std.-2006

2022

S.K.S. Mahanaya 3rd Semester Examination

MATHEMATICS (Honours)

Paper: C 5-T

Theory of Real Functions and Introduction to Metric Space)

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any ten questions:

 $2 \times 10 = 20$

- (a) Prove that, $\frac{\tan x}{r} > \frac{x}{\sin r}$, $0 < x < \frac{\pi}{2}$
- (b) Use Mean value theorem to show that $0 < \frac{1}{r} \log \left(\frac{e^x - 1}{r} \right) < 1$
- (c) Give the geometrical interpretation of Mean Value Theorem.
- (d) Does there exist a function φ such that $\varphi'(x) = f(x)$ on [0, 2], when f(x) = x - [x], where [x] is the greatest integer function?

- (e) Let $I \in \mathbb{R}$ be an interval and a function $f: I \to \mathbb{R}$ be differentiable at $C \in I$. Then if f'(c) > 0, prove that f is increasing at c.
- (f) Evaluate $\lim_{x\to 3} \left(\left[x \right] \left[\frac{x}{3} \right] \right)$
- (g) Let $f(x) = \begin{cases} 1, & x \in Q \\ 0, & x \in \mathbb{R} Q \end{cases}$ Prove that f is discontinuous at every point c in \mathbb{R} .
- (h) Define the Lipschitz's function.
- (i) Find the value of limit: $\lim_{x\to a} \left(1+\frac{3}{x}\right)^x$
- (j) Let d_1 and d_2 are two metrics on a non-empty set A. Prove that $d_1 + d_2$ is also a metric on A.
- (k) Let (M, d) be a metric space. Then prove that $\forall A, B \in M, A \subset B \Rightarrow \delta(A) \geq \delta(B)$.
- (1) Let (A, d) be a metric space. Then prove that (A, \sqrt{d}) is also a metric space.
- (m) Prove that in any discrete metric space all the sets are closed.
- (n) Let X be a non-empty set and $f: X \to \mathbb{R}$ be an injective function. Then prove that $d(x,y) = |f(x) f(y)| \ \forall x, y \in X$ defines a metric on X.

(o) Show that $\lim_{x\to\infty} \frac{[x]}{x} = 1$, where [x] denotes the greatest integer contained in x not greater than x.

Group - B

2. Answer any four questions:

5×4=20

(a) Let [a, b] be a bounded closed Interval and I denoted the set of all Riemann-Integrable (RI) function over [a, b]. Then prove that

$$d(f,g) = \int_a^b |f(x) - g(x)| dx, \forall f, g \in \mathbb{R}I$$

is a pseudo metric but not metric.

- (b) Prove that $f(x) = \sin x^2$ is not uniformly continuous on $[0, \infty)$ but $f(x) = \sin x$ is uniformly continuous on $[0, \infty)$.
- (c) State & prove the Hausdorff property.
- (d) Let $D \subset \mathbb{R}$ and $f:D \to \mathbb{R}$ be a function. Let c be a limit point of D and $l \in \mathbb{R}$. Then $\lim_{x \to c} f(x) = l$ iff for every sequence $\{x_n\}$ in $D \{c\}$ converging to c, the sequence $\{f(x_n)\}$ converges to l.
- (e) State and prove the Caratheodory's theorem.

(f) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Show that f is differentiable on \mathbb{R} but f' is not continuous on R.

Group - C

3. Answer any two questions:

 $10 \times 2 = 20$

- (i) State Maclaurin's infinite series and obtain the expansion of $(1+x)^m$ where m is any real number other than positive integer and |x| < 1.
 - (ii) Let $f: I \to \mathbb{R}$ be such that f has a local extremum at an interior point C of I. If f'(c)exists then f'(c) = 0.
- (b) (i) Let I be an interval and a function $f: I \to \mathbb{R}$ be uniformly continuous on I. Then f is continuous on I.
 - (ii) Let I = [a, b] be a closed and bounded interval and a function $f: I \to \mathbb{R}$ be continuous on I. Then f is uniformly continuous and f is bounded on I. 2+8
- (i) Let I = (a, b) be a bounded open interval and $c \in (a,b)$. If $f: I \to \mathbb{R}$ be a monotonic function on I then $\lim_{x \to a} f(x)$ and $\lim_{x \to a} f(x)$ both exist.

(ii) A function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} x, & x \in Q \\ 0, & x \in \mathbb{R} - Q \end{cases}$$

Show that f is continuous at 0 and f has a discontinuity of the 2nd kind at every other point in R. 5+5

- (d) (i) State and prove Taylor's theorem with Cauchy's form of remainder after n terms.
 - (ii) Give example of a function which is :
 - (a) Continuous and bounded on R, attains its supremum but not infimum.
 - (b) Continuous and bounded on R, attains its infimum but not its supremum.