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1. Answer any five questions : 2×5=10

(a) Define least upper bound of a bounded set and obtain it for the set

 1 2 3, , ,...... ,.....
2 3 4 1

nA
n

 

(b) Define point of accumulation of a set and find all the points of accumulation of

the set  1 1 / , 1,2,3,.....E m n
m n

   .

(c) Prove that if A and B are two closed sets, then A B  and A B  are both closed

sets.

P.T.O.



(d) Show that  3 1
2

n
n

  is a bounded sequence.

(e) Prove that every convergent sequence is bounded. Is the converse true? Justify.

(f) Prove that the Series  1

1
1n n n



   converges.

(g) If 
1

n
n

a



  is a convergent series, then prove that lim 0nan  .

(h) Define compact set with an example.

2. Answer any four questions : 5×4=20

(a) Define countability of a set. Show that the set of all real numbers is not countable.

(b) State and prove Archimedean property of real numbers.

(c) If a set S is open, then prove that its complement is a closed set. Is the converse

true? Justify.

(d) Define Cauchy Sequence. Prove that the sequence  2n  is not a Cauchy

Sequence.

(e) Prove that every bounded sequence has a convergent subsequence.

(f) Prove that 1 11 .......
2! 4! 6!
     converges.

3. Answer any three questions : 10×3=30

(a) What do you mean by convergence, absolute convergence and conditional

convergence of a series of real numbers? Prove that absolutely convergence imply

convergence. Classify as to divergent, conditionally convergent or absolutely of the

following series :

(i)
1 1 11 .....
1! 2! 3!

   
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(ii)
1 1 11 .....
3 5 7

   

(iii)
1 2 3 4 .....
2 3 4 5
    3+1+6

(b) If a sequence  nx  of real numbers is monotonic increasing and bounded above,

then prove that it converges to its exact upper bound. Prove that the sequence

 11
n

n
 

 
 

 is monotonic increasing and bounded above. 5+5

(c) (i) State and prove Bolzano-Weierstrass theorem for sequences.

(ii) Using Cauchy’s general principle of convergence prove that  nx , where

  11 1 1 11 ..... 1 ·
2 3 4

n

nx
n

       , is a convergent sequence. 5+5

(d) (i) State and prove Heine-Borel theorem. Give an illustration which justify

Heine-Borel theorem.

(ii) State and prove density property of real numbers. 4+3+3

(e) (i) Examine if the following series converge :

(i)  10
1

1
10 2n

n
n






       (ii) 

1

1
2

n

n
n






        (iii)  

1

1log 1
n

n







(ii) Given 1 20 x x  . If each 1 2

2
n n

n

x x
x   ,

then prove that    1 2
1 2
3nx x x   as n  . 6+4

__________
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