accepted. The busy flag is mapped to data bit 7. Software must en-
sure that the busy flag is reset (BF = 0) before the next instruction is entered.

Address Counter

AC (the address counter) stores the current address used in operations that access
DDRAM or CGRAM. When an instruction contains address information, the address is
stored in the address counter. The RAM area accessed—DDRAM or CGRAM—is also
determined by the instruction that stores the address in the AC.

The AC is automatically incremented or decremented after each instruction that
writes or reads DDRAM or CGRAM data. The variations and options in operations
that change the AC are described later in this chapter.

Display Data RAM (DDRAM)

DDRAM (the display data RAM area) is used to store the 8-bit bitmaps that represent
the display characters and graphics. Display data is represented in 8-bit character
codes. When equipped with the extension, its capacity is 80 x 8 bits, or 80 characters.
The area not used for storing display character can be used by software for storing any
other 8-bit data. The mapping of DDRAM locations to the LCD display is discussed in
Section 13.1.4.

Character Generator ROM (CGROM)

The character generator is a ROM that has the bitmaps for 208 characters in 5 x 8 dot
resolution or 32 characters in 5 x 10 dot resolution. Figure 13-1 shows the standard
character set in the HD44780.

276 Chapter 13

Figure 13-1 HD44780 Character Set

With a few exceptions, the characters in the range 0x20 to 0x7f correspond to
those of the ASCII character set. The remaining characters are Japanese kana char-
acters and special symbols. The characters in the range 0x0 to 0x1f,ASCII control
characters, do not function as such in the HD44780. Sending a backspace (0x08), a
bell (0x07), or a carriage return (0x0d) code to the controller has no effect.

Character Generator RAM (CGRAM)

CGRAM (the character generator RAM) allows the creation of customized characters
by defining the corresponding 5 x 8 bitmaps. Eight custom characters can be stored in
the 5 x 8 dot resolution and four in the 5 x 10 resolution. The creation and use of custom
characters is addressed later in this chapter.

Timing Generation Circuit

This circuit produces the timing signals for the operation of internal components cir-
cuits such as DDRAM, CGROM, and CGRAM. The timing generation circuit is not ac-
cessible to the program.

LCD Interfacing and Programming 277

Liquid Crystal Display Driver Circuit
The liquid crystal display driver circuit consists of 16 common signal drivers and 40
segment signal drivers. The circuit responds to the number of lines and the character
font selected. Once this is done, the circuit performs automatically and is not other-
wise accessible to the program.

Cursor/Blink Control Circuit
The cursor and blink control circuit generates both the cursor and the character blink-
ing. The cursor or the character blinking is applied to the character located in the data
RAM address referenced in the address counter (AC).

13.0.2 Connectivity and Pin-Out
LCDs are powerful yet complex devices. Fortunately, the programmer does not have
to deal with all the complexities of LCD displays since these devices are usually fur-
nished in a module that includes the LCD controller. Furthermore, most LCDs used in
microcontroller circuits are equipped with the same controller, the Hitachi HD44780.
This controller provides a relatively simple interface between a microcontroller and
the LCD.

But the fact that the HD44780 has become almost ubiquitous in LCD controller
technology does not mean that these devices are without complications. The first
difficulty confronted by the circuit designer is selecting the most appropriate LCD
for the application among dozens (perhaps hundreds) of available configurations,
each one with its own resolution, interface technology, size, graphics options, pin
patterns, and other individual features. In this sense, it may be better to experiment
with a simple LCD in a breadboard circuit before attempting a final circuit with
hardware.

Two common connectors used with the 44780-based LCDs have either 14 pins in a
single row, each pin spaced 0.100" apart, or two rows of eight pins each, also spaced
0.100" apart. In both cases, the pins are labeled in the LCD board. The two common
connectors are shown in Figure 13-2.

Figure 13-2 Typical HD44780 Connector Pin-Outs

278 Chapter 13

1

1

1314

2

14

In LCDs with a backlight option sometimes the connectors have two extra pins,
usually numbered 15 and 16. Pin number 15 is connected to a 5V source for the
backlight and pin number 16 to ground. Typical LCD wiring is shown in Table 13.1.

Table 13.1

Hitachi HD44780 LCD Controller Pin-Out (80 characters or less)

PIN NUMBER SYMBOL DESCRIPTION

1 Vss Ground
2 Vcc Vcc (Power supply +5V)
3 Vee Contrast control
4 RS Set/reset

0 = instruction input
1 = data input

5 R/W R/W (read/write select)
0 = write to LCD
1 = read LCD data

6 E Enable. Clock signal to
initiate data transfer

7 DB0 Data bus line 0
8 DB1 Data bus line 1
9 DB2 Data bus line 2
10 DB3 Data bus line 3
11 DB4 Data bus line 4
12 DB5 Data bus line 5
13 DB6 Data bus line 6
14 DB7 Data bus line 7

The pin-out in Table 13.1 refers to controllers that address no more than 80 char-
acters. In addition, some LCDs with LED backlighting contain two additional pins,
usually numbered 15 and 16. In these cases, pin number 15 is a +5 VDC source for
the backlight and pin 16 is the backlight ground.

From the pin-out in Table 13.1, it is evident that the interface to the LCD uses
eight parallel lines (lines 7 to 14). However, it is also possible to drive the LCD using
just four lines, saving connections on limited circuits.

The reader should beware that LCDs are often furnished in custom boards that
may or may not have other auxiliary components. These boards are often wired dif-
ferently from the examples shown in Figure 13-2. In all cases, the device’s documen-
tation and the corresponding data sheets should provide the appropriate wiring
information.

13.1 Interfacing with the HD44780
The Hitachi 44780 controller allows parallel interfacing using 4- or 8-bit data paths. In
the 4-bit mode, each data byte must be divided into a high-order and a low-order nibble
and are transmitted sequentially, the high-nibble first. In the 8-bit parallel mode, each
data byte is transmitted from the PIC to the controller as a unit. The advantage of using
the 4-bit mode is greater economy of I/O lines on the PIC side. The disadvantages are
slightly more complicated programming and minimally slower execution speed. Our
first example and circuit uses the 8-bit data mode so as to avoid complications. Once

LCD Interfacing and Programming 279

the main processing routines are developed, make the necessary modifications so as
to make possible the 4-bit data mode.

In addition to the data transmission mode, there are other circuit options to be
considered. Two control lines between the microcontroller and the HD44780-driven
LCD are necessary in all cases: one to the RS line to select between data and instruc-
tion input modes, and another one to the E line to provide the pulse that initiates the
data transfer. The R/W control line, which selects between the read and the write
mode of the LCD controller, can be connected or grounded. If the R/W line is not
connected to a microcontroller port, then the HD44780 operates only in the write
data mode and all read operations are unavailable.

13.1.1 Busy Flag or Timed Delay Options

Since many applications do not read text data from controller memory, the write-only
mode is often an attractive option, especially considering that microcontroller I/O
ports are often in short supply and that this option saves one port for other duties.
However, there is a less apparent drawback to not being able to read LCD data, which
is that the application is not able to monitor the busy flag. This flag, which indicates
that the controller has concluded its operation, is mapped to bit 7. Since testing the BF
requires reading this bit, not connecting the R/W line has the effect that applications
cannot use the busy flag and must rely on timing routines to ensure that each operation
completes before the next one begins. The timing requirements for each instruction
are listed in the rightmost column in Table 13.3. The subjects of timing and delay rou-
tines are discussed in detail later in this chapter.

For the circuit designer, to read or not to read controller data is a decision with
several tradeoffs. Using time delay routines to ensure that each controller operation
has concluded is a viable option that saves one interface line. On the other hand,
code that relies on timing routines is externally dependent on the clocks and timer
hardware. If code that relies on timing routines is ported to another circuit with a
different microcontroller, clocks, or timer hardware, the delays may change and the
routines could fail. Furthermore, the use of delay routines often is not efficient,
since controller operations can terminate before the timed delay has expired.

On the other hand, code that reads the busy flag to determine the termination of a
controller operation is not without dangers. If the controller or the circuit fails, then
the program can hang up in an endless loop, waiting for the busy flag to clear. To be
absolutely safe, the code would have to contain an external wait loop when testing
the busy flag, so that if the external loop expires, then the processing can assume
that there is a hardware problem and break out of the flag test loop. The program-
mer must decide whether this safety mechanism for reading the busy flag is neces-
sary since its implementation requires a somewhat complicated exception response.

In the code samples developed in this chapter, we implement both ways of ensur-
ing operation completion. The code also furnishes a software switch that allows se-
lecting the preferred option.

280 Chapter 13

13.1.2 Contrast Control
In addition to the control lines that require processor interface, the HD44780 contains
other control lines. One such line is used for the LCD contrast. The contrast control

line (usually labeled Vee) is connected to pin number 3 (see Table 13.1). The actual im-
plementation of the contrast control function varies according to the manufacturer.
In general, for an LCD with a normal temperature range, the contrast control line is
wired as shown in Figure 13-3.

Figure 13-3 Typical Contrast Adjustment Circuit

13.1.3 Display Backlight

Some LCDs are equipped with a LED backlight so as to make the displayed characters
more visible. In different LCDs, backlight is implemented in different ways. Some
manufacturers wire the backlight directly to the LCD power supply, while others pro-
vide additional pins that allow turning the backlight on or off independently of the
LCD display. Backlit displays with 14 pins belong to the first type, while those with 16
pins have independent backlight control. If the backlight pins are adjacent to the other
display pins, then they are numbered 15 and 16. In this case pin number 15 is wired,
through a current limiting resistor, to the +5V source and pin 16 to ground. Sometimes
the current-limiting resistor is built into the display. This information is available in
the device’s data sheet.

Note that some 4-line displays use pins 15 and 16 for other purposes. In these sys-
tems, backlight control, if available, is provided by separate pins.

13.1.4 Display Memory Mapping

The Hitachi HD44780 is a memory-mapped system in which characters are displayed
by storing their ASCII codes in the corresponding memory address associated with
each digit-display area. The area of controller RAM mapped to character-display mem-
ory has a capacity of 80 characters. This area is known as display data RAM or
DDRAM.

LCD Interfacing and Programming 281

HD44780

+5 V

10K Ohm

1

14

In order to save circuitry, the common lines of the controller outputs to the liquid
crystal display hardware are multiplexed. In this context, the duty ratio of a system
is the number of multiplexed common lines. The most common duty ratio is 1/16, al-
though 1/8 and 1/11 are found in some systems. Since the duty ratio measures the
number of multiplexed lines, it also determines the display mapping. For example,
in a single-line-by-16 character display with a 1/16 duty ratio the first eight charac-
ters are mapped to one set of consecutive memory addresses and the second eight
characters to another set of addresses. The reason is that in every display line, six-
teen common access lines are multiplexed, instead of eight. By the same token, a
two-line-by-sixteen character display with a 1/16 duty ratio requires 16 common
lines. In this case, the address of the second lines is not a continuation of the ad-
dress of the first line, but is in another address set not contiguous to the first one.

For example, in a typical two-line-by-sixteen character display, the addresses of
the 16 characters in the first line are from 0x00 to 0x0F, while the addresses of the
characters in the second line are from 0x40 to 0x4F. Since there are 80 memory loca-
tions in the controller’s DDRAM, each line contains storage for a total of 40 charac-
ters. The range of the entire first line is from 0x00 to 0x27 (40 characters total) but
of these, only 16 are actually displayed. The same applies to the second line of 16
characters. In this case, the storage area is in the range 0x28 to 0x4f, but only 16
characters are displayed. In the single-line-by-sixteen character display mentioned
first the addresses of the first eight characters would be a set from 0x00 to 0x07 and
the addresses of the second eight characters in the line are from 0x40 to 0x47. Table
13.2 lists the memory address mapping of some common LCD configurations.

Table 13.2

7-bit DDRAM Address Mapping for Common LCDs

CHARACTERS/ LINE CHARACTER FIRST IN NEXT IN LAST IN
ROW NUMBER NUMBER GROUP GROUP GROUP

8/1 1 1 0x00 0x01 0x07
8/2 1 1 0x00 0x01 0x07

2 1 0x40 0x41 0x47
16/1 1 1 0x00 0x01 0x07

1 9 0x40 0x41 0x47
16/2 1 1 0x00 0x01 0x0f

2 1 0x40 0x41 0x4f
20/2 1 1 0x00 0x01 0x13

2 1 0x40 0x41 0x53
24/2 1 1 0x00 0x01 0x17

2 1 0x40 0x41 0x57
16/4 1 1 0x00 0X01 0x0f

2 1 0x40 0x41 0x4f
3 1 0x10 0x11 0x1f
4 1 0x50 0x51 0x5f

20/4 1 1 0x00 0x01 0x13
2 1 0x40 0x41 0x53
3 1 0x14 0x15 0x27
4 1 0x54 0x55 0x67

282 Chapter 13

Note that systems that exceed a total of 80 characters require two or more
HD44780 controllers. Although the information provided in Table 13.3 corresponds
to the mapping in most LCDs, it is a good idea to consult the data sheet of the spe-
cific hardware in order to corroborate the address mapping in a particular device.

Table 13.3 contains the seven low-order bits of DDRAM addresses. HD44780 com-
mands to set the DDRAM address for read or write operations require that the
high-order bit (bit number 7) be set. Therefore, to write to DDRAM memory address
0x07, code uses the value 0x87, and to write to DDRAM address 0x43, code uses
0xc3 as the instruction operand.

13.2 HD44780 Instruction Set
The HD44780 instruction set includes operators to initialize the system and set opera-
tional modes, clear the display, manipulate the cursor, set, reset, and control auto-
matic display address shift, set and reset the interface parameters, poll the busy flag,
read and write to CGRAM and DDRAM memory.

13.2.1 Instruction Set Overview

Pin number 4 in Table 13.1 selects two modes of operation on the HD44780 controller:
instruction and data input. When the instruction mode is enabled (RS pin is set low)
the controller receives commands that set up the hardware and determine its configu-
ration and mode of operation. These commands are part of the HD44780 instruction
set shown in Table 13.3.

Table 13.3

HD44780 Instruction Set

INSTRUCTION RS R/W B7 B6 B5 B4 B3 B2 B1 B0 TIME

Clear Display 0 0 0 0 0 0 0 0 0 1 1.64
Return home 0 0 0 0 0 0 0 0 1 # 1.64
Entry mode set 0 0 0 0 0 0 0 1 I/D S 37
Display/Cursor
ON/OFF 0 0 0 0 0 0 1 D C B 37
Cursor/display shift 0 0 0 0 0 1 S/C R/L # # 37
Function set 0 0 0 0 1 DL N F # # 37
Set CGRAM address 0 0 0 1 ----------- address ------------------ 37
Set DDRAM address 0 0 1 ------------------ address ------------------ 37
Read busy flag and
Address register 0 1 BF ---------------- address ------------------ 0
Write data 1 0 --------------------------- data -------------------- 37
Read data 0 1 --------------------------- data -------------------- 37

Note: Bits labeled # have no effect.

Clearing the Display

Clearing the display clears the display with blanks by writing the code 0x20 into all
DDRAM addresses. It also returns the cursor to the home position (top-left display
corner) and sets address 0 in the DDRAM address counter. After this command exe-
cutes, the display disappears and the cursor goes to the left edge of the display.

LCD Interfacing and Programming 283

Return home

Return home returns the cursor to home position at the upper left position of the first
character line. It sets DDRAM address 0 in the address counter and sets the display to
its default status if it was shifted. DDRAM contents remain unchanged.

Entry mode set

Entry mode set sets the direction of cursor movement and the display shift mode. If B1
(I/D) bit is set, cursor handling is set to the increment mode, that is, left-to-right. If this
bit is clear, then cursor movement is set to the decrement mode, that is, right-to-left.

If B0 (S) bit is set, display shift is enabled. In the display shift mode, it appears as
if the display moves instead of the cursor; otherwise display shift is disabled. Opera-
tions that read or write to CGRAM and operations that read DDRAM do not shift the
display.

Display and Cursor ON/OFF

If B2 (D) bit is set, display is turned on. Otherwise, it is turned off. When the display is
turned off data in DDRAM is not changed.

If B1 (C) bit is set, the cursor is turned on. Otherwise, it is turned off. Operations
that change the current address in the DDRAM Address register, like those to auto-
matically increment or decrement the address, are not affected by turning off the
cursor. The cursor is displayed at the eighth line in the 5 x 8 character matrix.

If B0 (B) bit is set, the character at the current cursor position blinks. Otherwise,
the character does not blink. Note that character blinking and cursor are independ-
ent operations and that both can be set to work simultaneously.

Cursor/display shift

Cursor/display shift moves the cursor or shifts the display according to the selected
mode. The operation does not change the DDRAM content. Since the cursor position
always coincides with the value in the Address register, the instruction provides soft-
ware with a mechanism for making DDRAM corrections or to retrieve display data at
specific DDRAM locations. Table 13.4 lists the four available options:

Table 13.4

Cursor/Display Shift Options

BITS
S/C R/L OPERATION

0 0 Cursor position is shifted left. Address counter
is decremented by one.

0 1 Cursor position is shifted right. Address counter
is incremented by one.

1 0 Cursor and display are shifted left.
1 1 Cursor and display are shifted right.

284 Chapter 13

Function set

Function set sets the parallel interface data length, the number of display lines, and
the character font. If B4 (DL) bit is set, then the interface is set to eight bits. Otherwise
it is set to four bits. If B3 (N) bit is zero, the display is initialized for 1/8 or 1/11 duty cy-
cle. When the N bit is set, the display is set to 1/16 duty cycle. Displays with multiple
lines typically use the 1/16 duty cycle. The 1/16 duty cycle on a one-line display appears
as if it were a two-line display, that is, the line consists of two separate address groups
(see Table 13.2).

If B2 (F) bit is set then the display resolution is 5 x 10 pixels. Otherwise the reso-
lution is 5 x 8 pixels. This bit is not significant when the 1/16 duty cycle is selected;
that is, when the N bit is set.

The function set instruction should be issued during controller initialization. No
other instruction can be executed before this one, except for changing the interface
data length.

Set CGRAM address

Set CGRAM address sets the CGRAM (character generator RAM) address to which
data is sent or received after this operation. The CGRAM address is a six-bit field in the
range 0 to 64 decimal. Once a value is entered in the CGRAM Address register, data can
be read or written from CGRAM.

Set DDRAM address

Set DDRAM address sets the DDRAM (display data RAM) address to which data is
sent or received after this operation. The DDRAM address is a seven-bit field in the
range 0 to 127 decimal. Once a value is entered in the DDRAM Address register, data
can be read or written from CGRAM. DDRAM address mapping is discussed in Section
13.1.4.

Read busy flag and Address register

Read busy flag and Address register reads the busy flag to determine if an internal op-
eration is in progress and reads the address counter content. The value in the Address
register is reported in bits 0 to 6. Bit 7 (BF) is the busy flag bit. This bit is read only. The
address counter is incremented or decremented by 1 (according to the mode set) after
the execution of a data write or read instruction.

Write data

Write data writes eight data bits to CGRAM or DDRAM. Before data is written to either
controller RAM area, software must first issue a set DDRAM address or set CGRAM ad-
dress instruction (described previously). These two instructions not only set the next
valid address in the Address register, but also select either CGRAM or DDRAM for
writing operations. What other actions take place as data is written to the controller
depends on the settings selected by the entry mode set instruction. If the direction of
cursor movement or data shift is in the increment mode, then the data write operation
adds one to the value in the Address register. If the cursor movement is enabled, then
the cursor is moved accordingly after data write takes place. If the display shift mode
is active, then the displayed characters are shifted either right or left.

LCD Interfacing and Programming 285

Read data
Read data reads eight data bits to CGRAM or DDRAM. Before data is read from either
controller RAM area, software must first issue a set DDRAM address or set CGRAM ad-
dress instruction. These instructions not only set the next valid address in the Address
register, but also select either CGRAM or DDRAM for writing operations. Failing to set
the corresponding RAM area results in reading invalid data.

What other actions take place as data is read from the controller RAM depends on
the settings selected by the entry mode set instruction. If the direction of cursor
movement or data shift is in the increment mode, then the data read operation adds
one to the value in the Address register. However, display is no shifted by a read op-
eration even if the display shift is active.

The cursor shift instruction has the effect of changing the content of the Address
register. So if a cursor shift precedes a data read instruction, there is not need to re-
set the address by means of an address set command.

13.2.2 A 16F84 8-bit Data Mode Circuit
The first circuit presented in this chapter is experimental. Its purpose is to exercises
LCD display functions in the simplest forms. Therefore, the circuit uses 8-bit parallel

data transmission interfacing with a 16F84 microcontroller. The circuit is shown in
Figure 13-4.

Figure 13-4 16F84 to LCD 8-bit Mode Circuit

286 Chapter 13

16F84

HD44780

HD44780 pin out

1 GND

2 DC +5v

3 Contrast adjust

4 RS (register select)

5 R/W (read/write select)

6 E (signal enable)

7-14 Data bits 0 to 7

4 MHz
Osc

100 Ohms

RESET

+5 V

+5 V

BF

+5 V

E R/W RS

10 K

RA2 RA3

RA4/

T0Tkl MCLR Vss RB0/INT RB1 RB2 RB3

1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

RA1 RA0 OSC1 OSC2 Vdd RB7 RB6 RB5 RB4

1

14

E

RS

R/W

In the circuit of Figure 13-4, three control lines are wired between the
microcontroller and the LCD. The line designations are shown inside ovals. The R/W
line is not necessary, since it is possible to devise a system that does not read LCD
data. In spite of this, the R/W line is not included since it allows reading the busy
flag in synchronizing operations. Table 13.5 shows the control and data connections
for the circuit in Figure 13-4.

Table 13.5

Connections for 16F84/LCD 8-bit Data Mode Circuit

16F84 LCD LINE
PIN PORTBIT PIN NAME FUNCTION

1 A2 4 RS Select instruction/
data register

2 A3 5 R/W Read/write select
18 A1 6 E Enable signal
13 B7 14 before Busy flag.
6-13 B0-B7 7-14 Data Data lines

13.3 LCD Programming
LCD programming is usually device-specific. Before attempting to write code, the pro-
grammer should become familiar with the circuit wiring diagram, the set up parame-
ters, and the specific hardware requirements. It is risky to make assumptions that a
specific device conforms exactly to the HD44780 interface since often a style sheet
contains specifications that are not in strict conformance with the standard. In addi-
tion to the PIC set up and initialization functions, code to display a simple text mes-
sage on the LCD screen consists of the following display-related functions:

1. Define the required constants, variables, and buffers.

2. Set up and initialize ports used by the LCD.

3. Initialize the LCD to circuit and software specifications.

4. Store text in PIC text buffer.

5. Select DDRAM start address on LCD.

6. Display text by transferring characters in PIC text buffer to LCD DDRAM.

If the LCD display consists of multiple lines, then the previous steps 4, 5, and 6
are repeated for each line. LCD initialization and display operations vary according
to whether the interface is 4- or 8-bits and whether the code uses delay loops or
busy flag monitoring to synchronize operations. All of these variations are consid-
ered in the examples in this chapter.

13.3.1 Defining Constants and Variables

In any program, defining and documenting constants and fixed parameters should be
done centrally, rather than hard-coded through the code. Centralizing the elements
that are variable under different circumstances makes it possible to adapt code to cir-
cuit and hardware changes.

LCD Interfacing and Programming 287

Two common ways are available for defining constants: the C-like #define direc-
tive and the equ (equate) directive. In most cases, it is a matter of personal prefer-
ence which is used, but a general guideline is to use the #define statement to create
literal constants; that is, constants that are not associated with program registers or
variables. The equ directive is then used to define registers, flags, and local vari-
ables.

According to this scheme, an LCD display driver program could use #define

statements to create literals that are related to the wiring diagram or the specific
LCD values obtained from the data sheet, such as the DDRAM addresses for each
display line, as in the following code fragment:

;===

; constant definitions

; for PIC-to-LCD pin wiring and LCD line addresses

;===

#define E_line 1 ;|

#define RS_line 2 ;| — from wiring diagram

#define RW_line 3 ;|

; LCD line addresses (from LCD data sheet)

#define LCD_1 0x80 ; First LCD line constant

#define LCD_2 0xc0 ; Second LCD line constant

By the same token, the values associated with PIC register addresses and bit flags
are defined using equ, as follows:

;===

; PIC register equates

;===

porta equ 0x05

portb equ 0x06

fsr equ 0x04

status equ 0x03

indf equ 0x00

z equ 2

One advantage of this scheme is that constants are easier to locate, since they are
grouped by device. Those for the LCD are in #define directives area and those for
the PIC hardware in an area of equ directives.

There are also drawbacks to this approach, since symbols created in #define di-
rective are not available for viewing in the MPLAB debuggers. However, if the use of
the #define directive is restriced to literal constants, then their viewing during a de-
bugging session is not essential.

MPLAB also supports the constant directive for creating a constant symbol. Its
use is identical to the equ directive but the latter is more commonly found in code.

288 Chapter 13

Using MPLAB Data Directives

Often a program needs to define a block of sequential symbols and assign to each one a
corresponding name. In the PIC 16f84, the address space allocated to general purpose
registers allocated by the user is of 68 bytes, starting at address 0x0c. One possible
way of allocating user-defined registers is to use the equ directive to assign addresses
in the PIC SRAM space:

Var1 equ 0x0c

Var2 equ 0x0d

Var3 equ 0x0e

Buf1 equ 0x0f ; 10-byte buffer space

Var4 equ 0x19 ; Next variable

Although this method is functional, it depends on the programmer calculating the
location of each variable in the PIC’s available SRAM space. Alternatively, MPLAP
provides a cblock directive that allows defining a group of consecutive sequential
symbols while referring only to the address of the first element in the group. If no
address is entered in cblock, then the assembler assigns the address. This address
is one higher than the final address in the previous cblock. Each cblock ends with
the endc directive. The following code fragment showing the use of the cblock di-
rective is from one of the sample programs for this chapter.

;===

; variables in PIC RAM

;===

; Reserve 16 bytes for string buffer

cblock 0x0c

strData

endc

; Leave 16 bytes and continue with local variables

cblock 0x1d ; Start of block

count1 ; Counter # 1

count2 ; Counter # 2

count3 ; Counter # 3

pic_ad ; Storage for start of text area

; (labeled strData) in PIC RAM

J ; counter J

K ; counter K

index ; Index into text table

endc

Note in the preceding code fragment, the allocation for the 16-byte buffer space
named strData is ensured by entering the corresponding start address in the second
cblock. The PIC microcontrollers do not contain a directive for reserving memory
areas inside cblock, although the res directive can be used to reserve memory for
individual variables.

LCD Interfacing and Programming 289

13.3.2 LCD Initialization
LCD initialization depends on the specific hardware in use and on the circuit wiring.
Information about the specific LCD can be obtained from the device’s data sheet.
Sometimes, the data sheet includes examples of initialization values for different con-
ditions and even code listings. The information is usually sufficient to ensure correct
initialization.

A word of warning: the popular LCD literature available online often contains ini-
tialization “myths” for specific components requiring that a certain mystery code be
used for no documented reason, or that a certain function be repeated a given num-
ber of times. The programmer should make sure that the code is rational and that ev-
ery operation is actually required and documented.

Before the LCD initialization commands are used it is necessary to set the com-
munications lines correctly. The E line should be low, the RS line should be low for
command, and the R/W line (if connected) should be low for write mode. After the
lines are set accordingly, there should be a 125ms delay. Note that at this point, the
LCD busy flag is not yet reliable. The following code fragment shows the processing:

bcf porta,E_line ; E line low
bcf porta,RS_line ; RS line low for command
bcf porta,RW_line ; Write mode
call delay_125 ; delay 125 microseconds

The procedure delay_125 in the previous code fragment is described later in this
chapter.

Function Set Command
Function set is the first initialization command sent to the LCD. The command deter-
mines whether the display font consists of 5 x 10 or 5 x 7 pixels. The latter is by far the
more common. It determines the duty cycle, which is typically 1/8 or 1/11 for sin-
gle-line displays and 1/16 for multiple lines. The interface width is also determined in
the Function Set command. It is 4-bits or 8-bits. The following code fragment shows
the commented code for the Function Set command:

;***********************|
; Function Set |
;***********************|

movlw 0x38 ; 0 0 1 1 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16 (multiple ines)
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

290 Chapter 13

movwf portb
call pulseE ;pulse E line to force LCD command

In the preceding code fragment, the LCD is initialized to multiple lines, 5 x 7 font,
and 8-bit interface, as in the program LCDTest1 found in the book’s online software
package.

The procedure named pulseE sets the E line bit off and on to force command rec-
ognition by the LCD. The procedure is listed and described later in the chapter.

Display Off
Some initialization routines in LCD documentation and data sheets require that the
display be turned off following the Function Set command. If so, the Display Off com-
mand is executed as follows:

;***********************|
; Display Off |
;***********************|

movlw 0x08 ; 0 0 0 0 1 0 0 0 (DISPLAY ON/OFF)
; | | | |___ Blink character at
; | | | | Cursor
; | | | 1 = on, 0 = off
; | | |___ Curson on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf portb
call pulseE ; pulse E line to force LCD command

Display and Cursor On
Whether or not the display is turned off, it must be turned on first. Also code must se-
lect if the cursor is on or off, and whether the character at the cursor position is to
blink. The following command sets the cursor and the display on and the character
blink off:

;***********************|
; Display and Cursor On |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character at
; | | | | cursor
; | | | 1 = on, 0 = off
; | | |___ Curson on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

LCD Interfacing and Programming 291

movwf portb
call pulseE ; pulse E line to force LCD command

Set Entry Mode
The Entry Mode Command sets the direction of cursor movement or display shift

mode. Normally, the display is set to the increment mode when writing in the Western
European languages. The Entry Mode command controls display shift. If enabled, the
displayed characters appear to scroll. This mode is used to simulate an electronic bill-
board effect by storing more than one line of characters in DDRAM and then scrolling
the characters left-to-right. The following code sets entry mode to increment mode
and no shift:

;***********************|
; Set Entry Mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ cursor increment
; | mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

movwf portb ;00000110
call pulseE

Operations that read or write to CGRAM and operations that read DDRAM do not
shift the display.

Cursor and Display Shift
These commands determine whether the cursor or the display shift according to the
selected mode. Shifting the cursor or the display provides a software mechanism for
making DDRAM corrections or for retrieving display data at specific DDRAM loca-
tions. The four available options appear in Table 13.4 previously in this chapter. The
following instructions set the cursor to shift right and disable display shift:

;***********************|
; Cursor/Display Shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
; | | | | | SHIFT)
; | | | |_|___ don’t care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left

292 Chapter 13

; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

movwf portb ;0001 1111
call pulseE

Clear Display
The final initialization command is usually one to clear the display. It is entered as fol-
lows:

;***********************|
; Clear Display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

movwf portb ;0000 0001
call pulseE
call delay_5 ;delay 5 milliseconds after init

Note that the last command is followed by a 5ms delay. The delay procedure de-
lay_5 is listed and described later in this chapter.

13.3.3 Auxiliary Operations
Several support routines are required for effective text display in LCD devices. These
include time delay routines for timed access, a routine to pulse the E line in order to
force the LCD to execute a command or to read or write text data, routines to read the
busy flag when this is the method used for processor/LCD synchronization, and rou-
tines to merge data with port bits so as to preserve the status of port lines not being ad-
dressed by code.

Time Delay Routine
There are several ways of producing time delays in PIC microcontroller. The Bibliog-
raphy lists a title by David Benson devoted almost entirely to timing and counting rou-
tines. The present concern is quite simple: to develop a software routine that ensures
the time delay that must take place in LCD programming, as shown in Table 13.3.

One mechanism for producing time delays in PIC programming is by means of the
TIMER0 module, a built-in 8-bit timer counter. Once enabled, Port-A pin 4, labeled
the TOCKI bit and associated with file register 01 (TMR0), is used to time processor
operations. In the particular case of LCD timing routines, using the TIMER0 module
seems somewhat of an overkill, in addition to the fact that it requires the use of a
Port-A line which is often required for other purposes.

Alternatively, timing routines that serve the purpose at hand can be developed us-
ing simple delay loops. In this case, no port line is sacrificed and coding is consider-
ably simplified. These routines are generically labeled software timers, in contrast
with the hardware timers that depend on the PIC timer/counter device described
previously. Software timers provide the necessary delay by means of program loops;

LCD Interfacing and Programming 293

that is, by wasting time. The length of delay provided by the routine depends on the
execution time of each instruction and on the number of repeated instructions.

Instructions on the PIC 16f84 consume four clock cycles. If the processor clock is
running at 4 MHz, then one fourth of 4 MHz is the execution time for each instruc-
tion, which is 1 µs. So if each instructions requires 1 µs, repeating 1000 instructions
produces a delay of 1 ms. The following routines provide convenient delays for LCD
interfacing:

;=======================
; Procedure to delay
; 125 microseconds
;=======================
delay_125mics:

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat:
decfsz count1,f ; Decrement counter (1 cycle)
goto repeat ; Continue if not 0 (2 cycles)

; 42 * 3 = 126
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5ms:

movlw D’41’ ; Counter = 41
movwf count2 ; Store in variable

delay:
call delay_125mics ; Delay 41 microseconds
decfsz count2,f ; 41 times 125 = 5125 ms.

; or approximately 5 ms
goto delay
return ; End of delay

Actually, the delay loop of the procedure named delay_5ms is not exactly the
product of 41 iterations times 125 µs, since the instruction to decrement the counter
and the goto to the label delay are also inside the loop. Three instruction cycles
must be added to those consumed by the delay_125mics procedure. This results in a
total of 41 * 3 or 123 instruction cycles that must be added to the 5,125 consumed by
delay_125mics. In fact, there are several other minor delays by the instructions to
initialize the counters that are not included in the calculation. In reality, the delay
loops required for LCD interfacing need not be exact, as long as they are not shorter
than the recommended minimums.

For calculating software delays in the 16f84, the instruction execution time is de-
termined by an external clock either in the form of an oscillator crystal, a resonator,
or an RC oscillator furnished in the circuit. The PIC 16f84A is available in various
processor speeds, from 4MHz to 20MHz. These speeds describe the maximum ca-

294 Chapter 13

pacity of the PIC hardware. The actual instruction speed is determined by the clock-
ing device, so a 20 MHZ 16f84A using a 4 MHz oscillator effectively runs at 4 MHz.

Pulsing the E Line

The LCD hardware does not recognize data as it is placed in the input lines. When the
various control and data pins of the LCD are connected to ports in the PIC and data is
placed in the port bits, no action takes place in the LCD controller. In order for the con-
troller to respond to commands or to perform read or write operations, it must be acti-
vated by pulsating (or strobing) the E line. The pulsing or strobing mechanism
requires that the E line be kept low and then raised momentarily. The LCD checks the
state of its lines on the raising edge of the E line. Once the command has completed,
the E line is brought low again. The following code fragment pulses the E line in the
manner described.

;========================
; pulse E line
;========================
pulseE

bsf porta,E_line ; pulse E line
bcf porta,E_line
call delay_125mics ; delay 125 microseconds
return

Note that the listed routine includes a 125µs delay following the pulsing opera-
tion. This delay is not part of the pulse function but is required by most LCD hard-
ware. Some pulse functions in the popular PIC literature include a no operation

opcode (nop) between the commands to set and clear the E line. In most cases this
short delay does not hurt, but some LCDs require a minimum time lapse during the
pulse and will not function correctly if the nop is inserted in the code.

Reading the Busy Flag

Synchronization between LCD commands and between data access operations is
based on time delay loops or on reading the LCD busy flag. The busy flag, which is in
the same pin as the bit 7 data line, is read clear when the LCD is ready to receive the
next command, read, or write operation and is set if the device is not ready. By reading
the state of the busy flag, code can accomplish more effective synchronization than
with time delay loops. The sample program named LCDTest2, in the book’s online soft-
ware package, performs LCD display using the busy flag method. The following proce-
dure shows busy flag synchronization:

;========================
; busy flag test routine
;========================
; Procedure to test the HD44780 busy flag
; Execution returns when flag is clear
busyTest:

movlw b’11111111’ ; All lines to input
tris portb ; in port B
bcf porta,RS_line ; RS line low for control

LCD Interfacing and Programming 295

bsf porta,RW_line ; Read mode
bsf porta,E_line ; E line high
movf portb,w ; Read port B into W

; Port B bit 7 is busy flag
bcf porta,E_line ; E line low
andlw 0x80 ; Test bit 7, high is busy
btfss status,z ; Test zero bit in STATUS
goto busyTest ; Repeat if set

; At this point busy flag is clear
; Reset R/W line and port B to output

bcf porta,RW_line ; Clear R/W line
movlw b’00000000’ ; All lines to output
tris portb ; in port B
return

Note that testing the busy flag requires setting the LCD in read mode, which in
turn requires implementing a connection between a PIC port and the R/W line. Also
that the listed procedure contains no safety mechanism for detecting a hardware er-
ror condition in which the busy flag never clears. If such were the case, the program
would hang in a forever loop. To detect and recover from this error the routine
would have to include an external timing loop or some other means of recovering a
possible hardware error.

Bit Merging Operations
Often, PIC/LCD circuits do not use all of the lines in an individual port. In this case the
routines that manipulate PIC/LCD port access should not change the settings of other
port bits. This situation is not exclusive to LCD interfacing; the discussion that follows
has many other applications in PIC programming.

A processing routine can change one or more port lines without affecting the re-
maining ones. For example, an application that uses a 4-bit interface between the
PIC and the LCD typically leaves four unused lines in the access port, or uses some
of these lines for interface connections. In this case, the programming problem can
be described as merging bits of the data byte to be written to the port and some ex-
isting port bits. One operand is the access port value and the other one is the new
value to write to this port. If the operation at hand uses the four high-order port bits,
then its four low-order bits must be preserved. The logic required is simple: AND the
corresponding operands with masks that clear the unneeded bits and preserve the
significant ones, then OR the two operands. The following procedure shows the re-
quired processing:

;=================
; merge bits
;=================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of port B
; so as to preserve the 4 low-bits in port B
; Logic:
; AND value with 1111 0000 mask

296 Chapter 13

; AND port B with 0000 1111 mask
; At this point low nibble in value and high
; nibble in port B are all 0 bits:
; value = vvvv 0000
; port B = 0000 bbbb
; OR value and port B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf portb,w ; port B to w register
andlw b’00001111’ ; Clear high nibble in port b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

Note that this particular example refers to merging two operand nibbles. The
code can be adapted to merge other size bit-fields by modifying the corresponding
masks. For example, the following routine merges the high-order bit of one operand
with the seven low-order bits of the second one:

; Routine to merge the high-order bit of the first operand with
; the seven low-order bits of the second operand
; ON ENTRY:
; w contains value bits of first operand
; port b is the second operand
merge1:

andlw b’10000000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf portb,w ; port B to w register
andlw b’01111111’ ; Clear high-order bit in

; port b and preserve the
; seven low order bits

iorwf store2,w ; OR two operands in w
return

Popular PIC literature describes routines to merge bit fields by assuming certain
conditions in the destination operand, then testing the first operand bit to determine
if the assumed condition should be preserved or changed. This type of operation is
sometimes called “bit flipping,” for example:

LCD Interfacing and Programming 297

flipBit7:
; Code fragment to test the high-order bit in the variable named
; oprnd1 and preserve its status in the register variable portb

bcf portb,7 ; Assume oprnd1 bit is reset
btfsc oprnd1,7 ; Test operand bit and skip if

; clear (assumption valid)
bsf portb,7 ; Set bit if necessary
return

The logic in bit-flipping routines contains one critical flaw: if the assumed condi-
tion is false then the second operand is changed improperly, even if for only a few
microseconds. However, the incorrect value can produce errors in execution if it is
used by another device during this period. Since there is no such objection to the
merge routines based on masking, the programmer should always prefer them.

13.3.4 Text Data Storage and Display
Text display operations require some way of generating the ASCII characters that are
to be stored in DDRAM memory. Although the PIC Assembler contains several opera-
tors to generate ASCII data in program memory, there is no convenient way of storing a
string in the General Purpose register area. Even if this was possible, SRAM is typi-
cally in short supply and text strings gobble up considerable data space.

Several possible approaches are available. The most suitable one depends on the
total string length to be generated or stored, whether the strings are reused in the
code, and other program-related circumstances. In this sense, short text-strings can
be produced character-by-character and sent sequentially to DDRAM memory by
placing the characters in the corresponding port and pulsing the E line.

The following code fragment consecutively displays the characters in the word
“Hello.” Code assumes that the command to set the Address register has been en-
tered previously:

; Generate characters and send directly to DDRAM
movlw ‘H’ ; ASCII for H in w
movwf portb ; Store code in port B
call pulseE ; Pulse E line
movlw ‘e’ ; Continues
movwf portb
call pulseE
movlw ‘l’
movwf portb
call pulseE
movlw ‘l’
movwf portb
call pulseE
movlw ‘o’
movwf portb
call pulseE
call delay_5

298 Chapter 13

Note in the preceding fragment, the code assumes that the LCD has been initial-
ized to automatically increment the Address register left-to-right. For this reason,
the Address register is bumped to the next address with each port access.

Generating and Storing a Text String
An alternative approach suitable for generating and displaying longer strings consists
of storing the string data in a local variable (sometimes called a buffer) and then trans-
ferring the characters, one by one, from the buffer to DDRAM. This kind of processing
has the advantage of allowing the reuse of the same string and the disadvantage of us-
ing up scarce data memory. The logic for one possible routine consists of first generat-
ing and storing in PIC RAM the character string, then retrieving the characters from
the PIC RAM buffer and displaying them. The character generation and storage logic is
shown in Figure 13-5.

Figure 13-5 Flowchart for String Generation Logic

The processing is demonstrated in the following procedure.

;===============================
; first text string procedure
;===============================
storeMN:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM

LCD Interfacing and Programming 299

START

END

YES

NO

Buffer pointer = 0

Get character using

generator

Store character in buffer

Bump buffer pointer

Character = 0

?

; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in fsr

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf fsr ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc status,z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by fsr)

movwf indf ; store in buffer by fsr
incf fsr,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
msg1:

addwf PCL,f ; Access table
retlw ‘M’
retlw ‘i’
retlw ‘n’
retlw ‘n’
retlw ‘e’
retlw ‘s’
retlw ‘o’
retlw ‘t’

300 Chapter 13

retlw ‘a’
retlw 0 ; terminator character

The auxiliary procedure named msg1, listed in the preceding code fragment, per-
forms the character-generator function by producing each of the ASCII characters in
the message string. Since a retlw instruction is necessary for each character, one in-
struction space in program memory is used for each character generated, plus a fi-
nal binary zero for the string terminator.

Displaying the Text String
Once the string is stored in a local buffer, it is displayed by moving each ASCII code
from the buffer into LCD DDRAM. Here again, we assume that the LCD has previously
been set to the auto increment mode and that the Address register has been properly
initialized with the corresponding DDRAM address. The following procedure demon-
strates initialization of the DDRAM Address register to the value defined in the con-
stant named LCD_1:

;========================
; Set Address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf porta,E_line ; E line low
bcf porta,RS_line ; RS line low, set up for

; control
call delay_125 ; delay 125 microseconds

; Set to second display line
Movlw LCD_1 ; Address and command bit
movwf portb
call pulseE ; Pulse and delay

; Set RS line for data
bsf porta,RS_line ; Set up for data
call delay_125mics ; Delay
return

Once the Address register has been set up, the display operation consists of trans-
ferring characters from the PIC RAM buffer into LCD DDRAM. The following proce-
dure can be used for this:

;=============================
; LCD display procedure
;=============================
; Sends 16 characters from PIC buffer, with address stored
; in variable pic_ad, to LCD line previously selected
display16:
; Set up for data

bcf porta,E_line ; E line low

LCD Interfacing and Programming 301

bsf porta,RS_line ; RS line low for control
call delay_125 ; Delay

; Set up counter for 16 characters
movlw D’16’ ; Counter = 16
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf fsr ; W to FSR

getchar:
movf indf,w ; get character from display RAM

; location pointed to by file select
; register

movwf portb
call pulseE ;send data to display

; Test for 16 characters displayed
decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf fsr,f ; Bump pointer
goto getchar

Note the procedure display16, previously listed, assumes that the address of the
local buffer is stored in a variable name pic_ad. This allows reusing the procedure to
display text stored at other locations in PIC RAM.

The previously listed procedures demonstrate just one of many possible varia-
tions on this technique. Another approach is to store the characters directly in
DDRAM memory as they are produced by the message-returning routine, thus avoid-
ing the display procedure entirely. In this last case, the programming saves some
data memory space at the expense of having to generate the message characters
each time they are needed. Which approach is the most suitable one depends on the
application.

13.3.5 Data Compression Techniques
Circuits based on the parallel data transfer of eight data bits require eight devoted port
lines. Assuming that three other lines are required for LCD commands and interfacing
(RS, E, and R/W lines), then 11 PIC-to-LCD lines are needed, leaving two free port lines
at the most, on an 16f84 microcontroller. Not many useful devices can make do with
just two port lines. Several possible solutions allow compressing the data transfer
function. The most obvious one is to use the 4-bit data transfer mode to free four port
lines. Other solutions are based on dedicating logic components to the LCD function.

4-bit Data Transfer Mode
One possible solution is to use the capability of the Hitachi 44780 controller that al-
lows a parallel interface using just four data paths instead of eight. The objections are
that programming in 4-bit mode is slightly more convoluted and there is a very minor
performance penalty. In 4-bit mode, data must be sent one nibble at a time, so execu-

302 Chapter 13

tion is slower. Since the delay is required only after the second nibble, the execution
time penalty for 4-bit transfers is not very large.

Many of the previously developed routines for 8-bit data mode can be reused
without modification in the 4-bit mode. Others require minor changes, and there is
one specific display procedure that must be developed ad hoc. The first required
change is in the LCD initialization since bit 4 in the Function Set command must be
clear for a 4-bit interface. The remaining initialization commands should require no
further change, although it is a good idea to consult the data sheet for the LCD hard-
ware in use.

Displaying data using a 4-bit interface consists of sending the high-order nibble
followed by the low-order nibble, through the LCD 4-high-order data lines, usually
labeled DB5 to DB7. The pulsing of line E follows the last nibble sent. It is usually
the case in the 16f84 PIC that circuit wiring in the 4-bit mode uses four of five lines
in Port-A, or four of eight lines in port B. Software must provide a way of reading
and writing to the appropriate port lines, the ones used in the data transfer, without
altering the value stored in the port bits dedicated to other uses. Bit merging rou-
tines, discussed in Section 13.3, are quite suitable for the purpose at hand.

The following procedures are designed to send the two nibbles of a data byte
through the four high-order lines in port B. The auxiliary procedure named merge4
performs the bit-merging operation while the procedure named send8 does the ac-
tual write operation:

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to port B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with port B

; Now w has merged byte
movwf portb ; w to port B
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf portb
call pulseE ; Send data to LCD
call delay_125
return

;=================
; merge bits

LCD Interfacing and Programming 303

;=================

; Routine to merge the 4 high-order bits of the

; value to send with the contents of port B

; so as to preserve the 4 low-bits in port B

; Logic:

; AND value with 1111 0000 mask

; AND port B with 0000 1111 mask

; Now low nibble in value and high nibble in

; port B are all 0 bits:

; value = vvvv 0000

; port B = 0000 bbbb

; OR value and port B resulting in:

; vvvv bbbb

; ON ENTRY:

; w contain value bits

; ON EXIT:

; w contains merged bits

merge4:

andlw b’11110000’ ; ANDing with 0 clears the

; bit. ANDing with 1 preserves

; the original value

movwf store2 ; Save result in variable

movf portb,w ; port B to w register

andlw b’00001111’ ; Clear high nibble in port b

; and preserve low nibble

iorwf store2,w ; OR two operands in w

return

The program named LCDTest3 in the book’s online software package is a demon-
stration using the 4-bit interface mode. Figure 13-6 shows a PIC/LCD circuit that is
wired for the 4-bit data transfer mode.

Note in the circuit of Figure 13-6 that a total of six port lines remain unused. Two
of these lines are in Port-A and four in Port-B.

Master/Slave Systems

To this point we have assumed that driving the LCD is one of the functions per-
formed by the PIC microcontroller, which also executes the other circuit functions.
In practice, such a scheme is rarely viable for two reasons: the number of interface
lines required and the amount of PIC code space used up by the LCD driver routines.
A more efficient approach is to dedicate a PIC exclusively to controlling the LCD
hardware, while one or more other microcontrollers perform the main circuit func-
tions. In this scheme, the PIC devoted to the LCD function is referred to as a slave

while the one that sends the display commands is called the master.

304 Chapter 13

Figure 13-6 PIC/LCD Circuit for 4-bit Data Mode

When sufficient numbers of interface lines are available, the connection between
master and slave can be simplified by using a parallel interface. For example, if four
port lines are used to interconnect the two PICs, then 16 different command codes
can be sent to the slave. The slave reads the communications lines much like it
would read a multiple toggle switch. A simple protocol can be devised so that the
slave uses these same interface lines to provide feedback to the master. For exam-
ple, the slave sets all four lines low to indicate that it is ready for the next command,
and sets them high to indicate that command execution is in progress and that no
new commands can be received. The master, in turn, reads the communications
lines to determine when it can send another command to the slave.

But using parallel communications between master and slave can be a
self-defeating proposition, since it requires at least seven interface lines to be able

LCD Interfacing and Programming 305

16F84

HD44780

HD44780 pin out

1 GND

2 DC +5v

3 Contrast adjust

4 RS (register select)

5 R/W (read/write select)

6 E (signal enable)

11-14 Data bits 4 to 7

4 MHz
Osc

100 Ohms

RESET

+5 V

+5 V

+5 V

E R/W RS

10 K

RA2 RA3

RA4/

T0Tkl MCLR Vss RB0/INT RB1 RB2 RB3

1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

RA1 RA0 OSC1 OSC2 Vdd RB7 RB6 RB5 RB4

1

14

E

RS

R/W

to send ASCII characters. Since the scarcity of port lines is the original reason for
using a master/slave set up, parallel communications may not be a good solution in
many cases. On the other hand, communications between master and slave can take
place serially, using a single interface line. The discussion of using serial interface

between a master and an LCD slave driver PIC is left for the chapter on serial com-
munications.

13.4 Sample Programs
The following section lists the sample programs discussed in this chapter.

13.4.1 LCDTest1
; File name: LCDTest1.asm

; Date: April 13, 2006

; Author: Julio Sanchez

; Processor: 16F84A

;

; Description:

; Program to exercise 8-bit PIC-to-LCD interface.

; Code assumes that LCD is driven by Hitachi HD44780

; controller and that the display supports two lines

; each one with 16 characters. The wiring and base

; address of each display line is stored in #define

; statements. These statements can be edited to

; accommodate a different set-up.

; Program uses delay loops for interface timing.

; WARNING:

; Code assumes 4Mhz clock. Delay routines must be

; edited for faster clock

; Displays: Minnesota State, Mankato

;

;===========================

; switches

;===========================

; Switches used in __config directive:

; _CP_ON Code protection ON/OFF

; * _CP_OFF

; * _PWRTE_ON Power-up timer ON/OFF

; _PWRTE_OFF

; _WDT_ON Watchdog timer ON/OFF

; * _WDT_OFF

; _LP_OSC Low power crystal occilator

; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)

; Resonator: Murate Erie CSA8.00MG = 8 MHz

306 Chapter 13

; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates set up values

;=========================
; set up and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 2 ;| — from wiring diagram
#define RW_line 3 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command
;
;===
; variables in PIC RAM
;===
; Reserve 16 bytes for string buffer

cblock 0x0c
strData
endc

; Leave 16 bytes and Continue with local variables
cblock 0x1d ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
pic_ad ; Storage for start of text area

; (labeled strData) in PIC RAM
J ; counter J
K ; counter K
index ; Index into text table (also used

; for auxiliary storage)
endc

;==
; program

LCD Interfacing and Programming 307

;==
org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
movlw b’00000000’ ; All lines to output
tris PORTA ; in Port-A
tris PORTB ; and port B
movlw b’00000000’ ; All outputs ports low
movwf PORTA
movwf PORTB

; Wait and initialize HD44780
call delay_5ms ; Allow LCD time to initialize

; itself
call initLCD ; Then do forced

; initialization
call delay_5ms ; Wait.

; Store base address of text buffer in PIC RAM
movlw 0x0c ; Start address of text buffer
movwf pic_ad ; to local variable

;======================
; first LCD line
;======================
; Store 16 blanks in PIC RAM, starting at address stored
; in variable pic_ad

call blank16
; Call procedure to store ASCII characters for message
; in text buffer

movlw d’3’ ; Offset into buffer
call storeMN

; Set DDRAM address to start of first line
call line1

; Call procedure to display 16 characters in LCD
call display16

;========================
; second LCD line
;========================

call delay_125mcs ; Wait for termination
call blank16 ; Blank buffer

; Call procedure to store ASCII characters for message
; in text buffer

movlw d’1’ ; Offset into buffer
call storeUniv
call line2 ; DDRAM address of LCD line 2
call display16

;=======================

308 Chapter 13

; done!
;=======================
loopHere:

goto loopHere ;done

;**
; INITIALIZE LCD PROCEDURE
;**
initLCD
; Initialization for Densitron LCD module as follows:
; 8-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;***********************|
; COMMAND MODE |
;***********************|

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low for command
bcf PORTA,RW_line ; Write mode
call delay_125mcs ;delay 125

microseconds
;***********************|
; FUNCTION SET |
;***********************|

movlw 0x38 ; 0 0 1 1 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

movwf PORTB ;0011 1000
call pulseE ;pulseE and delay

;***********************|
; DISPLAY OFF |
;***********************|

movlw 0x08 ; 0 0 0 0 1 0 0 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off

LCD Interfacing and Programming 309

; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTB
call pulseE ;pulseE and delay

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTB
call pulseE ;pulseE and delay

;***********************|
; ENTRY MODE SET |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ increment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

movwf PORTB ;00000110
call pulseE

;***********************|
; CURSOR/DISPLAY SHIFT |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
; | | | | | SHIFT)
; | | | |_|___ don’t care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left
; | 11 = cursor and display

310 Chapter 13

; | shifted right
; |___ COMMAND BIT

movwf PORTB ;0001 1111
call pulseE

;***********************|
; CLEAR DISPLAY |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

movwf PORTB ;0000 0001
;

call pulseE
call delay_5ms ;delay 5 milliseconds after

init
return

;**
; DELAY AND PULSE PROCEDURES
;**
;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125mcs

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5ms

movlw D’41’ ; Counter = 41
movwf count2 ; Store in variable

delay
call delay_125mcs ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTA,E_line ;pulse E line
bcf PORTA,E_line

LCD Interfacing and Programming 311

call delay_125mcs ;delay 125 microseconds
return

;=============================
; long delay sub-routine
; (for debugging)
;=============================
long_delay

movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;=============================
; LCD display procedure
;=============================
; Sends 16 characters from PIC buffer with address stored
; in variable pic_ad to LCD line previously selected
display16:
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line low for control
call delay_125mcs ; Delay

; Set up counter for 16 characters
movlw D’16’ ; Counter = 16
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar:
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

movwf PORTB
call pulseE ;send data to display

; Test for 16 characters displayed
decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;========================

312 Chapter 13

; blank buffer
;========================
; Procedure to store 16 blank characters in PIC RAM
; buffer starting at address stored in the variable
; pic_ad
blank16:

movlw D’16’ ; Set up counter
movwf count1
movf pic_ad,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit:
movwf INDF ; Store blank character in PIC

RAM
; buffer using FSR register

decfsz count1,f ; Done?
goto incfsr ; no
return ; yes

incfsr:
incf FSR,f ; Bump FSR to next buffer

space
goto storeit

;========================
; Set Address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

control
call delay_125mcs ; delay 125 microseconds

; Set to second display line
movlw LCD_1 ; Address and command bit
movwf PORTB
call pulseE ; Pulse and delay

; Set RS line for data
bsf PORTA,RS_line ; Set up for data
call delay_125mcs ; Delay
return

;========================
; Set Address register
; to LCD line 2
;========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2

LCD Interfacing and Programming 313

line2:
bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

; control
call delay_125mcs ; delay

; Set to second display line
movlw LCD_2 ; Address with high-bit set
movwf PORTB
call pulseE ; Pulse and delay

; Set RS line for data
bsf PORTA,RS_line ; RS = 1 for data
call delay_125mcs ; delay
return

;===============================
; first text string procedure
;===============================
storeMN:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag

314 Chapter 13

goto endstr1 ; End of string
; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next

character
movwf index ; Store table index in

variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
msg1:

addwf PCL,f ; Access table
retlw ‘M’
retlw ‘i’
retlw ‘n’
retlw ‘n’
retlw ‘e’
retlw ‘s’
retlw ‘o’
retlw ‘t’
retlw ‘a’
retlw 0

;=================================
; second text string procedure
;=================================
storeUniv:
; Processing identical to procedure StoreMSU

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,0 ; first display RAM address to W
addwf index,0 ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char2:

call msg2 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag

LCD Interfacing and Programming 315

goto endstr2 ; End of string
; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; Store in buffer by FSR
incf FSR,f ; Increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in

variable
goto get_msg_char2 ; Continue

endstr2:
return

; Routine for returning message stored in program area
msg2:

addwf PCL,f ; Access table
retlw ‘S’
retlw ‘t’
retlw ‘a’
retlw ‘t’
retlw ‘e’
retlw ‘,’
retlw 0x20
retlw ‘M’
retlw ‘a’
retlw ‘n’
retlw ‘k’
retlw ‘a’
retlw ‘t’
retlw ‘o’
retlw 0

end

13.4.2 LCDTest2 Program

; File name: LCDTest2.asm
; Date: April 16, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to exercises 8-bit PIC-to-LCD interface.
; Code assumes that LCD is driven by Hitachi HD44780
; controller and that the display supports two lines
; each one with 16 characters. The wiring and base

316 Chapter 13

; address of each display line is stored in #define
; statements. These statements can be edited to
; accommodate a different set-up.
; Program uses the busy flag to synchronize processor
; access, although delay loops are still required in
; some cases.
; Displays: Minnesota State, Mankato
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock
;
; Displays: Minnesota State, Mankato
;
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates set up values presently selected

;=========================
; set up and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 2 ;| — from wiring diagram
#define RW_line 3 ;|
; LCD line addresses (from LCD data sheet)

LCD Interfacing and Programming 317

#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command
;
;===
; variables in PIC RAM
;===
; Reserve 16 bytes for string buffer

cblock 0x0c
strData
endc

; Leave 16 bytes and Continue with local variables
cblock 0x1d ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
pic_ad ; Storage for start of text area

; (labeled strData) in PIC RAM
J ; counter J
K ; counter K
index ; Index into text table (also used

; for auxiliary storage)
endc

;===
; program
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
movlw b’00000000’ ; All lines to output
tris PORTA ; in Port-A
tris PORTB ; and port B
movlw b’00000000’ ; All outputs ports low
movwf PORTA
movwf PORTB

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize

; itself
call initLCD ; Then do forced

initialization
; Store base address of text buffer in PIC RAM

movlw 0x0c ; Start address for buffer

318 Chapter 13

movwf pic_ad ; to local variable
;======================
; first LCD line
;======================
; Store 16 blanks in PIC RAM, starting at address stored
; in variable pic_ad

call blank16
; Call procedure to store ASCII characters for message
; in text buffer

movlw d’3’ ; Offset into buffer
call storeMSU

; Set DDRAM address to start of first line
call line1

; Call procedure to display 16 characters in LCD
call display16

;========================
; second LCD line
;========================

call busyTest ; Wait for termination
call blank16 ; Blank buffer

; Call procedure to store ASCII characters for message
; in text buffer

movlw d’1’ ; Offset into buffer
call storeUniv
call line2 ; DDRAM address of LCD line 2
call display16

;=======================
; done!
;=======================
loopHere:

goto loopHere ;done

;**
; INITIALIZE LCD PROCEDURE
;**
initLCD:
;***********************|
; COMMAND MODE |
;***********************|

bcf PORTA,E_line ;E line low
bcf PORTA,RS_line ;RS line low
call delay_125 ;delay 125

microseconds
;***********************|
; FUNCTION SET |
;***********************|

movlw 0x38 ; 0 0 1 1 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:

LCD Interfacing and Programming 319

; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 1 = 1/8 or 1/11
; | | 0 = 1/16
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

movwf PORTB ;0011 1000
call pulseE ;pulseE and delay

;***********************|
; DISPLAY OFF |
;***********************|

movlw 0x08 ; 0 0 0 0 1 0 0 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTB
call pulseE ;pulseE and delay

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTB
call pulseE ;pulseE and delay

;***********************|
; ENTRY MODE SET |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ increment mode

320 Chapter 13

; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

movwf PORTB ;00000110
call pulseE

;***********************|
; CURSOR/DISPLAY SHIFT |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
; | | | | | SHIFT)
; | | | |_|___ don’t care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left
; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

movwf PORTB ;0001 1111
call pulseE

;***********************|
; CLEAR DISPLAY |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

movwf PORTB ;0000 0001
;

call pulseE
call busyTest ; Test for busy
return

;========================
; busy flag test routine
;========================
; Procedure to test the HD44780 busy flag
; Execution returns when flag is clear
busyTest:

movlw b’11111111’ ; All lines to input
tris PORTB ; in port B
bcf PORTA,RS_line ; RS line low for control
bsf PORTA,RW_line ; Read mode
bsf PORTA,E_line ; E line high
movf PORTB,w ; Read port B into W

; Port B bit 7 is busy flag
bcf PORTA,E_line ; E line low

LCD Interfacing and Programming 321

andlw 0x80 ; Test bit 7, high is busy
btfss STATUS,Z ; Test zero bit in STATUS
goto busyTest ; Repeat if set

; At this point busy flag is clear
; Reset R/W line and port B to output

bcf PORTA,RW_line ; Clear R/W line
movlw b’00000000’ ; All lines to output
tris PORTB ; in port B
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125:

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat:
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw D’41’ ; Counter = 41
movwf count2 ; Store in variable

delay:
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTA,E_line ; Pulse E line
nop ; Delay
bcf PORTA,E_line
call delay_5 ; Wait
return

;=============================
; long delay sub-routine
; (for debugging)
;=============================

322 Chapter 13

long_delay
movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;=============================
; LCD display procedure
;=============================
; Sends 16 characters from PIC buffer with address stored
; in variable pic_ad to LCD line previously selected
display16

call busyTest ; Make sure not busy
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 16 characters
movlw D’16’ ; Counter = 16
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

movwf PORTB
call pulseE ;send data to display

; Test for 16 characters displayed
decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;========================
; blank buffer
;========================
; Procedure to store 16 blank characters in PIC RAM
; buffer starting at address stored in the variable
; pic_ad
blank16:

movlw D’16’ ; Set up counter

LCD Interfacing and Programming 323

movwf count1
movf pic_ad,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit:
movwf INDF ; Store blank character in PIC

RAM
; buffer using FSR register

decfsz count1,f ; Done?
goto incfsr ; no
return ; yes
incfsr
incf FSR,f ; Bump FSR to next buffer

; space
goto storeit

;========================
; Set Address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

control
call busyTest ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
movwf PORTB
call pulseE ; Pulse and delay

; Set RS line for data
bsf PORTA,RS_line ; Set up for data
call busyTest ; Busy?
return

;========================
; Set Address register
; to LCD line 2
;========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

control
call busyTest ; Busy?

; Set to second display line
movlw LCD_2 ; Address with high-bit set
movwf PORTB

324 Chapter 13

call pulseE ; Pulse and delay
; Set RS line for data

bsf PORTA,RS_line ; RS = 1 for data
call busyTest ; Busy?
return

;===============================
; first text string procedure
;===============================
storeMSU:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character

LCD Interfacing and Programming 325

movwf index ; Store table index in
variable

goto get_msg_char ; Continue
endstr1:

return

; Routine for returning message stored in program area
msg1:

addwf PCL,f ; Access table
retlw ‘M’
retlw ‘i’
retlw ‘n’
retlw ‘n’
retlw ‘e’
retlw ‘s’
retlw ‘o’
retlw ‘t’
retlw ‘a’
retlw 0

;=================================
; second text string procedure
;=================================
storeUniv:
; Processing identical to procedure StoreMSU

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,0 ; first display RAM address to W
addwf index,0 ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char2:

call msg2 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr2 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; Store in buffer by FSR
incf FSR,f ; Increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in

326 Chapter 13

; variable
goto get_msg_char2 ; Continue

endstr2:
return

; Routine for returning message stored in program area
msg2:

addwf PCL,f ; Access table
retlw ‘S’
retlw ‘t’
retlw ‘a’
retlw ‘t’
retlw ‘e’
retlw ‘,’
retlw 0x20
retlw ‘M’
retlw ‘a’
retlw ‘n’
retlw ‘k’
retlw ‘a’
retlw ‘t’
retlw ‘o’
retlw 0

End

13.4.3 LCDTest3 Program
; File name: LCDTest3.asm
; Date: April 16, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to exercise 4-bit PIC-to-LCD interface.
; Code assumes that LCD is driven by Hitachi HD44780
; controller and that the display supports two lines
; each one with 16 characters. The wiring and base
; address of each display line is stored in #define
; statements. These statements can be edited to
; accommodate a different set-up.
; Program uses delay loops for interface timing.
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock
;
; Displays: Minnesota State, Mankato
;

LCD Interfacing and Programming 327

;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates set up values presently selected
;
;=========================
; set up and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 2 ;| — from wiring diagram
#define RW_line 3 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command
;
;===
; variables in PIC RAM
;===
; Reserve 16 bytes for string buffer

cblock 0x0c
strData
endc

328 Chapter 13

; Leave 16 bytes and Continue with local variables
cblock 0x1d ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
pic_ad ; Storage for start of text area

; (labeled strData) in PIC RAM
J ; counter J
K ; counter K
index ; Index into text table (also used

; for auxiliary storage)
store1 ; Local temporary storage
store2 ; Storage # 2
endc

;===
; program
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
movlw b’00000000’ ; All lines to output
tris PORTA ; in Port-A
tris PORTB ; and port B
movlw b’00000000’ ; All outputs ports low
movwf PORTA
movwf PORTB

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize

; itself
call delay_5
call initLCD ; Then do forced

initialization
call delay_5 ; Wait again

; Store base address of text buffer in PIC RAM
movlw 0x0c ; Start address for buffer
movwf pic_ad ; to local variable

;======================
; first LCD line
;======================
; Store 16 blanks in PIC RAM, starting at address stored
; in variable pic_ad

call blank16
; Call procedure to store ASCII characters for message
; in text buffer

LCD Interfacing and Programming 329

movlw d’3’ ; Offset into buffer
call storeMSU

; Set DDRAM address to start of first line
call line1

; Call procedure to display 16 characters in LCD
call display16

;========================
; second LCD line
;========================

call delay_5 ; Wait for termination
call blank16 ; Blank buffer

; Call procedure to store ASCII characters for message
; in text buffer

movlw d’1’ ; Offset into buffer
call storeUniv
call line2 ; DDRAM address of LCD line 2
call display16

;=======================
; done!
;=======================
loopHere:

goto loopHere ;done

;==
; initialize LCD for 4-bit mode
;==
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low
bcf PORTA,RW_line ; Write mode
call delay_125 ; delay 125

microseconds
;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11

330 Chapter 13

; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

call send8 ; 4-bit send routine
; Set 4-bit mode command must be repeated

movlw 0x28
call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

call send8
;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ increment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
; | | | | | SHIFT)
; | | | |_|___ don’t care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display

LCD Interfacing and Programming 331

; | shifted left
; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

call send8
; Per documentation

call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw D’41’ ; Counter = 41
movwf count2 ; Store in variable

delay:
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTA,E_line ; Pulse E line
nop
bcf PORTA,E_line
return

332 Chapter 13

;=============================
; long delay sub-routine
; (for debugging)
;=============================
long_delay:

movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;=============================
; LCD display procedure
;=============================
; Sends 16 characters from PIC buffer with address stored
; in variable pic_ad to LCD line previously selected
display16

call delay_5 ; Make sure not busy
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 16 characters
movlw D’16’ ; Counter = 16
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar:
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 16 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;========================
; send 2 nibbles in
; 4-bit mode
;========================

LCD Interfacing and Programming 333

; Procedure to send two 4-bit values to port B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with port B

; Now w has merged byte
movwf PORTB ; w to port B
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTB
call pulseE ; Send data to LCD
call delay_125
return

;=================
; merge bits
;=================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of port B
; so as to preserve the 4 low-bits in port B
; Logic:
; AND value with 1111 0000 mask
; AND port B with 0000 1111 mask
; Now low nibble in value and high nibble in
; port B are all 0 bits:
; value = vvvv 0000
; port B = 0000 bbbb
; OR value and port B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTB,w ; port B to w register
andlw b’00001111’ Clear high nibble in port b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

334 Chapter 13

;========================
; blank buffer
;========================
; Procedure to store 16 blank characters in PIC RAM
; buffer starting at address stored in the variable
; pic_ad
blank16

movlw D’16’ ; Set up counter
movwf count1
movf pic_ad,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit
movwf INDF ; Store blank character in PIC RAM

; buffer using FSR register
decfsz count1,f ; Done?
goto incfsr ; no
return ; yes
incfsr
incf FSR,f ; Bump FSR to next buffer space
goto storeit

;========================
; Set Address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTA,RS_line ; Set up for data
call delay_5 ; Busy?
return

;========================
; Set Address register
; to LCD line 2
;========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTA,E_line ; E line low

LCD Interfacing and Programming 335

bcf PORTA,RS_line ; RS line low, set up for
; control

call delay_5 ; Busy?
; Set to second display line

movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTA,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

;===============================
; first text string procedure
;===============================
storeMSU:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; andiy a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

336 Chapter 13

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in

variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
msg1:

addwf PCL,f ; Access table
retlw ‘M’
retlw ‘i’
retlw ‘n’
retlw ‘n’
retlw ‘e’
retlw ‘s’
retlw ‘o’
retlw ‘t’
retlw ‘a’
retlw 0

;=================================
; second text string procedure
;=================================
storeUniv:
; Processing identical to procedure StoreMSU

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,0 ; first display RAM address to W
addwf index,0 ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char2:

call msg2 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr2 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; Store in buffer by FSR
incf FSR,f ; Increment buffer pointer

LCD Interfacing and Programming 337

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in

; variable
goto get_msg_char2 ; Continue

endstr2:
return

; Routine for returning message stored in program area
msg2:

addwf PCL,f ; Access table
retlw ‘S’
retlw ‘t’
retlw ‘a’
retlw ‘t’
retlw ‘e’
retlw ‘,’
retlw 0x20
retlw ‘M’
retlw ‘a’
retlw ‘n’
retlw ‘k’
retlw ‘a’
retlw ‘t’
retlw ‘o’
retlw 0

end

338 Chapter 13

Chapter 14

Communications

In this chapter we focus on digital communications techniques used in PIC interfacing
with I/O devices, integrated circuits, and with other forms of programmable logic.
Communications, in general, refers to the exchange of information following rules,
sometimes called a protocol. Digital and computer communications come in two fla-
vors: serial and parallel. Serial communications take place when the data is sent one
bit at a time over the communications channel. In parallel communications all the bits
that compose a single symbol or character are sent simultaneously.

Common wisdom regards serial communications as slower than parallel commu-
nications but with modern-day technologies this is often not the case, since serial
techniques often match or even excel parallel methods in speed and performance.
Computer networks such as Ethernet and fiber optic links are able to achieve high
performance even though they use serial bit streams. The preference for serial over
parallel communications is often more related to hardware, since parallel transmis-
sions require more communication lines than serial transmissions.

14.0 PIC Communications Overview
Many communications standards were created with other interface and hardware re-
quirements in mind and are not ideally suited for PIC applications. For example,
RS-232-C, a serial protocol developed over 35 years ago, originated in an age of tele-
typewriters and modems. The voltage levels and circuit requirements of RS-232-C are
not suited for PIC hardware. The more modern USB standard is more suited to PIC in-
terfacing, but adopting a standard; RS-232-C, EIA-485, USB, or any other conventions,
requires adhering to special configurations in hardware and the use of ad hoc software
protocols. This compliance with a standard comes at a price of added hardware com-
ponents and increased software complexity.

When PIC-based circuits must interface with other systems or devices that follow
these standards, then there is no alternative but to design circuits and write pro-
grams that comply with the standards. On the other hand, when the communications
take place in dedicated circuits, which do not interface with devices or systems that

339

follow standard communications protocols, then pure PIC communications tech-
niques and hardware are often simpler and more effective. In other words, adhering
to a communications protocol usually implies an additional cost in software and
hardware complexity. Here are two examples: a PIC-based circuit that interfaces
with a PC through the RS-232-C port would be a case where compliance with
RS-232-C is required. Another case would be a PIC-based circuit that sends serial
data to an onboard LCD display. In this case, the circuit and the software need not
comply with any communications standards or protocols. Programmers often refer
to techniques that use serial communications without the presence of specialized
hardware, such as UART or USART chips, as bit-banging.

In the following sections, we discuss serial and parallel communications at their
most essential level. In the general literature, communications concerns often focus
on transmission speeds, system performance, and minimum processing time.
Typically, PIC applications do not transfer large data files or communicate interac-
tively on the Internet or in networks. In a typical PIC application, communication
functions are used to upload stored data to a PC, sometimes called data-logging, or
to receive small data sets or commands from a host machine. In this context there
are no major concerns regarding super-fast transmission rates or maximum perfor-
mance.

14.1 Serial Data Transmission
Serial communications take place by transmitting and receiving data in a stream of
consecutive electrical pulses that represent data bits and control codes. The Elec-

tronic Industries Association (EIA) has sponsored the development of several stan-
dards for serial communications, such as RS-232-C, RS-422, RS-423, RS 449, EIA232E,
and EIA232F, among others. In this designation the characters RS stand for the words
Recommended Standard. The oldest, simplest to implement, and most-used serial
communications standard is the RS-232-C voltage level convention. In the following
sections we present the essential concepts of the RS-232-C standard. Most of the mate-
rial also applies to the various updates of the standard. Later in the chapter we briefly
discuss the EIA485 Standard.

14.1.1 Asynchronous Serial Transmission
The information in a serial bit stream is contained in a time-dependent waveform,

that is, each bit code (data, control, or error) is transmitted for a fixed time period,
known as the baud period. The word baud was chosen to honor the French scientist
and inventor Jean Maurice Emile Baudot who studied various serial encodings in
the late 19th century.

The serial bit streams used in data transmission follow a very simple encoding:
one bit is transmitted during each baud period. A binary 1 bit is represented with a
negative voltage level and a binary 0 bit by a positive voltage. The line condition dur-
ing the logic 1 transmission is called a marking state, and the one for a logic 0 a
spacing state. The baud rate is equal to the number of bits per second being trans-
mitted or received. Note that the voltage levels that represent a one and a zero bit in
RS232 are somewhat counter-intuitive, since one would expect a logic 1 to be repre-
sented with a positive voltage, and not a negative one.

340 Chapter 14

One possible approach to sending information bit-by-bit is based on the transmit-
ter and receiver clocks being synchronized at the same frequency. That is, both re-
ceiver and transmitter operate at the same baud rate. Note that the expression
“synchronized at the same frequency” implies not only that their clocks have the
same speed, but that the high and the low portions of the waveform coincide.

In typical asynchronous serial communications bits are transmitted as separate
groups, usually 7 to 10 bits long. Each group is called a character. The name charac-
ter relates to the fact that in alphanumeric transmissions each bit group represents
one numeric or alphabetic symbol. In reality, the term “character” is also applied to
control codes, error codes, and other non-alphanumeric encodings.

Each character is sent in a frame consisting of a start bit, followed by a set of
character bits, followed (optionally) by a parity bit, and finalized by one or more
stop bits. The serial line is normally held marking, that is, at a logic 1 state. The
change from logic high to logic low, signaled by the start bit, tells the receiver that a
frame follows. The receiver reads the number of character bits expected according
to the adopted protocol until a logic high, represented by one or more stop bits,
marks the end of the frame.

Figure 14-1 shows the different elements in a serial communications bit stream.
The term asynchronous reflects the fact that the time period separating characters
is variable. The transmitter holds the line to logic high (marking state) until it is
ready to send. The start bit (spacing state) is used to signal the start of a new char-
acter. The start bit is also used by the receiver to synchronize with the transmitter.
The logic high and low regions of the signal wave occur at the same time. This com-
pensates for drifts and small errors in the baud rate.

Figure 14-1 Serial Communications Bit Stream

Communications 341

Signal

Protocol (in this example):
1 start bit
8 data bits (character)
1 parity bit (parity even)
1 stop bit

START BIT DATA BITS (10010011 = 0x93)

0 1 0 0 1 0 0 1 1 0 1

PARITY BIT

STOP BIT

MARKING STATEMARKING STATE

This form of transmitting serial data is called asynchronous because the receiver
resynchronizes itself to the transmitter using the start bit of each frame. The lack of
synchronization does not refer to the bits within each frame, which must be in fact
“synchronized,” but to the fact that characters need not come at a fixed time inter-
val.

14.1.2 Synchronous Serial Transmission

An alternative approach to asynchronous serial data transmission is one in which the
characters are sent in blocks with no framing bits surrounding them. In asynchronous
communications, each character is framed by a start and a stop signal so that the re-
ceiver can know exactly where the character bits are located. In synchronous com-

munications, the sender and receiver are synchronized with a clock or a signal that is
part of the data stream.

In theory, synchronous communications implies that characters are sent out at a
constant rate, in step with a clock signal. This scheme assumes that a separate line
(or wire) is used for the clock signal, although, in some variations, the clock signal
is contained in the transmitted characters. Alternatively, a clock line can be used to
synchronize the moment in time at which the receiver reads the data line. In either
case, it is this contained clock or command signal that identifies a synchronous
transmission.

Most legacy PC communications systems are asynchronous, although the
EIA232F standard supports both synchronous and asynchronous methods. The most
common chip used in PC communications is the UART (Universal Asynchronous

Receiver and Transmitter). An alternative chip called the USRT is used for synchro-
nous communications and the USART (Universal Synchronous/Asynchronous Re-

ceiver and Transmitter) supports both.

Synchronous communications can be block- or bit-based. The block-based modes
are also called character-based. In this mode, characters are grouped in blocks with
each block having a starting flag, similar to the start bit used in asynchronous com-
munications. Once the receiver and the transmitter are synchronized, the transmit-
ter inserts two or more control characters known as synchronous idle characters,
or SYNs. Then the block is sent and the receiver places the data in a memory storage
area for later processing. Bit-oriented methods, on the other hand, are used for the
transmission of binary data that is not tied to any particular character set.

14.1.3 PIC Serial Communications

Serial communications are often used in PIC programming, mostly due to the scarcity
of available port lines. For example, an application in which a 16F84 PIC needs to read
data in parallel from eight DIP switches and display the result, also in parallel, in eight
LEDs, requires a total of 16 available port lines. But the 16F84 only has 13 lines, 8 in
Port-B and 5 in Port-A; therefore, the application would not be feasible.

One possible solution is to find some way of reading the DIP switches serially;
this requires three lines at most. Alternatively, the output data to the LEDs could be

342 Chapter 14

transmitted serially, thus reducing the total lines required from 16 for parallel trans-
mission, to six, or even less for serial transmission.

PIC communications can be designed both asynchronously and synchronously.
Asynchronous modes are used when the same or compatible clock signals are avail-
able to both receiver and transmitter. For example, two PICs both running at the
same clock rate can transmit and receive data using a single communications line,
plus a common ground. PIC-to-PIC asynchronous data transmission mode is demon-
strated later in this chapter with both circuit and code.

Asynchronous communications can be implemented by incorporating a dedicated
IC, such as a UART or USART chip, in the circuit. PCs usually have one of these ICs,
or functionally equivalent ones, in their implementation of the serial port. Some
PICs include one or more serial circuits, which sometimes include a USART module.
For example, the 16F877 PIC has two serial communication modules. One of them is
the Master Asynchronous Serial Port, or MSSP. The other one is a USART. Later in
this chapter we present serial communications programming examples using the
USART module in the 16F877 PIC. Programs using the MSSP module are found in
the chapter on EEPROM programming.

When communications take place between a PIC and a device that does not con-
tain a clock, or whose clock runs at a different speed than the PIC’s, then synchro-
nous communications is used. For example, a circuit can be designed using a shift
register IC, such as the 74HC164, that performs an 8-bit serial-in, parallel-out func-
tion. In the previous example, it is possible to reduce the number of transmission
lines by connecting the eight LEDs to the output ports of the 74HC164. But the
74HC164 contains no internal clock that runs at the speed of the 16F84. Thus, com-
munications between the PIC and the shift register IC (74HC164 in this case) re-
quires a clock or command signal transmitted through a separate line; that is, a
synchronous serial transmission. In this chapter we present circuits and sample
code showing synchronous communications between a PIC and one or more shift
register ICs.

14.1.4 The RS-232-C Standard

RS-232-C was developed jointly by the Electronic Industries Association (EIA), the
Bell Telephone System, and modem and computer manufacturers. The standard has
achieved such widespread acceptance that its name is often used as a synonym for the
serial port. EIA232F, published in 1997, is the latest update of RS-232-C. Today,
RS-232-C is gradually being replaced by USB for local communications. USB is faster,
has lower voltage levels, and uses smaller connectors that are easier to wire. USB has
software support in most PC operating systems. On the other hand, USB is a more com-
plex standard, requiring more complex software. Furthermore, serial ports are used
to directly control hardware devices, such as relays and lamps, since the RS-232-C
control lines can be easily manipulated by software. This is not feasible with USB.

In the following sections we describe the essential terminology and communica-
tions principles of RS-232-C.

Communications 343

Essential Concepts

The RS-232-C convention specifies that, with respect to ground, a voltage more
negative than -3 V is interpreted as a 1 bit and a voltage more positive than +3 V as a
0 bit. Serial communications, according to RS-232-C, require that transmitter and re-
ceiver agree on a communications protocol. The following terminology refers to the
RS-232-C communications protocol:

• Baud period: The rate of transmission measured in bits per second, also called the
baud rate. In serial protocols, the transmitter and the receiver clocks must be synchro-
nized to the same baud period.

• Marking state: The time period during which no data is transmitted. During the mark-
ing period, the transmitter holds the line at a steady high voltage, indicating logic 0.

• Spacing state: The time period during which data is transmitted. During the spacing
period, the transmitter holds the line at a steady low voltage, indicating logic 1.

• Start bit: The transition that indicates that data transmission is about to start. The volt-
age low state that occurs during the start bit is called the spacing state.

• Character bits: The data stream composed of 5, 6, 7, or 8 bits that encode the charac-
ter transmitted. The least significant bit is the first one transmitted.

• Parity bit: An optional bit, transmitted following the character bits, used in checking
for transmission errors. If even parity is chosen, the transmitter sets or clears the parity
bit so as to make the sum of the character’s 1 bits and the parity bit an even number. In
odd parity, the sum of 1 bits is an odd number. If parity is not correct, the receiver sets
an error flag in a special register.

• Stop bits: One or more logic high bits inserted in the stream following the character
bits or the parity bit, if there is one. The stop bit or bits ensure that the receiver has
enough time to get ready for the next character.

• DTE (Data Terminal Equipment): The device at the far end of the connection. It is
usually a computer or terminal. The DTE uses a male DB-25 connector, and utilizes 22
of the 25 available pins. DB-9 connectors with 9 pins are also used.

• DCE (Data Circuit-terminating Equipment): Refers to the modem or other termi-
nal of the telephone line interface. DCE has a female DB-25 connector, and utilizes the
same 22 pins as the DTE for signals and ground. DB-9 connectors are also used.

• Half-duplex: A system that allows serial communications in both directions, but only
one direction at a time. Half-duplex communications are reminiscent of radio commu-
nications where one user says the word “Over” to indicate the end of transmission. In
other words, half-duplex is similar to a one-lane road in which with traffic controllers at
each end can direct flow in either direction, but only in one direction at a time.

• Full-duplex: A full-duplex system allows communication in both directions simulta-
neously. A full-duplex system is reminiscent of a two-lane highway in which traffic can
flow in both directions at once.

The Serial Bit Stream

In the RS-232-C protocol, the transmission/reception parameters are selected from a
range of standard values. The following are the most common ones:

344 Chapter 14

Baud rate: 50, 110, 300, 600, 1200, 2400, 4800, 9600, and 19200

Data bits: 5, 6, 7, or 8.

Parity bit: Odd, even, or no parity.

Stop bits: 1, 1.5, or 2.

RS-232-C defines DTE (Data Terminal Equipment) and DCE (Data Circuit-ter-

minating Equipment), sometimes called Data Communications Equipment. Ac-
cording to the standard, the DTE designation includes both terminals and
computers and DCE refers to modems, transducers, and other devices. The serial
port in a computer is defined as a DTE device.

Parity Testing

In RS-232 communications, a bit called a parity bit may optionally be transmitted
along with the data. A parity bit provides a simple, but not too reliable, error test to de-
tect data corruption that takes place during transmission. Parity can be even, odd, or
none. Even or odd parity refers to the number of 1-bits in each data byte. The parity bit
immediately follows the data bits.

If even parity is selected, the parity bit is transmitted with a value of 0 if the num-
ber of high bits is even. For example, the binary value:

0110 0011

contains a total of 4 one-bits; therefore, the parity bit is 0. By the same token, if even
parity is selected, then the binary value

0101 0001

requires that the parity bit be 1. One way of describing the parity bit is to say that the bit
is set to indicate a parity error; therefore, it serves as a parity error detector. Another
description is that the parity coincides with the number of one-bits in the data, plus the
parity bit. Thus, when even parity is selected the parity bit is added to the number of
one-bits in the data to produce an even number.

Odd parity is the opposite of even parity. If odd parity were selected then the par-
ity bit in the last example would be 0. Given odd or even parity, the sender counts
the number of 1-bits and sets or clears the parity bit accordingly. The receiver,
knowing that the parity is odd or even, can do likewise to determine if the number of
1-bits received matches the required parity setting.

Parity error checking is very primitive. In the first place, the parity error does not
identify the bit or bits that cause the error. Furthermore, if an even number of bits
are incorrect, then the parity bit would not show the error. On the other hand, over a
long transmission, the parity check is likely to detect garbled data.

Connectors and Wiring

The RS-232-C standard requires specific hardware connectors with either 25 or 9 pins.
The 25-pin connector is called a D-shell connector, or DB-25. The connector with 9 pins
is called the 9-pin D-shell connector or DB-9. In addition, the RJ-45 connector (the

Communications 345

name stands for Registered-Jack 45) is used for twisted-pair cables. RJ-45 use in
RS-232-C serial interface is regulated by the EIA/TIA-561 standard. A common applica-
tion of RJ-45 connectors is in Ethernet cables. Figure 14-2 shows the male DB-25,
DB-9, and the female RJ-45 connectors.

Figure 14-2 DB-25, DB-9, and RJ-45 Connectors

The function assigned to each pin varies in the common connectors. Table 14.1
lists the assignation of the RS-232-C lines in the different hardware. The cable link-
ing DTE and DCE devices is a parallel straight-through cable with no cross-over or
self-connects.

Table 14.1

Definition of Common RS-232-C Lines

CONNECTOR CODE
DB-25 DB-9 RJ-45 FUNCTION NAME DIRECTION

1 4 Ground G
2 3 6 Transmit data TXD Output
3 2 5 Receive data RXD Input
4 7 8 Request to send RTS Output
5 8 7 Clear to send CTS Input
6 6 Data set ready DSR Input
7 5 Chassis ground G
8 1 2 Carrier detect CD
20 4 3 Data terminal ready DTR Output
22 9 1 Ring indicator RI Input

The Null Modem

The RS-232-C standards describe the way a computer communicates with a peripheral
device, such as a modem. In this case, the DTE and DCE lines serve as a communica-
tions control. In this context, DTE means data terminal equipment, such as a com-
puter, and DCE is the abbreviation of data communication equipment, such as
modems. Often, communications must take place in an environment that does not in-
clude a modem; for example, computers communicating with each other or with other
devices such as a PIC-based board. In these cases, the use of the DTE/DCE communi-
cation lines in flow control is not well defined.The common RS-232-C control and data
signals appear in Table 14.2.

346 Chapter 14

DB-25

DB-9

RJ-45

1

1

1

13

2514

96

5

8

Table 14.2

Definition of Common RS-232-C Lines

SIGNAL NAME DIRECTION PURPOSE

CONTROL SIGNALS
Request to Send DTE -> DCE DTE wishes to send
Clear to Send DTE <- DCE Response to Request to

Send
Data Set Ready DTE <- DCE DCE ready to operate
Data Terminal Ready DTE -> DCE DTE ready to operate
Ring Indicator DTE <- DCE DTE receiving telephone

ringing signal
Carrier Detect DTE <- DCE DTE receiving a carrier

signal
DATA SIGNALS
Transmitted Data DTE -> DCE Data generated by DTE
Received Data DTE <- DCE Data generated by DCE

The term null modem refers to situations in which serial communications take
place without the presence of a modem. In this case, the connection between the
communicating devices, usually a cable, is wired in such a way so as to allow data
transmission without a modem.

In Table 14.1 two pins are used in flow control: RTS (request to send) and CTS

(clear to send). In conventional RS232 communication (as is the case when a com-
puter communicates with a modem), the RTS signal is an output and DCE an input.
Before a character is sent, the sender sets the RTS line high to ask the DTE’s permis-
sion. Until the DTE grants permission, no data is sent. The DTE grants its permis-
sion by setting the CTS line high. If the DCE cannot receive new data it keeps the
CTS signal low. This interface, which provides a simple mechanism for flow control
in a single direction, is called a handshake.

In full duplex transmission the handshake must take place in both directions, that
is, both devices must be able to signal their status. The DTR (data terminal ready)
and DSR (data set ready) signals can be used for a second level of flow control.
Finally, the CD (carrier detect) signal serves as an indication of the state of a mo-
dem.

The Null Modem Cable

Implementing handshaking without a modem requires that we take into account that
two communicating devices can expect to find certain signals on given lines. For ex-
ample, a device checks the CTS signal for a high value before sending data. If the CTS
signal never goes high, transmission does not take place. When a cable is wired so that
two devices can communicate without one of them being a modem, the cable is said to
be a null modem.

One simple approach is to completely eliminate handshaking. In this case, cable
wiring interconnects the transmit and the receive lines and the ground wire. The re-
maining pins are left unconnected, as shown in the null modem cable in Figure 14-3
(in the following page).

Communications 347

Figure 14-3 Null Modem with No Handshaking

The three-wire null modem cable can be used to interface devices that do not use
modem control signals. However, if one of the devices checks one of the handshake
lines, such as RTS/CTS, then the three-wire modem cable fails. To solve this prob-
lem, a modem cable can be designed so that the handshake signals are intercon-
nected. For example, DTS to DSR and vice versa. Not knowing which handshake
signals are to be used, manufacturers of standard modem cables usually intercon-
nect all handshake lines, as shown in Figure 14-4.

Figure 14-4 Null Model With Full Handshaking

Some variations of the full-handshake null modem connect the DTR to the CD
line at each end. Pin number 1 (CD) in both male and female connectors is dum-
mied-out to pin number 4 (CDR).

348 Chapter 14

DB-9
(female)

WIRING
DB-9 DB-9

Female Male
3 TX---------2 RX
2 RX---------3 TX
5 GND--------5 GND

DB-9
(male)

5 4 3 2 1

1 2 3 4 5

9 8 7 6

6 7 8 9

DB-9
(female)

WIRING
DB-9 DB-9

Female Male
2 RX---------3 TX
3 TX---------3 RX
4 DTR--------6 DSR
5 GND--------5 GND
6 DSR--------4 DTR
7 RTS--------8 CTS
8 CTS--------7 RTS

DB-9
(male)

5 4 3 2 1

1 2 3 4 5

9 8 7 6

6 7 8 9

A conventional, straight-through serial cable can be converted to null modem by
means of a commercial null modem adapter that crosses over the corresponding sig-
nal lines. A continuity test is used to determine whether a serial cable is wired as
null modem or not. If it is null modem, pin number 2 on one end would show conti-
nuity with number 3 pin on the other end.

A circuit tester is used to diagnose serial cables. The tester, which is plugged into
the port connector, contains a LED for each of the communications lines. When the
corresponding LED lights up the line is active. LED colors indicate positive or nega-
tive voltages, with green usually indicating positive and red negative. The light pat-
tern is used to identify different handshakes. Figure 14-5 shows a DB-25 mini tester.

Figure 14-5 DB-25 RS232 Line Tester

14.1.5 The EIA-485 Standard

EIA-485 provides a two-wire, half-duplex serial connection standard, also known as
RS-485. This convention provides a multipoint connection with differential signaling.
The connection can be made full-duplex by using four wires. In this standard, data is
conveyed by voltage differences. One polarity represents logic 1 and the reverse one
logic 0. The standard requires that the difference of potential be at least 0.2 volts, but
any voltage between +12 and -7 volts allows correct operation.

EIA-485 does not specify a data transmission protocol, making possible the im-
plementation of simple, inexpensive local networks and communications links. Its
data transmission speeds can reach 35 Mbits/s at distances of up to 10 m, and 100
kbit/s at distances up to 1200 m. The use of a twisted wire pair and the differential
balanced line allows spanning distances of up to 4000 ft.

EIA-485 is often used with common UARTs and USARTs to implement low-speed
data communications that require minimal hardware. It is also found in programma-
ble logic controllers that are used with proprietary data communications systems.
In factories and other electrically charged environments, the differential feature of
EIA-485 makes it resistant to electromagnetic interference from motors and other

Communications 349

equipment. The standard also finds use in large sound systems, such as those found
in theaters and music events. EIA-485 does not specify any connector.

EIA-485 in PIC-based Systems
In PIC-based systems, EIA-485 is often used to provide strong serial signals that can
travel up to 4000 ft at high baud rates in noisy electrical environments. Only two wires
are needed to carry the EIA-485 signals. These are usually labeled the A and B lines.
Once the A/B data line is established, up to 32 devices can be connected to it. The sys-
tem is referred to as an EIA-485 network.

Implementing the EIA-485 network requires some way of converting the 485 sig-
nal levels to the TTL-levels in the PIC circuit. This is accomplished by means of a
dedicated IC, such as the Texas Instruments Differential Bus Transceiver chip
named the SN75176. The chip actually converts 485 signals to RS-232-C TTL-level
signals. This allows devices that traditionally communicate over RS-232-C serial
connections to communicate over a two-wire EIA-485 network. Figure 14-6 shows
the pin diagram of the SN75176.

Figure 14-6 Pin Out of the SN75176 IC

In addition to the SN75176, an EIA-485 circuit requires a 485 chip such as the
MAX485. In PIC-based systems, the EIA-485 is sometimes used to communicate with
multiple devices in a chain. It uses the same 8-bit asynchronous serial communica-
tions format as was described previously for RS-232-C.

14.2 Parallel Data Transmission

Parallel communications is the process of sending several bits of data simultaneously
over individual data lines. In the computer environment, parallel communications are
often associated with a popular printer interface developed by Centronics and some-
times called the Centronics or printer interface. Originally, the Centronics interface
was designed for one-way communications. Later, it was made bi-directional, allow-
ing its use in high-speed data transfers. The Centronics or parallel printer interface is
now considered a legacy port.

350 Chapter 14

SN75176
6

7

81

5

2

3

4

RO

_RE

DE

DI

Vcc

B

A

GND

SN75176 PINOUT

B - Inverting receiver input

Vcc - 4.75 to 5.25 V DC

RO - Receiver output

_RE - Receiver output enable

A - Non-inverting receiver input

GND - Ground

DI - Driver input

DE - Driver output enable

In PIC-based systems, parallel communications often refer to the general princi-
ple rather than to the specific Centronics implementation. For example, wiring an
8-line toggle switch to the eight pins of the 16F85 Port-B line provides parallel com-
munications between the switch and the PIC.

PIC circuits that use parallel data transfers offer many advantages. In the first
place, parallel transmission is fast and the software is simple to develop. The hard-
ware implementation is straightforward and does not require many additional com-
ponents. Examples are connecting a multiple toggle switch to each of the lines of a
PIC input port, or each of the pins of a seven-segment LED to the various pins of a
PIC output port. The disadvantages of parallel systems are the distance limitations
and the cost in system resources. Furthermore, parallel data transfers do not work
well for data transmission over long distances. Many of the circuits and programs
covered in previous chapters use parallel data transmission techniques. Since
PIC-based systems rarely communicate with parallel printers or use the Centronics
standard for data transfer, no further discussion of the Centronics standard is justi-
fiable in this context.

14.2.1 PIC Parallel Slave Port (PSP)
Some PICs are equipped with an 8-bit Parallel Slave Port module (PSP). At present,
the PSP is multiplexed onto Port D and is found in PICs of the mid-range family, such as
the 16F877. The PSP is also called the microprocessor port.

The PSP module provides an interface mechanism with one or more microproces-
sors. The parallel slave port has an operating speed of 200 ns with a clock rate of 20
MHz, as well as several on-chip peripheral functions for implementing real world in-
terfaces.

In PICs equipped with the PSP, the parallel slave port functions are assigned to
Port D, with some Port E bits providing control signals. To initialize PSP mode, data
direction bits in the TRISE register that correspond to RD, WR, and CS
(TRISE<2:0>) are configured as inputs and the control bit PSPMODE (TRISE) is set.
When the PSP mode is active, Port D is asynchronously readable and writable
through the chip Select (RE2/CS), Read (RE0/RD), and Write (RE1/WR) control in-
puts.

At this time, not many general-purpose applications for the PSP port have been
documented, outside of its use as a multi-microprocessor interface. For this reason
we have excluded PSP programming from this context.

14.3 PIC “Free-style” Serial Programming
This section is about PIC serial programming and circuit design that does not follow
any specific communications protocol. In this sense, we have used the expression
“free-style” as opposed to circuits and programs constrained by the requirements of a
standard or convention. Many self-contained PIC circuits that do not interface with
standardized components can benefit from not having to follow any specific standard.
Later in this chapter, and in other chapters in the book, we present examples of PIC cir-
cuits and programs that follow established communications protocols. The titles of

Communications 351

the corresponding sections refer to the specific standards or protocols; for example, the
section titled PIC RS-232-C Serial Programming found in this chapter.

The advantages of so-called “free-style” circuit design and programming are greater
in ease in development and the use of fewer hardware components. When designer and
programmer are not constrained by the specifications of a standard, the circuit can be
implemented with a minimal number of hardware components. By the same token,
software is simpler and easier to develop.

The following examples of free-style communications systems are presented in the
sections that follow:

1. A PIC to PIC communications circuit and program. Two programs are required: one for the
receiver PIC and one for the sender.

2. Serial-to-parallel and parallel-to-serial circuit and program. Circuit uses 74HC164 and
74HC165 ICs.

14.3.1 PIC-to-PIC Serial Communications
Perhaps the most obvious and straightforward mode of PIC serial communications is one
that takes place between two PICs. In this case, one PIC acts as a sender, or master, and
the other one as a receiver or slave, although it is also possible for sender and receiver to
exchange roles. Consider a circuit in which one PIC polls the state of a bank of switches
and then sends the result serially to a second PIC that controls a bank of LEDs to be
lighted according to the switch settings. The reason for this circuit is that some PICs may
not have a sufficient number of ports to monitor eight switches and control eight LEDs.

PIC-to-PIC Serial Communications Circuits
Actually, the system required for one PIC reading data and serially sending the result to
another PIC that outputs the data can be visualized as two separate circuits. One circuit is
used to read the state of the eight DIP switches and to send the data serially to another PIC
circuit that displays the results. Figure 14-7 shows the two PIC-based circuits.

Structurally, the circuits in Figure 14-7 are quite similar to ones described previously
in this book. The bottom circuit contains eight DIP switches wired to ports RB0 to RB7.
A pushbutton switch is wired to port RA2 and a LED to port RA3. The serial output is
through port RA1. The circuit at the top of Figure 14-7 has eight LEDs wired to ports
RB0 to RB7. There is a pushbutton on port RA2 and a LED on port RA3. Input into the
circuit is through port RA0. In the remainder of this description we refer to the bottom
circuit as the sender circuit and PIC and the one on the top as the receiver circuit and

PIC.

The pushbuttons are necessary so that sender and receiver are synchronized. In op-
eration, the receiver circuit is first activated by pressing the switch labeled “receive
ready.” The LED on the top circuit lights to indicate the ready state. The sender circuit
has a LED labeled “ready” that indicates its state. The user presses the switch labeled
“send ready” in the sender circuit. At that time, the program in the sender reads the
state of the DIP switches and sends the data out, one bit at a time, through the line la-
beled “serial out” in the diagram. The receiver reads the eight bits in its “serial in”
line and lights the LEDs accordingly.

352 Chapter 14

Figure 14-7 PIC-to-PIC Serial Communications Circuits

Communications 353

16F84
Osc

R
=

1
0

K

R=470 Ohm R
=

1
0

K

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

RESET

SEND
SEND

READY

LED

+5V

SERIAL

OUT

+5V

+5V

10K R

X 8

DIP SW

(DATA)

16F84
Osc

R
=

1
0

K

R=470 Ohm R
=

1
0

K

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

RESET

RECEIVE

READY
RECEIVE

READY

LED

+5V

SERIAL

IN

+5V

+5V

R=470Xx8 Ohm

PIC-to-PIC Serial Communications Programs
The software consists of two different programs, one to run in the sender PIC and one
in the receiver PIC. Asynchronous communications require that sender and receiver
operate at the same data speed. Both devices need not run at the same clock speed, but
both must synchronize data transmission and reception at the same clock rate. Since
the easiest way to accomplish this is to have both PICs use the same oscillator at the
same speed, we make this assumption in the programs that follow.

The instruction time and clock rate of a PIC are one-fourth of its clock speed.
Thus, a PIC with a 4Mhz clock runs at 1,000,000 cycles per second, and the default
timer speed is:

approximately 3,906µs per clock cycle. Although 3,906µs is not a standard baud rate,
the present application is self-contained, therefore there is no need to conform to
RS232-C or any other protocol.

Since it seems more intuitive to associate a high voltage with a logic 1 and a low
voltage with a logic 0, we will adopt this convention in the present application. Nev-
ertheless, we will borrow the character structure from the RS-232-C convention,
that is, information will contain a start bit, a series of eight data bits, and a stop bit.
No parity is implemented. Figure 14-8 shows the bit structure for one character in
our application.

Figure 14-8 Data Structure for PIC-to-PIC Application

354 Chapter 14

1 000 000

256
3 25

, ,
,906. .= μs per bit

Signal

Edge of
start bit

Protocol (in this example):
1 start bit
8 data bits (character)
no parity bit
1 stop bit

START BIT DATA BITS (10010001 = 0x91)

0 1 0 0 1 0 0 1 0 1

STOP BIT

LOGIC ONE STATE

The sender program, named SerialSnd, performs the following initialization oper-
ations:

1. Line RA2 is initialized for input since the pushbutton switch is located on this line.
Lines RB0 to RB7 are also input, since they are connected to the DIP switch array.

2. The prescaler is assigned to the Watchdog Timer so that channel TMR0 runs at full pro-
cessor speed.

3. Interrupts are disabled.

Initialization code is as follows:

; Port-A, bit 2 is input. All others are output
movlw b’00000100’ ; Port-A bit 2 is input

; all others are output
tris porta

; Port-B is all input
movlw b’11111111’
tris portb
bsf porta,1 ;Marking bit

; Prepare to set prescaler
clrf tmr0
clrwdt

; Setup OPTION register for full timer speed
movlw b’11011000’

; 1 1 0 1 1 0 0 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | *000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | 0 = falling edge
; | *1 = raising edge
; |__________________________ RBPU pullups
; 0 = enabled
; *1 = disabled

option
; Disable interrupts

bcf intcon,5 ; Timer0 overflow disabled

Communications 355

bcf intcon,7 ; Global interupts disabled

Once initialized, the program performs the following functions:

1. The SEND READY LED is turned on.

2. Code monitors the SEND pushbutton switch.

3. Once the switch is pressed, the program turns off the SEND READY LED.

4. The state of the DIP switches is obtained by reading RB0 to RB7.

5. The byte from Port-B is sent through the serial line.

The following code fragment shows the procedure to send serial data.

;==
; procedure to send serial data
;==
; ON ENTRY:
; local variable dataReg holds 8-bit value to be
; transmitted through port labeled serialLN
; OPERATION:
; 1. The timer at register TMR0 is set to run at
; maximum clock speed, that is, 256 clock beats.
; The timer overflow flag in the INTCON register
; is set when the timer cycles from 0xff to 0x00.
; 2. Each bit (start, data, and stop bits) is sent
; at a rate of 256 timer beats. That is, each bit is
; held high or low for one full timer cycle (256
; clock beats).
; 3. The procedure tests the timer overflow flag
; (tmrOVF) to determine when the timer cycle has
; ended, that is when 256 clock beats have passed.
;
sendData:

movlw 0x08 ; Setup shift counter
movwf bitCount

;=======================
; send START bit
;=======================
; Set line low then hold for 256 timer clock beats.

bcf PORTA,serialLN ; Send start bit
; First reset timer

clrf TMR0 ; Reset timer counter
bcf INTCON,tmrOVF ; Reset TMR0 overflow flag

; Wait for 256 timer clock beats
startBit:

btfss INTCON,tmrOVF ; timer overflow?
goto startBit ; Wait until set

; At this point timer has cycled. Start bit has ended
bcf INTCON,tmrOVF ; Clear overflow flag

356 Chapter 14

;========================

; send 8 DATA bits

;========================

; Eight data bits are sent through the serial line

; starting with the high-order bit. The data byte is

; stored in the register named dataReg. The bits are

; rotated left to the carry flag. Code assumes the bit

; is zero and sets the serial line low. Then the carry

; flag is tested. If the carry is set the serial line

; is changed to high. The line is kept low or high for

; 256 timer beats.

send8:

rlf dataReg,f ; Bit into carry flag

bcf PORTA,serialLN ; 0 to serial line

; Code can assume the bit is a zero and set the line

; low since, if low is the wrong state, it will only

; remain for two timer beats. The receiver will not

; check the line for data until 128 timer beats have

; elapsed, so the error will be harmless. In any case,

; there is no assurance that the previous line state is

; the correct one, so leaving the line in its previous

; state could also be wrong.

btfsc STATUS,c ; Test carry flag

bsf PORTA,serialLN ; Bit is set. Fix error.

bitWait:

btfss INTCON,tmrOVF ; Timer cycled?

goto bitWait ; Not yet

; At this point timer has cycled.

; Test for end of byte, if not, send next bit

bcf INTCON,tmrOVF ; Clear overflow flag

decfsz bitCount,f ; Last bit?

goto send8 ; not yet

;=========================

; hold MARKING state

;=========================

; All 8 data bits have been sent. The serial line must

; now be held high (MARKING) for one clock cycle

bsf PORTA,serialLN ; Marking state

markWait:

btfss INTCON,tmrOVF ; Done?

goto markWait ; not yet

;=========================

; end of transmission

;=========================

return

Communications 357

The code comments explain the routine’s operation.

The receiving program, named SerialRcv, runs in the receiver PIC. In this case,
the serial line is RA0. Input from the sender program is received through this line.
The program performs the following initialization operations:

1. Lines RA0 and RA2 are initialized for input since the pushbutton switch is located on
RA2 and RA0 is the serial input line. Lines RB0 to RB7 are output since they are wired
to the eight LEDs.

2. The prescaler is assigned to the Watchdog Timer so that channel TMR0 runs at full pro-
cessor speed.

3. Interrupts are disabled.

Once initialized, code performs the following functions:

1. The SEND READY LED is turned on.

2. Code monitors the RECEIVE READY pushbutton switch.

3. Once the switch is pressed, the program turns on the RECEIVE READY LED.

4. Code then monitors the serial line for the first low that indicates the leading edge of the
start bit.

5. Once the start bit is detected, code waits for 128 clock cycles to locate the center of the
start bit. This synchronizes the receiver with the sender and accommodates small tim-
ing errors.

6. The eight data bits are then received and stored.

7. After waiting for the stop bit, code turns off the RECEIVE READY LED and sets the
eight LEDs according to the data received through the serial line.

The following code fragment is the procedure rcvData from the SerialRcv pro-
gram:

;==
; procedure to receive serial data
;==
; ON ENTRY:
; local variable dataReg is used to store 8-bit value
; received through port (labeled serialLN)
; OPERATION:
; 1. The timer at register TMR0 is set to run at
; maximum clock speed, that is, 256 clock beats.
; The timer overflow flag in the INTCON register
; is set when the timer cycles from 0xff to 0x00.
; 2. When the START signal is received, the code
; waits for 128 timer beats so as to read data in
; the middle of the send period.
; 3. Each bit (start, data, and stop bits) is read
; at intervals of 256 timer beats.
; 4. The procedure tests the timer overflow flag
; (tmrOVF) to determine when the timer cycle has

358 Chapter 14

; ended, that is when 256 clock beats have passed.
;===
rcvData:

clrf TMR0 ; Reset timer
movlw 0x08 ; Initialize bit counter
movwf bitCount

;=========================
; wait for START bit
;=========================
startWait:

btfsc PORTA,0 ; Is port A0 low?
goto startWait ; No. Wait for mark

;=========================
; offset 128 clock beats
;=========================
; At this point the receiver has found the falling
; edge of the start bit. It must now wait 128 timer
; beats to synchronize in the middle of the sender’s
; data rate, as follows:
; |<========= falling edge of START bit
; |
; |-----|<====== 128 clock beats offset
; -----------. | .-------
; | | <== SIGNAL
; -----------
; |<---256--->|
;

movlw 0x80 ; 128 clock beats offset
movwf TMR0 ; to TMR0 counter
bcf INTCON,tmrOVF ; Clear overflow flag

offsetWait:
btfss INTCON,tmrOVF ; Timer overflow?
goto offsetWait ; Wait until
btfsc PORTA,0 ; Test start bit for error
goto offsetWait ; Recycle if a false

start
;==========================
; receive data
;==========================

clrf TMR0 ; Restart timer
bcf INTCON,tmrOVF ; Clear overflow flag

; Wait for 256 timer cycles for first/next data bit
bitWait:

btfss INTCON,tmrOVF ; Timer cycle end?
goto bitWait ; Keep waiting

; Timer has counter 256 beats
bcf INTCON,tmrOVF ; Reset overflow flag
movf PORTA,w ; Read Port-A into w

Communications 359

movwf temp ; Store value read

rrf temp,f ; Rotate bit 0 into carry flag

rlf rcvReg,f ; Rotate carry into rcvReg bit 0

decfsz bitCount,f ; 8 bits received

goto bitWait ; Next bit

; Wait for one time cycle at end of reception

markWait:

btfss INTCON,tmrOVF ; Timer overflow flag

goto markWait ; keep waiting

;========================

; end of reception

;========================

return

Neither the SerialRcv nor the SerialSnd programs contain any handshake signal.
The programs rely on the user turning-on the receiver before the send function is ac-
tivated. If this is not the case, the programs fail to communicate. But looking at the
circuit diagram in Figure 14-7, we notice that there are available ports in both re-
ceiver and sender circuits. The circuit designer could interconnect two ports, one in
the receiver and one in the sender, so as to provide a handshake signal.

For example, lines RA4 in both circuits can be interconnected. Then Port-A, line
4, in the sender circuit is defined as input and the same line as output in the receiver.
The receiver could then set the handshake line high to indicate that it is ready to re-
ceive. The sender monitors this same port and does not start the transmission of
each character until it reads that the handshake line is high. In this manner, the re-
ceiver can suspend transmission at any time and prevent data from being lost. At the
same time, the “receiver ready” and “send ready” LEDs can be eliminated.

14.3.2 Program Using Shift Register ICs
The problem of handling multiple input and output lines, which was resolved in the
previous example by using two PICs, can also be tackled by means of special-purpose
integrated circuits. The term shift register refers to the fact that register input and
output are connected in a way that data is shifted-down a set of flip-flops when the cir-
cuits are activated. Many variations of shift registers ICs are available, the most popu-
lar ones being serial-in to serial-out, parallel-in to parallel-out, serial-in to parallel-out,
and parallel-in to serial-out. In shift register terminology the in and out terms refer to
the function in the registers themselves, and are not related to the functions that these
elements perform in a particular circuit. Figure 14-9 shows an input/output circuit us-
ing shift registers.

The circuit in Figure 14-9 shows the use of a parallel-to-serial IC (74HC165) that
reads the state of eight input switches, and a serial-to-parallel IC (74HC164) that
outputs data to eight LEDs. Without the shift register ICs, the circuit would require
sixteen ports, more than those available in the 16F84. Using the shift registers, only
six PIC ports are required, leaving eight ports available on the PIC. The demonstra-
tion program for the circuit in Figure 14-9 is named Serial6465.

360 Chapter 14

Figure 14-9 Input/output Circuit using Shift Registers

The 74HC165 Parallel-to-Serial Shift Register

The 74HC165 (sometimes called the 165) is a parallel-in, serial-out high-speed 8-bit
shift register. Shift registers are discussed in Section 6.4.7. Figure 14-10 (in the follow-
ing page) shows the pin-out of the 74HC165.

Communications 361

16F84

Osc

R
=

1
0

K

R=10K

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

DI

5V

0

1

2

3

Vss

Load

CLK0

4

5

6

7

!Hout

Vss

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Vcc

7

6

5

4

CLR

CLK

Vcc

Enab

3

2

1

0

DI

Hout

RESET

74HC164

74HC165

+5V

+5V

+5V

+5V

+5V

10K R

X 8

DIP SW

(DATA)

R=470Xx8 Ohm

Figure 14-10 74HC165 Pin-Out

In the 165, pins 3 to 6 and 11 to 14 (labeled D0 to D7) are used as parallel data in-
put lines. Normally these pins are connected to input sources, such as switches or
other two-state devices. Serial output takes place through pin number 9, labeled se-
rial output Q. An inverted output is available at pin number 7. The shift/load control

line, at pin number 1, is used to latch the data into the 165 shift registers. For exam-
ple, assume that the 165’s input lines are connected to sources that can change state
in time. These highs and lows are not recorded internally in the 165 until the
shift/load line is pulsed. When this line is pulsed, line values are said to be latched.
After the data lines are latched, the 165 clock-line is pulsed in order to sequentially
shift-out each of the eight bits stored internally. Shifting takes place with the most
significant bit first. The actual operations are as follows:

1. A local data storage register is cleared and a local counter is initialized for 8 data bits.

2. The 165 shift/load line is pulsed to reset the shift register.

3. The status of the serial output line (165 pin number 9) can now be read to determine the
value of the bit shifted out.

4. The bit is stored in a data register and the bit counter is decremented. If the last bit was
read the routine ends.

5. If not, the clock line is pulsed to shift-out the next bit. Execution continues at step num-
ber 3.

The wiring of the 165 normally requires at least three interface lines with the PIC.
One line connects to the 165 serial output (pin number 9), another one to the clock
line (pin number 2), and a third one to the shift/load line (pin number 1). The eight
165 data lines are normally wired to the input source.

362 Chapter 14

74HC165

14

15

161

13

2

12

3

11

4

10

5

9

6

7

8

+5Vshift/load

clock inhibit

D0

serial output

clock

D4 D3

D5 D2

D6 D1

D7

serial inputserial output

GND

The following code fragment lists a procedure to interface a 16F84 PIC with a
74HC165 parallel-to-serial shift register:

;==
; constant definitions from wiring diagram
;==
#define clk65LN 1 ;| — 74HC165 lines
#define loadLN 2 ;|
.
.
.
;==
; 74HC165 procedure to read parallel data and send
; serially to PIC
;==
; OPERATION:
; 1. Eight DIP switches are connected to the input
; ports of an 74HC165 IC. Its output line Hout,
; and its control lines CLK and load are connected
; to the PIC’s Port-B lines 0, 1, and 2
; respectively.
; 2. Procedure sets a counter (bitCount) for 8
; iterations and clears a data holding register
; (dataReg).
; 3. Port-B bits are read into w. Only the lsb of
; Port-B is relevant. Value is stored in a working
; register and the meaningful bit is rotated into
; the carry flag, then the carry flag bit is
; then shifted into the data register.
; 4. The iteration counter is decremented. If this
; is the last iteration the routine ends. Otherwise
; the bitwise read-and-write operation is repeated.

in165:
clrf dataReg ; Clear data register
movlw 0x08 ; Initialize counter
movwf bitCount
bcf PORTB,loadLN ; Reset shift register
bsf PORTB,loadLN

nextBit:
movf PORTB,w ; Read Port-B (only LOB is

; meaningful in this routine)
movwf workReg ; Store value in local

;register
rrf workReg,f ; Rotate LOB bit into carry

; flag
rlf dataReg,f ; Carry flag into dataReg
decfsz bitCount,f ; Decrement bit counter
goto shiftBits ; Continue if not zero

Communications 363

Return ; done
shiftBits:

bsf PORTB,clk65LN ; Pulse clock
bcf PORTB,clk65LN
goto nextBit ; Continue

The procedure in165 is in the program Serial6465 listed at the end of this chapter.

74HC164 Serial-to-Parallel Shift Register
The circuit in Figure 14-9 also uses a 74HC164 serial-to-parallel shift register for out-
put to the eight LEDs. Figure 14-11 shows the pin-out of the 74HC164 IC.

Figure 14-11 74HC164 Pin Out

Serial input into the 164 is through the input A line (pin number 1). Parallel out-
put is through the lines labeled Q0 to Q7. The reset/clear line (on pin 9) and the
clock line (on pin 8) provide the control functions. The operations are as follows:

1. A local data storage register holds the 8-bit value that serves as data input. A local
counter is initialized for 8 data bits.

2. The 164 shift register is cleared by pulsing the reset/clear line.

3. The first/next bit of the data operand is placed on the input line.

4. Bit is shifted-in by pulsing the 164 clock line.

5. Bit counter is decremented. If it goes to zero the routine ends.

6. Otherwise, the bits in the source operand are shifted and execution continues at step
number 3.

The following code fragment lists a procedure to interface a 16F84 PIC with a
74HC164 serial-to-parallel shift register:

;===

; constant definitions from wiring diagram

;===

#define clockLN 1 ;|

364 Chapter 14

74HC164

12

13

141

11

2

10

3

9

4

8

5

6

7

+5V

Q7

Q6

Q5

Q4

reset/clear

clock

input A

input B

Q0

Q1

Q2

Q3

GND

#define clearLN 2 ;| — 74HC164 lines
#define dataLN 0 ;|
...
;==
; 74HC164 procedure to send serial data
;==
; ON ENTRY:
; local variable dataReg holds 8-bit value to be
; transmitted through port labeled serialLN
; OPERATION:
; 1. A local counter (bitCount) is initialized to
; 8 bits
; 2. Code assumes that the first bit is zero by
; setting the data line low. Then the high-order
; bit in the data register (dataReg) is tested.
; If set, the data line is changed to high.
; 3. Bits are shifted in by pulsing the 74HC164
; clock line (CLK).
; 4. Data bits are then shifted left and the bit
; counter is tested. If all 8 bits have been sent
; the procedure returns.
out164:
; Clear 74HC164 shift register

bcf PORTA,clearLN ; 74HC164 CLR clear low
bsf PORTA,clearLN ; then high again

; Init counter
movlw 0x08 ; Initialize bit counter
movwf bitCount

sendBit:
bcf PORTA,dataLN ; Set data line low (assume)

; Using this assumption is possible because the bit is not
; shifted in until the clock line is pulsed.

btfsc dataReg,highBit ; test number bit 7
bsf PORTA,dataLN ; Change assumption if set

;=========================
; pulse clock line
;=========================
; Bits are shifted in by pulsing the 74HC164 CLK line

bsf PORTA,clockLN ; CLK high
bcf PORTA,clockLN ; CLK low

;=========================
; Rotate data bits left
;=========================

rlf dataReg,f ; Shift left data bits
decfsz bitCount,f ; Decrement bit counter
goto sendBit ; Repeat if not 8 bits

;=========================
; end of transmission

Communications 365

;=========================
return

It is important to note that serial communications that use shift register ICs are
described as synchronous. Synchronous serial transmission requires that the sender
and receiver use the same clock signal or that the sender provide signal or pulse so
as to indicate to the receiver when to read the next data element from the line. In the
circuits discussed in this section the shift/load, reset/clear, and clock lines provide
this synchronous interface between the PIC and the shift register IC.

The program named Serial6465, in the book’s on line software, is a demonstration
of PIC-to-shift register interfacing.

14.4 PIC Protocol-based Serial Programming
In the preceding sections we discussed circuits and developed software using PIC se-
rial communications that did not conform to any particular protocol or standard. This
style is adequate for stand-alone applications and circuits. On the other hand,
PIC-based circuits sometimes communicate with systems that conform to a specific
communications standard, for example, with a PC through its RS-232-C serial port. In
this case, the PIC software and hardware must conform with the protocol, at least to
an operational minimum that ensures satisfactory interfacing with the protocol-based
system.

In the context of protocol-based programming, two situations are possible: either
the PIC in use supports the communications standard or protocol or it does not. In
the case of the smaller PICs, such as the 16F84, the software emulates communica-
tions protocols since hardware provides no support. The more complex PICs, on the
other hand, often contain hardware modules that provide a functionality equivalent
to that required by the various standards. In this sense, mid-range and high-range
PICs often include hardware support for one or more communication standards and
conventions. For instance, the 16F87X PIC family includes an MSSP (Master Syn-

chronous Serial Port) module and a USART (Universal Synchronous/asynchron-

ous Receiver and Transmitter) module.

In the sections that follow we develop circuits and programs for cases in which
the on-board PIC does not contain hardware support for the standard and for cases
in which it does. Examples with PICs that do not provide hardware support for se-
rial communications use the 16F84. Examples with PICs that provide hardware se-
rial communications support use the 16F877, which contains an MSSP and a USART
module. The 16F877 circuits and applications in the present chapter use the proces-
sor’s USART module. The 16F877 MSSP module is demonstrated in the chapter on
EEPROM programming.

14.4.1 RS-232-C Communications on the 16F84
The UART (Universal Asynchronous Receiver/Transmitter) controller is a serial
communications IC found in computers and other data communication devices. In the
PC, the UART was originally National Semiconductor INS8250. With the introductions
of the PC AT, IBM changed its serial IC to the NC16450, an improved 8250. Later PCs

366 Chapter 14

adopted the NS16550A UART as their serial communications controllers. Other ven-
dors, including Intel and Western Digital, furnish clones of the NS16550A and other
UARTs.

The UART-based serial port implementation and circuitry in the PC is compliant
with RS/EIA232. For a PIC-based circuit to communicate with a PC’s serial port it
must either implement in hardware or emulate in software the RS232 signals and
protocol. One possibility is to include a UART or UART-like IC in the circuit. But this
option is not simple to implement since RS-232-C requires voltage levels that are not
TTL-compatible.

For PIC-based systems without a UART module, a viable approach is to emulate
UART functions in software, at least those required for interfacing with the PC hard-
ware. This is quite feasible due to the availability of dedicated ICs that provide
RS-232-C-compatible signals and voltage levels in systems in which a ±12 volt
source is not available. These chips, sometimes called RS-232-C Drivers/Receivers
or Transceivers, are especially useful in interfacing UART and USART-based sys-
tems with PIC-based hardware.

The RS-232-C Transceiver IC
RS-232-C interface ICs are available from several vendors, although the ones from Dal-
las Semiconductors’ Maxim line are probably the most popular. These chips, some-
times called RS-232-C driver/receivers, have in common the use of so-called
charge-pump DC/DC converters that generate, from the +5 volt TTL power source, the
polarities and voltage levels required by RS-232-C.

One of the most popular implementations of the RS-232-C transceiver used in
PIC-based systems is the MAX232 and its upgrade, the MAX202. One improvement in
the MAX202 is to provide some degree of human-body electrostatic discharge pro-

tection (ESD), a desirable feature in experimenter boards. Other versions are the
MAX233 and MAX203, which do not require external capacitors. Other RS-232-C
transceiver ICs with various additional features, such as automatic shutdown, are
available. Figure 14-12 is a pin-out of the MAX232 and 203 ICs.

Figure 14-12 MAX202 and MAX232 Transceiver Pin Out

Communications 367

MAX202

MAX232

+5V

GND

D1out (RS-232)

R1in (RS-232)

R1out (TTL)

D1in (TTL)

D2in (TTL)

R2out (TTL)

C1+

V+

C1-

C2+

C2-

V-

(RS-232) D2out

(RS-232) R2in

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

Note that the MAX232 and MAX202 consist of two drivers and two receivers per chip.
Lines 14 and 7 (labeled D1out and D2out) provide RS-232-C output. Lines 13 and 8 (labeled
R1in and R2in) are RS-232-C input. Lines 10 and 11 (labeled D1in and D2in) are TTL (or
CMOS) inputs. Lines 9 and 12 (labeled R2out and R1out) are TTL output. In this designa-
tion the letter R stands for receiver and the letter D for driver. The digit 1 indicates the first
driver/receiver set and the digit 2 the second one. The lines labeled D are wired to capaci-
tors.

A circuit using the transceiver ICs is simple and easy to build. If a single communication
line is required, then the TTL input line can be wired to pin 10 (D2in) and the TTL output to
pin 9 (R2out). The RS-232-C input is wired to pin 8 (R2in) and the output to pin 7 (D2out).
Later in this section, we present a circuit that uses the MAX202 with a 16F84 PIC.

PIC to PC Communications

Often, a PIC-based circuit has to communicate with a device that conforms to a standard
communications protocol. One of the most common cases is a PIC board that interfaces with
a computer, usually a PC or Mac with an RS-232-C port. For example, a PIC board is placed
somewhere to collect information, such as temperature, pressure, and humidity. Before the
internal storage capacity of the PIC board is exhausted, it is connected to a laptop PC and the
data is downloaded from the PIC board to the computer. Once this is done, then the local PIC
memory is cleared so that new data can be collected and stored. This application, called a
data logger, requires some way of transferring data from the PIC-based board to the PC. The
RS-232-C line is often available on the PC end and the required interface hardware and pro-
gramming is uncomplicated.

On the PC end, the communications software can be off-the-shelf applications or espe-
cially developed programs. If the purpose is simply to download data to the PC or send
simple commands to the PIC board, then a standard utility is used. For example, the Win-
dows program named Hyper Terminal allows sending and receiving files and commands
at various baud rates and RS-232-C communications parameters. Hyper Terminal is in-
cluded with most Windows versions or can be downloaded free from the developer’s
website.

The PIC board must have a system that conforms to the communications protocol of the
device, in this case, the PC. In order to use the PC’s serial port, PIC hardware and software
must be able to generate required signal levels, baud rate, and other RS-232-C communica-
tions parameters. Hardware interfacing is implemented by using a transceiver chip, such as
the MAX232 or 202 previously described. If the PIC contains a UART or USART module,
then the communications software is easy to develop. This case is explored later in this
chapter.

An RS-232-C TTY Board

The terms “teletype” and “teletypewriter” refer to an obsolete electro-mechanical typewriter
that was used to send and receive information through a simple communication channel. In a
modern sense, TTY refers to a simple style of communications where the same device sends
and receives text messages interactively. The current board is actually a TTY receiver since it
does not contain a keyboard that allows sending data. Figure 14-13 shows the circuit dia-
gram for an 16F84-based PC-to-PIC serial communications board.

368 Chapter 14

Figure 14-13 PC-to-PIC Serial Communications Circuit

The circuit in Figure 14-13 contains previously discussed components. The LCD
is wired in 4-bit mode, with control lines for RS (reset), E (pulse), and R/W
(read/write). The MAX202 provides the TTL-to-RS-232-C conversion and vice versa.
The physical connection between the PC and the PIC board is by means of a DB-9
connector and a standard null modem cable. The cable is not shown in the circuit di-
agram.

A 16F84A UART Emulation

The 16F84A PIC contains no built-in facilities for RS-232-C communications. There-
fore, a 16F84A application that communicates through the serial port using the
RS-232-C protocol must emulate the protocol in software. The programs previously
developed for PIC-to-PIC communications, discussed in Section 14.3.1, serve as a base
for the UART emulation application. The major differences between a “free style” PIC
communications program and one that complies for RS-232-C are the following:

Communications 369

MAX202

+5V

+5V

R
=

1
0

K

R
=

1
0

K

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

Vcc

GND

T1out

R1in

R1out

T1in

T2in

R2out

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in

RESET

HD44780

LCD
2 rows x 16

+5V

+5V

E

R/W

RS

RS

R/W

E

1

14

DB-9
(female)

5 4 3 2 1

9 8 7 6

16F84

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Osc
4Mhz

+5V

+

+

+

+

+

0 1. mF

0 1. mF

0 1. mF

0 1. mF

0 1. mF

PB SW1

1. Data must be transmitted and received at one of the standard RS-232-C baud rates. The
most often-used baud rates in this case are: 600, 1,200, 2,400, 4,800, 9,600, and 19,200.

2. Data must be formatted according to the protocol’s conventions; that is, a start bit, 5, 6,
7, or 8 data bits, the presence or absence of a parity bit, and 1, 1½, or 2 stop bits.

3. RS-232-C communication data is transmitted and received with the least-signifi-
cant-bit first.

The first problem (transmitting and receiving at a standard baud rate) often re-
quires an approximation. The PIC’s instructions execute at the rate of its internal
clock, which also determines the rate of its timer module.

The time taken by each counter iteration is obtained by dividing the PIC’s clock
speed by four. For example, a PIC running on a 4 Mhz oscillator clock increments
the counter every 1 Mhz. The counter register is incremented at a rate of 1µs (assum-
ing no prescaler). If we were to use the unmodified timer rate to measure bit time,
the result would be a baud rate of approximately 3,906. Since 3,906 is not a standard
baud rate, the timer is adjusted to approximate one of the standard RS-232-C baud
rates. For example, at 4,800 baud the time per bit is:

Since the timer of a PIC with a 4 Mhz clock runs at 1 µs per timer iteration, then
we could count up from 0 to 208 iterations of the counter in order to approximate
the bit time of 208 µs needed at 4,800 baud. In addition, we would have to calculate
one-half the bit time since synchronization requires offsetting the timer from the
edge to the center of the start bit (see Section 14.3.1). In this case, to delay approxi-
mately 104 µs we would count up from 0 to 104.

But counting up is inconvenient with the PIC timer/counter since the signal is
produced when the counter reaches its maximum. A better solution is to preset the
Timer counter (TMR0) to a calculated value such that the desired time lapse occurs
when the Timer register reaches 255. So the actual delays for 4,800 baud are as fol-
lows:

DELAY CALCULATION TMR0 PRESET

208 μs 255 – 208 48

104 μs 255 – 104 151

Once we have obtained the clock rate for a standard baud rate, it is easy to obtain
slower standard rates by slowing down the clock with the prescaler. For example, if
the prescaler is assigned to the timer/counter register with a bit value of 000, then
the counter rate is one-half the unscaled rate. This would produce a baud rate of
2,400 baud. By the same token, assigning a 1:4 prescaler to the timer produces a
baud rate of 1,200 baud using the same preset values previously calculated. Faster
baud rates are easily calculated by the same method.

370 Chapter 14

1

4 800
208 33

,
. .= μs

Formatting the data transmission according to the RS-232-C protocol presents no
major problem. In fact, the communications programs previously listed in this chap-
ter use a start bit to commence character transmission, followed by eight data bits,
and one stop bit to end it, with no parity bit. This same format is compatible with
RS-232-C.

The third compatibility issue refers to the bit order in RS-232-C, which requires
that the low-order bit be transmitted first. In previous applications, we have sent the
high-order bit first by rotating the bits left inside the holding register and testing the
carry flag. In the RS-232-C routine, the bits are rotated right into the carry flag and
then the carry flag is rotated into the storage variable.

The demonstration program for the circuit in Figure 14-13, named TTYUsart, uses
a 2-line by 16 character LCD to display the characters received from the PC through
the serial line. The program initially sends the test string “Ready-” to the PC to test
the data transmission routine and to let the PC user know that the PIC board is
ready to receive. The program operates at 2,400 baud, one start bit, eight data bits,
no parity, and one stop bit. The communications program on the PC must be set to
these parameters.

An LCD Scrolling Routine

LCDs have limited capacity for data display. A 2-line by 16 character LCD fills the
screen when 32 characters are displayed. For some applications it is convenient to
have a procedure that takes some reasonable action when the LCD screen is full. One
approach is to detect when the last character in the second LCD line is displayed, then
move the second line to the first line, clear the second line, and continue displaying at
the start of the second line. This is the standard screen handling for a computer pro-
gram.

An LCD screen scroll routine can be called as each character is displayed. For the
scroll to work, the program must keep track of the currently selected LCD line (vari-
able LCDline can be 0 for line 1, and 1 for line 2), of the number of characters dis-
played on that line (variable LCDcount), and of the total capacity of the line
(constant LCDlimit). Given this information, the logic for an LCD line scrolling rou-
tine can be as follows:

1. Add current character to LCDcount. If LCDcount is equal to LCD limit then the end of a
line was reached. If not, exit routine.

2. If line end reached is for line 1, set current display address to start of line 2. Reset vari-
able LCDcount. Exit routine.

3. If line end reached is for line 2, then copy the characters displayed in line 2 to line 1.
Clear line 2. Reset the display address to the start of line 2. Reset LCDline variable to
line 2. Reset variable LCD count. Exit routine.

Of these operations, copying the characters from the second line to the first one
can be the most troublesome. One possibility is to read the data from the LCD di-
rectly. This approach requires that the connection between the PIC and the LCD in-
cludes the R/W line. Another option is to create a buffer in RAM and copy each
character displayed to this area. In the case of an LCD with 16 characters per line

Communications 371

the buffer requires a capacity of 16 bytes. Since the line input is “remembered” in
the buffer, the program scrolls a line by copying the contents of the buffer to the
other line. This alternative does not require reading the LCD and saves implement-
ing the R/W line.

Storing the characters received in a local buffer first requires reserving a 16-byte
area (the buffer) in PIC RAM. There are several ways of accomplishing this. A sim-
ple one is using the cblock directive, as shown in the following code fragment:

;===
; buffer and variables in PIC RAM
;===
; Create a 16-byte storage area

cblock 0x0c ; Start of first data block
lineBuf ; buffer for text storage
endc

; Leave 16 bytes and continue with local variables;
cblock 0x1c ; Second data block
count1 ; Counter # 1
count2 ; Counter # 2

. . . other variables can go here
endc

In reality, the buffer is most likely accessed by indirect addressing, so a buffer
name (lineBuf in this case) is not really necessary. This is due to the fact that PIC as-
sembly language does not contain a directive for finding the address of a variable.
So the buffer address has to be hard-coded or defined in a constant. But, in any case,
having a buffer name does not cost storage capacity and it may help make the code
clearer.

In our design, the scrolling routine depends on finding the characters in the end-
ing line stored in the RAM area mentioned in the preceding paragraph. The buffer lo-
cations are accessed directly by referencing the address. For example, the first byte
in lineBuf is stored at addres 0x0c, the second one at 0xod, and so on. A more effec-
tive way of using a buffer is by creating and keeping a buffer pointer variable that
has the current offset from the start of the buffer. The buffer pointer is then added
to the buffer’s base address in order to access the current buffer location. Indirect
addressing using the FSR and the INDF registers simplify the process, as shown in
the following code fragment:

; Store character in local line buffer using indirect
; addressing. Byte to store is in rcvData variable.
; 16-byte buffer named lineBuf starts at address 0x0c
; Register variable bufPtr holds offset into buffer

movlw 0x0c ; Buffer base address
addwf bufPtr,w ; Add pointer in w
movwf FSR ; Value to index register
movf rcvData,w ; Character into w
movwf INDF ; Store w in [FSR]
incf bufPtr,f ; Bump pointer

372 Chapter 14

The manipulation requires loading the base address of the buffer (0x0c in this
case) in the w register, adding the value stored in the buffer pointer variable
(bufPtr), and storing the sum in the FSR register. The character is then loaded into
the w register and moved into the INDF register, which has the effect of storing it in
the address pointed at by FSR. Conventionally, brackets are used to indicate indi-
rect addressing, so [FSR] means the memory location referenced by the FSR regis-
ter.

Once the line characters are stored locally, all that is left is the design of a line
scrolling routine following the processing steps previously listed. The following pro-
cedure performs the necessary operations:

;==========================
; scroll LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then the
; second line is scrolled to the first line and display
; continues at the start of the second line
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:
; Scroll second line to first line. Characters to be
; scrolled are stored in buffer starting at address 0x0c.
; 16 characters are to be moved
; First clear LCD

call initLCD
call delay_5 ; Make sure not busy

; Set up for data

Communications 373

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 16 characters
movlw D’16’ ; Counter = 16
movwf count2

; Get address of storage buffer
movlw 0x0c
movwf FSR ; W to FSR

getchar:
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 16 characters displayed

decfsz count2,f ; Decrement counter
goto nextchar ; Skipped if done

; At this point scroll operation has concluded
clrf LCDcount ; Clear counters

; Stay at line 2
clrf LCDline
incf LCDline,f
call line2 ; Set for second line

scrollExit:
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;============================
; clear line buffer
;============================
; Use indirect addressing to store 16 blanks in the
; buffer located at 0x0c
blankBuf:

Bank0
movlw 0x0c ; Pointer to RAM
movwf FSR ; To index register

blank16:
clrf INDF ; Clear memory pointed at by FSR
incf FSR,f ; Bump pointer
btfss FSR,4 ; 000x0000 when bit 4 is set

; count reached 16
goto blank16
return

;========================
; Set address register
; to LCD line 1
;========================
; ON ENTRY:

374 Chapter 14

; Address of LCD line 1 in constant LCD_1

line1:

bcf PORTA,E_line ; E line low

bcf PORTA,RS_line ; RS line low, set up for
control

call delay_5 ; busy?

; Set to second display line

movlw LCD_1 ; Address and command bit

call send8 ; 4-bit routine

; Set RS line for data

bsf PORTA,RS_line ; Setup for data

call delay_5 ; Busy?

; Clear buffer and pointer

call blankBuf

clrf bufPtr ; Pointer

return

;========================

; Set address register

; to LCD line 2

;========================

; ON ENTRY:

; Address of LCD line 2 in constant LCD_2

line2:

bcf PORTA,E_line ; E line low

bcf PORTA,RS_line ; RS line low, setup for
control

call delay_5 ; Busy?

; Set to second display line

movlw LCD_2 ; Address with high-bit set

call send8

; Set RS line for data

bsf PORTA,RS_line ; RS = 1 for data

call delay_5 ; Busy?

; Clear buffer and pointer

call blankBuf

clrf bufPtr ; Pointer

return

The entire program, named TTYUsart, is found in the book’s online software
package.

14.4.2 RS-232-C Communications on the 16F87x
The second alternative for protocol-compliant communications is using a PIC that
provides hardware support for the standard. The 16F84, our workhorse in this book,
contains no such facilities. However, other midrange PICs do provide hardware sup-
port to one or several serial communications protocols.

Communications 375

For the examples that follow, we have selected what is perhaps the second most
popular PIC of the midrange family (after the 16F84): the 16F87x. The architecture
and basic programming facilities of the 16F87x PIC family were discussed in Chap-
ter 8. At this time, we should recall that 16F87x includes the PIC 16F873, 16F874,
16F876, and 16F877. For our sample programs we have selected the 16F877 since it
is the most powerful one of the group. The 16F877 has an operating frequency of up
to 20Mhz, 8K of flash program memory, 368 bytes of data memory, 256 bytes of
EEPROM, 5 input/output ports, and contains two modules for serial communica-
tions: a Master Synchronous Serial Port and a Universal Synchronous/Asynchron-
ous Receiver and Transmitter. We focus on the USART module and leave the MSSP
for the chapter on EEPROM programming.

The 16F87x USART Module

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module in
the 16F87X family is also known as a Serial Communications Interface, or SCI. The
USART module is useful in communicating with devices and systems that support
RS-232-C communications, including computers and terminals. It can be configured
as an asynchronous full-duplex device, as a synchronous half-duplex master, or as a
synchronous half-duplex slave. In the synchronous mode, the USART module is used
mostly in communicating with analog-to-digital and digital-to-analog integrated cir-
cuits or for accessing serial EEPROMS. Both of these functions are discussed in later
chapters.

Five registers relate to USART operation in the 16F877: RCSTA, TXREG, RCREG,
TXSTA, and SPBRG. The first three are located in bank 0 and the second two in bank
1. TXSTA is the Transmit Status and Control register and the RCSTA the Receive Sta-
tus and Control register. Figure 14-14 shows the bitmap for the TXSTA register lo-
cated at address 0x98 in bank 1.

The RCSTA register contains control and status bits for the receive function. The
register is found at address 0x18 in bank 0. Figure 14-15 (in the following page) is a
bitmap of the RCSTA register.

The USART Baud Rate Generator

In the USART emulation programs for the 16F84 we were forced to approximate the
RS-232-C baud rate with the system clock. The USART module in the 16F87X PICs con-
tains its own baud rate generator, but it is also dependent on the system clock.

Setting the baud rate in the USART module consists of manipulating the Baud

Rate Generator (BRG) unit. The BRG is a dedicated 8-bit generator that supports
both the asynchronous and synchronous modes. The SPBRG is an 8-bit register that
controls the rate of a dedicated timer. In the asynchronous mode, the bit labeled
BRGH in the TXSTA register (see Figure 14-14) also relates to the baud rate since it
allows setting either slow-speed or high-speed baud rate. The baud-rate-speed-se-
lect bit is inactive in the synchronous mode.

376 Chapter 14

The formula for computing the baud rate takes into account the system oscillator

speed (Fosc), the setting of the Baud-Rate-Speed-Select bit (BRGH), which is set for
the high-speed mode and cleared for slow-speed, and also the setting of the SYNC
bit in TXSTA register, which selects either asynchronous or synchronous mode. The
formula is as follows:

where ABR represent the Asynchronous Baud Rate, x is the value in the SPRGB regis-

ter (range 0 to 255), S is 64 in the high-speed mode (BRGH bit is 1) and 16 in the slow

speed mode (BRGH bit is 0). Solving the formula in terms of the value to be placed in

the SPRGB register we get:

Communications 377

Figure 14-14 Bitmap of the TXSTA Register

CSRC

bit 0bit 7

TX9 TXEN SYNC BRGH TRMT TX9D

bit 7 : Clock Source Select

Asynchronous mode

Don’t care

Synchronous mode

1 = Master mode (internal clock)

0 = Slave mode (external clock)

bit 6 : 9-bit Transmit Enable

1 = 9-bit transmission mode

0 = 8-bit transmission mode

bit 5 : Transmit Enable

1 = Transmit enabled

0 = Transmit disabled

bit 4 : USART Mode Select

1 = Synchronous mode

0 = Asynchronous mode

bit 3 Unimplemented: Read as '0'

bit 2 : Baud Rate Speed Select

Asynchronous mode

1 = High speed

0 = Low speed

Synchronous mode

Unused

bit 1 : Transmit Shift Register Status

1 = TSR empty

0 = TSR full

bit 0 : 9th bit of transmit data

(Can be used as parity bit)

CSRC

TX9

TXEN

SYNC

BRGH

TRMT

TX9D

ABR
Fosc

S x
=

+()1

For example, to calculate the setting of the SPRGB register for 9,600 baud, with a
16Mhz oscillator, at the high-speed rate (S = 64) the equation becomes:

378 Chapter 14

Figure 14-15 Bitmap of the RCSTA Register

SPEN

bit 0bit 7

RX9 SREN CREN FERR OERR RX9D

bit 7 : Serial Port Enable

1 = Serial port enabled

(Configures RX/DT and TX/CK pins

as serial pins)

0 = Serial port disabled

bit 6 : 9-bit Receive Enable

1 = 9-bit reception

0 = 8-bit reception

bit 5 : Single Receive Enable

Asynchronous mode

Don’t care

Synchronous master mode

1 = Enables single receive

0 = Disables single receive

Synchronous slave mode

Unused in this mode

bit 4 : Continuous Receive Enable

Asynchronous mode

1 = Enables continuous receive

0 = Disables continuous receive

Synchronous mode

1 = Enables continuous receive until CREN

bit is cleared

0 = Disables continuous receive

bit 3 Unimplemented: Read as '0'

bit 2 : Framing Error bit

1 = Framing error

0 = No framing error

bit 1 : Overrun Error bit

1 = Overrun error (cleared by CREN bit)

0 = No overrun error

bit 0 : 9th bit of received data

(can be used for parity bit)

SPEN

RX9

SREN

CREN

FERR

OERR

RX9D

ABR
Fosc

S x
=

+()1

x =
⋅

F
HG

I
KJ

− = ≈16 000 000

9 600 64
1 25 042 25

, ,

,
.

In this case, the value to store in the SPRGB register is 25. The actual baud rate
can now be calculated using the first equation, as follows:

The percent error in the baud rate can be estimated by dividing the difference be-
tween the desired and the actual baud rate by the desired baud rate. The percent er-
ror is 0.16.

16F87x USART Asynchronous Transmitter
The USART in the 16F87x PICs uses a non-return-to-zero format, consisting of one
start bit, eight or nine data bits, no parity, and one stop bit. In compliance with
RS-232-C the USART transmits and receives the least significant bit first. Transmitter
and receiver units are functionally independent but use the same data format and baud
rate.

Although parity is not directly supported by the hardware, it can be implemented
in software by using the ninth data bit. Figure 14-16 shows the 16F87x registers re-
lated to asynchronous transmission.

Figure 14-16 16F87x Registers used in Asynchronous Transmission

The transmitter function also uses the Transmit Shift register (TSR), which is
not mapped in memory and is thus not accessible to code. TSR obtains its data from
the read/write transmit buffer, named TXREG, which is loaded in software after the
stop bit is received. Then TXREG transfers the data to TSR and becomes empty. At
this time the TXIF flag bit is set. An interrupt related to the TXIF bit is enabled/dis-
abled by setting/clearing the TXIE enable bit in the PIE1 register. However, the TXIF
flag bit is set regardless of the state of the TXIE enable bit. The TXIF flag is reset au-
tomatically when new data is loaded into TXREG.

Communications 379

ABR =
⋅ +

=16 000 000

64 25 1
9615 38

, ,

()
.

SPEN

TX7 TX6 TX5 TX4 TX3 TX2 TX1 TX0

TXSTA

RCSTA

TXREG

PIR1

PIE1

SPBRG

INTCON

TXIF

TXIE

GIE PEIE

(Baud Rate Generator)

7 6 5 4 3 2 1 0

TX9 TXEN SYNC BRGH TRMT TX9D

bits

REGISTER
NAME

While the TXIF flag indicates the status of TXREG, the TRMT bit, in TXSTA, re-
flects the status of TSR. TRMT is set when TSR is empty. This is a read-only bit. No
interrupts are linked to the TRMT bit, so the program has to poll this bit to deter-
mine if TSR is empty. Transmission is enabled by setting the TXEN bit in TXSTA. The
actual transmission does not occur until TXREG is loaded with data and the baud

rate generator (BRG) has produced a clock beat. Alternatively, transmission can be
started by loading TXREG and then setting the TXEN enable bit.

When transmission starts, the (not accessible) TSR register usally is empty.
Thereafter, transferring data to TXREG results in a transfer to TSR, which then pro-
duces an empty TXREG. This mechanism makes possible the back-to-back transfer.
Clearing the TXEN enable bit during transmission aborts the transmission. This ac-
tion also resets the transmitter and sets the TX/CK pin high.

16F87x USART Asynchronous Receiver
When Asynchronous mode is selected by setting the SYNC bit in TXSTA, then recep-
tion can be enabled by setting the CREN bit

In the RCSTA register. Figure 14-17 shows the registers related to asynchronous
reception.

Figure 14-17 Registers used in Asynchronous Reception

The main operational register is the RSR (Receive Shift Register), which, like
TSR, is not accessible to application software. As soon as the stop bit is detected in
the RX/TX pin, the received data in RSR is transferred to RCREG if it is empty. In
this case, the RCIF flag bit is set. The interrupt linked to the RCIF flag is enabled or
disabled by means of the RCIE in the PIE1 register. The RCIF flag bit is read-only
and can be cleared only by hardware; this happens when the RCREG register has
been read and is empty.

380 Chapter 14

SPEN RX9 CREN

RX7 RX6 RX5 RX4 RX3 RX2 RX1 RX0

FERR OERR RX9D

TXSTA

RCSTA

RCREG

PIR1

PIE1

SPBRG

INTCON

RCIF

RCIE

GIE PEIE

(Baud Rate Generator)

7 6 5 4 3 2 1 0

SYNC BRGH

bits

REGISTER
NAME

RCREG is double-buffered, meaning that it is possible for two bytes of data to be
started simultaneously while a third byte begins shifting to RSR. If the stop bit is de-
tected while RCREG is not empty, then the overrun error bit (OERR) is set in
RCSTA. RCREG operates in first-in-first-out order. When it is read twice the two
bytes are retrieved in this order.

The overrun error bit (OERR) inhibits transfer from RSR into RCREG; therefore,
it is important to clear this bit once the error is detected. The framing error bit

(FERR) in the RCSTA register is set if a stop bit is not detected.

The following steps are followed in initializing and executing asynchronous re-
ception:

1. The SPBRG register is set up for the selected baud rate.

2. Asynchronous reception is enabled by clearing the SYNC bit in the TXSTA register and
setting the SPEN bit in the RCSTA register.

3. To enable the receive data interrupt, the RCIE, GIE, and PEIE bits must be set.

4. Reception is activated by setting the CREN bit in RCSTA.

5. When reception has concluded, the RCIF bit in the PIE1 register is set. At that time, an
interrupt is generated if the RCIE bit was set.

6. Received data is retrieved by reading RCREG.

7. If any error occurred the CREN bit must be cleared.

PIC-to-PC RS-232-C Communications Circuit

To demonstrate serial communications with the RS-232-C protocol we developed a
circuit consisting of a 4-by-4 keypad and a 2-line by 20-character LCD display. Charac-
ters typed on the keypad are converted to ASCII codes for the hexadecimal digit set,
that is, the numeral digits and the letters A through F. When a key is pressed, the corre-
sponding ASCII code is displayed in the LCD and transmitted through the serial port to
a PC application. Characters received through the serial line are displayed on the LCD.
Figure 14-18 (in the following page) is a wiring diagram of the circuit.

The program SerComLCD demonstrates the circuit in Figure 14-18:

16F877 PIC Initialization Code

The following code fragment shows the initialization of the UART module in the
16F877 PIC for 2400 baud, 8 bits, no parity, and one stop bit. No interrupts are used in
this example.

;==
; USART initialization procedure
;==
; Initialize serial port for 2400 baud, 8 bits, no parity,
; 1 stop
InitSerial:

Bank1 ; Macro to select bank1
; Bits 6 and 7 of Port C are multiplexed as TX/CK and RX/DT

Communications 381

; for USART operation. These bits must be set to input in the
; TRISC register

movlw b’11000000’ ; Bits for TX and RX
iorwf TRISC,f ; OR into Trisc register

; The asynchronous baud rate is calculated as follows:
; Fosc
; ABR = ---------
; S*(x+1)

382 Chapter 14

Figure 14-18 USART Communications Circuit with PIC 16F877

16F877

SW1

SW5

SW9

SW13

SW2

SW6

SW10

SW14

SW3

SW7

SW11

SW15

SW4

SW8

SW12

SW16

MAX202

Note:
MAX202 IC requires
components not shown
in this circuit diagram.
See device data sheet.

+5v
R

=
1

0
K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RB7/PGD

RG6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

+5v

GND

T1out

R1in

R1out

T1in

T2in

R2out

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in

!MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2.VREF-

RA3/AN3/VREF+

RA4/TOCKI

RA5/AN4/SS

RE0/!RD/AN5

RE1/!WR/AN6

RE2/!CS/AN7

VDD

VSS

OSC1/CLKIN

OS2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

RESET

+5v

HD44780

LCD
2 rows x 20

KEYPAD 4 x 4

4 MHz
Osc

+5 V

+5 V

E

R/W

RS

1

14

DB-9
(female)

5 4 3 2 1

9 8 7 6

R=270
X 4

; Where x is the value in the SPBRG register and S is 64 if the
; high baud rate select bit (BRGH) in the TXSTA control register
; is clear, and 16 if the BRGH bit is set. For setting to 9600
; baud using a 4Mhs oscillator at a high-speed baud rate the
; formula is:
; 4,000,000 4,000,000
; ---------- --------- = 9,615 baud (0.16% error)
; 16*(25+1) 416
;
; At slow speed (BRGH = 0)
; 4,000,000 4,000,000
; --------- --------- = 2,403.85 (0.16% error)
; 64*(25+1) 1,664
;

movlw spbrgVal ; Value in spbrgVal = 25
movwf SPBRG ; Place in baud rate generator

;
; TXSTA (Transmit Status and Control Register) bit map:
; 7 6 5 4 3 2 1 0 <== bits
; | | | | | | | |______ TX9D 9nth data bit on
; | | | | | | | ? (used for parity)
; | | | | | | |_________ TRMT Transmit Shift Register
; | | | | | | 1 = TSR empty
; | | | | | | * 0 = TSR full
; | | | | | |____________ BRGH High Speed Baud Rate
; | | | | | (Asynchronous mode only)
; | | | | | 1 = high speed (* 4)
; | | | | | * 0 = low speed
; | | | | |__________ NOT USED
; | | | |_____________ SYNC USART Mode Select
; | | | 1 = syncrhonous mode
; | | | * 0 = asynchronous mode
; | | |________________ TXEN Transmit Enable
; | | * 1 = transmit enabled
; | | 0 = transmit disabled
; | |___________________ TX9 Enable 9-bit Transmit
; | 1 = 9-bit transmission mode
; | * 0 = 8-bit mode
; |______________________ CSRC Clock Source Select
; Not used in asynchronous mode
; Synchronous mode:
; 1 = Master Mode (internal clock)
; * 0 = Slave mode (external clock)
; Setup value: 0010 0000 = 0x20

movlw 0x20 ; Enable transmission and high
baud rate

movwf TXSTA
Bank0 ; Bank 0

Communications 383

; RCSTA (Receive Status and Control Register) bit map:
; 7 6 5 4 3 2 1 0 <== bits
; | | | | | | | |______ RX9D 9th data bit received
; | | | | | | | ? (can be parity bit)
; | | | | | | |_________ OERR Overrun errror
; | | | | | | ? 1 = error (cleared by software)
; | | | | | |____________ FERR Framing Error
; | | | | | ? 1 = error
; | | | | |_______________ NOT USED
; | | | |____________ CREN Continuous Receive Enable
; | | | Asynchronous mode:
; | | | * 1 = Enable continuous receive
; | | | 0 = Disables continuous receive
; | | | Synchronous mode:
; | | | 1 = Enables until CREN cleared
; | | | 0 = Disables continuous receive
; | | |_______________ SREN Single Receive Enable
; | | ? Asynchronous mode = don’t care
; | | Synchronous master mode:
; | | 1 = Enable single receive
; | | 0 = Disable single receive
; | |__________________ RX9 9th-bit Receive Enable
; | 1 = 9-bit reception
; | * 0 = 8-bit reception
; |_____________________ SPEN Serial Port Enable
; * 1 = RX/DT and TX/CK are serial pins

; 0 = Serial port disabled
; Setup value: 1001 0000 = 0x90

movlw 0x90 ; Enable serial port and continuous
; reception

movwf RCSTA
;

clrf errorFlags ; Clear local error flags register
Return

USART Receive and Transmit Routines
The transmit data routine is quite simple. Code checks the TXIF bit in PIR1. If the bit is
set, data is transmitted by storing the data byte in TXREG. The following procedure
performs the required operations.

;==============================
; transmit data
;==============================
; Test for Transmit Register Empty and transmit data in w
SerialSend:

Bank0 ; Select bank 0
busyWait:

384 Chapter 14

btfss PIR1,TXIF ; check if transmitter busy
goto busyWait ; wait until transmitter is not busy
movwf TXREG ; and transmit the data
return

Receiving data is more complicated than transmitting it. One of the reasons is
that code must test for and handle several possible errors that can occur during re-
ception. The following code fragment shows the local variables and processing re-
quired for simple data reception.

;===
; variables in PIC RAM
;===
; Local variables

cblock 0x20 ; Start of block
.
.
.

; Communications variables
newData ; not 0 if new data received
ascVal
errorFlags
endc

;===
; USART receive data procedure
;===
; Procedure to test line for data received and return value
; in w. Overrun and framing errors are detected and
; remembered in the variable errorFlags, as follows:
; 7 6 5 4 3 2 1 0 <== errorFlags
; — not used —— | |___ overrun error
; |______ framing error
SerialRcv:

clrf newData ; Clear new data received register
Bank0 ; Select bank 0

; Bit 5 (RCIF) of the PIR1 Register is clear if the USART
; receive buffer is empty. If so, no data has been received

btfss PIR1,RCIF ; Check for received data
return ; Exit if no data

; At this point data has been received. First eliminate
; possible errors: overrun and framing.
; Bit 1 (OERR) of the RCSTA register detects overrun
; Bit 2 (FERR(of the RCSTA register detects framing error

btfsc RCSTA,OERR ; Test for overrun error
goto OverErr ; Error handler
btfsc RCSTA,FERR ; Test for framing error
goto FrameErr ; Error handler

; At this point no error was detected

Communications 385

; Received data is in the USART RCREG register

movf RCREG,w ; get received data

bsf newData,7 ; Set bit 7 to indicate new data

; Clear error flags

clrf errorFlags

return

;==========================

; error handlers

;==========================

; Overrun error detected

OverErr:

bsf errorFlags,0 ; Bit 0 is overrun error

; Reset system

errExit:

bcf RCSTA,CREN ; Clear continuous receive bit

bsf RCSTA,CREN ; Set to re-enable reception

return

; Error. FERR framing error bit is set

FrameErr:

bsf errorFlags,1 ; Bit 1 is framing error

movf RCREG,W ; Read and throw away bad data

goto errExit

The procedures listed previously are from the program SerComLCD in the book’s
online software. The applicable circuit is shown in Figure 14-18.

The USART Receive Interrupt

Polled routines for serial communications are adequate when the application does lit-
tle else but check transmission lines. If the application has other tasks to perform,
polled routines can waste processing time and even lose data. In this sense, the send
function is usually less critical. An application can typically determine when to send
data and have available all the data when the send operation activates. This is often
not the case in receiving data, especially in applications that execute full-duplex.

A practical solution is to use interrupts for receiving characters through the serial
line. The 60F87x includes facilities for implementing interrupt routines by both the
send and the receive functions. To enable interrupts for the USART receive opera-
tion the following preparatory steps are necessary:

1. Peripheral and global interrupts must be enabled by setting bits 6 and 7 of the INTCON
register.

2. The receive interrupt must be enabled by setting the RCIF bit in the PIE1 register.

The handler for the serial reception interrupt usually performs the following
functions:

386 Chapter 14

1. The context is saved. This includes, but is not limited to, the status register, the w regis-
ter, the PCLATH register, and the FSR register.

2. Code tests for received data by checking the RCIF bit in the PIR1 register. If this bit is
clear the interrupt did not originate in received data.

3. Code can also check if the interrupt enable bit (RCIE) is set in the RCIE register. If not
enabled the interrupt is related to serial data.

4. The handler usually checks two possible errors during reception: overflow and fram-
ing error. The first one by checking the OERR bit and the second one by checking the
FERR bit, both in the RCSTA register. If reception errors have taken place, the handler
takes appropriate action.

5. If no error is detected then the received data can be retrieved from the RCREG.

6. On exit the interrupt handler restores the context and issues the retfie instruction.

The following code fragment lists the variables and processing routine for an in-
terrupt handler for serial data reception:

===
; variables in PIC RAM
;===
; Local variables

cblock 0x20 ; Start of block
.
.
.

; Communications variables
errorFlags

; Temporary storage used by interrupt handler
tempW
tempStatus
tempPclath
tempFsr
endc

;==
;==
; interrupt handler for received characters
;==
;==
IntServ:

movwf tempW ; Save W
movf STATUS,W ; Store STATUS in W
clrf STATUS ; Select bank0
movwf tempStatus ; Save STATUS
movf PCLATH,W ; Store PCLATH in W
movwf tempPclath ; Save PCLATH
clrf PCLATH ; Select program memory page 0
movf FSR,W ; Store FSR in W

Communications 387

movwf tempFsr ; Save FSR value
; Test for received data interrupt

Bank0 ; select bank0
; 7 6 5 4 3 2 1 0 <= PIR1
; |__________________ (RCIF) USART receive interrupt
; flag

Btfsc PIR1,RCIF ; Test bit 5
bsf STATUS,RP0 ; Bank 1 if RCIF set

; 7 6 5 4 3 2 1 0 <= PIE1
; |__________________ (RCIE) Receive interrupt enable
; bit

btfss PIE1,RCIE ; Test if interrupt is enabled
goto IntExit ; Go if not enabled

;==============================
; received data
;==============================
; Routine to handler received data. Overrun and framing
; errors are detected and remembered in the variable
; errorFlags, as follows:
; 7 6 5 4 3 2 1 0 <== errorFlags
; — not used —— | |___ overrun error
; |______ framing error

Bank0 ; Select bank 0
; Test for overrun and framing errors.
; Bit 1 (OERR) of the RCSTA register detects overrun
; Bit 2 (FERR) of the RCSTA register detects framing error

btfsc RCSTA,OERR ; Test for overrun error
goto OverErr ; Error handler
btfsc RCSTA,FERR ; Test for framing error
goto FrameErr ; Error handler

; At this point no error was detected
; Received data is in the USART RCREG register

movf RCREG,w ; Received data into w
; Clear error flags

clrf errorFlags
goto IntExit

;==========================
; error handlers
;==========================
; Errors are returned as bits in the errorFlags register
; 7 6 5 4 3 2 1 0 <= errorFlags
; —- not used —- | |____ overrun error
; |_______ framing error
; Error responses to be made by main code
OverErr:

bsf errorFlags,0 ; Bit 0 is overrun error
; Reset system

bcf RCSTA,CREN ; Clear continuous receive bit

388 Chapter 14

bsf RCSTA,CREN ; Set to re-enable reception
goto IntExit

FrameErr:
bsf errorFlags,1; Bit 1 is framing error
movf RCREG,W ; Read and throw away bad data

;==============================
; interrupt handler exit
;==============================
IntExit:

Bank0
movf tempFsr,w ; Recover FSR value
movwf FSR ; Restore in register
movf tempPclath,w ; Recover PCLATH value
movwf PCLATH ; Restore in register
movf tempStatus,W ; Recover STATUS
movwf STATUS ; Restore in register
swapf tempW,F ; Swap file register in itself
swapf tempW,W ; Restore in register
retfie

The program SerIntLCD in the book’s online software is an interrupt-driven dem-
onstration for the circuit in Figure 14-18.

14.5 Sample Programs
The sample programs listed in the following sections refer to the programming dis-
cussed in this chapter.

14.5.1 SerialSnd Program
; File name: SerialSnd.asm
; Date: May 5, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Two programs to exercise serial communications between
; two PIC 16F84A both running at 4Mhs. One program sends
; data through a single line and the other one receives
; it. This program is the sender.
;
; Circuit:
; Port A1 is the serial transmission line
; Port A2 is an active-low pushbutton switch that
; serves to initiate communications.
; Port A3 is a LED that is ON when the program is
; ready to send data. Once data starts
; being sent the LED is turned OFF.
; Port-B0-B7 is a 8 x toggle switch that provides

Communications 389

; the data byte to be sent
; A pushbutton switch is in the 16F84 RESET line
; and serves to restart the program
;
; Communications parameters:
; Timer channel TMR0 is used for synchronizing data
; transmission. The timer runs at the maximum rate of
; 256 cycles per iteration. In a 4Mhz system the
; timer rate is 1Mhz, thus the bit rate is
; 1,000,000/256
; which is approximately 3,906 microseconds per bit.
;
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0

390 Chapter 14

ENDM
;===
; constant definitions for pin wiring
;===
#define readySW 2 ;|
#define readyLED 3 ;| — from wiring diagram
#define serialLN 1 ;|
;===
; PIC register flag equates
;===
c equ 0 ; Carry flag
tmrOVF equ 2 ; Timer overflow bit
;==
; variables in PIC RAM
;===

cblock 0x0d ; Start of block
bitCount ; Counter for 8 bits
dataReg ; Data to send
endc

;===
; program
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x04

main:
; Port-A, bit 2 is input. Rest is output

Bank1
movlw b’00000100’ ; Port-A bit 2 is input

; all others are output
movwf TRISA

; Port-B is all input
movlw b’11111111’
movwf TRISB
Bank0
bsf PORTA,1 ;Marking bit

; Prepare to set prescaler
clrf TMR0
clrwdt

; Setup OPTION register for full timer speed
movlw b’11011000’

; 1 1 0 1 1 0 0 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | *000 = 1:2 001 = 1:4

Communications 391

; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | 0 = falling edge
; | *1 = raising edge
; |__________________________ RBPU pullups
; 0 = enabled
; *1 = disabled

option
; Disable interrupts

bcf INTCON,5 ; Timer0 overflow disabled
bcf INTCON,7 ; Global interupts disabled

; Turn on ready LED
bsf PORTA,3 ; LED on

;===========================
; wait for READY switch
; to be pressed
;===========================
ready2send:

btfsc PORTA,readySW
goto ready2send

;===========================
; send serial data
;===========================
; At this point program proceeds to send data through
; the serial port line
; Turn off LED

bcf PORTA,readyLED
; Read switches and store in local variable

movf PORTB,w
movwf dataReg

;===========================
; call serial output
; procedure
;===========================

call sendData ; call serial output procedure
;===========================
; wait forever

392 Chapter 14

;===========================
endloop:

goto endloop

;==
; procedure to send serial data
;==
; ON ENTRY:
; local variable dataReg holds 8-bit value to be
; transmitted through port labeled serialLN
; OPERATION:
; 1. The timer at register TMR0 is set to run at
; maximum clock speed, that is, 256 clock beats.
; The timer overflow flag in the INTCON register
; is set when the timer cycles from 0xff to 0x00.
; 2. Each bit (start, data, and stop bits) is sent
; at a rate of 256 timer beats. That is, each bit is
; held high or low for one full timer cycle (256
; clock beats).
; 3. The procedure tests the timer overflow flag
; (tmrOVF) to determine when the timer cycle has
; ended, that is when 256 clock beats have passed.
;
sendData:

movlw 0x08 ; Setup shift counter
movwf bitCount

;=======================
; send START bit
;=======================
; Set line low then hold for 256 timer clock beats.

bcf PORTA,serialLN ; Send start bit
; First reset timer

clrf TMR0 ; Reset timer counter
bcf INTCON,tmrOVF ; Reset TMR0 overflow flag

; Wait for 256 timer clock beats
startBit:

btfss INTCON,tmrOVF ; timer overflow?
goto startBit ; Wait until set

; At this point timer has cycled. Start bit has ended
bcf INTCON,tmrOVF ; Clear overflow flag

;========================
; send 8 DATA bits
;========================
; Eight data bits are sent through the serial line
; starting with the high-order bit. The data byte is
; stored in the register named dataReg. The bits are
; rotated left to the carry flag. Code assumes the bit
; is zero and sets the serial line low. Then the carry

Communications 393

; flag is tested. If the carry is set the serial line
; is changed to high. The line is kept low or high for
; 256 timer beats.
send8:

rlf dataReg,f ; bit into carry flag
bcf PORTA,serialLN ; 0 to serial line

; Code can assume the bit is a zero and set the line
; low since, if low is the wrong state, it will only
; remain for two timer beats. The receiver will not
; check the line for data until 128 timer beats have
; elapsed, so the error will be harmless. In any case,
; there is no assurance that the previous line state is
; the correct one, so leaving the line in its previous
; state could also be wrong.

btfsc STATUS,c ; test carry flag
bsf PORTA,serialLN ; bit is set. Fix error.

bitWait:
btfss INTCON,tmrOVF ; Timer cycled?
goto bitWait ; not yet

; At this point timer has cycled.
; Test for end of byte, if not, send next bit

bcf INTCON,tmrOVF ; clear overflow flag
decfsz bitCount,f ; Last bit?
goto send8 ; not yet

;=========================
; hold MARKING state
;=========================
; All 8 data bits have been sent. The serial line must
; now be held high (MARKING) for one clock cycle

bsf PORTA,serialLN ; Marking state
markWait:

btfss INTCON,tmrOVF ; Done?
goto markWait ; not yet

;=========================
; end of transmission
;=========================

return ; done

;===
; end of program
;===

end

14.5.2 SerialRcv Program
; File name: SerialRcv.asm
; Date: May 6, 2006
; Author: Julio Sanchez

394 Chapter 14

; Processor: 16F84A
;
; Description:
; Two programs to exercise serial communications between
; two PIC 16F84A both running at 4Mhs. One program sends
; data through a single line and the other one receives
; it. This program is the receiver.
;
; Circuit:
; Port A0 is the serial transmission line
; Port A2 is an active-low pushbutton switch that
; serves to initiate communications.
; Port A3 is a LED that is ON when the program is
; ready to receive data. Once data starts
; being received the LED is turned OFF.
; Port-B0-B7 are 8 LEDs that display the data bits
; that have been received.
; A pushbutton switch is in the 16F84 RESET line
; and serves to restart the program
;
; Communications parameters:
; Timer channel TMR0 is used for synchronizing data
; transmission. The timer runs at the maximum rate of
; 256 cycles per iteration. In a 4Mhz system the
; timer rate is 1Mhz, thus the bit rate is
; 1,000,000/256
; which is approximately 3,906 microseconds per bit.
;
; Upon receiving the START bit, the program waits for
; one half a clock cycle (128 timer beats) to
; synchronize with the sender.
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)

Communications 395

; |
; |_____ * indicates setup values presently selected

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
ENDM

;===
; constant definitions for pin wiring
;===
#define readySW 2 ;|
#define readyLED 3 ;| — from wiring diagram
#define serialLN 0 ;|
;===
; PIC register and flag equates
;===
c equ 0 ; Carry flag
tmrOVF equ 2 ; Timer overflow bit
;
;==
; variables in PIC RAM
;===

cblock 0x0c ; Start of block
bitCount ; Counter for 8 bits
rcvReg ; Data to send
temp
endc

;===
; program
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x04

396 Chapter 14

main:
Bank1

; Port-A bits 0 and 2 are input. All others are output
movlw b’00000101’ ; Port-A setup
movwf TRISA

; Port-B is all output
movlw b’00000000’ ; Port-B setup
MOVWF TRISB
Bank0

; Turn off all Port-B LEDs
clrf PORTB

; And receiver register
clrf rcvReg

; Prepare to set prescaler
clrf TMR0
clrwdt

; Setup OPTION register for full timer speed
movlw b’11011000’

; 1 1 0 1 1 0 0 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | *000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | 0 = falling edge
; | *1 = raising edge
; |__________________________ RBPU pullups
; 0 = enabled
; *1 = disabled

option
; Disable interrupts

bcf INTCON,5 ; Timer0 overflow disabled
bcf INTCON,7 ; Global interrupts disabled

;=========================
; wait for READY switch
; to be pressed
;=========================

Communications 397

ready2rcv:
btfsc PORTA,readySW ; Test switch
goto ready2rcv ; loop

; Turn ON the ready-to-receive LED
bsf PORTA,readyLED

;===========================
; receiving
;===========================

call rcvData ; Call serial input procedure
;===========================
; data received
;===========================
; Turn ready to receive LED off

bcf PORTA,readyLED
; Display received data

movf rcvReg,w ; Byte received to w
movwf PORTB ; display in Port-B

;===========================
; wait forever
;===========================
endloop:

goto endloop
;==
; procedure to receive serial data
;==
; ON ENTRY:
; local variable dataReg is used to store 8-bit value
; received through port (labeled serialLN)
; OPERATION:
; 1. The timer at register TMR0 is set to run at
; maximum clock speed, that is, 256 clock beats.
; The timer overflow flag in the INTCON register
; is set when the timer cycles from 0xff to 0x00.
; 2. When the START signal is received, the code
; waits for 128 timer beats so as to read data in
; the middle of the send period.
; 3. Each bit (start, data, and stop bits) is read
; at intervals of 256 timer beats.
; 4. The procedure tests the timer overflow flag
; (tmrOVF) to determine when the timer cycle has
; ended, that is when 256 clock beats have passed.

;===
rcvData:

clrf TMR0 ; Reset timer
movlw 0x08 ; Initialize bit counter
movwf bitCount

;=========================

398 Chapter 14

; wait for START bit
;=========================
startWait:

btfsc PORTA,0 ; Is port A0 low?
goto startWait ; No. Wait for mark

;=========================
; offset 128 clock beats
;=========================
; At this point the receiver has found the falling
; edge of the start bit. It must now wait 128 timer
; beats to synchronize in the middle of the sender’s
; data rate, as follows:
; |<========= falling edge of START bit
; |
; |-----|<====== 128 clock beats offset
; --------- | .---------
; | | <== SIGNAL
; -----------
; |<-- 256--->|
;

movlw 0x80 ; 128 clock beats offset
movwf TMR0 ; to TMR0 counter
bcf INTCON,tmrOVF ; Clear overflow flag

offsetWait:
btfss INTCON,tmrOVF ; timer overflow?
goto offsetWait ; Wait until
btfsc PORTA,0 ; Test start bit for error
goto offsetWait ; Recycle if a false start

;==========================
; receive data
;==========================

clrf TMR0 ; Restart timer
bcf INTCON,tmrOVF ; Clear overflow flag

; Wait for 256 timer cycles for first/next data bit
bitWait:

btfss INTCON,tmrOVF ; Timer cycle end?
goto bitWait ; Keep waiting

; Timer has counter 256 beats
bcf INTCON,tmrOVF ; Reset overflow flag
movf PORTA,w ; Read Port-A into w
movwf temp ; Store value read
rrf temp,f ; Rotate bit 0 into carry flag
rlf rcvReg,f ; Rotate carry into rcvReg 0

decfsz bitCount,f ; 8 bits received
goto bitWait ; Next bit

; Wait for one time cycle at end of reception
markWait:

btfss INTCON,tmrOVF ; timer overflow flag

Communications 399

goto markWait ; keep waiting
;========================
; end of reception
;========================

return

;===
; end of program
;===

end

14.5.3 Serial6465 Program
; File name: Serial6465.asm
; Last update: May 7, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to exercise serial communications using a
; PIC 16F84A and two shift registers: a 74HC164, and a
; 74HC165. The 74HC165 inputs 8 lines from a DIP switch
; and transmits settings to PIC through a serial line.
; PIC sends data serially to an 74HC164 which is wired
; to 8 LEDs that display the received data. A total of
; 6 PIC lines are used in interfacing 8 input switches
; to 8 output LEDs.
; Circuit:
; * Port A0 is the serial transmission line which
; comes from the 74HC165.
; * Port A1 is wired to the 74HC164 CLOCK pin
; * Port A2 is wired to the 74HC164 CLEAR pin
; * 74HC164 output pins 0 to 7 are wired to LEDs.
; * Port B0 is wired to the 74HC165 Hout line
; * Port B1 is wired to the 74HC165 CLK line
; * Port B2 is wired to the 74HC165 load line
; * A pushbutton switch is in the 16F84 RESET line
; and serves to restart the program
; Communications protocol:
; Communication between PIC and the 74HC164 and
; 74HC165 is synchronous since the shift registers
; clock lines serve to shift in and out the data
; bits.
;
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF

400 Chapter 14

; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
ENDM

; Note: in the case of the 16F84A the bank select macros
; do not make the code more efficient, however, they
; do serve to clarify the bank selection operations.
;===
; constant definitions from wiring diagram
;===
#define clockLN 1 ;|
#define clearLN 2 ;| — 74HC164 lines
#define dataLN 0 ;|
;
#define clk65LN 1 ;| — 74HC165 lines
#define loadLN 2 ;|
;===
; PIC register and flag equates
;===

Communications 401

highBit equ 7 ; High order bit
;==
; variables in PIC RAM
;===

cblock 0x0d ; Start of block
bitCount ; Counter for 8 bits
dataReg ; Data to send
workReg ; Work register for bit shifts
endc

;===
; program
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x04

main:
; Port-A is all output

Bank1
movlw b’00000000’
movwf TRISA

; Port-B line 0 is input, all others are output
movlw b’00000001’
movwf TRISB
Bank0

; Make sure Port-A line 2 (clear line) is high
movlw b’00000100’
movwf PORTA

;========================
; read input from 165 IC
;========================

call in165 ; Local procedure
; dataReg contains input
;===========================
; call serial output
; procedure
;===========================

call out164 ; Call serial output procedure
;===========================
; wait forever
;===========================
endloop:

goto endloop
;==
; 74HC164 procedure to send serial data
;==
; ON ENTRY:

402 Chapter 14

; local variable dataReg holds 8-bit value to be
; transmitted through port labeled serialLN
; OPERATION:
; 1. A local counter (bitCount) is initialized to
; 8 bits
; 2. Code assumes that the first bit is zero by
; setting the data line low. Then the high-order
; bit in the data register (dataReg) is tested.
; If set, the data line is changed to high.
; 3. Bits are shifted in by pulsing the 74HC164
; clock line (CLK).
; 4. Data bits are then shifted left and the bit
; counter is tested. If all 8 bits have been sent
; the procedure returns.
out164:
; Clear 74HC164 shift register

bcf PORTA,clearLN ; 74HC164 CLR clear low
bsf PORTA,clearLN ; then high again

; Init counter
movlw 0x08 ; Initialize bit counter
movwf bitCount

sendBit:
bcf PORTA,dataLN ; Set data line low (assume)

; Using this assumption is possible because the bit is not
; shifted in until the clock line is pulsed.

btfsc dataReg,highBit ; test number bit 7
bsf PORTA,dataLN ; Change assumption if set

;=========================
; pulse clock line
;=========================
; Bits are shifted in by pulsing the 74HC164 CLK line

bsf PORTA,clockLN ; CLK high
bcf PORTA,clockLN ; CLK low

;=========================
; Rotate data bits left
;=========================

rlf dataReg,f ; Shift left data bits
decfsz bitCount,f ; Decrement bit counter
goto sendBit ; Repeat if not 8 bits

;=========================
; end of transmission
;=========================

return

;==
; 74HC165 procedure to read parallel data and send
; serially to PIC
;==

Communications 403

; OPERATION:
; 1. Eight DIP switches are connected to the input
; ports of an 74HC165 IC. Its output line Hout,
; and its control lines CLK and load are connected
; to the PIC’s Port-B lines 0, 1, and 2
; respectively
; 2. Procedure sets a counter (bitCount) for 8
; iterations and clears a data holding register
; (dataReg).
; 3. Port-B bits are read into w. Only the lsb of
; Port-B is relevant. Value is stored in a working
; register and the meaningful bit is rotated into
; the carry flag, then the carry flag bit is
; then shifted into the data register.
; 4. The iteration counter is decremented. If this
; is the last iteration the routine ends. Otherwise
; the bitwise read-and-write operation is repeated.

in165:
clrf dataReg ; Clear data register
movlw 0x08 ; Initialize counter
movwf bitCount
bcf PORTB,loadLN ; Reset shift register
bsf PORTB,loadLN

nextBit:
movf PORTB,w ; Read Port-B (only LOB is

; meaningful in this routine)
movwf workReg ; Store value in local

; register
rrf workReg,f ; Rotate LOB bit into carry

; flag
rlf dataReg,f ; Carry flag into dataReg
decfsz bitCount,f ; Decrement bit counter
goto shiftBits ; Continue if not zero
return ; done

shiftBits:
bsf PORTB,clk65LN ; Pulse clock
bcf PORTB,clk65LN
goto nextBit ; Continue

;===
; end of program
;==

end

14.5.4 TTYUsart Program
; File name: TTYUsart.asm
; Last update: May, 2006

404 Chapter 14

; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to emulate USART operation in PIC code. Uses
; PIC-to-LCD interface. Display has 2 lines, each with
; 16 characters.
; Program operation:
; Characters received from the RS232 line are displayed on
; the LCD. LCD lines scroll automatically. A pushbutton
; activates the send operation by transmitting the text
; string: Ready- which is also displayed on the LCD.
;
; Program communications and LCD parameters are stored in
; #define statements. These statements can be edited to
; accommodate a different set-up. Program uses delay loops
; for interface timing.
;
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock
;
; BAUD RATE CALCULATIONS:
; A 4Mhz clock oscillator has a clock frequency of 1 Mhz:
; Since the baud rate is the number of clock cycles per
; second, for a 4Mhz clock it is:
; 1
; bit time = ——— sec. = 208.33 microseconds
; 4,800
; Calculating one half the baud rate allows resetting the
; clock from the edge to the center of a time pulse:
;
; |<======== falling edge of start bit
; | |<======== center of bit time
; >| |< one-half baud rate
; | |
;__________. | .____________.
; |_____________| |________
; 208/2 = 104
; The PIC clock counts up from 0 to 255. So to implement
; a 104 microsecond delay we must start counting at
; clock beat:
; 255 - 104 = 151
; plus one microsecond for movlw instruction used to
; initialize the clock:
; 151 + 1 = 152
; For one full baud rate delay:
; 255 - 208 = 47 + 1 = 48

Communications 405

; The following two constants are stored in #define
; statements:
; halfBaud = 152
; fullBaud = 48
; Setting the prescaler to TMR0 reduces the baud rate
; to one-half. Other prescaler values will reduce the
; baud rate accordingly.
;
; Wiring diagram:
; RB4-RB7 ===> LCD data lines 4 to 7 (output)
; RB0 =======> MAX202 T2in line (output)
; RA0 =======> MAX202 R2out line (input)
; RA1 =======> LCD E line (output)
; RA2 =======> LCD RS line (output)
; RA3 =======> LCD R/W line (output - not used)
; RA4 =======> Pushbutton switch 1
; (input - active low)
;
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal oscillator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;==
; M A C R O S
;==

406 Chapter 14

; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
ENDM

;==
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;==
#define E_line 1 ;|
#define RS_line 2 ;| — from wiring diagram
#define RW_line 3 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .16; Number of characters per line
; 4800 baud clock countdown values
; Code reduces rate to 2400 baud by entering a minimal
; presclaer to TRM0
#define halfBaud .152 ; For one-half bit time
#define fullBaud .48 ; For one full bit time
;
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command
;
;===
; buffer and variables in PIC RAM
;===
; Create a 16-byte storage area

cblock 0x0c ; Start of first data block
lineBuf ; buffer for text storage
endc

; Leave 16 bytes and Continue with local variables
cblock 0x1c ; Second data block
count1 ; Counter # 1
count2 ; Counter # 2
J ; counter J
K ; counter K
store1 ; Local temporary storage
store2 ; Storage # 2

; For LCDscroll procedure
LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)
bufPtr ; Buffer pointer

Communications 407

; Variables for serial communications
tempData ; Temporary storage for bit manipulations
rcvData ; Final storage for received character
bitCount ; Bit counter
sendData ; Character to send
endc

;===
; m a i n p r o g r a m
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
Bank1
movlw b’00010001’ ; Port-A lines I/O setup

; RA0 = RS232 input (R2out)
; RA4 = Pushbutton SW # 1

movwf TRISA
movlw b’00000000’ ; Port-B lines as follow:

; RB4-RB7 ===> LCD data lines 4 to 7 (output)
; RB0 =======> MAX202 T2in line (output)

movwf TRISB
Bank0

; Clear bits in Port-A output lines
bcf PORTA,1
bcf PORTA,2
bcf PORTA,3
movlw b’00000000’ ; All outputs ports low
movwf PORTB

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize

; itself
call delay_5
call initLCD ; Then do forced

initialization
call delay_5 ; Wait again

; Set Port-B, line 0 high so start bit is detected
bsf PORTB,0

;============================
; wait for start command
;============================
; Program waits until pushbutton number 1 is pressed
; to continue execution. Pushbutton 1 is active low
; and wired to RA4
pb1Wait:

btfsc PORTA,4 ; Test Port-A, line 4

408 Chapter 14

goto pb1Wait ; Loop if not clear
;============================
; display and send “Ready-”
;============================
; Set LCD base address

call line1
; Initialize system for UART emulation at 2400 baud

call initTTY
; Display on LCD and test serial transmission by sending
; the string “Ready-”

movlw ‘R’
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw ‘e’
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw ‘a’
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw ‘d’
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw ‘y’
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw ‘-’
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure

; Init character counter and line counter variables for
; LCD line scroll procedure

movlw 0x06 ; 6 characters already
displayed

movwf LCDcount
clrf LCDline ; LCD line counter

;============================
; monitor RS232 line
;============================
nextChar:

call rcvTTY ; Receive character
; Store character in local line buffer using indirect
; addressing
; 16-byte buffer named lineBuf starts at address 0x0c

Communications 409

; Register variable bufPtr holds offset into buffer
movlw 0x0c ; Buffer base address
addwf bufPtr,w ; Add pointer in w
movwf FSR ; Value to index register
movf rcvData,w ; Character into w
movwf INDF ; Store w in [FSR]
incf bufPtr,f ; Bump pointer

; Send character (still in w)
call send8 ; Display it
call LCDscroll ; Scroll display lines
goto nextChar ; Continue

;==
; initialize LCD for 4-bit mode
;==
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low
bcf PORTA,RW_line ; Write mode
call delay_125 ; delay 125 microseconds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28

410 Chapter 14

call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

call send8
;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ increment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
; | | | | | SHIFT)
; | | | |_|___ don’t care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left
; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

call send8

Communications 411

; Per documentation
call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125:

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat:
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw D’41’ ; Counter = 41
movwf count2 ; Store in variable

delay:
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTA,E_line ; Pulse E line
nop
bcf PORTA,E_line
return

;=============================
; long delay sub-routine
; (for debugging)
;=============================
long_delay

movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero

412 Chapter 14

goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to Port-B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with Port-B

; Now w has merged byte
movwf PORTB ; w to Port-B
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTB
call pulseE ; Send data to LCD
call delay_125
return

;=================
; merge bits
;=================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of Port-B
; so as to preserve the 4 low-bits in Port-B
; Logic:
; AND value with 1111 0000 mask
; AND Port-B with 0000 1111 mask
; Now low nibble in value and high nibble in
; PortB are all 0 bits:
; value = vvvv 0000
; PortB = 0000 bbbb
; OR value and Port-B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contains value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves

Communications 413

; the original value
movwf store2 ; Save result in variable
movf PORTB,w ; Port-B to w register
andlw b’00001111’ ; Clear high nibble in Port-B

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;========================
; Set address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTA,RS_line ; Setup for data
call delay_5 ; Busy?

; Clear buffer and pointer
call blankBuf
clrf bufPtr ; Clear
return

;========================
; Set address register
; to LCD line 2
;========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, setup for

control
call delay_5 ; Busy?

; Set to second display line
movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTA,RS_line ; RS = 1 for data
call delay_5 ; Busy?

; Clear buffer and pointer
call blankBuf
clrf bufPtr

414 Chapter 14

return

;==========================
; scroll LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then the
; second line is scrolled to the first line and display
; continues at the start of the second line
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,Z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,Z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:
; Scroll second line to first line. Characters to be
; scrolled are stored in buffer starting at address 0x0c.
; 16 characters are to be moved
; First clear LCD

call initLCD
call delay_5 ; Make sure not busy

; Set up for data
bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 16 characters
movlw D’16’ ; Counter = 16
movwf count2

; Get address of storage buffer
movlw 0x0c
movwf FSR ; W to FSR

getchar:

Communications 415

movf INDF,w ; get character from display RAM
; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 16 characters displayed

decfsz count2,f ; Decrement counter
goto nextchar ; Skipped if done

; At this point scroll operation has concluded
clrf LCDcount ; Clear counters

; Stay at line 2
clrf LCDline
incf LCDline,f
call line2 ; Set for second line

scrollExit:
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;============================
; clear line buffer
;============================
; Use indirect addressing to store 16 blanks in the
; buffer located at 0x0c
blankBuf:

Bank0
movlw 0x0c ; Pointer to RAM
movwf FSR ; To index register

blank16:
clrf INDF ; Clear memory pointed at by FSR
incf FSR,f ; Bump pointer
btfss FSR,4 ; 000x0000 when bit 4 is set

; count reached 16
goto blank16
return

;==
; initialize for TTY
;==
; Procedure to initialize RS232 reception
; Assumes:
; 2400 baud
; 8 data bits
; no parity
; one stop bit
initTTY:
; First initialize receiver to RS-232-C line parameters
; Disable global and peripheral interrupts

416 Chapter 14

; 7 6 5 4 3 2 1 0 <= INTCON bitmap
; | ? | ? ? ? ? ? (? = unrelated bits)
; | |________________ Timer0 interrupt on overflow
; |______________________ Global interrupts

bcf INTCON,5 ; Disable TMR0 interrupts
bcf INTCON,7 ; Disable global interrupts
clrf TMR0 ; Reset timer
clrwdt ; Clear WDT for prescaler

assign
Bank1

; Set up the OPTION register bit map
; 7 6 5 4 3 2 1 0 <= OPTION bits
; 1 1 0 1 1 0 0 0 <= setup
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | *000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | 1 = to WDT
; | | | | *0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | 0 = falling edge
; | *1 = raising edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

movlw b’11010000’ ; set up timer/counter
movwf OPTION_REG
Bank0
return

;==
; receive character
;==
; Receive a single character through the serial port.
; Assumes: 4800 baud, 8 data bits, no parity, 1 stop bit.
; Receiving line is Port-A, line 0
rcvTTY:

movlw 0x08 ; Counter for 8 bits
movwf bitCount

; The start of character transmission is signaled by

Communications 417

; the sender by setting the line low
startBit:

btfsc PORTA,0 ; Test for low on line
goto startBit ; Go if not low

;=========================
; offset to data bit
;=========================
; At this point the receiver has found the falling
; edge of the start bit. It must now wait one and
; one-half the baud rate to synchronize in the center
; of the sender’s first data bit, as follows:
; |<========= falling edge of START bit
; | |<========== center of start bit
; | | |<====== center of data bit
; |-----|-----|
;_____ ___________ __________
; | | | | <== SIGNAL
; ----------- ----------
; |<-- 208 -->|h| <====== ms. for 4800 baud
;
; Clock start count for one-half bit = 255 - 104 = 151
; Clock start count for one full bit = 255 - 208 = 47
; One clock cycle is added for the movwf instruction:
; clkHalf = 152 (for one-half bit countdown)
; clkFull = 48 (for one full bit countdown)

movlw halfBaud ; Skip one-half bit
movwf TMR0 ; Initialize tmr0 and start count
bcf INTCON,2 ; Clear overflow flag

;============================
; start bit
;============================
wait1:

btfss INTCON,2 ; Timer count overflow?
goto wait1 ; No, keep waiting

; At this point we are at the center of the start bit
btfsc PORTA,0 ; Check to see it is still low
goto startBit ; No, it is high. False start

; At this point the clock is at the center of the start
; bit. The first data bit must be read one full baud
; period later

movlw fullBaud ; One full bit delay
movwf TMR0 ; Start timer
bcf INTCON,2 ; clear tmr0 overflow flag

wait2:
btfss INTCON,2 ; End of one full baud period?
goto wait2 ; Wait if not end of period

; Timer is now at the center of the first/next data bit
; Timer must be reset immediately so that code will not

418 Chapter 14

; lose synchronization with sender
movlw fullBaud ; Skip to next data bit
movwf TMR0 ; Restart timer
bcf INTCON,2 ; Reset overflow flag

; Now the data bit can be read and and stored
movf PORTA,w ; Read Port-B
movwf tempData ; Store in temporary variable
rrf tempData,f ; Rotate bit 0 into carry flag
rrf rcvData,f ; Rotate carry flag into

; storage register high-order
; bit

decfsz bitCount,f ; End of data?
goto wait2 ; Continue until 8 bits received

;============================
; stop bit
;============================
stopWait:

btfss INTCON,2 ; Test time
goto stopWait ; Wait
return ; Exit

;==
; send character
;==
; Procedure to send one character through the RS232 line.
; Assumes: 2400 baud, 8 data bits, no parity, one stop bit
; Sending line is Port-B, line 0
; ON ENTRY:
; variable sendData holds character to send
sendTTY:

movlw 0x08 ; Init bit counter
movwf bitCount
bcf PORTB,0 ; Low for start bit
movlw fullBaud ; For one baud space
movwf TMR0 ; Start timer
bcf INTCON,2 ; Clear timer flag

start2snd:
btfss INTCON,2 ; Full baud done?
goto start2snd ; No
movlw fullBaud ; Reset for one full bit period
movwf TMR0 ; Start timer
bcf INTCON,2 ; Clear flag

; At this point the start bit has been sent
; Data follows
sendOut:

rrf sendData,f ; Rotate bit into carry
bcf PORTB,0 ; Assume data bit is 0
btfsc STATUS,c ; Test if carry set

Communications 419

bsf PORTB,0 ; Change bit to 1 if clear
; Hold bit for 1 baud period
timeBit:

btfss INTCON,2 ; Wait for baud period to end
goto timeBit ; Loop if not yet
movlw fullBaud ; Reset timer
movwf TMR0 ; Start timer
bcf INTCON,2 ; Clear flag

; Test for last bit
decfsz bitCount,f ; Count this bit
goto sendOut ; Continue if not last bit

; Done. Send stop bit
bsf PORTB,0 ; High for stop bit

stopBit:
btfss INTCON,2 ; Timer done?
goto stopBit ; No

; Set Port-B line 0 high back again
bsf PORTB,0
call delay_5 ; And hold
return

End

14.5.5 SerComLCD Program
; File name: SerComLCD.asm
; Last revision: May 14, 2006
; Author: Julio Sanchez
; Processor: 16F877
;
; Description:
; Decode 4 x 4 keypad, display scan code in LCD, and send
; ASCII character through the serial port. Also receive
; data through serial port and display on LCD. LCD lines
; are scrolled by program.
; Default serial line setting:
; 2400 baud
; no parity
; 1 stop bit
; 8 character bits
;
; Program uses 4-bit PIC-to-LCD interface.
; Code assumes that LCD is driven by Hitachi HD44780
; controller and PIC 16F977. Display supports two lines
; each one with 20 characters. The length, wiring and base
; address of each display line is stored in #define
; statements. These statements can be edited to accommodate
; a different set-up.

420 Chapter 14

; Keypad switch wiring (values are scan codes):
; —- KEYPAD —
; 0 1 2 3 <= port B0 |
; 4 5 6 7 <= port B1 |—- ROWS = OUTPUTS
; 8 9 A B <= port B2 |
; C D E F <= port B3 |
; | | | |
; | | | |_____ port B4 |
; | | |_________ port B5 |—- COLUMNS = INPUTS
; | |_____________ port B6 |
; |_________________ port B7 |
;
; Operations:
; 1. Key press action generates a scan code in the range
; 0x0 to 0xf.
; 2. Scan code is converted to an ASCII digit and displayed
; on the LCD. LCD lines are scrolled as end-of-line is
; reached.
; 3. Characters typed on the keypad are also transmitted
; through the serial port.
; 4. Serial port is polled for received characters. These
; are displayed on the LCD.
;
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock. Clock speed also determines
; values for baud rate setting (see spbrgVal constant).
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal oscillator

Communications 421

; _XT_OSC External parallel resonator/crystal oscillator
; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF

; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.
;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 0 ;| — from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant

422 Chapter 14

#define LCDlimit .20; Number of characters per line
#define spbrgVal .25; For 2400 baud on 4Mhz clock
; Note: The constants that define the LCD display
; line addresses have the high-order bit set
; so as to meet the requirements of controller
; commands.
;
;===
; variables in PIC RAM
;===
; Local variables

cblock 0x20 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
J ; counter J
K ; counter K
store1 ; Local storage
store2

; For LCDscroll procedure
LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)

; Keypad processing variables
keyMask ; For keypad processing
rowMask ; For masking-off key rows
rowCode ; Row addend for calculating scan code
rowCount ; Counter for key rows (0 to 3)
scanCode ; Final key code
newScan ; 0 if no new scan code detected

; Communications variables
newData ; not 0 if new data received
ascVal
errorFlags
endc

;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; Wiring:
; LCD data to Port D, lines 0 to 7
; E line -> port E, 1
; RW line -> port E, 2
; RS line -> port E, 0

Communications 423

; Set PORTE D and E for output
; Data memory bank selection bits:
; RP1:RP0 Bank
; 0:0 0 Ports A,B,C,D, and E
; 0:1 1 Tris A,B,C,D, and E
; 1:0 2
; 1:1 3
; First, initialize Port-B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to tris Port D for output
bcf STATUS,RP1 ; Clear banks 2/3 selector
bsf STATUS,RP0 ; Select bank 1 for tris

; registers
; Tris Port D for output. Port D lines 4 to 7 are wired
; to LCD data lines. Port D lines 0 to 4 are wired to LEDs.

movlw B’00000000’
movwf TRISD ; and Port D

; By default Port-A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

movlw 0x06 ; binary 0000 0110 is code to
; make all Port-A lines digital

movwf ADCON1
; Port-B, lines are wired to keypad switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b’11110000’
movwf TRISB

; Tris port E for output
movlw B’00000000’
movwf TRISE ; Tris port E

; Enable Port-B pullups for switches in OPTION register
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | *0 = increment on low-to-high
; | | | 1 = increment in high-to-low

424 Chapter 14

; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; *0 = enabled
; 1 = disabled

movlw b’00001000’
movwf OPTION_REG

; Back to bank 0
bcf STATUS,RP0

; Initialize serial port for 9600 baud, 8 bits, no parity
; 1 stop

call InitSerial
; Test serial transmission by sending “RDY-”

movlw ‘R’
call SerialSend
movlw ‘D’
call SerialSend
movlw ‘Y’
call SerialSend
movlw ‘-’
call SerialSend
movlw 0x20
call SerialSend

; Clear all output lines
movlw b’00000000’
movwf PORTD
movwf PORTE

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize itself
call initLCD ; Then do forced initialization
call delay_5 ; (Wait probably not necessary)

; Clear character counter and line counter variables
clrf LCDcount
clrf LCDline

; Set display address to start of second LCD line
call line1

;==
; scan keypad
;==
; Keypad switch wiring:
; x x x x <= port B0 |
; x x x x <= port B1 |—- ROWS = OUTPUTS
; x x x x <= port B2 |
; x x x x <= port B3 |
; | | | |

Communications 425

; | | | |_____ port B4 |
; | | |_________ port B5 |—- COLUMNS = INPUTS
; | |_____________ port B6 |
; |_________________ port B7 |
; Switches are connected to Port-B lines
; Clear scan code register

clrf scanCode
;============================
; scan keypad and display
;============================
keyScan:
; Port-B, lines are wired to pushbutton switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; Keypad processing:
; switch rows are successively grounded (row = 0)
; Then column values are tested. If a column returns 0
; in a 0 row, that switch is down.
; Initialize row code addend

clrf rowCode ; First row is code 0
clrf newScan ; No new scan code detected

; Initialize row count
movlw D’4’ ; Four rows
movwf rowCount ; Register variable
movlw b’11111110’ ; All set but LOB
movwf rowMask

keyLoop:
; Initialize row eliminator mask:
; The row mask is ANDed with the key mask to successively
; mask-off each row, for example:
;
; |———- row 3
; ||——— row 2
; |||——- row 1
; ||||—— row 0
; 0000 1111 <= key mask
; AND 1111 1101 <= mask for row 1
; ————-
; 0000 1101 <= row 1 is masked off
;
; The row mask, which is initally 1111 1110, is rotated left
; through the carry in order to mask off the next row

movlw b’00001111’ ; Mask off all lines
movwf keyMask ; To local register

; Set row mask for current row
movf rowMask,w ; Mask to w
andwf keyMask,f ; Update key mask

426 Chapter 14

movf keyMask,w ; Key mask to w
movwf PORTB ; Mask-off Port-B lines

; Read Port-B lines 4 to 7 (columns are input)
btfss PORTB,4
call col0 ; Key column procedures
btfss PORTB,5
call col1
btfss PORTB,6
call col2
btfss PORTB,7
call col3

; Index to next row by adding 4 to row code
movf rowCode,w ; Code to w
addlw D’4’
movwf rowCode

;=========================
; shift row mask
;=========================
; Set the carry flag

bsf STATUS,C
rlf rowMask,f ; Rotate mask bits in storage

;=========================
; end of keypad?
;=========================
; Test for last key row (maximum count is 4)

decfsz rowCount,f ; Decrement counter
goto keyLoop

;==
;==
; display, send, and receive data
;==
;==
; At this point all keys have been tested.
; Variable newScan = 0 if no new scan code detected, else
; variable scanCode holds scan code

movf newScan,f ; Copy onto intsef (sets Z
; flag)

btfsc STATUS,Z ; Is it zero
goto receive

; At this point a new scan code is detected
movf scanCode,w ; To w

; If scan code is in the range 0 to 9, that is, a decimal
; digit, then ASCII conversion consists of adding 0x30.
; If the scan code represents one of the hex letters
; (0xa to 0xf) then ASCII conversion requires adding
; 0x37

sublw 0x09 ; 9 - w
; if w from 0 to 9 then 9 - w = positive (C flag = 1)

Communications 427

; if w = 0xa then 9 - 10 = -1 (C flag = 0)
; if w = 0xc then 9 - 12 = -2 (C flag = 0)

btfss STATUS,C ; Test carry flag
goto hexLetter ; Carry clear, must be a letter

; At this point scan code is a decimal digit in the
; range 0 to 9. Convert to ASCII by adding 0x30

movf scanCode,w ; Recover scan code
addlw 0x30 ; Convert to ASCII
goto displayDig

hexLetter:
movf scanCode,w ; Recover scan code
addlw 0x37 ; Convert to ASCII

displayDig:
; Store so it can be sent

movwf ascVal
call send8 ; Display routine
call LCDscroll
call long_delay ; Debounce

; Recover ASCII
movf ascVal,w
call SerialSend
goto scanExit

;==========================
; receive serial data
;==========================
receive:
; Call serial receive procedure

call SerialRcv
; HOB of newData register is set if new data
; received

btfss newData,7
goto scanExit

; At this point new data was received
call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line

scanExit:
goto keyScan ; Continue

;==========================
; calculate scan code
;==========================
; The column position is added to the row code (stored
; in rowCode register). Sum is the scan code
col0:

movf rowCode,w ; Row code to w
addlw 0x00 ; Add 0 (clearly not

necessary)
movwf scanCode ; Final value
incf newScan,f ; New scan code

428 Chapter 14

return

col1:
movf rowCode,w ; Row code to w
addlw 0x01 ; Add 1
movwf scanCode
incf newScan,f
return

col2:
movf rowCode,w ; Row code to w
addlw 0x02 ; Add 2
movwf scanCode
incf newScan,f
return

col3:
movf rowCode,w ; Row code to w
addlw 0x03 ; Add 3
movwf scanCode
incf newScan,f
return

;==
;==
; L O C A L P R O C E D U R E S
;==
;==
;==========================
; init LCD for 4-bit mode
;==========================
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125

microseconds
;***********************|
; FUNCTION SET |

Communications 429

;***********************|
movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)

; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

call send8
;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ increment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
SHIFT)

430 Chapter 14

; | | | |_|___ don’t care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left
; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

call send8
; Per documentation

call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125:

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw D’42’ ; Counter = 41
movwf count2 ; Store in variable

delay
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

Communications 431

bsf PORTE,E_line ; Pulse E line
nop
bcf PORTE,E_line
return

;=============================
; long delay sub-routine
;=============================
long_delay

movlw D’200’ ; w delay count
movwf J ; J = w

jloop: movwf K ; K = w
kloop:

decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to Port-B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with Port-B

; Now w has merged byte
movwf PORTD ; w to Port D
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTD
call pulseE ; Send data to LCD
call delay_125
return

;==========================
; merge bits
;==========================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of Port-B
; so as to preserve the 4 low-bits in Port-B
; Logic:

432 Chapter 14

; AND value with 1111 0000 mask
; AND Port-B with 0000 1111 mask
; Now low nibble in value and high nibble in
; Port-B are all 0 bits:
; value = vvvv 0000
; Port-B = 0000 bbbb
; OR value and Port-B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTD,w ; Port-B to w register
andlw b’00001111’ ; Clear high nibble in Port-B

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;==========================
; Set address register
; to LCD line 2
;==========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, setup for

control
call delay_5 ; Busy?

; Set to second display line
movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTE,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

;==========================
; Set address register
; to LCD line 1
;==========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1

Communications 433

line1:
bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for

control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTE,RS_line ; Setup for data
call delay_5 ; Busy?
return

;==========================
; scroll to LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then LCD is
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,Z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,Z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:

call initLCD ; Reset
clrf LCDcount ; Clear counters
clrf LCDline
call line1 ; Display to first line

scrollExit:
return

434 Chapter 14

;==
; communications procedures
;==
; Initizalize serial port for 2400 baud, 8 bits, no parity,
; 1 stop
InitSerial:

Bank1 ; Macro to select bank1
; Bits 6 and 7 of Port C are multiplexed as TX/CK and RX/DT
; for USART operation. These bits must be set to input in the
; TRISC register

movlw b’11000000’ ; Bits for TX and RX
iorwf TRISC,f ; OR into Trisc register

; The asynchronous baud rate is calculated as follows:
; Fosc
; ABR = ---------
; S*(x+1)
; Where x is value in the SPBRG register and S is 64 if the high
; baud rate select bit (BRGH) in the TXSTA control register is
; clear, and 16 if the BRGH bit is set. For setting to 9600 baud
; using a 4Mhs oscillator at a high-speed baud rate the formula
; is:
; 4,000,000 4,000,000
; --------- = --------- = 9,615 baud (0.16% error)
; 16*(25+1) 416
;
; At slow speed (BRGH = 0)
; 4,000,000 4,000,000
; --------- = --------- = 2,403.85 (0.16% error)
; 64*(25+1) 1,664
;

movlw spbrgVal ; Value in spbrgVal = 25
movwf SPBRG ; Place in baud rate generator

; TXSTA (Transmit Status and Control Register) bit map:
; 7 6 5 4 3 2 1 0 <== bits
; | | | | | | | |______ TX9D 9nth data bit on
; | | | | | | | ? (used for parity)
; | | | | | | |_________ TRMT Transmit Shift Register
; | | | | | | 1 = TSR empty
; | | | | | | * 0 = TSR full
; | | | | | |____________ BRGH High Speed Baud Rate
; | | | | | (Asynchronous mode only)
; | | | | | 1 = high speed (* 4)
; | | | | | * 0 = low speed
; | | | | |__________ NOT USED
; | | | |_____________ SYNC USART Mode Select
; | | | 1 = synchronous mode
; | | | * 0 = asynchronous mode
; | | |________________ TXEN Transmit Enable

Communications 435

; | | * 1 = transmit enabled
; | | 0 = transmit disabled
; | |___________________ TX9 Enable 9-bit Transmit
; | 1 = 9-bit transmission mode
; | * 0 = 8-bit mode
; |______________________ CSRC Clock Source Select
; Not used in asynchronous mode
; Synchronous mode:
; 1 = Master Mode (internal clock)
; * 0 = Slave mode (external clock)
; Setup value: 0010 0000 = 0x20

movlw 0x20 ; Enable transmission and high baud
; rate

movwf TXSTA
Bank0 ; Bank 0

; RCSTA (Receive Status and Control Register) bit map:
; 7 6 5 4 3 2 1 0 <== bits
; | | | | | | | |______ RX9D 9th data bit received
; | | | | | | | ? (can be parity bit)
; | | | | | | |_________ OERR Overrun errror
; | | | | | | ? 1 = error (cleared by software)
; | | | | | |____________ FERR Framing Error
; | | | | | ? 1 = error
; | | | | |_______________ NOT USED
; | | | |____________ CREN Continuous Receive Enable
; | | | Asynchronous mode:
; | | | * 1 = Enable continuous receive
; | | | 0 = Disables continuous receive
; | | | Synchronous mode:
; | | | 1 = Enables until CREN cleared
; | | | 0 = Disables continuous receive
; | | |_______________ SREN Single Receive Enable
; | | ? Asynchronous mode = don’t care
; | | Synchronous master mode:
; | | 1 = Enable single receive
; | | 0 = Disable single receive
; | |__________________ RX9 9th-bit Receive Enable
; | 1 = 9-bit reception
; | * 0 = 8-bit reception
; |_____________________ SPEN Serial Port Enable
; * 1 = RX/DT and TX/CK are serial pins

; 0 = Serial port disabled
; Setup value: 1001 0000 = 0x90

movlw 0x90 ; Enable serial port and
; continuous reception

movwf RCSTA
;

436 Chapter 14

clrf errorFlags ; Clear local error flags
; register

return

;==============================
; transmit data
;==============================
; Test for Transmit Register Empty and transmit data in w
SerialSend:

Bank0 ; Select bank 0
btfss PIR1,TXIF ; check if transmitter busy
goto $-1 ; wait until transmitter is

; not busy
movwf TXREG ; and transmit the data
return

;==============================
; receive data
;==============================
; Procedure to test line for data received and return value
; in w. Overrun and framing errors are detected and
; remembered in the variable errorFlags, as follows:
; 7 6 5 4 3 2 1 0 <== errorFlags
; — not used —— | |___ overrun error
; |______ framing error
SerialRcv:

clrf newData ; Clear new data received register
Bank0 ; Select bank 0

; Bit 5 (RCIF) of the PIR1 Register is clear if the USART
; receive buffer is empty. If so, no data has been received

btfss PIR1,RCIF ; Check for received data
return ; Exit if no data

; At this point data has been received. First eliminate
; possible errors: overrun and framing.
; Bit 1 (OERR) of the RCSTA register detects overrun
; Bit 2 (FERR) of the RCSTA register detects framing error

btfsc RCSTA,OERR ; Test for overrun error
goto OverErr ; Error handler
btfsc RCSTA,FERR ; Test for framing error
goto FrameErr ; Error handler

; At this point no error was detected
; Received data is in the USART RCREG register

movf RCREG,w ; get received data
bsf newData,7 ; Set bit 7 to indicate new data

; Clear error flags
clrf errorFlags
return

;==========================
; error handlers

Communications 437

;==========================
OverErr:

bsf errorFlags,0 ; Bit 0 is overrun error
; Reset system

bcf RCSTA,CREN ; Clear continuous receive bit
bsf RCSTA,CREN ; Set to re-enable reception
return

;error because FERR framing error bit is set
;can do special error handling here - this code simply clears
; and continues
FrameErr:

bsf errorFlags,1 ; Bit 1 is framing error
movf RCREG,W ; Read and throw away bad data
return

end

14.5.6 SerIntLCD Program
; File name: SerIntLCD.asm
; Last revision: May 14, 2006
; Author: Julio Sanchez
; Processor: 16F877
;
; Interrupt-driven version of the SerComLCD program
;
; Description:
; Decode 4 x 4 keypad, display scan code in LCD, and send
; ASCII character through the serial port. Also receive
; data through serial port and display on LCD. LCD lines
; are scrolled by program.
; Default serial line setting:
; 2400 baud
; no parity
; 1 stop bit
; 8 character bits
;
; Program to uses 4-bit PIC-to-LCD interface.
; Code assumes that LCD is driven by Hitachi HD44780
; controller and PIC 16F977. Display supports two lines
; each one with 20 characters. The length, wiring and base
; address of each display line is stored in #define
; statements. These statements can be edited to accommodate
; a different setup.
; Keypad switch wiring (values are scan codes):
; —- KEYPAD —
; 0 1 2 3 <= port B0 |
; 4 5 6 7 <= port B1 |—- ROWS = OUTPUTS

438 Chapter 14

; 8 9 A B <= port B2 |
; C D E F <= port B3 |
; | | | |
; | | | |_____ port B4 |
; | | |_________ port B5 |—- COLUMNS = INPUTS
; | |_____________ port B6 |
; |_________________ port B7 |
;
; Operations:
; 1. Key press action generates a scan code in the range
; 0x0 to 0xf.
; 2. Scan code is converted to an ASCII digit and displayed
; on the LCD. LCD lines are scrolled as end-of-line is
; reached.
; 3. Characters typed on the keypad are also transmitted
; through the serial port.
; 4. Received characters generate an interrupt. The interrupt
; handler displays received characters on the LCD.
;
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock. Clock speed also determines
; values for baud rate setting (see spbrgVal constant).
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal oscillator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator

Communications 439

; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF

; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.
;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 0 ;| — from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .20; Number of characters per line
#define spbrgVal .25; For 2400 baud on 4Mhz clock
; Note: The constants that define the LCD display

440 Chapter 14

; line addresses have the high-order bit set
; so as to meet the requirements of controller
; commands.
;
;===
; variables in PIC RAM
;===
; Local variables

cblock 0x20 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
J ; counter J
K ; counter K
store1 ; Local storage
store2

; For LCDscroll procedure
LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)

; Keypad processing variables
keyMask ; For keypad processing
rowMask ; For masking-off key rows
rowCode ; Row addend for calculating scan code
rowCount ; Counter for key rows (0 to 3)
scanCode ; Final key code
newScan ; 0 if no new scan code detected

; Communications variables
ascVal
errorFlags

; Temporary storage used by interrupt handler
tempW
tempStatus
tempPclath
tempFsr
endc

;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x04

InterruptCode:
goto IntServ ; Interrupt service routine

;==
; main program

Communications 441

;==
main:
; Wiring:
; LCD data to Port D, lines 0 to 7
; E line -> port E, 1
; RW line -> port E, 2
; RS line -> port E, 0
; Set PORTE D and E for output
; Data memory bank selection bits:
; RP1:RP0 Bank
; 0:0 0 Ports A,B,C,D, and E
; 0:1 1 Tris A,B,C,D, and E
; 1:0 2
; 1:1 3
; First, initialize Port-B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to tris Port D for output
Bank1

; Tris Port D for output. Port D lines 4 to 7 are wired
; to LCD data lines. Port D lines 0 to 4 are wired to LEDs.

movlw B’00000000’
movwf TRISD ; and Port D

; By default Port-A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

movlw 0x06 ; binary 0000 0110 is code to
; make all Port-A lines digial

movwf ADCON1
; Port-B, lines are wired to keypad switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b’11110000’
movwf TRISB

; Tris port E for output
movlw B’00000000’
movwf TRISE ; Tris port E

; Enable Port-B pullups for switches in OPTION register
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)

442 Chapter 14

; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | *0 = increment on low-to-high
; | | | 1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; *0 = enabled
; 1 = disabled

movlw b’00001000’
movwf OPTION_REG

; Back to bank 0
Bank0

; Initialize serial port for 9600 baud, 8 bits, no parity
; 1 stop

call InitSerial
; Test serial transmission by sending “RDY-”

movlw ‘R’
call SerialSend
movlw ‘D’
call SerialSend
movlw ‘Y’
call SerialSend
movlw ‘-’
call SerialSend
movlw 0x20
call SerialSend

; Clear all output lines
movlw b’00000000’
movwf PORTD
movwf PORTE

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize itself
call initLCD ; Then do forced initialization
call delay_5 ; (Wait probably not necessary)

; Clear character counter and line counter variables
clrf LCDcount
clrf LCDline

; Set display address to start of second LCD line
call line1

;==
; scan keypad
;==
; Keypad switch wiring:

Communications 443

; x x x x <= Port B0 |
; x x x x <= Port B1 |—- ROWS = OUTPUTS
; x x x x <= port B2 |
; x x x x <= port B3 |
; | | | |
; | | | |_____ port B4 |
; | | |_________ port B5 |—- COLUMNS = INPUTS
; | |_____________ port B6 |
; |_________________ port B7 |
; Switches are connected to Port-B lines
; Clear scan code register

clrf scanCode
;============================
; scan keypad and display
;============================
keyScan:
; Port-B, lines are wired to pushbutton switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; Keypad processing:
; switch rows are successively grounded (row = 0)
; Then column values are tested. If a column returns 0
; in a 0 row, that switch is down.
; Initialize row code addend

clrf rowCode ; First row is code 0
clrf newScan ; No new scan code detected

; Initialize row count
movlw D’4’ ; Four rows
movwf rowCount ; Register variable
movlw b’11111110’ ; All set but LOB
movwf rowMask

keyLoop:
; Initialize row eliminator mask:
; The row mask is ANDed with the key mask to successively
; mask-off each row, for example:
;
; |———- row 3
; ||——— row 2
; |||——- row 1
; ||||—— row 0
; 0000 1111 <= key mask
; AND 1111 1101 <= mask for row 1
; ————-
; 0000 1101 <= row 1 is masked off
;
; The row mask, which is initially 1111 1110, is rotated left
; through the carry in order to mask off the next row

444 Chapter 14

movlw b’00001111’ ; Mask off all lines
movwf keyMask ; To local register

; Set row mask for current row
movf rowMask,w ; Mask to w
andwf keyMask,f ; Update key mask
movf keyMask,w ; Key mask to w
movwf PORTB ; Mask-off Port-B lines

; Read Port-B lines 4 to 7 (columns are input)
btfss PORTB,4
call col0 ; Key column procedures
btfss PORTB,5
call col1
btfss PORTB,6
call col2
btfss PORTB,7
call col3

; Index to next row by adding 4 to row code
movf rowCode,w ; Code to w
addlw D’4’
movwf rowCode

;=========================
; shift row mask
;=========================
; Set the carry flag

bsf STATUS,C
rlf rowMask,f ; Rotate mask bits in storage

;=========================
; end of keypad?
;=========================
; Test for last key row (maximum count is 4)

decfsz rowCount,f ; Decrement counter
goto keyLoop

;==
;==
; display and send data
;==
;==
; At this point all keys have been tested.
; Variable newScan = 0 if no new scan code detected, else
; variable scanCode holds scan code

movf newScan,f ; Copy onto itself
btfsc STATUS,Z ; Is it zero
goto ScanExit

; At this point a new scan code is detected
movf scanCode,w ; To w

; If scan code is in the range 0 to 9, that is, a decimal
; digit, then ASCII conversion consists of adding 0x30.
; If the scan code represents one of the hex letters

Communications 445

; (0xa to 0xf) then ASCII conversion requires adding
; 0x37

sublw 0x09 ; 9 - w
; if w from 0 to 9 then 9 - w = positive (C flag = 1)
; if w = 0xa then 9 - 10 = -1 (C flag = 0)
; if w = 0xc then 9 - 12 = -2 (C flag = 0)

btfss STATUS,C ; Test carry flag
goto hexLetter ; Carry clear, must be a

letter
; At this point scan code is a decimal digit in the
; range 0 to 9. Convert to ASCII by adding 0x30

movf scanCode,w ; Recover scan code
addlw 0x30 ; Convert to ASCII
goto displayDig

hexLetter:
movf scanCode,w ; Recover scan code
addlw 0x37 ; Convert to ASCII

displayDig:
; Store so it can be sent

movwf ascVal
call send8 ; Display routine
call LCDscroll
call long_delay ; Debounce

; Recover ASCII
movf ascVal,w
call SerialSend

ScanExit:
goto keyScan ; Continue

;==========================
; calculate scan code
;==========================
; The column position is added to the row code (stored
; in rowCode register). Sum is the scan code
col0:

movf rowCode,w ; Row code to w
addlw 0x00 ; Add 0
movwf scanCode ; Final value
incf newScan,f ; New scan code
return

col1:
movf rowCode,w ; Row code to w
addlw 0x01 ; Add 1
movwf scanCode
incf newScan,f
return

col2:
movf rowCode,w ; Row code to w

446 Chapter 14

addlw 0x02 ; Add 2
movwf scanCode
incf newScan,f
return

col3:
movf rowCode,w ; Row code to w
addlw 0x03 ; Add 3
movwf scanCode
incf newScan,f
return

;==
;==
; L O C A L P R O C E D U R E S
;==
;==
;==========================
; init LCD for 4-bit mode
;==========================
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125

microseconds
;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16)
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits

Communications 447

; |___ FUNCTION SET COMMAND
call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

call send8
;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ increment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
SHIFT)

; | | | |_|___ don’t care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left
; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

call send8
;***********************|

448 Chapter 14

; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

call send8
; Per documentation

call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125:

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat:
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw D’42’ ; Counter = 41
movwf count2 ; Store in variable

delay:
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ; Pulse E line
nop
bcf PORTE,E_line
return

;=============================
; long delay sub-routine
;=============================
long_delay

movlw D’200’ ; w delay count
movwf J ; J = w

Communications 449

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to Port-B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with Port-B

; Now w has merged byte
movwf PORTD ; w to Port D
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTD
call pulseE ; Send data to LCD
call delay_125
return

;==========================
; merge bits
;==========================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of Port-B
; so as to preserve the 4 low-bits in Port-B
; Logic:
; AND value with 1111 0000 mask
; AND Port-B with 0000 1111 mask
; Now low nibble in value and high nibble in
; Port-B are all 0 bits:
; value = vvvv 0000
; Port-B = 0000 bbbb
; OR value and Port-B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contains value bits

450 Chapter 14

; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTD,w ; Port-B to w register
andlw b’00001111’ ; Clear high nibble in Port-B

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;==========================
; Set address register
; to LCD line 2
;==========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, setup for

control
call delay_5 ; Busy?

; Set to second display line
movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTE,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

;==========================
; Set address register
; to LCD line 1
;==========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTE,RS_line ; Setup for data

Communications 451

call delay_5 ; Busy?
return

;==========================
; scroll to LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then LCD is
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,Z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,Z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:

call initLCD ; Reset
clrf LCDcount ; Clear counters
clrf LCDline
call line1 ; Display to first line

scrollExit:
return

;==
; communications procedures
;==
; Initialize serial port for 2400 baud, 8 bits, no parity,
; 1 stop
InitSerial:

Bank1 ; Macro to select bank1
; Bits 6 and 7 of Port C are multiplexed as TX/CK and RX/DT
; for USART operation. These bits must be set to input in the
; TRISC register

452 Chapter 14

movlw b’11000000’ ; Bits for TX and RX
iorwf TRISC,f ; OR into Trisc register

; The asynchronous baud rate is calculated as follows:
; Fosc
; ABR = ---------
; S*(x+1)
; Where x is value in the SPBRG register and S is 64 if the high
; baud rate select bit (BRGH) in the TXSTA control register is
; clear, and 16 if the BRGH bit is set. For setting to 9600 baud
; using a 4Mhs oscillator at a high-speed baud rate the formula
; is:
; 4,000,000 4,000,000
; --------- = --------- = 9,615 baud (0.16% error)
; 16*(25+1) 416
;
; At slow speed (BRGH = 0)
; 4,000,000 4,000,000
; --------- = ---------- = 2,403.85 (0.16% error)
; 64*(25+1) 1,664
;

movlw spbrgVal ; Value in spbrgVal = 25
movwf SPBRG ; Place in baud rate generator

; TXSTA (Transmit Status and Control Register) bit map:
; 7 6 5 4 3 2 1 0 <== bits
; | | | | | | | |______ TX9D 9nth data bit on
; | | | | | | | ? (used for parity)
; | | | | | | |_________ TRMT Transmit Shift Register
; | | | | | | 1 = TSR empty
; | | | | | | * 0 = TSR full
; | | | | | |____________ BRGH High Speed Baud Rate
; | | | | | (Asynchronous mode only)
; | | | | | 1 = high speed (* 4)
; | | | | | * 0 = low speed
; | | | | |__________ NOT USED
; | | | |_____________ SYNC USART Mode Select
; | | | 1 = synchronous mode
; | | | * 0 = asynchronous mode
; | | |________________ TXEN Transmit Enable
; | | * 1 = transmit enabled
; | | 0 = transmit disabled
; | |___________________ TX9 Enable 9-bit Transmit
; | 1 = 9-bit transmission mode
; | * 0 = 8-bit mode
; |______________________ CSRC Clock Source Select
; Not used in asynchronous mode
; Synchronous mode:
; 1 = Master Mode (internal clock)
; * 0 = Slave mode (external clock)

Communications 453

; Setup value: 0010 0000 = 0x20
movlw 0x20 ; Enable transmission and low baud rate
movwf TXSTA
Bank0 ; Bank 0

; RCSTA (Receive Status and Control Register) bit map:
; 7 6 5 4 3 2 1 0 <== bits
; | | | | | | | |______ RX9D 9th data bit received
; | | | | | | | ? (can be parity bit)
; | | | | | | |_________ OERR Overrun errror
; | | | | | | ? 1 = error (cleared by software)
; | | | | | |____________ FERR Framing Error
; | | | | | ? 1 = error
; | | | | |_______________ NOT USED
; | | | |____________ CREN Continuous Receive Enable
; | | | Asynchronous mode:
; | | | * 1 = Enable continuous receive
; | | | 0 = Disables continuous receive
; | | | Synchronous mode:
; | | | 1 = Enables until CREN cleared
; | | | 0 = Disables continuous receive
; | | |_______________ SREN Single Receive Enable
; | | ? Asynchronous mode = don’t care
; | | Synchronous master mode:
; | | 1 = Enable single receive
; | | 0 = Disable single receive
; | |__________________ RX9 9th-bit Receive Enable
; | 1 = 9-bit reception
; | * 0 = 8-bit reception
; |_____________________ SPEN Serial Port Enable
; * 1 = RX/DT and TX/CK are serial pins

; 0 = Serial port disabled
; Setup value: 1001 0000 = 0x90

movlw 0x90 ; Enable serial port and
; continuous reception

movwf RCSTA
; Enable glocal and peripheral interrupts
; 7 6 5 4 3 2 1 0 <= INTCON bitmap
; | | — unrelated —-
; | |___________________ Peripheral interrupts enable
; |______________________ Global interrupts enable

movlw b’11000000’
movwf INTCON

; Enable receive interrupt in PIE1 register
; 7 6 5 4 3 2 1 0 <= PIE1 bitmap
; |________________ USART receive interrupt enable

Bank1
movlw b’00100000’

454 Chapter 14

movwf PIE1
; Clear error flags register

Bank0
clrf errorFlags
return

;==============================
; transmit data
;==============================
; Test for Transmit Register Empty and transmit data in w
SerialSend:

Bank0 ; Select bank 0
btfss PIR1,TXIF ; check if transmitter busy
goto $-1 ;wait until transmitter is not busy
movwf TXREG ;and transmit the data
return

;==
;==
; interrupt handler for received characters
;==
;==
IntServ:

movwf tempW ; Save W
movf STATUS,W ; Store STATUS in W
clrf STATUS ; Select bank0
movwf tempStatus ; Save STATUS
movf PCLATH,W ; Store PCLATH in W
movwf tempPclath ; Save PCLATH
clrf PCLATH ; Select program memory page 0
movf FSR,W ; Store FSR in W
movwf tempFsr ; Save FSR value

; Test for received data interrupt
Bank0 ; select bank0

; 7 6 5 4 3 2 1 0 <= PIR1
; |__________________ (RCIF) USART receive interrupt
; flag

btfsc PIR1,RCIF ; Test bit 5
bsf STATUS,RP0 ; Bank 1 if RCIF set

; 7 6 5 4 3 2 1 0 <= PIE1
; |__________________ (RCIE) Receive interrupt enable
; bit

btfss PIE1,RCIE ; Test if interrupt is enabled
goto IntExit ; Go if not enabled

;==============================
; received data
;==============================

Communications 455

; Routine to handler received data. Overrun and framing
; errors are detected and remembered in the variable
; errorFlags, as follows:
; 7 6 5 4 3 2 1 0 <== errorFlags
; — not used —— | |___ overrun error
; |______ framing error

Bank0 ; Select bank 0
; Test for overrun and framing errors.
; Bit 1 (OERR) of the RCSTA register detects overrun
; Bit 2 (FERR) of the RCSTA register detects framing error

btfsc RCSTA,OERR ; Test for overrun error
goto OverErr ; Error handler
btfsc RCSTA,FERR ; Test for framing error
goto FrameErr ; Error handler

; At this point no error was detected
; Received data is in the USART RCREG register

movf RCREG,w ; Received data into w
call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line

; Clear error flags
clrf errorFlags
goto IntExit

;==========================
; error handlers
;==========================
; Errors are returned as bits in the errorFlags register
; 7 6 5 4 3 2 1 0 <= errorFlags
; —- not used —- | |____ overrun error
; |_______ framing error
; Error responses to be made by main code
OverErr:

bsf errorFlags,0 ; Bit 0 is overrun error
; Reset system

bcf RCSTA,CREN ; Clear continuous receive bit
bsf RCSTA,CREN ; Set to re-enable reception
goto IntExit

FrameErr:
bsf errorFlags,1; Bit 1 is framing error
movf RCREG,W ; Read and throw away bad data

;==============================
; interrupt handler exit
;==============================
IntExit:

Bank0
movf tempFsr,w ; Recover FSR value
movwf FSR ; Restore in register
movf tempPclath,w ; Recover PCLATH value
movwf PCLATH ; Restore in register

456 Chapter 14

movf tempStatus,W ; Recover STATUS
movwf STATUS ; Restore in register
swapf tempW,F ; Swap file register in itself
swapf tempW,W ; Restore in register
retfie

end

Communications 457

Chapter 15

Data EEPROM Programming

EEPROM stands for Electrically-Erasable Programmable Read-Only Memory.
EEPROM is used in computers and digital devices as non-volatile storage. EEPROM is
found in flash drives, BIOS chips, and in flash memory and EEPROM data storage
memory in PICs and other microcontrollers.

EEPROM memory can be erased and programmed electrically without removing
the chip. EPROM, the predecessor of EEPROM, required chip removal from the cir-
cuit and ultraviolet light exposure in order to erase the chip. In addition, EPROM re-
quires higher-than-TTL voltages for reprogramming while EEPROM does not.

The PIC programmer regards EEPROM data memory as onboard EEPROM mem-

ory and EEPROM memory ICs as separate circuit components. In general, EEPROM
elements are classified according to their electrical interfaces into serial and paral-
lel. In this context we deal only with serial EEPROMs. The storage capacity of Se-
rial EEPROMs ranges from a few bytes to 128 kilobytes. In PIC technology, the
typical use of serial EEPROM onboard memory and EEPROM ICs is to store pass-
words, codes, configuration settings, and other information to be remembered after
the system is turned off. For example, a PIC-based automated environment sensor
can use EEPROM memory (onboard or independent) to store daily temperatures,
humidity, air pressure, and other values. Later, this information could be down-
loaded to a PC and the EEPROM storage erased and reused for new data. In per-
sonal computers, EEPROM memory is used to store BIOS code and other system
data.

Some early EEPROM could only be erased and rewritten about 100 times, while
modern EEPROM tolerate thousands of erase-write cycles. EEPROM memory is dif-
ferent from RAM (Random Access Memory) in that RAM can be rewritten millions
of times. Also, RAM is generally faster to write than EEPROM and considerably
cheaper per unit of storage. On the other hand, RAM is volatile, so the contents are
lost when power is removed.

PICs use EEPROM-type memory internally as flash program memory and as data
memory. EEPROM data memory is covered in this chapter. Serial EEPROM memory

459

is available as separate ICs that can be placed on the circuit board and accessed
through PIC ports. For example, the Microchip 24LC04B EEPROM IC is a 4K electri-
cally erasable PROM with a 2-wire serial interface that follows the I2C convention.
Programming serial EEPROM ICs is also covered in this chapter.

15.0 PIC Internal EEPROM Memory
Some PICs contain internal EEPROM data memory that is accessible to code. The
amount of memory and the access mechanism varies from PIC to PIC. In fact, the map-
ping and access mechanisms varies even in devices belonging to the same family. In
the sections that follow, we describe EEPROM data memory in the context of two dif-
ferent PICs of the mid-range family: the 16F84 and the 16F877.

15.0.1 EEPROM Programming on the 16F84
The 16F84 and 16F84A contain 64 bytes of EEPROM data memory. This memory is
both readable and writable during normal operation. It is not mapped in the register
file space, but is indirectly addressed through the Special Function Registers

EECON1, EECON2, EEDATA, and EEADR. The address of EEPROM memory starts at
location 0x00 and extends to the maximum contained in the PIC, in this case, 0x3f. The
following registers relate to EEPROM operations:

1. EEDATA holds the data byte to be read or written.

2. EEADR contains the EEPROM address to be accessed by the read or write operation.

3. EECON1 contains the control bits for EEPROM operations.

4. EECON2 protects EEPROM memory from accidental access. This is not a physical reg-
ister.

Figure 15-1 shows the bitmap of the EECON1 register in the 16F84.

The CPU continues to access EEPROM memory even if the device is code pro-
tected, but in this case the device programmer can not access EEPROM memory.

Reading EEPROM Data Memory on the 16F84

Reading an EEPROM data memory location in the 16F84 requires the following opera-
tions:

1. Bank 0 is selected and the address of the memory to be read is stored in the EEADR reg-
ister.

2. Bank 1 is selected and the RD bit is set in the EECON1 register.

3. Bank 0 is selected and data is read from the EEDATA register.

The following procedure returns in the w register the data stored at the specified
EEPROM memory address.

;==============================

; read EEPROM 16F84

;==============================

; Procedure to read EEPROM memory. Address of memory

; location to read is stored in local register EEMemAdd

460 Chapter 15

; On exit: read data in w

EERead:

bcf STATUS,RP0 ; Bank 0

movf EEMemAdd,w ; Address to w

movwf EEADR ; w to address register

bsf STATUS,RP0 ; Bank 1

bsf EECON1,RD ; EE Read

bcf STATUS,RP0 ; Bank 0

movf EEDATA,w ; W = EEDATA

return

16F84 EEPROM Data Memory Write

Writing to 16F84 EEPROM data memory consists of the following operations:

1. Bank 0 is selected and the address of the desired memory location is stored in the
EEADR register.

2. The value to be written is stored in the EEDATA register.

3. Bank 1 is selected, interrupts are disabled, and the write enable bit (WREN) is set in the
EECON1 register.

Data EEPROM Programming 461

Figure 15-1 16F84 EECON1 Register Bit Map

EECON1

bit 0bit 7

WRERREEIF WR RD

bit 7-5 Unimplemented: Read as '0'

bit 4 : EEPROM Write Operation Interrupt Flag bit

1 = The write operation completed

(must be cleared in software)

0 = The write operation is not complete

or has not been started

bit 3 : EEPROM Error Flag bit

1 = write operation terminated prematurely

0 = The write operation completed

bit 2 : EEPROM Write Enable bit

1 = Allows write cycles

0 = Inhibit write to the EEPROM

bit 1 : Write Control bit

1 = Initiates a write cycle. Bit is

cleared once write is complete.

Can only be set in software.

0 = Write cycle to the EEPROM is complete

bit 0 : Read Control bit

1 = Initiates an EEPROM read. Bit is

cleared in hardware. Can only be set

in software.

0 = Does not initiate an EEPROM read

EEIF

WRERR

WREN

WR

RD

4. The special values 0x55 and 0xaa are written consecutively to the EECON2 register.

5. The WR bit is set in the EECON1 register. The EEPROM write takes place automati-
cally after the WR bit is set.

6. Interrupts are re-enabled and bank 0 is selected.

The following procedure shows the processing for the EEPROM write.

;==============================

; write EEPROM

;==============================

; Procedure to write asc1 byte to EEPROM memory

; Address to write stored in local register EEMemAdd

; Data byte to write is in local register EEByte

EEWrite:

; Load byte to write into EE data register

movf EEByte,w ; Data to w

movwf EEDATA ; Write

; Set write address in EE address register

movf EEMemAdd,w ; Address to w

movwf EEADR ; w to address register

; Write data to EEPROM memory

bsf STATUS,RP0 ; Bank 1

bcf INTCON,GIE ; Disable INTs.

bsf EECON1,WREN ; Enable Write

movlw 0x55 ; Code # 1

movwf EECON2 ; Write 0x55

movlw 0xaa ; Code # 2

movwf EECON2 ; Write 0xaa

bsf EECON1,WR ; Set WR bit

; Write operation now takes place automatically

bsf INTCON,GIE ; Re-enable interrupts

bcf STATUS,RP0 ; Bank 0

return

Microchip documentation recommends that critical applications should verify
the write operation by reading EEPROM memory after the write operation has taken
place in order to make sure that the correct value was stored.

16F84 EEPROM Demonstration Program

The program EECounter, in the book’s online software, is a demonstration of
EEPROM memory access on the 16F84 PIC. The program keeps track of the number of
times that the code has executed by storing each iteration in EEPROM data memory.
The program uses the circuit shown in Figure 15-2 (see following page).

The EECounter program increments the value stored at EEPROM address 0x00 at
every iteration and displays the result on the first LCD line. The following procedure
is used to convert the binary value in EEPROM to 3 ASCII digits for display.

462 Chapter 15

;==============================

; binary to ASCII decimal

; conversion

;==============================

; ON ENTRY:

; w register has binary value in range 0 to 255

; ON EXIT:

; output variables asc100, asc10, and asc1 have

; three ASCII decimal digits

; Routine logic:

; The value 100 is subtracted from the source operand

; until the remainder is < 0 (carry cleared). The number

; of subtractions is the decimal hundreds result. 100 is

; then added back to the subtrahend to compensate

; for the last subtraction. Now 10 is subtracted in the

Data EEPROM Programming 463

Figure 15-2 Circuit for 16F84 EEPROM Demonstration Program

+5V

R
=

1
0

K

RESET

HD44780

LCD
2 rows x 16

+5V

E

R/W

RS

RS

R/W

E

1

14

16F84

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Osc
4Mhz

+5V

; same manner to determine the decimal tenths result.
; The final remainder is the decimal units result.
; Variables:
; inNum storage for source operand
; asc100 storage for hundreds position result
; asc10 storage for tenth position result
; asc1 storage for unit position result
; thisDig Digit counter
bin2asc:

movwf inNum ; Save copy of source value
clrf asc100 ; Clear hundreds storage
clrf asc10 ; Tens
clrf asc1 ; Units
clrf thisDig

sub100:
movlw .100
subwf inNum,f ; Subtract 100
btfsc STATUS,C ; Did subtract overflow?
goto bump100 ; No. Count subtraction
goto end100

bump100:
incf thisDig,f ;increment digit counter
goto sub100

; Store 100th digit
end100:

movf thisDig,w ; Adjusted digit counter
addlw 0x30 ; Convert to ASCII
movwf asc100 ; Store it

; Calculate tenth position value
clrf thisDig

; Adjust minuend
movlw .100 ; Minuend
addwf inNum,f ; Add value to minuend to

; compensate for last
; operation

sub10:
movlw .10
subwf inNum,f ; Subtract 10
btfsc STATUS,C ; Did subtract overflow?
goto bump10 ; No. Count subtraction
goto end10

bump10:
incf thisDig,f ; Increment digit counter
goto sub10

; Store 10th digit
end10:

movlw .10
addwf inNum,f ; Adjust for last subtraction

464 Chapter 15

movf thisDig,w ; Digit counter contents

addlw 0x30 ; Convert to ASCII

movwf asc10 ; Store it

; Calculate and store units digit

movf inNum,w ; Store units value

addlw 0x30 ; Convert to ASCII

movwf asc1 ; Store digit

Return

15.0.2 EEPROM Programming on the 16F87x
The 16F87x PICs contain 128 or 256 bytes of EEPROM data memory. As in the 16F84,
this memory is both readable and writable during normal operation. It is not mapped
in the register file space but is indirectly addressed through Special Function Regis-
ters, as described later in this section.

In the 16F87x PICs both data EEPROM and flash Program Memory are readable
and writable during normal operation. For data EEPROM memory, read and write
operations take place one byte at a time. The write operation performs an
erase-then-write cycle. No bulk erase function is available to user code.

The following Special Function Registers are used in 16F87x EEPROM data read
and write operations:

1. EEDATA holds the data byte to be read or written.

2. EEADR contains the EEPROM address to be accessed by the read or write operation.

3. EECON1 contains the control bits for EEPROM operations.

4. EECON2 protects EEPROM memory from accidental access. This is not a physical reg-
ister.

EEPROM data memory read and write operations do not interfere with normal
PIC operations. The 16F873 and 16F874 PICs have 128 bytes of EEPROM data mem-
ory. These ICs require that the most-significant-bit of EEADR remains clear. The
EEPROM data memory on these devices does not wrap around; that is, accessing
EEPROM address 0x80 does not map to 0x00. The 16F876 and 16F877 devices have
256 bytes of EEPROM data memory. In these devices all 8-bits of the EEADR are
used. Figure 15-3 (in the following page) is a bit map of the EECON1 register in the
16F87x.

The 16F87x EECON1 register contains one additional bit that is not present in the
16F84, named EEPGD. This bit determines if the EEPROM operation accesses pro-
gram or data memory. When clear, any subsequent operations relate to EEPROM
data. Otherwise, the operation accesses program memory. Read operations only re-
quire the RD bit, which initiates the read from the selected memory location. The
RD bit is automatically cleared at the end of the read operation. The data in the se-
lected memory location can be read in the EEDATA register as soon as the RD bit is
set.

Data EEPROM Programming 465

Figure 15-3 16F87x EECON1 Register Bitmap

Write operations require two control bits, WR and WREN, and two status bits,
WRERR and EEIF. The purpose of these bits is shown in Figure 15-3. Since the
WREN bit enables or disables the write operation, it must be set before executing a
write. The WR bit is used to initiate the write operation. This bit is automatically
cleared at the end of the write. The interrupt flag bit EEIF can be use to detect when
the memory write completes. The EEIF bit must be cleared by software before set-
ting the WR bit. As soon as the WREN bit and the WR bit have been set, the desired
memory address in EEADR is erased and the value in EEDATA written to the se-
lected address.

The WRERR bit indicates when the 16F87x has been reset during a write opera-
tion. This bit should be cleared after power-on reset. The WRERR bit is set when a
write operation is interrupted by a MCLR reset, or a Watchdog time-out.

466 Chapter 15

EEPGD

bit 0bit 7

WRERREEIF WR RD

bit 7 : Program/Data EEPROM select bit

1 = EEPROM program memory access

0 = EEPROM data memory access

bits 6-5 Unimplemented: Read as '0'

bit 4 : EEPROM Write Operation Interrupt Flag bit

1 = The write operation completed

(must be cleared in software)

0 = The write operation is not complete

or has not been started

bit 3 : EEPROM Error Flag bit

1 = write operation terminated prematurely

0 = The write operation completed

bit 2 : EEPROM Write Enable bit

1 = Allows write cycles

0 = Inhibit write to the EEPROM

bit 1 : Write Control bit

1 = Initiates a write cycle. Bit is

cleared once write is complete.

Can only be set in software.

0 = Write cycle to the EEPROM is complete

bit 0 : Read Control bit

1 = Initiates an EEPROM read. Bit is

cleared in hardware. Can only be set

in software.

0 = Does not initiate an EEPROM read

EEPGD

EEIF

WRERR

WREN

WR

RD

Reading EEPROM Data Memory on the 16F87x
Reading an EEPROM data memory location in the 16F87x requires the following oper-
ations:

1. Write the address of the EEPROM location to be read to the EEDATA register. The ad-
dress should be within the device’s memory capacity.

2. The EEPGD bit in the EECON1 registered is cleared so as to access data memory.

3. The RD bit in the EECON1 register is set to start the read operation.

4. The data can now be read from the EEDATA register.

The following code fragment shows reading EEPROM data memory in the 16F877
PIC:

;==============================
; 16F877 read EEPROM data
;==============================
; Procedure to read EEPROM on-board memory
; ON ENTRY:
; Address of EEPROM memory location to read is stored in
; local register EEMemAdd
; ON EXIT:
; Read data in w
EERead:

Bank2
movf EEMemAdd,W ; EEPROM address
movwf EEADR ; to read from
Bank3
bcf EECON1,EEPGD ; Point to Data memory
bsf EECON1,RD ; Start read
Bank2
movf EEDATA,W ; Data to w register
Bank0
Return

Writing to EEPROM Data Memory in the 16F87x
Writing to 16F87x EEPROM data memory is more complex than on the 16F84 and
much more complex than the read operation. The process consists of the following op-
erations:

1. Make sure that a previous write operation is not in progress. This step is not necessary
if write completion is checked at the end of the write routine.

2. The address to be accessed is stored in the EEADR register. Code should make certain
that the address is within the device’s range.

3. The data to be written is stored in the EEDATA register.

4. The EEPGD bit in the EECON1 register is cleared to select data memory access.

5. The WREN bit in the EECON1 register is set to enable the write function.

Data EEPROM Programming 467

6. Interrupts are disabled to make sure the operation is not interrupted.

7. Three special operations are now executed:

The value 0x55 is written to the EECON2 register.

The value 0xaa is written to the EECON2 register.

The WR bit in the EECON1 register is set.

8. Interrupts are enabled if the application uses interrupts.

9. The WREN bit is cleared to prevent accidental write operations.

10. The completion of the write operation can be ascertained either

by checking that the WR bit is clear or that EEIF interrupt flag

bit is set.

The following code fragment is a procedure to write EEPROM data:

;==============================
; 16F87x write EEPROM data
;==============================
; Procedure to write data byte to EEPROM memory
; ON ENTRY:
; Address to write stored in local register EEMemAdd
; Data byte to write is in local register EEByte
EEWrite:

Bank3
Wait2Start:

btfsc EECON1,WR ; Wait for
goto Wait2Start ; write to finish
Bank2
movf EEMemAdd,w ; Address to
movwf EEADR ; SFR
movf EEByte,w ; Data to
movwf EEDATA ; SFR
Bank3
bcf EECON1,EEPGD ; Point to Data memory
bsf EECON1,WREN ; and enable writes

; Disable interrupts. Can be done in any case
bcf INTCON,GIE

; Write special codes
movlw 0x55 ; First code is 0x55
movwf EECON2
movlw 0xaa ; Second code is 0xaa
movwf EECON2
bsf EECON1,WR ; Start write operation
nop ; Time for write
nop

; Test for end of write operation
wait2End:

btfsc EECON1,WR ; Wait until WR clear

468 Chapter 15

goto wait2End

; Re-enable interrupts if program uses interrupts

; If not, comment out next line

; bsf INTCON,GIE

bcf EECON1,WREN ; Prevent accidental writes

Bank0

Return

GFR Access Issue in the 16F87x

Data memory space in the 16F87x is partitioned into four separate banks, labeled bank
0 to bank 3. The RP1 and RP0 bits in the Status register are used to select which one of
the banks is currently accessible. In programming the Special Functions Registers it
is necessary to find out on which bank a register is located to select it. The previous
code fragment (the write EEPROM data procedure) requires three bank shifts since
EEPROM special function registers are located in several banks.

In this context, we sometimes forget that in some PICs the user registers, also
called the General Purpose Registers, can also be located in any one of the banks,
although most applications locate the GPRs in bank 0. In the 16F87x there are 96
bytes of available space in bank 0 that can be used. So if the registers used by the ap-
plication are allocated in this first bank (actually in the first 80 bytes of bank 0) then
code must select bank 0 before accessing this data. Had this been the case, the pre-
ceding code fragment would have required four additional bank changes.

We were able to avoid this difficulty by placing the program GPRs in the bank 0
memory space from 0x70 to 0x7f. In the 16F87x, addresses 0x70 to 0x7f (15 bytes)
are mirrored in the other three banks. In contrast, any GPR allocated below address
0x70 in bank 0 can be accessed only when bank 0 is selected. The 16x84 programmer
may not be aware of this fact, since in the 16F84, the memory area available for
GPRs, although physically located in bank 0, is mirrored in bank 1.

In the 16F87x, it is good programming practice to locate the most used GPRs in
the 0x70 to 0x7f area so as to avoid unnecessary bank changes. Since the space is
limited to 15 bytes, the programmer must exercise good judgment in deciding which
registers to place in this area.

15.0.3 16F87x EEPROM Circuit and Program

The program Ser2EEP, in the book’s online software, is a demonstration of EEPROM
memory access on the 16F877 PIC. The program receives character data through the
RS-232 line and stores them in EEPROM data memory. Received characters are ech-
oed on the second LCD line. When the <Enter> key is detected, the text stored in
EEPROM memory is displayed on the LCD. On startup, the top LCD line displays the
prompt: “Receiving:”. At that time, a message “Rdy-” is sent through the serial line so
as to test the connection. Serial communications run at 2400 baud, no parity, 1 stop bit,
and 8 character bits. Figure 15-4 (in the following page) shows the circuit used by the
Ser2EEP program.

Data EEPROM Programming 469

Figure 15-4 Circuit for the Ser2EEP Demonstration Program

The program’s main driver routine, constants, and user registers are as follows:

;==

; M A C R O S

;==

; Macros to select the register banks

Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0

bcf STATUS,RP1

ENDM

Bank1 MACRO ; Select RAM bank 1

bsf STATUS,RP0

bcf STATUS,RP1

ENDM

470 Chapter 15

16F877

MAX203

+5v

R
=

1
0

K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RB7/PGD

RG6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

+5v

GND

T1out

R1in

R1out

T1in

T2in

R2out

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in

!MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2.VREF-

RA3/AN3/VREF+

RA4/TOCKI

RA5/AN4/SS

RE0/!RD/AN5

RE1/!WR/AN6

RE2/!CS/AN7

VDD

VSS

OSC1/CLKIN

OS2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

RESET

+5v

HD44780

LCD
2 rows x 20

10 MHz
Osc

+5 V

+5 V

E

R/W

RS

1

14

DB-9
(female)

5 4 3 2 1

9 8 7 6

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 0 ;| — from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .20; Number of characters per line
#define spbrgVal .64; For 2400 baud on 10Mhz clock
; Note: The constants that define the LCD display
; line addresses have the high-order bit set
; so as to meet the requirements of controller
; commands.
;
;==
; General Purpose Variables
;==
; Local variables
; Reserve 20 bytes for string buffer

cblock 0x20
strData
endc

; Other data
cblock 0x34 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
J ; counter J
K ; counter K
bufAdd
index
store1 ; Local storage
store2
Endc

Data EEPROM Programming 471

;==============================
; Common RAM area
;==============================
; These GPRs can be accessed from any bank.
; 15 bytes are available, from 0x70 to 0x7f

cblock 0x70
; For LCDscroll procedure

LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)

; Communications variables
newData ; not 0 if new data received
ascVal
errorFlags

; EEPROM-related variables
EEMemAdd ; EEPROM address to access
EEByte ; Data byte to write
endc

;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; Wiring:
; LCD data to Port-D, lines 0 to 7
; E line -> Port-E, 1
; RW line -> Port-E, 2
; RS line -> Port-E, 0
; Set PORTE D and E for output
; First, initialize Port-B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to TRIS Port-D for output
Bank1

; TRIS Port-D for output. Port-D lines 4 to 7 are wired
; to LCD data lines. Port-D lines 0 to 4 are wired to LEDs.

movlw b’00000000’
movwf TRISD ; and Port-D

; By default Port-A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

movlw 0x06 ; binary 0000 0110 is code to
; make all Port-A lines

digital
movwf ADCON1

; Port-B, lines are wired to keypad switches, as follows:

472 Chapter 15

; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b’11110000’
movwf TRISB

; TRIS Port-E for output
movlw b’00000000’
movwf TRISE ; TRIS Port-E

; Enable Port-B pullups for switches in OPTION register
movlw b’00001000’
movwf OPTION_REG

; Back to bank 0
Bank0

; Initialize serial Port-for 2400 baud, 8 bits, no parity
; 1 stop

call InitSerial
; Test serial transmission by sending “RDY-”

movlw ‘R’
call SerialSend
movlw ‘D’
call SerialSend
movlw ‘Y’
call SerialSend
movlw ‘-’
call SerialSend
movlw 0x20
call SerialSend

; Clear all output lines
movlw b’00000000’
movwf PORTD
movwf PORTE

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize
call initLCD ; Then do forced

; initialization
call delay_5

; Clear character counter and line counter variables
clrf LCDcount
clrf LCDline

; Set display address to start of first LCD line
call line1

; Store address of display buffer
movlw 0x20
movwf bufAdd

; Display “Receiving:” message prompt
call blank20 ; Clear buffer
movlw 0x00 ; Offset in buffer

Data EEPROM Programming 473

call storeMS1 ; Store message at offset
call display20 ; Display message

; Start address of EEPROM
clrf EEMemAdd

; Setup for display in second line
call line2
clrf LCDline
incf LCDline,f; Set scroll control for line 2

;==
; receive serial data, store, and display
;==
receive:
; Call serial receive procedure

call SerialRcv
; HOB of newData register is set if new data
; received

btfss newData,7
goto scanExit

; At this point new data was received.
movwf EEByte ; Save received character

; Display character on LCD
movf EEByte,w ; Recover character
call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line

; Store character in EEPROM at location in EEMemAdd
call EEWrite ; Local procedure
incf EEMemAdd,f ; Bump to next EEPROM

; Check for <Enter> key (0x0d) and execute display function
movf EEByte,w ; Recover last received
sublw 0x0d
btfsc STATUS,Z ; Test if <Enter> key
goto isEnter ; Go if <Enter>

; Not <Enter> key, continue processing
scanExit:

goto receive ; Continue
;============================
; display EEPROM data
;============================
; This routine receives control when the <Enter> key is
; received.
; Action:
; 1. Clear LCD
; 2. Output is set to top LCD line
; 3. Characters stored in EEPROM are displayed
; until 0x0d code is detected
isEnter:

call clearLCD
; Clear character counter and line counter variables

474 Chapter 15

clrf LCDcount
clrf LCDline

; Read data from EEPROM memory, starting at address 0
; and display on LCD until 0x0d terminator

call line1
clrf EEMemAdd ; Start at EEPROM 0

readOne:
call EERead ; Get character

; Store character
movwf EEByte ; Save character

; Test for terminator
sublw 0x0d
btfsc STATUS,Z ; Test if 0x0d
goto atEnd ; Go if 0x0d

; At this point character read is not 0x0d
; Display on LCD

movf EEByte,w ; Recover character
; Display character on LCD

call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line
incf EEMemAdd,f ; Next EEPROM byte
goto readOne

; End of execution
atEnd:

goto atEnd

The Ser2EEP program can be tested with any PC serial communications program
set for the program’s protocol parameters. We developed and tested the program us-
ing Windows Hyperterminal.

15.1 EEPROM Devices and Interfaces
In addition to onboard EEPROM memory that is available in many PICs, a circuit can
contain EEPROM memory in separate integrated circuits. The reason for using sepa-
rate EEPROM is the need for storing more data, since access to onboard EEPROM
memory is usually faster, simpler, and requires less interface elements.

EEPROM devices are furnished in two different interface types: serial and paral-
lel. Devices that use the parallel bus require an 8-bit data bus and an address bus
wide enough to cover its entire memory space. Although parallel EEPROMS are
faster than serial ones, in PIC and microcontroller technology, parallel devices are
usually out of the question.

Serial EEPROMS also come in various flavors. In the PIC environment, the most
used ones are I2C (Inter-Integrated Circuit), SPI (Serial Peripheral Interface), and
Microwire which is a subset of SPI. Another interface called 1-Wire, similar to I2C,
finds some use in PIC systems.

Data EEPROM Programming 475

Although of different design and having unique architectures, the several types of
EEPROM devices share many features. For example, they all operate on a
three-phase system that includes an Opcode, an Address, and a Data phase. Al-
though each type of device has a unique instruction set, the basic operations per-
form similar functions: enable write, enable read, get read status, get write status,
read data, and write data. For this reason we have selected a single one of these in-
terfaces: I2C. This interface, probably because of its minimal use of communica-
tions lines, seems to be the most popular one in the PIC environment.

15.1.1 The I2C Serial Interface

I2C (or I2C) is a serial computer bus and interface developed by Philips Electronics for
use in TV receivers. I2C has found considerable use in embedded systems and is sup-
ported by many types of devices; including EEPROMs, thermal sensors, real-time
clocks, RF tuners, video decoders, etc. I2C devices are made by Philips, National
Semiconductors, Microchip, and many others. The popularity of I2C is often attrib-
uted to its simplicity, low implementation cost, and minimal use of communications
resources.

The typical use of I2C is for interfacing devices on a single board or in a closed
system. The interface uses a two-wire bus and two signals: SDA (serial data line)
and SCL (serial clock line). These signals support serial transmission 8-bits at a time
with 7-bit address-space devices. In the I2C protocol the device that initiates a trans-
action is called the master and the device being addressed is the slave. Normally the
master controls the clock signal, but the slave can hold-off the master in the middle
of a transaction by pulling the SCL line low. This is called “.” Not all I2C slave de-
vices support this feature.

The presence of a clock signal makes I2C a synchronous protocol. Since the clock
signal is part of the transmission, it can vary without disrupting data. For this rea-
son, I2C is used in systems with imprecise clocks, such as the PIC RC oscillator.

Every I2C hardware slave device has a predefined device address, although some
part of this address can be defined at the board level. At the start of every transac-
tion, the master sends the device address of the slave it intends to access. The slave
device monitors the bus and responds only to commands that include its own ad-
dress. The number of available user-configurable address bits limits the number of
identical devices that coexist on the same bus.

15.1.2 I2C Communications

SDA and SCL I2C signals are open-drain, that is, the master and slave devices can only
drive the lines low, or leave them open (high). In operation, a termination resistor

pulls the line up to Vcc if no I2C device is pulling it down. It is this mechanism that al-
lows a slave device to suspend communications by holding down the SCL line. Fur-
thermore, I2C lines can only be in one of two states, called “float high” and “drive

low.” Here again, it is the pull-up resistors that ensure that the line does not float in an
unknown state.

476 Chapter 15

The pull-up resistors used in I2C hardware vary according to communication
speed. Typically, lines at 100 kbps require 4.7K pull-up resistors and lines at 400
kbps 1K resistors.

15.1.3 EEPROM Communications Conditions

The descriptions and examples that follow are limited to EEPROM IC2 device acess.
I2C is a bidirectional interface, implemented by an Acknowledge or Ack system. This
system allows data to be sent in one direction to one device on the I2C bus. The device
indicates that data has been received by issuing an Ack signal. This action from the re-
ceiver eliminates any doubts about whether the transmission was received or not.

Several so-called “conditions” serve to explain I2C communications. The condi-
tions refer to the various bus states during transmission, such as start, stop, data,
and acknowledge.

The START condition (represented by the letter S) indicates that an R2C device is
ready to transfer data on the bus. The device initializes the transmission by pulling
the SDA line low. Recall that both lines are high in the normal state. So the S condi-
tion is detected by a low SDA and a high SCL.

The STOP condition (represented by the letter P) indicates that a device has fin-
ished transferring and is releasing the bus. The P condition is detected when the
SDA line is released while the SCL line remains high. Thus, by action of the pull-up
resistor, the P conditions places both lines high.

The RESTART condition (represented by the letter R) indicates that a device is
ready to transmit more data without releasing the line. This condition is called a Re-

peated Start (condition Rs) in the technical literature. The typical scenario for an R
condition is when a START must be sent, but a STOP has not occurred. The
RESTART condition issues a new START without releasing the line, as is the case
when another data item must be sent. In the R condition, the SCL line is momen-
tarily released while the SDA is held high.

The DATA TRANSFER condition (or just DATA condition) represents the trans-
mission of 8 data bits by pulsing the SDA line while the SCL is high. The CLK signal
and the SDA signal must be aligned so that the high and low bits on the SCL line co-
incide with the high state of the CLK line. The fact that the SCL line is meaningful
only when the CLK signal is high allows the SCL line to change. A DATA byte can be
a control code, an address, or an information element.

The ACK condition (represented by the letter A) is used to acknowledge a data re-
ception. This condition is furnished by the device by bringing the SDS line low dur-
ing the 9th clock pulse of a transmission sequence. The sequence starts with the S or
R condition (one bit), followed by 8 data bits, and the 9th bit on the line requires
that the SDA line be brought low, since the SDA line floats high.

Data EEPROM Programming 477

The lack of the ACK signal is interpreted as NACK (represented by the letter N).
NACK represents a negative acknowledge. The NACK signal is a passive response
since the SDA line is normally held high. Both ACK (A) and NACK (N) refer to the
previous byte of data.

15.1.4 EEPROM Write Operation
Figure 15-5 represents the I2C action sequence that takes place during a write to a
small EEPROM, that is, one that requires a single address byte. Later we will see opera-
tions that access I2C EEPROMS with a 2-byte address space.

Figure 15-5 I2C Write Sequence to Small EEPROM

Note in Figure 15-5 that three bytes of information are required in the data trans-
fer. The transmission starts with the S condition issued by the master, followed by a
control byte. In the case of an EEPROM, the control byte indicates either a read or a
write operation. In Figure 15-5, the control byte is labeled Control In, since it places
the EEPROM device in input mode required for the write to take place. The
EEPROM acknowledges the control byte by issuing the A condition. At this point,
the master proceeds to transmit the address byte, which defines the EEPROM mem-
ory location at which the write operation is to take place. The slave (in this case the
EEPROM) acknowledges reception of the address byte by issuing another A condi-
tion. Next, data is sent by the master and “ACKed” by the EEPROM. Finally, the mas-
ter transmits the stop signal (condition P) which concludes the operation. The
EEPROM does not proceed to write the data until the P signal is received.

15.1.5 EEPROM Read Operation
The read operation to a small EEPROM is similar to the write. In this case, 4 bytes of in-
formation must be exchanged: 3 from the master to the slave and one (the data item
read) from the slave to the master. Figure 15-6 shows the sequence.

Figure 15-6 Read Sequence to a Small EEPROM

478 Chapter 15

S Control In AddressMASTER:

SLAVE:

Data

A A A

P

S RControl In Control OutAddressMASTER:

SLAVE: DataA A

PN

A

Note in Figure 15-6 that the first command from master to slave is a Control In

byte to indicate that an address follows. Once the address is acknowledged, the
master sends the restart command (R condition) and a Control Out command indi-
cating that the master is requesting a read operation. The EEPROM then acknowl-
edges and sends the data, to which the master responds with NACK to instruct the
EEPROM that no more data is required.

In both read and write sequences, each byte transmitted requires a response from
the other element. This response can be either an ACK (condition A) or a NACK
(condition N). The RESTART bit that preceded the Control Out command is neces-
sary since the P condition (STOP bit) has not been sent. The I2C protocol requires
that the START condition be sent only on an idle bus, and never in the middle of a
transmission.

Read and write operations to large EEPROMS, those with a two-byte address
space, are identical to the ones described, except that there are two address bytes.
The first one holds the high-order element and the second one the low-order. Here
again, each byte transmitted must be acknowledged by the receiver.

15.1.6 I2C EEPROM Devices
EEPROM ICs that conform to the I2C specification are available to the PIC circuit de-
signer. Microchip (the same company that manufactures the PIC microcontrollers)
markets a series of I2C chips for this purpose. The line is designated as the 24XXX se-
ries of serial EEPROM devices. Table 15.1 lists several I2C EEPROM devices available
from Microchip.

Table 15.1

I2C Compatible Serial EEPROM Devices from Microchip

MAX CAPACITY PAGE SIZE
DESIGNATION CLOCK BITS BYTES (IN BYTES) CASCADE

24xx00 400kHz 128 16 0 No
24xx01 400kHz 1K 128 8/16 No/8
24xx02 400kHz 2K 256 8/16/22 No/8
24xx04 400KHz 4K 512 16 No
24xx08 400Khz 8K 1K 16 No
24xx16 400Khz 16K 2K 16 No
24xx32 400Khz 32K 4K 32 8
24xx64 400Khz 64K 8K 8/32 8
24xx128 400kHz 128K 16K 64 8
24xx256 400kHz 256K 32K 64 8
24xx512 400kHz 512K 64K 64/128 No/4/8
24xx1025 1MHz 1024 128K 128 4

The memory capacity of the various EEPROM ICs ranges from 16 bytes to 128K.
Since up to four 128K devices can be cascaded, the total accessible memory goes up
to 512K. In selecting a particular IC one must take into account several parameters,
since the page size, the maximum clock speed, and the number of similar devices
that can be grouped changes within the same device type. In the example developed
later in this chapter, we used the 24LC04B EEPROM with a total of 512 bytes located
in two memory banks.

Data EEPROM Programming 479

Figure 15-7 Pin Out of the 24xxx EEPROM Line

The standard DIP package of the 24xxx EEPROMS consists of eight pins, as
shown in Figure 15-7.

Lines A0 to A2 are used to encode the chip’s address when supported by the de-
vice. The three lines allow up to eight possible combinations to identify up to eight
similar cascaded devices, as shown in the corresponding column of Table 15.1. Also
note in Table 15.1 that several EEPROMs do not support more than one device per
address bus. In these cases, pins A0 to A2 are not meaningful. In devices that sup-
port this function, the pins must be hardwired to logic 0 or logic 1. If the pins are left
floating the device could malfunction.

The SDA pin is bidirectional and is used to transfer addresses and data into and
out of the device. Since it is an open drain it requires a pull-up resistor to Vcc. The
resistor is typically 10 kÙ for 100 kHz, 2 kÙ for 400 kHz. During data transfer the SDA
line is allowed to change only while SCL is low. SDA line changes while SCL is high
are used for indicating the START and STOP conditions.

The SCL line is used to synchronize the data transfer to and from the device. The
WP (Write-Protect) pin provides this function when tied to ground. For normal
read/write operation the WP pin is tied to the Vcc line. Read operations are not af-
fected by this pin. The write protect function allows using the EEPROM as a serial
ROM.

15.1.7 PIC Master Synchronous Serial Port (MSSP)

Although I2C interfaces can and have been implemented in software, this emulation is
not an attractive option now that more efficient and simpler hardware versions of I2C
are available in many PICs. For this reason we do not discuss the software emulation
of I2C in this book.

Some PIC microcontrollers come equipped with hardware modules to implement
EEPROM serial protocols, including SPI and I2C. The module that provides these in-
terfaces is named the Master Synchronous Serial Port, or MSSP. Although the MSSP
module operates in slave or master mode, in the context of EEPROM programming
the MSSP is set in master mode. The MSSP module can operate in a free bus mode,

480 Chapter 15

24xxx

6

7

81

5

2

3

4

A0

A1

A2

GND

Vcc

WP

SCL

SDA

24xxx EEPROM PINOUT

A0-A2 - Chip address input

GND - Ground

Vcc - +1.8 to 5.5V power supply

WP - Write protect

SCL - Serial clock

SDA - Serial address/data I/O

also called the multi-master function. In this section we discuss MSSP master mode
operations.

I2C uses two communications lines, labeled the SDA or data line, and the SCL or
clock line. The PICs that contain I2C hardware implementation multiplex two pins
for these functions. In the case of the 16F877 (which we use in the forthcoming ex-
amples) the SCL line is attached to bit 3 in Port-C (16F877 pin number 18) and the
SDA line to bit 4 in Port-C (16F877 pin number 23). When the PIC is used in MSSP
mode, these two pins must be initialized for input by setting the corresponding TRIS
register bits. The pull-up resistors for these lines must be provided externally. Fig-
ure 15-8 shows the minimal wiring diagram between a 16F877 PIC and a 24LC04B
EEPROM IC.

Figure 15-8 Wiring Diagram between a 16F877 PIC and 24LC04B EEPROM.

Note in Figure 15-8 that the address lines (A0 to A2) in the 24LC04B IC are wired
to ground. The reason is that these lines are not used in this particular EEPROM
(see Table 15.1). Also wired to ground is the write protect line. This allows read and
write operations. Only two connections are required between the PIC and the
EEPROM: the SLK and SDL lines. The 4.7K resistors are pull-ups to implement the
open drain operation on these lines.

Data EEPROM Programming 481

16F877

24LC04B

+5v

+5v

+5v

R
=

1
0

K

R
=

4
.7

K

R
=

4
.7

K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

8

7

6

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RB7/PGD

RG6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

+5v

WP

SCL

SDA

A0

A1

A2

GND

!MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2.VREF-

RA3/AN3/VREF+

RA4/TOCKI

RA5/AN4/SS

RE0/!RD/AN5

RE1/!WR/AN6

RE2/!CS/AN7

VDD

VSS

OSC1/CLKIN

OS2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

RESET

+5v

10 MHz
Osc

Figure 15-9 SFRs Associated with I2C Operations

Several 16F87x registers relate to MSSP operation in I2C mode. Figure 15-9 shows
these SFRs.

In the following subsection we discuss the registers and bits that apply to MSSP
operation in Master Mode.

MSSP in Master Mode

In the context of accessing EEPROM circuits, the MSSP is operated in master mode. At
this point we should consider that although the EEPROM device operates as a slave, it
is a “smart” slave since it has a control engine capable of performing operations on its
own, including reading and writing to its address space, recognizing commands, and
issuing the corresponding responses. For example, in a data write operation the mas-
ter sends the corresponding command code, followed by the address to which the data
is to be written, followed by the data itself. The peripheral (in this case the EEPROM
IC) receives and acknowledges the various bytes and executes the requested opera-
tions. In the case of a read command the EEPROM fetches and returns the data from
the memory address requested in the command.

One of the special function registers most used in MSSP master mode operations
is the SSPCON. Figure 15-10 is a bitmap of this register when operating in I2C mas-
ter mode.

482 Chapter 15

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

SMP CKE D/_A P S R/_W UA BF

GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN

SSPCON

SSPSTAT

SSPCON2

PIR1

PIR2

PIE1

PIE2

SSPBUF

SSPADD

INTCON

SSPIF

BCLIF

SSPIE

BCLIE

GIE PEIE

(Receive Buffer/Transmit Register)

(I2C Slave Address/Master Baud Rate Register)

7 6 5 4 3 2 1 0 bits

REGISTER
NAME

Figure 15-10 SSPCON Register Bitmap in I2C Master Mode

The WCOL bit is an error flag that indicates that a Write Collision has occurred.
Write collisions do not take place when programming an EEPROM device. This bit is
useful in multi-master systems since it can detect when more than one master de-
vice is attempting to write to the bus.

The SSPOV bit (Synchronous Serial Port Overflow) is set by the microcontroller
whenever there is an overflow error. An overflow occurs whenever an I2C transfer
finishes but the previous data has not been read from SSPBUF. If SSPOV bit is set, it
must be cleared by application code. Data in SSPBUF is not updated until the over-
flow condition is cleared.

The SSPEN bit (Synchronous Serial Port Enable) is set to turn on the SSP mod-
ule, as is the case in I2C communications.

The bits SSPM0 through SSPM3 (Synchronous Serial Port mode bits) determine
whether the MSSP module is configured for SPI or I2C and whether it is in slave or
master mode. In the master mode, the MSSP module handles all details of I2C com-
munications, such as generating the various conditions and sending and receiving
data. The Master Mode is enabled by entering the binary value 1000 in this bit field.

Another frequently used register in I2C communications is SSPCON2. Figure
15-11 is a bitmap of this register in the I2C master mode.

Data EEPROM Programming 483

WCOL SSPOV SSPEN SSPM3 SSPM2 SSPM1 SSPM0

7 6 5 4 3 2 1 0bits:

bit 7 : Write Collision Detect bit

Master mode:

1 = A write to SSPBUF was attempted while the I2C

conditions were not valid

0 = No collision

bit 6 : Receive Overflow Indicator bit

In I C mode:

1 = A byte is received while the SSPBUF is holding

the previous byte.

SSPOV is a "don’t care" in Transmit mode. (Must be

cleared in software.)

0 = No overflow

bit 5 : Synchronous Serial Port Enable bit

In I C mode,

When enabled, these pins must be properly configured

as input or output

1 = Enables the serial port and configures the SDA

and SCL pins as the source of the serial port

pins

0 = Disables serial port and configures these pins

as normal I/O ports

bit 4 UNUSED IN 12C MASTER MODE

bit 3-0 :

Synchronous Serial Port Mode Select bits

1000 = I C Master mode,

clock = F / (4 * (SSPADD+1))

1001, 1010, 1100, 1101 = Reserved

WCOL

SSPOV

SSPEN

SSPM3:SSPM0

2

2

2

OSC

Figure 15-11 SSPON2 Register Bitmap in I2C Master Mode

The ACKSTAT bit is set when an ACK or NACK has been received. This bit can be
tested by application code to determine if an ACK or NACK condition was received.

When the master reads data from a device, it must acknowledge the transfer by
sending an ACK or NACK condition. The ACKDT bit determines the value of the con-
dition to be sent: if it is clear an ACK is sent; otherwise a NACK is sent.

The ACKEN bit determines when the acknowledge condition is sent.

The RCEN bit places the MSSP module into I2C receive mode. When one byte of
data is received, this bit automatically clears and the PIC returns to transmit mode.
Code must ACK or NACK the data then reset this bit.

484 Chapter 15

ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN

7 6 5 4 3 2 1 0bits:

Bit 7 UNSED IN I2C MASTER MODE

bit 6 : Acknowledge Status bit

In Master Transmit mode:

1 = Acknowledge was not received from slave

0 = Acknowledge was received from slave

bit 5 : Acknowledge Data bit

In Master Receive mode:

Value that will be transmitted when the user

initiates an Acknowledge sequence at the end of

a receive.

1 = Not Acknowledge

0 = Acknowledge

bit 4 : Acknowledge Sequence Enable bit

In Master Receive mode:

1 = Initiate Acknowledge sequence on SDA and SCL

pins and transmit ACKDT data bit.

Automatically cleared by hardware.

0 = Acknowledge sequence idle

bit 3 : Receive Enable bit

1 = Enables Receive mode for I2C

0 = Receive idle

bit 2 : STOP Condition Enable bit (In I2C Master mode only)

SCK Release Control:

1 = Initiate STOP condition on SDA and SCL pins.

Automatically cleared by hardware.

0 = STOP condition idle

bit 1 : Repeated START Condition Enable bit

1 = Initiate Repeated START condition on SDA

and SCL pins.

Automatically cleared by hardware.

0 = Repeated START condition idle

bit 0 : START Condition Enable bit

1 = Initiate START condition on SDA and SCL pins.

Automatically cleared by hardware.

0 = START condition idle

ACKSTAT

ACKDT

ACKEN

RCEN

PEN

RSEN

SEN

Setting the PEN bit automatically sends a stop condition. This bit is automatically
cleared at the end of the start condition.

The RSEN bit sends a restart condition. After the bit is set, application code must
wait for the transfer to complete. This bit is reset automatically when the condition
or data transfer finishes.

The SEN bit (for Start condition Enable) is equivalent to sending a start or re-
start condition. The SEN bit is reset after the start condition completes.

The SSPSTAT (Synchronous Serial Port Status) register contains three bits re-
lated to IC2 communications in master mode. The SMP bit controls the slew rate.
The slew rate is a squelch filter for the I2C waveform that improves performance
when transmission takes place at 400 kbps. This bit should be set at the 400 kbps
transmission rate and reset at any slower rate. The CKE bit is used to allow the
MSSP module to handle SMBus peripherals. Normally, this bit should be cleared.
The BF bit (buffer full) indicates the SSPBUF contains unread data. In either the
master or slave mode this data must be read before any other data is sent or re-
ceived. The BF flag is set and cleared by the PIC. If SSPBUF is not read before an-
other byte is received the buffer overflows and the SSPOV bit will be set.

Finally, the SSPADD (Synchronous Serial Port Address) register has a unique
function in the I2C master mode: it controls the bus speed. The value entered into
the SSPADD register determines the Baud Rate according to the following formula:

where Fosc is the oscillator speed in MHz. Solving this formula in terms of the value to
be entered into SSPADD, we have:

For a baud rate of 100 kbps (equal to 100,000Mhz) the formula is:

In this case, the value to be entered into the SSPADD register while using a com-
munications speed of 100 kbps, in a PIC with a 10 KHz oscillator, is 24. The calcula-
tions can be checked by substituting into the original formula:

Data EEPROM Programming 485

BaudRate
Fosc

SSPADDVAL

=
• +4 1()

SSPADD
Fosc

Baud RateVAL =
•

−
4

1

SSPADDVAL =
•

− = − =10 000 000

4 100 000
1

100

4
1 24

, ,

,

Baud Rate
Fosc

Mhz kbps=
• +

= = =
4 24 1

10 000 000

100
100 000 100

()

, ,
,

15.1.8 I2C Serial EEPROM Programming on the 16F877
The 16F87x PIC family contains the Master Synchronous Serial Port module, which
can be set in either Serial Peripheral Interface or Inter-Integrated Circuit mode. In the
I2C mode the module performs either as a master, a multi-master, or a slave. In the con-
text of driving an I2C EEPROM device, the MSSP module is initialized in the master
mode. I2C firmware modes are provided for compatibility with other mid-range prod-
ucts.

The demonstration program named I2CEEP in the book’s on line software re-
ceives character data from a PC through the RS-232 line and stores these characters
in a 24LC04B EEPROM IC. The program uses the I2C serial interface facilities pro-
vided by the PIC’s MSSP module. An on-board LCD echoes the received characters.
When the PC user presses <Enter> text stored in the EEPROM IC is retrieved and
displayed on the LCD.

On startup, the top LCD line displays the prompt: “Receiving:”. At that time, a
message “Rdy-” is sent through the serial line so as to test the connection. The pro-
gram’s serial communications run at 2400 baud, no parity, 1 stop bit, and 8 character
bits. The 24LC04B SDA line is wired to PIC RC4 (MSSP SDA) and the SCL line is
wired to PIC RC3 (MSSP SCL). In the 24LC04B the A0-A2 are not used. In the demon-
stration circuit, the WP lines are wired to ground. Program provides little error
checking. The circuit in Figure 15-12 is used with the demonstration program.

The I2CEEP program includes three I2C-related functions:

1. SetupI2C. Initializes MSSP module for I2C mode in hardware master mode,
configures the I2C lines, sets the slew rate for 100kbps, and sets the baud rate for
10Mhz

2. WriteI2C. Writes one byte to I2C EEPROM device. Data and address are stored in lo-
cal variables.

3. ReadI2C. Reads one byte from I2C EEPROM device. Address is stored in a local vari-
able and read data is returned in the w register.

As in previous 16F877 examples, we have placed the most used variables in the
common RAM area, that is, in GPRs located from 0x70 to 0x7f. All three procedures
use bank changing macros described and listed previously.

IC2 Initialization Procedure

The following procedure from the I2CEEP program initializes the MSSP module for
operation in I2C mode with a 24LC04B EEPROM IC. The module is initialized for mas-
ter mode operation on a PIC with a 10MhZ baud rate. For use with a faster or slower os-
cillator the value stored in the SSPADD register must be modified according to the
formula.

;============================
; I2C setup procedure
;============================
SetupI2C:

Bank1

486 Chapter 15

movlw b’00011000’

iorwf TRISC,f ; OR into TRISC

; Setup MSSP module for Master Mode operation

Bank0

movlw B’00101000’; Enables MSSP and uses appropriate

; 0 0 1 0 1 0 0 0 Value to install

; 7 6 5 4 3 2 1 0 <== SSPCON bits in this operation

; | | | | |__|__|__|___ Serial port select bits

Data EEPROM Programming 487

Figure 15-12 Circuit for I2CEEP Demonstration Program

16F877

MAX203

24LC04B

+5v

+5v

+5v

+5v

R
=

1
0

K

R
=

1
0

K

R
=

4
.7

K

R
=

4
.7

K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

1

2

3

4

16

15

14

13

12

11

10

9

8

7

6

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RB7/PGD

RG6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

+5v

GND

T1out

R1in

R1out

T1in

T2in

R2out

+5v

WP

SCL

SDA

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in

A0

A1

A2

GND

!MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2.VREF-

RA3/AN3/VREF+

RA4/TOCKI

RA5/AN4/SS

RE0/!RD/AN5

RE1/!WR/AN6

RE2/!CS/AN7

VDD

VSS

OSC1/CLKIN

OS2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

RESET

EEPROM

READ

+5v

HD44780

LCD
2 rows x 20

10 MHz
Osc

+5 V

+5 V

E

R/W

RS

1

14

DB-9
(female)

5 4 3 2 1

9 8 7 6

; | | | | 1000 = I2C master mode

; | | | | Clock = Fosc/(4*(SSPAD+1))

; | | | |_______________ UNUSED IN MASTER MODE

; | | |__________________ SSP Enable

; | | 1 = SDA and SCL pins as serial

; | |_____________________ Receive 0verflow indicator

; | 0 = no overflow

; |________________________ Write collision detect

; 0 = no collision detected

movwf SSPCON ; Loaded into SSPCON

; Input levels and slew rate as standard I2C

Bank1

movlw B’10000000’

;

; 1 0 0 0 0 0 0 0 Value to install

; 7 6 5 4 3 2 1 0 <== SSPSTAT bits in this operation

; | | | | | | | |___ Buffer full status bit READ ONLY

; | | | | | | |______ UNUSED in present application

; | | | | | |_________ Read/write information READ ONLY

; | | | | |____________ UNUSED IN MASTER MODE

; | | | |_______________ STOP bit READ ONLY

; | | |__________________ Data address READ ONLY

; | |_____________________ SMP bus select

; | 0 = use normal I2C specs

; |________________________ Slew rate control

; 0 = disabled

;

movwf SSPSTAT

; Setup Baud Rate

; Baud Rate = Fosc/(4*(SSPADD+1))

; Fosc = 10Mhz

; Baud Rate = 24 for 100 kbps

movlw .24 ; Value to use

movwf SSPADD ; Store in SSPADD

Bank0

return

The procedures Send1I2c, WaitI2C, and the label FailI2C are listed in the subsec-
tion on the read procedure.

I2C Write Byte Procedure

The following procedure, from the I2CEEP program, writes one byte of data to an
24LC04B EEPROM IC, at the memory address stored in the variable EEMemAdd. The
value to write is stored in the local variable EEByte.

488 Chapter 15

;============================
; I2C write procedure
;============================
; Write one byte to I2C EEPROM 24LC04B
; Steps:
; 1. Send START
; 2. Send control. Wait for ACK
; 3. Send address. Wait for ACK
; 4. Send data. Wait for ACK
; 5. Send STOP
; STEP 1:
WriteI2C:

Bank1
bsf SSPCON2,SEN ; Produce START Condition
call WaitI2C ; Wait for I2C to complete

; STEP 2:
; Send control byte. Wait for ACK

movlw LC04READ ; Control byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C to complete
btfsc SSPCON2,ACKSTAT ; Check ACK bit to see if

; I2C failed,
skip if not

goto FailI2C
; STEP 3:
; Send address. Wait for ACK

Bank0
movf EEMemAdd,w ; Load Address Byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation to complete
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see

; if I2C failed, skip if not
goto FailI2C

; STEP 4:
; Send data. Wait for ACK

Bank0
movf EEByte,w ; Load Data Byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation to complete
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see

; if I2C failed, skip if not
goto FailI2C

; STEP 5:
; Send STOP. Wait for ACK

bsf SSPCON2,PEN ; Send STOP condition
call WaitI2C ; Wait for I2C operation to complete

Data EEPROM Programming 489

; WRITE operation has completed successfully.
Bank0
return

The procedures Send1I2c, WaitI2C, and the label FailI2C are listed in the sub-sec-
tion on the read procedure.

I2C Read Byte Procedure
The following procedure, from the I2CEEP program, reads a byte of data from the
24LC04B device. The address read is stored in the local variable EEMemAdd. The
value read is returned in the w register. The listing also includes the support routines
used by all three I2C procedures listed.

;============================
; I2C read procedure
;============================
; Procedure to read one byte from 24LC04B EEPROM
; Steps:
; 1. Send START
; 2. Send control. Wait for ACK
; 3. Send address. Wait for ACK
; 4. Send RESTART + control. Wait for ACK
; 5. Switch to receive mode. Get data.
; 6. Send NACK
; 7. Send STOP
; 8. Retreive data into w register
; STEP 1:
ReadI2C
; Send RESTART. Wait for ACK

Bank1
bsf SSPCON2,RSEN ; RESTART Condition
call WaitI2C ; Wait for I2C operation

; STEP 2:
; Send control byte. Wait for ACK

movlw LC04READ ; Control byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation

; Now check to see if I2C EEPROM is ready
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto ReadI2C ; ACK Poll waiting for EEPROM

; write to complete
; STEP 3:
; Send address. Wait for ACK

Bank0
movf EEMemAdd,w ; Load from address register
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation
Bank1

490 Chapter 15

btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto FailI2C ; failed, skipped if successful

; STEP 4:
; Send RESTART. Wait for ACK

bsf SSPCON2,RSEN ; Generate RESTART Condition
call WaitI2C ; Wait for I2C operation

; Send output control. Wait for ACK
movlw LC04WRITE ; Load CONTROL BYTE (output)
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto FailI2C ; failed, skipped if successful

; STEP 5:
; Switch MSSP to I2C Receive mode

bsf SSPCON2,RCEN ; Enable Receive Mode (I2C)
; Get the data. Wait for ACK

call WaitI2C ; Wait for I2C operation
; STEP 6:
; Send NACK to acknowledge

Bank1
bsf SSPCON2,ACKDT ; ACK DATA to send is 1 (NACK)
bsf SSPCON2,ACKEN ; Send ACK DATA now.

; Once ACK or NACK is sent, ACKEN is automatically cleared
; STEP 7:
; Send STOP. Wait for ACK

bsf SSPCON2,PEN ; Send STOP condition
call WaitI2C ; Wait for I2C operation

; STEP 8:
; Read operation has finished

Bank0
movf SSPBUF,W ; Get data from SSPBUF into W

; Procedure has finished and completed successfully.
return

;============================
; I2C support procedures
;============================
; I2C Operation failed code sequence
; Procedure hangs up. User should provide error handling.
FailI2C

Bank1
bsf SSPCON2,PEN ; Send STOP condition
call WaitI2C ; Wait for I2C operation

fail:
goto fail

; Procedure to transmit one byte
Send1I2C

Data EEPROM Programming 491

Bank0
movwf SSPBUF ; Value to send to SSPBUF
return

; Procedure to wait for the last I2C operation to complete.
; Code polls the SSPIF flag in PIR1.
WaitI2C

Bank0
btfss PIR1,SSPIF ; Check if I2C operation done
goto $-1 + ; I2C module is not ready yet
bcf PIR1,SSPIF ; I2C ready, clear flag
return

15.2 Sample Programs
The following sections contain the code listing for the programs discussed in this
chapter.

15.2.1 EECounter Program
; File name: EECounter.asm
; Last Update: May 22, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to demonstrate on chip EEPROM data memory read
; and write operation. Program uses LCD display to output
; results.
; Operation:
; The program keeps track and displays the inNum of times
; the code has been started.
; For LCD display parameters see the LCDTest2 program.
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock
;
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal oscillator

492 Chapter 15

; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 2 ;| — from wiring diagram
#define RW_line 3 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command
;
;===
; variables in PIC RAM
;===
; Reserve 16 bytes for string buffer

cblock 0x0c
strData
endc

; Reserve three bytes for ASCII digits
cblock 0x1d
asc100
asc10
asc1
endc

; Continue with local variables
cblock 0x20 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3

Data EEPROM Programming 493

pic_ad ; Storage for start of text area
; (labeled strData) in PIC RAM

J ; counter J
K ; counter K
index ; Index into text table (also used

; for auxiliary storage)
store1 ; Local temporary storage
store2 ; Storage # 2

; EEPROM-related variables
EEMemAdd ; EEPROM address to access
EEByte ; Data byte to write

; Storage for ASCII decimal conversion and digits
inNum ; Source operand
thisDig ; Digit counter
endc

;===
; program
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
movlw b’00000000’ ; All lines to output
tris PORTA ; in Port-A
tris PORTB ; and Port-B
movlw b’00000000’ ; All outputs ports low
movwf PORTA
movwf PORTB

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize

; itself
call delay_5
call initLCD ; Then do forced

initialization
call delay_5 ; Wait again

; Store base address of text buffer in PIC RAM

movlw 0x0c ; Start address for buffer
movwf pic_ad ; to local variable

; Initialize EEPROM data to 0x0
clrf EEMemAdd ; Set address to 0

;======================
; first LCD line
;======================
; Store 16 blanks in PIC RAM, starting at address stored

494 Chapter 15

; in variable pic_ad
call blank16

; Call procedure to store ASCII characters for message
; in text buffer

movlw d’0’ ; Offset into buffer
call storeMS1

;=======================
; Read EEPROM memory
;=======================
; EEPROM memory address to use is at 10 (0x0a). Variable
; EEMemAdd is already initialized.
; Fill data for EEPROM is 0xff. This value indicates
; the first iteration

call EERead ; Local procedure. Value in w
movwf EEByte ; Save result

; EEPROM data still in w
incf EEByte,f
call EEWrite

; At this point iteration inNum is stored in EEByte
; This value must be displayed on the LCD at offset 11
; of the first line. This means it must be stored at offset
; 11 in the buffer. Since the buffer starts at 0x0c the
; iteration digit must be stored at offset 0x0c+11=0x17
ShowEEData:
; Binary data in EEByte

movf EEByte,w ; Value to w
call bin2asc ; Conversion routine

; At this point three ASCII digits are stored in local
; variables. Move digits to display area

movf asc1,w ; Unit digit
movwf 0x18 ; Store in buffer
movf asc10,w ; same with other digits
movwf 0x17
movf asc100,w
movwf 0x16

; Display line
; Set DDRAM address to start of first line
showLine:

call line1
; Call procedure to display 16 characters in LCD

call display16
loopHere:

goto loopHere ;done

;==
; initialize LCD for 4-bit mode
;==
initLCD:

Data EEPROM Programming 495

; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low
bcf PORTA,RW_line ; Write mode
call delay_125 ; delay 125 microseconds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
call send8

;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
SHIFT)

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
call send8

; Per documentation
call delay_5 ; Test for busy

496 Chapter 15

return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5

movlw D’41’ ; Counter = 41
movwf count2 ; Store in variable

delay
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTA,E_line ; Pulse E line
nop
bcf PORTA,E_line
return

;=============================
; long delay sub-routine
; (for debugging)
;=============================
long_delay

movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero

Data EEPROM Programming 497

goto jloop
return

;=============================
; LCD display procedure
;=============================
; Sends 16 characters from PIC buffer with address stored
; in variable pic_ad to LCD line previously selected
display16

call delay_5 ; Make sure not busy
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 16 characters
movlw D’16’ ; Counter = 16
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 16 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to Port-B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with Port-B

; Now w has merged byte
movwf PORTB ; w to Port-B
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w

498 Chapter 15

call merge4
movwf PORTB
call pulseE ; Send data to LCD
call delay_125
return

;=================
; merge bits
;=================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of Port-B
; so as to preserve the 4 low-bits in Port-B
; Logic:
; AND value with 1111 0000 mask
; AND Port-B with 0000 1111 mask
; Now low nibble in value and high nibble in
; Port-B are all 0 bits:
; value = vvvv 0000
; Port-B = 0000 bbbb
; OR value and Port-B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contains value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTB,w ; Port-B to w register
andlw b’00001111’ ; Clear high nibble in Port-b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;========================
; blank buffer
;========================
; Procedure to store 16 blank characters in PIC RAM
; buffer starting at address stored in the variable
; pic_ad
blank16

movlw D’16’ ; Setup counter
movwf count1
movf pic_ad,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit

Data EEPROM Programming 499

movwf INDF ; Store blank character in PIC RAM
; buffer using FSR register

decfsz count1,f ; Done?
goto incfsr ; no
return ; yes

incfsr:
incf FSR,f ; Bump FSR to next buffer space
goto storeit

;========================
; Set address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTA,RS_line ; Setup for data
call delay_5 ; Busy?
return

;===============================
; first text string procedure
;===============================
storeMS1:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

500 Chapter 15

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
; Message has 10 characters
msg1:

addwf PCL,f ; Access table
retlw ‘I’
retlw ‘t’
retlw ‘e’
retlw ‘r’
retlw ‘.’
retlw 0x20
retlw ‘N’
retlw ‘o’
retlw ‘.’
retlw 0x20
retlw 0

;==============================
; binary to ASCII decimal
; conversion
;==============================
; ON ENTRY:

Data EEPROM Programming 501

; w register has binary value in range 0 to 255
; ON EXIT:
; output variables asc100, asc10, and asc1 have
; three ASCII decimal digits
; Routine logic:
; The value 100 is subtracted from the source operand
; until the remainder is < 0 (carry cleared). The number
; of subtractions is the decimal hundreds result. 100 is
; then added back to the subtrahend to compensate
; for the last subtraction. Now 10 is subracted in the
; same manner to determine the decimal tenths result.
; The final remainder is the decimal units result.
; Variables:
; inNum storage for source operand
; asc100 storage for hundreds position result
; asc10 storage for tenth position result
; asc1 storage for unit position result
; thisDig Digit counter
bin2asc:

movwf inNum ; Save copy of source value
clrf asc100 ; Clear hundreds storage
clrf asc10 ; Tens
clrf asc1 ; Units
clrf thisDig

sub100:
movlw .100
subwf inNum,f ; Subtract 100
btfsc STATUS,C ; Did subtract overflow?
goto bump100 ; No. Count subtraction
goto end100

bump100:
incf thisDig,f ;increment digit counter
goto sub100

; Store 100th digit
end100:

movf thisDig,w ; Adjusted digit counter
addlw 0x30 ; Convert to ASCII
movwf asc100 ; Store it

; Calculate tenth position value
clrf thisDig

; Adjust minuend
movlw .100 ; Minuend
addwf inNum,f ; Add value to minuend to

; compensate
for last operation
sub10:

movlw .10
subwf inNum,f ; Subtract 10

502 Chapter 15

btfsc STATUS,C ; Did subtract overflow?
goto bump10 ; No. Count subtraction
goto end10

bump10:
incf thisDig,f ;increment digit counter
goto sub10

; Store 10th digit
end10:

movlw .10
addwf inNum,f ; Adjust for last subtract
movf thisDig,w ; get digit counter contents
addlw 0x30 ; Conver to ASCII
movwf asc10 ; Store it

; Calculate and store units digit
movf inNum,w ; Store units value
addlw 0x30 ; Convert to ASCII
movwf asc1 ; Store digit
return

;==
; EEPROM procedures
;==
;==============================
; read EEPROM
;==============================
; Procedure to read EEPROM memory. Address of memory
; location to read is stored in local register EEMemAdd
; On exit: read data in w
EERead:

bcf STATUS,RP0 ; Bank 0
movf EEMemAdd,w ; Address to w
movwf EEADR ; w to address register
bsf STATUS,RP0 ; Bank 1
bsf EECON1,RD ; EE Read
bcf STATUS,RP0 ; Bank 0
movf EEDATA,w ; W = EEDATA
return

;==============================
; write EEPROM
;==============================
; Procedure to write asc1 byte to EEPROM memory
; Address to write stored in local register EEMemAdd
; Data byte to write is in local register EEByte
EEWrite:
; Load byte to write into EE data register

movf EEByte,w ; Data to w
movwf EEDATA ; Write

Data EEPROM Programming 503

; Set write address in EE address register
movf EEMemAdd,w ; Address to w
movwf EEADR ; w to address register

; Write data to EEPROM memory
bsf STATUS,RP0 ; Bank 1
bcf INTCON,GIE ; Disable INTs.
bsf EECON1,WREN ; Enable Write
movlw 0x55 ; Code # 1
movwf EECON2 ; Write 0x55
movlw 0xaa ; Code # 2
movwf EECON2 ; Write 0xaa
bsf EECON1,WR ; Set WR bit

; Write operation now takes place automatically
bsf INTCON,GIE ; Re-enable interrupts
bcf STATUS,RP0 ; Bank 0
return

End

15.2.2 Ser2EEP Program
; File name: Ser2EEP.asm
; Last revision: May 26, 2006
; Author: Julio Sanchez
; PIC: 16F877
;
; Description:
; Receive character data through RS-232 line and store in
; EEPROM data memory. Received characters are echoed on
; the second LCD line. When <Enter> key is detected (code
; 0x0d) the text stored in EEPROM memory is retrieved and
; displayed on the LCD. On startup the top LCD line displays
; the prompt: “Receiving:”. At that time a message “Rdy- ” is
; sent through the serial line so as to test the connection.
;
; Default serial line setting:
; 2400 baud
; no parity
; 1 stop bit
; 8 character bits
;
; Program to use 4-bit PIC-to-LCD interface.
; Code assumes that LCD is driven by Hitachi HD44780
; controller and PIC 16F977. Display supports two lines
; each one with 20 characters. The length, wiring and base
; address of each display line is stored in #define
; statements. These statements can be edited to accommodate
; a different set-up.

504 Chapter 15

;
; WARNING:
; Code assumes 10 Mhz clock. Delay routines must be
; edited for a different clock. Clock speed also determines
; values for baud rate setting (see spbrgVal constant).
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal oscillator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF

; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.

errorlevel -302
; Suppress bank-related warning
;==
; M A C R O S
;==
; Macros to select the register banks

Data EEPROM Programming 505

Bank0 MACRO ; Select RAM bank 0
bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 0 ;| — from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .20; Number of characters per line
#define spbrgVal .64; For 2400 baud on 10Mhz clock
; Note: The constants that define the LCD display
; line addresses have the high-order bit set
; so as to meet the requirements of controller
; commands.
;
;==
; General Purpose Variables
;==
; Local variables
; Reserve 20 bytes for string buffer

cblock 0x20
strData
endc

; Other data
cblock 0x34 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2

506 Chapter 15

count3 ; Counter # 3
J ; counter J
K ; counter K
bufAdd
index
store1 ; Local storage
store2
endc

;==============================
; Common RAM area
;==============================
; These GPRs can be accessed from any bank.
; 15 bytes are available, from 0x70 to 0x7f

cblock 0x70
; For LCDscroll procedure

LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)

; Communications variables
newData ; not 0 if new data received
ascVal
errorFlags

; EEPROM-related variables
EEMemAdd ; EEPROM address to access
EEByte ; Data byte to write
endc

;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; Wiring:
; LCD data to Port-D, lines 0 to 7
; E line -> Port-E, 1
; RW line -> Port-E, 2
; RS line -> Port-E, 0
; Set PORTE D and E for output
; First, initialize Port-B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to TRIS Port-D for output
Bank1

; TRIS Port-D for output. Port-D lines 4 to 7 are wired
; to LCD data lines. Port-D lines 0 to 4 are wired to LEDs.

movlw B’00000000’

Data EEPROM Programming 507

movwf TRISD ; and Port-D
; By default Port-A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

movlw 0x06 ; binary 0000 0110 is code to
; make all Port-A lines digital

movwf ADCON1
; Port-B, lines are wired to keypad switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b’11110000’
movwf TRISB

; TRIS Port-E for output
movlw B’00000000’
movwf TRISE ; TRIS Port-E

; Enable Port-B pullups for switches in OPTION register
movlw b’00001000’
movwf OPTION_REG

; Back to bank 0
Bank0

; Initialize serial Port-for 2400 baud, 8 bits, no parity
; 1 stop

call InitSerial
; Test serial transmission by sending “RDY-”

movlw ‘R’
call SerialSend
movlw ‘D’
call SerialSend
movlw ‘Y’
call SerialSend
movlw ‘-’
call SerialSend
movlw 0x20
call SerialSend

; Clear all output lines
movlw b’00000000’
movwf PORTD
movwf PORTE

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize

itself
call initLCD ; Then do forced

initialization
call delay_5 ; (Wait probably not

necessary)
; Clear character counter and line counter variables

508 Chapter 15

clrf LCDcount
clrf LCDline

; Set display address to start of first LCD line
call line1

; Store address of display buffer
movlw 0x20
movwf bufAdd

; Display “Receiving:” message prompt
call blank20 ; Clear buffer
movlw 0x00 ; Offset in buffer
call storeMS1 ; Store message at offset
call display20 ; Display message

; Start address of EEPROM
clrf EEMemAdd

; Setup for display in second line
call line2
clrf LCDline
incf LCDline,f ; Set scroll control for

; line 2
;==
; receive serial data, store, and display
;==
receive:
; Call serial receive procedure

call SerialRcv
; HOB of newData register is set if new data
; received

btfss newData,7
goto scanExit

; At this point new data was received.
movwf EEByte ; Save received character

; Display character on LCD
movf EEByte,w ; Recover character
call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line

; Store character in EEPROM at location in EEMemAdd
call EEWrite ; Local procedure
incf EEMemAdd,f ; Bump to next EEPROM

; Check for <Enter> key (0x0d) and execute display function
movf EEByte,w ; Recover last received
sublw 0x0d
btfsc STATUS,Z ; Test if <Enter> key
goto isEnter ; Go if <Enter>

; Not <Enter> key, continue processing
scanExit:

goto receive ; Continue
;============================
; display EEPROM data

Data EEPROM Programming 509

;============================
; This routine receives control when the <Enter> key is
; received.
; Action:
; 1. Clear LCD
; 2. Output is set to top LCD line
; 3. Characters stored in EEPROM are displayed
; until 0x0d code is detected
isEnter:

call clearLCD
; Clear character counter and line counter variables

clrf LCDcount
clrf LCDline

; Read data from EEPROM memory, starting at address 0
; and display on LCD until 0x0d terminator

call line1
clrf EEMemAdd ; Start at EEPROM 0

readOne:
call EERead ; Get character

; Store character
movwf EEByte ; Save character

; Test for terminator
sublw 0x0d
btfsc STATUS,Z ; Test if 0x0d
goto atEnd ; Go if 0x0d

; At this point character read is not 0x0d
; Display on LCD

movf EEByte,w ; Recover character
; Display character on LCD

call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line
incf EEMemAdd,f ; Next EEPROM byte
goto readOne

; End of execution
atEnd:

goto atEnd

;==
;==
; L O C A L P R O C E D U R E S
;==
;==
;==========================
; init LCD for 4-bit mode
;==========================
initLCD:
; Initialization for Densitron LCD module as follows:

510 Chapter 15

; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125 microseconds
movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8
movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
call send8
movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
call send8
movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY

; SHIFT)
call send8
movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)

; |___ COMMAND BIT
call send8
call delay_5 ; Test for busy
return

.;===========================
; procedure to clear LCD
;============================
clearLCD:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125 microseconds
movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)

; |___ COMMAND BIT
call send8
call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds

Data EEPROM Programming 511

;=======================
delay_125:

movlw .105 ; Repeat 105 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw .105 ; Counter = 105 cycles
movwf count2 ; Store in variable

delay:
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ; Pulse E line
nop
bcf PORTE,E_line
return

;=============================
; long delay sub-routine
;=============================
long_delay:

movlw D’200’ ; w delay count
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;========================
; send 2 nibbles in
; 4-bit mode
;========================

512 Chapter 15

; Procedure to send two 4-bit values to Port-B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with Port-B

; Now w has merged byte
movwf PORTD ; w to Port-D
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTD
call pulseE ; Send data to LCD
call delay_125
return

;==========================
; merge bits
;==========================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of Port-B
; so as to preserve the 4 low-bits in Port-B
; Logic:
; AND value with 1111 0000 mask
; AND Port-B with 0000 1111 mask
; Now low nibble in value and high nibble in
; Port-B are all 0 bits:
; value = vvvv 0000
; Port-B = 0000 bbbb
; OR value and Port-B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTD,w ; Port-B to w register
andlw b’00001111’ ; Clear high nibble in Port-b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;==========================

Data EEPROM Programming 513

; Set address register
; to LCD line 2
;==========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, setup for

; control
call delay_5 ; Busy?

; Set to second display line
movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTE,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

;==========================
; Set address register
; to LCD line 1
;==========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTE,RS_line ; Setup for data
call delay_5 ; Busy?
return

;==========================
; scroll to LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then LCD is
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w

514 Chapter 15

sublw LCDlimit ; Count minus limit
btfss STATUS,Z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,Z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:

call initLCD ; Reset
clrf LCDcount ; Clear counters
clrf LCDline
call line1 ; Display to first line

scrollExit:
return

;=============================
; LCD display procedure
;=============================
; Sends 20 characters from PIC buffer with address stored
; in variable bufAdd to LCD line previously selected
display20:

call delay_5 ; Make sure not busy
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 20 characters
movlw D’20’
movwf count3

; Get display address from local variable bufAdd
movf bufAdd,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar:
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 20 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

Data EEPROM Programming 515

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;===============================
; first text string procedure
;===============================
storeMS1:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable bufAdd holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that holds offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf bufAdd,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in variable
goto get_msg_char ; Continue

516 Chapter 15

endstr1:
return

; Routine for returning message stored in program area
; Message has 10 characters
msg1:

addwf PCL,f ; Access table
retlw ‘R’
retlw ‘e’
retlw ‘C’
retlw ‘e’
retlw ‘i’
retlw ‘v’
retlw ‘i’
retlw ‘n’
retlw ‘g’
retlw ‘:’
retlw 0

;========================
; blank buffer
;========================
; Procedure to store 20 blank characters in PIC RAM
; buffer starting at address stored in the variable
; bufAdd
blank20:

movlw D’20’ ; Setup counter
movwf count1
movf bufAdd,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit:
movwf INDF ; Store blank character in PIC RAM

; buffer using FSR register
decfsz count1,f ; Done?
goto incfsr ; no
return ; yes

incfsr:
incf FSR,f ; Bump FSR to next buffer space
goto storeit

;==
; communications procedures
;==
; Initialize serial Port-for 2400 baud, 8 bits, no parity,
; 1 stop
InitSerial:

Bank1 ; Macro to select bank1

Data EEPROM Programming 517

; Bits 6 and 7 of Port-C are multiplexed as TX/CK and RX/DT
; for USART operation. These bits must be set to input in the
; TRISC register

movlw b’11000000’ ; Bits for TX and RX
iorwf TRISC,f ; OR into TRISc register

;
; The asynchronous baud rate is calculated as follows:
; Fosc
; ABR = ---------
; S*(x+1)
;
; where x is value in the SPBRG register and S is 64 if the high
; baud rate select bit (BRGH) in the TXSTA control register is
; clear, and 16 if the BRGH bit is set. For setting to 2400 baud
; using a 10Mhs oscillator at a slow baud rate the formula
; is:
; At slow speed (BRGH = 0)
; 10,000,000 10,000,000
; ---------- = ---------- = 2,403.84 (0.16% error)
; 64*(64+1) 4160
;

movlw spbrgVal ; Value in spbrgVal = 64
movwf SPBRG ; Place in baud rate generator

; Setup value: 0010 0000 = 0x20
movlw 0x20 ; Enable transmission and high baud

; rate
movwf TXSTA
Bank0 ; Bank 0

; Setup value: 1001 0000 = 0x90
movlw 0x90 ; Enable serial Port-and continuous

; reception
movwf RCSTA

;
clrf errorFlags ; Clear local error flags

; register
Return

;
;==============================
; transmit data
;==============================
; Test for Transmit Register Empty and transmit data in w
SerialSend:

Bank0 ; Select bank 0
btfss PIR1,TXIF ; check if transmitter busy
goto $-1 ; wait until transmitter is

not busy
movwf TXREG ; and transmit the data
return

518 Chapter 15

;==============================
; receive data
;==============================
; Procedure to test line for data received and return value
; in w. Overrun and framing errors are detected and
; remembered in the variable errorFlags, as follows:
; 7 6 5 4 3 2 1 0 <== errorFlags
; — not used —— | |___ overrun error
; |______ framing error
SerialRcv:

clrf newData ; Clear new data received
register

Bank0 ; Select bank 0
; Bit 5 (RCIF) of the PIR1 Register is clear if the USART
; receive buffer is empty. If so, no data has been received

btfss PIR1,RCIF ; Check for received data
return ; Exit if no data

; At this point data has been received. First eliminate
; possible errors: overrun and framing.
; Bit 1 (OERR) of the RCSTA register detects overrun
; Bit 2 (FERR(of the RCSTA register detects framing error

btfsc RCSTA,OERR ; Test for overrun error
goto OverErr ; Error handler
btfsc RCSTA,FERR ; Test for framing error
goto FrameErr ; Error handler

; At this point no error was detected
; Received data is in the USART RCREG register

movf RCREG,w ; get received data
bsf newData,7 ; Set bit 7 to indicate new

; data
; Clear error flags

clrf errorFlags
return

;==========================
; error handlers
;==========================
OverErr:

bsf errorFlags,0 ; Bit 0 is overrun error
; Reset system

bcf RCSTA,CREN ; Clear continuous receive bit
bsf RCSTA,CREN ; Set to re-enable reception
return

;error because FERR framing error bit is set
;can do special error handling here - this code simply clears
; and continues
FrameErr:

bsf errorFlags,1 ; Bit 1 is framing error
movf RCREG,W ; Read and throw away bad data

Data EEPROM Programming 519

return
;==
; local EEPROM data procedures
;==
; GPRs used in EEPROM-related code are placed in the common
; RAM area (from 0x70 to 0x7f). This makes the registers
; accessible from any bank.
;==============================
; read local EEPROM
;==============================
; Procedure to read EEPROM memory
; ON ENTRY:
; Address of EEPROM memory location to read is stored in
; local register EEMemAdd
; ON EXIT:
; Read data in w
EERead:

Bank2
movf EEMemAdd,W ; EEPROM address
movwf EEADR ; to read from
Bank3
bcf EECON1,EEPGD ; Point to Data memory
bsf EECON1,RD ; Start read
Bank2
movf EEDATA,W ; Data to w register
Bank0
return

;==============================
; write local EEPROM
;==============================
; Procedure to write data byte to EEPROM memory
; ON ENTRY:
; Address to write stored in local register EEMemAdd
; Data byte to write is in local register EEByte
EEWrite:

Bank3
Wait2Start:

btfsc EECON1,WR ; Wait for
GOTO Wait2Start ; write to finish
Bank2
movf EEMemAdd,w ; Address to
movwf EEADR ; SFR
movf EEByte,w ; Data to
movwf EEDATA ; SFR
Bank3
bcf EECON1,EEPGD ; Point to Data memory
bsf EECON1,WREN ; and enable writes

520 Chapter 15

; Disable interrupts. Can be done in any case
bcf INTCON,GIE

; Write special codes
movlw 0x55 ; First code is 0x55
movwf EECON2
movlw 0xaa ; Second code is 0xaa
movwf EECON2
bsf EECON1,WR ; Start write operation
nop ; Time for write
nop

; Test for end of write operation
wait2End:

btfsc EECON1,WR ; Wait until WR clear
goto wait2End

;
; Re-enable interrupts if program uses interrupts
; If not, comment out next line
; bsf INTCON,GIE
;

bcf EECON1,WREN ; Prevent accidental writes
Bank0
return

;==
end ; END OF PROGRAM

;==

15.2.3 I2CEEP Program
; File name: I2CEEP.asm
; Last revision: May 28, 2006
; Author: Julio Sanchez
; Processor: 16F877
;
; Description:
; Receive character data through RS-232 line and store in
; 24LC04B EEPROM IC, using the I2C serial protocol in the
; PIC’s MSSP module. Received characters are echoed on
; the second LCD line. When <Enter> key is detected (code
; 0x0d) the text stored in EEPROM memory is retrieved and
; displayed on the LCD. On startup the top LCD line displays
; the prompt: “Receiving:”. At that time a message “Rdy- ” is
; sent through the serial line so as to test the connection.
;
; Default serial line setting:
; 2400 baud
; no parity
; 1 stop bit

Data EEPROM Programming 521

; 8 character bits
;
; Wiring:
; 24LC04B SDA line is wired to PIC RC4 (MSSP SDA)
; 24LC04B SCL line is wired to PIC RC3 (MSSP SCL)
; 24LC04B A0-A2 and WP lines are not used (GND)
;
; Program to use 4-bit PIC-to-LCD interface.
; Code assumes that LCD is driven by Hitachi HD44780
; controller and PIC 16F977. Display supports two lines
; each one with 20 characters. The length, wiring and base
; address of each display line is stored in #define
; statements. These statements can be edited to accommodate
; a different set-up.
;
; WARNING:
; Code assumes 10 Mhz clock. Delay routines must be
; edited for a different clock. Clock speed also determines
; values for baud rate setting (see spbrgVal constant).
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal oscillator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

522 Chapter 15

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF

; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.

errorlevel -302
; Suppress bank-related warning
;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 0 ;| — from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .20; Number of characters per line
#define spbrgVal .64; For 2400 baud on 10Mhz clock
; Note: The constants that define the LCD display
; line addresses have the high-order bit set
; so as to meet the requirements of controller

Data EEPROM Programming 523

; commands.
;==
; constants for I2C initialization
;==
; I2C connected to 24LC04B EEPROM.
; The MSSP module is in I2C MASTER mode.
#define LC04READ 0xa0 ; I2C value for read control byte
#define LC04WRITE 0xa1 ; I2C value for write control byte

;==
; General Purpose Variables
;==
; Local variables
; Reserve 20 bytes for string buffer

cblock 0x20
strData
endc

; Other data
cblock 0x34 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
J ; counter J
K ; counter K
bufAdd
index
store1 ; Local storage
store2

; For LCDscroll procedure
LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)
Endc

;
;==============================
; Common RAM area
;==============================
; These GPRs can be accessed from any bank.
; 15 bytes are available, from 0x70 to 0x7f

cblock 0x70
; Communications variables

newData ; not 0 if new data received
ascVal
errorFlags

; EEPROM-related variables
EEMemAdd ; EEPROM address to access
EEByte ; Data byte to write
endc

524 Chapter 15

;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; Wiring:
; LCD data to Port-D, lines 0 to 7
; E line -> Port-E, 1
; RW line -> Port-E, 2
; RS line -> Port-E, 0
; Set PORTE D and E for output
; First, initialize Port-B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to TRIS Port-D for output
Bank1

; TRIS Port-D for output. Port-D lines 4 to 7 are wired
; to LCD data lines. Port-D lines 0 to 4 are wired to LEDs.

movlw B’00000000’
movwf TRISD ; and Port-D

; By default Port-A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

movlw 0x06 ; binary 0000 0110 is code to
; make all Port-A lines digital

movwf ADCON1
; Port-B, lines are wired to keypad switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b’11110000’
movwf TRISB

; TRIS Port-E for output
movlw B’00000000’
movwf TRISE ; TRIS Port-E

; Enable Port-B pullups for switches in OPTION register
movlw b’00001000’
movwf OPTION_REG

; Back to bank 0
Bank0

; Initialize serial port for 2400 baud, 8 bits, no parity
; 1 stop

call InitSerial
; Test serial transmission by sending “RDY-”

Data EEPROM Programming 525

movlw ‘R’
call SerialSend
movlw ‘D’
call SerialSend
movlw ‘Y’
call SerialSend
movlw ‘-’
call SerialSend
movlw 0x20
call SerialSend

; Clear all output lines
movlw b’00000000’
movwf PORTD
movwf PORTE

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize itself
call initLCD ; Then do forced initialization
call delay_5

; Clear character counter and line counter variables
clrf LCDcount
clrf LCDline

; Set display address to start of first LCD line
call line1

; Store address of display buffer
movlw 0x20
movwf bufAdd

; Display “Receiving:” message prompt
call blank20 ; Clear buffer
movlw 0x00 ; Offset in buffer
call storeMS1 ; Store message at offset
call display20 ; Display message

; Start address of EEPROM
clrf EEMemAdd

; Setup for display in second line
call line2
clrf LCDline
incf LCDline,f ; Set scroll control for line 2

; Initialize I2C EEPROM operation
call SetupI2C ; Local procedure

;==
; receive serial data, store, and display
;==
receive:
; Call serial receive procedure

call SerialRcv
; HOB of newData register is set if new data
; received

btfss newData,7

526 Chapter 15

goto scanExit
; At this point new data was received.

movwf EEByte ; Save received character
; Display character on LCD

movf EEByte,w ; Recover character
call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line

; Store character in EEPROM at location in EEMemAdd
call WriteI2C ; Local procedure
incf EEMemAdd,f ; Bump to next EEPROM

; Check for <Enter> key (0x0d) and execute display function
movf EEByte,w ; Recover last received
sublw 0x0d
btfsc STATUS,Z ; Test if <Enter> key
goto isEnter ; Go if <Enter>

; Not <Enter> key, continue processing
scanExit:

goto receive ; Continue
;============================
; display EEPROM data
;============================
; This routine receives control when the <Enter> key is
; received.
; Action:
; 1. Clear LCD
; 2. Output is set to top LCD line
; 3. Characters stored in EEPROM are displayed
; until 0x0d code is detected
isEnter:

call clearLCD
; Clear character counter and line counter variables

clrf LCDcount
clrf LCDline

; Read data from EEPROM memory, starting at address 0
; and display on LCD until 0x0d terminator

call line1
clrf EEMemAdd ; Start at EEPROM 0

readOne:
call ReadI2C ; Get character

; Store character
movwf EEByte ; Save character

; Test for terminator
sublw 0x0d
btfsc STATUS,Z ; Test if 0x0d
goto atEnd ; Go if 0x0d

; At this point character read is not 0x0d
; Display on LCD

movf EEByte,w ; Recover character

Data EEPROM Programming 527

; Display character on LCD
call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line
incf EEMemAdd,f ; Next EEPROM byte
goto readOne

; End of execution
atEnd:

goto atEnd

;==
;==
; L O C A L P R O C E D U R E S
;==
;==
;==========================
; init LCD for 4-bit mode
;==========================
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125 microseconds
movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION

SET)
call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8
movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
call send8
movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
call send8
movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY

SHIFT)
call send8
movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
call send8
call delay_5 ; Test for busy

528 Chapter 15

return

.;===========================
; procedure to clear LCD
;============================
clearLCD:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125 microseconds
movlw 0x01 ; 0 0 0 0 0 0 0 1
call send8
call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125:

movlw .105 ; Repeat 105 machine cycles
movwf count1 ; Store value in counter

repeat:
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw .105 ; Counter = 105 cycles
movwf count2 ; Store in variable

delay:
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ; Pulse E line
nop
bcf PORTE,E_line
return

Data EEPROM Programming 529

;=============================
; long delay sub-routine
;=============================
long_delay:

movlw D’200’ ; w delay count
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to Port-B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with Port-B

; Now w has merged byte
movwf PORTD ; w to Port-D
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTD
call pulseE ; Send data to LCD
call delay_125
return

;==========================
; merge bits
;==========================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of Port-B
; so as to preserve the 4 low-bits in Port-B
; Logic:
; AND value with 1111 0000 mask
; AND Port-B with 0000 1111 mask
; Now low nibble in value and high nibble in
; Port-B are all 0 bits:
; value = vvvv 0000

530 Chapter 15

; Port-B = 0000 bbbb
; OR value and Port-B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTD,w ; Port-B to w register
andlw b’00001111’ ; Clear high nibble in Port-b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;==========================
; Set address register
; to LCD line 2
;==========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, setup for

control
call delay_5 ; Busy?

; Set to second display line
movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTE,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

;==========================
; Set address register
; to LCD line 1
;==========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for

control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit

Data EEPROM Programming 531

call send8 ; 4-bit routine
; Set RS line for data

bsf PORTE,RS_line ; Setup for data
call delay_5 ; Busy?
return

;==========================
; scroll to LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then LCD is
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,Z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,Z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:

call initLCD ; Reset
clrf LCDcount ; Clear counters
clrf LCDline
call line1 ; Display to first line

scrollExit:
return

;=============================
; LCD display procedure
;=============================
; Sends 20 characters from PIC buffer with address stored
; in variable bufAdd to LCD line previously selected
display20:

call delay_5 ; Make sure not busy

532 Chapter 15

; Set up for data
bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 20 characters
movlw D’20’
movwf count3

; Get display address from local variable bufAdd
movf bufAdd,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 20 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;===============================
; first text string procedure
;===============================
storeMS1:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable bufAdd holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf bufAdd,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access

Data EEPROM Programming 533

movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in

variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
; Message has 10 characters
msg1:

addwf PCL,f ; Access table
retlw ‘R’
retlw ‘e’
retlw ‘c’
retlw ‘e’
retlw ‘i’
retlw ‘v’
retlw ‘i’
retlw ‘n’
retlw ‘g’
retlw ‘:’
retlw 0

;========================
; blank buffer
;========================
; Procedure to store 20 blank characters in PIC RAM
; buffer starting at address stored in the variable
; bufAdd
blank20:

movlw D’20’ ; Setup counter
movwf count1

534 Chapter 15

movf bufAdd,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit
movwf INDF ; Store blank character in PIC RAM

; buffer using FSR register
decfsz count1,f ; Done?
goto incfsr ; no
return ; yes

incfsr:
incf FSR,f ; Bump FSR to next buffer space
goto storeit

;==
; communications procedures
;==
; Initialize serial port for 2400 baud, 8 bits, no parity,
; 1 stop
InitSerial:

Bank1 ; Macro to select bank1
; Bits 6 and 7 of Port-C are multiplexed as TX/CK and RX/DT
; for USART operation. These bits must be set to input in the
; TRISC register

movlw b’11000000’ ; Bits for TX and RX
iorwf TRISC,f ; OR into TRISc register

; The asynchronous baud rate is calculated as follows:
; Fosc
; ABR = -------
; S*(x+1)
; where x is value in the SPBRG register and S is 64 if the high
; baud rate select bit (BRGH) in the TXSTA control register is
; clear, and 16 if the BRGH bit is set. For setting to 2400 baud
; using a 10Mhs oscillator at a slow baud rate the formula
; is:
; At slow speed (BRGH = 0)
; 10,000,000 10,000,000
; ---------- = ----------- = 2,403.84 (0.16% error)
; 64*(64+1) 4160
;

movlw spbrgVal ; Value in spbrgVal = 64
movwf SPBRG ; Place in baud rate generator

; Setup value: 0010 0000 = 0x20
movlw 0x20 ; Enable transmission and high

; baud rate
movwf TXSTA
Bank0 ; Bank 0

; Setup value: 1001 0000 = 0x90
movlw 0x90 ; Enable serial port and

Data EEPROM Programming 535

; continuous reception
movwf RCSTA

;
clrf errorFlags ; Clear local error flags register
return

;==============================
; transmit data
;==============================
; Test for Transmit Register Empty and transmit data in w
SerialSend:

Bank0 ; Select bank 0
btfss PIR1,TXIF ; check if transmitter busy
goto $-1 ; wait until transmitter is not busy
movwf TXREG ; and transmit the data
return

;==============================
; receive data
;==============================
; Procedure to test line for data received and return value
; in w. Overrun and framing errors are detected and
; remembered in the variable errorFlags, as follows:
; 7 6 5 4 3 2 1 0 <== errorFlags
; — not used —— | |___ overrun error
; |______ framing error
SerialRcv:

clrf newData ; Clear new data received register
Bank0 ; Select bank 0

; Bit 5 (RCIF) of the PIR1 Register is clear if the USART
; receive buffer is empty. If so, no data has been received

btfss PIR1,RCIF ; Check for received data
return ; Exit if no data

; At this point data has been received. First eliminate
; possible errors: overrun and framing.
; Bit 1 (OERR) of the RCSTA register detects overrun
; Bit 2 (FERR(of the RCSTA register detects framing error

btfsc RCSTA,OERR ; Test for overrun error
goto OverErr ; Error handler
btfsc RCSTA,FERR ; Test for framing error
goto FrameErr ; Error handler

; At this point no error was detected
; Received data is in the USART RCREG register

movf RCREG,w ; get received data
bsf newData,7 ; Set bit 7 to indicate new

data
; Clear error flags

clrf errorFlags
return

536 Chapter 15

;==========================
; error handlers
;==========================
OverErr:

bsf errorFlags,0 ; Bit 0 is overrun error
; Reset system

bcf RCSTA,CREN ; Clear continuous receive bit
bsf RCSTA,CREN ; Set to re-enable reception
return

;error because FERR framing error bit is set
;can do special error handling here - this code simply clears
; and continues
FrameErr:

bsf errorFlags,1 ; Bit 1 is framing error
movf RCREG,W ; Read and throw away bad data
return

;==
; I2C EEPROM data procedures
;==
; GPRs used in EEPROM-related code are placed in the common
; RAM area (from 0x70 to 0x7f). This makes the registers
; accessible from any bank.
;============================
; LIST OF PROCEDURES
;============================
; SetupI2C —- Initialize MSSP module for I2C mode
; in hardware master mode
; Configure I2C lines
; Set slew rate for 100kbps
; Set baud rate for 10Mhz
; WriteI2C —- Write byte to I2C EEPROM device
; Data is stored in EEByte variable
; Address is stored in EEMemAdd
; ReadI2C —- Read byte from I2C EEPROM device
; Address stored in EEMemAdd
; Read data returned in w register
;============================
; I2C setup procedure
;============================
SetupI2C:

Bank1
movlw b’00011000’
iorwf TRISC,f ; OR into TRISC

; Setup MSSP module for Master Mode operation
Bank0
movlw B’00101000’; Enables MSSP and uses appropriate

; 0 0 1 0 1 0 0 0 Value to install
; 7 6 5 4 3 2 1 0 <== SSPCON bits in this operation

Data EEPROM Programming 537

; | | | | |__|__|__|___ Serial port select bits
; | | | | 1000 = I2C master mode
; | | | | Clock = Fosc/(4*(SSPAD+1))
; | | | |_______________ UNUSED IN MASTER MODE
; | | |__________________ SSP Enable
; | | 1 = SDA and SCL pins as serial
; | |_____________________ Receive 0verflow indicator
; | 0 = no overflow
; |________________________ Write collision detect
; 0 = no collision detected

movwf SSPCON ; This is loaded into SSPCON
; Input levels and slew rate as standard I2C

Bank1
movlw B’10000000’

; 1 0 0 0 0 0 0 0 Value to install
; 7 6 5 4 3 2 1 0 <== SSPSTAT bits in this operation
; | | | | | | | |___ Buffer full status bit READ ONLY
; | | | | | | |______ UNUSED in present application
; | | | | | |_________ Read/write information READ ONLY
; | | | | |____________ UNUSED IN MASTER MODE
; | | | |_______________ STOP bit READ ONLY
; | | |__________________ Data address READ ONLY
; | |_____________________ SMP bus select
; | 0 = use normal I2C specs
; |________________________ Slew rate control
; 0 = disabled

movwf SSPSTAT
; Setup Baud Rate
; Baud Rate = Fosc/(4*(SSPADD+1))
; Fosc = 10Mhz
; Baud Rate = 24 for 100 kbps

movlw .24 ; Value to use
movwf SSPADD ; Store in SSPADD
Bank0
return

;============================
; I2C write procedure
;============================
; Write one byte to I2C EEPROM 24LC04B
; Steps:
; 1. Send START
; 2. Send control. Wait for ACK
; 3. Send address. Wait for ACK
; 4. Send data. Wait for ACK
; 5. Send STOP
; STEP 1:
WriteI2C:

538 Chapter 15

Bank1
bsf SSPCON2,SEN ; Produce START Condition
call WaitI2C ; Wait for I2C to complete

; STEP 2:
; Send control byte. Wait for ACK

movlw LC04READ ; Control byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C to complete
btfsc SSPCON2,ACKSTAT ; Check ACK bit to see if

; I2C failed, skip if not
goto FailI2C

; STEP 3:
; Send address. Wait for ACK

Bank0
movf EEMemAdd,w ; Load Address Byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation to complete
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see

; If I2C failed, skip if not
goto FailI2C

; STEP 4:
; Send data. Wait for ACK

Bank0
movf EEByte,w ; Load Data Byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation to complete
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see

; if I2C failed, skip if not
goto FailI2C

; STEP 5:
; Send STOP. Wait for ACK

bsf SSPCON2,PEN ; Send STOP condition
call WaitI2C ; Wait for I2C operation to complete

; WRITE operation has completed successfully.
Bank0
return

;============================
; I2C read procedure
;============================
; Procedure to read one byte from 24LC04B EEPROM
; Steps:
; 1. Send START
; 2. Send control. Wait for ACK
; 3. Send address. Wait for ACK
; 4. Send RESTART + control. Wait for ACK

Data EEPROM Programming 539

; 5. Switch to receive mode. Get data.
; 6. Send NACK
; 7. Send STOP
; 8. Retrieve data into w register
; STEP 1:
ReadI2C
; Send RESTART. Wait for ACK

Bank1
bsf SSPCON2,RSEN ; RESTART Condition
call WaitI2C ; Wait for I2C operation

; STEP 2:
; Send control byte. Wait for ACK

movlw LC04READ ; Control byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation

; Now check to see if I2C EEPROM is ready
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto ReadI2C ; ACK Poll waiting for EEPROM

; write to complete
; STEP 3:
; Send address. Wait for ACK

Bank0
movf EEMemAdd,w ; Load from address register
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto FailI2C ; failed, skipped if successful

; STEP 4:
; Send RESTART. Wait for ACK

bsf SSPCON2,RSEN ; Generate RESTART Condition
call WaitI2C ; Wait for I2C operation

; Send output control. Wait for ACK
movlw LC04WRITE ; Load CONTROL BYTE (output)
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto FailI2C ; failed, skipped if successful

; STEP 5:
; Switch MSSP to I2C Receive mode

bsf SSPCON2,RCEN ; Enable Receive Mode (I2C)
; Get the data. Wait for ACK

call WaitI2C ; Wait for I2C operation
; STEP 6:
; Send NACK to acknowledge

Bank1

540 Chapter 15

bsf SSPCON2,ACKDT ; ACK DATA to send is 1 (NACK)
bsf SSPCON2,ACKEN ; Send ACK DATA now.

; Once ACK or NACK is sent, ACKEN is automatically cleared
; STEP 7:
; Send STOP. Wait for ACK

bsf SSPCON2,PEN ; Send STOP condition
call WaitI2C ; Wait for I2C operation

; STEP 8:
; Read operation has finished

Bank0
movf SSPBUF,W ; Get data from SSPBUF into W

; Procedure has finished and completed successfully.
return

;============================
; I2C support procedures
;============================
; I2C Operation failed code sequence
; Procedure hangs up. User should provide error handling.
FailI2C

Bank1
bsf SSPCON2,PEN ; Send STOP condition
call WaitI2C ; Wait for I2C operation

fail:
goto fail

; Procedure to transmit one byte
Send1I2C

Bank0
movwf SSPBUF ; Value to send to SSPBUF
return

; Procedure to wait for the last I2C operation to complete.
; Code polls the SSPIF flag in PIR1.
WaitI2C

Bank0
btfss PIR1,SSPIF ; Check if I2C operation done
goto $-1 ; I2C module is not ready yet
bcf PIR1,SSPIF ; I2C ready, clear flag
return

;==
end ; END OF PROGRAM

;==

Data EEPROM Programming 541

Chapter 16

Analog to Digital and Realtime Clocks

Digits are a human invention; nature does not count or measure using numbers. We mea-
sure natural forces and phenomena using digital representations, but the forces and phe-
nomena themselves are continuous. Time, pressure, voltage, current, temperature,
humidity, gravitational attraction, all exist as continuous entities which we measure in
volts, pounds, hours, amperes, or degrees, so as to better understand them and to be able
to perform numerical calculations.

In this sense, natural phenomena occur in analog quantities. Sometimes they are dig-
itized so as to facilitate measurements and manipulations. For example, a potentiome-
ter in an electrical circuit allows reducing the voltage level from the circuit maximum
to ground, or zero level. In order to measure and control the action of the potentiome-
ter, we need to quantify its action by producing a digital value within the physical range
of the circuit; that is, we need to convert an analog quantity that varies continuously
between 0 and 5 volts, to a discrete digital value range. If, in this case, the voltage
range of the potentiometer is from 5 to 0 volts, we can digitize its action into a numeric
range of 0 to 500 units, or measure the angle or rotation of the potentiometer disk in de-
grees from 0 to 180. The device that performs either conversion is called an A/D or ana-

log-to-digital converter. The reverse process, digital-to-analog, is also necessary,
although not as often as A/D. In this chapter we explore A/D conversions in PIC soft-
ware and hardware.

The second topic of this chapter is the measurement of time in discrete (albeit, digi-
tal) units. In this context we speak of “realtime” as years, days, hours, minutes, and so
on. So a realtime clock measures time in hours, minutes, and seconds, and a realtime
calendar measures it in years, months, weeks, and days. Since time is a continuum that
escapes our comprehension, we must divide it into measurable chunks that can be ma-
nipulated and calculated. However, not all time units are in proportional relation with
one another. There are 60 seconds in a minute and 60 minutes in an hour, but 24 hours
in a day and 28, 29, 30, or 31 days in a month. Furthermore, the months and the days of
the week have traditional names. Finally, the Gregorian calendar requires adding a
29th day to February on any year that is evenly divisible by 4. The device or software to
perform all of these time calculations is referred to as a realtime clock. In this chap-
ter we discuss the use of realtime clocks in PIC circuits.

543

Figure 16-1 A/D Converter Block Diagram

16.0 A/D Converters
In electronics, the typical A/D or ADC converter is a device that takes a voltage input
and returns a binary digital number. Figure 16-1 is a block diagram of an A/D converter.

The electronic A/C converter requires an input in the form of an electrical volt-
age. Non-electric quantities must be changed into a voltage level before the conver-
sion can be performed. The device that performs this conversion is called a trans-

ducer. For example, a digital barometer must be equipped with a transducer that
converts the measurement into voltage levels. The voltage levels can then be fed
into an A/D converter and the result output in digital form.

16.0.1 Converter Resolution

An ideal A/D converter outputs into an infinite number of discrete steps that exactly
represent the analog quantity. Needless to say, such a device cannot exist, and a real
A/D converter must be limited to a numeric range. For example, the device in Figure
16-1 outputs a voltage range of 0 to +5 volts in four binary digits that represent values
between 0 and 15. Another A/D converter may produce output in eight binary digits,
and another in sixteen binary digits. The number of discrete values in the conversion is
called the resolution. The converter’s resolution is usually expressed in bits. Figure
16-2 represents an A/C converter with a voltage range of 0 to +5 volts and a resolution
of three bits.

Suppose that a value of 2.5 volts were input into the A/D converter in Figure 16-2.
Since the output has a resolution in the range 0 to 7, the converter’s output would be
either 4 or 5. The non-linear characteristic of the output determines a quantization

error that increases as the converter resolution decreases. Converters used in PIC
circuits have a resolution of either 8, 10, or 12 bits. In each case the output range, or
quantization level, is 0 to 255, 0 to 1023, or 0 to 4095. The voltage resolution of the
converter is its maximum voltage range divided by the number of quantization lev-
els. A device with a voltage range of 5 volts and a range of 255 levels has a voltage
resolution of:

544 Chapter 16

+5V

A/D
Converter

3 2 1 0 <= bits

Binary

output

Analog

input

16.0.2 ADC Implementation

The analog-to-digital converter performs accurately only if the input voltage is within
the converter’s valid range. This range is usually selected by setting high and low volt-
age references on converter pins. For example, if +4 volts is input into the converter’s
positive reference pin and +2 volts into the negative reference pin, then the con-
verter’s voltage range lies between these values. In many PIC applications the con-
verter range is selected as the system’s supply voltage and ground, that is, +5 and 0
volts. When a different range is externally referenced, there is a general restriction
that the range cannot exceed the system’s positive and negative limits (Vdd and Vss).
Also, a minimum difference is required between the high and low voltage references.

The output of the ADC is a digital representation of the original analog signal. In
this context, the term quantization refers to subdividing a range into small but mea-
surable increments. The quantization process can introduce a quantization error,
which is similar to a rounding error.

The time required for the holding capacitor on the ADC to charge is called the ac-

quisition time. The holding capacitor on the ADC must be given sufficient time to
settle to the analog input voltage level before the actual conversion is initiated. Oth-
erwise, the conversion is not accurate. The acquisition time is determined by the im-
pedance of the internal multiplexer and that of the analog source. The exact
acquisition time can be determined from the device’s data sheet, although 10K ohms
is the maximum recommended source impedance for 8- and 10-bit converters and
2.5K ohms for 12-bit converters.

Analog to Digital and Realtime Clocks 545

Figure 16-2 Converter Quantization Error

1 2 3 4 5 6 7

Binary output

+5

2.5

V

o

l

t

s

0

voltage resolution volts mV= = =5

255
0 01960 19 60. .

Most analog-to-digital converters in PIC applications, either internal or external,
are of the successive approximation type. The successive approximation algorithm

performs a conversion on one bit at a time, beginning with the most significant bit
and ending with the least significant bit. To determine each bit in the range, the
value of the input signal is tested to see if it is in the upper or lower portion of this
range. If in the upper portion, the conversion bit is a 1, otherwise it is a 0. The next
most significant bit is then tested in the lower half of the remaining range. The pro-
cess is continued until the least-significant bit has been determined.

16.1 A/D Integrated Circuits
Several popular integrated circuits are used to perform as A/D converters, among

them the ADC0831, the LTC1298, and the MAX 190 and MAX 191. The variations con-
sist in the resolution and interfacing of the different ICs. Of these, the ADC0831,
from National Semiconductor, is an 8-bit resolution, serial interface A/D quite suited
to applications for small, mid-range PICs such as the 16F84. The input range of the
0831 is 0 to 5 volts, which matches the TTL voltage levels used in PIC circuits. The
0831 pin diagram is shown in Figure 16-3.

Figure 16-3 ADC0831 Pin Diagram

The ADC0831 uses three control lines, labeled DO (data out), CLK (clock), and
_CS (chip select) in Figure 16-3. Interfacing the ADC0831 requires three I/O lines. Of
these, two can be multiplexed with other functions or with other ADC0831. Actually,
only the chip-select (CS) pin requires a dedicated line. This allows for several ADCs
to be multiplexed on the CLK and DO lines as long as each one has its own CS con-
nection to the microcontroller. In this case, the controller determines which device
is being read by the port to which CS line is connected.

The input voltage range of the ADC0831 is determined by the Vref (positive volt-

age reference line) and Vin- (negative voltage reference line) pins. Vref is used to set
the maximum level and Vin- the minimum. Since the ADC0831 has an 8-bit range, the
voltage reading that matches the Vref value is read as 255 and the one that matches
the Vin- value is read as 0. The minimum difference between the voltage limits is of 1
volt.

546 Chapter 16

ADC0831
6

7

81

5

2

3

4

_CS

Vin+

Vin-

GND

Vcc

CLK

DO

Vref

ADC0831 PINOUT

_CS - Chip Select (active low)

Vin+ - Analog voltage input +

Vin- - Analog voltage input -

GND - Ground

Vref - Voltage reference

DO - Data out

CLK - Clock signal

Vcc - +5V power

Figure 16-4 ADC0831 Demonstration Circuit

16.1.1 ADC0331 Sample Circuit and Program

A simple circuit to illustrate the action of an analog-to-digital converter consists of
connecting a potentiometer with the positive voltage reference line, as shown in Fig-
ure 16-4. In the circuit the potentiometer was selected so as to produce a voltage range
between 0 and +5 volts. Vref was wired to the circuit’s +5 V source and Vin- was wired
to ground. The potentiometer variable line was connected to the ADC0831 Vin+ line
and the other ADC lines to the corresponding 16F84 Port-B pins.

The sample program is named ADF84, and can be found in the book’s online soft-
ware. The ADF84 program uses the ADC0831 to convert the analog voltage from the
potentiometer, in the range +5 to 0 volts, into a digital value in the range 0 to 255.
The value read is then displayed on the LCD. The initialization routine defines

Analog to Digital and Realtime Clocks 547

+5V
R

=
1

0
K

RESET

HD44780

LCD
2 rows x 16

+5V

E

R/W

RS

RS

R/W

E

1

14

16F84

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Osc
4Mhz

+5V

ADC0831

+5v

+5v

1

2

3

4

8

7

6

5

Vcc

CLK

DO

Vref

_CS

Vin+

Vin-

GND

+5v

Pot 1 5K

Port-B, line 0 as input since this is the one connected to the DO line. The remaining
lines in ports A and B are defined as output. ADC0831 processing consists of a single
procedure that reads the analog line and returns an 8-bit digital value. The process-
ing required is performed in the following steps:

1. The data return register (named rcvdata) is cleared and the bit counter register is ini-
tialized to count 8 bits.

2. The ADC0831 is prepared by bringing the CS line low and pulsing the CLK line.

3. The CLK line is pulsed and one bit is read from the low-order bit (DO line) of Port-B.

4. The bit is shifted into the data return register and the bit counter is decremented.

5. If the bit counter is exhausted, execution ends and the ADC is turned off. Otherwise
processing continues at step 3.

The following procedure, from the ADF84 program, reads digital data from the
ADC0831:

;============================
; procedure to read and
; convert analog line
;============================
; ON ENTRY:
; Code assumes that the ADC0831 DO line is initialized for
; input, while CLK and CS lines are output
; From ADC0831 wiring diagram. All lines in Port-B
; DO = RB0 ==> INPUT
; CLK = RB1 <== OUTPUT
; CS = RB2 <== OUTPUT
; ON EXIT:
; Returns 8-bit digital value in the register rcvdata
;
ana2dig:
; Clear data register and init counter for 8 bits

clrf rcvdata ; Clear register
movlw 0x08 ; Initialize counter
movwf bitCount

; Prepare to read analog line
bcf PORTB,CS ; CS pin low to enable ADC
nop ; Delay for 4MHz clock
bsf PORTB,CLK ; Set CLK high
Nop
bcf PORTB,CLK ; Reset CLK to start conversion
nop

nextB:
; Pulse CLK line to read bit from ADC

bsf PORTB,CLK ; CLK high
nop bcf PORTB,CLK ; CLK low
Nop

; Read analog line and store data, bit by bit

548 Chapter 16

movf PORTB,w ; Read all Port-B bits
movwf store1 ; Store value for later
rrf store1,f ; Rotate bit into carry flag
rlf rcvdata,f ; Rotate carry flag into result

; register
decfsz bitCount,f ; Bump counter, skip next

; if counter zero
goto nextB

; Value read is stored in rcvdata register
bsf PORTB,CLK ; Final clock pulse
Nop
bcf PORTB,CLK
nop
bsf PORTB,CS ; Turn off ADC
call long_delay ; Time to settle
Return

16.2 PIC On-Board A/D Hardware
A few years ago, A/D conversions always required the use of devices such as the ones
described in the previous sections. Nowadays, many PIC microcontrollers come with
onboard A/D hardware. One of the advantages of using onboard A/D converters is sav-
ing interface lines. The circuit shown in Figure16-4 requires devoting three lines to the
interface between the ADC0831 and the PIC 16F84. On the other hand, a similar circuit
can be implemented in a PIC with internal A/C conversion by simply connecting the
analog device to the corresponding PIC port. In the PIC world, where I/O lines are of-
ten in short supply, this advantage is not insignificant.

At the time we are writing, PICs equipped with A/D converters have either 8- or
10-bit resolution and can receive analog input in 2 to 16 different channels. The
16F877 with eight analog input channels at a 10-bit resolution is discussed. Nowa-
days, these PICs are easy to obtain. On the other hand, if the resolution required ex-
ceeds 10-bits then the designer has to resort to an independent A/D IC, such as the
LTC1298, which has a 12-bit resolution, or to others with even higher numbers of
output bits.

16.2.1 A/D Module on the 16F87x
The PICs of the 16F87x family are equipped with an analog-to-digital converter mod-
ule. The number of lines depends on the specific version of the device: 28-pin devices
have five A/D lines and all others have eight lines. The converter uses a sample and

hold capacitor to store the analog charge and performs a successive approximation al-
gorithm to produce the digital result. The converter resolution is 10 bits, which are
stored in two 8-bit registers. One of the registers has only four significant bits.

The A/D module has high- and low-voltage reference inputs that are selected by
software. The module can operate while the processor is in SLEEP mode, but only if
the A/D clock pulse is derived from its internal RC oscillator. The module contains
four registers accessible to the application:

Analog to Digital and Realtime Clocks 549

• ADRESH - Result High Register

• ADRESL - Result Low Register

• ADCON0 - Control Register 0

• ADCON1 - Control Register 1

Of these, it is the ADCON0 register that controls most of the operations of the A/C
module. Port-A pins RA0 to RA5 and Port-E pins RE0 to RE2 are multiplexed as ana-
log input pins into the A/C module. In the 28-pin versions of the 16F87x, port pins
RA0 to RA5 provide the five input channels. In all other implementations of the
16F87X, Port-E pins RE0 to RE2 provide the three additional channels.

Figure 16-5 shows the registers associated with A/D module operations.

Figure 16-5 Registers Related to A/C Module Operations

The ADCON0 Register

The ADCON0 register is located in bank 0, at address 0x1f. Seven of the eight bits are
meaningful in A/D control and status operations. Figure 16-6 is a bitmap of the
ADCON0 register.

In Figure 16-6, bits 7 and 6, labeled ADSC1 and ADSC0, are the selection bits for
the A/D conversion clock. The conversion time per bit is defined as TAD in PIC docu-
mentation. A/D conversion requires a minimum of 12 TAD in a 10-bit ADC. The
source of the A/D conversion clock is software selected. The four possible options
for TAD are:

1. Fosc/2

2. Fosc/8

3. Fosc/32

4. Internal A/D module RC oscillator (varies between 2 and 6 µs)

550 Chapter 16

ADSC1 ADSC0 CHS2 CHS1 CHS0 GO/DONE ADON

ADFM PCFG3 PCFG2 PCFG1 PCFG0

ADCON0

ADCON1

PIR1

ADRESH

PIE1

ADRESL

INTCON

ADIF

A/D Result Register High Byte

A/D Result Register Low Byte

ADIE

GIE PEIE

7 6 5 4 3 2 1 0 bits

REGISTER
NAME

The conversion time is the analog-to-digital clock period multiplied by the num-
ber of bits of resolution in the converter, plus the two to three additional clock peri-
ods for settling time, as specified in the data sheet of the specific device. The
various sources for the analog-to-digital converter clock represent the main oscilla-
tor frequency divided by 2, 8, or 32. The third choice is the use of a dedicated inter-
nal RC clock that has a typical period of 2 to 6 µs. Since the conversion time is
determined by the system clock, a faster clock results in a faster conversion time.

The A/D conversion clock must be selected to ensure a minimum Tad time of 1.6
µs. The formula for converting processor speed (in MHz) into Tad microseconds is
as follows:

Analog to Digital and Realtime Clocks 551

ADSC1 ADSC0 CHS2 CHS1 CHS0 GO/DONE ADON

7 6 5 4 3 2 1 0bits:

bit 7-6 A/D Conversion Clock Select bits

00 = FOSC/2

01 = FOSC/8

10 = FOSC/32

11 = FRC (internal A/D module RC oscillator)

bit 5-3 Analog Channel Select bits

000 = channel 0, (RA0=AN0)

001 = channel 1, (RA1=AN1)

010 = channel 2, (RA2=AN2)

011 = channel 3, (RA3=AN3)

100 = channel 4, (RA5=AN4)

101 = channel 5, (RE0=AN5) | not active

110 = channel 6, (RE1=AN6) | in 28-pin

111 = channel 7, (RE2=AN7) | 16F87x PICS

bit 2 A/D Conversion Status bit

If ADON = 1:

1 = A/D conversion in progress (setting this

bit starts the A/D conversion)

0 = A/D conversion not in progress (this bit

is automatically cleared by hardware when

the A/D conversion is complete)

bit 1 Unimplemented: Read as '0'

bit 0 A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and

consumes no power

ADCS1:ADCS0:

CHS2:CHS0:

GO/DONE:

ADON:

Figure 16-6 ADCON0 Register Bitmap

Tad Tosc

Tdiv

= 1

Where Tad is A/D conversion time, Tosc is the oscillator clock frequency in MHz,
and Tdiv is the divisor determined by bits ADSC1 and ADSC0 of the ADCON0 regis-
ter. For example, in a PIC running at 10MHz if we select the Tosc/8 option (divisor
equal 8) the A/D conversion time per bit is calculated as follows:

In this case, the minimum recommended conversion speed of 1.6 µs is achieved.
However, in a PIC with an oscillator speed of 10MHz, this option produces a conver-
sion speed of 0.8 µs, less than the recommended minimum. In this case we would
have to select the divisor 32 option, giving a conversion speed of 3.2 µs.

Table 16.1

A/C Converter Tad at Various Oscillator Speeds

TAD IN MICROSECONDS
OPERATION ADCS1:ADCS0 20MHZ 10MHZ 5MHZ 1.25MHZ

Fosc/2 00 0.1 0.2 0.4 1.6
Fosc/8 01 0.4 0.8 1.6 6.4
Fosc/32 10 1.6 3.2 6.4 25.6
RC 11 2-6 2-6 2-6 2-6

Note: values in bold are within the recommended limits

In Table 16.1, converter speeds of less than 1.6 µs or higher than 10 µs are not rec-
ommended. Recall that the Tad speed of the converter is calculated per bit, so the
total conversion time in a 10-bit device (such as the 16F87x) is approximately the
Tad speed multiplied by 10 bits, plus 3 additional cycles. Therefore, a device operat-
ing at a Tad speed of 1.6 µs requires 1.6 µs * 13, or 20.8 µs for the entire conversion.

Bits CHS2 to CHS0 in the ADCON0 register (see Figure 16-6) determine which of
the analog channels is selected. This is required, since there are several channels for
analog input but only one A/2 converter circuitry. So the setting of this bit field de-
termines which of six or eight possible channels is currently read by the A/C con-
verter. An application can change the setting of these bits in order to read several
analog inputs in succession.

Bit 2 of the ADCON0 register, labeled GO/DONE, is both a control and a status bit.
Setting the GO/DONE bit starts A/D conversion. Once conversion has started, the bit
indicates if it is still in progress. Code can test the status of the GO/DONE bit in or-
der to determine if conversion has concluded.

Bit 0 of the ADCON0 register turns the A/D module on and off. The initialization
routine of an A/D-enabled application turns on this bit. Programs that do not use the
A/D conversion module leave the bit off to conserve power.

The ADCON1 Register
The ADCON1 register also plays an important role in programming the A/D module.
Bit 7 of the ADCON1 register is used to determine the bit justification of the digital re-

552 Chapter 16

Tad
Mhz

= =1
5

8

1 6.

sult. This is possible because the 10-bit result is returned in two 8-bit registers; there-
fore, the six unused bits can be placed either on the left- or the right-hand side of the
16-bit result. If ADCON1 bit 7 is set then the result is right-justified; otherwise it is
left-justified. Figure 16-7 shows the location of the significant bits.

Figure 16-7 Left- and Right-justification of A/D Result

One common use of right justification is to reduce the number of significant bits
in the conversion result. For example, an application on the 16F877 that uses the
A/D conversion module requires only 8-bit accuracy in the result. In this case, code
can left-justify the conversion result, read the ADRESH register, and ignore the
low-order bits in the ADRESL register. By ignoring the two low-order bits, the 10-bit
accuracy of the A/D hardware is reduced to eight bits and the converter performs as
an 8-bit accuracy unit.

The bit field labeled PCFG3 to PCFG0 in the ADCON1 register determines port
configuration as analog or digital and the mapping of the positive and negative volt-
age reference pins. The number of possible combinations is limited by the four bits
allocated to this field, so the programmer and circuit designer must select the op-
tion that is most suited to the application when the ideal one is not available. Table
16.2 (in the following page) shows the port configuration options.

For example, there is a circuit that calls for two analog inputs, wired to ports RA0
and RA1, with no reference voltages. In Table 16.2 we can find two options that se-
lect ports RA0 and RA1 and are analog inputs: these are the ones selected with
PCFG bits 0100 and 0101. The first option also selects port RA3 as analog input, even
though not required in this case. The second one also selects port RA3 as a positive
voltage reference, also not required.

Either option works in this case; however, any pin configured for analog input
produces incorrect results if used as a digital source. Therefore, a channel config-
ured for analog input cannot be used for non-analog purposes. On the other hand, a

Analog to Digital and Realtime Clocks 553

V V V V V V V V

0 0 0 0 0 0 V V

V V 0 0 0 0 0 0

V V V V V V V V

ADRESH

ADRESH

Left-justified (ADFM bit = 0)

Right-justified (ADFM bit = 1)

Legend:

V = valid digit

0 = digit always cleared

ADRESL

ADRESL

channel configured for digital input should not be used for analog data since extra
current is consumed by the hardware. Finally, channels to be used for analog-to-dig-
ital conversion must be configured for input in the corresponding TRIS register.

SLEEP Mode Operation

The A/D module can be made to operate in SLEEP mode. As mentioned previously,
SLEEP mode operation requires that the A/D clock source be set to RC by setting both
ADCS bits in the ADCON0 register. When the RC clock source is selected, the A/D mod-
ule waits one instruction cycle before starting the conversion. During this period, the
SLEEP instruction is executed, thus eliminating all digital switching noise from the
conversion. The completion of the conversion is detected by testing the GO/DONE bit.
If a different clock source is selected, then a SLEEP instruction causes the conver-
sion-in-progress to be aborted and the A/D module to be turned off.

16.2.2 A/D Module Sample Circuit and Program

The circuit in Figure 16-8 is designed to demonstrate the use of the A/D converter mod-
ule in PICs of the 16F87x family.

554 Chapter 16

Table 16.2

A/D Converter Port Configuration Options

PCFG3: An7 An6 An5 An4 An3 An2 An1 An0 CHAN/

PCFG0 Re2 Re1 Re0 Ra5 Ra3 Ra2 Ra1 Ra0 Vref+ Vref- Refs

0000 A A A A A A A A VDD VSS 8/0

0001 A A A A Vre+ A A A RA3 VSS 7/1

0010 D D D A A A A A VDD VSS 5/0

0011 D D D A Vre+ A A A RA3 VSS 4/1

0100 D D D D A D A A VDD VSS 3/0

0101 D D D D Vre+ D A A RA3 VSS 2/1

011x D D D D D D D D VDD VSS 0/0

1000 A A A A Vre+ Vre- A A RA3 RA2 6/2

1001 D D A A A A A A VDD VSS 6/0

1010 D D A A Vre+ A A A RA3 VSS 5/1

1011 D D A A Vre+ Vre- A A RA3 RA2 4/2

1100 D D D A Vre+ Vre- A A RA3 RA2 3/2

1101 D D D D Vre+ Vre- A A RA3 RA2 2/2

1110 D D D D D D D A VDD VSS 1/0

1111 D D D D Vre+ Vre- D A RA3 RA2 1/2

Legend:

D = digital input

A = analog input

CHAN/Refs = analog channels/voltage reference inputs

Figure 16-8 Demonstration Circuit for A/D Conversion Module

Comparing Figure 16-8 with Figure 16-4, which uses the ADC0831 IC, we notice
the economy of resources that results from selecting a PIC with an onboard A/D
module. In the circuit of Figure 16-4 three microcontroller I/O ports must be used to
connect the converter IC to the PIC. In the circuit of Figure 16-8, the potentiometer
is connected directly to a single PIC port, saving two I/O lines. Considering the num-
ber of different PIC architectures that are equipped with onboard A/D converters,
the circuit designer should explore this possibility before deciding on using a sepa-
rate converter IC. At the same time, recall that two of the three input lines used by
converter ICs can be shared. In a design with more than one converter IC the use of
input lines is not a 3 to 1 ratio.

The circuit in Figure 16-8 consists of a 5K potentiometer wired to analog port RA0
of a 16F877 PIC. The LCD display is used to show three digits, in the range 0 to 255,

Analog to Digital and Realtime Clocks 555

16F877

+5v

+5v

Pot 1 5K

R
=

1
0

K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RB7/PGD

RG6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

!MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2.VREF-

RA3/AN3/VREF+

RA4/TOCKI

RA5/AN4/SS

RE0/!RD/AN5

RE1/!WR/AN6

RE2/!CS/AN7

VDD

VSS

OSC1/CLKIN

OS2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

RESET

+5v

HD44780

LCD
2 rows x 20

10 MHz
Osc

+5 V

E

R/W

RS

1

14

that represent the relative position of the potentiometer’s disk. The program named
A2DinLCD, in the book’s online software, uses the built-in A/D module.

Programming the A/D module consists of the following steps:

1. Configure the PIC I/O lines to be used in the conversion. All analog lines are initialized
as input in the corresponding TRIS registers.

2. Select the ports to be used in the conversion by setting the PCFGx bits in the ADCON1
register. Selects right- or left-justification.

3. Select the analog channels, select the A/D conversion clock, and enable the A/D mod-
ule.

4. Wait the acquisition time.

5. Initiate the conversion by setting the GO/DONE bit in the ADCON0 register.

6. Wait for the conversion to complete.

7. Read and store the digital result.

The following procedure from the A2DinLCD program initialized the A/D module
for the required processing:

;============================
; init A/D module
;============================
; 1. Procedure to initialize the A/D module, as follows:
; Configure the PIC I/O lines. Init analog lines as input
; 2. Select ports to be used by setting the PCFGx bits in the
; ADCON1 register. Selects right- or left-justification.
; 3. Select the analog channels, select the A/D conversion
; clock, and enable the A/D module.
; 4. Wait the acquisition time.
; 5. Initiate the conversion by setting the GO/DONE bit in the
; ADCON0 register.
; 6. Wait for the conversion to complete.
; 7. Read and store the digital result.
InitA2D:

Bank1 ; Select bank for TRISA register
movlw b’00000001’
movwf TRISA ; Set Port-A, line 0, as input

; Select the format and A/D port configuration bits in
; the ADCON1 register
; Format is left-justified so that ADRESH bits are the
; most significant
; 0 x x x 1 1 1 0 <== value installed in ADCON1
; 7 6 5 4 3 2 1 0 <== ADCON1 bits
; | |__|__|__|____ RA0 is analog.
; | Vref+ = Vdd
; | Vref- = Vss
; |_________________________ 0 = left-justified
; ADCON1 is in bank 1

556 Chapter 16

movlw b’00001110’
movwf ADCON1 ; RA0 is analog. All others digital

; Vref+ = Vdd
; Select D/A options in ADCON0 register
; For a 10Mhz clock the Fosc32 option produces a conversion
; speed of 1/(10/32) = 3.2 microseconds, which is within the
; recommended range of 1.6 to 10 microseconds.
; 1 0 0 0 0 0 0 1 <== value installed in ADCON0
; 7 6 5 4 3 2 1 0 <== ADCON0 bits
; | | | | | | |____ A/D function select
; | | | | | | 1 = A/D ON
; | | | | | |__________ A/D status bit
; | | |__|__|_____________ Analog Channel Select
; | | 000 = Chanel 0 (RA0)
; |__|______________________ A/D Clock Select
; 10 = Fosc/32
; ADCON0 is in bank 0

Bank0
movlw b’10000001’
movwf ADCON0 ; Channel 0, Fosc/32, A/D enabled

; Delay for selection to complete
call delayAD ; Local procedure
return

Once the module is initialized, the analog line is read by the following procedure:

;============================
; read A/D line
;============================
; Procedure to read the value in the A/D line and convert
; to digital
ReadA2D:
; Initiate conversion

Bank0 ; Bank for ADCON0 register
bsf ADCON0,GO ; Set the GO/DONE bit

; GO/DONE bit is cleared automatically when conversion ends
convWait:

btfsc ADCON0,GO ; Test bit
goto convWait ; Wait if not clear

; At this point conversion has concluded
; ADRESH register (bank 0) holds 8 MSBs of result
; ADRESL register (bank 1) holds 4 LSBs.
; In this application value is left-justified. Only the
; MSBs are read

movf ADRESH,W ; Digital value to w register
return

Analog to Digital and Realtime Clocks 557

The delay routine required in this case is coded as follows:

;=======================

; delay procedure

;=======================

; For a 10Mhz clock the Fosc32 option produces a conversion

; speed of 1/(10/32) = 3.2 microseconds. At 3.2 ms per bit

; 13 bits require approximately 41 ms. The instruction time

; at 10Mhz is 10 ms. 4/10 = 0.4 ms per instruction. To delay

; 41 ms a 10Mhz PIC must execute 11 instructions. Add one

; more for safety.

delayAD:

movlw .12 ; Repeat 12 machine cycles

movwf count1 ; Store value in counter

repeat11:

decfsz count1,f ; Decrement counter

goto repeat11 ; Continue if not 0

return

16.3 Realtime Clocks
In the context of microcontrollers and embedded systems, realtime clocks (also
called RTCs) are integrated circuits designed to keep track of time in conventional
hours, that is, in years, days, hours, minutes, and seconds. Many realtime clock ICs are
available with various characteristics, data formats, modes of operation, and inter-
faces. Most of the ones used in PIC circuits have a serial interface in order to save ac-
cess ports. Most RTC chips provide a battery connection so that time can be kept when
the system is turned off.

In the sections that follow, we discuss one popular RTC chip: the NJU6355, but
this is by no means the only option for embedded systems.

16.3.1 The NJU6355 Realtime Clock

The NJU6355 series is a serial I/O realtime clock used in microcontroller-based em-
bedded systems. The IC includes its own quartz crystal oscillator, counter, shift regis-
ter, voltage regulator, and interface controller. The PIC interface requires four lines.
Operating voltage is TTL level so it can be wired directly on the typical PIC circuit. The
output data includes year, month, day-of-week, hour, minutes, and seconds. Figure
16-9 is the pin diagram for the NJU6355.

NJU6355 output is in packed BCD format, that is, each decimal digit is repre-
sented by a 4-bit binary number. The chip’s logic correctly calculates the number of
days in each month as well as the leap years. All unused bits are reported as binary
0. Figure 16-10 is a bitmap of the formatted timer data.

558 Chapter 16

Figure 16-9 NJU6355 Pin Diagram

Timer data is read when the I/O line is low and the CE line is high. Output from
the 6355 is LSB first. A total of 52 significant bits are read in bottom-up order for
data as shown in Figure 16-10. That is, the first bit received is the least-significant
bit of the year, then the month, then the day, and so forth. All date items are eight
bits, except the day of week which is four bits. Non-significant bits in each field are
reported as zero; this means that the value for the 10th month (October) is encoded
as binary digits 00001010. Reporting unused digits as zero simplifies the conversion
into BCD and ASCII.

Figure 16-10 NJU6355 Timer Data Format

Analog to Digital and Realtime Clocks 559

NJU6355
6

7

81

5

2

3

4

I/O

XT

_XT

GND

Vcc

DATA

CLK

CE

NJU6355 PINOUT

I/O - Input/Output select

XT - Quartz crystal input (f=32.768kHz)

_XT - Quartz crystal output

GND - Ground

CE - Input enable

CLK - Clock input

DATA - Serial timer input/output

Vcc - +5V power

seconds

year

minutes

hours

day

month

day of week

RANGE:

0 to 59

0 to 99

0 to 59

0 to 23

1 to 31

1 to 12

1 to 7

S6 S5 S4 S3 S2 S1 S0

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

M6 M5 M4 M3 M2 M1 M0

H5 H4 H3 H2 H1 H0

D5 D4 D3 D2 D1 D0

M4 M3 M2 M1 M0

W2 W1 W0

MSB LSB

The NJU6355 does not report valid time data until after it has been initialized,
even if there are power and clock signals into the chip. Initialization requires writing
data into the 6355 registers. In order to write to the IC, code must set the I/O and the
CE lines high. At this moment all clock updates stop and the RTC goes into the write
mode. Input data is latched in LSB first, starting with the year and concluding with
the minutes. There is no provision for writing seconds into the RTC, so the total
number of bits written is 44.

The 6355 contains a mechanism for detecting conditions that could compromise
the clock’s operation, such as low power. In this case, the special value 0xee is writ-
ten into each digit of the internal registers to inform processing routines that the
timer has been compromised.

The NJU6355 requires the installation of an external crystal oscillator. The crystal
must have a frequency of 32.768 kHz. The time-keeping accuracy of the RTC is deter-
mined by the quartz oscillator. The capacity of the oscillator must match that of the
RTC and of the circuit. A standard crystal with a capacitance of 12.5pF works well
for applications that do not demand high clock accuracy. For more exacting applica-
tions the 6355 can be programmed to check the clock frequency and determine its
error. The chip’s frequency-checking mode is described in an NJU6355 Application
Note available from New Japan Radio Co., Ltd.

16.3.2 RTC Demonstration Circuit and Program
The circuit shown in Figure 16-11 is a simple application of the 6355 RTC. The circuit
uses a NJU6355 in conjunction with a 16F86 PIC and an LCD. The demonstration pro-
gram, named RTC2LCD, sets up RTC and reads clock data in an endless loop. The
hours, minutes, and seconds are displayed at the top line of the LCD as follows:

H:xx M:xx S:xx

where xx represents the two BCD digits read from the clock and converted to ASCII
decimal for display. The program initializes the 6355 to some arbitrary values con-
tained in the corresponding #define statements. These values are copied into pro-
gram variables by a local procedure and then used to initialize the RTC registers. Two
procedures relate to RTC operation: one to initialize the clock hardware and the other
one to read the current time. In addition, two auxiliary procedures are implemented:
one to read clock data and one to write clock data. Since clock data can be in 8- or 4-bit
formats each procedure contains a separate entry point to handle the 4-bit option. The
procedure to initialize and the one to write clock data are coded as follows:

;============================

; init RTC

;============================

; Procedure to initialize the real time clock chip. If chip

; is not initialized it will not operate and the values

; read will be invalid.

; Since the 6355 operates in BCD format the stored values must

; be converted to packed BCD.

; According to wiring diagram

560 Chapter 16

; NJU6355 Interface for setting time:
; DAT PORTB,0 Output
; CLK PORTB,1 Output
; CE PORTB,2 Output
; IO PORTB,3 Output
setRTC:

Bank1
movlw b’00000000’ ; All lines are output
movlw TRISB
Bank0

; Writing to the 6355 requires that the CLK bit be held
; low while the IO and CE lines are high

bcf PORTB,CLK ; CLK low
call delay_5

Analog to Digital and Realtime Clocks 561

Figure 16-11 Real-time Clock Demonstration Circuit

+5V
R

=
1

0
K

RESET

HD44780

LCD
2 rows x 16

+5V

E

R/W

RS

RS

R/W

E

1

14

16F84

RA2

RA3

RA4/TOCKI

MCLR

Vss

RB0/INT

RB1

RB2

RB3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Osc
4Mhz

+5V

32.768 kHz
Crystal

NJU6355ED

+5v

1

2

3

4

8

7

6

5

+5v

DATA

CLK

CE

IO

X1

X2

GND

bsf PORTB,IO ; IO high
call delay_5
bsf PORTB,CE ; CE high

; Data is stored in RTC as follows:
; year 8 bits (0 to 99)
; month 8 bits (1 to 12)
; day 8 bits (1 to 31)
; dayOfWeek 4 bits (1 to 7)
; hour 8 bits (0 to 23)
; minutes 8 bits (0 to 59)
; ======
; Total 44 bits
; Seconds cannot be written to RTC. RTC seconds register
; is automatically initialized to zero

movf year,w ; Get item from storage
call bin2bcd ; Convert to BCD
movwf temp1
call writeRTC

movf month,w
call bin2bcd
movwf temp1
call writeRTC

movf day,w
call bin2bcd
movwf temp1
call writeRTC

movf dayOfWeek,w ; dayOfWeek of week is 4-bits
call bin2bcd
movwf temp1
call write4RTC

movf hour,w
call bin2bcd
movwf temp1
call writeRTC

movf minutes,w
call bin2bcd
movwf temp1
call writeRTC

; Done
bcf PORTB,CLK ; Hold CLK line low
call delay_5
bcf PORTB,CE ; and the CE line

; to the RTC

562 Chapter 16

call delay_5
bcf PORTB,IO ; RTC in output mode
return

;============================
; write 4/8 bits to RTC
;============================
; Procedure to write 4 or 8 bits to the RTC registers
; ON ENTRY:
; temp1 register holds value to be written
; ON EXIT:
; nothing
write4RTC

movlw .4 ; Init for 4 bits
goto allBits

writeRTC:
movlw .8 ; Init for 8 bits

allBits:
movwf counter ; Store in bit counter

writeBits:
bcf PORTB,CLK ; Clear the CLK line
call delay_5 ; Wait
bsf PORTB,DAT ; Set the data line to RTC
btfss temp1,0 ; Send LSB
bcf PORTB,DAT ; Clear data line
call delay_5 ; Wait for operation to

complete
bsf PORTB,CLK ; Bring CLK line high to

validate
rrf temp1,f ; Rotate bits in storage
decfsz counter,1 ; Decrement bit counter
goto writeBits ; Continue if not last bit
return

The following procedures are used by the RTC2LCD program to read the data in
the RTC registers:

;============================
; read RTC data
;============================
; Procedure to read the current time from the RTC and store
; data (in packed BCD format) in local time registers.
; According to wiring diagram
; NJU6355 Interface for read operations:
; DAT PORTB,0 Input
; CLK PORTB,1 Output
; CE PORTB,2 Output
; IO PORTB,3 Output
Get_Time
; Clear Port-B

Analog to Digital and Realtime Clocks 563

movlw b’00000000’
movwf PORTB

; Make data line input
Bank1
movlw b’00000001’
movwf TRISB
Bank0

; Reading RTC data requires that the IO line be low and the
; CE line be high. CLK line is held low

bcf PORTB,CLK ; CLK low
call delay_125
bcf PORTB,IO ; IO line low
call delay_125
bsf PORTB,CE ; and CE line high

; Data is read from RTC as follows:
; year 8 bits (0 to 99)
; month 8 bits (1 to 12)
; day 8 bits (1 to 31)
; dayOfWeek 4 bits (1 to 7)
; hour 8 bits (0 to 23)
; minutes 8 bits (0 to 59)
; seconds 8 bits (0 to 59)
; ======
; Total 52 bits
;

call readRTC
movwf year
call delay_125

call readRTC
movwf month
call delay_125

call readRTC
movwf day
call delay_125

; dayOfWeek of week is a 4-bit value
call read4RTC
movwf dayOfWeek
call delay_125

call readRTC
movwf hour
call delay_125

call readRTC
movwf minutes

564 Chapter 16

call delay_125

call readRTC
movwf seconds
bcf PORTB,CE ; CE line low to end output
return

;============================
; read 4/8 bits from RTC
;============================
; Procedure to read 4/8 bits stored in 6355 registers
; Value returned in w register
read4RTC

movlw .4 ; 4 bit read
goto anyBits

readRTC:
movlw .8 ; 8 bits read

anyBits:
movwf counter

; Read 6355 read operation requires the IO line be set low
; and the CE line high. Data is read in the following order:
; year, month, day, day-of-week, hour, minutes, seconds
readBits:

bsf PORTB,CLK; Set CLK high to validate data
bsf STATUS,C ; Set the carry flag (bit = 1)

; Operation:
; If data line is high, then bit read is a 1-bit
; otherwise bit read is a 0-bit

btfss PORTB,DAT ; Is data line high?
; Leave carry set (1 bit) if high

bcf STATUS,C ; Clear the carry bit (make bit 0)
; At this point the carry bit matches the data line

bcf PORTB,CLK ; Set CLK low to end read
; The carry bit is now rotated into the temp1 register

rrf temp1,1
decfsz counter,1 ; Decrement the bit counter
goto readBits ; Continue if not last bit

; At this point all bits have been read (8 or 4)
movf temp1,0 ; Result to w
return

BCD Conversion Procedures

In addition to the RTC procedures to initialize the clock registers and to read clock
data, the application requires auxiliary procedures to manipulate and display data in
BCD format. BCD encodings, covered in Section 3.4, are a way of representing decimal
digits in binary form. Two common BCD formats are used: packed and unpacked. In

Analog to Digital and Realtime Clocks 565

the unpacked format each byte encodes a single BCD value. In packed form two BCD
digits are encoded per byte. The 6355 uses the packed BCD format.

Since program data is usually in binary form, it is useful to have a routine to con-
vert binary data into BCD form. A simple algorithm for converting binary to BCD is
as follows:

1. The value 10 is subtracted from the source operand until the remainder is less than 0
(carry cleared). The number of subtractions is the high-order BCD digit.

2. The value 10 is then added back to the subtrahend to compensate for the last subtrac-
tion.

3. The final remainder is the low-order BCD digit.

The binary to BCD conversion procedure is coded as follows:

;============================
; binary to BCD conversion
;============================
; Convert a binary number into two packed BCD digits
; ON ENTRY:
; w register has binary value in range 0 to 99
; ON EXIT:
; output variables bcdLow and bcdHigh contain two
; unpacked BCD digits
; w contains two packed BCD digits
; Routine logic:
; The value 10 is subtracted from the source operand
; until the remainder is < 0 (carry cleared). The number
; of subtractions is the high-order BCD digit. 10 is
; then added back to the subtrahend to compensate
; for the last subtraction. The final remainder is the
; low-order BCD digit
; Variables:
; inNum storage for source operand
; bcdHigh storage for high-order nibble
; bcdLow storage for low-order nibble
; thisDig Digit counter
bin2bcd:

movwf inNum ; Save copy of source value
clrf bcdHigh ; Clear storage
clrf bcdLow
clrf thisDig

min10:
movlw .10
subwf inNum,f ; Subtract 10
btfsc STATUS,C ; Did subtract overflow?
goto sum10 ; No. Count subtraction
goto fin10

sum10:

566 Chapter 16

incf thisDig,f ; Increment digit counter
goto min10

; Store 10th digit
fin10:

movlw .10
addwf inNum,f ; Adjust
movf thisDig,w ; Get digit counter contents
movwf bcdHigh ; Store it

; Calculate and store low-order BCD digit
movf inNum,w ; Store units value
movwf bcdLow ; Store digit

; Combine both digits
swapf bcdHigh,w ; High nibble to HOBs
iorwf bcdLow,w ; ORin low nibble
return

Since the program requires displaying values encoded in BCD format, a routine is
necessary to convert two packed BCD digits into two ASCII decimal digits. The con-
version logic is quite simple since the BCD digit is converted to ASCII by adding
0x30 to its value. All that is necessary is to shift bits in the packed BCD operand so
as to isolate each digit and then add 0x30 to each one. The routine’s code is as fol-
lows:

;==============================
; BCD to ASCII decimal
; conversion
;==============================
; ON ENTRY:
; w register has two packed BCD digits
; ON EXIT:
; output variables asc10, and asc1 have
; two ASCII decimal digits
; Routine logic:
; The low order nibble is isolated and the value 30H
; added to convert to ASCII. The result is stored in
; the variable asc1. Then the same is done to the
; high-order nibble and the result is stored in the
; variable asc10

Bcd2asc:
movwf store1 ; Save input
andlw b’00001111’ ; Clear high nibble
addlw 0x30 ; Convert to ASCII
movwf asc1 ; Store result
swapf store1,w ; Recover input and swap digits
andlw b’00001111’ ; Clear high nibble
addlw 0x30 ; Convert to ASCII
movwf asc10 ; Store result
return

Analog to Digital and Realtime Clocks 567

16.4 Sample Programs
The following sections contain the sample programs discussed in this chapter.

16.4.1 ADF84 Program
; File name: ADCF84.asm
; Last Update: June 8, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to demonstrate use of the ADC0831 Analog to
; Digital converter with the 16F84 PIC. Program reads the
; value of a potentionmeter connected to Port-A, line 0
; and displays resistance in the range 0 to 255 on the
; attached LCD.
; Circuit:
; ADC0831 16F84 CIRCUIT
; PIN LINE
; 6 DO ------------- RB0
; 7 CLK ------------- RB1
; 1 CS ------------- RB2
; 2 Vin+ ------------------------------ POT2
; 3 Vin- ------------------------------ GND
; 5 Vref ------------------------------ +5v
; 8 Vcc ------------------------------ +5v
;
; For LCD display parameters see the LCDTest2 program.
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock
;
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal oscillator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator

568 Chapter 16

; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

errorlevel -302
; Suppress bank-related warning
;==
; M A C R O S
;==
; Macros to select the register banks in 16F84
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 2 ;| — from circuit wiring diagram
#define RW_line 3 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command

; Defines from ADC0831 wiring diagram
; all lines in Port-A
#define DO 0 ;|
#define CLK 1 ;| — from circuit wiring diagram
#define CS 2 ;|
;
;===
; variables in PIC RAM
;===
; Reserve 16 bytes for string buffer

Analog to Digital and Realtime Clocks 569

cblock 0x0c
strData
endc

; Reserve three bytes for ASCII digits
cblock 0x1d
asc100
asc10
asc1
endc

; Continue with local variables
cblock 0x20 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
pic_ad ; Storage for start of text area
J ; counter J
K ; counter K
index ; Index into text table (also used

; for auxiliary storage)
store1 ; Local temporary storage
store2 ; Storage # 2
rcvdata ; Received data
bitCount

; Storage for ASCII decimal conversion and digits
inNum ; Source operand
thisDig ; Digit counter
endc

;===
; program
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
Bank1
movlw b’00000000’ ; All lines to output
movwf TRISA ; in Port-A
movlw b’00000001’ ; B line 0 to input
movwf TRISB
Bank0
movlw b’00000000’ ; All outputs ports low
movwf PORTA
movwf PORTB

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize

; itself

570 Chapter 16

call delay_5
call initLCD ; Then do forced

initialization
call delay_5 ; Wait again

; Store base address of text buffer in PIC RAM
movlw 0x0c ; Start address for buffer
movwf pic_ad ; to local variable

;======================
; first LCD line
;======================
; Store 16 blanks in PIC RAM, starting at address stored
; in variable pic_ad

call blank16
; Call procedure to store ASCII characters for message
; in text buffer

movlw d’0’ ; Offset into buffer
call storeMS1 ; Store message text in buffer

; Initialize ADC0831
nextAna:

call ana2dig ; Read analog line
call delay_125

; Display result
movf rcvdata,w
call bin2asc ; Conversion routine

; At this point three ASCII digits are stored in local
; variables. Move digits to display area

movf asc1,w ; Unit digit
movwf .26 ; Store in buffer
movf asc10,w ; same with other digits
movwf .25
movf asc100,w
movwf .24

; Display line
; Set DDRAM address to start of first line

call line1
; Call procedure to display 16 characters in LCD

call display16
call long_delay
goto nextAna

;==
; initialize LCD for 4-bit mode
;==
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on

Analog to Digital and Realtime Clocks 571

; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low
bcf PORTA,RW_line ; Write mode
call delay_125 ; delay 125 microseconds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
call send8

;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
SHIFT)

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
call send8

; Per documentation
call delay_5 ; Test for busy
return

;=======================
; Procedure to delay

572 Chapter 16

; 42 microseconds
;=======================
delay_125

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw D’41’ ; Counter = 41
movwf count2 ; Store in variable

delay:
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTA,E_line ; Pulse E line
nop
bcf PORTA,E_line
return

;=============================
; long delay sub-routine
; (for debugging)
;=============================
long_delay

movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;=============================
; LCD display procedure

Analog to Digital and Realtime Clocks 573

;=============================
; Sends 16 characters from PIC buffer with address stored
; in variable pic_ad to LCD line previously selected
display16

call delay_5 ; Make sure not busy
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 16 characters
movlw D’16’ ; Counter = 16
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar:
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 16 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to Port-B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with Port-B

; Now w has merged byte
movwf PORTB ; w to Port-B
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTB
call pulseE ; Send data to LCD
call delay_125

574 Chapter 16

return
;=================
; merge bits
;=================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of Port-B
; so as to preserve the 4 low-bits in Port-B
; Logic:
; AND value with 1111 0000 mask
; AND Port-B with 0000 1111 mask
; Now low nibble in value and high nibble in
; Port-B are all 0 bits:
; value = vvvv 0000
; Port-B = 0000 bbbb
; OR value and Port-B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTB,w ; Port-B to w register
andlw b’00001111’ ; Clear high nibble in Port-B

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;========================
; blank buffer
;========================
; Procedure to store 16 blank characters in PIC RAM
; buffer starting at address stored in the variable
; pic_ad
blank16:

movlw D’16’ ; Setup counter
movwf count1
movf pic_ad,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit:
movwf INDF ; Store blank character in PIC

RAM
; buffer using FSR register

decfsz count1,f ; Done?

Analog to Digital and Realtime Clocks 575

goto incfsr ; no
return ; yes

incfsr:
incf FSR,f ; Bump FSR to next buffer

space
goto storeit

;========================
; Set address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTA,RS_line ; Setup for data
call delay_5 ; Busy?
return

;===============================
; first text string procedure
;===============================
storeMS1:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

576 Chapter 16

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in

variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
; Message has 10 characters
msg1:

addwf PCL,f ; Access table
retlw ‘P’
retlw ‘o’
retlw ‘t’
retlw ‘ ‘
retlw ‘R’
retlw ‘e’
retlw ‘s’
retlw ‘i’
retlw ‘s’
retlw ‘t’
retlw ‘:’
retlw 0

;==============================
; binary to ASCII decimal
; conversion
;==============================
; ON ENTRY:
; w register has binary value in range 0 to 255

Analog to Digital and Realtime Clocks 577

; ON EXIT:
; output variables asc100, asc10, and asc1 have
; three ASCII decimal digits
; Routine logic:
; The value 100 is subtracted from the source operand
; until the remainder is < 0 (carry cleared). The number
; of subtractions is the decimal hundreds result. 100 is
; then added back to the subtrahend to compensate
; for the last subtraction. Now 10 is subtracted in the
; same manner to determine the decimal tenths result.
; The final remainder is the decimal units result.
; Variables:
; inNum storage for source operand
; asc100 storage for hundreds position result
; asc10 storage for tenth position result
; asc1 storage for unit position result
; thisDig Digit counter
bin2asc:

movwf inNum ; Save copy of source value
clrf asc100 ; Clear hundreds storage
clrf asc10 ; Tens
clrf asc1 ; Units
clrf thisDig

sub100:
movlw .100
subwf inNum,f ; Subtract 100
btfsc STATUS,C ; Did subtract overflow?
goto bump100 ; No. Count subtraction
goto end100

bump100:
incf thisDig,f ;increment digit counter
goto sub100

; Store 100th digit
end100:

movf thisDig,w ; Adjusted digit counter
addlw 0x30 ; Convert to ASCII
movwf asc100 ; Store it

; Calculate tenth position value
clrf thisDig

; Adjust minuend
movlw .100 ; Minuend
addwf inNum,f ; Add value to minuend to

; compensate for last
operation
sub10:

movlw .10
subwf inNum,f ; Subtract 10
btfsc STATUS,C ; Did subtract overflow?

578 Chapter 16

goto bump10 ; No. Count subtraction
goto end10

bump10:
incf thisDig,f ;increment digit counter
goto sub10

; Store 10th digit
end10:

movlw .10
addwf inNum,f ; Adjust for last subtract
movf thisDig,w ; get digit counter contents
addlw 0x30 ; Convert to ASCII
movwf asc10 ; Store it

; Calculate and store units digit
movf inNum,w ; Store units value
addlw 0x30 ; Convert to ASCII
movwf asc1 ; Store digit
return

;==
; ADC0831 procedures
;==
;============================
; procedure to read and
; convert analog line
;============================
; ON ENTRY:
; Code assumes that the ADC0831 DO line is initialized for
; input, while CLK and CS lines are output
; From ADC0831 wiring diagram. All lines in Port-B
; DO = RB0 ==> INPUT
; CLK = RB1 <== OUTPUT
; CS = RB2 <== OUTPUT
; ON EXIT:
; Returns 8-bit digital value in the register rcvdata
;
ana2dig:
; Clear data register and init counter for 8 bits

clrf rcvdata ; Clear register
movlw 0x08 ; Initialize counter
movwf bitCount

; Prepare to read analog line
bcf PORTB,CS ; CS pin low to enable ADC
nop ; Delay for 4Mhz clock
bsf PORTB,CLK ; Set CLK high
nop
bcf PORTB,CLK ; Reset CLK to start

conversion
nop

Analog to Digital and Realtime Clocks 579

nextB:
; Pulse CLK line to read bit from ADC

bsf PORTB,CLK ; CLK high
nop
bcf PORTB,CLK ; CLK low
nop

; Read analog line and store data, bit by bit
movf PORTB,w ; Read all Port-B bits
movwf store1 ; Store value for later
rrf store1,f ; Rotate bit into carry flag
rlf rcvdata,f ; Rotate carry flag into

result
; register

decfsz bitCount,f ; Bump counter, skip next
; if counter zero

goto nextB
; Value read is stored in rcvdata register

bsf PORTB,CLK ; Final clock pulse
nop
bcf PORTB,CLK
nop
bsf PORTB,CS ; Turn off ADC
call long_delay ; Time to settle
return

end

16.4.2 A2DinLCD Program
; File name: A2DinLCD.asm
; Last revision: June 2, 2006
; Author: Julio Sanchez
; Processor: 16F877
;
; Description:
; Program to demonstrate use of the Analog to Digital
; Converter (A/D) module on the 16F877. Program reads the
; value of a potentionmeter connected to Port-A, line 0
; and displays resistance in the range 0 to 255 on the
; attached LCD.
;
; WARNING:
; Code assumes 10Mhz clock. Delay routines must be
; edited for faster clock. Clock speed is also used to
; set up the A/D converter clock.
;
;===========================
; 16F877 switches

580 Chapter 16

;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal oscillator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF
; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.

errorlevel -302
; Suppress bank-related warning
;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1

Analog to Digital and Realtime Clocks 581

ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 0 ;| — from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .20; Number of characters per line
#define spbrgVal .64; For 2400 baud on 10Mhz clock
; Note: The constants that define the LCD display
; line addresses have the high-order bit set
; so as to meet the requirements of controller
; commands.
;===
; variables in PIC RAM
;===
; Reserve 20 bytes for string buffer

cblock 0x20
strData
endc

; Reserve three bytes for ASCII digits
cblock 0x34
asc100
asc10
asc1
endc

; Data
cblock 0x37 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
pic_ad

582 Chapter 16

J ; counter J
K ; counter K
index
store1 ; Local storage
store2

; For LCDscroll procedure
LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)
endc

; Common RAM area for most critical variables
cblock 0x70

; Storage for ASCII decimal conversion and digits
inNum ; Source operand
thisDig ; Digit counter
endc

;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; Wiring:
; LCD data to Port-D, lines 0 to 7
; E line -> Port-E, 1
; RW line -> Port-E, 2
; RS line -> Port-E, 0
; Set PORTE D and E for output
; First, initialize Port-B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to tris Port-D for output
Bank1

; Tris Port-D for output. Port-D lines 4 to 7 are wired
; to LCD data lines. Port-D lines 0 to 4 are wired to LEDs.

movlw B’00000000’
movwf TRISD ; and Port-D

; By default Port-A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

movlw 0x06 ; binary 0000 0110 is code to
; make all Port-A lines

digital
movwf ADCON1

; Port-B, lines are not used by this application. Init

Analog to Digital and Realtime Clocks 583

; to output
movlw b’00000000’
movwf TRISB

; Tris Port-E for output. LCD lines are in Port-E
movwf TRISE ; Tris Port-E

; Enable Port-B pullups for switches in OPTION register
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | *0 = increment on low-to-high
; | | | 1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; *0 = enabled
; 1 = disabled

movlw b’00001000’
movwf OPTION_REG

; Back to bank 0
Bank0

; Clear all output lines
movlw b’00000000’
movwf PORTD
movwf PORTE

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize

itself
call initLCD ; Then do forced

initialization
call delay_5 ; (Wait probably not

necessary)
; Clear character counter and line counter variables

clrf LCDcount
clrf LCDline

; Initialize A/D conversion lines
call InitA2D ; Local procedure

; Store base address of text buffer in PIC RAM

584 Chapter 16

movlw 0x20 ; Start address for buffer
movwf pic_ad ; to local variable

; Store 20 blanks in PIC RAM, starting at address stored
; in variable pic_ad

call blank20
; Call procedure to store ASCII characters for message
; in text buffer

movlw d’0’ ; Offset into buffer
call storeMS1

;============================
; read POT digital value
;============================
readPOT:

call ReadA2D ; Local procedure
; w has digital value read from analog line RA0
; Display result

call bin2asc ; Conversion routine
; At this point three ASCII digits are stored in local
; variables. Move digits to display area

movf asc1,w ; Unit digit
movwf 0x2e ; Store in buffer
movf asc10,w ; same with other digits
movwf 0x2d
movf asc100,w
movwf 0x2c

; Display line
; Set DDRAM address to start of first line
showLine:

call line1
; Call procedure to display 16 characters in LCD

call display20
goto readPOT

;==
;==
; L O C A L P R O C E D U R E S
;==
;==
;==========================
; init LCD for 4-bit mode
;==========================
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 20 characters each
; cursor on
; left-to-right increment
; cursor shift right

Analog to Digital and Realtime Clocks 585

; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125 microseconds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
call send8

;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
SHIFT)

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
call send8

; Per documentation
call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 125ms. at 10Mhz
;=======================
delay_125:

movlw .110 ; Repeat 110 machine cycles

586 Chapter 16

movwf count1 ; Store value in counter
repeat:

decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw .110 ; Counter = 110
movwf count2 ; Store in variable

delay:
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE:

bsf PORTE,E_line ; Pulse E line
nop
bcf PORTE,E_line
return

;=============================
; long delay sub-routine
;=============================
long_delay:

movlw .200 ; w delay count
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;=============================
; display buffer on LCD
;=============================
; Sends 20 characters from PIC buffer with address stored
; in variable pic_ad to LCD line previously selected
display20:

Analog to Digital and Realtime Clocks 587

call delay_5 ; Make sure not busy
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 20 characters
movlw D’20’
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 16 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to Port-B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with Port-B

; Now w has merged byte
movwf PORTD ; w to Port-D
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTD
call pulseE ; Send data to LCD
call delay_125
return

;==========================
; merge bits
;==========================

588 Chapter 16

; Routine to merge the 4 high-order bits of the
; value to send with the contents of Port-B
; so as to preserve the 4 low-bits in Port-B
; Logic:
; AND value with 1111 0000 mask
; AND Port-B with 0000 1111 mask
; Now low nibble in value and high nibble in
; Port-B are all 0 bits:
; value = vvvv 0000
; Port-B = 0000 bbbb
; OR value and Port-B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTD,w ; Port-B to w register
andlw b’00001111’ ; Clear high nibble in Port-B

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;==========================
; Set address register
; to LCD line 1
;==========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTE,RS_line ; Setup for data
call delay_5 ; Busy?
return

;===============================
; first text string procedure
;===============================
storeMS1:

Analog to Digital and Realtime Clocks 589

; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
; Message has 10 characters
msg1:

addwf PCL,f ; Access table
retlw ‘P’
retlw ‘o’

590 Chapter 16

retlw ‘t’
retlw ‘ ‘
retlw ‘R’
retlw ‘e’
retlw ‘s’
retlw ‘i’
retlw ‘s’
retlw ‘t’
retlw ‘:’
retlw 0

;========================
; blank buffer
;========================
; Procedure to store 20 blank characters in PIC RAM
; buffer starting at address stored in the variable
; pic_ad
blank20:

movlw D’20’ ; Setup counter
movwf count1
movf pic_ad,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit:
movwf INDF ; Store blank character in PIC RAM

; buffer using FSR register
decfsz count1,f ; Done?
goto incfsr ; no
return ; yes

incfsr:
incf FSR,f ; Bump FSR to next buffer space
goto storeit

;==============================
; binary to ASCII decimal
; conversion
;==============================
; ON ENTRY:
; w register has binary value in range 0 to 255
; ON EXIT:
; output variables asc100, asc10, and asc1 have
; three ASCII decimal digits
; Routine logic:
; The value 100 is subtracted from the source operand
; until the remainder is < 0 (carry cleared). The number
; of subtractions is the decimal hundreds result. 100 is
; then added back to the subtrahend to compensate
; for the last subtraction. Now 10 is subtracted in the
; same manner to determine the decimal tenths result.

Analog to Digital and Realtime Clocks 591

; The final remainder is the decimal units result.
; Variables:
; inNum storage for source operand
; asc100 storage for hundreds position result
; asc10 storage for tenth position result
; asc1 storage for unit position result
; thisDig Digit counter
bin2asc:

movwf inNum ; Save copy of source value
clrf asc100 ; Clear hundreds storage
clrf asc10 ; Tens
clrf asc1 ; Units
clrf thisDig

sub100:
movlw .100
subwf inNum,f ; Subtract 100
btfsc STATUS,C ; Did subtract overflow?
goto bump100 ; No. Count subtraction
goto end100

bump100:
incf thisDig,f ; Increment digit counter
goto sub100

; Store 100th digit
end100:

movf thisDig,w ; Adjusted digit counter
addlw 0x30 ; Convert to ASCII
movwf asc100 ; Store it

; Calculate tenth position value
clrf thisDig

; Adjust minuend
movlw .100 ; Minuend
addwf inNum,f ; Add value to minuend to

; Compensate for last operation
sub10:

movlw .10
subwf inNum,f ; Subtract 10
btfsc STATUS,C ; Did subtract overflow?
goto bump10 ; No. Count subtraction
goto end10

bump10:
incf thisDig,f ;increment digit counter
goto sub10

; Store 10th digit
end10:

movlw .10
addwf inNum,f ; Adjust for last subtract
movf thisDig,w ; get digit counter contents
addlw 0x30 ; Convert to ASCII

592 Chapter 16

movwf asc10 ; Store it
; Calculate and store units digit

movf inNum,w ; Store units value
addlw 0x30 ; Convert to ASCII
movwf asc1 ; Store digit
return

;==
; Analog to Digital Procedures
;==
;============================
; init A/D module
;============================
; 1. Procedure to initialize the A/D module, as follows:
; Configure the PIC I/O lines. Init analog lines as input
; 2. Select ports to be used by setting the PCFGx bits in the
; ADCON1 register. Selects right- or left-justification.
; 3. Select the analog channels, select the A/D conversion
; clock, and enable the A/D module.
; 4. Wait the acquisition time.
; 5. Initiate the conversion by setting the GO/DONE bit in the
; ADCON0 register.
; 6. Wait for the conversion to complete.
; 7. Read and store the digital result.
InitA2D:

Bank1 ; Select bank for TRISA register
movlw b’00000001’
movwf TRISA ; Set Port-A, line 0, as input

; Select the format and A/D port configuration bits in
; the ADCON1 register
; Format is left-justified so that ADRESH bits are the
; most significant
; 0 x x x 1 1 1 0 <== value installed in ADCON1
; 7 6 5 4 3 2 1 0 <== ADCON1 bits
; | |__|__|__|____ RA0 is analog.
; | Vref+ = Vdd
; | Vref- = Vss
; |_________________________ 0 = left-justified
; ADCON1 is in bank 1

movlw b’00001110’
movwf ADCON1 ; RA0 is analog. All others ;

; digital
; Vref+ = Vdd

; Select D/A options in ADCON0 register
; For a 10Mhz clock the Fosc32 option produces a conversion
; speed of 1/(10/32) = 3.2 microseconds, which is within the
; recommended range of 1.6 to 10 microseconds.
; 1 0 0 0 0 0 0 1 <== value installed in ADCON0

Analog to Digital and Realtime Clocks 593

; 7 6 5 4 3 2 1 0 <== ADCON0 bits
; | | | | | | |____ A/D function select
; | | | | | | 1 = A/D ON
; | | | | | |__________ A/D status bit
; | | |__|__|_____________ Analog Channel Select
; | | 000 = Chanel 0 (RA0)
; |__|______________________ A/D Clock Select
; 10 = Fosc/32
; ADCON0 is in bank 0

Bank0
movlw b’10000001’
movwf ADCON0 ; Channel 0, Fosc/32, A/D

; enabled
; Delay for selection to complete. (Existing routine provides
; more than 20 microseconds required)

call delayAD ; Local procedure
return

;============================
; read A/D line
;============================
; Procedure to read the value in the A/D line and convert
; to digital
ReadA2D:
; Initiate conversion

Bank0 ; Bank for ADCON0 register
bsf ADCON0,GO ; Set the GO/DONE bit

; GO/DONE bit is cleared automatically when conversion ends
convWait:

btfsc ADCON0,GO ; Test bit
goto convWait ; Wait if not clear

; At this point conversion has concluded
; ADRESH register (bank 0) holds 8 MSBs of result
; ADRESL register (bank 1) holds 4 LSBs.
; In this application value is left-justified. Only the
; MSBs are read

movf ADRESH,W ; Digital value to w register
return

;=======================
; delay procedure
;=======================
; For a 10Mhz clock the Fosc32 option produces a conversion
; speed of 1/(10/32) = 3.2 microseconds. At 3.2 ms per bit
; 13 bits require approximately 41 ms. The instruction time
; at 10Mhz is 10 ms. 4/10 = 0.4 ms per instruction. To delay
; 41 ms a 10Mhz PIC must execute 11 instructions. Add one
; more for safety.
delayAD:

movlw .12 ; Repeat 12 machine cycles

594 Chapter 16

movwf count1 ; Store value in counter
repeat11:

decfsz count1,f ; Decrement counter
goto repeat11 ; Continue if not 0
return

;==
end ; END OF PROGRAM

;==

16.4.3 RTC2LCD Program
; File name: RTC2LCD.asm
; Last Update: June 6, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to demonstrate use of the NJU6355 Real Time Clock
; IC. Program uses LCD to display results of hours, minutes,
; and seconds, as follows:
;
; Top LCD line: H:xx M:yy S:zz
;
; Initialization values are in #define statements that start
; with i, such as iYear, iMonth, etc.
;
; For LCD display parameters see the LCDTest2 program.
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock
;
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal oscillator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator

Analog to Digital and Realtime Clocks 595

; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

errorlevel -302
; Suppress bank-related warning
;==
; M A C R O S
;==
; Macros to select the register banks in 16F84
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 2 ;| — from circuit wiring diagram
#define RW_line 3 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command

; Defines from realtime clock wiring diagram
; all lines in Port-B
#define DAT 0 ;|
#define CLK 1 ;| — from circuit wiring diagram
#define CE 2 ;|
#define IO 3 ;|
;
; Defines for RTC initialization (values are arbitrary)
#define iYear .7
#define iMonth .6

596 Chapter 16

#define iDay .5
#define iDoW .4
#define iHour .3
#define iMin .2
#define iSec .1
;===
; PIC register equates
;===
;===
; variables in PIC RAM
;===
; Reserve 16 bytes for string buffer

cblock 0x0c
strData
endc

; Reserve three bytes for ASCII digits
cblock 0x1d
asc100
asc10
asc1
endc

; Continue with local variables
cblock 0x20 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
pic_ad ; Storage for start of text area
J ; counter J
K ; counter K
index ; Index into text table (also used

; for auxiliary storage)
store1 ; Local temporary storage
store2 ; Storage # 2

; Storage for BCD digits
bcdLow ; low-order nibble of packed BCD
bcdHigh ; High-order nibble

; Variables for Real-Time Clock
year
month
day
dayOfWeek ; Sunday to Saturday (1 to 7)
hour
minutes
seconds
temp1
counter

; Storage for BCD conversion routine
inNum ; Source operand

Analog to Digital and Realtime Clocks 597

thisDig ; Digit counter
endc

;===
; program
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
movlw b’00000000’ ; All lines to output
Bank1
movwf TRISA ; in Port-A
movwf TRISB ; and Port-B
Bank0
movlw b’00000000’ ; All outputs ports low
movwf PORTA
movwf PORTB

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize

; itself
call delay_5
call initLCD ; Then do forced

initialization
call delay_5 ; Wait again

; Store base address of text buffer in PIC RAM
movlw 0x0c ; Start address for buffer
movwf pic_ad ; to local variable

;======================
; first LCD line
;======================
; Store 16 blanks in PIC RAM, starting at address stored
; in variable pic_ad

call blank16
; Call procedure to store ASCII characters for message
; in text buffer

movlw d’0’ ; Offset into buffer
call storeMS1 ; Store message text in buffer

; Initialize real time clock
call initRTC ; Initialize variables
call setRTC ; Start clock
call delay_5 ; Wait for operation to

; conclude
newTime:
; Get variables from RTC

call Get_Time

598 Chapter 16

call delay_5 ; Wait
movf hour,w ; Get hours
call Bcd2asc ; Conversion routine

; At this point three ASCII digits are stored in local
; variables. Move digits to display area

movf asc1,w ; Unit digit
movwf .15 ; Store in buffer
movf asc10,w ; Same with other digit
movwf .14
call delay_5
movf minutes,w
call Bcd2asc ; Conversion routine

; At this point three ASCII digits are stored in local
; variables. Move two digits to display area

movf asc1,w ; Unit digit
movwf .20 ; Store in buffer
movf asc10,w ; same with other digit
movwf .19
call delay_5

movf seconds,w
call Bcd2asc ; Conversion routine

; Move digits to display area
movf asc1,w ; Unit digit
movwf .25 ; Store in buffer
movf asc10,w ; same with other digit
movwf .24
call delay_5

; Set DDRAM address to start of first line
call line1

; Call procedure to display 16 characters in LCD
call display16
goto newTime

;==
; initialize LCD for 4-bit mode
;==
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

Analog to Digital and Realtime Clocks 599

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low
bcf PORTA,RW_line ; Write mode
call delay_125 ; delay 125

microseconds
;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
call send8

;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
SHIFT)

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
call send8

; Per documentation
call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125

movlw D’42’ ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

600 Chapter 16

repeat:
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw D’41’ ; Counter = 41
movwf count2 ; Store in variable

delay:
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE:

bsf PORTA,E_line ; Pulse E line
nop
bcf PORTA,E_line
return

;=============================
; long delay sub-routine
; (for debugging)
;=============================
long_delay:

movlw D’200’ ; w = 200 decimal
movwf J ; J = w

jloop:
movwf K ; K = w

kloop:
decfsz K,f ; K = K-1, skip next if zero
goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;=============================
; LCD display procedure
;=============================
; Sends 16 characters from PIC buffer with address stored
; in variable pic_ad to LCD line previously selected
display16

call delay_5 ; Make sure not busy

Analog to Digital and Realtime Clocks 601

; Set up for data
bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 16 characters
movlw D’16’ ; Counter = 16
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar:
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 16 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to Port-B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with Port-B

; Now w has merged byte
movwf PORTB ; w to Port-B
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTB
call pulseE ; Send data to LCD
call delay_125
return

;=================
; merge bits
;=================
; Routine to merge the 4 high-order bits of the

602 Chapter 16

; value to send with the contents of Port-B
; so as to preserve the 4 low-bits in Port-B
; Logic:
; AND value with 1111 0000 mask
; AND Port-B with 0000 1111 mask
; Now low nibble in value and high nibble in
; Port-B are all 0 bits:
; value = vvvv 0000
; Port-B = 0000 bbbb
; OR value and Port-B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b’11110000’ ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTB,w ; Port-B to w register
andlw b’00001111’ ; Clear high nibble in Port-b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;========================
; blank buffer
;========================
; Procedure to store 16 blank characters in PIC RAM
; buffer starting at address stored in the variable
; pic_ad
blank16

movlw D’16’ ; Setup counter
movwf count1
movf pic_ad,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit
movwf INDF ; Store blank character in PIC RAM

; buffer using FSR register
decfsz count1,f ; Done?
goto incfsr ; no
return ; yes

incfsr
incf FSR,f ; Bump FSR to next buffer space
goto storeit

Analog to Digital and Realtime Clocks 603

;========================
; Set address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTA,RS_line ; Setup for data
call delay_5 ; Busy?
return

;===============================
; first text string procedure
;===============================
storeMS1:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0

604 Chapter 16

get_msg_char:
call msg1 ; Get character from table

; Test for zero terminator
andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in

variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
; Message has 10 characters
msg1:

addwf PCL,f ; Access table
retlw ‘H’
retlw ‘:’
retlw ‘ ‘
retlw ‘ ‘
retlw ‘ ‘
retlw ‘M’
retlw ‘:’
retlw ‘ ‘
retlw ‘ ‘
retlw ‘ ‘
retlw ‘S’
retlw ‘:’
retlw 0

;==============================
; BCD to ASCII decimal
; conversion
;==============================
; ON ENTRY:
; w register has two packed BCD digits
; ON EXIT:
; output variables asc10, and asc1 have
; two ASCII decimal digits
; Routine logic:
; The low order nibble is isolated and the value 30H

Analog to Digital and Realtime Clocks 605

; added to convert to ASCII. The result is stored in
; the variable asc1. Then the same is done to the
; high-order nibble and the result is stored in the
; variable asc10

Bcd2asc:
movwf store1 ; Save input
andlw b’00001111’ ; Clear high nibble
addlw 0x30 ; Convert to ASCII
movwf asc1 ; Store result
swapf store1,w ; Recover input and swap digits
andlw b’00001111’ ; Clear high nibble
addlw 0x30 ; Convert to ASCII
movwf asc10 ; Store result
return

;==
; 6355 RTC procedures
;==
;============================
; init RTC
;============================
; Procedure to initialize the real time clock chip. If chip
; is not initialized it will not operate and the values
; read will be invalid.
; Since the 6355 operates in BCD format the stored values must
; be converted to packed BCD.
; According to wiring diagram
; NJU6355 Interface for setting time:
; DAT PORTB,0 Output
; CLK PORTB,1 Output
; CE PORTB,2 Output
; IO PORTB,3 Output
setRTC:

Bank1
movlw b’00000000’ ; All output bits
movlw TRISB
Bank0

; Writing to the 6355 requires that the CLK bit be held
; low while the IO and CE lines are high

bcf PORTB,CLK ; CLK low
call delay_5
bsf PORTB,IO ; IO high
call delay_5
bsf PORTB,CE ; CE high

; Data is stored in RTC as follows:
; year 8 bits (0 to 99)
; month 8 bits (1 to 12)

606 Chapter 16

; day 8 bits (1 to 31)
; dayOfWeek 4 bits (1 to 7)
; hour 8 bits (0 to 23)
; minutes 8 bits (0 to 59)
; ======
; Total 44 bits
; Seconds cannot be written to RTC. RTC seconds register
; is automatically initialized to zero

movf year,w ; Get item from storage
call bin2bcd ; Convert to BCD
movwf temp1
call writeRTC

movf month,w
call bin2bcd
movwf temp1
call writeRTC

movf day,w
call bin2bcd
movwf temp1
call writeRTC

movf dayOfWeek,w ; dayOfWeek of week is 4-bits
call bin2bcd
movwf temp1
call write4RTC

movf hour,w
call bin2bcd
movwf temp1
call writeRTC

movf minutes,w
call bin2bcd
movwf temp1
call writeRTC

; Done
bcf PORTB,CLK ; Hold CLK line low
call delay_5
bcf PORTB,CE ; and the CE line

; to the RTC
call delay_5
bcf PORTB,IO ; RTC in output mode
return

;============================
; read RTC data
;============================

Analog to Digital and Realtime Clocks 607

; Procedure to read the current time from the RTC and store
; data (in packed BCD format) in local time registers.
; According to wiring diagram
; NJU6355 Interface for read operations:
; DAT PORTB,0 Input
; CLK PORTB,1 Output
; CE PORTB,2 Output
; IO PORTB,3 Output
Get_Time
; Clear Port-B

movlw b’00000000’
movwf PORTB

; Make data line input
Bank1
movlw b’00000001’
movwf TRISB
Bank0

; Reading RTC data requires that the IO line be low and the
; CE line be high. CLK line is held low

bcf PORTB,CLK ; CLK low
call delay_125
bcf PORTB,IO ; IO line low
call delay_125
bsf PORTB,CE ; and CE line high

; Data is read from RTC as follows:
; year 8 bits (0 to 99)
; month 8 bits (1 to 12)
; day 8 bits (1 to 31)
; dayOfWeek 4 bits (1 to 7)
; hour 8 bits (0 to 23)
; minutes 8 bits (0 to 59)
; seconds 8 bits (0 to 59)
; ======
; Total 52 bits

call readRTC
movwf year
call delay_125

call readRTC
movwf month
call delay_125

call readRTC
movwf day
call delay_125

; dayOfWeek of week is a 4-bit value
call read4RTC

608 Chapter 16

movwf dayOfWeek
call delay_125

call readRTC
movwf hour
call delay_125

call readRTC
movwf minutes
call delay_125

call readRTC
movwf seconds

bcf PORTB,CE ; CE line low to end output
return

;============================
; read 4/8 bits from RTC
;============================
; Procedure to read 4/8 bits stored in 6355 registers
; Value returned in w register
read4RTC

movlw .4 ; 4 bit read
goto anyBits

readRTC
movlw .8 ; 8 bits read

anyBits:
movwf counter

; Read 6355 read operation requires the IO line be set low
; and the CE line high. Data is read in the following order:
; year, month, day, day-of-week, hour, minutes, seconds
readBits:

bsf PORTB,CLK; Set CLK high to validate data
bsf STATUS,C ; Set the carry flag (bit = 1)

; Operation:
; If data line is high, then bit read is a 1-bit
; otherwise bit read is a 0-bit

btfss PORTB,DAT ; Is data line high?
; Leave carry set (1 bit) if high

bcf STATUS,C ; Clear the carry bit (make bit 0)
; At this point the carry bit matches the data line

bcf PORTB,CLK ; Set CLK low to end read
; The carry bit is now rotated into the temp1 register

rrf temp1,1
decfsz counter,1 ; Decrement the bit counter
goto readBits ; Continue if not last bit

; At this point all bits have been read (8 or 4)

Analog to Digital and Realtime Clocks 609

movf temp1,0 ; Result to w
return

;============================
; write 4/8 bits to RTC
;============================
; Procedure to write 4 or 8 bits to the RTC registers
; ON ENTRY:
; temp1 register holds value to be written
; ON EXIT:
; nothing
write4RTC

movlw .4 ; Init for 4 bits
goto allBits

writeRTC
movlw .8 ; Init for 8 bits

allBits:
movwf counter ; Store in bit counter

writeBits:
bcf PORTB,CLK ; Clear the CLK line
call delay_5 ; Wait
bsf PORTB,DAT ; Set the data line to RTC
btfss temp1,0 ; Send LSB
bcf PORTB,DAT ; Clear data line
call delay_5 ; Wait for operation to

; complete
bsf PORTB,CLK ; Bring CLK line high to

; validate
rrf temp1,f ; Rotate bits in storage
decfsz counter,1 ; Decrement bit counter
goto writeBits ; Continue if not last bit
return

;============================
; init time variables
;============================
; Procedure to initialize time variables for testing
; Constants used in initialization are located in
; #define statements.
initRTC:

movlw iYear
movwf year
movlw iMonth
movwf month
movlw iDay
movwf day
movlw iDoW
movwf dayOfWeek

610 Chapter 16

movlw iHour
movwf hour
movlw iMin
movwf minutes
movlw iSec
movwf seconds
return

;============================
; binary to BCD conversion
;============================
; Convert a binary number into two packed BCD digits
; ON ENTRY:
; w register has binary value in range 0 to 99
; ON EXIT:
; output variables bcdLow and bcdHigh contain two
; packed unpacked BCD digits
; w contains two packed BCD digits
; Routine logic:
; The value 10 is subtracted from the source operand
; until the reminder is < 0 (carry cleared). The number
; of subtractions is the high-order BCD digit. 10 is
; then added back to the subtrahend to compensate
; for the last subtraction. The final reminder is the
; low-order BCD digit
; Variables:
; inNum storage for source operand
; bcdHigh storage for high-order nibble
; bcdLow storage for low-order nibble
; thisDig Digit counter
bin2bcd:

movwf inNum ; Save copy of source value
clrf bcdHigh ; Clear storage
clrf bcdLow
clrf thisDig

min10:
movlw .10
subwf inNum,f ; Subtract 10
btfsc STATUS,C ; Did subtract overflow?
goto sum10 ; No. Count subtraction
goto fin10

sum10:
incf thisDig,f ;increment digit counter
goto min10

; Store 10th digit
fin10:

movlw .10
addwf inNum,f ; Adjust for last subtract
movf thisDig,w ; get digit counter contents

Analog to Digital and Realtime Clocks 611

movwf bcdHigh ; Store it
; Calculate and store low-order BCD digit

movf inNum,w ; Store units value
movwf bcdLow ; Store digit

; Combine both digits
swapf bcdHigh,w ; High nibble to HOBs
iorwf bcdLow,w ; ORin low nibble
return

;==
end ; END OF PROGRAM

;==

612 Chapter 16

Appendix A

Resistor Color Codes

The resistor color coding system applies to carbon film, metal oxide film, fusible,
precision metal film, and wirewound resistors of the axial lead type. This system is
employed when the surface area is not sufficient to print the actual resistance value.
Several color codes are used, the most common ones are the 4-band and 5-band
codes. In the 4-band code the first two bands represent the magnitude of the resis-
tance, the third band is a multiplier for this value, and the fourth one encodes the er-
ror tolerance. In the 5-band code the first three bands represent the magnitude, the
fourth one serves as a multiplier, and the fifth one is the error tolerance.

The color codes for the various bands are as follows:

613

4-BAND CODE

1st BAND

2nd BAND

MULTIPLIER

TOLERANCE

5-BAND CODE

1st BAND

2nd BAND

3rd BAND

MULTIPLIER

TOLERANCE

COLOR MAGNITUDE MULTIPLIER TOLERANCE

Black 0 1
Brown 1 10 1%
Red 2 100 2%
Orange 3 1K
Yellow 4 10K
Green 5 100K 0.5%
Blue 6 1M 0.25%
Violet 7 10M 0.10%
Grey 8 0.05%
White 9
Gold 0.1 5%
Silver 0.01 10%

To read the resistance value first determine if it is a 4-band or a 5-band encoding.
Then proceed to identify the tolerance band, which is usually either gold or silver.
Starting at the opposite end, read the two or three magnitude bands and multiply
this value by the multiplier band. For example, a resistor with four color bands: red,
orange, brown, and gold is a 230 Ohm resistor with a 5% error tolerance.

There are several calculators on line that allow you to easily find the resistance
value. You can locate these calculators by searching for the keywords: resistor color
codes.

614 Appendix A

Appendix B

Building Your Own Circuit Boards

Several methods have been developed for making printed circuit boards on a small
scale, as would be convenient for the experimenter and prototype developer. If you
look through the pages of any electronics supply catalog you will find kits and compo-
nents based on different technologies of various levels of complexity. The method we
describe in this appendix is perhaps the simplest one since it does not require a photo-
graphic process.

The process consists of the following steps:

1. The circuit diagram is drawn on the PC using a general-purpose or a specialized draw-
ing program.

2. A printout is made of the circuit drawing on photographic paper.

3. The printout is transferred to a copper-clad circuit board blank by ironing over the
backside with a household clothes iron.

4. The resulting board is placed in an etching bath that eats away all the copper, except
the circuit image ironed onto the board surface.

5. The board is washed of etchant, cleaned, drilled, and the components soldered to it in
the conventional manner.

6. Optionally another image can be ironed onto the backside of the board to provide com-
ponent identification, logos, etc.

The following URL contains detailed information on making your own PCBs :

Http://www.fullnet.com/u/tomg/gooteedr.htm

Drawing the Circuit Diagram

Any computer drawing program serves this purpose. We have used CorelDraw but
there are several specialized PCB drawing programs available on the Internet. The fol-
lowing is a circuit board drawing used by us for a PIC flasher circuit described in the
text:

615

Figure B-1 PIC Flasher Circuit Board Drawing

Note in the drawing that the circuit locations where the components are to be sol-
dered consist of small circular pads, usually called solder pads. The following illus-
tration zooms into the lower corner of the drawing to show the details of the solder
pads.

Figure B-2 Detail of Circuit Board Pads

Quite often it is necessary for a circuit line to cross between two standard pads.
In this case the pads can be modified so as to allow it. The modified pads are shown
in Figure B-3.

616 Appendix B

Figure B-3 Modified Circuit Boards Pads

Printing the PCB Diagram

The circuit diagram must be printed using a laser printer. Inkjet toners do not produce
an image that resist the action of the etchant. Although in our experiments we used La-
serJet printers it is well documented that virtually any laser printer will work. Laser
copiers have also been used successfully for creating the PCB circuit image.

With the method we are describing, the width of the traces can become an issue.
The traces in the PCB image of Figure B-1 are 2 points, which is 0.027". Traces half
that width and less have been used successfully with this method but as the traces
become thinner the entire process becomes more critical. For most simple circuits
0.020" traces should be a useful limit. Also be careful not to touch the glossy side of
the paper or the printed image with fingers.

Note that the pattern is drawn as if you were looking from the component side of
the board.

Transferring the PCB Image

Users of this method state that one of the most critical elements is the paper used in
printing the circuit. Pinholes in some papers can degrade the image to the point that
the circuit lines (especially if they are very thin) do not etch correctly. Another prob-
lem relates to removing the ironed-on paper from the board without damaging the
board surface.

Glossy, coated inkjet-printer paper works well. Even better results can be ob-
tained with glossy photo paper. We use a common high-gloss photographic paper
available from Staples and sold under the name of "picture paper". The 30 sheets,
8-by-10 size, have the Staples number B031420197 1713. The UPC barcode is: 7 18103
02238 5.

Building Your Own Circuit Boards 617

Transferring the image onto the board blank is done by applying heat from a com-
mon clothes iron, set on the hottest setting, onto the paper/board sandwich. In most
irons the hottest setting is labeled “linen.” After going over the back of the paper
several times with the hot iron, the paper becomes fused to the copper side of the
blank board. The board/paper sandwich is then allowed to soak in water for about
10 minutes, after which the paper can be removed by peeling or light scrubbing with
a toothbrush. It has been mentioned that Hewlett-Packard toner cartridges with
microfine particles work better than the store-brand toner cartridges.

Etching the Board

Once the paper has been removed and the board washed it is time to prepare the board
for etching. The preliminary operations consist of rubbing the copper surface of the
board with Scotchbrite plastic abrasive pad and then scrubbing the surface with a pa-
per towel soaked with Acetone solvent.

When the board is rubbed and clean, it is time to etch the circuit. The etching so-
lution contains Ferric Chloride and is available from Radio Shack as a solution and
from Jameco Electronics as a powder to be mixed by the user. PCB Ferric Chloride
etchant should be handled with rubber gloves and rubber apron since it stains the
skin and utensils. Also, concentrated acid fumes from Ferric Chloride solution are
toxic and can cause severe burns. These chemicals should be handled according to
cautions and warnings posted in the containers.

The Ferric Chloride solution should be stored and used in a plastic or glass con-
tainer, never metal. Faster etching is accomplished if the etching solution is first
warmed by placing the bottle in a tub of hot water. Once the board is in the solution,
face up, the container is rocked back and forth. It is also possible to aid in the cop-
per removal by rubbing the surface with a rubber-gloved finger.

Finishing the Board

The etched board should be washed well, first in water and then in Lacquer Thinner or
Acetone; either solvent works. It is better to just rub the board surface with a paper
towel soaked in the solvent. Keep in mind that most solvents are flammable and explo-
sive, and also toxic.

After the board is clean the mounting holes can be drilled using the solder pads as
a guide. A small electric drill at high revolutions, such as a Dremmel tool, works
well for this operation. The standard drill size for the mounting holes is 0.035". A #60
drill (0.040") also works well. Once all the holes are drilled, the components can be
mounted from the backside and soldered at the pads.

The Backside Image

The component side (backside) of the PCB can be printed with an image of the compo-
nents to be mounted or with logos or other text. A single-sided blank board has no cop-
per coating on the backside so the image is just ironed on without etching. Probably
the best time to print the backside image is after the board has been etched and drilled
but before mounting the components.

618 Appendix B

Since the image is to be transferred directly to the board, it must be a mirror im-
age of the desired graphics and text. Most drawing programs contain a mirroring
transformation so the backside image can be drawn using the component side as a
guide, and then mirrored horizontally before ironing it on the backside of the board.
Figure B-4 shows the backside image of the sample circuit board, before and after
mirroring.

Figure B-4 Graphics and Text for Board Backside Image

Note on the left-side image in Figure B-4 that a lighter copy of the circuit diagram
was used to lay out the image of the backside. Once drawn, the backside drawing
was mirrored horizontally, as shown in the right-side image.

Building Your Own Circuit Boards 619

1
6
F
8
4

R1
L1

L2

L3

L4

L5

L6

L7

L8

C1 O1

Skipanon

L
e
d

F
la

s
h
e
r

1
.0

+
9

-1
2
v

G
n

d

C2

R9

R2

R3

R4

R5

R6

R7

R8

1
6
F
8
4

R1
L1

L2

L3

L4

L5

L6

L7

L8

C1O1

Skipanon

L
e
d
F
la
s
h
e
r
1
.0

+
9
-1
2
v

G
n
d

C2

R9

R2

R3

R4

R5

R6

R7

R8

Appendix C

Mid-range Instruction Set

This Appendix describes the instructions in the PIC mid-range family. Not all instruc-
tions are implemented in all devices but all of them work in the specific PICs discussed
in the text, that is, the 16F84A and the 16F877.

Table C.1

Mid-range PIC Instruction Set

BITS
MNEMONIC OPERAND DESCRIPTION CYCLES AFFECTED

BYTE-ORIENTED OPERATIONS:
ADDWF f,d Add w and f 1 C,DC,Z
ANDWF f,d AND w with f 1 Z
CLRF f Clear f 1 Z
CLRW - Clear w 1 Z
COMF f,d Complement f 1 Z
DECF f,d Decrement f 1 Z
DECFSZ f,d Decrement, skip if 0 1(2) -
INCF f,d Increment f 1 Z
INCFSZ f,d Increment, skip if 0 1(2) -
IORWF f,d Inclusive OR w and f 1 Z
MOVF f,d Move f 1 Z
MOVWF f Move w to f 1 -
NOP - No operation 1 -
RLF f,d Rotate left through carry 1 C
RRF f,d Rotate right through carry 1 C
SUBWF f,d Subtract w from f 1 C,DC,Z
SWAPF f,d Swap nibbles in f 1 -
XORWF

BIT-ORIENTED OPERATIONS
BCF f,b Bit clear in f 1 -
BSF f,b Bit set in f 1 -
BTFSC f,b Bit test, skip if clear 1 -
BTFSS f,b Bit test, skip if set 1 -

LITERAL AND CONTROL OPERATIONS
ADDLW k Add literal and w 1 C,DC,Z

(continues)

621

Table C.1

Mid-range PIC Instruction Set (continued)

BITS
MNEMONIC OPERAND DESCRIPTION CYCLES AFFECTED

LITERAL AND CONTROL OPERATIONS
ANDLW k AND literal and w 1 Z
CALL k Call procedure 2 -
CLRWDT - Clear watchdog timer 1 TO,PD
GOTO k Go to address 2 -
IORLW k Inclusive OR literal with w 1 Z
MOVLW k Move literal to w 1 -
RETFIE - Return from interrupt 2 -
RETLWk - Return literal in w 2 -
RETURN - Return from procedure 2 -
SLEEP - Go into SLEEP mode 1 TO,PD
SUBLW k Subtract literal and w 1 C,DC,Z
XORLW k Exclusive OR literal 1 Z

with w

Legend:
f = file register
d = destination: 0 = w register

1 = file register
b = bit position
k = 8-bit constant

622 Appendix C

Table C.2

Conventions used in Instruction Descriptions

FIELD DESCRIPTION

f Register file address (0x00 to 0x7F)
w Working register (accumulator)
b Bit address within an 8-bit file register (0 to 7)
k Literal field, constant data or label (may be either an 8-bit or an

11-bit value)
x Don't care (0 or 1)
d Destination select;

d = 0: store result in W,
d = 1: store result in file register f.

dest Destination either the W register or the specified register file
location

label Label name
TOS Top of Stack
PC Program Counter
PCLATH Program Counter High Latch
GIE Global Interrupt Enable bit
WDT Watchdog Timer
!TO Time-out bit
!PD Power-down bit
[] Optional element
[XXX] Contents of memory location pointed at by XXX register
() Contents
-> Assigned to
< > Register bit field
italics User defined term

Mid-range Instruction Set 623

ADDLW Add Literal and w

Syntax: [label] ADDLW k
Operands: k in range 0 to 255
Operation: (w) + k -> w
Status Affected: C, DC, Z
Description: The contents of the w register are added to

the eight bit literal 'k' and the result is
placed in the w register

Words: 1
Cycles: 1

Example1:

ADDLW 0x15
Before Instruction: w = 0x10

After Instruction: w = 0x25

Example 2:

ADDLW var1
Before Instruction: w = 0x10

var1 is data memory variable

var1 = 0x37

After Instruction w = 0x47

624 Appendix C

ADDWF Add w and f

Syntax: [label] ADDWF f,d
Operands: f in range 0 to 127

d = 0 / 1
Operation: (W) + (f) -> destination
Status Affected: C, DC, Z
Description: Add the contents of the W register with

register 'f'. If 'd' is 0 the result is stored in
the w register. If 'd' is 1 the result is stored
back in register 'f'.

Words: 1
Cycles: 1

Example 1:

ADDWF FSR,0
Before Instruction:

w = 0x17
FSR = 0xc2

After Instruction
W = 0xd9
FSR = 0xc2

Example 2:

ADDWF INDF, 1
before Instruction:

W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x20

After Instruction
W = 0x17
FSR = 0xC2
Contents of Address (FSR) = 0x37

Mid-range Instruction Set 625

BCF Bit Clear f

Syntax: [label] BCF f,b
Operands: f in range 0 to 127

b in range 0 to 7
Operation: 0 ->f
Status Affected: None
Description: Bit 'b' in register 'f' is cleared.
Words: 1
Cycles: 1

Example 1:

BCF reg1,7
Before Instruction: reg1 = 0xc7 (1100 0111)
After Instruction: reg1 = 0x47 (0100 0111)

Example 2:

BCF INDF,3
Before Instruction: w = 0x17

FSR = 0xc2
[FSR]= 0x2f

After Instruction
w = 0x17
FSR = 0xc2
[FSR] = 0x27

626 Appendix C

BSF Bit Set f

Syntax: [label] BSF f,b
Operands: f in range 0 to 127

b in range 0 to 7
Operation: 1-> f
Status Affected: None
Description: Bit 'b' in register 'f' is set.
Words: 1
Cycles: 1
Example 1:

BSF reg1,6
Before Instruction : reg1 = 0011 1010
After Instruction: reg1 = 0111 1010

Example 2:

BSF INDF,3
Before Instruction: w = 0x17

FSR = 0xc2
[FSR] = 0x20

After Instruction
w = 0x17
FSR = 0xc2
[FSR] = 0x28

Mid-range Instruction Set 627

BTFSC Bit Test f, Skip if Clear

Syntax: [label] BTFSC f,b
Operands: f in range 0 to 127

b in range 0 to 7
Operation: skip next instruction if (f) = 0
Status Affected: None
Description: If bit 'b' in register 'f' is '0' then the next

instruction is skipped. If bit 'b' is '0' then the
next instruction (fetched during the current in-
struction execution) is discarded, and a NOP
is executed instead, making this a 2 cycle
instruction.

Words: 1
Example 1:

repeat:
btfsc reg1,4
goto repeat

Case 1: Before Instruction
PC = $
reg1 = xxx0 xxxx

After Instruction
Since reg1<4>= 0,
PC = $ + 2 (goto skipped)

Case 2: Before Instruction
PC = $
reg1= xxx1 xxxx

After Instruction
Since FLAG<4>=1,
PC = $ + 1 (goto executed)

628 Appendix C

BTFSS Bit Test f, Skip if Set

Syntax: [label] BTFSC f,b
Operands: f in range 0 to 127

b in range 0 to 7
Operation: skip next instruction if (f) = 1
Status Affected: None
Description: If bit 'b' in register 'f' is '1' then the next

instruction is skipped. If bit 'b' is '0' then the
next instruction (fetched during the current
instruction execution) is discarded, and a NOP
is executed instead, making this a 2 cycle
instruction.

Words: 1
Cycles: 1(2)

repeat:
btfss reg1,4
goto repeat

Case 1: Before Instruction
PC = $
Reg1 = xxx1 xxxx

After Instruction
Since Reg1<4>= 1,
PC = $ + 2 (goto skipped)

Case 2: Before Instruction
PC = $
Reg1 = xxx0 xxxx

After Instruction
Since Reg1<4>=0,
PC = $ + 1 (goto executed)

Mid-range Instruction Set 629

CALL Call Subroutine

Syntax: [label] CALL k
Operands: k in range 0 to 2047
Operation: (PC) + -> TOS,

k-> PC<10:0>,
(PCLATH<4:3>)-> PC<12:11>

Status Affected: None
Description: Call Subroutine. First, the 13-bit return address

(PC+1) is pushed onto the stack. The eleven bit
immediate address is loaded into PC bits
<10:0>. The upper bits of the PC are loaded
from PCLATH<4:3>. CALL is a two cycle
instruction.

Words: 1
Cycles: 2
Example 1:

Here:
call There

Before Instruction
PC = AddressHere
After Instruction
TOS = Address Here + 1
PC = Address There

630 Appendix C

CLRF Clear f

Syntax: [label] CLRF f
Operands: f in range 0 to 127
Operation: 00h ->f

1-> Z
Status Affected: Z
Description: The contents of register 'f' are cleared and

the Z bit is set.
Words: 1
Cycles: 1
Example 1:

clrf reg1
Before Instruction: reg1 = 0x5a
After Instruction: reg1 = 0x00

Z = 1

Example 2:

Clrf INDF
Before Instruction: FSR = 0xc2

[FSR]= 0xAA
After Instruction: FSR = 0xc2

[FSR] = 0x00
Z = 1

Mid-range Instruction Set 631

CLRW Clear w

Syntax: [label] CLRW
Operands: None
Operation: 00h -> w

1-> Z
Status Affected: Z
Description: w register is cleared. Zero bit (Z) is set.
Words: 1
Cycles: 1
Example 1:

CLRW
Before Instruction: w = 0x5A
After Instruction: w = 0x00

Z = 1

632 Appendix C

CLRWDT Clear Watchdog Timer

Syntax: [label] CLRWDT
Operands: None
Operation: 00h -> WDT

0 -> WDT prescaler count,
1 -> TO
1 -> PD

Status Affected: TO, PD
Description: CLRWDT instruction clears the Watchdog

Timer. It also clears the prescaler
count of the WDT. Status bits TO and PD are
set. The instruction does not change the
assignment of the WDT prescaler.

Words: 1
Cycles: 1
Example 1:

CLRWDT
Before Instruction: WDT counter= x

WDT prescaler = 1:128
After Instruction: WDT counter=0x00

WDT prescaler count=0
TO = 1
PD = 1
WDT prescaler = 1:128

Mid-range Instruction Set 633

COMF Complement f

Syntax: [label] COMF f,d
Operands: f in range 0 to 127

d is 0 or 1
Operation: (f) -> destination
Status Affected: Z
Description: The contents of register 'f' are 1’s

complemented. If 'd' is 0 the result is stored in
w. If 'd' is 1 the result is stored back in register
'f'.

Words: 1
Cycles: 1
Example 1:

comf reg1,0
Before Instruction: reg1 = 0x13
After Instruction: reg1 = 0x13

w = 0xEC

Example 2:

comf INDF,1
Before Instruction: FSR = 0xc2

[FSR]= 0xAA
After Instruction: FSR = 0xc2

[FSR] = 0x55

Example 3:

comf reg1,1
Before Instruction: reg1= 0xff
After Instruction: reg1 = 0x00

634 Appendix C

DECF Decrement f

Syntax: [label] DECF f,d
Operands: f in range 0 to 127

d is either 0 or 1
Operation: (f) - 1 -> destination
Status Affected: Z
Description: Decrement register 'f'. If 'd' is 0 the result is

stored in the w register. If 'd' is 1 the
result is stored back in register 'f'.

Words: 1
Cycles: 1
Example 1:

decf count,1
Before Instruction: count = 0x01

Z = 0
After Instruction: count = 0x00

Z = 1

Example 2:

decf INDF,1
Before Instruction: FSR = 0xc2

[FSR] = 0x01
Z = 0

After Instruction: FSR = 0xc2
[FSR] = 0x00
Z = 1

Example 3:

decf count,0
Before Instruction: count = 0x10

w = x
Z = 0

After Instruction: count = 0x10
w = 0x0f

Mid-range Instruction Set 635

DECFSZ Decrement f, Skip if 0

Syntax: [label] DECFSZ f,d
Operands: f in the range 0 to 127

d is either 0 or 1
Operation: (f) - 1 -> destination; skip if result = 0
Status Affected: None
Description: The contents of register 'f' are

decremented. If 'd' is 0 the result is placed
in the w register. If 'd' is 1 the result is
placed back in register 'f'.
If the result is 0, then the next instruction
(fetched during the current instruction
execution) is discarded and a NOP is
executed instead, making this a 2 cycle
instruction.

Words: 1
Cycles: 1(2)
Example

here:
decfsz count,1
goto here

Case 1:
Before Instruction: PC = $

count = 0x01
After Instruction: count = 0x00

PC = $ + 2 (goto skipped)
Case 2:
Before Instruction: PC = $

count = 0x04
After Instruction: count = 0x03

PC = $ + 1 (goto executed)

636 Appendix C

GOTO Unconditional Branch

Syntax: [label] GOTO k
Operands: 0 £ k £ 2047
Operation: k -> PC<10:0>

PCLATH<4:3> ->PC<12:11>
Status Affected: None
Description: GOTO is an unconditional branch. The eleven

bit immediate value is loaded into PC bits
<10:0>. The upper bits of PC are loaded from
PCLATH<4:3>.
GOTO is a two cycle instruction.

Words: 1
Cycles: 2
Example

goto There
After Instruction: PC = address of There

Mid-range Instruction Set 637

INCF Increment f

Syntax: [label] INCF f,d
Operands: f in range 0 to 127

d is either 0 or 1
Operation: (f) + 1 -> destination
Status Affected: Z
Description: The contents of register 'f' are incremented. If

'd' is 0 the result is placed in the w register. If 'd'
is 1 the result is placed back in register 'f'.

Words: 1
Cycles: 1
Example 1

incf count,1
Before Instruction: count = 0xff

Z = 0
After Instruction: count = 0x00

Z = 1

Example 2

incf INDF,1
Before Instruction: FSR = 0xC2

[FSR] = 0xff
Z = 0

After Instruction: FSR = 0xc2
[FSR] = 0x00
Z = 1

Example 3

incf count,0
Before Instruction: count = 0x10

w = x
Z = 0

After Instruction: count = 0x10
w = 0x11
Z = 0

638 Appendix C

INCFSZ Increment f, Skip if 0

Syntax: [label] INCFSZ f,d
Operands: f in range 0 to 127

d is either 0 or 1
Operation: (f) + 1 -> destination, skip if result = 0
Status Affected: None
Description: The contents of register 'f' are incremented. If

'd' is 0 the result is placed in the w register. If 'd'
is 1 the result is placed back in register 'f'.
If the result is 0, then the next instruction
(fetched during the current instruction
execution) is discarded and a NOP is executed
instead, making this a 2 cycle instruction.

Words: 1
Cycles: 1(2)
Example

Here:
incfsz count,1
goto Here

Case 1:
Before Instruction: PC = $

count = 0x10
After Instruction: count = 0x11

PC = $ + 1 (goto executed)
Case 2:

Before Instruction: PC = $
count = 0x00

After Instruction: count = 0x01
PC = $ + 2 (goto skipped)

Mid-range Instruction Set 639

IORLW Inclusive OR Literal with w

Syntax: [label] IORLW k
Operands: k is in range 0 to 255
Operation: (w).OR. k -> w
Status Affected: Z
Description: The contents of the w register is OR’ed with

the eight bit literal 'k'. The result is placed in the
w register.

Words: 1
Cycles: 1
Example 1

iorlw 0x35
Before Instruction: w = 0x9a
After Instruction: w = 0xbfF

Z = 0

Example 2

iorlw myreg
Before Instruction: w = 0x9a
Myreg is a variable representing a location
in PIC RAM. [Myreg] = 0x37
After Instruction: w = 0x9F

Z = 0

Example 3

iorlw 0x00
Before Instruction: w = 0x00
After Instruction: w = 0x00

640 Appendix C

IORWF Inclusive OR w with f

Syntax: [label] IORWF f,d
Operands: f is in range 0 to 127

d is either 0 or 1
Operation: (W).OR. (f) -> destination
Status Affected: Z
Description: Inclusive OR the w register with register 'f'. If 'd'

is 0 the result is placed in the w register. If 'd' is
1 the result is placed back in register 'f'.

Words: 1
Cycles: 1
Example 1

iorwf result,0
Before Instruction: result = 0x13

w = 0x91
After Instruction: result = 0x13

w = 0x93
Z = 0

Example 2

iorwf INDF,1
Before Instruction: w = 0x17

FSR = 0xc2
[FSR] = 0x30

After Instruction: w = 0x17
FSR = 0xc2
[FSR] = 0x37
Z = 0

Example 3

iorwf result,1
Case 1: Before Instruction: result = 0x13

w = 0x91
After Instruction: result = 0x93

w = 0x91
Z = 0

Case 2: Before Instruction: result = 0x00
w = 0x00

After Instruction: result = 0x00
w = 0x00
Z = 1

Mid-range Instruction Set 641

MOVF Move f

Syntax: [label] MOVF f,d
Operands: f is in range 0 to 127

d is either 0 or 1
Operation: (f) -> destination
Status Affected: Z
Description: The contents of register ’f’ is moved to a

destination dependent upon the status of ’d’. If
’d’ = 0, destination is W register. If ’d’ = 1, the
destination is file register ’f’ itself. ’d’ = 1 is
useful to test a file register since status flag Z
is affected.

Words: 1
Cycles: 1
Example 1

movf FSR,0
Before Instruction: w = 0x00

FSR = 0xc2
After Instruction: w = 0xc2

Z = 0

Example 2

movf INDF,0
Before Instruction: w = 0x17

FSR = 0xc2
[FSR] = 0x00

After Instruction: w = 0x17
FSR = 0xc2
[FSR] = 0x00
Z = 1

Example 3

movf FSR,1
Case 1: Before Instruction: FSR = 0x43

After Instruction: FSR = 0x43
Z = 0

Case 2: Before Instruction: FSR = 0x00
After Instruction: FSR = 0x00

Z = 1

642 Appendix C

MOVLW Move Literal to w

Syntax: [label] MOVLW k
Operands: k in range 0 to 255
Operation: k- > w
Status Affected: None
Description: The eight bit literal 'k' is loaded into W register.

The don’t cares will assemble as 0’s.
Words: 1
Cycles: 1
Example 1

movlw 0x5a
After Instruction: w = 0x5A

Example 2

movlw myreg
Before Instruction: w = 0x10

[myreg] = 0x37

After Instruction: w = 0x37

Mid-range Instruction Set 643

MOVWF Move w to f

Syntax: [label] MOVWF f
Operands: f in range 0 to 127
Operation: (w) -> f
Status Affected: None
Description: Move data from W register to register 'f'.
Words: 1
Cycles: 1
Example 1

movwf OPTION_REG
Before Instruction: OPTION_REG = 0xff

w = 0x4f
After Instruction: OPTION_REG = 0x4f

w = 0x4f

Example 2

movwf INDF
Before Instruction: w = 0x17

FSR = 0xC2
[FSR] = 0x00

After Instruction: w = 0x17
FSR = 0xC2
[FSR] = 0x17

644 Appendix C

NOP No Operation

Syntax: [label] NOP
Operands: None
Operation: No operation
Status Affected: None
Description: No operation.
Words: 1
Cycles: 1
Example

nop
Before Instruction: PC = $
fter Instruction: PC = $ + 1

Mid-range Instruction Set 645

OPTION Load Option Register

Syntax: [label] OPTION
Operands: None
Operation: (w) -> OPTION_REG
Status Affected: None
Description: The contents of the w register are loaded in the

OPTION_REG register. This instruction is
supported for code compatibility with
PIC16C5X products. Since OPTION_REG is a
Readable/writable register, code can directly
address it without using this instruction.

Words: 1
Cycles: 1
Example:

movlw b’01011100’
option

.

646 Appendix C

RETFIE Return from Interrupt

Syntax: [label] RETFIE
Operands: None
Operation: TOS -> PC,

1 -> GIE
Status Affected: None
Description: Return from Interrupt. The 13-bit address at the

Top of Stack (TOS) is loaded in the PC. The
Global Interrupt Enable bit, GIE (INTCON<7>),
Is automatically set, enabling Interrupts. This is
a two cycle instruction.

Words: 1
Cycles: 2
Example

retfie
After Instruction: PC = TOS

GIE = 1

Mid-range Instruction Set 647

RETLW Return with Literal in W

Syntax: [label] RETLW k
Operands: k in range 0 to 255
Operation: k -> w;

TOS -> PC
Status Affected: None
Description: The w register is loaded with the eight bit literal

'k'. The program counter is loaded 13-bit
address at the Top of Stack (the return
address). This is a two cycle instruction.

Words: 1
Cycles: 2
Example

movlw 2 ; Load w with desired
; Table offset

call table ; When call returns w
; contains value stored
; in table

Table:
addwf pc ; w = offset
retlw .22 ; First table entry
retlw .23 ; Second table entry
retlw .24
.
.
.
retlw .29 ; Last table entry
Before Instruction: w = 0x02
After Instruction: w = .24

648 Appendix C

RETURN Return from Subroutine

Syntax: [label] RETURN
Operands: None
Operation: TOS -> PC
Status Affected: None
Description: Return from subroutine. The stack is POPed

and the top of the stack (TOS) is loaded into
the program counter. This is a two cycle

instruction.
Words: 1
Cycles: 2
Example

return
After Instruction: PC = TOS

Mid-range Instruction Set 649

RLF Rotate Left f through Carry

Syntax: [label] RLF f,d
Operands: f in range 0 to 127

d is either 0 or 1
Operation: See description below
Status Affected: C
Description: The contents of register 'f' are rotated one bit to

the left through the Carry Flag. If 'd' is 0 the
result is placed in the W register. If 'd' is 1 the
result is stored back in register 'f'.

Words: 1
Cycles: 1
Example 1

rlf reg1,0
Before Instruction: reg1 = 1110 0110

C = 0
After Instruction: reg1 = 1110 0110

w =1100 1100
C =1

Example 2

rlf INDF,1
Case 1: Before Instruction: w = xxxx xxxx

FSR = 0xc2
[FSR] = 0011 1010
C = 1

After Instruction: w = 0x17
FSR = 0xc2
[FSR] = 0111 0101
C = 0

Case 2: Before Instruction: w = xxxx xxxx
FSR = 0xC2
[FSR] = 1011 1001
C = 0

After Instruction: w = 0x17
FSR = 0xC2
[FSR] = 0111 0010
C = 1

650 Appendix C

RRF Rotate Right f through Carry

Syntax: [label] RRF f,d
Operands: f in range 0 to 127

d is either 0 or 1
Operation: See description below
Status Affected: C
Description: The contents of register 'f' are rotated one bit to

the right through the Carry Flag. If 'd' is 0 the
result is placed in the w register. If 'd' is 1 the
result is placed back in register 'f'.

Words: 1
Cycles: 1
Example 1

rrf reg1,0
Before Instruction: reg1= 1110 0110

w = xxxx xxxx
C = 0

After Instruction: reg1= 1110 0110
w = 0111 0011
C = 0

Example 2

rrf INDF,1
Case 1: Before Instruction: w = xxxx xxxx

FSR = 0xc2
[FSR] = 0011 1010
C = 1

After Instruction: w = 0x17
FSR = 0xC2
[FSR] = 1001 1101
C = 0

Case 2: Before Instruction: w = xxxx xxxx
FSR = 0xC2
[FSR] = 0011 1001
C = 0

After Instruction: w = 0x17
FSR = 0xc2
[FSR] = 0001 1100
C = 1

Mid-range Instruction Set 651

SLEEP

Syntax: [label] SLEEP
Operands: None
Operation: 00h -> WDT,

0 -> WDT prescaler count,
1 -> TO,
0 -> PD

Status Affected: TO, PD
Description: The power-down status bit, PD is cleared.

Time-out status bit, TO is set. Watchdog Timer
and its prescaler count are cleared. The
processor is put into SLEEP mode with the
oscillator stopped. The SLEEP instruction does
not affect the assignment of the WDT
prescaler.

Words: 1
Cycles: 1
Example:

SLEEP

652 Appendix C

SUBLW Subtract w from Literal

Syntax: [label] SUBLW k
Operands: k in range 0 to 255
Operation: k - (W) -> W
Status Affected: C, DC, Z
Description: The w register is subtracted (2’s complement

method) from the eight bit literal 'k'. The result
is placed in the w register.

Words: 1
Cycles: 1
Example 1

sublw 0x02
Case 1: Before Instruction: w = 0x01

C = x
Z = x

After Instruction: w = 0x01
C = 1 if result +
Z = 0

Case 2: Before Instruction: w = 0x02
C = x
Z = x

After Instruction: w = 0x00
C = 1 ; result = 0
Z = 1

Case 3: Before Instruction: w = 0x03
C = x
Z = x

After Instruction: w = 0xff
C = 0 ; result -
Z = 0

Example 2

sublw myreg
Before Instruction: w = 0x10

[myreg] = 0x37
After Instruction w = 0x27

C = 1 ; result +

Mid-range Instruction Set 653

SUBWF Subtract w from f

Syntax: [label] SUBWF f,d
Operands: f in range 0 to 127

d is either 0 or 1
Operation: (f) - (W) -> destination
Status Affected: C, DC, Z
Description: Subtract (2’s complement method) w register

from register 'f'. If 'd' is 0 the result is stored in
the w register. If 'd' is 1 the result is stored

back in register 'f'.
Words: 1
Cycles: 1
Example 1

subwf reg1,1
Case 1: Before Instruction: reg1 = 3

w = 2
C = x
Z = x

After Instruction: reg1 = 1
w = 2
C = 1 ; result +
Z = 0

Case 2: Before Instruction: reg1 = 2
w = 2
C = x
Z = x

After Instruction: reg1 = 0
w = 2
C = 1 ; result = 0
Z = 1

Case 3: Before Instruction: reg1 = 1
w = 2
C = x
Z = x

After Instruction: reg1 = 0xff
w = 2
C = 0 ; result is -
Z = 0

654 Appendix C

SWAPF Swap Nibbles in f

Syntax: [label] SWAPF f,d
Operands: f in range 0 to 127

d is either 0 or 1
Operation: (f<3:0>) -> destination<7:4>,

(f<7:4>) -> destination<3:0>
Status Affected: None
Description: The upper and lower nibbles of register 'f' are

exchanged. If 'd' is 0 the result is placed in w
register. If 'd' is 1 the result is placed in register
'f'.

Words: 1
Cycles: 1
Example 1

swapf reg,0
Before Instruction: reg1 = 0xa5
After Instruction: reg1 = 0xa5

W = 0x5a

Example 2

Swapf INDF,1
Before Instruction: w = 0x17

FSR = 0xc2
[FSR] = 0x20

After Instruction: w = 0x17
FSR = 0xC2
[FSR] = 0x02

Example 3

swapf reg,1
Before Instruction: reg1 = 0xa5
After Instruction: reg1 = 0x5a

Mid-range Instruction Set 655

TRIS Load TRIS Register

Syntax: [label] TRIS f
Operands: f in range 5 to 7
Operation: (W) -> TRIS register f;
Status Affected: None
Description: The instruction is supported for code

compatibility with the PIC16C5X products.
Since TRIS registers are readable and writable,
code can address these registers directly

Words: 1
Cycles: 1
Example

movlw B'00000000'
tris PORTB

656 Appendix C

XORLW Exclusive OR Literal with W

Syntax: [label] XORLW k
Operands: k in range 0 to 255
Operation: (w).XOR. k -> W
Status Affected: Z
Description: The contents of the w register are XOR’ed with

the eight bit literal 'k'. The result is placed in the
w register.

Words: 1
Cycles: 1
Example 1

xorlw b’10101111’
Before Instruction: w = 1011 0101
After Instruction : w = 0001 1010

Z = 0

Example 2

xorlw myreg
Before Instruction: w = 0xaf

[Myreg] = 0x37
After Instruction: w = 0x18

Z = 0

Mid-range Instruction Set 657

XORWF Exclusive OR w with f

Syntax: [label] XORWF f,d
Operands: f in range 0 to 127

d is either 0 or 1
Operation: (W).XOR. (f) -> destination
Status Affected: Z
Description: Exclusive OR the contents of the w register

with register 'f'. If 'd' is 0 the result is stored in
the w register. If 'd' is 1 the result is stored back
in register 'f'.

Words: 1
Cycles: 1
Example 1

xorwf reg,1
Before Instruction: w = 1011 0101

reg = 1010 1111
After Instruction: reg = 0001 1010

w = 1011 0101

Example 2

xorwf reg,0
Before Instruction w = 1011 0101

reg = 1010 1111
After Instruction: reg = 1010 1111

w = 0001 1010

Example 3

xorwf INDF,1
Before Instruction: w = 1011 0101

FSR = 0xc2
[FSR] = 1010 1111

After Instruction: w = 1011 0101
FSR = 0xc2
[FSR] = 0001 1010

658 Appendix C

Appendix D

Supplementary Programs

In this Appendix we have listed several programs that were developed while writing
this book and for some reason were not used in the text. They are provided to the
reader as a code grab-bag in the hope some may find a useful fragment or routine
among those listed. Each program contains a description of its purpose and function-
ality. The code for the supplementary programs is available in the book’s on-line soft-
ware package.

; File: SecondCnt.ASM
; Date: April 29, 2006
; Author: Julio Sanchez
;
; Description:
; Using timer0 to delay one second at a signal
; rate of 1,000,000 beats per second
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates setup values

659

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; PIC register equates
;===
porta equ 0x05
portb equ 0x06
status equ 0x03
z equ 0x02
c equ 0x00
tmr0 equ 0x01
; countL equ 0x01 ; Alias for tmr0
;
;===
; variables in PIC RAM
;===
; Local variables

cblock 0x0d ; Start of block
J ; counter J
K ; counter K

; 3-byte auxiliary counter. Low order byte is kept
; in the timer0 register

countM ; Medium byte
countH ; High byte

endc
;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x04
; goto IntServ
;=============================
; main program
;=============================
main:
; Clear the watchdog timer and reset prescaler

clrf tmr0
clrwdt

; Set up the OPTION register bit map

660 Appendix D

movlw b'11011000'
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | *000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | 1 = to WDT
; | | | | *0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
; Setup ports

movlw 0x00 ; Set port B to output
tris portb
clrf portb ; All port B to 0

; Port A is not used in this program
mloop:

bsf portb,0
call TM0delay
bcf portb,0
call TM0delay
goto mloop

;*********************************
; one second delay sub-routine
; using Timer0
;*********************************
; Routine logic:
; The prescaler is assigned to timer0 and setup so
; that the timer runs at 1:2 rate. This means that
; every time the counter reaches 128 (0x80) a total
; of 256 machine cycles have elapsed. The value 0x80
; is detected by testing bit 7 of the counter
; register. This method gives the routine a total of
; 128 machine cycles before the next counter beat must
; be acknowledged.
TM0delay:

Supplementary Programs 661

; Timer is designed to count from 0 to 1,000,000
; 1,000,000 = 0x0f 0x42 0x40
; ---- ---- ----
; | | |___ (see note)
; | |________ countM
; |_____________ countH
; Note:
; The initial count of 0x40 (64 decimal) is ensured
; by initializing the tmr0 register to count 32 timer
; beats at the 1:2 prescaler rate. 128 - 32 = 96 = 0x60
; Initialize the counters:

movlw 0x0f
movwf countH
movlw 0x42
movwf countM
movlw 0x60
movwf tmr0

; Routine tests timer overflow by testing bit 7 of
; the tmr0 register.
cycle:

movlw 3
subwf tmr0,w
btfsc status,c
goto cycle

; Subtract 256 from beat counter by decrementing the
; mid-order byte

decfsz countM,f
goto cycle ; Continue if mid-byte not

zero
; At this point the mid-order byte has overflowed.
; High-order byte must be decremented.

decfsz countH,f
goto cycle

; At this point one second has elapsed
return
end

662 Appendix D

; File name: SevenSeg.asm
; Date: April 19, 2006
; Author: Julio Sanchez
;
; Reference: SevenSeg Circuit and Board
;
; Description:
; Test program for reading four toggle switches and
; displaying the represented hex number on seven-segment
; LED. Also contains a pushbutton switch to activate a
; piezo buzzer. Switches are wired active low.
;
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates setup values
;
;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;
;===
; constant definitions
; (per circuit wiring diagram)
;===
#define Pb_sw 4 ; Port A line 4 to push button switch
;
;===
; PIC register equates
;===
Porta equ 0x05
Portb equ 0x06
;============================

Supplementary Programs 663

; local variables
;============================

cblock 0x0c ; Start of block
J ; counter J
K ; counter K
endc

;==
; program
;==

org 0 ; start at address 0
goto main

;
; Space for interrupt handlers

org 0x08

main:
; Port A. Five low-order lines set for input

movlw B'00011111' ; w = 00011111 binary
tris porta ; port A (lines 0 to 4) to

input
; Port B. All eight lines for output

movlw B'00000000' ; w := 00000000 binary
tris portb ; port B to output

;===============================
; Pushbutton switch processing
;===============================
pbutton:
; Push button switch on demo board is wired to port A bit 4
; Switch logic is active low

btfss porta,Pb_sw ; Test and skip if switch bit
; set

goto buzzit ; Buzz if switch ON,
; At this point port A bit 4 is set (switch is off)

call buzoff ; Buzzer off
goto readdip ; Read DIP switches

buzzit:
call buzon ; Turn on buzzer
goto pbutton

;============================
; dip switch monitoring
;============================
readdip:
; Read port A switches

movf porta,w ; Port A bits to w
; Since board is wired active low then all switch bits
; must be negated. This is done by XORing with 1-bits

xorlw b'11111111' ; Invert all bits in w
; Mask off 4 high-order bits

664 Appendix D

andlw b'00001111' ; And with mask
; At this point the w register contains a 4-bit value
; in the range 0 to 0xf. Use this value (in w) to
; obtain seven-segment display code

call segment
movwf portb ; Display switch bits
goto pbutton

;================================
; routine to returns 7-segment
; codes
;================================
segment:

addwf PCL,f ; PCL is program counter latch
retlw 0x3f ; 0 code
retlw 0x06 ; 1
retlw 0x5b ; 2
retlw 0x4f ; 3
retlw 0x66 ; 4
retlw 0x6d ; 5
retlw 0x7d ; 6
retlw 0x07 ; 7
retlw 0x7f ; 8
retlw 0x6f ; 9
retlw 0x77 ; A
retlw 0x7c ; B
retlw 0x39 ; C
retlw 0x5b ; D
retlw 0x79 ; E
retlw 0x71 ; F
retlw 0x7f ; Just in case all on

;============================
; piezo buzzer ON
;============================
; Routine to turn on piezo buzzer on port B bit 7
buzon:

bsf portb,7 ; Tune on bit 7, port B
return

;
;============================
; piezo buzzer OFF
;============================
; Routine to turn off piezo buzzer on port B bit 7
buzoff:

bcf portb,7 ; Bit 7 port b clear
return

;=============================
; long delay sub-routine

Supplementary Programs 665

; (for code testing)
;=============================
long_delay

movlw D'200' ; w = 200 decimal
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

goto kloop
decfsz J,f ; J = J-1, skip next

if zero
goto jloop
return
end

666 Appendix D

; File name: TestStr.asm
; Date: April 19, 2006
; Author: Julio Sanchez
;
; Description:
; Program to test sending strings to LCD memory directly
; Program uses delay loops for interface timing.
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock

; Displays: Minnesota State, Mankato
;
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates setup values

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 2 ;| -- from wiring diagram
#define RW_line 3 ;|
; LCD line addresses (from LCD data sheet)

Supplementary Programs 667

#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command
;
;===
; PIC register equates
;===

porta equ 0x05
Portb equ 0x06
fsr equ 0x04
Status equ 0x03
indf equ 0x00
z equ 2

;===
; variables in PIC RAM
;===
; Reserve 16 bytes for string buffer

cblock 0x0c
strData
endc

; Leave 16 bytes and Continue with local variables
cblock 0x1d ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
pic_ad ; Storage for start of text area

; (labeled strData) in PIC RAM
J ; counter J
K ; counter K
index ; Index into text table (also used

; for auxiliary storage)
endc

;==
; program
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
movlw b'00000000' ; All lines to output
tris porta ; in port A
tris portb ; and port B
movlw b'00000000' ; All outputs ports low
movwf porta

668 Appendix D

movwf portb
; Wait and initialize HD44780

call delay_5 ; Allow LCD time to initialize
itself

call initLCD ; Then do forced
initialization

call delay_5 ; (Wait probably not
necessary)
; Store base address of text buffer in PIC RAM

movlw 0x0c ; Start address of text buffer
movwf pic_ad ; to local variable

;=========================
; test routine
;=========================
; Set DDRAM address to start of first line

call line1
; Store characters and send directly

movlw 'H'
movwf portb
call pulseE
movlw 'e'
movwf portb
call pulseE
movlw 'l'
movwf portb
call pulseE
movlw 'l'
movwf portb
call pulseE
movlw 'o'
movwf portb
call pulseE
call delay_5

;=======================
; done!
;=======================
loopHere:

goto loopHere ;done

;**
; INITIALIZE LCD PROCEDURE
;**
initLCD
; Initialization for Densitron LCD module as follows:
; 8-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment

Supplementary Programs 669

; cursor shift right
; no display shift
;***********************|
; COMMAND MODE |
;***********************|

bcf porta,E_line ; E line low
bcf porta,RS_line ; RS line low for command
bcf porta,RW_line ; Write mode
call delay_125 ;delay 125

microseconds
;***********************|
; FUNCTION SET |
;***********************|

movlw 0x38 ; 0 0 1 1 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

movwf portb ;0011 1000
call pulseE ;pulseE and delay

;***********************|
; DISPLAY OFF |
;***********************|

movlw 0x08 ; 0 0 0 0 1 0 0 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf portb
call pulseE ;pulseE and delay

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off

670 Appendix D

; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf portb
call pulseE ;pulseE and delay

;***********************|
; ENTRY MODE SET |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ cursor increment
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

movwf portb ;00000110
call pulseE

;***********************|
; CURSOR/DISPLAY SHIFT |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
; SHIFT)
; | | | |_|___ don't care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left
; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

movwf portb ;0001 1111
call pulseE

;***********************|
; CLEAR DISPLAY |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___

COMMAND BIT
movwf portb ;0000 0001

;
call pulseE

Supplementary Programs 671

call delay_5 ;delay 5 milliseconds after init
return

;**
; DELAY AND PULSE PROCEDURES
;**
;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125

movlw D'42' ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;--
;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5

movlw D'41' ; Counter = 41
movwf count2 ; Store in variable

delay
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulseE E line
;========================
pulseE

bsf porta,E_line ;pulse E line
bcf porta,E_line
call delay_125 ;delay 125 microseconds
return

;=============================
; long delay sub-routine
; (for debugging)
;=============================
long_delay

movlw D'200' ; w = 200 decimal
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

goto kloop
decfsz J,f ; J = J-1, skip next if zero

672 Appendix D

goto jloop
return

;=============================
; LCD display procedure
;=============================
; Sends 16 characters from PIC buffer with address stored
; in variable pic_ad to LCD line previously selected
display16:
; Set up for data

bcf porta,E_line ; E line low
bsf porta,RS_line ; RS line low for control
call delay_125 ; Delay

; Set up counter for 16 characters
movlw D'16' ; Counter = 16
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf fsr ; W to FSR

getchar:
movf indf,w ; get character from display RAM

; location pointed to by file select
; register

movwf portb
call pulseE ;send data to display

; Test for 16 characters displayed
decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf fsr,f ; Bump pointer
goto getchar

;========================
; blank buffer
;========================
; Procedure to store 16 blank characters in PIC RAM
; buffer starting at address stored in the variable
; pic_ad
blank16:

movlw D'16' ; Setup counter
movwf count1
movf pic_ad,w ; First PIC RAM address
movwf fsr ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit:
movwf indf ; Store blank character in PIC RAM

; buffer using fsr register
decfsz count1,f ; Done?
goto incfsr ; no

Supplementary Programs 673

return ; yes
incfsr:

incf fsr,f ; Bump fsr to next buffer
space

goto storeit
;========================
; Set address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf porta,E_line ; E line low
bcf porta,RS_line ; RS line low, set up for

; control
call delay_125 ; delay 125 microseconds

; Set to second display line
movlw LCD_1 ; Address and command bit
movwf portb
call pulseE ; Pulse and delay

; Set RS line for data
bsf porta,RS_line ; Setup for data
call delay_125 ; Delay
return

;========================
; Set address register
; to LCD line 2
;========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf porta,E_line ; E line low
bcf porta,RS_line ; RS line low, setup for

; control
call delay_125 ; delay

; Set to second display line
movlw LCD_2 ; Address with high-bit set
movwf portb
call pulseE ; Pulse and delay

; Set RS line for data
bsf porta,RS_line ; RS = 1 for data
call delay_125 ; delay
return

;===============================
; first text string procedure
;===============================
storeMSU:

674 Appendix D

; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in fsr

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf fsr ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc status,z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by fsr)

movwf indf ; store in buffer by fsr
incf fsr,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
msg1:

addwf PCL,f ; Access table
retlw 'M'
retlw 'i'

Supplementary Programs 675

retlw 'n'
retlw 'n'
retlw 'e'
retlw 's'
retlw 'o'
retlw 't'
retlw 'a'
retlw 0

;=================================
; second text string procedure
;=================================
storeUniv:
; Processing identical to procedure StoreMSU

movwf index ; Store w in index
; Store base address of text buffer in fsr

movf pic_ad,0 ; first display RAM address to W
addwf index,0 ; Add offset to address
movwf fsr ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char2:

call msg2 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc status,z ; Test zero flag
goto endstr2 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by fsr)

movwf indf ; Store in buffer by fsr
incf fsr,f ; Increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in variable
goto get_msg_char2 ; Continue

endstr2:
return

; Routine for returning message stored in program area
msg2:

addwf PCL,f ; Access table
retlw 'S'
retlw 't'
retlw 'a'
retlw 't'

676 Appendix D

retlw 'e'
retlw ','
retlw 0x20
retlw 'M'
retlw 'a'
retlw 'n'
retlw 'k'
retlw 'a'
retlw 't'
retlw 'o'
retlw 0

end

Supplementary Programs 677

; File: TestDemo1.asm
; Date: June 2, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to exercise the demonstration circuit and board
; number 1
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal
; oscillator
; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; |
; |_____ * indicates setup values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; constants
;==
;#define dummy 100
;===
; variables in PIC RAM
;===

; with local variables
cblock 0x0c ; Start of block

; hexDig ; Hex digit counter
count1 ; Counter # 1
j ; counter J
k ; counter K
endc

;===
; P R O G R A M

678 Appendix D

;===
org 0 ; start at address 0
goto main

;
; Space for interrupt handlers

org 0x08
main:
; Port A (5 lob) for input

movlw B'00011111' ; w := 00001111 binary
tris PORTA ; port A (lines 0 to 4) to

input
; Port bit (8 lines) for output

movlw B'00000000' ; w := 00000000 binary
tris PORTB ; port B to output

;==============================
; Pushbutton switch processing
;==============================
pbutton:
; Push button switch on demo board is wired to RA4
; Switch logic is active low

btfss PORTA,4 ; Test and skip if bit is set
goto buzzit ; Buzz if switch ON

; At this point port A bit 4 is set (switch is off)
call buzoff ; Buzzer off
goto readdip ; Read DIP switches

buzzit:
call buzon ; Turn on buzzer
goto pbutton

;==============================
; DIP switch processing
;==============================
; Read all bits of port A
readdip:

movf PORTA,w ; Port A bits to w
; If board uses active low then all switch bits must be negated
; This is done by XORing with 1-bits

xorlw b'11111111' ; Invert all bits in w
; Eliminate all 4 high order bits (just in case)

andlw b'00001111' ; And with mask
; Get digit into w

call segment ; get digit code
movwf PORTB ; Display digit
call delay ; Give time

; Update digit and loop counter
goto pbutton

;*******************************
; 7-segment table of hex codes

Supplementary Programs 679

;*******************************
segment:

addwf PCL,f ; PCL is program counter latch
retlw 0x3f ; 0 code
retlw 0x06 ; 1
retlw 0x5b ; 2
retlw 0x4f ; 3
retlw 0x66 ; 4
retlw 0x6d ; 5
retlw 0x7d ; 6
retlw 0x07 ; 7
retlw 0x7f ; 8
retlw 0x6f ; 9
retlw 0x77 ; A
retlw 0x7c ; B
retlw 0x39 ; C
retlw 0x5b ; D
retlw 0x79 ; E
retlw 0x71 ; F
retlw 0x7f ; Just in case all on

;****************************
; piezo buzzer ON
;****************************
; Routine to turn on piezo buzzer on port B bit 7
buzon:

bsf PORTB,7 ; Tune on bit 7, port B
return

;****************************
; piezo buzzer OFF
;****************************
; Routine to turn off piezo buzzer on port B bit 7
buzoff:

bcf PORTB,7 ; Bit 7 port b clear
return

;================================
; delay sub-routine
;================================
delay:

movlw .200 ; w = 200 decimal
movwf j ; j = w

jloop:
movwf k ; k = w

kloop:
decfsz k,f ; k = k-1, skip next if zero
goto kloop
decfsz j,f ; j = j-1, skip next if zero

680 Appendix D

goto jloop
return

end

Supplementary Programs 681

; File: Timer0.ASM
; Date: April 27, 2006
; Author: Julio Sanchez
; Processor: a6F84A
;
; Description:
; Program to demonstrate programming of the 16F84A
; TIMER0 module. Program flashes eight LEDs in sequence
; counting from 0 to 0xff. Timer0 is used to delay
; the count.
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
error)
; |
; |_____ * indicates setup values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; variables in PIC RAM
;===
; None in this application
;
;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x08

682 Appendix D

;=============================
; main program
;=============================
main:
; Clear the watchdog timer and reset prescaler

clrwdt
; Set up the OPTION register bit map

movlw b'11010111'
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | 1 = to WDT
; | | | | *0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
; Setup ports

movlw 0x00 ; Set port B to output
tris PORTB
clrf PORTB ; All port B to 0

; Port A is not used in this program
mloop:

incf PORTB,f ; Add 1 to register value
call TM0delay
goto mloop

;******************************
; delay sub-routine
; uses Timer0
;******************************
TM0delay:
; Initialize the timer register

clrf TMR0 ; Clear SFR for Timer0
; Routine tests the value in the TMR0 register by
; subtracting 0xff from the value in TMR0. The zero flag

Supplementary Programs 683

; is set if TMR0 = 0xff
cycle:

movf TMR0,w ; Timer to w
; w has TMR0 register value

sublw 0xff ; Subtract max value
; Zero flag is set if value in TMR0 = 0xff

btfss STATUS,Z ; Test for zero
goto cycle ; Repeat
return

End

684 Appendix D

; File: TimerTst.ASM
; Date: April 27, 2006
; Author: Julio Sanchez
;
; Description:
; Using the timer to generate a signal at 1 Mhz
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator (simplest, 20%
; error)
; |
; |_____ * indicates setup values

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;===
; PIC register equates
;===

porta equ 0x05
Portb equ 0x06
Status equ 0x03
z equ 0x02
tmr0 equ 0x01

;
;===
; variables in PIC RAM
;===
; Local variables

cblock 0x0d ; Start of block
J ; counter J
K ; counter K
countL ; Auxiliary counter
countH ; ISR counter

Supplementary Programs 685

endc
;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x04
; goto IntServ
;=============================
; main program
;=============================
main:
; Clear the watchdog timer and reset prescaler

clrwdt
; Set up the OPTION register bit map

movlw b'11010011'
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | 1 = to WDT
; | | | | *0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
; Setup ports

movlw 0x00 ; Set port B to output
tris portb
clrf portb ; All port B to 0

; Port A is not used in this program
mloop:

686 Appendix D

bsf portb,0
call TM0delay
bcf portb,0
call TM0delay
goto mloop

;******************************
; delay sub-routine
; uses Timer0
;******************************
TM0delay:
; Initialize the timer register

clrf tmr0 ; Clear SFR for Timer0
; Routine tests the value in the tmr0 register by
; xoring with a mask of all ones. The operation sets
; the zero flag if tmr0 is zero.
cycle:

movf tmr0,w ; Timer to w
; w has tmr0 register value

sublw 0xff ; Subtract max value
; Zero flag is set if value in tmr0 = 0xff

btfss status,z ; Test for zero
goto cycle ; Repeat
return

end

Supplementary Programs 687

; File name: TTYUsart.asm
; Last update: May, 2006
; Author: Julio Sanchez
; Processor: 16F84A
;
; Description:
; Program to emulate USART operation in PIC code. Uses
; PIC-to-LCD interface. Display has 2 lines, each with
; 16 characters.
; Program operation:
; Characters received from the RS232 line are displayed on
; the LCD. LCD lines scroll automatically. A pushbutton
; activates the send operation by transmitting the text
; string: Ready- which is also displayed on the LCD.
;
; Program communications and LCD parameters are stored in
; #define statements. These statements can be edited to
; accommodate a different set-up. Program uses delay loops
; for interface timing.
;
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock
;
; BAUD RATE CALCULATIONS:
; A 4Mhz clock oscillator has a clock frequency of 1 Mhz:
; Since the baud rate is the number of clock cycles per
; second, for a 4Mhz clock it is:
; 1
; bit time = ------ sec. = 208.33 microseconds
; 4,800
; Calculating one half the baud rate allows resetting the
; clock from the edge to the center of a time pulse:
;
; |<======== falling edge of start bit
; | |<======== center of bit time
; >| |< one-half baud rate
; | |
;__________. | .____________.
; |_____________| |________
; 208/2 = 104
; The PIC clock counts up from 0 to 255. So to implement
; a 104 microsecond delay we must start counting at
; clock beat:
; 255 - 104 = 151
; plus one microsecond for movlw instruction used to
; initialize the clock:
; 151 + 1 = 152

688 Appendix D

; For one full baud rate delay:
; 255 - 208 = 47 + 1 = 48
; The following two constants are stored in #define
; statements:
; halfBaud = 152
; fullBaud = 48
; Setting the prescaler to TMR0 reduces the baud rate
; to one-half. Other prescaler values will reduce the
; baud rate accordingly.
;
; Wiring diagram:
; RB4-RB7 ===> LCD data lines 4 to 7 (output)
; RB0 =======> MAX202 T2in line (output)
; RA0 =======> MAX202 R2out line (input)
; RA1 =======> LCD E line (output)
; RA2 =======> LCD RS line (output)
; RA3 =======> LCD R/W line (output - not used)
; RA4 =======> Pushbutton switch 1
; (input - active low)
;
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF

;==

Supplementary Programs 689

; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
ENDM

;==
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;==
#define E_line 1 ;|
#define RS_line 2 ;| -- from wiring diagram
#define RW_line 3 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .16; Number of characters per line
; 4800 baud clock countdown values
; Code reduces rate to 2400 baud by entering a minimal
; prescaler to TRM0
#define halfBaud .152 ; For one-half bit time
#define fullBaud .48 ; For one full bit time
;
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command
;
;===
; PIC register and flag equates
;===
z equ 2 ; Zero flag
c equ 0 ; Carry flag
;===
; buffer and variables in PIC RAM
;===
; Create a 16-byte storage area

cblock 0x0c ; Start of first data block
lineBuf ; buffer for text storage
endc

; Leave 16 bytes and Continue with local variables
cblock 0x1c ; Second data block
count1 ; Counter # 1
count2 ; Counter # 2
J ; counter J

690 Appendix D

K ; counter K
store1 ; Local temporary storage
store2 ; Storage # 2

; For LCDscroll procedure
LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)
bufPtr ; Buffer pointer

; Variables for serial communications
tempData ; Temporary storage for bit manipulations
rcvData ; Final storage for received character
bitCount ; Bit counter
sendData ; Character to send
endc

;===
; m a i n p r o g r a m
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
Bank1
movlw b'00010001' ; Port A lines I/O setup

; RA0 = RS232 input (R2out)
; RA4 = Pushbutton SW # 1

movwf TRISA
movlw b'00000000' ; Port B lines as follow:

; RB4-RB7 ===> LCD data lines 4 to 7 (output)
; RB0 =======> MAX202 T2in line (output)
; RB0 =

movwf TRISB
Bank0

; Clear bits in port A output lines
bcf PORTA,1
bcf PORTA,2
bcf PORTA,3
movlw b'00000000' ; All outputs ports low
movwf PORTB

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize

; itself
call delay_5
call initLCD ; Then do forced initialization
call delay_5 ; Wait again

; Set port B, line 0 high so start bit is detected
bsf PORTB,0

Supplementary Programs 691

;============================
; wait for start command
;============================
; Program waits until pushbutton number 1 is pressed
; to continue execution. Pushbutton 1 is active low
; and wired to RA4
pb1Wait:

btfsc PORTA,4 ; Test port A, line 4
goto pb1Wait ; Loop if not clear

;============================
; display and send "Ready-"
;============================
; Set LCD base address

call line1
; Initialize system for UART emulation at 2400 baud

call initTTY
; Display on LCD and test serial transmission by sending
; the string "Ready-"

movlw 'R'
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw 'e'
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw 'a'
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw 'd'
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw 'y'
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure
movlw '-'
movwf sendData ; Store in send register
call send8 ; Local LCD display procedure
call sendTTY ; Local send procedure

; Init character counter and line counter variables for
; LCD line scroll procedure

movlw 0x06 ; 6 characters already
displayed

movwf LCDcount
clrf LCDline ; LCD line counter

692 Appendix D

;============================
; monitor RS232 line
;============================
nextChar:

call rcvTTY ; Receive character
; Store character in local line buffer using indirect
; addressing
; 16-byte buffer named lineBuf starts at address 0x0c
; Register variable bufPtr holds offset into buffer

movlw 0x0c ; Buffer base address
addwf bufPtr,w ; Add pointer in w
movwf FSR ; Value to index register
movf rcvData, ; Character into w
movwf INDF ; Store w in [FSR]
incf bufPtr,f ; Bump pointer

; Send character (still in w)
call send8 ; Display it
call LCDscroll ; Scroll display lines
goto nextChar ; Continue

;==
; initialize LCD for 4-bit mode
;==
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low
bcf PORTA,RW_line ; Write mode
call delay_125 ; delay 125

microseconds
;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select

Supplementary Programs 693

; | | 0 = 1/8 or 1/11
; | | 1 = 1/16
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

call send8
;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ increment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
; SHIFT)
; | | | |_|___ don't care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left

694 Appendix D

; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

call send8
; Per documentation

call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125

movlw D'42' ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5

movlw D'41' ; Counter = 41
movwf count2 ; Store in variable

delay
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTA,E_line ; Pulse E line
nop
bcf PORTA,E_line
return

;=============================
; long delay sub-routine

Supplementary Programs 695

; (for debugging)
;=============================
long_delay

movlw D'200' ; w = 200 decimal
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to port B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with port B

; Now w has merged byte
movwf PORTB ; w to port B
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTB
call pulseE ; Send data to LCD
call delay_125
return

;=================
; merge bits
;=================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of port B
; so as to preserve the 4 low-bits in port B
; Logic:
; AND value with 1111 0000 mask
; AND port B with 0000 1111 mask
; Now low nibble in value and high nibble in
; port B are all 0 bits:
; value = vvvv 0000
; port B = 0000 bbbb
; OR value and port B resulting in:
; vvvv bbbb

696 Appendix D

; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b'11110000' ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTB,w ; port B to w register
andlw b'00001111' ; Clear high nibble in port b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;========================
; Set address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTA,RS_line ; Setup for data
call delay_5 ; Busy?

; Clear buffer and pointer
call blankBuf
clrf bufPtr ; Clear
return

;========================
; Set address register
; to LCD line 2
;========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, setup for

control
call delay_5 ; Busy?

; Set to second display line

Supplementary Programs 697

movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTA,RS_line ; RS = 1 for data
call delay_5 ; Busy?

; Clear buffer and pointer
call blankBuf
clrf bufPtr
return

;==========================
; scroll LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then the
; second line is scrolled to the first line and display
; continues at the start of the second line
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:
; Scroll second line to first line. Characters to be
; scrolled are stored in buffer starting at address 0x0c.
; 16 characters are to be moved
; First clear LCD

call initLCD
call delay_5 ; Make sure not busy

; Set up for data
bcf PORTA,E_line ; E line low

698 Appendix D

bsf PORTA,RS_line ; RS line high for data
; Set up counter for 16 characters

movlw D'16' ; Counter = 16
movwf count2

; Get address of storage buffer
movlw 0x0c
movwf FSR ; W to FSR

getchar:
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 16 characters displayed

decfsz count2,f ; Decrement counter
goto nextchar ; Skipped if done

; At this point scroll operation has concluded
clrf LCDcount ; Clear counters

; Stay at line 2
clrf LCDline
incf LCDline,f
call line2 ; Set for second line

scrollExit:
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;============================
; clear line buffer
;============================
; Use indirect addressing to store 16 blanks in the
; buffer located at 0x0c
blankBuf:

Bank0
movlw 0x0c ; Pointer to RAM
movwf FSR ; To index register

blank16:
clrf INDF ; Clear memory pointed at by FSR
incf FSR,f ; Bump pointer
btfss FSR,4 ; 000x0000 when bit 4 is set

; count reached 16
goto blank16
return

;==
; initialize for TTY
;==
; Procedure to initialize RS232 reception

Supplementary Programs 699

; Assumes:
; 2400 baud
; 8 data bits
; no parity
; one stop bit
initTTY:
; First initialize receiver to RS-232 line parameters
; Disable global and peripheral interrupts
; 7 6 5 4 3 2 1 0 <= INTCON bitmap
; | ? | ? ? ? ? ? (? = unrelated bits)
; | |________________ Timer0 interrupt on overflow
; |______________________ Global interrupts

bcf INTCON,5 ; Disable TMR0 interrupts
bcf INTCON,7 ; Disable global interrupts
clrf TMR0 ; Reset timer
clrwdt ; Clear WDT for prescaler

; assign
Bank1

; Set up the OPTION register bit map
; 7 6 5 4 3 2 1 0 <= OPTION bits
; 1 1 0 1 1 0 0 0 <= setup
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | *000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | 1 = to WDT
; | | | | *0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | 0 = falling edge
; | *1 = raising edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

movlw b'11010000' ; set up timer/counter
movwf OPTION_REG
Bank0
return

;==
; receive character

700 Appendix D

;==
; Receive a single character through the serial port.
; Assumes: 4800 baud, 8 data bits, no parity, 1 stop bit.
; Receiving line is Port A, line 0
rcvTTY:

movlw 0x08 ; Counter for 8 bits
movwf bitCount

; The start of character transmission is signaled by
; the sender by setting the line low
startBit:

btfsc PORTA,0 ; Test for low on line
goto startBit ; Go if not low

;=========================
; offset to data bit
;=========================
; At this point the receiver has found the falling
; edge of the start bit. It must now wait one and
; one-half the baud rate to synchronize in the center
; of the sender's first data bit
;, as follows:
; |<========= falling edge of START bit
; | |<========== center of start bit
; | | |<====== center of data bit
; |-----------|-----|
;_____ ___________ __________
; | | | | <== SIGNAL
; ----------- ----------
; |<-- 208 -->|<104>| <====== ms. for 4800 baud
;
; Clock start count for one-half bit = 255 - 104 = 151
; Clock start count for one full bit = 255 - 208 = 47
; One clock cycle is added for the movwf intruction:
; clkHalf = 152 (for one-half bit countdown)
; clkFull = 48 (for one full bit countdown)

movlw halfBaud ; Skip one-half bit
movwf TMR0 ; Initialize tmr0 and start count
bcf INTCON,2 ; Clear overflow flag

;============================
; start bit
;============================
wait1:

btfss INTCON,2 ; Timer count overflow?
goto wait1 ; No, keep waiting

; At this point we are at the center of the start bit
btfsc PORTA,0 ; Check to see it is still low
goto startBit ; No, it is high. False start

; At this point the clock is at the center of the start
; bit. The first data bit must be read one full baud

Supplementary Programs 701

; period later
movlw fullBaud ; One full bit delay
movwf TMR0 ; Start timer
bcf INTCON,2 ; clear tmr0 overflow flag

wait2:
btfss INTCON,2 ; End of one full baud period?
goto wait2 ; Wait if not end of period

; Timer is now at the center of the first/next data bit
; Timer must be reset immediately so that code will not
; lose synchronization with sender

movlw fullBaud ; Skip to next data bit
movwf TMR0 ; Restart timer
bcf INTCON,2 ; Reset overflow flag

; Now the data bit can be read and stored
movf PORTA,w ; Read port B
movwf tempData ; Store in temporary variable
rrf tempData,f ; Rotate bit 0 into carry flag
rrf rcvData,f ; Rotate carry flag into storage

; register high-order bit
decfsz bitCount,f ; End of data?
goto wait2 ; Continue until 8 bits received

;============================
; stop bit
;============================
stopWait:

btfss INTCON,2 ; Test time
goto stopWait ; Wait
return ; Exit

;==
; send character
;==
; Procedure to send one character through the RS232 line.
; Assumes: 2400 baud, 8 data bits, no parity, one stop bit
; Sending line is Port B, line 0
; ON ENTRY:
; variable sendData holds character to send
sendTTY:

movlw 0x08 ; Init bit counter
movwf bitCount
bcf PORTB,0 ; Low for start bit
movlw fullBaud ; For one baud space
movwf TMR0 ; Start timer
bcf INTCON,2 ; Clear timer flag

start2snd:
btfss INTCON,2 ; Full baud done?
goto start2snd ; No
movlw fullBaud ; Reset for one full bit

702 Appendix D

; period
movwf TMR0 ; Start timer
bcf INTCON,2 ; Clear flag

; At this point the start bit has been sent
; Data follows
sendOut:

rrf sendData,f ; Rotate bit into carry
bcf PORTB,0 ; Assume data bit is 0
btfsc STATUS,c ; Test if carry set
bsf PORTB,0 ; Change bit to 1 if clear

; Hold bit for 1 baud period
timeBit:

btfss INTCON,2 ; Wait for baud period to end
goto timeBit ; Loop if not yet
movlw fullBaud ; Reset timer
movwf TMR0 ; Start timer
bcf INTCON,2 ; Clear flag

; Test for last bit
decfsz bitCount,f ; Count this bit
goto sendOut ; Continue if not last bit

; Done. Send stop bit
bsf PORTB,0 ; High for stop bit

stopBit:
btfss INTCON,2 ; Timer done?
goto stopBit ; No

; Set port B line 0 high back again
bsf PORTB,0
call delay_5 ; And hold
return

End

Supplementary Programs 703

; File: Watchdog.asm
; Date: May 2, 2006
; Author: Julio Sanchez
;
; Description:
; Program to demonstrate the use of the watchdog timer
; in breaking out of an endless loop.
; A LED on port B, line 1, flashes on and off at 1/2
; second intervals for 20 iterations. At that time the
; program enters an endless loop. The watchdog timer
; times-out and restarts the program
;===========================
; switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; * _WDT_ON Watchdog timer ON/OFF
; _WDT_OFF
; _LP_OSC Low power crystal occilator
; * _XT_OSC External parallel resonator/crystal oscillator

; _HS_OSC High speed crystal resonator (8 to 10 MHz)
; Resonator: Murate Erie CSA8.00MG = 8 MHz
; _RC_OSC Resistor/capacitor oscillator
; |
; |_____ * indicates setup values

;=========================
; setup and configuration
;=========================

processor 16f84A
include <p16f84A.inc>
__config _XT_OSC & _WDT_ON & _PWRTE_ON & _CP_OFF

;===
; PIC register equates
;===
porta equ 0x05
Portb equ 0x06
status equ 0x03
z equ 0x02
tmr0 equ 0x01
;
;===
; variables in PIC RAM

704 Appendix D

;===
; Local variables

cblock 0x0d ; Start of block
J ; counter J
K ; counter K
count1 ; Auxiliary counter
count2 ; Second auxiliary counter
old_w ; Context saving
old_status ; Idem
endc

;==
; m a i n p r o g r a m
;==

org 0 ; start at address 0
goto main

;
;=============================
; interrupt handler
;=============================

org 0x04
;=============================
; main program
;=============================
main:
; Setting the prescaler to the watchdog timer following
; the sequence recommended by Microchip

movlw b'10010101' ; Clock source and some
prescaler

option
clrf tmr0 ; Clear timer and prescaler
movlw b'10111101' ; WDT, do not change prescale
option ; again

; Reset watchdog timer
clrwdt

; Final setting of OPTION register
movlw b'10111000'

; Set up the OPTION register bit map
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for WDT
; | | | | | 000 = 1:1 001 = 1:2
; | | | | | 010 = 1:4 011 = 1:8
; | | | | | 100 = 1:16 101 = 1:32
; | | | | | 110 = 1:64 *111 = 1:128
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0

Supplementary Programs 705

; | | | |_________________ TOSE (Timer0 edge select)
; | | | 0 = increment on low-to-high
; | | | *1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | 0 = internal clock
; | | *1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; 0 = enabled
; *1 = disabled

option
movlw b'00000000' ; Port B is output
tris portb ; all others are output
clrf portb ; All port B to 0

; Port A is not used by this program
;============================
; flash LED 20 times
;============================
; Program flashes LED wired to port B, line 2
; 5 times before entering the endless loop

movlw D'5' ; Number of iterations
movwf count2 ; To counter

lights:
movlw b'00000010' ; Mask with bit 1 set
xorwf portb,f ; Complement bit 1
call long_delay
call long_delay
call long_delay
decfsz count2,f ; Decrement counter
goto lights
clrwdt ; Clear watchdog

;============================
; endless loop
;============================
endless:

goto endless

;=============================
; delay sub-routine
;=============================
long_delay

movlw D'200' ; w = 20 decimal
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

clrwdt
goto kloop

706 Appendix D

decfsz J,f ; J = J-1, skip next
if zero

clrwdt
goto jloop
return

end

Supplementary Programs 707

; File name: I2CEEP.asm
; Last revision: May 28, 2006
; Author: Julio Sanchez
; Processor: 16F877
;
; Description:
; Receive character data through RS-232 line and store in
; 24LC04B EEPROM IC, using the I2C serial protocol in the
; PIC's MSSP module. Received characters are echoed on
; the second LCD line. When <Enter> key is detected (code
; 0x0d) the text stored in EEPROM memory is retrieved and
; displayed on the LCD. On startup the top LCD line displays
; the prompt: "Receiving:". At that time a message "Rdy- " is
; sent through the serial line so as to test the connection.
;
; Default serial line setting:
; 2400 baud
; no parity
; 1 stop bit
; 8 character bits
;
; Wiring:
; 24LC04B SDA line is wired to PIC RC4 (MSSP SDA)
; 24LC04B SCL line is wired to PIC RC3 (MSSP SCL)
; 24LC04B A0-A2 and WP lines are not used (GND)
;
; Program to use 4-bit PIC-to-LCD interface.
; Code assumes that LCD is driven by Hitachi HD44780
; controller and PIC 16F977. Display supports two lines
; each one with 20 characters. The length, wiring and base
; address of each display line is stored in #define
; statements. These statements can be edited to accommodate
; a different set-up.
;
; WARNING:
; Code assumes 10 Mhz clock. Delay routines must be
; edited for a different clock. Clock speed also determines
; values for baud rate setting (see spbrgVal constant).
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF

708 Appendix D

; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal oscillator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF

; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.

errorlevel -302
; Suppress bank-related warning
;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Supplementary Programs 709

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 0 ;| -- from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .20; Number of characters per line
#define spbrgVal .64; For 2400 baud on 10Mhz clock
; Note: The constants that define the LCD display
; line addresses have the high-order bit set
; so as to meet the requirements of controller
; commands.
;==
; constants for I2C initialization
;==
; I2C connected to 24LC04B EEPROM.
; The MSSP module is in I2C MASTER mode.
#define LC04READ 0xa0 ; I2C value for read control byte
#define LC04WRITE 0xa1 ; I2C value for write control byte

;==
; General Purpose Variables
;==
; Local variables
; Reserve 20 bytes for string buffer

cblock 0x20
strData
endc

; Other data
cblock 0x34 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
J ; counter J
K ; counter K
bufAdd
index
store1 ; Local storage
store2

; For LCDscroll procedure

710 Appendix D

LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)
endc

;==============================
; Common RAM area
;==============================
; These GPRs can be accessed from any bank.
; 15 bytes are available, from 0x70 to 0x7f

cblock 0x70
; Communications variables

newData ; not 0 if new data received
ascVal
errorFlags

; EEPROM-related variables
EEMemAdd ; EEPROM address to access
EEByte ; Data byte to write
endc

;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; Wiring:
; LCD data to port D, lines 0 to 7
; E line -> port E, 1
; RW line -> port E, 2
; RS line -> port E, 0
; Set PORTE D and E for output
; First, initialize port B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to tris port D for output
Bank1

; Tris port D for output. Port D lines 4 to 7 are wired
; to LCD data lines. Port D lines 0 to 4 are wired to LEDs.

movlw B'00000000'
movwf TRISD ; and port D

; By default port A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

movlw 0x06 ; binary 0000 0110 is code to
; make all

port A lines digital
movwf ADCON1

Supplementary Programs 711

; Port B, lines are wired to keypad switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b'11110000'
movwf TRISB

; Tris port E for output
movlw B'00000000'
movwf TRISE ; Tris port E

; Enable port B pullups for switches in OPTION register
movlw b'00001000'
movwf OPTION_REG

; Back to bank 0
Bank0

; Initialize serial port for 2400 baud, 8 bits, no parity
; 1 stop

call InitSerial
; Test serial transmission by sending "RDY-"

movlw 'R'
call SerialSend
movlw 'D'
call SerialSend
movlw 'Y'
call SerialSend
movlw '-'
call SerialSend
movlw 0x20
call SerialSend

; Clear all output lines
movlw b'00000000'
movwf PORTD
movwf PORTE

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize itself
call initLCD ; Then do forced initialization
call delay_5 ; (Wait probably not necessary)

; Clear character counter and line counter variables
clrf LCDcount
clrf LCDline

; Set display address to start of first LCD line
call line1

; Store address of display buffer
movlw 0x20
movwf bufAdd

; Display "Receiving:" message prompt
call blank20 ; Clear buffer
movlw 0x00 ; Offset in buffer

712 Appendix D

call storeMS1 ; Store message at offset
call display20 ; Display message

; Start address of EEPROM
clrf EEMemAdd

; Setup for display in second line
call line2
clrf LCDline
incf LCDline,f ; Set scroll control for line 2

; Initialize I2C EEPROM operation
call SetupI2C ; Local procedure

;==
; receive serial data, store, and display
;==
receive:
; Call serial receive procedure

call SerialRcv
; HOB of newData register is set if new data
; received

btfss newData,7
goto scanExit

; At this point new data was received.
movwf EEByte ; Save received character

; Display character on LCD
movf EEByte,w ; Recover character
call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line

; Store character in EEPROM at location in EEMemAdd
call WriteI2C ; Local procedure
incf EEMemAdd,f ; Bump to next EEPROM

; Check for <Enter> key (0x0d) and execute display function
movf EEByte,w ; Recover last received
sublw 0x0d
btfsc STATUS,Z ; Test if <Enter> key
goto isEnter ; Go if <Enter>

; Not <Enter> key, continue processing
scanExit:

goto receive ; Continue
;============================
; display EEPROM data
;============================
; This routine receives control when the <Enter> key is
; received.
; Action:
; 1. Clear LCD
; 2. Output is set to top LCD line
; 3. Characters stored in EEPROM are displayed
; until 0x0d code is detected
isEnter:

Supplementary Programs 713

call clearLCD
; Clear character counter and line counter variables

clrf LCDcount
clrf LCDline

; Read data from EEPROM memory, starting at address 0
; and display on LCD until 0x0d terminator

call line1
clrf EEMemAdd ; Start at EEPROM 0

readOne:
call ReadI2C ; Get character

; Store character
movwf EEByte ; Save character

; Test for terminator
sublw 0x0d
btfsc STATUS,Z ; Test if 0x0d
goto atEnd ; Go if 0x0d

; At this point character read is not 0x0d
; Display on LCD

movf EEByte,w ; Recover character
; Display character on LCD

call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line
incf EEMemAdd,f ; Next EEPROM byte
goto readOne

; End of execution
atEnd:

goto atEnd

;==
;==
; L O C A L P R O C E D U R E S
;==
;==
;==========================
; init LCD for 4-bit mode
;==========================
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTE,E_line ; E line low

714 Appendix D

bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125

microseconds
movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8
movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
call send8
movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
call send8
movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY

; SHIFT)
call send8
movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)

; |___ COMMAND BIT
call send8
call delay_5 ; Test for busy
return

.;===========================
; procedure to clear LCD
;============================
clearLCD:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125

microseconds
movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)

; |___ COMMAND BIT
call send8
call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125:

movlw .105 ; Repeat 105 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

Supplementary Programs 715

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw .105 ; Counter = 105 cycles
movwf count2 ; Store in variable

delay
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ; Pulse E line
nop
bcf PORTE,E_line
return

;=============================
; long delay sub-routine
;=============================
long_delay

movlw D'200' ; w delay count
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to port B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with port B

; Now w has merged byte
movwf PORTD ; w to port D
call pulseE ; Send data to LCD

; High nibble is sent

716 Appendix D

movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTD
call pulseE ; Send data to LCD
call delay_125
return

;==========================
; merge bits
;==========================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of port B
; so as to preserve the 4 low-bits in port B
; Logic:
; AND value with 1111 0000 mask
; AND port B with 0000 1111 mask
; Now low nibble in value and high nibble in
; port B are all 0 bits:
; value = vvvv 0000
; port B = 0000 bbbb
; OR value and port B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b'11110000' ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTD,w ; port B to w register
andlw b'00001111' ; Clear high nibble in port b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;==========================
; Set address register
; to LCD line 2
;==========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, setup for

; control
call delay_5 ; Busy?

; Set to second display line

Supplementary Programs 717

movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTE,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

;==========================
; Set address register
; to LCD line 1
;==========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTE,RS_line ; Setup for data
call delay_5 ; Busy?
return

;==========================
; scroll to LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then LCD is
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,Z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,Z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line

718 Appendix D

clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:

call initLCD ; Reset
clrf LCDcount ; Clear counters
clrf LCDline
call line1 ; Display to first line

scrollExit:
return

;=============================
; LCD display procedure
;=============================
; Sends 20 characters from PIC buffer with address stored
; in variable bufAdd to LCD line previously selected
display20:

call delay_5 ; Make sure not busy
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 20 characters
movlw D'20'
movwf count3

; Get display address from local variable bufAdd
movf bufAdd,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 20 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;===============================
; first text string procedure
;===============================
storeMS1:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:

Supplementary Programs 719

; variable bufAdd holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf bufAdd,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
; Message has 10 characters
msg1:

addwf PCL,f ; Access table
retlw 'R'
retlw 'e'
retlw 'c'
retlw 'e'

720 Appendix D

retlw 'i'
retlw 'v'
retlw 'i'
retlw 'n'
retlw 'g'
retlw ':'
retlw 0

;========================
; blank buffer
;========================
; Procedure to store 20 blank characters in PIC RAM
; buffer starting at address stored in the variable
; bufAdd
blank20:

movlw D'20' ; Setup counter
movwf count1
movf bufAdd,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit
movwf INDF ; Store blank character in PIC RAM

; buffer using FSR register
decfsz count1,f ; Done?
goto incfsr ; no
return ; yes

incfsr
incf FSR,f ; Bump FSR to next buffer space
goto storeit

;==
; communications procedures
;==
; Initialize serial port for 2400 baud, 8 bits, no parity,
; 1 stop
InitSerial:

Bank1 ; Macro to select bank1
; Bits 6 and 7 of Port C are multiplexed as TX/CK and RX/DT
; for USART operation. These bits must be set to input in the
; TRISC register

movlw b'11000000' ; Bits for TX and RX
iorwf TRISC,f ; OR into Trisc register

; The asynchronous baud rate is calculated as follows:
; Fosc
; ABR = -----------
; S*(x+1)
; where x is value in the SPBRG register and S is 64 if the high
; baud rate select bit (BRGH) in the TXSTA control register is

Supplementary Programs 721

; clear, and 16 if the BRGH bit is set. For setting to 2400 baud
; using a 10Mhs oscillator at a slow baud rate the formula
; is:
; At slow speed (BRGH = 0)
; 10,000,000 10,000,000
; ---------- = ----------- = 2,403.84 (0.16% error)
; 64*(64+1) 4160
;

movlw spbrgVal ; Value in spbrgVal = 64
movwf SPBRG ; Place in baud rate generator

; Setup value: 0010 0000 = 0x20
movlw 0x20 ; Enable transmission and high baud

; rate
movwf TXSTA
Bank0 ; Bank 0

; Setup value: 1001 0000 = 0x90
movlw 0x90 ; Enable serial port and continuous

; reception
movwf RCSTA

;
clrf errorFlags; Clear local error flags register
return

;==============================
; transmit data
;==============================
; Test for Transmit Register Empty and transmit data in w
SerialSend:

Bank0 ; Select bank 0
btfss PIR1,TXIF ; check if transmitter busy
goto $-1 ; wait until transmitter is not busy
movwf TXREG ; and transmit the data
return

;==============================
; receive data
;==============================
; Procedure to test line for data received and return value
; in w. Overrun and framing errors are detected and
; remembered in the variable errorFlags, as follows:
; 7 6 5 4 3 2 1 0 <== errorFlags
; -- not used ---- | |___ overrun error
; |______ framing error
SerialRcv:

clrf newData ; Clear new data received register
Bank0 ; Select bank 0

; Bit 5 (RCIF) of the PIR1 Register is clear if the USART
; receive buffer is empty. If so, no data has been received

btfss PIR1,RCIF ; Check for received data

722 Appendix D

return ; Exit if no data
; At this point data has been received. First eliminate
; possible errors: overrun and framing.
; Bit 1 (OERR) of the RCSTA register detects overrun
; Bit 2 (FERR) of the RCSTA register detects framing error

btfsc RCSTA,OERR ; Test for overrun error
goto OverErr ; Error handler
btfsc RCSTA,FERR ; Test for framing error
goto FrameErr ; Error handler

; At this point no error was detected
; Received data is in the USART RCREG register

movf RCREG,w ; get received data
bsf newData,7 ; Set bit 7 to indicate new data

; Clear error flags
clrf errorFlags
return

;==========================
; error handlers
;==========================
OverErr:

bsf errorFlags,0 ; Bit 0 is overrun error
; Reset system

bcf RCSTA,CREN ; Clear continuous receive bit
bsf RCSTA,CREN ; Set to re-enable reception
return

; error because FERR framing error bit is set
; can do special error handling here - this code simply clears
; and continues
FrameErr:

bsf errorFlags,1; Bit 1 is framing error
movf RCREG,W ; Read and throw away bad data
return

;==
; I2C EEPROM data procedures
;==
; GPRs used in EEPROM-related code are placed in the common
; RAM area (from 0x70 to 0x7f). This makes the registers
; accessible from any bank.
;============================
; LIST OF PROCEDURES
;============================
; SetupI2C --- Initialize MSSP module for I2C mode
; in hardware master mode
; Configure I2C lines
; Set slew rate for 100kbps
; Set baud rate for 10Mhz
; WriteI2C --- Write byte to I2C EEPROM device
; Data is stored in EEByte variable

Supplementary Programs 723

; Address is stored in EEMemAdd
; ReadI2C --- Read byte from I2C EEPROM device
; Address stored in EEMemAdd
; Read data returned in w register
;============================
; I2C setup procedure
;============================
SetupI2C:

Bank1
movlw b'00011000'
iorwf TRISC,f ; OR into TRISC

; Setup MSSP module for Master Mode operation
Bank0
movlw B'00101000'; Enables MSSP and uses appropriate

; 0 0 1 0 1 0 0 0 Value to install
; 7 6 5 4 3 2 1 0 <== SSPCON bits in this operation
; | | | | |__|__|__|___ Serial port select bits
; | | | | 1000 = I2C master mode
; | | | | Clock = Fosc/(4*(SSPAD+1))
; | | | |_______________ UNUSED IN MASTER MODE
; | | |__________________ SSP Enable
; | | 1 = SDA and SCL pins as serial
; | |_____________________ Receive 0verflow indicator
; | 0 = no overflow
; |________________________ Write collision detect
; 0 = no collision detected

movwf SSPCON ; This is loaded into SSPCON
; Input levels and slew rate as standard I2C

Bank1
movlw B'10000000'

; 1 0 0 0 0 0 0 0 Value to install
; 7 6 5 4 3 2 1 0 <== SSPSTAT bits in this operation
; | | | | | | | |___ Buffer full status bit READ ONLY
; | | | | | | |______ UNUSED in present application
; | | | | | |_________ Read/write information READ ONLY
; | | | | |____________ UNUSED IN MASTER MODE
; | | | |_______________ STOP bit READ ONLY
; | | |__________________ Data address READ ONLY
; | |_____________________ SMP bus select
; | 0 = use normal I2C specs
; |________________________ Slew rate control
; 0 = disabled

movwf SSPSTAT
; Setup Baud Rate
; Baud Rate = Fosc/(4*(SSPADD+1))
; Fosc = 10Mhz
; Baud Rate = 24 for 100 kbps

movlw .24 ; Value to use

724 Appendix D

movwf SSPADD ; Store in SSPADD
Bank0
return

;============================
; I2C write procedure
;============================
; Write one byte to I2C EEPROM 24LC04B
; Steps:
; 1. Send START
; 2. Send control. Wait for ACK
; 3. Send address. Wait for ACK
; 4. Send data. Wait for ACK
; 5. Send STOP
; STEP 1:
WriteI2C:

Bank1
bsf SSPCON2,SEN ; Produce START Condition
call WaitI2C ; Wait for I2C to complete

; STEP 2:
; Send control byte. Wait for ACK

movlw LC04READ ; Control byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C to complete
btfsc SSPCON2,ACKSTAT ; Check ACK bit to see if

; I2C failed, skip if not
goto FailI2C

; STEP 3:
; Send address. Wait for ACK

Bank0
movf EEMemAdd,w ; Load Address Byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation to complete
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see

; if I2C failed, skip if not
goto FailI2C

; STEP 4:
; Send data. Wait for ACK

Bank0
movf EEByte,w ; Load Data Byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation to complete
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see

; if I2C failed, skip if not
goto FailI2C

; STEP 5:

Supplementary Programs 725

; Send STOP. Wait for ACK
bsf SSPCON2,PEN ; Send STOP condition
call WaitI2C ; Wait for I2C operation to complete

; WRITE operation has completed successfully.
Bank0
return

;============================
; I2C read procedure
;============================
; Procedure to read one byte from 24LC04B EEPROM
; Steps:
; 1. Send START
; 2. Send control. Wait for ACK
; 3. Send address. Wait for ACK
; 4. Send RESTART + control. Wait for ACK
; 5. Switch to receive mode. Get data.
; 6. Send NACK
; 7. Send STOP
; 8. Retreive data into w register
; STEP 1:
ReadI2C
; Send RESTART. Wait for ACK

Bank1
bsf SSPCON2,RSEN ; RESTART Condition
call WaitI2C ; Wait for I2C operation

; STEP 2:
; Send control byte. Wait for ACK

movlw LC04READ ; Control byte
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation

; Now check to see if I2C EEPROM is ready
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto ReadI2C ; ACK Poll waiting for EEPROM

; write to complete
; STEP 3:
; Send address. Wait for ACK

Bank0
movf EEMemAdd,w ; Load from address register
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto FailI2C ; failed, skipped if successful

; STEP 4:
; Send RESTART. Wait for ACK

bsf SSPCON2,RSEN ; Generate RESTART Condition

726 Appendix D

call WaitI2C ; Wait for I2C operation
; Send output control. Wait for ACK

movlw LC04WRITE ; Load CONTROL BYTE (output)
call Send1I2C ; Send Byte
call WaitI2C ; Wait for I2C operation
Bank1
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto FailI2C ; failed, skipped if successful

; STEP 5:
; Switch MSSP to I2C Receive mode

bsf SSPCON2,RCEN ; Enable Receive Mode (I2C)
; Get the data. Wait for ACK

call WaitI2C ; Wait for I2C operation
; STEP 6:
; Send NACK to acknowledge

Bank1
bsf SSPCON2,ACKDT ; ACK DATA to send is 1 (NACK)
bsf SSPCON2,ACKEN ; Send ACK DATA now.

; Once ACK or NACK is sent, ACKEN is automatically cleared
; STEP 7:
; Send STOP. Wait for ACK

bsf SSPCON2,PEN ; Send STOP condition
call WaitI2C ; Wait for I2C operation

; STEP 8:
; Read operation has finished

Bank0
movf SSPBUF,W ; Get data from SSPBUF into W

; Procedure has finished and completed successfully.
return

;============================
; I2C support procedures
;============================
; I2C Operation failed code sequence
; Procedure hangs up. User should provide error handling.
FailI2C

Bank1
bsf SSPCON2,PEN ; Send STOP condition
call WaitI2C ; Wait for I2C operation

fail:
goto fail

; Procedure to transmit one byte
Send1I2C

Bank0
movwf SSPBUF ; Value to send to SSPBUF
return

Supplementary Programs 727

; Procedure to wait for the last I2C operation to complete.
; Code polls the SSPIF flag in PIR1.
WaitI2C

Bank0
btfss PIR1,SSPIF ; Check if I2C operation done
goto $-1 ; I2C module is not ready yet
bcf PIR1,SSPIF ; I2C ready, clear flag
return

;==
end ; END OF PROGRAM

;==

728 Appendix D

; File name: Key2LCD.asm
; Date: May 11, 2006
; Author: Julio Sanchez
;
; Description:
; Decode 4 x 4 keypad and display scan code in LCD.
; Program to use 4-bit PIC-to-LCD interface.
; Code assumes that LCD is driven by Hitachi HD44780
; controller and PIC 16F977. Display supports two lines
; each one with 20 characters. The wiring and base
; address of each display line is stored in #define
; statements. These statements can be edited to
; accommodate a different set-up.
; Keypad switch wiring (values are scan codes):
; --- KEYPAD --
; 0 1 2 3 <= port B0 |
; 4 5 6 7 <= port B1 |--- ROWS = OUTPUTS
; 8 9 A B <= port B2 |
; C D E F <= port B3 |
; | | | |
; | | | |_____ port B4 |
; | | |_________ port B5 |--- COLUMNS = INPUTS
; | |_____________ port B6 |
; |_________________ port B7 |
;
; Program operations:
; 1. Key press action generates a scan code in the range
; 0x0 to 0xf.
; 2. Program converts scan code to ASCII digit and displays
; the digit on the LCD.
; 3. When the end of the first LCD line is reached, display
; continues in the second line. When the end of the
; second line is reached, LCD is reset to the first line
;
; Program uses delay loops for interface timing.
; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF

Supplementary Programs 729

; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal occilator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF

; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.

;==
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;==
#define E_line 1 ;|
#define RS_line 0 ;| -- from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .20; Number of characters per line
; Note: The constants that define the LCD display line
; addresses have the high-order bit set in
; order to facilitate the controller command
;
;==
; PIC register equates
;==
portd equ 0x08
porte equ 0x09

730 Appendix D

fsr equ 0x04
status equ 0x03
indf equ 0x00
z equ 2
c equ 0
;===
; variables in PIC RAM
;===
; Reserve 20 bytes for string buffer

cblock 0x20
strData
endc

; Leave 16 bytes and Continue with local variables
cblock 0x34 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
pic_ad ; Storage for start of text area

; (labeled strData) in PIC RAM
J ; counter J
K ; counter K
index ; Index into text table (also used

; for auxiliary storage)
store1 ; Local storage
store2

; For LCDscroll procedure
LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)

; Keypad processing variables
keyMask ; For keypad processing
rowMask ; For masking-off key rows
rowCode ; Row addend for calculating scan code
rowCount ; Counter for key rows (0 to 3)
scanCode ; Final key code
newScan ; 0 if no new scan code detected
endc

;==
; M A C R O S
;==
; Macros to select the register banks
; Data memory bank selection bits:
; RP1:RP0 Bank
; 0:0 0 Ports A,B,C,D, and E
; 0:1 1 Tris A,B,C,D, and E
; 1:0 2
; 1:1 3
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0

Supplementary Programs 731

bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;==
; M A I N P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; Wiring:
; LCD data to port D, lines 0 to 7
; E line -> port E, 1
; RW line -> port E, 2
; RS line -> port E, 0
; Set porte D and E for output
; First, initialize port B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to tris port D for output
Bank1

; Tris port D for output. Port D lines 4 to 7 are wired
; to LCD data lines. Port D lines 0 to 4 are wired to LEDs.

movlw B'00000000'
movwf TRISD ; and port D

; By default port A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

movlw 0x06 ; binary 0000 0110 is code to
; make all

port A lines digital
movwf ADCON1

; Port B, lines are wired to keypad switches, as follows:

732 Appendix D

; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b'11110000'
movwf TRISB

; Tris port E for output
movlw B'00000000'
movwf TRISE ; Tris port E

; Enable port B pullups for switches in OPTION register
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | *0 = increment on low-to-high
; | | | 1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; *0 = enabled
; 1 = disabled

movlw b'00001000'
movwf OPTION_REG

; Back to bank 0
Bank0

; Clear all output lines
movlw b'00000000'
movwf portd
movwf porte

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize itself
call initLCD ; Then do forced initialization
call delay_5 ; (Wait probably not necessary)

; Set display address to start of second LCD line
call line1

; Clear character counter and line counter variables
clrf LCDcount
clrf LCDline

Supplementary Programs 733

;========================
; scan keypad
;========================
; Keypad switch wiring:
; x x x x <= port B0 |
; x x x x <= port B1 |--- ROWS = OUTPUTS
; x x x x <= port B2 |
; x x x x <= port B3 |
; | | | |
; | | | |_____ port B4 |
; | | |_________ port B5 |--- COLUMNS = INPUTS
; | |_____________ port B6 |
; |_________________ port B7 |
; Switches are connected to port B lines
; Clear scan code register

clrf scanCode
;============================
; scan keypad and display
;============================
keyScan:
; Port B, lines are wired to pushbutton switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; Keypad processing:
; switch rows are successively grounded (row = 0)
; Then column values are tested. If a column returns 0
; in a 0 row, that switch is down.
; Initialize row code addend

clrf rowCode ; First row is code 0
clrf newScan ; No new scan code detected

; Initialize row count
movlw D'4' ; Four rows
movwf rowCount ; Register variable
movlw b'11111110' ; All set but LOB
movwf rowMask

keyLoop:
; Initialize row eliminator mask:
; The row mask is ANDed with the key mask to successively
; mask-off each row, for example:
;
; |------- row 3
; ||------ row 2
; |||----- row 1
; ||||---- row 0
; 0000 1111 <= key mask
; AND 1111 1101 <= mask for row 1
; ---------

734 Appendix D

; 0000 1101 <= row 1 is masked off
;
; The row mask, which is initially 1111 1110, is rotated left
; through the carry in order to mask off the next row

movlw b'00001111' ; Mask off all lines
movwf keyMask ; To local register

; Set row mask for current row
movf rowMask,w ; Mask to w
andwf keyMask,f ; Update key mask
movf keyMask,w ; Key mask to w
movwf PORTB ; Mask-off port B lines

; Read port B lines 4 to 7 (columns are input)
btfss PORTB,4
call col0 ; Key column procedures
btfss PORTB,5
call col1
btfss PORTB,6
call col2
btfss PORTB,7
call col3

; Index to next row by adding 4 to row code
movf rowCode,w ; Code to w
addlw D'4'
movwf rowCode

;=========================
; shift row mask
;=========================
; Set the carry flag

bsf STATUS,c
rlf rowMask,f ; Rotate mask bits in storage

;=========================
; end of keypad?
;=========================
; Test for last key row (maximum count is 4)

decfsz rowCount,f ; Decrement counter
goto keyLoop

;===
;===
; display scan code
;===
;===
; At this point all keys have been tested.
; Variable newScan = 0 if no new scan code detected, else
; variable scanCode holds scan code

movf newScan,f ; Copy onto intsef (sets z flag)
btfsc STATUS,z ; Is it zero
goto scanExit

; At this point a new scan code is detected

Supplementary Programs 735

movf scanCode,w ; To w
; If scan code is in the range 0 to 9, that is, a decimal
; digit, then ASCII conversion consists of adding 0x30.
; If the scan code represents one of the hex letters
; (0xa to 0xf) then ASCII conversion requires adding
; 0x37

sublw 0x09 ; 9 - w
; if w from 0 to 9 then 9 - w = positive (c flag = 1)
; if w = 0xa then 9 - 10 = -1 (c flag = 0)
; if w = 0xc then 9 - 12 = -2 (c flag = 0)

btfss STATUS,c ; Test carry flag
goto hexLetter ; Carry clear, must be a letter

; At this point scan code is a decimal digit in the
; range 0 to 9. Conver to ASCII by adding 0x30

movf scanCode,w ; Recover scan code
addlw 0x30 ; Convert to ASCII
goto displayDig

hexLetter:
movf scanCode,w ; Recover scan code
addlw 0x37 ; Convert to ASCII

displayDig:
call send8 ; Display routine
call LCDscroll ; Auto line scrolling procedure

scanExit:
call long_delay ; Debounce
goto keyScan ; Continue

;==========================
; calculate scan code
;==========================
; The column position is added to the row code (stored
; in rowCode register). Sum is the scan code
col0:

movf rowCode,w ; Row code to w
addlw 0x00 ; Add 0 (clearly not necessary)
movwf scanCode ; Final value
incf newScan,f ; New scan code
return

col1:
movf rowCode,w ; Row code to w
addlw 0x01 ; Add 1
movwf scanCode
incf newScan,f
return

col2:
movf rowCode,w ; Row code to w

736 Appendix D

addlw 0x02 ; Add 2
movwf scanCode
incf newScan,f
return

col3:
movf rowCode,w ; Row code to w
addlw 0x03 ; Add 3
movwf scanCode
incf newScan,f
return

;==
; initialize LCD for 4-bit mode
;==
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf porte,E_line ; E line low
bcf porte,RS_line ; RS line low
bcf porte,RW_line ; Write mode
call delay_125 ; delay 125 microseconds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28

Supplementary Programs 737

call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

call send8
;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ cursor increment
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
; SHIFT)
; | | | |_|___ don't care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left
; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___

COMMAND BIT

738 Appendix D

call send8
; Per documentation

call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125:

movlw D'42' ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw D'42' ; Counter = 41
movwf count2 ; Store in variable

delay
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf porte,E_line ; Pulse E line
Nop
bcf porte,E_line
return

;=============================
; long delay sub-routine
; (for debugging)
;=============================
long_delay

movlw D'200' ; w delay count
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

goto kloop

Supplementary Programs 739

decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to port B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with port B

; Now w has merged byte
movwf portd ; w to port D
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf portd
call pulseE ; Send data to LCD
call delay_125
return

;=================
; merge bits
;=================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of port B
; so as to preserve the 4 low-bits in port B
; Logic:
; AND value with 1111 0000 mask
; AND port B with 0000 1111 mask
; Now low nibble in value and high nibble in
; port B are all 0 bits:
; value = vvvv 0000
; port B = 0000 bbbb
; OR value and port B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b'11110000' ; ANDing with 0 clears the
; bit. ANDing with 1 preserves

740 Appendix D

; the original value
movwf store2 ; Save result in variable
movf portd,w ; port B to w register
andlw b'00001111' ; Clear high nibble in port b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;========================
; Set address register
; to LCD line 1
;========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line1:

bcf porte,E_line ; E line low
bcf porte,RS_line ; RS line low, setup for

; control
call delay_5 ; Busy?

; Set to second display line
movlw LCD_1 ; Address with

high-bit set
call send8

; Set RS line for data
bsf porte,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

;========================
; Set address register
; to LCD line 2
;========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf porte,E_line ; E line low
bcf porte,RS_line ; RS line low, setup for

; control
call delay_5 ; Busy?

; Set to second display line
movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf porte,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

;==========================

Supplementary Programs 741

; scroll to LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then LCD is
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:

call initLCD ; Reset
clrf LCDcount ; Clear counters
clrf LCDline
call line1 ; Display to first line

scrollExit:
return
end

742 Appendix D

; File name: KeyPad.asm
; Last revision: May 12, 2006
; Author: Julio Sanchez
;
; Description:
; Program to scan a 4 x 4 keypad
; Keypad switch wiring (values are scan codes):
; --- KEYPAD --
; 0 1 2 3 <= port B0 |
; 4 5 6 7 <= port B1 |--- ROWS = OUTPUTS
; 8 9 A B <= port B2 |
; C D E F <= port B3 |
; | | | |
; | | | |_____ port B4 |
; | | |_________ port B5 |--- COLUMNS = INPUTS
; | |_____________ port B6 |
; |_________________ port B7 |
;
; Key press action generates a scan code in the range
; 0x0 to 0xf, starting at the top-left pushbutton and
; increasing left-to-right and from the top down.
;
; Scan code is displayed in LEDs wired to port D,
; lines 0, 1, 2, and 3

; WARNING:
; Code assumes 4Mhz clock. Delay routines must be
; edited for faster clock
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:

Supplementary Programs 743

; _LP_OSC Low power crystal occilator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF

;===
; PIC register equates
;===
Status equ 0x03
c equ 0
;===
; variables in PIC RAM
;===

cblock 0x20
J ; Counters
K
keyMask ; For keypad processing
rowMask ; For masking-off key rows
rowCode ; Row addend for calculating scan code
RowCount ; Counter for key rows (0 to 3)
ScanCode ; Final key code
endc

;===
; program
;===

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; First, initialize port B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to tris port D for output
bcf STATUS,RP1 ; Clear banks 2/3 selector
bsf STATUS,RP0 ; Select bank 1 for tris

registers
; Tris port D for output. Port D is wired to LEDs.

744 Appendix D

movlw B'00000000'
movwf TRISD ; and port D

; Port B, lines are wired to pushbutton switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b'11110000'
movwf TRISB

; Enable port B pullups for switches in OPTION register
movlw b'00001000'
movwf OPTION_REG

; Back to bank 0
bcf STATUS,RP0

;========================
; Monitor switches and
; toggle LEDS
;========================
; Keypad switch wiring:
; x x x x <= port B0 |
; x x x x <= port B1 |--- ROWS = OUTPUTS
; x x x x <= port B2 |
; x x x x <= port B3 |
; | | | |
; | | | |_____ port B4 |
; | | |_________ port B5 |--- COLUMNS = INPUTS
; | |_____________ port B6 |
; |_________________ port B7 |
; LEDS are wired to port D, lines 0, 1, 2, and 3
; Test switches
; First, all LEDs off

movlw b'00000000'
movwf PORTD ; Place in port

; And clear scan code register
clrf scanCode

;============================
; scan keypad and display
;============================
keyScan:
; Port B, lines are wired to pushbutton switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; Keypad processing:
; switch rows are successively grounded (row = 0)
; Then column values are tested. If a column returns 0
; in a 0 row, that switch is down.
; Initialize row code addend

Supplementary Programs 745

clrf rowCode ; First row is code 0
; Initialize row count

movlw D'4' ; Four rows
movwf rowCount ; Register variable
movlw b'11111110' ; All set but LOB
movwf rowMask

keyLoop:
; Initialize row eliminator mask:
; The row mask is ANDed with the key mask to successively
; mask-off each row, for example:
;
; |------- row 3
; ||------ row 2
; |||----- row 1
; ||||---- row 0
; 0000 1111 <= key mask
; AND 1111 1101 <= mask for row 1
; ---------
; 0000 1101 <= row 1 is masked off
;
; The row mask, which is initially 1111 1110, is rotated left
; through the carry in order to mask off the next row

movlw b'00001111' ; Mask off all lines
movwf keyMask ; To local register

; Set row mask for current row
movf rowMask,w ; Mask to w
andwf keyMask,f ; Update key mask
movf keyMask,w ; Key mask to w
movwf PORTB ; Mask-off port B lines

; Read port B lines 4 to 7 (columns are input)
btfss PORTB,4
call col0 ; Key column procedures
btfss PORTB,5
call col1
btfss PORTB,6
call col2
btfss PORTB,7
call col3

; Index to next row by adding 4 to row code
movf rowCode,w ; Code to w
addlw D'4'
movwf rowCode

;=========================
; shift row mask
;=========================
; Set the carry flag

bsf STATUS,c
rlf rowMask,f ; Rotate mask bits in storage

746 Appendix D

;=========================
; end of keypad?
;=========================
; Test for last key row (maximum count is 4)

decfsz rowCount,f ; Decrement counter
goto keyLoop

;=========================
; display scan code
;=========================
; At this point all keys have been tested
; variable scanCode holds scan code

movf scanCode,w
movwf PORTD
call long_delay ; Debounce
goto keyScan ; Continue

;==========================
; calculate scan code
;==========================
; The column position is added to the row code (stored
; in rowCode register). Sum is the scan code
col0:

movf rowCode,w ; Row code to w
addlw 0x00 ; Add 0 (clearly not necessary)
movwf scanCode ; Final value
return

col1:m
movf rowCode,w ; Row code to w
addlw 0x01 ; Add 1
movwf scanCode
return

col2:
movf rowCode,w ; Row code to w
addlw 0x02 ; Add 2
movwf scanCode
return

col3:
movf rowCode,w ; Row code to w
addlw 0x03 ; Add 3
movwf scanCode
return

;=============================
; long delay sub-routine
;=============================

Supplementary Programs 747

long_delay
movlw D'200' ; w delay count
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

End

748 Appendix D

; File name: RamDemo.asm
; Last revision: May 27, 2006
; Author: Julio Sanchez
; PIC: 16F877
;
; Description:
; Program to demonstrate access to General Purpose Register
; located in different banks. 16F877 GPR space is as
; follows:
; BANK 0 BANK 1 BANK 2 BANK 3
; 0x20 0xa0 0x110 0x190 |
; -- -- -- -- | bank
; -- -- -- -- | related
; -- 0xef 0x16f 0x1ef |
; -- 0xf0 0x170 0x1f0 |
; 0x70 <== access registers at 0x70-0x7f
; 0x7f these GPRs are common to all banks
;
; Program is designed to be used with a debugger so that
; access to different registers can be tested
; GPR registers are named according to the following format:
;
; REGx_yyy
; | |||
; | |||_________ hex address (up to 3 digits)
; |_____________ bank number (0 to 3)
;
; CONCLUSIONS:
; GPRs located between 0x70 and 0x7f can be accessed from
; any bank. GPRs at other addresses require previous bank
; selection
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF

Supplementary Programs 749

; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal occilator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF
; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.

errorlevel -302
; Supress bank-related warning
;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; PIC register equates
;===
reg0_20 equ 0x20

750 Appendix D

reg0_50 equ 0x50
reg0_7e equ 0x7e
reg1_a0 equ 0xa0
;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
Bank0
nop
movlw 0xee ; Test value
movwf reg0_20
movwf reg0_7e

;
Bank1

; Register at address 0x20 in bank 0 cannot be accessed
nop
movf reg0_20,w
nop

; However, the register at 0x7e CAN be accessed
movf reg0_7e,w
nop
Bank0
movlw 0x0
movf reg0_7e,w
nop

; How about from bank 3
Bank3
movlw 0x0
movf reg0_7e,w
nop

loopHere:
goto loopHere

;==
end ; END OF PROGRAM

;==

Supplementary Programs 751

; File name: RTC6355.asm
; Last revision: June 4, 2006
; Author: Julio Sanchez
; PIC: 16F877
;
; Description:
; Program to demonstrate programming of the NJU6355ED
; realtime clock IC.
;
; Operation:
;
; WARNING:
; Code assumes 10Mhz clock. Delay routines must be
; edited for faster clock. Clock speed also determines
; values for baud rate setting (see spbrgVal constant).
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal occilator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF

752 Appendix D

; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.

errorlevel -302
; Supress bank-related warning
;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 0 ;| -- from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .20; Number of characters per line
#define spbrgVal .64; For 2400 baud on 10Mhz clock

; Defines from real-time clock wiring diagram
#define CLK PORTC,1
#define DAT PORTC,3
#define IO PORTC,5 ; input/output select
#define CE PORTA,2 ; chip enable bit

Supplementary Programs 753

;===
; variables in PIC RAM
;===
; Local variables
; Reserve 20 bytes for string buffer

cblock 0x20
strData
endc

; Reserve three bytes for ASCII digits
cblock 0x34
asc100
asc10
asc1
endc

; Data
cblock 0x37 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
pic_ad
J ; counter J
K ; counter K
index
store1 ; Local storage
store2

; For LCDscroll procedure
LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)

; Communications variables
newData ; not 0 if new data received
ascVal
errorFlags

; Variables for Real-Time Clock
year ; Year (00h-99h)
month ; Month (01h-12h)
day ; Day of Month (01h-31h)
dow ; Day of Week (01h-07h)
hour ; Hour (00h-23h)
min ; Minute (00h-59h)
sec ; Second (00h-59h)
T0 ; Temporary storage
T1 ; Temporary storage
endc

; EEPROM-related variables are placed in common area so
; they may be accessed from any bank

cblock 0x70
EEMemAdd ; EEPROM address to access

754 Appendix D

EEByte ; Data byte to write
; Storage for ASCII decimal conversion and digits

inNum ; Source operand
thisDig ; Digit counter
endc

;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; Wiring:
; LCD data to port D, lines 0 to 7
; E line -> port E, 1
; RW line -> port E, 2
; RS line -> port E, 0
; Set PORTE D and E for output
; Data memory bank selection bits:
; RP1:RP0 Bank
; 0:0 0 Ports A,B,C,D, and E
; 0:1 1 Tris A,B,C,D, and E
; 1:0 2
; 1:1 3
; First, initialize port B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to tris port D for output
Bank1

; Tris port D for output. Port D lines 4 to 7 are wired
; to LCD data lines. Port D lines 0 to 4 are wired to LEDs.

movlw B'00000000'
movwf TRISD ; and port D

; By default port A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

movlw 0x06 ; binary 0000 0110 is code to
; make all port A lines digital

movwf ADCON1
; Port B, lines are wired to keypad switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b'11110000'
movwf TRISB

Supplementary Programs 755

; Tris port E for output
movlw B'00000000'
movwf TRISE ; Tris port E

; NJU6355 Interface:
; CLK PORTC,1 Output
; DAT PORTC,3 Output
; IO PORTC,5 Output
; CE PORTA,2 Output

movlw b'00000000'
movwf TRISC
movlw TRISA

; Enable port B pullups for switches in OPTION register
; 7 6 5 4 3 2 1 0 <= OPTION bits
; | | | | | |__|__|_____ PS2-PS0 (prescaler bits)
; | | | | | Values for Timer0
; | | | | | 000 = 1:2 001 = 1:4
; | | | | | 010 = 1:8 011 = 1:16
; | | | | | 100 = 1:32 101 = 1:64
; | | | | | 110 = 1:128 *111 = 1:256
; | | | | |______________ PSA (prescaler assign)
; | | | | *1 = to WDT
; | | | | 0 = to Timer0
; | | | |_________________ TOSE (Timer0 edge select)
; | | | *0 = increment on low-to-high
; | | | 1 = increment in high-to-low
; | | |____________________ TOCS (TMR0 clock source)
; | | *0 = internal clock
; | | 1 = RA4/TOCKI bit source
; | |_______________________ INTEDG (Edge select)
; | *0 = falling edge
; |__________________________ RBPU (Pullup enable)
; *0 = enabled
; 1 = disabled

movlw b'00001000'
movwf OPTION_REG

; Clear the write error flag (WRERR) in EECON1
Bank3
bcf EECON1,WRERR

; Back to bank 0
Bank0

; Clear all output lines
movlw b'00000000'
movwf PORTD
movwf PORTE
movwf PORTA
movwf PORTC

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize itself

756 Appendix D

call initLCD ; Then do forced initialization
call delay_5 ; (Wait probably not necessary)

; Clear character counter and line counter variables
clrf LCDcount
clrf LCDline

; Store base address of text buffer in PIC RAM
movlw 0x20 ; Start address for buffer
movwf pic_ad ; to local variable

; Initialize EEPROM address and data
clrf EEMemAdd ; Set address to 0
clrf EEByte

;======================
; first LCD line
;======================
; Store 20 blanks in PIC RAM, starting at address stored
; in variable pic_ad

call blank20
; Call procedure to store ASCII characters for message
; in text buffer

movlw d'0' ; Offset into buffer
call storeMS1

;=======================
; Read EEPROM memory
;=======================
; EEPROM memory address to use is at 10 (0x0a). Variable
; EEMemAdd is already initialized.
; Fill data for EEPROM is 0xff. This value indicates
; the first iteration

call EERead ; Local procedure. Value in w
movwf EEByte ; Store value

; At this point w must be 0
; EEPROM data still in w

clrf EEMemAdd ; Address 0
incf EEByte,f
call EEWrite

; At this point iteration number is stored in EEByte
; This value must be displayed on the LCD at offset 11
; of the first line. This means it must be stored at offset
; 11 in the buffer. Since the buffer starts at 0x20 the
; iteration digit must be stored at offset 0x20+11=0x2b
ShowEEData:
; Binary data in EEByte

movf EEByte,w ; Value to w
call bin2asc ; Conversion routine

; At this point three ASCII digits are stored in local
; variables. Move digits to display area

movf asc1,w ; Unit digit
movwf 0x2b ; Store in buffer

Supplementary Programs 757

movf asc10,w ; same with other digits
movwf 0x2a
movf asc100,w
movwf 0x29

; Display line
; Set DDRAM address to start of first line

showLine:

; Testing real time clock
; call initRTC ; Initialize variables
; call Set_Time

; Wait
movlw .50
movwf count3

longWait:
call long_delay
decfsz count3,f
goto longWait

; Get variables from RTC
; call Get_Time
over1:
; Store data in EEPROM

clrf EEMemAdd ; Address 0
incf EEMemAdd,f ; Address 1

; movf Hours,w
movlw 0xee
movwf EEByte
call EEWrite

incf EEMemAdd,f ; Address 2
movf min,w
movwf EEByte
call EEWrite

incf EEMemAdd,f ; Address 3
movf sec,w
movwf EEByte
call EEWrite

call line1
; Call procedure to display 16 characters in LCD

call display20
loopHere:

goto loopHere ;done

758 Appendix D

;==
;==
; L O C A L P R O C E D U R E S
;==
;==
;==========================
; init LCD for 4-bit mode
;==========================
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |
;=======================|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125 microseconds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
; | | | |__ font select:
; | | | 1 = 5x10 in 1/8 or 1/11
; | | | 0 = 1/16 dc
; | | |___ Duty cycle select
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16
; | |___ Interface width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink character

Supplementary Programs 759

; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Display on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

call send8
;***********************|
; set entry mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ display shift
; | | 1 = shift
; | | 0 = no shift
; | |____ increment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

call send8

;***********************|
; cursor/display shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY
; | | | | | SHIFT)
; | | | |_|___ don't care
; | |_|__ cursor/display shift
; | 00 = cursor shift left
; | 01 = cursor shift right
; | 10 = cursor and display
; | shifted left
; | 11 = cursor and display
; | shifted right
; |___ COMMAND BIT

call send8
;***********************|
; clear display |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

call send8
; Per documentation

call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds

760 Appendix D

;=======================
delay_125:

movlw D'42' ; Repeat 42 machine cycles
movwf count1 ; Store value in counter

repeat
decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw D'42' ; Counter = 41
movwf count2 ; Store in variable

delay
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ; Pulse E line
nop
bcf PORTE,E_line
return

;=============================
; long delay sub-routine
;=============================
long_delay

movlw D'200' ; w delay count
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

goto kloop
decfsz J,f ; J = J-1, skip next

if zero
goto jloop
return

;=============================
; LCD display procedure
;=============================
; Sends 20 characters from PIC buffer with address stored

Supplementary Programs 761

; in variable pic_ad to LCD line previously selected
display20:

call delay_5 ; Make sure not busy
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 20 characters
movlw D'20'
movwf count3

; Get display address from local variable pic_ad
movf pic_ad,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 16 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to port B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with port B

; Now w has merged byte
movwf PORTD ; w to port D
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTD
call pulseE ; Send data to LCD
call delay_125
return

762 Appendix D

;==========================
; merge bits
;==========================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of port B
; so as to preserve the 4 low-bits in port B
; Logic:
; AND value with 1111 0000 mask
; AND port B with 0000 1111 mask
; Now low nibble in value and high nibble in
; port B are all 0 bits:
; value = vvvv 0000
; port B = 0000 bbbb
; OR value and port B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contains value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b'11110000' ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTD,w ; port B to w register
andlw b'00001111' ; Clear high nibble in port b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;==========================
; Set address register
; to LCD line 2
;==========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, setup for

; control
call delay_5 ; Busy?

; Set to second display line
movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTE,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

Supplementary Programs 763

;==========================
; Set address register
; to LCD line 1
;==========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTE,RS_line ; Setup for data
call delay_5 ; Busy?
return

;==========================
; scroll to LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then LCD is
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,Z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?
btfsc STATUS,Z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:

764 Appendix D

call initLCD ; Reset
clrf LCDcount ; Clear counters
clrf LCDline
call line1 ; Display to first line

scrollExit:
return

;===============================
; first text string procedure
;===============================
storeMS1:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable pic_ad holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf pic_ad,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w

Supplementary Programs 765

addlw 1 ; Bump to next character
movwf index ; Store table index in

variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
; Message has 10 characters
msg1:

addwf PCL,f ; Access table
retlw 'I'
retlw 't'
retlw 'e'
retlw 'r'
retlw '.'
retlw 0x20
retlw 'N'
retlw 'o'
retlw '.'
retlw 0x20
retlw 0

;========================
; blank buffer
;========================
; Procedure to store 20 blank characters in PIC RAM
; buffer starting at address stored in the variable
; pic_ad
blank20:

movlw D'20' ; Setup counter
movwf count1
movf pic_ad,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit
movwf INDF ; Store blank character in PIC RAM

; buffer using FSR register
decfsz count1,f ; Done?
goto incfsr ; no
return ; yes

incfsr
incf FSR,f ; Bump FSR to next buffer space
goto storeit

;==============================
; binary to ASCII decimal
; conversion
;==============================
; ON ENTRY:

766 Appendix D

; w register has binary value in range 0 to 255
; ON EXIT:
; output variables asc100, asc10, and asc1 have
; three ASCII decimal digits
; Routine logic:
; The value 100 is subtracted from the source operand
; until the remainder is < 0 (carry cleared). The number
; of subtractions is the decimal hundreds result. 100 is
; then added back to the subtrahend to compensate
; for the last subtraction. Now 10 is subracted in the
; same manner to determine the decimal tenths result.
; The final remainder is the decimal units result.
; Variables:
; inNum storage for source operand
; asc100 storage for hundreds position result
; asc10 storage for tenth position result
; asc1 storage for unit position reslt
; thisDig Digit counter
bin2asc:

movwf inNum ; Save copy of source value
clrf asc100 ; Clear hundreds storage
clrf asc10 ; Tens
clrf asc1 ; Units
clrf thisDig

sub100:
movlw .100
subwf inNum,f ; Subtract 100
btfsc STATUS,C ; Did subtract overflow?
goto bump100 ; No. Count subtraction
goto end100

bump100:
incf thisDig,f ;increment digit counter
goto sub100

; Store 100th digit
end100:

movf thisDig,w ; Adjusted digit counter
addlw 0x30 ; Convert to ASCII
movwf asc100 ; Store it

; Calculate tenth position value
clrf thisDig

; Adjust minuend
movlw .100 ; Minuend
addwf inNum,f ; Add value to minuend to

; compensate for last
; operation

sub10:
movlw .10
subwf inNum,f ; Subtract 10

Supplementary Programs 767

btfsc STATUS,C ; Did subtract overflow?
goto bump10 ; No. Count subtraction
goto end10

bump10:
incf thisDig,f ;increment digit counter
goto sub10

; Store 10th digit
end10:

movlw .10
addwf inNum,f ; Adjust for last subtract
movf thisDig,w ; get digit counter contents
addlw 0x30 ; Convert to ASCII
movwf asc10 ; Store it

; Calculate and store units digit
movf inNum,w ; Store units value
addlw 0x30 ; Convert to ASCII
movwf asc1 ; Store digit
return

;==
; local EEPROM data procedures
;==
; GPRs used in EEPROM-related code are placed in the common
; RAM area (from 0x70 to 0x7f). This makes the registers
; accessible from any bank.
;==============================
; read local EEPROM
;==============================
; Procedure to read EEPROM memory
; ON ENTRY:
; Address of EEPROM memory location to read is stored in
; local register EEMemAdd
; ON EXIT:
; Read data in w
EERead:

Bank2
movf EEMemAdd,W ; EEPROM address
movwf EEADR ; to read from
Bank3
bcf EECON1,EEPGD ; Point to Data memory
bsf EECON1,RD ; Start read
Bank2
movf EEDATA,W ; Data to w register
Bank0
return

;==============================
; write local EEPROM
;==============================

768 Appendix D

; Procedure to write data byte to EEPROM memory
; ON ENTRY:
; Address to write stored in local register EEMemAdd
; Data byte to write is in local register EEByte
EEWrite:

Bank3
Wait2Start:

btfsc EECON1,WR ; Wait for
GOTO Wait2Start ; write to finish
Bank2
movf EEMemAdd,w ; Address to
movwf EEADR ; SFR
movf EEByte,w ; Data to
movwf EEDATA ; SFR
Bank3
bcf EECON1,EEPGD ; Point to Data memory
bsf EECON1,WREN ; and enable writes

; Disable interrupts. Can be done in any case
bcf INTCON,GIE

; Write special codes
movlw 0x55 ; First code is 0x55
movwf EECON2
movlw 0xaa ; Second code is 0xaa
movwf EECON2
bsf EECON1,WR ; Start write operation
nop ; Time for write
nop

; Test for end of write operation
wait2End:

btfsc EECON1,WR ; Wait until WR clear
goto wait2End

;
; Reenable interrupts if program uses interrupts
; If not, comment out next line
; bsf INTCON,GIE
;

bcf EECON1,WREN ; Prevent accidental writes
Bank0
return

;==
; 6355 RTC procedures
;==
; Write time/date to real-time clock
;

setclk
movlw 08h ; CE=low, IO=high
movwf PORTA

Supplementary Programs 769

movlw 10h ; CE,IO,CLK,DATA=out
tris PORTA
movlw year ; INDF=year
movwf FSR
bsf IO ; Enable clock I/O
call CS3 ; Set year, month, and day
movf INDF,W ; Set day of week
call CSNI
call CS2 ; Set hr, min (zero second)
bcf IO ; Disable clock I/O
return

;
CS3 call CSB ; Set next byte and advance
CS2 call CSB ; Set next byte and advance
;
CSB movf INDF,W ; Shift out LSN

call CSN
swapf INDF,W ; Shift out MSN

CSNI incf FSR,f ; Bump storage pointer
;
CSN movwf T1 ; T1=data

movlw 4 ; T0=bit count
movwf T0

next
movb PORTA.0,T1.0 ; Output next bit
rrf T1,f ; Ready next bit
bsf CLK ; Clock bit out of clock
bcf CLK
decfsz T0,f ; Continue until byte done
goto next
return ; Done

;
;=====================================
; Read time/date from real-time clock
;=====================================
getclk

movlw 00h ; CE,IO=low
movwf PORTA
movlw 11h ; CE,IO,CLK=out, DATA=in
tris PORTA
movlw year ; INDF=year
movwf FSR
bsf IO ; Enable clock I/O
call CG3 ; Get year, month, and day
call CGNI ; Get day of week
swapf dow
call CG3 ; Get hr, min, and sec
bcf IO ; Disable clock I/O

770 Appendix D

return ; Done
;
CG3 call CGB ; Get next byte and advance

call CGB ; Get next byte and advance
;
CGB call CGN ; Shift LSN in
CGNI call CGN ; Shift MSN in

call CGMask ; Mask unused bits
andwf INDF
incf FSR ; Bump storage pointer
return ; Done

;
CGN movlw 4 ; T0=bit count

movwf T0
next1 rrf INDF ; Shift accumulator

movb INDF.7,PORTA.0 ; Store bit to acc.
bsf CLK ; Clock next bit
bcf CLK
decfsz T0 ; Continue until done
goto next1
return ; Done

;
CGMask movf FSR,W ; W=RTC reg (0=year, ...)

addlw -year
addwf PCL ; W=bit mask for register
retlw 0FFh ; Year (8 bits)
retlw 01Fh ; Month (5 bits)
retlw 03Fh ; Day of month (6 bits)
retlw 070h ; Day of week (3 bits)
retlw 03Fh ; Hour (6 bits)
retlw 07Fh ; Minute (7 bits)
retlw 07Fh ; Second (7 bits)

;==
end ; END OF PROGRAM

;==

Supplementary Programs 771

; File name: SerEEI2C.asm
; Last revision: May 28, 2006
; Author: Julio Sanchez
; PIC: 16F877
;
; Description:
; Receive character data through RS-232 line and store in
; 24LC04B EEPROM IC, using the I2C serial protocol in the
; PIC's MSSP module. Received characters are echoed on
; the second LCD line. When <Enter> key is detected (code
; 0x0d) the text stored in EEPROM memory is retrieved and
; displayed on the LCD. On startup the top LCD line displays
; the prompt: "Receiving:". At that time a message "Rdy- " is
; sent through the serial line so as to test the connection.
;
; Default serial line setting:
; 2400 baud
; no parity
; 1 stop bit
; 8 character bits
;
; Wiring:
; 24LC04B SDA line is wired to PIC RC4 (MSSP SDA)
; 24LC04B SCL line is wired to PIC RC3 (MSSP SCL)
; 24LC04B A0-A2 and WP lines are not used (GND)
;
; Program to use 4-bit PIC-to-LCD interface.
; Code assumes that LCD is driven by Hitachi HD44780
; controller and PIC 16F977. Display supports two lines
; each one with 20 characters. The length, wiring and base
; address of each display line is stored in #define
; statements. These statements can be edited to accommodate
; a different set-up.
;
; WARNING:
; Code assumes 10 Mhz clock. Delay routines must be
; edited for a different clock. Clock speed also determines
; values for baud rate setting (see spbrgVal constant).
;
;===========================
; 16F877 switches
;===========================
; Switches used in __config directive:
; _CP_ON Code protection ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out reset enable ON/OFF

772 Appendix D

; * _BODEN_OFF
; * _PWRTE_ON Power-up timer enable ON/OFF
; _PWRTE_OFF
; _WDT_ON Watchdog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low voltage IC programming enable ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE memory code protection ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crystal oscillator
; _XT_OSC External parallel resonator/crystal oscillator

; * _HS_OSC High speed crystal resonator
; _RC_OSC Resistor/capacitor oscillator
; | (simplest, 20% error)
; |
; |_____ * indicates setup values presently selected

processor 16f877 ; Define processor
#include <p16f877.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &

_HS_OSC & _WDT_OFF & _LVP_OFF & _CPD_OFF

; __CONFIG directive is used to embed configuration data
; within the source file. The labels following the directive
; are located in the corresponding .inc file.

errorlevel -302
; Suppress bank-related warning
;==
; M A C R O S
;==
; Macros to select the register banks
Bank0 MACRO ; Select RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Select RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Select RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Supplementary Programs 773

Bank3 MACRO ; Select RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;===
; constant definitions
; for PIC-to-LCD pin wiring and LCD line addresses
;===
#define E_line 1 ;|
#define RS_line 0 ;| -- from wiring diagram
#define RW_line 2 ;|
; LCD line addresses (from LCD data sheet)
#define LCD_1 0x80 ; First LCD line constant
#define LCD_2 0xc0 ; Second LCD line constant
#define LCDlimit .20; Number of characters per line
#define spbrgVal .64; For 2400 baud on 10Mhz clock
; Note: The constants that define the LCD display
; line addresses have the high-order bit set
; so as to meet the requirements of controller
; commands.

;==
; local equates
;==
WRITE_ADDR equ b'10100000' ; Control byte for write
READ_ADDR equ b'10100001' ; Control byte for read
;==
; General Purpose Variables
;==
; Local variables
; Reserve 20 bytes for string buffer

cblock 0x20
strData
endc

; Other data
cblock 0x34 ; Start of block
count1 ; Counter # 1
count2 ; Counter # 2
count3 ; Counter # 3
J ; counter J
K ; counter K
bufAdd
index
store1 ; Local storage
store2

; For LCDscroll procedure
LCDcount ; Counter for characters per line
LCDline ; Current display line (0 or 1)

774 Appendix D

endc
;==============================
; Common RAM area
;==============================
; These GPRs can be accessed from any bank.
; 15 bytes are available, from 0x70 to 0x7f

cblock 0x70
; Communications variables

newData ; not 0 if new data received
ascVal
errorFlags

; EEPROM-related variables
datai ; Data input byte buffer
datao ; Data output byte buffer
bytecount ; Counter for byte loops
pollcnt ; Counter for polling loops
loops ; Delay loop counter
loops2 ; Delay loop counter
EEMemAdd ; EEPROM address to access
EEByte ; Data byte to write
endc

;==
; P R O G R A M
;==

org 0 ; start at address
goto main

; Space for interrupt handlers
org 0x08

main:
; Wiring:
; LCD data to port D, lines 0 to 7
; E line -> port E, 1
; RW line -> port E, 2
; RS line -> port E, 0
; Set PORTE D and E for output
; First, initialize port B by clearing latches

clrf STATUS
clrf PORTB

; Select bank 1 to tris port D for output
Bank1

; Tris port D for output. Port D lines 4 to 7 are wired
; to LCD data lines. Port D lines 0 to 4 are wired to LEDs.

movlw B'00000000'
movwf TRISD ; and port D

; By default port A lines are analog. To configure them
; as digital code must set bits 1 and 2 of the ADCON1
; register (in bank 1)

Supplementary Programs 775

movlw 0x06 ; binary 0000 0110 is code to
; make all port A lines digital

movwf ADCON1
; Port B, lines are wired to keypad switches, as follows:
; 7 6 5 4 3 2 1 0
; | | | | |_|_|_|_____ switch rows (output)
; |_|_|_|_____________ switch columns (input)
; rows must be defined as output and columns as input

movlw b'11110000'
movwf TRISB

; Tris port E for output
movlw B'00000000'
movwf TRISE ; Tris port E

; Enable port B pullups for switches in OPTION register
movlw b'00001000'
movwf OPTION_REG

; Back to bank 0
Bank0

; Initialize serial port for 2400 baud, 8 bits, no parity
; 1 stop

call InitSerial
; Test serial transmission by sending "RDY-"

movlw 'R'
call SerialSend
movlw 'D'
call SerialSend
movlw 'Y'
call SerialSend
movlw '-'
call SerialSend
movlw 0x20
call SerialSend

; Clear all output lines
movlw b'00000000'
movwf PORTD
movwf PORTE

; Wait and initialize HD44780
call delay_5 ; Allow LCD time to initialize itself
call initLCD ; Then do forced initialization
call delay_5 ; (Wait probably not necessary)

; Clear character counter and line counter variables
clrf LCDcount
clrf LCDline

; Set display address to start of first LCD line
call line1

; Store address of display buffer
movlw 0x20
movwf bufAdd

776 Appendix D

; Display "Receiving:" message prompt
call blank20 ; Clear buffer
movlw 0x00 ; Offset in buffer
call storeMS1 ; Store message at offset
call display20 ; Display message

; Start address of EEPROM
clrf EEMemAdd

; Setup for display in second line
call line2
clrf LCDline
incf LCDline,f ; Set scroll control for line 2

;==
; receive serial data, store, and display
;==
receive:
; Call serial receive procedure

call SerialRcv
; HOB of newData register is set if new data
; received

btfss newData,7
goto scanExit

; At this point new data was received.
movwf EEByte ; Save received character

; Display character on LCD
movf EEByte,w ; Recover character
call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line

; Store character in EEPROM at location in EEMemAdd
call ic2Write ; Local procedure
incf EEMemAdd,f ; Bump to next EEPROM

; Check for <Enter> key (0x0d) and execute display function
movf EEByte,w ; Recover last received
sublw 0x0d
btfsc STATUS,Z ; Test if <Enter> key
goto isEnter ; Go if <Enter>

; Not <Enter> key, continue processing
scanExit:

goto receive ; Continue
;============================
; display EEPROM data
;============================
; This routine receives control when the <Enter> key is
; received.
; Action:
; 1. Clear LCD
; 2. Output is set to top LCD line
; 3. Characters stored in EEPROM are displayed
; until 0x0d code is detected

Supplementary Programs 777

isEnter:
call clearLCD

; Clear character counter and line counter variables
clrf LCDcount
clrf LCDline

; Read data from EEPROM memory, starting at address 0
; and display on LCD until 0x0d terminator

call line1
clrf EEMemAdd ; Start at EEPROM 0

readOne:
call ic2Read ; Get character

; Store character
movwf EEByte ; Save character

; Test for terminator
sublw 0x0d
btfsc STATUS,Z ; Test if 0x0d
goto atEnd ; Go if 0x0d

; At this point character read is not 0x0d
; Display on LCD

movf EEByte,w ; Recover character
; Display character on LCD

call send8 ; Display in LCD
call LCDscroll ; Scroll at end of line
incf EEMemAdd,f ; Next EEPROM byte
goto readOne

; End of execution
atEnd:

goto atEnd

;==
;==
; L O C A L P R O C E D U R E S
;==
;==
;==========================
; init LCD for 4-bit mode
;==========================
initLCD:
; Initialization for Densitron LCD module as follows:
; 4-bit interface
; 2 display lines of 16 characters each
; cursor on
; left-to-right increment
; cursor shift right
; no display shift
;=======================|
; set command mode |

778 Appendix D

;=======================|
bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125

microseconds
movlw 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET)
call send8 ; 4-bit send routine

; Set 4-bit mode command must be repeated
movlw 0x28
call send8
movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
call send8
movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
call send8
movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY

; SHIFT)
call send8
movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)

; |___ COMMAND BIT
call send8
call delay_5 ; Test for busy
return

.;===========================
; procedure to clear LCD
;============================
clearLCD:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low
bcf PORTE,RW_line ; Write mode
call delay_125 ; delay 125

microseconds
movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)

; |___ COMMAND BIT
call send8
call delay_5 ; Test for busy
return

;=======================
; Procedure to delay
; 42 microseconds
;=======================
delay_125:

movlw .105 ; Repeat 105 machine
cycles

movwf count1 ; Store value in counter
repeat

Supplementary Programs 779

decfsz count1,f ; Decrement counter
goto repeat ; Continue if not 0
return ; End of delay

;=======================
; Procedure to delay
; 5 milliseconds
;=======================
delay_5:

movlw .105 ; Counter = 105 cycles
movwf count2 ; Store in variable

delay
call delay_125 ; Delay
decfsz count2,f ; 40 times = 5 milliseconds
goto delay
return ; End of delay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ; Pulse E line
nop
bcf PORTE,E_line
return

;=============================
; long delay sub-routine
;=============================
long_delay

movlw D'200' ; w delay count
movwf J ; J = w

jloop: movwf K ; K = w
kloop: decfsz K,f ; K = K-1, skip next if zero

goto kloop
decfsz J,f ; J = J-1, skip next if zero
goto jloop
return

;========================
; send 2 nibbles in
; 4-bit mode
;========================
; Procedure to send two 4-bit values to port B lines
; 7, 6, 5, and 4. High-order nibble is sent first
; ON ENTRY:
; w register holds 8-bit value to send
send8:

movwf store1 ; Save original value
call merge4 ; Merge with port B

780 Appendix D

; Now w has merged byte
movwf PORTD ; w to port D
call pulseE ; Send data to LCD

; High nibble is sent
movf store1,w ; Recover byte into w
swapf store1,w ; Swap nibbles in w
call merge4
movwf PORTD
call pulseE ; Send data to LCD
call delay_125
return

;==========================
; merge bits
;==========================
; Routine to merge the 4 high-order bits of the
; value to send with the contents of port B
; so as to preserve the 4 low-bits in port B
; Logic:
; AND value with 1111 0000 mask
; AND port B with 0000 1111 mask
; Now low nibble in value and high nibble in
; port B are all 0 bits:
; value = vvvv 0000
; port B = 0000 bbbb
; OR value and port B resulting in:
; vvvv bbbb
; ON ENTRY:
; w contain value bits
; ON EXIT:
; w contains merged bits
merge4:

andlw b'11110000' ; ANDing with 0 clears the
; bit. ANDing with 1 preserves
; the original value

movwf store2 ; Save result in variable
movf PORTD,w ; port B to w register
andlw b'00001111' ; Clear high nibble in port b

; and preserve low nibble
iorwf store2,w ; OR two operands in w
return

;==========================
; Set address register
; to LCD line 2
;==========================
; ON ENTRY:
; Address of LCD line 2 in constant LCD_2
line2:

bcf PORTE,E_line ; E line low

Supplementary Programs 781

bcf PORTE,RS_line ; RS line low, setup for
; control

call delay_5 ; Busy?
; Set to second display line

movlw LCD_2 ; Address with high-bit set
call send8

; Set RS line for data
bsf PORTE,RS_line ; RS = 1 for data
call delay_5 ; Busy?
return

;==========================
; Set address register
; to LCD line 1
;==========================
; ON ENTRY:
; Address of LCD line 1 in constant LCD_1
line1:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for

; control
call delay_5 ; busy?

; Set to second display line
movlw LCD_1 ; Address and command bit
call send8 ; 4-bit routine

; Set RS line for data
bsf PORTE,RS_line ; Setup for data
call delay_5 ; Busy?
return

;==========================
; scroll to LCD line 2
;==========================
; Procedure to count the number of characters displayed on
; each LCD line. If the number reaches the value in the
; constant LCDlimit, then display is scrolled to the second
; LCD line. If at the end of the second line, then LCD is
; reset to the first line.
LCDscroll:

incf LCDcount,f ; Bump counter
; Test for line limit

movf LCDcount,w
sublw LCDlimit ; Count minus limit
btfss STATUS,Z ; Is count - limit = 0
goto scrollExit ; Go if not at end of line

; At this point the end of the LCD line was reached
; Test if this is also the end of the second line

movf LCDline,w
sublw 0x01 ; Is it line 1?

782 Appendix D

btfsc STATUS,Z ; Is LCDline minus 1 = 0?
goto line2End ; Go if end of second line

; At this point it is the end of the top LCD line
call line2 ; Scroll to second line
clrf LCDcount ; Reset counter
incf LCDline,f ; Bump line counter
goto scrollExit

; End of second LCD line
line2End:

call initLCD ; Reset
clrf LCDcount ; Clear counters
clrf LCDline
call line1 ; Display to first line

scrollExit:
return

;=============================
; LCD display procedure
;=============================
; Sends 20 characters from PIC buffer with address stored
; in variable bufAdd to LCD line previously selected
display20:

call delay_5 ; Make sure not busy
; Set up for data

bcf PORTA,E_line ; E line low
bsf PORTA,RS_line ; RS line high for data

; Set up counter for 20 characters
movlw D'20'
movwf count3

; Get display address from local variable bufAdd
movf bufAdd,w ; First display RAM address to W
movwf FSR ; W to FSR

getchar
movf INDF,w ; get character from display RAM

; location pointed to by file select
; register

call send8 ; 4-bit interface routine
; Test for 20 characters displayed

decfsz count3,f ; Decrement counter
goto nextchar ; Skipped if done
return

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;===============================
; first text string procedure
;===============================

Supplementary Programs 783

storeMS1:
; Procedure to store in PIC RAM buffer the message
; contained in the code area labeled msg1
; ON ENTRY:
; variable bufAdd holds address of text buffer
; in PIC RAM
; w register hold offset into storage area
; msg1 is routine that returns the string characters
; and a zero terminator
; index is local variable that hold offset into
; text table. This variable is also used for
; temporary storage of offset into buffer
; ON EXIT:
; Text message stored in buffer
;
; Store offset into text buffer (passed in the w register)
; in temporary variable

movwf index ; Store w in index
; Store base address of text buffer in FSR

movf bufAdd,w ; first display RAM address to W
addwf index,w ; Add offset to address
movwf FSR ; W to FSR

; Initialize index for text string access
movlw 0 ; Start at 0
movwf index ; Store index in variable

; w still = 0
get_msg_char:

call msg1 ; Get character from table
; Test for zero terminator

andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string character in w
; store character in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; increment buffer pointer

; Restore table character counter from variable
movf index,w ; Get value into w
addlw 1 ; Bump to next character
movwf index ; Store table index in

; variable
goto get_msg_char ; Continue

endstr1:
return

; Routine for returning message stored in program area
; Message has 10 characters
msg1:

784 Appendix D

addwf PCL,f ; Access table
retlw 'R'
retlw 'e'
retlw 'C'
retlw 'e'
retlw 'i'
retlw 'v'
retlw 'i'
retlw 'n'
retlw 'g'
retlw ':'
retlw 0

;========================
; blank buffer
;========================
; Procedure to store 20 blank characters in PIC RAM
; buffer starting at address stored in the variable
; bufAdd
blank20:

movlw D'20' ; Setup counter
movwf count1
movf bufAdd,w ; First PIC RAM address
movwf FSR ; Indexed addressing
movlw 0x20 ; ASCII space character

storeit
movwf INDF ; Store blank character in PIC RAM

; buffer using FSR register
decfsz count1,f ; Done?
goto incfsr ; no
return ; yes

incfsr
incf FSR,f ; Bump FSR to next buffer

space
goto storeit

;==
; communications procedures
;==
; Initialize serial port for 2400 baud, 8 bits, no parity,
; 1 stop
InitSerial:

Bank1 ; Macro to
select bank1
; Bits 6 and 7 of Port C are multiplexed as TX/CK and RX/DT
; for USART operation. These bits must be set to input in the
; TRISC register

movlw b'11000000' ; Bits for TX and RX

Supplementary Programs 785

iorwf TRISC,f ; OR into Trisc register
; The asynchronous baud rate is calculated as follows:
; Fosc
; ABR = -----------
; S*(x+1)
; where x is value in the SPBRG register and S is 64 if the high
; baud rate select bit (BRGH) in the TXSTA control register is
; clear, and 16 if the BRGH bit is set. For setting to 2400 baud
; using a 10Mhs oscillator at a slow baud rate the formula
; is:
; At slow speed (BRGH = 0)
; 10,000,000 10,000,000
; ---------- = ----------- = 2,403.84 (0.16% error)
; 64*(64+1) 4160
;

movlw spbrgVal ; Value in spbrgVal = 64
movwf SPBRG ; Place in baud rate generator

; Setup value: 0010 0000 = 0x20
movlw 0x20 ; Enable transmission and high

; baud rate
movwf TXSTA
Bank0 ; Bank 0

; Setup value: 1001 0000 = 0x90
movlw 0x90 ; Enable serial port and

; continuous reception
movwf RCSTA

;
clrf errorFlags ; Clear local error flags

; register
return

;==============================
; transmit data
;==============================
; Test for Transmit Register Empty and transmit data in w
SerialSend:

Bank0 ; Select bank 0
btfss PIR1,TXIF ; check if transmitter busy
goto $-1 ; wait until transmitter is

; not busy
movwf TXREG ; and transmit the data
return

;==============================
; receive data
;==============================
; Procedure to test line for data received and return value
; in w. Overrun and framing errors are detected and
; remembered in the variable errorFlags, as follows:

786 Appendix D

; 7 6 5 4 3 2 1 0 <== errorFlags
; -- not used ---- | |___ overrun error
; |______ framing error
SerialRcv:

clrf newData ; Clear new data received
register

Bank0 ; Select bank 0
; Bit 5 (RCIF) of the PIR1 Register is clear if the USART
; receive buffer is empty. If so, no data has been received

btfss PIR1,RCIF ; Check for received data
return ; Exit if no data

; At this point data has been received. First eliminate
; possible errors: overrun and framing.
; Bit 1 (OERR) of the RCSTA register detects overrun
; Bit 2 (FERR(of the RCSTA register detects framing error

btfsc RCSTA,OERR ; Test for overrun error
goto OverErr ; Error handler
btfsc RCSTA,FERR ; Test for framing error
goto FrameErr ; Error handler

; At this point no error was detected
; Received data is in the USART RCREG register

movf RCREG,w ; get received data
bsf newData,7 ; Set bit 7 to indicate new data

; Clear error flags
clrf errorFlags
return

;==========================
; error handlers
;==========================
OverErr:

bsf errorFlags,0 ; Bit 0 is overrun error
; Reset system

bcf RCSTA,CREN ; Clear continuous receive bit
bsf RCSTA,CREN ; Set to re-enable reception
return

;error because FERR framing error bit is set
;can do special error handling here - this code simply clears
; and continues
FrameErr:

bsf errorFlags,1; Bit 1 is framing error
movf RCREG,W ; Read and throw away bad data
return

;==
; I2C EEPROM data procedures
;==
; GPRs used in EEPROM-related code are placed in the common
; RAM area (from 0x70 to 0x7f). This makes the registers
; accessible from any bank.

Supplementary Programs 787

;*******************Byte read test subroutine ******************
; This routine tests the byte read feature
; of the serial EEPROM device. It will read
; 1 byte of data at address 0x5AA5 from the device.
;***
ic2Read

call BSTART ; Generate Start condition
; Send control byte

bcf STATUS,RP0 ; Select Bank 00
movlw WRITE_ADDR ; Load control byte for write
movwf datao ; Copy to datao for output
call TX ; Send control byte to device

; Send word address high byte
bcf STATUS,RP0 ; Select Bank 00
movlw 0x5A ; Load 0x5A for word address
movwf datao ; Copy to datao for output
call TX ; Send high byte to device

; Send word address low byte
bcf STATUS,RP0 ; Select Bank 00
movlw 0xA5 ; Load 0xA5 for word address
movwf datao ; Copy to datao for output
call TX ; Send word address to device
call BRESTART ; Generate Restart condition

; Send control byte
bcf STATUS,RP0 ; Select Bank 00
movlw READ_ADDR ; Load control byte for read
movwf datao ; Copy to datao for output
call TX ; Send control byte to device

; Read data byte
bsf STATUS,RP0 ; Select Bank 01
bsf SSPCON2,ACKDT ; Select to send NO ACK bit
call RX ; Read data byte from device
call BSTOP ; Generate Stop condition
retlw 0

;*******************Byte write test subroutine*****************
; This routine tests the byte write feature
; of the serial EEPROM device. It will write
; 1 byte of data to the device at address 0x5AA5.
;**
ic2Write

call BSTART ; Generate Start condition
; Send control byte

bcf STATUS,RP0 ; Select Bank 00
movlw WRITE_ADDR ; Load control byte for write
movwf datao ; Copy to datao for output
call TX ; Send control byte to device

; Send word address high byte

788 Appendix D

bcf STATUS,RP0 ; Select Bank 00
movlw 0x5A ; Load 0x5A for word address
movwf datao ; Copy to datao for output
call TX

; Send word address low byte
bcf STATUS,RP0 ; Select Bank 00
movlw 0xA5 ; Load 0xA5 for word address
movwf datao ; Copy to datao for output
call TX ; Send word address to device

; Send data byte
bcf STATUS,RP0 ; Select Bank 00
movlw 0xAA ; Load 0xAA for data byte
movwf datao ; Copy to datao for output
call TX ; Send data byte to device
call BSTOP ; Generate Stop condition
call Poll ; Poll for write completion
retlw 0

;*******************Acknowledge Polling subroutine**************
; This subroutine polls the EEPROM device
; for an ACK bit, which indicates that the
; internal write cycle has completed. Code
; is in place for a timeout routine, just
; uncomment the 'goto TimedOut' line, and
; provide a 'TimedOut' label.
;**
Poll

bcf STATUS,RP0 ; Select Bank 00

Supplementary Programs 789

movlw .40
movwf pollcnt ; Set max polling times to 40

polling
call BRESTART ; Generate start bit
bcf STATUS,RP0 ; Select Bank 00
movlw WRITE_ADDR ; Now send the control byte
movwf datao ; Copy control byte to buffer
call TX ; Output control byte to device
bsf STATUS,RP0 ; Select Bank 01
btfss SSPCON2,ACKSTAT ; Was the ACK bit low?
goto exitpoll ; If yes, stop polling

; If no, check if polled 40 times
bcf STATUS,RP0 ; Select Bank 00
decfsz pollcnt,F ; Is poll counter down to zero?
goto polling ; If no, poll again

; goto TimedOut ; If yes, part didn't respond
; in time, so take action

exitpoll
call BSTOP ; Generate stop bit

movlw .40
movwf pollcnt ; Set max polling times to 40

polling
call BRESTART ; Generate start bit
bcf STATUS,RP0 ; Select Bank 00
movlw WRITE_ADDR ; Now send the control byte
movwf datao ; Copy control byte to buffer
call TX ; Output control byte to device
bsf STATUS,RP0 ; Select Bank 01
btfss SSPCON2,ACKSTAT ; Was the ACK bit low?
goto exitpoll ; If yes, stop polling

; If no, check if polled 40
times

bcf STATUS,RP0 ; Select Bank 00
decfsz pollcnt,F ; Is poll counter down to zero?
goto polling ; If no, poll again

; goto TimedOut ; If yes, part didn't respond
; in time, so take action

exitpoll
call BSTOP ; Generate stop bit
retlw 0

;*******************Initialization subroutine*******************
; This routine initializes the MSSP module
; for I2C Master mode, with a 100 kHz clock.
;***
Init

bcf STATUS,RP1 ; Select Bank 01
bsf STATUS,RP0
movlw b'11111111'
movwf TRISC ; Set PORTC to all inputs
clrf SSPSTAT ; Disable SMBus inputs
bsf SSPSTAT,SMP ; Disable slew rate control
movlw 0x18 ; Load 0x18 into WREG
movwf SSPADD ; Setup 100 kHz I2C clock
clrf SSPCON2 ; Clear control bits
bcf STATUS,RP0 ; Select Bank 00
movlw b'00101000'
movwf SSPCON ; Enable SSP, select I2C Master

mode
bcf PIR1,SSPIF ; Clear SSP interrupt flag
bcf PIR2,BCLIF ; Clear Bit Collision flag
retlw 0

;*******************Start bit subroutine***********************
; This routine generates a Start condition
; (high-to-low transition of SDA while SCL
; is still high).
;**

790 Appendix D

BSTART
bcf STATUS,RP1
bcf STATUS,RP0 ; Select Bank 00
bcf PIR1,SSPIF ; Clear SSP interrupt flag
bsf STATUS,RP0 ; Select Bank 01
bsf SSPCON2,SEN ; Generate Start condition
bcf STATUS,RP0 ; Select Bank 00

bstart_wait
btfss PIR1,SSPIF ; Check if operation completed
goto bstart_wait ; If not, keep checking
retlw 0

;******************Restart bit subroutine***********************
; This routine generates a Repeated Start
; condition (high-to-low transition of SDA
; while SCL is still high).
;**
BRESTART

bcf STATUS,RP1
bcf STATUS,RP0 ; Select Bank 00
bcf PIR1,SSPIF ; Clear SSP interrupt flag
bsf STATUS,RP0 ; Select Bank 01
bsf SSPCON2,RSEN ; Generate Restart condition
bcf STATUS,RP0 ; Select Bank 00

brestart_wait
btfss PIR1,SSPIF ; Check if operation completed
goto brestart_wait ; If not, keep checking
retlw 0

;*******************Stop bit subroutine************************
; This routine generates a Stop condition
; (low-to-high transition of SDA while SCL
; is still high).
;***
BSTOP

bcf STATUS,RP1
bcf STATUS,RP0 ; Select Bank 00
bcf PIR1,SSPIF ; Clear SSP interrupt flag
bsf STATUS,RP0 ; Select Bank 01
bsf SSPCON2,PEN ; Generate Stop condition
bcf STATUS,RP0 ; Select Bank 00

bstop_wait
btfss PIR1,SSPIF ; Check if operation completed
goto bstop_wait ; If not, keep checking
retlw 0

;*******************Data transmit
subroutine**********************

Supplementary Programs 791

; This routine transmits the byte of data
; stored in 'datao' to the serial EEPROM
; device. Instructions are also in place
; to check for an ACK bit, if desired.
; Just replace the 'goto' instruction,
; or create an 'ackfailed' label, to provide
; the functionality.
;**
TX

bcf STATUS,RP1
bcf STATUS,RP0 ; Select Bank 00
bcf PIR1,SSPIF ; Clear SSP interrupt flag
movf datao,W ; Copy datao to WREG
movwf SSPBUF ; Write byte out to device

tx_wait
btfss PIR1,SSPIF ; Check if operation completed
goto tx_wait ; If not, keep checking

; bsf STATUS,RP0 ; Select Bank 01
; btfsc SSPCON2,ACKSTAT ; Check if ACK bit was received
; goto ackfailed ; This executes if no ACK
received

retlw 0

;*******************Data receive subroutine*********************
; This routine reads in one byte of data from
; the serial EEPROM device, and stores it in
; 'datai'. It then responds with either an
; ACK or a NO ACK bit, depending on the value
; of 'ACKDT' in 'SSPCON2'.
;**
RX

bcf STATUS,RP1
bcf STATUS,RP0 ; Select Bank 00
bcf PIR1,SSPIF ; Clear SSP interrupt flag
bsf STATUS,RP0 ; Select Bank 01
bsf SSPCON2,RCEN ; Initiate reception of byte
bcf STATUS,RP0 ; Select Bank 00

rx_wait
btfss PIR1,SSPIF ; Check if operation completed
goto rx_wait ; If not, keep checking
movf SSPBUF,W ; Copy byte to WREG
movwf datai ; Copy WREG to datai
bcf PIR1,SSPIF ; Clear SSP interrupt flag
bsf STATUS,RP0 ; Select Bank 01
bsf SSPCON2,ACKEN ; Generate ACK/NO ACK bit
bcf STATUS,RP0 ; Select Bank 00

rx_wait2
btfss PIR1,SSPIF ; Check if operation completed

792 Appendix D

goto rx_wait2 ; If not, keep checking
retlw 0

;==
end ; END OF PROGRAM

;==

Supplementary Programs 793

!MCLR pin 147,223

#define directive 288

__config 82-183,189,195,198,201,203,208,

233,236,260,263,265,269,306,317,328,

390,395,400,406,421,439,492,505,522,

568,581,595,659,663,667,678,682,685,

689,704,708,729,743,749,752,772

16F84A UART Emulation 369

16F877 PIC Initialization Code ,381

16F87x USART

Asynchronous Receiver 380

Asynchronous Transmitter ,379

Module 376

24LC04B EEPROM 460,479,481,486,

488,490,521,524,539,708,710,726,772

4050 hex buffer IC 121

4-bit data transfer mode 302,304

555 timer 106

7400 NAND gate 87

7402 NOR quad 2-input NOR gate 88

7404 hex inverter 86,105

7408 AND gate 87

74138 118

7414 hex Schmitt trigger 93

74165 IC 114

7432 quad 2-input OR gate 88

7486 quad 2-input XOR gate 90

7805 voltage regulator 96,192

A

A/D

channels 141

conversion clock 550-551

conversions 161,543,549

converters 161,549

module 161,549-550,552,554-556,593

abacists 21

and algorists 21

ACK condition 477,484

acquisition time 545,556,593

active-high 199

active-low 147,199,215,389,395

ADC0831 546-549,555,568-569,571,579

ADCON0 550-552,554,556-557,593-594

ADCON1 180-181,550,552-553,556,593

address counter 276,278,283-285

ADRESH 550,553,556-557,593-594

ADRESL 550,553,557,594

al-Khowarizmi 21

ALU 59,149,151,243

American Standard Code for Information

Interchange 34

Ampere, Andre 5

analog-to-digital converters 95,129

AND gate 84,87-90,97-98,101,108,110,

114,116

ANSI/IEEE Standard 754

arithmetic

instructions 53

-logic unit 149

asynchronous

inputs 101

logic 98

serial communications 341,350

signal 211

transmission 379

atomic number 2

auxiliary operations 55

B

Babbage, Charles 84

bank selection macros 181

banking techniques 145

banksel directive 180-181

base-emitter current 82

battery types 191

battery-operated devices 222

Baudot, Jean Maurice Emile 340

795

Index

baud period 340,344,418,420,702-703

Benson, David 293

BCD

digits to ASCII decimal 72

to ASCII decimal 567,605

Bell Telephone System 343

biased switch 120

BiCMOS 94

big-endian format 40

binary

arithmetic 37,42,44,51,59,62

to ASCII decimal conversion 29

to BCD conversion 566,611

binary-coded decimals 22,33

bipolar transistor 81-82,84-85,93-94

bistable device 96

bit stream 339-341

bit-banging 340

Black, Roman 245

Black-Ammerman method 245-246,253

Bohr, Niels 1

Boole, George 37

bootloaders 131

breadboard 132,164,194,206,278

breakover point 79

breakpoint 165,170-172

modes 172

Bothe, Walther 84

buffer pointer variable 372-373

build process 170

busy flag 276,280,283,285,287,290,293,

295-296,317,321-322

buzzers 77,95,122

byte ordering 40

C

capacitor circuit 121

carrier detect 347

carry/overflow flag 56

cathode 78,80-81,123

cblock directive 179,289,372

Centronics interface 350

ceramic resonator 146

character

bits 341-342,344,420,438,469,

486,504,522,708,772

representations 34

circuit breakers 6

circuit tester 349

CISC 143,154,193

clear display 332,411,431,449,496,572,

586,600,695,738,760

to send 347

clearing the display 275

CLK 363,365,400,403-404,477,546,548,

561-565,568,579-580,606-610,770-771

clock rate 147,242,244,246,253,265,269,

343,351,354,370

clocks 195,102,105,107,122-123,174,280,

341,344,476,543,558

CMOS 93-94,121,135,138,199,368

4HCT 94

logic gates 94

transistor 94

code protec-

tion 135,182-183,421,439,505,522,581,

709, 730,743,750,752,773

collector-emitter current 82

comment symbol 176

commented bitmaps 178

common

ground 6,343

-cathode seven-segment LED 123

compare operator 193

comparison operations 63

conductors 4-5,9,13,15-16,77,367,476

configuration bits 145,182-183,556,593

contrast

control 281

control line 281

converter resolution 161,544,549

Coulomb, Charles Agustin 4

counter mode 246,248

counting 19,21,23,109-111,113,160,241,

243-245,252,255,259,263,293,370,405,

682,688

CP1600 processor 130

crystal

displays 77,95,123,159,275

oscillator 195,198,201,203,208,229,233,

236,260,263,266,269,306,317,328,

390,395,405,406,421-422,439,492-

493,505,522,558,560,568,581,595,

659,663,667,682,685,689,704,709,

730,744,750,752,773

resonator 146,183,190,195,198,201,

203,208,229,233,236,260,263,266,

269,306,317,328,390,395,401,406,

422,439,493,505,522,568,581,595,

659,663,667,678,682,685,689,704,

709,730,744,750,752,773

current-limiting resistor 281

796 Microcontroller Programming

cur-

sor/dislay shift 292,310,321,331,411,43

0-431,448,496,572,586,600,671,694,

738,760

D

D flip-flop 99-101

Dallas Semiconductors 367

DCE 344-347

data

registers 154

set ready 347

stream 342,344

terminal ready 347

DATA TRANSFER condition 477

data-logging 340

DB-9 connector 344,369

DC power supply 86,95

DDRAM 276-277,281-288,292,298-299,

301-302,308,319,330,495,571,585,599,

669,758

address mapping 285

debouncing

routine 222

the switch 222

decimal-to-binary conversion 30

decoding gates 110

default radix 169

De Forest, Lee 84

delay loop 196-197,243-244,247,250,260,

287,293-295,306,317,327,405,667,688,

729

demo board 147, 202,206,208-209,664,679

demultiplexers 115

denormal numbers 49

denormals 48-49

detecting overflow 70

development boards 131

differential signaling 349

digit carry 61

digital

circuits 85,95-96,101,115

switching noise 554

technology 103

diode 15,17-18,77-82,84,93-95

direct addressing 154-156,158,372-374,

416,699

display

data RAM 276,281,285

shift 178,283-286,292,309-310,

320-321,330-331,410-411,429-431,

444-448,496,511,528,572,586,599-

display shift (continued)

600,670-671,693-694,714,737-738,

759-760,778

mode 285

divide-by-two circuit 108-109

dopants 15

double-counter loop 197

data register 276,362,365,403,548,579

dual inline package 86

E

EBCDIC 36

EEADR 153,185,460-462,465-468,503-

504,520,768-769

EECON1 153,185,217,460-462,465-469,50

3-504,520-521,756,768-769

register 217,460-462,465,467-468

EECON2 153,460,462,465,468,504,521,

769

EEDATA 153,185,460-462,465-468,503,

520,768-769

EEPROM

data memory 138,153,158,161,217,

459-462,465,467,469,492,504

programming 153,343,366,376,480

EIA/TIA-561 standard 346

EIA232E 340

EIA-485 339,349-350

in PIC-based Systems xii,350

standard xii,349

electrical

charge 2-5,12,15-16,38

circuits 6,8

current 3,17,78,120,124

Electrically-Erasable Programmable

Read-Only Memory (see EEPROM)

embedded system XV-XVI,164,476,558

entry mode set 285-286

EPROM 130,135-136,138,145,149,153,

158,161,172,174,182,213,217-218,223,

343,366,376,459-463,465,467-469,471-

483,485-495,497,499,501,503-505,507,

509-511,513,515,517,519-521,523-529,

531,533,535,537-541,708,710-711,713-

714,723-726,754,757-758,768-769,772,

775,777-778,787-789,792

error-recovery mechanism 260

ESD 367

Ethernet 339,346

cables 346

Index 797

excess-n 48

external interrupt 139,148,214,220,224,

226,230,234,237,256,271

flag 220,226,230,234,237,256,271

source 214,224

external oscillator 135

F

Fairchild Semiconductor 16

farad 13

Faraday, Michael 13

flip-flops 77,85,95,98-101,103-104,109-

111,113-115,121,360

float switch 120

floating-point

BCD 52

numbers 33,47-48,50

four-line decoder 118

Franklin, Benjamin 78

free running timer 243,245

FSR register 155,158,313,324,335,373,

387,500,517,535,575,591,603,721,766,

785

full-duplex 344,349,376,386

full-handshake 348

function set 285

G

general purpose registers 154-155,157,

289

Global Interrupt Enable bit 211,242,

623,647

global interrupts 220,226,230,234,237,

257,271,386,417,700

GPR 148,154-155,157,172,179-180,184,

197,469,472,486,507,520,524,537,711,

723,749,768,775,787

GPSIM 130

GPUTILS 130

H

half-duplex 161,344,349,376

handshake 347-349,360

hardware debuggers 170,174

Harvard architecture 33,142-143

HD44780 275-281,283,287,295,306,308,

316,318,321,327,329,408,420,425,438,

443,473,494,504,508,522,526,570,584,

HD44780 (continued)

598,669,691,708,712,729,733,756,772,

776

controller: 276,283

instruction set 283

heavy water 2

helium atom 2

high-end PICs 141

Hindu notation 23

Hindu-Arabic numerals 20-21

Hoerni, Jean 16

hysteresis 92-93,121

I

I/O ports 141,158-159,280,555

I/V curve 79

I2C

communications 477,483

EEPROM devices 479

master mode 482-483,485,488,538,724

serial interface 486

ICD 2 130,170,174

ideal waveform 104

IEEE 38,47-51

754 Single Format 48

in-circuit debugger 130,172,174

include file 168,184,186,191,195

INDF register 158,372-373

indirect address-

ing 155-156,158,372-374,416,699

inductors 8,14,77

input devices 118,122,159

Institute of Electrical and Electronics En-

gineers 38

instruction pipeline 144

insulators 4

INTCON register 149,155,211,214,242,

255-256,259,356,358,386,393,398

INTEDG bit 214

integrated

circuits 16,38,85-86,89,94,161,339,

360,376,475,546,558

development environment 163,175

Inter-Integrated Circuit (see I2C)

internal

clock 129,178,241,246,249-251,

253,256,259,261,264,267,271,343,

355,370,383,392,397,417,425,436,

443,453,584,661,683,686,700,706,

733,756

798 Microcontroller Programming

registers 130,276,560

International Standards Organization 34

interrupt

handlers 190,209,218,261,308,

318,329,391,396,402,408,423,441,

472,494,507,525,570,583,598,664,

668,679,691,711,732,744,751,755,

775

mechanism 148,211,214,216,218

request line 103

sources 148,211,215,217,224

-driven counter 247,255

-driven timer 247,255

interrupts on the 16F84 211

inverted borrow 194

IRQ 103

isotopes 2

J

Japanese Kana characters 275,277

K

keypads 121-122,159

L

LAB-X1 development board 131

large EEPROMS 479

LCD

initialization 287,290,303

programming 287,293

LED 77,79-81,95,103,122-124,126,159,

189,194-200,202-206,219-223,225-226,

228-234,236-239,248-250,257-258,260,

262-263,267,273,279,281,342-343,349,

351-352,356,358,360,364,389,391-392,

395-398,400,424,442,472,507,525,583,

663,682,704,706,711,732,743-745,755,

775

LED/pushbutton circuit 199

left-justification. 556,593

Leibniz, Gottfried 22,37

liquid crystal

display driver circuit 276,278

displays 77,95,123,275

little-endian format 40

logic gates 77,84-86,89,94-95,97,113,119

logical

AND 57,90

logical (continued)

instructions 56

NOT 58

OR 57,90

low voltage programming 131

low-power Schottky 93

LTC1298 546,549

M

make-before-break action 120

marking state 340-341

Master Asynchronous Serial Port (see

MSSP)

Master Synchronous Serial Port 161,

376,480,486

Mauchly, John 37

MAX 190 546

MAX202 367-369,406,408,689,691

MAX232 367-368

megacandela 80

memory

addressing 27

banks 154,180,479

storage 27,51,342

mercury switch 120

metal oxide semiconductor transistor 83

Microchip Technology 129,184

microcontroller clocks 107

microcontrollers 34,39,55-56,60-65,70,77,

103,107,118,122,129-130,134-135,141-

142,153,163,182,191,211,289,304,459,

479-480,549,558

MicroPro 131,175

Microwire 475

mid-range

instruction set 181

PIC family 138

mismatch period 215

models of the atom 1

MOS transistor 83-84,94

motors 6,77,95,349

MPLAB 130,163-167,170-173,184,186,

288-289

assembler 165,184

debuggers 165,288

documentation 170

editor 165

IDE 164-166,171

in-circuit emulators 165

linker 165

Index 799

SIM 170-173

MPU 276

MSSP 158,161,343,366,376,480-487,491,

521-522,524,537,540,708,710,723-724,

727,772,790

multi-byte counters 245

multiplexers 115,118

multipoint connection 349

multi-throw switch 120

N

NACK signal 478

NAND gate 84,87-90,97-98,114

n-channel MOS 83

negative-to-positive charges 5

nematic crystals 124

nested interrupts 216

NJU6355 177,558-561,563,595,606,608,

752,756

NMOS 83-84

non-maskable interrupts 148

NOR gate 88-89,91,110,116

normalized form 49-50

Noyce, Robers 16

NPN transistor 81,83

n-type 78,81-83,93

silicon 78,82-83,93

null modem 347-349,369

cable 347-348,369

number systems 19,22

O

Ohm’s Law v,5-6,9-10

Ohm, Georg Simon 5

on-board A/D hardware 161

OPTION register 152,211-212,214,220,

226,230,234,241-243,246-247,250-251,

253,256,259,261,264,266,270,355,391,

397,417,424,442,473,508,525,584,660,

683,686,700,705,712,733,745,756,776

OR gate 84,88-91,97,101,110,116

orbital model 1-2,16

oscillating signal 95

oscillator 105-107,135-136,144-147,161,

183,190-192,195-196,198,201,203,208,

222,229,233,236,242-243,260,263,266,

269-270,294,306-307,317,328,354,370,

377-378,383,390,395,401,405-406,421-

422,435,439,453,476,485-486,492-493,

505,518,522,535,549-552,558,560,568,

oscillator (continued)

581,595,652,659,663,667,678,682,685,

688-689,704,709,722,730,744,750,752,

773,786

type 195

output devices 122,159,189

overflow 42-44,56,59,61,64,67,69-71,160,

213-214,218,241-242,245-247,255-258,

268,271-272,355-360,387,391-394,396-

399,417-419,464,483,485,488,502-503,

538,566,578,592,611,662,700-702,724,

767-768

P

packed BCD format 51,60-61,558,563,

566,608

parallel

communications 305-306,339-340,

350-351

data transmission 286,351

port 174

slave port 158,351

parity bit 341,344-345,370-371,384,436,

454

passive matrix display 126

PCB 133-134,206-207,615,617-618

PCON register 148

PIC

architecture 141,144,149,158,179,555

clocking system 144

programmers 175

serial communications 352,366,368

PIC/LCD

circuits 296

port access 296

PIC10 devices 135

PIC1650 129

PIC-driven LCDs 275

PICMicro viii,129

picofarads 13

Pingala 37

pixilated output device 124

PMOS 83-84

p-n junction 78,80,82

PNP transistor 83

polled routines 255,386

positional

system 21,24,27,66

weights 22,29,45

positive and negative logic 89-90

800 Microcontroller Programming

potentiometer 6,9,543,547,555-556

power supplies 81,95

power-down state 223,233

printed circuit board 86,133,206,615

programmable prescaler 160,214,241

programmers 131,174-176,206

protocol-based programming 366

prototyping 86,133-134

p-type 78,81-83,93

pulsing the E line 298

pushbutton circuit 199

pushbutton switch 121,164,191,199-201,

206,215,217,219,221,223,225,229,231,

233,248-249,260,262,352,355-356,358,

389-390,395,400,426,444,663,734,745

push-to-break switch 120

push-to-make switch 120

Pythagoras 24

Q

quantization level 544

quartz oscillator 560

R

R/W line 280,287,290,296,302,322,371-

372,406,689

RA4/TOCKI pin 212,241,246-247

radix complement 41-43,47-49

representation 42,48-49

RB0 interrupt 212,219-221,223-224,226,

230-231,234,237,257,271

RC

network 106-107

oscillator 107,146,161,183,294,476,

549-550

RCSTA register 376,380-381,385,387-

388,437,456,519,536,723,787

read data 342,358,398,461,476,485-486,

503

reading the busy flag 280,287

receive data 346

receiver circuit 352

re-enabling interrupts. 211

reflective LCDs 125-126

register variables 218,257,268-269,271

request to send 347

reset switch 147

resistor color codes 614

resistor/capacitor 100,107,146

combination 100

resistor/capacitor (continued)

circuit 121

resistors 8-14,77,85,94,106,121,212,

476-477,481,613

in parallel 11

RESTART condition 477

right justification 553

rheostat (see variable resistor)

ring indicator 346

ripple counter 108-110,112-113

RISC architecture 135

ROM-based 135

rotary switch 97

rotate operation 62-63,113

round-off errors 244

RS flip-flop 98,102,121

RS-232 131,161,174-175,339-340,343-347,

350,352,354,366-371,375-376,379,

381,416,469,486,504,521,700,708,

772

RS-232-C ,339-340,343-347,350,352,354,

366-371,375-376,379,381,416

communications on the 16F84 366

RS-422 340

RS-423 340

RX/TX pin 380

S

sample and hold capacitor 549

Schmitt trigger inverter 93,121

Schottky diodes 93

semiconducting material 79-80

semiconductor device 8,15-16,79,81

semiconductors 4,15,77

sender circuit 352,360

serial bit stream 339-340

serial

communications 114-115,215,241,

306,339-341,343-344,347,350,352,

366,368,375-376,381,386,389,395,

400,408,475,486,691

data transmission 342

EEPROMS 161,376

LCDs 275

Serial Peripheral Interface (see SPI)

series-parallel circuit 7

set

CGRAM address 285-286

entry mode 331,411,430,448,496,572,

Index 801

586,600,694,738,760

seven-segment

displays 77,95,122-123,159

LED 122-123,126,189,204-206,248-250,

262,351

SFR 148-149,151,153-155,184,252,265,

468,482,520,683,687,769

registers 148,155

Shannon, Claude E. 37,84

shift registers 85,113-115,161,360,362,

400

sign extension 71

signed numbers 24,40-41,48,59,67

sign-magnitude representation 40-41,67

simulators and debuggers 171

single-step mode 172

single-word instructions 142-143

sink the current 199

SLEEP mode 135-136,147,150,161,219,

549,554,622,652

operation 554

small EEPROM 478

software timers, 293

source current 199-200

spacing state 340-341,344

special function registers 154-155,172,

469,482

SPI 161,475,480,483,492,541,728,790-792

square wave generator 106

SSP Interrupt 149

SSPADD register 485-486

start bit 341-342,344,354,356,358-359,

370-371,379,393,399,405,408,418-419,

688,691,701-703,789-791

START condition 477,479

static

electrical charge 3

electricity 94

STATUS register 145,149,151-152,154-

155,180,217-218,222-223,228,232,239,

258-259,273

Stibitz, George 37

stop bits 341,356,358,370,393,398

STOP condition 477,480,489,491,539,

541,726-727

stripboards 133

strobing 295

successive approximation algo-

rithm 161,546,549

switch debouncing 121-122

synchronous

communications 342-343,354

idle characters 342

logic 98

synchronous (continued)

serial transmission 343

system clock 223,244,376,551

T

tally system 19-20

template circuit 191

TFT displays 127

three-input AND gates 108

time delay routine 280,293

timer

beats per second 243-244

interrupt flag 258-259,272

malfunction 260

register 241-243,245-247,252,265,683,

687

timer0 module 214

timing

generation circuit 276-277

techniques 243

TMR0 overflow interrupt 213

transceiver IC 367-368

transducer 345,544

transformers 77

transistor 16,77,81-85,93-94,127

transistor-transistor logic 84

transmissive LCD 125

transmit data 384,437,455,518,536,722,

786

TRIS register 159,481,554,556,656

truth table 87,90-91,97,108,115

TTL 84-86,92-94,105-106,112,115,350,

367-369,459,546,558

clock 105

-compatible clock 105

board 368

twisted-pair cables 346

two-bit ripple counter 108

TXSTA register 376-377,381

types of numbers 23

U

UART 115,340,342-343,349,366-369,381,

409,692

module 367,381

unpacked BCD format 51

unsigned

division 67

802 Microcontroller Programming

iinteger 33,37,56,60

unsigned (continued)

multiplication 64

up- and down-counter 112

USART

138,148,158,161,340,342-343,349,366-

368,376,379-386,388,405,435,437,452-

456,518-519,535-536,688,721-723,785,

module 161,343,366,368,376

receive interrupt 388,454-455

USB 130-131,138,153,174-175,339,343

UTF-16 37

UTF-32 37

UTF-8 37

V

variable

resistors. 9

time-lapse routine 252

variable-lapse delay 253,265,267,269

voltage regulator 95-96,192,558

von Neumann bottleneck 142

Burks, and Goldstine 22

von Neumann, John 37

W

watchdog circuits 129

watch-dog timer 150,152,622,660,683,

686,704-705

Watt, James 5

Weiner, Norbert 37

whole numbers 24-25

wire wrap 133

word size 39,44,56,59,64

WRERR bit 466

write data 280,468,476,520,769

X

XNOR 84

XOR gate 84,90-91

Z

zero flag 56,63-64,193,218,245,252,265,

300,314-315,325-326,336-337,501,516,

534,577,590,605,675-676,683,687,720,

765,784

Zuse, Konrad 22

Index 803

	Microcontroller Programming: The Microchip PIC
	Table of Contents
	Preface
	Additional Material
	Basic Electronics
	1.0 The Atom
	1.1 Isotopes and Ions
	1.2 Static Electricity
	1.3 Electrical Charge
	1.4 Electrical Circuits
	1.5 Circuit Elements
	1.6 Semiconductors

	Number Systems
	2.0 Counting
	2.1 The Origins of the Decimal System
	2.2 Types of Numbers
	2.3 Radix Representations
	2.4 Number System Conversions

	Data Types and Data Storage
	3.0 Electronic-Digital Machines
	3.1 Character Representations
	3.2 Storage and Encoding of Integers
	3.3 Encoding of Fractional Numbers
	3.4 Binary-Coded Decimals (BCD)

	Digital Logic, Arithmetic, and Conversions
	4.0 Microcontroller Logic and Arithmetic
	4.1 Logical Instructions
	4.2 Microcontroller Arithmetic
	4.3 Bit Manipulations and Auxiliary Operations
	4.4 Unsigned Binary Arithmetic
	4.5 Signed Binary Arithmetic
	4.6 Data Format Conversions

	Circuits and Logic Gates
	5.0 Digital Circuits
	5.1 The Diode Revisited
	5.2 The Transistor
	5.3 Logic Gates
	5.4 Transistor-Transistor Logic
	5.5 Other TTL Logic Families
	5.6 CMOS Logic Gates

	Circuit Components
	6.0 Power Supplies
	6.1 Clocked Logic and Flip-flops
	6.2 Clocks
	6.3 Frequency Dividers and Counters
	6.4 Multiplexers and Demultiplexers
	6.5 Input Devices

	The Microchip PIC
	7.0 The PICMicro Microcontroller
	7.1 PIC Architecture

	Mid-range PIC Architecture
	8.0 Processor Architecture and Design
	8.1 The Mid-range Core Features
	8.2 Mid-Range CPU and Instruction Set
	8.3 EEPROM Data Storage
	8.4 Data Memory Organization
	8.5 Mid-range I/O and Peripheral Modules

	PIC Programming: Tools and Techniques
	9.0 Microchip’s MPLAB
	9.1 Integrated Development Environment
	9.2 Simulators and Debuggers
	9.3 Programmers
	9.4 Engineering PIC Software
	9.5 Pseudo Instructions

	Programming Essentials: Input and Output
	10.0 16F84A Programming Template
	10.1 Introducing the 16F84A
	10.2 Simple Circuits and Programs
	10.3 Programming the Seven-segment LED
	10.4 A Demonstration Board

	Interrupts
	11.0 Interrupts on the 16F84
	11.1 Interrupt Sources
	11.2 Interrupt Handlers
	11.3 Interrupt Programming
	11.4 Sample Programs

	Timers and Counters
	12.0 The 16F84 Timer0 Module
	12.1 Delays Using Timer0
	12.2 Timer0 as a Counter
	12.3 Timer0 Programming
	12.4 The Watchdog Timer
	12.5 Sample Programs

	LCD Interfacing and Programming
	13.0 LCD Features and Architecture
	13.1 Interfacing with the HD44780
	13.2 HD44780 Instruction Set
	13.3 LCD Programming
	13.4 Sample Programs

	Communications
	14.0 PIC Communications Overview
	14.1 Serial Data Transmission
	14.2 Parallel Data Transmission
	14.3 PIC fiFree-stylefl Serial Programmi
	14.4 PIC Protocol-based Serial Programming
	14.5 Sample Programs

	Data EEPROM Programming
	15.0 PIC Internal EEPROM Memory
	15.1 EEPROM Devices and Interfaces
	15.2 Sample Programs

	Analog to Digital and Realtime Clocks
	16.0 A/D Converters
	16.1 A/D Integrated Circuits
	16.2 PIC On-Board A/D Hardware
	16.3 Realtime Clocks
	16.4 Sample Programs

	Appendix A - Resistor Color Codes
	Appendix B - Building Your Own Circuit Boards
	Appendix C - Mid-range Instruction Set
	Appendix D - Supplementary Programs
	Index

